
Extending the ‘Open-Closed Principle’
to Automated Algorithm Configuration

Jerry Swan jerry.swan@york.ac.uk
Dept. of Computer Science, University of York, UK.

Steven Adriænsen steven.adriaensen@vub.ac.be
Vrije Universiteit Brussel, Belgium.

Adam D. Barwell adb23@st-andrews.ac.uk
University of St Andrews, Scotland.

Kevin Hammond kevin@kevinhammond.net
University of St Andrews, Scotland.

David R. White david.r.white@ucl.ac.uk
Department of Computer Science, University College London, UK.

Abstract
Metaheuristics are an effective and diverse class of optimization algorithms: a means of
obtaining solutions of acceptable quality for otherwise intractable problems. The selec-
tion, construction, and configuration of a metaheuristic for a given problem has historically
been a manually intensive process based on experience, experimentation, and reasoning by
metaphor. More recently, there has been interest. In this paper, we identify shared state as
the inhibitor of greater automation in algorithm configuration. To solve this problem, we
introduce the Automated Open Closed Principle (AOCP), which lists design requirements
supporting reuse of algorithm frameworks and automated assembly of of algorithms from an
extensible palette of components. We demonstrate how the AOCP enables a greater degree of
automation than previously possible via an example implementation.

Keywords
Automated Design of Algorithms, Automatic Programming, Programming by Optimization,
Metaheuristics, Functional Programming, Ant Programming, Search Based Software Engi-
neering, Systems Self Assembly.

1 Introduction

Metaheuristics define families of algorithms for obtaining acceptable solutions to hard opti-
mization problems. Each metaheuristic defines a general framework for optimization that
must be tailored to individual applications in order to exploit domain-specific information
or to incorporate novel search mechanisms. A practitioner must select an appropriate meta-
heuristic, customize it in terms of its constituent components — such as functions implement-
ing perturbation operators or termination criteria — and specify many parameter settings.
For example, they may select a suitable heuristic for recombining two solutions to produce an-
other solution, or set the rate of crossover in a Genetic Algorithm (Luke, 2013). The practitioner
is thus faced with a meta-optimization problem in the design space of metaheuristics.

To solve this manual design problem, practitioners have previously relied upon anecdotal
evidence, trial-and-error methods such as ‘one factor at a time’ parameter tuning and ‘rea-
soning by metaphor’. This has led to a plethora of algorithms, components, and parameters,

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/162928613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

divided into separate research silos. As new extensions are made to existing algorithms, the
design space continues to expand; concepts from one family of metaheuristics are reinvented
elsewhere (Weyland, 2010). This manual process of development is fundamentally ad hoc,
does not promote reusability of components or separation of concerns, and does not scale.

The development of flexible frameworks that facilitate the reusability of components,
the incremental design of metaheuristics, and ultimately the automation of this manual
design process, is thus an important challenge for metaheuristics research. Whilst related
work such as ‘Programming by Optimization’ (Hoos, 2012) and configurators (Hutter et al.,
2009; Ansótegui et al., 2009; Hutter et al., 2011a; López-Ibáñez et al., 2016) have supported
the optimization of algorithm parameters and even the exploration of restricted combinato-
rial design spaces (KhudaBukhsh et al., 2009; López-Ibáñez and Stützle, 2012; Mascia et al.,
2014; Adriaensen et al., 2014; Bezerra et al., 2016), they are limited in their generality by the
prevalence of state dependencies between components; new components cannot be added
without modifying the grammar that is provided to a configurator and/or changing the call
graph between components. It is these state dependencies that prevent a clean separation of
concerns in metaheuristic design.

In this paper, we identify state dependencies as the major obstacle to the incremental
assembly of metaheuristics, and describe the Automated Open Closed Principle, a solution to
this problem which uses principled state threading to manage state dependencies. We describe
an implementation for an example metaheuristic application. Our main contributions are as
follows:

1. We identify state dependencies as the main obstacle to composition and reuse of compo-
nents, and the eventual automation of metaheuristic design.

2. We propose the Automated Open Closed Principle (AOCP) to overcome this obstacle.

3. We provide an example implementation using functional programming constructs that
demonstrates the efficacy of the AOCP.

4. We discuss the other advantages of following the AOCP in automated metaheuristic
design.

2 State Dependencies between Metaheuristic Components

Given the role of metaheuristics as generic problem solving strategies, there is a natural
desire to parameterize metaheuristic frameworks by a relatively small number of components
such as perturbation operators, selection methods, and termination criteria. As discussed
in detail in subsequent sections, a genuinely clean separation of concerns (both between
framework and components and between components themselves) is difficult to obtain
because of state dependencies. In particular, the lack of a principled means of handling such
dependencies has inhibited progress towards automated assembly, particularly at larger scales.
This problem is particularly acute when considering the addition of new components to an
existing system, whereby the original system must be modified to allow for their inclusion.
This modification violates the ‘Open-Closed principle’ (OCP) of framework design (Larman,
2001): an implementation should be closed to modification but nonetheless open to extension
via custom components. Crucially, it inhibits reusability of components and forestalls the
possibility of the automated exploration of the design space.

As a concrete example of this difficulty, Listing 1 gives a simple local search framework that
allows for three design decisions, viz. the choice of perturbation, acceptance and termination
conditions. Each specific triple of components (perturb, accept, isFinished) used to configure

2 Evolutionary Computation Volume x, Number x

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

def localSearch(incumbent: Sol,
perturb: Sol => Sol,
accept: (Sol,Sol) => Sol,
isFinished: Sol => Boolean): Sol {

while(not finished(incumbent))
incumbent = accept(incumbent, perturb(incumbent))

return incumbent;
}

Listing 1: Local Search framework parameterized by design choices

the framework corresponds to a specific local search algorithm. This allows us to concisely
specify a large design space as the Cartesian product of alternative design decisions, and
also exposes the relationship between different designs in terms of decisions that they have
in common. We can further generalize by parameterizing each component in turn by its
own design choices. This design space could be automatically explored using a configurator
approach; configurators typically require a grammar to be provided in a configuration file,
which would necessitate a second specification of this design space.

To permit the substitution of different choices for each component, they must conform
to a well-defined interface. In practice, this usually implies a ‘one-size fits all’ function sig-
nature: in our example, perturbation is assumed to have type Sol → Sol. However, suppose
we now wish to incorporate a further heuristic that requires information about the search
trajectory, for example through a tabu list of solutions that prevents the resampling of those
previously encountered (Glover and Laguna, 1997). Not only must the configurator grammar
be extended to include the possibility of different tabu mechanisms, but we must also change
the implementation of local search to keep track of the trajectory. This clearly violates the OCP.

