
GAZE CONTROL FOR VISUALLY GUIDED

MANIPULATION

by
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Abstract

Human studies have shown that gaze shifts are mostly driven by the task. In manip-

ulation tasks, for example, gaze typically leads action to the next manipulation target.

One explanation is that fixations gather information about task relevant properties,

where task relevance is signalled by reward. This thesis pursues primarily an engineer-

ing science goal in order to determine what mechanisms a rational decision maker could

employ to select a gaze location given limited information and limited computation

time. To do so we formulate three computational models of gaze shifting, where the

agent imagines ahead in time the informational effects of possible gaze fixations. Our

first model selects the gaze that most reduces uncertainty in the scene (Uncertainty).

The second model maximises expected rewards by reducing uncertainty (Rew+Unc).

Our third model maximises the expected gain in cumulative reward by reducing uncer-

tainty (Rew+Unc+Gain). The secondary goal of this thesis is concerned with the way in

which humans might select the next gaze location. The main contributions of this thesis

are: i) the formulation of three computational models of fixation selection, implemented

on a simulated humanoid robot; ii) the characterisation of the models in terms of per-

formance using a manipulation task under variations of three environmental variables;

iii) the integration of an active visual search process into the Rew+Unc+Gain scheme;

iv) the implementation and testing of the models in a bimanual manipulation task; v)

comparison of the hand-eye coordination timings of our models to previously published

human data. The results from the experiments ii) demonstrate that the Rew+Unc+Gain

strategy has the best overall performance. In addition, the experiment v) provides ev-

idence that only the models that incorporate both uncertainty and reward (Rew+Unc

and Rew+Unc+Gain) match human data.
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Chapter 1

Introduction

Most of the tasks that we perform on a daily basis, such as organising our desk, walking

in the street, cooking, reading, playing sport, driving, amongst many others; require us

to act under uncertain and incomplete information. This uncertainty concerns object

properties relevant to the ongoing task. Examples of these properties are, the location of

a book, the shape of a cup, the colour of the traffic light, the distance of the car in front

of us, etc. Knowing as much information as possible, i.e. minimising the uncertainty

about these object properties, allows us to accomplish the given task more efficiently.

This uncertainty can be reduced by gathering new information through sensing, and one

such sense is vision.

The role of vision is not to process images of the world that are received passively,

but to actively explore the scene to gather new visual information that would help us

act and interact with our environment. To put it differently, the main function of vision

is not just seeing, but looking [9]. This perceptual exploration is carried out by moving

our eyes, our head, and even our whole body, to direct the line of sight to parts of the

scene (e.g. objects) that are relevant to the task being performed. In this work, the

aim of this exploration is to reduce positional uncertainty (as illustrated in Figure 1.1).

This perceptual exploration is referred to as active sensing in general [9], and active

vision [10] in particular.

This thesis is interested in two main questions, i) what mechanisms a rational decision
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Figure 1.1: Representation of how the uncertainty about the location of an object is reduced
after looking at the object.

maker could employ to select a gaze location, in order to maximise task performance,

given limited information and limited computation time; and ii) how humans select

the next gaze location (or fixation point). Previous work has suggested that in fact

the answers to these two questions are similar: human eye movement behaviour is

consistent with the use of decision making mechanisms for fixation selection, i) that are

Bayes’ rational [11, 12], or ii) that try to maximise reward values [13, 14]. This thesis

investigates these claims further by means of two goals:

1. Engineering science goal: Our primary goal is to devise principled methods for

gaze control by formulating three new computational models for fixation selection

during the performance of a manipulation task. All three models are similar in

that they calculate the benefit of a fixation by imagining its effect on the agent’s

information state one step ahead into the future. These models are implemented

on a simulated humanoid robot which provides an excellent medium for testing

and characterisation. In order to distinguish these models they are analysed by

their relative performance in controlled conditions. In addition, two other models

of gaze are implemented that serve as common baseline.

2. Human behavioural goal: Our secondary goal is to determine the goodness of

fit of our models of gaze control to existing behavioural human data.

The rest of this introduction proceeds as follows. First, biological findings that

motivate this thesis are discussed. Second, the processes involved during gaze control
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are described. Third, a proposed decomposition for fixation selection is considered.

Fourth, the benefit of using robotic simulations to study gaze control is discussed. Fifth,

the three different computational models of gaze control are defined and explained.

Sixth, the manipulation tasks used throughout the thesis are described. Seventh, the

contributions of the thesis are listed. Finally the outline of the rest of the thesis is given.

1.1 Motivation

Even though this thesis has primarily an engineering objective, our proposed models of

gaze control are in part inspired by the research of human eye movement. In particular,

we are interested about the study of the role of vision in action. There are some questions

falling within this topic: How are gaze shifts affected by the task? Conversely, how is

the behaviour of the agent during task execution affected by the way gaze is deployed?

What is the precise spatio-temporal relationship during eye-hand coordination? Possible

answers to these questions have been provided by psychophysical human studies [10,15].

These psychophysical experiments, in constrained and unconstrained environments,

have investigated the relationship between gaze shifts and actions during the execution of

natural tasks. Examples of these tasks are, cooking, driving, walking, washing, sorting,

amongst others [3, 6, 16, 17]. Empirical evidence from these studies has lead to the

following findings:

1. Gaze shifts in the scene are, in general, driven by the ongoing task being performed

[5,16,18].

2. Spatially, gaze is directed to the object(s) relevant to the task and to the sites

where actions are taking place [1, 19,20].

3. Temporally, gaze typically precedes action and guides it [1, 21,22].

4. Vision is used to gather information about objects’ properties relevant to the task

[6,23,24], with the purpose of reducing uncertainty about those properties [25,26].
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5. Task structure and the world’s dynamics can be learnt from experience, and this

knowledge can be used for planning gaze shifts [15, 16].

Some questions derived from these behavioural findings are: What are the brain

structures involved in the control of gaze and body actions during the performance of a

task? How is the control of gaze learnt or planned? How does the brain determine the

degree of relevancy of the objects involved in the task? Neurophysiological studies have

provided some evidence concerning these questions and have shown that:

1. The basal ganglia are involved in various cognitive functions in the brain, such as

action selection and eye movements [27].

2. Reward signals in the basal ganglia are used to modulate gaze control and the

selection of actions [17,28,29].

3. Dopamine is regarded as the main neurotransmitter to signal expected reward

[30]; whilst other neurotransmitters, such as acetylcholine, may represent expected

uncertainty at the neural level [31].

These neurological findings have hinted at the possibility of employing mathematical

models to formulate the decision making mechanisms involved during action selection

and gaze control [32,33]. In particular, reinforcement learning [34] has been used for the

implementation of gaze control models [7,35]. At the same time, Bayesian probabilistic

models have been proposed to explain how humans deal with uncertainty [11, 36]. The

models of gaze control that we propose in this thesis follow a reward based approach

along with a Bayesian inference process in order to select fixation locations.

1.2 Gaze Control Processes

This thesis is about the selection of fixation locations that would be performed in humans

using saccadic eye movements, as opposed to fixations on moving targets that require

smooth pursuit eye movements. The purpose of each saccade is to shift the fovea (the
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Figure 1.2: Gaze control is defined in this thesis as a sequential mechanism composed of
three processes: fixation selection, oculomotor control and visual analysis.

central part of the retina which has high acuity), to a point of interest in the scene.

After a saccade is completed the eyes are momentarily stationary and a fixation occurs

[10, 37]. During a fixation, visual information is captured and analysed. Exactly what

mechanisms and how gaze control is achieved by humans is still an open question, and

this thesis do not attempt to give an answer to that particular question. However, based

on this procedure, in this thesis we define gaze control as a sequence of three processes

(depicted in Figure 1.2):

� Fixation selection: This is the decision making process that a rational agent (or

robot) employs to select the next fixation location, and the object of this thesis.

Here, the current information about the task and the information about the agent

are used to make the decision. Thus, given a number of task relevant landmarks

(e.g. objects on a table), the key idea is for the agent to imagine one step ahead in

time the informational effects of fixating each available landmark and to select the

one according to the gaze strategy being followed. Section 1.5 describes in more

detail this decision making process and the different gaze strategies proposed by

this thesis.

� Oculomotor control: Once the next fixation location is decided (i.e. a particular

landmark), the aim of the oculomotor system is to direct the line of sight to fixate

that location. The oculomotor control system is responsible for executing the

corresponding saccade and the subsequent stabilisation of gaze that results in a

fixation. How saccades are controlled at the motor level is an important issue

which is further explored in Chapter 3. However, this topic is outside the scope

of the original work of this thesis. Instead we rely on standard robotic control
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techniques to direct the gaze to the landmark’s location [38, 39]. Furthermore,

saccades may involve the movement of the head and the agent’s body. In this

work only eye-head movements are considered, it is assumed that the body, or

more specifically, the torso remains fixed.

� Visual analysis: After the oculomotor control system executes a saccade, a

fixation occurs and this is when visual information from the current agent’s view

point, is captured, processed and analysed (e.g. using visual routines [40]). The

aim of this visual analysis is to gather new information related to the task, the

environment, and possibly about the agent as well. This new information might

concern previously unseen landmarks, or be used to update the information about

previously seen landmarks. It is expected that with this new information the

agent could accomplish the task more efficiently by making better decisions about

what action(s) to perform next. This information is also used for the selection of

the next fixation location. The analysis of visual information requires the use of

computer vision techniques for image processing which are also outside the scope

of this thesis. Chapter 3 explores the ways in which other work on robot visual

systems have approached this problem.

Because this thesis is solely concerned with the fixation selection process within the

gaze controller, it is simpler to think about the oculomotor control system and the

visual analysis as separate processes (Section 1.5.1 explains how we deal with these

two processes throughout the thesis). However, this does not mean that we advocate

to this particular sequential configuration. The design and implementation of these

processes may change so that different parts may execute simultaneously at different

levels. Furthermore, a gaze controller following a biological or neurobiological approach

is more complex, as the known interactions between neurons and other brain structures

is much more intricate [41,42].
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1.3 Decomposing the Fixation Selection Process

The aim of the fixation selection process within the gaze control mechanism (previous

section) is to decide what task relevant landmark (e.g. an object on a table) to fixate

next by imagining the informational effects of fixating each available landmark1. There-

fore, the main problem faced by the gaze controller at this stage is to decide where

to look. Nevertheless, fixation selection becomes more complex if the agent has mul-

tiple manipulation motor systems (e.g. two arms), each of which may be performing

a separate task (e.g. each arm moves objects independently), or separate actions that

contribute to a common task (e.g. bimanual grasping). In this case, a single fixation

might not be able to assist all the manipulation actions running simultaneously. Thus,

gaze should be treated as a serial resource that must be first allocated to a particular

manipulation motor system, so that this motor system is able to select a particular

fixational landmark. Thus, we identify two interrelated problems within the fixation

selection process, namely the problems of where to look and gaze allocation. Therefore,

it is a hierarchical scheme where gaze is first allocated to a manipulation motor system,

then this motor system is given the ability to select its preferred landmark location.

1.3.1 Gaze Allocation

The gaze allocation problem emerges because we consider an agent with multiple motor

systems (e.g. two arms) which can be running in parallel (e.g. each arm executes a

separate task) or concurrently (e.g. both arms contribute to a common task)2. Typi-

cally, a single fixation might not be able to assist all the different manipulation motor

systems running simultaneously. Therefore, gaze is treated as a serial resource that

must be shared over time between the manipulation motor systems, and be allocated,

or assigned, to only one of them at a particular time. Thus, gaze allocation can also be

1Throughout the thesis we might employ the general term of gaze control in some cases to refer to
the selection of fixation points. If a particular distinction is required it will be pointed out accordingly.

2Both, parallelism and concurrency refer to processes that can be executed simultaneously. Parallel
processes do not depend on each other, so no interaction is needed. In contrast, concurrent processes
depend on each other for their correct execution, so normally a coordination mechanism is required to
control the processes.
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Figure 1.3: A humanoid robot performing a pick and place task. A. Gaze allocation de-
termines which manipulation motor system should be given the ability to choose a particular
landmark. B. The problem of where to look deals with the selection of a particular landmark
in order to fixate it.

described as a scheduling problem [43] that assigns the choice about where to look to

a specific manipulation motor system. As an example Figure 1.3A shows a humanoid

robot performing a manipulation task that consists of picking up objects from the ta-

ble top and then placing them inside one of two containers (pick & place task). The

robot has two manipulation motor systems (i.e. two arms) that can simultaneously be

performing separate tasks, or performing separate actions that contribute to a common

task. However, if the robot fixates a landmark located on its right it might only assist

the right arm, leaving the left arm with no perceptual aid3. In this case, the robot

should rationally choose the manipulation motor system that most benefits in terms of

task performance if it is given access to perception4.

1.3.2 Where to Look

Once gaze has been allocated, or assigned, to a particular manipulation motor system,

then it is possible to select one of the fixation locations in the scene. In this work,

each fixation location is associated to a particular landmark in the scene. Thus the

problem of where to look can be restated as the problem of what landmark to fixate

3What visual information is captured also depends on the observation model and the camera’s field
of view, which will be explored in Chapter 5.

4Gaze allocation can also emerge when an agent has multiple tasks to perform (in parallel or con-
currently) but only one task can have access to perception at any one time [43].
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Figure 1.4: A. The iCub humanoid robot. B. Snapshot of the iCub simulator.

next. As an example, Figure 1.3B presents once again the robot performing the pick &

place manipulation task. Here, the objects and the containers serve as possible fixation

points (i.e. landmarks).

The problems of gaze allocation and where to look have been dealt with separately.

For example, [44–47] have proposed solutions for the problem of where to look, whilst [43]

and [35] have tackled the gaze allocation problem. This thesis provides an integrated

account where both problems are dealt with within the same gaze control mechanism.

1.4 Robotic Simulations to Study Gaze Control

The implementation of computational models in robotic platforms permits testing the

models under different configurations of either model or environment that are difficult

or impossible to conduct in humans or animals [48–51]. In the case of gaze control, for

example, the robot’s field of view can easily be altered between trials. Furthermore,

employing simulated environments allows more flexibility in terms of the configuration

of both the environment and the robot/agent. For instance, objects can be created or

modified in real time. Robotic simulation also facilitates systematic experimentation in

order to fully characterise the computational models [52].

For these reasons, we have chosen to implement our gaze control models using the

iCub simulator [53] (Figure 1.4). The iCub is a humanoid robot with multiple motor

systems [54], whilst the iCub simulator is an open source platform that employs the

same controllers and modules used to control the real robot [55]. It also makes use of
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the ODE physics engine to allow the simulation of rigid bodies [56]. In this thesis, we

make use of both arms (i.e. two manipulation motor systems), where each has a hand

with five fingers. Also, we make use of what we call the perceptual motor system, which

includes the robot’s head, neck and eyes.

1.5 Candidate Models of Gaze Control

As mentioned above, the aim of this thesis is to formulate computational models of

gaze control that a Bayes’ rational decision maker could employ to select a fixation

location given limited information and limited computation time. This selection could

be achieved by reasoning about future courses of manipulation actions over varying

horizons. Thus, the gaze control models calculate the benefit of the possible fixation

locations, currently known to the agent, by predicting their effect on the agent’s infor-

mation state5 some number of steps into the future. We will, without loss of generality,

consider one-step look ahead models in this thesis6. Predicting the benefit of the pos-

sible fixation locations is based mainly on two parameters: positional uncertainty of

landmarks and the value of performing manipulation actions.

To understand how these two parameters affect the gaze control decision process, let

us use an example using a manipulation task that consists of picking up objects from

the table top and then placing them inside one of two containers. Figure 1.5A shows a

humanoid robot performing such task.

� Positional uncertainty of landmarks: This work assumes that the location of

landmarks is unknown to the robot. The robot has to look at landmarks in order

to estimate their location. This happens when a landmark falls inside the robot’s

view point. As an example consider the snapshot of the pick & place task depicted

in Figure 1.5A. There are five landmarks (three objects and two containers), where

5Central to the concept of uncertainty is the idea of the information state or the belief state. In
general, this is the agent’s summary of the total information acquired by the agent up to the current
time about properties of interest. In this thesis, the terms information state and belief state will be
used interchangeably. The first term is more intuitive; the second is commonly used in the field of
Bayesian estimation (Section 2.7).

6Look ahead planning is a concept found in the artificial intelligence literature.
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Figure 1.5: A. Pick and place task. B. Representation of the current location uncertainty
of each landmark (objects and containers). C. Representation of the value of performing
manipulation actions associated to each landmark. D. Representation of the current value in
proportion to the location uncertainty of each landmark.

their positional uncertainty is represented as bivariate Gaussian densities (shown

as ellipsoids in the top view of the same scene (Figure 1.5B)). For the current time

step, notice how the left container has the highest positional uncertainty, whilst

the yellow cylinder has the smallest.

� Value of performing manipulation actions: The manipulation actions can

be quantified by the cumulative discounted reward (i.e. value) that the robot

receives after performing such action. In this work these values are learnt via

reinforcement learning [34] (Section 2.5), where the robot learns the sequence of

manipulation actions that achieve some task by trial-and-error interactions with

the environment. Let us assume that the robot already has learnt the values that

achieve the pick & place task according to some reward function. Considering the

same snapshot from Figure 1.5A, notice that each arm is ready to reach for an

object (since the robot has learnt that when a hand is empty an object can be

grasped). The value of reaching is then attached to each object/container. This

value is represented by the vertical bars in Figure 1.5C. In fact, note that the

value of reaching is the same for all three objects, because we do not make any
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difference between objects.

Based on these two quantities, the agent needs to reason about how much value

it is going to receive for a successful reach traded-off against the current positional

uncertainty of each object/container. This proportional value is represented by the

vertical bars in Figure 1.5D. For the current time step, notice how the value of reaching

the blue sphere is the smallest amongst the three objects because of its high positional

uncertainty.

It is based on these proportional values that the robot should decide how to control

its gaze. By imagining what would happen if it looks at some fixation location in

the next time step, the robot is able to answer questions such as: How much will the

uncertainty reduce if I look at landmark X? How much value do I expect to receive after

looking at landmark Y? Which manipulation motor system would get more benefit if gaze

is allocated to it? Which fixation location would yield the highest predicted value and the

highest reduction in uncertainty?

It is important to note that the robot can only reason about the benefit of fixating

landmarks that it already knows exist7. Furthermore, from those known landmarks

only a subset can actually be used by each manipulation motor system. For instance,

following the same example shown in Figure 1.5A, the right arm can only manipulate

those objects that are within its reach. Therefore, the space of objects is partitioned by

the arms. In the example, the right container, the green cube and the yellow cylinder

are associated with the right arm, whilst the left container and the blue sphere are

associated with the left arm.

Depending on how the robot reasons about the positional uncertainty of landmarks

and the value of performing manipulation actions, at least three gaze control models

emerge. However, before such models are described we provide a list of assumptions

considered throughout this thesis that would help understand our models of gaze control.

7The case where unknown landmarks are taken into account in the decision making process is
explored in Chapter 6.
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1.5.1 Assumptions

Because of the complexity of the overall robot’s control system and the gaze control

problem, this work makes a series of assumptions that need to be taken into account

to understand the scope and the limitations of our models of gaze control, particularly

when compared to human gaze control.

� Spatial Acuity: We make use of an observation model that produces a smoothly

varying spatial acuity (Section 4.4.1). This models a smooth fall off in spatial

acuity as we move from the centre of the field of view (0° to 10°) to the “periphery”

(+10°). This is qualitatively similar but not the same as the human eye.

� Fixations: Because we consider non-uniform spatial acuity, centring the robot’s

camera(s) to a landmark is important. According to our observation model, only

when landmarks lie within the central part of the current view point (0° to 10°) it

is then possible to get a good estimate of its location.

� Saccades: As mentioned above, the control of saccadic movements at the motor

level is outside the scope of our work. Instead we rely on standard robotic control

techniques [38], particularly those available to the iCub humanoid robot (Section

1.4) which allow the movement of the robot’s head, neck and eyes. We consider

these three motor systems together as the perceptual motor system.

� Visual Analysis: Processing visual information requires the use of computer

vision techniques which are also outside the scope of this work. Since we only

need to detect landmarks in the current view point whenever a fixation occurs,

then we will make use of the iCub simulator for object detection.

� Uncertainty: Although uncertainty may exist about many object properties e.g.

shape and mass, our models are only tested with respect to the positional uncer-

tainty of landmarks.

� Learning: The robot learns how to perform the task via reinforcement learning

assuming all the landmarks’ locations are known to the robot. This learning phase
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is where the values of performing manipulation actions are determined according

to a reward function (Section 4.3).

� Grasping: This is a complex problem which is also outside the scope of this paper.

Once again we will take advantage of the iCub simulator by using a magnet-like

function (explained in Section 4.1).

� Manipulation Motor Systems: These refer to the robot’s arms. Because of

the arm’s joint limits, each arm has a set of landmarks that it can manipulate and

which thus form the candidate fixation locations that could benefit that motor

system. Furthermore, we assume that each manipulation motor system is able to

perform a specific sub-task.

Next, we first explain our gaze control model based on uncertainty reduction; second,

our model based on rewards and uncertainty; and third, our model based on rewards,

uncertainty and gain.

1.5.2 Gaze Control based on Uncertainty Reduction

Our first model of gaze control (Uncertainty gaze strategy) aims to maximise the re-

duction of positional uncertainty only. It predicts one step into the future the location

uncertainty that would remain if each of the known landmarks, for each manipulation

motor system, is fixated. The residual positional uncertainty is calculated by the differ-

ence between the current and the predicted uncertainty. The model selects the fixation

that is expected to most reduce uncertainty about the location of the corresponding

landmark.

Following the same example shown in Figure 1.5, Figure 1.6A presents once again the

same instance of the pick & place task, whilst Figure 1.6B depicts the current propor-

tional value (as it was shown in Figure 1.5D). Thus, the predicted residual uncertainty

that would result if each landmark is fixated the next time step is depicted as the small

solid ellipsoids in Figure 1.6C (the big ellipsoids are those from Figure 1.6B representing

the current uncertainty). In this example, looking at the right container will benefit the
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Figure 1.6: A. Pick and place task. B. Representation of the positional uncertainty (el-
lipsoids) and the value of reaching for each object/container (bars) in the current time step.
C. Gaze control based on uncertainty reduction (Uncertainty gaze scheme). D. Gaze control
based on rewards and uncertainty (Rew+Unc gaze scheme). E. Gaze control based on rewards,
uncertainty and gain (Rew+Unc+Gain gaze scheme). The X specifies the next chosen fixation
point for each scheme (See text for a detailed explanation).

right arm, whilst looking at the left container will benefit the left arm. Both cases have a

high reduction in uncertainty, however the highest reduction comes from looking at the

left container. Thus, gaze is allocated to the left arm and then, from those landmarks

it can manipulate, the left container is chosen to be fixated next (marked with an X).

By disregarding task rewards completely (i.e. the values of performing manipula-

tion actions), the robot focuses on gathering new information about the environment.

However this information might not be relevant to the current needs of the task. In

the example, the robot should reach for an object but has chosen to look at the left

container instead. The experiments analysed in Chapter 5 demonstrate that, in general,

this model of gaze control is not effective.

1.5.3 Gaze Control based on Rewards and Uncertainty

Our second gaze control model (Rew+Unc gaze strategy) extends the previous model by

incorporating task rewards (i.e. the values of performing manipulation actions) into the

decision process. By reducing the positional uncertainty of a task relevant landmark, the
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robot should accomplish the manipulation actions more efficiently and so their expected

value will increase. The model predicts the value of performing manipulation actions

that would be obtained if each landmark, for each manipulation motor system, is fixated

the next time step. Figure 1.6D shows this predicted value for each landmark (white

vertical bars) contrasted with the grey bars that represent the current value (taken from

Figure 1.6B). In the example, looking at the blue sphere produces a high value that

benefits the right arm, whilst the left arm will benefit if the yellow cylinder is fixated.

From these two landmarks, the maximum value comes from the yellow cylinder. Thus

gaze is allocated (or assigned) to the right arm and the yellow cylinder is chosen to be

fixated next (marked with an X).

The main drawback of this strategy is the tendency to look at landmarks with low

positional uncertainty and high predicted value, which will not typically provide much

new task information. Our results in Chapter 5 confirm that in most cases this is a

sub-optimal gaze control strategy.

1.5.4 Gaze Control based on Rewards, Uncertainty and Gain

Our third gaze control model (Rew+Unc+Gain gaze strategy) is similar to the previous

model, but it eliminates the tendency of fixating objects with high value that might

not offer new task information. The model first predicts the expected value for each

landmark, exactly in the same way as the previous model. But instead of fixating the

landmark with the maximum expected value, each manipulation motor system selects

the fixation that maximises the difference (or gain) between the prior and the posterior

expected value. This is shown in Figure 1.6E, where fixating the blue sphere and the

yellow cylinder give the maximum gain in return for the left and right arm respectively.

This scheme allocates gaze to the manipulation motor system that most gains if it is

given access to perception (similar to [43]). In the example, gaze is allocated to the left

arm and the blue sphere is selected to be fixated (marked with an X).

Note that even in this simple example each gaze control model selected a different

landmark to fixate next. Therefore, the behaviour of each gaze scheme is expected to
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influence the performance of the task being achieved by the robot. Chapter 5 shows

how the Rew+Unc+Gain gaze strategy is, in general, the most effective in terms of task

performance and robustness. Then, Chapter 8 demonstrates that both the Rew+Unc

and Rew+Unc+Gain gaze schemes fit existing human behavioural data.

1.6 Manipulation Tasks

One of the aims of our work is to study gaze control during the performance of tasks.

In particular, this thesis focuses on manipulation tasks that require the use of, i) one

arm, ii) two arms working separately, and iii) two arms working interactively. These

tasks are used to experiment and characterise the gaze control models described above.

1.6.1 Pick & Place Task

This task has already been introduced above as an example in order to explain the

models of gaze control in Section 1.5. The task consists of picking up objects from the

table top and then placing them inside one of two containers. Figure 1.7A shows the

iCub simulated robot performing the task. In this particular task the arms of the robot

do not interact with each other (e.g. to transfer objects from one hand to the other).

A new object appears at a random position on the table: i) every 60 seconds, ii) every

time an object is put inside a container, and iii) whenever an object falls from the table.

The robot has to look at objects and containers in order to get an estimate of their

location. The goal is to put as many objects as possible inside the containers in trials of

five minutes each. The aim of this task is to characterise the candidate models of gaze

control, and to identify their advantages and their weaknesses (Chapter 5).

1.6.2 Bimanual Pick & Place Task

An extension of the previous task is to allow the arms of the robot to interact with each

other by performing a bimanual task. The task is exactly the same as before, however

the left container is removed. The robot needs to transfer the objects appearing on
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Figure 1.7: A. The iCub performing the pick & place task. B. Extension of the pick & place
task that allows bimanual actions. C. Simulation of Johansson et al. [1] task. See text for
details on all three tasks.

the left hand side of the table to the right side, in order to be placed inside the right

container (Figure 1.7B). This transfer can only be achieved by passing the object from

one hand to the other. The aim of this task is to further test the behaviour of the gaze

control models, in a situation where there is at least one shared possible fixation location

between the manipulation motor systems, i.e. the object to be transferred. This task is

explored in Chapter 7.

1.6.3 Johansson’s Task

This is a reproduction of the manipulation task devised by Johansson et al. [1] for a

psychophysical study. The subject (or the robot, in our case) has to reach for and grasp

a bar located on the table, then move the bar in a vertical plane in order to touch

a target switch whilst avoiding an obstacle located between the table and the target

switch. Once the switch is touched, the bar has to be put back onto the table (Figure

1.7.C). For Johansson et al. the aim of the task was to investigate spatio-temporal

eye-hand coordination. For us, the aim of this task is to show how well our proposed

models of gaze control match human behavioural data qualitatively and quantitatively

(Chapter 8).

1.7 Thesis Contributions

The following is the list of contributions of this thesis:
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1. It provides integrated models of gaze control for the problems of:

(a) Where to look

(b) Gaze allocation

2. It models systems:

(a) With an oculomotor8 system (or perceptual motor system)

(b) Composed of multiple manipulation motor systems able to alter the physical

world state

(c) Capable of executing actions with variable time duration

3. It defines three new computational models of task-based gaze control that follow

a one-step look ahead approach:

(a) Gaze control based on uncertainty reduction (Uncertainty)

(b) Gaze control based on rewards and uncertainty (Rew+Unc)

(c) Gaze control based on rewards, uncertainty and gain (Rew+Unc+Gain) [57,

58]

4. It tests the models of gaze control using the iCub simulator performing a ma-

nipulation task. Each model is characterised in terms of task performance under

variations of three environmental variables [58]:

(a) Sensitivity in the manipulation actions

(b) Observation noise

(c) Field of view

5. It provides an integrated account of an active visual search process into the

Rew+Unc+Gain gaze control.

8Abusing a little of the terminology, by oculomotor system we refer to a robotic pan-tilt camera
system which may be monocular or binocular.
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6. It demonstrates how the gaze control model based on task rewards, i.e. Rew+Unc+Gain

and Rew+Unc, reproduce human behavioural data previously published by Jo-

hansson et al. [1].

1.8 Thesis Outline

The rest of the thesis is organised as follows:

Chapter 2: This chapter provides an overview of the mathematical foundations of

the thesis. In particular, it describes decision making probabilistic processes, reinforce-

ment learning, action selection mechanisms, and belief update mechanisms.

Chapter 3: The first part of this chapter presents an account of experimental

findings from psychophysical and neurophysiological studies, which provided much of the

inspiration of this work. The second part discusses and critiques different computational

gaze control models.

Chapter 4: This chapter describes the robot’s control architecture and provides a

detailed formulation of our three gaze control models.

Chapter 5: This chapter presents a characterisation of our three gaze control models

whilst performing the pick & place task. It describes the experiments, results and

analysis of the three gaze control models in terms of three environmental variables.

Also, two other models of gaze control are defined that serve as common baseline for

comparison.

Chapter 6: This chapter describes the integration of an active visual search process

into the Rew+Unc+Gain gaze control model. Experiments, results and analysis of this

integration are also given using the same pick & place task.

Chapter 7: This chapter employs the bimanual pick & place task where both arms

interact with each other, in order to show how the gaze control models are able to deal

with these concurrent actions.

Chapter 8: This chapter presents how the gaze control models fit existing human

behavioural data for the eye-hand coordination problem during a manipulation task
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(Johansson’s task) [1].

Chapter 9: The final chapter provides a summary of the thesis, the main conclusions

and proposes lines of future work.
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Chapter 2

Mathematical Foundations

The aim of this thesis is to formulate computational models of gaze control for an agent

engaged in a manipulation task. Thus, the agent is required to make decisions about

what to do in order to interact with the environment and fulfil the goal of the task.

This chapter provides the mathematical foundations of decision making in stochastic

processes1. First, a description of the general decision making problem faced by an

agent is described. Second, Markov decision processes (MDPs), a common approach

to modelling decision problems, are defined. Third, two extensions to MDPs are pre-

sented, partially observable MDPs and semi-MDPs (POMDPs and SMDPs respectively).

Fourth, an account of reinforcement learning is given, which allows an agent to learn

how to perform a task based on feedback in the form of rewards. Fifth, the selection of

actions for the different Markov models is described. Finally, belief update techniques,

which maintain the information state of the agent, are explained.

2.1 The Decision Making Problem

Before formal definitions are given, it is worth starting with a simple explanation of

the decision problem faced by an agent attempting to accomplish some task. Figure

2.1 illustrates in a simplistic way the interaction between an agent and the world. In

1This chapter provides basic information about decision making processes. In particular, Sections
2.1 and 2.2 present general background information. Those with knowledge on these topics can skip
this chapter without any loss in continuity.
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Figure 2.1: Basic interaction between an agent and the world, where the agent acts according
to what it perceives and the feedback provided.

general, the agent is expected to have sensors in order to obtain information about the

world (e.g. the robot’s cameras). This information is captured, processed and analysed

in order to update the information state of the agent. This state describes properties of

the world (e.g. the colour or the location of an object on a table). It may also be assumed

that the agent is able to perceive its own state, e.g. the position of its hand. This ability

is known as proprioception. Based on this information state, the agent should be able

to perform some action using its actuators (e.g. grasping an object). Actions are likely

to change both the state of the world and that of the agent. So essentially, the agent

decides what action to perform based on the information acquired by its sensors. It is

expected, of course, that the actions taken by the agent will accomplish some task. Also,

it is preferable if the task is completed optimally with respect to some cost function (e.g.

minimising the time to perform some task). One way in which the agent can improve its

performance is by receiving feedback on the quality of its performance. This feedback

can be generated by an observer acting like a teacher (e.g. a human), or the same

environment.

