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RESUME 

 
 

Propriétés redox des indolone-N-oxydes et des extraits de Crinum 
latifolium  en relation avec leurs propriétés biologiques 

 
 
Mots clés: anticancéreux, antipaludéens, Crinum latifolium, indolone-N-oxydes, propriétés 
redox. 
 
Le travail de thèse porte sur l’examen des liens existants entre les propriétés d’oxydo-

réduction de molécules de synthèse (indolone-N-oxydes) et d’extraits naturels (Crinum 

latifolium) et leurs activités biologiques, respectivement antipaludiques et anticancéreuses. 

Les indolone-N-oxydes présentent de fortes activités antipaludiques in vitro et in vivo. Les 

molécules sont bioréductibles en milieu biologique et le signal redox qu’elles induisent dans 

le globule rouge parasité permet de détruire la cellule hôte infectée par Plasmodium 

falciparum sans dégrader le globule sain. Les travaux menés à l’aide, notamment, de 

méthodes biochimiques, électrochimiques et techniques couplées RPE-électrochimie, ont 

démontré le lien existant entre le potentiel de réduction et l’activité antiplasmodiale des 

molécules dans la série indolone-N-oxyde ainsi que le rôle joué par différents composants 

érythrocytaires. Les travaux ont également permis de différencier les mécanismes d’action de 

ces composés comparativement aux antipaludiques de référence, chloroquine et artémisinine. 

 

Les extraits de Crinum latifolium sont largement utilisés en Médecine Traditionelle en Asie, 

notamment au Viet Nam, pour leurs effets bénéfiques sur la longévité et leurs activités 

anticancéreuses dans le cas du cancer de la prostate, notamment. Les mécanismes d’action de 

ces extraits ne sont pas encore bien élucidés. En partant de l’examen des propriétes redox 

(capacité de réduction, caractère pro-oxydant), les travaux ont permis d’établir que plusieurs 

extraits sont capables d’activer les macrophages et d’inhiber la prolifération de certaines 

cellules du lymphome (EL4-luc2). D’autres extraits activent la differenciation des 

macrophages de type M1.  
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ABSTRACT 

 
 

Redox properties of indolone-N-oxides and Crinum latifolium 
extracts in relation with their biological properties 

 
 
Keywords: anticancer, antimalarials, Crinum latifolium, indolone-N-oxides, redox properties. 
 
The thesis focuses on the examination of the relationship between the redox properties of 

synthetic molecules (indolone-N-oxides) and natural extracts (Crinum latifolium) and their 

biological activities, respectively antimalaria and anticancer. 

Indolone-N-oxides have strong antimalarial activity in vitro and in vivo. These molecules are 

bioreductive in biological medium and induce a redox signal in parasitized red blood cells 

which destroys host cells infected by Plasmodium falciparum without damaging the healthy 

blood cells. The work with the help biochemical and electrochemical methods and EPR-

coupled electrochemistry showed the relation between the reduction potential and the 

antiplasmodial activities in the indolone-N-oxide series and the role played by different 

erythrocyte components. The work also differentiated mechanisms of action of these 

compounds compared to the antimalarial references, chloroquine and artemisinin. 

Crinum latifolium extracts are widely used in Traditional Medicine in Asia, including Viet 

Nam, for their beneficial effects on longevity and anticancer activities; particularly in the case 

of cancer prostate. The mechanisms of action of these extracts are not yet well understood. 

Based on the examination of the redox properties (capacity reduction, pro-oxidant character), 

the work has shown that several extracts are capable of activating macrophages and inhibiting 

the proliferation of lymphoma cells (EL4-luc2). Other extracts activate M1 macrophages 

differentiation. 
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ABBREVIATIONS AND SYMBOLS 
 
1-HH : metabolite of compound 1, (6-(4-
chlorophenyl)-7H-[1,3]dioxolo[4,5-f]indol-7-
one-5-oxide) 
3D7: chloroquine-sensitive strain of 
Plasmodium falciparum 
6HC: 6-hydroxycrinamidine 
 
A 
 
ACT: Artemisinin Combination Therapy  
AkEx: alkaloid extract  
AM: Artemether 
AQ: Amodiaquine 
AqEx: aqueous extract.  
ART: Artemisinin and derivatives 
ARMD: accelerated resistance to multiple 
AE1: erythrocyte anion exchanger, band 3 
protein 
 
C 
 
Cat: Catalase 
CL: Crinum latifolium 
CDNB: 1-chloro-2,4-dinitrobenzene 
Coartem: artemether-lumefantrine 
CQ: chloroquine 
 
D 
 
DC: Dendritic cells  
DMPO: 5,5-Dimethyl-1-pyrroline-N-oxide 
DPPH: 2,2-diphenyl-1-picrylhydrazyl 
DRE: Digital rectal examination  
DV: Digestive vacuole 
 
E 
 
ECM: Extra cellular matrix 
 

eNOS or NOS3: Endothelial NOS 
 
EPR: Electron paramagnetic resonance 
 
F 
 
Fansidar: sulfadoxine-pyrimethamine 
FcB1: Chloroquine-resistance strain of 
Plasmodium falciparum 
FlEx: flavonoid extract  
FrF: fraction F  
 
G 
 
G6PD: Glucose 6 phosphate dehydrogenase 
G6PP: Glutathione-6-phosphate 
dehydrogenase 
GMK: Greater Mekong Subregion 
GPx: Glutathione peroxidase 
GR: Glutathione reductase 
GSH: Glutathione 
GSSH: Glutathione disulfide 
 
H 
 
HSA: Human serum albumin 
 
I 
 
IFN- γ: interferon-γ  
IL 4: Interleukin 4 
IL 10: Interleukin 10 
IL 13: Interleukin 13 
INOD: Indolone-N-oxide 
iNOS or NOS2: Inducible NOS  
IRS: Indoor residual spraying 
ITN: Insecticide-treated bed net 
 
 
K 
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K1: Chloroquine and pyrimethamine-
resistance strain of Plasmodium falciparum 
KB: Human carcinoma cell line 
 
L 
 
LC-MS: Liquid chromatography–mass 
spectrometry  
L-cys: L-cysteine 
LM: Lumefantrine 
LPS: Bacterial lipopolysaccharide  
 
M 
 
MФ: Macrophages 
M1: classically activated MФ  
M2 alternatively activated MФ 
MCF7: Human breast cancer cells 
MDR: Multiple drugs resistance 
MDSC: Myeloid-derivated suppressor cell  
MMV: Medicine formalaria venture 
MQ: mefloquine 
MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide 
 
N 
 
NADPH: Nicotinamide adenine dinucleotide 
phosphate  
NEM: N-ethylmaleimide 
NMCP: National Malarial Control 
Programme 
NO: Nitric oxide  
NOS: NO synthase  
nNOS or NOS1: Neuronal NOS 
NOX: Nicotinamide adenine dinucleotide 
phosphate oxidase 
 
P 
 
P: parasite 
P.: Plasmodium 
PCR: Polymerase chain reaction 

PfDHPS: Plasmodium falciparum 
dihydropteroate synthetase  
PfDHFR: Plasmodium falciparum 
dihydrofolate reductase 
PfCRT: Plasmodium falciparum chloroquine 
resistance transporter 
PfNHE1: Plasmodium falciparum 
sodium/proton exchanger 1 
PfNHE1: Plasmodium falciparum 
sodium/proton exchanger 1 
PfMDR1: Plasmodium falciparum multidrug 
resistance transporter 1 
PfMRP: Plasmodium falciparum multidrug 
resistance associated protein 
PBMC: peripheral blood mononuclear cells 
PSA: Prostate specifics antigen 
 
R 
 
RAG2-/-: Recombination activation gene 2  
RBC: Red blood cell 
RDT: Rapid diagnostic test  
RESA: ring-infected erythrocyte surface 
antigen 
ROS: Reactive oxygen species  
RI: Resistance index 
 
S 
SI: Selective index 
SOD: Superoxide dismutase 
SP: Sulfadoxine-pyrimethamine  
 
T 
TAMs: Tumor-associated macrophages  
TNF α: Tumor necrosis factor α  
TRAIL: TNF related apoptosis-including 
ligand 
 
W 
WHO: World Health Organization  
 
X 
XO: Xanthine oxidase 
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INTRODUCTION GENERALE 
 

Les systèmes redox participent aux processus de signalisation cellulaire et sont essentiels au 

maintien des fonctions cellulaires durant un stress oxydant qu’il soit d’origine physique, 

chimique ou biologique. Les espèces réactives de l'oxygène (ROS) sont inhérentes à ces 

équilibres, en agissant comme réactifs de biosynthèse, messagers cellulaires ou éliminateurs 

d’agents exogènes. Ces espèces peuvent également infliger directement des dommages aux 

constituants cellulaires. Le terme "ROS" est commun aux radicaux libres oxygénés ainsi qu’à 

des espèces non radicalaires telles que le peroxyde d'hydrogène. Compte-tenu du rôle des ROS 

et des mécanismes d'oxydo-réduction dans diverses maladies, plusieurs approches 

thérapeutiques ont été développées pour moduler ou activer les réponses redox cellulaires. Si 

plusieurs stratégies thérapeutiques, le plus souvent à caractère antioxydant, ont été développées 

pour réduire l'impact des effets néfastes des ROS dans les maladies métaboliques, les stratégies 

à mettre en œuvre dans le cas des maladies infectieuses et des cancers sont beaucoup plus 

complexes. Dans le cas des cancers, cibler une cellule cancéreuse, par une approche redox 

(cytotoxiques pro-oxydants) sans endommager sa voisine, la cellule saine, est un challenge. 

Dans le cas des maladies infectieuses, la cellule hôte comme l'agent pathogène, ont des voies 

de signalisation, et des protéines redox, communes pour certaines, distinctes ou partagées pour 

d’autres. Les stratégies conventionnelles de découverte de nouvelles molécules actives, via 

l'identification de cibles, la conception de nouvelles molécules et la pharmaco-modulation, se 

révèlent souvent inefficaces à cause de cette imbrication. Le cas du paludisme constitue un tel 

exemple avec l’intervention de trois acteurs (vecteur, parasite, hôte) dans un cycle à deux 

niveaux, chez l’homme, exo- et intra-érythrocytaire. Dans ce contexte, pouvoir relier le 

caractère oxydo-réductible d’une molécule à son activité biologique constitue une étape, dans 

le processus de découverte, pour comprendre ses mécanismes d’action, améliorer ses 

propriétés pharmacologiques, voire réorienter ses applications. 

 

Dans ce mémoire, deux sources moléculaires, de synthèse et naturelle, avec des propriétés 

biologiques avérées, ont été choisies pour étudier les liens entre les propriétés redox et les 

activités biologiques. Ces deux sources sont issues des travaux des deux équipes environnant 

le travail de thèse mené en co-tutelle entre Ho Chi Minh City et Toulouse. La série des 

indolone-N-oxydes, obtenue par synthèse organique, à fortes activités antipaludiques in vitro et 
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in vivo, constitue la première source. Les extraits ou substances isolées de Crinum latifolium, à 

réputation traditionnelle sur la longévité et les cancers, constitue la deuxième source.  

 

Les propriétés antipaludiques des indolone-N-oxydes ont été démontrées in vitro (CI50 de 

l’ordre du nanomolaire) et in vivo au sein du laboratoire de Toulouse. Il a été démontré 

également que ces molécules subissent une bio-réduction au sein du globule rouge dépendante 

de réducteurs enzymatiques et moléculaires intra-érythrocytaires. Les questions posées dans ce 

travail portent sur le lien qui pourrait exister entre ces activités antiplasmodiales et le caractère 

oxydo-réductible, voir le potentiel redox de ces molécules, et les conséquences sur le 

mécanisme d’action intra-érythrocytaire. 

 

La médecine traditionnelle est d’usage très répandu au Vietnam. Crinum latifolium est une 

plante largement utilisée depuis l’antiquité au Vietnam et dans de nombreux pays, pour traiter 

différents cancers, dont le cancer de la prostate, et les états inflammatoires. Les effets sur la 

longévité sont également rapportés. Le laboratoire d’Ho Chi Minh city travaille sur cette plante 

depuis plusieurs années, notamment pour  qualifier les extraits issus de cette plante et pour 

isoler les molécules à l’origine de ces activités. Dans ce mémoire, il a été choisi d’étudier la 

capacité des extraits et composés purs isolés de C. latifolium à activer et à différencier des 

macrophages en relation avec les propriétés redox des extraits sur différents modèles. Il s’agit 

de démontrer l’intérêt de l’usage traditionnel de ces extraits pour améliorer l’état des patients 

atteints de certains cancers (cancer de la prostate par exemple). 

 

Bien que plusieurs expériences aient été menées conjointement (propriétés redox), il a été 

choisi de présenter les résultats en deux parties, l’une traitant des indolone-N-oxydes (Partie A), 

l’autre traitant de Crinum latifolium (Partie B). Ainsi la partie A comprend une partie 

bibliographique et deux chapitres de résultats articulés autour de deux publications, l’une parue 

dans Bioelectrochemistry, l’autre acceptée dans Journal of Inorganic Biochemistry. La partie B 

comprend un chapitre bibliographique et un chapitre de résultats élaboré autour d’un manuscrit 

soumis à Journal of Ethnopharmacology.  

Une conclusion générale présente un bilan des travaux. 

  



5 
 

GENERAL INTRODUCTION 
 

Redox systems are involved in cell signaling processes and are essential for maintaining 

cellular functions during oxidative stress whether from physical, chemical or biological origin. 

The reactive oxygen species (ROS) are inherent in these functions, acting as intermediates in 

biosynthesis, cellular messengers or scavengers of exogenous agents. These species may also 

directly inflict damage on cellular components. The term "ROS" is common to oxygen-free 

radicals, as well as non-radical species such as hydrogen peroxide. Given the role of ROS and 

redox mechanisms in various diseases, several therapeutic approaches have been developed to 

modulate or activate cellular redox responses. While several therapeutic strategies, most often 

with antioxidant characteristics, have been developed to reduce the impact of the adverse 

effects of ROS in metabolic diseases, in the case of infectious diseases and cancers such 

strategies are much more complex. In the case of cancer, specifically targeting a cancer cell by 

a redox approach (cytotoxic pro-oxidant) without damaging the neighboring healthy cells is a 

challenge. In the case of infectious diseases, the host cell and the pathogen have signaling 

pathways and redox proteins, some of which are in common, while others are distinct or shared. 

Conventional approaches to the discovery of new active molecules, through the identification 

of targets, drug design and pharmacological modulation, are often ineffective because of this 

nesting. Malaria is such a complex example with the participation of three actors (vector, 

parasite and host) in a cycle at two levels in humans, exo-and intra-erythrocyte. In this context, 

establishing a relation between the character of a reducible redox molecule and its biological 

activity is a step in the discovery process, in order to understand the mechanisms of action and 

improve its pharmacological properties, even redirect its applications. 

 

In this project, two molecular sources, synthetic and natural, with proven biological properties, 

were selected to study the relationship between redox properties and biological activities. 

These two sources are derived from the work of both teams involved in the thesis project, 

carried out in co-supervision between Ho Chi Minh City and Toulouse. The indolone-N-oxide 

series, obtained by organic synthesis, with high antimalarial activity in vitro and in vivo, was 

the primary source, and extracts or substances isolated from Crinum latifolium which has a 

traditional reputation for activity against some cancers and prolonging longivity, was the 

second source. 
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The antimalarial properties of indolone-N-oxides have been demonstrated in vitro (IC50 at the 

nanomolar level) and in vivo in the laboratory of Toulouse. It has also been shown that these 

molecules undergo bio-reduction in red blood cells depending on reducing enzymatic and 

molecular agents. The questions in this study focus on the possible link between these 

antimalarial activities and the oxido-reducible character and the redox potential of these 

molecules, and the consequences on the intra-erythrocytic mechanism of action.  

 

Traditional medicine is widely used in Vietnam. Crinum latifolium is a plant that has been 

used since antiquity in Vietnam and in many countries to treat various cancers, including 

prostate cancer, as well as inflammatory states. Effects on longevity are also reported. The 

laboratory of Ho Chi Minh city has been working on this plant for several years, to qualify 

plant extracts and to isolate molecules behind the therapeutic activities. In this work, it was 

decided to investigate the ability of extracts and pure compounds isolated from C. latifolium to 

activate and differentiate macrophages in relation with the redox properties of the extracts on 

different models. This is to demonstrate the value of the traditional use of these extracts to 

improve the condition of patients with certain cancers (prostate cancer, for example). 

 

Although several experiments have been jointly carried out (redox properties), it has been 

decided to present the results in two parts, one dealing with indolone-N-oxides (Part A), the 

other dealing with Crinum latifolium (Part B). Part A includes a bibliographic chapter and two 

chapters of results, organized around two publications, one published in Bioelectrochemistry, 

and another accepted in the Journal of Inorganic Biochemistry. Part B includes a bibliographic 

chapter and a chapter of results developed around a manuscript submitted to the Journal of 

Ethnopharmacology. 

 

A general conclusion provides an overview of the results. 
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REDOX PROPERTIES OF INDOLONE- N-
OXIDE (INODs) IN RELATION TO 

THEIR ANTIMALARIAL PROPERTIES 
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1. Malaria 
 
a. Description and distribution 

 

Malaria is a life-threatening disease caused by parasite Plasmodium (P.) including five species: 

P. falciparum, P. vivax, P. malariae, P. ovale, P. knowlesi. There are at least 225 millions 

infection cases and 781,000 deaths per year (WHO, 2010). Among them, P. falciparum is the 

most dangerous species and lead to 90% of the deaths in malaria (Petersen et al, 2011). It is 

transmitted by infected female Anopheles mosquito. Malaria is one of important causes of 

morbidity and mortality in children in Africa (WHO, 2010). During pregnancy, infection by 

malaria may lead to low birth weight or mortality or adverse consequences in the longer term 

(Tarning et al, 2012). 

Malaria is distributed in sub-tropical or tropical regions (Figure 1), especially in poor areas and 

the poverty accelerates the spread of the disease. The major malaria burden is in sub-Saharan 

Africa (Cui et al, 2012). Southeast Asia is considered as one of the most dangerous foci with 

high risk of new drug resistance due to various ecological systems together with diverse 

breeding habitats, creating a good condition for multiple mosquito vector species (Cui et al, 

2012).  

 

 

Figure 1. Distribution of malaria (Petersen et al, 2011) 

 

b. The cycle of transmission 

Plasmodial sporozoites enter human blood stream when infected female Anophele mosquito is 

having a blood meal. They rapidly migrate to the liver where they infect and proliferate. There 

are no symptoms or any abnormal liver function in this state. About a week after, merozoites 
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are released into the circulation from the hepatocytes and invade erythrocytes. It initiates 

intraerythrocytic cycle. Merozoites feed on hemoglobin, develop and replicate asexually to 

become schizont. This process is called schizogony. When schizonts are mature in erythrocyte, 

they rupture out of it and infect other healthy erythrocytes (Figure 2). Complete asexual 

replication cycle lasts every 72 hours (P. malariae), 48 hours (P. falciparum, P. vivax, P. 

ovale) and 24 hours (P. knowlesi). Clinical symptoms are developed as the result of rupture of 

schizont. 

 

 

 

 

 

Figure 2. Life cycle of Plasmodium 

falciparum in human host and Anopheles 

mosquito vector (Cowman et al, 2006). 

 

 

c. The clinical forms 

Malaria doesn’t cause any specific symptoms. In general, it includes fever, running nose, 

cough, diarrhoea/dysentery, burning micturition and/or lower abdominal pain, skin 

rash/infections, abscess, painful swelling of joints, ear discharge, lymphadenopathy (WHO, 

2009). Most important clinical feature in malaria bases on fever, often irregular or continuous 

at one set. This lack of specific symptoms leads to over-treatment because there are many 

possible causes of fever. To get a good treatment, it is recommended to do parasitological 

diagnosis (WHO, 2009). 

 

d. Diagnostic 

The early diagnostic helps to reduce the chance of death. Diagnosis is performed either by 

rapid diagnostic test (RDT) or by microscopy (WHO, 2011). These two methods which are 
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inexpensive which provide information about species and number of infected erythrocytes. 

Microscopy requires well-trained employees to avoid making error in species identification 

and parasite density estimation. While thick blood films are used to identify Plamsodium 

species, thin blood films is used for checking morphologic parasites (Wongsrichanalai et al, 

2007). In order to overcome the disadvantages of blood smear test, RDT was developed. RDT 

is applied to detect malaria parasite antigen in finger-prick blood samples which require 

minimal skill to perform and interpret. Most of RDTs detect P. falciparum with high 

sensitivity (>95%) (Wongsrichanalai et al, 2007). Beside RDT and microscopy, polymerase 

chain reaction (PCR) provides high sensitivity and specificity but is expensive and requires 

well-trained employees (Suh et al, 2004). Finally, diagnosis is extremely important to select 

the appropriate treatment to cure patients and contribute to malaria prevention and control.  

 

e. Drug resistance and treatments  

Drug resistance 
 
Control of malaria has become a big challenge since drug resistance was found in current 

antimalarials (Figure 3). Drug resistance is influenced by many factors i) the mutation rate of 

the parasite, ii) the fitness costs associated with the resistance mutation, iii) the overall parasite 

load, iv) the strength of drug selection, v) the treatment compliance (Petersen et al, 2011). 

Mutation allows parasites to adapt to environmental change. Mutation rate in P. falciparum 

dihydropteroate synthetase (PfDHFR) gene is relatively low (10-9) (Paget-McNicol et al, 2001). 

However, accelerated resistance to multiple drugs (ARMD) phenotype in South East Asia 

leads to new resistance which is able to fight against the new drug effect (Rathod et al, 1997). 

Therefore, mutation in parasite is capable to change drugs’ active site so that drugs are not able 

to reach their targets. Nevertheless, mutation causes not only new resistances but also vital 

dysfunction. It is called fitness cost which plays an important role in drug resistance selection. 

In addition, a strong drug selection pressure creates fast environmental change that evidently 

accelerates drug resistance. Finally, improper treatment (inadequate drugs, dosing problem) is 

one important reason of drug resistance in malaria (Muller, 2011). 
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Figure 3. Drug resistance distribution in malaria. (B) Chloroquine treatment failure, (C) 
amodiaquine treatment failure, (D) sulfadoxine–pyrimethamine (Fansidar) treatment failure, 
(E) artemether–lumefantrine (Coartem) treatment failure. (CQ: chloroquine; AQ: amodiaquine; 
SP: sulfadoxine–pyrimethamine; AM: artemether; LM: lumefantrine) (Petersen et al, 2011). 
 

Drug resistance in antimalarials is mainly due to mutation in seven genes: P. falciparum 

chloroquine resistance transporter (PfCRT), P. falciparum multidrug resistance transporter 1 

(PfMDR1) and P. falciparum multidrug resistance-associated proteine (PfMRP), P. falciparum 

Na+/H+ (PfNHE), dihydropteroate synthase (PfDHPS), dihydrofolate reductase-thymidylate 

synthase (PfDHFR), ubiquinol binding site of cytochrome bc1 complex. PfCRT and PfMDR1 

are located within the digestive vacuole (DV) membrane (Cowman et al, 1991). PfCRT acts as 

an active transport to pump drugs out from DV (Sanchez et al, 2007). PfMDR1 is active 

transport that facilitates the accumulation of drugs in DV (Rohrbach et al, 2006), (van Es et al, 

1994). PfMRP resides at the parasitic plasma membrane and function as a drug efflux (Raj et 

al, 2009). PfNHE functions as a source of energy, a pH control by anaerobic glycolysis and by 

an active transport of protons in the parasite (Bosia et al, 1993). The two genes PfDHPS and 
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PfDHFR encode for two important enzymes in folate pathway which are essential for DNA 

replication and metabolism of amino acids. PfDHPS is responsible for folate precursors 

formation. PfDHFR reduces dihydrofolate into tetrahydrofolate (Hyde et al, 2005). 

Cytochrome bc1 complex is the complex III in electron transport chain responsible for ATP 

formation. 

Although resistance occurs in current antimalarials, they are still administered as part of 

combination therapy, base on their different targets within parasite.  

 

Quinine which is an active alkaloid with an aryl-amino alcohol structure is the oldest 

antimalarial. It was first isolated in 1820 from the bark of cinchona tree (Butler et al, 2010). Its 

mechanism of action is not fully understood. It accumulates in parasites DV and then inhibits 

the detoxification of heme (Fitch, 2004). It has short half-life with 8-10 hours. The resistance 

to quinine is complex including multiple mutations in three genes PfCRT, PfMDR1 and 

PfNHE1 (Sidhu et al, 2005), (Nkrumah et al, 2009), (Cooper et al, 2002), (Cooper et al, 2007). 

Nowadays, quinine is used in second line of malarial treatment and in combination with 

antibiotics (Petersen et al, 2011). 

 

Chloroquine (CQ), a synthesized 4-aminoquinoline derivative, was first introduced in the 

1940s. It was successfully used for ten years after first introduction based on its highly efficacy, 

affordability and safety, especially in pregnancy (Alkadi, 2007). It is useful for 

chemoprophylactic effect because of 60 days long half-life (Stepniewska et al, 2008). The 

mechanism of action of CQ was intensively studied (Figure 4). CQ is a weak base, pKa 8.1-

10.2 that remains uncharged in neutral condition of blood (Martin et al, 2009). It can freely 

cross membrane by passive diffusion and becomes diprotonated in acidic medium within DV. 

In charged form, CQ is not able to pass the membrane (Martin et al, 2009). Therefore, it binds 

to hematin, resulting in prevention of heme detoxification and death of parasite (Fitch, 2004). 

CQ resistance began at the Thai-Cambodian border and in Colombia in the 1950s (Mita et al, 

2009). Then the resistance spread to Africa in the 1970s (Mita et al, 2009). Cross resistance 

between CQ and amodiaquine was reported due to their similarity in chemical structure and 

mechanism of action. Polymorphisms in PfCRT and PfMDR1 mainly cause resistance to the 

two drugs (Sa et al, 2009) (Figure 4).  

 

Amodiaquine is a 4-aminoquinoline derivative that has been used as an antimalarial for 70 

years. Even though its half-life is short (t1/2 = 3 hours), its primary metabolite, 
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monodesethylamodiaquine, has a longer half-life (t1/2 = 9 - 18 days) (Stepniewska et al, 2008). 

The mechanism of action and resistance is similar to CQ (Figure 4).  

 

Mefloquine was first introduced in the 1970s (Trenholme et al, 1975). It is a 4-

methanolquinoloneline with t1/2  = 14 - 18 days (Stepniewska et al, 2008). Its mechanism 

remains unclear. Its target properly locates outside DV. One of its actions could be inhibition 

the transportation of some solutes to DV. Mefloquine resistance arises by overexpression of 

PfMDR1 or PfMRP (Rohrbach et al, 2006). While PfMDR1 facilitates the accumulation of 

mefloquine inside DV and prevents the interaction between the drug and its target molecule, 

PfMRP prevents the drug to enter inside the parasitic cellular space (Figure 4). 

 

Figure 4. Pathway of action and drug resistance. (A) Chloroquine (CQ) and amodiaquine 
(AQ), (B) mefloquine (MQ), red blood cells (RBC), parasite (P), digestive vacuole (DV), P. 
falciparum chloroquine resistance transporter (PfCRT), P. falciparum multidrug resistance 
transporter 1 (PfMDR1) and P. falciparum multidrug resistance-associated proteine (PfMRP) 
(Petersen et al, 2011). 
 

Piperaquine belongs to bis-4-aminoquinoline derivatives with a long half-life t1/2 = 5 weeks. 

The mechanism of action is not fully understood. Resistance to piperaquine rose due to 

intensive monotherapy in China in the late 1970s. Mutation in PfCRT particularly causes 

resistance to piperaquine (Muangnoicharoen et al, 2009). It is used now in artemisinin based 

combination therapy (Davis et al, 2005). 
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Lumefantrine  is a hydrophobic aryaminoalcohol antimalarial. The mechanism of action is 

unknown. It has a half-life t1/2 = 3 - 5 days (Ezzet et al, 1998). Polymorphisms in PfMDR1 

(variant N86) reduce sensitivity of parasites to the drug (Figure 5) (Sisowath et al, 2007). 

