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Angiogenesis

Folkman, N Engl J Med, 1971

Bevacizumab



• Bevacizumab = anti-VEGF monoclonal antibody ⇒ anti-angiogenic action (first 

approved in 2004) 

• Only proved clinical efficacy when combined (concomitantly) with cytotoxics

Vascular normalization: a time window  for 
improved pharmacokinetics?
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also known as anti-vascular therapy, could starve a tumor by
choking off its blood supply. Once a unique marker for all
tumor vessels (new as well as established) is identified, sev-
eral available ‘smart’ strategies can be used to destroy these
vessels20,21. Progress has been made towards identifying these
markers22,23, but their uniqueness and consistency have yet
to be demonstrated. If these markers are present in normal
vessels, the vessels might be damaged by the therapy. If
these markers are present only on some tumor vessels and
not others, the tumors without markers might relapse.
Perhaps anti-angiogenic approaches, used in conjuction
with anti-vascular agents, can prevent post-therapy relapse.

Is there a role, then, for the passive targeting of tumor vas-
culature? Chemotherapy and radiation therapy may serve
this function by killing cancer cells that compress tumor
vessels, thereby increasing blood flow24. Like a fraction of
cancer cells in a tumor, a fraction of endothelial cells in
tumor vessels proliferates rapidly. It seems reasonable that
these rapidly proliferating cells (endothelial cells, circulat-
ing endothelial precursors and cancer cells) will respond to
chemo- and radiation therapy. The endothelial cells are con-
sidered genetically stable and might not develop drug 
resistance—one rationale underlying low-dose chronic
chemotherapy. Chemotherapy may also target cancer cells
that are in the process of invading the vessel lumen and
being shed into the circulation. But, in general, chronic low-
dose chemotherapy alone has not led to long-term cure of
drug-resistant tumors2,3. Is this because tumor cells develop
mutations that allow them to survive in hypoxic environ-
ments5? Or is it because the epigenetic changes in endothe-
lial cells (such as enzyme induction or upregulation of a
receptor) lead to ‘resistance’? Or because the tumor exhausts
its supply of proliferating endothelial cells and the remain-
ing quiescent endothelial cells do not respond to cytotoxic
therapies alone? In the latter case, cure might require com-
bining cytotoxic therapies with anti-angiogenic therapy.
Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
anti-angiogenic therapy. a, Normal vasculature, composed of mature ves-
sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
sels with increased permeability, vessel diameter, vessel length, vessel
density, tortuosity and interstitial fluid pressure, compromises the delivery
of therapeutics and nutrients. c, Judiciously applied direct or indirect anti-
angiogenic therapies might prune immature vessels, leading to more nor-
malized tumor vasculature. This network should be more efficient for the
delivery of therapeutics and nutrients. d, Rapid pruning of, or coagulation
in, tumor vasculature might reduce the vasculature to the point that it is
inadequate to support tumor growth and might lead to tumor dormancy.
This is the ultimate goal of anti-angiogenic/anti-vascular therapy.
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also known as anti-vascular therapy, could starve a tumor by
choking off its blood supply. Once a unique marker for all
tumor vessels (new as well as established) is identified, sev-
eral available ‘smart’ strategies can be used to destroy these
vessels20,21. Progress has been made towards identifying these
markers22,23, but their uniqueness and consistency have yet
to be demonstrated. If these markers are present in normal
vessels, the vessels might be damaged by the therapy. If
these markers are present only on some tumor vessels and
not others, the tumors without markers might relapse.
Perhaps anti-angiogenic approaches, used in conjuction
with anti-vascular agents, can prevent post-therapy relapse.

Is there a role, then, for the passive targeting of tumor vas-
culature? Chemotherapy and radiation therapy may serve
this function by killing cancer cells that compress tumor
vessels, thereby increasing blood flow24. Like a fraction of
cancer cells in a tumor, a fraction of endothelial cells in
tumor vessels proliferates rapidly. It seems reasonable that
these rapidly proliferating cells (endothelial cells, circulat-
ing endothelial precursors and cancer cells) will respond to
chemo- and radiation therapy. The endothelial cells are con-
sidered genetically stable and might not develop drug 
resistance—one rationale underlying low-dose chronic
chemotherapy. Chemotherapy may also target cancer cells
that are in the process of invading the vessel lumen and
being shed into the circulation. But, in general, chronic low-
dose chemotherapy alone has not led to long-term cure of
drug-resistant tumors2,3. Is this because tumor cells develop
mutations that allow them to survive in hypoxic environ-
ments5? Or is it because the epigenetic changes in endothe-
lial cells (such as enzyme induction or upregulation of a
receptor) lead to ‘resistance’? Or because the tumor exhausts
its supply of proliferating endothelial cells and the remain-
ing quiescent endothelial cells do not respond to cytotoxic
therapies alone? In the latter case, cure might require com-
bining cytotoxic therapies with anti-angiogenic therapy.
Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
anti-angiogenic therapy. a, Normal vasculature, composed of mature ves-
sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
sels with increased permeability, vessel diameter, vessel length, vessel
density, tortuosity and interstitial fluid pressure, compromises the delivery
of therapeutics and nutrients. c, Judiciously applied direct or indirect anti-
angiogenic therapies might prune immature vessels, leading to more nor-
malized tumor vasculature. This network should be more efficient for the
delivery of therapeutics and nutrients. d, Rapid pruning of, or coagulation
in, tumor vasculature might reduce the vasculature to the point that it is
inadequate to support tumor growth and might lead to tumor dormancy.
This is the ultimate goal of anti-angiogenic/anti-vascular therapy.
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also known as anti-vascular therapy, could starve a tumor by
choking off its blood supply. Once a unique marker for all
tumor vessels (new as well as established) is identified, sev-
eral available ‘smart’ strategies can be used to destroy these
vessels20,21. Progress has been made towards identifying these
markers22,23, but their uniqueness and consistency have yet
to be demonstrated. If these markers are present in normal
vessels, the vessels might be damaged by the therapy. If
these markers are present only on some tumor vessels and
not others, the tumors without markers might relapse.
Perhaps anti-angiogenic approaches, used in conjuction
with anti-vascular agents, can prevent post-therapy relapse.

