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Introduction

Beside the trace and the determinant, the rank function is one of the most impor-

tant functions in matrix theory. Its properties have been studied in linear algebra

or matrix calculus ([60],[26]), semi-algebraic geometry ([55]), etc.

In this dissertation, we consider the rank function from the variational point of

view. The reason why we are interested in the rank function from this point of view

is that the rank function appears as an objective (or constraint) function in various

modern optimization problems. Many notions in engineering applications such as

the order, complexity, or dimension of a model or design can be expressed as the

rank of a matrix. The simplest model that can be expressed as a rank minimization

problem or a rank constraint problem is always preferred to a complicated detailed

one. More precisely, a low-rank matrix could correspond to a low-order controller

for a system, a low-order statistical model and a design with a small number of

components. For example:

• Low rank matrix completion: We are given a random subset of entries of

a matrix and would like to fill in the missing entries such that the resulting

matrix has the lowest possible rank. This problem is often encountered in

the analysis of incomplete data sets exhibiting an underlying factor model

with applications in collaborative filtering, computer vision and control.

• Rank of a covariance matrix: From noisy data, we obtain the estimated

covariance matrices. Because of the noise, the estimated covariance matrices

have full rank (with probability one). We want to find a covariance matrix of

low rank such that the error is less than a given tolerance. In this example,

a low rank covariance matrix corresponds to a simple explanation or model

for the data.
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Introduction

• Image approximation: The general problem of image compression is to

reduce the amount of data required to represent a digital image or video,

and the underlying basis of the reduction process is the removal of redun-

dant data. A two-dimensional image can be associated with a rectangular

matrix, and in order to compress the given image, we need to find a low-rank

approximation of the associated matrix.

The so-called “rank minimization problem” can be formulated as follows:

(P)

{
Minimize f(A) := rank of A

subject to A ∈ C,

where C is a subset of Mm,n(R) (the vector space of m by n real matrices). The

constraint set is usually rather “simple” (expressed as linear equalities, for exam-

ple), the main difficulty lies in the objective function.

The “rank constraint problem” can be formulated as follows:

(P1)

{
Minimize g(A)

subject to A ∈ C and rank A ≤ k,

with a rather simple objective function but a fairly complicated constraint set.

Both problems (P) and (P1) suffer from the same intrinsic difficulty: the occurence

of the rank function.

A related (or cousin) problem to (P), actually a special case of (P), stated in Rn

this time, consists in minimizing the so-called counting function x = (x1, . . . , xn) ∈
Rn 7−→ c(x) := number of nonzero components xi of x:

(Q)

{
Minimize c(x)

subject to x ∈ S,

where S is a subset of Rn. Often c(x) is denoted as ‖x‖0, although it is not a

norm.

Problem (Q) is always referred to as cardinality minimization and is known to be

NP-hard. Minimization of the l1 norm of vectors is a well-known heuristic method

for the cardinality minimization problem and widely used in image denoising,

sparse approximation, etc. Recently, Candès and Tao ([10]) and Donoho ([15])
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proposed some conditions under which the l1 heuristic can be a priori guaranteed

to yield an optimal solution.

Problems (P) and (Q) are actually equivalent in terms of difficulty. In some

particular cases, the rank minimization problems can be solved by using the sin-

gular values decomposition or can be reduced to the solution of linear systems.

But, in general, the problem (P) is NP-hard and, so, is a challenging nonconvex

optimization problem.

Many heuristic algorithms, based on alternating inequalities, linearization and

augumented Lagrange methods, have been proposed to solve the problem (P). In

2007, Fazel introduced an heuristic method that minimizes the nuclear norm,

i.e. the sum of singular values, over the constraint set. And she also provided the

theorical support for the use of the nuclear norm: “The convex envelope of the

rank function restricted to the unit ball for the spectral norm is the nuclear norm”

([22]). The nuclear norm is not only convex but also continuous, thus numerous

efficient methods can be applied to solve the nuclear norm minimization problems.

Moreover, Recht, Fazel and Parrilo ([56]) showed that under some suitable

conditions (“restricted isometry property”), such a convex relaxation is tight in

the case where the constraint set C is an affine manifold.

In this dissertation, we provide several properties of the rank function from the

variational point of view: additional proofs for the closed convex relaxation,

the expressions of the general subdifferentials and the Moreau regularization-

approximation. The general method that we use to study these properties is

based on the relationship between the counting function and the rank function.

In Chapter 1, we recall the definition of the convex envelope (or convex hull) of a

function, its properties and the relationship between the original function and its

convex envelope. Then, the Fazel’s theorem and her proof (via the calculation

the biconjugate of the restricted rank function) is presented in Section 1.4. We also

provide two new proofs of this theorem. The first proof is based on the relationship

between the rank and the counting function, a result of Lewis and the convex hull

of the counting function restricted to a ball (Theorem 1.13). The second proof is

geometrical, it is obtained by computing the convex hull of the sub-level sets of

the rank function (Theorem 1.15).

In Chapter 2, we begin by introducing the definitions and properties of the gen-

eralized subdifferentials (the proximal, Fréchet, limiting and Clarke one) of
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a lower-semicontinuous function. As a result, all types of generalized subdiffer-

entials of the counting function coincide and an explicit formula of the common

subdifferential is given in Theorem 2.9 and Theorem 2.10. Then, thanks to theo-

rems of Lewis and Sendov ([48],[49]), we obtain the corresponding generalized

subdifferentials of the rank function (Theorem 2.14). All types of generalized

subdifferentials of the rank function also coincide. And we observe that the gen-

eralized subdifferential of the rank function is always a vector space. Certainly,

0 always belongs to the generalized subdifferential of the rank function at any

point. This was foreseen by the fact that “Every point is a local minimizer of the

rank function” ([32]). Finally, thanks to an alternate expression of the common

subdifferential of the rank function (Prop 2.17), we provide its dimension.

In Chapter 3, we consider another way to approach the rank minimization problem

- using smooth or just continuous approximations of the rank function. Two

examples of smooth versions of the rank were provided byHiriart-Urruty ([29])

in 2010 and Zhao ([61]) in 2012. We present here the regularization-approximation

relying on the so-called Moreau-Yosida technique, widely used in the context of

variational analysis. Although the rank function is a bumpy one, it is amenable

to such an approximation-regularization process, and we get the explicit forms of

the Moreau-Yosida approximation-regularization of the rank and of the restricted

rank function in terms of singular values (Theorem 3.6 and Theorem 3.7). We

also provide the generalized subdifferentials of this approximation; then thanks to

a theorem of Jourani ([42]), we can retrieve the Fréchet subdifferential of the

rank function.

In the last Chapter, we study the cp-rank function of completely positive matrices.

This function shares several common properties with the rank function such as

being lower-semicontinuous, subadditive. Moreover, the convex envelope of the

cp-rank function restricted to the unit ball (for the nuclear norm) is also the

nuclear norm. Finally, we propose two open questions about the upper bound and

the generalized subdifferentials of the cp-rank function.
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Notations

Mm,n(R) The set of real m× n matrices

Mn(R) The set of real n× n matrices

Sn(R) The set of real symmetric n× n matrices

AT The transpose of A

rank A The rank of A

tr A The trace of A

det A The determinant of A

‖A‖F The Frobenius norm of A

‖A‖sp The spectral norm of A

‖A‖∗ The nuclear norm of A

σ(A) The vector of singular values of A

σi(A) The ith largest singular value of A

O(m) The set of real orthogonal m×m matrices

cp-rank A The cp-rank of A

∂Ff The Fréchet subdifferential of f

∂Lf The limiting subdifferential of f

∂V f The viscosity subdifferential of f

∂Pf The proximal subdifferential of f

∂Ff The Clarke subdifferential of f

epi J The epigraph of J

dom J The domain of J

co J The convex hull of J
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coJ The closed convex hull of J

RMP Rank Minimization Problem

RCP Rank Constraint Problem

CP Completely positive



Chapter 1

The closed convex relaxation of

the rank function

In this chapter, we recall the generalities on the relaxation operation, then introduce

the rank minimization problem and the relaxed form of it (given by Fazel [22]).

After that, we use several methods to achieve the Fazel’s theorem. At last, thanks

to a result of Recht et al ([56]), we can understand the link between the original

problem and the relaxed form.

1.1 Generalities on the relaxation operation

In optimization or variational calculus, we usually study the minimization problem

expressed as:

(P)

{
Minimize J(x)

x ∈ S

where J : X → R ∪ {+∞} and S ⊂ X.

In general, this problem is very hard because we have no property of J, S and X.

Then, it is natural to replace the problem (P) by the relaxed problem which is

obtained by substitute Ĵ for J or “relax” the constraint set S by enlarging it, or

“enrich” the underlying space X.

15



16 Chapter 1 The closed convex relaxation of the rank function

In a variational context, when we deal with the minimization of J : Rn −→
R ∪ {+∞}, one usually considers the closed convex hull of J . In the present

approach, we are not going to consider the more general framework, but indeed

the way in which we relax in passing from J to its closed convex hull. Henceforth,

the context is as follows:

J : Rn −→ R∪{+∞} is not identically equal to +∞, and it is minorized by some

affine function, i.e. for some (s, b) ∈ Rn × R ,

J(x) ≥ 〈s, x〉 − b for all x ∈ Rn. (1.1)

First of all, we recall some definitions and notations:

• The domain of J is the nonempty set:

domJ := {x ∈ Rn : J(x) < +∞} .

• The epigraph of J is the nonempty set:

epiJ := {(x, r) ∈ Rn × R : r ≥ J(x)} .

• The sub-level set of J at level r ∈ R is defined by:

[J ≤ r] := {x ∈ Rn : J(x) ≤ r} .

• J is said closed if it is lower-semicontinuous everywhere, or if its epigraph is

closed or if all its sub-level sets are closed.

• The class of all convex functions is denoted by ConvRn and the class of all

closed convex functions is denoted by ConvRn.

1.1.1 Closed convex hull of a function

Proposition 1.1. The functions below

J̄1(x) := inf {r : (x, r) ∈ co epiJ} ,

J̄2(x) := sup
{
h(x) : h ∈ ConvRn, h ≤ g

}
,
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J̄3(x) := sup {〈s, y〉 − b : 〈s, y〉 − b ≤ J(y) for all y ∈ Rn}

are closed, convex, and coincide on Rn.

Proof. See [36, page 100].

Definition 1.2. The common function J̄1 = J̄2 = J̄3 of the Proposition 1.1 is

called the closed convex hull or closed convex envelope of J and is denoted by coJ .

By definition, we have at least two ways of constructing coJ :

• the “internal construction”: consider all the convex combinations of elements

of the epigraph epiJ of J , so that co(epiJ) is built, and then close it; the set

co(epiJ) is the epigraph of a function, namely of coJ .

• the “external construction”: consider all the continuous affine functions aJ

minorizing J ; then coJ = sup aJ .

Recall that the Legendre - Fenchel conjugate of J is the function J∗ defined

by:

Rn 3 s 7→ J∗(s) = sup {〈s, x〉 − J(x) : x ∈ domJ} .

J satisfies (1.1) , and so is J∗. So we can compute the biconjugate function of J .

For all x ∈ Rn,

J∗∗(x) := (J∗)∗(x) = sup {〈s, x〉 − J∗(s) : s ∈ Rn} .

The function J∗∗ turns out to be the closed-convex hull coJ , i.e.

J∗∗ = coJ.

If J is lower-semicontinuous and coercive (that is to say, if lim|x|→+∞ J(x) = +∞),

then:

J∗∗ = coJ,

where coJ is the convex hull or convex envelope of J , i.e. the largest convex

function minorizing J .

1.1.2 Properties

Proposition 1.3. (From J to coJ)
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(i) The infimal values. We have

inf
x∈Rn

J(x) = inf
x∈Rn

(coJ)(x) (an equality in R ∪ {−∞}). (1.2)

(ii) The set of minimizers. If we denote by argminJ the set of x ∈ Rn minimizing

J on Rn (possibly, the empty set), we have that:

co(argminJ) ⊂ argmin(coJ). (1.3)

Proof. (i) Because J∗∗ = coJ , then J∗ = (coJ)∗. Therefore,

inf
x∈Rn

J(x) = −J∗(0) = −(coJ)∗(0) = inf
x∈Rn

(coJ)(x).

(ii) coJ is the closed-convex hull of J , then

coJ ≤ J,

with (1.2), we infer that

argminJ ⊂ argmin(coJ).

Moreover, since argmin(coJ) is closed and convex, we then have

co(argminJ) ⊂ argmin(coJ).

Theorem 1.4. Let J : Rn −→ R ∪ {+∞} be differentiable at x. Then the two

following statements are equivalent:

(i) x is a global minimizer of J

(ii) ∇J(x) = 0 and J(x) = (coJ)(x), where ∇J(x) denotes the gradient of J at

x.

Proof.

(i)⇒(ii) If x is a global minimizer of J , then

∇J(x) = 0.
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From the fact that x ∈ argmin J and the properties (1.3) (Prop 1.3),

x ∈ argmin(coJ).

This means that

coJ(x) = inf
x∈Rn

(coJ)(x)

= inf
x∈Rn

J(x)

= J(x).

(ii)⇒(i) Let x satisfy ∇J(x) = 0 and J(x) = (coJ)(x).

For d ∈ Rn

J(x+ td)− J(x)

t
−→ 〈∇J(x), d〉 when t→ 0+,

(coJ)(x+ td)− (coJ)(x)

t
−→ (coJ)′(x, d) when t→ 0+,

where (coJ)′(x, d) stands for the directional derivative of the convex function

coJ .

Moreover,
(coJ)(x+ td)− (coJ)(x)

t
≤ J(x+ td)− J(x)

t
.

Then,

(coJ)′(x, d) ≤ 〈∇J(x), d〉 .

Hence, coJ is differentiable at x and ∇(coJ)(x) = 0. Since coJ is convex, x

is a minimizer of coJ , we have

(coJ)(x) ≥ coJ(x) ∀x ∈ Rn.

Thus,

J(x) ≥ J(x) ∀x ∈ Rn.

Remark 1.5. 1. If the property “x is a local minimizer of J” replaces “∇J(x) =
0”, in absence of differentiability of J at x, then the equivalence of Theorem

1.4 breaks down (see Fig 1.1).

2. This theorem will still be true if we replace Rn by a Hilbert space.
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co(f)f

x

Figure 1.1: x is a local minimiser of f
cof(x) = cof(x) = f(x), but x is not a global minimiser of f .

Now, we will continue with considering some other interesting properties of the

closed-convex hull of J

• The continuity property. Even if J is the restriction of a C∞ function on a

compact convex subset C of Rn (and +∞ out of C), the (convex) function

co(J) may not be continuous at some boundary point of C.

• The differentiability property. If J : R → R is differentiable on R, then so is

coJ (even if (coJ)(x) < J(x) for all x ∈ R). There are however C∞ functions

J : R2 → R for which coJ is no more differentiable on R2. An example of

such a function can be found in [6].

• Behavior at infinity. Indeed coJ ≤ J . However, coJ ends by “behaving like

J at infinity”.

Theorem 1.6. We have

lim inf
‖x‖→+∞

J(x)− (coJ)(x)

‖x‖
= 0.

Proof. Since J(x) ≥ (coJ)(x) for all x ∈ Rn, the above lim inf is l ≥ 0

(possibly +∞). Suppose l > 0. Therefore, there exist c > 0 and A > 0 such
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that:

inf
‖y‖≥‖x‖

J(y)− (coJ)(y)

‖y‖
≥ c whenever ‖x‖ > A.

Thus, J(x) − (coJ)(x) ≥ c‖x‖ when ‖x‖ > A, while J(x) − (coJ)(x) ≥ 0

otherwise. In short,

J(x) ≥ (coJ)(x) + c(‖x‖ − A) for all x ∈ Rn.

This comparison result between the two functions above, the one on the

right-hand side being convex, yeilds

(coJ)(x) ≥ (coJ)(x) + c(‖x‖ − A) for all x ∈ Rn.

This does not hold true for ‖x‖ > A. Hence, the hypothesis at the beginning

of the proof, l > 0, is wrong.

1.2 The rank minimization problem and the rank

constrained problem

The Rank Minimization Problem (RMP) and the Rank constrained Problem

(RCP) are optimization problems where the rank function appears respectively

in the objective or in the constraints. They can be formulated as follows

(RMP )

{
minimize rank A

subject to A ∈ C

and

(RCP )


minimize f(A)

subject to A ∈ C

rank A ≤ k

.

Such problems appear in many areas like: control, statistics, signal processing,

computational geometry and combinatorical optimization. Some special cases can

be solved with a special algorithm. For example, Eckart and Young found the

distance from an abitrary matrix to the set of matrices with rank less than k in

1936 ([28]). But in general, these problems are NP-hard.