In Listing 2, we give an updated version in which a list of previous incumbent solutions is
denoted by [Sol].

def localSearch(current: Sol,
perturb: (Sol,[Sol]) => Sol,
accept: (Sol,Sol,[Sol]) => (Sol, [Sol]),
finished: (Sol,[Sol]) => Boolean)
: Sol {

history = []
while(not finished(current, history))

(current,history) = accept(current,perturb(current,history),history);

return current;
}

Listing 2: Explicit incorporation of solution history

The modified implementation now supports solution-based tabu mechanisms, but we
will incur further violations of the OCP if we wish to incorporate components with new state
dependencies, for example:

• Metropolis-Hastings acceptance, which requires the delta of fitness values (Kirkpatrick
et al., 1983).

• Perturbation with a tabu operator (e.g. permutation indices) (Glover and Laguna, 1997).

Evolutionary Computation Volume x, Number x 3

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

• ‘Simulated Annealing with reheating’ (Luke, 2013), in which the acceptance criterion and
the reheating procedure need access to the value of temperature.

Explicitly incorporating all of these features, merely because some component may require
it, is computationally expensive and does not scale. More importantly, it simply cannot be
anticipated in advance what information will be required by some component that is yet to be
devised. In order to accommodate this, we need a generic way of providing extrinsic state, i.e.
(potentially shared) state that is maintained across component invocations, but which does
not appear in the signature of component interfaces.

In the case of most existing metaheuristic implementations, extrinsic state is represented
in an essentially ad hoc manner by passing references to shared state between components (e.g.
via non-local variables). This is problematic for automated assembly, as explicit representation
of these shared variables must be propagated through the call graph of the implementation,
connecting components to the objects that they use. Furthermore, any variables that are
declared in an ad hoc way throughout the implementation must be gathered manually in
order to present them to a configuration tool.

We now discuss our approach to solving this problem.

3 The Automated Open-Closed Principle

The ‘Open-Closed Principle’ is usually ascribed to (Meyer, 1988) and states that frameworks
should be ‘open’ in the sense of being extensible via the addition of new components, but
‘closed’ in that they do not require framework modification to achieve this.

The principle is typically expressed in terms of substitutability: the components are
required to conform to established behaviors known a priori to the framework. The notion
of component substitutability that suffices for conventional software development is that of
‘observable behavior’, typically defined by an interface that a component conforms to, along
with ‘contracts’ that specify pre- and post- conditions on component functionality (Liskov,
1987). A simple example of a component contract in metaheuristics is that the return value of
accept: Sol × Sol → Sol should be equal to one of its arguments.

However, since new components may introduce new state dependencies, the OCP is
insufficient to support flexible incremental assembly of metaheuristics from component parts.
For example, an annealing mechanism that is used as a component in a local search algorithm
may have a dependency on a temperature variable. In our example in Section 2, such the
introduction of new state dependencies requires manual propagation of the additional state
through the call graph. We therefore propose an extension of the OCP for automated assembly
to yield the ‘Automated Open-Closed Principle’ (AOCP):

“A software system should be open to automated combinatorial assembly over an
extensible palette of components without requiring human intervention.”

In order for a system’s components to be highly reusable and substitutable, to facilitate
incremental design, and thus also to be amenable to automated assembly without human
intervention, a system must obey the AOCP. To conform to the AOCP, a system should exhibit
the following properties:

1. Open: Present a framework parameterized by component definitions, together with an
open-ended palette of such components.

2. Closed: Allow the addition of new components to the palette, without requiring human
intervention to modify pre-existing components.

4 Evolutionary Computation Volume x, Number x

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

3. Introspectable Design: Component signatures and dependencies on shared state are
available in machine-readable form.

4. Observable: State transitions can be made fully observable to the assembly process.

The third and fourth properties ensure that the assembly process can correctly determine the
behavior of the components in order to measure their contribution to the performance of the
overall framework, i.e. to perform credit assignment over the assembled components. Section
5 gives a working example of such a system.

To researchers who are accustomed to writing their desired metaheuristic ‘from scratch’,
the proposed approach might initially appear to offer few benefits. However, it is most mean-
ingful to consider the AOCP in the wider motivating context: that of large scale, potentially
automated, assembly of metaheuristics for scientific discovery and reproducibility (Swan
et al., 2015). The guiding notion is of a shared, community-wide repository of frameworks and
components that can be freely combined to gain better insight into the correlation between
problem features and solution mechanisms (Smith-Miles et al., 2014).

Without the proposed approach, exploring combinations of components at such a large
scale would simply be impossible, due to the amount of manual intervention that would be
required to manage state dependencies. An asymptotic cost of the associated manual labor
can be obtained as follows: given a graph (G =V ,E) for a design with n = |V | vertices (where
vertices equivalently represent either grammar elements or subroutine invocations in the
call graph), then for all pairs of components which are coupled via shared state, all paths
between those components need to be manually updated to propagate that state. For each
pair u, v ∈V , then it is well-known1, that the number of simple paths between u and v is given
by (n−2)!|E |. Since there are up to n2 such pairs of vertices, the number of updates is given by
O (n2(n −2)!|E |).

4 Implementing the AOCP

We now outline an implementation of the ACOP, exploiting well-established programming
constructs that directly support the ACOP requirements. Whilst this implementation uses
functional programming techniques, since such techniques lend themselves well to clearly
defining and managing state dependencies, the mechanisms that we describe can alternatively
be realised in an imperative manner. However, this requires work on the part of the framework
implementer to achieve something that can already be achieved automatically by the means
that we describe below. We are not suggesting that metaheuristics practitioners should become
skilled functional programmers, rather the intention is that repositories of frameworks and
components can be created using these principles and can subsequently be re-combined by
practitioners, possibly via automation.

Our implementation uses state threading as an alternative to the ad hoc approaches to
extrinsic state taken by most contemporary metaheuristic implementations. State threading
requires an explicit input/output parameter for the extrinsic state, which is then threaded
through the search process. For example, in Listing 2, the extrinsic state for localSearch
comprises the list of previous incumbent solutions, history. Instead of defining history

as a shared or global variable that any of the three components access and update directly,
perturb, accept, and finished each take an additional parameter that is used to thread the
extrinsic state through the search algorithm.