 

Figure 5. Pathway of action and drug resistance. (C) lumefantrine (LM), (D) artemisinin 
(ART) and its derivatives, red blood cells (RBC), parasite (P), digestive vacuole (DV), P. 
falciparum chloroquine resistance transporter (PfCRT), P. falciparum multidrug resistance 
transporter 1 (PfMDR1) and P. falciparum multidrug resistance-associated proteine (PfMRP) 
(Petersen et al, 2011). 
 

Primaquine is a 8-aminoquinoline with t1/2 = 6 h (Edwards et al, 1993). It is used for P. vivax 

hypnozoite liver stages. Unfortunately, it causes hemolytic anemia in glucose-6-phosphate 

dehydrogenase (G6PD) deficiency. It shows synergistic action with CQ by binding to PfCRT 

and by inhibiting of CQ efflux (Sanchez et al, 2004). 

 

Atovaquone inhibits electron transport chain in mitochondria due to its chemical similarity to 

ubiquinol, a liphophilic hydroxynaphthoquinone. Its target molecule is cytochrom bc1. Half-

life is t1/2 = 2 - 3 days (Hughes et al, 1991). It is indicated as an anti-parasitical drug for 

Plasmodium, Toxoplasma, Theileria, Babesia (Srivastava et al, 1997). Since atovaquone 

resistance appeared because of mutation at the ubiquinol binding site of cytochrom bc1, 

atovaquone is used in combination with proguanil, in prophylactic medication for tourists (Gil 

et al, 2003). 
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Antifolate drugs including sulfadoxine and dapson inhibit dihydropteroate synthetase 

(PfDHPS), while pyrimethamine and proguanil inhibit dihydrofolate reductase (PfDHFR). 

PfDHPS is responsible for folate precursors production. The function of PfDHFR is to reduce 

dihydrofolate to tetrahydrofolate. After chloroquine resistance, sulfadoxine-pyrimethamine (t1/2 

= 4 - 5 days) was introduced as highly effective, cheap and well-tolerated antimalarials. 

Resistance also happened due to point mutation in these two enzymes PfDHPS and PfDHFR 

(Uhlemann et al, 2005). Antifolate drugs are still used in malaria for prevention during 

pregnancy. Combination of dapson-proguanil was withdrawn from the market since there was 

high risk of hemolysis in G6PD deficiency (Luzzatto, 2010). 

 

Artemisinin is a natural compound originated from Artemisia annua plant. In order to 

improve its poor solubility, semi-synthetic artemisinin derivatives (artemether, artesunate, 

dihydroartemisinin) were developed and applied in malaria. It contains one endoperoxide bond 

which is essential for antimalarial activity (Eastman et al, 2009). Endoperoxide bond is 

cleaved by ferrous iron present in heme or by specific protein which can be found in DV and 

cytosolic compartment. This endoperoxide cleavage results in the formation of reactive 

radicals, following by death of parasites (Bray et al, 2005). Partial artemisinin resistance is 

caused by PfMDR1 amplification, suggesting accumulation of artemisinin in DV (Figure 5). 

To prolong life span of artemisinin, a strong drug selection pressure must be avoided and 

artemisinin based combination therapy should be applied (artemether - lumefantrine, 

artesunate - mefloquine, artesunate - modiaquine, artesunate – sulfadoxine - pyrimethamine, 

dihydroartemisinin-piperaquine and artesunate-pyronaridine) (Muller et al, 2009) 
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Table 1. Pathway of action and resistance of antimalarial drugs. 

Drugs Pathway of action Resistance mechanism (Mutation) 

Chloroquine 
Amodiaquine 
Quinine 
Lumefantrine 

Entering to DV to inhibit haem 

polymerization 

Mutation in PfCRT. Result: drug is directly 

pumped out of DV via an active transport 

(mutated PfCRT) 

Lumefantrine  
Artemisinin 
Quinine 
Mefloquine 
Halofantrine 
(Increase resistance 
of CQ) 

 Mutation in PfMDR1 at amino acid position 

86, 184, 1034, 1042 and 1246. Result: drug is 

indirectly pumped out of DV by affecting 

intracellular ion gradients (Cl-) or pH.  

Chloroquine 
Quinine 
Artemisinin 
Piperaquine 
Primaquine 

 Mutation in PfMRP. Result: drugs and other 

metabolites are pumped out of parasite. 

Quinine Entering to DV to inhibit haem 

polymerization 

Mutation in PfNHE1. Result: Quinine cannot 

reach target molecule 

Sulfadoxin and 

dapson 

Inhibition of folate pathway.  Mutation in PfDHPS. Result: folate pathway 

is not inhibited 

Pyrimethamine and 

cycloguanil 

Inhibition of folate pathway Mutation in PfDHFR. Result: folate pathway 

is not inhibited 

Sulfadoxine-

pyrimethamine 

Inhibition of folate pathway Mutation point in PfDHPS and PfDHFR. 

Result: folate pathway is not inhibited 

Atovaquone Inhibition of electron transport chain 

by inhibiting transfers electron from 

ubiquinol to cytochrom c 

Altering atovaquone binding site of cytochrom 

bc1. Result: Atovaquone cannot reach target 

molecule 

 
Treatment 
For uncomplicated malaria, artemisinin should never be given as monotherapy which could 

rapidly cause resistance. Artemisinin Combination Therapy (ACT) is a combination between 

artemisinin derivatives and other antimalarials (amodiaquine, lumefantrine, mefloquine or 

sulfadoxine-pyrimethamine). Some combinations have been used in resistance area, such as 

artesunate + sulfadoxine-pyrimethamine (SP), artemether + lumefantrine, artesunate + 

mefloquine. ACTs could be safely given during the second and third trimester of pregnancy. 

For the first trimester of pregnancy, quinine is recommended (WHO, 2009). 

To treat complicated malaria, artemisinin derivatives (artesunate, artemether, arteether) and 

quinine are used via intravenous or intramuscular administration at the beginning. Patients then 

take oral drugs, quinine and doxycycline are recommended for following 7 days (WHO, 2009). 

The method of preventing malaria for travelers is also mentioned in Table 2. 
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Table 2. Treatments against malaria (recommendation from WHO, 2009) 

Clinical forms Parasites/ 
Administration 

Medicines Dosages 

Uncomplicated 
malaria 

P. vivax Chloroquine 25 mg/kg for 3 days 
Primaquine (for prevention) 0.25 mg/kg for 14 days 

P. falciparum Chloroquine (in sensitive area) 25 mg/kg for 3 days 
Artemisinin Combination 
Therapy (ACT) 

Artesunate: 50 mg x 4/day for 3 days 
Sulfadoxine: 500 mg x 3 for 1st day 

Mixed infected Treated as P. falciparum  
Severe malaria Intravenous (i.v.) 

Intramascular (i.m.) 
Artesunate 2.4 mg/kg i.v. or i.m. at t=0, then at 

12 h and at 24 h, then once a day 
Quinine 20 mg quinine salt/kg i.v. after every 

4 hours 
Artemether 3.2 mg/kg i.m. at t=0, then 1.6 mg/kg 

per day. 
Arteether 150 mg daily i.m. for 3 days 

Oral  Quinine + doxycycline 
 

Quinine: 10 mg/kg x3/day for 7 days 
Doxycycline: 3 mg/kg/ day for 7 
days 

Chemoprophyla
xis 

 Doxycycline (less than 6 
weeks travelling) 

100 mg daily, start 2 days before 
travel, 4 weeks after leaving 
malarious area 

Mefloquine (more than 6 
weeks travelling) 

5 mg/kg daily, start 2 weeks before 
travel, 4 weeks after leaving 
malarious area 

 

f. Malaria in South East Asia 

Although many countries in Asia such as Indonesia, Malaysia, Philippine are free from malaria, 

the Greater Mekong subregion (GMK) is still affected by malaria. Resistance to chloroquine 

and antifolates was first developed here and spread to other parts of the world. Resistance to 

quinine and mefloquine is also rising. Since partial resistance to artemisinin was reported in 

2008 in Cambodia (Noedl et al, 2008), artemisinin resistance gradually spreads to different 

area out of the GMK including six countries Viet Nam, Cambodia and Thailand, Laos, 

Mynamar, China (Yunnan province) (Figure 6). There are various distributions of malaria over 

South East Asia. The common and major endemic regions are in forest, cross-border, small 

community with poor health infrastructure (Cui et al, 2012). Monitoring and controlling 

malaria are difficult in these areas because of some common reasons.  

- Poor diagnosis without parasitologic confirmation leads to inadequate treatment. 

- Artemisinin monotherapy by self-treatment is still common although WHO 

recommends ACTs as the first line treatment in malaria (Butler, 2009). 

- Many antimalarial drugs are substandard or counterfeit (Vijaykadga et al, 2006), (Lon 

et al, 2006), (Dondorp et al, 2004). It results in reduction of efficacy and the 
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development of resistance as well as life-threatening. Counterfeit can be substandard or 

expired and degraded or can contain very small amount of active compounds. They are 

freely sold in private markets in these developing countries. It is difficult to combat the 

counterfeit because government agencies (the customs or the police) are not well-

trained enough to recognize the counterfeits. 

- Malaria burden is heaviest in borders between these countries due to several socio-

cultural, economic, environmental and political factors. The heavy population flows 

between these borders because of many reasons such as finding better jobs, escaping 

from political fighting, wars and diseases (Martens et al, 2000). Especially, border line 

along with forest is an ideal environment for mosquitoes living and malarial epidemic. 

In these areas, many ethnic minorities stay in small isolated community with poor 

health care system and health education. Borders between these countries are the 

biggest reservoir of malarial infection which makes the control of the disease even 

more difficult. The cross-border malaria control could be feasible but it is slowly 

established. 

 

 

Figure 6. Resistance of artemisinin and its derivatives in Mekong area (WHO, 2012). 

 

Cambodia is the epicenter of drug resistance in malaria since resistance to chloroquine, 

antifolates and artemisinin were first reported here and spread through the world at accelerated 

rate (Anderson et al, 2005), (Noedl et al, 2009), (Noedl et al, 2010). Malarial incidence is 
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highest in western region of the country where is the border line between Cambodia and 

Thailand. Multiple Drugs Resistance (MDR) is the most dangerous problem in this area, 

causing high risk to develop drug resistance to new antimalarials (Rathod et al, 1997). 

 

In China, highest malarial incidence areas are in Central China, Hainan Island and Yunnan 

provinces (border lines with Myanmar, Laos and Viet Nam). Malarial transmission peaks 

occur in May-July and October-November. P. vivax is the most dominant species. P. 

falciparum is only found in subtropical Hainan and Yunnan province. Due to China’s national 

malaria control program, malaria cases dropped from 6.79 million cases in 1954 (Yip, 1998) to 

29 039 cases in 2000 (Cui et al, 2012). Prevention of malaria reintroduction and management 

of drugs resistance are challenges because of the 4000 km border line with three malarious 

countries (Lin et al, 2009). Resistance to artemisinin and its derivatives is rising in Yunnan 

province where artemisinin has been used for the longest time (Cui et al, 2012). 

 

In Laos, malarial situation is getting better. The number of cases was reduced from 63 736 

cases in 2000 to 18 740 in 2008 (WHO, 2009). The endemic area is in the south part of the 

country (Delacollette et al, 2009). The management of drug resistance is difficult since the rate 

of self-medication is high and counterfeit antimalarials are out of control (Cui et al, 2012). 

Myanmar  is considered as the heaviest malaria burden since there is the highest death rate in 

GMK, for example 75% all of death in 2007 (WHO, 2008). The highest malarial incidence 

areas include forest and forest-fringe areas of Kachin, Rakhine states and Sagaing Division. P. 

falciparum is the most abundance species. Malarial outbreaks often occur. The most serious 

one, about a thousand deaths, was reported in November 2003 in Shan and Kachin (Li et al, 

2005). Poverty and inadequate health care system are the major reasons that make a huge 

chanllenge in malaria control, especially in the border areas with minorities and mobile 

workers. 

 

In Thailand, malaria mostly accumulates in Yala, Narathiwat and Sa Kaeo province. All of the 

five different Plasmodium species have been reported in Thailand (Sattabongkot et al, 2004), 

(Zhou et al, 1998) (Putaporntip et al, 2009). The most common species is P. vivax 

(Sattabongkot et al, 2004). High level of P. falciparum, P. malariae and P.ovale are also 

observed. There are only few reported cases of P. knowlesi. Two annual endemic peaks occur 

in raining season. Malaria situation has been dramatically improved in the country, for 

example 63 528 infected cases in 2001 reduce to 26 150 cases in 2008 (WHO, 2009). The 
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problems in malaria control in Thailand are pretty similar to the neighbor countries such as 

heavy population migration between border with Myanmar and Cambodia, life style and 

behavioral factors of minorities. In addition, high proportion of multiple drugs resistance 

(MDR) exists in border area which contributes to the difficulty of the control program and 

accelerates the resistance to ACTs (Cui et al, 2012).  

 

In Viet Nam, malaria was the major cause of morbidity and mortality. There are two dominant 

species, P. falciparum and P. vivax and a few amount of P. knowlesi. Malaria mainly 

accumulates in Central and in South of Viet Nam especially in remote area, central highland 

near to the border of Viet Nam-Cambodia and Viet Nam-Laos (Figure 7.). In the central 

highland, nearly 80 % of the severe cases have been observed each year. The country is also 

known to undergo annually natural disasters such as drought, typhoons, floods which are 

favorable to trigger malarial epidemics. In general, the malarial epidemic peak occurs in 

raining season, between June and December (Thang et al, 2009). In 1991, there were 144 

epidemics of malaria that caused 1 672 000 uncomplicated cases and 32 000 severe malaria 

with 4 650 deaths (Hung et al, 2002). At the same year, National Malaria Control Programme 

(NMCP) was launched, together with fast economic development and strong international 

support. This resulted in dramatical reduction of malaria. In order to control malaria, some 

important strategies have been done:  

- The national insecticide-treated bed net (ITN) campaign: Impregnated-bed nets with 

permethrin were freely supplied. Bed nets were pre-impregnated twice a year (Hung et 

al, 2002). 

- Indoor residual spraying (IRS) to prevent people from mosquitoes biting (Hung et al, 

2002). 

- Health education through media (television or radio) or directly to locals by volunteer 

health workers that educate people to prevent mosquitoes at home and to act when 

someone is infected by malaria (Hung et al, 2002). 

- Producing high quality and low cost of artemisinin (from Thanh Hao tree, Artemisia 

annua traditionally used in Chinese and Viet Nam) and its derivatives (WHO, 2010). 

- Free diagnosis and treatment of malaria (Hung et al, 2002). 
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Figure 7. Distribution of malaria in Viet Nam (WHO, 2010b). 

 

Within five years 1992-1997, the number of deaths by malaria was reduced by 97% (Figure 8) 

(WHO, 2010). There were only a few small outbreaks of malaria in 1997 (WHO, 2010). There 

was not any epidemic peaks in 2006 (Thang et al, 2009). Nowadays, malaria is under control 

in Viet Nam but it can’t be totally eliminated due to remote area, ethnic minorities (without 

using insecticide-treated bed net and indoor spray) and migrate workers between Viet Nam - 

Cambodia, Laos and China (active carriers). 

 

 

Figure 8. Free treatment and insecticide-treated nets reduce malaria deaths in Viet Nam 

(WHO, 2010). 
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In Viet Nam, ACTs was applied as the first line treatment in all malarial area since 2003 when 

resistance to chloroquine and sulfadoxine–pyrimethamine was already widespread. A ten-year 

(1998-2008) study showed a stable sensitivity of P. falciparum to artemisinin in Viet Nam 

(Thanh et al, 2010). It is important to prevent resistance to artemisinin by cross-border malaria 

control, discouraging monotherapy, self-therapy, inadequate treatment and usage of poor 

quality medicines. 

 

Together with increased government investment and international supports, malaria situation 

in GMK has been improved and controlled. Unfortunately, there are many obstacles that these 

countries should face before reaching malaria elimination. These common obstacles include 

border malaria, counterfeit antimalarials and MDR P. falciparum. In addition, resistance to 

artemisinin and its derivatives has been developed and spread among these nations. In one 

hand, it requires to coordinate work between these countries to control border malaria, improve 

the diagnosis and treatment regimen, and in order to slow down resistance spread. In another 

hand, it is urgent to develop new antimalarials until the end of this decade. 
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2. Indolone-N-oxides 

 
At a time when there is an unprecedented global effort to control and potentially eliminate 

malaria, antimalarial resistance remains the single most important obstacle to success. 

Therefore new alternative therapeutic agents with novel chemical scaffolds and new 

mechanisms of action are strongly and continuously needed. The series of indolone-N-oxides 

(INODs) (Figure 9) with strong antimalarial properties at low nanomolar concentration in vitro 

has been developed in our group in this context (Nepveu et al, 2010).  

 

N
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Figure 9: Structure of the indolone N-oxides (INODs) 

 

Several new chemical classes with potent blood schizontocidal activity in vitro have been 

identified in the two past decades. These include endoperoxides (Pandey et al, 1999), (Gemma 

et al, 2009) inhibitors of phospholipid biosynthesis (Vial et al, 2003), ferroquines (Domarle et 

al, 1998), trioxaquines (Coslédan et al, 2008), imidazole-piperazines (A. Nagle et al, 2012), 

pyrazino-indole-diones (Beghyn et al, 2012), stilbene-chalcone hybrids (Sharma et al, 2012), 

and spiroindolones (Rottmann et al, 2010). folate anatagonist (Martyn et al, 2010), antibiotics 

(Rosenthal, 2003), iron chelators (Ferrer et al, 2012), new natural products (Muiva et al, 2009). 

According to Medicines for Malaria Venture (www.mmv.org), new drug candidates are ACTs 

(artemether + lumefantrine, dihydroartemisinin + piperaquine), combination of different 

antimalarials (sulfadoxine-pyrimethamine + amodiaquine), combination of antimalarial and 

antibiotics (azithromycin + chloroquine), synthesized current antimalarial derivatives 

(primaquine and artemisinin derivatives). Thus, the new coming antimalarials are ACTs or 

developed analogs of existing agents. We are then wondering “how long do these new agents 

successfully fight against malarial parasites when they have the same mutated target as their 

origin analogs?”. Therefore, it is necessary to have new agents with new mechanism of action 

before ARTs resistance totally arises and resistant parasites spread to higher transmission areas 

such as Africa. Among new chemical groups with antimalarial activity, indolone-N-oxide 

(INODs) (Figure 9) developed in our research group show potent and high promising 

antimalarials properties with low toxicity (Nepveu et al, 2010). 
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Indolone-N-oxide derivatives belong to a novel chemical class of potent antimalarial activity 

without any chemical similarities to aminoquinolines and sesquiterpene lactones. 

 

a. Physico-chemical, biochemical and biological properties 

 

Indolone-N-oxides, (3-oxo-3H-indole-1-oxides), commonly known as isatogens, were 

described more than 100 years ago.  The first isatogen (3-oxo-1-oxy-3h-indole-2-carboxylic 

acid ethyl ester) was reported by Baeyer as early as 1881 (Baeyer, 1881). These compounds 

are brightly colored solids that do not occur naturally (Slatt and Bergman, 2002). After the 

synthesis of the first isatogen, the research on this family was continued by Pfeiffer and 

Hooper and other groups to find that isatogens can readily undergo nucleophilic attack in the 

2-position (Pfeiffer, 1916), (Hooper et al, 1965). Later on, various biological activities have 

been attributed to this interesting chemical scaffold. In mammalian systems, isatogens are 

known as inhibitors of the synthesis of adenosine triphosphate (ATP) in mitochondria 

(Sweetman et al, 1971), (Hooper et al, 1974). Anti-tuberculosis (anti-mycobacterial) activities 

have been reported for some indolone-N-oxides (Sahasrabudhe et al, 1980), (Ibrahim et al, 

2012). In in vitro screening tests, isatogens showed antibacterial (Hooper et al, 1965), 

antifungal (Hagen et al, 1982) and antileishmanial (Ibrahim et al, 2012) potencies. Moreover, 

they elicit smooth muscle relaxation (Spedding and Weetman, 1978), (Foster et al, 1983), and 

have neuro-protective (Menton et al, 2002) and hypertensive activities (Wihlborg et al, 2003). 

 

The N-oxide redox functional group has shown its importance to generate new bio-active 

compounds in various pharmacological fields. This can be illustrated by the chlordiazepoxide 

introduced in therapy as tranquilizer in the 1960’s and more recently the aliphatic or 

heteroaromatic N-oxides bioreductive drugs to treat hypoxic cancer cells (McKeown et al, 

2007), (Solano et al, 2007). Recently, indazole N-oxide derivatives have been reported as 

antiprotozoal agents with a reduction mechanism (Gerpe et al, 2006). 

 

The indolone-N-oxides contain the nitrone moiety, a strong dipole, (C=N+-O–), which is highly 

reactive. This nitrone group is the chemical scaffold of radical spin traps. This led the 

laboratory to study the spin trapping properties of some indolone derivatives revealing that the 

phenylisatogen derivatives are capable of trapping hydroxyl and superoxide radicals (Figure 



26 
 

10) (Nepveu et al, 1998), (Boyer et al, 2004). Additionally, 2-aryl-indolone-N-oxides gave 

very stable spin adducts by trapping oxygen or carbon-centered free radicals chemically or 

enzymatically produced, while it was not the case for 2-alkyl derivatives.  

 

 

Figure 10. Spin adduct formation by indolone-N-oxide. 

 

The 2-alkyl-indolone-N-oxides were rapidly reduced in solution leading to radical nitroxide 

intermediates while 2-aryl-indolone-N-oxides were stable in solution. Moreover, alkyl nitrones 

are instantly decomposed by ethanol while aryl nitrones are commonly recrystallized from 

ethanol (Hamer and Macaluso, 1964). Under certain conditions (Lunazzi et al, 1967), very 

long-lived radicals were generated via a proton attack from the solvent by heating up these 

indolones. In addition, indolone derivatives can be easily reduced by thiols (Danieli and 

Maccagnani, 1965). Considering these physicochemical properties, especially the indolone-N-

oxide reducible character, their ability to generate stable radical intermediates and their 

reactivity with thiols our team has hypothesized that this may be critical for parasite growth 

within red blood cells (RBCs) (Nepveu et al, 2010). RBCs contain high levels of reductases 

and reductants, such as glutathione, and display an increase in reactive oxygen species during 

parasite maturation. This hypothesis was tested, the antimalarial activities of INODs were 

demonstrated and a drug research program was launched.   

 

It was mentioned earlier that isatogens may exert their biological action by oxidizing 

molecules which are present in natural redox systems (Bunney et al, 1970) and inhibit activity 

of transhydrogenase enzyme by reacting with nucleophiles such as thiols (Figure 11) 

(Sweetman et al, 1974). 
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Figure 11. Reaction between indolone-N-oxide and transhydrogenase (Katrizky, 1978). 

 

 

The nitrone group can hence be called a redox pharmacophore because, from the 

pharmacological point of view, reducible chemical groups may be able to disrupt cellular 

redox homeostasis. Isatogens have properties similar to those of quinones (Pfeiffer, 1916), 

(Bunney et al, 1970) and they form adducts analogous with quinhydrones (Hiremath and 

Hooper, 1978). The reaction between INODs and transhydrogenase leads to the inhibition of 

the ATP synthesis. This reaction was also used to identify the location of the enzyme, in the 

outside of the inner membrane of mitochondria (Katrizky, 1978). INODs are able to modify 

the mitochondrial metabolism, resulting in smooth muscle relaxation, ATP receptor 

antagonism and inhibition of ATP synthesis (Foster et al, 1983). These effects are not specific 

(Foster et al, 1983). The role of mitochondrial modification due to nitrone is not fully 

understood. It could be involved in all pharmacological properties since the mitochondria are 

important energy suppliers and the cell-death regulators at cellular level. 

 

b. Antimalarial properties 

 

The series of indolone-N-oxides (INODs), developed in our group as part of search for new 

antimalarial molecular scaffolds, has shown in vitro antiplasmodial activity in the nanomolar 

range against Plasmodium falciparum strains sensitive and resistant to current antimalarial 

agents (chloroquine and pyrimethamine) (Nepveu et al, 2010). Certain members of this family 

are even more active than chloroquine and artesunate with an IC50 less than 3 nM on FcB1 and 

equal to 1.7 nM on 3D7 (INOD-3) along with a very satisfactory selectivity index (CC50 

MCF7/IC50 FcB1 = 14 623; CC50 KB/IC50 3D7 = 198 823) (Table 3). Initial screening of 64 

derivatives have demonstrated that 15 of these derivatives inhibit P. falciparum growth at 

50 % inhibitory concentration (IC50) ≤ 100 nM (2 derivatives at IC50 ≤ 3 nM) and exhibit low 

cytotoxicity against MCF-7 and KB human cell lines. These promising results led the group to 

evaluate the in vivo antimalarial activity on P. berghei-infected murine model. However, on 

this model the best antimalarial activity did not exceed 62.1 % inhibition of parasitemia at 30 
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mg/kg/4 days by intraperitoneal (ip) route of administration and 14.5 % inhibition of 

parasitemia by oral (po) route (INOD-1) (Table 3). No acute toxicity was observed up to 140 

mg/kg (ip) (Nepveu et al, 2010). Higher doses were not tested due to the limit of solubility of 

INOD-1 in DMSO. Three conclusions were drawn from these assays, i) no good correlation 

was seen between the in vitro and in vivo results; ii) the poor solubility of these compounds is 

a limiting factor in the assays of biological activity and ADME/Tox profiling and iii) the half-

life of this compound in liver microsomes is very short.  

Currently, INOD-1 has been identified as the best hit of the indolone-N-oxide series (Figure 

12). 

 

 

 

 

 

Figure 12. 6-(4-chlorophenyl)-7H-[1,3]dioxolo[4,5-f]indol-7-one-5-oxide (INOD-1) 

 

Table 3 summarizes the main physicochemical and biological findings of the most promising 

compounds of the indolone-N-oxide series (Nepveu et al, 2010).
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Table 3. Main physicochemical and biological characteristics of INOD-1, INOD-2 and INOD-3 (Nepveu et al, 2010) 

Compound Structure LogPa 

IC50 P. falciparum 
(nM) 

CC50 (µM) Selectivity index 
t1/2 

(min)b 

% Parasitemia 
inhibition (30 
mg/kg/day) 

FcB1 3D7 K1 MCF7 KB 
MCF7/ 
FcB1 

KB/ 
3D7 

Poc Ipd 

INOD-1  

2.07 75 ± 63 58 ± 17 88 ± 17 15.9 27.0 212 450 < 1 14.5 62.1 

INOD-2  

2.01 195 ± 20 101 ± 32 124 ± 44 > 39.5 457 > 202 4525 16 32.4 40.5 

INOD-3  

2.30 < 3 1.7 nde 43.9 338 > 14623 198823 6 20.9 15.3 

 

a LogP calculated with VCCLAB (http://www.virtuallaboratory.org/lab/alogps/start.html) 
b half-life in mouse liver microsomes, verapamil, 6 min; c po: per oral; d ip: intraperitoneal; e nd: not determined
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Two selected compounds (INOD-1 and INOD-2) were tested on fresh clinical isolates of P. 

falciparum collected from symptomatic patients. Geometric mean 50 % inhibitory 

concentration (IC50) of INOD-1 is 48.6 nM. Correlation between INOD-1 and CQ is not 

observed (r = 0.015; P > 0.05). In contrast, there is significant correlation between INOD-1 

and dihydroartemisinin (r = 0.444; P< 0.05) (Tahar et al, 2011). 

There is no significant drug interaction between INODs and different current antimalarials 

(artesunate, artemisinin, dihydroartemisinin, chloroquine, amodiaquine, mefloquine, quinine). 

However, quinine and INOD-1 showe slight antagonism interaction against 3D7. Quinine and 

INOD-2 exert slight synergistic interaction against 3D7. Therefore, their mechanisms of 

action are slightly different (Tahar et al, 2011). 

