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Abstract  

The abnormal tumour microenvironment, which is typically hypoxic, acidic and with 

poor blood flow, induces the endothelial expression of genes not found on normal 

microvessels. By selectively targeting these tumour endothelial markers (TEMs) it is 

possible to induce tumour regression, presenting a potential strategy for therapeutic 

intervention. Potential TEMs were predicted by bioinformatics data mining. 

Validation of these TEM candidates identified a novel TEM CLEC14A. Functional 

characterization suggests a regulatory role of CLEC14A in endothelial cell migration. 

Inhibition of endothelial migration by CLEC14A antisera or monoclonal antibody 

holds therapeutic promise for the treatment of cancer. Differential gene expression 

analysis of freshly isolated lung tumour endothelium by 2
nd

 generation sequencing 

identified 13 putative TEMs. Subsequent validation work confirmed six of which to 

be expressed on lung tumour vasculature. Finally, a pre-validated marker, Robo4, was 

investigated as a cancer vaccine. A strong antibody response was induced by delivery 

of pure mouse Robo4 protein or a Robo4 conjugate. The in vivo sponge assay in 

Robo4 vaccinated mice showed a significant reduction in vessel invasion. Tumour 

implantation experiments in vaccinated mice showed a marked delay in tumour 

growth. 
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1.1 Endothelial cells  

Endothelial cell 

Endothelial cells line the inner surface of all blood and lymphatic vessels, forming a 

barrier between the circulating blood or lymph and the rest of the vessel wall or tissue. 

The thin monolayer of endothelium controls the transport of proteins, solutes and 

gases as well as cells across the blood vessel wall [1, 2]. All vascular endothelium is 

supported by a basement membrane. A lumen of capillaries is formed by 2 to 5 

endothelial cells and is partially covered by pericytes. Unlike capillaries, arteries and 

veins are surrounded by vascular smooth muscle cells and collagenous connective 

tissue. The mural cells not only provide a structural support to the vasculature but also 

cross-talk with the endothelial cells and restrict endothelial motility [3].  

 

Endothelial cells are involved in various aspects of vascular biology, including blood 

coagulation, functional barrier, vasoconstriction/vasodilation and inflammation [4]. 

Furthermore, de novo vascular development and angiogenesis are processes that are 

orchestrated by endothelial cells [5]. ECs are normally quiescent in healthy tissue but 

are sensitive to signaling molecules from the extracellular environment. Inadequate 

activation or inactivation of endothelial cells by these signals has been associated with 

a variety of vascular disorders and disease [6].  

 

Types of endothelial cells 

Following the seminal work of Gerhardt and Betsholtz, the concept of endothelial tip 

http://en.wikipedia.org/wiki/Vasoconstriction
http://en.wikipedia.org/wiki/Vasodilation
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and stalk cells [7] and later the stabilized phalanx cell were introduced [8]. When 

growth factors reach the vessels, only a subpopulation of endothelial cells acquire the 

tip cell phenotype. Tip cells pioneer the formation of new blood vessels, termed 

angiogenesis, by projecting sprouts and talking to the guidance cues in the 

extracellular environment. Next to the tip cells, the stalk cells with less filopodia are 

actively proliferative to build up a lumen supporting the elongation of the new sprout. 

Unlike tip and stalk cells, phalanx cells are quiescent endothelial cells, which form a 

tight barrier to maintain vascular stability and control permeability. These cells rarely 

project filopodia and show poor motility. As active angiogenesis initiates with tip cells, 

much interest has centered on what switches a stabilized phalanx cell into a stalk or 

tip cell.  

 

1.2 Angiogenesis  

The human vascular network supplies nutrients and oxygen to almost all organs 

throughout the body while removing metabolic waste. Angiogenesis decribes the 

formation of new blood vessels from the pre-existing ones [9]. In all adults, 

physiological angiogenesis occurs in the wound healing process. While in women, it 

also takes place in the menstrual cycle and during pregnancy. Since the vessels 

connect to every part of the body, abnormal growth of vessels leads to numerous 

pathological conditions. So far, there are more than a hundred disorders have been 

implicated to be angiogenesis dependent. For instance, insufficient vessel growth or 
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vessel regression causes stroke, ischaemic heart disease, ulcerative disorders and 

neurodegeneration whilst excessive angiogenesis leads to rheumatoid arthritis, 

pulmonary hypertension, age-related macular degeneration and tumour progression in 

cancer [5].  

 

Vasculogenesis is the formation of a primitive vasculature and is a process that occurs 

before angiogenesis. During embryonic development, when diffusion of nutrients is 

no longer sufficient to meet the growth rate, mesoderm derived endothelial precursors, 

known as angioblasts, assemble into new vessels and differentiate into a primitive 

vascular network [10]. Angiogenesis further remodels the initial vasculature into 

arteries and veins by sprouting [11]. Mural cells, such as pericytes and smooth muscle 

cells, are then recruited to stabilize the vessel wall and allow perfusion [12, 13]. 