Explicit representation of state facilitates the composition and reuse of components,
possibly automatically, since all dependencies for that component are clearly described and

1strictly, for n ≥ 4

Evolutionary Computation Volume x, Number x 5

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

type Perturb[Sol] = Sol => State[Int,Sol]
type Accept[Sol] = (Sol,Sol) => State[Int,Sol]
type IsFinished[Sol] = Sol => State[Int,Boolean]

class LocalSearch[Sol] {

def apply[Sol](incumbent : Sol,
perturb : Perturb[Sol],
accept : Accept[Sol],
finished : IsFinished[Sol]) : State[Int,Sol] = {

def until(s : Sol) : State[Int,Sol] = {
for {

// Increments loop counter in the state
i <- State.modify[Int](i => i+1)
perturbed <- perturb(s)
accepted <- accept(s, perturbed)
c <- finished(accepted)
result <-
if (c)
State.pure[Int,Sol](accepted)

else
until(accepted)

} yield result
}

for {
// Initialises the state

_ <- State.set[Int](0)
result <- until(incumbent)

} yield result
}

}

Listing 3: Local Search in Scala with State monad

can be easily reasoned about mechanically. Explicit representation of state also allows a
component to dynamically inspect the environment that is passed to it. Such checks might
be performed prior to the application of a perturbation, for example, to automatically adjust
parameters and so improve its effectiveness. Explicit state and modularity enables static
safety checks whilst also providing the means to concisely develop self-adjusting components,
without creating an overly tight coupling.

Despite the advantages of this approach, manually threading the state through the algo-
rithm, as in Listing 2, can reduce the clarity of the code by introducing additional boilerplate.
It is also error prone, since the programmer must ensure that the correct value of the state is
passed to the correct stage of the algorithm. It is instead desirable to use some mechanism
that implicitly threads the state, but does so in a well-defined and consistent manner.

The explicit representation of shared state in this manner is a well-known design pattern
in the functional programming community, where it is expressed as the State monad. Whilst a
formal definition is highly technical (Mac Lane, 1969; Moggi, 1991), it suffices here to consider
monads to be a principled means of sequencing computations whilst abstracting over possible
effects, such as state manipulation. Monads are a functional design pattern that follow well-
defined laws to give strong formal guarantees to the programs that use them (Wadler, 1995).
They provide a general abstraction mechanism that can be used to explicitly represent state; to
clearly separate different kinds of state manipulation or other effects (such as I/O or exception
handling), and to improve the reproducibility of behaviours on a per-component basis. A

6 Evolutionary Computation Volume x, Number x

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

type Perturb[Env,Sol] = Sol => State[Env,Sol]
type Accept[Env,Sol] = (Sol,Sol) => State[Env,Sol]
type IsFinished[Env,Sol] = Sol => State[Env,Boolean]

class LocalSearch[Env,Sol] {

def apply[Sol](incumbent : Sol,
perturb : Perturb[Env,Sol],
accept : Accept[Env,Sol],
finished : IsFinished[Env,Sol],
iter : Lens[Env,Int]) : State[Env,Sol] = {

def until(s : Sol) : State[Env,Sol] = {
for {

_ <- iter %= {i => i+1} // Increments loop counter in environment
perturbed <- perturb(s)
accepted <- accept(s, perturbed)
c <- finished(accepted)
result <- if (c) {

State.pure[Env,Sol](accepted)
} else {
until(accepted)

}
} yield result

}

for {
// Initialises environment
_ <- State.modify[Env](env => iter.set(0)(env));

result <- until(incumbent)
} yield result

}
}

Listing 4: Local Search in Scala with State monad and lenses

statically-checked type-system can be used to separate stateless from stateful operations and
to provide information about which state components are being manipulated.

For our purposes, we can consider a monad to comprise a pair of functions: pure (also
called ‘return’ in Haskell) and flatMap (also known as ‘bind’, and denoted by >>= in Haskell):

pureF : A → F [A]

flatMapF : F [A]× (A → F [B]) → F [B]

F is an example of a higher-kinded type, which can be considered as a generic container or
context for objects of type T , denoted F [T]. Common examples of such contexts include pure
collection-types such as Lists or Trees, but also include stateful and parallel computations. If
we think of F [T] as imposing a computational context on top of some type T , then the pure
function can be seen as a way of imposing this context upon a raw value of that type. Given
a context F [A] and some function m : A → F [B] for turning an object of type A into another
context F [B] over type B , then the flatMap operation first extracts a value of type A from F [A]
and then uses m to generate the next context in the sequence, based on this value. The type F
captures precisely the class of effect that is encapsulated by the monad.

Languages such as Haskell and Scala provide syntactic sugar for monads. In particular,
they allow a sequence of flatMap operations to be chained together using syntax that looks
like a traditional for loop. This is illustrated in Listing 3, a re-formulation of our local search
example in Listing 1 that uses the State monad. The state, in this case an integer representing

Evolutionary Computation Volume x, Number x 7

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

class TabuAccept[Env,Sol](history : Lens[Env,[Sol]]) {
def apply(incumbent : Sol, perturbed : Sol) : State[Env,Sol] = ...

}

Listing 5: Acceptance component in Scala for Local Search with solution history

the number of iterations, is implicitly threaded through each stage of the computation. This
can be extended to yield a re-formulation of Listing 2, thus incorporating history by changing
the type of the state from Int to (Int, [Sol]) and modifying all components and state
accesses, for example. Although the algorithm looks similar to its imperative counterpart, in
our case all the state effects are explicit and the type system delineates precisely where they
can occur: there are no implicit side-effects and the validity of the sequence of operations can
be checked by the compiler using its normal type checking mechanism.

In order to ensure that individual algorithms are easily and mechanically composable, we
generalise over the type of the state. For example, instead of specifying that the type state has
type Int in Listing 3, we use the type variable Env (‘environment’). In principle, this abstracts
over all possible types of environment, and results in a single generic definition of Local Search.
Since we have abstracted over the environment, components still need a mechanism to
access the information within the environment. The contemporary functional programming
solution is to use lenses (Foster et al., 2005). Informally, a lens of type Lens[Source,Target] is a
composable mechanism that focusses an object of type Source into an object of type Target
that is contained within Source, for example by selecting a sub-field of a record type. This is
illustrated in Listing 4, a re-formulation of Listing 3 to use lenses in addition to the State monad.
Instead of explicitly accessing the environment in a manner that assumes a specific Env, the
lens iter is used to express the same operation in a generic manner. The lens abstracts the
access mechanism for a specific Source and Target of the algorithm or component. Should
the practitioner wish to add solution history to the local search algorithm in Listing 4, for
example, they now only need to add a lens to access the solution history that is accessible from
any components that may wish to access it. This is illustrated in Listing 5, which defines an
acceptance component with access to the solution history via the lens history. Without the
lens, re-formulating Local Search in order to include solution history requires the practitioner
to modify all components and state accesses within the algorithm itself.

In our approach, component dependencies are expressed via lenses in order to allow
them to be as agnostic as possible about the specific means by which the Target value is
obtained from the Source value. Lenses are used in conjunction with monads in order to allow
for simple composition of components with explicit state dependences. This ensures that all
state dependencies are clearly defined and are available in a machine-readable form. Monads
and lenses facilitate the AOCP as follows:

• Open: State information explicitly manipulated by LocalSearch is provided in the signa-
ture of apply of Listing 4, to be made available for reusable components, e.g. as described
in Section 5. A subsequently-authored component can get access to this state by providing
an appropriate lens.