In the stage specific study, blood samples were taken at different times (6, 12, 24, 30, 36, 48 

h) of life cycle of parasite, incubated with INOD-1 and INOD-2 and then compared with 

untreated control ring cultures. INOD-1 and INOD-2 stop the maturation of parasite at ring 

stage. Their effect is only obtained when the compounds are added before 30 hours of the 

cycle. After 30 hours, both compounds are not able to remove entire number of new rings 

(Tahar et al, 2011).  

There are some compounds relatively have higher IC50 than INOD-1 in vitro, but they 

couldn’t be selected to further tests due to their low aqueous solubility or/and chemical 

instability. Therefore, these results are useful for future molecular design in order to improve 

chemical stability and pharmacological properties of the drug candidate. In addition, INODs 

exhibited antiplasmodial activity within a highly active range (IC50 < 100 nm). Their activity 

is not influenced by the level of chloroquine resistance (Tahar et al, 2011). These finding 

confirms that indolone-N-oxide group is a highly promising antimalarial group in near future. 

 

c. Nanoformulation and in vivo assays 

 

It was first necessary to overcome the unfavorable physicochemical (solubility) and 

pharmacokinetic (rapid hepatic metabolism) properties of the INODS series so as to render 

them bioavailable, an essential prerequisite for reproducible and accurate in vivo results. It 

was clear that the development of this series should first go through the preparation of 

suitable formulations that enhance the solubility of the indolone-N-oxides and hence enable 

the intravenous route of administration to be used. This evades the rapid and extensive first-

pass effect and ensures direct delivery of antimalarial drug to the site of infection (blood). 
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However, the development of a suitable formulation of the hydrophobic, rapidly acting 

indolone-N-oxides was not an easy task. An appropriate preparation that respects the rapid 

antimalarial effect and the mechanism of action of this class of compounds was sought.  

A nano-formulation process, innovative for antimalarials, has been developed in our group (N. 

Ibrahim, 2012).and applied with success to the INODs leads, first to have water soluble forms 

of those compounds available, second to increase their antimalarial efficacy by a right choice 

of a biocompatible polymer used to prepare the nano-particles. In fact, all the significant 

efforts undertaken during the past two years to increase bioavailability with a series of 

traditional methods failed (oils, microemulsions, liposomes, inclusion in cyclodextrins) gave 

no satisfying results.  Beyond the effect of wettability brought by this polymer, it appeared 

that it was a vector of choice, in the context of malaria, for transporting INODs to parasitized 

erythrocytes. The assays of our laboratory (Table 5) strongly suggest that the use of these 

nanoparticles to target erythrocytes constitutes a very innovative approach in the context of 

malaria drug therapy. 

 

Table 4. In vivo antimalarial activity of unformulated and formulated drug tested on the 

murine model (Plasmodium berghei) with Peters’ test as compared with artemisinin, 

chloroquine and artesunate (NPs = Nanoparticles), (N. Ibrahim, 2012). 

 

Compound Dose 
% Inhibition of 

parasitemia at D4 

Mean survival 

time (days) 

Unformulated drug  a 30 mg/kg/4 days, po 14.5 - 

Unformulated drug  a 30 mg/kg/4 days, ip 62.1 - 

Drug/ NPs 25 mg/kg/4 days, iv 99.1 > 34 

Chloroquineb 10 mg/kg/4 days 99 17 

Artesunatec 10 mg/kg/3 days, po 99.1 8.2 

Commercial artesunated 3.2 mg/kg/4 days, iv 58 11.7 

Commercial artesunated 6.4 mg/kg/4 days, iv 87 12.4 
a Nepveu et al, 2010; b Musonda et al, 2009 ; c Chadwick et al, 2011 ; d Pail et al, 2012 

 

The reduction in parasitemia is calculated after examining blood smears taken on day 4 (96 hr 

post-infection). Additional smears were examined on subsequent days to confirm absence of 

relapse and revealed that 100 % inhibition of parasitaemia was achieved on day 7. 
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Table 5. In vivo antimalarial activity of drug/ NPs (NPs = nanoparticles) tested on the 

‘humanized’ mouse model (Plasmodium falciparum) (N. Ibrahim, 2012) 

 

Compound Dose % Inhibition of parasitaemia 

Chloroquine 15 mg/kg/4 days, po 100 

Artesunate 4 mg/kg/4 days, po 28 

Drug/ NPs 25 mg/kg/4 days, iv 97.5 

 

With these nanotechnologies, an organic solvent-free formulation of the practically water 

insoluble antimalarial indolone-N-oxides was obtained. A thousand-fold increase in aqueous 

solubility was attained, allowing the administration of higher doses by the intravenous route, 

which enables the antimalarial compound to reach the systemic circulation (with 100 % 

bioavailability) and to be exposed directly to parasitized erythrocytes (cellular target). The 

method described for producing the nanoparticles achieved an excellent entrapment of the 

drug with a satisfactory particle size along with good homogeneity and successfully liberated 

the drug rapidly preserving the flash antimalarial activity of the indolone-N-oxides (N. 

Ibrahim, 2012), (N. Ibrahim et al, 2010). 

 

e. Chemical synthesis  

The indolone-N-oxide derivatives were synthesized by three different methods as reported 

before (Nepveu et al, 2010). 

Method 1 (Figure 13) is based on 1,2-diketone intermediates b, that are cyclised via nitro 

group reduction to generate the corresponding indolone-N-oxides (Génisson et al, 2001), 

(Nepveu et al, 2003). The 1,2-diketones were prepared by permanganate oxidation of a 

styrene precursor a, which is easily obtained by Wittig olefination of nitrobenzaldehydes with 

phosphonium ylides.  

Method 2 (Figure 14) (Rosen et al, 2000) is a one-pot procedure based on Sonogashira 

coupling of o-iodo nitro-aryles with terminal alkynes, and concomitant cyclisation of o-

(arylalkynyl)-nitroaryles intermediates into indolone-N-oxides (Sonogashira et al, 1975), (A. 

Elangovan et al, 2003).  

Method 3 ( (Figure 15) derives from optimization of method 2 and was divided into two sub-

steps: the first involved Sonogashira coupling as in method 2 as well as intermediate 

extraction, followed by an intramolecular cyclisation using 4-dimethyl amino pyridine (4-

DMAP) in refluxing pyridine (Kim, 2007), (Bond and Hooper, 1969), (Suvilo et al, 2003), 
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(Berry et al, 2001). Preparations of INODs were strongly improved in our group. For 

example, INOD-1 (Scheme 1, Method 1) obtained with a yield of 17.4% in (Nepveu et al, 

2010) is now obtained with a yield of 65%. 
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Figure 13. Method 1 used to synthesize indolone N-oxide derivatives (R3 = alkyl). Reagents 
and conditions: (i) Ph3PCH2R

3Br, NaOH, CH2Cl2, Bu4N
+Br-; (ii) KMnO4, acetic anhydride, 0 

°C; (iii) Zn, NH4Cl, tetrahydrofuran, CH2Cl2 (Nepveu et al, 2010). 
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Figure 14. Method 2 used to synthesize indolone N-oxide derivatives (R3 = aryl). Reagents 
and conditions: (i) (CH3)3Si-C≡CH, Pd[(C6H5)3P]4, CuI, Et3N; (ii) CH3OH, K2CO3; (iii) 
CH3COOH, HNO3 fuming; (iv) Pd(PPh3)2Cl2, CuI, NEt3, N2, r. t (Nepveu et al, 2010).  
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Figure 15. Method 3 used to synthesize indolone-N-oxide derivatives (R3 = aryl). Reagents 
and conditions: (i) (CH3)3Si-C≡CH, Pd[(C6H5)3P]4, CuI, Et3N; (ii) CH3OH, K2CO3; (iii) 
CH3COOH, HNO3 fuming; (iv) Pd(PPh3)2Cl2, CuI, NEt3, N2, r. t.; (v) pyridine, 4-
dimethylaminopyridine, reflux 140 °C (Nepveu et al, 2010). 
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Pharmacomoluation studies showed that substitution at position 2 has a great influence on the 

antiplasmodial IC50 values while variation at positions 5 and 6 of the substituants did not 

modify strongly the IC50 values (Figure 16). At position 2 (R3) chemical groups having 

mesomeric effect such as either +M: F, Cl, OCH3, OPh or –M: NO2, enhance the activity 

(Figure 16). In contrast, chemical group having inductive effect for instance +I: CH3, C2H5, 

CH2OH or –I: CF3 decreased the activity (Figure 16). When a phenyl ring is attached at 

position 2, the full structure is almost coplanar (X-ray crystallographic studies). The planarity 

is disturbed by steric effect due to the substitution at position 2.  

 

 

 

 

 

A 

 

 

 

B 

 

 

 

Figure 16. Comparison of antiplasmodial activity (IC50 [nM], strain FcB1) of A) 2-substituted 
indolone-N-oxides, B) Dioxymethylene derivatives of indolone-N-oxides (Nepveu et al, 
2010). 
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Table 6. Structure of indolone-N-oxide analogues (Figure 9) obtained, and their 

antiplasmodial and cytotoxic activities in vitro (Nepveu et al, 2010).  

Compoun
d R1 R2 R3 LogPcalc

a 
(VCCLAB)  

IC50 (nM) 
FcB1 strain 

CC50 (µM)b 
MCF7 

Selectivity 
index 

MCF-7/FcB1 
1 O-CH2-O 4′-Chlorophenyl 2.07 75 ± 63 15.9 212 

2 H H 4′-Phenoxyphenyl 3.51 264 ± 60 11.1 42 

3 H H 4′-Hydroxymethyl phenyl  1.29 3,950 ± 50 39.5 10 

4 H H 4′-Methoxyphenyl 2.01 195 ± 20 > 39.5 c > 202 

5 H H 4′-6′-Methoxy-naphthalen-2-yl 3.03  560 ± 15 15.3 66 

6 O-CH2-O 4′-6′-Methoxy-naphthalen-2-yl 2.51 288 ± 30 25.6 89 

7 O-CH2-O 4′-Phenoxyphenyl 3.00 165 ± 40 12.2 74 

8 H H 3′, 4′-Dichlorophenyl 3.14 155 ± 20 13.7 88 

14 O-CH2-O 3′, 4′-Dichlorophenyl 2.66 195 ± 2 7.4 38.1 

15 O-CH2-O 4′-Ethoxyphenyl 1.98 156 ± 57 51.9 332 

16 H H 4′-Tolyl  2.23 1,770 ± 20 15 8.5 

49 H H i-Butyl 1.61 > 4,500 c 43.1 <9 

50 H H n-Propyl 1.41 12,160 ± 500 26.4 2 

51 O-CH2-O Ethyl 0.62 3,560 ± 400 59.0 16 

52 H H Phenyl 1.96 889 ± 88 19.5 22 

53 H H 4′-Fluorophenyl 2.06 120 ± 29 8.7 72.5 

54 O-CH2-O 4′-Fluorophenyl 1.58 1,710 ± 30 n. d. n. d. 

56 H H 4′-Nitrophenyl 1.96 56 ± 4 2.8 8.4 

59 H H 
4′-Chloro-3′-

trifluoromethylphenyl 
3.31 1,045 ± 35 2.0 1.9 

60 H H 4′-Ethylphenyl 2.81 2,750 ± 150 > 39.8 c > 14 

61 H H 4′-Trifluoromethylphenyl 2.71 1,170 ± 80 34.3 29 

63 O-CH2-O Phenyl 1.5 12,720 ± 400 n. d. n. d. 

64 H H 4′-Chlorophenyl 2.54 272 ± 16 17.8 66 

Chloroquine 4.63 151 ± 6 19.4 167 

Sodium artesunate 2.41 6 ± 3 9.8 1,633 

 
d. Mechanisms of action 

 

INODs bind to site I  on albumin (Ibrahim et al, 2010). The interaction between INODs and 

albumin spontaneously occurs (negative ∆G) due to hydrophobic interaction between 

conjugation system of INODs and hydrophobic regions of HSA (Ibrahim et al, 2010). This 

phenomenon is explained by the rigid coplanar of indolone analogue which reduces the 

number of possible conformations or any possibility of other bindings. This interaction 

alternates the HSA conformation by slightly inducing unfolding of α-helix domain (Ibrahim et 

al, 2010). INOD-HSA complex with binding affinities K = 104 (Ibrahim et al, 2010) is in the 

range of weak or nonspecific (Tajmir-Riahi et al, 2007). Low drug-protein binding leads to 

high therapeutic index which is favorable to continue further INODs study such as in 

administration, distribution, metabolism and elimination. 

As demonstrated by the research done in our laboratory and in collaboration with Pr P. Arese 

and Pr F. Turrini (University of Torino, Italy),  INODs and derivatives have an original 
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mechanism of action: i) they interfere with regulatory mechanisms of the host cell membrane 

without affecting non-parasitized erythrocytes; iii) erythrocyte membrane modifications 

determine its destabilization and intense vesiculation that leads to parasite death; iv) the 

mechanism leading to the destabilization of the membrane in parasitized erythrocytes is 

triggered by the activation of a stress-sensitive phosphorylation pathway which effects the 

membrane-cytoskeleton interactions (Ferru, 2011) v) marked hyperphosphorylation of AE1 

(band 3) appears to be the hallmark of the process (Pantaleo et al, 2012.). As a result, 

overload oxidative stress is created which is critical for survival of parasites such as in sickle 

cell disease, G6PD deficiency, α- and β-thalassemias and oxidizes drugs (Pantaleo et al, 

2012). In overload oxidative stress environment, membrane vesiculation is accelerated at very 

early stage of parasite maturation, so that parasit is killed before it reaches full maturation. 

Therefore, INODs are able to destabilize the membrane of malaria infected erythrocyte cells 

by the action of redox signaling pathway (Pantaleo et al, 2012). 

 

In parallel, the biotransformation of INODs in red blood cells was studied because the human 

erythrocytes are the cellular target of Plasmodium; compound 1 was selected for these studies 

in our group. 

Compound 1 (INOD-1) is not only found to have a rapid diffusion from plasma to red blood 

cells (RBCs) but also it has rapid metabolism in cytoplasmic of RBCs, resulting in bio-

transformation to a fluorescent product, the dihydroanalogue, 1-HH (INOD-1-HH) (Figure 

17). Two possible metabolic chemical pathways are suggested via deoxygenation followed by 

hydration or epoxide formation followed by hydration (Figure 17) (Ibrahim et al, 2011). 

Furthermore, this biotransformation depends on the enzyme process since glutathion or thiol-

containing compounds are found necessary for the bio-reductive transformation of compound 

1 (Ibrahim et al, 2011). In addition, haemoglobin could be essential in co-subtrate in an 

enzymatic redox cycle. RBCs are not inert to compound 1 in vitro, the transformation of 

compound 1 in RBC could play an privotal role in parasite redox balance and antiplasmodial 

activity. More studies are required to confirm these suggestions 
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Figure 17. Biotransformation model of compound 1 (Ibrahim et al, 2011). 

 
Table 7. Comparison of the biological, chemical properties of compound 1 (INOD-1) with its 
metabolite (1-HH) 
 

Characters/Assay 
 

Compound 1 
(INOD-1) 

Its metabolite (1-HH) 
(INOD-1-HH) 

Conclusion 

Planarity Coplanar Loss planarity Loss conjugated sytem, 
Color Deep pink Greenish yellow Loss conjugated sytem, 

loss planarity 
Fluorescence property No Yes Loss nitron function 
Conjugated system Yes No  
Hydrophobicity Liphophilic Hydrophilic Difference in distribution  
Distribution Mainly in intracellular Both in intracellular and 

in extracellular 
Effect on IC50 value 

IC50 87 nM 1027 nM Both active against 
Plasmodium 

Interact with microsome Half-life: less than 1 min. Half-life: 10 min. 1-HH is more stable than 
compound 1 

 

Table 8. Factors affecting biotransformation of compound 1 (INOD-1) in the erythrocyte. 

 

Factors/ incubation with 
 

Biotransformation Conclusion 

Temperature reaction rate at 37°C > at 4°C  Temperature dependence 
Purified heamoglobin No  Reaction takes place in 

cytoplasmic of RBC Ghost fraction No  
Heat-denatured RBC No  Enzyme depend process 

 1-chloro-2,4-dinitrobenzene (CDNB)- or N-
ethylmaleimide (NEM)-RBCs (CDNB, 
NEM deplete glutathione) 

Lower  

Pf-infected RBC containing haemozoin Yes * 
 

No depend on haemoglobin 
process 
 

β-thalassemic RBCs containing abnormal 
haemoglobin 
Phenylhydrazine (PHZ) -treated RBC (PHZ 
induces HbFeIII , hemichrom formation) 

Yes* No depend on heme-iron 
process 
 

Liver microsome  No Microsome doesn’t participate 
in this biotransformation 

*: No significant different from incubated sample of compound 1 (INOD-1) and normal RBC 
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In summary, INODs have low affinity with HSA which allows enough free INODs to reach 

infected-RBCs. When INODs penetrate to infected-RBCs, they undergo an enzyme and thiol-

dependant biotransformation. According to these results, redox properties of INODs are 

evidently essential for their antimalarial activity.  

These first data on the mechanism of action of the INODs, introducing the concept of 

oxidative stress and bio-reducibility of the bio-active molecules, require to study in more 

details the redox character of the INODs, by physico-chemical approaches, and their 

interactions with the biochemical components of the erythrocyte. It is also important to 

conduct these studies in comparison with chloroquine and artemisinin to highlight the 

similarities and/or differences between these three chemical families to evaluate the capacity 

of INODs to address the problem of the resistance of the parasite to current antimalarials. 
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II. ELECTROCHEMICAL BEHAVIOR OF 
INDOLONE-N-OXIDE: RELATIONSHIP 

TO STRUCTURE AND 
ANTIPLASMODIAL ACTIVITY 
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1. Introduction 

Les indolone-N-oxydes (INODs) constituent une nouvelle famille de molécules 

antipaludiques prometteuses. Les INODs présentent des activités antiplasmodiales avec des 

activités inhibitrices (CI50) proches du nanomolaire contre Plasmodium falciparum et une 

faible toxicité sur cellules humaines in vitro (Nepveu et al, 2010). Sur la base de ces activités 

biologiques et des études de relations structure-activité, le groupement N-oxyde réductible ne 

devient biologiquement actif que s'il est introduit dans des systèmes conjugués, tels que des 

composés hétérocycliques et pseudo-quinoïdes. Par conséquent, le système conjugué entre le 

groupe nitrone et la fonction cétonique est essentielle à l'activité antipaludique (Nepveu et al, 

2010). Au cours de sa biotransformation au sein du globule rouge, nous avons montré 

précédemment que les INODs subissent une bio-réduction, enzym- et thiol- dépendantes 

(Ibrahim et al, 2011). Etant donné la présence de trois différentes fonctions réductibles dans 

ces molécules, le groupement N-oxyde, le carbone hautement électrophile dans le groupement 

nitrone et la fonction cétone, il apparait indispensable d’étudier les propriétes redox des 

INODs au niveau moleculaire.  

 

En utilisant la voltampérométrie cyclique, la résonance paramagnétique électronique (RPE) et 

la spectroélectrochimie, les propriétés redox de 37 représentants de la famille INODs ont été 

étudiées. Dans ce contexte, les relations entre substituants, potentiels redox, lipophilie et 

activités antipaludiques ont été analysées. Les études ont été menées pour répondre aux 

questions suivantes: Quel est le comportement redox des INODs en solution? Y a-t-il 

formation de radicaux libres? Y a-t-il une relation entre le comportement redox et l‘activité 

antipaludique? Les résultats sont importants pour la conception de nouvelles structures 

chimiques visant à obtenir des molécules antipaludiques plus actives. 
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1. Introduction 
 
The indolone-N-oxides (INODs) are a new promising antimalarial family. INODs exert 

antimalarial activity in nanomolar range against Plasmodium falciparum with low toxicity for 

mammalian cells in vitro (Nepveu et al, 2010). Based on the biological evaluation and 

structure-activity relationship studies, the reducible N-oxide moiety only becomes biological 

active when it is inserted into conjugated systems such as heterocyclic and pseudo-quinoid. 

Therefore, the conjugated system between the nitrone group and ketonic function is essential 

for antimalarial activity (Nepveu et al, 2010). In cell based metabolism study, INODs undergo 

an enzyme and thiol-dependent bioreductive transformation in RBCs (Ibrahim et al, 2011). 

Since there are three different reducible functions presenting in an INOD analogue: the N-

oxide moiety, the highly electrophilic carbon in the nitrone moiety and the ketone function, it 

is definitely necessary to study the redox properties of INODs at the molecular level to better 

explain their mechanism of action. 

 

By using cyclic voltammetry and electron spin resonance (EPR) spectroelectrochemical 

measurement, the redox properties of thirty seven INODs were investigated. In this context, 

the relationship between the substituents, redox potentials, lipophilicity and antiplasmodial 

activities were analysed. The results of this study wish to answer for these questions: What is 

redox behavior of INODs? Is there any free radical formation? Is there any relationship 

between redox behavior and antimalarial activity of INODs? The results are important for 

chemical structure design to obtain more potent antimalarial molecules.  

 

2. Electrochemical behavior of indolone-N-oxides: relationship to structure 
and antiplasmodial activity. 

(Publication) 
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3. Conclusion 

 

Les potentiels d'oxydo-réduction d’une série d’indolone-N-oxyde (37 représentants), en 

milieu aprotique ont été étudiés par voltammétrie cyclique et spectroélectrochimie RPE. La 

réduction de cette série se caractérise par deux étapes de transfert d'électron situées à environ 

- 0,68 ± 0,2 V et -1,45 ± 0,2 V. La réduction du groupe -C = N-O avec le transfert du premier 

électron, est totalement réversible. La seconde étape de réduction correspond à la réduction du 

groupe carbonyle qui est quasi-réversible en raison de la formation du pinacol après 

dimérisation. 

 

L'étude indique que les composés ont une plus grande activité antipaludique quand ils sont 

plus facilement réductibles en raison de deux évidences i) une relation entre le comportement 

électrochimique et les structures chimiques des composés INODs établies pour des 

groupements électro-attracteurs sur le carbone alpha de la fonction nitrone qui facilite la 

réduction, ii) ces composés sont bio-réductibles dans les globules rouges. 

 

Par couplage électrochimie RPE, la formation d'un radical cation stable formé au cours de la 

première réduction est confirmée. La protonation du radical se produit sur le carbone en 

position alpha de la fonction nitrone plutôt que sur le groupe NO. Ce radical intermédiaire est 

obtenu avec un potentiel compatible avec l’environnement intracellulaire. Ce radical pourrait 

déclencher un signal redox activant plusieurs signaux d'oxydo-réduction en cascade et la 

génération d'un stress oxydant fatal au globule rouge parasité 
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3. Conclusion 
 
 
The redox potential of thirty seven indolone-N-oxides in aprotic solvent was studied using 

cyclic voltammetry and EPR spectroelectrochemistry. The reduction of this series is 

characterized by two electron transfer steps located around - 0.68 ± 0.2 V and -1.45 ± 0.2 V. 

The reduction of the –C=N–O double bond is the first electron transfer which is totally 

reversible. The second reduction step corresponds to the reduction of the carbonyl group that 

is quasi-reversible due to the formation of pinacol after dimerization.  

 

The study established a relationship between the electrochemical behaviour and the chemical 

structures of INODs for compounds having electron-withdrawing substituents. These 

derivatives have less negative reduction potential, resulting in easier bio-reduction. In 

addition, the previous study showed that INODs are bio-reducible in infected RBCs. 

Therefore, when the compound is more easily reducible, the antiplasmodial activity is higher. 

 

By coupling electrochemistry to EPR, the formation of stable radical cation derived from the 

first reduction is confirmed. The protonation of the radical occurs on the carbon in alpha 

position to the nitrone function and not on the NO group. This radical intermediate is obtained 

at a potential compatible with an intracellular environment. This radical activates several 

redox signals in cascade to generate, finally a fatal oxidative stress to parasitized RBC. 
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III. PRO-OXIDANT PROPERTIES OF 
INDOLONE-N-OXIDE DERIVATIVES IN 
RELATION TO THEIR ANTIMALARIAL 

PROPERTIES 
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1. Introduction 

Les relations entre le comportement redox et l’activité antpaludique des indolone-N-oxydes 

ont été étudiées dans le chapitre précédent (page 42). Leurs potentiels redox sont proches de 

ceux de la quinine (Bunney et al, 1970). Les travaux antérieurs dans le laboratoire avaient 

démontré la bio-réductibilité des INODs, enzyme et thiol-dépendante au sein des globules 

rouges. Etant donné la quantité importante de thiols dans le globule rouge, en particulier le 

glutathion (GSH), l'intéraction des INODs avec ces thiols pourrait jouer un rôle essentiel dans 

la biotransformation des INODs dans les globules rouges. Le but de cette étude a été d'étudier 

les premiers stades de l'interaction biochimique des INODs avec certains composants 

erythrocytaires (GSH, L-cystéine) en comparaison avec la chloroquine et l'artémisinine, dans 

des modèles biomimétiques. Le composé 1 (INOD-1) a été choisi pour cette étude en raison 

de ses puissantes propriétés antipaludiques et in vitro et in vivo sa faible toxicité.  

Ces trois composés (INOD, chloroquine, artémisinine) modifient le métabolisme redox du 

parasite P. falciparum à l'intérieur des globules rouges. La chloroquine interfère avec le 

processus de biocrystallization de l'hémoglobine évitant la formation d’hémozoïne (Zhang et 

al, 1999). L'artémisinine ou ses dérivés générent des intermédiaires radicalaires qui crée un 

stress oxydant et exerce ainsi une activité parasicide (Bray et al, 2005). Dans ce chapitre, nous 

avons voulu répondre à la question suivante: est-ce que le mode d'action des INODs est 

identique ou différent de ceux de la chloroquine ou l'artémisinine? Pour comparer l'activité 

des INODs avec la chloroquine et l'artémisinine, leur interaction avec l'hème et leur capacité à 

générer ou à piéger des radicaux ont été étudiées. 
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1. Introduction 
 
The relationship between redox behavior and antimalarial activity of indolone-N-oxides was 

reported in aprotic solvent in the previous chapter (page 42). Their redox potentials are near to 

those of quinine (Bunney et al, 1970). The previous work in the laboratory had demonstrated 

the bio-reducibility of INODs, enzyme and thiol dependent, inside the RBCs. Since there is 

high abundant amount of thiol compounds especially glutathione (GSH) in red blood cells 

(RBCs), the interaction of INODs and thiol compounds could play a pivotal role in the 

biotransformation of INODs within RBCs. The aim of this study was to explore the early 

stages of the biochemical interaction of INODs with some RBCs components (GSH and L-

cysteine) in comparison to chloroquine and artemisinin, in biomimetic model. Compound 1 

(6-(4-chlorophenyl)-7H-[4,5-f]indol-7-one-5-oxide) was selected for this study due to its 

potent antimalarial properties in vitro and in vivo and low toxicity.  

 

These three compounds (INODs, chloroquine and artemisinin) change the redox metabolism 

of parasite P. falciparum inside RBCs. Chloroquine interferes with the haemoglobin 

biocrystallization process to prevent hemozoin formation (Zhang et al, 1999). Artemisinin or 

artemisinin derivatives generate radical intermediates which creat oxidative stress and exert 

parasicide activity (Bray et al, 2005). In this chapter we wanted to answer the following 

question: Is the mode of action of INODs the same as chloroquine or as artemisinin or none of 

them? To compare the activity of INDOs with chloroquine and artemisinin, their interaction 

with heme and their capacity to generate and/or trap radicals should be investigated. 

 

 

2. Electron spin resonance and cyclic voltammetry studies of indolone-N-
oxide derivatives in relation to their antimalarial properties 

(Publication) 
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Indolone-N-oxides (INODs) are bioreducible and possess remarkable 

anti-malarial activities in the low nanomolar range in vitro against 

different Plasmodium falciparum (P.f.) strains and also in vivo. INODs 

have an original mechanism of action: they damage the host cell 

membrane without affecting non-parasitized erythrocytes. These 

molecules produce a redox signal which activates SYK kinases and 

induces a hyperphosphorylation of AE1 (band 3, erythrocyte 

membrane protein). The present work aimed to understand the early 

stages of the biochemical interactions of these compounds with some 

erythrocyte components from which the redox signal could originate. 

