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ABSTRACT
Social networks are popular means of data sharing but they
are vulnerable to privacy breaches. For instance, relating
users with similar profiles an entity can predict personal
data with high probability. We present SONSAI a tool to
help Facebook users to protect their private information
from these inferences. The system samples a subnetwork
centered on the user, cleanses the collected public data
and predicts user sensitive attribute values by leveraging
machine learning techniques. Since SONSAI displays the
most relevant attributes exploited by each inference, the
user can modify them to prevent undesirable inferences.
The tool is designed to perform reasonably with the lim-
ited resources of a personal computer, by collecting and
processing a relatively small relevant part of network data.

1 INTRODUCTION
Data published on social networks profiles can be mined
for inferring sensitive information about users. For instance
it was shown in [10] how musical tastes allow one to pre-
dict educational level. To increase user awareness about
these privacy threats we have designed a tool, SONSAI, for
Facebook users to audit their profiles.The system crawls
the network around the user and predicts its sensitive at-
tributes values using a machine learning engine. The results
provided by SONSAI, also shows the public attributes of
the user that have oriented the learning algorithm towards
a particular sensitive attribute value. The user can therefore
modify these public attributes to prevent inference.

For the approach to be feasible several problems have
to be solved: First, data collection by crawling is limited
both by the social network and by country regulations.
Hence the crawler exploration strategy has to focus only on
meaningful representative network nodes. Since attributes
are numerous, for the learning program to scale one has
to select only the most relevant ones for inferring sensitive
attribute values. Hence the second problem is to find an
attribute relevance measure that is both accurate and easy
to compute. Note that we cannot rely on semantic proximity
since we notice that a user that hides a sensitive attribute
probably will hide semantically related ones, too. Moreover
for fully anonymised datasets the attributes semantics is
hard to recover. Therefore we follow an alternative approach
by modelling attributes as bipartite graphs and measuring
relevance of attributes by comparing their bipartite graph
structures.

For specific attributes such as gender and relationship
status, the sets of values are much smaller than for other
attributes like music and movie. Consequently, the graphs

© 2018 Association for Computing Machinery. Published in the
Workshop Proceedings of the ACM Conference (July 2017, Wash-
ington, DC, USA) on CEUR-WS.org (ISSN 1613-0073).Distribution
of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

that model these attributes have higher connectivity than
the other graphs. For instance, the density of the graph
that models gender (as most users publish their gender) is
close to 0.5. In order to infer hidden links in such graphs
we need to learn from highly connected graphs. However
most of the available learning graphs are sparse. To cope
with this last problem, we derive new graphs by merging
several learning graphs.

All the proposed methods have been implemented for
Facebook, however they can be applied to many other
social networks. The system has been tested by several
volunteer users for auditing their Facebook profiles. In each
case a dataset was built from real profiles collected in the
user neighborhood network.

Related works. In [15] the authors propose algorithms to
detect whether a sensitive attribute value can be inferred
from the neighborhood of a target user in a social net-
work. Heatherly et al. [12] infer attribute values in social
network with bayesian classification techniques. For the
same purpose Estivill-Castro et al. [7] employ decision-tree
learning algorithms. In these works learning is performed
off-line on large datasets. In order to perform attribute
inference from sparser datasets collected in short time by
our tool user in his ego-network, we rather use random
walk-based learning. The random walk technique has been
applied to social representations in [14] and [11] where the
authors analysed friendships and used a skip-gram model.
In these works, user profiles that have similar friends will
be mapped to similar representations. This model helps
to detect communities and can predict a set of potential
friends for a given user profile. Skip-gram model has also
been applied recently to infer social relationship from mo-
bility data [5]. Our work uses a more adapted Continuous
Bag of Words (CBOW) model to predict the most likely
values for a user sensitive attribute. In our setting friends
are considered as an attribute among others. Moreover
we first determine automatically a relevant subset of the
social network for optimizing random walks. In [3] the rel-
evance of attributes is computed by Bayesian optimisation
which is much less efficient than the graph comparison
approach adopted here. In particular [3] does not succeed
in reasonable time (on standard PC) with attributes like
gender and relationship status. Let us note that (unlike
[1]) our approach does not need any ontology to perform
semantic correlation between attributes. Finally we notice
that the proposed system SONSAI is close under some
aspects to a recommendation system: an item suggestion
can be viewed as an attribute value prediction [4]. How-
ever unlike recommendation systems SONSAI also provides
explanations for the predicted values, namely an ordered
list of attributes that have played a significant role in the
computation. For enforcing privacy, our final goal will be



to reduce the “recommendation accuracy” by acting on
this list of attributes.

2 ARCHITECTURE OF SONSAI

Figure 1: Architecture of SONSAI.