Modelling decision making problems and finding optimal solutions is not easy, as

the following sections will show. Several, sometimes unrealistic assumptions need to be

made in order to model decision making problems. In some cases, optimal solutions

cannot be expected to be found in practice, so near-optimal approximations need to be
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found instead. First, one of the simplest decision making formalisations is presented,

known as the Markov decision process.

2.2 Markov Decision Processes

A common approach to model decision making problems is to use Markov decision

processes (MDPs) [59, 60]. The model is formalised as a tuple 〈S,A, T ,R〉, where S is

the set of states, A is the set of actions, T : S × A × S � [0, 1] is the state transition

function represented as T (s, a, s′) being the probability of transition from state s to

state s′ after action a is executed, and R : S ×A � R is the reward function written as

R(s, a) being the expected reward of taking action a in state s.

MDPs assume that the agent interacts with the world in discrete time steps. At time

step t the agent observes the current state of the world st. According to that state the

agent chooses to execute an action at. This action will produce a transition to a new

state st+1, and the world will provide the agent with some immediate reward rt+1. This

reward serves as an indicator of the immediate goodness of the taken action at in state

st. MDPs allow states and actions to have discrete or continuous values. Solving MDPs

with continuous states is more complex, but solutions exist [61, 62]. Since the aim of

this chapter is to provide basic information, only discrete spaces are considered.

The goal of the agent is to choose actions that maximise the expected discounted

reward according to the state it is in. To do so we can define a policy π for action

selection as π : S � A, which specifies a mapping from states to actions. The agent

can calculate the value of a state s under the policy π by the expected discounted

infinite-horizon sum of rewards. This is denoted as the state-value function2 Vπ(s):

Vπ(s) =
∑
a∈A

π(s, a)

[
R(s, a) + γ

∑
s∈S

T (s, a, s′)Vπ(s′)

]
(2.1)

Where 0 ≤ γ < 1 is a discounted factor to indicate the trade-off between short term

and long term rewards, Vπ(s′) is the state-value function of the next state s′, and π(s, a)

2In this thesis we do not calculate the state-value function, however this information is provided as
general background.

25



is a function that returns the value of performing action a in state s following policy π.

Ideally, the aim is to find the optimal policy π∗. For this case the optimal state-value

function is given by the maximum state-value under all possible policies:

V∗(s) = max
π
Vπ(s)

V∗(s) = max
a∈A

[
R(s, a) + γ

∑
s∈S

T (s, a, s′)Vπ(s′)

]
(2.2)

Eq. 2.1 and 2.2 are known as Bellman equations. There are several algorithms to

solve MDPs by means of these recursive equations. For instance, value iteration, policy

iteration, linear programming and dynamic programming [59,60].

It is also possible to define Bellman equations for state-action pairs. The state-action

value function Qπ(s, a) is given by:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)Qπ(s′, a′) (2.3)

Where Qπ(s′, a′) is the state-action value for the next state s′ and next action a′.

Similarly, the optimal state-value function is defined as:

Q∗(s, a) = max
π
Qπ(s, a)

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′∈A
Q∗(s′, a′) (2.4)

Even though MDPs are able to model a large number of tasks, they are simplistic and

make unrealistic assumptions. For example, if we are interested in modelling real-world

tasks, MDPs make at least two unrealistic assumptions:

� Fully observable states: MDPs assume that the state of the world is completely

known to the agent at all times. In a real setting this is practically impossible, e.g.

a camera produces an image showing just part of the world, and even the image
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may be noisy. In order to avoid this assumption, MDPs have been extended to

what are known as partially observable Markov decision processes (Section 2.3).

� Actions with same duration: MDPs assume that actions take one time step to

perform, however in a real setting this is not the case. For example, the time to

reach for an object is not the same as the time to grasp an object. To overcome

this limitation, semi-Markov decision processes have been defined (Section 2.4).

2.3 Partially Observable Markov Decision Processes

As mentioned above, MDPs assume that the state of the world is completely observable

to the agent every time step. This means that the agent receives all the information

needed to know exactly what the current state s is. Of course this assumption is

unrealistic for a large class of tasks, in particular for real-world tasks. Typically, the

agent’s sensors are limited, which means that the agent only perceives part of the world.

Moreover, the sensors can be noisy as well, which means that the perceived information

is just a projection of the real state of the world.

Partially observable Markov decision processes (POMDPs) extend the MDP frame-

work by considering observations, which specify incomplete measurements of the true

state [60, 63, 64]. POMDPs are formalised as a tuple 〈S,A, T ,Z,Ω,R〉, where S,A, T

and R are defined in the same way as for an MDP (Section 2.2). Z is the set of observa-

tions, and Ω : S ×A×Z � [0, 1] is the observation function written as Ω(s, a, z) being

the probability of making the observation z after being in state s and taking action a.

POMDPs allow the modelling of state uncertainty which covers more realistic tasks,

however this comes with a price. Since the state s is not completely observable anymore,

the agent has to estimate, based on the observations z, a posterior distribution over all

possible states. This posterior distribution is known as the belief state, or information

state, normally denoted as bel(s). The problem is that the belief state is continuous,

which makes it difficult to develop exact algorithms for solving POMDPs. Typically,

the most common algorithms just approximate an optimal solution [60, 65, 66]. Section
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2.7 provides a description of some of the techniques used to maintain the belief state,

which in turn are used to solve the POMDP.

2.4 Semi-Markov Decision Processes

MDPs make the assumption that all actions take the same time to complete. Never-

theless, this assumption is impractical for real-world tasks. The semi-Markov decision

process (SMDP) [59,67] model actions that take variable amounts of time to complete.

SMDPs are formalised as the tuple 〈S,A, T ,R〉, where S,A,R are defined as in the

MDP model (Section 2.2). The main difference is that the transition function is defined

as T : S×A×S×R � [0, 1], and can also be written as T (s, a, s′, n). This function still

denotes the probability of transition from state s to state s′ when action a is executed,

but here n specifies the completion time of action a.

2.4.1 Options

Options are a generalised and hierarchical approach to SMDPs [67,68], similar to macro-

actions [69]. In her dissertation, Precup [70] developed a framework for control and

learning in multiple temporal scales. In this framework, options are defined as tempo-

rally extended actions that can be composed of one or multiple single-step actions. In

particular, our thesis is focused on subgoal options.

A subgoal option o is modelled as o = 〈Mo, I, β〉, where Mo = 〈So,Ao, To,Ro〉 is a

Markov decision process, I ⊆ So is an initiation set that specifies the states where the

option can start, and β : So � [0, 1] defines a termination condition, which determines

whether a particular state so is a terminal state or not.

Apart from modelling temporally extended actions, options allow the hierarchical

decomposition of tasks. This is because an option as a whole can be treated as an

action in a high level sub-task, whilst the set of actions defined within an option form

another level. This is, in fact, the approach that this thesis follows as will be described

in Chapter 4. Moreover, since options are derived from SMDPs, it is possible to employ
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similar techniques to those used to solve SMDPs for options as well.

2.5 Reinforcement Learning

Reinforcement learning (RL) is a class of problems where the agent learns by trial-and-

error interactions with the environment [34]. Typically, MDPs are employed to model

such environment. Thus, the agent tries to approximate the optimal value function.

As described above, MDPs, POMDPs and SMDPs require the definition of a transition

function T , which characterises the dynamics of the environment. However, RL is

appealing as it does not require the definition of such model. The kind of RL approach

that we follow in this thesis is an instance of temporal difference (TD) learning [71],

which employ the Bellman equations defined in Section 2.2.

A fundamental problem with RL is the exploration-exploitation trade-off [72]. Dur-

ing learning, the agent is expected to expand its knowledge about its environment by

executing as many actions as possible, even if those actions turn out to be sub-optimal

(i.e. exploration). At the same time, the agent should make use of what has already

learnt (i.e. exploitation), otherwise the agent may never learn how to behave opti-

mally. There is no optimal procedure for the TD case, however it has been proved that

by systematically controlling the exploration, the agent eventually learns the optimal

policy [73,74].

2.5.1 Q-Learning

One of the most popular model-free RL algorithms for MDPs is Q-learning [75]. The

aim of this algorithm is to converge on the optimal action-value function Q∗(s, a) by

means of the following learning rule:

Q∗(s, a) � Q∗(s, a) + α

[
r + γmax

a′∈A
Q∗(s′, a′)−Q∗(s, a)

]
(2.5)

Where Q∗(s′, a′) is the state-action value for the next state s′ and next action a′,

0 < α ≤ 1 is the learning rate, r is the immediate reward received after executing action
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a in state s, and 0 ≤ γ < 1 is a discounted factor to indicate the trade-off between

short term and long term reward. The agent learns a greedy policy π with respect to

the Q function. It is greedy because the policy selects in each state s the action a whose

Q-value is largest, where the Q-value contains the estimated expected return for each

state-action pair Q(s, a).

2.5.2 SMDP Q-Learning

In the case of SMDPs, it is possible to learn policies by means of the SMDP Q-learning

algorithm [76]. Here the learning rule defined in Eq. 2.5 above is extended in order to

take into account the duration of each action:

Q∗(s, a) � Q∗(s, a) + α

[
r + γk max

a′∈A
Q∗(s′, a′)−Q∗(s, a)

]
(2.6)

All variables are the same as in Eq. 2.5, except for variable k that specifies the

duration of action a. Similarly as for Q-learning, the agent learns a greedy policy with

respect to the learnt Q-values.

2.6 Action Selection

The final goal of modelling decision making problems and the techniques to solve them,

is to allow the agent to make decisions about what actions to perform in order to

accomplish some goal or task. This section explains how action selection is achieved

assuming the agent has previously learnt a policy π (e.g. using the RL algorithms).

2.6.1 Action Selection in MDPs and SMDPs

Assuming that the agent has access to the action-value function Q for an optimal policy,

it is then straightforward for the agent to select optimal actions according to the current

state. Since the state is fully observable, the agent always knows in which state s it is.

The state s is used to index the Q function in order to determine which action produces

the maximum value for that state:
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at = arg max
a∈A
Q(s, a) (2.7)

Where at is the action chosen to be executed at time t. After this action is completed

the state changes, and this state is once again available to the agent in order to index

the policy. The same procedure for action selection is used for SMDPs as well.

2.6.2 Action Selection in POMDPs

As mentioned in Section 2.3, a POMDP decision model only receives an imperfect

observation of the true state of the world. These observations are used to maintain a

posterior distribution over the states called the belief state bel(s) (Section 2.7 below

presents ways in which the belief state can be maintained). Given a policy π, an action

a is chosen according to the current belief state: a = π(bel). However, in practice,

POMDPs are computational intractable and approximate solutions need to be found

instead [60,65].

Littman [60] provides several approaches for representing policies that may be used

to achieve the optimal value function. Cassandra [65] presents a RL framework for

POMDPs based on the neuro-dynamic programming (NDP) approach developed by

Bertsekas and Tsitsiklis [77]. The RL/NDP framework assumes that a POMDP can

be restated as a continuous state space MDP. Still, it is not trivial to learn under this

framework and other techniques have been employed.

A less mathematically motivated way to solve a POMDP is to use greedy heuristics

that assume that the most likely state from the current belief state is actually the true

state, thus ignoring partial observability [65, 66]. To do so, the underlying MDP is

solved, which results in the policy πMDP . The agent needs to keep track of the belief

state, and on every time-step employ the current belief state to determine the most

likely state the agent believes it is in. Cassandra [65] defines a heuristic policy for the

most likely state (MLS) as:
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πMLS = πMDP (arg max
s
bel(s)) (2.8)

The retrieved most likely state is then used to select the best corresponding action.

However, there could be cases where a different action could provide more benefit from

less likely states. In this thesis we make use of the Q-MDP algorithm for action selection

[65, 78]. Instead of selecting just a single most likely state this algorithm uses the

likelihood of every state to determine the best action to be performed:

at = arg max
a∈A

∑
s∈S

bel(s)Q(s, a) (2.9)

Where at is the action to be chosen for execution at time t. The belief state bel(s)

is a probability distribution that determines the likelihood of being in some state s.

The probability of being in state s is used as weight to determine the expected value of

taking action a, according to the action-value function Q(s, a) of the underlying MDP.

The action at with the maximum value in the current belief state is selected. Note that

this algorithm assumes that all partial observability disappears after the current action is

chosen. This may be problematic if the current action does not provide much information

about the state. However, as we will explain in Chapter 4, our gaze control model is

the one dealing with the partial observability and it does not make such assumptions.

Therefore, in our case, the interaction between the action selection module and gaze

control seems to avoid the drawback of the pure Q-MDP heuristic strategy.

Cassandra [65] and Roy [66] present more heuristic algorithms following the same

idea of ignoring the partial observability.

2.7 Maintaining the Belief State

As described in Section 2.3, in a POMDP the underlying state is not completely observ-

able. POMDPs are required to estimate and maintain a probability distribution over all

possible states based on observations and observation probabilities about the state of
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the environment. This probability distribution has been already defined as belief state

or information state. This section presents some techniques, known as state estimators,

used to maintain the belief state. Basically, these estimators specify how to re-estimate

the new belief state as new observations arrive [64].

Bayes rule is found at the core of state estimation algorithms. The rule is stated as:

p(x | y) =
p(y | x)p(x)

p(y)
(2.10)

The rule provides a way to infer a hypothesis x from the observation y. The proba-

bility p(x | y) is the posterior probability distribution, p(y | x) is the likelihood, or the

“inverse” conditional probability, p(x) is the prior probability, and p(y) is the normaliser

and it is required that p(y) > 0. Belief distributions are in fact posterior probability

distributions.

In this thesis attention is given to a group of state estimators called Bayes filters [79].

Following [64], Bayes filters can be divided into, i) parametric and, ii) nonparametric

filters. One of the best known parametric filters is the Kalman filter, whilst in the case

of nonparametric filters it is the particle filter. Both are explained in more detail next.

For a recent survey of Bayes filters please refer to [79].

2.7.1 The Kalman Filter

The Kalman filter is a well-known algorithm, part of a family of estimators known

as Gaussian filters [80]. The Kalman filter represents the posterior distribution as a

Gaussian distribution, which is parameterised by its mean µ and its covariance Σ. One

key aspect of Kalman filters is the assumption that the transition probability and the

observation probability distributions are linear in its arguments.

A basic overview of the algorithm is as follows3. The algorithm requires as input the

Gaussian belief distribution at time t− 1, i.e. the mean µt−1 and covariance Σt−1, along

with the action (also called control) at, and the observation zt. Roughly speaking, the

3Thrun et al. [64] provide an excellent detailed explanation of the algorithm and its mathematical
derivation.
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Kalman filter consists of two steps. The first step, or the prediction step, calculates a

temporary belief state at time t by incorporating the action at. Then in the second step

the observation zt is incorporated to the predicted belief by some proportion specified

by the Kalman gain. The output of the algorithm is the belief distribution at time t.

One disadvantage of Kalman filters is that they are restricted to systems with linear

dynamics. However, there exists several variants that to a greater or lesser extent

overcome this issue, e.g. the extended Kalman filter (EKF) and the unscented Kalman

filter (UKF) [64, 79, 81]. Another disadvantage is that the posterior is represented as

a Gaussian distribution, which means that they only approximate unimodal densities

with some reasonable degree of fidelity. Nevertheless, the Kalman filter and its variants

have been successfully applied in robotic vision and gaze control [7, 82].

2.7.2 The Particle Filter

As explained above, parametric filters represent the posterior distribution using a family

of densities parameterised by, for example, the mean µ and the covariance Σ. An

alternative to this approach is the use of nonparametric filters. They approximate

the posterior by means of a finite number of values, where each value represents an

instance of the state space. Furthermore, nonparametric filters are not restricted to

unimodal belief densities, thus they can represent multiple hypothesis using multimodal

distributions. One of the most common nonparametric filters is the particle filter [83,84].

A Particle filter G represent the belief state by a set of particles G = g1, g2, ..., gJ ,

where J denotes the number of particles, and each particle gj is an instantiation of

the state. In other words, each particle corresponds to a hypothesis of what the true

state may be. Similarly to the Kalman filter, the particles are updated after an action

(or control) a is taken and a new observation z of the world is obtained. This update

results in a new particle set, which represents the new posterior distribution. The basic

algorithm can be divided in three steps4:

4For a more detailed explanation and a mathematical derivation of the algorithm please consult
[64,85]
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1. Action update: This step creates a new temporary belief state bel′(st) by sam-

pling particles from the transition distribution. Given the current set of particles

Gt−1, each particle gjt−1 and the action just taken at specify the probability of a

new state gjt . This new state, i.e. the sampled particle, is added to the temporary

belief state bel′(st).

2. Importance factor: This step incorporates the new observation zt by calculating

the weight wjt for each of the new particles (from bel′(st)). This weight represents

the probability of the new observation zt given the particle gjt , i.e. p(zt | gjt ). This

step creates a set of weighted particles 〈gjt , w
j
t 〉.

3. Resampling: In this step the new particle set Gt is obtained by drawing parti-

cles with replacement from the set of weighted particles 〈gjt , w
j
t 〉. The weight wjt

determines the probability of drawing the associated particle gjt into the new set

Gt. The size of the previous and the new particle set remains the same.

This thesis makes use of particle filters to keep track of the positional uncertainty

of objects during manipulation tasks (described in Section 1.6). Therefore, the particle

filter is further explained in Chapter 4.

Even though particle filters just approximate the posterior, as opposed to Kalman

filters for example, they have become increasingly popular in robotics. This popularity is

due to their functionality, flexibility and ease of implementation. They have successfully

been applied to problems such as, localisation and mapping [86,87], fault-detection [88],

and tracking [89, 90], amongst others. One of the main drawbacks is that particle

filters cannot extend very well to high dimensional states, for this some variants have

been proposed, e.g. Rao-Blackwellised particle filters [84, 91] and decentralised particle

filters [92].
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Chapter 3

Background

As mentioned in Chapter 1, this thesis pursues primarily an engineering science goal with

the formulation of computational models of gaze control. Nevertheless, our proposed

models are in part motivated by human behavioural and neurobiological findings. Thus,

the aim of this chapter is to provide background information about gaze control from

the biological and engineering perspectives. The first part of this chapter presents an

account of active vision from the perspective of psychophysical and neurophysiological

studies, along with a small overview of visual attention in humans. The second part

of this chapter discusses models of gaze control and is further divided into three parts

according to how fixation locations are selected: i) models based on image features alone

(bottom-up models), ii) models that combine image features and task information, and

iii) models that mainly employ task information or that are considered goal-oriented

(top-down models). As our gaze control models are considered to follow a top-down

approach, particular emphasis is placed on that last sub-section and on those models

based on reward and for uncertainty. For completeness, the last part of this chapter

explores other topics of gaze control that may not be directly related to the goals of

this thesis but that are important to discuss, as they also face the problem of fixation

selection.
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Figure 3.1: A. Diagram of the human eye showing where the fovea is located (image taken
without permission from [2]). B. The graph illustrates how the highest acuity is centred at
the fovea, where the dotted lines indicate the edges of the fovea (2°) (image taken without
permission from [3]).

3.1 Active Vision

Active perception, or active sensing, studies and models the intelligent control of in-

formation gathering mechanisms that acquire information according to the task being

performed [9]. In particular, active vision is concerned with the study of gaze shifts and

their effects in human cognition and perception [10]. Some of the questions that active

vision attempts to answer are: Why and how do gaze shifts occur? How is the deci-

sion made about where to look next? What is the kind of information that is captured

by the eyes? How is this information integrated between gaze shifts? Amongst several

other questions [10,15,93]. This section presents evidence that attempts to answer these

questions about active vision from two fronts: psychophysical and neurophysiological

studies. Before this evidence is discussed, a taxonomy and explanation of human eye

movements in general is provided, since these concepts are key to understand the active

vision approach.

3.1.1 Eye Movements

One of the most important properties of the human eye is the inhomogeneity of the

retina (Figure 3.1A), where only its central part, known as the fovea, has high acuity

(or high resolution). Spatial acuity starts to reduce moving away from the fovea. More

importantly, the fovea is just a very small region of the retina, with an angular diameter

between 0.3°and 2°(Figure 3.1B) [37]. It is due to this property that the active nature
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of the eyes emerges because the eyes must move in order to obtain a detailed view of

the whole scene [10,93]. The main reason for this foveated system is economical. If the

whole field of view had the same acuity as the fovea, then the brain’s processing power

required to process such information would be immense [94].

Even though foveation requires constant movement of the eyes, these movements are

rapid, efficient and economical. A common physiological taxonomy of eye movements is

the following [10,15,95]:

Movements for gaze stabilisation: These are automatic and involuntary reflexes

that are used to control gaze such that the fovea remains stable. There are two

basic stabilisation movements, the vestibulo-ocular reflex (VOR) and the optoki-

netic reflex (OKR). These movements are further explored in Section 3.3.3 when

the oculomotor control problem is discussed.

Fixational eye movements: When the eyes remain momentarily stationary a fixa-

tion occurs. Nevertheless, it has been found that the eyes do not remain completely

stationary and three types of miniature movements may occur during a fixation:

drift, tremor and microsaccade. Although it is still an open question, it has been

suggested that one purpose of these movements is to stimulate the photoreceptors

in order to avoid the retinal image from fading [96,97].

Gaze shifting movements: These movements involve in some way the selection of

a target, and three types of movements are defined:

� Smooth pursuit: Keeps track of a moving target by maintaining it in the

fovea. The selection of the target is voluntary but it appears that smooth

pursuit is not [15,17].

� Vergence: Moves the eyes in opposite directions to converge into a target

that moves in depth, or when shifting gaze to another target with different

depth [10].

� Saccade: Shift gaze from one fixation to the next in rapid jump-like move-

ments [10, 15, 37]. Saccades are central to the study of active vision and are
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the type of eye movement employed in this thesis. Next, a more detailed

description of saccadic eye movements is given.

3.1.1.1 Saccadic Eye Movements

Every time our eyes shift from one target location to the next a saccade is performed.

Saccadic eye movements are rapid, taking around 30 to 40 ms, and have the properties

of being stereotyped and ballistic [10, 37]. Stereotyped refers to the eyes following the

same pattern of movement all times, i.e. they start to accelerate, reach a maximum

velocity, and decelerate rapidly until the eyes are in the new target location. Ballistic

means that the eyes cannot change their trajectory once the movement has initiated

(but see [98] for a recent study of multisaccade planning). Saccades are voluntary

movements driven by our goals, or involuntary, normally driven by particular visual

features in the field of view (e.g. salient features such as motion or contrast). When

a saccade is complete a fixation occurs. As mentioned above, even then the eyes do

not remain completely stationary and miniature movements occur. Nevertheless, for

practical purposes it is common to disregard these fixational eye movements. It is during

a fixation that visual information is captured and processed, since vision is inhibited

during a saccade (saccadic suppression) [37].

Even though the aim of saccades is to shift the fovea to obtain high resolution

samples, peripheral vision has a significant role in detecting motion and targets that

can be foveated next (e.g. in visual search tasks) [99–101].

Next, a series of findings from psychophysical and neurophysiological studies are pre-

sented. These findings provide evidence about the function of saccadic eye movements

and how they are deployed. Particularly when humans are engaged in physical tasks

(e.g. those that involve the manipulation of objects).

3.1.2 Psychophysical Findings

Psychophysical studies of eye movements in humans have demonstrated that fixation

duration and gaze patterns vary according to the current cognitive goals or to the task
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Figure 3.2: Gaze recordings of subjects whilst scanning a picture with different questions
asked. A. The unexpected visitor painting. B. Free viewing. C. Remember the clothes of the
people. D. Remember the position of the objects and people. Image adapted from [4] and
taken without permission from [5].

being performed by the subject. One of the earliest studies to suggest this hypothesis

was made by Yarbus [4, 5]. He studied subjects during a picture scanning task. The

subjects were given different instructions whilst viewing the picture, e.g. to remember

the clothes of the people in the picture, or remember the position of objects and people

(Figure 3.2). Depending on the instructions the subjects’ gaze pattern changed. This

finding suggests that even with the same visual input, subjects selectively chose fixation

locations according to the given task. In turn, this also suggests that saccadic gaze

patterns may be linked to cognitive processes in the brain.

Experiments such as the one carried out by Yarbus helped to understand the impor-

tance of measuring gaze shifts and their role during the performance of tasks [16, 93].

Nevertheless, for several decades eye movement studies were conducted in constrained

environments, with restricted movement of the subject’s head and body. However, it

is also in natural conditions and while performing daily visual tasks that eye move-

ment should be studied [93]. It is thanks to recent advances in eye tracking tech-

nologies that experiments in natural tasks are now feasible (Figure 3.3A) [102, 103].

Examples of these unconstrained tasks include: picture viewing [104], reading [105],
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Figure 3.3: A. Eye tracker used to record eye movements. B. Sandwich making task with
superimposed gaze pattern, where the lines represent saccades, the circles fixations, and the
circle size fixation duration. (Images taken without permission from [6])

sorting [21, 23, 106, 107], stacking [108], tea making [109], walking in virtual [24, 110],

and real environments [111, 112], sandwich making [113] (Figure 3.3B), playing sport

such as cricket [114], table tennis [115] and squash [116], hand-washing [117], and driv-

ing [22,118], amongst other tasks.

The study of these natural tasks has provided a wealth of empirical evidence about

the role of the task in the control of gaze, the spatio-temporal properties of eye move-

ments, the relation between gaze and memory, the part that learning and planning play

during gaze control, and the coordination between eyes and body. These findings are

discussed in more detail next.

3.1.2.1 Eye Movements and Task

Perhaps the most important finding is that the task dominates how gaze is to be con-

trolled. From picture viewing to driving, the goals of the task influence how gaze is

deployed. As mentioned above, Yarbus found that the scanpath, or gaze pattern, in a

picture viewing task changed according to the questions that subjects were asked (Fig-

ure 3.2) [5]. The same finding has been recently confirmed in another viewing task of

colour photographs [104].

In a sandwich making task, task-irrelevant objects were placed amongst those needed

to complete the task [113]. Before the task started the probability of looking at relevant

and irrelevant objects was about the same. However, once the task started practically

all the fixations landed only on task-relevant objects. Furthermore, the task not only
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directs the movement of the eyes, but also the movement of the limbs and body.

3.1.2.2 Where to Look

In a foveated system, such as ours, it should be of great importance the place where

fixations are made in the scene. As mentioned above, empirical evidence suggests that

where we look is largely determined by the task. The fovea is practically always directed

to objects, or parts of an object, that are relevant to the task [3,6]. Ballard et al. [21], in

a block-copying task, investigated the ties between gaze and actions. It was found that

fixations are always close to the site where actions are taking place. This is known as a

“do it where I’m looking” strategy. Further experiments such as the tea and sandwich

making tasks have confirmed such findings [109,113].

It has also been found that the place where fixations are located is determined by

the goal or the specific action being performed. Johansson et al. [1] measured precisely

the landing sites of fixations during a simple manipulation task. Subjects had to move a

bar in a vertical plane in order to touch a target switch with the point of the bar, whilst

avoiding an obstacle located in the middle of the path. To avoid the obstacle fixations

were rarely made to the centre of the obstacle, they landed in a space where both the

tip of the bar and the obstacle, could be checked. But when grasping the bar, fixations

landed on the bar itself. More recently, Rothkopf et al. [20] obtained similar results in

a virtual navigation task, where subjects had to walk along a pathway whilst avoiding

and colliding with tall rectangular objects. When objects had to be avoided, fixations

were made to the lateral sides of the objects, whereas when the subject had to collide

with an object fixations were made at the centre of the objects.

3.1.2.3 When to Look

Temporal aspects of gaze control have also been found from the study of natural tasks.

In the block-copying task, Ballard et al. [21, 119] determined that fixations follow a

“just-in-time” strategy. This means that, in general, gaze is deployed according to the

needs of the task. More importantly, the measurement of gaze and body actions has
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revealed that fixations precede actions (in some cases by less than a second [109]), and

gaze moves to the next target once the current action is complete or almost finished.

This suggests that gaze guides the actions by acquiring the information needed at the

right moment [1, 3, 16].

Both the correct timing and the effective placement of gaze enable us to achieve tasks

more efficiently, e.g. in terms of task performance or execution time. This has been

better demonstrated when actions need to be more precise and accurate, for instance

whilst playing sport. Land and Lee [22] showed how batsmen playing cricket are able

to predict where the ball is going to bounce on the pitch. Subjects first fixated the

bowler’s release, with that information they predicted the trajectory of the ball. The

second fixation was in the area where the ball was expected to bounce. Similar results

have been found for table tennis [115] and squash [116].

3.1.2.4 Visual Analysis

Having discussed the spatio-temporal properties of gaze control, the study of natural

tasks has also provided evidence about what to look at during a fixation. The aim of the

visual system is to acquire information from the environment, where this information

is typically task-relevant, as has been discussed so far. One question is, what kind of

information is extracted during a single fixation. In turn, this question is directly related

to the nature of memory. During the block-copying task, that consisted of copying a

coloured block pattern from a template, Ballard et al. [119] found that whilst moving a

block subjects performed a fixation to the template to check the colour, and then another

one to check the location of the block. This suggests two things, i) that subjects prefer

to look again rather than remembering these simple features, and ii) that each fixation is

performed to extract specific information. The first hypothesis indicates that it is more

costly to use memory than to perform an eye movement. For instance, Rensink [120]

proposes to view the environment as an external memory that is accessed through eye

movements. The second hypothesis is further investigated by studying the phenomenon

known as change blindness [121]. This refers to subjects not noticing changes about
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objects or features in the scene, whilst a saccade is performed, or because of blinking,

or due to occlusions. Triesch et al. [23] performed a sorting experiment in a virtual

environment where it was possible to change the size of the object being manipulated.

They found that when the task did not involve the size of the object, even if the object

was being fixated, subjects some times were unaware of the change in the object’s size.

Ullman [40] has proposed a theory of visual routines that follows the idea that specific

information is acquired during each fixation. The proposed visual routines are composed

of a sequence of basic operators, where each routine is specialised in the extraction or

processing of specific visual information. Roelfsema [42] describes a possible set of

basic operators and their biologically plausible implementation in neurons. In a recent

experiment, Rothkopf and Ballard [24] extracted image statistics at point of gaze during

a navigational task in a virtual environment. It was found that gaze was directed at

three distinctive features during the task. This provided quantitative evidence that

specific features might be acquired on each fixation.

The analysis of fixation duration provides further evidence about the extraction of

specialised information [6]. Depending on the task and the specific actions being realised,

fixation duration may vary from tens of milliseconds to several seconds [109,113]. This

variation may be dependent on the information being extracted from the scene [122].

3.1.2.5 Uncertainty Reduction

As mentioned above, the eye-tracking experiments suggest that the goal of eye move-

ments is to gather information about the world in order to act efficiently, e.g. to max-

imise task performance or minimise execution time. One way of information gathering

is that the gaze is deployed in order to minimise or reduce uncertainty about properties

of the environment or specific objects. Najemnik and Geisler [11] found quantitative

evidence that humans follow an optimal fixation selection strategy in a visual search

task, compared to an ideal Bayesian observer1. The aim of the ideal observer is to

maximise the information gain about target location on each saccade. In a more recent

1For an explanation of Bayes’ rule and Bayesian inference please refer to Section 2.7.
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study, Najemnik and Geisler [123] confirmed the result that humans try to maximise

the information gain about target location across fixations, in contrast to fixating at lo-

cations with high target probability only. Similar findings were obtained by Renninger

et al. [36] in a shape-matching task. They used a shape-matching task to investigate

whether humans move their eyes to locations that maximise total or local information

about a shape to be matched. They found that subjects fixate the most informative

locations or regions of these shapes, i.e. humans seem to reduce local uncertainty about

the shape, and not the shape as a whole. This is similar to our models, since the robot

reasons about the reduction of positional uncertainty of single landmarks, rather than

trying to reduce positional uncertainty of several landmarks in one fixation. However,

in a multi-target search task Verghese [124] observed that subjects tended to fixate at

the most likely target location, instead of following an ideal information gain strategy.