The interactions were studied in a biomimetic model and compared 

with those of chloroquine and artemisinin. The results showed that 

INODs i) do not enter the coordination sphere of the metal in the 

heme iron complex as does chloroquine; ii) do not generate iron-

dependent radicals as does artemisinin; iii) generate stable free 

radical adducts after reduction at one electron; iv) cannot trap free 

radicals after reduction. These results confirm that the bioactivity of 

INODs does not lie in their spin-trapping properties but rather in their 

pro-oxidant character. This property may be the initiator of the redox 

signal which activates SYK kinases.

Introduction 

Molecular and proteic redox systems play an important role in the 
control of cellular homeostasis and antioxidant defences. Some drugs 
containing a redox pharmacophore (quinone and quinoid compounds, 
N-oxide, nitro and thiol derivatives, endoperoxides) may generate an 
oxidative stress in the cell that can be fatal for the hosted microbes 
and for the cells. We recently reported that indolone-N-oxides, which 
are bioreducible, posess remarkable anti-malarial activities in the low 
nanomolar range in vitro against different Plasmodium falciparum 
(P.f.) strains and are also active in vivo.[1,2] Moreover, these 
compounds are only cytotoxic at very high doses (micromolar range) 
thus giving a very interesting selectivity index. Early studies showed 
that INODs have redox potentials near to those of 1,4-quinones and 
therefore may exert their biological action by oxidizing essential 
biomolecules.[3] In addition, they containing a nitrone function that 
may react with the glutathiyl radical formed within the cells upon 
oxidation of glutathione.[4] To explore the mechanism of action of 
INODs, we screened for changes in INOD-treated P. falciparum-
infected red blood cells (RBCs) using a comprehensive proteomic 
approach. INODs have an original mechanism of action: they damage 
the host cell membrane, without affecting non-parasitized 
erythrocytes, with the consequent RBC membrane vesiculation and 
destabilization responsible for parasite death. The mechanism leading 
to the selective destabilization of the membrane of parasitized 
erythrocytes involves the activation of a stress responsive 
phosphorylation pathway which finally induces the uncoupling of 
membrane-cytoskeleton interactions. Marked hyperphosphorylation of 
AE1 (band 3) appears to be the hallmark of the process.[5] We have 
also studied the kinetics of penetration and biotransformation of these 
molecules in the erythrocytes. The compounds penetrate very rapidly, 
accumulate and are rapidly bio-transformed in the RBC cytosol by a 

thiol-dependent reduction possibly via an enzymatic pathway.[6] 
Because INODs contain the N-oxide functional group, this 
bioreductive transformation was expected, as it had previously been 
described for other N-oxides derivatives.[7] We recently reported the 
examination of the antimalarial properties of these compounds in 
relation to their redox properties using cyclic voltammetry coupled to 
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EPR spectroscopy.[8] Given the redox events occurring in Plasmodium 
infected RBCs, this bioreductive transformation may be pivotal for the 
parasites' redox balance and for the antiplasmodial activity. Altogether 
these studies showed that these compounds target the redox 
metabolism of the infected host cell.  

In a previous study[2] we investigated the in vitro antimalarial 
properties of compound 1 (6-(4-chlorophenyl)-7H-[1,3]dioxolo[4,5-
f]indol-7-one-5-oxide) against fresh clinical isolates of P. falciparum. 
This study was carried out to (i) compare the activity of compound 1 
with that of chloroquine and dihydroartemisinin to assess the potential 
for cross-resistance, (ii) investigate drug interactions of indolone-N-
oxides with standard antimalarials and (iii) determine the stage-
dependent activity of indolone-N-oxides. Compound 1 was equipotent 
against chloroquine-susceptible and chloroquine-resistant isolates. 
There was no correlation between responses to chloroquine and 
compound 1 (r¼ 0.015; P>0.05), but the in vitro responses of 
compound 1 and dihydroartemisinin were significantly and positively 
correlated (r¼ 0.444; P<0.05). INODs, as well as artesunate, inhibited 
parasite maturation at the ring stage. 

 
Figure 1. Structure of compound 1. 

The antimalarials, chloroquine (CQ) and artemisinin (ART), also 
target the redox metabolism of P. falciparum. The former belongs to 
the quinolines that interfere with haemoglobin biocrystallization[9] 
preventing hemozoin formation, while artemisinin-like derivatives 
create oxidative stress by generating radical intermediates[10]. 
Considering i) the mechanisms of action of artemisinin and 
chloroquine; ii) the redox properties of INODs; iii) and the interactions 
observed between these molecules in fresh clinical isolates, the 
present study aimed to understand the early stages of the 
biochemical interactions of the INODs with some RBC components 
and to compare them with the actions of chloroquine and artemisinin, 
in biomimetics models. As the lead compound of the INOD series, 
compound 1 was selected for these studies (Figure 1). EPR and 
electrochemical experiments were designed to study i) the 
bioreductive properties of compound 1 in relation to those of ART and 
CQ: ii) the interaction with non-protein thiols (L-cysteine and 
glutathione); iii) the capacity to interact with heme; iv) the capacity to 
generate and/or trap radicals.  

Results and Discussion 

Electrochemical behaviour of compound 1 and interaction 
with thiol compounds 

The use of electrochemical methods to obtain relevant information 
about drugs containing a redox pharmacophore is particularly 
important to predict their biotransformation in cells. The main 
structural feature of INODs is the redox heterocyclic core (redox 
pharmacophore) in which the nitrone moiety (C=N+–O-) is conjugated 
to the ketone function giving to the molecule the capabilities to 
undergo several oxidation-reduction reactions. 

The electrochemical behaviour of this kind of compounds has 

been previously reported in non-aqueous media [8, 11]. In this work, 

the reducible behaviour of INODs was studied in presence of water 

using cyclic voltammetry. Due to their low aqueous solubility, INODs 

were studied in DMSO/water 80/20 (v/v). This solvent mixture was 

selected after testing different solvent systems (ex. ACN/H2O; 

DMF/H2O). The system selected (DMSO/H2O) was the best 

compromise to simultaneously solubilize INOD compounds and L-Cys 

(or GSH) where other systems had failed to do so. Figure 2 

represents the voltammograms obtained for compound 1. The first 

cycle shows the reduction of the electroactive compound 1 around – 

0.5 V; on the backward scan, two anodic peaks are observed around 

– 0.4 V and – 0.1 V. In the second cycle and forward scan, a cathodic 

peak around -0.2 V appeared and is coupled with the anodic peak 

around – 0.1 V. It appears that the electrochemical system of 

compound 1 can be translated by two electron transfers: E1/2 = – 0.43 

V and E1/2 = – 0.15 V. The cathodic peak currents of the first cycle are 

linearly related to the square root of the potential scan rate as for a 

diffusion controlled process. By comparison with the oxidation peak 

current of ferrocene recorded under the same conditions, mono-

electronic transfers are expected for the reductions of INODs. The 

electron transfer recorded during the first reduction process 

corresponds, as demonstrated in non-aprotic solvent [8], to the 

reduction of the N-oxide to a nitroxide radical-anion (Scheme 1). It 

can be noted that, by comparison with the voltammogram recorded in 

non-aqueous medium, the nitroxide function is more easily reduced in 

presence of water, due to the fact that electrochemical oxido-

reduction requires higher energy when increasing the content of the 

organic phase in the solvent supporting electrolyte.  
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Figure 2. A) cyclic voltammograms at a glassy carbon electrode (1 
mm diameter) in DMSO/water (80/20 v/v) of compound 1 (10 µM), 
potential scan speed 0.1 V/s; B) the corresponding simulated 
voltammograms (DigiElch 6.F (Gamry)). 
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EPR spectro-electrochemical experiments were carried out in 
order to characterize the reduction products. The in-situ electrolysis 
(Eapplied = - 0.9 V vs. Ag/AgCl) was monitored by recording the EPR 
spectra. The EPR spectrum obtained at the beginning of the 
electrolysis (Figure 3A) consists of a multi-lined pattern characteristic 
of the superposition of two species, the nitroxide radical-anion (three 
lined spectrum: aN = 6.27 G, aH

β =1 G) and its protonated form (six 
lined spectrum: aN = 9.5 G and aH

β = 2.3 G) as illustrated in Scheme 1 

 

 

 

 

 

 

 
 

Scheme 1. Relationship between the reduced forms of compound 1 
and the corresponding EPR spectra.  

A) 

 simulated spectrum

 
Figure 3. EPR spectra of the reduced form of compound 1: EPR 
spectra and the corresponding simulated spectra recorded during the 
electrolysis at -0.9 V vs. Ag in DMSO/water (80/20, v/v) containing 
TBAP (0.1 mol.L-1) in the absence (A), and in presence (B) of L-
cysteine (100 mmol.L-1). 

These results confirmed the expected monoelectronic transfer 
and the formation of two reduction products responsible, on the 
voltammogram, for the two oxidation peaks recorded (2 and 3) on the 
reverse scan and for the appearance of a second reduction wave (4) 
during the second scan. The reductive pathway of compound 1 (A) is 
presented in Scheme 2. 
 

 
Scheme 2. Reductive pathway of compound 1. 

The reduction of compound 1 (A) gives the radical-anion A- that is 
detected by EPR spectroscopy which is rapidly protonated into AH. 
On the backward scan, the oxidation peak of A- is small (Ep2 ∼ - 0.4 
V) compared to that of the protonated AH (Ep3 ∼ - 0.06 V). On the 
forward scan of the second cycle, the reduction of AH+ is observed 
(Ep4 = - 0.25 V). Figure 4 shows the normalized voltammograms (I/v1/2 
versus E) of the second cycle as a function of the potential scan rate. 
Due to the ohmic drop coming from the DMSO, the voltammograms 
shifted when the potential scan speed was increased. From Figure 4, 
it can be seen that the oxidation peak of A- (Ep ∼ - 0.4 V) did not 
increase with the potential scan rate, indicating a fast protonation. On 
the contrary, the normalized currents (anodic oxidation of AH or 
cathodic reduction of AH+) increased with the potential scan speed 
because decomposition of AH is restricted and AH+ is a weak acid.  
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Figure 4. Normalized cyclic voltammograms at a glassy carbon 
electrode (1 mm diameter) in DMSO/water (80/20, v/v) of compound 1 
at different potential scan rates v; the current is normalized by I/v1/2. 

Simulations with DigiElch 6.F (Gamry) (Figure 2B) confirmed the 
shape of the voltammograms according the scheme proposed in 
Scheme 2. The instability of the radicals has been taken into account: 
the kinetic constant, k, (0.1 s-1) for the radical-anion A- is five hundred 
times greater than that of AH. In the case of the protonation, the 
kinetic constant kH (pseudo first order rate 1 s-1) for the radical-anion 
A- is a thousand times greater than that of A. The radical-anion A- is 
nearly a strong base which explains the weak peak current (Ep ∼ - 0.4 
V) on the reverse scan. The difference in the acidity properties is in 
agreement with the potential shift of the redox couples A/A- and 
AH+/AH as in Pourbaix’s diagrams. 

Previous studies have demonstrated that the antiplasmodial 
property of the INODs was controlled by a bioreductive transformation 
in RBCs [6], with the compounds being immediately reduced when 
entering the RBC by a pathway that is thiol- and enzyme-dependent. 
Some thiol reagents, like mercaptoethanol [12], cysteine or N-
acetylcysteine mimic the reactivity of thiol-containing enzymes, such 
as topoisomerase [12,13]. To study the interaction of the compound 
with such thiol-containing enzymes, the electrochemical behaviour of 
compound 1 was studied in presence of L-Cys. As shown in Figure 
5A, increasing the concentration of L-Cys resulted in a decrease in 
the first reduction wave proportional to the concentration added, 
whereas the oxidation wave remained unchanged. Above 0.75 mM L-
Cys, the two reduction waves had almost totally disappeared. The 
decrease in peak intensity was also accompanied by a peak potential 
shift to the more positive region. The decline of peak potential and 
intensity associated to a change of colour of the solution indicated 
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that there was a chemical reaction between compound 1 and L-Cys. 
This result is confirmed by the disappearance of the EPR signal after 
reduction in presence of L-cysteine (Figure 3B). The effect of GSH, 
the most abundant RBC non-protein thiol, is shown in Figure 5B. In 
this latter case, there was a greater decrease in the intensity of the 
reduction waves with a concomitant displacement to low potential. 
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Figure 5. Cyclic voltammograms of compound 1 (0.25 mM) at a 
glassy carbon electrode in presence of various concentration of (A) L-
cysteine and (B) GSH recorded in DMSO/phosphate buffer (80/20, 
v/v), pH = 7. 

The same behaviour has been described for quinone compounds 
[13], where 1,2- and 1,4-Michael-type adducts are formed by the 
addition of the thiol group to the quinone ring. The pseudo-quinone 
structure of the INOD could explain the similar reactivity towards L-
Cys. It was also reported that L-Cys can directly interact with 
artemisinin (without iron mediation) to form a binary adduct, 
enhancing artemisinin stability with subsequent negative shift of the 
reduction potential from - 0.64 V to - 1.03 V [14]. The decrease in the 
peak intensity recorded in our case, with the subsequent potential 
shift, may be due to a reaction of INOD with thiols.  

Chemical analysis of the interaction between compound 1 and L-
Cys 

 Chromatographic analysis of the products obtained from the 
chemical interaction between compound 1 and L-Cys in solution is 
shown in Figure 6. The reaction between compound 1 and L-Cys 
leads to the reduction of the nitrone function moiety (C=NO) and the 
formation of three major products (P1, P2, and P3) as shown in 

Figure 6. As the parent compound 1 (tr = 18.7 min) is chlorinated, 
therefore the follow-up of its products (P1, P2, and P3) is favoured by 
mass detection. These three major products had different UV-Vis 
spectra with masses of 303, 303, and 319 amu for P1, P2, and P3, 
respectively. This suggests that two reduced (dihydrogenated) 
isomers (303 amu) and a hydrated form (319 amu) are produced. Of 
particular interest is the product P1, eluted at tr = 9.7 min, with the 
reduced nitrone moiety (C(OH)–NH).  It corresponds to the same 
compound isolated from human erythrocytes when compound 1 was 
incubated inside these cells [6]. The second product, P2, (tr = 11.0 
min) may correspond to another reduced form (C(H)–NOH) whereas 
the third product, P3, (tr = 17.5 min) may correspond to (C(OH)–NOH). 
These three reduced forms are in agreement with the reduction and 
hydration reactions known for the nitrone moiety [15]. 
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E) F) 

  
Figure 6. LC-(-)APCI-MS analysis of A) the interaction between 
compound 1 (0.25 mM) and L-Cys (2.5 mM), the top chromatogram 
was obtained from a photodiode array detector (total scan) and the 
bottom chromatogram obtained from (-)APCI-MS (total ion current); 
B) the same as (A) but without L-Cys; C), D), E), and F) represent the 
corresponding UV-Vis spectra of each compound. 

Reactivity of compound 1 towards Fe (II)-heme and Fe(III)-
hemin. 

In infected RBC, the parasite responsible for malaria digests the 
hemoglobin to use the aminoacids to its advantage. In the course of 
this hemoglobin digestion, four equivalents of [Fe(II)-heme] are 
released and oxidized into hematin which is detoxified by the parasite 
into the malaria pigment or hemozoin, a highly insoluble 
microcrystalline form of [Fe(III)(protoporphyrin-IX)]. One mechanism 
proposed for the quinoline-type antimalarial drugs, such as 
chloroquine (CQ), quinacrine, quinine, and mefloquine is that they 
exert their action by disrupting the formation of the hemozoin pigment, 
thus eliciting toxicity to the parasite from the build-up of free heme 
[15,16]. Studies suggested that the interaction of these drugs with 
ferriprotoporphyrin-IX occurred through coordination of the amino-
quinoline group of the drug to the iron center [17, 18]. Therefore it 
appeared interesting to study the interaction of compound 1 with iron 
heme model complexes in solution using EPR spectroscopy, to 
compare with artemisinin and chloroquine. The paramagnetic 
monomeric hemin complex, [Fe(III)-hemin] presents, at 107K (liquid 
nitrogen flow), a single EPR asymmetrical broad line at g = 5.656 
characteristic of a ferric high-spin complex (S=5/2) [19] (Figure 7a). 
Adding compound 1, ART, CQ or quinine (Q) to the medium 
containing the hemin complex, did not change the EPR spectra 
(Figure 7b, 7c, 7d and 7e). In a second step, hydroxylamine 
(NH2OH.HCl) was added to the hemin complex solution (Figure 7f). A 
large decrease of the EPR signal intensity was observed under these 
conditions indicating a loss of the paramagnetic properties of the 
sample. The lack of any new EPR lines on the spectra and this strong 
decrease in intensity are in favour of the formation of the hematin µ-
oxo-dimer (µ[Fe(III)PPIX]2O) from hemin [21, 22]. This dimer does not 
yield an EPR signal due to an antiferromagnetic coupling between the 
two S = 5/2 ferric ions. This spin state has been proposed from 
susceptibility measurements and Mössbauer studies [21, 22]. When 
compound 1 or ART are added to the mixture under these conditions, 
the same weak intensity line is observed (Figure 7g and 7h, 
respectively) showing that the EPR silent species (µ-oxo dimer 
proposed) is not modified in its ligand coordination and spin state. It is 
completely different when CQ is added to the mixture since there are 
no traces of high spin iron(III) at g = 5.656 but a strong and unique 
signal appears at g = 2.026 (Figure 7i). The same result was obtained 
with quinine (Figure 7j). Antimalarial drugs such as chloroquine and 
quinine are known to exert their antimalarial activity by binding to 
hematin in its µ-oxo-dimer form, avoiding the formation of hemozoin 

[23]. Interaction of the hematin µ-oxo dimer with CQ and Q could 
modify the redox and spin state of the metal ion. The line observed at 
g = 2.026 could then correspond, as described in literature [24, 25], to 
an oxidized form of the µ-oxo form dimer (µ-[PPIXFe(III)-O-
Fe(IV)PPIX(L)x]) (L = CQ or Q) which is paramagnetic. Whatever the 
EPR silent species formed by adding hydroxylamine (µ-oxo dimer 
hypothesized), only chloroquine and quinine are able to change the 
iron coordination and spin state of this species showing that they 
enter the coordination sphere of the metal while compound 1 and 
artemisinin cannot. These results show that the mechanism of action 
of these indolone-N-oxides does not lie in their ability to interact with 
an iron centre to prevent the biocrystallization of hemozoin.  

Interaction of INOD with radicals derived from artemisinin 
and iron 

Our results on fresh clinical isolates showed a slight synergistic action 
between artemisinin and INODs [2]. The key pharmacophore of 
INODs is the indolone-N-oxide core (conjugated nitrone function) 
which may trap radicals [26] and the key pharmacophore of 
artemisinin is the endoperoxide bridge [27] which may produce radical 
species with iron(II) [16,18]. Iron(II) salts reductively activate the 
peroxide bond of artemisinin leading to the formation of a pair of oxyl 
radical intermediates that rapidly rearrange via either a 1,5 H-shift or 
β-scission to produce the more stable carbon-centred radicals [28]. 
These alkyl radicals can be readily formed in vivo by the reaction of 
artemisinin with iron(II)-heme [16,29,30], the most abundant source of 
iron in Plasmodial-infected erythrocytes. It is proposed that these 
reactive C-radicals interact with cellular components such as heme 
and parasite proteins resulting in the death of the parasite. Because 
of these opposite properties between INOD and artemisinin, the 
possibility that compound 1 or its reduced form, may or may not trap 
the radicals generated by artemisinin in the presence of iron(II), has 
been studied using EPR to understand the synergistic effect recorded 
in our case. The EPR spectrum obtained from the mixture compound 
1/artemisinin/iron(II) is presented in Figure 8A. The EPR spectrum 
consists of a six-lined spectrum characterized by the hyperfine 
splitting constants: aN = 9.57 G; aH = 2.50 G. In the absence of iron(II) 
and/or artemisinin, no EPR spectrum was recorded. The results 
confirm that the INOD compound can efficiently trap the “iron-
mediated” artemisinin radicals, whereas INOD did not generate any 
radicals in the presence of Fe(II), under our experimental conditions 
(Figure 8B). On the contrary, after reduction of compound 1, no 
trapped radicals were observed on the EPR spectrum (Figure 8C). 
This result is in contradiction with the synergic effect recorded for the 
two drugs and demonstrates that the mechanism of action of 
compound 1 do not lie on its radical trapping properties. 

Conclusion 

These results show that the compound 1 i) does not enter the 
coordination sphere of the metal in the iron complex as does 
chloroquine; ii) cannot trap free radicals after reduction; iii) generates 
stable free radical adducts after reduction at one electron. These 
results are in good agreement with the fact that no correlation was 
observed between INODs and CQ responses on fresh clinical isolates 
of P. falciparum[2] while in vitro the responses of compound 1 and 
dihydroartemisinin were significantly and positively correlated. The 
results suggest different mechanisms of action or different molecular 
targets for these three antimalarial drug classes. These hypotheses 
are reinforced by the fact that INODs are equipotent against both 
types of chloroquine resistant and sensitive strains of P. falciparum[1,2] 
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INODs lose radical trapping properties after reduction which happens 
via a rapid intracellular erythrocytic thiol-dependent reduction as 
reported previously.[6] These results confirm that the bioactivity of 
INODS compounds does not lie in their spin-trapping properties but 
rather in their pro-oxidant character. This property may initiate the 
redox signal that activates SYK kinases and induces a 
hyperphosphorylation of AE1 (band 3) and could be connected to the 
pro-oxidant effects of both derivatives but with different targets.[5]  
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Figure 7. EPR spectra recorded in frozen DMSO at 107K with A) 
hemin (0.75 mM), B) hemin/compound 1 (0.75/3 mM), C) 
hemin/artemisinin (0.75/3 mM), D) hemin/chloroquine (0.75/3 mM), E) 
hemin/quinine (0.75/3 mM),F) hemin/hydroxylamine (0.75/7.5 mM), 

G) hemin/hydroxylamine/compound 1 (0.75/7.5/3 mM), H) 
hemin/hydroxylamine/artemisinin (0.75/7.5/3 mM), and I) 
hemin/hydroxylamine/chloroquine (0.75/7.5/3 mM), J) 
hemin/hydroxylamine/quinine (0.75/7.5/3 mM). 
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Figure 8. EPR spectra recorded after 10 min incubation in 
DMSO/water (90/10, v/v) of a mixture containing A) artemisinin 2.5 
mM, Fe2+ ((NH4)2Fe(SO4)2.6H2O)) 0.25 mM and compound 1 (0.25 
mM); B) Compound 1 and Fe2+; C) compound 1/ Fe2+/ART/L-Cys 

Experimental Section 

Chemicals 

6-(4-chlorophenyl)-7H-[1,3]dioxolo[4,5-f]indol-7-one-5-oxide 

(compound 1) was synthesized in our laboratory as previously 

reported[1]. Ferrous ammonium sulphate, hemine chloride, 

hydroxylamine hydrochloride (NH2OH.HCl), sodium acetate, sodium 

dihydrogen phosphate (NaH2PO4), di-sodium hydrogen phosphate 

(Na2HPO4) and ferrocene were purchased from Prolabo (VWR, 

France); dimethylsulfoxide (DMSO), HCl 37%, NaOH, tris-HCl, 

hydrogen peroxide (H2O2), L-cysteine (L-Cys), anhydrous acetonitrile 

(ACN), ferrocene, chloroquine diphosphate salt, artemisinin and 

glutathione (GSH) were purchased from Sigma-Aldrich (St. Quentin, 

France); ethylenediaminetetraacetic acid (EDTA) and tetrabutyl 

ammonium perchlorate (TBAP) were purchased from Fluka, RPMI 

from Cambrex (Verviers, Belgium). 

Electrochemical analysis 

Electrochemical experiments were carried out at 25 °C (thermal bath) 
in DMSO/Tris-HCl buffer (0.1 M) (80/20, v/v), using a Voltalab 80 PGZ 
402 (Radiometer) with a conventional three-electrode system 
including an Ag/AgCl electrode or an SCE as the reference electrode, 
a platinum electrode (5x5 mm) as the counter electrode and a glassy 
carbon disk (1 and 3 mm diameter) as the working electrode. All 
solutions were deoxygenated by passing a gentle, constant stream of 
pre-purified argon through the solution for 10 min and maintaining a 
blanket of the inert gas over the solution during the experiment. The 
glassy carbon electrode was cleaned after each run by 
electrochemical cleaning to avoid aggressive changes. The 
electrochemical cleaning process was done in acetate buffer pH 4.5 
by polarization for 10 min at - 500 mV then at 2000 mV vs. The 
reference electrode (the electrochemical cleaning process was done 
according to the Princeton Co protocol). Between experiments, glassy 
carbon was rubbed on the polishing pad with blue diamond slurry 

 B)  
 C)   
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particles (Waters, USA), then washed with methanol and distilled 
water.  

Chemical analysis of the interaction between compound 1 and L-
Cys 

LC and LC-MS analysis were carried out with an LC-PDA-MSn system 
(Thermo electron Corporation and Spectra system (SS)) including an 
automatic injector with an oven (SS-AS3000), a degasser (SS-
SCM1000), and a quaternary pump (SS-P1000 XR) coupled to a 
photodiode array detector PDA (SS-UV6000LP), and an ion trap 
mass spectrometer (Finnigan LCQ Deca XP Max). Nitrogen was used 
as a nebulizing and drying gas. Data acquisition was carried out using 
Finnigan Xcalibur software (version 1.4). The atmospheric pressure 
chemical ionization (APCI) source was used in the negative ion mode. 
Mass scans were done in the range m/z 50 – 650. The 
chromatographic separation was done on an analytical column Luna® 
C-18 (5 µm, 250 mm × 4.6 mm) using a C-18 pre-column (5 µm, 4.6 
mm x 3 mm) (Phenomenex, France). The separation was done in 
gradient mode using solvent A (water) and solvent B (CH3OH). The 
gradient program was the following: at t = 0-3 min; solvents (95% A / 
5% B, v/v); at t = 4-20 min, solvents (15% A / 85% B, v/v); at t = 22 
min, solvents (95% A / 5% B, v/v); the column regeneration time was 
10 min and the mobile phase flow rate was 1 ml/min. The analysis 
was performed at room temperature (RT), with 20 µl of sample 
injected. Compound 1 was dissolved in DMSO and L-Cys in 
phosphate buffer and they were mixed to give a final concentration of 
0.25 and 2.5 mM for compound 1 and L-Cys, respectively.  
 

Electron paramagnetic resonance (EPR) experiments 

EPR spectra were obtained at X-band on a Brüker EMX-8/2.7 (9.86 
GHz) equipped with a high-sensitivity cavity (4119/HS 0205) and a 
gaussmeter (Bruker, Wissembourg, France). EPR data processing 
and spectrum computer simulation were performed using WINEPR 
and SIMFONIA software (Bruker, Wissembourg, France). 

a. Interaction with heme 

Compound 1, artemisinin and chloroquine were each incubated under 
an argon atmosphere with hemin or heme obtained by reducing 
hemin with NH2OH.HCl. The analyzed samples were prepared in 
DMSO by mixing hemin/compound at the stoichiometric ratio 1/4 
(0.75/3 mM) or hemin/NH2OH.HCl/compound at the stoichiometric 
ratio 1/10/4 (0.75/7.5/3 mM). The solutions were stirred at room 
temperature for 5 h before recording the EPR spectra. The recording 
was carried out at 107°K using a liquid nitrogen flow in a quartz tube 
(inner diameter: 4 mm) containing 250 µL analysed solution. Typical 
scanning parameters were: scan rate, 0.6 G/s; scan number, 1; 
modulation amplitude, 5.10-3 G; modulation frequency, 100 kHz, 
microwave power, 20.2 mW; time constant, 40.96 ms, sweep width, 
5000 G.  

b. EPR spectroelectrochemical analysis 

For spectro-electrochemical measurements, the EPR spectrometer 

was coupled to a potentiostat-galvanostat (EG&G Princeton Applied 

Research-Model 362). A flat quartz cell adapted to electrochemical 

measurements (Bruker, Wissembourg, France) was used for analysis. 