Is there a role, then, for the passive targeting of tumor vas-
culature? Chemotherapy and radiation therapy may serve
this function by killing cancer cells that compress tumor
vessels, thereby increasing blood flow24. Like a fraction of
cancer cells in a tumor, a fraction of endothelial cells in
tumor vessels proliferates rapidly. It seems reasonable that
these rapidly proliferating cells (endothelial cells, circulat-
ing endothelial precursors and cancer cells) will respond to
chemo- and radiation therapy. The endothelial cells are con-
sidered genetically stable and might not develop drug 
resistance—one rationale underlying low-dose chronic
chemotherapy. Chemotherapy may also target cancer cells
that are in the process of invading the vessel lumen and
being shed into the circulation. But, in general, chronic low-
dose chemotherapy alone has not led to long-term cure of
drug-resistant tumors2,3. Is this because tumor cells develop
mutations that allow them to survive in hypoxic environ-
ments5? Or is it because the epigenetic changes in endothe-
lial cells (such as enzyme induction or upregulation of a
receptor) lead to ‘resistance’? Or because the tumor exhausts
its supply of proliferating endothelial cells and the remain-
ing quiescent endothelial cells do not respond to cytotoxic
therapies alone? In the latter case, cure might require com-
bining cytotoxic therapies with anti-angiogenic therapy.
Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
anti-angiogenic therapy. a, Normal vasculature, composed of mature ves-
sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
sels with increased permeability, vessel diameter, vessel length, vessel
density, tortuosity and interstitial fluid pressure, compromises the delivery
of therapeutics and nutrients. c, Judiciously applied direct or indirect anti-
angiogenic therapies might prune immature vessels, leading to more nor-
malized tumor vasculature. This network should be more efficient for the
delivery of therapeutics and nutrients. d, Rapid pruning of, or coagulation
in, tumor vasculature might reduce the vasculature to the point that it is
inadequate to support tumor growth and might lead to tumor dormancy.
This is the ultimate goal of anti-angiogenic/anti-vascular therapy.
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also known as anti-vascular therapy, could starve a tumor by
choking off its blood supply. Once a unique marker for all
tumor vessels (new as well as established) is identified, sev-
eral available ‘smart’ strategies can be used to destroy these
vessels20,21. Progress has been made towards identifying these
markers22,23, but their uniqueness and consistency have yet
to be demonstrated. If these markers are present in normal
vessels, the vessels might be damaged by the therapy. If
these markers are present only on some tumor vessels and
not others, the tumors without markers might relapse.
Perhaps anti-angiogenic approaches, used in conjuction
with anti-vascular agents, can prevent post-therapy relapse.

Is there a role, then, for the passive targeting of tumor vas-
culature? Chemotherapy and radiation therapy may serve
this function by killing cancer cells that compress tumor
vessels, thereby increasing blood flow24. Like a fraction of
cancer cells in a tumor, a fraction of endothelial cells in
tumor vessels proliferates rapidly. It seems reasonable that
these rapidly proliferating cells (endothelial cells, circulat-
ing endothelial precursors and cancer cells) will respond to
chemo- and radiation therapy. The endothelial cells are con-
sidered genetically stable and might not develop drug 
resistance—one rationale underlying low-dose chronic
chemotherapy. Chemotherapy may also target cancer cells
that are in the process of invading the vessel lumen and
being shed into the circulation. But, in general, chronic low-
dose chemotherapy alone has not led to long-term cure of
drug-resistant tumors2,3. Is this because tumor cells develop
mutations that allow them to survive in hypoxic environ-
ments5? Or is it because the epigenetic changes in endothe-
lial cells (such as enzyme induction or upregulation of a
receptor) lead to ‘resistance’? Or because the tumor exhausts
its supply of proliferating endothelial cells and the remain-
ing quiescent endothelial cells do not respond to cytotoxic
therapies alone? In the latter case, cure might require com-
bining cytotoxic therapies with anti-angiogenic therapy.
Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
anti-angiogenic therapy. a, Normal vasculature, composed of mature ves-
sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
sels with increased permeability, vessel diameter, vessel length, vessel
density, tortuosity and interstitial fluid pressure, compromises the delivery
of therapeutics and nutrients. c, Judiciously applied direct or indirect anti-
angiogenic therapies might prune immature vessels, leading to more nor-
malized tumor vasculature. This network should be more efficient for the
delivery of therapeutics and nutrients. d, Rapid pruning of, or coagulation
in, tumor vasculature might reduce the vasculature to the point that it is
inadequate to support tumor growth and might lead to tumor dormancy.
This is the ultimate goal of anti-angiogenic/anti-vascular therapy.
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Vakoc et al., Jain, 2009, Nat Med