Thus, it is still not clear exactly what kind of strategy humans perform and further

research must be done in this respect.

Note that the tasks just discussed did not involve body actions. During a driving

task in a virtual environment, Sullivan et al. [26] manipulated the uncertainty about the

speed of the car, which was shown in the car’s speedometer. More fixations were made

to the speedometer and fixation duration also increased when uncertainty about the

speed of the car was introduced, in contrast with those cases with no added uncertainty.

Another interesting finding was reported by Steinman et al. [25] during a precise tapping

task. The subjects’ visual acuity was degraded such that nearby targets were seen clearly

and as the distance increased targets became blurred. The rather surprising finding was

that fixation accuracy was better for the blurred targets, whilst large gaze errors were

found on the clearer targets. The authors suggested that this shows that targets with

no uncertainty do not need to be fixated directly, as opposed to those targets that have

high location uncertainty.
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3.1.2.6 Learning and Planning

The same psychophysical studies analysed so far have revealed that learning should

take place at different levels in the brain [16]. At a high level, subjects must have learnt

how to perform the given task. For example, in the tea and sandwich making tasks,

subjects knew the steps required to prepare a cup of tea and a sandwich [109, 113]. At

the same time, subjects must have learnt the complex dynamics of the environment and

deploy gaze accordingly. For instance, skilled batsmen in cricket are able to fixate on the

area where the ball is about to bounce [115]. Similarly, for navigational tasks such as

driving and walking along a pathway, subjects learn the dynamics of cars, pedestrians,

traffic lights, etc. [22, 110, 118]. It appears that subjects also learn how to control gaze

efficiently, since there is a big similarity between subjects’ scanpaths in practically all

the natural tasks listed above [16]. This also suggests that models of the limitations of

gaze and body should be learnt as well [15].

At the low level, however, planning seems to take place for gaze deployment and

the execution of body actions. Even though subjects have learnt how to prepare tea

or sandwiches, the location and, sometimes the appearance of objects, is likely to be

different across instances of the same task. This suggests that low level motor commands

are quite specific for the particular instance of a task. The same happens with the control

of gaze. Fixations are made to places where relevant information can be acquired for

the ongoing needs of the task, but these places are not always the same. Behavioural

analysis suggests that the internal models about the world, the task and our own motor

systems, that we have acquired with experience, are used for saccadic planning [15]. In

a recent work, Ramakrishnan et al. [98] studied the case of multisaccade planning. It

appears that, in some instances, subjects are able to plan two saccades in parallel. If

the first saccade is heading towards an incorrect target, it can be cancelled and a second

saccade guides gaze to another target.
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3.1.3 Neurophysiological Findings

The previous section presented behavioural evidence that indicates how eye movements

in general, and saccades in particular, are linked to cognitive goals in the context of a

task. However, eye-tracking studies can hardly provide specific details about how eye

movements are controlled by the brain. Which is why we now turn our attention to

recent neurolobiological and neurophysiological experiments that provide clues about

how the brain controls gaze during the performance of a task.

Perhaps the most important finding is that gaze and action control in the brain seem

to follow a reward-based approach [16, 17, 28]. This finding mainly comes from studies

of the basal ganglia, which consist of a group of strongly connected brain nuclei that

function as a unit. It has been established that the basal ganglia are associated with

various cognitive functions, such as motor control, learning and eye movements [27,125].

Schultz [30] has suggested that dopamine [126], one of the brain’s neurotransmitters, is

able to signal the reward prediction error of actions, which allows the basal ganglia act as

a reward based system [127] (in contrast, Redgrave and Gurney [128] have suggested that

dopamine allows for the discovery of novel actions rather than signalling the expected

reward of known actions). Moreover, Hikosaka et al. [29,129] have shown that saccadic

eye movements are modulated by the basal ganglia to places where reward is available.

They found that caudate neurons reflect expected reward before the target is fixated

[130]. These findings suggest that behavioural control and learning, and saccadic control

in particular, are modulated by the basal ganglia by means of reward signals.

An important consequence of these studies is the possibility of using mathematical

models of decision making and reinforcement learning (Chapter 2) [34,59] for modelling

the internal workings of the basal ganglia and the eye movement circuitry [28,131–134].

These mathematical models are key for the definition of gaze control models that will

be discussed in Section 3.2.

Although dopamine is regarded as the main contributor to signal expected reward,

other studies have also revealed the function of other neurotransmitters in the brain and

their possible role in behaviour control and learning. Doya [32] presents a computational
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theory of reinforcement learning based on four neurotransmitters: Dopamine, serotonin,

noradrenaline and acetylcholine. In his model, dopamine represents the reward signal

for reinforcement of actions; serotonin represents the trade-off between short and long

term rewards; noradrenaline controls the trade-off between exploration and exploitation;

and acetylcholine represents the learning rate (see Section 2.5). In a recent study,

Seymur et al. [135] have found further evidence that serotonin encodes reward during

decision-making. Another role for acetylcholine, which is of relevance to this thesis, is

that of representing uncertainty [33]. Yu and Dayan [31] investigated uncertainty in

a Bayesian statistical framework, where they use acetylcholine to represent expected

uncertainty that comes from known unreliability in the environment. On the other

hand, they also studied the role of the neurotransmitter norepinephrine, which may

represent unexpected uncertainty that comes from completely unexpected changes in

the environment. The interaction of these two neurotransmitters enabled inference and

learning. Doya et al. [136] have further explored how a probabilistic Bayesian framework

may be implemented in the brain.

The role of reward and uncertainty at the neural level motivates the creation of

computational models of gaze and body control based on reward and uncertainty. Neu-

rophysiological research, particularly in the last few years, have provided a wealth of

information that is currently being used in neurocomputational models of decision mak-

ing. Nevertheless, there is still much research to be done to determine the precise

functionality of the brain’s structures, in particular the basal ganglia, and their role in

learning and planning eye movements and body actions.

3.1.4 Saccades and Visual Attention

Visual attention is, in a broad sense, a selective process which is intimately related to

saccadic eye movements. So far it has been discussed that saccades are influenced by our

current cognitive goals, and that visual information is acquired during a fixation. Thus

it may be possible for us to say that our attention, whilst performing a task, is directed

towards the current fixation location. However this is just half of the attentive process.
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Overt visual attention is concerned with eye movements and the fixation location being

attended, whilst covert visual attention is the ability to attend at a location in the

periphery without moving the eyes [37].

Since our models of gaze control only employ saccadic eye movement, covert visual

attention is not covered in full here2. Nevertheless, the interaction between overt and

covert attention is important, since covert attention typically provides possible fixation

locations to which the fovea can be directed in the next saccade(s) [138,139]3. In Section

3.2 computational models of gaze control will be discussed. A few visual attentional

models will also be analysed there since they can be used for the selection of gaze shifts.

An important question arising from visual attention is, “to what exactly is attention

directed?” In other words, “what are the units of attention?” Yantis [140] provides a

good review of the three major approaches found in the literature: i) location-based,

ii) feature-based, and iii) object-based attention. If only overt attention is considered,

Section 3.1.2 already presented behavioural experiments supporting all three approaches.

For instance, in the sandwich or tea making task it is reported that subjects fixated the

spatial location where an object was about to be placed [109, 113]. In the case of the

block-copying task, it was discussed how subjects appear to focus on specific properties

or features of a block whilst completing the task [119]. Finally, in all the tasks discussed

so far, fixations (and attention) are mostly directed toward objects. It is safe to say that

overt attention includes all three approaches. In this respect, this thesis follows mostly

an object-based approach [141].

3.2 Models of Gaze Control

The previous section presented psychophysical evidence suggesting that the efficient con-

trol of gaze shifts is critical to accomplish visually guided tasks effectively. In addition,

neurophysiological experiments were described that suggest that reward might play a

major role in learning and planning the control of gaze and body actions, by following a

2For a survey of recent advances in covert attention please refer to [137].
3See Chapter 3 of Findlay and Gilchrist [10] for a discussion about the possible ways in which overt

and covert attention interact.
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Bayesian probabilistic approach. Therefore one question is: What mechanisms should a

rational agent4 follow in order to select the next fixation location? This section presents

models of gaze control that provide answers to that question.

In very broad terms, the selection of fixation locations depends on whether or not

the agent is engaged in some task. Thus far we have stressed the importance that the

task has on the overall gaze control problem. Nevertheless, a large number of non-task

based models of gaze control has been developed so it is important to discuss their

properties. This discussion can also serve to highlight the importance of task based

models. Typically, non-task based models are also known as bottom-up (data-driven

or stimuli-driven) approaches, whilst task based models are also known as top-down

(goal-oriented) approaches.

This section is divided into three sub-sections. First, bottom-up approaches are pre-

sented. Second, models that combine bottom-up and top-down processes are discussed.

These models are a special case since the top-down information is mostly used to bias

the bottom-up decision process. Finally, top-down models are described. We will see

that these models may contain a bottom-up mechanism, however top-down information

dominates the decision process. In this last sub-section particular emphasis is placed

on those models that follow a reward based approach and those implemented in an

embodied agent (e.g. a robot).

3.2.1 Bottom-Up Models

As mentioned above, bottom-up refers to those models that are not based on any par-

ticular task, i.e. the agent would be free to explore the environment. In this case, its

gaze will be attracted to salient or conspicuous features of the visual scene [142]. For

instance, features or attributes of high contrast in terms of colour, motion, orientation,

size, depth and luminance [143]. These salient features constitute possible fixation loca-

tions to which the agent can look at any time step. Therefore, the agent’s decisions are

mainly influenced by the environment. It is worth noting that most of the bottom-up

4In this context, an agent could refer to a virtual or physical, human or robotic subject.
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models described here have been studied from the visual attention perspective [144],

and not to explain saccadic eye movements. However, as mentioned above in Section

3.1.4, models of visual attention could also be employed to select fixation locations if

only overt attention is considered.

Koch and Ullman [142] proposed a way in which the salient features could be glob-

ally represented by means of a saliency map. Later on, Itti and Koch [145] defined a

computational model to produce such saliency map. Basically, the most salient region in

the map would have a higher weight, which means that the agent’s attention (or its gaze

in our case) would be drawn towards this region by following a winner-take-all (WTA)

strategy. For this strategy to work, the saliency map must avoid to fixate or attend

again at the recently visited regions by means of a special property called inhibition

of return [146], which decreases the weight of a region for some period of time after it

has been attended. Psychophysical evidence, during picture viewing tasks, supports the

idea of a saliency map in humans [147]. Recently, saliency maps have been extended in

order to calculate saliency in time varying input such as video, rather than just static

picture viewing scenarios [148–150].

Robotic platforms have also been equipped with saliency detection models. For

example, Butko et al. [151] implemented a saliency model in robotic pan/tilt camera

in order that is able to maintain the most salient region of the current scene in the

centre of the camera. Schlesinger et al. [152] incorporated a bottom-up model in the

iCub simulator in order to study the perceptual development of human infants, using

the psychological experiment of perceptual completion. Vijayakumar et al. [153] employ

a stimuli-based model in a humanoid robot as an attention mechanism. The robot’s

oculomotor system moves and centres its cameras on the salient regions of the visual

scene.

Finally, it is worth mentioning that some recent saliency models attempt to follow

the neural characteristics of the brain mechanisms known to be part of the selective

visual attention process [154–156].

52



3.2.2 Bottom-Up + Top-Down Models

The main problem with bottom-up models is that, if the agent is engaged in a particular

task, they will not necessarily be able to detect regions of interest that are task-relevant

[20, 122]. Therefore, a logical extension to purely bottom-up models is to incorporate

some kind of top-down mechanism in order to use task information whilst calculating the

saliency map. This sub-section presents models that are essentially bottom-up models

but that are biased by top-down information. These models mostly come from the visual

attention literature [157,158], as those described in the previous sub-section.

The implementation of these models typically follows the same structure, where

the saliency map is created based on image features and at the same time, or in a

later step, contextual task information is added to the map. These top-down cues

will bias the saliency map depending on the task being performed. Perhaps the most

commonly used contextual cue is the target object information [159–161], where the

saliency map is biased towards specific target features. For example, higher weight may

be incorporated to red blobs in a scene if we are interested in finding stop signs in roads.

Another important cue comes from the context given by the scene, which provides likely

locations of the target(s) [159,162]. For instance, when looking for pedestrians it is more

likely to find them in sidewalks or roads, than on top of buildings. Recently, some models

have combined saliency with the probability of expected rewards [13,14]5.

For robotic platforms, information about the target object(s) is also commonly em-

ployed. Orabona et al. [163] implemented a visual attention model in a humanoid robot,

combining saliency and object-based cues. They also simulate the inhomogeneity of the

human retina by transforming camera images to log-polar images. Models of the target

objects are learnt off-line using different viewpoints of each object. These models bias

the saliency map in order to find a particular target. A similar mechanism is presented

by Hawes and Wyatt [164], where a robot can be asked questions about the location

and properties of certain objects. The robot also learns a model of each object, but in

this case learning can occur on-line. Bohg et al. [165] employs target information to

5For more information about this kind of models please refer to Borji and Itti’s recent survey [158].
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detect objects for grasping. In this case, the model of the object is encoded by a neural

network. Once the object is detected and recognised the robot performs the grasping

action. Finally, Frintrop and Jensfelt [166] dealt with the problem of self-localisation

and mapping (SLAM) for a mobile robot. Regions detected by a saliency detector are

used as landmarks, then as the robot moves, it has to keep track of these landmarks by

means of feature vectors, in order to localise itself.

3.2.3 Top-Down Models

As mentioned above, there is evidence that purely bottom-up models are not able by

themselves to predict gaze patterns if the agent is engaged in some task [20, 122]. The

main reason is that the object(s) or spatial location(s) that are considered task-relevant

might not be conspicuous or salient enough for the agent to fixate on them. This is why

top-down biases have been incorporated into saliency models [157,158], as explained in

the sub-section above. The models presented in this sub-section select fixation locations

mainly based on the properties and features of the task at hand, rather than being

driven by the stimuli captured in the image(s) [15]. Thus, the majority of the gaze

control models presented next are formulated using decision-theoretic approaches (some

of these approaches were described in Chapter 2).

Even though our proposed gaze control models follow an engineering approach, we

first start by describing biologically grounded, or biomimetic, models of gaze control.

These models are restricted to follow some of the neurobiological structures of the brain

and their interaction. It is important to talk about these models since a big part of

the motivation of this thesis comes from biological findings. So the models described

here build on the findings described above. The second part describes computational

models that may be biologically motivated, but that follow engineering approaches, such

as ours. Finally, we talk in more detail about the model of gaze control developed by

Sprague and Ballard. As explained in Section 1.5, our models build directly from theirs.
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3.2.3.1 Top-Down Neurocomputational Models

As presented in Section 3.1.3, saccadic eye movements and action selection are modu-

lated by the basal ganglia [30, 129], and it has been suggested that the basal ganglia

can be represented as a reward based system [32, 127]. Following these findings some

researchers have developed computational models of action selection and gaze control

mimicking the functionality of brain modules, in particular the basal ganglia, the cortex

and cerebellum. The brain and its modules work at different levels, thus computational

models typically work at specific levels [167].

An agent may engage in a task at two different phases, the learning and the proficient

phases6 [168,169]. The learning phase is where the agent acquires the mapping between

stimuli7 and actions, whereas the proficient phase is where the agent selects or decides

what action to perform based on the learnt mapping.

The learning phase is typically carried out by means of external reward, and can be

formulated with reinforcement learning algorithms [34]. As explained above, Doya [32]

presents a neurocomputational reinforcement learning algorithm based on the basal gan-

glia and the neurotransmitters: Dopamine, serotonin, noradrenaline and acetylcholine.

In his model, dopamine represents the reward signal for reinforcement of actions; sero-

tonin represents the trade-off between short and long term rewards; noradrenaline con-

trols the trade-off between explorations and exploitation; and acetylcholine represents

the learning rate (see Section 2.5). On the other hand, Bogacz and Gurney [168, 170]

present a model for action selection assuming the agent already has learnt the task. They

model a statistically optimal action selection mechanism at the system level of the basal

ganglia and the cortex. Actions are selected following a similar approach to a Bayesian

decision-making mechanism (Section 2.7), where this selection is based on noisy inputs.

Recently, Bogacz and Larsen [169] have provided an integrated account of reinforcement

learning and action selection based on noisy sensory input. In this respect, their model

is actually similar to partially observable Markov decision making processes (POMDPs)

6In this thesis the proficient phase is called execution phase, as it will be seen in Chapter 4.
7This is also known as the information state as explained in Chapter 2.
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(Section 2.3), which are used in robot control [65]. In this same line, Rao [171] explicitly

formulates a neural model of action selection based on POMDPs, where decisions are

made in the face of the uncertainty caused by unreliable observations (or evidence). He

shows that this model matches some results from behavioural and neurophysiological

studies of information gathering behaviour. Both, Bogacz-Larsen’s and Rao’s model,

are similar to ours in that they re-value rewards in the face of uncertainty.

Regarding decision making models, an important line of research has been the mod-

ulation of the trade-off between decision speed and accuracy [170]. Ideally, decisions

should be made accurately, but due to noisy sensory input the agent would need to

accumulate evidence over time before making an accurate decision, thus affecting the

decision speed. In some circumstances, this is not possible and decisions need to be

made fast even under uncertain information. For instance, an animal that has just de-

tected a possible treat could try to make a more accurate decision about whether the

treat is real or not by trying to look for further evidence (thus risking its life), or it

could just move away from the possible treat (although it might not be a real treat).

Trimmer et al. [172] formulate two sub-systems, one fast but that might be inaccurate,

and another one slow but more accurate (i.e. a sub-system that integrates evidence over

time). They provide probabilistic mechanisms in which these two sub-systems can be

combined by making different assumptions about their interaction. A more neurobio-

logically grounded implementation has been recently presented by Marshall et al. [173].

The basal ganglia have also been shown to modulate saccadic eye movements [129].

Building on Bogacz and Gurney’s model of decision making in the basal ganglia [174],

and in the neural saccadic generator mechanism developed by Gancarz and Gross-

berg [175], Chambers et al. [41] present an oculomotor control system that performs

reactive saccades. Positive feedback is employed within the oculomotor system in order

to saccade to a salient target that suddenly appears whilst the system fixates another

target. The aim of this system is to compare the abnormalities present in people suffer-

ing Parkinson’s disease. Another model of saccade generation is proposed by Krishnan

et al. [176], which follows a reinforcement learning approach. The model performs sac-
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cades to those parts that are more rewarding based on a saliency map. Finally, Ognibene

et al. [177] present a neural architecture for a camera-arm robot following a reinforce-

ment learning approach for a reaching task. Their model does not explicitly follow the

structure of brain modules, however, the arm control is driven by the stimuli present in

the camera’s saliency map.

Even though in this thesis we do not follow a neurocomputational approach, the

models just described are interesting in that they provide a way to see how the brain

might make decisions about action selection and gaze control at some level of abstraction.

3.2.3.2 Top-Down Engineering Models

In this sub-section we will review models that follow a top-down approach from an en-

gineering perspective. First, we start by describing models that are implemented using

only a virtual or a robotic camera. These models provide interesting formulations but

they are mainly used in visual search tasks for object detection/recognition. Second,

we review gaze control models for embodied agents (virtual or robots). These mod-

els are similar to ours as they are employed to perform tasks that involve the direct

manipulation of or interaction with the environment.

Aragon-Camarasa et al. [178] present a binocular vision system that is able to search

for and recognise target objects in cluttered scenes by means of SIFT features (Scale

Invariant Feature Transform) [179]. Rather than following a decision-theoretic approach,

the next fixation point is determined by the SIFT features of objects, thus avoiding

calibration and geometric knowledge of the camera. Similarly, Forssen [180] learns how

to saccade and center specific image features in a binocular system. This is done by

learning, via a forward model, how image features move when a gaze shift occurs, where

the image features are also SIFT features.

Renninger et al. [181] follow an entropy based approach by selecting the next fixation

location as the one that minimises uncertainty. They consider single images for a shape-

discrimination task, and assume peripheral-foveal vision (i.e. only the fovea has high

acuity). Another entropy based model is that of Arbel and Ferrie [182], which selects
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view points with the aim of maximising the amount of information about a 3D object

in order to recognise it. They make use of a camera, rather than just a 2D image,

that is able to move anywhere around the 3D object. The next view point is determined

based on an entropy map associated with that particular object, by specifying the places

where more observations are required. Gould et al. [183] simulate a peripheral-foveal

vision system with one low-resolution fixed camera and a pan-tilt-zoom camera for high-

resolution images. Their task is to recognise and keep track of objects already recognised.

Gaze is allocated to one of these two tasks by calculating the entropy over the objects

being tracked and those that have not been identified. For recognition, the next fixation

location is determined by identifying pixels that may contain a new recognisable object,

this is done by a previously-learnt probabilistic model of each object. The identification

of these pixels is made by the low-resolution camera. For tracking, the system can decide

to look back at one of the objects being tracked in order to update their position and

velocity.

Building on the work of Najemnik and Geisler [11] (discussed in Section 3.1.2.5),

Butko and Movellan [184] propose a model called I-POMDP, an information-gathering

(infomax) approach to visual search using a POMDP (partially observable Markov deci-

sion process) (see Section 2.3). They assume peripheral-foveal vision and employ small

visual arrays. The key idea is to select the next fixation location that maximises the

likelihood of finding the target, determined by the current belief state about the target’s

location. This is an interesting Bayesian approach that is able to integrate information

across saccades, which is similar to the way we followed. However, they learnt the

POMDP and in turn, where to look. This is possible for visual search tasks confined

to small search areas, and because there is no external reward for physical actions as

in our case. Recently, Butko and Movellan [185] implemented the I-POMDP model as

part of a “digital eye” that is tested in visual search tasks with larger images for face

recognition. They also provide a more general approach to the visual search problem

and how the next fixation is determined by several sources of uncertainty, e.g. uncer-

tainty about the target, the eye movement, the sensing of objects, and motion produced
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by the eye movement. In [186] they implement a learning mechanism in two real robots

that allows them to learn how to look at a target taking into account the uncertainty of

the motors and sensory information.

Vogel and Murphy [46] modelled eye movements using POMDPs for visual search

tasks. This model is simulated using pre-acquired images of different scenes. Nev-

ertheless, the model involves pan and zoom actions, and the POMDP models noisy

observations about the location of the target. Contrary to Butko and Movellan’s model,

the next fixation location is planned according to the likelihood of finding the object in

the current view point. Also, planning occurs at different horizons (lookahead planning).

This model was later extended [187], in order to incorporate bottom-up saliency and

scene context information.

Minut and Mahadevan [188] learnt gaze patterns by means of reinforcement learning

(RL) (Section 2.5), using a pan-tilt camera, and for a visual search task set in an office

environment. The next fixation location was decided based on the most salient point

from the current view point. Positive reward was given if the target object was located

closer to the centre of the camera. The main drawback of this model is that it has

to re-learn the gaze pattern if the target object is moved to a different location. Also

following an RL approach, Stober et al. [189] modelled a foveated retina that learns

a policy to center the fovea on points of interest. The idea is to directly map motor

commands to sensor features. The model is tested in simulation and in a pan-tilt camera

using synthetic and natural images.

Sridharan et al. [44, 190] present a framework for planning visual operations on

single images based on hierarchical POMDPs. Even though they do not explicitly

decide fixation locations, some of the visual operators determine the object that is

being processed, and in consequence, that is being fixated. The hierarchy employed

allows them to make POMDP planning tractable.

None of these models of gaze control employ an embodied agent or robot. They can

model the dynamics of objects [185], but the agent is not able to manipulate or interact

directly with the environment. Next, we will review gaze control models for agents with
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one or more motor systems that allow them to perform physical actions, similar to the

models we formulate in this thesis.

An evolutionary approach for active vision is presented by Floreano et al. [191,192].

A mobile robot with an attached pan-tilt camera is able to navigate in an indoor and

outdoor environment by means of an evolved neural network. The robot learns where to

look and navigate simultaneously. The pan-tilt motor values are directly learnt according

to the sensory input and the current trajectory of the robot.

Recently, Borji et al. [193] developed top-down attentional mechanisms modelled

as Dynamic Bayesian Networks. These models were compared to human data from

subjects playing video games (e.g. a driving task) by predicting their eye fixations.

Physical actions performed by the subjects, such as the wheel position, gear change,

pedals, etc. are considered by the model in the form of object properties. In fact, the

models follow an object-based approach, as opposed to spatial models (Section 3.1.4).

Seekircher et al. [194] formulate an entropy-based model of gaze control for a hu-

manoid robot for self-localisation and ball tracking in a soccer field. In a similar way

to one of our proposed gaze strategies (the Uncertainty gaze scheme (Section 1.5)), the

next gaze location is determined by maximising the expected information gain in the

next time step. Something that we do not consider in our models but which they do is

the cost of performing a saccade, by measuring the difference between the expected and

current camera angles. The robot maintains its belief state using particle filters, and the

state is based on image features of the environment. The main difference with our mod-

els is that we control gaze by considering the physical actions that are being performed,

rather than just features from the environment. Another entropy-based model for the

soccer domain is presented by Kohlbrecher et al. [195]. In addition to self-localisation

and ball tracking, they also account for obstacle detection. A vision-based occupancy

grid map is generated in real-time that fuses different sources of information (static

and dynamic knowledge about obstacles). Based on this map an entropy-based map is

created and employed to determine the best next view point, i.e. the view point with

the maximum entropy.
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Karaoguz et al. [35], present a saliency and reward based approach in a multi-tasking

scenario where a simulated humanoid robot has to reach for an object whilst attending

to an interaction partner. Their visual architecture consists of several modules that

keep track of colours, motion, objects that have not been visited for some time and the

interaction partner. The robot learns weights, via a reward mechanism, to determine

which module should get access to perception according to an activation map created

by each module. The activation maps specify the desired motor commands and they

are represented as 2D Gaussian distributions. Whilst this model can be employed for

multi-tasking, gaze control is learnt rather than planned, and only one motor system is

considered.

An interesting manipulation scenario is presented by Schenck et al. [196]. They

investigate the precision of a robotic arm in grasping foveated and non-foveated objects.

As one would expect, the robot arm has a high grasping success rate for those objects

that are fixated precisely. For non-foveated objects a prediction model is learnt using

neural networks. They show the success rate of grasping non-foveated objects by using

a prediction model. They show how the success rate of grasping non-foveated objects

by using the prediction model is much higher than if the model is not used. Of course,

foveating the object is better than using the prediction model.

Erez et al. [45] proposed an interesting model for hand-eye coordination in a simu-

lated reaching task using a POMDP. In the task, two “hands” must reach to a common

point whilst passing a pair of obstacles. The joint behaviour of eye and hands is mod-

elled in the POMDP, where states and actions can have continuous values. Having such

a high-dimensional space, approximation techniques are needed in order to plan the

corresponding hand-eye movements. The model is compared to human data obtained

by subjects performing the same reaching task by means of thumbsticks (from a game

controller) and eye tracking. This model proposes an interesting way to coordinate gaze

and actions for two arms (there are other works that map directly eye movements with

a single arm using sensorimotor mapping of coordinates [197]). In this thesis we avoid

having such high-dimensional space, and direct mapping between eye and hands, by
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splitting the decision problem into physical and perceptual action selection.

3.2.3.3 Ballard’s Model of Gaze Control

This thesis is largely motivated and builds on the work of Ballard, and in particular on

Sprague and Ballard’s model of gaze control. In an early paper Ballard introduced a

theory of gaze control following an “animate vision” approach [19], where the agent has

the ability to actively fixate towards task relevant visual stimuli. This theory argues

that gaze shifts allow early visual computations (i.e. the construction of retinotopically-

indexed maps of, for example depth, colour or velocity) to be less expensive, compared

to a passive vision system [198]. This is mainly because in animate vision the frame

of reference is fixation point centred, rather than camera-centred, which allows the

coordinate system to have zero velocity and zero disparity at the fixation point. Animate

vision also proposes that agents should have a set of visual behaviours, these refer to

task-specific or special-purpose algorithms. For example, a simple visual behaviour

could consist of a colour detector algorithm, or an edge detector algorithm. The use

of behaviours simplify the computation by executing those behaviours currently needed

by the task. Ballard also suggests that these visual behaviours should be learnt, for

example using reinforcement learning.

Whitehead and Ballard [199] implemented animate vision using a reinforcement

learning approach in a block stacking task. The system makes use of deictic representa-

tions and actions that significantly reduce the the information that is stored in memory.

Rather than keeping track of all possible objects and their features from a given scene, it

is better to just keep track of those objects relevant to the task. Furthermore, an object

to be manipulated could be referred to as a deictic representation, i.e. “manipulate the

object I am fixating”. This is the “do it where I’m looking” strategy observed by Ballard

et al. in the block-copying task in humans [21]. Furthermore, Whitehead and Ballard’s

model consider the idea of visuo-motor behaviours, where each behaviour is expected to

perform a sub-task or a specific sub-goal. Their model is based on two markers known

as: action-frame and attention-frame. The action-frame performs perception and phys-
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ical actions, whereas the attention-frame only performs perception (in order to gather

new information). Thus, the set of available actions is determined to what the agent

is currently fixating or attending. For instance, in the block stacking task there could

be some number of blocks, so rather than having a specific action for each block, the

actions are in the form of “grasp-object-at-action-frame”. Their system is able to learn

policies to solve specific stacking tasks (i.e. specific visuo-motor behaviours), however

one disadvantage is that it does not generalise well.

Following the idea of visuo-motor behaviours, Salgian and Ballard [200] developed

visual routines [40]8 for a driving task and provided a scheduling mechanism for their ex-

ecution. Each driving behaviour could be associated to one or more visual routines. For

example, the stop-sign-behaviour has associated the stop-sign-detection and intersection-

detection routines. Behaviours are implemented as finite state machines. The idea is

that several behaviours may be running simultaneously, this implies that several visual

routines may be competing for execution time. In other words, as gaze is a serial re-

source, visual routines can only be executed one at a time. They test the performance of

several scheduling rates along with variations on the visual behaviours (another schedul-

ing mechanism for gaze allocation is implemented by Hernandez et al. [201]).

This work leads to the gaze control model formulated by Sprague and Ballard [7,43],

which is important to our work since this thesis builds on their model. In particular,

our model of gaze control based on rewards, uncertainty and gain (the Rew+Unc+Gain

gaze scheme explained in Section 1.5). Therefore it is important to explain in more

detail Sprague’s model, and delineate the similarities and differences with our models.

The model proposed by Sprague and Ballard is a reward based approach for the

problem of gaze allocation in a multi-tasking domain (similar to Salgian and Ballard’s

above). They consider a simulated human agent with the task of following a sidewalk

whilst avoiding obstacles and collecting litter. The agent is expected to perform these

three sub-tasks concurrently9 by controlling its steering direction; the virtual agent keeps

8Recall that Ullman’s theory of visual routines follows the idea that specific visual information can
be extracted during each fixation.

9Concurrency here is defined at the task-level, where a single action affects all sub-tasks being
executed. In contrast, in our work (see Chapter 7) we define concurrency at the level of the manipulation
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on walking during the task. The agent, therefore, is restricted to have only one motor

system. The sub-tasks can be run simultaneously because they share the same action

space (three steering directions). The agent first learns each sub-task via reinforcement

learning (Section 2.5), under an assumption of complete observability. This means that

the simulator provides the exact location of the sidewalk, the obstacles and the litter to

the agent during the learning phase. For example, for the obstacle avoidance sub-task,

depending on the distance between the agent and the closest obstacle, the agent may

steer to the right, left or keep walking straight. The distances to the sidewalk, obstacles

and litter constitutes the information state of the agent.