• Closed: As described above, the key motivation for the use of state monads is precisely
that they allow the framework to meet the extended Closed requirements of the AOCP
w.r.t. management of state dependencies.

• Introspectable Design: The strong typing of the proposed approach means that the
assembled system is guaranteed to have both state and parameter dependencies satisfied.

8 Evolutionary Computation Volume x, Number x

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

• Observable: Since the state monad is responsible for propagating all state transitions,
they can be directly observed. Further, this information can be made available as a form
of dynamic instrumentation, to be exploited online by other components.

Related Work on State Handling

A number of authors have studied state-handling in metaheuristics via combinators — pure
functional, self-contained components. Following initial work in Genetic Programming and
exhaustive search (Briggs and O’Neill, 2008), monadic combinators were used in constraint
programming (Schrijvers et al., 2013), with subsequent work in metaheuristics (Senington and
Duke, 2013). The desirability of the monadic approach for metaheuristic design was recently
advocated (Swan et al., 2015) as part of a wider research program, echoed by an emphatic call
for re-usable libraries such as CILib (Pampara and Engelbrecht, 2015). The only work that we
are aware of in which state-handling is used in explicit support of metaheuristic assembly is
given by (Kocsis et al., 2015), who propose a combinator-based approach where component
dependencies are amalgamated into a shared workspace.

5 Example Application of the Automated Open Closed Principle

In this section, we describe a system that follows the Automated Open Closed Principle. Here,
as discussed in the previous section, we use a combination of state monads and lenses to define
a local search framework and its component parts. Subsequently, we expose these components
to an automated tool, which assembles them into a working local search algorithm. As our
target problem domain, we have chosen for the well-known Traveling Salesperson Problem
(TSP) (Luke, 2013). Please note that the experiments performed in this section are merely
illustrative, i.e. they aim to illustrate that the resulting local search framework indeed supports
“automated combinatorial assembly” as is intrinsic to the AOCP. It was not our objective to
design a heuristic competitive with the state-of-the-art for the TSP.

Metaheuristic Components:

As per Listing 4, we consider a local search framework that has three top-level design choices
(perturb,accept,isFinished). We consider a single termination condition (isFinished), terminat-
ing local search after maxIter = 10000 iterations. We consider the following types of perturba-
tions (perturb):

• RandomSwap: Swaps two cities at random.

• RandomInsert: Removes a randomly selected city, reinserting it in a random position.

• RandomShuffle: Randomly exchanges all cities.

• RandomShuffleSubset(m): Selects k = 2+bm ∗ (n −2)c cities at random and exchanges
them randomly, where n is the number of cities in the TSP instance.

• ReverseSubtours(m): Reverses k = 1+b4∗mc randomly selected subtours.

Remark that the last two perturbations are in turn parametrized, taking a real-valued mutation
rate m ∈ [0,1] as argument. We also consider three types of acceptance conditions (accept):

• AcceptImproving: Accepts all incoming tours shorter than the incumbent.

• AcceptImprovingOrEqual: Accepts all incoming tours no longer than the incumbent.

Evolutionary Computation Volume x, Number x 9

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

• AcceptMetropolisHastings(s): Accepts incoming tours with likelikhood e
f (t)− f (t ′)

T , where
f (t) and f (t ′) are the length of the incumbent and incoming tour respectively, and T
is the current temperature (∼ a positive scalar). The initial temperature T0 is instance-
specific and determined as described in (White, 1984). The value of T in subsequent
iterations is dynamically controlled by a cooling schedule s. We consider two types:

– LinearCoolingSchedule: The temperature after iter iterations is T0 ∗ (1− iter
maxIter).

– GeometricCoolingSchedule(r): Reduces the current temperature with a factor r .

These components have a number of different state dependencies. The state monad in our
example keeps track of:

• iter: The number of iterations performed.

• maxIter: The optimization budget.

• T: The current temperature.

• rng: A stream of (pseudo) random numbers.

• f: A procedure for computing the quality of a solution (length of a tour in our example).

These component-specific state dependencies are modeled using lenses which appear ex-
plicitly in the component signatures as shown in Listing 6. Remark that each component
is agnostic about the environmental dependencies of any other component, resulting in
a loose coupling. For instance, the core LocalSearch framework can therefore remain un-
changed regardless of the complexity of the components with which it is configured. Whilst
this framework is straightforward, algorithms such as Scatter-search or Learning Classifier
Systems (Luke, 2013) are notoriously difficult to implement correctly; the ability to define a
truly re-usable reference implementation via the AOCP serves a vital scientific purpose in
ensuring the validity and reproducibility of reported results.

Automated Assembly:

Using this collection of components, a set of different candidate local search methods can be
assembled. Remark that this set (a.k.a. the design space) is infinite, as the parameters m and r
can take any real value in [0,1]. However, in this illustration, we only consider the finite subset
of 350 candidate designs with m,r ∈ {0.0,0.1, . . . ,0.9,1.0}.

In automated assembly, the objective is to (automatically) determine which combination
of components is best suited for solving a given target problem (e.g. the TSP). In literature, a
variety of different approaches have been explored to do so. A prominent example is genetic
programming (Koza, 1994), which solves this (meta-)optimization problem using evolutionary
algorithms. Please note that we do not intend to advocate any specific approach or optimizer.
Rather, the aim of this paper is to facilitate the implementation of re-usable component
repositories (∼ design spaces) supporting “automated combinatorial assembly” using any of
these (and future) design automation techniques. We will illustrate two different approaches:

Ant Programming (AP, (Boryczka, 2002)) is a variant of Ant-Colony Optimization (Luke, 2013)
in which the combinatorial structure to be optimized is a program tree. In our illustration,
we use ContainAnt (Kocsis and Swan, 2017) as our optimizer.2 The search space of struc-
tures can usefully be described via a grammar. In the case of CONTAINANT, this grammar
is specified directly in Scala code, by the fields and methods of a user-defined subclass

2https://github.com/zaklogician/ContainAnt (source code)

10 Evolutionary Computation Volume x, Number x

https://github.com/zaklogician/ContainAnt

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

type Tour = org.mitlware.solutions.permutation.Permutation
type TourLengthLens[Env] = Lens[Env, Evaluate[Env,Tour,Double]]

class LocalSearchADoM[Env] extends Module {

// Grammar specification //////////////////////

// Lenses:
val iter: Lens[Env, Iter] = . . .
val rng: Lens[Env, RNG] = . . .
val maxIter: Lens[Env, MaxIter] = . . .
val T: Lens[Env, Temperature] = . . .
val f: TourLengthLens[Env] = . . .