The architecture of SONSAI is overviewed in Figure 1.
The Facebook crawler (about 5k lines of Java 8) drives a
Firefox 58.0b4 navigator through a Selenium 3.5.3 server 1.
Collected information from each profile, group and page are
stored in separated XML files. The Anonymizer, Cleanser,
Random walker and Ranker components are written in
Python 2.7 (about 2.5k lines of code). The Anonymizer
component parses all the XML files, generates anonymized
graphs and stores them as TSV files. Then, the Cleanser
selects the most relevant graphs and stores them as adja-
cency lists. The Random walker component browses the
adjacency lists and stores the resulting walks in a text
document. We use the Python gensim 2 implementation of
Word2Vec to parse the text document and compute a vec-
torial representation of social network nodes encountered
in the walk. Finally, the Ranker component classifies the
sensitive nodes according to their similarity to the target
user profile.

3 SAMPLING FACEBOOK
We have designed a crawler that explores the social network
around a user (to some distance given as a parameter) and
collects public information from the visited web pages (i.e.
friends, liked pages . . . ) in order to build a representative
subnetwork. We distinguish two types of Facebook nodes:
user profiles (u) and pages (p) and two types of links:
like-ships between user profiles and pages, and friendships
between user profiles. Given a node 𝑐, 𝑐.𝑛 denotes the
set of nodes that are linked to 𝑐. A discovered node is a
node whose URL is known by the crawler. For instance, if
the crawler retrieves a user profile and collects its public
friends list, then all the friends of that particular user
profile are discovered. Algorithm 1 crawls at most 𝑛𝑐 nodes
at distance ≤ 𝑑 from the target node 𝑢𝑡. Each iteration of
the outer loop samples a node, crawls it and update the sets
of discovered and crawled nodes. The sampling is done by
random walks of length ≤ 𝑑 with a transition probability 𝜋
designed to crawl with higher priority closer nodes and to
favour neighbour nodes according to their type. Function
sinks(𝑗) returns the set of sinks, i.e. crawled nodes such
that all discovered nodes at distance ≤ 𝑗 are also crawled.
Sinks are avoided by the random walks to guarantee that
the final node has not been crawled yet.

1http://www.seleniumhq.org/
2https://radimrehurek.com/gensim/index.html

1 Procedure crawl_nodes(𝑢𝑡, 𝑑, 𝑛𝑐, 𝜋)
2 crawl_node(𝑢𝑡);
3 while |𝑐𝑟𝑎𝑤𝑙𝑒𝑑_𝑛𝑜𝑑𝑒𝑠| < 𝑛𝑐 do
4 𝑐← 𝑢𝑡; 𝑟 ← {};
5 for 𝑖← 1 to 𝑑 by 1 do
6 𝑟.addAll(sinks(𝑑− 𝑖)));
7 𝑐← random_select_in({𝑐 ∪ 𝑐.𝑛} ∖ 𝑟);
8 end
9 crawl_node(𝑐);

10 end
Algorithm 1: Crawling nodes around a target user.

4 SOCIAL NETWORK MODEL
Modelling friendship relations. Since friendship on Face-

book is symmetric, we model friendship between user pro-
files by an undirected graph (𝑈, 𝐹 ) where 𝑈 is a set of users’
profiles and 𝐹 is a set of friendship links between them.

Modelling page like-ship. We model like-ship between
user profiles and pages by several bipartite graphs (𝑈, 𝑃, 𝐿)
where 𝑈 is a set of users profiles, 𝑃 is a set of pages (a
type) and 𝐿 is a set of like-ship links between them. Figure
2 shows an example of page like-ship modelled by two
graphs3. Graph (𝑎) models liked pages of music type and
Graph (𝑏) models liked pages of book type. We note that
user profiles can like several pages of the same type.

Figure 2: Example of pages like-ship graphs.

Anonymizing the social network graphs. For ethical and
regulation reasons Facebook identifiers are replaced by fresh
identifiers. Each node in the network is then identified
by a unique integer ID replacing its Facebook ID. The
anonymized IDs are sorted according to the node types.
Anonymized graphs are saved under the tab-separated
value (TSV) format, one of the most general delimiter-
separated values format (DSV). TSV is widely used in
3Icon made by Smashicons from www.flaticon.com
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graph exchange. In contrast to the dataset released by
Netflix 4 where only user IDs are anonymised (but not
movies title, rating, date of rating), all attribute values are
anonymised in our datasets.

In the following a sensitive graph is a graph that models
an attribute that is considered sensitive by the user (i.e.
the user does not want its value to be predictable). The
learning graphs are attribute graphs available for the learn-
ing module in order to predict hidden links in the sensitive
graph.

5 MODEL CLEANSING
The task of predicting a sensitive attribute from the other
ones is made difficult by the size of datasets. Therefore, we
suggest to apply the inference process only on a subset of
most relevant attributes for the task. Our relevance notion
does not rely on semantic proximity since we noticed that
i) a user that hides a sensitive attribute will probably hide
other semantically-related attributes, and moreover ii) for
fully anonymised datasets the attributes semantics is hard
to recover. On the contrary we will rely on comparing
attributes graph structures.
In the following we assume a fixed sensitive graph 𝑠.

