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Precomputed Multiple Scattering for Rapid Light
Simulation in Participating Media

Beibei Wang, Liangsheng Ge and Nicolas Holzschuch

Abstract—Rendering translucent materials is costly: light transport algorithms need to simulate a large number of scattering events inside the
material before reaching convergence. The cost is especially high for materials with a large albedo or a small mean-free-path, where
higher-order scattering effects dominate. We present a new method for fast computation of global illumination with participating media. Our
method uses precomputed multiple scattering effects, stored in two compact tables. These precomputed multiple scattering tables are easy to
integrate with any illumination simulation algorithm. We give examples for virtual ray lights (VRL), photon mapping with beams and paths
(UPBP), Metropolis Light Transport with Manifold Exploration (MEMLT). The original algorithms are in charge of low-order scattering,
combined with multiple scattering computed using our table. Our results show significant improvements in convergence speed and memory
costs, with negligible impact on accuracy.

Index Terms—Participating Media, Precomputation, Multiple Scattering.
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1 Introduction
Computing illumination simulation in scenes with participating
media is still a costly process, even with algorithms specifically
designed to handle them. To render high-albedo materials, such
as milk or skin, we need to simulate a large number of scattering
events before convergence. Worse, the overall appearance of these
materials is often very smooth, almost uniform, meaning we used
a lot of computational power for an almost constant appearance.

In recent years, several algorithms have been introduced
for rendering participating media, such as Virtual Ray Lights
(VRL) [1], several extensions to photon mapping culminating
with UPBP (Unified Points, Beams and Paths) [2] and Manifold
Exploration Metropolis Light Transport [3]. All these methods
have greatly improved simulation of participating media. They still
encounter problems for simulation of materials with high albedo
where multiple scattering dominates. Rendering these materials
degrades the quality of the simulation for the entire scene (see
Figure 1): a lot of CPU power is used for the translucent material,
leaving little for the rest of the scene. This explains the large
amount of noise in Figure 1(b).

Dipole methods [4], [5] allow fast simulation of translucent
materials by approximating surface response and precomputing
incoming radiance. This can be combined with single scattering
computed from existing simulation algorithms. Complete integra-
tion with existing algorithms is difficult because dipole methods
usually rely on precomputing incoming radiance on the surface of
the object.

We present a method for faster simulation of light transport in
translucent material. Our method is easy to integrate with existing
illumination simulations algorithms. We provide examples for path
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tracing (VRL), photon-mapping (UPBP) and Metropolis Light
Transport (MEMLT). Our algorithm uses precomputed tables for
multiple scattering, and relies on the original algorithm for single
and double scattering. More specifically, we shoot photons from
a point light source and a segment source in an infinite medium
and we accumulate radiance for samples distributed in two spatial
dimension and two angular dimension, or two 4D tables (one
for point light source and one for segment source). We then
approximate the lobes in these two 4D tables using axial symmetry
for point sources and using asymmetric lobes for segment sources,
resulting in compact representations of multiple scattering for
homogeneous medium. These representations can be used for fast
multiple scattering computation in many rendering algorithms by
connecting the point / segment from light side and point / segment
from camera side directly. Our method results in faster conver-
gence for all algorithms, greatly reducing noise in the pictures with
minimal impact on accuracy. Reducing the computational cost for
participating media makes more computational power available
for the rest of the scene, improving image quality overall.

In the next Section, we review some of the previous work
on rendering participating media. In Section 3, we present our
algorithm for precomputing multiple scattering and use it in ex-
isting algorithms. We explain implementation details in Section 4.
We present our results, compare with previous work and analyze
performances in Section 5, and conclude in Section 6.

2 PreviousWorks
Photon Mapping: Chandrasekhar [6] introduced the radiative
transfer equation, describing radiation transport in participating
media. Jensen and Christensen [7] apply this equation to light
transport, and presented an algorithm based on Photon Mapping.
Jarosz et al. [8], [9], [10] extend this algorithm using beams in-
stead of photons for faster computations, with less noise. Křivánek
et al. [2] automatically selects between beams, points and paths in
participating media using multiple importance sampling. Bitterli
and Jarosz [11] further extend the idea by tracing photon planes
and volume.
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Fig. 1. Our algorithm (UPBP) (a) produces realistic pictures of translucent materials. There is substantially less noise than simulation with UPBP in equal
time (b); our picture is indistinguishable from reference (c). Our precomputed tables are used only for multiple scattering effects (d), so mostly for high-
albedo, small mean-free-path materials. Reducing computation time for these has improved quality for the entire picture. The difference images between
our algorithm (UPBP) / UPBP with equal time and the reference are shown in (e) and (f). The resolution of the pictures is 1024 × 512.
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Fig. 2. Our algorithm: we begin by precomputing two multiple scattering tables. We shoot particles from the origin of the point source (red dot) or point
samples (red dots) from the segment source. The photons propagate in the imagining medium, being absorbed or scattered. For scattering event, we
update the contribution of the photon to each sampling direction to the table. After the shooting, we get two 4 dimension tables. Then we approximate the
lobes in these two tables with different features of the lobe: using axially symmetric lobes for point source and with asymmetric lobes for segment source.
In the end, we get two much more compact tables. This step is required only once per material. We use these tables for multiple scattering in existing
simulation algorithms (here, VRL). In the lighting stage of VRL, we shoot, scatter rays, and store the rays (orange line) with first scatter events. In the
rendering stage of VRL, the precomputation tables are used to compute the multiple scattering contribution from the light rays (orange line) to the camera
rays (red line).

Photon-mapping-based methods can provide high quality sim-
ulations of light transport in participating media, but they usually
require a long time to converge. In contrast, our method can
provide similar quality with much faster convergence for highly
scattering media, as we connect the light point / segment and
camera point / segment through the tables with already converged
radiance.