After the learning phase, the agent executes the three sub-tasks simultaneously. But

now the agent must maintain the information state of each sub-task by extracting visual

information from the scene using a visual routine. Based on the information state of

each sub-task the agent performs an action that affects all sub-tasks, since the action

space is shared amongst the sub-tasks. The serial nature of gaze is modelled by allowing

only one visual routine to be executed every time step. Their key idea is to allocate

(or assign) gaze to the sub-task that is likely to lose more reward, based on the current

state uncertainty, if it is not given access to perception. Only the sub-task that has

access to perception is able to extract information from the image relevant to it using

its corresponding visual routine. The sub-tasks that do not have access to perception

have increased uncertainty about their objects of interest.

Figure 3.4 shows an overshot of the simulated agent performing seven time-steps of

the three sub-tasks. In the figure, obstacles are the blue rectangular objects whilst litter

is represented by the purple cylinders. Figure 3.4.A presents how gaze is allocated,

notice that for the first three time-steps gaze is allocated to the obstacle avoidance

sub-task, then the agent attends the sidewalk, and then the litter object. Figure 3.4.B

illustrates the location uncertainty of the obstacle (OA), the sidewalk (SF), and the litter

object (LC). The beige region represents the location uncertainty before perception,

whilst the coloured regions is the location uncertainty after perception. They compare

motor systems, where a concurrent action is accomplished by the coordination of both arms.
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Figure 3.4: A. Overview of the simulated agent performing the navigation task. Obstacles
are the blue rectangular objects, whilst litter is represented by the purple cylinder. The lines
represent the fixations made by the agent during seven time steps of the task. B. The estimated
location uncertainty for each sub-task during the seven time steps, where OA = obstacle
avoidance, SF = sidewalk following, and LC = litter collection. The beige regions represent
the uncertainty before perception, whilst the coloured regions represent the uncertainty after
gaze is allocated to that sub-task. (Images taken without permission from [7])

the performance of their reward based model against Random and Round Robin gaze

schemes, and show that the reward based approach obtains in average more reward.

There are several important differences with respect to our models of gaze control:

1. We deal not only with the gaze allocation problem but also with the problem of

where to look (see Section 1.3). In Sprague’s model the visual routines are hand-

coded so that the closest obstacle or litter is the one being attended; in the case of

the sidewalk the agent always attends the leftmost part. Thus, Sprague’s model

does not deal directly with the problem of where to look.

2. By dealing with the problem of where to look, we must consider a separate ocu-

lomotor system in order to direct gaze to specific fixation locations. Sprague’s
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agent does not have the ability to move its eyes independently from its body (as

the iCub does (Section 1.4)), depending on the steering direction the agent will

change its view point.

3. We model multiple manipulation motor systems, as opposed to one, as in Sprague’s

system. However, our manipulation motor systems execute a single sub-task each

at any one time, whilst Sprague’s only motor system is able to execute multiple

sub-tasks concurrently.

4. We model manipulation actions with variable duration, as opposed to actions with

a single time step.

5. A key difference is that our gaze control models reason about the remaining un-

certainty that would result after a fixation location is selected, as opposed to

Sprague’s model that assumes that all uncertainty disappears after a fixation is

made.

6. We consider manipulation tasks, as opposed to a navigation task.

7. We present the formulation of three models of gaze control based on reward and

uncertainty, whilst Sprague presents only one gaze control model.

8. We incorporate an active visual search process into the gaze control mechanism in

order to find new objects in the scene. As mentioned above, Sprague’s agent does

not have the ability to move its eyes independently from its body, so the agent’s

physical movement determines the current view point.

The similarities between our gaze control models and Sprague and Ballard’s model

are:

1. The separation between gaze control and physical (manipulation) action selection,

which allows us to learn under the assumption of complete observability. This

means that we also consider a learning phase, where all information is assumed to

be known to the agent, and a subsequent execution phase, where the information

is maintained by extracting visual information.
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2. The comparison of our models with Random and Round Robin gaze strategies.

3. We follow the general idea of allocating gaze to the sub-task that loses more re-

ward for our gaze model based on rewards, uncertainty and gain (Rew+Unc+Gain

strategy) (Sections 1.5 and 4.5.3).

3.3 Other Related Gaze Control Topics

The previous section presented a number of gaze control models with the aim of selecting

fixation locations. Still, gaze control has been also studied and implemented in other

fields. This section presents a summary of three of these other fields. First, visual

servoing is discussed in order to point out the differences and similarities with the

aims pursued by this thesis. Second, we explore gaze control in the field of human-

computer and human-robot interaction. Finally, we provide some information regarding

oculomotor control since it is essential to the overall gaze control problem.

3.3.1 Visual Servoing

In robotics, visual servoing has been a very important topic that deals with the control

of the robot using visual feedback in a closed-loop manner [202, 203]. Therefore, it is

important to delineate the similarities and differences with the kind of control we deal

with in this thesis.

Visual servoing has been typically applied to manipulation tasks, although more

recently it has also been applied for walking in humanoid robots [204]. The idea is that

the environment is being tracked and image features are extracted in order to guide the

manipulator to a specific position. The typical configuration of a visual servoing system

involves a manipulator and one or more cameras. The camera(s) could be placed: i)

on the manipulator itself (known as eye-in-hand), ii) placed in a fixed location in such

way that the field of view covers the robot’s working space, or iii) a combination of the

previous two [203]. In this respect, active gaze control as it has been defined so far,

is different to visual servoing as the former deals with the selection of fixation points,
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whilst the latter is typically fixed or unable to select different viewpoints dynamically,

as it is possible to see enough, or all of the workspace to solve the problem.

On the other hand, this thesis is also concerned with the guidance of manipulation

actions by extracting visual information and transforming it into 3D pose information

(see Section 4.4.1). In this respect, although our gaze control model is different, our

visual analysis and state update mechanism are similar to that employed by position-

based visual servo systems [202].

3.3.2 Human-Computer and Human-Robot Interaction

Sociological studies have demonstrated the importance that gaze has during social in-

teractions [205]. Eye contact and where we look has proven to be crucial for a successful

interaction between two or more persons. This evidence has been recently employed

in the field of human-robot interaction (HRI), with the aim that humans may engage

more easily with robotic agents. To do so, robots keep track of the gaze direction of the

human partner and then their gaze is subsequently directed towards the same location.

This is important, for example, when the human acts as a teacher, or just in a casual

conversation [206–208]. During the opposite case, when the robot leads or initiates the

conversation, its gaze should be used to guide the human towards points of interest [209].

This last situation has also been explored for virtual agents [210]. Finally, the way in

which humans visually engage with user interfaces has also been studied in order to pre-

dict human behaviour during human-computer interaction (HCI), which helps in better

user interface design [211].

3.3.3 Oculomotor Control

In Section 1.2 it was explained how gaze control could be decomposed into three different

processes: i) fixation selection, ii) oculomotor control, and iii) visual analysis. This thesis

is solely about the fixation selection process. This sub-section presents some information

about the oculomotor control process, since both problems are interrelated.

From a human perspective, oculomotor control is responsible for the movement and
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stabilisation of the eyes. These movements are those described in Section 3.1.1 above:

saccades, smooth pursuit, vergence, vestibulo-ocular reflex (VOR), and optokinetic re-

flex (OKR) [10, 37]. A robotic camera system, which can be part of a humanoid robot

for example, should be able to perform practically the same movements as the human

eye [38]. The camera(s) should move to specific locations in order to acquire images.

These movements could be slow or fast, although fast movements should be desirable

so that a new image (i.e. new information) can be captured quickly. If the movements

are fast then stabilisation of the camera becomes a critical issue. Recent work has

focused on biomimetic oculomotor control for the development of robotic oculomotor

systems [38,212–214]. These oculmotor systems have dealt with the integration and com-

bination of different movements found in the human eyes. Normally this also requires an

embodied agent, because the stabilisation reflexes must take into account body move-

ments [38,212,213]. Other works consider the robotic camera system alone [214–216].

Oculmotor control is essential for an active vision system, and gaze control depends

on good oculomotor control mechanisms. This is why it is important to provide a quick

overview of such system. This thesis, however, relies on an existing robotic oculmotor

control mechanism developed specially for the iCub humanoid robot [39].

3.4 Summary

This chapter provided background information about the problem of gaze control pre-

sented in three main parts. The first part reviewed research in eye movement literature.

As has been stated before, even though this thesis has as primary goal an engineering

approach to the problem of gaze control, our work has been motivated by biological

findings from the fields of psychology and neuroscience. The second part of this chapter

reviewed specific mathematical models of gaze control. Here special focus was placed

to the work of Ballard, as our models build in part on his research. Finally, the third

part reviews other research areas where gaze control is also studied but because of their

aims may not apply directly to our work.
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Chapter 4

Modelling Task-Driven Gaze

Control

This chapter describes in detail the formulation of the three gaze control models in-

troduced in Section 1.5. These models of gaze control are driven by the task being

performed by the agent (or in the case of this thesis, by a simulated humanoid robot).

Embodied agents, such as humans and robots, achieve tasks by interacting with the en-

vironment (e.g. using manipulation actions). These actions can change the state of the

robot and that of the environment. As discussed in Chapters 1 and 3, one of the aims

of deploying gaze is to acquire relevant task information and to guide the manipulation

actions. Therefore, the gaze control problem should not be treated in isolation, but

rather as part of the robot’s control architecture (Figure 4.1). This architecture encodes

assumptions which apply across all the models of gaze control that will be formulated.

The operation of this architecture is divided, temporally, into the learning phase and

the subsequent execution phase. To facilitate explanation of the system, this chapter

starts by modelling the pick & place task (introduced in Section 1.6). Then the common

architecture is described, and finally the different gaze control models are formulated.
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Figure 4.1: Schematic view of the robot’s control architecture. The system is divided tem-
porally into the learning phase and the execution phase. See text for details on each control
module.

4.1 Modelling the Pick & Place Task

This section describes how tasks are modelled in our system using as an example the

pick & place task. As described in Section 1.6, the pick & place task consists of picking

up objects from the table top and then placing them inside one of two containers (Figure

4.2 shows the robot performing the task)1. This task considers two manipulation motor

systems: the right and left arm. We assume that the task is divided into two sub-tasks,

each assigned to one arm (since for this task the arms do not interact with each other).

Each sub-task (or manipulation motor system) is modelled as a semi-Markov decision

process (SMDP)2 (Section 2.4) using a discrete state representation.

Therefore, each manipulation motor system ms ∈MS (where MS is the set of motor

systems), is modelled as a tuple 〈Sms,Oms, Tms,R〉, where Sms is the set of discrete

states, Oms is the set of manipulation actions, Tms : Sms × Oms × Sms × R � [0, 1]

is the transition probability density, where R is the set of real numbers representing

the duration time of each manipulation action, and R : Sms × Oms � R is the reward

1In this task the arms of the robot do not interact with each other (e.g. to transfer objects from
one hand to the other). A new object appears at a random position on the table: i) every 60 seconds,
ii) every time an object is put inside a container, and iii) whenever an object falls from the table. The
goal is to put as many objects as possible inside the containers.

2As explained in Section 2.4, SMDPs are an extension of the Markov decision processes (MDPs) [59]
that allow actions to have variable duration.
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Figure 4.2: The iCub simulator performing the pick & place task where objects should be
picked up and subsequently placed inside the containers. The image on the right shows a
snapshot captured by the right eye of the robot.

function, that is assumed to be the same for all manipulation motor systems.

For the pick & place task the set of manipulation motor systems isMS = {right arm,

left arm}. Table 4.1 depicts the factorised discrete state space for both arms (Sright arm

and Sleft arm), where each arm has three state variables. Notice that these state variables

do not consider the location of objects/containers. This information is in fact continu-

ous, and is handled by the visual memory explained below in Section 4.2. Thus, there

is a mapping (explained in Section 4.4.2) between the continuous location information,

used by the manipulation actions, and the discrete state space.

Table 4.1: Factorised state space for the right and left arms.

State Variable State Value

armPosition {onObject, onTable, onContainer, outsideTable}
handStatus {grasping, empty}
tableStatus {objectsOnTable, empty}

Because we consider that each manipulation action can take variable duration, the

set of manipulation actions is modelled following the concept of options [67] (see Section

2.4.1), where an option can be used to model temporally extended actions. Each option

should be learnt or planned, however we do not do this as we use the commands available

in the iCub libraries for the low-level control of each manipulation action3. Nevertheless,

3These commands are implemented using PID-like Cartesian motor controllers [55]. The arm con-
troller accepts as input 3D coordinates that specify the desired final position of the centre of the hand.
Furthermore, the iCub arm controller has been designed to produce smooth human-like trajectories.
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we still use the concept of options to indicate that our manipulation actions have variable

duration and the idea that these actions can be learnt or planned.

For the pick & place task the set of manipulation actions (i.e. options4) for both

arms (Oright arm and Oleft arm) is defined in Table 4.2, where each set consists of six

options. The completion time of each option is also shown in the same table, indicated

as Gaussian distributions with their mean and standard deviation (µo, σo) specified in

seconds. The completion time distributions were obtained by executing all manipulation

actions in sequence for 60 minutes. The completion time for each manipulation action

varies because of noise in the motor controllers and because of positional changes (i.e.

actions do not start exactly from the same position at all times). The time it takes for

an option to complete at the current time step is denoted by ko.

Table 4.2: Manipulation actions for the right and left arms.

Options Avg. completion time (secs) Stand. deviation (secs)

moveToObject 2.65 0.56
moveToTable 2.95 0.45

moveToContainer 3.25 0.33
graspObject 2.87 1.08

releaseObject 1.0 0.2
noAction 0.01 -

The manipulation of objects is not a straightforward problem, particularly grasping.

In this work we have simplified the problem of grasping by using a magnet-like command

available in the iCub simulator. When activated, this command creates a virtual link

between the centre of the hand and the centre of the specified object. In that way the

object will move as if it were part of the robot’s arm until it is released. Even though

grasping is simplified, it is still possible to control the sensitivity of reaching and grasping

by checking the offset between the centre of the hand and the centre of the manipulated

item. So grasping and reaching options are said to “fail” (except for releaseObject) if

that offset is greater than some threshold (e.g. 1.0 cm). How manipulation actions

are determined to “fail” or “succeed” is explained in Section 4.4.2. The iCub motor

controllers have a limited positional accuracy, therefore the minimum effective value of

4Throughout this chapter we will use the term option and manipulation action interchangeably.
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that threshold is set to 0.5 cm.

4.2 Visual Memory

The central component in the system is the visual memory (VM) (see Figure 4.1),

defined as the set of ordered pairs VM = 〈(e1, pos(e1)), (e2, pos(e2)), . . . , (en, pos(en))〉,

where ei is the ith landmarks’s id of interest, where a landmark can be an object or a

container in the pick & place task. On the other hand, pos(ei) is a probability density

function for the location of landmark ei. These pairs capture the continuous state infor-

mation needed for low-level control of each option, i.e. for the execution of manipulation

actions. Subsequently, this information is used to set the discrete values of the state

variables defined above (i.e. Sright arm and Sleft arm). pos(ei) can also be thought of

as the representation of the location uncertainty of the landmark ei. The location of a

landmark refers to its centre projected in the X-Y plane in robot coordinates (objects

are 4 cm in diameter and length, whereas containers are 10x10x3 cm in width, length

and height).

In this work, each landmark’s location (pos(ei)) is approximated by a particle fil-

ter [64]5 (see Section 2.7.2). A particle filter contains a set of particles Gi = g1, g2, ..., gJ ,

where J denotes the number of particles, and each particle gj represents a possible

location (x,y) for landmark ei. Figure 4.3 shows a graphical representation of the vi-

sual memory and its contents. In this example, the robot has information about four

landmarks (two objects and both containers). The figure shows each landmark ei along

with its corresponding particle set pos(ei). The spread in the particles represents the

location uncertainty of that landmark. For instance, the location uncertainty of the first

container (pos(e1)) is higher than the rest of the landmarks.

There are four basic operations that are employed to maintain the visual memory:

� Addition of landmarks: During the execution of the task, when a new land-

5In this thesis we make use of particle filters, rather than the Kalman filter for example, mainly
because the uncertainty about the location of landmarks is not restricted to be Gaussian. Also, the
probability for the location of a landmark may be multimodal. Even though particle filters approximate
the posterior, they allow for more flexibility.
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Figure 4.3: Representation of an instance of the visual memory which contains four land-
marks (two objects and both containers). Each landmark has associated a particle set that
represents the location uncertainty of that landmark.

mark is inside the robot’s view point (i.e. when the robot “sees” or detects a new

landmark on the table), that landmark is added to the visual memory and its cor-

responding particle filter is created. The particle filter is initialised by distributing

the particles uniformly across the table.

� Landmark updating: Every time that a landmark that is already stored in visual

memory appears again in the robot’s view point (i.e. the landmark is “seen” or

detected again), its particle set is updated using the new detected location.

� Information retrieval: The robot decides what manipulation action(s) to per-

form and how to control gaze based on the information stored in the visual memory.

The robot can retrieve information about a particular landmark using its id.

� Removal of landmarks: When an object is put inside a container or when it

falls from the table its pair (ei, pos(ei)) is removed from the visual memory.

Section 4.4.1 will explain in more detail how the particle filters are maintained, in

order to add and update landmarks in visual memory.
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4.3 Learning Phase

As described above, a SMDP models a particular sub-task, and learning to behave

in each sub-task is achieved via reinforcement learning using SMDP Q-learning [76]

(Section 2.5). Each manipulation motor system ms learns a policy πms : Sms � Oms,

that defines a mapping from states to options (i.e. manipulation actions), and contains

the estimated expected return for each state-action pair (known as Q-value). These

values quantify each manipulation action (introduced in Section 1.5).

In this phase the robot learns how to perform the task under an assumption of

complete observability, i.e. the visual memory contains the complete list of landmarks

(ei) and their true location6. Therefore, the density function pos(ei) becomes a Dirac

delta function with value 1 at the true location (i.e. an infinitely thin spike at the centre

of the landmark).

For learning, a minimal time to goal strategy is followed. For any action taken the

robot receives -1 units of reward, and 0 units of reward when all objects are put in the

containers. During learning the number of objects appearing on the table is limited to

10. Objects appear in random locations across the table, however during this phase this

is not a problem since their locations are given to the robot. Note that the same policy

can be used for both arms in the pick & place task. The learning rule is formulated as:

Q(s, o) � Q(s, o) + α

[
r + γko max

o′∈Oms
Q(s′, o′)−Q(s, o)

]
(4.1)

Where 0 < α ≤ 1 is the learning rate, r is the immediate reward received for

executing option o in the discrete state s (where s ∈ Sms), 0 ≤ γ < 1 is a discount

factor to indicate the trade-off between short-term and long-term rewards, Q(s′, o′) is

the state-action value for the next state s′ and next option o′, and ko is the duration

of option o. For the pick & place task, α = 0.2, γ = 0.9, and ko takes the time values

associated to each option defined in Table 4.2.

6The assumption of complete observability allow us to separate the processes of manipulation action
selection and fixation selection. Otherwise, we would have to learn how to control gaze whilst learning
to perform the task. In this case the state space would have to be continuous and it could grow too
big for learning.
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4.3.1 Learning Simulation Programme

One of the disadvantages of the iCub simulator is that it only works in real time. Thus,

it would take a long time to learn any policy even for simple tasks. Another issue is that

during learning the robot is expected to perform exploratory manipulation actions which

might crash the simulator, although this could be solved to some extent by implementing

safety mechanisms. Due to these issues, we decided to implement a separate learning

programme that is able to accelerate the simulation of manipulation actions.

This programme implements the SMDP Q-learning rule (Eq. 4.1) and simulates the

changes in the state and the manipulation actions (i.e. options). As explained in Section

4.1 above, the time distributions for each manipulation action were determined using

the iCub simulator by executing the actions in sequence for 60 minutes. These time

distributions are specified by the mean and standard deviation (µo, σo), shown in Table

4.2). Therefore, in order to determine the time it takes for a simulated manipulation

action to finish, we sampled its corresponding time distribution. Thus ko takes the

sampled time value. After a manipulation action was executed we simulated the change

in the state of the world by changing the value(s) in the state variables defined in Table

4.1).

The output of the learning programme is the Q-table that contains the values for

each state-action pair. Besides the advantage of accelerating the learning process, this

learning simulator also eases the evaluation and analysis of the learnt policies, as they

can be tested before they are employed in the iCub simulator.

4.4 Execution Phase

Once the policies for each sub-task have been learnt and stored in the robot’s memory,

they can be used to solve the task, provided there is state certainty. However, the robot

is now in charge of maintaining the visual memory, i.e. the robot has to look at the

landmarks in order to estimate their location. Hence, the robot has to decide what to

do under uncertain information. To estimate the location of a particular landmark the
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robot needs to fixate that landmark. By fixation we mean that the robot moves its

“eyes” (i.e. cameras) so that the landmark appears in the centre of its field of view.

For example, Figure 4.2 shows the robot fixating the grey sphere. As introduced in

Section 1.4, we make use of what we call the perceptual motor system, which includes

the robot’s head, neck and eyes. As in the case of the manipulation actions, we employ

a motor controller implemented in the iCub libraries that is able to move the eyes, neck

and head of the robot to achieve the desired fixation location [39]. The desired fixation

point is specified in 3D coordinates.

First, this section starts by explaining how the visual memory is maintained using a

kind of Bayes’ filter by making use of an observation model learnt off-line. Maintaining

the visual memory is part of the visual analysis module shown in Figure 4.1. Second,

we describe how the robot performs the manipulation action selection for each motor

system under uncertainty. Finally, we explain how the fixation selection process is done

for each gaze control model in turn.

4.4.1 Visual Analysis

At the beginning of the execution phase the visual memory is empty. When the robot

performs a fixation, visual input is captured and the landmarks inside the field of view

(FoV) are detected and added to the visual memory, whilst their 3D locations are

estimated. The estimation of 3D locations can also be referred to as triangulation. Using

stereo vision in the simulator provided precise 3D locations, however this is hardly the

case in a real setting. Since our models assume positional uncertainty of landmarks,

we are interested in having a noisy triangulation process. Instead of using artificial

noise, we found that triangulation is in fact noisy in the simulator using a command

that employs monocular vision (right camera). This command uses the distance from

the eye to the landmark’s true location, but because the true location is not known

this distance needs to be estimated using the current knowledge about the landmark’s

location. Another source of noise comes from the positional error in the robot’s head,

neck and eyes in the simulated odometry.
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Figure 4.4: Schematic representation of the visual analysis employed to estimate the land-
marks’ 3D coordinates.

Figure 4.4 illustrates the visual analysis process. For the detection of landmarks we

ask the simulator the 2D coordinates of those landmarks that are inside the FoV. By

using the simulator we effectively have a noiseless object detection mechanism. This

allow us to focus on just one source of uncertainty, namely the estimated 3D locations7.

In order to represent the uncertainty that results from the triangulation process an

observation model was learnt off-line.

4.4.1.1 Observation Model

The aim of the observation model is to characterise the uncertainty that results from

the triangulation process. Several versions of the observation model were developed in

order to determine the parameters that affect the location estimate. In one version of

the observation model, an object was systematically moved across the table, whilst the

robot’s gaze remained fixed on the centre of the table. This observation model was not

useful because the location of the fixation point also affects the location estimate of a

landmark. In a second version of the observation model, both an object and the fixation

point were systematically moved across the table. This observation model is good for

our pick & place task, however if the position of the table changes the observation model

could no longer be used. In order to generalise the observation model, three parameters

need to be considered: i) the position of the camera, ii) the fixation point, and iii) the

object’s location.

The final version of the observation model was created by systematically moving

7In future work, it is possible to add more sources of uncertainty and analyse the effects that each
source has in the system (Chapter 9).
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Figure 4.5: A. The coordinates and values used to specify fixation points (θg, φg, radiusg). B.
The coordinates and values used to specify object locations (θo, φo, radiuso). These coordinates
are used to learn the observation model (see text for details).

the robot’s fixation point and an object in a discretised space. Each fixation point

and object location is represented using spherical coordinates: (θg, φg, radiusg) and

(θo, φo, radiuso) for the gaze and object respectively. The values used to create the gaze

pattern are shown in Figure 4.5A. During each fixation point the object was moved in

such way that it always appeared inside the camera’s FoV. The values used to move

the object are shown in Figure 4.5B. Whilst varying these parameters we recorded the

offset between the estimated 3D location (using the simulator’s triangulation command

mentioned above) and the true object’s location. Instead of using the distance to the

table’s centre for triangulation, the observation model is generalised by triangulating

using the distance at which the fixation point is located (radiusg). Thus, each data

point is represented by the rest of the coordinates except for radiusg. The resulting

data points were binned according to a quantisation of (θg, φg, θo, φo, radiuso) and then

fitted by bivariate Gaussian densities. This resulted in 405 densities that cover a big

part of the robot’s working space.

As an example, Figure 4.6 shows nine of these densities for the case when the robot

is looking at the centre of the table (θg = 140◦, φg = 0◦, θo = 70◦). Notice how the noise

accrues as the object horizontal eccentricity in the FoV increases, as φo and radiuso
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Figure 4.6: Examples of nine distributions generated by the observation model representing
the uncertainty about the triangulation of an object (represented by a circle in the graphs).
The robot is looking at the centre of the table (θg = 140°). The uncertainty in the object’s
location increases as the object moves away from the robot (columns), and as it moves to the
right or left of the fixation point (rows).

varies (indicated by each column in the figure). The most important thing to notice

is that the estimated location is more accurate when the robot “looks directly” at the

object (central column, φo = 0◦). In other words, when the robot fixates the object,

and the object appears in the centre of its FoV (as explained at the beginning of this

section).

4.4.1.2 Maintaining the Visual Memory

The observation model can now be used to estimate the location of landmarks once they

are detected. These estimates are used in turn to maintain the visual memory (Section

4.2). The visual memory is updated depending on how the landmarks are classified

whilst a fixation occurs:

� New landmark: When the robot detects a new landmark (i.e. it appears in the

robot’s view point), its pair (ei, pos(ei)) is added into the visual memory, and the

particle filter Gi associated with pos(ei) is initialised by uniformly distributing the

82



Figure 4.7: Maintaining the visual memory when: A. A new landmark is detected. B. A
known landmark is detected again. C. A known landmark is not detected for some time. See
text for details.

particles across the table (as illustrated in Figure 4.7A).

� Known landmark: Every time a landmark ei is detected again, its location is

estimated and with this new evidence its posterior distribution pos(ei) is updated.

In our case, the corresponding particle set Gi gets updated (Figure 4.7B). How the

particle filter gets updated is explained below.

� Not detected landmark: If a landmark does not appear in the robot’s view

point for 1.5 seconds, small Gaussian noise with zero mean and 1.0 cm of standard

deviation is added to its current estimate (Figure 4.7C). This noise models tempo-

ral decline in visual working memory. This is particularly useful for the case when

objects move across the table, which can happen when the robot accidentally hits

and object with its hand or a grasped object.

By accessing the visual memory, the robot employs these location estimates in order

to decide what manipulation action(s) to perform and how to control its gaze.
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4.4.1.3 Particle Filter Update

When the robot detects a known landmark ei (i.e. the landmark appears insider the

robot’s view point), then its posterior distribution pos(ei) is updated with the new

evidence about its just estimated location. This new evidence is denoted by ω, which in

belief estimation techniques (as those presented in Section 2.7) this evidence is referred to

as observation. Throughout this chapter we will make use of the term observation to refer

specifically to an estimated location (x,y) of a particular landmark, thus ω = (ωx, ωy).

The term observation must not be confused with a fixation. As explained above, a

fixation centres a landmark in the robot’s FoV, the image obtained can actually contain

more than one landmark, and an observation ω will result for each landmark.

The posterior distribution is updated following the resampling process of particle

filters [64], which makes the particles converge as more observations are made (see

Section 2.7.2). First the weight of each particle is calculated: weight(gj) = p(ω|gj),

that represents the probability of the observation ω given the particle gj, where j is

used to index the particles. Recall that each particle gj represents a possible (x,y)

location for a particular landmark. This location is used, along with the current camera

pose and the current fixation point, to index the observation model in order to obtain

one of the bivariate Gaussian densities. The resulting density is centred at the location

given by the particle gj, then the probability density is calculated for the observation

ω using the probability density function (pdf) of the selected Gaussian density. This

probability density is the weight assigned to the particle gj:

weight(gj) =
1

σom
√

2π
e
− (ω−µom)2

2σ2om (4.2)

Where µom and σom refer to the mean and standard deviation respectively, of the

Gaussian density that has been indexed from the observation model om, and ω is the

observation.

Figure 4.8 illustrates how the weights are obtained for different particles (white

circles). Let us assume that we want to calculate the weight of the particle in the
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Figure 4.8: Representation of how the weights of different particles (white circles) are cal-
culated according to the location of the fixation point (marked by X), the observation (red
circle), and the corresponding Gaussian distribution obtained from the observation model.
The weight of each particle (vertical line) is calculated using the probability density function
in terms of the particle (see text for details).

upper right corner. First, based on the fixation point (marked with an X), the current

camera pose (not shown) and the particle, the observation model is indexed to obtain

the corresponding Gaussian density (shown here as a 2D ellipsoidal projection) centred

at the particle. Then, the probability density is calculated in terms of the observation

(red circle), and this value is assigned as weight to the particle (represented as a vertical

line). Recall that the observation is where the robot has detected the landmark to be

in the current fixation. Notice that densities closer to the fixation point are smaller

because the particles are closer to the centre of the robot’s field of view (FoV). Also,

notice that those particles closer to the observation have a larger weight. If, for example,

the observation was closer to the fixation point, it would mean that the landmark is

centred in the FoV and most of the particles would have a large weight. On the other

hand, if the observation is far from the fixation point then the particles would have a

small weight.

Once all the weights for all particles are calculated, a new particle set is formed by

drawing particles with replacement from the old set with probability proportional to

their weight (i.e. particles with large weight are more likely to be chosen for the new

set). However, it is possible that some particles are selected more than once. To avoid

this some noise is added to each particle of the new set according to the corresponding

bivariate Gaussian density indexed when its weight was calculated8.

8Further details about this added noise, along with other alternatives, will be discussed in Section
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Figure 4.9: Schematic view of the manipulation action (option) selection mechanism.

As mentioned above, the manipulation tasks used in this thesis do not involve dy-

namic objects; they are expected to remain static. Nevertheless, sometimes the robot

hits objects accidentally which causes the objects to move and change their location.

To account for these cases, 10% of the particles are replaced with normally distributed

random values [64].

4.4.2 Manipulation Action Selection

The robot selects options (i.e. manipulation actions) for each manipulation motor sys-

tem ms by considering the location information of those landmarks within its reach.

The list of manipulable objects is determined during run-time. As the manipulation

motor systems work independently in the pick & place task, options are selected in

parallel using the Q-MDP algorithm [65] (the selection process is illustrated in Figure

4.9). The idea is to select the manipulation action that provides the highest value based

on the current location uncertainty of the available landmarks. This is achieved by the

following equation:

oms = arg max
o∈Oms

1

J

∑
gj∈Gi

value(gj, o) (4.3)

Where gj is a particle from the set Gi of the landmark ei, and J is the number of

5.1, when the gaze control models are characterised.
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Figure 4.10: Representation of the probability of “success” or “failure” for option Grasp (see
text for details).

particles. Then, value(gj, o) is the value of performing the manipulation action o on

landmark ei, assuming gj is the landmark’s location. In this work we define that an

option o can either “succeed” or “fail”. An option is said to “succeed” if the offset

between the centre of the hand and the location given by particle gj is less than or equal

to some threshold (e.g. 1.0 cm). An option is said to “fail” if the offset is greater than

the threshold. If an option “succeeds” then value(gj, o) takes the Q-value of Qms(s, o)

(from the learnt policy πms). If the option “fails” then it takes the Q-value of the second

best option and is punished by adding -1 units of reward. These values are summed

over all particles and then averaged by J .