The electrochemical reduction was carried out using a three-electrode 

set-up: the working and counter-electrode were platinum and the 

reference electrode was a silver wire. The applied potential was 

chosen to be on the diffusion plateau of the first reduction wave 

obtained under stationary conditions: Eapplied = – 0.9 V. The 

electrolysis potential was applied for 5 min to the solution containing 

the compound in acetonitrile/TPAB and the EPR spectrum was 

immediately recorded as a function of time. Typical scanning 

parameters were: scan rate, 1.2 G/s; scan number, 1; modulation 

amplitude, 1 G; modulation frequency, 100 kHz; microwave power, 20 

mW; sweep width, 105 G; sweep time, 83.88 s; time constant, 40.96 

ms; receiver gain 5 x104. 

c. Interaction of INOD with radicals derived from artemisinin and 
iron  

The compound was dissolved in DMSO to obtain a 3 mM stock 
solution. EPR spectra were recorded in DMSO/water 90/10, v/v with 
the final concentrations: artemisinin 2.5 mM, 
Fe2+((NH4)2Fe(SO4)2.6H2O) 0.25 mM and compound 1 0.25 mM. The 
final solution was vortexed for 15 s and then transferred into the quart 
flat cell (FZK160-5x0.3; Magnettech). Typical scanning parameters 
were: scan rate 0.6 G/s, scan number 1, amplitude modulation 1 mG, 
modulation frequency 100 kHz, microwave power 20 mW, field center 
2500 G, spectrum width 5000 G, gain 80, frequency 9.86 109 Hz, 
sweep width 190 G, sweep time 41.94 ms, time constant 20.48 ms, 
receiver gain 2.105, 10 scan. 

Table of Abbreviations 

INODs : indolone-N-oxide derivatives 
P. f. : Plasmodium falciparum 
DMSO : dimethylsulfoxide 
CQ: chloroquine 
ART: artemisinin 
EPR: electron paramagnetic resonance 
L-Cys: L-Cysteine 
RBC: red blood cell 
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3. Conclusion 

 
Les études sur les interactions biochimiques des INODs avec certains composants des 

globules rouges montrent que ces composés i) n'entrent pas dans la sphère de coordination du 

métal dans le complexe fer-héme contrairement à la chloroquine; ii) ne génèrent pas d'espèces 

radicalaires fer-dépendantes comme le fait l'artémisinine; iii) génèrent des intermédiaires 

radicalaires après réduction à un électron dans un milieu polaire, qui est réversible, iv) ne 

peuvent pas piéger les radicaux libres après la réduction. Ainsi les propriétés antipaludiques 

des INODs sont associées à leur caractère pro-oxydant (bio-reductibilité) et non à un caractère 

de piégeur de spin ou d'interaction avec l'hème. Ce caractère pro-oxydant pourrait déclencher 

une voie de signalisation redox via l'activation de SYK-kinases et l'hyperphosphorylation de 

la protéine bande 3, AE1, qui aboutit à la destruction du globule rouge et du parasite. 

 

Ce résultat est en bon accord avec l'étude précédente sur les isolats frais humains de P. 

falciparum (Tahar et al, 2011) qui ne montrent aucune corrélation entre les INODs et la 

chloroquine (r1/4 0.015, P 0.05) et une corrélation positive et significative entre les INODs et 

la dihydroartemisinine (r1/4 0.444, P 0.05). Ces résultats suggèrent que les INODs présentent 

un mode d'action et des cibles moléculaires differents de ceux des antipaludiques actuels. 

Cette hypothèse est en accord avec  le fait que lesINODs sont actifs sur les deux types de 

souches de Plasmodium falciparum, résistantes et sensibles à la chloroquine
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3. Conclusion 
 
The investigation of the early stages of the biochemical interactions of the INODs with some 

RBC components show that these compounds i) are not included in the coordination sphere of 

the metal in the iron-heme complex unlike chloroquine; ii) do not generate iron-dependent 

free radical species such as does artemisinin; iii) generate radical intermediates after one-

electron reduction in polar medium which is reversible; iv) cannot trap free radicals upon 

reduction. The antimalarial properties of INODs are associated with the pro-oxidant 

characters rather than the spin strap character or interaction with heme. This pro-oxidant 

character could trigger a redox signal pathway via SYK activation and hyperphosphorylation 

of band 3 protein (AE1) which induces an oxidative stress fatal to the RBC and the parasite. 

 

This finding is in good agreement with the previous study on human fresh isolated of P. 

falciparum (Tahar et al, 2011) that shows no correlation between INODs and chloroquine (r1/4 

0.015, P 0.05) and significant and positive correlation between INODs and 

dihydroartemisinine (r1/4 0.444, P 0.05). These results suggest that INODs exhibit different 

modes of action and molecule targets from these current antimalarials. This hypothesis 

emphasizes the fact that INODs are active toward both strains of Plasmodium falciparum, 

resistant and sensitive to chloroquine. 
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1. Prostate cancer 
 
a. Description 

Cancer is a general term used for a group of diseases where abnormal cell growth is observed. 

The abnormal cells then invade surrounding tissue and spread to different organs in the 

human body, resulting in death. This process is called metastase. Cancer is a serious public 

health problem which caused 7.6 millions of death (around 13% of all death) in 2008 

including lung, stomach, liver, colorectal, breast, cervical cancer, prostate cancer (WHO, 

2013). It can be recalled that prostate cancer is considered as one of the most prevalent cancer 

in elder males (90% in men ages 70 to 90) (Dunn et al, 2011). Treatments including surgery, 

radioactive therapy, hormone therapy, chemotherapy may induce adverse effects which often 

reduce the quality of life. Moreover, these treatments are high-priced especially for people in 

developing countries.  

 

b. Anatomy 

Prostate gland is located below urinary bladder and in front of rectum. It protects and 

nourishes the sperms by producing semen. The gland starts to develop in fetus and continues 

to grow until the baby becomes adult. Its size is about walnut size in young men. The gland 

slowly grows all the life due to male hormone which could cause much larger size in elder 

men (Porche, 2011). 

 

c. Risk factors 

While the exact causes of prostate cancer stay as mysterious as all other cancers do, we do 

know some risk factors involved in prostate cancer. Aging is the first risk factor which should 

be concerned since prostate cancer is found in 90% of men from 70 to 90 and it is rarely 

found in men younger than 65 (Dunn et al, 2011). Genetic is an important factor in prostate 

cancer incidence. If family history has been reported any prostate cancer cases, the men have 

higher risk to get this malignancy (Dunn et al, 2011). Moreover, race is also a common risk 

factor. While the highest prostate cancer ratio was obtained in the African-American men (≥ 

250/100000), the lowest incidence was reported in Asian/Pacific Islanders and American 

Indian/Native Alaskan men (≤ 100/100000) (Dunn et al, 2011). In addition, the habit and the 

living environment could be important factors. The highest rate of prostate cancer is observed 

in the region of Americas, following by Europe and the lowest rate is in Southeast Asia 
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(WHO, 2013). More than 30 % of cancer death could be reduced by modifying the way of life 

style such as limiting tobacco, alcohol use and overweight and promoting physical activity, 

healthy diet (WHO, 2013). 

Tobacco contains cadmium which may lead to prostate cancer and other cancers in men 

(Drasch et al, 2005). Cadmium destroys antioxidant system in our body. Therefore, there is an 

enhancement of free radical, resulting in cellular damage and aging process (Drasch et al, 

2005). Moreover, it interacts with p53 protein, a tumor suppressor protein which creates 

favorable conditions for cancer cells growth (Drasch et al, 2005). Cadmium also encourages 

the growth of human prostate epithelial cells at low levels (10 – 9 to 10 – 7 M) and facilitates 

malignant transformation (Drasch et al, 2005). Finally, excessive amount of cadmium in body 

may cause severe prostate cancer in smokers.  

As we know, heavy alcohol consumption could lead to depression and liver damage. Not 

surprisingly, heavy alcohol drinking is related to prostate cancer risk (Fillmore et al, 2009). 

Doing physical activity certainly reduces the risk of most major cancer sites (colon, breast, 

endometrium, lung, prostate, ovarian, gastric, rectal, pancreatic, bladder, testicular, kidney 

and haematological cancers) (Friedenreich et al, 2010). It also improves circulation, controls 

body weight and positively affects the immune system (Friedenreich et al, 2010). It is 

recommended to do slight physical exercise for 30-60 min 5 times a week or vigorous 

exercise for 30 min 3 times a week in order to reduce the development of chronic diseases, 

including cancer.  

Healthy diet is essential for daily life since it provides right nutrient, energy as well as 

prevents the body from diseases including coronary and cerebrovascular diseases, various 

cancers, type 2 diabetes mellitus, hypertension, liver disease and asthma (Knight, 2011), 

(Calle et al, 2003). Obviously, people should concern about the way of living so that we could 

prevent many types of diseases and have healthy happy life. 

 

d. Diagnostic 

Since prostate cancer is a slow-growing cancer, annual screening with prostate specific 

antigen (PSA) test, digital rectal examination (DRE) and prostatic biopsy is suggested for men 

age from 50 to 70. 

Prostate specific antigen is a protein produced by normal prostate tissue. In case of prostate 

cancer, this protein escapes from prostate then enters into the circulation (Papsidero et al, 

1980). The rise of prostate specific antigen in serum is not only caused by cancer but also 
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caused by prostatitis or benign prostatic hypertrophy. Misuse of test screening could lead to 

over-diagnosis and over-treatment (Haythorn et al, 2011).  

Prostatic biopsy will be done when there are abnormal results in PSA and DRE tests. 8 to 16 

different samples taken in the peripheral zone are required. At the same time, grading is used 

for determining how aggressive cancer progression is. The grades range from 1 to 5 (Dunn et 

al, 2011). The higher grade of cancer cells is, the more abnormal cells are, the more likely 

cancer spreads. 

 

e. Treatment 

There are different treatment options for prostate cancer including active surveillance, surgery, 

radiation therapy, hormone therapy, chemotherapy, biologic therapy. Depending on diagnosis 

results, type of treatments will be selected. 

Table 1. Treatment options in prostate cancer. 

Treatments Types/Drugs 
 

Procedure Disadvantage 

Active 
surveillance (at 
early stage) 

 No treatment until cancer is 
more aggressive 

 

Surgery -Radical prostatectomy  
-Laparoscopic radical 
prostatectomy 
-Robot-assisted 
laparoscopic radical 
prostatectomy, 
-Cryotherapy 

Removal of the entire 
prostate gland and seminal 
vesicles 

 

Radiation 
therapy 

-External beam radiation 
-Brachytherapy  

Supply high power energy 
to the prostate without 
damaging surrounding 
tissues 

Urinary urgency, 
dysuria, diarrhea, 
proctitis, erectile 
dysfunction 

Hormone therapy -Luteinizing hormone-
releasing hormone 
agonists: leuprolide, 
goserelin, and buserelin.    
-Antiandrogens : flutamide 
and nilutamide. 

Reduction of male hormone, 
resulting in stop cancer cell 
growth 

 

Hyperlipidemia, 
insulin resistance, 
cardiovascular 
disease, anemia, 
osteoporosis, sexual 
dysfunction and 
cognitive deficits 

Chemotherapy Docetaxel, prednisone, 
mitoxantrone 

Drugs adminstration to stop 
the division of cancer cells  

Myelosuppression, 
hypersensitivity, 
gastrointestinal 
upset, peripheral 
neuropathy 

Biologic therapy Cabazetaxel, abirateron, 
sipuleucel-T 

Encourage immune system 
to fight cancer  

Neutropenia, 
gastrointestinal 
disturbance, renal 
insufficiency 
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2. Functions of macrophages in immune system 

Macrophages (MФ) are professional phagocytes which are able to express a receptor on their 

surface and detect abnormal foreigners, death cells and toxics in body. MФ play an important 

role in innate immune system including immune surveillance, tissue homoeostasis and wound 

healing. MФ precursors are monocytes which originate from haematopoietic stem cells, in the 

bone marrow. Monocytes circulate in blood, bone marrow and spleen. Spleen serves as 

storage of immature monocytes since monocytes do not proliferate in healthy state. If 

inflammation occurs in the body, monocytes migrate to the inflammatory site and 

differentiate into dendritic cells (DC) and MФ. Mature MФ are also present in many tissues 

such as bone (osteoclasts), lungs (alveolar macrophages), interstitial connective tissue 

(histiocytes), liver (Kupffer cells), brain (microglia) where they detect and remove dead cells, 

pathogens and toxic materials (Murray et al, 2011). In stressed tissue (acute and chronic 

inflammation), the proliferation and recruitment of monocytes and MФ fates are controlled by 

different cytokines and factors. There are four different activated forms of macrophages: 

classical activated macrophages (M1 macrophages), alternatively activated macrophages (M2 

macrophages), tumor-associated macrophages (TAMs) and myeloid-derivated suppressor 

cells (MDSCs). While M1 is activated by interferon-γ (IFN- γ), bacterial lipopolysaccharide 

(LPS), tumor necrosis factor α (TNF α), resulting in reactive oxygen species (ROS) and nitric 

oxide (NO) production, M2 activation is triggered by interleukin 4/interleukin 13(IL4/IL13)-

stimulated macrophages, IL10-induced macrophages and immune complex-triggered 

macrophages (Wang et al, 2010). After activation, M1 macrophages are able to produce 

inflammatory cytokines, ROS to fight against various types of bacteria, protozoa, virus and 

tumor cells (Biswas et al, 2008). M2 phenotype expresses anti-inflammatory function as well 

as immunosuppression and wound healing regulation (Biswas et al, 2008). TAMs are present 

in malignant tumors where they are responsible for anti-tumor suppression (Biswas et al, 

2008). Myeloid-derived suppressor cells (MDSCs) are precursors of certain TAMs that are 

involved in protecting the host from excessive immune stimulation, autoimmune responses, 

limiting the activation of T cells. They are believed to inhibit antitumor immunity and to 

promote tumor expansion (Bronte et al, 2010) (Quatromoni et al, 2012). Depending on the 

requirement of immunology system, MФ can shift from one functional phenotype to another 

(Murray et al, 2011). 

  



 71

Table 2. Phenotype of macrophages. 

 

Phenotypes Activated by Function 

M1 IFN- γ, LPS, TNF α antibacteria, anti-protozoa, anti-virus, anti-tumor 

M2 IL4/IL13, IL10, immune 

complex-triggered MФ 

Anti-inflammatory function, immunosupression , wound 

healing regulation 

TAMs Growth factor, chemokines Tumor progression: limiting excessive immune stimulation, 

autoimmune responses and T cells activation 

MDSCs Endotoxin, CD8+ T cell-

induced acute entrocolitis 

Tumor progression: limiting excessive immune stimulation, 

autoimmune responses and T cells activation 

 

 

3. Function of macrophages in cancer  
 
Cancer progression is a multi-steps process including in situ cancer, invasion and metastasis 

(Steeg, 2002). At initial step, normal cell growth is disrupted and new blood vessels are 

formed to supply nutrient for the transformation from normal cells to abnormal cells (Yoshida 

et al, 2000). Then, the degradation of basement membrane allows for invasion into adjacent 

tissues. Tumor cells continue to spread to the secondary sites via blood or lymphatic stream 

(Yoshida et al, 2000). Among these steps, metastasis is a major cause of cancer death which 

involves many factors such as increased expression of metastasis-promoting genes or 

decreased expression of metastasis-suppressor genes (Shin et al, 2006). In summary, there are 

eight capabilities which are essential for tumor progress: self-sufficiency in growth signals, 

insensitivity to growth-inhibitory signals, evasion of programmed cell death, limitless 

replication potential, evasion the immune system, incitation of mutations to arise in a bona 

fide tissue stem cell, sustained angiogenesis, tissue invasion and metastasis (Jaiswal et al, 

2010). 

Solid tumors consist of tumor cells, extra cellular matrix (ECM) and inflammatory cells 

(tumor-associated macrophages (TAM), dendritic cells, lymphocytes) (Balkwill et al, 2001). 

It has been shown that chronic inflammation is associated with some cancers, examples given 

in Table 3. TAM is one of the macrophages phenotype which is attracted to the tumor site by 

chemokines (Balkwill et al, 2001). TAM enhances proliferation and metastasis of tumor cells 

as well as tumor resistance to chemotherapy (de Palma et al, 2011). 
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Table 3. Inflammation and cancer risk. 

Inflammatory condition Malignancy 

Schistosomiasis Bladder 

Papillomavirus Cervical 

Prostatitis prostate cancer 

H. pylori induced gastritis Gastric 

Inflammatory bowel disease Colorectal 

Hepatits virus (B and C) Hepatocellular 

 

Importantly, there is low oxygen in the environment of tumor solid that ranges from normoxia 

(2-9% O2), to mild hypoxia (2-0.02% O2), and to severe hypoxia (< 0.02% O2). It is 

unfavorable for ROS activity since their formation requires oxygen. It could explain how 

tumor cells often resist to antitumor drugs, especially ROS-generating agents (Daweale et al, 

2010).  

Although the mechanism of invasion and progression of tumor is known, the major cause of 

cancer is still a big question mark for science. Hopefully, this question will be answered in 

near future, that is a foundation for the development of new and effective antitumor strategies.  

4. Reactive Oxygen Species (ROS) 
 
While tumor cells are able to progress in the body, how can immune system fight against the 

tumor cells? When a mice has lack of the immune development genes such as recombination 

activation gene 2 (RAG2-/-), interferon gamma (IFN γ-/-), different types of tumors 

spontaneously develop (Jaiswal et al, 2010). Therefore, the immune system is essential for 

tumor surveillance. 

Immune cells fight microbes and tumor cells by two ways:  

1. Phagocytosis-mediated lysosomal degradation, production of antimicrobial peptides 

(defensins, lactoferrins, proteases, cathepsins, reactive oxygen species (ROS)) (Lam et 

al, 2010)  

2. Production of tumor-growth inhibitory cytokines (TNF, TRAIL, IL-12, Il-18) 

(Jakóbisiak et al, 2003).  

One of the most important fighting ways of immune system is ROS production. In general, 

the ROS consist of radical species (O2
-, HO2

●, HO●, NO●, ONOO●) and non-radical species 

(H2O2, HOCl). They are not only considered highly toxic for living mammalian cells but also 

highly effective in immune defense strategy. Not surprisingly, their functions are still 
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debatable. ROS are generated by various pathways in the body, for instance nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase (NOX), xanthine oxidase (XO), the 

mitochondrial electron transport chain, peroxisomes, and the endoplasmic reticulum. ROS 

regulate protein phosphorylation cascade, transcription factors activity and gene expression 

which result in a modification of signal transduction pathway such as in cell growth, 

differentiation, survival, inflammation and the immune response (Dewaele et al, 2010) 

Although the superoxide anion is toxic for cells but it is rapidly removed by superoxide 

dismutases (SOD) under physiological condition (K = 2x109 M−1s−1) (Estevez et al, 2002). It 

could be converted to more active oxidizing agents (ONOO-, H2O2, 
●OH) due to its instability. 

After conversion of superoxide to H2O2, Fenton reaction rarely happens since its reaction rate 

is slow in comparison with other possible reactions by catalase and glutathione (Estevez et al, 

2002). 

 

Figure 1. ROS formation and detoxification. 

 

Nitric oxide (NO) has opposite effects in different biological system (Estevez et al, 2002). It 

can be used as a cellular messenger in vascular and nervous system or as a toxic for 

intracellular pathogen and tumor in nonspecific host defense. Its actions depend on the 

oxidative state of the cells (Estevez et al, 2002). It is stable and not toxic for living cells by 

itself under physiological conditions (Estevez et al, 2002). Under pathophysiological 

conditions, it can react with superoxide to form peroxynitrite (ONOO-), a potent oxidant 

which is able to induce apoptosis in various cell types (Estevez et al, 2002). ONOO- can 

easily decompose into nitrogen dioxide (●NO2) and hydroxyl radical (HO●) under 

physiological conditions (Figure 2) (Pacher et al, 2007). NO is formed by the conversion of 
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arginine to citrulline, catalyzed by nitric oxide synthases (NOS). NOS is present in brain 

(neuronal NOS- nNOS or NOS1), in macrophages (inducible NOS-iNOS or NOS2) and in 

plasma membrane (endothelial NOS-eNOS or NOS3) (Pacher et al, 2007). NO rapidly 

diffuses through cell membrane to blood stream after its formation, followed by reaction with 

oxyhemoglobin to produce nitrate. Specially, activated NOS2 by proinflammatory cytokines 

results in NO production which diffuses through the membrane and reacts with superoxide at 

the membrane surface, producing peroxynitrite (K = 6 to 10x109 M−1s−1) (Pacher et al, 2007) 

(Estevez et al, 2002) (Figure 2).  

 

Figure 2. Production of peroxynitrite (Pacher et al, 2007). 

 

In order to maintain redox-homeostasis, there are two systems to neutralize the ROS: i) 

enzymatic systems including superoxide dismutase (SOD), glutathione peroxidase (GPx), 

catalase (Cat), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD); 

ii) non-enzymatic systems including glutathione (GSH) and antioxidant agents (vitamin C, 

vitamin E) (M. Dewaele, 2010). SOD, Cat and GPx play important roles in removing 

superoxide or H2O2, resulting in the formation of water and oxygen (Figure 1). GPx requires 

the cofactor GSH which is reduced to glutathione disulfide (GSSH). Then, GR regenerates 

GSH from oxidized glutathione, GSSG by oxidizing one mole nicotinamide adenine 

dinucleotide phosphate (NAPDH). Finally, NAPDH is regenerated by G6PD (Figure 1). 

Cancer cells produce hypoxic and endogenous oxidative environment which is sensitive to the 

highly toxic exogenous ROS-generating agents. Therefore, antitumor strategies using ROS-

generating agents can directly act toward tumor cells by activating immune cells producing 

ROS or by inhibiting the antioxidant mechanism. They are called pro-oxidant agents.  

Among the phagocytes, neutrophils and macrophages are important producers of ROS via 

NOX2 NADPH that is an enzymatic system responsible for respiratory burst. This enzyme is 

located in the membrane of macrophages and neutrophils. It is composed of Rho guanosine 
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Figure 3. NADPH oxidase system (
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p47phox results in the conformation change of these subunits. Electrons are then transported

from cytoplasmic NADPH to extracellular medium where they interact with free molecular 
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5. Botanic and ethnobotanic aspects  

 
Crinum latifolium is a plant used in Vietnamese herbal medicine. Leaves can be used fresh or 

dried (Loi, 2000). In ancient time it was used for longevity. Nowadays, it is believed as a 

good remedy for benign prostate enlargement, uterine fibroids, ovarian cysts and tumor (Loi, 

2000). Since the effects and the mechanism of action of Crinum latifolium are still not 

understood, scientists study the biological properties of the extracts and natural compounds 

from the plant. Besides the botanical name, there are common names for this plant given in 

Table 4. 

 

Table 4. Botanical and common name of Crinum latifolium: 

Family Botanical name Common name 

Amaryllidaceae 

 

Crinum latifolium English name: milk lily, wine lily. 

Vietnamese name: Royal virgin female  

 

Crinum latifolium is an herbaceous, lily-like perennial plant. It often has 6 to 18 huge showy 

flowers on a fairly stout stem which is developed from tunicated bulbs. A bulb looks like a 

big onion, 10-15 cm in diameter which produces neck or a pseudo-stem made up of the 

sheathing bases of the old leaves. From one bulb, it might grow many bulbs which can be 

separated and planted easily. The leaves are linear to sword-shaped, sheathing at the base with 

reddish purple, arranged in a rosette or rarely in two opposite rows. Leaf veins are parallel, the 

upper surface forms a groove along the leaf, the main vein is strong visible on the lower 

surface. The inflorescences arrange in umbel. Flower’s lobes are white, often tinged with red, 

lanceolate to oblong-lanceolate (Loi, 2000).  

The plant loves the sun and water but needs a good drainage. They require some spaces 

between each other. Propagation by division is a major method as well as by seed but it takes 

a long time from germination to flower. Since most Crinum plants have lovely lily-like 

flowers with sweet fragrance, these are used as landscape plant. 

In the world, the plant is distributed in America, Australia, Southern Asia and Africa. In Viet 

Nam, Crinum latifolium is cultivated in the North, in the Middle and in the South. 

 



 77

 

A 

 

B 

Figure 4. Crinum latifolium. A) The mother bulb in the center and its 'calves', B) Flower 

(Photo by Prof. Vo thi Bach Hue, 2009) 

6. Substances isolated from Crinum latifolium . 

 

Some compounds have been isolated from Crinum latifolium in the past few years. Most of 

them are alkaloids and a few non-alkaloid compounds (sugars, flavonoids).  

 

Three types of alkaloids have been found in Crinum latifolium: crinane (5,10b-

ethanophenanthridine), lycorine (pyrrolophenanthridine) type and cherylline types. The 

alkaloids isolated so far are listed in:  

 

- Crinane type: these alkaloids are mainly found in bulbs (Table 5 and Figure 5). Some 

representatives have significant biological activities (Tram et al, 2002). 

 

- Cherylline type: the representative alkaloids are cherylline and latifine which are 

found from leaves of this plant (Table 6 and Figure 6). They are biogenetic isomers. 

Their skeletons are base on 4-phenyltetrahydroisoquinoline. Their mass spectra are 

similar. They could be metabolites of N,O-dimethylnorbelladine (Kobayashi et al, 

1984).  

 

- Lycorine type: these alkaloids are extracted mainly from fruits and bulbs (Table 7 and 

Figure 7). Under stress conditions (incision injury, insect attack), these alkaloids are 

hydrolyzed and oxidized to participate in protective and repair mechanism of the 

plant. During the isolation, to prevent the hydrolysis and oxidation of these alkaloids, 

pre-treatment with anaesthetic (e.g lidocaine) is necessary (Tram et al, 2002). 
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Table 5. Crinan type, alkaloids isolated from Crinum latifolium.  

 

 

Alkaloids 
 

Their metabolites References 

Buphanidrine (1) 
 

Oxidized products: undulatine, 6-hydroxy 
undulatine, ambelline, 6-hydroxybuphanidrine 
(2), (higher concentration after flowering). 

Tram et al, 2002 

6-hydroxybuphanidrine (2)  Tram et al, 2002 
Powelline (3) 
 

Oxidized products: 6-hydroxypowelline, 
crinamidine, 6-hydroxycrinamidine (higher 
concentration at flowering). 
Product of 3-O-methylation: buphanidrine 
(higher concentration at flowering).  

Tram et al, 2002 

6-hydroxypowelline (4) 
 

Product of 3-O-methylation: 6-
hydroxybuphanidrine (higher concentration at 
flowering). 

Tram et al, 2002 

Ambelline (5) 
 

 Ghosal et al, 1983 

11-O-Acetylambelline (6) 
 

 Ghosal et al, 1985 

3α-1.2-Didehydro-crinan-3-ol (7)  Tram et al, 2002 
Crinine (8)  S. Kobayashi, 1983 
Undulatine (9)  Tram et al, 2002 
Hydroxyundulatine (10)  Tram et al, 2002 
Crinamidine (11) Product of 3-O-methylation: Undulatine (9) 

(higher concentration at flowering). 
Tram et al, 2002 

6-Hydroxycrinamidine (12) Product of 3-O-methylation: 6-
Hydroxyundulatine (10), (higher concentration 
at flowering). 