Diffusion Theory: Jensen et al. [4] approximate surface
response for high-albedo materials using the Dipole method.
Jensen and Buhler [5] present a fast method for computing
dipole response, relying on precomputed incoming radiance at
the surface. D’Eon and Irving [12] improved the accuracy using
Quantized Diffusion method. Habel et al. [13] combined photon
beams and the diffusion model by distributing extended virtual

sources along the photon beams. Frisvad et al. [14] introduced
the Directional Dipole, taking into account the orientation of
incoming light relative the surface.

Diffusion-based methods are fast, and designed to work with
materials with a high albedo, like our own algorithm. Diffusion-
based methods tend to be faster than our method to compute
multiple scattering effects. In comparison, our method can handle
highly anisotropic media, while diffusion theory based methods
use similarity theory for anisotropic media, which leads to inaccu-
racy. Even for isotropic media, our method provides better quality,
by tracing the light inside the medium and combining with VRL,
UPBP or MEMLT.

Virtual Point Lights: Keller [15] proposed virtual point light
method for fast GI computation. Hašan et al. [16] improved it by
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introducing spherical lights to avoid singularity. Novák et al. [17]
used virtual point lights and virtual ray lights for light transport
inside translucent materials. Novák et al. [1] replaced virtual ray
lights with virtual beam lights to remove singularities. They used
importance sampling for the transfer between camera rays and
virtual light sources.

Virtual Point Lights and its variants can simulate multiple
scattering with high quality, at the cost of large amount of virtual
points or rays, resulting in slow convergence speed, especially
for highly scattering media. Compared to them, combining our
method with VRL, UPBP or MEMLT is much faster, while
providing similar results.

Path tracing / Metropolis Light Transport: Georgiev et
al. [18] used the product of geometry and scattering terms for
importance sampling in rendering participating media. Compared
to our method, the joint sampling method limits to low-order
scattering, while our method focuses on high-order scattering.
Veach and Guibas introduced Metropolis Light Transport (MLT)
for illumination simulation, mutating existing light transport paths
to find more efficient transport. Jakob and Marschner [3] proposed
a new mutation strategy for Metropolis Light Transport based on
manifold exploration (MEMLT), improving the sampling for paths
involving specular and highly glossy surfaces.

Tracing light in highly scattering media usually leads to very
long paths. These long paths require a large amount of mutations
to provide noise free result. When combining with our precom-
puted table, the paths are shortened, and much fewer mutations
are needed.

Precomputation based Methods: Donner et al. [19] precom-
puted material response on the surface for translucent materials,
storing the result as a function of surface position and outgoing
direction. They stored double and multiple scattering effects to-
gether. Our focus on multiple scattering allows for a more compact
representation. We also focus on scattering inside the material,
leaving surface diffraction to the original algorithm.

Moon et al. [20] also precompute material response, but store
it on a set of concentric spheres or shells. We use instead a planar
grid, resulting in fewer interpolation artefacts. Meng et al. [21]
and Müller et al. [22] extend the approach for granular materials,
while keeping a concentric shell approach.

Wang et al. [23] and Wang and Holzschuch [24] proposed a
precomputed table for multiple scattering of a light source in the
infinite media. This table was used in a specifically designed ex-
tension of Point-Based Global Illumination. We extend their work,
but show the approach is compatible with almost all illumination
simulation algorithms. We also introduce multiple scattering from
a segment source and provide a more compact representation.

3 Precomputed Multiple Scattering Simulation

3.1 Radiative Transfer Equation

We consider a scene containing objects with translucent material.
Each of these is assumed to be made of an homogeneous material,
with index of refraction η, scattering coefficient σs, absorption
coefficient σa and phase function p(ω,ωt). We note ` the mean-
free path inside the material (mfp), with 1/` = σt = σs + σa.

Radiance leaving point x in the direction ω is the sum of
exitant radiance from the nearest surface along this direction and

Surface

Fig. 3. The Radiative Transfer Equation.

in-scattered radiance from the medium among the whole length of
the ray [6] (see Figure 3):

L(x,ω) = Tr(x↔ xs)L(xs,ω) +

∫ s

0
Tr(x↔ xt)σs(xt)Li(xt,ω)dt,

(1)
where Tr is the transmittance, defined as:

Tr(x↔ xt) = e−σt‖x−xt‖, (2)

s is the distance through the medium to the nearest surface at
xs = x − sω, and xt = x − tω with t ∈ (0, s). L(xs,ω) is the
exit radiance from the nearest surface, which is governed by the
rendering equation [25]. Li(xs,ω) is the in-scattering radiance at
xt from all direction ωt over the sphere of directions Ω4π using the
phase function p, defined as:

Li(xt,ω) =

∫
Ω4π

p(ω,ωt)L(xt,ωt)dωt . (3)

3.2 Notations and Context

We separate between single-, double- and multiple- scattering
effects, depending on the number of volume scattering events
inside the translucent material. Single scattering corresponds to
a light paths with only one scattering event inside the material,
double scattering to paths with two scattering events and multiple
scattering to paths with more than two scattering events. We
only count the number of scattering events, independently of the
number of internal reflections on the specular surface.

Our algorithm is designed to work with any rendering frame-
work. We describe here integration with Virtual Ray Lights (VRL),
UPBP and MEMLT. We focus on computing multiple scattering;
the original algorithms compute low-order scattering.

3.3 Precomputing Multiple Scattering Effects

3.3.1 Precomputing Multiple Scattering Radiance
In the precomputation step, we assume an infinite, homogeneous,
participating medium, with the same properties as the original
medium. We run two types of precomputations: with a point
directional light source and with a segment light source. A segment
source is defined with (o, v, l), where o is the origin and set
at the spatial coordinates origin (0, 0), v is the direction of the
segment and is aligned with the z axis, l is its length, set at
2× mfp. This is a compromise, considering both the efficiency
and the accuracy. A larger size leads to inaccuracy for short
light rays, and smaller size requires more accumulation for a
given light ray. We treat the segment as a combination of point
sources during the precomputation. All spatial dimensions are
normalized by the mean-free-path of the material, to reduce the
number of parameters. In both cases, we shoot photons from the
light source, let them travel in the medium, being scattered or
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Fig. 4. Multiple scattering from a point source and a segment source:
first, we compute lobe shapes indexed by cylindrical coordinates (ρ, z) for
position, using spherical coordinates (θ, ϕ) for direction (a). We approximate
these lobes using axially symmetric lobes for point source and with asym-
metric lobes for segment source, whose axis (red dashed line) is computed
to minimize representation error (b). In (c) and (d), we visualize the photon
density with varying color and the optimal axis with stream lines.