Now, we consider some examples of RMP and RCP ([22],[56]).
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Low rank matrix completion. In the matrix completion problem, we are given

a random subset of entries of a matrix and would like to fill in the missing entries

such that the resulting matrix has the lowest possible rank. It is often encountered

in the analysis of incomplete data sets exhibiting an underlying factor model with

applications in collaborative filtering, computer vision, control.

Suppose that we are presented with a set of triples (I(i), J(i), S(i)) for i = 1, . . . , k

and wish to find a matrix with S(i) in the entry corresponding to row I(i) and

column J(i) for all i. The matrix completion can be formulated as follows{
minimize rank A

subject to AI(i),J(i) = S(i), for all i = 1, . . . , k

which is a special case of the rank minimization problems.

Image approximation. A simple and well-known method to compress two-

dimensional images can be obtained by using the singular value decomposition.

The basic idea is to associate to the given grayscale image a rectangular matrix

A, with the entries Aij corresponding to the gray level of the (i, j) pixel. The best

rank-k approximation of A is given by

X∗ = arg min
rank X≤k

‖A−X‖

where ‖.‖ is any unitarily invariant norm. By the classical Eckart-Young-Mirsky

theorem, the optimal approximation is given by a truncated singular value decom-

position of A, i.e., if A = UΣV T , then X∗ = UΣkV
T , where the first k diagonal

entries of Σk are the largest k singular values and the rest of the entries are zero.

Multivariate statistical data analysis. In this example, we have to deal with

covariance matrices estimated from noisy data. In fact, the estimated covariance

matrix has full rank because of the noise (with probability one). We want to find

a covariance matrix Σ with the least rank such that the error is at most equal to

a given positive number ε
minimize rank Σ

subject to ‖Σ− Σ̂‖F ≤ ε

Σ � 0

Σ ∈ C,
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where Σ is the optimization variable, Σ̂ is the measured covariance matrix, C is a

convex set denoting the prior information or assumptions on Σ, and ‖.‖F denotes

the classical Frobenius norm of a matrix (see in the next section). The constraint

Σ � 0 is necessary because Σ is a covariance matrix.

The Frisch problem. Let x ∈ Rn be a random vector, with covariance matrix

Σx. Suppose that we have:

y(t) = x(t) + v(t)

where the measurement noise v has zero mean, is uncorrelated with x, and has an

unknown but diagonal covariance matrix D = diag d. It follows that:

Σy = Σx +D,

where Σy denotes the covariance of y. The problem is to identify, from noisy

observations, the largest number of linear relations among the underlying data.

This corresponds to the minimum rank of Σx. We assume that Σy can be estimated

with high confidence; i.e. we consider it known. This problem can be expressed

as the following RMP: 
minimize rank (Σy −D)

subject to Σy −D � 0

D � 0

D diagonal

.

Bilinear Matrix Inequality problems. Consider the following problem:{
minimize cTx

subject to C +
∑m

i=1 xiAi +
∑m

i,j=1 xixjBij � 0,

where x ∈ Rn is the optimization variable, and c ∈ Rn and the symmetric matrices

Ai, Bij, C are given. This problem is very general, but also non-convex. We now

show that this problem can be considered as a rank-constrained problem. This

problem can be expressed as:
minimize cTx

subject to C +
∑m

i=1 xiAi +
∑m

i,j=1wijBij � 0

wij = xixj for all i, j = 1, . . . ,m

. (1.4)
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The second constraint can be written as W = xxT . This equality is equivalent to

the following one:

rank

[
W x

xT 1

]
= 1.

Therefore, the problem (1.4) is equivalent to:

minimize cTx

subject to C +
m∑
i=1

xiAi +
m∑

i,j=1

wijBij � 0

rank

[
W x

xT 1

]
≤ 1.

Combinatorial optimization problems. Many combinatorial optimization

problems can be expressed as rank-constrained problems. Consider the quadratic

optimization problem:{
minimize xTA0x+ 2bT0 x+ c0

subject to xTAix+ 2bTi x+ ci ≤ 0 for all i = 1, . . . , L
. (1.5)

where x ∈ Rk is the optimization variable.

Define the new variable X as X = xxT . As shown in the previous example, this

can be written as:

rank

[
X x

xT 1

]
= 1.

Note that

xTAix = tr (Aixx
T ) = tr(AiX),

so that we can write the quadratic terms in the objective function and the con-

straints in terms of X. Thus, problem (1.5) becomes equivalent to
minimize tr(A0X) + 2bT0 x+ c0

subject to tr(AiX) + 2bTi x+ ci ≤ 0 for all i = 1, . . . , L

rank

[
X x

xT 1

]
≤ 1

.
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1.3 The rank function

Let Mm,n(R) be the set of real matrices with m columns and n rows and p =

min(m,n). For a matrix A ∈ Mm,n(R), the spaces spanned by the columns and

rows of a matrix have the same dimension. We call that the rank of matrix A:

rank : Mm,n(R) −→ {0, 1, . . . , p}
A 7−→ rank A.

We recall here some basic properties of the rank function in the context of linear

algebra or matricial calculus.

Proposition 1.7. 1. rank A = rank AT ; rank A = rank (AAT ) = rank (ATA).

2. If the product AB can be done,

rank (AB) ≤ min(rank A, rank B) (Sylvester inequality).

As a general rule, when the proposed products of matrices can be done,

rank (A1A2 . . . Ak) ≤ min
i=1,...,k

(rank A1, rank A2, . . . , rank Ak).

When m = n,

rank (Ak) ≤ rank A.

3. rank A = 0 if and only if A = 0; rank (cA) = rank A for c 6= 0.

4. |rank A− rank B| ≤ rank (A+B) ≤ rank A+ rank B.

The only (useful) topological property of the rank function is that it is

lower-semicontinuous.

Proposition 1.8. If Aν → A in Mm,n(R) when ν → +∞, then

lim inf
ν→+∞

rank Aν ≥ rank A. (1.6)

This is easy to see if one thinks of rank A characterized as the maximal integer r

such that the determinant of a (r, r)-submatrix extracted from A is non-null.
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Since the rank function is integer-valued, a consequence of the inequality (1.6) is

that the rank function does not decrease in a sufficiently small neighborhood of

any matrix A.

For k ∈ {0, 1, . . . , p}, consider now the following two subsets of Mm,n(R):

Sk := {A ∈ Mm,n(R)| rank A ≤ k},

Σk := {A ∈ Mm,n(R)| rank A = k}.

Sk is the sub-level set (at level k) of the lower-semicontinuous function rank; it

is therefore closed. But, apart from the case k = 0 (where S0 = Σ0 = {0}),
what about the topological structure of Σk? The answer is given in the following

statement.

Theorem 1.9. • Σp is an open dense subset of Sp = Mm,n(R).

• If k < p, the interior of Σk is empty and its closure is Sk.

The singular value decomposition of matrices will show how intricate the subsets

Sk and Σk may be. For example, if rank A = k, in any neighborhood of A, there

exist matrices of rank k + 1, k + 2, . . . , p.

From the algebraic geometry viewpoint, Sk is a semi-algebraic variety ([55]). Be-

cause it can be defined by the vanishing of all (k + 1, k + 1)-minors, it is thus a

solution set of polynomial equations. In case m = n, its dimension is (2n − k)k

and the tangent space to Sk at a matrix A of rank k can be made explicit from a

singular value decomposition of matrix A ([55]).

1.4 Fazel’s convex relaxation result

The problem {
minimize rank A

subject to A ∈ C
(1.7)

is a non-convex optimization problem, even when C is a convex constraint set

or an affine subspace. As we have seen before, in general, the rank minimization

problem (1.7) is NP-hard. In a situation such as problem (1.7) where the objective

function is non-convex, it is natural to replace the problem by the relaxed problem

which is obtained by subtituting the rank function with its convex envelope. It
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is easy to see that the convex envelope of the rank function on the set Mm,n(R)
is the zero function. Such a result is useless, so Fazel tried to find the convex

envelope of the rank function on the unit ball for the spectral norm. And this

turns out to be the nuclear norm. Fazel et al proposed a heuristic method in

[22] that minimizes the nuclear norm, the sum of the singular values of a matrix,

over the constraint set. The nuclear norm is not only convex but also continuous

and can be optimized efficiently. Many algorithms have been proposed to solve

the nuclear norm minimization problem.

First of all, we recall a well-known result about the singular value decomposition.

Theorem 1.10 (The singular value decomposition theorem). For A ∈ Mm,n(R),
there exists a factorization of A of the form

A = UΣV T

where U is an m ×m orthogonal matrix, Σ is an m × n “diagonal” matrix with

nonnegative real numbers on the diagonal, and V an n×n orthogonal matrix. Such

a factorization is called a singular value decomposition of A.

A common convention is to order the diagonal entries Σii in decreasing order. In

this case, the diagonal matrix Σ is uniquely determined by A (though the matrices

U and V are not). The diagonal entries of Σ are known as the singular values of

A.

Let p = min(m,n). For A ∈ Mm,n(R), let σ1(A) ≥ σ2(A) ≥ · · · ≥ σp(A) denote

the singular values of A, arranged in the decreasing order; if r stands for the rank

of A, the first r singular values are non-zero, the remaining ones are zero. And

the vector of singular values of A is σ(A) = (σ1(A), σ2(A), . . . , σp(A)).

If φ is a norm in Rp, then we can define an associated matrix norm in Mm,n(R)
as

‖A‖φ = φ(σ(A)).

By that way, we have three important (classical) matrix norms:

• Frobenius (or Euclidean) norm

‖A‖F =
√

tr(ATA) =

√√√√ p∑
i=1

σ2
i (A) = ‖σ(A)‖2.
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• Nuclear norm

‖A‖∗ = ‖σ(A)‖1 =
p∑

i=1

σi(A).

• Spectral (maximum singular value) norm

‖A‖sp = ‖σ(A)‖∞ = σ1(A) = max
i
σi(A).

‖.‖F is a “smooth” norm since it derives from an inner product on Mm,n(R),
namely 〈〈A,B〉〉 := tr(ATB). It is therefore its own dual, while the spectral norm

and the nuclear norm are mutually dual (one is the dual norm of the other). These

are classical results in matricial analysis. For variational characterizations of this

duality relationship as semidefinite programs, see [56].

We consider the function φ : Mm,n(R) −→ R ∪ {+∞} defined by

φ(A) :=

{
rank A if ‖A‖sp ≤ 1

+∞ otherwise.

Theorem 1.11 (Fazel’s theorem). The convex hull of φ is given by

co(φ)(A) :=

{
‖A‖∗ if ‖A‖sp ≤ 1

+∞ otherwise
;

i.e., on the set S = {A ∈ Mm,n(R) : ‖A‖sp ≤ 1}, the convex hull of the rank func-

tion is ‖A‖∗ =
∑p

i=1 σi(A).

Proof. (Fazel’s proof, [22])

Let J : Rd −→ R∪{+∞} be a function not identically equal to +∞ and minorized

by some affine function. As stated in Section 1.1, the biconjugate function J∗∗ is

the closed convex envelope of J .

Consequently, the biconjugate function of φ and the convex envelope of φ coincide.

Part 1. Computing φ∗: The conjugate of the rank function φ, on the set of

matrices with spectral norm less than or equal to one, is

φ∗(B) = sup
‖A‖sp≤1

(tr(BTA)− φ(A)), (1.8)
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where 〈B,A〉 = tr(BTA) is the inner product in Mm,n(R). By Von Neumann’s

trace theorem ([41]),

tr(BTA) ≤
p∑

i=1

σi(B)σi(A), (1.9)

where σi(A) denotes the ith largest singular value of A. Given B, equality in

(1.9) is achieved if UA and VA are chosen equal to UB and VB, respectively, where

A = UAΣAV
T
A and B = UBΣBV

T
B are the singular value decompositions of A and

B. The term φ(A) in (1.8) is independent of UA and VA, therefore to find the

supremum, we pick UA = UB and VA = VB to maximize the tr(BTA) term. Then

the next maximization is with respect to the singular values σ1(A), . . . , σp(A). It

finally follows that

φ∗(B) = sup
‖A‖sp≤1

(
p∑

i=1

σi(B)σi(A)− rank A

)
.

If A = 0, for all B, we have

p∑
i=1

σi(B)σi(A)− rank A = 0.

If rank A = r for 1 ≤ r ≤ p, then

sup
‖A‖sp ≤ 1

rank A = r

(
p∑

i=1

σi(B)σi(A)− rank A

)
=

r∑
i=1

σi(B)− r.

Hence, φ∗(B) can be expressed as

φ∗(B) = max{0, σ1(B)− 1, . . . ,

p∑
i=1

σi(B)− p}.

The largest term in this set is the one that sums all positive (σi(B) − 1) terms.

We conclude that

φ∗(B) =

p∑
i=1

(σi(B)− 1)+,

where a+ denotes the positive part of a, i.e. a+ = max{0, a}.

Part 2. Computing φ∗∗ : We now find the conjugate of φ∗, defined as

φ∗∗(C) = sup
B

(
tr(CTB)− φ∗(B)

)
.
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As before, we choose UC = UB and VC = VB to get

φ∗∗(C) = sup
B

(
p∑

i=1

σi(B)σi(C)− φ∗(B)

)
.

We consider two cases, ‖C‖sp > 1 and ‖C‖sp ≤ 1.

If ‖C‖sp > 1, we can choose σ1(B) large enough so that φ∗∗(C) → ∞. To see this,

note that in

φ∗∗(C) = sup
B

(
p∑

i=1

σi(B)σi(C)−
p∑

i=1

(σi(B)− 1)+

)
,

the coefficient of σ1(B) is positive.

Now let ‖C‖sp ≤ 1. For ‖B‖sp ≤ 1, then φ∗(B) = 0 and the supremum is achieved

for σi(B) = 1 for i = 1, . . . , p, yielding

sup
‖B‖sp≤1

(
p∑

i=1

σi(B)σi(C)−
p∑

i=1

(σi(B)− 1)+

)
=

p∑
i=1

σi(C) = ‖C‖∗.

Now, we show that for ‖B‖sp > 1, the argument of the sup is always smaller

than the value given above. By adding and subtracting the term
∑p

i=1 σi(C) and

rearranging the terms, we get∑p
i=1 σi(C)σi(B)−

∑r
i=1(σi(B)− 1)

=
∑p

i=1 σi(C)σi(B)−
∑r

i=1(σi(B)− 1)−
∑p

i=1 σi(C) +
∑p

i=1 σi(C)

=
∑r

i=1(σi(B)− 1)(σi(C)− 1) +
∑p

i=r+1(σi(B)− 1)σi(C) +
∑p

i=1 σi(C)

<
∑p

i=1 σi(C).

The last inequality holds because the first two sums on the third line always have

a negative value.

In summary, we have shown, if ‖C‖sp ≤ 1,

φ∗∗(C) = ‖C‖∗.

Thus, on the set S, ‖.‖∗ is the convex envelope of φ.

Remark 1.12. 1. The convex hull of the rank function on the set

SR = {A ∈ Mm,n(R) : ‖A‖sp ≤ R} is 1
R
‖A‖∗.
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2. The convex hull of the rank function on the set S1 = {A ∈ Mm,n(R) : ‖A‖∗ ≤ 1}
is also ‖A‖∗.

1.5 A first new proof of Fazel’s theorem

A special case of the rank minimization problem is minimizing the counting func-

tion. Recall that the counting function c : Rp → R is defined as follows:

∀x = (x1, . . . , xp) ∈ Rp, c(x) := the number of i’s for which xi 6= 0.

Sometimes, c(x) is denoted as ‖x‖0, a misleading notation since c(x) is not a norm

on Rp. Note however that, if ‖x‖k denotes (
∑p

i=1 |xi|k)1/k as usual, (‖x‖k)k → c(x)

when k → 0+ ( but ‖x‖k does not converge to 0 when k → 0+, as it is stated

sometimes). The function c gives rise to the so-called Hamming distance d (used

in coding theory), defined on Rp as:

d(x, y) := c(x− y).

Our strategy:

We will calculate the convex hull of the counting function restricted to a l∞-ball

of Rp, and we then use it, with a result of A.Lewis, to recover the relaxed form

of the rank function.

When dealing with matrices A ∈ Mm,n(R), we know that:

• for x = (x1, . . . , xp) ∈ Rp, rank[diagm,n(x)] = c(x) where diagm,n(x) is a

matrix in Mm,n(R) such that all the “non-diagonal” entries are null and

x1, x2, . . . , xp are on the “diagonal”;

• for A ∈ Mm,n(R), rank A = c[σ(A)], where σ(A) = (σ1(A), . . . , σp(A)) is the

vector made up with the singular values σi(A) of A.

A.Lewis ([46],[47]) showed that the Legendre-Fenchel conjugate of a func-

tion of matrice A (satisfying some specific properties) could be obtained by just

conjugating some associated function of the singular values of A. Using his results

twice, we are able to calculate the Legendre-Fenchel biconjugate of the rank
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function (that is the convex hull of the rank function) by calling on the biconjugate

of the c function. In doing so, we retrieve Fazel’s relaxation theorem.