Step 1: Computing the learning and the confidence rates
of learning graphs. In order to compare the structure of
a given learning graph to the structure of the sensitive
graph, we first split each graph in two parts. The first part
contains user profiles that hide their links in the sensitive
graph. The ratio of user profiles that publish their links in
the first part of the learning graph represents the learning
rate 𝑙𝑟. The second part contains user profiles that publish
their links in the sensitive graph. The ratio of user profiles
that publish their links in the second part of the learning
graph represents the confidence rate 𝑐𝑟.

The function connected_profiles_in() returns the set
of user profiles that publish their links in the graph given
as argument. Given 𝑙, 𝑠 respectively a learning graph and a
sensitive graph and 𝑈 the set of user profiles in all graphs,
we define:

𝑈𝑙 = connected_profiles_in(𝑙)

𝑈𝑠 = connected_profiles_in(𝑠)

𝑙𝑟(𝑙) = size(𝑈𝑙 ∩ (𝑈 ∖ 𝑈𝑠)) / size(𝑈 ∖ 𝑈𝑠)

𝑐𝑟(𝑙) = size(𝑈𝑙 ∩ 𝑈𝑠) / size(𝑈𝑠)

Figure 3 depicts an example of splitting two graphs for
comparison. The graph that models the link-ship between
user profiles and pages of politicians is the sensitive graph.
And the graph that models the link-ship between user
profiles and pages of musics is the learning graph. The
learning rate 𝑙𝑟 for this example is equal to 50%. And the
confidence rate 𝑐𝑟 is equal to 75%.

Step 2: Computing the distance between a learning graph
and the sensitive graph. In this step, we discard user profiles
that have a null degree in the learning graph or in the
sensitive graph. The Jaccard index between two user nodes
𝑢1 and 𝑢2 in a given graph 𝐴 is computed as follows, where

4https://www.kaggle.com/netflix-inc/netflix-prize-data

Figure 3: Example of cutting graphs for structure compari-
son.

the function 𝑙𝑖𝑛𝑘𝑠𝐴 (𝑢𝑗 ) returns the set of nodes to which
user node 𝑢𝑗 is connected in the graph 𝐴.

𝐽𝐴 (𝑢1, 𝑢2) =
𝑙𝑖𝑛𝑘𝑠𝐴 (𝑢1) ∩ 𝑙𝑖𝑛𝑘𝑠𝐴 (𝑢2)
𝑙𝑖𝑛𝑘𝑠𝐴 (𝑢1) ∪ 𝑙𝑖𝑛𝑘𝑠𝐴 (𝑢2)

(1)

The Hamming distance 𝐻 between graphs 𝑙 and 𝑠 is
defined by:

𝐻 (𝑙) =
∑︁

𝑢𝑘,𝑢𝑗∈𝑈𝑙∩𝑈𝑠
𝑘,𝑗

|𝐽𝑙 (𝑢𝑘, 𝑢𝑗 ) − 𝐽𝑠 (𝑢𝑘, 𝑢𝑗 )| (2)

In order to compare learning graphs with different sets
of common connected profiles 𝑈𝑙 ∩ 𝑈𝑠, we normalize this
distance by the maximal Hamming distance that can be
obtained on such a set. Hence we define the Hamming rate:
ℎ𝑟(𝑙) = 𝐻 (𝑙)/𝑀 (𝑙) where 𝑀 (𝑙) is∑︁

𝑢𝑘,𝑢𝑗∈𝑈𝑙∩𝑈𝑠
𝑘,𝑗

|𝑀𝑎𝑥(𝐽𝑠 (𝑢𝑘, 𝑢𝑗 ), 1− 𝐽𝑠 (𝑢𝑘, 𝑢𝑗 ))| (3)

Step 3: Selecting most relevant graphs for learning sen-
sitive attribute values. We first discard the learning graphs
that have a learning rate 𝑙𝑟 lower than threshold 𝜃𝑙𝑟 since
they do not convey enough information. We then discard
the graphs that have a confidence rate 𝑐𝑟 lower than 𝜃𝑐𝑟

since they are considered as unreliable. Finally, from the re-
maining graphs we only select graphs that have a Hamming
rate ℎ𝑟 higher than 𝜃ℎ𝑟 since they are the most similar to
the sensitive graph.

Densifying graphs
For some sensitive attributes such as gender, age and rela-
tionship status, user profiles are linked to at most one value.
Moreover the sets of values for these particular attributes
are much smaller than for other attributes. Consequently,
the graphs that model these attributes are denser than the
other ones. In this case, for improving the random-walk
based learning process (see Section 6) we need to merge
several learning graphs in order to obtain a denser one.
We explain the method with a simple example of gender
prediction: we select attribute graphs with high 𝑙𝑟, 𝑐𝑟 rates
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but with also a good rate of discrimination between gen-
ders, that is the gender of connected users in the graph is
unbalanced between male and female. For instance we can
select jewelry and fast-food graphs. We merge these graphs
by grouping all fast-foods in a unique node and similarly
for jewelries as shown in Figure 4 to obtain a new learning
graph.