absorbed, and accumulate their contributions in a table, exploiting
the symmetry of revolution of the problem around the direction
of propagation. This table is a discretized representation of the
multiple scattering radiance in the medium, sampling in both the
spatial and directional domain. The core idea behind the table
computation is similar to volumetric photon mapping. Each grid
cell in the table works as a kernel, gathering all the particles
scattered inside it. In each grid cell, we sample the direction and
evaluate the radiance at this grid for each sampled direction, with
unit watt per steradian per square metre. The radiance functions
Lo for a point source and a segment source at position (ρ, z) with
direction (θ, ϕ) are defined:

rp(ρ, z, θ, ϕ) =
1

N × Vρ,z

Mp∑
i=1

Φiσs p(θ, ϕ, ωi), (4)

rs(ρ, z, θ, ϕ) =
l

N × Vρ,z × K

Ms∑
i=1

Φiσs p(θ, ϕ, ωi). (5)

Where N is the total count of photons (we use 500 K in practice,
see Table 1). Vρ,z is the volume of grid cell at position ρ, z, Mp

and Ms are the number of particles who reach the cell at position
(ρ, z) for a point source and a segment source respectively, Φi is
the flux of the photon i and p(θ, ϕ, ωi) is the phase function of the
medium with incoming direction ωi and outgoing direction (θ, ϕ).
K is the count of samples for segment source, and we sample the
segment source per grid length uniformly in our implementation.

Both problems (point and segment source) have a symmetry
of revolution around the direction of propagation. We index points
by their cylindrical coordinates (ρ, z) around this axis, and store
contributions as lobes in spherical coordinates (see Figure 6).
This first representation is 4-dimensional, with a memory cost of
209 MB.

3.3.2 Compressing Multiple Scattering Representation

We then compress this representation, using axially symmetric
lobes for point light sources and asymmetric lobes for segment
sources (see Figure 4).

The radial plane, defined by ρ and z, is also a symmetry plane
for each lobe. We refer to it as the sagittal plane (see Figure 5).
The intersection between the lobe and the sagittal plane is a

Coronal Plane

Sagittal Plane

Fig. 5. Definition of the sagittal plane (blue) and coronal plane (green).

Lobe intersection

Radial plane

Optimal Axis

cross plane

Fig. 6. The radial plane, optimal axis and sagittal cross section. The lobe is
parametrized as (θ, ϕ), where θ is measured with respect to the optimal axis
and ϕ is the azimuthal angle.

sagittal cross-section. Inside the sagittal plane, we find the axis
that separates the sagittal section into similar parts by minimizing
the difference between the cross-section and its reflection around
the axis. This gives us the optimal axis. The plane perpendicular
to the sagittal plane that includes the optimal axis is called the
coronal plane. See Figures 5, 6 and 7.

For point sources, we approximate the lobes using radially
symmetric lobes around the optimal axis. For each lobe, we
replace the precomputed values for (θ, ϕ) with a sampled function
of θ.

For segment sources, we extend the approach, but take into
account the asymmetry of the lobes. We begin by approximating
the sagittal cross-section using sampled (R,G, B) values for one
side. For the other side of the sagittal cross-section and for the
coronal section, we store the ratio between computed values and
the sampled function for the first side of the sagittal section.

This representation combines accuracy and compactness. Each
lobe shape requires 3n samples for point sources, 5n samples for
segment sources, where n is the number of sample points in θ. The

sagittal plane

coronal plane
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Fig. 7. Sagittal and coronal cross-section. The sagittal plane is a plane of
symmetry for the lobe, the coronal plane is perpendicular to it along the
optimal axis. For both sections, we visualize both the computed lobe (red)
and the approximation (dashed blue).
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Fig. 8. Comparison between computed lobe and resulting approximation,
looking at cross-sections perpendicular to the optimal axis. Medium with
anisotropy g = 0.9, sample position (5, 5). The curves are isolines with the
numbers representing the radiance on the right. The solid lines represent
the computed lobe and the dashed lines represent the approximated lobes.
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Fig. 9. In rendering, we encounter four different types of radiance estimator.

first half of the sagittal cross-section is stored using (R,G, B); the
ratios are averaged across (R,G, B) and stored using floats.

Lobe direction is stored using a single float. We use the angle
between the optimal axis and the line joining the origin and the
current point. Total memory cost after this lobe compression is
9.1 MB.

We further compress our tables using quadtrees, resulting in a
memory cost of 0.5 to 1.5 MB depending on material properties.

The strongest approximation we made was for asymmetric
lobes for segment sources. We found experimentally that it has
a limited impact on overall accuracy (see Figures 7 and 8, as well
as Section 5.5).

3.4 Querying Values From Our Precomputed Tables

Depending on the rendering algorithm, we need to compute
multiple scattering from either a point source or a segment source
inside the medium, to either a point destination or a segment
destination, resulting in four possible combinations (see Figure 9):
point-to-point, point-to-segment, segment-to-point and segment-
to-segment. VRL and UPBP use segment-to-segment, MEMLT
uses point-to-point. Other rendering algorithms could require the
other configurations; for example Beam-Radiance-Estimate would
require point-to-segment.