 

Types of angiogenesis   

Sprouting angiogenesis was the first described pattern of angiogenesis (Figure 1.1). 

This type of angiogenesis proceeds with the activation of surface receptors on the 

endothelial cells within the pre-existing vasculature by growth factors such as 

vascular endothelial growth factor (VEGF). The activated endothelial cells become 

unstable and invasive and change their morphology by protruding filopodia. These 

cells then begin to secrete proteolytic enzymes to dissolve the basement membrane 

supporting the existing blood vessels [14, 15]. This is followed by proliferation and 

migration, where endothelial cells form an entirely new lumen towards the source of 
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the growth factors. Pericytes are subsequently recruited to stabilize the newly formed 

vessels [16].  

 

Besides sprouting angiogenesis, other vessel growth patterns exist through different 

mechanisms. For example intussusceptive angiogenesis is the splitting of an existing 

vessel into two, initiated by the establishment of an endothelial cell junction within 

the capillary [17]. Since this type of angiogenesis can dramatically expand the 

capillary without increasing the number of endothelial cells, it is particularly 

important during embryonic development where the number of endothelial cells is 

limited [18]. Circulating endothelial precursor cells can also contribute to the 

expansion of the existing vasculature [19]. Despite the existence of these other vessel 

growth patterns, therapeutics targeting the tumour vasculature have focused on 

inhibiting sprouting angiogenesis or targeting the established vasculature within the 

tumour.  

 

Figure 1.1 Sprouting and intussusceptive angiogenesis. Sprouting angiogenesis; the 

formation of new blood vessels through degradation of basement membrane by 

proteases released from the activated endothelial cell, followed by migration and tube 

formation. Intussusceptive angiogenesis; the splitting of an existing vessel into two, 

initiated by the establishment of an endothelial cell junction within the capillary. 
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1.3 Tumour angiogenesis  

Like healthy organs, a tumour needs blood vessels to acquire oxygen and nutrients to 

allow its growth. Initially, micro-tumours survive by local diffusion. However, when a 

tumour reaches a certain size, approximately 3 mm
3
, diffusion is no longer sufficient 

to meet its growth rate. At this stage, the avascular tumour could become dormant for 

an indefinite period of time. However, tumours can overcome this inadequacy by 

building up a new blood supply through recruitment of new vessels from the adjacent 

existing vessels. This process is called tumour angiogenesis (Figure 1.2).  

 

 

Figure 1.2 Tumour angiogenesis Endothelial cells secret proteolytic enzymes that 

dissolve the basement membrane surrounding the existing blood vessels. Small 

capillaries form by the migration and proliferation of endothelial cells orchestrated by 

angiogenic growth factors. Stabilization of the newly formed vessels is achieved by 

secretion of basement membrane extracellular matrix [20]. Image used with 

permission.  
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Tumour cells secrete growth factors (pro-angiogenic factors) such as IL8, bFGF and 

VEGF that diffuse into the surrounding tissues. The existence of soluble angiogenic 

factors was elusive until Folkman and his colleagues proved it in a rabbit cornea 

model in the early 1970s. In that study, a small piece of tumour, about 0.5 mm
3
, was 

implanted into the stromal layers of a rabbit cornea away from the limbal edge. 10 

days later, new blood vessels from the limbus had reached the tumour. However, the 

tumour implanted into the centre of the cornea expanded slowly until the edge of the 

tumour extended to less than 2 mm from the limbus and the recruitment of new blood 

vessels eventually occurred [21]. 

 

Endothelial cells express many tyrosine kinase receptors that are highly sensitive to 

angiogenic factors. The binding of growth factors to their receptors activates 

intracellular signaling involved in endothelial migration and proliferation. As 

described earlier, upon activation, the quiescent endothelial cells start to form sprouts 

to sense the guidance cues. Later, a newly formed vessel is extended towards the 

source of the stimuli, a starving tumour. In order to survive, the tumour vasculature is 

being constantly remodeled. Therefore, like the proliferation of cancer cells, once 

occurred, tumour angiogenesis becomes an ever progressing process. It is widely 

accepted that blocking this process could starve the tumour and lead to regression 

[22-24].  
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1.4 Anti-angiogenic therapy  

Besides surgical removal of the malignant tissue, there exist two major therapies to 

treat cancer patients: chemotherapy and radiotherapy. Chemotherapy was designed to 

induce apoptosis of rapid proliferating tumour cells by disrupting their DNA 

replication or transcription. Radiotherapy uses photons or charged particles to damage 

the DNA chain, which subsequently causes cell death. Although chemotherapy and 

radiotherapy have been successful in reducing primary tumour burden, these two 

approaches rarely achieve lasting benefits for those with advanced or metastasized 

disease. This is mainly due to their unspecified toxicity that not only harms the rapid 

growing cancer cells but also healthy tissues that have relatively high proliferative 

rates; especially hair follicles and bone marrow. An ideal therapy for cancer should be 

able to kill tumours beyond its primary site but spare healthy tissue. Anti-angiogenic 

therapy has the advantage in both counts and has drawn much attention as a strategy 

to treat cancer. 