Figure 4: Merging graphs.

6 RANDOM WALK-BASED ATTRIBUTE
LEARNING

Representation generation. We plan to translate latent
information from the selected graphs (in previous section)
to a document. The resulting document holds information
about paths in the graphs and their frequencies that can
be exploited for infering proximity of a user node to some
sensitive attribute value node. Following [14], paths in the
social graph are sampled by random walks. In our case, the
walks are executed only in the subset of selected graphs.

Let 𝐺1, 𝐺2, . . . 𝐺𝑛 be the list of selected learning graphs.Let
𝑈 be the set of users in all graphs. We assume that the
friendship graph is selected and 𝐺1 = (𝑈, 𝐹 ) (otherwise
we can simply adapt the computation below). The other
graphs are bipartite and we pose 𝐺𝑖 = (𝑈, 𝑉𝑖, 𝐿𝑖) for 𝑖 > 1.
We introduce quotas to quantify the importance of each
graph 𝐺𝑟 for inferring secret values of the target sensitive
attribute. Each selected graph 𝐺𝑟 is assigned a 3 dimen-
sional vector 𝑉𝐺𝑟

= [𝑙𝑟(𝐺𝑟 ), 𝑐𝑟(𝐺𝑟 ), 1 − ℎ𝑟(𝐺𝑟 )]. The
quota of 𝐺𝑟 is given by its Mahalanobis distance to the
null vector [0,0,0]. It is computed as follows:

𝑞(𝐺𝑟 ) =

√︁
𝑉 𝑇

𝐺𝑟
Σ−1𝑉𝐺𝑟

with Σ the 3× 3 covariance matrix over the set of selected
graph vectors.

To specify the random walk transitions we first define
the probability 𝑝𝑢,𝑦 that being in node 𝑢 the next node in
the random walk is in a selected graph 𝐺𝑦:

𝑝𝑢,𝑦 =

{︃
𝑞(𝐺𝑦 )∑︀

{𝑥|𝑑𝑒𝑔𝑥 (𝑢)>0} 𝑞(𝐺𝑥 )
if 𝑑𝑒𝑔𝑦 (𝑢) > 0

0 otherwise
(4)

where 𝑑𝑒𝑔𝑥 (𝑢) is the degree of user 𝑢 in graph 𝐺𝑥. A value
node 𝑣 is followed by a user node chosen uniformly at
random from the ones connected to 𝑣. Assuming the node
following user node 𝑢 is in 𝐺𝑦, then it will be chosen uni-
formly at random from the nodes in 𝐺𝑦 that are connected
to 𝑢. Therefore, the transition probabilities are (𝐺1 is the
friendship graph):

𝑢→ 𝑣 : 𝑝𝑢,𝑦/𝑑𝑒𝑔𝑦 (𝑢) if 𝑦 , 1 and (𝑢, 𝑣) ∈ 𝐿𝑦

𝑣 → 𝑢 : 1/𝑑𝑒𝑔𝑦 (𝑣) if 𝑦 , 1 and (𝑢, 𝑣) ∈ 𝐿𝑦

𝑢→ 𝑢′ : 𝑝𝑢,1/𝑑𝑒𝑔1 (𝑢) if (𝑢, 𝑢′) ∈ 𝐹
(5)

Figure 5: Example of multi graph random walk.

As illustrated in Figure 5 the document is constructed
by connecting all graphs through random jumps between
their nodes (see also [14]). At each step the walker state
changes and a new word is written in the text document.
One step amounts to select a graph where the current node
occurs with non null degree, and then to select a node that
is connected to the current node in the selected graph. The
selected node then becomes the new current node.

In this example we aim to predict liked pages of politi-
cians masked by user profile 𝑢3. The sensitive graph is
Graph 2 and the learning graphs are Graph 1 and Graph
3. Since the values of the sensitive attributes (the pages of
politicians) are labelled (each value belongs to a unique clus-
ter), they are represented by the label of their clusters in the
final document. We use a greedy clustering algorithm [3] to
define size similar clusters. Pages of politicians that share
many common "likers" end up in the same cluster. For in-
stance the first walk depicted by Figure 5 is [𝑢1, 𝑢4, 𝑣2,3, 𝑢4].
But for efficiency the walk [𝑢1, 𝑢4, 𝑐2,2, 𝑢4] is stored instead
in the document since the value 𝑣2,3 belongs to the cluster
𝑐2,2.