// Perturbation:
def randomSwap(rng: Lens[Env, RNG]): Perturb[Env,Tour] = . . .
def randomInsert(rng: Lens[Env, RNG]): Perturb[Env,Tour] = . . .
def randomShuffle(rng: Lens[Env, RNG]): Perturb[Env,Tour] = . . .
def randomShuffleSubset(m: MutationStrength, rng: Lens[Env, RNG]):

Perturb[Env,Tour] = . . .
def reverseSubtours(m: MutationStrength, rng: Lens[Env, RNG]):

Perturb[Env,Tour] = . . .

// Alternative values for mutation strength
val m_values = for(x <- 0 to 10) yield {MutationStrength(x/10.0)}

// Acceptance:
def acceptImproving(f: TourLengthLens[Env]): Accept[Env,Tour] = . . .
def acceptImprovingOrEqual(f: TourLengthLens[Env]): Accept[Env,Tour] = . . .
def acceptMetropolisHastings(s: CoolingSchedule[Env], rng: Lens[Env, RNG],

f: TourLengthLens[Env]): Accept[Env,Tour] = . . .

// Cooling schedules:
def linearCoolingSchedule(iter: Lens[Env,Iter], maxIter: Lens[Env,MaxIter],

T: Lens[Env,Temperature]): CoolingSchedule[Env] = . . .
def geometricCoolingSchedule(r: CoolingRatio, T: Lens[Env,Temperature]):

CoolingSchedule[Env] = . . .

// Alternative values for cooling ratio
val r_values = for(x <- 0 to 10) yield {CoolingRatio(x/10.0)}

// Termination criterion:
def isFinished(iter: Lens[Env,Iter], maxIter: Lens[Env,MaxIter]):

IsFinished[Env,Tour] = . . .

///

// LocalSearch is the target object for automated construction:
def localSearch(

perturb: Perturb[Env,Tour],
accept: Accept[Env,Tour],
finished: IsFinished[Env,Tour],
iter: Lens[Env,Iter]): LocalSearch[Env,Tour] = . . .

}

Listing 6: Grammar specification for our automated Local Search assembly example

Evolutionary Computation Volume x, Number x 11

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

of containant.Module. By this means, it is possible to specify any context-free gram-
mar in terms of the attributes (val) and method signatures (def) that are automatically
obtained from the grammar module via reflection. Remark that this grammar is statically-
typed.The grammar for our example is shown is Listing 6. Note that CONTAINANT was
not designed with any explicit knowledge of monads and lenses: to the Ant Programming
search algorithm, they are treated just like any other type.

Programming by Optimization (PbO, Hoos (2012)). In PbO, design choices are exposed as
program parameters whose values correspond to alternative decisions. Subsequently, the
best combination of parameter values (configuration) is determined automatically with
the help of automated tools known as algorithm configurators. We used SMAC Hutter
et al. (2011b) as configurator in our illustration.3 We exposed our design choices in the
form of 5 parameters: perturb, m, accept, s and r ; having 5, 11, 3, 2 and 11 possible values,
respectively. As each component is parametrized by its design choices, doing so did
not require us to modify any existing code. Nonetheless, creating the “tuning scenario”
(wrapper program, parameter specification file, etc.) was a tedious and error-prone
process. To alleviate this issue, language extensions have been proposed in prior-art
Hoos (2012); Ansel et al. (2009), supporting the manual “annotation” of design choices in
code, allowing them to be extracted automatically. Interestingly, in a system following
the AOCP this process could be automated using reflection, supporting statically-typed
specifications in native code similar to Listing 6.

Both AP and PbO evaluate “how good” a candidate design is by testing it on instances of the
target problem (a.k.a. training instances). Remark that, to avoid bias, a disjoint set of instances
must be used to assess the performance of the design returned by the optimizer (a.k.a. test
instances). The TSP instances that we consider here are the subset of 76 symmetric TSPs
from the well known TSPLIB that have edge weights in the ‘Euclidean 2D’ format.4. More
specifically, the training set consists of the 12 instances with 100 cities or less and the test set
consists of the 57 (of 64) remaining instances with less than 4,000 cities. It is well known that
automated algorithm design is highly computationally-intensive, and these smaller instances
are used so that all experiments completed in under 72 hours on a modern desktop PC.5

We run both ContainAnt and SMAC once, using their default parameter settings, per-
mitting them a total of 6000 tests to determine which of the 350 candidate local searches

minimizes the average Relative Error (RE), given by tour_length−optimal_tour_length
optimal_tour_length , on the train-

ing instances, when applied to an initial solution obtained by the nearest neighbor heuristic.
Remark that both ContainAnt and SMAC are anytime, i.e. they can at any time be queried

for the best design they found thus far. Figures 1 and 2 show the average RE on the training
and test instances, respectively, of the anytime solution obtained by each meta-optimizer.6

We observe that both SMAC and ContainAnt discover better designs (lower average RE)
over time. In this pair of runs, ContainAnt clearly started from a worse initial design. However,
after 48 tests it identified a better alternative and in the remainder of its run found equally good
designs roughly 2-3 times faster than SMAC. While this result provides additional evidence
of the competitiveness of ContainAnt (c.f. (Kocsis and Swan, 2017)), it is insufficient to draw
any conclusions about the relative performance of SMAC and ContainAnt in general. In other
tuning scenarios (or another run) SMAC may do better. Also note that SMAC has various
features (e.g. adaptive capping, incremental evaluation) which will likely make it preferable in

3http://www.cs.ubc.ca/labs/beta/Projects/SMAC/ (version 2.10)
4http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
5Specifically, Windows 10, Intel™ i5 CPU 3.4 GHz
6Figures 1-3 show unbiased estimates of the average RE based on 100 tests per instance.

12 Evolutionary Computation Volume x, Number x

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

Figure 1: Anytime performance on training set

100 200 300 400 500 600 700 800 900 1000 6000

tests (invocations local search) performed thus far

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

M
ea

n
R

E
 o

f a
ny

tim
e

so
lu

tio
n

on
 tr

ai
ni

ng
 s

et ContainAnt
SMAC

Figure 2: Anytime performance on test set

0 100 200 300 400 500 600 700 800 900 1000 6000

tests (=invocations local search) performed thus far

0.14

0.15

0.16

0.17

M
ea

n
R

E
 o

f a
ny

tim
e

so
lu

tio
n

on
 te

st
 s

et

ContainAnt
SMAC

Figure 3: Performance on each test instance of the best candidate local search found

ei
l1

01
lin

10
5

pr
10

7
pr

12
4

bi
er

12
7

ch
13

0
pr

13
6

pr
14

4
kr

oA
15

0
kr

oB
15

0
ch

15
0

pr
15

2
u1

59
ra

t1
95

d1
98

kr
oA

20
0

kr
oB

20
0

ts
22

5
ts

p2
25

pr
22

6
gi

l2
62

pr
26

4
a2

80
pr

29
9

lin
31

8
rd

40
0

fl4
17

pr
43

9
pc

b4
42

d4
93

u5
74

ra
t5

75
p6

54
d6

57
u7

24
ra

t7
83

pr
10

02
u1

06
0

vm
10

84
pc

b1
17

3
d1

29
1

rl1
30

4
rl1

32
3

nr
w

13
79

fl1
40

0
u1

43
2

fl1
57

7
d1

65
5

vm
17

48
u1

81
7

rl1
88

9
d2

10
3

u2
15

2
u2

31
9

pr
23

92
pc

b3
03

8
fl3

79
5

TSPLIB instance

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
R

E

certain settings (e.g. optimization of runtime, noisy fitness criterion).
After 6000 tests, both SMAC and ContainAnt return the same design (using ReverseSub-