Question 

What is the optimal time gap between administration of bevacizumab and cytotoxic 

chemotherapy? How to capture inter-individual variability for designing personalized 
therapies?

• Possible explanation: transient normalization of the otherwise abnormal 

(leaky, tortuous)  vascular architecture 



Lung cancer model

Hypothesis: sequential use of bevacizumab associated with chemotherapy would 
achieve better efficacy and modeling support could help to define the optimal time-

window

Current beva-chemo 
regimen are 

underpowered

E
xp

er
im

en
ta

l t
he

ra
pe

ut
ic

s

Breast cancer model
Mollard et al. (Benzekry), Oncotarget 2017

Experiment 1

Experiment 2
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Calibration

Prediction
Imbs et al. (Benzekry), CPT: Pharmacometrics Syst Pharmacol, 2018



A first theoretical and complex model

of the model is significantly different from the structure of these
works, we had to modify the value of some of the extracted
parameters. In the end, only the number of endothelial cells
leading to the maturation, tE and the threshold of overcrowd to

are comparable to the values used in Ribba et al. (2006a). Table 2
summarizes the values of each parameter.

Due to the high computational cost of every simulation, it was
impossible to proceed to a sensitivity analysis to investigate the
importance of each parameter. But it appeared clearly during the
manual fixing of the values that some parameters were more

influential than others. In particular K, the diffusion coefficient for
molecules in the tissue, a½V " the production rate of VEGF, t1,h and
t2,h the thresholds of hypoxia, tE the amount of cells necessary for
endothelial cells to maturate, and tv the amount to create an
efficient vessel, impact deeply on the dynamic of the system
when their values were modified.

To give more confidence on our results, we have compared the
resulting simulations to experimental data performed on mice
experiments. As the focus of the present paper is the presentation
of the model and not the experimental data, we decided not to

Table 2
Summary of the model parameters.

Parameter Description Value Unit Equation

t0 Threshold of overcrowding 5# 104 cell (8)

t1,h Threshold of moderate hypoxia 4# 10$7 M (8)

t2,h Threshold of severe hypoxia 4# 10$9 M (9)

Nmax Total density of tumor and/or healthy cells 105 cell (17)

amax,P1
Maximum duration of phase P1 5 time-unit (10), (14), and (17)

amax,P2
Maximum duration of phase P2 8 time-unit (10), (14), and (17)

a½V " Secretion rate of VEGF by quiescent cells 10$8 M/cell (20)

d½V " Consumption rate of VEGF by immature endothelial cells 0 M/cell (20)

x½V " Degradation rate of VEGF 0 M$1 (20)

NE Maximum number of endothelial cells 105 cell (6)

m Rate of maturation for endothelial cells 0:5 cell/time-unit (6)
tE Minimis quantity of immature EC leading to maturation 5# 102 cell (6)

gn Sigmoidal coefficient for the computation of vasculature quality 0.5 cell/mm2 (2)

R0:5 Density of EC leading to half of the maximal vasculature quality 8# 10$3 cell/mm2 (2)

tv Number of EC needed to form a functional blood vessel 4# 104 cell (21), (20), (24), and (22)

Cmax Oxygen concentration in blood 2# 10$2 M (21)

K Diffusion coefficient of molecules in the tissue 1–5 mm2/time-unit (21), (20), (22), and (24)

b½O2 ", P1
Oxygen consumption of the P1 tumor cells 10$4 M/cell (21)

b½O2 ", P2
Oxygen consumption of the P2 tumor cells 10$4 M/cell (21)

b½O2 ", Q Oxygen consumption of the quiescent tumor cells 0:25# 10$4 M/cell (21)

x½C" Degradation rate of chemotherapy 1:25# 10$4 M/time-unit (22)

Emax½AA" Maximal effect of the antiangiogenic drug on VEGF 1 None (24) and (25)

v50 Amount of antiangiogenic drug producing half of the maximal effect 0.5 M (24) and (25)
Emax, C Maximal effect of the chemotherapy on P2 cells 0.75 None (23)
C50 Amount of chemotherapy producing half of the maximal effect 0.2 M (23)

Table 1
Macroscopic model equations. Notations: P1 and P2 are proliferative, Q quiescent, and A apoptotic tumor cells; endothelial cells are endothelial cells; Vim and Vm are
respectively immature and mature vessels; Ang1 and Ang2 are angiopoietins 1 and 2 respectively; VEGF is vascular endothelial growth factor; chemo stands for
chemotherapy and antiangiogenic for anti-angiogenics.