1.5.1 The closed convex hull of the counting function

The function c is an integer-valued, subadditive, lower-semicontinous function on

Rp. Since c(αx) = c(x) for all α 6= 0, there is no hope to get anything interesting

by convexifying (i.e., taking the convex hull of) the function c (on the whole space

Rp). So, we consider it on some appropriate ball, namely, for R > 0:

cR(x) :=

c(x) if ‖x‖∞ ≤ R;

+∞ otherwise.
(1.10)

Taking the convex hull and the closed convex hull of c amount to the same here;

so we just note co(cR) the convexified form of c (i.e., the largest convex function

minorizing cR).

Here is the result of this section.

Theorem 1.13. We have:

∀x ∈ Rp, co(cR)(x) =

 1
R
‖x‖1 if ‖x‖∞ ≤ R;

+∞ otherwise.

Contrary to Section 1.1, we do not go here through the calculate of the Legendre-

Fenchel conjugate of the cR function.

Proof. The basic properties of the convexifying operation (see [38] for example)

show that the domain of co(cR), i.e. the set on which this function is finite-

valued, is just the convex hull of the domain of cR. So, in our particular instance,

the domain of co(cR) is that of cR, which is the convex set {x|‖x‖∞ ≤ R}.

We therefore have to prove that co(cR)(x) =
1
R
‖x‖1 whenever ‖x‖∞ ≤ R.

First point. co(cR)(x) ≥ 1
R
‖x‖1 for x satisfying ‖x‖∞ ≤ R.

If ‖x‖∞ ≤ R,

cR(x) = c(x) ≥
p∑

i=1

|xi|
maxi |xi|

=
1

maxi |xi|

p∑
i=1

|xi| ≥
1

R
‖x‖1.
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Second point. 1
R
‖x‖1 ≥ co(cR)(x) for x satisfying ‖x‖∞ ≤ R.

Let x satisfy ‖x‖∞ ≤ R. For such an x = (x1, . . . , xp), we define vectors y =

(y1, . . . , yp) according to the following rule:
if xi = 0, then yi = 0;

if xi > 0, then yi = 0 or R;

if xi < 0, then yi = 0 or −R;

(1.11)

In doing so, we get at a “net on a box” �x of Rp:

�x := {(y1, . . . , yp)| yi designed according to the rule (1.11)}
(see Figure 1.1, with p = 2).

�x has 2c(x) points, which are the vertices of a box containing x (this has been

done for that!). In other words, x lies in the convex hull of �x: there exist real

numbers α1, . . . , αk and y1, . . . , yk in �x such that:
αi ≥ 0 for all i∑k

i=1 αi = 1

x =
∑k

i=1 αiy
i.

Consider now an arbitrary convex function h minorizing cr. Then, due to the

convexity of h,

h(x) = h(
k∑

i=1

αiy
i) ≤

k∑
i=1

αih(y
i). (1.12)

But, when y ∈ �x,

cR(y) = number of j’s for which yj 6= 0

=
∑

{j|yj 6=0}

|yj|
R

(because |yj| = R whenever yj 6= 0)

=
1

R

∑
{j|yj 6=0}

|yj| =
1

R
‖y‖1.

So, with all the yi lying in �x, we get from (1.12):

h(x) ≤
k∑

i=1

αih(y
i) ≤

k∑
i=1

αicr(y
i) =

1

R

k∑
i=1

αi‖yi‖1. (1.13)
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x=(x
1
, x

2
)

(a) c(x) = 2

x=(x
1
, x

2
)

(b) c(x) = 1

Figure 1.2: �x for x = (x1, x2) ∈ R2

On the other hand, we have

xj =
k∑

i=1

αi(y
i)j for all j = 1, . . . , p.

Thus, due to the specific correspondence between the signs of xj and (yi)j (cf.

(1.11)),

|xj| =
k∑

i=1

αi|(yi)j| for all j = 1, . . . , p
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so that:

‖x‖1 =
k∑

i=1

αi‖yi‖1.

Consequently, we derive from (1.13):

h(x) ≤ 1

R
‖x‖1.

Finally,

co(cR)(x) = sup{h(x)| h convex function minorizing cR}
≤ 1

R
‖x‖1.

Altogether (First point and Second point), we have proved that co(cR)(x) =
1
R
‖x‖1

whenever ‖x‖∞ ≤ R.

Comment 1: The result of Theorem 1.11 is part of the “folklore” in the areas

where minimizing counting function appears (there are numerous papers in signal

recovery, compressed sensing, statistics, etc.). We did not find any reference where

it was stated in a clear-cut manner. That was the reason for a direct proof here.

Comment 2: Another convexification result, similar to Theorem 1.11, easy to

prove, is as follows: Consider the function ‖.‖k with 0 < k < 1 (no more a norm),

restricted to the ball {x| ‖x‖1 ≤ 1}; then its convex hull is still the l1 norm ‖.‖1
(restricted to the same ball).

1.5.2 The first new proof of Fazel’s theorem

Consider the following function on Mm,n(R), it is just the “matricial cousin” of

the cR function:

rankR(A) :=

rank of A if ‖A‖sp ≤ R;

+∞ otherwise.

We propose here another path to prove Theorem 1.11: apply A.Lewis’ fine results

(of conjugation), such as displayed in [46],[47]. Let us recall them briefly.
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A function f : Rp → R is called absolutely symmetric if, for all x ∈ Rp,

f(x1, . . . , xp) = f(x̂1, . . . , x̂p),

where x̂ = (x̂1, . . . , x̂p) is the vector, built up from x = (x1, . . . , xp), whose com-

ponents are the |xi|’s arranged in a decreasing order. Associated with f is the

function F : Mm,n(R) → R ∪ {+∞} defined as follows:

∀A ∈ Mm,n(R), F (A) := f [σ1(A), . . . , σp(A)].

A.Lewis’ conjugacy rule is now:

Theorem 1.14. ([46],[47])

With f satisfying the symmetry property above, we have:

∀A ∈ Mm,n(R), F ∗(A) = f ∗[σ1(A), . . . , σp(A)].

Proof. (of Theorem 1.11)

From the fact that f is absolutely symmetric, we can easily prove that f ∗ is also

absolutely symmetric. Thus, by applying Lewis’ theorem twice, we obtain

∀A ∈ Mm,n(R), F ∗∗(A) = f ∗∗[σ1(A), . . . , σp(A)]. (1.14)

In our particular setting, we choose:

f = cR, so that F = rankR.

The biconjugate of f (resp. of F ) is its (closed) convex hull co(cR) (resp. co(rankR)).

Whence Fazel’s theorem follows from (1.14) and Theorem 1.13.

1.6 The explicit quasi-convex relaxation of the

rank function

In this section, we will provide an explicit description of the convex hull of the

set of matrices of bounded rank, restricted to balls for the spectral norm. As
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applications, we deduce two relaxed forms of the rank function restricted to balls

for the spectral norm: one is the quasiconvex hull of this rank function, another

is its convex hull, thus retrieving (again) Fazel’s theorem.

For k ∈ {0, 1, . . . , p} and R ≥ 0,

Sk := {M ∈ Mm,n(R)| rank A ≤ k},

SR
k := Sk ∩ {A ∈ Mm,n(R)| ‖A‖sp ≤ R}.

For m = n, Sk is an algebraic variety of dimension (2n− k)k.

Convexifying the set Sk is not of any use since the convex hull of Sk, denoted

as co Sk, is the whole space Mm,n(R); indeed this comes from the singular value

decomposition technique. Thus:

∀k = 1, . . . , p co Sk = Mm,n(R).

The question becomes of some interest if we add some “moving wall” ‖A‖sp ≤ R,

like in the definition of SR
k . So, we will give an explicit description of co SR

k .

As applications, we deduce two relaxed forms of the following (restricted) rank

function:

rankR(A) :=

{
rank of A if ‖A‖sp ≤ R,

+∞ otherwise.
(1.15)

The first relaxed form is the so-called quasiconvex hull of rankR, i.e., the largest

quasiconvex function minorizing it. Then, as an ultimate step, we retrieve Fazel’s

theorem on the convex hull (or biconjugate) of the rankR function (Theorem 1.11).

1.6.1 Convexifying the set of matrices of bounded rank

Theorem 1.15. We have:

co SR
k = {A ∈ Am,n(R)| ‖A‖sp ≤ R and ‖A‖∗ ≤ Rk}. (1.16)

Proof. For either k = 0 or R = 0 there is nothing to prove. We therefore suppose

that k is a positive integer and R > 0. Moreover, since rank (A/R) = rank A, and

the norms are positively homogeneous functions (‖A/R‖ = ‖A‖/R), it suffices to

prove (1.16) for R = 1.
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First inclusion

co S1
k ⊂ {A ∈ Am,n(R)| ‖A‖sp ≤ 1 and ‖A‖∗ ≤ k}. (1.17)

Let A ∈ S1
k ; by definition of S1

k , we have ‖A‖sp = σ1(A) ≤ 1 and rank A ≤ k.

Consequently, all the non-zero singular values of A - they are less than k - are

majorized by 1; hence

‖A‖∗ =
rank A∑
i=1

σi(A) ≤ k.

Since the right-hand side of (1.17) is convex (as an intersection of sub-level sets of

two norms), we derive the inclusion (1.17).

Reverse inclusion

co S1
k ⊃ {A ∈ Am,n(R)| ‖A‖sp ≤ 1 and ‖A‖∗ ≤ k}. (1.18)

This is the tricky part of the proof. We first begin with a technical lemma on a

specific convex polyhedron in Rp; its proof can be found in ([30], Exercises V.4

and V.15).

Lemma 1.16. For k = 1, . . . , p, let

D := {x = (x1, . . . , xp) ∈ Rp| 0 ≤ xi ≤ 1 for all i,

p∑
i=1

xi ≤ k},

Ω := {x = (x1, . . . , xp) ∈ Rp| xi ∈ {0, 1} for all i,

p∑
i=1

xi = k}.

Then, D = co Ω.

This result holds true because k is an integer. A picture in Rp helps to understand

its meaning.

Let now A satisfy ‖A‖sp ≤ 1 and ‖A‖∗ ≤ k. Consider a singular value decompo-

sition of A:

A = UΣV T , (1.19)

where U and V are orthogonal matrices of appropriate size and Σ, of the same

type as A, with σ1(A), . . . , σp(A) on the “diagonal” and 0 elsewhere. We write

Σ = diagm,n(σ1(A), . . . , σp(A)).
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Because 0 ≤ σi(A) ≤ 1 for all i and
∑p

i=1 σi(A) ≤ k, according to the lemma

recalled above, the vector (σ1(A), . . . , σp(A)) can be expressed as a convex combi-

nation of elements in Ω: there exist real numbers α1, . . . , αq, vectors β
1, . . . , βq in

Ω such that: {
αj ∈ [0, 1] for all j,

∑p
j=1 αj = 1

(σ1(A), . . . , σp(A)) =
∑p

j=1 αjβ
j.

(1.20)

For βj = (βj
1, . . . , β

j
p), we set

Y j = diagm,n(β
j
1, . . . , β

j
p), B

j = UY jV T . (1.21)

Because βj ∈ Ω, we have:

‖Bj‖sp = ‖Y j‖sp ≤ 1, rank Bj = rank Y j ≤ k.

Moreover, in view of (1.20) and (1.21), we derive from (1.19):

Σ =

q∑
j=1

αjY
j, A =

q∑
j=1

αjB
j.

Hence, A is a convex combination of matrices in S1
k .

Remarks

1. Although SR
k is a fairly complicated set of matrices (due to the definition

of Sk), its convex hull is simple: according to (1.16), it is the intersection

of two balls, one for the spectral norm, the other one for the nuclear norm.

Getting at such an explicit form of co SR
k is due to the happy combination

of these specific norms. If ‖.‖ were any norm on Mm,n(R) and

ŜR
k = {A| rank A ≤ k and ‖A‖ ≤ R},

due to the equivalence between the norms ‖.‖ and ‖.‖sp, we would get with

(1.16) an inner estimate and an outer estimate of co ŜR
k .

2. A particular case. Let R = 1 and k = 1 in the result of Theorem 1.11. We

get that

co {A| rank A ≤ 1 and σ1(A) ≤ 1}
= {A|

∑p
i=1 σi(A) ≤ 1}.

(1.22)
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Remember that maximizing a linear form (of matrices) on both sets in (1.22)

yields the same optimal value.

3. There are quite a few examples where the convex hull of a set of matrices can

be expressed explicity. We mention here one of them, a very recent result

indeed (see [24],[43]). For m ≤ n, let

T n
m := {A ∈ Mm,n(R)| ATA = Im}.

T n
m is called the Stiefel manifold. For m = n, T n

n is just the set orthogonal

(n, n) matrices. According to [43, p.531] (see also [24]), the support function

of T n
m is ‖.‖∗, hence:

co T n
m = {A| ‖A‖sp ≤ 1}. (1.23)

1.6.2 The quasiconvex hull of the restricted rank function

Before going futher, we recall some basic facts about quasiconvex functions and

the quasiconvexification of functions.

? Quasi-convexity (in the sense used in Optimization and Mathematical Econ-

omy, different from the one used in the Calculus of variations)

Definition 1.17. f : X → R ∪ {+∞} is said to be quasi-convex when:

∀x1, x2 ∈ X ,∀λ ∈ [0, 1] : f [λx1 + (1− λ)x2] ≤ max[f(x1), f(x2)].

Besides this analytical definition, there is a geometrical characterization. Recall

that [f ≤ α] := {x ∈ X : f(x) ≤ α} (the sub-level set of f at the level α ∈ R).
[f ≤ α] is possibly empty. If µ := infX f is finite, [f ≤ µ] is the set of (global)

minimizers of f on X .

Characterization 1.18. f : X → R∪{+∞} is quasi-convex if and only if [f ≤ α]

is convex for all α ∈ R.

Remark 1.19. • For a quasi-convex function, domf is a convex set, of course.

• Clearly, f : X → R∪ {+∞} is lower-semicontinuous and quasi-convex on X
if and only if [f ≤ α] is closed and convex for all α ∈ R.
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? Constructing a function from the collection of sub-level sets

Let (Tα)α∈R be a collection of subsets of X satisfying the property:

(α < β) ⇒ (Tα ⊂ Tβ). (1.24)

Given a collection (Tα)α∈R satisfying the property (1.24), we can define a function

g as follows:

g(x) := inf{α : x ∈ Tα} (inf ∅ = +∞ as usual). (1.25)

Example 1.1. If (Tα)α∈R is the collection of sub-level sets associated with a func-

tion f , i.e. Tα = [f ≤ α] for all α ∈ R, then the function g defined from the Tα’s

as in (1.25) coincides with f .

But, a collection (Tα) of sets may satisfy the property (1.24) without being a col-

lection of sub-level sets associated with a function. So, a certain “regularization”

is necessary beforehand. Let us pose:

∀α ∈ R T̂α := ∩α′>αTα′ .

Then, (T̂α)α does satisfy the property (1.24), and it is the collection of sub-level

sets of the function g defined as in (1.25). If the Tα’s are convex (closed), then so

are the T̂α’s.

Proposition 1.20. Let (Tα)α satisfy the property (1.24), and let g be defined from

the Tα’s as in (1.25). Thus the sub-level sets of g are the T̂α’s. Then:

(a) If Tα is convex for all α ∈ R, then g is quasi-convex on X .

(b) If Tα is closed for all α ∈ R, then g is lower-semicontinuous on X .

? Quasi-convex hull and lower-semicontinuous (or closed) quasi-convex

hull of a function

Definition 1.21. The quasi-convex hull fq of f is the largest quasi-convex function

minorizing f . The closed quasi-convex hull fq of f is the largest closed quasi-convex

function minorizing f .

It is obvious that fq ≤ fq ≤ f . Also, since any convex function is quasi-convex,

cof ≤ fq ≤ f. (1.26)
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Proposition 1.22. (of construction of fq and fq from the sub-level sets of f)

We have

∀x ∈ X , fq(x) = inf{α : x ∈ co[f ≤ α]}

fq(x) = inf{α : x ∈ co[f ≤ α]}. (1.27)

All these results date back to J.-P. Crouzeix’s works ([14]).

The explicit form of the quasiconvex hull of the rank function

Theorem 1.23. The quasiconvex hull rankR,q of the function rankR is given as

follows:

A 7→ rankR,q(A) =

{
d 1
R
‖A‖∗e if ‖A‖sp ≤ R,

+∞ otherwise,
(1.28)

wher dae stands for the smallest integer which is larger than a.

Proof. Since the domain of the function rankR (i.e., the set of A at which rankR(A)

is finite-valued) is the (convex compact) ball {A| ‖A‖sp ≤ R}, the quasiconvex

hull rankR,q will have the same domain. In short,

rankR,q(A) = +∞ if ‖A‖sp > R.