Tours(0.2) and AcceptImproving), suggesting it is the best (on the training set) of the 350
candidates considered. This design obtains an average RE of 0.061 on the training instances,
and an average RE of 0.146 on the test instances. Remark that the higher average RE on the
test instances is likely due to the fact that these instances are harder. We do not believe our
results suffer from over-tuning given the similarity of Figures 1 and 2.

For completeness, Figure 3 shows the average RE of this design on each of the 57 test
instances. Unsurprisingly, its performance is not competitive with that of the state-of-the-art.

6 Consequences of the Automated Open-Closed Principle

As well as addressing the immediate problem of state dependencies, the mechanisms of the
AOCP bring many benefits in metaheuristic assembly. Here, we discuss the most significant.

6.1 Parallelization

By explicitly expressing state dependencies, following the AOCP facilitates the creation of
parallelizable metaheuristics. While mechanisms such as monads express the logical ordering
of operations, they do not enforce sequential execution where dependencies do not exist.
These facts can be exploited to automatically introduce parallelism (Castro et al., 2016; Scaife
et al., 2006), and to restructure programs to automatically expose alternative parallelizations,
so allowing automated determination of the most efficient parallel program. Structured par-

Evolutionary Computation Volume x, Number x 13

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

type Islands = List[List[Sol]]

def EMAS(
islands: Islands,
meetingAgent: Perturb[Env,Islands],
migrationFun: Perturb[Env,Islands],
isFinished: IsFinished[Env,Islands]): Islands =

for {
agentsMet <- runPar (parMap meetingAgent islands);
agentsMigrated <- agentsMet;
finished <- isFinished agentsMigrated
result <- if (finished)

agentsMigrated
else
EMAS(agentsMigrated,meetingAgent,migrationFun,isFinished)

} yield result

Listing 7: Monadic formulation of an Evolutionary Multi-Agent System

allelism techniques, such as algorithmic skeletons (Cole, 1988), can then be used to obtain
a good parallel implementation. Such techniques take a high-level, modular approach to
parallelism, presenting to the programmer high-level patterns that abstract low-level im-
plementation details such as communication, task creation, and scheduling. They avoid a
number of problems such as race conditions and deadlocks that are difficult to diagnose or
debug (Barwell et al., 2016).

Structured parallelism techniques have a long-observed correspondence with functional
programming. For example, the ‘Par monad’ library for Haskell (Marlow et al., 2011) pro-
vides the parMap evaluation strategy (Trinder et al., 1998), that applies a given function to
each element in a data-structure in parallel in a simple and thread-safe way (Hammond and
Michaelson, 1999). To illustrate this, consider the Evolutionary Multi-Agent System (EMAS)
given in Listing 7. EMASs are a hybrid metaheuristic that combine multi-agent systems with
evolutionary algorithms. Each agent represents a solution to a particular optimization prob-
lem that is iteratively improved by a series of reproductions and fitness contests with other
agents (Stypka et al., 2018). The population of agents is subdivided into islands. Randomized
migration between islands maintains diversity. Agents co-operate with or compete against
other agents on the same island, and are periodically chosen for migration to other islands.
During this process, meetingAgent is applied to each island of agents as a map operation, and
is parallelized using parMap, where runPar enables the use of parMap.

6.2 Credit Assignment

Various mechanisms (e.g. perturbation scheme, acceptance and restart condition) affect
the behavior of a metaheuristic. This gives rise to a structural Credit Assignment Problem
(Minsky, 1961) (CAP): Which of these mechanisms is to blame/contributes to the poor/good
performance we observe on a particular problem instance?

Beyond its scientific merit, the information that is available from credit assignment can
be exploited to guide automated metaheuristic assembly. For instance, ParamILS (Hutter
et al., 2009) performs an (iterated) local search in the one-exchange neighborhood, i.e. it
changes a single component at the time and figures out whether this improves or worsens the
performance of the incumbent design and updates it accordingly. SMAC (Hutter et al., 2011a)
builds a regression model mapping configurations to performance predictions, effectively
learning which combinations of parameter values perform well together. SMAC uses this
model to determine which configuration to try next.

14 Evolutionary Computation Volume x, Number x

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

These approaches share the property that credit is assigned post-execution, based on cor-
relations between the performance observations of the system as a whole and its components.
While the AOCP supports these correlation-based approaches, it also facilitates the study of
causality (Adriaensen and Nowé, 2016b) by examining the behavior of components during
execution (c.f. previous work relating execution state to evaluation (Krawiec and Swan, 2013)).
This allows for the decoupling of design and performance spaces, enabling performance
observations to generalize beyond the specific design that is used to obtain them, based on
similarities in execution space (e.g. using Importance Sampling (Adriaensen et al., 2017)). This
has the potential for more efficient, accurate and insight-promoting credit assignment.

A simple example of behavioral information that can be exploited to perform more
accurate credit assignment are unused parameters. Often, not all parameters of a metaheuristic
framework are used during every run. The values of these unused parameters can obviously
not be held responsible for the performance observed. Remark that while some contemporary
configurators (e.g. ParamILS and SMAC) support parameter dependencies (a.k.a. conditional
parameters), they are oblivious of the fact that even “active” parameters are sometimes not
used (e.g. for certain problem instance + random seed combinations). Falsely assigning credit
to the values of unused parameters introduces unnecessary noise, complicating configuration.

More generally, when taking a behavioral perspective, the structural CAP reduces to a
temporal CAP, a problem that is widely studied in the Reinforcement Learning community
(Sutton and Barto, 1998). Of particular interest to the modular approach laid out in this
paper is ‘hierarchical’ reinforcement learning (Barto and Mahadevan, 2003), which studies the
problem of learning complex tasks through learning simpler sub-tasks and exploiting their
inter-dependencies. Also, the temporal CAP can be solved online using Temporal Difference
(TD) techniques (Tesauro, 1995) such as Q-learning (Watkins and Dayan, 1992). Such methods
are able to learn what works best and to exploit this knowledge while solving the problem.