Entity Model equation

Density of P1 @P1

@t
þ
@P1

@a
þr & ðvP1

P1Þ ¼ 0 P1ða¼ 0Þ ¼ 2P2ða¼ amax,P2
Þ

Density of P2 @P2

@t
þ
@P2

@a
þr & ðvP2

P2Þ ¼ $P2ða¼ amax,P2
Þ
Emax,C ½C"
C50þ½C"

P2ða¼ 0Þ ¼ fP1ða¼ amax,P1
Þþ½@t f "þQ ðt$Þ

Density of Q @Q
@t
þr & ðvQ Q Þ ¼ gð1$f ÞP1ða¼ amax,P1

Þ$
@f
@t

! "þ
Q ðt$Þþ

@g
@t

! "$
Q ðt$Þ

Density of A @A
@t
þr & ðvAAÞ ¼ ð1$gÞP1ða¼ amax,P1

Þ$
@g
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of the model is significantly different from the structure of these
works, we had to modify the value of some of the extracted
parameters. In the end, only the number of endothelial cells
leading to the maturation, tE and the threshold of overcrowd to

are comparable to the values used in Ribba et al. (2006a). Table 2
summarizes the values of each parameter.

Due to the high computational cost of every simulation, it was
impossible to proceed to a sensitivity analysis to investigate the
importance of each parameter. But it appeared clearly during the
manual fixing of the values that some parameters were more

influential than others. In particular K, the diffusion coefficient for
molecules in the tissue, a½V " the production rate of VEGF, t1,h and
t2,h the thresholds of hypoxia, tE the amount of cells necessary for
endothelial cells to maturate, and tv the amount to create an
efficient vessel, impact deeply on the dynamic of the system
when their values were modified.

To give more confidence on our results, we have compared the
resulting simulations to experimental data performed on mice
experiments. As the focus of the present paper is the presentation
of the model and not the experimental data, we decided not to

Table 2
Summary of the model parameters.

Parameter Description Value Unit Equation

t0 Threshold of overcrowding 5# 104 cell (8)

t1,h Threshold of moderate hypoxia 4# 10$7 M (8)

t2,h Threshold of severe hypoxia 4# 10$9 M (9)

Nmax Total density of tumor and/or healthy cells 105 cell (17)

amax,P1
Maximum duration of phase P1 5 time-unit (10), (14), and (17)

amax,P2
Maximum duration of phase P2 8 time-unit (10), (14), and (17)

a½V " Secretion rate of VEGF by quiescent cells 10$8 M/cell (20)

d½V " Consumption rate of VEGF by immature endothelial cells 0 M/cell (20)

x½V " Degradation rate of VEGF 0 M$1 (20)

NE Maximum number of endothelial cells 105 cell (6)

m Rate of maturation for endothelial cells 0:5 cell/time-unit (6)
tE Minimis quantity of immature EC leading to maturation 5# 102 cell (6)

gn Sigmoidal coefficient for the computation of vasculature quality 0.5 cell/mm2 (2)

R0:5 Density of EC leading to half of the maximal vasculature quality 8# 10$3 cell/mm2 (2)

tv Number of EC needed to form a functional blood vessel 4# 104 cell (21), (20), (24), and (22)

Cmax Oxygen concentration in blood 2# 10$2 M (21)

K Diffusion coefficient of molecules in the tissue 1–5 mm2/time-unit (21), (20), (22), and (24)

b½O2 ", P1
Oxygen consumption of the P1 tumor cells 10$4 M/cell (21)

b½O2 ", P2
Oxygen consumption of the P2 tumor cells 10$4 M/cell (21)

b½O2 ", Q Oxygen consumption of the quiescent tumor cells 0:25# 10$4 M/cell (21)

x½C" Degradation rate of chemotherapy 1:25# 10$4 M/time-unit (22)

Emax½AA" Maximal effect of the antiangiogenic drug on VEGF 1 None (24) and (25)

v50 Amount of antiangiogenic drug producing half of the maximal effect 0.5 M (24) and (25)
Emax, C Maximal effect of the chemotherapy on P2 cells 0.75 None (23)
C50 Amount of chemotherapy producing half of the maximal effect 0.2 M (23)

Table 1
Macroscopic model equations. Notations: P1 and P2 are proliferative, Q quiescent, and A apoptotic tumor cells; endothelial cells are endothelial cells; Vim and Vm are
respectively immature and mature vessels; Ang1 and Ang2 are angiopoietins 1 and 2 respectively; VEGF is vascular endothelial growth factor; chemo stands for
chemotherapy and antiangiogenic for anti-angiogenics.
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4. Results 63

Proliferative cells P2 Quiescent cells Q

Total cancerous cells

Figure 3: Two-dimensional growth of the tumor. On each figure, the starting time is up left and
time evolves from left to right and downward.