Let α ≥ 0. Since the rank is an integer, one obviously has

[rankR ≤ α] = [rankR ≤ bαc],

where bαc denotes the integer part of α. So, by application of Theorem 1.15,

co [rankR ≤ α] = co [ rankR ≤ bαc]
= {A| ‖A‖sp ≤ R and ‖A‖∗ ≤ Rbαc}.

Now, following the construction recalled in (1.27), we have: for all A such that

‖A‖sp ≤ R,

rankR,q(A) = inf{α| ‖A‖∗ ≤ Rbαc}

= inf{α| ‖A‖∗
R

≤ bαc} = d 1
R
‖A‖∗e.
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1.6.3 Another proof of Fazel’s theorem

Proof. (of Theorem 1.11)

As a further and ultimate step from Theorem 1.23, we easily get at Fazel’s

theorem by showing that the convex hull of rankR is defined by

A 7→ co(rankR)(A) =

{
1
R
‖A‖∗ if ‖A‖sp ≤ R,

+∞ otherwise.
(1.29)

When ‖A‖sp > R, there is nothing special to say:

rankR(A) = co(rankR)(A) = +∞.

We just have to prove that co(rankR)(A) =
1
R
‖A‖∗ whenever ‖A‖sp ≤ R. Consider

therefore such an A.

First of all, since any convex function is quasiconvex,

co(rankR) ≤ rankR,q,

thus

co(rankR) ≤ co(rankR,q). (1.30)

As in the second part of the proof of Theorem 1.15, we set:

Γ := {x = (x1, . . . , xp) ∈ Rp| xi ∈ {0, R} for all i},

M := {X ∈ Mm,n(R)| σi(X) ∈ {0, R} for all i}.

Since (σ1(A), . . . , σp(A)) ∈ co Γ, A lies in co M. There therefore exist real num-

bers α1, . . . , αl, matrices X1, . . . , Xl in M (constructed like the matrices Bj in the

proof of Theorem 1.15) such that:{
αi ∈ [0, 1] for all i,

∑l
j=1 αi = 1

A =
∑l

j=1 αjXj.
(1.31)

Now, since Xj ∈ A, it comes from Theorem 1.23 that

rankR,q(Xj) = d 1
R
‖Xj‖∗e =

1

R
‖Xj‖∗.
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Consequently,

co(rankR,q)(A) = co(rankR,q)(
∑l

j=1 αjXj)

≤
∑l

j=1 αjco(rankR,q)(Xj)

≤
∑l

j=1 αjrankR,q(Xj)

=
∑l

j=1
1
R
αj‖Xj‖∗ = 1

R
‖A‖∗.

Thus, co(rankR,q)(A) ≤ 1
R
‖A‖∗.

On the other hand, because rankR,q(A) ≥ 1
R
‖A‖∗ for all A ∈ Mm,n(R) and 1

R
‖.‖∗

is convex, we have that:

co(rankR,q)(A) ≥
1

R
‖A‖∗.

So we have proved that

co(rankR,q)(A) = co(rankR) =
1

R
‖A‖∗.

1.7 Rank vs Nuclear Norm Minimization

The minimization problem of the counting function is a special case of the rank

minimization problem. And for a long time, the l1 norm was used as the relaxed

form of the counting function, i.e. instead of finding the vectors with the minimum

number of nonzero components, we find the minimum l1 norm solutions. But can

we recover the sparsest solution? The same question was raised when the nuclear

norm was used as the relaxed form of the rank function.

Many studies concentrated on these questions for the affine minimization (i.e. the

constraint set is affine) of the counting function and the rank function. Several con-

ditions under which the sparsest can be recovered were proposed. Candès and Tao

gave the so-called restricted isometry condition for the vector case ([10]). Another

result - the spark condition was proposed by Donoho et al in [17]. Then, based

on the idea of the restricted isometry condition for the vector case, Recht et al

developped a condition under which the minimum-rank solution can be recovered

([56]).
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1.7.1 Spark

Given A ∈ Mm,n(R), the spark of A is the smallest positive integer k such that

there exists a set of k columns of A which are linearly dependent. Remember that

the rank of A is the largest number of columns of A which are linearly independent.

The term spark seems to have been coined by Donoho and Elad in 2003.

Actually, the given definition of spark is a bit uncomplete: If A is of full column

rank, i.e. if rank A = n, there is no set of k columns of A which are linearly

dependent. In that case, we should adopt +∞ as for the spark of A (the infimum

over the empty set).

The other extreme case is when one column of A is a zero-column: then spark A =

1. In short, if A does not contain any zero-column and is not of full column rank,

2 ≤ spark A ≤ rank A+ 1.

The spark gives a criterion for the uniqueness of the sparsest possible solution to

the equation u = Av.

Lemma 1.24 ([17]). If u = Av0 and ‖v0‖0 < spark(A)/2, then v0 is the unique

sparsest possible solution to the equation u = Av.

1.7.2 Restricted Isometry Property

We consider the affine rank minimization problem

minimize rank X

subject to A(X) = b

where X ∈ Mm,n(R) and the linear map A : Mm,n(R) −→ Rd and vector b ∈ Rd

are given.

Let X0 be a matrix of rank r satisfing A(X0) = b and

X∗ = argmin
X

‖X‖∗ s.t. A(X) = b. (1.32)
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Definition 1.25. For every 1 ≤ r ≤ p, define the r-restricted isometry constant

to be the smallest number δr(A) such that

(1− δr(A))‖X‖F ≤ ‖A(X)‖ ≤ (1 + δr(A))‖X‖F (1.33)

holds for all matrices X of rank at most r.

The restricted isometry property (RIP) for sparse vectors was developed by Candès

and Tao in [10]. It requires that (1.33) holds with Euclidean norm replacing by

the Frobenius norm and rank being replaced by cardinality.

In the next two theorems, we see the power of the restricted isometry property.

Theorem 1.26 ([56]). Suppose that δ2r < 1 for some integer r ≥ 1. Then X0 is

the only matrix of rank at most r satisfying A(X) = b.

Theorem 1.27 ([56]). Suppose that r ≥ 1 is such that δ5r < 1/10. Then X∗ = X0.



Chapter 2

Generalized subdifferentials of

the rank function

In this chapter, we calculate the generalized subdifferentials; i.e. the proximal

subdifferential, the Fréchet subdifferential, the limiting subdifferential and the

Clarke subdifferential of the counting function. Then, thanks to theorems of

Lewis and Sendov about the nonsmooth analysis of functions of singular values,

we obtain the corresponding generalized subdifferentials of the rank function.

2.1 Definitions and Properties

In the last decades, nonsmooth analysis has grown rapidly and has come to play a

role in functional analysis, optimization, optimal design, mechanics and plasticity,

differential equations (as in the theory of viscosity solutions), control theory, and

increasingly, in analysis generally (critical point theory, inequalities, fixed point

theory, variational methods, etc.). One of the most important keys in nonsmooth

analysis is the notion of generalized subdifferential. The definitions and properties

of generalized subdifferentials have been developed in several works, beginning

with the case of locally Lipschitz functions (see in [12],[54]). Then, they have been

generalized for lower-semicontinous functions (see in [58],[59]). Because the rank

function is lower-semicontinuous (but not locally Lipschitz), we only focus on the

lower-semicontinuous case.

47
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The notions of generalized subdifferentials of a lower-semicontinuous function were

mostly introduced in the 70s-80s. The Fréchet subdifferential can be traced

back to Bazaraa and Goode ([5]). A few years later, the concept of proximal

subdifferential was defined by Rockafellar in [57] (1981). And then, in 1983,

Grandall and Lions introduced the concept of viscosity solution of a Hamilton-

Jacobi equation ([13]). Two other types of generalized subdifferentials are: the

limiting and the Clarke ones, proposed by Mordukhovich and Clarke.

We begin by recalling the definitions and some properties of several types of the

generalized subdifferentials: Fréchet, proximal, viscosity, limiting and Clarke.

Let f : Rp → R ∪ {+∞} be proper, lower-semicontinuous (l.s.c) and x̃ ∈ domf ,

i.e. f(x) < +∞.

Definition 2.1. A vector x∗ ∈ Rp is a F-subderivative of f at x̃ if

lim inf
y→0

f(x̃+ y)− f(x̃)− 〈x∗, y〉
‖y‖

≥ 0. (2.1)

The set of all F-subderivatives of f at x̃ is called the Fréchet subdifferential of

f at x̃, and denoted as ∂Ff(x̃).

Definition 2.2. A vector x∗ ∈ Rp is a viscosity subderivative of f at x̃ if there

exists a C1-function g : Rp → R such that ∇g(x̃) = x∗ and f − g attains a local

minimum at x̃. If, in particular,

g(x) = 〈x∗, x− x̃〉 − σ‖x− x̃‖2

with some positive constant σ, then x∗ is called a proximal subgradient of f at x̃.

The set of all viscosity subderivatives and proximal subgradients of f at x̃ are

called the viscosity subdifferential and the proximal subdifferential of f at x̃ and

denoted as ∂V f(x̃) and ∂Pf(x̃), respectively.

In a finite dimensional context, the Fréchet and the viscosity subdifferentials

coincide. And this common subdifferential is also called “regular subdifferential”

in some other works (see [48], [49], [58]).
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Definition 2.3. A vector x∗ ∈ Rp is a limiting subgradient of f at x̃ if there is

a sequence of points xr in Rp approaching x̃ with values f(xr) approaching the

finite value f(x̃), and a sequence of yr in ∂Ff(xr) approaching x∗.

The set of all limiting subgradients is called the limiting subdifferential and denoted

as ∂Lf(x̃).

Definition 2.4. The Clarke subdifferential ∂Cf(x̃) of f at x̃ is the set of all

x∗ ∈ Rp such that

∀v ∈ Rp, 〈x∗, v〉 ≤ f 0(x̃, v) := lim
ε↓0

lim sup
y ↓f x̃

t ↓ 0

inf
w∈v+εB

f(y + tw)− f(y)

t
, (2.2)

where B is the unit ball in Rp and y ↓f x̃ signifies that y and f(y) converge to x̃

and f(x̃), respectively.

Definition 2.5 (normal cone). A vector v ∈ Rp is normal to a closed set Ω ⊂ Rp

at x̃ ∈ Ω, written v ∈ NΩ(x̃), if there are sequence (x
k)k∈N in Ω with xk →Ω x̃ and

(vk)k∈N in Rp with vk → v such that

lim sup
x →Ω xk

x 6= xk

〈vk, x− xk〉
|x− xk|

≤ 0. (2.3)

The vectors vk satisfy (2.3) as above are Fréchet(regular) normals to Ω at xk

and the cone of Fréchet normals at xk is denoted N̂Ω(x
k).

Remark 2.6. The limiting subdifferential of f at x̃ can be defined as the set of x∗

for which (x∗,−1) lies in the normal cone of epif at (x̃, f(x̃)). We can also define

the Clarke subdifferential of f at x̃ as the set of x∗ for which (x∗,−1) lies in the

closed-convex hull of the normal cone of epif at (x̃, f(x̃)) (see [12]). Thus, ∂Cf(x̃)

is closed and convex for every x̃ in Rp.

Moreover, since we are in a finite dimensional context, we have the next string of

inclusions

∂Pf(x̃) ⊂ ∂V f(x̃) = ∂Ff(x̃) ⊂ ∂Lf(x̃) ⊂ ∂Cf(x̃). (2.4)

Proposition 2.7. (Local extrema, [59]) If f attains a local minimum at x, then

0 belongs to the proximal subdifferential of f at x.
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Theorem 2.8 (Sum rule, [59]). Let f1, f2 : Rp → R be proper, lower-semicontinuous,

f1 is Fréchet differentiable at x. Then

∂F (f1 + f2)(x̃) = ∇f1(x̃) + ∂Ff2(x̃).

2.2 The generalized subdifferentials of the count-

ing function

Recall that the so-called counting function is defined as follows:

c : Rp → R
x 7→ c(x) := number of i’s such that xi 6= 0.

In the next two theorems, we prove that all the generalized subdifferentials of the

counting function coincide and provide a simple formula for the common subdif-

ferential.

Theorem 2.9. For all x = (x1, . . . , xp) ∈ Rp

∂P c(x) = ∂V c(x) = ∂F c(x) = X⊥(x), (2.5)

where X⊥(x) = {x∗ ∈ Rp| x∗i = 0 for those i such that xi 6= 0}.

Proof. Let

I(x) = {i ∈ 1, . . . , p| xi = 0},

X(x) = {y ∈ Rp| yi = 0 for all i ∈ I(x)}.

It is easy to see that every point in Rp is a local minimum of the counting function.

Thus, there exists a positive δ such that, whenever z is in B(x, δ), we have

c(z) ≥ c(x) (2.6)

and

c(z) = c(x) ⇔ z ∈ X(x). (2.7)

First step. We prove that

∂F c(x) ⊂ X⊥(x). (2.8)
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By the definition of the Fréchet subdifferential, we have

x∗ ∈ ∂F c(x)

⇔ lim inf
y→0

c(x+ y)− c(x)− 〈x∗, y〉
‖y‖

≥ 0.

Consequently,

lim inf
τ→0

c(x+ τy)− c(x)− τ〈x∗, y〉
τ‖y‖

≥ 0. (2.9)

Let y ∈ X(x). There exists ε > 0 such that

∀τ ∈ [0, ε], x+ τy ∈ B(x, δ).

Then, from the fact that X(x) is a vector space and (2.7), we obtain that c(x +

τy) = c(x) for τ ∈ [0, ε].

Now, (2.9) becomes

lim inf
τ→0

−τ〈x
∗, y〉

τ‖y‖
≥ 0 for all nonzero y ∈ X(x).

Thus, 〈x∗, y〉 ≤ 0 for all y ∈ X(x). This means that 〈x∗, y〉 = 0 for all y ∈ X(x)

because X(x) is a vector space.

So we have proved that

x∗ ∈ X⊥(x).

Second step. Now, we prove that

X⊥(x) ⊂ ∂P c(x). (2.10)

Indeed, for x∗ ∈ X⊥(x), we consider the function

g(y) = 〈x∗, y − x〉 − σ‖y − x‖2

with σ > 0.

So,

(c− g)(y) = c(y)− 〈x∗, y − x〉+ σ‖y − x‖2.

Certainly, x∗ = 0 belongs to ∂P c(x). For x∗ 6= 0, we set ξ = min{ 1

2‖x∗‖∞
; δ},

where ‖x∗‖∞ = sup
‖y‖≤1

〈x∗, y〉.
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For y ∈ B(x, ξ), we have:

• If y − x ∈ X(x), then 〈x∗, y − x〉 = 0. From y ∈ B(x, ξ) ⊂ B(x, δ), we infer

that c(y) = c(x). Hence,

(c− g)(y) = σ‖y − x‖2 + c(x) ≥ c(x).

• If y − x 6∈ X(x), then c(y) > c(x) or c(y) ≥ c(x) + 1. Hence,

(c− g)(y) = c(y)− 〈x∗, y − x〉+ σ‖y − x‖2

≥ c(x) + 1− ‖y − x‖〈x∗, y − x

‖y − x‖
〉+ σ‖y − x‖2

≥ c(x) + 1− 1

2‖x∗‖∞
‖x∗‖∞ + σ‖y − x‖2

= c(x) + 1
2
+ σ‖y − x‖2

> c(x).

Thus, (c− g) attains a local minimum at x. So, remembering the definition

of ∂Pf(x),

x∗ ∈ ∂P c(x).

We thus have proved that

X⊥(x) ⊂ ∂P c(x).

From (2.4),(2.8),(2.10), we deduce that

∂P c(x) = ∂V c(x) = ∂F c(x) = X⊥(x) ∀x ∈ Rp.

In the next theorem, we prove that the Clarke subdifferential of c at x also

equals X⊥(x).

Theorem 2.10. For all x ∈ Rp,

∂Cc(x) = X⊥(x). (2.11)
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Proof. Recall that the Clarke subdifferential of c at x is the set of x∗ ∈ Rp such

that:

∀v ∈ Rp, 〈x∗, v〉 ≤ c0(x, v) = lim
ε↓0

lim sup
y ↓c x

t ↓ 0

inf
w∈v+εB

c(y + tw)− c(y)

t
.

As we have seen in the proof of Theorem 2.9, there exists a positive δ such that,

for y in B(x, δ),

c(y) ≥ c(x)

and

c(y) = c(x) ⇔ y ∈ X(x).

Thus, for y in B(x, δ)

y ↓c x⇔

{
y → x

y ∈ X(x).

Then,

c0(x, v) = lim
ε↓0

lim sup
y → x

y ∈ X(x)

t ↓ 0

inf
w∈v+εB

c(y + tw)− c(y)

t
.