Applying word2vec to compute node representations. We
have performed multi-graph random walks in the social
network and generated a text document. Walks in the doc-
ument can be interpreted as sentences, where the words
are network nodes. Hence, inferring a link between a user
node and an attribute value node is similar to the problem
of estimating the likelihood of words co-occurrence in a
corpus. We use word2vec [9, 13] to map one-hot encoded
vectors that represent words in a high-dimensional vocabu-
lary space to low-dimensional vectors (see [6]). Word2vec
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is employed with the Continuous Bag of Words (CBOW)
model for predicting a word given its context defined by
the 𝑐− 1 words surrounding it (𝑐 is the window size of the
context). Inputs of the model in our case are users and pub-
lished attribute value. Since there is no order between the
attribute values CBOW model is more adequate than Skip-
gram. The output of the CBOW model is a vector of size
𝑣 representing a probability distribution of co-occurrence
between all the words of the context and each word from
the vocabulary within a window of size 𝑐.

Ranking sensitive attribute values. We measure semantic
similarity between two nodes by the cosine of the angle
formed by the vectors representing the nodes. Cosine sim-
ilarity is known to take greater account of context infor-
mation. We rank all the sensitive values by their cosine
similarity to the target user profile. The values that have
the lowest rank are most likely the sensitive attribute se-
cret values of the target user profile, where secret values
are actually the true values of the target user but are not
published by him on the social network.

The Figure 6 depicts an example of 2-dimensional vectors
that encode 8 nodes: 3 user profiles (𝑢1, 𝑢2 and 𝑢3), 2
pages of musics (𝑣3,1 and 𝑣3,2) and 3 clusters of pages of
politicians (𝑐2,1, 𝑐2,2 and 𝑐2,3). The clusters of the pages of
politicians are the sensitive values and their vectors are red.
The node 𝑢1 is the target user profile and its vector is blue.
The clusters of pages of politicians will be ranked according
to their distances to 𝑢1. And the inference algorithm will
infer as most probable pages of politicians to be liked by 𝑢1,
the pages of politicians of the cluster that has the smallest
rank (the closest cluster to 𝑢1).

In [16] Schakel et al. show that word2vec unsupervised
learning algorithm encodes word semantics by affecting
vectors in the same direction for co-occurrent words during
training. Besides, the magnitude of a vector reflects both
the frequency of appearance of related words in the corpus
and the homogeneity of contexts. Where a context is a set
of words that have high co-occurrence probability in the
corpus.

In fact, the words that appear in the same contexts have
small angular distances between them. The less overlapping
the contexts are, the larger the angular distances between
their different words are. However, words that appear in
many contexts are represented by vectors that average
vectors pointing in many contexts directions. Hence, the
vectors magnitude generally decreases with respect to the
number of contexts. Moreover, the higher the word fre-
quency is, the higher the chance that it is used in different
contexts is. Consequently, the vector magnitude also de-
creases with respect to frequency. From these remarks, we
conclude that the euclidean distance is not a good measure
for our inference purpose. Actually, words that appear in
many contexts have low magnitude. As a result, their eu-
clidean distances will be small and, using this criteria, they
would be considered close even if they do not appear in
any common context. For instance, the euclidean distance
between the cluster of pages of the most popular politi-
cians will be small even if they are rivals. In the example
depicted by Figure 6 the politicians of the clusters 𝑐2,1 and
𝑐2,2 are rivals. The angular distance between those two
clusters is big. However, the euclidean distance is small.

Moreover, the euclidean distance between a user that has
many friends, for instance the user 𝑢1 in the Figure 6, and
a popular music like “despacito”, for instance the page of
music 𝑣2,1 in the Figure 6, will be small. But popular users
do not necessarily like popular musics.

7 EXPERIMENTS
To build datasets we have crawled Facebook profiles of
people that live in North-East France and in Île-de-France
(Paris). Table 1 gives statistics about the two crawled
datasets.

♯ Attributes ♯ Attribute ♯ Crawled
values user profiles

Dataset 1 (D 1) 1 929 1 022 860 15 012North-East France
Dataset 2 (D 2) 1 296 298 617 6 550Île-de-France

Table 1: Details about the datasets.

7.1 Political orientation
From each node 𝑛 we perform a random-walk of 800 steps.
The dimension of the node representation is taken to be
512. The dimension is usually taken between 100 and 300
for natural languages. However the size of the vocabulary
in social networks (equal to the number of nodes) is much
higher than in natural languages.

In Dataset 1 the sensitive graph represents the links
between 2554 user profiles and 4589 politician pages. For
each experiment we generate a new social graph from the
dataset by selecting the user profiles that publish their
preferences concerning the sensitive attribute (pages of
politicians) and at least another attribute. Then we remove
all the links in the sensitive graph of 10% of the selected user
profiles. The algorithm makes sure that all the nodes in the
resulting social graph remain connected. The experiments
have consisted then in inferring the hidden links based on
information from the learning graphs.