Tram et al, 2002 

1,2-β-epoxyambelline (13)  Ghosal et al, 1984 
11-O-Acetyl-1,2-β-epoxyambelline (14)  Ghosal et al, 1985 
Epoxy-3,7-dimethoxycrinane-11-one 
(15) 

 Tram et al, 1999 

Crinamine (16)  Kobayashi et al, 1983 
11-O-methyl-crinamine (17)  Kobayashi et al, 1983 
Hamayne (18)  Kobayashi et al, 1983 

 Diacetylhamayne (19)  
3-O-Acetylhamayne (20)  
Dihydro-oxo-demethoxy 
haemanthamine (21) 

Isolation from leaves, GC-MS detection Tram et al, 2002 

Crinane-3α-ol (22) Isolation from leaves, GC-MS detection Tram et al, 2002 
Augustamine (23) Isolation from leaves, GC-MS detection Tram et al, 2002 
Oxoassoanine (24) Isolation from leaves, GC-MS detection Tram et al, 2002 
Crinafoline (25)  Ghosal et al, 1986 
Crinafolidine (26)  Ghosal et al, 1986 
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R3= OMe, R6=H, R7= OMe, R11= H: Buphanidrine (1)  

R3= OMe, R6=α-OH, R7= OMe, R11= H: 6-hydroxybuphanidrine (2) 

R3= OH, R6=H, R7= OMe, R11= H: Powelline (3) 

 R3= OH, R6= OH, R7= OMe, R11= H: 6-hydroxypowelline (4) 

R3= OMe, R6=H, R7= OMe, R11= OH: Ambelline (5) 

R3= OMe, R6=H, R7= OMe, R11= OAc: 11-O-Acetylambelline (6) 

R3= α-OH, R6=H, R7= H, R11= H: 3α-1.2-Didehydro-crinan-3-ol (7) 

R3= OH, R6=H, R7= H, R11= H: Crinine (8) 

 

R1=Me, R2=H: Crinamine (16)  

R1=, R2=Me: 11-O-methyl-crinamine (17) 

R1= R2=H: Hamayne (18) 

R1=R2=Ac: Diacetylhamayne (19) 

R1=Ac, R2=H: 3-O-Acetyl-hamayne (20) 

 

R3= OMe, R6=H, R7= OMe, R11= H: Undulatine (9)  

R3= OMe, R6=OH, R7= OMe, R11= H: 6-Hydroxyundulatine (10) 

R3= OH, R6=H, R7= OMe, R11= H: Crinamidine (11)  

R3= OH, R6=OH, R7= OMe, R11= H: 6-hydroxycrinamidine (12) 

R3= OMe, R6=H, R7= OMe, R11= OH: 1,2-β-epoxyambelline (13) 

R3= OMe, R6=H, R7= OMe, R11= OH: 11-O-Acetyl-1,2-β-

epoxyambelline (14) 

R3= OMe, R6=H, R7= OMe, R11= O: epoxy-3,7-dimethoxycrinane-

11-one (15) 

 

R3=H, R11=O: Dihydro-oxo-demethoxy haemanthamine (21) 

R3=α-OH, R11=H: Crinane-3α-ol (22) 

 

Augustamine (23) 

 

 

Oxoassoanine (24) 
 

Crinafoline (25) 
 

Crinafolidin (26) 

Compounds 6, 13 and 14 have been reported as immunomodulator (Ghosal et al, 1984, 1985). 

Compounds 25 and 26 have been reported as antitumor (Ghosal et al, 1986). 

Figure 5. Chemical structure of the Crinan type alkaloids isolated from Crinum latifolium 

 

Table 6. Cherylline type alkaloids isolated from Crinum latifolium.  

Alkaloids 
 

References 

Latifine (S) (27) Kobayashi et al, 1983, 1984 
Cherylline (S) (28) 
 O, O-dimethylcherylline (29) Kobayashi et al, 1983 
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R1=R2=H, R3= OH: Latifine (27) 

R1=R3=H, R2= OH: Cherylline (28) 

 R1=Me, R2= OMe, R3=H: O, O-dimethylcherylline (29) 

 

Figure 6. Chemical structures of Cherylline type alkaloids isolated from Crinum latifolium. 

 

Table 7. Alkaloids, lycorine type isolated from Crinum latifolium.  

Alkaloids 
 

Their metabolites References 

Lycorine (31)  Ghosal et al, 1983 
 Hippadine (39) Its concentration is maximum during the pre- and 

post-flowering stage.  
Pratorinine (38) Its concentration is maximum during the pre- and 

post-flowering stage.  
Pratorimine (35) Its concentration is maximum during the pre- and 

post-flowering stage.  
O-acetyl-pratorimine (36)  
Pratosine (37) Its concentration is maximum during the pre- and 

post-flowering stage.  
4.5-Dehydroanhydrolycorine 
(30) 

 Tram et al, 2002 

2-Epilycorine (32) 2-Epilycorine produces 2-epipancrassidine via 
3,3a-epoxide 

Ghosal et al, 1989 
 

2-Epipancrassidine (33) It is metabolic product of 2-Epilycorine 
Hippeastrine (34)  Jeffs et al, 1984 

 

 

 

4.5-Dehydroanhydrolycorine (30) 

 

R1= OH, R2= Lycorine (31) 

R1= OH, R2= 2-Epilycorine (32) 

 

2-Epipancrassidine (33) 

 

Hippeastrine (34) 

 

R1 = Me, R2 = H  : Pratorimine (35) 

R1 = Me, R2 = Ac: O-acetyl-pratorimine (36) 

R1 = R2 = Me       : Pratosine (37) 

R1 = H, R2 = Me  : Pratorinine (38) 

R1 + R2 = CH2        :Hippadine (39) 

Figure 7. Chemical structure of lycorine type alkaloids isolated from Crinum latifolium. 
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Table 8. Sugars isolated from Crinum latifolium 

 

Compounds 
 

Notes References 

Glucan A 
 

Glucan A is composed of 12 glucose unites, a water soluble 
neutral oligosaccharide 
 

Tram et al, 2002 

Glucan B 
 

Glucan B is composed of approximately 110 glucose residues, 
mainly composed of α-1 → 4 linked D-glucopyranose moieties 
with branches linked at position 6 
 

 

 
 
 

7. Traditional use of Crinum latifolium  in Viet Nam 
 
 
In Vietnam, the plant is called “Royal virgin female” because it was used for treatment of 

gynecological diseases of virgin women who were selected for the emperor but the emperor 

did not care about them (Loi, 2000). Since 1989-1990 people believe that leaves of Crinum 

latifolium have good effect for prostatitis, adenoma, benign prostate enlarge, uterine fibroids, 

ovarian cysts and tumor (Loi, 2000). Crinum latifolium has reputation for antioxidant activity, 

a cellular immunity effective T-lymphocyte activator. It is used for hypoxia, infection, 

chronic inflammation, detoxification, regeneration of tissue, hormone balancing, supportive 

prostate and ovaries (Loi, 2000). 

 

In India, the leaf juice is used for ear-ache. The leaves are smeared with castor oil and then 

warmed which is a good remedy for whitlows and inflammation of toes and fingers. The bulb 

juice is used for emetic and vomiting in poisoning. It can be used for children, then it should 

be paid attention in over dose. The bulbs, after roasting laid on the skin to ease rheumatic pain 

(Loi, 2000). 

 

Crinum latifolium is widely used as traditional medicine not only in Vietnam and India but 

also in the world, for treatments of benign prostate hypertrophy (BPH) and prostate cancer. 
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8. Biological activities 
 
Different biological activities of extracts of Crinum latifolium have been reported and given 
in Table 9. 
 
Table 9. Biological activities of Crinum latifolium. 
 
 

Compounds/Uses 
 

Biological activity References 

Combination of Glucan 
A and Phosphatidyl-
lycorine: Mast cell 
stabilizing effects, for 
treatment of allergic 
disorders   

Combination of glucan A and phosphatidyl-lycorine significantly 
protect against Tween 80-induced degranulation of mast cells in 
the presence of antigen in vitro and protect against compound 
48/80-induced degranulation of mast cells in vivo. 
 
 

Ghosal et al, 1988 

Cold and hot extract of 
Crinum latifolium: 
Antitumor activity 

In vitro, hot/cold plant extract stimulates human T-lymphocyte 
activation especially cell-mediated immune response of CD4+T 
lymphocytes (T-helper cell). 20% co-stimulation on T-helper 
cells was evaluated when human peripheral blood mononuclear 
cells (PBMCs) was cultivated in the presence of plant cold/hot 
water extracts.  
There was no evidence for a specific CD8+T-lymphocytes 
reaction when PBMCs were cultivated in the presence of plant 
cold/hot water extract.  

Tram et al, 1999  

Crinafoline and 
Crinafolidine: Anti-
tumor effect 

Crinafoline, crinafolidine and crinafoline methochloride, at 
different concentrations, produce significant reduction in the 
growth of S-180 ascites tumor cells in vivo. 

Ghosal et al, 1986 

11-O-Acetylambelline 
and 11-O-Acetyl-1,2-β-
epoxyambelline: 
Potential 
immunoregulant 

11-O-Acetylambelline and 11-O-Acetyl-1,2-β-epoxyambelline 
inhibit tumor growth and rise of macrophage and spleen weight. 

Ghosal et al, 1985 

Crinamine and 
Haemanthamine: 
Apoptosis-inducing 
activity  
 
 

While crinamine and haemanthamine induce apoptosis (85% to 
90%) at 25 µM after 48 h in 5123tc cancer cells, they do not 
induce apoptosis in a non-cancerous human embryonic kidney 
(HEK 293t) cell-line when treated at similar concentration. 
The structure requirements for the selective apoptosis induction 
of Amaryllidaceae alkaloids of the crinane-type are the alpha-C2 
bridge and the free hydroxyl group at C-11. 

McNulty et al, 
2006 

Aqueous extracts of 
Crinum latifolium: 
Immunomodulatory 
properties in human 
peripheral blood 
mononuclear. 

Blockage of neopterin production induced by the mitogens or 
IFN-γ suggests that water soluble components from Crinum 
latifolium may play an important effect on the human immune 
system. 

Zevetkova et al, 
2001 

Alcoholic extract of 
Crinum latifolium: Anti-
acetylcholinesterase   

A strong anti-AChE activity was observed, 83.44%, at 
concentration 0.5 mg/mL. This is a strong anti-AChE activity. 
The control was Galanthamine whose % inhibitor activity was 
86.67%, at concentration 0.1 mg/mL. 

Khoa et al, 2011 
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9. Conclusion 
 
 
Crinum latifolium is extensively used in traditional medicine in Viet Nam and in other parts 

of the world particularly in Asia. A few reported studies show that the extracts of Crinum 

latifolium may induce cell apoptosis, tumor growth reduction and stimulation of the immune 

system which are encouraging to further contribute to these studies. In consequence, different 

properties will be studied in this work: 

 

1. Redox activity 

2. Cytotoxic activities of the extracts against cancer cells 

3. Capacity of the extracts to modify the phenotype of macropahges against 

cancer cells. 

4. Immunostimulating capacities on different models. 
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II. EXTRACTS OF Crinum latifolium  
LEAVES ENHANCE ANTITUMOR 
CAPACITIES OF MACROPHAGES 
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1. Introduction 

 

La médecine traditionnelle asiatique est considérée comme celle utilisant le plus de plantes 

pour le traitement de maladies depuis très longtemps. Crinum latifolium, appartenant à la 

famille Amarylliaceae, est l'une des plantes de la médecine populaire asiatique utilisée dans 

les thérapies anti-inflammatoire, anti-tumorale, antivirale, antibactérienne et antifongique 

(Fennell et al, 2001), (Loi et al, 2000). Dans les aspects anticancéreux, l'extrait aqueux des 

feuilles de Crinum latifoium est utilisé pour le traitement du cancer de la prostate. Le 

traitement du cancer de la prostate à l'aide d'extraits de feuilles chaudes de C. latifolium a été 

fondé sur les connaissances traditionnelles, sans connaître les mécanismes d'action. Dans des 

études récentes, il a été rapporté des propriétés immunostimulantes et anti-inflammatoires de 

l'extrait aqueux de feuilles de Crinum latifolium telles que la stimulation de la prolifération 

des cellules T, la suppression de la formation mitogène, la formation de l'interféron γ-induite 

et indoleamine 2,3-dioxygénase activité (Tram et al, 1999), (Zvetkova et al, 2001), (Jenny et 

al, 2011). Cependant, la voie biologique impliquant une activité anticancéreuse n'est toujours 

pas élucidée. Par ailleurs, il serait intéressant de savoir si les propriétés anti-cancéreuses sont 

dues à un composé pur ou à une activité plus complexe de l’ensemble des composés présents 

dans les extraits provenant de Crinum latifolium. 

 

Dans ce contexte, nous avons évalué les activités d'oxydo-réduction et antitumorale de trois 

extraits, une fraction alcaloïde et un composé pur, 6-hydroxycrinamidine obtenus de Crinum 

latifolium par des méthodes physico-chimiques et biologiques. En particuliér, les effets des 

extraits de C. latifolium sur la polarisation des macrophages et des espèces réactives de 

l'oxygène (ROS) produites par les macrophages ont été étudiés dans des modèles in vitro. Les 

résultats préliminaires permettent d’expliquer en partie, les activités antitumorales des 

différents extraits de Crinum latifolium. 
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1. Introduction 
 

Asian folk medicine is believed as the richest medicinal plant source used for treatment 

diseases for a long time. Crinum latifolium, belonging to Amarylliaceae family, is one of the 

plants in Asian folk medicine used in therapy against anti-inflammatory, antitumoral and 

antiviral, antibacterial and antifungal effects (Fennell et al, 2001), (Loi et al, 2000). In 

anticancer aspects, aqueous extract of Crinum latifoium leaves has good effect in treatment of 

prostate cancer. The treatment of prostate cancer by using hot leaves extracts from 

C.latifolium has been based on traditional knowledge, without knowing the mechanism of 

action. In recent studies, there were some evidences about immunostimulatory and anti-

inflammatory properties of aqueous extract of Crinum latifolium leaves such as stimulation of 

T-cells proliferation, suppression of mitogen formation, interferon-γ-induced formation and 

indoleamine 2,3-dioxygenase activity (Tram et al, 1999), (Zvetkova et al, 2001), (Jenny et al, 

2011). However, biological pathway involving anti-cancer activity is still not elucidated. 

Moreover, it would be interesting to know whether the anti-cancer properties require only 

action of a pure compound or a complex activity of compounds in extracts derived from 

Crinum latifolium.  

 

In this context, we assessed redox and antitumor activities of Crinum latifolium including 

three different extracts, one alkaloid fraction and one pure compound, 6-hydroxycrinamidine, 

by physicochemical and biological methods. Specially, the effect of C. latifolium extracts on 

macrophages polarization and reactive oxygen species (ROS) produced by polarized 

macrophages were investigated in vitro assays which have not been reported so far in 

literature. The results allow to explain in part the antitumor actions of different extracts from 

Crinum latifolium.  

2. Extracts of Crinum latifolium  inhibit the cell viability of mouse 
lymphoma cell line EL4 and induce potent activation of antitumor activity 
of macrophages in vitro 

 

(Publication) 
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Ethnopharmacological relevance: Crinum latifolium (CL) leave 
extracts have been traditionally used in Vietnam and are now 
used all over the world for the treatment of prostate cancer. 
However, the precise cellular mechanisms of the action of CL 
extracts remain unclear. 
Aim of the study: to examine the effect of CL extracts on the anti-
tumor effect of peritoneal macrophages also in relation with their 
capacity to scavenge reactive oxygen species (ROS). 
Materials and methods: The effects of extracts (aqueous, 
flavonoid, alkaloid) and fraction (alkaloid) were studied i) on 
murine peritoneal macrophages (MTT assay) and on lymphoma 
EL4-luc2 (luciferine assay) for cytotoxicity, ii) on macrophage 
polarization (ROS production assays and gene expression by 
PCR), and iii) on tumoricidal functions of murine peritoneal 
macrophages (lymphoma cytotoxicity by co-culture with 
syngeneic macrophages).The results were analyzed in parallel 
with those obtained with the DPPH and the bleaching beta-
carotene assays giving basic redox properties of CL extracts. 
One pure alkaloid, 6-hydroxycrinamidine, isolated from CL, was 
introduced as a control for comparison reason. 
Results: The total flavonoid extract exerted the strongest 
antioxidant activity and a powerful inhibitory activity on cancer 

cells. Alkaloid extracts showed inhibitory activity on the 
proliferation of lymphoma cells either by direct act on tumour cells 
or by activation of tumoricidal functions of syngeneic 
macrophages. The aqueous extract induced mRNA expression 
tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and 
interleukin 6 (IL-6) indicating differentiation of macrophages into 
pro-inflammatory M1 polarized macrophages. The flavonoid 
fraction (F) and alkaloid extracts induced expression of the formyl 
peptide receptor (FPR) on the surface of the polarized 
macrophages which could lead to the activation of macrophages 
toward M1 phenotype. Aqueous and flavonoid extracts enhanced 
NADPH quinoneoxido-reductase 1 (NQO1) mRNA expression in 
polarized macrophages which could play an important role in 
cancer chemoprevention. All the studied samples were not toxic 
for normal living cells and the pure alkaloid tested, 6-
hydroxycrinamidine, presents no activity in the models 
investigated. 
Conclusions: Our results indicate that CL extracts and alkaloid 
fraction (but not pure 6-hydroxycrinamidine) inhibit the 
proliferation of lymphoma cells in multiple pathways. Our results 
are in accordance with traditional usage and encourage further 
studies and in vivo assays.

Abbreviation: CL, Crinum latifolium; ROS, reactive oxygen species; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; 
PCR, polymerase chain reaction, DPPH, 2,2-diphenyl-1-picrylhydrazyl, M1, classically activated macrophages, PBMC, peripheral blood 
mononuclear cells. 

 

Introduction 

 

Crinum latifolium (CL), belonging to the family of Amarylliaceae, 
is a lily-like flowers plant that grows throughout the tropics and 
warm temperature regions of the world (Fennell et al., 2001). The 
plant is distributed in America, Australia, Southern Asia, and the 
majority in Africa.  

Herbal preparations of CL have been used therapeutically for over a 
thousand years in Asian folk medicine for their anti-inflammatory, anti-
tumour and anti-microbial effects (Fennell et al., 2001; Loi, 2000).  

In the case of the traditional use against cancer, especially in 
Vietnamese and Chinese medicine, hot aqueous extracts of CL are 
consumed as a good remedy for prostate cancer, with successful 
cases being reported (Nhu, 2002). It can be noted that prostate 
cancer is considered as one of the most common cancers in older 
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males (90% of men aged 70 to 90) (Dunn et al., 2011). Treatments 
including surgery, radiotherapy, hormone therapy, and chemotherapy 
may induce adverse effects that often reduce the quality of life. 
Moreover these treatments are expensive especially for people in 
developing countries. Herbs are not expensive and have been used 
for a long time in Asia as cures for many diseases (Loi, 2000). 

Recent studies have produced some evidence for 
immunostimulatory and anti-inflammatory effects of aqueous extracts 
of CL leaves that could explain their antitumour effects (ref Tram et al., 
1999; Zvetkova et al., 2001; Jenny et al., 2011). In the case of 
immunostimulation, the ability of CL extracts to activate and stimulate 
T-cell proliferation in vitro and in vivo has been demonstrated (Tram 
et al., 1999). In addition, hot and cold aqueous Yes it is extracts 
suppressed mitogen and interferon (IFN)-γ-induced formation of 
neopterin in human peripheral blood mononuclear cells (PBMC) 
(Zvetkova et al., 2001). Extracts of CL also suppressed indoleamine 
2,3-dioxygenase (IDO) activity in stimulated PBMC with 
phytohaemagglutinin (PHA), which corresponds to the down-
regulation of the formation of IFN-γ in T-cells, tryptophan degradation 
and neopterin production in macrophages (Jenny et al., 2011) that are 
responsible for anti-proliferative activity. These results are starting 
points to understand the mechanism of the anti-tumour activities of 
CL. Macrophages are the dominant population of leukocytes found in 
the tumor microenvironment. These cells are not a homogeneous 
population; they are composed of several distinct pro-and anti-tumour 
subpopulations with overlapping functions depending on a variety of 
external factors in the tumour microenvironment and signals from 
lymphocyte subsets (Biswas and Mantovani, 2010). Thus, these cells 
may represent potential targets for anti-cancer therapy (Mantovani et 
al., 2009). 

In addition, many pure compounds have been isolated from CL 
extracts in the past few years. Most of them are alkaloids and though 
there are a few non-alkaloid compounds (sugars, flavonoids). Three 
types of alkaloids have been found in CL extracts: crinane (5,10b-
ethanophenanthridine), lycorine (pyrrolophenanthridine) and 
cherylline types (Tram et al., 2002). Interestingly, some pure 
compounds such as 11-O-acetylambelline and 11-O-acetyl-1,2-β-
epoxyambelline have been shown to be immunoregulators, while 
crinafoline and crinafolidine possess anti-tumour activity on sarcoma 
180 ascites tumour cells in mice(Ghosal et al., 1985; Ghosal et al., 
1986). 

To assess the potential anti-tumour properties of CL, we carried 
out biochemical and biological studies on three extracts of CL 
(aqueous extract (AqEx), total alkaloid extract obtained by 
Supercritical Fluid Extraction (SFE) (AkEx) and total flavonoid extract 
(FlEx)) and on an alkaloid fraction (FrF) obtained from the total 
chloroform alkaloid extract. The major pure compound, 6-
hydroxycrinamidine (6HC), was isolated from the alkaloid extract to 
compare its activities with the three extracts and with the alkaloid 
fraction. In the present study we report the biochemical and biological 
properties of these extracts which could be responsible for their anti-
tumour activities, namely their redox activities, cytotoxicity, capacity to 
induce activation and differentiation of macrophages. 

Experimental Section 

2.1. Plant material 

Whole leaves of CL were collected in Binh Dinh province, Vietnam, in 
October 2010. The leaves was identified and authenticated by Prof. 
Vo Thi Bach Hue, Analytical Department, Medicine and Pharmacy 
University of Ho Chi Minh city, Vietnam. After collection, the leaves 
were cleaned and shade-dried in a cool place and then ground into a 
homogeneous powder.  

2.2. Preparation of botanical extracts 

The leaf powder was extracted by four different procedures. The 
materials were deposited at the Analytical Department, Medicine and 
Pharmacy University of Ho Chi Minh City, Vietnam. Their voucher 
numbers were as follows: aqueous extract (CL011010-1, AqEx), total 
chloroform alkaloid extract (CL011010-2), fraction F from CL011010-2 
(CL011010-2-F, FrF), total alkaloid extract by SFE (CL011010-3, 
AkEx), total flavonoid extract (CL011010-4, FlEx). 

The aqueous extract (AqEx) was prepared as follows It is a 
product in market: 100 g of powered leaves was boiled in distilled 
water (1:10, w:v). The water extract was filtered through paper 
(Munktell No 2, USA) and was further heated to 60 – 70 oC to 
concentrate the solution. The yield of water extract was 5%. Finally, 
0.14 g sodium benzoate was added to 100g aqueous extract for 
preservation. 

To obtain the total chloroform alkaloid extract (CL011010-2), 100 
g of powdered leaves was suspended in 1 L of 1‰ HCl in 96% 
ethanol, pH 4. The acidic ethanolic solution was filtered through paper 
(Munktell No 2, USA) and then made alkaline (pH 9) with ammonia 
solution. The basic ethanolic solution was successfully extracted with 
CHCl3. After evaporating under reduced pressure, 3 g of product were 
collected (yield: 0.3%). 

Total alkaloids (AkEx) were extracted by using Supercritical Fluid 
Extraction (SFE). With CO2 100 g of leaf powder was passed through 
a supercritical fluid extraction system using 96% ethanol as modifier. 
The extraction was carried out under supercritical temperature (31 oC) 
and pressure at (72 bar). The SFE extract was acidified to pH 3-4 and 
filtered through paper (Munktell No 2, USA). The acidic solution was 
then basified with ammonia solution to pH 10 and extracted with 
chloroform to yield the basic chloroform extract. The resulting extract 
was concentrated under reduced pressure to give 1 g of the total 
alkaloid residue (yield: 0.1%).  

The total flavonoid extract (FlEx) was prepared as follows: 100 g 
of powdered leaves was mixed with 1 L 70% ethanol and was then 
filtered through paper (Munktell No 2, USA). The collected solvent 
was further extracted with ethylacetate. The final extract was 
evaporated under reduced pressure to give 4 g of total flavonoid 
residue (yield: 0.4%). 

2.3. Fractionation and isolation  

Fractionation of the CL total chloroform alkaloid extract was achieved 
as follows. The total crude alkaloid extract (CL011010-2) was 
dissolved in CHCl3 (South Basic Chemicals Company, China) and 
subjected to vacuum liquid chromatography with CHCl3:MeOH (South 
Basic Chemicals Company, China) as the mobile phase and the 
amount of methanol increased gradually from 0 to 100%. Fractions 
(150 ml) were collected and verified by thin layer chromatography 
(TLC) (silica gel 60F254, Merck, Germany) with the solvent system 
CHCl3–MeOH–NH4OH 25% (6:1:0.05) (South Basic Chemicals 
Company, China). Among the eight main fractions collected (A, B, C, 
D, E, F, G, H), the isolation of the active compound was obtained 
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from fraction F (FrF) using column chromatography 
(MeOH/ethylacetate = 50/50) (Fisher Chemical, UK). The purity of the 
substance was checked by TLC (silica gel 60F254, Carlo Erba 
Reagents, France) with the solvent mixture MeOH/ethylacetate = 
50/50 (Rf = 0.63). Finally, 15.3 mg of pure compound (white crystals) 
was obtained by crystallization. 

2.4. Identification of the pure compound, 6-
hydroxycrinamidine 

NMR spectra (1H NMR, 13C NMR, COSY, HSQC, HMBC and 
ADEQUATE) were recorded on a Bruker AVANCE 500 MHz 
spectrophotometer equipped with a 5mm TCI 1H, 13C, 31P cryoprobe. 
The sample was dissolved in dimethyl sulfoxide (DMSO)-d6 (Aldrich, 
USA). 

The pure compound (6HC) was investigated by using an LC-MS 
(Thermo-Finnigan, France) equipped with a C18-column (5µm, 4.6 x 
250 mm, Luna, Phenomenex, France). The column temperature was 
set at 25 °C and the flow rate was 0.7 mL/min with the mobile phase 
A (acetonitrile, VWR), B (distilled water), C (0.1% formic acid, Sigma). 
The gradient elution was started at 10% A for 4 min, increased 
linearly to 90% at the 25th minute for 3 min and then returned rapidly 
to the initial volume. Phase C always remained at 10%. The injected 
volume was 10 µL. 

2.5. Redox assays 

2.5.1. DPPH assay 

The free radical scavenging activity was evaluated using the stable 
2,2-diphenyl-2-picrylhydrazyl nitrogen-centred free radical (DPPH). 
DPPH in ethanol (300 µM, 500 µL) was added to 1 mL of the test 
compounds at different concentrations in ethanol. Each mixture, 
tested in triplicate, was then mixed thoroughly and the absorbance 
recorded at 530 nm every minute for 30 min, using a 
spectrophotometer (Specord 205, Analytik Jena, Germany). The 
decrease in DPPH absorbance was monitored. DPPH solution (300 
µM, 500 µL) in the respective solvent (1 mL) served as the blank. 
Trolox in ethanol (20 mg/L) was used as the reference. The radical 
scavenging activity of the samples (antioxidant activity) was 
expressed in terms of IC50 (concentration in mg/L required for a 50 % 
decrease in DPPH absorbance). 