For y ∈ B(x, δ
2
) and y ∈ X(x), we have: c(y) = c(x) and

∀t < δ

2
,

{
c(y + tw) ≥ c(x) + 1 = c(y) + 1 if w 6∈ X(x)

c(y + tw) = c(x) = c(y) if w ∈ X(x).

Hence, for t < δ
2
and for any w, we have c(y + tw) ≥ c(y). So,

inf
w∈v+εB

c(y + tw)− c(y)

t
≥ 0.

• If v ∈ X(x), then c(y+tv) = c(y). Thus, for t < δ
2
, y ∈ B(x, δ

2
) and y ∈ X(x)

inf
w∈v+εB

c(y + tw)− c(y)

t
= 0.

This shows that

c0(x, v) = 0.
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• If v 6∈ X(x), then there exists a positive ε such that B(y, ε) ∩ X(x) = ∅.
Thus, for t < δ

2
, y ∈ B(x, δ

2
) and y ∈ X(x)

inf
w∈v+εB

c(y + tw)− c(y)

t
=

1

t
.

This implies that

c0(x, v) = +∞.

We finally obtain

c0(x, v) =

{
0 if v ∈ X(x)

+∞ otherwise.

Consequently,

∂Cc(x) = X⊥(x).

Remark 2.11. To conclude, all types of generalized subdifferentials coincide and

are equal to X⊥(x). And although not computed directly here, the limiting sub-

differential ∂Lc(x), caught between ∂F c(x) and ∂Cc(x), also equals X⊥(x).

2.3 The generalized subdifferentials of the rank

function

The rank function and the counting function share many common properties.

Firstly, we tried to calculate the generalized subdifferentials of the rank function

by the same method as the one we used in the above part. But we only deduced an

inclusion because of the appearance of singular values. Fortunately, thanks to the

works of Lewis and Sendov in [48],[49], we are able to obtain the subdifferentials

of the rank function from Theorems 2.9 and 2.10.

Before going further, let us fix some notation:

• Mm,n(R) is the set of real matrices with m columns and n rows.

• For x ∈ Rp, let diagm,n(x) denote anm×nmatrix with entries diagm,n(x)
i,i =

xi for all i, and diagm,n(x)
i,j = 0 for i 6= j.
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• O(n) is the set of orthogonal matrices in Mn(R).

• O(m,n) = {(U, V )| U ∈ O(m), V ∈ O(n)}.

• O(m,n)A = {U ∈ O(m), V ∈ O(n)| Udiagm,n(σ(A))V
T = A}.

• Sk = {A| rank A ≤ k}.

• For a matrix A ∈ Mm,n(R), σ(A) = (σ1(A), . . . , σp(A)) denotes the vector

of singular values of A.

• f ◦ σ(A) = f(σ(A)).

2.3.1 Nonsmooth analysis of singular values

The nonsmoothness of an absolutely symmetric function (cf. definition below)

of the singular values of a real rectangular matrix was analysed by Lewis and

Sendov. They gave simple formula for the generalized subdifferentials of such

functions for both the Lipschitz and lower-semicontinuous case. As we said before,

we are only interested in the lower-semicontinuous case.

Let f : Rp → R be an absolutely symmetric function, i.e. satisfying

f(x1, . . . , xp) = f(x̂1, . . . , x̂p) for all x ∈ Rp.

where x̂ = (x̂1, . . . , x̂p) is the vector, built up from x = (x1, . . . , xp), whose com-

ponents are the |xi|’s arranged in a decreasing order.

Theorem 2.12 ([49]). If A ∈ Mm,n(R) and if f is an absolutely symmetric

function, lower-semicontinuous around σ(A), then f ◦ σ is lower-semicontinuous

around A and

∂C(f ◦ σ)(A) = O(m,n)A.diagm,n∂
C(f(σ(A))

= {U.diagm,n(y).V
T | y ∈ ∂C(f(σ(A)), (U, V ) ∈ O(m,n)A}

∂F (f ◦ σ)(A) = O(m,n)A.diagm,n∂
F (f(σ(A))

= {U.diagm,n(y).V
T | y ∈ ∂F (f(σ(A)), (U, V ) ∈ O(m,n)A}

.

Theorem 2.13 ([49]). If A ∈ Mm,n(R) and if f is an absolutely symmetric

function, lower-semicontinuous around σ(A), then the proximal subdifferential of
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any singular value function f ◦ σ at A is given by the formula

∂P (f ◦ σ)(A) = O(m,n)A.diagm,n∂
P (f(σ(A))

= {U.diagm,n(y).V
T | y ∈ ∂P (f(σ(A)), (U, V ) ∈ O(m,n)A}.

2.3.2 Generalized subdifferentials of the rank function

Theorem 2.14. All the generalized subdifferentials (proximal, Fréchet, viscos-

ity, limiting, Clarke) of the rank function coincide. We denote the common

subdifferential by ∂(rank). For A ∈ Mm,n(R), ∂(rank)(A) is constructed as fol-

lows:

• Consider the matrices U ∈ O(m) and V ∈ O(n) such that

U.diagm,n(σ(A)).V
T = A

(in other words, we collect all the orthogonal matrices U and V which give

a singular value decomposition of A).

• Consider the “diagonal” matrices diagm,n(x
∗), where x∗ ∈ Rp is such that

x∗i = 0 for all i = 1, . . . , r (recall that r = rank A).

• Then, collect all the matrices of the form Udiagm,n(x
∗)V T .

In a single formula,

∂(rank)(A)

= {Udiagm,n(x
∗)V T | U ∈ O(m), V ∈ O(n) such that U.diagm,n(σ(A)).V

T = A,

x∗i = 0 for all i = 1, . . . , r}.

Proof. It is well-known that

rank A = c ◦ σ(A),

and that c is lower-semicontinuous, absolutely symmetric. Moreover, by Theorems

2.9 and 2.10, all the subdifferentials of c coincide and are equal toX⊥. By applying

Theorems 2.12 and 2.13, we obtain that the Clarke, Fréchet and the proximal

subdifferentials of the rank function are the same. So, all the subdifferentials of
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the rank are given by

∂(rank)(A) = O(m,n)A.diagm,n∂c(σ(A))

= O(m,n)A.{diagm,n(x
∗)| x∗i = 0 for all i = 1, ...r}

= {Udiagm,n(x
∗)V T | U ∈ O(m), V ∈ O(n)

such that U.diagm,n(σ(A)).V
T = A, x∗i = 0 for all i = 1, . . . , r}.

Remark 2.15. The limiting subdifferential of the rank function can be computed

in another way: using the relationship between the limiting subdifferential and

the normal cone.

Indeed, let A be a matrix in Mm,n(R) and rank A = r. A matrix X ∈ Mm,n(R)
is a F-subderivative of the rank function at A if and only if

lim inf
B→0

rank(A+B)− rank(A)− 〈X,B〉
‖B‖F

≥ 0. (2.12)

But, the rank of a matrix in a sufficient small neighborhood of A is an integer

number at least equal to rank of A. Thus, (2.12) is equivalent to

lim sup
A+B→SrB

〈X,B〉
‖B‖F

≤ 0.

This means that X is a Fréchet normal to Sr at A. From the definitions of the

limiting subdifferential and the normal cone, and the fact Sr ∩B(A, ε) ⊂ Σr for ε

small enough, we can conclude

X ∈ ∂L(rank)(A) = NSr(A).

Luke has proposed an explicit formula for the normal cone to Sk at any matrix

A in Sk ([52]). If we consider the case where k = r = rank A, we obtain the same

formula for the limiting subdifferential as in Theorem 2.14.

A further property of ∂(rank)(A) is that it is not only a closed convex set but a

vector space.

Proposition 2.16. For A ∈ Mm,n(R), ∂(rank)(A) is a vector space.
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Proof. For N ∈ ∂(rank)(A) and k ∈ R, we first prove that

k.N ∈ ∂(rank)(A).

Indeed, for N ∈ ∂(rank)(A), there exist (U, V ) ∈ O(m,n)A and x∗ ∈ Rp, with

x∗i = 0 for all i = 1, . . . , r, such that

N = Udiagm,n(x
∗)V T .

Then

k.N = k.Udiagm,n(x
∗)V T = Udiagm,n(k.x

∗)V T .

This means that k.N ∈ ∂(rank)(A).

Now, for N1, N2 ∈ ∂(rank)(A), we prove that

N1 +N2 ∈ ∂(rank)(A).

On the one hand, 2N1 and 2N2 are also in ∂(rank)(A) as in the first part. On

the other hand, the Clarke subdifferential is always convex. It means that

∂(rank)(A) is convex for all A.

Hence, N1 +N2 =
1
2
(2N1 + 2N2) ∈ ∂(rank)(A).

An alternate expression of ∂(rank)(A) is possible. The subdifferential of the rank

function can be also represented as the tensor product of two vector spaces in Rm

and Rn, as indicated in the following proposition.

Proposition 2.17. Let N(A) and N(AT ) be the null spaces of matrices A and

AT , respectively. Then

∂(rank)(A) = N(AT )⊗N(A)

where ⊗ is the tensor product. In a more detailed form,

N(AT )⊗N(A) =
{∑

aijαiβ
T
j | (αi) is a basis of N(AT )

(βj) is a basis of N(A)} .

Consequentely, the dimension of ∂(rank)(A) is (m− r)(n− r), where r is the rank

of A.
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Proof. Let u1, . . . , um be the columns of U and v1, . . . , vn be the columns of V .

Recall that in Theorem 2.14, we already have

∂(rank)(A)

= {Udiagm,n(x
∗)V T | U ∈ O(m), V ∈ O(n) such that U.diagm,n(σ(A)).V

T = A,

x∗i = 0 for all i = 1, . . . , r}.
(2.13)

Since the first r components of x∗ are zero, then we can rewrite (2.13) as following:

∂(rank)(A) = {
∑p

i=r+1 x
∗
i .uiv

T
i | x∗i ∈ R, U ∈ O(m), V ∈ O(n)

such that U.diagm,n(σ(A)).V
T = A}.

From the facts that U.diagm,n(σ(A)).V
T is a singular value decomposition of A

and rank A = r, we have

A =
r∑

i=1

σi.uiv
T
i .

Moreover, {v1, . . . , vn} is an orthogonal basis of Rn. Hence

Avi = 0 for all i = r + 1, . . . , n.

It means that {vr+1, . . . , vn} can be any orthogonal basis of N(A).

Similarly, {ur+1, . . . , um} can be any orthogonal basis of N(AT ). It implies that

{uivTj } is a basis of N(AT )⊗N(A).

On another hand, uiv
T
j is an element of the vector space ∂(rank)(A). Thus,

N(AT )⊗N(A) ⊂ ∂(rank)(A).

Clearly, ∂(rank)(A) ⊂ N(AT )⊗N(A). So, we obtain

N(AT )⊗N(A) = ∂(rank)(A).

As we know, N(A) and N(AT ) are vector spaces of dimensions n− r and m− r,

respectively. Then, the tensor product of them is a vector space of dimension

(m− r)(n− r). This means that the dimension of ∂(rank)(A) is (m− r)(n− r).
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We illustrate our results by considering the special case where m = n = 2.

Example 2.1. For m = n = 2, we have

• If A = 0 then ∂(rank)(0) = M2,2(R).

• If rank A = 2 then ∂(rank)(A) = {0}.

• If rank A = 1 then ∂(rank)(A) is a vector space of dimension 1 (cf. Proposi-

tion 2.17), of the form {kA0| k ∈ R}. An explicit form of A0 will be given

in the proof.

Proof. • A = 0: By Theorem 2.14, we have

∂(rank)(0) = {Udiagm,n(x
∗)V T | U, V ∈ O(2) such that U.0.V T = 0, x∗ ∈ R2}

= {Udiagm,n(x
∗)V T | U, V ∈ O(2), x∗ ∈ R2}.

So, the subdifferential of the rank function at 0 is the set of all real matrices

2× 2.

• rank A = 2: By Theorem 2.14, we have

∂(rank)(A) = {Udiagm,n(0, 0)V
T | (U, V ) ∈ O(2, 2)A} = {0}.

This occurs on an open dense set of M2,2(R).

• rank A = 1: We have

M =

(
a b

c d

)
with


a, b, c, d ∈ R
a2 + b2 + c2 + d2 > 0

ad = bc.

Without loss of generality, we assume that a 6= 0 and take α0, β0 ∈ (0;π)

such that

cotα0 =
c

a
cot β0 =

b

a
.
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Because rank A = 1, the singular values of A are σ1 and 0. For (U, V ) ∈
O(2, 2)A,

A = U

(
σ1 0

0 0

)
V T

=

(
u11 u12

u21 u22

)(
σ1 0

0 0

)(
v11 v12

v21 v22

)

= σ1

(
u11v11 u12v12

u21v21 u22v22

)
. (2.14)

Using Theorem 2.14, we obtain

∂(rank)(A) = {Udiag(0, k)V T | k ∈ R, (U, V ) ∈ O(2, 2)A}

= {k

(
u12v12 u12v22

u22v12 u22v22

)
| k ∈ R, (U, V ) ∈ O(2, 2)A}

= {ku2vT2 | k ∈ R, (U, V ) ∈ O(2, 2)A}.

Case 1: detU = detV = 1.

There exist α, β ∈ such that

U =

(
sinα cosα

− cosα sinα

)
; V =

(
sin β cos β

− cos β sin β

)
.

Then,(2.14) implies that

{
cotα = − cotα0

cot β = − cot β0
⇔



α =

[
−α0

π − α0

β =

[
−β0
π − β0

.

Then,

u2v
T
2 =

(
cosα cos β cosα sin β

sinα cos β sinα sin β

)

= ±

(
cosα0 cos β0 − cosα0 sin β0

− sinα0 cos β0 cosα0 cos β0

)
= ±A0.
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Case 2: detU = 1, detV = −1.

There exist α, β such that

U =

(
sinα cosα

− cosα sinα

)
; V =

(
sin β cos β

cos β − sin β

)
.

Then,(2.14) implies that

{
cotα = − cotα0

cot β = cot β0
⇔



α =

[
−α0

π − α0

β =

[
β0

π + β0

.

Then,

u2v
T
2 =

(
cosα cos β − cosα sin β

sinα cos β − sinα sin β

)

= ±

(
cosα0 cos β0 − cosα0 sin β0

− sinα0 cos β0 cosα0 cos β0

)
= ±A0.

By doing the same for the last two cases, we obtain u2v
T
2 ∈ {±A0} for all

(U, V ) ∈ O(2, 2)A. We conclude that

∂(rank)(A) = {kA0| k ∈ R},

a vector space of dimension 1.



Chapter 3

Regularization-Approximation of

the rank function

We revisited, in Chapter 1, the relaxed form of the rank function, the nuclear

norm. In this chapter, we consider another way to approach the rank minimization

problem, using smooth or just continuous approximations Rε of the rank function,

depending on some parameter ε > 0. We propose here two classes of regularization-

approximation of the rank function: the first one consists of smooth versions of the

rank, the second one relies on the so-called Moreau-Yosida technique, widely used

in the context of variational analysis. Then, from the generalized subdifferentials

of the Moreau-Yosida approximation of the rank function, we can retrieve the main

result of Chapter 2.

3.1 Smooth versions

This section is taken from [34].

Let θ be the function defined by

θ : R −→ {0, 1}

x 7→ θ(x) =

{
1 if x 6= 0

0 if x = 0
.

63
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Then, the rank function can be presented as

rank A = c[σ1(A), . . . , σp(A)] (recall that c is the counting function on Rp)

=

p∑
i=1

θ[σi(A)]. (3.1)

In order to obtain a smooth regularization-approximation of the rank function, we

need to design some smooth approximation of the θ function.

A first example was proposed in [29] by Hiriart-Urruty, it is as following: For

ε > 0, let θε be defined as

x ∈ R 7−→ θε(x) := 1− e−x2/ε. (3.2)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.1: θ0.05

The resulting approximation of the rank function is

A ∈ Mm,n(R) 7−→ Rε(A) :=

p∑
i=1

[1− e−σ2
i (A)/ε]. (3.3)

An alternate expression of the Rε function is

Rε(A) = p− tr(e−ATA/ε). (3.4)
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Then, Rε is a C∞ (even analytic) function of A. The properties of Rε as an

approximation of the rank function are summarized in the statement below.

Theorem 3.1 ([34]). We have

(i) Rε(A) ≤ rank A for all ε > 0.

(ii) The sequence of functions (Rε)ε>0 increases when ε decreases, and Rε(A) →
rank A for all A when ε→ 0.

(iii) If A 6= 0 and r = rank A,

rank A−Rε(A) ≤ ε

r∑
i=1

1

σ2
i (A)

, (3.5)

as also

rank A−Rε(A) ≤ ε2
r∑

i=1

1

σ4
i (A)

. (3.6)

Another proposal for approximating the rank function, a quite recent one, is due

to Zhao ([61]). It consists of using, for all ε > 0, the following even approximation

of the θ function:

x ∈ R 7−→ τε(x) :=
x2

x2 + ε
. (3.7)

The resulting approximation of the rank function is

A ∈ Mm,n(R) 7−→ Zε(A) :=

p∑
i=1

σ2
i (A)

σ2
i (A) + ε

. (3.8)

Alternate expressions of the Zε function are:

Zε(A) = tr[A(ATA+ εIn)
−1AT ]

= n− εtr(ATA+ εIn)
−1.