Among the 1928 learning graphs, we selected the ones
with learning rate greater than 𝜃𝑙𝑟 = 20%, confidence rate
greater than 𝜃𝑐𝑟 = 60% and Hamming rate lower than
𝜃ℎ𝑟 = 4%.

Table 2 details the 23 selected graphs relevance measures.

Attribute graph 𝑙𝑟 𝑐𝑟 ℎ𝑟 Number of
(in %) (in %) (in %) Users Values

Users 88.37 83.98 2.08 13155 13155
Communities 44.97 98.47 1.75 8118 137338
Musicians/Bands 38.58 91.38 2.03 7141 84762
PublicFigures 32.86 92.44 1.80 6455 28289
NonProfitOrganizations 31.85 86.57 1.72 6180 25847
Artists 30.65 84.22 1.92 5970 31681
Companies 30.05 85.94 1.75 5939 20750
Websites 29.57 83.94 1.78 5829 17931
TVShows 29.48 82.41 2.31 5778 11876
EntertainmentWebsites 29.26 79.20 2.84 5669 8319
Media/NewsCompanies 29.23 87.27 1.82 5871 14042
Products/Services 27.52 80.93 1.86 5496 15986
News/MediaWebsites 27.44 83.43 1.86 5550 9247
Organizations 26.20 80.77 1.63 5328 14738
Movies 26.09 75.17 2.26 5171 16282
LocalBusinesses 24.91 78.58 1.69 5111 17321
Clothings 23.99 68.12 1.96 4729 16090
Gastronomies 23.52 71.73 2.24 4763 8422
Actors/Directors 23.12 74.54 2.78 4785 10425
Magazines 22.82 73.96 1.69 4733 9955
Athletes 22.68 68.79 2.35 4583 14123
ApplicationPages 21.68 66.36 3.04 4396 4244
SportsTeams 21.48 63.93 2.35 4309 10433

Table 2: Selected learning graphs in D1 for politicians.

5



Figure 6: Example of 2-dimensional vectors that encode 8 nodes.

We note that the communities graph has the second
greatest learning rate 𝑙𝑟 = 44.97%, which means that it
holds much latent information about users who hide their
likes in the sensitive graph. It also has the maximal confi-
dence rate 𝑐𝑟 = 98.47 and the fifth lowest Hamming rate
(ℎ𝑟 = 1.75%) among the 23 selected relevant graphs, which
means that its structure is very similar to the structure
of the politicians graph. The friendship graph (Users) has
the maximal learning rate 𝑙𝑟 = 88.37% and a high confi-
dence rate 𝑐𝑟 = 83.98% since 87.62% of users are connected
to this graph. However, this graph has a Hamming rate
ℎ𝑟 = 2.08% greater than the average ℎ𝑟 of selected graphs
which means that learned information from this graph is
less reliable than learned information from the communities
graph.

We use the area under the ROC curve (AUC) as defined
in [8] to measure the accuracy of the inferred links. For the
defined thresholds (𝜃𝑙𝑟 = 20%, 𝜃𝑐𝑟 = 60%, 𝜃ℎ𝑟 = 4%) the
precision is equal to 0.79. However, the inference accuracy
when the 23 relevant graphs are selected randomly is only
0.41. We conducted more tests by selecting manually 3
graphs that are semantically close to politics as follows.
Graph 𝐺1 models the links between 1246 user profiles and
2357 political organizations, 𝐺2 models the links between
1120 user profiles and 1758 political parties and 𝐺3 models
the links between 39 user profiles and 41 political ideologies.
Although the selected graphs seem promising, the inference
accuracy is only 0.46. This can be explained by the fact that
the selected graphs are very sparse and users are vigilant
when publishing their preferences about those attributes.
Consequently, the algorithm cannot learn well from them.

We note that the musicians/bands graph was automat-
ically selected by our relevance-based selection method
confirming that music and politics are correlated as it was
empirically discovered in previous studies [17],

Table 3 summarizes the results of the conducted experi-
ments.

Selection accuracy targets deleted nodes
based on links
Relevance 0.79 252 409 558125(23 graphs)
Random 0.41 204 351 11200

(23 graphs) (average) (average) (average)
Table 3: Experimental results

7.2 Gender and relationship status
To produce a text document from the social graph, we
perform random-walks of 80 steps. Each random walk starts
from a different node. The dimension of the node vectorial
representation is taken to be 128 since in that case the
number of sensitive values is smaller. Moreover learning
graphs are obtained by grouping several attribute values in
the merging operation (see Section 5). For the experiments,
we have generated a new social graph from the dataset
by randomly selecting 10% of user profiles that publish
the value of their sensitive attribute and we have masked
it. Then SONSAI has tried to infer the masked values of
the sensitive attribute for each user based on the selected
attributes by the cleanser module.