Fig. 5. Efficacy results in terms of the two criteria (time efficacy index – left, and total amount of chemotherapy delivered – right) for different drug combination
schedules. Circles are used for chemotherapy alone and triangles for combination therapies. The x-axis shows the delay in days of the chemotherapeutic compound
delivery following the antiangiogenic drug.

Fig. 6. Complete view of the VEGF pathway model.

F. Lignet et al. / Journal of Theoretical Biology 320 (2013) 86–9994



Simplified model for the anti-angiogenic therapy: the Hahnfeldt-Folkman 
approach

Hahnfeldt et al. (Folkman), Cancer Res, 1999

Hahnfeldt-Folkman effect: K = f(A(t))
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Dynamics of K are governed by a balance 
between angiogenic stimulation and inhibition 
(both endogenous and exogenous)



Idea: define a dynamical index of 

quality of the vasculature Q by 

dividing the vasculature into stable 

and unstable compartments

Benzekry et al. (Hubert), CRAS, 2012
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A priori simulations of the model suggest optimal sequence
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Pharmacokinetics models

Supplementary figure 1: Pharmacokinetics profile (Experiment-2)
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Pharmacokinetics (PK) profiles of bevacizumab and paclitaxel under the concomitant and sequential profiles.

PK of paclitaxel

PK of paclitaxel was retrieved from reference 23. It consists in a one-compartment model with absorption that writes:

C(t) =
D

V

k01
k01 � k10

NX

i=1

e�k10(t�ti) � e�k01(t�ti)1t�ti (1)

where D is the administered dose of paclitaxel, V is the distribution volume, k01 is the absorption coefficient, k10 is the

elimination coefficient, N is the total number of drug administrations and ti are the paclitaxel administration times. These

parameters are reported in Table 1. In relation to the half-life values reported in reference 23, the absorption and elimination

coefficients are given by

k01 =
ln(2)

ta1/2
, k10 =

ln(2)

te1/2

where ta1/2 and te1/2 are respectively the absorption and elimination half-lives of reference 23.

PK of bevacizumab

PK of bevacizumab was retrieved from reference 24. It consisted also in a one-compartment absorption model (equation

(1)) with adapted volume, absorption and elimination parameters, whose values can be found in Table 1.
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Supplementary Figure 5: Pharmacokinetics profile 

(Experiment-2)  

Pharmacokinetics (PK) profiles of bevacizumab and paclitaxel under the concomitant 

and sequential profiles.  
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where D is the administered dose of paclitaxel, V is the distribution volume, k01 is the 
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administrations and ti are the paclitaxel administration times. These parameters are 
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reference (23), the absorption and elimination coefficients are given by  

 

where tα1/2 and te
1/2 are respectively the absorption and elimination half-lives of 

reference (23).  

Innocenti F. et al., Drug Metab Dispos Biol Fate Chem, 1995
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Lin et al., J Pharmacol Exp Ther. 1999



Confrontation to experimental data

Figure 3
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Supplementary Table 1: Parameters estimates
Par. Unit Estimate SE (%) Ref.

PK TXL k01 day−1 23.8 - (22)
k10 day-1 5.55 - (22)
V ml 18.5 - (22)

PK BEVA k01 day−1 2.69 - (23)
k10 day-1 0.114 - (23)
V ml 2.38 - (23)

Model (1) a day-1 0.0786 0.0232 it
b day-1 1.21 0.358 it
d day-1 0.0202 - (41)
K0 - 38.6 - it
eTXL ml·mg-1·day-1 0.1 0.358 it
k day-1 0.328 51 it
eBEVA ml·mg-1·day-1 0.0812 0.0694 it
 - 0.203 0.636 it

Model (2) a day-1 0.0703 0.0328 it
b day-1 86.8 463 it

d day-1 0.0745 0.508 (41)
χ day-1 0.00203 0.0164 it
τ day-1 0 - see text
U0 - 5 50.5 it
S0 - 82.4 116 it
eTXL ml·mg-1·day-1 13.9 84.3 it
k day-1 8.45x10-9 0.552 it
eBEVA ml·mg-1·day-1 0.494 2.73 it

PK = pharmacokinetics. BEVA = bevacizumab. TXL = paclitaxel. ml = milliliters. biol. = biological rationale. SE = Standard 
Error on the parameter estimate. 
Note: parameter d was converted from reference (41) into relative units. Similarly, K0 was converted from a preliminary it 
to the control data set of experiment-1 and the number of injected cells converted into photons/sec.
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Identifiability issues!



Prolif. 
Cells
V

Z1 Z2 Z3

Vasc. 
Quality
Q

Bevacizumab
A

Cytotoxics
C

Cell death

Damaged cells
α, β

!

δ

"

k k

Semi-mechanistic mathematical model 
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Simeoni et al., Rocchetti, Cancer Res, 2004 

Imbs et al., Benzekry, CPT: Pharmacometrics Syst Pharmacol, 2018

• (H4) In the absence of data monitoring the state of the tumor vasculature, the 

antiangiogenic effect of bevacizumab is not explicitly modeled. 