 

In 1971, Folkman and colleagues proposed that angiogenesis inhibitors can stop 

tumour growth by choking off its blood supply and that anti-angiogenesis held 

therapeutic potential in the treatment of cancer [25]. Since then anti-angiogenic 

therapy became an active field attempting to prevent or destroy tumour vasculature by 

manipulating the growth of new blood vessels. In principal, anti-angiogenic therapy 

would have a number of advantages over the traditional anti-cancer therapies. Firstly, 

cancer cells are genetically unstable which results in drug resistance. In contrast, 

http://en.wikipedia.org/wiki/Photon
http://en.wikipedia.org/wiki/Charged_particle
http://www.maths.dundee.ac.uk/chaplain/refs.html


9 

 

anti-angiogenic therapies mainly target the endothelial cells which have a much lower 

mutation rate, therefore drug resistance is less likely to develop. Secondly, one 

endothelial cell supports the survival of tens to hundreds of cancer cells. It is 

conceivable that taking one endothelial cell out could lead to a 10 – 100 fold 

increasing death of cancer cells that relied on it [26]. Thirdly, anti-cancer agents are 

difficult to deliver into the tumour because of the interstitial pressure. However, this 

problem could be avoided as the endothelial cells have direct contact with the blood 

stream which is highly accessible for anti-angiogenic agents. Finally, all tumours need 

angiogenesis to allow their growth and expansion. This indicates that anti-angiogenic 

agents have the ability to inhibit a wide range of tumour types [27]. Taken together, 

anti-angiogenic therapy is a promising strategy with many advantages over 

conventional treatments and development of such therapy is ongoing.  

 

The VEGF pathway has been the focus of this field and therefore extensively pursued 

for the last three decades [28, 29]. Accumulating evidence shows that blocking this 

pathway by neutralizing VEGF or disrupting their cognate receptor tyrosine kinases 

results in reduced tumour burden and increased survival [30].  

 

1.5 VEGF as a target 

Tumour angiogenesis is a complicated process that involves multiple regulators in 

which the most prominent one is vascular endothelial growth factor – VEGF (also 
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called VEGF-A). VEGF-A is a pro-angiogenic molecule that stimulates endothelial 

proliferation, migration, tube formation and survival [31-33].  Deletion of VEGF-A 

in mice is embryonic lethal due to abnormal development of blood vessels, suggesting 

VEGF-A is essential for the development of normal vasculature [34, 35].  

 

The VEGF family comprises VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E and 

placental growth factor (PlGF). VEGF receptors (VEGFRs) are single transmembrane 

proteins that belong to the receptor tyrosine kinase superfamily. The extracellular 

region of VEGFRs contains 7 immunoglobulin-like domains and the intracellular 

region composed of a split tyrosine kinase domain and a C-terminal tail. The receptors 

dimerize when cognate VEGF members bind to them on the cell surface, which is 

followed by phosphorylation and activation of the tyrosine kinase domain (Figure 

1.3).  

 

All VEGF(R) members are involved in angiogenesis and/or lymphoangiogenesis and 

have therapeutic potential. Among the VEGF members, VEGF-A is the most potent 

pro-angiogenic growth factor which strongly induces physiological and pathological 

angiogenesis by signaling through VEGFR-2 (also called FLK-1, KDR) [36]. The 

hypoxic environment of a tumour significantly induces the expression of VEGF-A 

[37]. As angiogenesis can be directly induced by the binding of VEGF to VEGFR2, 

this pathway provides an attractive pharmaceutical target for various vascular diseases, 

especially cancer. Expression of VEGFR2 is also found in lymphatic endothelium 
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which implied a role of VEGF-A in lymphoangiogenesis [38, 39]. VEGF-A also binds 

to VEGFR1 with a higher affinity but this receptor triggers a weaker phosphorylation 

signal compared to VEGFR2 [40, 41]. Since VEGFR1 has been involved in 

inflammation and cancer, this pathway has also offered a useful target [42-44]. 