Point to Point Contribution. Computing contributions from
a point source to a point destination is a direct reading of the
precomputed tables. We first transform the point target and ray
direction into the table local coordinates, then extract the outgoing
radiance from multiple scattering for this point and direction:

z = (P − v) · d, (6)

ρ = ‖(P − v) − zd‖ , (7)

mult. (P,ωt) = Lo

(
ρ

`
,

z
`
,T(v,d)(ωt)

)
. (8)

where (v, d) is the position and orientation of the precomputed
table, (ρ, z) are the cylindrical coordinates around the axis of
propagation, and T(v,d)(ωt) is the direction corresponding to ωt

in the frame defined by (v, d).

segment source origin

u
n
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g
m

en
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Fig. 10. Contributions from a segment source (orange line) to a segment
target (red line) with length Dc. The segment target is transformed into
the coordinates of the segment source. We divide the segment source
into several unit segments (red square), which have the same length as
the precomputed segment source. Each unit segment has a start point v j,
with distance dv j from the segment origin. The segment target is sampled
regularly into camera samples (red dots), namely Pk with a distance dk from
the start point of the camera sample. The contributions from the first unit
segment are evaluated by directly reading the table, called unit contribution.
The contributions from the following unit segments are evaluated by multi-
plying the unit contribution with the attenuation along the distance.

Point to Segment Contribution. Contributions from a point
source to a segment target begin in the same way (Equations 6
and 7). First, we transform the segment into the coordinates of the
point source. We then place point samples on the transformed
segment, gather outgoing radiance for each sample using the
point sampling algorithm. We multiply this radiance with the
transmittance along the segment and sum them:

mult. (S,ωt) =
Dc

Kc

∑
Pk

Lo

(
ρk

`
,

zk

`
,T(v,d)(ωt)

)
e−σtdk , (9)

where Dc is the length of the camera ray, Kc is the count of point
samples along the camera ray, Pk is a point sample along the
camera ray which is transformed in the local frame defined by
(v, d), and dk is the distance of the sample along the segment
target.

Segment to Point Contribution. Contributions from a seg-
ment source to a point target also begins in the same way,
transforming the point or segment into the coordinates of the
segment source. The precomputed segment has a fixed length
(2× mfp), but the length of the queried light segment may have
different length. We subdivide the querying light segment into
several unit segments, each having the same length as the segment
source. We assume each of these unit segments have the same
contribution to the camera sample, except for attenuation along
the light segment. We gather radiance for the transformed point as
follows:

mult. (P,ωt) =
∑

v j

Lo

(
ρ

`
,

z
`
,T(v j,d)(ωt)

)
e−σtdv j , (10)

where v j is the start point of each unit segment along the segment
source and dv j is the distance of this unit segment from the
segment source origin.

Segment to Segment Contribution. Contributions from a
segment source to a segment target is similar to the contributions
from a segment source to a point source, except that we sample the
queried camera ray into point samples at first, gather contribution
for each of these point samples and then sum them (see Figure
10):

mult. (S,ωt) =
Dc

Kc

∑
Pk

∑
v j

Lo

(
ρk

`
,

zk

`
,T(v j,d)(ωt)

)
e−σtdv j e−σtdk . (11)
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Fig. 11. Application to MEMLT: For each generated seed path, we replace the sub-path with multiple events with one special edge. For example, here the
subpath from V1 to V3 is replaced by the dashed edge. This special edge carries multiple scattering from one side of the edge to the other. When mutating
the path, the first endpoint of the special path is not allowed to be a mutation source. The weight of the special edge is computed from the multiple scattering
table.

...
Light Surface Event Volume Event Surface Event Camera

Fig. 12. Definition of subpaths and subspaces. A path x0, x1, ...xk is subdi-
vided into three sub-paths: x̄1, x̄2 and x̄3. x̄1 starts from the light source and
ends at the first volume event. x̄2 starts from (not include) the first volume
event and ends at (not include) the last volume event. x̄3 starts from the last
volume event and ends at the camera. All the sub-paths which satisfy these
three conditions construct three sub-path space: Ω1,Ω2 and Ω3.

Visibility in the media and Boundaries. We do not consider
visibility between the source (segment or point) and the query
(segment or point) or boundaries. This is not an issue where the
medium has a convex shape, but it can be a source of inaccuracy
for scenes with occlusion or air inside the medium. We illustrate
this in Section 5.9 and Figures 32 and 33.

3.5 Application to Existing Rendering Algorithms

Our precomputation tables can be used in combination with many
existing global illumination algorithms. In this section we describe
integration with VRL, UPBP and MEMLT. For each of them, we
let the original algorithm handle single and double scattering, and
combine the result with multiple scattering from our precomputed
tables.

3.5.1 Combination with Virtual Ray Lights (VRL)

Virtual Ray Lights (VRL) [17] is a two-pass ray-tracing algo-
rithm: First render path from the light source inside the medium,
with multiple bounces and scattering events and store incoming
radiance on these rays. In a second phase, render rays from the
camera and accumulate contributions from the rays computed in
the first phase.

We follow the structure of the original VRL algorithm, except
we do not compute multiple scattering inside the medium. During
the first phase, we only store single scattering events in the volume
(see Figure 2), but still allow for multiple bounces.

During the rendering phase, we consider rays in the participat-
ing medium for each path from the camera. We compute double
scattering for these rays using the importance sampling methods
described in the original paper [17], and multiple scattering using
our precomputed tables. We need segment-to-segment contribu-
tions. Note that VRL does not compute single scattering effects.

3.5.2 Combination with Unified Point, Beams and Paths
(UPBP)

Unified Point, Beams and Paths (UPBP) is an extension of the
Photon Mapping algorithm. In a first step, we send photons
and beams inside the scene, including the participating medium,
storing incoming radiance at each of them. In a final gathering
step, we trace rays from the camera and accumulate contributions
from neighbouring photons and beams.

We keep the first phase, shooting photons inside the scene,
bouncing on surfaces and scattering inside the medium. We restrict
scattering to at most two scattering events, and store single-
scattered and double-scattered beams separately.

In the final gathering phase, double-scattered beams are only
used to compute double scattering, using the original UPBP
algorithm. Single-scattered beams are used both to compute single
scattering (using the original algorithm) and to compute multiple
scattering using our precomputed tables. For the first event on the
camera ray inside a medium, we loop over all the beams stored
inside this specific medium and gather their contributions to the
camera ray. We need segment-to-segment contributions.