Here also, Zε is a C∞ (even analytic) function of A. The properties of Zε as an

approximation of the rank function are summarized in the next statement.

Theorem 3.2 (Zhao, [61]). We have

(i) Zε(A) ≤ rank A for all ε > 0.
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(ii) The sequence of functions (Zε)ε>0 increases when ε decreases, and Zε(A) →
rank A for all A when ε→ 0.

(iii) If A 6= 0 and r = rank A,

rank A− Zε(A) =
r∑

i=1

ε

σ2
i (A) + ε

≤ ε
r∑

i=1

1

σ2
i (A)

. (3.9)

The use of this function Zε (instead of the rank function) in rank minimization

problems as well as an application to solving a system of quadratic functions are

discussed in ([61], Sections 3 and 4).

Another approximation of the counting function is the so-called scaled and shifted

Fermi-Dirac entropy; it is defined and studied in [9].

3.2 Moreau-Yosida approximation

Although the rank function is a bumpy one, it is lower-semicontinuous and bounded

from below; it therefore can be approximated-regularized in the so-called Moreau-

Yosida way. Moreover, the Moreau-Yosida approximation of the rank function can

be computed explicitly. Let us firstly recall what is known, as a general rule, for
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the Moreau-Yosida approximation-regularization technique in a nonconvex context

(see [58, Section 1.G] for details, for example).

Let (E, ‖.‖) be an Euclidean space and f : E −→ R ∪ {+∞} be a lower-

semicontinuous function, bounded from below on E. For a parameter value λ > 0,

the Moreau-Yosida approximate (or Moreau envelope) function fλ and proximal

set-valued mapping Proxλf are defined by

fλ(x) := inf
u∈E

{f(u) + 1

2λ
‖x− u‖2}, (3.10)

Proxλf(x) :=

{
u ∈ E| f(u) +

1

2λ
‖x− u‖2 = fλ(x)

}
. (3.11)

Then:

(i) fλ is a finite-valued continuous function on E;

(ii) The sequence of function (fλ)λ>0 increases when λ decreases, and fλ(x) →
f(x) for all x when λ→ 0;

(iii) The set Proxλf(x) is nonempty and compact;

(iv) The lower bounds of f and fλ on E are equal:

inf
x∈E

f(x) = inf
x∈E

fλ(x).

We now apply this process to the rank function (or restricted rank function).

The context is therefore as following: E = Mm,n(R), ‖.‖F is the Frobenius-Schur

norm and f : E −→ R ∪ {+∞} is the rank (or restricted rank) function. The

Moreau-Yosida approximation rankλ of the rank function is defined by

(rank)λ(A) = inf
B∈Mm,n(R)

{
rank B +

1

2λ
‖A−B‖2F

}
. (3.12)

The Moreau-Yosida approximation of the restricted rank function is defined by

(rankR)λ(A) = inf
B ∈ Mm,n(R)

‖B‖sp≤R

{
rank B +

1

2λ
‖A−B‖2F

}
. (3.13)
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In a simpler context, we can also define the Moreau-Yosida approximation of the

counting (or restricted counting) function as following:

cλ(x) = inf
y∈Rp

{
c(y) +

1

2λ
‖y − x‖2

}
,

(cR)λ = inf
y ∈ Rp

‖y‖∞ ≤ R

{
c(y) +

1

2λ
‖y − x‖2

}
.

In the next proposition, we provide the formula for the Moreau-Yosida approxi-

mation of the counting function. This result was also observed in Example 5.4 of

[1].

Proposition 3.3. The Moreau-Yosida approximation of index λ > 0 of the count-

ing function is given by:

cλ(x) =
1

2λ

(
‖x‖2 −

n∑
i=1

(|xi|2 − 2λ)+

)
.

And one element in Proxλ(c)(x) is provided by:

y = (y1, . . . , yn)

where

yi =


xi if |xi| >

√
2λ,

xi or 0 if |xi| =
√
2λ,

0 otherwise.

Proof. By definition,

cλ(x) = inf
y∈Rn

{c(y) + 1

2λ
‖y − x‖2}. (3.14)

Since the counting function takes only integer values, the vector space Rn is the

union of all sets Tk of vector y such that c(y) = k for all k = 0, 1, 2, . . . , n.

By fixing the value of c(y) (over the set Tk), the minimal value of the function

c(y) + 1
2λ
‖y − x‖2 can be easily computed. Indeed,

• If k = c(x), then it is easy to see that

min
y∈Tk

{c(y) + 1

2λ
‖y − x‖2} = k.
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• If k > c(x), then

min
y∈Tk

{c(y) + 1

2λ
‖y − x‖2} ≥ min

y∈Sk

c(y) = k.

• If k < c(x), then

min
y∈Tk

{c(y) + 1

2λ
‖y − x‖2} = k +

1

2λ
d(x, Tk)

2,

where d(x, Tk) denotes the distance from x to Tk. Let x↓ be the vector

of components of x being arranged in the non-increasing order of |xi|, i.e.
|x↓1| ≥ · · · ≥ |x↓n|. Then, the distance from x to Tk is

d(x, Tk) =

√√√√ n∑
i=k+1

|x↓i |2.

So, we can rewrite (3.14) as

cλ(x) = min
0≤k≤c(x)

{k + 1

2λ

n∑
i=k+1

|x↓i |2}.

Because

k +
1

2λ

n∑
i=k+1

|x↓i |2 =
1

2λ

[
n∑

i=1

|x↓i |2 −
k∑

i=1

(|x↓i |2 − 2λ)

]

=
1

2λ

[
‖x‖2 −

k∑
i=1

(|x↓i |2 − 2λ)

]
,

then

cλ(x) =
1

2λ

[
‖x‖2 − max

0≤k≤c(x)

k∑
i=1

(|x↓i |2 − 2λ)

]
.

Recall that

|x↓1| ≥ · · · ≥ |x↓n|,

then

|x↓1|2 − 2λ ≥ · · · ≥ |x↓n|2 − 2λ.

Hence, among the values of (|x↓1|2 − 2λ),
∑2

i=1(|x
↓
i |2 − 2λ), . . . ,

∑c(x)
i=1 (|x

↓
i |2 − 2λ),

the largest term is the one that sums all positive (|x↓i |2 − 2λ).
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We conclude that

cλ(x) =
1

2λ

‖x↓‖2 −
c(x)∑
i=1

(|xi|2 − 2λ)+


=

1

2λ

(
‖x‖2 −

n∑
i=1

(|xi|2 − 2λ)+

)
.

A vector y is an element of Proxλ(c)(x) if and only if

cλ(x) = c(y) +
1

2λ
‖y − x‖2.

This means that y is a projection of x onto Tk̃, where

k̃ ∈ argmax0≤k≤c(x)

k∑
i=1

(|x↓i |2 − 2λ).

Hence, we can conclude that

y ∈ Proxλ(c)(x) ⇔ ∀i = 1, . . . , n yi =


xi if |xi| >

√
2λ,

xi or 0 if |xi| =
√
2λ,

0 otherwise.

The next theorem is a classical result that provides the distance from an arbitrary

matrix to the set of matrices of rank at most k. This theorem is usually called the

theorem of Eckart- Young or Eckart, Young and Mirsky, but in fact the

first one who discovered it is Schmidt. By using this theorem, we can calculate

the Moreau-Yosida approximation of the rank function. Conversely, we can get a

best approximation of a matrix by a matrix of rank at most k from the Moreau-

Yosida approximation of the rank function ([35]).

Theorem 3.4 (Eckart, Young and Mirsky [28]). Given A ∈ Mm,n(R) of

rank r, we consider the following problem:

(Ak)

{
Minimize ‖A−M‖F
M ∈ Sk

.
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Let UΣAV
T be a singular value decomposition of A with ΣA = diagm,n(σ1(A), . . . , σp(A)).

Choose ‖.‖ as either ‖.‖F or ‖.‖sp. Then

Ak := UΣkV
T ,

(where Σk is obtained from ΣA by keeping σ1(A), . . . , σk(A) and putting 0 in

the place of σk+1(A), . . . , σr(A)) is a solution of the best approximation problem

(Ak). For the Frobenius-Schur norm case, Ak is the unique solution in (Ak) when

σk(A) > σk+1(A).

The optimal value in (Ak) is as follows:

min
M∈Sk

‖A−M‖F =

√√√√ r∑
i=k+1

σ2
i (A).

We denote O(m,n)A the set of (U, V ) such that U and V are orthogonal matrices

and Udiagm,n(σ1(A), . . . , σp(A))V
T is a singular value decomposition of A. Then,

in Theorem 1.11, one solution of the problem (Ak) is given by the formula Ak =

UΣkV
T , with (U, V ) fixed in O(m,n)A. But in fact, all the solutions of (Ak) can

be determined by

ŨΣkṼ
T ,

with (Ũ , Ṽ ) ∈ O(m,n)A .(see for example [53]). This means that the set of solu-

tions of (Ak) is {
ŨΣkṼ

T | (Ũ , Ṽ ) ∈ O(m,n)A
}
.

When σk > σk+1, it can easily be proved that

Ũ1ΣkṼ
T
1 = Ũ2ΣkṼ

T
2 ,

for any (Ũ1, Ṽ1) and (Ũ2, Ṽ2) in O(m,n)
A. Hence, the set of solutions is a singleton,

i.e. the solution of (Ak) is unique.

When σk = σk+1 for any k = 1, 2, . . . , p− 1, the problem (Ak) may have infinitely

many solutions. The formula for the set of solutions is given in [52].

Lemma 3.5. Let A 6= 0 be a matrix in Mm,n(R) and k < rank A be an integer.

We denote the set of matrices of rank k by Rk. Then,

d(A,Rk) = d(A, Sk).
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Proof. The theorem of Eckart-Young says that

d(A, Sk) =

√√√√rank A∑
i=k+1

σ2
i (A),

and a minimizer point is

Ak = Udiagm,n (σ1(A), . . . , σk(A), 0, . . . , 0)V
T .

But Rk is a subset of Sk and Ak is contained in Rk, thus the distance from A to

Rk exactly equals the distance from A to Sk.

Theorem 3.6. We have, for all A ∈ Mm,n(R) with rank r ≥ 1:

(i)

(rank)λ(A) =
1

2λ
‖A‖2F − 1

2λ

r∑
i=1

[σ2
i (A)− 2λ]+. (3.15)

(ii) One minimizer in (3.12), i.e. one element in Proxλ(rank)(A), is provided

by B := ŨΣBṼ
T , where:

• (Ũ , Ṽ ) ∈ O(m,n)A, i.e. Ũ and Ṽ are orthogonal matrices such that

A = ŨΣAṼ
T , with ΣA = diagm,n[σi(A), . . . , σr(A), 0, . . . , 0] (a singular

value decomposition of A with σ1(A) ≥ · · · ≥ σr(A) > 0);

•

ΣB =


0 if σ1 ≤

√
2λ,

ΣA if σr(A) ≥
√
2λ,

diagm,n[σ1(A), . . . , σk(A), 0, . . . , 0] if there is an integer k s.t.

σk(A) ≥
√
2λ > σk+1(A).

(3.16)

We may complete the result (ii) in the theorem above by determining explicitly

the whole set Proxλ(rank)(A). Indeed, we have four cases to consider:

• If σ1(A) <
√
2λ, then Proxλ(rank)(A) = {0}.

• If σr(A) >
√
2λ, then Proxλ(rank)(A) = {A}.
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• If there is k such that σk(A) >
√
2λ > σk+1(A), then the set Proxλ(rank)(A)

is a singleton and

Proxλ(rank)(A) = {Udiagm,n[σ1(A), . . . , σk(A), 0, . . . , 0]V
T}.

• Suppose there is k such that σk(A) =
√
2λ. We define

k0 := min{k| σk(A) =
√
2λ},

k1 := max{k| σk(A) =
√
2λ}.

Then, Proxε(rank)(A) is the set of matrices of the form Ũdiagm,n(τ1, . . . , τp)Ṽ
T ,

where (Ũ , Ṽ ) ∈ O(m,n)A and

τi = σi(A) if i < k0, τi = 0 if i > k1,

τi = 0 or σi(A) if k0 ≤ i ≤ k1.

where k is an integer between k0 and k1.

Comments

1. One could wish to express (rank)λ(A) in terms of traces of matrices as this

was done for the smoothed versions of the rank function in Section 3.1. In-

deed, ATA−2λIn is a matrix whose eigenvalues are σ2
1(A)−2λ, . . . , σ2

r(A)−
2λ,−2λ, . . . ,−2λ. Its projection on the cone S+

n (R) of positive semidefi-

nite matrices has eigenvalues [σ2
1(A)−2λ]+, . . . , [σ2

r(A)−2λ]+, 0, . . . , 0 ([39]).

Thus, an alternate expression for (rank)λ(A) is:

(rank)λ(A) =
1

2λ
tr(ATA)− 1

2λ
tr[PS+

n (R)(A
TA− 2λIn)] (3.17)

2. The Moreau-Yosida approximation of the rank function is only continuous

(not smooth as the approximations in the first section of this chapter), but

for any matrix A ∈ Mm,n(R) there exist λ(A) such that

∀0 ≤ λ ≤ λ(A) rankλ(A) = rank A.

Indeed, if
√
2λ ≤ σr(A), then

(rank)λ(A)(A) = rank A.
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This easily comes from (3.15) since σ2
i (A)− 2λ(A) ≥ 0 for all i and ‖A‖2F =∑r

i=1 σ
2
i (A). Therefore, the general convergence result that is known for the

Moreau-Yosida approximates fλ of f is made much stronger here.

Proof. Using the same method as in Proposition 3.3, we divide the vector space

Mm,n(R) into the sets Rk of matrices rank k.

• If k = rank A, then

min
B∈Rk

{rank B +
1

2λ
‖B − A‖2F} = rank A.

• If k > rank A, then

min
B∈Rk

{rank B +
1

2λ
‖B − A‖2F} ≥ k > rank A.

• If k < rank A, then

min
B∈Rk

{rank B +
1

2λ
‖B − A‖2F} = k +

1

2λ
d(A,Rk)

2.

From Lemma 1, we can replace d(A,Rk) by d(A, Sk). And then, by the

theorem of Eckart-Young and Mirsky, we have

min
B∈Rk

{rank B +
1

2λ
‖B − A‖2F} = k +

1

2λ

r∑
i=k+1

σ2
i (A).

Hence, the Moreau-Yosida approximation of the rank function can be represented

as

rankλ(A) = min
0≤k≤r

{k + 1

2λ

r∑
i=k+1

σ2
i (A)}.

Because

k +
1

2λ

r∑
i=k+1

σ2
i (A) =

1

2λ

{
r∑

i=1

σ2
i (A)−

k∑
i=1

(
σ2
i (A)− 2λ

)}

=
1

2λ

{
‖A‖2F −

k∑
i=1

(
σ2
i (A)− 2λ

)}
,



Chapter 3 Regularization-Approximation 75

we have

rankλ(A) =
1

2λ
{‖A‖2F − max

0≤k≤r

k∑
i=1

(
σ2
i (A)− 2λ

)
}. (3.18)

Among the values of (σ2
1(A)− 2λ) ,

∑2
i=1 (σ

2
i (A)− 2λ) , . . . ,

∑r
i=1 (σ

2
i (A)− 2λ), the

largest term is the one that sums all positive (σ2
i (A)− 2λ) terms.

We conclude that

rankλ(A) =
1

2λ
{‖A‖2F −

r∑
i=1

(σ2
i (A)− 2λ)+}.

A matrix B is an element of Proxλ(rank)(A) if and only if B is a projection of A

over Sk̃, where

k̃ ∈ argmin0≤k≤r{k +
1

2λ

r∑
i=k+1

σ2
i (A)}.

This means that

k̃ +
1

2λ

r∑
i=k̃+1

σ2
i (A) =

1

2λ
{‖A‖2F −

r∑
i=1

(σ2
i (A)− 2λ)+}.

On the other hand, since

k̃ +
1

2λ

r∑
i=k̃+1

σ2
i (A) =

1

2λ
{‖A‖2F −

k̃∑
i=1

(
σ2
i (A)− 2λ

)
},

we deduce the following:

• If σr(A) >
√
2λ, then

argmin0≤k≤r{k +
1

2λ

r∑
i=k+1

σ2
i (A)} = {r}.

• If σ1(A) <
√
2λ, then

argmin0≤k≤r{k +
1

2λ

r∑
i=k+1

σ2
i (A)} = {0}.
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• If there exists k0 such that σk0(A) >
√
2λ > σk0+1(A), then

argmin0≤k≤r{k +
1

2λ

r∑
i=k+1

σ2
i (A)} = {k0}.