Relationship status. The sensitive graph models the rela-
tionship status of user profiles. To simplify the presentation
we define two meta-relationship status as follows:

𝑅1= {𝑆𝑖𝑛𝑔𝑙𝑒, 𝐷𝑖𝑣𝑜𝑟𝑐𝑒𝑑, 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑, 𝑊 𝑖𝑑𝑜𝑤𝑒𝑑, 𝐶𝑜𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑}
𝑅2= {𝐷𝑜𝑚𝑒𝑠𝑡𝑖𝑐 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠ℎ𝑖𝑝, 𝑀𝑎𝑟𝑟𝑖𝑒𝑑, 𝐸𝑛𝑔𝑎𝑔𝑒𝑑,

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝐶𝑖𝑣𝑖𝑙 𝑢𝑛𝑖𝑜𝑛, 𝑂𝑝𝑒𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛}

We aim to infer the meta-relationship status of users.
Table 4 gives more details about the selected attributes
from dataset D2.

We notice that discriminant attributes toward 𝑅1 are
focused around educations and leisures. On the other hand,
discriminant attributes toward 𝑅2 are focused around
business. The accuracy in AUC of inferring the meta-
relationship status is higher than 0.7 in both datasets D1
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Attribute Importance Discrimination
Education 2.75 88.41 % R1
Community College 2.74 90.02 % R1
Consulting Agency 2.71 90.70 % R2
Sports & Recreation 2.56 91.18 % R2
Home & Garden Website 2.49 91.89 % R2
Automotive, Aircraft & Boat 2.48 92.86 % R2
Locality 2.47 92.59 % R2
Corporate Office 2.46 91.18 % R2
News & Media Website 2.42 90.32 % R2
Financial Service 2.41 90.00 % R2
Industrial Company 2.40 89.29 % R2
Educational Consultant 2.02 75.00 % R1
Playground 1.80 66.67 % R1
Phone/Tablet 1.70 63.64 % R1
Plastic Surgeon 1.60 60.00 % R1
Consulate & Embassy 1.60 60.00 % R2
School Sports Team 1.53 52.00 % R1
Dive Bar 1.45 54.55 % R1
Video 1.44 51.00 % R1
Playlist 1.41 53.04 % R1

Table 4: Selected attributes in D2 for relationship status.

and D2 as soon as the target publishes values concerning
at least 4 selected attributes by the cleanser.

Gender. The sensitive graph models the gender of user
profiles. We notice that discriminant attributes toward
male are focused around sports, games and software. On
the other hand, discriminant attributes toward female are
focused around health, home and luxury. The accuracy in
AUC of inferring the gender is higher than 0.83 in dataset
D1 and higher than 0.67 in dataset D2 as soon as the target
publishes values concerning at least 2 selected attributes
by the cleanser.

Attribute Importance Discrimination
Sports League 4.22 75.97 % Male
Recreation & Sports Website 3.80 77.09 % Male
Video Game 3.66 80.16 % Male
Cars 3.25 73.15 % Male
Amateur Sports Team 3.03 72.86 % Male
Sport 2.80 73.07 % Male
Jewelry/Watches 2.72 56.26 % Female
Electronics 2.68 73.19 % Male
Software 2.52 77.23 % Male
Outdoor & Sporting Goods 2.35 77.19 % Male
Women’s Clothing Store 2.35 77.28 % Female
Home Decor 2.29 54.60 % Female
Stadium, Arena & Sports Venue 2.28 74.45 % Male
Baby Goods/Kids Goods 2.14 66.61 % Female
Kitchen/Cooking 2.08 55.93 % Female
Bags/Luggage 2.04 59.16 % Female
Beauty, Cosmetic & Personal Care 2.03 60.59 % Female
Cosmetics Store 1.98 66.25 % Female
Hair Salon 1.92 61.44 % Female
Home & Garden Website 1.72 55.18 % Female

Table 5: Selected attributes in D1 for gender.

7.3 Processing times
Table 6 displays the processing times. The processor clock
is 2.3 GHz. Cleansing and random walk algorithms are
not parallelized. Cleansing takes more time than the other
processes in the case of gender inference since it handles
hundreds of thousands of nodes, compares hundreds of
graphs to the sensitive graph and computes their impor-
tance. The random walk, in the case of gender inference, is
performed on a small graph containing only a few dozen
of super-values and a few thousands of user profiles. On
the other hand, in the case of politicians inference, the
task is performed on larger graphs containing dozens of
thousands of values. The machine disposes only of 8GB
of RAM memory. Each chunk of 5k steps is stored sepa-
rately in a text file of about 25MB. Those files are then
parsed by Word2Vec. Word2Vec speed depends on the size
of the document vocabulary. It is fast in the case of gender

inference since the vocabulary is limited to user profiles,
super-values (i.e. clusters of values) and sensitive values.

Ranking task has to compute cosine similarity between
a few vectors that represent the sensitive values and the
target user vector. Cleansing task selects most important
attributes and reduces the vocabulary. Consequently, this
process accelerates the inference tasks (relying on Ran-
dom walk and Word2Vec). Moreover, Cleansing increases
accuracy by discarding irrelevant information.