2.5.2. β-carotene-bleaching assay 

The antioxidant activity of the extracts was determined according to 
Karadeniz et al. (2005) with the following modifications: a solution of 
β-carotene was prepared by dissolving 2 mg of β-carotene in 1 mL of 
chloroform. 500 µL of this solution was then transferred into a round-
bottom rotary flask containing 20 mg of linoleic acid and 200 mg of 
Tween 20. After removing the chloroform using a nitrogen stream, 50 
mL of aerated distilled water was added to the flask with manual 
shaking. Aliquots of 5 mL of this emulsion were transferred into tubes 
containing 200 µL of extracts or α- tocopherol (50 mg/L, positive 
control), which was used as positive control. Each measurement was 
done in triplicate. The blank consisted of 0.2 mL of the respective 
solvent without the extract. Zero time absorbance was recorded at 
470 nm as quickly as possible. The samples were then subjected to 
thermal autoxidation at 50 °C in a temperature controlled 8-cell holder. 
Subsequent absorbance readings were recorded at regular time 
intervals until the colour of the β-carotene in the blank sample had 
disappeared (80 min). The extent of inhibition of β-carotene bleaching 
is related to the concentration of antioxidant compounds. All samples 

were assessed in triplicate. Antioxidant activity (AA) was calculated 
as the percentage inhibition of β-carotene bleaching relative to the 
blank using the following equation: AA (%) = [1 - (Ai - At)/ (A’i- A’t)] x 
100 (Ai = absorbance of the sample at t = 0; At = absorbance after 
incubation (80 min) at 50 °C; A’i= absorbance of the blank at t = 0; A’t 
= absorbance of the blank after incubation (25 min) at 50 °C  

2.6. Macrophages preparation 

2.6.1. Animals 

All the mice were bred and used under protocols approved by the 
Conseil Scientifique du Centre de Formation et de Recherche 
Expérimentale Médico Chirurgical and the ethic boards of the Midi-
Pyrénées (France) ethics committee for animal experiments 
(Experimentation permit number 31-067, approval n° 3155503). All 
the C57B1/6 mice (Janvier, France) used for the in vitro macrophages 
studies were 8-12 week old males. 

2.6.2. Preparation of mouse resident peritoneal macrophages 

After euthanasia with CO2, resident peritoneal cells were harvested by 
washing the peritoneal cavity of the C57BI/6 mice (Janvier, France) 
with 5 mL of Dulbecco’s modified Eagle’s medium (DMEM, Gibco Life 
Technologies, France). The collected cells were centrifuged at 1400 
rpm for 10 minutes and the cell pellet was suspended in Macrophage-
SFM (Serum-Free Medium) (Gibco Life Technologies, France) 
supplemented with glutamine (Gibco Life Technologies, France). 
Cells were allowed to adhere in 48- or 96-well culture plates (1.5 x 105 

cells/well) for 2 hours at 37 °C and under 5% CO2 atmosphere. Non-
adherent cells were then removed by washing with phosphate-
buffered saline (PBS, Gibco, Life Technologies, France) and the 
remaining adherent cells were cultured and stimulated like those 
described below. 

2.6.3. Human monocytes preparation 

Mononuclear cells were obtained from the buffy coats from healthy 
blood donors (Etablissement Français du Sang, Toulouse, France) by 
a standard Ficoll-Hypaque gradient method as previously described 
(Bureau et al., 2001). Human monocytes were isolated from 
mononuclear cells by adherence to plastic for 2 hours in special 
macrophage serum-free medium (Bibco, Life Technologies, France) 
with L-glutamine at 37 °C in a humidified atmosphere containing 5% 
CO2. Non-adherent cells were removed by gentle washing with 
Hank’s Balanced Salt Solution (HBSS, Bibco, Life Technologies, 
France). The number of adherent cells was standardized and the 
remaining adherent cells (85% monocytes) (Bureau et al., 2001) were 
incubated in Macrophage-SFM (Gibco, Life Technologies, France). 

2.7. Sample preparation 

The samples studied were dissolved in 0.1% DMSO to obtain an 
initial concentration of 25 mg/mL. In the experiments, the final 
concentration of the test samples was 25 µg/mL. 

2.8. MTT assay 

Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl-2-(4-sulfo-phenyl)-2H-tetrazolium) 
(Sigma-Aldrich, France) assay. After 2 hours of adhesion of mice 
peritoneal macrophages according to the experimental protocol, the 
different types of extracts from CL were plated in a total volume of 
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200 µL in 96-well plates (Becton Dickinson, France). The wells 
containing only mice peritoneal macrophages were used as control 
groups. Following 24 hours of incubation at 37 °C, 0.02 mL MTT (final 
concentration 0.5 mg/mL) was added in each well and the plates were 
incubated for 2 hours, and then 100 µL of DMSO was added to 
dissolve the blue formazan crystals. The absorbance was measured 
by spectrophotometry at 545 nm (EnVisionMultilabel Plate Reader, 
Perkin Elmer, France). 

2.9. Cytotoxicity on lymphoma, EL4-luc2 

EL4-luc2 cells, a syngeneic murine lymphoma cell line from C57BL/6 
mouse expressing the firefly luciferase gene (luc2) (Caliper Life 
Science) were used as a tool to detect drug efficacy in vitro on tumour 
cell proliferation and the activation of macrophage tumoricidal activity. 
The CL extracts (Final concentration 25 µg/mL. There is only one 
concentration in order to to avoid repeat the same sentence about  
concentration, then I made remark about concentration in section 
2.6.) were incubated with EL4-luc2 lymphoma cells (3 x 104 cells/well) 
for 24 and 48 hours and cell viability was evaluated by an MTT assay. 

2.10. Assay for ROS production 

To assess  ROS production, human monocytes (1.5 x 105 cells/well) 
were placed in a 96-well white microplate and the ROS production 
was measured by chemiluminescence in the presence of 5-amino-
2,3-dihydro-1,4-phthalazinedione (luminol, Sigma, France) using a 
thermostatically (37 °C) controlled EnVisionMultilabel Reader 
(PerkinElmer, France). The generation of chemiluminescence was 
continuously monitored for 90 minutes after incubation of the cells 
with luminol (60 µM) under basal conditions and in the presence of 
either studied samples 25 µg/mL and/or 12-O-tetradecanoylphorbol 
13-acetate (PMA) (100 nM/well), a specific activator of Protein Kinase 
C (PKC); zymosan (50 ng /well), from the cell wall of Saccharomyces 
cerevisiae or the chemotactic peptide, N-Formyl-L-methionyl-L-leucyl-
L-phenylalanine (fMLP) (1µM/well) using the method reported by 
Bureau et al. (2001). 

2.11. Determination of inhibition of proliferative response via 
macrophages activity 

To test the anti-tumour reactivity of macrophages, we seeded 1.5 x 
105 mouse peritoneal macrophages per well in a 96-well plate and co-
cultured them with 3 x 104 cells of the EL4-luc2 cell line for 24, 48 and 
72 hours. An in vitro bioluminescence assay with firefly D-luciferin 
(150 µg/mL) (Caliper Life Science) was carried out using a 
thermostatically (37 °C) controlled Envision Multilabel Reader 
(PerkinElmer, France). 
 

2.12. Quantification of mRNA by reverse transcription and 
real-time PCR 

Total RNA obtained from peritoneal macrophages was prepared with 

RNeasyMini Kit columns (Qiagen) using the manufacturer’s protocols. 

Synthesis of cDNAfor reverse transcription-quantitative PCR (RT-

qPCR) was performed from 1 mg of total RNA with QuantiTectH 

Reverse Transcription (Qiagen) according to the manufacturer’s 

recommendations and primed with hexamers. Quantitative real-time 

PCR was performed on a LightCycler480 system (Roche Diagnostics) 

using LightCycler SYBR Green I Master (Roche Diagnostics). Ten 

microliters of reaction mixture was incubated; the amplifications were 

performed for 50 cycles (10 s at 95°C and 60 s at 60°C). The primers 

(at a final concentration of 10 mM) were designed with the software 

Primer 3 and listed in Table 1. 

 
 
 
 
Table 1. Primers sequences used in quantitative PCR 
experiments. 

Gene Sequences 
GAPDH sense5’AAC TT GGC ATT GTG GAA GG3’ 

antisense 5’ACA CAT TGG GGG TAG GAA CA3’ 
IL-1β sense5’ CAA CCA ACA AGT GAT ATT CTC CAT G3’ 

antisense 5’ GAT CCA CAC TCT CCA GCT GCA3’  
TNF-α sense 5’AGG CTG TGC ATT GCA CCT CA3’ 

antisense 5’GGG ACA GTG ACC TGC ACT GT3’ 
IL-6 sense5’ GAG GAT ACC ACT CCC AAC AGA CC3’ 

antisense 5’ AAG TGC ATC ATC GTT GTT CAT ACA3’ 
Mannose receptor sense 5’ATG CCA AGT GGG AAA ATC TG3’ 

antisense 5’TGT AGC AGT GGC CTG CAT AG3’ 
CD36 sense 5’GCA GAA TCA AGG GAG AGC AC3’ 

antisense 5’GAG CAA CTG GTG GAT GGT TT3’ 
CD11b sense 5’ GAC TCA GTG AGC CCC ATC AT3’ 

antisense 5’ AGA TCG TCT TGG CAG ATG CT3’ 
Dectin-1 sense 5’CAT CGT CTC ACC GTA TTA ATG CAT3’ 

antisense 5’CCC AGA ACC ATG GCC CTT3’ 
TGFβ sense 5’AGG GGC CTC TAA GAG CAG TC3’ 

antisense 5’AGG TTG GCA TTC CAC TTC AC3’ 
NQO-1 sense 5’TTC TCT GGC CGA TTC AGA GT3’ 

antisense 5’GGC TGC TTG GAG CAA AAT AG3’ 
HO-1 sense 5’CCA GAG TGT TCA TTC GAG CA3 

antisense 5’CAC GCA TAT ACC CGC TAC CT3’ 
Nrf2 sense 5’CTC GCT GGA AAA AGA AGT GG-3’ 

antisense 5’CCG TCC AGG AGT TCA GAG AG3’ 

 

 

2.13. Statistical analysis 

The results from the three independent experiments were presented 
as mean ± S.E. Differences between group averages were analysed 
by ANOVA, followed by a Bonferroni Dunnett test. Differences of in p-
value of less than 0.05 were considered statistically significant. 

 

Results  

 

3.1. Identification of the pure 6-hydroxycrinamidine.  
The LC-MS chromatogram of a pure compound isolated from C. 
latifolium had an Rt at 6.24 min with a molecular mass, m/z 334.13 
[M+H]+. The pure compound, C17H19NO6 has been identified as 6-
hydroxycrinamidine (Table 2 and Fig. 1) in previous reports of 
alkaloids isolated from herbal medicines (Hue et al., 1997; Machocho 
et al., 1999).  
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Table 2. 1H NMR (500 MHz), COSY (500 MHz) and 2D NMR data of 6-hydroxycrinamidine 

C/H Position H Posistion 1H COSY (H→ H#) HMBC (H→ C#) 13C ADEQUATE (C→ C#) 

1 - 3.8 ( m) 2 2, 4a, 10a, 10b 53.2 (s) 2, 10b 

2 - 3.1 (s) 1,3 3, 4 54.5 (s) 1, 3 

3 - 4.2 (s) 2, 4α, 4β 1, 4a 64.2 (d) 2, 4 

4 4α 1.3 (m) 3, 4β, 4a 4a, 10b 29.4 (d) 4a, 3 

 4β 1.3 (m) 3, 4α, 4a 4a, 10b   

4a - 3.5 (dd ; 3.50, 3.52) 4α, 4β, 4a 1, 4, 6, 10a, 11 56.7 (d) 3, 4 

6 - 4.9 (d) - 4a, 6a, 7, 8, 10a, 12 84.9 (d) 6a 

6a - - -  121.8 (d) - 

7 - - -  143.1 (s) - 

8 - - -  134.9 (s) - 

9 - - -  149.0 (s) - 

10 - 6.9 (s) - 6a, 8, 9, 10b 97.7 (s) 9, 10a 

10a - - - - 140.2 (d) - 

10b - - - - 41.8 (s) - 

11 11 endo 1.5(m) 11exo, 12endo, 12exo 4a, 10a, 10b 36.4 (s) 10b, 12 

 11 exo 2.1 (m) 11endo, 12endo,12exo C-1, C-10a, C-10b, C-12   

12 12 endo 2.5 (m) 11endo,11exo, 12exo 4a, 6, 11 46.2 (s) 11 

 12 exo 2.9 (m) 11endo, 11exo,12endo 4a, 6   

OCH2O - 5.9 (d) - 8, 9 101.2 (s) - 

7-OMe - 3.9 (m) - 7 59.9 (s) - 

 

O

O
N

O

OH

H

OHOCH3  

Fig.1. 6-hydroxycrinamidine 

3.2. Redox properties 

In both DPPH and β-carotene bleaching assays, the total flavonoid 
extract had the highest antioxidant activity with IC50 values of 107.36 
mg/L and 1010.2 mg/L, respectively. The aqueous extract presented 
weaker IC50 values, 496.9 mg/L (DPPH assay) and 1513.3 mg/L 
(bleaching beta-carotene assay), respectively. Other samples had 
weak or no activity. These results are given in Table 3.  

3.3. Effect of CL extracts on cell viability 

3.3.1. Macrophages 

The MTT assay is a well-known assay to assess the function of 
mitochondria in living cells. The cell viability is established by 
determining the reduction of tetrazolium salts into formazan crystals. 
There were no significant changes observed in macrophages 
incubated with CL samples 25 µg/mL in comparison with the control 

(macrophages alone): the viability of macrophages was not affected 
in the presence of the samples studied, showing that CL extracts 
were not toxic to immune cells (Fig. 2). 

3.3.2. Tumour cells (EL4-luc2) 

The flavonoid and alkaloid CL extracts at 25 µg/mL were directly toxic 
to the EL4-luc2 tumour cells, with the flavonoid being the more toxic.  
Indeed, the level of lymphoma proliferation was always below 2500 
luminescence units in the presence of the flavonoid extract whereas 
the initial number of lymphoma cells added to each well was 30 000 
corresponding to ~ 3385 luminescence units. The results showed that 
the flavonoid extract inhibited the proliferation of tumour cells (Figs. 3). 

 

 
Fig. 2. The effect of CL extracts on the viability of 
macrophages.Control: macrophages (without test samples), 6HC: 6-
hydroxycrinamidine, FrF: fraction F, FlEx: flavonoid extract, AkEx: 
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alkaloid extract, AqEx: aqueous extract. Data represented as mean ± 
SEM of three independent experiments.  

 

Fig. 3. The effect of CL extracts on the proliferation of EL4-luc2 
lymphoma . at 24 h and 48 h of culture. Control: EL4-luc2 cells 
without CL extracts, 6HC: 6-hydroxycrinamidine, FrF: fraction F, FlEx: 
flavonoid extract, AkEx: alkaloid extract, AqEx: aqueous extract. Data 
are represented as mean ± SEM of three independent experiments. 
Statistical significance versus control: ** P < 0.001 
 
Table 3. Antioxidant properties of the CL extracts 

 

Plant extract 

DPPH assay β-carotene bleaching 

assay 

 IC50(mg/L) IC50(mg/L) 

Flavonoidextract(CL011010-4) 107.4± 9.5 1010.2 ± 95.4 

Aqueousextract(CL011010-1) 496.9 ± 37.04  1513.3 ± 229.6  

Alkaloidextract (CL011010-3) 1163.7 ± 23.1 No activity 

Fraction F(CL011010-2-F) No activity No activity 

6-hydroxycrinamidine No activity No activity 

Trolox 10.03 ± 0.9 - 

Vitamin E - 6.6± 0.5  

 

3.4. Study of ROS production by monocytes in the presence 
of CL extracts 

Figure 4A shows the effect of C. latifolium extracts on basal ROS 
production by human monocytes.  Basal ROS production was 
suppressed by unstimulated human monocytes incubated with 
fraction F, flavonoid, alkaloid and aqueous extracts for 90 minutes 
(Fig. 4A). Monocytes cultured for 90 min with CL extracts were then 
stimulated by 100 nM PMA. The ROS production stimulated by PMA 
was inhibited in monocytes incubated with flavonoid, alkaloid and 
aqueous extracts, and was slightly induced in monocytes incubated 
with 6HC (Fig. 4B). 

3.5. Induction of macrophages polarization by CL extracts 

3.5.1. Production of ROS 

This part of the study investigated whether polarization for 24 hours 
with different C. latifolium extracts affected the ability of macrophages 
to produce ROS in response to PMA, zymosan and fMLP.  ROS 

production at the basal level and in response to fMLP was increased 
when the macrophages were differentiated with fraction F, flavonoid 
and alkaloid extracts. Moreover, opsonized zymosan proliferation was 
strongly inhibited by macrophages treated with alkaloid and aqueous 
extracts, while PMA proliferation was slightly inhibited by 
macrophages treated with the same  extracts (alkaloid and aqueous). 
Macrophages treated with fraction F and 6HC showed increased ROS 
production when stimulated by PMA. Finally, 6HC induced ROS 
production in macrophages exposed to opsonized zymosan (Fig. 5). 
 
A) 

 

 

B) 

 

 

Fig. 4. The effect of CL extracts on ROS production in human 
monocytes. CL extracts induced a respiratory burst in monocytes as 
measured by chemiluminescence. Total chemiluminescence emission 
(area under the curve expressed in chemiluminescence index) was 
measured over 90 min. (A), monocytes cultured for 90 min with CL 
extracts, corresponding control: unstimulated human monocytes 
without CL extracts (B), after 90 min of treatment with CL extracts, the 
ROS production in monocytes was stimulated by PMA (100nM), 
corresponding control: human monocyte stimulated by PMA without 
CL extracts,  6HC: 6-hydroxycrinamidine, FrF: fraction F, FlEx: 
flavonoid extract, AkEx: alkaloid extract, AqEx: aqueous extract. The 
data are the means ± SEM of three independent experiments. ** p < 
0.001 indicates a significant difference compared with the 
corresponding control groups without CL extracts. 
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Fig. 5. Effect of CL extracts to modulate the capacity of human 
monocytes after 24 hours of treatment to produce ROS after 
stimulation by PMA, zymosan or fMLP. The respiratory burst of 
monocytes was measured by chemiluminescence. Total 
chemiluminescence emission (area under the curve expressed in 
chemiluminescence index) was measured over 90 min. (A) represents 
the ROS production by unstimulated monocytes, cultured 24 h with 
CL extracts. After 24 h of culture with CL extracts, the monocytes 
were stimulated by PMA (B), zymosan (C) or fMLP (D) in the absence 
of extracts. The data are the means ± SEM of three separate 
experiments. * p < 0.05, ** p < 0.001 indicate a significant difference 
compared with the untreated macrophages by CL extracts (control) 
without stimulator (A) or with various stimulators (B, C, D). 6HC: 6-
hydroxycrinamidine, FrF: fraction F, FlEx: flavonoid extract, AkEx: 
alkaloid extract, AqEx: aqueous extract.  

3.5.2. Evaluation of mRNA level 

To define the polarization of peritoneal macrophages by aqueous and 
flavonoid extracts of CL, the expression of markers of the M1 and M2 
macrophage activation states was assessed by RT-PCR (Figs 6 and 
7). We observed that after treatment for 24 hours with an aqueous 
extract of CL the peritoneal macrophages from mice expressed the 
mRNA encoding the gene for IL1-β, TNFα and IL-6, which are 
established markers of classical M1 macrophage polarization (Fig. 6). 
By contrast, aqueous and flavonoid extracts of CL had no significant 
effect on the expression of the mRNA of the mannose receptor, CD36, 
Dectin-1, and TGFα, which are markers of alternative M2 
macrophage activation (Fig. 7). 

 

Fig. 6. Effects of aqueous and flavonoid extracts of CL on IL1-β, 
TNFα, and IL-6 mRNA expression in peritoneal macrophages. The 
mRNA expression in mice peritoneal macrophages pretreated or not 
(control) over 24 h with aqueous (AqEx) and flavonoid (FlEx) extracts 
of CL was evaluated by RT-PCR. The data are the means ± SEM of 
three separate experiments. * p < 0.05 indicates a significant 
difference compared with the untreated macrophages by CL extracts 
(control). 

 
 
Fig. 7. Effects of aqueous and flavonoid extracts of CL on mannose 
receptor, CD36, Dectin-1 and TGF mRNA expression in peritoneal 
macrophages.The mRNA expression in mice peritoneal macrophages 
pretreated or not (control) over 24 h with aqueous (AqEx) and 
flavonoid (FlEx) extracts of CL was evaluated by RT-PCR. The data 
are the means ± SEM of three separate experiments. * p < 0.05, ** p 
< 0.001 indicate a significant difference compared with the untreated 
macrophages by CLextracts (control). The data are the means ± SEM 
of three separate experiments.  

The molecular activities of flavonoids include activation of the 
nuclear factor-erythroid 2-related factor 2 (Nrf2). Several studies 
(Fahey et al., 2002; Pae et al., 2007; Nakamura et al., 2004) have 
shown the importance of this transcription factor in regulating the 
ARE-dependent transcription of heme oxygenase-1 (HO-1) and 
NAD(P)H: quinoneoxidoreductase (NQO1) genes. Thus, we 
determined whether aqueous and flavonoid extracts of CL augmented 
mRNA expression of HO-1, NQO1 and Nrf2 in resident murine 
peritoneal macrophages. While treatment of macrophages with the 
flavonoid extract for 24 hours resulted in a 2-fold increase in NQO-1, 
the aqueous extract induced a 3-fold increase in the same gene 
expression (Fig. 8). The expression of HO-1 and Nrf2 mRNA were not 
significantly increased (Fig. 8).  

 

 
 
Fig. 8. Effects of aqueous and flavonoid extracts of CL on heme 
oxygenase-1 (HO-1), NAD(P)H: quinoneoxidoreductase (NQO1) and 
Nrf2 mRNA expression in peritoneal macrophages. The mRNA 
expression in mice peritoneal macrophages pretreated or not (control) 
over 24 h with aqueous (AqEx) and flavonoid (FlEx) extracts of C. 
latifolium was evaluated by RT-PCR. The data are the means ± SEM 
of three separate experiments. * p < 0.05 indicates a significant 
difference compared with the untreated macrophages by CL extracts 
(control).  
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3.6. Proliferative responses of EL4-luc2 lymphoma via 
macrophages activity 

Figure 9 shows that the macrophages polarized after 24 hours of 
culture with the alkaloid and aqueous extracts of CL inhibited the 
proliferation of EL4-luc2 tumour cells. This inhibitory effect on 
lymphoma proliferation was very significant after 72 hours of EL4-luc2 
culture. These results indicate that macrophages polarized by the 
alkaloid or aqueous extracts of CL have acquired a phenotype that 
can reduce tumour growth. Other extracts did not have any significant 
effect. 
 

 

Fig 9.Effects of extracts of C. latifolium on antitumor activity 
of murine peritoneal macrophages.The proliferation of EL4-
luc2 in coculture with macrophages was evaluated during 72h. 
The ratio EL4/macrophages was 3x104/ 15x104 at J0. The 
number of EL4-luc cells was evaluated by bioluminescence after 
24, 48 or 72 h of coculture with macrophages. Macrophages was 
pretreated or not (control) during 24h with Fraction F (FrF), 
Flavonoid extract (FlEx), Alkaloid extract (AkEx) and Aqueous 
extract (AqEx) of C. latifolium. The data are the means ± SEM of 
three separate experiments. * p< 0.05 (**p<0,01) indicates a 
significant difference compared with the untreated macrophages 
by C. latifolium extracts (control).  

Discussion 

The leaves of CL are widely used (Loi, 200) in traditional Vietnamese 
medicine for prostate cancer treatment and there are some previous 
studies that have shown immunostimulatory and anti-inflammatory 
effects. For the first time, in the present study, the effect of different 
CL extracts on the polarization of macrophages has been studied. 
Interestingly, our results suggest that alkaloid and aqueous extracts of 
CL are able to inhibit tumour growth via macrophage activation while 
flavonoid and alkaloid extracts directly inhibit the proliferation of the 
cancer cell line EL4-luc2 in the absence of macrophages. 

Macrophages are professional phagocytes that are involved in the 
body’s defence against bacteria, protozoa and viruses, and in anti-
tumour immunity, responses to inflammatory signals and the 
regulation of wound healing (Murray et al., 2011). Depending on the 
requirements, macrophages can be differentiated into subtypes: 
classically activated macrophages (M1) and alternatively activated 
macrophages (M2a), tumour-associated macrophages (TAMs or 
M2d) and myeloid-derived suppressor cells (MDSCs) (Murray et al., 
2011). M1 polarized macrophages are responsible for the production 

of superoxide anions and other chemically reactive molecules 
containing oxygen (ROS), (Fairweather et al., 2009; Sindrilaru et al., 
2011) for the production of pro-inflammation cytokines (IL-1, TNFα, 
IL-6), antigen presentation and expression of MHC class II molecules 
and microbicidal activity in addition attacking cancer cells. M2a 
polarized macrophages are involved in anti-inflammatory cytokine 
(IL10, IL1Ra) production, endocytic activity, cell growth and tissue 
repair. TAMs and MDSCs induce immunosuppression.  

Classically activated M1 macrophages also stimulate iNOS 
induction which catalyses L-arginine transformation into nitric oxide 
(NO) and citrulline (Odegaard et al., 2008). The interplay between 
anion superoxide and nitric oxide is the origin of the formation of 
peroxynitrite, which is a highly active radical responsible for killing 
bacteria or different types of tumour cells. ROS are a double-edged 
sword in biological systems. On the one hand, ROS encourage the 
progression of pathological conditions, including cancer (Rhee, 2006). 
On the other hand, they play an important role in the host’s defence 
against invading microorganisms (Fialkow et al., 2007) and in 
intracellular signalling pathways regulating cell function (Rhee, 2006). 
In cancer, ROS are involved in two inverse functions: cancer 
promotion via the Ras-Raf-MEK-ERK signalling pathway and cancer 
suppression via the p38 MAPK pathway (Pan et al., 2009). The Ras-
Raf-MEK-ERK signalling pathway is responsible for the inhibition of 
apoptotic cell death by induced oxidative stress and activation of 
vascular endothelial growth factor (VEGF), an important protein for 
tumour angiogenesis (Pan et al., 2009). In contrast, activation of the 
p38 MAPK pathway results in the induction of apoptotic cancer cell 
death (Pan et al., 2009). Therefore, an agent with high antioxidant 
activity could play a central role in suppressing cancer cell 
proliferation in the case where ROS are involved in cancer promotion.  

The antioxidant activity of flavonoid, alkaloid and aqueous 
extracts of CL shown in section 3.2 and 3.4 that could be critical for 
tumour cell growth. Importantly, the antioxidant enzymes (NADPH 
quinoneoxidoreductase 1 (NQO1) mRNA were up-regulated in 
macrophages polarized with flavonoid and aqueous extracts. 
Antioxidant enzymes such as glutathione peroxidase (GPx), 
glutamate cysteine ligase (GCL), glutathione S-transferase (GST), 
OH-1 and NQO1 are essential for cellular defence mechanisms or 
phase II detoxification (Surh et al., 2008). The up-regulation of 
antioxidant enzymes could play a pivotal role in cancer prevention as 
has been proved in recent studies. Sulforaphane originating from 
broccoli is able to activate the expression of NQO1 and GST and this 
is protective against gastric tumors induced by benzo[a]pyrene 
(Fahey et al., 2002). Curcumin isolated from Curcuma longa L., 
Zingiberaceae shows anti-proliferation as well as anti-inflammation 
and antioxidant activities. Its anti-proliferative action is based on 
induction of HO-1 expression though the mechanism still remains 
unclear (Pae et al., 2007). Zerumbone derived from tropical ginger, 
Zingiber zerumbet Smith, which activates phase II enzyme genes 
including GPx and OH-1, is believed to be effective in the 
chemoprevention of colon and skin cancer (Nakamura et al., 2004). 
Thus, the enhanced NQO1 expression in macrophages polarized with 
flavonoid and aqueous extracts of CL confirmed their antioxidant 
activity and could contribute to their effectiveness in cancer 
chemoprevention. 