This procedure maps the continuous information needed for low-level control to the

discrete state space of each manipulation motor system (defined in Table tab:state-

taski), by determining the likelihood of “success” and “failure” of options. Recall that

the iCub arm controllers receive as input the 3D desired hand location, but the state

space is discrete. For instance, Figure 4.10 illustrates the probability of “success” for

option Grasp (the same principle applies for reaching). We define an area where grasp-

ing is said to succeed which is determined by a threshold value (red circle). According

to Eq. 4.3, a particle lying inside this area will get the value of Qms(s, o). On the other

hand, a particle lying outside the threshold area will get the value of the second best

option and will also be punished with -1 units of reward. At the end all these values

are summed and averaged by the number of particles J . Therefore, the more particles

lying inside the threshold, the higher the value for the option being evaluated (option
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Grasp in this example). In other words, we say that the probability of “success”is high

if the number of particles inside the threshold is big (right hand side figure). Notice

that the number of particles lying inside the threshold area is determined by the spread

of the distribution pos(ei) (green ellipsoid), which represents the location uncertainty of

landmark ei. In order to increase the probability of “success” of manipulation actions

the location uncertainty needs to be minimised. This is achieved by fixating the land-

mark that is relevant to the task at a given moment. The fixation selection process is

determined by the gaze control models which we now describe in turn.

4.5 Models of Gaze Control

The selection and the probability of “success” of manipulation actions depend on having

the correct location information of each landmark. But only some information needs to

be known to complete each step of the task, and the robot can choose which information

to gather by fixating a specific landmark (i.e. by deciding where to look). Moreover,

as explained in Section 1.3 we also deal with the problem of gaze allocation, because

gaze control needs to be shared amongst our two manipulation motor systems (i.e. the

robot’s arms). Next, we describe our three one-step look ahead models of gaze control

(introduced in Section 1.5) that aim to select fixation locations, where a fixation location

corresponds to a specific landmark listed in the robot’s visual memory (Section 4.2).

Because our models predict the benefit of looking at some landmark, which includes:

i) the selection of that landmark, ii) the saccade to the selected landmark, and iii) the

analysis of that fixation location; then we will use the term perceptual actions. Thus,

the aim of our models of gaze control is to select a perceptual action pi ∈ P , associated

to landmark ei, that includes fixating that landmark (i.e. move the robot cameras so

that the landmark appears in the centre of the robot’s field of view), and calculating

the value of the manipulation actions given the predicted location information of that

landmark.

As explained in Section 1.5, predicting the benefit of the possible fixation locations
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is based mainly on two parameters: positional uncertainty of landmarks and the value

of performing manipulation actions. Depending on how the robot reasons about these

two quantities at least three gaze control models emerge. First, the gaze control model

based on uncertainty reduction (Uncertainty gaze scheme) is described, followed by the

model of gaze control based on rewards and uncertainty (Rew+Unc gaze scheme), and

finally the gaze control model based on rewards, uncertainty and gain (Rew+Unc+Gain

gaze scheme).

4.5.1 Gaze Control based on Uncertainty

Our first gaze control model aims to maximise the reduction of positional uncertainty

only. It predicts one step into the future the location uncertainty that would remain

if each landmark ei in visual memory, for each manipulation motor system, is fixated.

This means that for each motor system ms the model first selects the perceptual action

that will most reduce positional uncertainty, and this is denoted as pms:

pms = arg max
pi∈P

{
1

H

∑
ωh∈Ωi

dist(Gi)− dist(Gpii , ωh)

}
(4.4)

The robot “imagines” that each perceptual action pi is taken, i.e. each known

landmark ei is “fixated” (the imaginary fixation point for landmark ei is the mean of

the cloud of particles (mean(Gi)), where Gi is the particle set representing the location

uncertainty of that landmark. For each perceptual action pi, imaginary observations

ωh (i.e. imaginary evidence) are sampled using the observation model (Section 4.4.1),

where Ωi is the set of observations produced by pi, and H is the number of observations.

As explained above an observation represents an estimated location (x,y) of a particular

landmark. However in this case these observations are imaginary, since the robot is

assuming to be fixating a landmark. Everytime that the observation model needs to be

indexed we make use of the imaginary fixation point, the estimated camera pose and by

randomly selecting a particle gj from Gi.

We first calculate the current spread in uncertainty using function dist(Gi). The
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Figure 4.11: Measurement of the spread of the current particle set (Gi), and the “imaginary”
particle set (Gpii ) using the Euclidean distance from each particle to the mean of the cloud.

Figure 4.12: Representation of an “imaginary” particle filter update based on the “imagi-
nary” observation ωh.

spread is the average Euclidean distance between each particle gj ∈ Gi and the mean of

the cloud (mean(Gi)). This is illustrated in Figure 4.11 (left hand side).

Then, each observation ωh is used to perform an imaginary particle filter update (see

Section 4.4.1), and the predicted spread in uncertainty is calculated by dist(Gpii , ωh),

assuming pi is taken (Figure 4.11 right hand side). This update is depicted in Figure

4.12. The subtraction indicates the residual positional uncertainty, which is averaged

over all observations for perceptual action pi.

Once each manipulation motor system has selected its candidate perceptual action

pms, gaze is allocated (or assigned) to the manipulation motor system that maximises

the reduction in uncertainty, denoted as msf :

msf = arg max
ms∈MS

{pms} (4.5)
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Figure 4.13: Schematic view of the gaze control model based on uncertainty reduction.

Finally, the selected manipulation motor system msf executes its previously selected

perceptual action pms.

The fixation selection process for this model of gaze control is shown in Figure 4.13.

This model favours perceptual actions (i.e. fixations) that obtain new information.

Nevertheless, this new information does not imply that is relevant to the task. For

instance, if the uncertainty about one of the containers is higher than the rest of the

landmarks, the robot will choose to look at this container, even if the demands of the

task have nothing to do with that container (see the example in Section 1.5).

4.5.2 Gaze Control based on Rewards and Uncertainty

This model integrates tasks rewards (i.e. the values of performing manipulation actions)

into the decision process. The model predicts the value of performing manipulation

actions (or options) that would be obtained if each landmark, for each manipulation

motor system, is fixated the next time step. Thus, for each manipulation motor system

ms, we calculate the predicted value of each option assuming perceptual action pi is

taken, and the maximum predicted value is selected (denoted as V pi
ms):
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V pi
ms =

1

H

∑
ωh∈Ωi

max
o∈Oms

 1

J

∑
gj,ωh∈Gωhi

value(gj,ωh , o)

 (4.6)

As the previous model, the robot first “imagines” that perceptual action pi is actually

taken by “fixating” on the mean of the cloud of particles (mean(Gi)) of landmark ei. For

a perceptual action pi, imaginary observations ωh (i.e. imaginary landmark locations)

are sampled using the observation model (as in the previous model), where Ωi is the set

of observations produced by perceptual action pi, and H is the number of observations.

Basically, for each observation ωh we verify which manipulation action o produces the

maximum value the next time step. This is similar to Eq. 4.3 but here we need to update

the particle filter with the imaginary observation ωh. Thus, gj,ωh is a particle from the

set Gωhi , and J is the number of particles. value(gj,ωh , o) is the value of performing option

o on landmark ei, assuming gj,ωh is the predicted landmark’s location. As explained in

Section 4.4.2, if option o “succeeds” (i.e. if particle gj,ωh lies within the threshold area)

then it takes the Q-value of Qms(s, o). If the option “fails”, it takes the Q-value of the

second best action minus 1 units of reward. These values are summed over all particles

and then averaged by J .

Then, for each manipulation motor system ms, we calculate the values V pi
ms of each

perceptual action associated to that motor system, and select the one with the maximum

value (denoted as Mpi
ms):

Mpi
ms = max

pi∈P
{V pi

ms} (4.7)

Once each motor system selects its value Mpi
ms, gaze is allocated to the manipulation

motor system with the highest value. Then this motor system executes its associated

perceptual action, denoted as pms:

pms = arg max
pi∈P

{
max
ms∈MS

{Mpi
ms}
}

(4.8)

Figure 4.14 shows a schematic view of the fixation selection process for this model.

The main disadvantage of this model is its tendency to fixate landmarks with low lo-

92



Figure 4.14: Schematic view of the gaze control model based on rewards and uncertainty.

cation uncertainty and high predicted value, which will not typically provide much new

task information (as exemplified in Section 1.5).

4.5.3 Gaze Control based on Rewards, Uncertainty and Gain

Our third gaze control model is similar to the previous scheme, the main difference

resides in how gaze is allocated. First, for each manipulation motor system ms, we

calculate the values V pi
ms of each perceptual action pi, using Eq. 4.6. Second, Eq. 4.7

selects the value Mpi
ms for each motor system ms. However, instead of using Mpi

ms for gaze

allocation directly as the previous model, here we calculate the gain that each motor

system ms is expected to obtain if it is given access to perception:

gainpims = Mpi
ms − max

o∈Oms
{V o

ms} (4.9)

Mpi
ms is the maximum value of performing a particular option, for manipulation motor

system ms, if perceptual action pi is taken (i.e. the predicted value one step ahead in

time). V o
ms is the value of executing option o in the current time step. The second term

determines the current maximum value of performing some manipulation action, which

essentially is calculated during the manipulation action selection using Eq. 4.3. Thus,

this value can be cached. The subtraction determines how much the robot gains if gaze

is allocated to the motor system ms. Therefore, gaze is allocated to the motor system
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Figure 4.15: Schematic view of the gaze control model based on rewards, uncertainty and
gain.

with the highest gain. Then this motor system executes its associated perceptual action,

denoted as pms:

pms = arg max
pi∈P

{
max
ms∈MS

{gainpims}
}

(4.10)

Figure 4.15 illustrates the fixation selection process of this strategy. This model tries

to overcome the weakness of the preceding model by fixating landmarks that provide

high predicted value and relevant task information.

4.6 Summary

This chapter described in detail the complete robot control architecture, its different

control modules and their interaction. The control modules are: i) the visual memory,

used to store the landmarks’ ids and their corresponding location information; ii) the

visual analysis module, which captures images from the right camera and calculates the

3D location of those landmarks inside the robot’s field of view; iii) the manipulation ac-

tion selection module, which is in charge of selecting options (i.e. manipulation actions)

for each manipulation motor system; and iv) the Fixation selection or perceptual action
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selection module, which decides where to look and how to allocate gaze.

The system has two temporal phases: the learning and the execution phase. During

learning, the robot is trained to perform the task assuming all information about the

task is available (i.e. the location of all landmarks). During execution, the robot should

act under incomplete and uncertain information. It is here where the robot should

control its gaze efficiently in order to accomplish the task (i.e. fixate landmarks in order

to estimate their location).

The topic of this thesis lies within the fixation selection module. Three one-step

look ahead models of gaze control were formulated and explained. These models reason

about positional uncertainty of landmarks and the value of performing manipulation

actions (i.e. rewards) in different ways. Therefore, the next chapter presents a series of

experiments that characterise and compare these gaze control models in terms of task

performance, in order to determine which one is more efficient.
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Chapter 5

Analysis of the Gaze Control

Models

The previous chapter described in detail our three candidate models of gaze control

that can be used by an agent/robot in order to gather relevant task information for the

selection of manipulation actions. This chapter presents a series of experiments with

the aim of analysing the behaviour, the advantages and weaknesses, of these models of

gaze control. To do so, the gaze control strategies are characterised using the pick &

place task (introduced in Section 1.6)1, in terms of task performance (by counting the

number of objects that are put inside the containers), by varying three environmental

variables [58]:

Reach/grasp sensitivity: Refers to the degree of positional accuracy in the manipu-

lation actions. This sensitivity or accuracy is specified by a threshold value that

directly affects the probability of “success” or “failure” of the manipulation actions

as explained in Section 4.4.22.

1Recall that the pick & place task consists of picking up objects from the table top and then placing
them inside one of two containers. A new object appears at a random position on the table: i) every
60 seconds, ii) every time an object is put inside a container, and iii) whenever an object falls from the
table. The goal is to put as many objects as possible inside the containers.

2Recall that in this thesis, manipulation actions are said to “succeed” if the number of particles
(representing the position of a landmark) lying inside the threshold area is big. On the other hand,
manipulation actions are said to “fail” if the number of particles lying inside the threshold area is small.
Please refer to Section 4.4.2 for a more detailed explanation.
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Observation noise: Refers to the noise in the position estimates as specified by the

observation model (Section 4.4.1.1). The observation model represents this noise

as a function of the camera pose, the fixation point, and the landmark’s location.

Field of View (FoV): The camera’s field of view determines the amount of the scene

captured in a single image that the robot acquires during a fixation.

Even though the aim is to compare our three gaze control models, two more gaze

schemes are presented that serve as common baseline and provide a more general analysis

[43,57]:

Random gaze control: This scheme randomly chooses to fixate one of the landmarks

currently listed in the robot’s visual memory.

Round Robin gaze control: This strategy loops through the list of landmarks cur-

rently stored in the visual memory fixating each landmark one by one.

The following sections present the results and analysis for each of the environmental

variables just described. For purposes of brevity, we will refer to the gaze control model

based on uncertainty reduction (Section 4.5.1) as the Uncertainty gaze strategy; the

gaze control model based on rewards and uncertainty (Section 4.5.2) will be referred to

as the Rew+Unc gaze strategy; finally, the gaze control model based on rewards, uncer-

tainty and gain (Section 4.5.3) will be referred to as the Rew+Unc+Gain gaze strategy.

Before we present the experiments of each environmental variable, this chapter starts by

analysing different ways in which noise is added to the particle filters (associated to each

landmark location), after every update as mentioned in Section 4.4.1.3. In particular,

we analyse the differences between uniform and non-uniform spatial acuity in the field

of view.

5.1 Spatial Acuity

As explained in the previous chapter (Section 4.2), particle filters are used to keep track

of the location of landmarks, where each particle represents a possible location (x,y)
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on the table for the given landmark. Every time the robot performs a fixation, those

landmarks appearing inside the robot’s view point are detected and triangulated, in

order to estimate their 3D location3. This means that the particle filter associated with

each visible landmark is updated, and in Section 4.4.1.3 we described how this update

occurs. Recall that the particles are updated by means of a resampling mechanism,

where the weight of each particle is calculated based on: i) the current fixation location,

ii) the new observation (i.e. the new evidence about where the landmark is), and iii) the

corresponding bivariate Gaussian density given by the observation model. We explained

that, after the update, in order to avoid having individual particles pointing to exactly

the same (x,y) location, some noise is added to each particle using the same bivariate

Gaussian density previously selected. Typically, some noise must be added every step

into the particle filter to avoid it becoming trapped in local minima [64]. In our case,

the kind of noise to be added is influenced by our observation model and the size of the

field of view as a proportion of the workspace.

The observation model, defined in Section 4.4.1.1, characterises the location uncer-

tainty that results from the triangulation process in the iCub simulation in a rather

large workspace. However, the workspace in the pick & place task is relatively small

and just a few Gaussian densities from the observation model are actually used.

Also, an important question is how to model the observational effect of non-uniform

spatial acuity within the field of view. The robot simulation generates images with an

essentially uniform spatial acuity across the field of view, which means that the robot

does not need to centre its cameras to a landmark. Therefore, our models of gaze

control will cease to be important since obtaining a full view of the workspace is enough

to get all the task relevant information reliably. However, we know that in the human

visual system spatial acuity falls off sharply as we move outwards from the fovea to the

periphery of the retina. As explained in Section 3.1.1, it is due to this property that

the human eye needs to move the fovea to specific parts of the scene in order to gather

reliable information. As stated in Chapter 1, we do not follow a biological approach,

3Recall that Gaussian noise with zero mean and 1.0 cm of standard deviation is added to those
landmarks that are not inside the current view point for 1.5 seconds.
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nevertheless we should consider this modelling issue when selecting the noise function to

be added each step to prevent the particle filter becoming trapped in local minima. In

this section we test three noise models. The first is suitable for modelling systems with

uniform spatial acuity (Model 1), the other two models (Models 2 and 3) are suitable

for modelling systems with spatial acuity that falls off from the centre of the field of

view.

� Model 1 - Uniform spatial acuity: After the particle filter update, the stan-

dard deviation of the cloud of particles is measured. Normally distributed noise is

added to each particle with zero mean and standard deviation equal to the 10%

of the cloud’s standard deviation. Thus the particle filter adds noise that is mod-

ulated by the belief state, and noise can be the same across the visual field. This

noise is used to escape the local minima.

� Model 2 - Stepped spatial acuity: The same noise as in Model 1 is added

to the particle filter, to escape local minima. In addition, normally distributed

noise (zero mean and 1.0 cm of standard deviation) is added to those landmarks

inside the FoV but not in the centre of the camera (where we defined the centre to

cover 10°). This models two regions: i) the “fovea” (0°to 10°) having higher spatial

acuity, and ii) the “periphery” of the field of view (> 10°) having lower spatial

acuity. However, note that the spatial acuity is uniform across the “periphery” of

the field of view.

� Model 3 - Smoothly varying spatial acuity: Noise is added to each parti-

cle according to the bivariate Gaussian density that gives the observation model

(Section 4.4.1.1) for that particle’s position in the visual field. By re-employing

the observation model in this way we are able to model a smooth fall off in spatial

acuity as we move from the centre of the field of view to the periphery.

The modelling assumption here is quite important. As explained above we would

expect gaze control to cease to be important if the robot can gather equally reliable

information about all locations in the field of view. Gaze control methods will thus
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be more differentiated as the spatial acuity of the periphery of the field of view falls

off more rapidly. We measure this effect below as we vary the reach/grasp sensitivity

environmental variable.

5.1.1 Results

The three noise models were tested based on the environmental variables defined at the

beginning of this chapter. Three values were used to vary the reach/grasp sensitivity

threshold: 0.5, 1.0 and 1.5 cm. The other two environmental variables are set to their

default values. The observation noise is set to 1.0, meaning that an unmodified version

of the observation model was used. The FoV is set to 60°x40°, where the angles refer

to the complete horizontal and vertical fields (see Figure 5.6). Figure 5.1A-C shows

the average number of objects correctly placed in the containers for Model 1, 2 and 3

respectively, whilst performing the pick & place task. A total of 10 trials of 5 minutes

each were performed for the Rew+Unc+Gain, Random and Round Robin gaze schemes,

for each set of results (the Rew+Unc and Uncertainty gaze strategies were not used for

these experiments). The error bars in the graphs represent the 95% confidence intervals.

The results for Model 1 (Figure 5.1A) show the effect in task performance when the

FoV has uniform spatial acuity. The Rew+Unc+Gain gaze strategy is much better than

the two baselines when the threshold is small (0.5 cm), then it is slightly better for the

default threshold value (1.0 cm), but it is overrun by Round Robin for the threshold value

of 1.5 cm. The results for Model 2 (Figure 5.1B) show the effect in task performance

when the FoV has a stepped spatial acuity. In this case the Rew+Unc+Gain gaze

scheme is better for all three threshold values. The same happens for Model 3 (Figure

5.1C), that shows the effect in task performance when the FoV has a smoothly varying

spatial acuity.

The two-tailed unpaired t-test was used to compare the results of the Rew+Unc+Gain

gaze strategy against the two baselines for all noise models. Using Model 1, for the

threshold values of 0.5 and 1.0 cm the differences are statistically significant at p <.01.

However, the value of 1.5 is not statistically significant. Following Model 2 and 3, for
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Figure 5.1: Effect in task performance when the field of view has: A) Uniform spatial acuity
(Model 1), B) Stepped spatial acuity (Model 2), and C) Smoothly varying spatial acuity
(Model 3); whilst the reach/grasp sensitivity varies. The observation noise = 1.0 and the field
of view = 60°x40°. The error bars represent the 95% confidence intervals.

all threshold values the differences are statistically significant at p <.003.

5.1.2 Discussion

When the FoV has a uniform spatial acuity (Model 1) the robot can gather equally

reliable information about all locations in the field of view. This is even more important

since the default FoV used by the simulator (i.e. 60°x40°) is large enough to cover most

of the robot’s workspace. In this case, note that a rational gaze control strategy is

more efficient if higher accuracy in the manipulation actions is required (e.g. when the
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threshold is 0.5 cm). However, gaze control quickly ceases to be important, since for the

threshold value of 1.0 cm the Rew+Unc+Gain gaze scheme is just barely better than

the two baselines. For a threshold of 1.5 cm a simple gaze strategy (e.g. Round Robin)

is enough to have a very good performance. This is because it really does not matter

where the centre of the cameras are, since we get the same information across the FoV.

This effect is countered if the FoV has non-uniform spatial acuity. Model 2 has a

stepped spatial acuity, where uniform noise is added to the location estimates of those

landmarks not in the centre of the camera (i.e. > 10°). As it is now more important

for the landmarks to appear in the centre of the cameras in order to obtain reliable

information, we can immediately see that the two baselines do not provide a good gaze

strategy. Similarly, Model 3 shows almost the same results as Model 2, where smoothly

varying spatial acuity is modelled. Recall that instead of adding the same noise to a

landmark appearing in the “periphery”, Model 3 uses the same observation model to add

noise which makes spatial acuity to fall off smoothly from the centre to the periphery.

From the graphs in Figure 5.1, we can first compare the effects between uniform

and non-uniform spatial acuity. Notice that the average number of objects placed in

the containers is higher in Model 1. This further demonstrates that by having a FoV

with uniform spatial acuity, and in this case, one that covers a large portion of the

workspace, the robot does not really need to move the cameras. Thus, the benefit of

gaze control for the selection of fixation locations disappears. Secondly, we can compare

the effects between the non-uniform models (Models 2 and 3). Notice that the difference

in task performance between the Rew+Unc+Gain gaze scheme and the two baselines is

practically the same for each threshold value in Models 2 and 3. What changes is the

overall average number of objects. Note that it increases when Model 3 is employed.

This is interesting because it shows that there is an overall change between stepped and

smooth spatial acuity, but the proportions within each threshold values are similar.

Since the aim of this thesis is to formulate models of gaze control for the selection

of fixation locations, we will follow a model of non-uniform spatial acuity in the FoV.

Specifically, we will make use of Model 3 since it offers a better way to differentiate be-
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Figure 5.2: Representation of different scenarios for the reach/grasp sensitivity condition.
The top row presents cases where the location uncertainty is high (represented by the large
green ellipsoids), whereas the bottom row presents cases with low uncertainty (represented by
the small green ellipsoids). The red circle determines the threshold values of 3.0, 1.5 and 0.5
cm. (See text for details)

tween our proposed models of gaze control. Furthermore, Model 3 is qualitatively similar

although not the same as the human eye. Appendix A presents further experiments that

compare Models 1 and 3.

5.2 Reach/Grasp Sensitivity

The first environmental variable to be analysed is the sensitivity in the manipulation

actions. As explained in Section 4.4.2, the predicted “success” or “failure” of options is

determined by how many particles lie inside the threshold area. This threshold defines

the accuracy with which the robot must be able to reach for, grasp and release objects,

in order for those actions to “succeed”. Figure 5.2 depicts different scenarios when

the location uncertainty of an object is high (represented by the large green ellipsoids

in the top row), and when the location uncertainty is low (represented by the small

green ellipsoids in the bottom row), for the threshold values of 3.0, 1.5 and 0.5 cm

(represented by the red circle). A reaching or grasping action is said to have a high

probability of “success” if the proportion of particles inside the threshold area is large.
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Figure 5.3: Results for reach/grasp sensitivity analysis, with observation noise = 1.0 and the
field of view = 60°x40°. The top graph shows task performance. The lower graph shows the
proportion of actual performance compared to the best case for each strategy. The error bars
represent the 95% confidence intervals.

Notice that as the threshold area gets bigger (e.g. 3.0 cm), more particles will lie inside

it, even if the uncertainty about a landmark’s location is high4. On the other hand, as

the threshold gets smaller (e.g. 0.5 cm), reducing the landmark’s location uncertainty

becomes critical. Based on these cases it is expected that, as the threshold value gets

smaller sensitivity to positional uncertainty rises and task performance should decrease.

5.2.1 Results

For the experiment six threshold values were defined: 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 cm.

Figure 5.3 shows the average number of objects correctly placed in the containers for

all five gaze strategies. A total of 15 trials of 5 minutes each were performed for each

gaze scheme. The observation noise is set to 1.0, meaning that an unmodified version

of the observation model was used, and the FoV is set to 60°x40°. This FoV is the

default in the simulator and in our experiments, where the angles refer to the complete

4The release action works in the same way as reach and grasp. In this case, because the container
is bigger than the objects, the accuracy may be in principle not as important as for reach and grasp.
However, we force the robot to release the objects using the same threshold value as for the other
actions. The release area is actually defined to be close to one of the bottom corners of the containers,
not the container’s centre.
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horizontal and vertical fields (see Figure 5.6). The error bars in the graph represent the

95% confidence intervals.

As expected, the task performance of all gaze strategies drops as the sensitivity

increases, i.e. when the threshold moves towards 0.5 cm. The Rew+Unc+Gain gaze

strategy outperforms all other strategies, except when sensitivity is 2.5 and 3.0 cm, where

the Uncertainty gaze strategy performs better. The Rew+Unc gaze strategy performs

better than the Uncertainty strategy for the values 0.5 and 1.0 cm, but in general the

Uncertainty strategy has the performance no better than Random and Round Robin.

The lower graph of Figure 5.3 depicts the proportion of actual performance compared to

the best case for each strategy. This determines the robustness of the gaze schemes to

changes in the sensitivity of the manipulation actions. In this case, the Rew+Unc+Gain

strategy is more robust to those changes.

First, the two-way ANOVA test was used where the threshold values and the gaze

strategies were defined as factors for the test. For both factors the differences are

statistically significant at p <.0001. Second, the two-tailed unpaired t-test was used to

compare the results of the Rew+Unc+Gain gaze strategy against each strategy5. For

the values of 0.5, 1.0 and 1.5 cm the differences are statistically significant at p <.0001.

For the value of 2.0, the Rew+Unc+Gain strategy is not statistically significant against

the Uncertainty scheme. Finally, for the values of 2.5 and 3.0 cm only against the

Rew+Unc scheme the differences are statistically significant at p <.002.

5.2.2 Discussion

In terms of task performance it is clear that the Rew+Unc+Gain gaze strategy is the

best option when more accuracy is required, i.e. for the threshold values of 0.5 and 1.0

cm. The rest of the strategies start to catch up as the threshold value increases. In

particular, for the threshold values of 2.5 and 3.0 cm, even the performance of Random

and Round Robin matches the performance of our models of gaze control. The main

reason for this is that the default FoV covers a large part of the robot’s workspace, thus

5For these tests we have chosen to focus on the Rew+Unc+Gain gaze strategy because, as it will
be shown, it is in general the best scheme in terms of performance and robustness.
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more landmarks appear inside the image taken in every fixation. Therefore, even if the

robot decides to look (i.e. to centre its cameras) at a task irrelevant landmark, there

might be other landmarks inside the FoV that are task relevant. When the threshold

value is small (e.g. 0.5 cm), landmarks need to appear in the camera’s centre in order to

estimate their location reliably and in consequence the robot will be able to manipulate

them successfully. As the threshold value increases, the threshold area gets bigger and

more particles will lie inside it. This makes it more likely for manipulation actions to

“succeed”, even if the location uncertainty of a landmark is big.

The Uncertainty gaze strategy performs better as the threshold value increases. This

suggests that selecting fixation locations based only on uncertainty reduction is enough

when the requirements of the task are simplified. In the case of the Rew+Unc gaze

strategy, recall that it might prefer to look at landmarks that do not provide new task

information but produce high value, so it will tend to look at a landmark more than

needed. This behaviour is good when the threshold values are small, since more accuracy

is required. However, it is a bad behaviour when the threshold value increases, because

it wastes time looking at landmarks from which no more relevant information can be

extracted. In fact, when following the Rew+Unc strategy, the workload between arms

fluctuates during the trial. The robot ends up working with only one arm for some

periods of time. If the location uncertainty of the landmarks associated with one of

the arms increases, then the expected value for those landmarks gets smaller. As the

Rew+Unc strategy looks at landmarks with high value, it will sometimes favour only

one arm.

5.3 Observation Noise

This environmental variable refers to the observation model, explained in Section 4.4.1,

that is used to maintain the particle filters of each landmark and represents the un-

certainty associated to the triangulation process. By scaling the observation noise the

location uncertainty about landmarks will also increase, making it harder for the robot
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Figure 5.4: An example of how different levels of noise affect one of the densities from the
observation model.

to successfully manipulate objects. Figure 5.4 shows what one of the densities from

the observation model looks like when scaled with different levels of noise. A factor of

1.0 means an unchanged version of the observation model. As the observation noise

increases it is expected that the task performance of all gaze schemes will fall.

5.3.1 Results

For these experiments, the observation model is scaled by the factors: 1.0, 1.5, 2.0 and

2.5. Figure 5.5 presents the average number of objects correctly placed in the containers

for all gaze strategies, where reach/grasp sensitivity is set to 1.0 cm and the FoV is

60°x40°. A total of 15 trials of 5 minutes each were performed for each gaze strategy.

The error bars in the graph represent the 95% confidence intervals.

As expected, the task performance of all gaze strategies decreases as observation

noise increases. The Rew+Unc+Gain gaze strategy outperforms all other strategies

in terms of task performance, whereas the second best is the Rew+Unc gaze scheme.

The lower graph of Figure 5.5 shows the proportion of actual performance compared to

the best case for each strategy. This determines the robustness of the gaze schemes to

variations of the observation noise. In this case the Rew+Unc gaze strategy is the most

robust in these experiments, closely followed by the Rew+Unc+Gain gaze strategy.

The two-way ANOVA test was used with the noise values and gaze strategies as

factors. For both factors the differences are statistically significant at p <.0001. Then,

the two-tailed unpaired t-test was used to compared the results of the Rew+Unc+Gain

scheme against each strategy. All the differences are statistically significant at p <.0001.
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Figure 5.5: Results for the observation noise analysis, with reach/grasp sensitivity = 1.0 cm
and the field of view = 60°x40°. The top graph shows task performance. The lower graph
shows the proportion of actual performance compared to the best case for each strategy. The
error bars represent the 95% confidence intervals.

5.3.2 Discussion

In terms of task performance, the Rew+Unc+Gain gaze strategy is the best choice.

However, it is interesting to see that the Rew+Unc gaze strategy is the second best

choice. As pointed out before, this strategy tends to fixate landmarks more often than

needed. But this behaviour turns out to be good when the observation noise is large.

This is the main reason why the Rew+Unc gaze strategy is more robust to observation

noise than the rest of the strategies. In contrast, the Uncertainty gaze strategy has

a similar task performance to Random and Round Robin. As the observation noise

increases, landmarks need to be fixated several times for each manipulation action.

However, the behaviour of the Uncertainty scheme is likely to select different fixation

points every time step, which makes it difficult to fixate on a landmark continuously.

5.4 Field of View

The field of view (FoV) refers to the camera’s angles that determine the size of the image

captured during a fixation. A large FoV results in images with more visual information
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Figure 5.6: Changes in the FoV with respect to an image captured with the right camera.
The angles in the FoV correspond to the complete horizontal and vertical planes.

(i.e. more landmarks may appear in the image). Thus, if the FoV narrows we would

expect to see a reduction in task performance since there is less information in the view

point. Figure 5.6 shows an image taken from the right camera and different sizes for

the FoV. Notice how some objects and the containers no longer appear in the image as

the FoV decreases. The angles that determine the FoV refer to the complete horizontal

and vertical fields.

5.4.1 Results

For these experiments we vary the horizontal and vertical angles of the FoV with the

values: (60°x40°), (50°x35°), (40°x30°), (35°x25°), and (25°x20°). Figure 5.7 presents

the average number of objects correctly placed in the containers for all gaze strategies,

where the reach/grasp sensitivity is set to 1.0 cm and the observation noise is set to 1.0.

A total of 15 trials of 5 minutes each were performed for each gaze strategy. The error

bars in the graph represent the 95% confidence intervals.

Again as expected, the task performance drops down for all gaze strategies as the

FoV narrows. The Rew+Unc+Gain gaze strategy outperforms all other strategies, and

the second best is the Rew+Unc gaze strategy. The lower graph of Figure 5.7 shows the

proportion of actual performance compared to the best case for each strategy. This deter-

mines the robustness of the gaze schemes to changes in the FoV. In this case Round Robin

and the Rew+Unc gaze strategy are more robust. Even though the Rew+Unc+Gain

gaze strategy performs better than the rest of the strategies, it is not robust to changes
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Figure 5.7: Results for the FoV analysis, with reach/grasp sensitivity = 1.0 cm and ob-
servation noise = 1.0. The top graph shows task performance. The lower graph shows the
proportion of actual performance compared to the best case for each strategy. The error bars
represent the 95% confidence intervals.

in the FoV.