While the use of these techniques in the context of metaheuristics has been explored
(e.g. in the area of reactive search (Battiti et al., 2008)), their full potential is arguably yet to be
unlocked, and it is our belief that the AOCP will also greatly facilitate this endeavor.

6.3 Scalability

The intrinsically recursive nature of metaheuristics has been widely noted (Vaessens et al.,
1998; Swan et al., 2011, 2014; López-Ibáñez et al., 2014). Using a truly modular approach,
combinations of components can themselves be considered as components (Woodward
et al., 2014). For example, the local search framework of Listing 4 can itself be treated as a
perturbation operator. The AOCP supports the full exploration of this recursion, enabling the
exploration of deeply-nested combinations of heuristics.

6.4 Escaping the Poverty of Metaphor

Following the success of Genetic Algorithms, many metaheuristics have been derived via
‘reasoning by metaphor’. This has led to a very large number of competing metaheuristics, and
the relationship between them is often unclear, a situation that has recently been criticized
(Sörensen, 2013). Without true separation of concerns, it is difficult to either formally identify
the equivalence of two components or to combine components in an automated manner,
making it impossible in many cases for one metaheuristic to borrow components from another.
A modular representation escapes these limitations and offers opportunities to explore a much
greater design space via automated hybridization.

As noted in Section 6.2, the absence of hidden state allows unused parameters to be
discovered in order to properly identify useful components. An extreme example of the
importance of progressing beyond the current situation is given by (Nair et al., 2016), where

Evolutionary Computation Volume x, Number x 15

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

a superior algorithm that did not incorporate an evolutionary metaphor was discovered by
accidentally disabling an evolutionary component. The proposed approach provides the
opportunity to discover such algorithms automatically, allowing elimination of accidental
complexity to become routine practice as advocated by (Adriaensen and Nowé, 2016a).

7 Conclusions and Future Work

State-of-the-art approaches to automated metaheuristic configuration and design require
considerable ‘human in the loop’ intervention to extend the frameworks they provide. Manual
effort is required to manage inter-dependencies between the framework and its components.
To address this problem, we introduce the ‘Automated Open-Closed Principle’ (AOCP), an
extension to the well-known ‘Open-Closed Principle’ of software engineering, which we claim
is essential to scalable design automation not only of metaheuristics, but of algorithms in
general. Adoption of the AOCP leads to design space descriptions that:

1. Are re-usable at the level of both frameworks and components.

2. Are purely functional, with unintrusive support for component-specific state.

3. Can be assembled ‘bottom-up’, from an open-ended palette of components.

4. Do not require scale-dependent human intervention when incorporating components
with new dependencies.

As validation of our approach, we use an exemplar of the AOCP to assemble a local search
algorithm with a higher degree of automation than previously achieved.

Future work will explore the potential for scalability and reusability across a range of
alternative metaheuristic frameworks, both in terms of the size of the palette of components
and the size of the problems to be addressed. Since the notion of the ‘Automated Open-Closed
Principle’ that we propose is a general one, it can further be used for automated assembly in
other domains, including Machine Learning and Software Engineering.

8 Acknowledgements

The utility of communal design templates forms a cornerstone of the ‘Metaheuristics in the
Large’ community initiative (Swan et al., 2015). The authors would like to thank all the many
collaborators in this initiative.

References

Adriaensen, S., Brys, T., and Nowé, A. (2014). Designing reusable metaheuristic methods: A
semi-automated approach. In Evolutionary Computation (CEC), 2014 IEEE Congress on,
pages 2969–2976. IEEE.

Adriaensen, S., Moons, F., and Nowé, A. (2017). An importance sampling approach to the
estimation of algorithm performance in automated algorithm design. In Proceedings of the
11th International Conference on Learning and Intelligent Optimization (LION), pages 3–17.
Springer.

Adriaensen, S. and Nowé, A. (2016a). Case study: An analysis of accidental complexity in a
state-of-the-art hyper-heuristic for hyflex. In Evolutionary Computation (CEC), 2016 IEEE
Congress on, pages 1485–1492. IEEE.

16 Evolutionary Computation Volume x, Number x

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

Adriaensen, S. and Nowé, A. (2016b). Towards a white box approach to automated algo-
rithm design. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence (IJCAI), pages 554–560. AAAI Press.

Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman, A., and Amarasinghe, S.
(2009). PetaBricks: a language and compiler for algorithmic choice, volume 44. ACM.

Ansótegui, C., Sellmann, M., and Tierney, K. (2009). A Gender-based Genetic Algorithm
for the Automatic Configuration of Algorithms. In Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, CP’09, pages 142–157,
Berlin, Heidelberg. Springer-Verlag.

Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(4):341–379.

Barwell, A. D., Brown, C., Hammond, K., Turek, W., and Byrski, A. (2016). Using program
shaping and algorithmic skeletons to parallelise an evolutionary multi-agent system in
erlang. Computing and Informatics, 35(4):792–818.

Battiti, R., Brunato, M., and Mascia, F. (2008). Reactive search and intelligent optimization,
volume 45. Springer Science & Business Media.

Bezerra, L. C., López-Ibánez, M., and Stützle, T. (2016). Automatic component-wise design of
multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
20(3):403–417.

Boryczka, M. (2002). Ant Colony Programming for Approximation Problems, pages 147–156.
Physica-Verlag HD, Heidelberg.

Briggs, F. and O’Neill, M. (2008). Functional genetic programming and exhaustive program
search with combinator expressions. Int. J. Know.-Based Intell. Eng. Syst., 12(1):47–68.

Castro, D., Hammond, K., and Sarkar, S. (2016). Farms, pipes, streams and reforestation: rea-
soning about structured parallel processes using types and hylomorphisms. In Proceedings
of the 21st ACM SIGPLAN International Conference on Functional Programming, pages 4–17.
ACM.

Cole, M. (1988). Algorithmic skeletons : a structured approach to the management of parallel
computation. PhD thesis, University of Edinburgh, UK.

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and Schmitt, A. (2005). Combinators
for bi-directional tree transformations: a linguistic approach to the view update problem. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages 233–246.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers, Norwell, MA,
USA.

Hammond, K. and Michaelson, G. (1999). Research Directions in Parallel Functional Program-
ming. Springer.

Hoos, H. H. (2012). Programming by optimization. Commun. ACM, 55(2):70–80.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011a). Sequential Model-Based Optimization
for General Algorithm Configuration. In Proc. of LION-5, page 507âĂŞ523.

Evolutionary Computation Volume x, Number x 17

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011b). Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, pages 507–523. Springer.

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS: An Automatic
Algorithm Configuration Framework. J. Artif. Int. Res., 36(1):267–306.