To determine the effect of CL extracts on the growth of tumour 
cells, the proliferation of EL4 lymphoma cells was assessed in the 
presence of the different extracts. Flavonoid and alkaloid extracts 
directly inhibited cell growth. Interestingly, the flavonoid extract 
showed very high inhibition of lymphoma cell growth. In addition, 
none of the samples studied showed any toxicity towards 
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macrophages (Fig. 2). This indicates that the CL flavonoid and 
alkaloid extracts are specifically toxic toward cancer cells but not 
towards normal living cells. Flavonoids as well as alkaloids have 
many important biological activities for instance inactivation of 
reactive oxygen species (ROS), binding of electrophiles, induction of 
protective enzymes (enzymes of phase II detoxification), induction of 
apoptosis, inhibition of cell proliferation, lipid peroxidation, 
angiogenesis, and DNA oxidation (Chahar et al., 2011; Lu et al., 
2012). However, the direct inhibition of lymphoma cell growth of the 
flavonoid and alkaloid extracts was not only based on their antioxidant 
properties but also required the modulation of multiple biological 
signaling pathways to exert their anti-tumour activity. The aqueous 
extract showed antioxidant activity (section 3.2 and 3.4) but had no 
direct inhibitory effect on lymphoma cell proliferation (section 3.3.2). 
Moreover, the pure compound, 6-hydroxycrinamidine, isolated from 
CL, had not antioxidant or inhibitory activities. This indicates that CL 
exerts its activities due to complex action of many compounds 
contained in the extracts. Thus, the aqueous, flavonoid and alkaloid 
extracts naturally contain different type of chemical compounds or 
different ratios of complex active compounds which results in their 
differences in the mechanism of their actions.  

Because macrophages present different polarization states that 
have distinct pro-and anti-tumour functions in response to 
environmental stimuli, we investigated the phenotypic and functional 
characteristics of monocytes/macrophages after 24 hours of 
treatment with CL extracts. We particularly studied the modulation of 
the ability of macrophages to produce ROS (O2

•- and radical hydoxyl) 
via NADPH-oxidase. Indeed, the oxidative burst is crucial in the 
microbicidal and tumoricidal functions of different macrophages 
subtypes. In the study, both alkaloid and aqueous extracts inhibited 
the oxidative burst in macrophages stimulated with PMA and 
zymosan. Furthermore, macrophages induced by zymosan showed 
much stronger inhibition than the macrophage response to PMA. This 
suggested that zymosan receptors (such as TLR-2 and dectin-1, 
characteristic markers of M2 macrophages) were down-regulated on 
the surface of macrophages. Therefore, this macrophage subtype, 
polarized after treatment with alkaloid or aqueous extracts, was 
weakly able to mediate phagocytosis of an opsonized yeast 
containing a glucan and mannan such as zymosan.  

When macrophages were polarized by fraction F, flavonoid, 
alkaloid and aqueous extracts, we observed dissociation between the 
respiratory burst stimulated by fMLP and that stimulated by TPA and 
zymosan. These results suggest that the aqueous and alkaloids 
extracts on the one hand, and fraction F and flavonoid extract on the 
other hand, differently modulate the expression of fMLP and zymosan 
receptors in monocytes/macrophages. 

In particular, the enhanced ROS production in macrophages was 
induced by the ligand fMLP which suggested the formyl peptide 
receptor (FPR) was up-regulated on the surface of polarized 
macrophages. FPR plays important roles in innate immunity and host 
defences via chemotaxis, phagocytosis and the generation of ROS 
(Gemperle et al., 2012). The activation of the FPR2 receptor limits 
CCL2 activity, resulting in reduction in macrophage infiltration 
associated with tumors, suppression of the polarization of TAMs as 
well as moderation of tumour growth (Liu et al., 2013). Additionally, 
FPR1 up-regulation is required for host responses to bacterial and 
viral infection (Gemperle et al., 2012). The increase in FPR1 and 
FPR2 expression on the surface of macrophages leads to the 
differentiation of macrophages towards proinflammatory M1 
macrophages which enhances the anti-tumour host response 
(Gemperle et al., 2012), (Liu et al., 2013). Therefore, three extracts 

(fraction F, flavonoid and alkaloid extracts) were able to induce FPR 
receptor expression on the surface of polarized macrophages and this 
could be disadvantageous for tumour progression. 

In the gene expression part of the study, high production of pro-
inflammatory cytokines (IL1-β, TNFα, IL-6) was observed early on 
(Fig. 6) which was characteristic of M1 or M2b polarization (Hao et al., 
2012). In addition, peritoneal macrophages treated with the aqueous 
or flavonoid extracts of C. latifolium expressed any proteins encoding 
for markers of M2 macrophage activation, including the mannose 
receptor (MR) (Fairweather et al., 2009), CD36 (Sindrilaru et al., 
2011), dectin-1 (Lefevre et al., 2010), CD11b and TGFβ (Fairweather 
et al., 2009) (Fig. 7). This finding indicated that the macrophages 
differentiated towards M1 macrophages in the samples treated with 
aqueous extract. As M1 macrophages are microbicidal and 
tumoricidal a stimulation provoking M1 polarization could be 
considered as a good potential cancer therapy. This is known as 
macrophage mediated tumor cytotoxicity (MTC) (Deborah, 1982). 
Thus, the aqueous extract of C. latifolium was able to activate 
macrophages to differentiate into M1, resulting in the suppression of 
cancer cell growth (section 3.6.). Furthermore, it was not a surprise 
when the total alkaloid extract showed direct inhibition of tumour cells 
(Fig. 3B) as well as indirect suppression via activation of 
macrophages (Fig. 9B) since some pure alkaloid compounds 
extracted from CL have been reported to have anti-tumour activity 
and to be immuno-regulatory (Ghosal et al., 1985; Ghosal et al., 
1986).  

Conclusion 

In summary, CL extracts inhibit the proliferation of lymphoma cells in 
multiple ways. Aqueous extracts suppress lymphoma cell growth via 
activation of M1 macrophage polarization without any direct inhibitory 
activity. This result is important because it suggests a mechanism for 
the anti-cancer action of aqueous extracts that have been used for a 
long time in traditional medicine. The alkaloid extract shows a 
suppressive effect on lymphoma cells in both direct and indirect 
pathways via activation of macrophages. In addition, the flavonoid 
extract directly inhibits tumour cell proliferation without macrophage 
mediation. Further studies will be needed in order to establish a 
causal relationship between M1 induced polarization of macrophages 
by aqueous and alkaloid extracts and the activation of their anti-
tumour function. 
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3. Conclusion 

Différents extraits isolés de C. latifolium exercent leur activité anticancéreuse par différentes 

voies: 1) inhibition de la production de ROS par les cellules cancéreuses grâce à leurs 

capacités antioxydantes; 2) activation des macrophages en macrophage activé de type M1, 3) 

induction de l'expression du récepteur de peptide formyle sur la surface des macrophages 

polarisés qui inhibe la production de peptides chimiotactiques des monocytes-1 (MCP-1 ou 

CCL2) par les cellules tumorales. Cet effet se traduit par une diminution de l'infiltration des 

macrophages due aux tumeurs, la répression de la polarisation des macrophages associés aux 

tumeurs (TAM) et une modération de la croissance tumorale. Il a également été demontré que 

les macrophages sont activés sous la forme M1 qui est favorable à une suppression tumorale. 

En outre, les propriétés anticancéreuses des extraits de C. latifolium ne sont pas simplement 

basées sur l’activité de quelques composés. Il s'agit d'une activité résultant de la complexité 

du mélange moléculaire : i) les extraits de flavonoïdes et les extraits aqueux présentent des 

activités anti-oxydantes ; l'extrait aqueux n’inhibe pas directement la croissance des cellules 

tumorales, mais active les macrophages pour qu’ils exercent un effet inhibiteur; ii) bien que 

l’extrait alcaloïde ait une capacité antioxydante faible dans les essais « DPPH » et « béta-

carotène », il montre de manière significative des propriétés antioxydantes sur monocytes 

humains. Ces effets se présentent de deux façons, un effet inhibiteur direct sur les cellules 

tumorales et, un effect indirect, par l'intermédiaire d'une activation des macrophages, 

démontré par l’induction de l’expression du récepteur au peptide formyle à la surface des 

macrophages polarisés. 

 

Même si l'extrait aqueux ne montre aucune activité anticancéreuse directe, il supprime la 

croissance des cellules tumorales par l'activation de la polarisation des macrophages en M1. 

Ce résultat est important car il explique le mécanisme de l'activité antitumorale de l'extrait 

aqueux et justifie ainsi l’usage traditionnel de cet extrait depuis des milliers d'années. 

L'extrait des flavonoïdes présente une activité anti-proliférative sur les lymphomes fortement 

sans activation des macrophages ou toute autre aide de médiateurs. Ce résultat n'a jamais été 

signalé avant. 
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3. Conclusion 
 
Different extracts isolated from C. latifolium exert anti-proferative activities in different 

pathways: 1) inhibition of the ROS produced by cancer cells through their antioxidant 

capacities; 2) activation of the macrophages into classically activated macrophages M1; 3) 

induction of the formyl peptide receptor expression on the surface of polarized macrophages 

which inhibits monocyte chemoattractant peptide-1 (MCP-1 or CCL2) produced by tumor 

cells. This effect results in the decrease of macrophage infiltration associated with tumor, the 

suppression tumor-associated macrophages (TAMs) polarization and the moderation tumor 

growth. It also indicates that macrophages are activated toward M1 which are favorable for 

tumor killing. In addition, the anticancer properties of C. latifolium are not simply based on 

some compounds. The activities result from the molecular complexity of the extracts because: 

i) the flavonoid and aqueous extracts show antioxidant activities but the aqueous extract does 

not directly inhibit tumor cell growth, it needs to activate macrophages to exert inhibitory 

effect; ii) although alkaloid extract has a weak antioxidant in the “DPPH” and “beta-carotene 

beaching” assays, it significantly shows antioxidant properties in human monocyte assay. It 

also presents supressive effects on two ways, a direct inhibitory effect on tumor cells and an 

indirect way via activation of macrophages, indicating by the induction of formyl peptide 

receptor expression on the surface of polarized macrophages. 

 

Even though aqueous extract does not show any direct anticancer activities, it suppresses 

tumor cell growth through the activation of macrophages polarization toward M1. This result 

is important because it explains the mechanism of antitumor activity of aqueous extract and 

justifies its use in traditional way for thousand years. 

 

The flavonoid extract strongly exhibits antiproliferative activity on lymphoma without 

macrophages activation or any assistance of mediators. This result was never reported before  
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CONCLUSION GENERALE 
Examiner les propriétés redox de composés ou de mélanges moléculaires, pour aboutir à une 

meilleure compréhension de leurs mécanismes d’action dans des modèles de pathologies liées 

au stress oxydant, a constitué le cheminement de ce travail de thèse. 

Deux sources moléculaires, de synthèse et naturelle, avec des propriétés biologiques avérées, 

ont été choisies pour ce travail: la série des indolone-N-oxydes (INODs), à fortes activités 

antipaludiques, et les extraits ou substances isolées de Crinum latifolium, à réputation 

traditionnelle sur la longévité et la réduction des symptômes de certains cancers.  

 

La série des indolone-N-oxydes (Partie A) comprenait, au démarrage de ce travail, une 

centaine de représentants issus d’un travail antérieur de pharmacomodulation, et des données 

physico-chimiques et biologiques parmi lesquelles les valeurs de CI50 obtenues in vitro sur le 

modèle de l’érythrocyte humain parasité par Plasmodium falciparum. Les activités in vivo des 

meilleurs hits et têtes de séries étaient également disponibles. Plusieurs avancées avaient 

également été faites sur la compréhension des mécanismes d’action de ces molécules. Ces 

pistes identifiées ont montré que ces molécules possèdent un mécanisme d'action original en 

interférant avec les mécanismes de régulation des interactions entre cytosquelette et 

membrane de la cellule hôte sans affecter celle du globule rouge sain. Les modifications 

membranaires conduisent à une déstabilisation puis à une vésiculation intense de l’érythrocyte 

parasité entraînant la mort du parasite par éclatement et destruction du globule rouge. Ce 

mécanisme de déstabilisation est déclenché par l'activation d’une voie de phosphorylation 

sensible au stress oxydant qui implique des Syk-kinases et affecte les interactions membrane-

cytosquelette. Les travaux antérieurs avaient démontré la bio-réductibilité, enzyme et thiol 

dépendante, des INODs au sein du globule rouge. Ces premières données sur le mécanisme 

d’action introduisant la notion de stress oxydant et de bio-réductibilité des molécules actives, 

nécessitaient d’étudier plus en détail le caractère oxydo-réductible des INODs par des 

approches physico-chimiques ainsi que leurs interactions avec les composants biochimiques 

érythrocytaires. Ainsi, dans ce travail, les méthodes électrochimiques et RPE couplée ou non, 

ont été associées aux méthodes HPLC et LC-MS. Plusieurs résultats majeurs ont été obtenus :  

 

- Les INODs (37 représentants étudiés) présentent, en milieu aprotique, deux étapes de 

réduction situées autour de - 0,68 ± 0,2 V et - 1,45 ± 0,2 V vs SCE. La première étape de 

réduction est réversible pour tous les composés étudiés dans les conditions de l'étude et 



 

100 
 

attribuée à la réduction de la double liaison N=C, tandis que la seconde étape de réduction, 

irréversible, a été attribuée à la réduction du carbonyle.  

 

- Par couplage électrochimie-RPE, l’analyse a confirmé que cette première réduction donne 

lieu à la formation d'un radical cationique relativement stable. Au cours du temps, la 

protonation du radical a lieu sur le carbone en alpha de la fonction nitrone et non sur le groupe 

NO. L’observation, par RPE, de cet intermédiaire radicalaire, obtenu par simple réduction à 

un potentiel compatible avec celui du milieu intracellulaire, est une étape importante dans 

l’analyse du mécanisme d’action de ces molécules antipaludiques. Cet intermédiaire 

radicalaire pourrait être le premier signal redox généré par ces dérivés au sein du globule 

rouge, signal redox activant plusieurs cascades d’évènements redox, qui, in fine, génèrent un 

stress oxydant fatal au globule rouge parasité, fragilisé par Plasmodium, alors que le globule 

rouge sain résiste à ces évènements redox.  

 

- Une relation entre le comportement électrochimique et la structure des indolone-N-oxydes a 

pu être établie pour les composés ayant des substituants électro-attracteurs. L'insertion d'un 

groupe électro-attracteur sur le carbone en alpha du groupement N-oxyde facilite la réduction 

du composé. Les composés ayant les potentiels de réduction les plus faibles en valeur absolue 

sont également les plus actifs in vitro (CI50). Précédemment, nous avions montré que ces 

composés sont bio-réductibles dans le globule rouge. Les résultats de ce travail sont ainsi 

concordants avec cette première démonstration puisque l’activité antiplasmodiale est d’autant 

plus élevée que le composé est plus facilement réductible.  

 

- Les études d’interaction entre INODs et les composants biochimiques érythrocytaires 

montrent que ces composés i) n’entrent pas dans la sphère de coordination du métal dans le 

complexe fer-hème à l’inverse de la chloroquine; ii) ne génèrent pas d’espèces radicalaires  

fer-dépendantes comme le fait l'artémisinine; iii) génèrent des intermédiaires radicalaires 

après réduction à un électron en milieu polaire ; iv) ne peuvent pas piéger les radicaux libres 

après réduction. Le caractère pro-oxydant des INODs pourrait être l'initiateur du signal redox 

qui active les Syk-kinases et induit une hyperphosphorylation de la protéine AE1 (bande 3) 

dans le globule rouge parasité. 

 

Ces résultats sont en bon accord avec le fait qu'aucune corrélation n'a été observée entre les 

réponses des INODs et celles de la chloroquine sur isolats frais humains de P. falciparum 
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alors qu’in vitro les réponses des INODs et de la dihydroartémisinine sont significativement et 

positivement corrélées. Ces résultats suggèrent des mécanismes d'action différents ou des 

cibles moléculaires différentes pour ces trois classes de composés antipaludiques. Ces 

hypothèses sont renforcées par le fait que les  INODs sont équipotentes contre les deux types 

de souches de P. falciparum, résistante et sensible à la chloroquine.  

L’ensemble de ces résultats soutient l’hypothèse d’un mécanisme d’action original des INODs 

à l’origine de leurs activités antipaludiques et encouragent la poursuite des travaux afin de 

déterminer leurs propriétés pharmacocinétiques et pharmacodynamiques nécessaires aux 

études pré-cliniques.  

 

Crinum latifolium  (Partie B) est une plante traditionnellement utilisée en Asie pour ses 

propriétés anti-inflammatoires et anticancéreuses. Les composants moléculaires ont été 

largement décrits dans la littérature tandis que les mécanismes par lesquels ils agissent sont 

peu connus. Dans ce mémoire il a été choisi d’étudier les propriétés des extraits de cette 

plante par une approche globale, c'est-à-dire par l’identification des activités d’un extrait total 

ou d’une fraction plutôt que par une approche moléculaire en travaillant sur les composés purs. 

Cependant, pour des raisons de comparaison, une molécule (6-hydroxycrinamidine) a été 

également introduite dans les essais pour représenter les alcaloïdes majoritaires de cette plante. 

Dans une première étape, plusieurs extraits, fractions et molécules ont été isolés. Dans une 

deuxième étape, il a été choisi d’étudier les capacités d’oxydo-réduction des extraits et des 

fractions obtenues par différentes méthodes afin d’identifier les fractions à forte activités anti-

oxydantes et d’éventuelles fractions à caractère pro-oxydant. Dans une troisième étape, ces 

extraits ont été étudiés pour leur capacité à activer, voire différencier les macrophages.  

Les essais sur les propriétés redox ont montré que  l’extrait total de flavonoïdes présente les 

activités antioxydantes les plus élevées, avec des CI50 égales à 107.36 mg/L et à 1010.2 mg/L, 

obtenues, respectivement, dans l’essai DPPH et dans l’essai de décoloration du beta-carotène. 

Une activité antioxydante était attendue pour cette fraction. Par contre cette activité 

antioxydante est remarquablement élevée étant donné qu’il s’agit d’un extrait brut. Aucune 

autre fraction n’a présenté une telle activité antioxydante. D’autre part, aucun extrait n’a 

exprimé de caractère pro-oxydant (capacité des molécules à être réduites). La molécule pure 

isolée (6-hydroxy-crinamidine) et introduite à titre de comparaison dans les essais ne présente 

aucune activité redox.  

Les différents extraits et fractions isolées de Crinum latifolium inhibent la prolifération des 

lymphomes par différentes voies. Les extraits aqueux suppriment la croissance des 
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lymphomes via l'activation de la polarisation des macrophages de type M1. Ce résultat est 

important car il explique l’activité anticancéreuse de l'extrait aqueux utilisé depuis très 

longtemps de façon traditionnelle. L’extrait d’alcaloïdes présente un effet suppressif sur les 

lymphomes selon deux voies, une directe et une indirecte via l'activation des macrophages. 

L’extrait de flavonoïdes inhibe directement la prolifération des cellules tumorales, sans 

médiation des macrophages; ce résultat est original car une telle activité n’avait pas été 

rapportée dans la littérature jusqu’à présent. Ce travail a démontré que les extraits de 

flavonoïdes et d’alcaloïdes activaient deux voies différentes conduisant à l’inhibition de la 

prolifération des cellules tumorales. Le composé pur (6-hydroxycrinamidine) isolé de C. 

latifolium ne présente aucune activité sur les différents modèles étudiés. Les perspectives de 

ce travail pourraient être d’étudier les synergies potentielles de ces extraits (flavonoïdes, 

alcaloïdes et extraits aqueux) de C. latifolium sur les modèles in vitro mises en œuvre dans ce 

travail ainsi que sur d’autres modèles.  

 

En conclusion, des avancées ont été obtenues sur les mécanismes d’action des indolone-N-

oxydes à activités antipaludiques et des extraits de Crinum latifolium à réputations 

traditionnelles, antiinflammatoire et anticancéreuse. Un certain nombre de relations entre 

propriétés redox et activités biologiques ont pu être obtenues, par des approches moléculaire 

(substance pure) ou globale (extraits naturels) sur des modèles biochimiques et cellulaires. 

Dans les deux cas, les résultats ouvrent des perspectives pour poursuivre les travaux de 

recherche.   
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GENERAL CONCLUSION 
Studying the redox properties of molecular compounds or mixtures, leading to a better 

understanding of their mechanisms of action in models of pathologies linked to oxidative 

stress, has been the progress of this work. 

 

Two molecular sources, synthetic and natural, with proven biological properties, were chosen 

for this work: the series of indolone-N-oxides (INODs) with high antimalarial activities and 

extracts of Crinum latifolium or isolated substances with traditional reputation on longevity 

and on reducing the symptoms of certain cancers. 

 

At the start of this work, the INODs series (Part A) included hundred representatives from a 

previous pharmaco-modulation work, physic-chemical and biological data including the IC50 

values obtained from the human erythrocyte model parasitized by Plasmodium falciparum. 

The activities in vivo of the best hits and leads were also available. Several advances were 

also made in the understanding of the mechanisms of action of these molecules. Tracks 

identified showed that these molecules have a novel mechanism of action by interfering with 

the mechanisms regulating interactions between the cytoskeleton and the membrane of the 

host cell without affecting those of healthy red blood cells (RBCs). The membrane 

modifications cause its destabilization and its vesiculation which lead to the death of the 

parasite and the destruction of the RBCs. This mechanism of destabilization is triggered by 

the activation of a phosphorylation process sensitive to oxidative stress involving Syk-kinases 

and affecting membrane-cytoskeleton interactions. Previous work in the laboratory had 

demonstrated the bio-reducibility of INODs, enzyme and thiol dependent, inside the RBCs. 

These first data on the mechanism of action, introducing the concept of the oxidative stress 

and bio-reducibility of the bio-active molecules, required to study in more details the redox 

character of the INODs, by physic-chemical approaches, and their interactions with the 

biochemical components of the erythrocyte. Thus, in this work, electrochemical methods, 

coupled or not to EPR, were associated with HPLC and LC-MS. Several major results were 

obtained: 

 

- INODs (37 representatives studied) present, in an aprotic medium, two steps of reduction 

located around - 0.2 V ± 0.68 and - 1.45 ± 0.2 V vs. SCE. The first reduction step is reversible 

for all tested compounds under the conditions of the study and assigned to the reduction of the 
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double bond C = N, while the second reduction step, irreversible, was attributed to the 

reduction of the carbonyl. 

 

- By coupling electrochemistry to EPR, the analysis confirmed that the first reduction gives 

rise to the formation of a radical cation relatively stable. Over time, the protonation of the 

radical takes place on the carbon in alpha position to the nitrone function and not on the NO 

group. The EPR observation of this radical intermediate, obtained by reduction at a potential 

compatible with an intracellular environment, is an important step in the analysis of the 

mechanism of action of these antimalarial drugs. This radical intermediate could be the first 

redox signal generated by these derivatives in the RBC, activating several redox signals in 

cascade that ultimately generate a fatal oxidative stress to parasitized RBC, weakened by 

Plasmodium, while healthy RBCs resist to these redox events. 

 

- A relationship between the electrochemical behavior and the chemical structures of INODs 

has been established for compounds with electron-withdrawing substituents. Inserting an 

electron withdrawing group on the alpha carbon of the N-oxide function facilitates the 

reduction. Compounds with the lowest reduction potentials are the most active in vitro (IC50). 

Previously, we showed that these compounds are bio-reducible in RBCs, parasitized or not. 

The results of this work are consistent with this first demonstration since the antiplasmodial 

activity is higher when the compound is more easily reducible. 

 

- Interaction studies between INODs and biochemical components of the erythrocyte show 

that these compounds i) are not included in the coordination sphere of the metal in the iron-

heme complex unlike chloroquine; ii) do not generate iron-dependent free radical species such 

as does artemisinin; iii) generate radical intermediates after one-electron reduction in polar 

medium which is reversible; iv) cannot trap free radicals upon reduction. This pro-oxidant 

character of INODs could be the initiator of a redox signal that activates Syk-kinases and 

induces a hyperphosphorylation of the protein AE1 (band 3) in the parasitized erythrocyte. 

These results are in good agreement with the fact that no correlation was observed between 

the responses of INODs and those of chloroquine on human fresh isolates of P. falciparum in 

vitro. Responses of INODS and dihydroartemisinin were significantly and positively 

correlated. These results suggest different mechanisms of action and molecular targets for 

these three different classes of antimalarial compounds. These assumptions are reinforced by 
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the fact that INODs are equipotent against both strains of P. falciparum, resistant and 

sensitive to chloroquine. 

Taken together, these results support the hypothesis of an original mechanism of action of 

INODs behind their antimalarial activities and encourage further work to determine their 

pharmacokinetic and pharmacodynamic properties necessary for pre-clinical studies. 

 

Crinum latifolium  (Part B) is a plant traditionally used in Asia for its anti-inflammatory and 

anticancer properties. Molecular components have been extensively described in the literature 

but the mechanisms by which they act are not well known. In this work it was decided to 

study the properties of the extracts of this plant through a comprehensive approach, that is to 

say, by identifying activities of total extracts or fractions rather than by a molecular approach 

working on pure compounds. However, for comparison purposes, a pure molecule (6-

hydroxycrinamidine) was also introduced into the assays, as representative of alkaloids which 

are the most abundant molecules in this plant. In a first step, several extracts, fractions and 

pure molecules were isolated. In a second step, it was decided to study the redox capacities of 

extracts and fractions obtained by different methods to identify the fractions with high 

antioxidant activities and any fractions with pro-oxidant character. In a third step, these 

extracts were studied for their ability to activate or differentiate macrophages.   

Tests on the redox properties showed that the total flavonoid extract presents the highest 

antioxidant activities with IC50 values equal to 107.36 mg / L and 1010.2 mg / L, obtained, 

respectively, in the DPPH test and the bleaching beta-carotene assay. Although antioxidant 

activity was expected for this fraction, it can be noted that its antioxidant activity is 

remarkable high considering that it is a crude extract. No other fraction has presented such 

antioxidant activity. On the other hand, no extract has expressed pro-oxidant character (ability 

to be reduced). The isolated pure molecule (6-hydroxycrinamidine) introduced for comparison 

in testing shows no redox activity. 

 

The different extracts and isolated fractions of Crinum latifolium inhibit lymphoma 

proliferation by different routes: 1) inhibition of the ROS produced by cancer cells through 

their antioxidant capacities; 2) activation of the macrophages into M1; 3) induction of the 

formyl peptide receptor on the surface of polarized macrophages which inhibits the 

expression of monocyte chemoattractant peptide-1 (MCP-1 or CCL2) by tumor cells, leading 

to reduce the amount of macrophage infiltration associated with tumor, suppress the 

polarization of tumor-associated macrophages (TAMs) and moderate tumor growth. The 
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anticancer properties of flavonoid and alkaloid extracts are complex because i) the flavonoid 

and aqueous extracts show antioxidant activities but the aqueous extract does not directly 

inhibit tumor cell growth, it needs to activate macrophages to exert inhibitory effect; ii) 

although alkaloid extract has a weak antioxidant in the DPPH and beta carotene beaching 

assays, it significantly shows antioxidant properties in human monocyte assay. It also shows a 

direct inhibitory effect on tumor cells and on activation of macrophages into M1. The aqueous 

extracts suppress cell growth via the activation of macrophages polarization of type M1. This 

result is important because it explains the anticancer activity of the aqueous extracts been 

used in traditional ways for a long time. The extract of alkaloids has a suppressive effect on 

lymphoma in two ways, one direct on tumor cells without mediation through macrophages or 

any mediates and one indirect via activation of macrophages and induction of formyl peptide 

receptor expression on the surface of polarized macrophages, resulting in suppression of 

TAMs and differentiation of macrophages into M1. Flavonoid extract directly inhibits the 

proliferation of tumor cells without mediation of macrophages and this result is original 

because such activity has not been reported in the literature so far. This work has shown that 

extracts of flavonoids and alkaloids activate two different pathways leading to the inhibition 

of tumor cell proliferation. The pure compound (6-hydroxycrinamidine) isolated from C. 

latifolium has no activity on the different models studied. The perspectives of this work could 

be to study the potential synergies of these extracts (flavonoids, alkaloids and aqueous 

extracts) of C. latifolium in vitro models used in this work as well as other models. 

 

In conclusion, progress has been made on the understanding of the mechanisms of action of 

antimalarial INODs and of Crinum latifolium with anti-inflammatory and anticancer 

reputations. A number of relationships between redox properties and biological activities have 

been obtained by molecular approaches (pure substance) or global (natural extracts) on 

biochemical and cellular models. In both cases, the results open perspectives for further 

research steps. 
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