(H5) Beside its antiangiogenic activity, bevacizumab increases the drugs delivery by 

improving the vasculature quality � (32). The dynamics of this improvement is 

assumed to follow the bevacizumab concentration, delayed by a time shift � for the 

normalization to occur. The magnitude of the improvement is controlled by a parameter 

�.The above assumptions are translated into the following system of nonlinear ordinary 

differential equations: 

��
�� = � − � ln �

�7
� − ���� � � = 0 = �E

� � = 	1 + �� � − �
��)
�� = ���� − ��) �) � = 0 = 0
��G
�� = � �) − �G 	 �G � = 0 = 0
��H
�� = � �G − �H �H � = 0 = 0
� = � + �) + �G + �H	

 

The initial size �E was set to 7.04 x 106 photons/second considering that 80 000 cells 

were injected (experiment-1) and a previously established conversion ratio of �7 =	1 

cell » 88 photons/second (33). 

Statistical	model	and	parameters	estimation	

For description of the inter-animal variability we used the nonlinear mixed-effects 

statistical framework (34). It consists in assuming a distribution of the parameters within 

the animal population, taken here to be lognormal for each parameter. Importantly, 

these were the same for all treatment groups. The structural model above depends on 

6 parameters (�, �, �, �, �, �).	 After an initial sensitivity analysis showing that not all of 

these parameters were identifiable from our data set, we reduced this to the 4 
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Non-small cell lung: calibration experiment

 MATERIAL & METHODS 

MODEL-DRIVEN OPTIMIZATION OF ANTI-ANGIOGENICS COMBINED WITH CHEMOTHERAPY:  
APPLICATION TO BEVACIZUMAB + PEMETREXED/CISPLATIN DOUBLET IN NSCLC-BEARING MICE 
Joseph Ciccolini1,  Sébastien Benzekry2 , Diane-Charlotte Imbs1, Raouf El Cheikh1, Arnaud Boyer1,3, Dominique Barbolosi1, Fabrice Barlési1,3  
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Our experimental data in nude mice 
bearing H460 NSCLC Luc+ suggest that 
sequential administration of bevacizumab 
(i.e., beva first) achieves higher efficacy 
and longer survival as compared with 
concomitant or reverse-sequence 
scheduling.  
 
After completing the 3 cycles (i.e., Day-50 
after engraftment), a statistically 
significant 42% reduction in main tumor 
growth was observed in the beva followed 
by chemo group. This superiority was 
maintained (-35%) at study conclusion 
(i.e., D-68 after engraftment).  
 
In line with this observation, median 
survival was significantly stretched (i.e., 
75 VS. 52 days) in mice treated with the 
beva followed by chemo sequence, as 
compared with other treatment groups.  
 
No difference in tolerance was observed 
between the groups (data not shown). 
 
Overall, our data strongly suggest that 
efficacy of bevacizumab associated with 
pemetrexed and cisplatin can be improved 
by shifting the sequence of drug 
administration, regardless of the dosing. 
 
In this context, mathematical modelling 
can help to optimize scheduling by upfront  
in silico identification of optimal designs to 
be tested in priority. 
 
Intriguing clinical data recently published 
with bevacizumab could be revisited using    
  this    model     so     as     to  determine      
   optimal scheduling [3]. 
 

Human NSCLC H460 Luc+ stably transfected with luciferase (Perkin Elmer, France) 
were ectotopically xenografted in 50 swiss nude  mice (Janvier, France). Xenograft 
consisted in 80 000 H460 cells injected s.s.c. onto the left flank in 60% matrigel.   
Tumor growth and metastatic spreading were monitored twice a week by 
bioluminescence imaging using the Ivis Spectrum 3D imager (Perkin Elmer, France).  
Tumor mass were compared at study conclusion by Anova testing.  

Main endpoints were response (comparison in primary tumor growth) and median survival.  Tolerance 
(monitoring of body weight) was the secondary endpoint.  

 RESULTS 
Bevacizumab is a first-in-class antiangiogenic drug that is systematically administred 
concomitandly with the associated chemotherapy.  

This transient normalization phase could be used as a time-window to administrate cytotoxics, so as to 
increase the amount of drug reaching tumor tissues. However, determining the optimal sequence between 
bevacizumab and cytotoxics can not be achieved intuitively or empirically.  
 
We have developed a mathematical model describing this phenomenon [2],   that can  be used to  identify the  
   best     scheduling between  anti-angiogenics and chemotherapy, and tested it in a lung cancer model. 

Impact on Tumor Growth 
At treatment conclusion, mean tumor mass in 
the beva-first sequence was 42% lower as 
compared with other treatment groups. 
Conversely, no significant difference with 
control was observed in the concomitant or 
the reversed sequence (i.e., chemo first). 
Although weaker (-35%), a similar reduction 
in tumor growth was still observed at study 
conclusion with the beva-first sequence . 

Several data suggest that prior to destroying neovessels, anti-
angiogenics could induce et transient phase of tumor vessels 
normalization, thus improving tumor blood flow eventually [1]. 