3.5.3 Combination with Manifold-Exploration Metropolis Light
Transport (MEMLT)

Metropolis Light Transport (MLT) computes paths from the cam-
era to the light source, then mutates these paths to look for more
interesting connections. Manifold Exploration is an extension of
MLT, where mutations involving path vertices on specular surfaces
are constrained by the specularity.

We position our contribution in a modified path integral
framework. We first review the original path integral framework.
Image pixel intensity I is a integral over the path space Ω:

I =

∫
Ω

f (x̄)dµ(x̄). (12)

x̄ represents a path: x0, x1, ...xk, which connects the light source
and the camera, where x0 is on the light source and xk is on the
camera lens, and x1, ..., xk−1 represents vertices on the surface or
scattering event in the media. dµx̄ is the differential measurement
of the path, corresponding to area integration for surface vertices
or scattering events. The measurement contribution function f (x̄)
is the product of the geometry throughput G(x̄), scattering through-
put χ(x̄), path transmittance Tr(x̄) and visibility V(x̄).

Given path x̄, without loss of generality, we assume it includes
two surface events only and at least three volume scattering event.
x1 and xk−1 are surface events and x2, ..., xk−2 (k > 5) are volume
scattering events. We divide this path into three subpaths: x̄1, x̄2

and x̄3, where x̄1 = x0, x1, x2, x̄3 = xk−2, xk1 , xk, and x̄2 = x2, ..., xk2 .
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Fig. 13. Precomputed table quadtree structure for segment sources, for
materials with anisotropy g = 0.9 and g = 0.3.

In subpath x̄2, the endpoints are decided by the other two subpaths.
We further divide the path space into three subpath spaces: Ω1,
Ω2 and Ω3, where Ω1 represents all the supaths from the light
source to the first volume scattering event, Ω3 represent all the
subpaths from the last volume scattering event to the camera and
Ω2 represents the other scattering events in the volume (see Figure
12). Thus, we have

Ω1 = {x̄1} ,Ω2 = {x̄2} ,Ω3 = {x̄3} . (13)

We rewrite Equation 12 with the new subpaths definitions:

I =

∫
Ω1

f (x̄1)
∫

Ω3

f (x̄3)
∫

Ω2

f (x̄2)dµ(x̄2)dµ(x̄3)dµ(x̄1). (14)

We replace the subpath x̄2 with a special edge (see Figure 11). This
edge transports multiple scattering from one path vertex to the
other, represented as g(xi, ωi, xo, ωo). We merge g into Equation
14:

I =

∫
Ω1

f (x̄1)
∫

Ω3

f (x̄3)g(x2, ω1, xk2 , ωk−2)dµ(x̄3)dµ(x̄1), (15)

where ωi represent unit vector pointing from xi to xi+1.
The precomputed table is exactly an approximation of function

g. Our precomputed table includes G, χ and Tr. We ignore the
visibility along the subpath. We replace g with a point to point
contribution in our table:

I ≈
∫

Ω1

f (x̄1)
∫

Ω3

f (x̄3)mul.(x2, ω1, xk−2, ωk−2)dµ(x̄3)dµ(x̄1).

(16)

To solve the new integral Equation 16, we keep the MEMLT
algorithm for all paths outside the medium, as well as for paths
with less than two scattering events inside the medium. Both the
proposal distribution and the acceptance probability have the same
form as MEMLT. We use the multiple scattering evaluated from
the table as the weight for x̄2 and the pdf is set as 1. Both endpoints
of the special edge are considered as non-specular, and the end
point from the light source can not be considered as the mutation
source. The invertibility is not changed in the imagined converged
subpaths, except when MEMLT itself has non-invertible cases.

4 Implementation Details
4.1 Precomputed Table Structure

We store our precomputed tables for ρ and z going from 0 to
32 mfp and up to 64 mfp for highly anisotropic materials with
large g. Spatial coordinates are normalized by the material mean-
free-path (mfp). We compress the spatial representation using a
quadtree. The quadtree structure is computed in a preliminary step:
first, we shoot a small number of photons to compute the spatial

Approximated Lobe

Computed Lobe

Optimal Axis

Incoming Light Direction

Fig. 14. Comparison between computed and approximated lobes, in the
sagittal plane, with their position. Segment light source. Material: g = 0.8.

TABLE 1
Parameters for the materials used in this paper. We use 0.5 M particles for

the simulations. Memory costs are for both tables, after compression.
Computation times are for segment sources (S) and point sources (P).

Name α ` g mem. time (s)
R G B R G B MB S P

B.S. 0.955 0.677 0.457 4.55 3.23 2.17 0.9 1.88 18 2
Wax 0.980 0.962 0.750 0.65 0.63 0.59 0.8 1.24 28 2
Milk 0.999 0.999 0.999 0.84 0.75 0.68 0.7 1.32 28 2
Skin 0.958 0.838 0.678 1.29 0.95 0.67 0.0 0.45 15 2

Marble 0.999 0.998 0.997 0.46 0.38 0.33 0.0 0.46 27 3

subdivision. We begin with a 32 × 32 regular grid, accumulate
photons in each cell, and subdivide cells when the photon count
reaches a certain threshold (see Figure 13). Once we have the tree
structure, we shoot a large number of photons to compute the lobes
inside each cell.

4.2 Lobe Approximation

For the lobe approximations, we sample θ every 10◦, resulting in
18 samples for each curve. Including the optimal axis position, the
memory cost is 55 floats for each lobe for a point light source, and
91 floats for each lobe for a segment source.

The approximation is very close to what we computed origi-
nally (see Figures 7 and 8). Figure 14 shows a comparison between
the computed and approximated sagittal sections of several lobes
in the radial plane, with their position.

5 Results

5.1 Implementation

We have implemented our algorithm inside the Mitsuba Ren-
derer [26] for VRL and MEMLT, and inside smallUPBP [27] for
UPBP. All timings in this section are measured on a 2.20GHz
Intel i7 (40 cores) with 32 GB of main memory. Unless otherwise
specified, all timings correspond to pictures with 512×512 pixels.
We report the full computation time, for both our algorithm and
the environment. Reference solutions are computed using UPBP
and MEMLT.