• If there exists i such that σi(A) =
√
2λ, then

argmin0≤k≤r{k +
1

2λ

r∑
i=k+1

σ2
i (A)} = {k0 − 1, . . . , k1},

where

k0 := min{k| σk(A) =
√
2λ},

k1 := max{k| σk(A) =
√
2λ}.

Now, thanks to the Theorem of Eckart-Young, we can express the whole set

Proxλ(rank)(A) as in Theorem 3.6.

As we saw it when considering the relaxed forms of the rank function (in Chap-

ter 1), what is more useful and interesting for applications is the restricted rank

function rankR. The calculations for its Moreau-Yosida approximates or proximal

set-valued mappings are a bit more complicate than for the rank itself, of the same

vein however. Here is the final and complete result.
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Theorem 3.7. We have, for all A ∈ Mm,n(R) of rank r ≥ 1:

(i)

(rankR)λ(A) =
1

2λ
‖A‖2F − 1

2λ

r∑
i=1

{σ2
i (A)− [(σi(A)−R)+]2 − 2λ}+. (3.19)

(ii) One minimizer in (3.13), i.e. one element in Proxλ(rankR)(A), is provided

by B := ŨΣBṼ
T with ΣB = diagm,n[σ1(B), . . . , σp(B)], where (Ũ , Ṽ ) ∈

O(m,n)A. Here

• If
√
2λ ≥ R

σi(B) :=


R if σi(A) >

2λ+R2

2R
,

0 or R if σi(A) =
2λ+R2

2R
,

0 if σi(A) <
2λ+R2

2R
.

• If
√
2λ < R

σi(B) :=


R if σi(A) > R,

σi(A) if
√
2λ < σi(A) ≤ R,

0 or σi(A) if
√
2λ = σi(A),

0 if σi(A) <
√
2λ.

Comments

1. As the positive parameter λ is supposed to approach 0 in the proximal ap-

proximation process, the second case of (ii) in the theorem above is more

important than the first one.

2. When
√
2λ < R and ‖A‖sp = maxi=1,...,p σi(A) ≤ R, both Moreau-Yosida

approximates (rank)λ and (rankR)λ coincide at A.

Proof. In order to find the minimal value of the function rank B + 1
2λ
‖A − B‖2F

over the ball {‖B‖sp ≤ R}, we divide the ball into the intersections of it with the

sets of matrices with fixed rank.

By the Theorem of Eckart-Young, we know exactly the distance from a matrix

A to the set of matrices rank k. And now, we try to find the distance from A to
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the intersection of the set of matrices rank k and a ball for the spectral norm, i.e.

Sk,R = {B ∈ Mm,n(R)| rank B = k, ‖B‖sp ≤ R}.

For B ∈ Sk,R,

‖A−B‖2F = ‖A‖2F − 2〈A,B〉+ ‖B‖2F .

Because 〈A,B〉 ≤
∑p

i=1 σi(A)σi(B) and rank B = k, then

‖A−B‖2F ≥
p∑

i=1

σ2
i (A)− 2

k∑
i=1

σi(A)σi(B) +
k∑

i=1

σ2
i (B). (3.20)

Combining this with the condition ‖B‖sp ≤ R, we obtain

min
B∈Sk,R

‖A−B‖2F =
k∑

i=1

{[σi(A)−R]+}2 +
p∑

i=k+1

σ2
i (A).

Thus,

min
B∈Sk,R

{rank B +
1

2λ
‖A−B‖2F} = k +

1

2λ

k∑
i=1

{[σi(A)−R]+}2 + 1

2λ

p∑
i=k+1

σ2
i (A).

(3.21)

Equality holds in (3.20) if and only if B has a singular value decompostion B =

UBΣBV
T
B where (UB, VB) is an element of O(m,n)A. Thus, B is a projection of A

on Sk,R if and only if

B = ŨΣR
k Ṽ

T ,

where (Ũ , Ṽ ) ∈ O(m,n)A and ΣR
k = diagm,n(σ1, . . . , σp) with

σi =

{
min(σi(A), R) if i ≤ k

0 otherwise.

Of course, in the case where σk(A) > σk+1(A) the projection is unique.

The right-hand side of equation (3.21) can be expressed as

1

2λ
‖A‖2F − 1

2λ

k∑
i=1

{σ2
i (A)− [(σi(A)−R)+]2 − 2λ}.
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Hence, the Moreau-Yosida approximation of the restricted rank function is given

by

(rankR)λ(A) =
1

2λ

{
‖A‖2F − max

0≤k≤r

[
k∑

i=1

{σ2
i (A)− [(σi(A)−R)+]2 − 2λ}

]}
.

(3.22)

Consider now the function

f : [0; +∞) −→ R
x 7→ f(x) = x2 − [(x−R)+]2 − 2λ.

More precisely, if x ≤ R then f(x) = x2−2λ and if x ≥ R, f(x) = 2Rx−R2−2λ.

Hence, f is continuous and increasing. Moreover,

f(x) = 0 ⇔

[
x =

√
2λ if

√
2λ < R,

x = R2+2λ
2R

otherwise.

Then,

• If
√
2λ < R

f(x) ≥ 0 ⇔ x ≥
√
2λ. (3.23)

• If
√
2λ > R

f(x) ≥ 0 ⇔ x ≥ R2 + 2λ

2R
. (3.24)

From the properties of f , max0≤k≤r

[∑k
i=1{σ2

i (A)− [(σi(A)−R)+]2 − 2λ}
]
is the

one that sums all positive {σ2
i (A)− [(σi(A)−R)+]2 − 2λ} terms.

To conclude, the Moreau-Yosida approximation of the restricted rank function is

given by

min‖B‖sp≤R{rank B + 1
2λ
‖A−B‖2F}

= 1
2λ
‖A‖2F − 1

2λ

∑r
i=1{σ2

i (A)− [(σi(A)−R)+]2 − 2λ}+.

From (3.23), (3.24) and the projections of A onto Sk,R, we can determine the whole

set Proxλ(rankR)(A) as in Theorem 3.7.

The pictures below show, in the one dimensional case, the behaviour of cλ and

(cR)λ as λ→ 0.
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Figure 3.3: The Moreau-Yosida approximations of the rank.
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Figure 3.4: The Moreau-Yosida approximations of the restricted rank.

We know from Chapter 1 that the convex relaxed form of the restricted rank

function rankR is

co(rankR) = ψR(A) :=

{
1
R
‖A‖∗ if ‖A‖sp ≤ R,

+∞ otherwise.

It is interesting to calculate explicitly the Moreau-Yosida approximations (ψR)λ of

ψR, and to compare them with those of rankR in Theorem 3.7. Here we are in a

more familiar convex framework, so that calculations are easier to carry out. Since

the proximal set-valued mapping ProxλψR is actually single-valued on Mm,n(R),



Chapter 3 Regularization-Approximation 81

we adopt the notation

ProxλψR(A) = {proxλψR(A)}.

Theorem 3.8. Let U and V be orthogonal matrices such that A = UΣAV
T ,

with ΣA = diagm,n(σ1(A), . . . , σr(A), 0, . . . , 0) (a singular value decomposition of

A with σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) > 0). We set

pRλ (A) = (y1, . . . , yp),

with

yi =


R if σi(A) ≥ λ

R
+R,

σi(A)− λ
R

if λ
R
≤ σi(A) <

λ
R
+R,

0 if σi(A) <
λ
R
.

(3.25)

Then, the proximal mapping and the Moreau envelope of ψR are described as fol-

lowing.

(i) Proximal mapping:

proxλψR(A) = Udiagm,n(y1, . . . , yp)V
T ; (3.26)

(ii) Moreau envelope:

We define, for t ∈ R,

f i
λ
R

(t) := t2 − 2σi(A)t+ 2
λ

R
|t|,

and for x = (x1, . . . , xp)

f λ
R
(x) :=

p∑
i=1

f i
λ
R

(xi).

Then,

(ψR)λ(A) =
1

2λ
‖A‖2F − 1

2λ
f λ

R
[pRλ (A)]. (3.27)

Moreover, for A such that ‖A‖sp ≤ R,

(ψR)λ(A) =
1

2λ
‖A‖2F − 1

2λ
‖pRλ (A)‖2. (3.28)
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The picture below shows, in the one dimensional case, the behaviour of (ψR)λ

when λ → 0, as well as how it compares with (rankR)λ. It also illustrates the

following fact: the convex hull (or closed convex hull) of (rankR)λ is exactly (ψR)λ.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
m=n=1

 

 

Figure 3.5: The Moreau-Yosida approximations of the restricted rank and
nuclear norm.

The case where R = 1 deserves some additional comments. Recalling that

ψ1(A) =

{
‖A‖∗ if ‖A‖sp ≤ 1,

+∞ otherwise,

we have

(ψ1)λ(A) =
1

2
‖A‖2F − 1

2
fλ[p

1
λ(A)], (3.29)

where p1λ(A) = (y1, . . . , yp), with

yi =


1 if σi(A) ≥ λ+ 1,

σi(A)− λ if λ ≤ σi(A) < λ+ 1,

0 if σi(A) < λ.

(3.30)

In short,

yi = [σi(A)− λ]+ − [σi(A)− (λ+ 1)]+ for all i = 1, . . . , p,

so that

proxλψ1(A) = Udiagm,n{([σi(A)− λ]+ − [σi(A)− (λ+ 1)]+)i}V T , (3.31)
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(ψ1)λ(A) =
1

2λ
‖A‖2F − 1

2λ

p∑
i=1

f i
λ(yi)

=
1

2λ

r∑
i=1

σ2
i (A)−

1

2λ

r∑
i=1

f i
λ([σi(A)− λ]+ − [σi(A)− (λ+ 1)]+).(3.32)

These formulas (3.31) and (3.32) should be put side by side with the expressions

of (‖.‖∗)λ and proxλ(‖.‖∗), such as given in [50] for example:

proxλ(‖.‖∗)(A) = Udiagm,n[σi(A)− λ]+V T , (3.33)

(‖.‖∗)λ(A) =
1

2
‖A‖2F − 1

2

r∑
i=1

{([σi(A)− λ]+)i}2.

=
1

2

r∑
i=1

σ2
i (A)−

1

2

r∑
i=1

{[σi(A)− λ]+}2. (3.34)

As expected, since ‖.‖∗ ≤ ψ1, one has (‖.‖∗)λ ≤ (ψ1)λ for all λ > 0. Also, for λ

small enough, namely for λ ≤ σr(A),

(‖.‖∗)λ(A) = (ψ1)λ(A).

Note however that the convex relaxed form of (rank)λ is not (‖.‖∗)λ; as said before,

to compare the relaxed form of the rank function with ‖.‖∗, as well as their cor-
responding Moreau-Yosida regularized forms, one has to consider their restricted

versions on balls {A| ‖A‖sp≤R}.

The formulas (3.33) and (3.34) are used for designing a proximal point algorithm

scheme for nuclear norm minimization ([50]).

3.3 The generalized subdifferentials of the Moreau-

Yosida approximation

A.Jourani studied in [42] the limit superior of the Fréchet subdifferentials of the

Moreau-Yosida envelopes and he proved that in a Asplund space (i.e. a Banach

space on which every continuous convex function is Fréchet subdifferentiable on a

dense set of points), the Fréchet subdifferential of a function can be obtained from

the Fréchet subdifferential of its Moreau envelopes.
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Let X be an Asplund space and X∗ be the dual space of X equipped with the

weak-star topology w∗.

We say that a function f on X is bounded from below by a negative quadratic

form if and only if

∃c > 0,∃x ∈ X such that f(x) ≥ −c(‖x− x‖2 + 1) for all x ∈ X.

Theorem 3.9 ([42]). Let f be a lower-semicontinuous real-valued extended func-

tion on X. Suppose that f is bounded from below by a negative quadratic form.

Then, for all x0 such that f(x0) <∞,

∂Ff(x0) = seq − lim sup
λ → 0+

u → x0

fλ(u) → f(x0)

∂Ffλ(u),

where

seq − lim sup
λ → 0+

u → x0

fλ(u) → f(x0)

∂Ffλ(u) = {x∗ ∈ X∗| ∃ sequence λk → 0+, uk → x0, fλk
(uk) → f(x0)

and u∗k → x∗ with u∗k ∈ ∂Ffλk
(uk) for all k = 1, 2, . . .

}
.

We can use this result and the explicit formula of the Moreau-Yosida approxima-

tion of the rank function to retrieve the Fréchet subdifferential of the rank function

(as in Theorem 2.9, Chapter 2). Before going into details, we recall here two the-

orems that provide calculus rules for the Fréchet subdifferential of a function.

Theorem 3.10 (Sum rule, [59]). Let f1, f2 : Rp → R be proper, lower-semicontinuous.

If f1 is Fréchet differentiable at x̃, then

∂F (f1 + f2)(x̃) = ∇f1(x̃) + ∂Ff2(x̃).

Theorem 3.11 (Separable functions, [58]). Let f(x) = f(x1) + · · · + f(xq) for

lower-semicontinuous functions fi : Rpi −→ R ∪ {−∞; +∞}, where x ∈ Rp is

expressed as (x1, . . . , xq) with xi ∈ Rpi. Then, at any point x = (x1, . . . , xq) where

f is finite, one has

∂F (x) = ∂Ff1(x1)× · · · × ∂Ffq(xq).
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As usual, we begin with calculating the Fréchet subdifferential of the Moreau

envelope of the counting function.

Theorem 3.12. Let x be a vector in Rp such that

x1 ≥ x2 ≥ · · · ≥ xp ≥ 0.

The Fréchet subdifferential of cλ at x can be expressed as follows:

• If x1 <
√
2λ, then

∂F cλ(x) = {∇cλ(x)} =
{(x1

λ
, . . . ,

xp
λ

)}
.

• If xp >
√
2λ, then

∂F cλ(x) = {∇cλ(x)} = {(0, . . . , 0)} .

• If there exists k such that xk >
√
2λ > xk+1, then

∂F cλ(x) = {∇cλ(x)} =
{(

0, . . . , 0,
xk+1

λ
, . . . ,

xp
λ

)}
.

• If there exists k such that xk =
√
2λ, then

∂F cλ(x) = ∅.

Lemma 3.13. For λ > 0, we define h as follows

h : R → R
x 7→ − 1

2λ
(x2 − 2λ)+.

Then

∂Fh(x) =


{0} if x2 < 2λ

{−x
λ
} if x2 > 2λ

∅ if x2 = 2λ

.

Proof. By definition,

h(x) =

{
0 if x2 < 2λ

− 1
2λ
(x2 − 2λ) if x2 ≥ 2λ

.
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Thus, the function h is differentiable at any x 6∈
{
−
√
2λ;

√
2λ
}
and

h′(x) = 0 if x2 < 2λ,

h′(x) = −x
λ

if x2 > 2λ.

For x = −
√
2λ, h(x) = 0. Then, x∗ ∈ ∂Fh(−

√
2λ) if and only if

lim inf
y→0

h(y −
√
2λ)− x∗y

|y|
≥ 0.

This is equivalent to

lim inf
y→0+

h(y −
√
2λ)− x∗y

|y|
≥ 0, (3.35)

and

lim inf
y→0−

h(y −
√
2λ)− x∗y

|y|
≥ 0. (3.36)

When y → 0+, the value of h at y −
√
2λ is 0. Thus (3.35) becomes

x∗ ≤ 0.

When y → 0−, the value of h at y−
√
2λ is − 1

2λ
(y2−2

√
2λy). Thus (3.36) becomes

x∗ ≥
√
2λ

λ
> 0.

This means that ∂Fh(−
√
2λ) has no element or

∂Fh(−
√
2λ) = ∅.

We can also prove that

∂Fh(
√
2λ) = ∅.

Proof. (of Theorem 3.12 )

The Moreau-Yosida approximation of the counting function is given by (cf. Propo-

sition 3.3):

cλ(x) =
1

2λ
‖x‖2 − 1

2λ

p∑
i=1

(x2i − 2λ)+.
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We can rewrite cλ as the sum of two functions c1 and c2 where c1(x) = 1
2λ
‖x‖2 and

c2(x) = − 1
2λ

∑p
i=1(x

2
i − 2λ)+.

It is easy to see that c1 is a smooth function and ∇c1(x) = x
λ
. Because c2(x) =

− 1
2λ

∑p
i=1(x

2
i − 2λ)+ =

∑p
i=1 h(xi), the Fréchet subdifferentials of c2 at x can be

presented as the product of the ones of h at xi (cf. Theorem 3.11). By applying

Theorem 3.10 for two functions c1 and c2, we obtain

∂F cλ(x) = ∇c1 + ∂F c2.

Thus,

∂F cλ(x) =
x

λ
+

p∏
i=1

∂Fh(xi).