3D DLIT monitoring of tumor growth  using  
Ivis Spectrum  technology  (Perkin Elmer) 

In silico identification of the best regimen 

Mathematical model used to select in silico the best scheduling regimen was  derived 
from [2]. Briefly,  the model was described by the following  equations: 
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 ¼ Sequential use (i.e., beva first) 
increases median survival by 44%! 

Impact on Survival & Tolerance 

Both concomitant and reversed-sequence 
(i.e., chemo first) groups achieved a 52 days 
median survival.  
Survival was extended up to 75 days (+44%) 
in the beva first group. 
No difference was observed between 
carcass weights, regardless of the groups 
(data not shown).  

Back to the Model! 
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0 10 20 30 40 50 60 70 80 ¼ Sequential use (i.e., beva first) 
reduces tumor growth by 42%! 

Upfront modeling and simulation 
allowed to compare a variety of 
sequences between anti-angiogenics 
and cytotoxics.  
Preliminary simulations suggest that a 
3-5 days delay between drugs achieves 
higher efficacy. 

Chemo 

Chemo 

DLIT 3D imaging technology 

 
• DLIT (Diffuse Luminescence 

tomographic), generates a 3-D 
reconstruction of luminescent light 
source. 
 

• Takes into account source depth and 
tissue attenuation. 

• Provides better signal localisation. 
• Provides accurate signal through  

measuring brightness at the source.  

• Tumor imaging 
 IVIS-Spectrum (Perkin-Calipers LS).  
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• Human NSCLC H460-Luc+ xenograft 

• Subcutaneous graft 

• Matrigel support 

• Follow-up 

• Bioluminescence imaging 

• Weight monitoring



Sequential administration Beva then Chemo improves response and survival
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Population approach for model calibration: nonlinear 
mixed effects modeling
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• Classical nonlinear regression considers each time series independently

Lavielle,CRC press, 2014
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• When only sparse data are available from subjects in the same population, one can fit the 

parameters distribution all-in-once

• Reduces the number of parameters from pxN to p+p2



Model fits: individual + population level (NLME)
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Figure 9 – Fit of the BEVALUNG data using the TestModelV4 and population mixed-e�ects
statistical modeling for inter-animal variability.. In these fits, the data C/B was not used
(computations were tool long). 12
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Figure 9 – Fit of the BEVALUNG data using the TestModelV4 and population mixed-e�ects
statistical modeling for inter-animal variability.. In these fits, the data C/B was not used
(computations were tool long). 12
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rank test showed a significant difference between all groups
(P< 0.0001). Further log-rank tests showed that each treat-
ment group was significantly different than the control arm
(P< 0.001). Moreover, the sequential administration in the
“beva then chemo 4 days” arm had greater survival median
and was significantly different than concomitant in the
“beva1 chemo” (P5 0.0485) and reversed in the “chemo
then beva 4 days” arms (P5 0.0496). Conversely, no signif-
icant difference was observed between the “beva1 chemo”
and the “chemo then beva 4 days” arms (P5 0.631).
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of 3 days between the administration of bevacizumab
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The selected model is a modified version of the Gompertz
model with a delay in the treatment effects32 and inclusion of
a dynamic variable Q accounting for the vasculature quality
and, thus, the normalization effect. See the Materials and
Methods section for a detailed description of the model equa-
tion, data fit, and parameters’ estimation method. Population
analysis yielded the median parameter and interanimal vari-
ability estimates reported in Table 1 with good relative stan-
dard errors. Goodness-of-fit was assessed by visual
predictive check plots (Figure 3a-d), which demonstrated a

good agreement between the model simulations and the
experimental data (see residual analysis in Supplementary
Figure S7). Individual simulations also demonstrated the
ability of our model to reproduce tumor growth dynamics for
each mouse (Supplementary Figure S8).
The model with parameters calibrated on the experimen-

tal data allowed us to perform simulations varying the time
lag between the administrations of bevacizumab and the
pemetrexed-cisplatin doublet. The criterion for quantification
of efficacy was the area under the tumor growth curve.
Delays ranging from 1–10 days were tested. Simulation
results showed that a 2.8-days delay between bevacizumab
and chemotherapy achieved greater reduction in tumor
sizes, with a difference of 76.8% in tumor size as compared
with concomitant scheduling (Figure 4a-c). Our quantifica-
tion of the normalization dynamics also predicted that a
delay of 8 days would perform substantially worse, with a
difference of only 54.3% compared with concomitant admin-
istration (Figure 4c). Quantification of the interanimal vari-
ability of the model parameters using our population
approach allowed to simulate the resulting interanimal vari-
ability of the optimal interdrug administration gap. The opti-
mal gap ranged from 0–10 days with median of 2.8 days
and standard deviation of 1.84 days (Figure 4d).
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95% intervals for interanimal variability, generated from the simulation of 1,000 virtual animals with parameters distributed according to
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(P< 0.001). Moreover, the sequential administration in the
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and was significantly different than concomitant in the
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tion, data fit, and parameters’ estimation method. Population
analysis yielded the median parameter and interanimal vari-
ability estimates reported in Table 1 with good relative stan-
dard errors. Goodness-of-fit was assessed by visual
predictive check plots (Figure 3a-d), which demonstrated a