All materials in our scenes are homogenous materials, with
Henyey-Greenstein phase functions and refractive boundaries.
Material properties are from Křivánek et al. [2], Narasimhan et al.
[28] and Holzschuch [29] (see Table 1).
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TABLE 2
Computation time, memory costs and error for our test scenes. The count of multiple beams for all the scenes are 10K.

Ours (VRL) VRL Ours (UPBP) UPBP Ours (MEMLT) MEMLT
scene time. VRLs. PSNR VRLs. PSNR time. #iterations. PSNR #iterations. PSNR time. samples. PSNR samples. PSNR

s K K m m K
BumpS. 53 3 34.5 1 23.21 1 269 35.8 80 19.48 1.4 1024 32.12 32 24.01

Wax 180 40 37.4 1 12.28 3 722 37.3 85 21.01 1.9 1024 35.47 40 23.99
Stilllife. – - —– - —– 10 1160 31.83 128 21.08 — —– —– —- —–
Head. – - —– - —– 10 2044 40.59 440 36.06 — —– —– —- —–

Athena – - —– - —– 20 4093 37.0 600 32.3 — —– —– —- —–
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Fig. 15. Comparison (multiple scattering only) between our method and the original methods over two test scenes (bumpy sphere and wax). Our algorithm
generates pictures almost identical to the fully converged solution, while being at least one order of magnitude faster. VRL and UPBP use a point light
source, MEMLT use an area light source. The BRDFs of both the scenes are dielectric, with IOR 1.5 in Bumpy Sphere Scene and 1.446 in Candle Scene.

5.2 Comparison with High-Quality Methods

Our precomputed multiple scattering greatly speeds up com-
putations of multiple scattering, with all rendering algorithms.
Figure 15 shows a comparison between the original methods and
our methods, for the three algorithms. We display only multiple
scattering for better comparison. Our algorithm produces pictures
that are virtually identical to the references, while being at least
one order of magnitude faster. We used a point light source for
VRL and UPBP, and had to use an area light source for MEMLT.

A strong advantage of our method is that we only change the
part of the rendering algorithm dealing with multiple scattering.
The rest of the simulation algorithm is unmodified, so we can eas-
ily render participating media in a complex setup. Figure 1 shows
two such scenes, with multiple refractive interfaces around the
participating media. Our algorithm provides noise-free pictures,
along with all expected illumination effects, such as diffuse and
specular reflections and caustics.

Light transport simulation is more difficult in participating
media with refractive interface, due to the absence of a direct path
to the light source. Our algorithm also works on index-matched
participating media, without refraction at the interface. We have
used our method for simulation in mist with varying density (see
Figure 16). We observe that the gains are more important on dense
mist (see Figure 16 (a)) than for thinner mist (see Figure 16
(b)). This is consistent with our observations on other media:

precomputed multiple scattering is especially interesting when
multiple scattering dominates.

5.3 Comparison with Dipole Methods

We also compare our method to fast computation of multiple scat-
tering using the Dipole [4] and Normalized Dipole [30] methods,
both implemented in the Appleseed Renderer. Figures 17 and 18
show a side-by-side comparison between our method (UPBP),
UPBP, dipole and normalized dipole. We show all scattering
levels (single, double and multiple). For Dipole-based methods,
we compute single scattering using UPBP and add it to double
and multiple scattering computed using the Dipole approximation.

Dipole methods are very fast. Computing single scattering
reduces this timing advantage (600 s for Figure 17), but the
method is still the fastest to reach a noise-free picture. It tends
to overestimate absorption by thin features, such as the edge of
the nose in Figure 17 or the helmet in Figure 18. Our algorithm
is slightly slower, but still substantially faster than UPBP, and
produces pictures that are indistinguishable from the reference.

5.4 Comparison with Diffusion Approximation

The diffusion approximation is based on the observation that
the light distribution in highly scattering media tends to be-
come isotropic. In this case, the radiance in the medium from
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(a) Our Algorithm (UPBP), 600 s (b) UPBP, Equal Time (c) UPBP, 6 h
Thin mistDense mist

 (d) Our Algorithm (UPBP), 600 s (e) UPBP, Equal Time (f) UPBP, 4.5 h

Fig. 16. Comparison (full solution) between our method (with UPBP) and UPBP on the Bathroom Scene, with added mist. Our method provides a good
improvement on dense mist (a,b and c), compared to the thinner mist (d, e and f). Material parameters: (g = 0.4, σs = {0.016, 0.016, 0.016}, σa =
{0.001, 0.001, 0.001}).

UPBP, Equal TimeOur Algorithm (UPBP), 600 s UPBP, Reference, 6h Dipole + UPBP, 756 s Normalized Dipole, 156 s Difference 

Dipole

Ours

NormalizedDipole

Fig. 17. Comparison with dipole-based methods for the full solution (including single and double scattering). Dipole-based methods are faster, but miss
some of the translucency effects. Dipole + UPBP represents using dipole for double + multiple scattering and using UPBP for single scattering. Material:
skin.

UPBP, Equal TimeOur Algorithm (UPBP), 1200 s UPBP, Reference, 6h Normalized Dipole,  195sDipole + UPBP, 829sDifference Difference

Ours (UPBP)

UPBP

Dipole + UPBP

Normalized Dipole

Fig. 18. Comparison with dipole-based methods for the full solution (including single and double scattering). Material: marble.

an isotropic point light source may be approximated by a two
term expansion involving the radiant fluence φ(x) and the vector
irradiance E(x) [4]:

L(x,ω) =
1

4π
φ(x) +

3
4π
ω · E(x), (17)

φ(x) =
Φ

4πD
e−σtrr(x)

r(x)
, (18)

E(x) =
1 + r(x)σtr

4φr(x)2 e−σtrr(x)r̂, (19)

D =
1

3σ′t
, σ

′

t = σa + σs(1 − g), (20)

where r is the distance from the light source, σtr =
√
σaD is the

effective transport coefficient and r̂ is the unit vector pointing from
the source to x.