The two-way ANOVA test was used with the FoV values and gaze strategies as

factors. For both factors the differences are statistically significant at p <.0001. Then,

the two-tailed unpaired t-test was used to compare the results of the Rew+Unc+Gain

scheme against each strategy. All differences are statistically significant at p <.0001,

except when the FoV is (25°x20°), where only against Round Robin and the Rew+Unc

strategy the differences are not statistically significant.

5.4.2 Discussion

Once again the Rew+Unc+Gain gaze strategy is the best choice in terms of task per-

formance. However, it is affected by changes in the FoV. This is because, as the FoV

gets smaller the likelihood of finding new objects during a fixation gets smaller as well.

Finding new objects inside the robot’s current view point is crucial, as these objects

are stored in the visual memory and are considered to be fixated in the next time step.

Therefore, if the FoV is small then the robot should deliberately search for new objects.
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In other words, active visual search [10] becomes an important issue. For this experiment

a simple visual search heuristic was implemented, where every time the visual memory

is empty the robot systematically searches for a new object across the table. It starts

in the lower part of the right hand side of the table, and then follows a mow-the-lawn

pattern6.

It turns out that Round Robin and the Rew+Unc gaze strategies are more robust

to changes in the FoV than the rest. Round Robin does not show a big variation

in task performance because its predetermined behaviour makes gaze move across the

table continuously, which in turn makes it possible to indirectly find new objects. The

Rew+Unc gaze strategy is robust to changes in the FoV because, as explained above,

sometimes it favours only one arm. Thus, even if the FoV narrows, one arm can still

keep performing the task.

5.5 Conclusions

The experiments presented in this chapter helped us characterise our three candidate

models of gaze control in terms of three environmental variables: reach/grasp sensitivity,

observation noise and field of view (FoV). Two more gaze schemes, namely Random and

Round Robin, were also considered in order to have a common baseline for our candidate

models. The experiments analysed in this chapter provide interesting conclusions that

are summarised here:

� In general, the Uncertainty gaze strategy performed in some cases no better than

the Random or Round Robin gaze schemes. These results suggest that it is inef-

ficient to control gaze reasoning only about the reduction in location uncertainty

of landmarks.

� A more efficient method for the control of gaze comes when task rewards (i.e.

the value of manipulation actions) are considered along with the location uncer-

6This visual search heuristic is never needed when the FoV is (60°x40°) or (50°x35°). This means
that in these two cases the FoV is large enough to find new objects during the execution of the task

112



tainty of landmarks. As the Rew+Unc and the Rew+Unc+Gain gaze schemes

demonstrate.

� The Rew+Unc+Gain gaze strategy is, in general, the best in terms of task per-

formance for all environmental conditions. It dominates other methods in 13 of

the 15 experimental conditions. It is also robust to variations in the sensitivity of

the manipulation actions and observation noise. The only weakness is that it is

affected by changes in the FoV.

� The Rew+Unc gaze strategy is the second best strategy in terms of performance

and robustness. Recall that the difference between this scheme and the Rew+Unc+

Gain gaze strategy is just the way in which gaze allocation is resolved. These

results suggest that using the perceptual gain for gaze allocation is indeed a better

choice (as implemented by the Rew+Unc+Gain scheme).

� Finally, the problem of visual search has been identified when the FoV narrows,

in particular for the Rew+Unc+Gain gaze scheme. The proposed visual search

heuristic explained above is not preemptive. It makes the robot stop perform-

ing the task until a new object is found, which is highly inefficient. Chapter 6

will present an integrated account of a more efficient and predictive visual search

process that works together with the gaze controller, in order to increase the ro-

bustness of the Rew+Unc+Gain gaze scheme to changes in the FoV.
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Chapter 6

Integration of an Active Visual

Search Process

In the previous chapter, our proposed gaze control models were characterised in terms

of three environmental conditions. The results showed that the Rew+Unc+Gain gaze

strategy (described in Section 4.5.3) is, in general, the best scheme in terms of task

performance for all conditions. However, we found that this gaze strategy was not

particularly robust to changes in the field of view (FoV) (Section 5.4). As the FoV

narrows there is less visual information appearing in the current view point and in

consequence task performance is expected to drop. To counter this problem a simple

visual search heuristic was implemented. Nevertheless, this heuristic was not sufficient

to maintain a good task performance for the Rew+Unc+Gain gaze scheme. Therefore,

one of the main conclusions of the previous chapter was that a more efficient visual

search process had to be devised in order to increase the robustness of this particular

model of gaze control in terms of changes in the FoV.

The main contribution of this chapter is to integrate a probabilistic active visual

search process into the Rew+Unc+Gain gaze control model. The main question that

we face here is: How is a decision made when to perform visual search whilst performing

a task? We will see that most of the previous work has dealt with the visual search

problem alone. However, in our case, the robot is already engaged in a manipulation
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task, and it has to decide when is the best time to perform a visual search action. Thus

we want to show how the Rew+Unc+Gain gaze scheme can naturally account for visual

search as it is commonly performed in natural tasks.

This chapter is organised as follows. First, previous work for the problem of visual

search is presented, along with a discussion of some visual search models and their

similarities to the one proposed here. Second, a quick summary of the visual search

heuristic, from Chapter 5, is provided for comparison. Third, the active visual search

process is described and integrated into the Rew+Unc+Gain gaze strategy. Fourth, the

same FoV experiment used in Section 5.4 is employed in order to analyse and compare

the integrated model against the Rew+Unc+Gain scheme with the heuristic (along with

the other gaze strategies). Concluding remarks are given at the end of the chapter.

6.1 Related Work

In general, visual search can be stated as the problem of finding a landmark in a visual

scene [10]. A visual search behaviour takes place, for example, when we try to look for

a book in our desk, pedestrians in a road intersection, a spoon whilst we are cooking, a

friend in the street, etc. This section is organised in a similar way as Chapter 3. First, a

summary of human visual search findings from the psychophysical literature is presented,

and serve as motivation for our work. Second, a discussion of some computational

models of visual search is provided. In particular, we focus on models of visual search

implemented in robots.

6.1.1 Human Visual Search

Visual search tasks have been extensively employed in psychophysical human experi-

ments with the goal of investigating visual preattentive and attentional processes [37,

217]. These studies have led to the formulation of classic theories of visual search, such

as the feature integration theory [218], and the guided search theory [219]. Typical

psychological experiments consist of a display where subjects had to find a particular
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object from a discrete set of spatially separated distractors. Two types of search pro-

cesses have been identified: i) parallel, and ii) serial search processes. Parallel search

refers to the case where subjects are able to find the target object in an almost instan-

taneous decision time, no matter how many distractors are on the display. This type of

search is used to investigate the preattentive process in humans, and is closely related

to the concept of visual saliency (see Section 3.2); where things seem to “pop-out” from

the visual scene. On the other hand, serial search refers to the case where subjects need

to focus on different items in order to correctly discriminate between a distractor and

the target. These theories, however, and most of the visual search literature disregard

saccadic eye movements [10].

In many situations, particularly in real-world scenarios, visual search cannot be ac-

complished without performing saccades. Recent studies have considered eye movements

as an integral part of the visual search task [95, 220–222]. Most of the experiments are

still similar to the ones described in the paragraph above, where subjects search for

a target item in a display, but now subjects are free to move their eyes. It has been

found that there are two rules or factors that determine how gaze is deployed during

a visual search task. The first factor refers to the similarity between the distractors

and the target. Before the target is found, saccades are typically performed to items

that look similar to the target object. The second factor refers to the proximity rule,

which states that it is likely that the next saccade will be performed to items that are

close to the current fixation location [10, 37]. Other experiments using photographs of

real-world (mostly) indoor scenes provide evidence that saccades during visual search

are guided by top-down processes, as opposed to salient image features [223–225]. This

is in accordance with the findings presented in Section 3.1.2 that state that gaze is, in

general, driven by the demands of the task [5,16,18]. It seems that the main top-down

information that drives gaze is that of the object being searched for. Another type

of top-down information that has been found to influence visual search is the context

provided by the scene [226,227]. Depending on the scene, for example, if it is a kitchen,

a library, an outdoor scene, etc. the resulting scanpaths are different, suggesting that
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humans are guided by prior knowledge about the spatial arrangement of the scene.

Of great interest to this thesis is the work by Navalpakkam et al. [228], where they

investigated the role of reward during visual search. Subjects were given a monetary

reward per trial depending on their ability to find a target amongst a set of distractors

in synthetic images. Subjects were able to learn fast how to maximise the expected

reward per trial. Another important work, already mentioned in Section 3.1.2, is that

by Najemnik and Geisler [11, 123]. They found evidence that humans follow an op-

timal fixation selection strategy during a visual search task, compared to that of an

ideal Bayesian observer; with the aim of maximising the information gain about target

location on each saccade.

It is important to note that all the experiments just reviewed are based on images

or photographs presented on a display, not in real-world settings. Also, subjects had

only to perform the visual search task, without pursuing any other goal or sub-task. In

Section 3.1.2 we reviewed several studies where subjects performed natural tasks. One

such task was the tea-making task explored by Land et al. [109]. This task is interesting

because subjects were able to freely move around a kitchen, where the utensils and the

ingredients were located. This means that subjects could make decisions about changing

their current view point during the task, something impossible to achieve whilst looking

at a display. It was reported that during the tea-making task, subjects performed visual

search but other actions were interrupted. However, this is also due to the nature of

the task; tea-making follows a consistent sequence of actions. This means that the task

cannot continue if, for example, the kettle is not found first. Changing the view point

may need not only a saccade, but in some cases we may also need to move our head or

body. Moving the view point for visual search, particularly whilst performing another

task, has not been fully investigated in the psychophysical literature. However, this

situation has been explored in robotics and we discuss it next.
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6.1.2 Computational Visual Search

There is a large number of computational models of visual search that try to deal with the

same problems discussed above, where only single images (typically the ones also shown

to the human subjects) are presented to the model [154, 222]. Some of these models

are based on saliency detection [229], which are good for parallel search. But most of

the models are based on a combination between top-down and bottom-up information

(similar to those discussed in Section 3.2). The most common top-down source is the

information about the target; this could be the knowledge of target features, or a target

template [47, 230]. Recently, context information about the scene has been successfully

employed as another source of top-down information [231].

An important extension to the previous models is the use of robotic pan-tilt-zoom

camera(s) that can be employed to explore a scene, instead of being restricted to a

single image or view point. Vogel and Murphy [46] modelled the visual search problem

using a POMDP (partially observable Markov decision process) (see Section 2.3), and

proposed two indirect object search strategies: i) search for the target object by first

locating places in the scene where it is likely to be found (e.g. desktops, walls), and

ii) search first for a spatially adjacent object to the target. This model is not actually

implemented in a robotic camera, rather it is simulated using pre-acquired images of dif-

ferent scenes. Nevertheless, the model involves pan and zoom actions, and the POMDP

models noisy observations (i.e. evidence) about the location of the target. This model

was later extended [187], in order to incorporate bottom-up saliency and scene context

information. Whilst Vogel’s model planned the following action to be executed, Minut

and Mahadevan [188] learnt gaze patterns during a visual search task by means of rein-

forcement learning (RL) (see Section 2.5). A pan-tilt camera was used, and the task was

set in an office environment. The next fixation location was decided based on the most

salient point from the current view point. Positive reward was given if the target object

was located closer to the centre of the camera. Their results show that the number of

saccades needed to find the target object decreases as the training increases. The main

drawback of this model is that it has to re-learn the gaze pattern if the target object
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is moved to a different location. Nevertheless, it can be used to learn the location of

semi-static objects, such as desks, cabinets, bookshelves, etc. and then we could follow

a search strategy similar to the one proposed by Vogel and Murphy [46].

A further extension to the previous models is to allow mobile robots to engage in

visual search tasks (also known as large-scale visual search). In this case, the dimen-

sionality of the space of view points increases since the robot is now allowed to navigate

through the environment [232]. At the same time, object detection and recognition

may be more robust, as the target object(s) can be observed from multiple points of

view. Typically, whilst performing the searching task, the robot should also take into

consideration its energy consumption, thus effective search strategies should be devised.

Tsotsos and Shubina [233,234] provide a good overview of the visual search problem in

mobile robots. Their visual search model considers the robot’s prior knowledge about

the target and the environment, and the performance of the recognition algorithms.

They also decompose the search problem into the “where to look next”, and “where

to move next” processes. For the experiments, they tested their model with different

initial probabilities. The selection of the next view point is done following a probabilis-

tic approach, by maximising the probability of finding the target whilst minimising the

searching time or a cost function. Following a similar optimisation approach, Saidi et

al [235] implemented a visual search process in a humanoid robot. The robot selects the

next best view point by trading-off three parameters: its energy consumption, the prob-

ability of detecting the target object, and the expected new information of the new view

point. Aydemir et al. [236] constrain the search space by considering spatial relations

amongst objects in order to perform indirect search. Furthermore, the robot is able to

select a specific search strategy by means of a Markov decision process (MDP) (Section

2.2). An extension of this work is that from Hanheide et al. [237], where common-sense

knowledge is combined with spatial-relational knowledge to form a probabilistic con-

ceptual map. Also, they solve the navigation and exploration problem by means of a

continual planner that switches between classic and probabilistic planning domains for

different levels of abstraction.
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Other visual search tasks have the aim of recognising several objects in a 3D environ-

ment. These objects can be recognised more reliably by moving to different viewpoints

in the scene, as in [238,239]. Recently, Zhang and Sridharan [240] propose a hierarchical

planning framework based on partially observable Markov decision processes (POMDPs)

(Section 2.3). The robot first searches for previously learnt target objects in a 3D en-

vironment by means of occupancy grids, where each cell in the grid has associated a

probability of finding a target object. Once the robot travels to a particular cell, it

processes the scene using image feature matching or using another two-layer POMDP

planner that allows the robot to plan visual operations on the scene. Finally, the vi-

sual search task may be part of a set of behaviours that the robot is executing. For

instance, robots that play football need to search for the ball, players, obstacles, etc.

whilst performing some other task(s). Kohlbrecher et al. [195] employ an entropy grid

map that combines different sources of information for a humanoid robot. The different

parameters used in the estimation of this map determine the prioritisation of the cells

that should be considered as next view points.

Our proposed visual search process cannot be directly compared to the visual search

processes just described, however the following is a list of similarities and differences

between the processes just described and our proposed visual search process:

1. Our visual search process follows a probabilistic approach as does the majority of

the works just described.

2. Our work space (i.e. the tabletop) is small compared to those robots situated in

a full 3D environment (e.g. an office room).

3. Our robot’s oculomotor system can move to obtain different view points, similar

to those works that consider only a robotic camera.

4. Our robot does not move in the 3D environment as its whole body remains in the

same position.

5. Our robot should perform visual search whilst engaged in a manipulation task,

whereas most of the previous work has focused on just the visual search task.
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Figure 6.1: Average number of times that the visual search heuristic was employed during
the field of view analysis presented in Section 5.4. The error bars represent the 95 % confidence
intervals.

6.2 A Simple Visual Search Heuristic

Before we explain our proposed visual search process, let us describe in more detail

the simple heuristic employed for the experiments performed in Chapter 5. This visual

search heuristic is employed whenever the visual memory is empty. The robot system-

atically searches for a new object across the table, starting in the lower part of the

right hand side of the table, and then following a mow-the-lawn pattern. Once at least

one object is found, the searching heuristic stops and the normal execution of the task

resumes. Because this heuristic always starts from the table’s lower right, objects from

the left hand side of the table may not be found for a long time. This will make the left

arm remain idle. Of course, the heuristic could be modified to make it more efficient.

For instance, the robot could randomly start its search on the left or right side of the

table, or be forced to search for at least one object from the right and one from the left.

Still, these heuristics will interrupt the normal execution of the manipulation task.

Figure 6.1 shows the average number of times that the visual search heuristic was

employed, for all gaze strategies, during the FoV analysis presented in Section 5.4. This

graph can also represent the average number of times that the visual memory was empty

as the FoV narrowed. As mentioned in Section 5.4, and as shown in the graph, the FoV

is typically large enough for finding new objects during the normal execution of the task.
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Figure 6.2: Results for FoV analysis, with reach/grasp sensitivity = 1.0 cm and observation
noise = 1.0. The top graph shows the task performance and the lower graph the robustness
for all strategies. The error bars represent the 95% confidence intervals. (This figure has been
reproduced from Section 5.4)

The problem is when the FoV is set to (35°x25°), and (25°x20°). However, note that the

number of visual searches is not so big. For instance, there are only 1.26 visual searches

in average performed by the Rew+Unc+Gain gaze strategy, when the FoV is (25°x20°).

Nevertheless, the results presented in Section 5.4 (reproduced here in Figure 6.2), clearly

demonstrate that the task performance of the Rew+Unc+Gain gaze strategy decreases

as the FoV narrows, and finding new objects is key to maintaining good performance.

6.3 Integrating Active Visual Search

The main drawback of the visual search heuristic is that it interrupts the execution

of the manipulation task in order to find new objects. To avoid such interruptions

the visual search process should be integrated into our existing Rew+Unc+Gain gaze

control model. This means that visual search can take place along with the selection of

fixation locations for the ongoing task. This brings up two main issues: i) how to decide

when to perform a visual search action, and ii) how to perform the visual search process.

123



Here, a visual search action is one that aims to find new object(s) on the tabletop.

The Rew+Unc+Gain gaze control model makes decisions about what perceptual

action to execute based on the information about those landmarks stored in the visual

memory (see Section 4.5). However, the visual search process is not directly associated

to a particular landmark, nor is part of the manipulation task. Therefore, in order to

integrate the visual search process, the robot should also consider the execution of a

visual search action as part of the available perceptual actions. To do so, a visual search

action should be assigned with a value so that the robot can compare it against the

values of the perceptual actions. In fact, this should be done for each manipulation

motor system ms, particularly if the motor systems are independent such as in the pick

& place task (Section 1.6).

Recall that the Rew+Unc+Gain gaze strategy decides to allocate gaze to the ma-

nipulation motor system with the maximum gain (gainms) when performing perceptual

action pi, as formulated in Section 4.5.3 by Eq. 4.9 (reproduced here for convenience as

Eq. 6.1).

gainpims = Mpi
ms − max

a∈Ams
{V a

ms} (6.1)

Where Mpi
ms is the maximum value of performing a particular option, for manipula-

tion motor system ms, if perceptual action pi is taken, and V o
ms is the value of executing

option o in the current time step. The second term determines the current maximum

value of performing some option, thus the subtraction determines how much it is gained

if gaze is allocated to the motor system ms.

We can extend this idea and define the gain of performing a visual search action for

motor system ms, denoted as gainpvsms . To calculate this value we follow the equation:

gainpvsms = P (objnew|vmms)P (objseeing|pvs, objnew)

[
max
o∈Oms

Qms(s
′, o)− max

o∈Oms
Qms(s, o)

]
(6.2)

Where P (objnew|vmms) is the probability that there exists a new object on the table
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given the number of objects in visual memory reachable by manipulation motor system

ms. P (objseeing|pvs, objnew) is the probability of seeing an object given that perceptual

action pvs is executed and there is a new object on the table. The difference between

the two maximum values is the gain that would be obtained if the visual search action

is performed, where the discrete state s′ represents the state that results after visual

search. Note that this equation considers the discrete states instead of the objects’

location (see Section 4.1). This is because the aim of visual search is to find objects and

not to manipulate them. Finding a new object only changes the discrete states of the

robot. The visual search gain (gainpvsms) is compared along gainpims to determine which

motor system has the highest gain. As explained in Section 4.5.3, gaze is allocated to

the motor system with the highest gain, then this motor system executes its associated

perceptual action, denoted as pms:

pms = arg max
pvs,pi∈P

{
max
ms∈MS

{gainpims, gainpvsms}
}

(6.3)

Note that this equation is similar to Eq. 4.10 from Section 4.5.3, but here we also

compare with gainpvsms . If the highest gain results from gainpvsms then the visual search

action pvs is executed. Next, it is explained in detail how the probabilities are calculated.

6.3.1 Probability of a New Object

The main purpose of visual search is to find new objects to keep the robot busy at all

times. In fact, the robot can only manipulate one object at a time with each arm, thus

to keep the robot busy, the visual memory should contain information about at least

two objects, one for each arm.

The first thing that the robot should take into account is the probability that there

exists a new object on the table given the number of objects in the visual memory

for each motor system (P (objnew|vmms) in Eq. 6.2). Thus, this probability represents

the objects’ behaviour. Recall that in the pick & place task (defined in Section 1.6),

a new object randomly appears on the table whenever the robot: i) puts an object in
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Figure 6.3: The values for P (objnew|vmms) for all field of view values.

the container, ii) every 60 seconds, and iii) if an object falls from the table. Because

of this, it can be guaranteed that there will always be at least one object on the table

reachable by each arm. Therefore, the probability that there exists a new object should

be 1.0 if the visual memory is empty. Thus, the number of objects in the visual memory

that need to be considered is: 0 objects, or 1 or more objects. In other words, vmms =

{empty, nonEmpty}. The values for the variable corresponding to the new object are

objnew = {true, false}.

These conditional probabilities were learnt off-line, using the iCub simulator, for each

field of view (FoV) value: (60°x40°), (50°x35°), (40°x30°), (35°x25°), and (25°x20°). The

reach/grasp sensitivity was set to 1.0 cm and the observation noise was set to 1.0. A total

of 5 training trials of 5 minutes each were performed. Every 10 seconds during each trial,

we recorded the number of objects in visual memory and the number of objects on the

table for each arm. As explained before, every time that the visual memory was empty

there was at least one new object on the table, i.e. P (objnew = true|vmms = empty) =

1.0, for all values of the FoV. In order to obtain P (objnew = true|vmms = nonEmpty)

we checked the number of times that a new object was on the table by subtracting the

number of objects on the table by those in visual memory, and then dividing this value

by the number of times that the visual memory was not empty. Figure 6.3 presents the

values of all the conditional probabilities for each FoV value.
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6.3.2 Probability of Seeing a New Object

The previous probability informs the robot the likelihood that a new object has appeared

on the table given the number of objects in visual memory. The problem is that objects

appear on random locations across the table, so knowing that there is a new object on

the table does not mean that the robot will see it. Thus, the robot also needs to take

into account the probability of actually finding such new object. More specifically, the

robot should know the probability of seeing a new object given that perceptual action

pvs is executed and that there exists a new object (P (objseeing|pvs, objnew) in Eq. 6.2).

The values that objseeing can take are true and false.

Of course, if objnew = false then the probability of seeing an object is zero. So we

just need to focus on the case when there is a new object on the table, i.e. objnew = true.

Finding the new object depends on where the robot would look on the table, which is

represented by the perceptual action pvs.

Here, the robot also learns off-line the conditional probabilities for all FoV values:

(60°x40°), (50°x35°), (40°x30°), (35°x25°), and (25°x20°). In this case the learning ex-

periment consisted in having the robot looking away from the table, then an object,

reachable by one of the arms, was randomly positioned on the table. The robot then

performed a perceptual action pvs to look at the table, and it was recorded whether

the robot saw the object or not. This was repeated for several minutes until 100 data

points were recorded for each FoV value. There are several ways in which the robot

could decide where to look (i.e. how the perceptual action pvs can be implemented):

� Random fixation: One way is to fixate on some random location on the table.

This gives variability to the fixation location, but the outcome is too unpredictable.

� Centred fixation: A fixation on the centre of the right/left hand side of the

table covers most of the working space (for the right/left arm respectively), which

increases the chances of finding an object. However, as the FoV narrows, the

likelihood of finding an object decreases. More importantly, by always fixating on

the centre, an object lying outside the FoV might never be found.
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Figure 6.4: Examples showing how the perceptual action pvs is generated for two different
field of view values.

� Hybrid fixation: Our visual search process performs perceptual actions that

combine the random and centred fixations. To do so we employ particles in order

to determine the next fixation location. Every time that a perceptual action pvs is

executed, a set of particles Gvs is uniformly distributed across the table, similar to

the initialisation step of the particle filter in Section 4.4.1.11. Then, the fixation

point is set as the mean of the cloud of particles (mean(Gvs)). Figure 6.4 illustrates

this with two examples. The mean of the cloud of particles will tend to be located

in the centre of the table. However, because the particles are randomly distributed

every time that visual search is executed, the mean of the cloud will be different.

Following the hybrid fixation approach, Figure 6.5 shows the learnt conditional prob-

abilities for P (objseeing|pvs = mean(Gvs), objnew = true). Notice that for the first three

FoV values, (60°x40°), (50°x35°), and (40°x30°), the new object is seen/found with prob-

ability of 1.0. For the FoV of (35°x25°), the new object is seen with probability of 0.99.

But, for the FoV of (25°x20°) a new object is seen with probability of 0.8. This last case

means that the robot might have to perform a few visual search actions (pvs) before

finding the new object. Still, these probabilities demonstrate that the hybrid approach

1It is important to note that we are not using a particle filter for visual search, as no object is being
tracked at this point.
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Figure 6.5: The values for P (objseeing|pvs = mean(Gvs), objnew = true) for all field of view
values.

using particles is a good search strategy in general2.

6.4 Results

To test the visual search process we performed the same experiment as in Section 5.4

using the pick & place task. The horizontal and vertical angles of the FoV were varied

with the values: (60°x40°), (50°x35°), (40°x30°), (35°x25°), and (25°x20°). Figure 6.6

shows the average number of objects correctly placed in the containers and compares

the Rew+Unc+Gain gaze scheme using the heuristic and using our proposed visual

search process (Rew+Unc+Gain+VS in the figure). The graph also shows the results

of the other gaze strategies, obtained in Section5.4, for comparison. The reach/grasp

sensitivity is set to 1.0 cm and the observation noise is set to 1.0. A total of 15 trials

of 5 minutes each were performed, and the error bars in the graph represent the 95%

confidence intervals.

As expected, the visual search process helps to increase the task performance and

robustness of the Rew+Unc+Gain+VS gaze strategy. Notice that when the FoV is large

(i.e. (60°x40°) and (50°x35°)), the task performance is practically the same for both,

the Rew+Unc+Gain and the Rew+Unc+Gain+VS schemes. When the FoV is smallest

2Actually, a better way to do the search strategy, especially for the smallest FoV, is not to resample
the particles every time a perceptual action pvs is executed. Rather, it is more efficient to select the view
point that contains more particles. If an object is not found in that view point, then those particles are
deleted, so that the next view point is again the one that contains the most particles. Once an object
is found the particles can be redistributed again across the table. To do this, however, it is required a
mapping from the future robot configuration to image coordinates. The iCub simulator does not have
this implemented, and due to lack of time we could not implemented it. Nevertheless, it is part of our
future work (Section 9.2.1).
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Figure 6.6: Results for the visual search analysis, with reach/grasp sensitivity = 1.0 cm and
observation noise = 1.0. The top graph shows the task performance, whilst the lower graph
shows the proportion of actual performance compared to the best case for each strategy. The
error bars represent the 95% confidence intervals.

(i.e. (25°x20°)), the Rew+Unc+Gain+VS gaze strategy performs much better than the

Rew+Unc+Gain gaze strategy. The lower graph of Figure 6.6 shows the proportion of

actual performance compared to the best case for each strategy. This determines the

robustness of the gaze schemes to changes in the FoV. In this case Rew+Unc+Gain+VS

and Round Robin strategies are more robust to changes in the FoV. The two-tailed

unpaired t-test was used to compare the results of the Rew+Unc+Gain+VS scheme

against the Rew+Unc+Gain strategy. The differences for the first three FoV values

are not statistically significant, whilst for the values of (35°x25°) and (25°x20°) the

differences are statistically significant at p <.001.

6.5 Discussion

First we can compare the average number of visual searches using the heuristic and using

the proposed visual search process. Figure 6.7 shows such comparison, along with the

averages of the other gaze strategies. As stated above, the heuristic (Rew+Unc+Gain)

130



Figure 6.7: Average number of visual searches using the heuristic for all gaze strategies, and
using the visual search process for the Rew+Unc+Gain+VS gaze strategy. The error bars
represent the 95 % confidence intervals.

is never used when the FoV is large. Notice that, in contrast, the visual search process

(Rew+Unc+Gain+VS ) is employed for all FoV values. This means that at some points

in time one of the arms might have been left with no objects to work with. Thus, a

visual search action was executed. As expected, the number of times that a visual search

action is performed increases as the FoV narrows.

It is important to notice that adding the visual search process to the Rew+Unc+Gain

gaze strategy it does not incur in any considerable cost. This is demonstrated in Figure

6.6 for the FoV values of (60°x40°) and (50°x35°), where the task performance remains

practically the same with and without the visual search process.

The most important thing is that the visual search increases considerably the task

performance when the FoV is narrower (25°x20°). The Rew+Unc+Gain gaze strategy

was already the best in terms of task performance, but now with the added visual

search it is clearly better than it was before. Obviously, we would also need to add the

same visual search process to the Rew+Unc and Uncertainty gaze schemes for a fair

comparison.

In terms of robustness to changes in the FoV the increase is also good. Now it

is always better than the robustness of the Rew+Unc gaze strategy (using the simple

heuristic). However, the robustness of the Round Robin gaze strategy is still slightly bet-

ter. A reason for this is simply because the performance that the Rew+Unc+Gain+VS
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scheme needs to maintain is much higher than that of Round Robin, i.e. the performance

of Round Robin is always mediocre but is robustly mediocre.

6.6 Conclusions

The problem of visual search is to find a target object, or landmark, in a visual scene.

In this chapter we have integrated an active visual search process into our existing

Rew+Unc+Gain gaze control model. The results demonstrate that with the aid of visual

search the integrated gaze model (Rew+Unc+Gain+VS ) increased its task performance

and robustness to changes in the FoV.

It is important to note that the visual search process presented here does not attempt

to generalise to all kinds of visual search tasks. In this case our focus was on the pick &

place task. Nevertheless, as opposed to most work on visual search, we have provided

an integrated account of a visual search process and a task based gaze control model.

Future work should be done to determine the usefulness of our visual search process in

other manipulation tasks.

Based on our work, we can point out at least three relevant issues related to visual

search:

� What is being searched for: Typically, the aim is to find one target in a visual

scene, as in our task and most of those reviewed at the beginning of this chapter.

The agent should acquire or have some prior knowledge about the target in order

to find it. A more complex case results when the aim is to search for more than

one target object. In our case, the visual search process was formulated with only

one target object in mind.

� The agent’s task(s): Even though there are many situations in which a visual

search task may be the only goal of the agent. There are also other situations in

which visual search should be executed simultaneously with other of the agent’s

goal(s) or task(s). This requires some form of coordination or integration mech-

anism so that gaze can be shared amongst the tasks. This mechanism should
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trade-off the information that is currently needed by the task(s) and the informa-

tion that may be gained by visual search.

� The search strategy: The strategy involves the technique(s) employed to actu-

ally find the target object(s). The strategy may be constrained according to the

agent’s task(s) and/or the prior information about the environment. In our case,

the task constrains the search to specific objects, and the environment constrains

the search to the tabletop. Thus, in the pick & place task the search space is

small, compared to other tasks or scenarios where search may take place in one

or several rooms. As mentioned above, our search strategy could be more efficient

and also more general (In Section 9.2.1 we explain how the current visual search

process could be extended).
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Chapter 7

Gaze Control in a Bimanual Task

For the pick & place task (Section 1.6) used thus far in the thesis, the assumption is

made that the robot’s arms act independently, i.e. in parallel. Each manipulation motor

system executes a policy (i.e. a sub-task) whilst gaze is shared amongst them. However,

many real world tasks require the coordination of concurrent or interactive manipulation

actions1. For example, passing an object from one hand to the other, lifting an object

with both hands, opening a bottle, pouring water into a cup while holding it, etc.

This chapter presents a variation of the pick & place task where the left container

is removed from the table. Thus the robot needs to transfer the objects appearing on

the table’s left side to the right hand in order to put them into the container (Figure

7.1). Based on this new bimanual task, our gaze control models are compared in terms

of task performance as in Chapter 5.