good agreement between the model simulations and the
experimental data (see residual analysis in Supplementary
Figure S7). Individual simulations also demonstrated the
ability of our model to reproduce tumor growth dynamics for
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tal data allowed us to perform simulations varying the time
lag between the administrations of bevacizumab and the
pemetrexed-cisplatin doublet. The criterion for quantification
of efficacy was the area under the tumor growth curve.
Delays ranging from 1–10 days were tested. Simulation
results showed that a 2.8-days delay between bevacizumab
and chemotherapy achieved greater reduction in tumor
sizes, with a difference of 76.8% in tumor size as compared
with concomitant scheduling (Figure 4a-c). Our quantifica-
tion of the normalization dynamics also predicted that a
delay of 8 days would perform substantially worse, with a
difference of only 54.3% compared with concomitant admin-
istration (Figure 4c). Quantification of the interanimal vari-
ability of the model parameters using our population
approach allowed to simulate the resulting interanimal vari-
ability of the optimal interdrug administration gap. The opti-
mal gap ranged from 0–10 days with median of 2.8 days
and standard deviation of 1.84 days (Figure 4d).
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rank test showed a significant difference between all groups
(P< 0.0001). Further log-rank tests showed that each treat-
ment group was significantly different than the control arm
(P< 0.001). Moreover, the sequential administration in the
“beva then chemo 4 days” arm had greater survival median
and was significantly different than concomitant in the
“beva1 chemo” (P5 0.0485) and reversed in the “chemo
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and the “chemo then beva 4 days” arms (P5 0.631).
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a dynamic variable Q accounting for the vasculature quality
and, thus, the normalization effect. See the Materials and
Methods section for a detailed description of the model equa-
tion, data fit, and parameters’ estimation method. Population
analysis yielded the median parameter and interanimal vari-
ability estimates reported in Table 1 with good relative stan-
dard errors. Goodness-of-fit was assessed by visual
predictive check plots (Figure 3a-d), which demonstrated a

good agreement between the model simulations and the
experimental data (see residual analysis in Supplementary
Figure S7). Individual simulations also demonstrated the
ability of our model to reproduce tumor growth dynamics for
each mouse (Supplementary Figure S8).
The model with parameters calibrated on the experimen-

tal data allowed us to perform simulations varying the time
lag between the administrations of bevacizumab and the
pemetrexed-cisplatin doublet. The criterion for quantification
of efficacy was the area under the tumor growth curve.
Delays ranging from 1–10 days were tested. Simulation
results showed that a 2.8-days delay between bevacizumab
and chemotherapy achieved greater reduction in tumor
sizes, with a difference of 76.8% in tumor size as compared
with concomitant scheduling (Figure 4a-c). Our quantifica-
tion of the normalization dynamics also predicted that a
delay of 8 days would perform substantially worse, with a
difference of only 54.3% compared with concomitant admin-
istration (Figure 4c). Quantification of the interanimal vari-
ability of the model parameters using our population
approach allowed to simulate the resulting interanimal vari-
ability of the optimal interdrug administration gap. The opti-
mal gap ranged from 0–10 days with median of 2.8 days
and standard deviation of 1.84 days (Figure 4d).
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Table 1:  Parameters estimates 

Parameters Description Units Estimates RSE* (%) IAV** (%) 

! Proliferation rate day-1 0.767 8 8.62 

( 

Exponential decay rate 
of the relative tumor 
growth rate (Gompertz 
model) 

day-1 

0.037 10 57.3 

, Baseline effect of the 
chemotherapy 

(mg/g)-1.day-1
. 1 − − 

.	
Cytotoxics efficacy 
improvement following 
vascular normalization 

(mg/mL)-1 

1200 36 0 

/ Delay parameter for 
dynamics of 0. 

day 2 20 10 

1	
Delay of the tumor cell 
loss following 
chemotherapy 

day-1 

0.3 − − 

          σ Exponential error 
parameter 

− 0.951 4 − 

Values of the parameters corresponding to the adapted fit. See supplementary 
methods for details on the estimation procedure. 
* Relative Standard Error (RSE) is a measure of the precision of the parameter 
estimates, expressed as coefficient of variation (CV%). ** The inter-animal variability 
(IAV) is the standard deviation ω estimated using Monolix software.  
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Conclusion

• In order to be confronted to empirical data and yield robust predictions, mathematical models 

must remain simple and well dimensioned with the data 

• Mathematical modeling can be used to identify optimized drug regimen for combination 

therapies among a large number of scenarios that cannot be all tested experimentally 

• This is of increasing relevance in modern oncology where an always larger arsenal of anti-
cancer agents becomes available to oncologists (cf. immune-oncology in combination) 

• Nonlinear mixed-effects modeling is a powerful statistical approach for pooling together 

population data that arise from studies in experimental and clinical oncology 

• Subsequent patient-specific bayesian estimation of the parameters can be used for 

personalized scheduling
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