The main differences between diffusion approximation and our
precomputed table with a point light source are: diffusion approxi-
mation is limited to highly scattering media, and approximated all

Diffusion Approx. Our Extended Table

Point Source Segment Source

Diffusion Approx. Our Extended Table

Fig. 19. Comparison between extended precomputed table (including dou-
ble scattering) and diffusion approximation for a point source in infinite
medium and segment source in semi-infinite medium.

media with an isotropic version; diffusion approximation includes
both double scattering and multiple scattering, while our method
decouples them.

Figure 19 shows a comparison between the values computed
by diffusion approximation and the values stored in our precom-
puted table, to which we added double scattering. For an isotropic
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Diffusion Approx. (UPBP), 600 sOur Algorithm (UPBP), 600 s UPBP, Reference,  6hUPBP, 600 s

Ours

Diffusion Approx.

Difference

Fig. 20. Comparison between extended precomputed table (including double scattering) and diffusion approximation in UPBP and UPBP as a reference on
the Athena Scene. Material: ( g = 0, σs = {2, 2, 2}, σa = {0.01, 0.01, 0.01}).

Diffusion Approx. (VRL), 22 sOur Algorithm (VRL), 53 s UPBP, Reference,  6h

Fig. 21. Comparison between extended precomputed table (including dou-
ble scattering) and diffusion approximation in VRL and UPBP as a reference
on the Bumpysphere Scene. Material: Bumpysphere, g = 0.9.

medium (g = 0), with low absorption (σs = {2, 2, 2}, σa =

{0.01, 0.01, 0.01}), we get the same results. Figure 20 shows a
comparison between the diffusion approximation and our pre-
computed table (with double scattering added) for illumination
simulation on a simple scene, again with an isotropic medium.
We get similar results. Figure 21 shows the same comparison, but
with a highly anisotropic material (g = 0.9). For this material,
the diffusion approximation provides incorrect results, which our
table provides results very similar to the reference.
5.5 Precomputed Multiple Scattering

The precomputed tables are an important part of our algorithm.
Table 1 gives the computation time and memory cost (after
compression) for the materials in our test scenes. Memory costs
are almost the same for both tables. Materials with a high albedo
require longer computations, as particles are less likely to be
absorbed at each event.

Moon et al. [20] store the probability density on a set of
concentric spheres or shells, computed in a preprocess step.
During the rendering phase, for each scatter event in the medium,
they find the sphere with maximum radius with no intersection
between the sphere and the geometry. This sphere is sampled to get
the next scatter position and direction using the stored probability
distribution function. This allows larger step tracing, instead of
smaller steps, accelerating computations in participating media
(see Figure 23).

Figure 22 shows a comparison between our method and
precomputed multiple scattering stored using the concentric
spheres [20], with equal memory cost. Our storage method has
the same dimension in space (2), and one less dimension in angle.
Quadtree-based compression allows for adaptive representation,
resulting in better approximation, especially near the propagation
axis. Our method also avoids the Mach banding effects of concen-

(a) [Moon et al]

(b) Ours

Fig. 22. Comparison between precomputed multiple scattering stored using
Concentric Spheres [20] (top) and our method (bottom). Concentric spheres
have lower spatial resolution, resulting in poor representation on the axis
and Mach banding effects.

Path Tracing [Moon et al. 2007]

shells

Fig. 23. In the rendering process of Moon et al. [20], a sphere with a
maximum radius (the red round circle) is found, called a shell. The next
scatter position is on this shell, which is found using the stored pdf, so is the
outgoing direction. With this shell tracing, a bigger step is traced instead of
a large amount of real scattering event as shown left.

tric spheres, caused by an insufficient number of samples.
We implement Moon et al. [20] method to compare with

our method (VRL) (see Figure 24). For equal-time comparison,
our method results in a noise-free picture. Both methods save
time in material traversal, using different approaches: Moon et
al. [20] make a bigger step using the sphere radius and the stored
probability distribution function, while our method connects the
light ray and the camera ray using stored precomputed multiple
scattering.

Moon et al. [20] method was designed for discrete media,
such as sand. When used in a continuous medium, we find its
efficiency is related to the ratio between the mean-free-path of
the medium and the object size. Figure 25 shows a comparison
between our method and Moon et al. [20], for varying mean-
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Moon et al. [2007] Ours (VRL)

360s, PSNR: 31.03150s, PSNR: 24.7150s, PSNR: 35.8 Ours (VRL)

Moon et al.

Difference

Path Tracing, 2.5h 

Reference

Fig. 24. Comparison between [20] and our method (VRL) with equal time.
In this scene, we use a large area light to make path tracing converge faster.
The scale of the mfp is 1.

mfp scale

PS
N
R
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28

32
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20

24

Ours (VRL)

Path Tracing
[Moon et al 2007]

Fig. 25. Comparison between our method (VRL), Moon [20] and Path
Tracing for varying mean free path with equal time (150 seconds). A bigger
value of PSNR means better quality.

free-path. Their method works better for smaller mean-free-path
(meaning more opaque materials), as more scatter events can be
saved. Our method provides better quality over the entire mfp
range.

We make a strong approximation by replacing the full lobes
in spherical coordinates by asymmetric lobes. Figure 26 shows
the result of this approximation on multiple scattering: the impact
is not visible in pictures. There is a small decrease on the Peak
Signal to Noise Ratio (PSNR). We think this limited impact is
related to our focus on multiple scattering. Double scattering lobes
have a more pronounced elliptic shape [19], even with a point light
source.

UPBP, 6h 53s, PSNR:34.54

180s, PSNR: 37.4 UPBP, 6h 

Ours (UPBP), 
Approx. (3D) Lobe

Ours (UPBP),
 Full (4D) Lobe

Reference

52s, PSNR: 34.58

180s, PSNR: 37.4

Fig. 26. Approximating lobes as 1D functions has little effect on overall
accuracy.