7.4 Parameter sensitivity analysis
Let us investigate the impact of the cleansing parameters
𝑙𝑟, 𝑐𝑟 and ℎ𝑟. All experiments detailed in this section are
conducted on dataset D1 to infer users’ political orientation.

Table 7 shows that only 3 graphs among the 1928 avail-
able graphs have a learning rate 𝑙𝑟 higher than 30%. Based
on those graphs, inference accuracy can be very low. For
instance, inference accuracy based on gender attribute is
only 0.36. Based only on the users (i.e. friendship) graph
accuracy is getting better to 0.64. The communities graph
gives high accuracy of 0.74 for inferring political views.
However, we notice that the best accuracy is obtained
when selecting graphs with learning rate between 10% and
40%. Table 7 shows that the learning rate parameter 𝑙𝑟 is
important to select the best graphs for inference. However,
accuracy does not depend only on this parameter since
some graphs such as gender graph that have high learning
rate may lead to very low accuracy results.

Table 8 shows that when the Hamming rate ℎ𝑟 decreases,
accuracy increases. However, most graphs have a low Ham-
ming rate because only a small part of them can be com-
pared to the sensitive graph, as few users publish their
preferences in both graphs. Hence, their structure is not
fairly comparable to the politicians’ graph structure. To
cope with this problem we compute a third parameter, the
confidence rate 𝑐𝑟, that indicates how reliable the structure
comparison is.

Table 9 shows that the confidence rate, 𝑐𝑟, does not
give information about the best graph to select when it
is considered isolately but it must be coupled with other
parameters. For instance, if a given graph 𝑔 has a high
confidence rate but a low Hamming rate, that means that
it is a good graph for inference. However, if a given graph 𝑔
has a high confidence rate and high Hamming distance rate
that means that 𝑔 is probably a bad graph for infering the
sensitive attribute. But a given graph 𝑔 could be interesting
for inference if it has low 𝑐𝑟 and high ℎ𝑟.

8 CONCLUSION
SONSAI application enables users to predict their sensitive
links in social networks from relatively small amount of data
and computing resources. Indeed, sensitive data inferences
are fast and accurate on typical personal attributes. It
should be noted that the friendship graph was not selected
among important ones to deduce both the gender and
the relationship status of users. This probably means that
alternative techniques based solely on homophily would
be inaccurate in this context. Moreover, we have observed
that the privacy of users is threatened as soon as they start
publishing at least three important attributes. These ones
are automatically brought to light by SONSAI, regardless
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Process Cleansing Random Word2Vec Rankingwalk
Gender D1 423 34 50 0.12

Time inference D2 243 25 30 0.12
(in seconds) Politicians D1 782 523 924 1

inference D2 574 451 733 1
Table 6: Processing times.

𝑙𝑟 Inference ♯ selected ♯ attacked ♯ masked
(in %) accuracy in AUC graphs targets links
[0, 10[ 0.61 1873 252 409

[10, 20[ 0.80 31 254 411
[20, 30[ 0.86 16 254 418
[30, 40[ 0.80 5 253 410
[40, 50[ 0.74 1 (Communities) 251 408
[70, 80[ 0.36 1 (Genders) 213 353
[80, 90] 0.64 1 (Users) 214 350

Table 7: Impact of 𝑙𝑟 on inference accuracy.

ℎ𝑟 Inference ♯ selected ♯ attacked ♯ masked
(in %) accuracy in AUC graphs targets links
[0, 5[ 0.68 1744 253 410

[5, 10[ 0.59 87 177 304
[10, 20[ 0.53 58 87 167
[20, 30[ 0.45 11 83 129
[30, 40[ 0.42 13 11 21
[40, 50[ 0.42 5 2 3

[50, 100] 0.41 10 211 351

Table 8: Impact of ℎ𝑟 on inference accuracy.

𝑐𝑟 Inference ♯ selected ♯ attacked ♯ masked
(in %) accuracy in AUC graphs targets links
[0, 10[ 0.63 1711 245 409

[10, 20[ 0.43 94 246 407
[20, 30[ 0.74 37 245 405
[30, 40[ 0.54 28 248 404
[40, 50[ 0.72 16 247 410
[50, 60[ 0.38 14 250 407
[60, 70[ 0.63 8 248 403
[70, 80[ 0.60 6 248 393
[80, 90[ 0.65 11 255 419

[90, 100] 0.82 3 253 410

Table 9: Impact of 𝑐𝑟 on inference accuracy.

their semantics and only through a structural analysis
of the social network graph. As future work, we plan to
incorporate countermeasures into our tool to protect users
against posts that might compromise their privacy. We
also plan to enhance SONSAI prediction engine with a tool
that permits one to disclose hidden friendship links using
adequate combinations of queries provided by the social
network [2].
Acknowledgments. This work is supported by MAIF Foun-
dation5.
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