The implementation of concurrent actions in robots requires efficient and reliable

coordination mechanisms between the interacting motor systems [241]. This kind of

work is outside the scope of this thesis. This chapter presents a practical, and rather

specific, implementation of a bimanual action that allows the robot to transfer objects

from one hand to the other. The aim of this chapter is to further analyse our models

of gaze control in a different scenario. Concurrent actions force two or more manipu-

1Both, parallelism and concurrency refer to processes that can be executed simultaneously. Parallel
processes do not depend on each other, so no interaction is needed. In contrast, concurrent processes
depend on each other for their correct execution, so normally a coordination mechanism is required to
control the processes.
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Figure 7.1: The iCub simulator performing the bimanual pick & place task.

lation motor systems to work together in order to successfully achieve some goal. The

consequence of this is that gaze should assist, perhaps all or some of, the manipulation

motor systems involved in the concurrent action simultaneously.

First, this chapter starts by describing the differences between parallel and concur-

rent manipulation motor systems and how the gaze control might be affected. Second,

we explain how our bimanual task is modelled. Third, it is explained how the robot

learns the bimanual task. Fourth, the results of our experiment and the analysis of such

results is presented and discussed. Finally, some conclusions are provided.

7.1 Configurations of Manipulation Motor Systems

In order to understand how gaze control can be affected by parallel or concurrent actions,

let us first define the possible configurations that can be obtained based on the number

of manipulation motor systems considered. In this thesis, three possible configurations

are defined: i) single motor system, ii) multiple parallel motor systems, and iii) multiple

concurrent motor systems. These configurations are illustrated in Figure 7.2. It is

important to point out that, even though this chapter focuses on manipulation, these

configurations are intended to be general and include all types of motor systems (i.e.

arms, legs, wheels, torso, etc.). For instance, Surdilovic et al. [242] propose a similar

classification that is specific to dual-arm operations. In fact, it is also possible to view
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Figure 7.2: Configurations of manipulation motor system. A. Single motor system. B.
Multiple parallel motor systems. C. Multiple concurrent motor systems.

each motor system as an agent and treat the multiple motor system problem as a multi-

agent system [243].

As explained in Section 4.1, our formulation associates each manipulation motor

system with a particular sub-task, and the configurations defined here reflect this fact.

In this thesis, we define parallelism and concurrency at the motor level. This, of course,

does not rule out the possibility of having parallelism or concurrency within each motor

system. For instance, Sprague and Ballard [7] consider a single motor system capable of

executing concurrent sub-tasks. By considering multiple parallel or concurrent sub-tasks

within each motor system, the number of possible configurations increases. However, our

research so far has only focused on manipulation motor systems with single sub-tasks.

7.1.1 Single Manipulation Motor System

The simplest motor configuration is to consider a single manipulation motor system

(Figure 7.2A). Notice that, since there is a single sub-task in execution then gaze does

not need to be shared. Perception will always be available to that motor system, thus

the gaze allocation problem disappears in this configuration. But note that the problem

of where to look is still present. The sub-task should still have a set of fixation locations

and only one can be selected at a time. In fact, this configuration will be explored in
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Chapter 8 in order to model Johansson’s task. Here gaze control would be expected to

work in the same way as explained in Chapter 4 except for gaze allocation which is not

considered.

Some of the works reviewed in Section 3.2 follow this configuration, where only a

single task is pursued. For example, for reaching/grasping [35, 196, 197, 244], catching

[245] and navigation [191]. As mentioned above, other works consider multi-tasking in a

single motor system. For instance, for navigation, collection and avoidance of objects [7],

and for localisation and mapping [166].

7.1.2 Multiple Parallel Manipulation Motor Systems

This configuration is the one that has been used in the thesis so far for the pick &

place task (Chapter 4) (Figure 7.2B). Each manipulation motor system is assumed

to be able to perform a particular sub-task, where each sub-task has its own set of

fixation locations. Because we consider that there is only one perceptual motor system

(which includes the robot’s head, neck and eyes) then gaze needs to be shared amongst

the manipulation motor systems (or sub-tasks), which brings up the problem of gaze

allocation.

In this configuration we can identify two cases with respect to parallel sub-tasks.

First, the sub-tasks might all contribute towards a common goal. Second, the sub-tasks

might have individual and non-related goals. Our pick & place task follows the first case,

since the task performance is measured by the total number of objects placed by both

hands. For the second case each arm would be doing different sub-tasks, for example an

arm could be stacking objects whilst the other arm sorts another kind of object. Notice

that even in this last case, gaze still needs to be shared to assist each manipulation

motor system.

Srinivasan [246] provides a series of psychophysical experiments for parallel reaching

actions in humans, along with the formulation of a two-handed control model for reach-

ing that uses visual feedback information. Beetz et al. [247] showed how two robots

cooperate to make pancakes. One of the robots, for example, is able to open the fridge
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with one hand and grasp an object with the other. The arms work towards a common

goal but there is no direct interaction with both hands. A rather extreme case is when

the motor systems are not part of the same “body” but still there is some kind of co-

operation in order to contribute to a common goal. For instance, robotic arms working

on the same assembly line [248], or multi-agent systems in a foraging task in the special

case where agents work independently [249].

7.1.3 Multiple Concurrent Manipulation Motor Systems

Parallel manipulation motor systems run simultaneously and may cooperate to achieve

a common goal, however they are not required to interact directly with each other. In

fact, parallel motor systems do not necessarily need to know about the existence of

the other manipulation motor systems. An extension to this parallel configuration is to

allow different motor systems to interact with each other, to some degree, by introducing

concurrent manipulation actions.

Concurrency already implies that the motor systems are expected to be running at

the same time, but it also implies that motor systems must be aware of each other.

This is because some manipulation actions can only be successfully achieved by the

interaction of two or more motor systems. This configuration is illustrated in Figure

7.2C. Notice how there is no longer a sub-task associated with each motor system,

now there is a shared sub-task where the manipulation motor systems are expected to

perform together. As will be explained below, when modelling concurrent motor systems

part of the state and action spaces of each manipulation motor system is now shared.

In this case the task cannot be subdivided as clearly as for parallel systems.

With respect to the available fixation locations, they can still be associated with

a particular manipulation motor system. However, depending on the implementation,

it is likely that a subset of fixation locations will be shared or be common amongst

some motor systems (see Figure 7.2C). This means that in some situations a single

fixation would be able to assist several manipulation motor systems simultaneously.

These situations are present in our system because of (at least) two reasons:
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1. Field of view (FoV): In our bimanual task the field of view is large enough

to acquire the complete view of where the concurrent action is taking place. For

example, in our task the transfer of an object can be captured by a single fixation

location when the robot looks at the object being transferred.

2. Uniform image raster: The robot’s cameras acquire images with the same

resolution across the image. This means that, together with the FoV, a fixation

to the centre of where the manipulation action takes place is likely to be sufficient

to obtain the information needed to achieve the concurrent action successfully.

Notice that, if the FoV narrows or the rasterisation of images is not homogeneous,

then it is likely that a single fixation cannot assist all the manipulation motor systems.

Therefore, selection of fixation locations within the concurrent action may have to take

place.

7.1.3.1 Related Work

On a day-to-day basis we perform a large number of concurrent tasks using our body

motor systems. In Section 3.1.2 some psychophysical studies were reviewed where con-

current actions take place. For example the tea-making task [109], where an action such

as “fill the kettle with water” depends on the correct interaction between both arms

(one to hold the kettle and another to open/close the tap water). The sandwich making

task [113] is another example where concurrent actions such as “spread peanut butter

on the bread” requires the coordination of both hands. A final example is a stacking

task [108] where subjects need to build cup pyramids using both arms. These examples

also illustrate the situation where a single fixation location may assist the whole con-

current task, although the inhomogeneity of the human fovea is likely to make the eyes

move to different parts of the object(s) that are taking place in the concurrent action.

In the case of robotic platforms, the most common example of concurrent tasks

are from those realised by humanoid robots. By having dual-arms, humanoid robots

are expected to perform concurrent actions that involve cooperation and interaction of

both motor systems. For instance, lifting and moving objects with both arms, handling
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tools, assembly of pieces, cloth manipulation, transferring objects, etc. [241,247,250,251].

Similarly to parallel motor systems, multi-agent systems are typically expected to engage

in concurrent tasks. Some examples of these tasks are, foraging (with communication

amongst the agents), pushing/pulling objects, playing cooperative sports (e.g. soccer),

herding, cooperative navigation, etc. [243].

7.2 Modelling the Bimanual Pick & Place Task

The bimanual task is modelled following the same decision-theoretic techniques em-

ployed in Section 4.1. Recall, that for the case of parallel motor systems, each ma-

nipulation motor system ms was modelled as a semi-Markov decision process (SMDP)

(Section 2.4) with a discrete state space and a set of temporally extended actions (op-

tions). Here, the same approach is followed except that each manipulation motor system

might contain extra state variables that will be used for coordination.

As in Section 4.1, the state space of the bimanual pick & place task is modelled

following a factorised representation. Table 7.1 and 7.2 presents the state spaces for

the right and left arm respectively, whilst Table 7.3 defines the set of options available

to the right arm. The set of options for the left arm is not shown, but it is exactly

the same as the right arm except for moveToContainer which is not needed. Next

to each option their completion time is shown, defined as a Gaussian distribution and

specified by the mean completion time and standard deviation (µo, σo) in seconds. These

time distributions are the same as those defined in Section 4.1. Notice that there are a

few differences in the state spaces compared to the pick & place task from Chapter 4

(defined in Section 4.1). First, now the state variable armPosition contains the extra

value inTransfer. Second, each arm contains a state variable that indicates the state

of the other arm: leftTransferStatus and rightTransferStatus for the right and left

arm respectively. Third, the value onContainer for the state variable armPosition has

been removed from the left arm, since there is no left container.

Since our main purpose is to analyse the behaviour of our gaze control models con-
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Table 7.1: Factorised state space for the right arm.

State Variable State Value

armPosition {onObject, onTable, onContainer, inTransfer}
handStatus {grasping, empty}

transferStatus {ready, notReady}
leftTransferStatus {ready, notReady}

Table 7.2: Factorised state space for the left arm.

State Variable State Value

armPosition {onObject, onTable, inTransfer}
handStatus {grasping, empty}

transferStatus {ready, notReady}
rightTransferStatus {ready, notReady}

Table 7.3: Options for the right arm.

Options Avg. completion time (secs) Stand. deviation (secs)

moveToObject 2.65 0.56
moveToTable 2.95 0.45

moveToTransfer 2.65 0.56
moveToContainer 3.25 0.33

graspObject 2.87 1.08
releaseObject 1.0 0.2

noAction 0.01 -
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sidering concurrent actions, the problem of transferring an object from one hand to the

other has been simplified2. This simplification consists of pre-defining a “transfer area”

where the hands would move in order to pass the object. This area is located in the cen-

tre front of the robot. When the right or left hand reach this transfer area the variable

armPosition takes the value of inTransfer. At the same time the variable leftTransfer-

Status or rightTransferStatus will take the value ready. In order to move to the transfer

area the arms employ the option moveToTransfer. A further simplification consist

in predefining the orientation of the left hand whilst executing moveToTransfer. In

this case, the hand changes its orientation so that the palm of the hand ends up facing

upwards. That way the right hand can move above the object in order to pick it up (see

Figure 7.1). This simplification works fine for our current goal, however this concurrent

action should be formulated in a principled way in order to learn or plan a coordination

mechanism for object transfer (e.g. see [250, 251]). Sections 7.3 and 7.4 describe how

this transfer is learnt and executed by the robot.

7.2.1 Related Work

Our modelling approach is similar to the concurrent action model (CAM) proposed by

Rohanimanesh and Mahadevan [252]. In CAM all the agent’s sub-tasks or goals are

modelled using a single SMDP with options. An application of CAM for modelling a

multi-agent system is presented in [253] and [254]. Rohanimanesh and Mahadevan also

proposed a more complex model called the coarticulation model [252]. This model makes

an explicit decomposition of sub-tasks, as in our approach, but it is more general as it

allows for the modelling of a much larger space of concurrent problems. Coarticulation

allows for sub-optimal actions to be executed in order to concurrently satisfy multiple

goals. As opposed to our approach, coarticulation does not make an explicit separation

between motor systems. Mausam and Weld [255] model parallel planning problems with

concurrent MDPs (CoMDPs). They also allow for the execution of durative actions but

instead of using SMDPs, as in this thesis, they employ a technique called concurrent

2Recall that we perform a further simplification for the problem of grasping, where the robot uses
the magnet-like function, as explained in Section 4.1.
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probabilistic temporal planning (CPTP). This technique allows for the formulation of

durative actions as CoMDPs. Younes and Simmons [256] have proposed the model

called generalised semi-Markov decision process (GSMDP), which extends SMDPs to

model concurrent durative actions explicitly.

Other approaches involve the use of partially observable Markov decision processes

(POMDPs) (Section 2.3). Erez et al. [45] defined a POMDP model for hand-eye coordi-

nation in a simulated reaching task, where two “hands” must reach to a common point

whilst passing a pair of obstacles. They model the joint behaviour of eye and hands in

the POMDP, whereas our model splits the decision problem into physical and percep-

tual action selection. Roth et al. [257] employs POMDPs for modelling a multi-agent

system.

7.3 Learning the Task

Learning parallel sub-tasks is relatively straightforward because each sub-task can be

learnt separately and then executed together. However, by allowing concurrent actions,

some degree of interaction is expected between different manipulation motor systems.

This interaction means that all manipulation motor systems should be considered during

learning. Even though we have simplified in some way the transfer of objects, the robot

still needs to learn how to coordinate both arms in order to successfully pass objects

between hands.

In Section 4.3 we explained how a separate computational learning programme was

implemented for learning the pick & place task, instead of using the iCub simulator

directly. Here the same approach is followed, and the same SMDP Q-learning algorithm

is employed (see Section 4.3). Each arm learns its own policy as before, the main

difference here is that both policies are learnt simultaneously. This is because the

state of one arm affects the state of the other and vice-versa (via the state variables

leftTransferStatus or rightTransferStatus).

Learning is once again carried out under an assumption of complete observability,

144



i.e. the visual memory contains the complete list of landmarks (i.e. objects and the

container) and their true location. The number of objects that appear on the table is

limited to 10. A minimal time-to-goal strategy is followed. For any option taken the

robot receives -1 units of reward, and 0 units of reward when the task is completed, i.e.

when all objects are put in the containers. A special issue found at this point was that

by using this reward function the robot learnt to first put all reachable objects with the

right arm and then started transferring objects from the left side. This policy is of course

valid, however it would be more interesting to interleave the transfer of objects. This

can be done in two ways: i) modifying the reward strategy, or ii) modifying the arrival of

objects during the task (particularly for the right hand side). In this Chapter we follow

the first option, whilst the second is left for future work3. Therefore, if the left arm is

ready to transfer an object (armPositionleft = inTransfer), every option performed

by the right arm receives -5 units of rewards except for the option moveToTransfer. This

is to prioritise the transferring of objects, otherwise the right arm will first put all the

reachable objects and then start transferring objects from the left side. By prioritising,

both sub-tasks are interleaved.

7.3.1 Related Work

Most of the previous work in learning is related to multi-agent systems (Busoniu et al.

[258] provides a comprehensive survey of multi-agent reinforcement learning algorithms).

Guestrin et al. [259] developed a coordinated reinforcement learning approach for multi-

agent systems using Markov decision processes (MDPs), where each agent knows only

part of the complete state of the system. Thus, agents need to share information amongst

them. In our case, all motor systems belong to the same agent so the state of each motor

system is known to the others. Banerjee et al. [260] proposed an on-policy concurrent

reinforcement learning algorithm using MDPs for a multi-agent system in a competitive

games domain. As opposed to Guestrin’s model, here the agents know the state of the

3If objects stop appearing for a while on the right hand side, then the robot would have time to
transfer objects coming from the left hand. Thus the robot would learn how to interleave both sub-
tasks and the reward strategy would remain the same. The same arrival strategy must need to be
implemented during the execution phase.
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others. These models make use of MDPs which do not allow the modelling of temporally

extended actions as our approach does.

Our learning approach is similar to that of Rohanimanesh and Mahadevan [252], as

they also use the SMDP Q-learning algorithm. For the concurrent action model (CAM)

a single policy is learnt for all sub-tasks, but for their coarticulation model a policy is

learnt for each sub-task. However, as explained above, the coarticulation model does

not separate the motor systems explicitly as we do. Ghavamzadeh et al. [254] provides

an extension to CAM for multi-agent systems using SMDPs (MSMDPs). Furthermore,

the authors propose a hierarchical reinforcement learning algorithm which decomposes

the task in a similar way as our approach, but where sub-tasks are performed by agents.

This provides a more general learning framework than the one we follow. Sub-tasks

can be defined to be cooperative or non-cooperative. The framework is able to learn

the sub-task, their priorities and how they can be coordinated. In future work our gaze

control models could be integrated into this framework.

7.4 Executing the Task

Once the task is learnt the robot is now in charge of maintaining the visual memory

(as explained in Section 4.4), i.e. the robot has to look at the landmarks in order to

estimate their location by means of the gaze control strategies described in Section 4.5.

The robot executes the bimanual task in the same way as the pick & place task.

The key difference is the transfer of objects from the left to the right hand side. For

example, to transfer an object the robot should perform the following steps:

1. The left hand (having grasped an object) moves to the predefined transfer area

(using the option moveToTransfer), this sets armPositionleft = inTransfer

and leftTransferStatusright = ready, thus notifying the right arm about the

state of the left arm. Since the transfer area has been predefined, the left arm

knows exactly where to move. Also, as mentioned in Section 7.2, whilst the left

arm moves to the transfer are the palm changes its orientation so that it ends
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up facing upwards. In this way the object being grasped by the left hand can be

picked up by the right hand (see Figure 7.1).

2. Once the right arm notices that the left arm is ready to transfer an object, it will

“try” to move to the transfer area (using the option moveToTransfer). In this

case the right arm must estimate the location of the object to be transferred by

looking at it (in the same way as objects on the table are grasped). Only if the

right hand reaches the object to be transferred correctly (i.e. the hand’s centre

lies within certain threshold value with respect to the object’s centre, as explained

in Section 4.4.2), then it sets the state variables armPositionright = inTransfer

and rightTransferStatusleft = ready, to notify the left arm.

3. Only when both arms are ready to transfer the object (rightTransferStatusleft =

ready and leftTransferStatusright = ready) is grasped by the right arm and

released by the left.

In terms of the gaze control strategy, the only difference with the pick & place

task is that in this case both arms share one fixation location, i.e. the object to be

transferred. However, the fixation selection process for our three strategies remains the

same as before. Next we present and discuss the results of an experiment where the

robot performs the bimanual task.

7.5 Results

In order to test the bimanual task, a similar experiment to the one described in Section

5.2 was performed. Here, the sensitivity in the manipulation actions was varied with

three threshold values: 0.5, 1.0 and 1.5 cm. Figure 7.3 shows the average number of

objects correctly placed in the right container for all five gaze strategies. A total of 10

trials of 5 minutes each were performed for each gaze strategy. The observation noise is

set to 1.0 and the FoV is set to 60°x40°. The error bars in the graph represent the 95%

confidence intervals.
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Figure 7.3: Results for the bimanual task when varying the reach/grasp sensitivity, with
observation noise = 1.0 and field of view = 60°x40°. The top graph shows the task performance
and the lower graph shows the proportion of actual performance compared to the best case
for each strategy. The error bars represent the 95% confidence intervals.

Similar to the results obtained in Section 5.2, the performance of all gaze strategies

drops as the sensitivity increases. In terms of task performance the Rew+Unc gaze

scheme outperforms all other strategies, whilst the second best is the Rew+Unc+Gain

gaze strategy, for the threshold values of 0.5 and 1.0 cm. For the value of 1.5 cm, the

Uncertainty gaze scheme is better than Rew+Unc+Gain. The lower graph of Figure 7.3

shows the proportion of actual performance compared to the best case for each strategy.

This determines the robustness of the gaze schemes to changes in the sensitivity values.

In this case the Rew+Unc gaze strategy is the most robust to changes in the threshold

values, closely followed by the Rew+Unc+Gain gaze scheme.

The two-way ANOVA test was used with the threshold values and gaze strategies as

factors. For both factors the differences are statistically significant at p <.0075. Then,

using the two-tailed unpaired t-test, the results of the Rew+Unc+Gain gaze strategy

were compared against the rest of the schemes. For the threshold value of 0.5 cm,

all differences are statistically significant at p <.005, except against the Rew+Unc gaze

strategy. For the threshold value of 1.0 cm, the differences for Random and Round Robin

are statistically significant at p <.0007, except when compared against the Rew+Unc
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Figure 7.4: Average number of objects transferred under each gaze control strategy. The
error bars represent the 95% confidence intervals.

and the Uncertainty strategies. Finally, for the threshold value of 1.5 cm only the

difference against Random is statistically significant at Random at p <.003.

7.6 Discussion

The results show that in terms of task performance and robustness the Rew+Unc gaze

strategy is better than Rew+Unc+Gain. However, a careful examination of the results

reveal some interesting points that need to be taken into consideration.

Even though the transfer of objects was learnt to be a priority (Section 7.3), it turns

out that the behaviour of the Rew+Unc gaze scheme disregards almost completely the

transfer of objects4. Figure 7.4 presents the average number of objects transferred under

each gaze strategy. Notice that the Rew+Unc strategy transfers the least number of

objects and just a few of them on average. In fact, for the threshold values of 0.5 and

1.0 cm there is only one transfer per trial. By favouring only one arm its performance

increases with respect to the rest of the strategies, since passing of objects takes more

time. This behaviour emerges because, as explained in Section 5.2.2, this gaze scheme

is likely to look more often at landmarks with high predicted value. As the object to be

transferred becomes more uncertain because it is not fixated, then its predicted value

4During the learning phase the number of objects is limited to 10, and since the task is accomplished
until after all objects are put in the container, then the robot has to transfer objects. On the other
hand, during the execution phase objects keep appearing on the table every minute, every time an
object is put in the container, or every time an object falls from the table. This means that the right
arm can continuously find new objects to manipulate, so no transfer is necessary to continue the task.
This is why the Rew+Unc gaze scheme can disregard the transfer of objects.
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drops, therefore it might be the case that the gaze strategy will never choose to look at

that object.

There are two ways in which these results can be analysed: i) in terms of task perfor-

mance, and ii) in terms of the balance of workload between the arms. First, if only the

task performance is taken into consideration, then the Rew+Unc gaze strategy provides

the best overall performance. It is interesting to see that following the Rew+Unc scheme,

the robot exploits the fact that all objects yield the same value. Therefore, it makes

sense to use only one arm since it can place objects faster in the container. However, if

the results are analysed in terms of the workload of each arm, then the Rew+Unc gaze

strategy is actually the worst. From Figure 7.4 it is clear that the Rew+Unc scheme

transfers the least number of objects in average per trial. Therefore, if we were to look at

the average number of transferred objects as well the task performance, then we might

conclude that the Rew+Unc+Gain and the Uncertainty schemes produce better results.

7.7 Conclusions

This chapter examined the behaviour of our models of gaze control in a bimanual task,

which is a variation of the pick & place task employed in previous chapters of this thesis.

The bimanual task allows for the transfer of objects from the left hand to the right. This

action is considered to be concurrent as both hands interact with each other in order

to successfully achieve the transfer. The aim of the chapter was not centred on the

concurrent coordination of the manipulation motor systems, but on the gaze control

analysis.

Even though the task was learnt in such way that the transfer of objects had higher

priority, our results suggest that the behaviour of each gaze control strategy determines

the number of objects being transferred. This situation also emerges because all objects

provide the same value. It was found that the Rew+Unc gaze strategy had the best

overall performance. However, closer examination showed that the workload of each

arm under the Rew+Unc scheme is not balanced, as only around 1 object is transferred
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per trial. This means that the right arm is doing all the work. Therefore, if we take into

account the average number of transferred objects, then we might conclude that the

Rew+Unc+Gain and the Uncertainty schemes yield a more balanced workload between

the two arms.

As mentioned above, during the learning phase there are other ways in which the task

could be learnt. One way we discussed is that instead of changing the reward function,

we can modify the way in which objects arrive during the task. In fact, the workload can

be somehow controlled by changing the arrival of objects. Therefore, we can hypothesise

that the workload resulting from the Rew+Unc scheme could be balanced. Thus, it may

be possible to compare all gaze strategies in terms of task performance alone.
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Chapter 8

Analysis of Human Gaze Data

So far, our candidate models of gaze control have been characterised and analysed

following an engineering approach. One of the main conclusions has been that the model

of gaze control based on rewards, uncertainty and gain (Rew+Unc+Gain) (formulated in

Section 4.5.3) is the best option in terms of task performance and robustness, in terms to

three environmental variables (Chapter 5), compared to our two other candidate models

(Rew+Unc and Uncertainty schemes). However, it is also one of our main interests to

determine whether or not our candidate gaze control models are able to reproduce

behavioural human data.

This chapter presents the results obtained for the simulation of a psychophysical

experiment devised by Johansson et al. [1] to study the eye-hand coordination in humans.

Thus, this chapter starts by explaining Johansson’s task in detail. Then, a description

of how the same task is modelled and implemented in the iCub simulator is provided.

Finally, a comparison and analysis of the results obtained with our candidate models of

gaze control and the behavioural data presented by Johansson et al. [1,8] are discussed.

8.1 Johansson’s Task

Chapter 3 presented an account of the several psychophysical experiments that try to

understand how gaze and actions are coordinated by humans. Tasks such as, copying

blocks [21], sorting virtual objects [23], sorting clothes [107], making a jelly sandwich
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Figure 8.1: Schematic view of the manipulation task as defined in [1] (Figure taken from [8])
(Figure courtesy R. Johansson).

[113], making a cup of tea [109], playing cricket [114], playing squash [116] and driving

[22, 118], they all involve some kind of manipulation of objects and the control of gaze.

Of particular interest is the work of Johansson et al. [1], investigating the precise spatio-

temporal relationship between gaze and actions in a simple manipulation task. One

of the main findings was that gaze fixations specify landmark positions to which the

manipulation actions are subsequently directed. This supports the hypothesis that gaze

is deployed in order to guide manipulation actions.

Figure 8.1 shows a reproduction of the schematic view of the manipulation task as

presented in [1]. Subjects have to reach for and grasp the bar located on the table.

Then they have to move the bar and touch the target switch with the tip of the bar

whilst avoiding the obstacle in the middle of the path. After touching the target, the

bar had to be placed again on top of the support surface. The task is divided into

the following six action phases: pre-reach, reach, load & lift, target switch, replace &

unload, and reset (these phases are illustrated in Figure 8.1). The proposed fixational

landmarks were defined by looking at the places where subjects fixated the most during

the performance of the task. These places are represented by the coloured ellipsoids

in Figure 8.1, where its shape determines the extension at which subjects fixated on

that particular area. Based on these coloured areas, there are five proposed landmarks:

the bar, the tip of the bar, the obstacle, the target and the support surface. For our

simulation, the same action phases and landmarks are considered.
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Figure 8.2: The setup for the simulation of Johansson’s task defined in a discrete state space.

8.2 Simulating the Task

Following the same procedure as in Section 4.1, the task is first modelled using a dis-

crete state representation, which is defined in Table 8.1. Figure 8.2 shows a graphical

representation of the values for the state variable armPosition. Notice that this task

requires the use of only one arm (right arm), thus only Sright arm needs to be defined (as

opposed to the pick & place task used so far in the thesis).

Table 8.1: Factorised state space for Johansson’s task

State Variable State Value

armPosition {onTable, onBar, onTarget, onPos1, onPos2,
onPos3, onPos4, onPos5, onPos6, onSupport}

handStatus {graspingBar, handEmpty}
targetStatus {targetTouched, targetUntouched}

The set of options available for the right arm (Oright arm) is defined in Table 8.2. Next

to each option is the average completion time in seconds, and its standard deviation.

These time values are assumed to be the same as those used in the pick & place task

defined in Section 4.1. Recall that to obtain these time values for the pick & place task

we executed all options in sequence for 60 minutes. Because the location of objects is not

discrete, the completion time for each manipulation action varies. This variation results

because actions do not start exactly from the same position at all times. However,

because the workspace in the pick & place task and Johansson’s task is similar we

consider that all the moveToX options are the same as the option moveToObject from

the pick & place task. The option moveToObject can move short distances (e.g. when
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an object is next to a container), or not so short distances (e.g. when an object is in

the table’s centre, the farthest from a container). Thus, this option already summarises

different distances that are similar to the different positions in Johansson’s task (shown

in Figure 8.2).

Table 8.2: Options for the right arm (Johansson’s task).

Options Avg. completion time (secs) Stand. deviation

moveToBar, moveToTarget, moveToPos1,
moveToPos2, moveToPos3, moveToPos4, 2.65 0.56

moveToPos5, moveToPos6
graspBar 2.87 1.08

releaseBar 1.0 0.2
noAction 0.01 -

The visual memory is implemented in the same way as in Section 4.2. The only

difference is that the landmarks ei used in this task are the bar, the tip of the bar,

the obstacle, the target and the support surface. Associated with each landmark is its

location distribution defined by pos(ei), and represented by a particle filter. In this

respect, the location uncertainty of the bar and the support surface are treated in the

same way as the objects and containers from the pick & place task. However, the

location uncertainty of the tip of the bar, the obstacle and the target is treated slightly

different. As explained in Section 8.1, the bar needs to avoid the obstacle and then

touch the target. Therefore, the robot needs to estimate the distance between the tip

of the bar and the obstacle, and the tip of the bar and the target, respectively. This

is achieved by looking at the tip of the bar and then the obstacle (or the target) to

estimate their respective location first and then their relative distance1.

Once the task has been modelled, the robot learns to perform the task via reinforce-

ment learning, in the same way as explained in Section 4.32. Learning takes place under

the assumption of complete observability, i.e. the visual memory contains the complete

1Rather than looking at one landmark first and then the other, we could try to estimate the distance
between both landmarks in one fixation. However, we follow the former approach because our visual
memory has been defined in such way that each landmark is associated with a particular particle filter.
To consider the latter approach we would have to associate one particle filter to multiple landmarks.

2Section 4.3 explained how a special computational learning programme was implemented separately
from the iCub simulator in order to learn the task. Here the same learning programme was modified
in order to learn Johansson’s task.
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Figure 8.3: The robot performing Johansson’s task in the iCub simulator and the current
fixation point.

list of landmarks and their true location. Again, a minimal time-to-goal strategy is

followed. For any option taken the robot receives -1 units of reward, and 0 units of re-

ward when the task is completed, i.e. when the robot puts the bar back on the support

surface. The only special case that needs to be considered for this task is that the robot

must have touched the target switch with the bar in the middle of the task. If the bar is

placed on the support surface but did not touch the switch then the task is considered

a failure. Figure 8.3 shows a snapshot of the robot performing the task.

During the execution phase the robot is in charge of maintaining the visual memory,

i.e. it has to fixate the different landmarks in order to estimate their locations by means

of the gaze control strategies described in Section 4.5. As mentioned above, only by

reducing the location uncertainty of the tip of the bar, the obstacle and the target, the

robot will be able to safely avoid the obstacle and touch the target switch, respectively.

8.3 Results

We begin this section by presenting the results obtained by Johansson et al. Then we

present and compare the results from our gaze control models from a qualitative and

quantitative perspective.
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8.3.1 Johansson’s Results

Figure 8.4A shows the results obtained by Johansson et al. [1]3. The data was collected

from 10 human subjects, each performing 4 trials. The graph presents the probability

of fixating on a given landmark during each action phase (the colours correspond to

the coloured areas shown in Figure 8.1). The horizontal line represents time, and the

length of each action phase represents its median duration, calculated from all the trials.

Subjects performed a median of 16 fixations per trial, and the median total duration of

the task was 7.8 seconds.

8.3.2 Qualitative Comparison

The same procedure as explained by Johansson et al. [1] was followed in order to define

the duration of the action phases. A total of 20 trials were performed for each of our gaze

control strategies, where the reach/grasp sensitivity was set to 1.0 cm, the observation

noise to 1.0, and the FoV to 60°x40°. This means that we used an unmodified version of

the observation model (Section 4.4.1.1), and the FoV that is the default in the simulator.