KhudaBukhsh, A. R., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2009). Satenstein: Auto-
matically building local search sat solvers from components. In IJCAI, volume 9, pages
517–524.

Kirkpatrick, S., Jr., D. G., and Vecchi, M. P. (1983). Optimization by simmulated annealing.
Science, 220(4598):671–680.

Kocsis, Z. A., Brownlee, A. E. I., Swan, J., and Senington, R. (2015). Haiku - a Scala Combi-
nator Toolkit for Semi-automated Composition of Metaheuristics, pages 125–140. Springer
International Publishing, Cham.

Kocsis, Z. A. and Swan, J. (2017). Dependency injection for programming by optimization.
submitted 13th July 2017.

Koza, J. R. (1994). Genetic programming as a means for programming computers by natural
selection. Statistics and computing, 4(2):87–112.

Krawiec, K. and Swan, J. (2013). Pattern-guided genetic programming. In Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, pages
949–956, New York, NY, USA. ACM.

Larman, C. (2001). Protected variation: the importance of being closed. IEEE Software,
18(3):89–91.

Liskov, B. (1987). ‘Data Abstraction and Hierarchy’ (keynote address). SIGPLAN Not., 23(5):17–
34.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., and Birattari, M. (2016). The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58.

López-Ibáñez, M., Mascia, F., Marmion, M., and Stützle, T. (2014). A template for designing
single-solution hybrid metaheuristics. In Arnold, D. V. and Alba, E., editors, Genetic and
Evolutionary Computation Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014,
Companion Material Proceedings, pages 1423–1426. ACM.

López-Ibáñez, M. and Stützle, T. (2012). The automatic design of multi-objective ant colony
optimization algorithms. IEEE Transactions on Evolutionary Computation, 16(6):861–875.

Luke, S. (2013). Essentials of Metaheuristics. Lulu, second edition. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

Mac Lane, S. (1969). Categories for the Working Mathematician. Springer.

Marlow, S., Newton, R., and Peyton Jones, S. (2011). A monad for deterministic parallelism.
SIGPLAN Not., 46(12).

18 Evolutionary Computation Volume x, Number x

Extending the ‘Open-Closed Principle’ to Automated Algorithm Configuration

Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., and Stützle, T. (2014). Grammar-based
generation of stochastic local search heuristics through automatic algorithm configuration
tools. Computers & operations research, 51:190–199.

Meyer, B. (1988). Object-oriented software construction, volume 2. Prentice hall New York.

Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30.

Moggi, E. (1991). Notions of Computation and Monads. Information and Computation.

Nair, V., Menzies, T., and Chen, J. (2016). An (accidental) exploration of alternatives to
evolutionary algorithms for SBSE . In International Symposium on Search Based Software
Engineering, pages 96–111. Springer.

Pampara, G. and Engelbrecht, A. (2015). Towards a generic computational intelligence library:
Preventing insanity. In 2015 IEEE Symposium Series on Computational Intelligence: IEEE
Workshop on Computational Intelligence Tools (2015 IEEE WCIT), Cape Town, South Africa.

Scaife, N., Michaelson, G., and Horiguchi, S. (2006). Parallel standard ML with skeletons.
Scalable Computing: Practice and Experience, 7(2).

Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., and Stuckey, P. (2013). Search combinators.
Constraints, 18(2):269–305.

Senington, R. and Duke, D. (2013). Decomposing metaheuristic operations. In Hinze, R.,
editor, Implementation and Application of Functional Languages, LNCS, pages 224–239.
Springer Berlin Heidelberg.

Smith-Miles, K., Baatar, D., Wreford, B., and Lewis, R. (2014). Towards objective measures of
algorithm performance across instance space. Computers & OR, 45:12–24.

Sörensen, K. (2013). Metaheuristics—the metaphor exposed. International Transactions on
Operational Research, 22(1):3–18.

Stypka, J., Turek, W., Byrski, A., Kisiel-Dorohinicki, M., Barwell, A. D., Brown, C., Hammond, K.,
and Janjic, V. (2018). The missing link! A new skeleton for evolutionary multi-agent systems
in erlang. International Journal of Parallel Programming, 46(1):4–22.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1. MIT
press Cambridge.

Swan, J., Adriaensen, S., Bishr, M., Burke, E. K., Clark, J. A., Causmaecker, P. D., Durillo, J.,
Hammond, K., Hart, E., Johnson, C. G., Kocsis, Z. A., Kovitz, B., Krawiec, K., Martin, S.,
Merelo, J. J., Minku, L. L., Özcan, E., Pappa, G. L., Pesch, E., Garcia-Sànchez, P., Schaerf, A.,
Sim, K., Smith, J., Stützle, T., Voß, S., Wagner, S., and Yao, X. (2015). A research agenda for
metaheuristic standardization. In Proceedings of the Eleventh Metaheuristics International
Conference (MIC), Agadir, Morocco.

Swan, J., Özcan, E., and Kendall, G. (2011). Hyperion – A Recursive Hyper-Heuristic Framework,
pages 616–630. Springer Berlin Heidelberg, Berlin, Heidelberg.

Swan, J., Woodward, J., Özcan, E., Kendall, G., and Burke, E. (2014). Searching the hyper-
heuristic design space. Cognitive Computation, 6(1):66–73.

Evolutionary Computation Volume x, Number x 19

J. Swan, S. Adriænsen, A. D. Barwell, K. Hammond, D. R. White

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications of the
ACM, 38(3):58–68.

Trinder, P. W., Hammond, K., Loidl, H., and Jones, S. L. P. (1998). Algorithms + strategy =
parallelism. J. Funct. Program., 8(1):23–60.

Vaessens, R. J. M., Aarts, E. H. L., and Lenstra, J. K. (1998). A local search template. Comput.
Oper. Res., 25(11):969–979.

Wadler, P. (1995). Monads for functional programming, pages 24–52. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3):279–292.

Weyland, D. (2010). A rigorous analysis of the harmony search algorithm: How the research
community can be misled by a "novel" methodology. Int. J. Appl. Metaheuristic Comput.,
1(2):50–60.

White, S. R. (1984). Concepts of scale in simulated annealing. AIP Conference Proceedings,
122(1):261–270.

Woodward, J., Swan, J., and Martin, S. (2014). The ‘Composite’ design pattern in metaheuristics.
In Proc. GECCO Comp., pages 1439–1444, New York, USA. ACM.

20 Evolutionary Computation Volume x, Number x

	Introduction
	State Dependencies between Metaheuristic Components
	The Automated Open-Closed Principle
	Implementing the AOCP
	Example Application of the Automated Open Closed Principle
	Consequences of the Automated Open-Closed Principle
	Parallelization
	Credit Assignment
	Scalability
	Escaping the Poverty of Metaphor

	Conclusions and Future Work
	Acknowledgements