For x = (x1, . . . , xp) such that x1 ≥ · · · ≥ xp ≥ 0 and λ > 0, we consider two

cases:

• If there exists k such that xk >
√
2λ > xk+1, then cλ is differentiable at x

and

∂F cλ(x) = {∇cλ(x)} = {(0, . . . , 0, xk+1

λ
, . . . ,

xp
λ
)}.

• If there exists k satisfying

xk =
√
2λ,

then by using Lemma 3.13, we have

∂F cλ(x) = ∅.

The Moreau-Yosida approximation of the counting function is absolutely symmet-

ric and continuous. Hence, by using Theorem 2.10 (of Lewis and Sendov) and

the fact that (cf. Theorem 3.6)

rankλ(A) = cλ ◦ σ(A),

we obtain the following theorem.

Theorem 3.14. The generalized subdifferentials of rankλ at a matrix A is given

as below.
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• If there exists k such that σk(A) ≥
√
2λ ≥ σk+1(A), then rankλ is differen-

tiable at A and

∂F rankλ(A) = {∇rankλ(x)} = {Udiag(0, . . . , 0, xk+1

λ
, . . . ,

xp
λ
)V T}.

• If there exist k such that σk(A) =
√
2λ, then

∂F rankλ(A) = ∅.

Another way to find the Fréchet subdifferential of the rank function

Let x = (x1, . . . , xp) be a vector in Rp satisfies

x1 ≥ · · · ≥ xp ≥ 0.

Thanks to Theorem 3.9, we have

∂F c(x) = seq − lim sup
λ → 0+

u → x

cλ(u) → c(x)

∂F cλ(u),

(see Theorem 3.9 for the definition of seq − lim sup).

Let {λk}k be a sequence that converges to 0 and {uk}k be a sequence that converges
to x.

Let r = c(x). For ε > 0 small, there exist K1 and K2 such that

∀k ≥ K1 ∀i = 1, . . . , r, uki ≥ xi − ε,

∀k ≥ K2,
√

2λk < xr − ε.

Then, if K0 = max(K1, K2), we have

∀k ≥ K0 ∀i = 1, . . . , r, uki >
√
2λk.

By Theorem 3.12, we obtain

∀k ≥ K0 ∂F cλk
(xk) ⊂ {0}r × R× · · · × R.

Hence, ∂Cc(x) ⊂ {0}r × R× · · · × R.
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On the other hand, any vector in Rp whose these first r components are 0 belongs

to ∂F c(x).

Indeed, for a = (0, . . . , 0, ar+1, . . . , ap) and λk → 0+, we take

yk = (x1, . . . , xr, λkar+1, . . . , λkap) → x.

Because λk → 0,there exists K3 such that

∀k ≥ K3 ∀i = r + 1, . . . , p |λkai| <
√
2λk.

Then, by using Theorem 3.12, for all k ≥ K3

∂F cλk
(yk) = a.

So that, a ∈ ∂F c(x). Hence,

∂F c(x) = {0}r × R× · · · × R.

Now, thanks to Theorem 2.12, we can retrieve the subdifferentials of the rank

function.

Acknowledgment. We would like to thank Prof. A.Jourani (University of

Bourgogne, Dijon) for drawing our attention to this possible way of getting at

the Fréchet generalized subdifferential of the rank function (ALEL meeting in

Castro-Urdiales, June 2011).





Chapter 4

The cp-rank function revisited

In this chapter, we revisit a notion whose definition resembles that of the rank,

the cp-rank function. It is defined for completely positive matrices, a specific class

of positive matrices. We recall here the definition and some properties of the cp-

rank function. And then, we provide its convex relaxed form and list some open

questions concerning it.

4.1 Definition and Properties

4.1.1 Definition

Let Sn(R) be the set of real square symmetric matrices of dimension n×n. Recall
that a matrix A is positive semidefinite if it can be decomposed as A = BBT

where B is a real matrix. The rank of a positive definite matrix A can be defined

as the smallest number of columns of B in such a factorization.

Definition 4.1. A real square symmetric (elementwise) nonnegative matrix A in

Sn(R) is completely positive (CP) if it can be factorized as A = BBT where B

is a real nonnegative matrix. The smallest number of columns of B in such a

factorization is then called the cp-rank of A and is denoted by cp-rank A.

If A is a square symmetric matrix which is not CP, we say by convention that

A has a cp-rank equal to +∞, written cp-rank A = +∞. Also by convention,

cp-rank of the zero matrix is zero.
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Remark 4.2. If A = BBT , then A can be represented as the sum of the matrices

bib
T
i , where the bi’s are the columns of B. Hence, the cp-rank of A is also the

minimal number of summands in a rank 1-presentation of A, A =
∑k

i=1 bib
T
i , with

bi ≥ 0 for all i (a vector of Rn with nonnegative components).

The set of all completely positive matrices is a closed convex cone in Sn(R). We

denote it by CPn(R). Moreover,

CPn(R) = conv{xxT : x ∈ Rn
+}.

The positive polar (or dual) cone CP ∗
n(R) of CPn(R) is defined by

CP ∗
n(R) := {S a symmetric n× n matrix : 〈S,X〉 ≥ 0 for all X ∈ CPn(R)}.

It can be proved that CP ∗
n(R) coincides with the cone of copositive matrices,

namely

Cn(R) = {S a symmetric n× n matrix : xTSx ≥ 0 for all x ∈ Rn
+}.

More information about the cone of completely positive matrices and copositive

matrices can be found in several references, for example in [40].

4.1.2 Properties

Proposition 4.3. If A is an n× n completely positive matrix, then

cp-rank A ≥ rank A. (4.1)

In some cases, the cp-rank of A is equal to the rank of A, for example: when

the rank of A is less than or equal to 2 or when n ≤ 3, etc. But in general, the

inequality in (4.1) is strict.

Example 4.1.

A =


6 3 3 0

3 5 1 3

3 1 5 3

0 3 3 6


Here, rank A = 3 while cp-rank A = 4.
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The cp-rank however enjoys some properties similar to those of the rank (see

Chapter 1).

Proposition 4.4. If A and B are n× n completely positive matrices, then

(i) cp-rank (A+B) ≤ cp-rank A+ cp-rank B.

(ii) cp-rank (kA) = cp-rank A for every positive real number k.

Proposition 4.5. Suppose that {Am}m is a sequence of completely positive ma-

trices in Sn(R), and that

A = lim
m→∞

Am.

Then

cp-rank A ≤ lim inf
m→∞

cp-rank Am.

This means that the cp-rank function is lower-semicontinuous.

Proof. Suppose that

k = lim inf
m→∞

cp-rank Am.

We can extract from {Am}m a subsequence where each Am has a cp-rank equal to

k. Indeed, according to the definition of k, there exists a subsequence {Amq}q of

{Am}m such that k = limq→∞ cp-rank Amq . Hence, for Q large enough and q ≥ Q,

k − 1

2
< cp-rank Amq < k +

1

2
.

From the fact that cp-rank only takes integer values, we can infer from above that

cp-rank Amq = k for every q ≥ Q.

Hence, for q ≥ Q, Amq = (ai,jmq
)i,j=1,...,n can be factorized as Amq = BmqB

T
mq

, where

Bmq is a real nonnegative matrix with dimension k × n. Let b1mq
, . . . , bkmq

denote

the columns of Bmq .

We already know that A = limq→∞Amq , where A = (aij)i,j=1,...,n. Then,

aii = lim
q→∞

aiimq
.

Moreover, aiimq
= ‖bimq

‖2. Thus, limq→∞ ‖bimq
‖2 = aii. This means that the se-

quence of vectors {bimq
}q is bounded for all i. There then exists a subsequence of

{bimq
} converges to a vector bi of Rn.
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Now, let B be the matrix with dimension k × n, defined by B = (b1, . . . , bk). It is

easy to see that A = BBT .

So, by the definition of cp-rank itself, we conclude cp-rank A ≤ k.

One of the most interesting questions concerning the cp-rank is to find an upper

bound for the cp-rank of completely positive matrices of a given rank r. In 1983,

Hannay and Laffey showed that the maximal cp-rank of a CP matrix of rank

r is less than or equal to r(r + 1)/2 ([27]). Then, this upper bound was improved

by Barioli and Berman in [4]: they proved that the maximal cp-rank of a CP

matrix of rank r is equal to r(r + 1)/2− 1 for r ≥ 2.

Theorem 4.6 ([4]). For every rank r completely positive matrix A, r ≥ 2

cp-rank A ≤ r(r + 1)

2
− 1.

Theorem 4.7 ([4]). For every r ≥ 2 there exists a completely positive matrix A

with rankA = r and cp-rankA = r(r + 1)/2− 1.

4.2 The convex relaxed form of the cp-rank

In this section, we compute the (convex) relaxed form of the cp-rank function.

From Proposition 4.4 (ii), it is easy to see that the convex hull of the cp-rank

function on the whole space Sn(R) is the zero function. So, like for the rank

function, we restrict it to some appropriate ball. Let us consider:

A ∈ Sn(R) 7→ ψ(A) :=

{
cp-rank A if A is CP and ‖A‖∗ ≤ 1.

+∞ otherwise.

Theorem 4.8. The convex hull (or closed convex hull) of ψ is

A ∈ Sn(R) 7→ ψ̂ =

{
‖A‖∗ if A is CP and ‖A‖∗ ≤ 1.

+∞ otherwise.
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Proof. The domain of the function ψ̂, i.e. the set of matrices where it is finite-

valued, and that of ψ are equal: it is the compact convex set

CPn(R ∩ {A ∈ Sn(R)| ‖A‖∗ ≤ 1}.

So, if A ∈ Sn(R) lies out of the above set, the function ψ and ψ̂ coincide at A,

their common value is +∞.

Now, let A be chosen completely positive, with ‖A‖∗ ≤ 1. Firstly, if A is the zero

matrix, it is clear that

co(ψ)(0) = 0 = ψ̂(0).

Secondly, let us assume that A 6= 0. We have to prove that

co(ψ)(A) = ‖A‖∗.

Because

cp-rank ≥ rank ≥ ‖.‖∗ on {A ∈ Sn(R)| ‖A‖∗ ≤ 1},

and the function ψ̂ is closed and convex, we get the first inequality

co(ψ) ≥ ψ̂. (4.2)

Now, because A is CP, we can decompose A as A =
∑k

i=1 bib
T
i , where bi 6= 0 and

bi ∈ Rn
+. By setting ci =

bi
‖bi‖ and αi = ‖bi‖2, we obtain

A =
k∑

i=1

αicic
T
i . (4.3)

Then

tr A =
k∑

i=1

αitr(cic
T
i ) =

k∑
i=1

αi (because tr(cic
T
i ) = 1).

Hence,

0 ≤
k∑

i=1

αi ≤ 1.
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We complete the decomposition (4.3) with the zero matrix

A =
k∑

i=1

αicic
T
i + (1−

k∑
i=1

αi)0.

By using the convexity of co(ψ) and the fact that ψ(0) = 0, we have

co(ψ)(A) ≤
k∑

i=1

αico(ψ)(cic
T
i ) =

k∑
i=1

αi.

This means that

co(ψ)(A) ≤ ‖A‖∗. (4.4)

From (4.2) and (4.4), we deduce

co(ψ) = ψ̂.

Therefore, the rank and the cp-rank are two functions that share several common

properties: they are lower semi-continuous, subadditive, they take only integer

values. Moreover, on the set {A|‖A‖∗ ≤ 1}, they also have the same relaxed form,

namely the nuclear norm.

4.3 Open questions

4.3.1 The DJL conjecture

By Theorem 4.6, if A is a n× n completely positive matrix, then

cp-rank A ≤ n(n− 1)

2
− 1. (4.5)

But is there any better upper bound on the cp-rank of n × n matrices? Drew,

Johnson and Loewy proved that cp-rank A ≤ n2

4
for every completely positive

matrix of order n ≥ 4 whose graph is triangle free ([18]). The fact that the bound
n2

4
was also valid for all other known cases led the authors to wonder whether this

holds for every completely positive matrix of order n ≥ 4.
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Conjecture (The DJL Conjecture) If A is an n×n completely positive matrix,

with n ≥ 4, then

cp-rank A ≤ n2

4
. (4.6)

The conjecture was proved by Berman and Shaked-Monderer ([7]) for matri-

ces whose comparison matrices are M-matrices, and by Loewy and Tam ([51]) for

5× 5 matrices whose graph is not complete. But then, for the first time, Barioli

announced (in [3]) an example of 7 × 7 completely positive matrix of rank 5 and

cp-rank 14. Such a matrix is a counter-example to the DJL Conjecture.

4.3.2 The generalized subdifferentials

We computed explicitly the generalized subdifferentials of the rank function as in

chapter 2. The same question could be posed for the cp-rank function:to calculate

explicitly the generalized subdifferentials of the cp-rank function. We have been

unable to provide an answer to such a question. The main reason is that, contrary

to the rank function (which is the number of nonzero singular values), the cp-rank

of A cannot be deduced from the singular values of A.

Acknowledgment. We would like to thank Prof. I.Bomze (University of Vi-

enna) for drawing our attention to the similarities between the rank function and

the cp-rank function (AFG’11 meeting in Toulouse, September 2011).
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[3] F. Barioli. Completely positive matrices of small and large acute sets of

vectors, 2002. Talk at the 10th ILAS conference in Auburn.

[4] F. Barioli and A. Berman. The maximal cp-rank of rank k completely

positive matrices. Linear Algebra and its Applications, 363(0):17–33, 2003.

[5] M.S. Bazaraa, J.J. Goode, and M.Z. Nashed. On the cones of tangents

with applications to mathematical programming. Journal of Optimization

Theory and Applications, 13:389–426, 1974.

[6] J. Benoist and J.-B Hiriart-Urruty. What is the subdifferential of the

closed convex hull of a function? SIAM J.Math Anal., 27(6):1661–1679, 1996.

[7] A. Berman and N. Shaked-Monderer. Remarks on completey positive

matrices. Linear and Multilinear Algebra, 44(2):149–163, 1998.

[8] A. Berman and N. Shaked-Monderer. Completely positive matrices.

World Scientific, 2003.

[9] M. Borwein and R. Luke. Entropic regularization of the l0 function.

Springer Optimization and Its Applications, Fixed-point algorithms for in-

verse problems in science and engineering:65–92, 2011.

[10] E.J. Candes and T. Tao. Decoding by linear programming. Information

Theory, IEEE Transactions on, 51(12):4203 – 4215, December 2005.

99



100 BIBLIOGRAPHY

[11] E.J. Candes and T. Tao. The power of convex relaxation: Near-optimal

matrix completion. Information Theory, IEEE Transactions on, 56(5):2053–

2080, 2010.

[12] F.H. Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

[13] M.G. Crandall and P.-L Lions. Viscosity solutions of Hamilton-Jacobi

equations. Transactions of the American Mathematical Society, 277(1):1–42,

1983.
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Abstract

In this dissertation, we consider the rank function from the variational point of

view. The reason why we are interested in this function is that it appears as an

objective (or constraint) function in various modern optimization problems, such

as: low rank matrix completion, multivariate statistical data analysis, compressed

sensing, etc. In some particular cases, the rank minimization problems can be

solved by using the singular value decomposition of matrices or can be reduced to

the solution of linear systems. But in general, the rank minimization problems is

known to be NP-hard.

We provide here several properties of the rank function from the variational

point of view: additional proofs for its closed convex relaxation, the expres-

sions of its generalized subdifferentials and the explicit expression of its Moreau

regularization-approximation form. Then, in the last chapter, we revisit a notion

whose definition resembles that of the rank, the cp-rank function.

Keywords: the rank function; convex relaxation; generalized subdifferential;

Moreau regularization-approximation; the cp-rank function.





Résumé

Dans ce mémoire de thèse, nous étudions la fonction rang du point de vue varia-

tionnel. La raison pour laquelle nous nous intéressons à cette fonction est qu’elle

apparâıt comme une fonction objectif (ou comme fonction contrainte) dans divers

problèmes d’optimisation moderne, par exemple: complétion de matrices, analyse

de données statistiques, acquisition parcimonieuse de données, etc. Dans certains

cas particuliers, les problèmes de minimisation de la fonction rang peuvent être

résolus en utilisant la décomposition en valeurs singulières. Mais, en géneral, les

problèmes de minimisation de la fonction rang sont “NP-difficiles”.

Nous proposons ici quelques propriétés de la fonction rang du point de vue vari-

ationnel: des démonstrations supplémentaires pour son enveloppe convexe fermée

(restreinte à des boules spectrales), les expressions des sous-différentiels généralisés

et la régularisation-approximation au sens de Moreau. Puis, dans le dernier

chapitre, nous revenons sur une notion dont la définition ressemble à celle de

la fonction rang, la fonction cp-rang.

Mots-clés: la fonction rang: relaxation convexe; sous-différentiel généralisé; régularisation-

approximation de Moreau; la fonction cp-rang.
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