 

Time (m)
0 20 40 8060 100 120

40

30

35

25

20

15

10

Our Algorithm
UPBP

Fig. 27. Error comparison between our method (implemented inside UPBP)
and unmodified UPBP as a function of rendering time.

5.6 Performance comparison

Table 2 reports the PSNR between reference pictures and pictures
generated with the rendering algorithms, both unmodified and
using our precomputed multiple scatter. This quantitative data
confirms the qualitative visual impression: the pictures generated
by our algorithm are very close to the reference images, and better
than the pictures generated by the unmodified algorithms for small
computation times (resulting in larger PSNR). The significant
reduction in time spent for each interaction allows us to render
more iterations within the required time frame (UPBP), to allocate
more virtual ray lights (VRL) or more samples (MEMLT).

5.7 Performance analysis: UPBP

Figure 27 shows how PSNR evolves as a function of rendering
time for UPBP, both unmodified and using our precomputed mul-
tiple scattering, on the Stilllife Scene in Figure 1. Our algorithm
contains a strong approximation of multiple scattering effects;
as computation time increases, the errors we introduced become
dominant, imposing a cap on the PSNR. For long computation
time (over 1 h), the unmodified algorithm becomes more accurate.

Our algorithm only applies to multiple scattering. Its advantage
depend on the importance of multiple scattering effects in the
scene. Figure 28 shows the effect of changing the material mean-
free-path while keeping all other parameters constant, along with
a density map showing the usage of our precomputed material
response. Our algorithm is used often for smaller mean-free-paths,
where multiple scattering effects dominate, and scarcely for larger
mean-free-paths, where low-order scattering effects dominate.

5.8 Performance Analysis: MEMLT

Figure 30 shows how RMSE evolves as a function of the number
of mutations for MEMLT, both unmodified and using our pre-
computed multiple scatter, using a log-log scale. For this test,
we used a perfect sphere (see Figure 29) to focus on multiple
scattering and remove boundary issues. We use the result rendered
with MEMLT with 8196 mutation count as the ground truth.
The error decreases as the mutation count increases for both
methods. We observe the same behaviour as with UPBP: for a
small number of mutations, our method has a smaller RMSE. If the
number of mutations is large enough (after 4096), the unmodified
algorithm provides better results, as our algorithm is biased. On
the other hand, the cost for each mutation is much smaller for
our algorithm than for unmodified MEMLT, as we only deal
with surface mutations. Figure 31 shows how RMSE evolves as
a function of time (in log-log scale). For the same computation
time, our method consistently outperforms MEMLT, and provides
high quality results in a very short time.
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Fig. 28. Comparison between our method (in UPBP) and UPBP, with varying mean-free-paths, rendered with 600 seconds. The albedo of all the materials
are set as α = (0.24, 0.48, 0.96). g is 0.3. Top row: usage density for our precomputed table.

MEMLT (Equal time)
Mutation Count: 32

Ours (MEMLT)
Mutation Count: 1024

360s, PSNR: 31.0384s, rMSE: 3.9e-284s, rMSE: 8.3e-3 Ours (MEMLT)

MEMLT

Difference

6.3h 

Reference, MEMLT
Mutation Count: 8192

Fig. 29. Comparison between our method (MEMLT) and MEMLT on a
Sphere Scene. For this scene boundaries have little effect, allowing us to
focus on multiple scattering convergence. Material: Wax.

5.9 Limitations

Our method was designed for homogeneous, continuous, translu-
cent materials with refractive boundaries. We assume that illumi-
nation can propagate freely inside the material. This is not an issue
in most of our test scenes, as the translucent material blocks have
mostly convex shapes. To illustrate the impact of this limitation,
we designed two different scenes: in the first, we place a diffuse
black ball inside the Candle scene (see Figure 32). In the second,
we create a hollow candle, keeping only a shell of thickness 3
mfp. (see Figure 33). For both scenes, the accuracy of our method
decreases as it does not account for all the effects. Our algorithm
tends to overestimate scattering effects inside the medium.

6 Conclusion and FutureWork
We present a new method to store precomputed multiple scattering
in participating media. Our method is easy to integrate with

Mutation Count
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MEMLT
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10-3

Fig. 30. Error comparison (RMSE) as a function of mutation count, using
a log-log scale, for both our method (implemented inside MEMLT) and
unmodified MEMLT for a simple Sphere Scene. A smaller value of RMSE
means better quality.

existing rendering algorithms. We use the original algorithms
for single and double scattering, and our precomputed data for
multiple scattering. Our method reduces noise, with limited impact
on accuracy. Reducing the cost for simulating participating media
allows for faster convergence overall. This method is especially
interesting for materials with large albedo and small mean-free-
path, where higher-order scattering effects dominate. It has limited
impact — but also limited cost — for more transparent materials
with larger mean-free-path.

In this paper we used precomputed multiple scattering for all
scattering events after the second, and used the original algorithms
for single and double scattering. An easy extension is to use the
unmodified algorithms for more lower-order scattering (up to the
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Fig. 31. Error comparison (RMSE) as a function of rendering time, using
a log-log scale, for both our method (implemented inside MEMLT) and
unmodified MEMLT for a simple Sphere Scene. To keep both methods within
the same time range the mutation count for our method is from 16 to 4096,
and for unmodified MEMLT it is from 4 to 128.

third or fourth scattering event) and use our precomputed tables
for subsequent scattering events.

We also want to consider importance sampling to guide longer
path length.
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[2] J. Křivánek, I. Georgiev, T. Hachisuka, P. Vévoda, M. Šik,
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Fig. 32. Comparison between our method (VRL) and the reference (UPBP) for Candle Scene with and without an opaque diffuse black ball placed inside
the candle (multiple scattering only). Our method (VRL) provides brighter results than the reference, as it ignores the visibility issues between camera rays
and light rays. Material: wax.
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Fig. 33. Comparison between our method (VRL) and the reference (UPBP) for a hollow candle scene (multiple scattering only). We only kept a shell of the
candle, with a thickness of 3 mfp. Here, our method tends to overestimate the multiple scattering contribution. Material: wax.
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