Figure 8.4 compares the results of the human data (A) provided by Johansson et

al. along with our three candidate gaze strategies (B-D), and Random and Round

Robin schemes (E, F). The first thing to notice is how the Rew+Unc+Gain (B) and

the Rew+Unc (C) gaze strategies produce the same relative ordering of gaze and ma-

nipulation actions as the human data (A). A median of 8 and 8.5 fixations per trial

were performed by the Rew+Unc+Gain and the Rew+Unc schemes respectively, with

a median duration of the task of 42.7 and 42.5 seconds respectively. The second thing

to notice is that the rest of the gaze control strategies do not produce the same pattern

as the human data. Table 8.3 presents the median fixations per trial and the median

duration of the task for all gaze strategies and the human data.

3This graph is taken from [8] where the experiment was revisited. We use this graph as it summarises
all the results in a single plot, as opposed to the ones presented in the original paper [1].

158



Figure 8.4: A. Behavioural human data as presented in [8] (Figure courtesy R. Johansson). B.
Behavioural data obtained by the Rew+Unc+Gain gaze strategy. C. Data from the Rew+Unc
gaze strategy. D. Data from the Uncertainty gaze strategy. E. Data from the Random gaze
strategy. F. Data from the Round Robin gaze strategy. Action phases in the human data are
divided in bins of 100 msec, compared to bins of 2-3 sec in our graphs (See text for details)

Table 8.3: Statistics for Johansson’s task

Gaze Strategy Median fixations/trial Median task duration (secs)

Human Gaze 16 7.8
Rew+Unc+Gain 8 42.7

Rew+Unc 8.5 42.5
Uncertainty 22 59.5

Random 24 59.1
Round Robin 23.5 50
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8.3.3 Quantitative Comparison

In order to quantitatively compare our candidate gaze strategies with the human data

we make use of the Levenshtein distance (also known as edit distance) [261]. The

Levenshtein distance measures how different two string sequences are by determining

the number of edit operations that need to be employed to transform one string (st1)

into the other (st2). These edit operations are: insertion, deletion or substitution of a

single character. Thus, for each pair of characters belonging to each string (st1i, st2j)

the Levenshtein distance is obtained as:

Lev(i, j) = min



Lev(i, j − 1) + 1

Lev(i− 1, j) + 1

Lev(i− 1, j − 1)+

 0 if(i = j)

1 otherwise

(8.1)

Here the Levenshtein distance is used to measure the differences between fixation

sequences. According to the human data (Figure 8.4A), the most likely fixation sequence

that a subject may employ whilst performing the task is, to first look at the grasp site,

then at the tip of the bar, then the obstacle, the target, once again the obstacle, and

finally the support surface. This sequence is given by the peaks of each one of the

landmark’s probability distributions, as shown in the human data graph (Figure 8.4A).

By using a letter to represent each landmark, the human fixation sequence can be

encoded into the string: “gbotos” (e.i. grasp site (g), bar tip (b), obstacle (o), target

switch (t), support surface (s)). Based on this string, the Levenshtein distance of each

trial is calculated, and the results for each gaze strategy are averaged.

Table 8.4 shows the average Levenshtein distance for all the gaze strategies. The

values closer to zero represent a closer similarity to the original sequence, which is the

case for Rew+Unc+Gain and Rew+Unc gaze strategies. Figure 8.5 presents the same

averages graphically, where the error bars represent the 95% confidence intervals. A

one-way ANOVA test was used with the gaze strategies as a factor. The differences are

statistically significant at p <.0001.
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Table 8.4: The averaged Levenshtein distance for all gaze control models.

Gaze Strategy Levenshtein distance

Rew+Unc+Gain 1.55
Rew+Unc 1.85

Uncertainty 18.45
Random 24.45

Round Robin 17.3

Figure 8.5: The averaged Levenshtein distance for all gaze control strategies. The error bars
represent the 95% confidence intervals.

8.4 Discussion

The Rew+Unc+Gain and the Rew+Unc gaze strategies (Figure 8.4B and C) produce

the same gaze pattern because for this particular task there are no differences between

them. As explained in Section 4.5.3, the only difference between these two schemes is

the way in which the gaze allocation problem is dealt with. As only one arm is used in

this task the gaze allocation problem does not exist. Thus, both strategies lead to the

same behaviour.

The Rew+Unc+Gain gaze strategy matches the same relative ordering of gaze and

manipulation actions as the human behavioural data. For example, notice how the

grasping contact event occurs after the grasping site has been fixated as in the human

data, with the same happening for the rest of the events. In the case of the resulting

statistical data, the robot performed a median of 8 fixations per trial, compared to 16

made by humans; and the median total duration of the task was 42.6 seconds for the

robot, compared to 7.8 seconds in humans (Table 8.3). As is expected, the robot is
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slower in terms of saccade execution and processing time. The robot takes on average

2 seconds to saccade, 0.65 seconds in deciding where to look, and depending on the

number of objects in the visual memory it can take from 0.01 to 0.07 seconds to update

the particle filters. This is in contrast to saccades made by humans that can take as

little as a few milliseconds.

The shape of the probabilities are different in both the Rew+Unc+Gain and the

human data graphs (see Figure 8.4A and B). In the case of the human data, every

fixation was assigned to a given landmark if the fixation landed close to that landmark.

However, the classification of some fixations was difficult to determine if they landed

between two landmarks or far from all of them. In our case, it is possible to know exactly

where the robot has decided to look. This is one of the reasons why our graphs present

a high fixation probability for some landmarks. For example, compare the probability

of fixating the obstacle by humans and the robot. The probability that humans fixate

the obstacle as the bar moves towards the target switch is just above 50%, whereas

the robot fixates the obstacle with a probability of 100%. Another reason is the effect

of peripheral vision in humans, Johansson et al. [1] reported that the task could be

achieved with no saccadic eye movements involved, although subjects reported that it

was more difficult. Nevertheless, this suggests that in some cases the landmarks do not

need to be foveated in order to accomplish the task.

Another notable difference between the human data and the rest of the graphs is

that the probabilities from the human data are more curved compared to our graphs.

The reason for this is the interpolation of the data points. Human subjects performed

more fixations per trial and also completed the task faster than the robot. So in order

to calculate the time of each action phase, the human data was divided into bins of 100

msec, whereas for our graphs the data was divided into bins of 2 to 3 seconds.

Recall that the behaviour of the Uncertainty gaze strategy is to fixate landmarks

where information uncertainty can be reduced (Section 4.5.1). By following this strategy

the robot tends to look at objects that are located far from each other. This is because

whilst the robot fixates on one object the uncertainty of the other, unseen objects,
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increases. This situation occurs during the Reach action phase (Figure 8.4D), where the

target zone is fixated and then gaze moves to the tip of the bar, which are on extreme

sides of the work space. Also, notice that the probability of fixating the obstacle is small.

This is because the obstacle is in the centre of the work space, constantly appearing in

the field of view, and in consequence getting updated in almost every fixation.

In the case of the Random gaze strategy, the likelihood of fixating some landmark

has almost uniform probability (Figure 8.4E). Finally, the Round Robin gaze strategy

shows a clear fixation pattern at the beginning of the task. However, by not getting

support from gaze the action phases fail at different times. Thus, the gaze pattern gets

distorted as the task progresses.

8.5 Conclusions

The main goal of this chapter was to determine the goodness of fitness of our candidate

models of gaze control to human behavioural data. This was achieved by simulating the

psychophysical task devised by Johansson et al. [1].

Our qualitative and quantitative results have demonstrated, that both the

Rew+Unc+Gain and the Rew+Unc gaze schemes reproduced the same relative ordering

of gaze and manipulation actions as the human data. However, it was pointed out that

because only one arm is employed in the task, the behaviour of the Rew+Unc+Gain

and the Rew+Unc gaze strategies is actually the same.

The results obtained by the Uncertainty gaze strategy reinforce our previous con-

clusion (Section 5.5) that ignoring task rewards for the control of gaze produces an

inefficient behaviour.

It is, of course, not possible to conclude that the Rew+Unc+Gain gaze control model

fully explains the human data. First, further experiments should be done where more

motor systems are employed in order to differentiate between the Rew+Unc+Gain and

the Rew+Unc gaze schemes. This can be done for example by: i) simulating psy-

chophysical tasks which involve two arms [107,108,113], or ii) possible experiments with
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varying rewards, where high reward landmarks have low positional uncertainty (HRLU )

and low reward landmarks high uncertainty (LRHU ); in this case Rew+Unc is expected

to favour the HRLU landmarks and Rew+Unc+Gain the LRHU landmarks. Second,

detailed experimental tasks should be devised in order to isolate and analyse the role

of uncertainty information and task rewards in humans (e.g. [11,26,36,130]). Neverthe-

less, our results suggest that gaze control models based on reward and uncertainty are

candidate models that are worthy of further analysis.
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Chapter 9

Conclusions and Future Work

This thesis addressed two questions: i) what mechanisms a rational decision maker could

employ to select a gaze location given limited information and limited computation

time during the performance of a task; and ii) how humans might select the next gaze

location. Previous work has suggested that human eye movement behaviour is consistent

with decision making mechanisms for fixation selection that are Bayes’ rational [11,12],

or that try to maximise reward [13,14]. This thesis investigates these claims further by

means of two goals:

1. Engineering science goal: Our primary goal was to formulate and characterise

principled methods for gaze control that deal with the problem of fixation selection

during the performance of manipulation tasks. Three one-step look ahead models

of gaze control were formulated. Our first model chooses the fixation location that

maximises the reduction of location uncertainty (Uncertainty scheme). Our second

model incorporates task rewards and selects the fixation that maximises the value

of performing an action by reducing location uncertainty (Rew+Unc scheme).

Our third model is similar to Rew+Unc but it maximises the gain that results

when a manipulation motor system is given access to perception (Rew+Unc+Gain

scheme). These models were implemented on a simulated humanoid robot, and

were characterised using two variations of a pick & place task.

2. Human behavioural goal: Our secondary goal was to compare our models of
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gaze control to human data to determine whether or not our models could provide

some insights into how humans select fixation locations. This was done through

the implementation of a third manipulation task based on Johansson’s task [1].

9.1 Main Results

Throughout the thesis our three models of gaze control were characterised and compared

in terms of task performance in three manipulation tasks. In order to have a common

baseline for comparison, two more gaze strategies were implemented: Random and

Round Robin. This section presents our main results1:

1. Based on the models of gaze control presented in this thesis, perhaps our main

conclusion is that, models that incorporate both rewards and information uncer-

tainty perform better in manipulation tasks, compared to models that employ

information uncertainty only or that are based on heuristics (e.g. Random and

Round Robin). This, of course, does not rule out the possibility that other models

of gaze control may provide better performance. Still, it is clear from our ex-

periments that reasoning about rewards and information uncertainty provides an

elegant and efficient method for the selection of fixation locations.

2. Our Rew+Unc+Gain gaze strategy has, in general, the best overall task per-

formance in terms of sensitivity in the manipulation actions, observation noise

and changes to the field of view (FoV). The difference between this model and

Rew+Unc is the way in which gaze is allocated to a manipulation motor system.

Thus, this suggests that allocating gaze by calculating the gain that each manip-

ulation motor system may receive is an efficient solution.

3. On the other hand, the performance of the Uncertainty gaze strategy is, in general,

similar to that of Random and Round Robin. Reasoning only about information

uncertainty might be good for purely information gathering tasks (e.g. visual

1For more specific discussion please refer to the conclusions section in Chapters 5, 6, 7 and 8.
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search). However, when the agent/robot is expected to perform a physical task

(e.g. manipulation tasks), controlling gaze based on information uncertainty only

is, in most cases, sub-optimal.

4. As explained in Section 3.2.3.3, our gaze control models build from the work of

Sprague and Ballard [7, 43]. However, there are key differences with respect to

our models: i) we deal with the problems of where to look and gaze allocation

together (Section 1.3), ii) we consider a separate oculomotor system to direct gaze

to specific locations, iii) we consider multiple manipulation motor systems, iv) we

consider manipulation actions with variable duration, v) our gaze control models

reason about the remaining uncertainty that would result after a fixation location

is selected, as opposed to Sprague’s model that assumes that all uncertainty dis-

appears after a fixation is made, vi) we incorporate an active visual search process

into the gaze control mechanism. Because of these differences it is not possible to

compare directly our models to Sprague’s model.

5. One of the main conclusions from the characterisation of the models (Chapter

5) was that an efficient visual search process should be considered in order to

maintain the performance and robustness of the Rew+Unc+Gain gaze scheme to

changes in the FoV. Most works have only dealt with the visual search problem

in isolation. Here we argue that, in many circumstances, visual search should be

carried out at the same time as other task(s) are being performed by the agent.

This situation brings up the problem of how to integrate visual search into the

gaze control process.

6. The active visual search approach we formulated in this thesis helped the robot to

increase its performance and robustness to changes in the FoV (Chapter 6). We

could argue that the way in which the agent decides whether or not to execute a

visual search action (i.e. by calculating the visual search gain) might generalise to

other kinds of tasks. Nevertheless, the search strategy was formulated specifically

to the pick & place task, and in consequence it is not expected to generalise to
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other kinds of tasks.

7. Our models were also tested in a bimanual task, that extends the pick & place task

by forcing the robot to transfer objects from one hand to the other, as one of the

containers was removed (Chapter 7). Bimanual actions are interesting from the

point of view of manipulation motor control because a coordination mechanism

should be implemented. In this thesis, however, our interest was mainly in the

behaviour of the gaze controller. Typically, bimanual actions would make the

robot’s arms share at least one fixation point. In terms of gaze control, that the

motor systems share fixation points is convenient because, in some instances, the

gaze allocation problem might even disappear.

8. The relative ordering of gaze and manipulation actions produced by existing be-

havioural human data [1] was compared against the behaviour produced by our

gaze control models. Only the Rew+Unc+Gain and Rew+Unc gaze schemes were

able to match the human data. This provides further evidence that rewards and

uncertainty allow for better gaze control mechanisms. Of course, how humans

select the next fixation location is still an open question that requires further

research and interdisciplinary collaboration.

9.2 Future Work

Throughout the presented research work we had to make several assumptions and sim-

plifications in order to focus on the gaze control problem. Therefore, there are many

ways in which the current work can be extended. This section discusses several of these

possible extensions organised as follows: i) the formulation of new models of gaze con-

trol, ii) the implementation of our proposed models in a real humanoid robot, iii) the

implementation of visual processing algorithms into the current system, iv) the imple-

mentation of other tasks, v) the design of psychophysical experiments to understand the

importance of rewards and uncertainty, and vi) the discussion of further extensions.
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9.2.1 New Models of Gaze Control

One of the most important things to be done is to formulate additional models of gaze

control for comparison with the ones presented in this thesis.

9.2.1.1 Models Based on Current Information

This thesis focused only on one-step lookahead gaze control models. This allowed us

to formulate the three present models based on rewards and for uncertainty. One clear

extension is to formulate models that use only the current or present information, rather

than a one-step lookahead prediction. It is possible to identify three such models of gaze

control:

� Gaze control based on current uncertainty: Instead of predicting the reduc-

tion in uncertainty one-step ahead (as our uncertainty gaze scheme), this model

could select the next fixation location using the current location uncertainty about

landmarks. The model would simply choose to fixate the landmark with the cur-

rent maximum uncertainty in order to minimise it.

� Gaze control based on reward: This is a very interesting model since un-

certainty is not taken into account. The model would choose to fixate the most

rewarding landmark every time step. This can be done by using the learnt action-

value function (i.e. the Q-values). For some tasks, such as the pick & place task,

by disregarding uncertainty several objects may have the same expected return

and the model might have to select one randomly.

� Gaze control based on reward and current uncertainty: This model reasons

about rewards and the current uncertainty together. For example, if an object has

high location uncertainty then its value will be small (as explained in Section 1.5).

On the other hand, if the location uncertainty is low then the value of the object

will be closer to the one given by the current Q-value associated with that object.

One possible issue with this model (that needs to be verified) is that, if the robot

happens to fixate a non-relevant object (because the rest have high uncertainty
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and their values are small), then it might remain fixating that object forever since

the uncertainty of the others will never get reduced. If this issue happens it could

be handled with heuristics.

Characterising and comparing these models using the same experiments presented

in this thesis would allow us to determine whether or not one-step lookahead models are

better than models using current information alone.

9.2.1.2 N-Step Lookahead Models

The next extension would be to formulate models able to make predictions more than

one step into the future. The implementation of these models is not as straightforward as

the previous ones. Here, it is necessary to predict the value of a sequence of manipulation

actions. This is more complex and is likely to take longer periods of decision time.

For example, from a psychophysical perspective, experiments such as the tea-making

task [109] reported that subjects performed fixations with the goal of localising objects

for future use.

It is difficult to say whether the use of n-step lookahead models using the manipula-

tion tasks presented in this thesis would result in higher performance. The workspace of

our manipulation tasks is too small and the number of landmarks that the robot keeps

in visual memory is not too large. Therefore, it is likely that the benefit of making

predictions n-steps into the future will be small or nonexisting. Other kinds of tasks

would have to be devised in order to test this benefit.

9.2.1.3 Saliency Based Models

All the previous models are still based on rewards and for uncertainty. However, it is also

important to compare to models that have a different way of selecting fixation locations.

For instance, models that decide where to look based on bottom-up saliency [145]. This

kind of model does not use task information so it it could work as a common baseline

(as Random and Round Robin do) [262].
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9.2.1.4 Multiple Sources of Uncertainty

Formulating new models of gaze control is important for testing and comparison. How-

ever, another significant extension is within the models themselves. Our proposed mod-

els employed only a single source of uncertainty, namely the locations of objects. How-

ever, in real-world tasks there are multiple sources of uncertainty associated with the

objects, and the robot should be able to deal with them as well (e.g. the object’s size,

colour, shape, category, etc.).

The gaze control models should be able to integrate these sources of uncertainty,

and then use such information in order to decide the next fixation location. This may

involve the creation of different observation models for each object property. By handling

multiple sources of uncertainty, the gaze models could be employed for a larger number

of tasks.

9.2.1.5 Reward Strategy

As explained in Section 4.3, our pick & place task assigns the same reward to all objects.

Further experiments can be performed with variations of the reward strategy. For

instance, red objects could be assigned higher reward. This goes hand-in-hand with

the types of tasks we would like the robot to perform. For example, a sorting task

where objects are grasped according to their shape or colour. These experiments could

help us to further differentiate between our Rew+Unc+Gain and Rew+Unc schemes.

9.2.1.6 Active Visual Search

As mentioned in Chapter 6, there can be further extensions to our current active visual

search process. First, the search strategy, defined in Section 6.3.2, could be more effi-

cient. Instead of resampling the particles every time a visual search action is executed,

it would be more efficient to select the view point that contains more particles. If an

object is not found in that view point, then those particles are deleted, so that the next

view point is again the one that contains the most particles. Once an object is found

the particles can be redistributed again across the table. Second, the number of objects
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to search for could vary, rather than be restricted to just one object. To do this, the

robot would need to reason about the gain to be obtained by knowing about two or

more objects.

9.2.2 Real Robot Implementation

In order to fully characterise and test our proposed models of gaze control, they should

be implemented in a real humanoid robot. To accomplish this, several issues need to be

taken into account:

� The robot: Since our current system has been implemented using the iCub

simulator, a logical step is to use a real iCub robot [54] to test our models. Even

though the simulator employs the same controllers as for the real robot, there

are still several things that need to be taken care of and which are discussed

below. Another possibility is to port our current system to ROS (Robot Operating

System) [263], which offers a generic communication platform that would allow us

to test our models in different humanoid robots (e.g. Nao [264]).

� Oculomotor System: As explained in Section 1.2, we have assumed that the

robot was already able to control the oculomotor system. In fact, our focus was

just on saccadic eye movements and only one camera was employed. However,

an interesting extension could be to incorporate into our models the possibility to

perform smooth pursuit and vergence. In the case of vergence, we should extend

our system to consider binocular information [38].

� Observation model: It is not clear whether the observation model, defined in

Section 4.4.1.1 could also be used for the real robot. We suspect that, in fact, the

noise after triangulation is even higher in the real robot. Therefore, it is likely

that another observation model should be learnt.

� Environment: One of the best advantages of the simulator is the possibility of

manipulating the environment with ease. For instance, objects can appear during
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the execution of the simulation, and the precise coordinates of all objects are

available for testing purposes or to implement safety mechanisms. In the real

environment this is more difficult to achieve, thus we need to come up with ways

in which the same manipulation tasks can be performed by the real robot.

� Grasping: One of the biggest simplifications in this thesis had to do with the

problem of grasping. As explained in Section 4.1, the robot simulation employs a

magnet-like function for grasping objects. Further work needs to be done so that

both the simulated and the real robot are able to grasp objects [265].

� 3D Coordinates: Another simplification was that the locations of landmarks

were represented only by their 2D coordinates. This was mainly because the

table’s plane is known, so one coordinate is given to the robot. Nevertheless, the

robot should be able to reason about locations in 3D space [266]. This extension

is likely to affect the observation model and how grasping is performed.

9.2.3 Visual Processing

We pointed out in Section 4.4.1.1 that the simulator was directly used to detect land-

marks lying within the field of view. Therefore, no image processing was employed in

this thesis. Another logical extension is to integrate image processing techniques into

our current system.

� Object detection and recognition: At the moment, since we only keep track

of the location of objects, an object detection mechanism might be sufficient to

implement in our system. However, later on the robot might be required to keep

track of other object properties (e.g. size, shape, type, etc.), in this case object

recognition mechanisms should also be implemented [267]. The two main issues

that these algorithms would have to deal with are, real-time execution and occlu-

sions.

In addition, we may also require an object identification process. This process is

straightforward in the simulator, however this process should also be integrated if
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the system is to be implemented in the real robot.

No image processing technique is perfect, therefore the models of gaze control

would have to deal with the uncertainty generated by these visual mechanisms.

These are other sources of uncertainty besides those already mentioned above.

� Bottom-up saliency: Some of the work reviewed in Chapter 3 combined bottom-

up and top-down information for the selection of fixation locations. We could argue

that if the agent has specific tasks to perform then bottom-up information is not

required. However, it can also be argued that, a robot expected to perform in long-

term scenarios should include some sort of “curiosity” mechanism, and bottom-up

saliency may act as the trigger for such mechanism [268].

9.2.4 Tasks

The kind of tasks that the robot is expected to perform constrain much of the topics

that we have delineated above.

� Task decomposition: The formulation of our models of gaze control largely de-

pends on the way the task is decomposed and represented. This thesis followed

a two-level hierarchical task decomposition where the number of tasks was equal

to the number of motor systems. More levels in the hierarchy could allow the

robot to reason about other kinds of tasks, and different ways to organise its

motor systems [16, 252]. In particular, it would be interesting to use the hierar-

chical decomposition proposed by Ghavamzadeh et al. [254]. Even though their

decomposition is for multi-agent systems, it might be possible to be used for mul-

tiple motor systems. In addition, non-hierarchical representations could also be

explored.

� Selection of tasks: In this thesis we assumed that the robot can only execute

one task at a time. In long-term scenarios or for multi-purpose robots, this cannot

be the case. The robot should be able to perform a variety of tasks and select the

one more appropriate for the current situation [7].
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� Parallelism and concurrency: Building from the previous two points, a robot

should be expected to perform multiple tasks simultaneously in parallel or con-

currently2. This is specially expected from those robots with several degrees of

freedom (e.g. humanoid robots) [252] (or multi-agent systems [254]). The over-

all system, along with the gaze control mechanism, might need to be modified

depending on what the robot is expected to do.

� Types of tasks: In this thesis we have focused only on manipulation tasks, but

we could try to model other tasks such as a navigation task [7]. Nevertheless, there

are several variations that can be performed from our current pick & place task,

depending on some of the topics already covered. For example, sorting objects in

different containers according to colour or size, obstacles could be placed on the

table, containers could move, etc.

9.2.5 Human Behavioural Experiments

As reviewed in Section 3.1.2, some psychophysical studies have already provided evidence

that rewards and uncertainty are used for the control of gaze. Still, further experiments

could be devised in order to analyse the specific role of rewards and uncertainty in a

similar way to the gaze strategies presented in this thesis during manipulation tasks.

A further extension related to this topic is the possible implementation of our gaze

control models following neurocomputational algorithms [136,171].

9.2.6 Further Extensions

Finally, at least two more extensions can be incorporated into the current system:

� Information-gathering manipulation actions: Typically, manipulation ac-

tions are assumed to be performed in order to achieve some task. However, some

manipulation actions could be used to gather information about the environment.

2Both, parallelism and concurrency refer to processes that can be executed simultaneously. Parallel
processes do not depend on each other, so no interaction is needed. In contrast, concurrent processes
depend on each other for their correct execution, so normally a coordination mechanism is required to
control the processes.
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For instance, moving objects that occlude the robot’s view, or moving the robot to

different locations in order to get a better view of something [239]. These actions

are not part of the task but they could be essential to the successful achievement

of such task. Our system could be extended in order to allow this kind of action.

� Multi-sensory integration: The focus of this thesis and many other research

projects is vision alone. However, the integration of multiple sensory information

could provide much more information to the robot. For example, tactile and visual

information could be combined in order to reduce uncertainty about the location,

or other properties, of objects. It is likely that this integration would change the

way in which gaze is deployed, since the robot does not need to rely on visual

information alone [269].

9.3 Summary

This chapter presented a quick overview of the thesis, our conclusions, and future lines

of work. The primary goal of the thesis was to formulate principled methods for the

control of gaze. These models of gaze control were implemented in a simulated humanoid

robot, and they were characterised in terms of task performance during the execution

of three manipulation tasks. The aim of the gaze control models is to select fixation

locations based on rewards and for uncertainty. Our results demonstrated that these

kind of models provide an efficient way to decide where to look and how to allocate

gaze. We also demonstrated that those models based on rewards and uncertainty match

human behavioural data. Nevertheless, other ways in which location fixation can be

selected cannot be ruled out and further research is needed.
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Appendix A

Further Spatial Acuity Results

In Section 5.1 we presented an analysis that compared three different models of spatial

acuity in the field of view (FoV). The three noise models were defined as:

� Model 1 - Uniform spatial acuity: After the particle filter update, the stan-

dard deviation of the cloud of particles is measured. Normally distributed noise is

added to each particle with zero mean and standard deviation equal to the 10%

of the cloud’s standard deviation. Thus the particle filter adds noise that is mod-

ulated by the belief state, and noise can be the same across the visual field. This

noise is used to escape the local minima.

� Model 2 - Stepped spatial acuity: The same noise as in Model 1 is added

to the particle filter, to escape local minima. In addition, normally distributed

noise (zero mean and 1.0 cm of standard deviation) is added to those landmarks

inside the FoV but not in the centre of the camera (where we defined the centre to

cover 10°). This models two regions: i) the “fovea” (0°to 10°) having higher spatial

acuity, and ii) the “periphery” of the field of view (> 10°) having lower spatial

acuity. However, note that the spatial acuity is uniform across the “periphery” of

the FoV.

� Model 3 - Smoothly varying spatial acuity: Noise is added to each parti-

cle according to the bivariate Gaussian density that gives the observation model
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(Section 4.4.1.1) for that particle’s position in the visual field. By re-employing

the observation model in this way we are able to model a smooth fall off in spatial

acuity as we move from the centre of the field of view to the periphery.

Section 5.1 compared all three models in terms of variations of reach/grasp sensitiv-

ity. One of the main conclusions was that gaze control ceases to be important when the

FoV has a uniform spatial acuity. Therefore, we decided to use a non-uniform model

for all of our experiments. In this case we chose Model 3 as it offers a better way to dif-

ferentiate between our proposed models of gaze control. Furthermore, it is qualitatively

similar although not the same as inhomogeneity of the human eye. As discussed in

Section 5.1, Model 2 and 3 produce very similar results in terms of the difference in task

performance between the Rew+Unc+Gain gaze scheme and the two common baselines

(Random and Round Robin). Therefore, this appendix presents further experiments

that only compare Model 1 and 3 whilst varying the observation noise and the FoV.

A.1 Observation Noise

The observation model was scaled by the factors: 1.0, 1.5, 2.0 and 2.5. Figure A.1

presents the average number of objects correctly placed in the containers for the

Rew+Unc+Gain, Random and Round Robin gaze strategies, where reach/grasp sensi-

tivity is set to 1.0 cm and the FoV is 60°x40°. A total of 10 trials of 5 minutes each

were performed for each gaze strategy. The error bars in the graph represent the 95%

confidence intervals.

The results for Model 3 (Figure A.1B) are the same as those shown in Figure 5.5, but

here only the results of the Rew+Unc+Gain, Random and Round Robin gaze schemes

are presented. In this case the Rew+Unc+Gain gaze strategy outperforms the two

baselines and the overall task performance of all schemes decreases as the observation

noise accrues. In contrast, notice how for Model 1 the overall task performance remains

practically the same (Figure A.1A). Increasing the observation noise has no effect when

the FoV has uniform acuity. This further suggests that a single fixation obtains a
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Figure A.1: Effect in task performance when the FoV has: A) Uniform spatial acuity
(Model 1), B) Smoothly varying spatial acuity (Model 3); whilst the observation noise varies.
Reach/grasp sensitivity = 1.0 cm and the field of view = 60°x40°. The error bars represent
the 95% confidence intervals.

considerable amount of information that is not affected by extra noise in the observation

model. Once again, the benefit of choosing fixation locations disappears in Model 1.

The two-tailed unpaired t-test was used to compare the results of the Rew+Unc+Gain

gaze strategy against the two baselines for both noise models. Using Model 1, when

compared to Random the differences are statistically significant for all observation noise

factors at p <.009. However, when compared to Round Robin only for the first factor

(1.0) the difference is statistically significant at p <.013. Following Model 3, for all

factors the differences are statistically significant at p <.0001.
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A.2 Field of View

For this experiment we vary the horizontal and vertical angles of the FoV with the

values: (60°x40°), (50°x35°), (40°x30°), (35°x25°), and (25°x20°). Figure A.2 presents the

average number of objects correctly placed in the containers for the Rew+Unc+Gain,

Random and Round Robin gaze strategies, where the reach/grasp sensitivity is set to

1.0 cm and the observation noise is set to 1.0. A total of 10 trials of 5 minutes each

were performed for each gaze strategy. The error bars in the graph represent the 95%

confidence intervals.

The results for Model 3 (Figure A.2B) are the same as those shown in Figure 5.7, but

here only the results of the Rew+Unc+Gain, Random and Round Robin gaze schemes

are presented. In this case the Rew+Unc+Gain gaze strategy outperforms the two

baselines and the overall task performance of all schemes decreases as the FoV narrows.

This time, the overall performance when Model 1 is used also decreases as the size of the

FoV gets smaller (Figure A.2A). This is to be expected since having a uniform spatial

acuity does not eliminates the effect of a decreasing FoV. The benefit of a gaze control

strategy is slightly better as the size of the FoV determines the amount of information

to be captured. Nevertheless, the benefit is not as clear as with a non-uniform spatial

acuity.

The two-tailed unpaired t-test was used to compare the results of the Rew+Unc+Gain

gaze strategy against the two baselines for both noise models. Using Model 1, when com-

pared to Random the differences are statistically significant for all FoV values at p <.01,

except when the FoV is (25°x20°). When compared to Round Robin only for the first

two FoV values the difference is statistically significant at p <.02.

Following Model 3, for all FoV values the differences are statistically significant at p

<.0001, except when the FoV is (25°x20°) where the difference against Round Robin is

not statistically significant.
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Figure A.2: Effect in task performance when the FoV has: A) Uniform spatial acuity (Model
1), B) Smoothly varying spatial acuity (Model 3); whilst the field of view varies. The observa-
tion noise = 1.0 and the field of view = 60°x40°. The error bars represent the 95% confidence
intervals.

A.3 Conclusions

These experiments provide further evidence that a gaze control strategy for the selection

of fixation locations ceases to be important when the field of view has a uniform spatial

acuity. Therefore, in order to test our models of gaze control and the importance of

fixation task-relevant landmarks (i.e. moving the robot’s cameras so that landmarks

appear in the camera’s centre), we need to consider a field of view with non-uniform

spatial acuity.
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