VEGF-C and VEGF-D and their cognate receptor VEGFR3 are deeply involved in 

lymphoangiogenesis and have proven a critical system for lymph node metastasis [45, 

46]. VEGF-E specifically binds to VEGFR2 to induce angiogenesis [47]. VEGF-E has 

been investigated in proangiogenic therapy and showed less side effects compared 

with patients treated with VEGF-A [48, 49].  

 

 

Figure 1.3 VEGF and its receptor system. Major signals of angiogenesis are 

generated from VEGFR2. Although VEGFR1 has a weak tyrosine kinase activity, it 

also stimulates angiogenesis via recruitment of bone marrow-derived mononuclear 

cells. VEGFR1 plays an important role in inflammation and atherosclerosis. Soluble 

VEGFR1 is involved in placental regulation and avascularity in the cornea. Figure 

was adapted from [50].  
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VEGF clinical achievements and challenges  

Owing largely to the essential role played by VEGF in vascular development and 

tumour angiogenesis, significant efforts have been invested to explore the therapeutic 

use of VEGF blocking agents. Numerous pre-clinical studies have shown that in 

either orthotopic or ectopic human xenograft tumour models, the disruption of VEGF 

signaling led to a dramatic reduction of tumour progression [51]. Collective evidence 

has paved the way for anti-angiogenic drugs towards clinical application. In 2004, the 

Food and Drug Administration (FDA) approval of Avastin, the first anti-angiogenic 

drug, led to a boost in the development of several drugs that target the VEGF 

signaling pathway, namely VEGF(R) blockers.  

 

Avastin is a humanized monoclonal antibody to VEGF-A that was designed for 

inhibiting tumour angiogenesis by neutralizing VEGF-A. Nowadays the use of 

Avastin has extended to metastatic non-squamous non small cell lung cancer, 

metastatic breast cancer and metastatic renal cell carcinoma in the form of 

chemotherapy or cytokine therapy combination or to recurrent glioblastoma 

multiforme as a monotherapy [52]. Another group of VEGF(R) blockers are 

multi-targeted tyrosine kinase inhibitors (TKIs) including sorafenib (targeting 

VEGFR2 and 3, PDGFR, Raf), sunitinib (targeting VEGFR2, PDGFR & c-kit
27

) and 

pazopanib (targeting VEGFR 1-3, PDGFR & c-kit
92

) and most of these have been 

approved for treating metastatic renal cell carcinoma. More recently, vandetanib 

(targeting VEGF1-3, PDGFR, EGFR & RET
30, 95

) has been approved to treat 

http://www.fda.gov/
http://en.wikipedia.org/wiki/Monoclonal_antibody
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unresectable or metastatic medullary thyroid cancer but the clinical outcome has not 

yet been released. These VEGF(R) blockers generally provide an improvement of 

progression-free survival of up to a few months in cancer patients [5]. Besides the 

treatment of cancer, Avastin and two other anti-VEGF drugs: pegaptanib (VEGF 

aptamer) and ranibizumab (VEGF Fab antibody), have been approved to treat 

age-related macular degeneration that often causes blindness due to damage to the 

vasculature [53-56].  

 

Despite these successes in the treatment of cancer, the clinical data has shown that the 

use of anti-angiogenic therapy was not as potent as it was hoped for. The initial goal 

of the anti-angiogenic therapy was to inhibit angiogenesis and reduce the vascular 

supply to the tumour. However, their benefit was limited by the insufficient capability 

or the initial refractoriness and later, resistance [57]. Increasing evidence from 

pre-clinical and clinical studies suggests that VEGF blockers cause normalization of 

the tumour vasculature and that the conversion of abnormal tumour vessels into 

functional ones has become a complementary therapeutic paradigm [58]. This is 

mainly because the normalized tumour vessels can facilitate the delivery of 

chemotherapeutic drugs and immune cells [59]. This also explained, to some extent, 

why cancer patients have not benefited from single agent anti-angiogenic treatment.  

 

More recent studies have shown that VEGF targeting strategies, including 

anti-VEGFR2 and VEGFR tyrosine kinases, suppressed primary tumour growth but 
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also accelerated metastasis and shortened survival time in mice [60, 61]. One possible 

mechanism is that these anti-angiogenic drugs often increase tumour hypoxia due to 

their efficiency of pruning the tumour vasculature, in turn leading to a hypoxic niche, 

facilitating the selection of more aggressive, hypoxia-resistant cancer cell clones [62]. 

Ebos et al. also reported that pre-treating healthy mice with VEGF inhibitors caused 

increased metastasis in ectopic tumour models [60]. These findings implied a 

pre-conditioning of the blood vessel system, which, possibly due to an unknown 

effect on the normal vasculature, facilitates tumour cell seeding and revascularization.  

 

1.6 Tumour vascular targeting  

Targeting the tumour vasculature is different from anti-angiogenic therapy. Vascular 

targeting aims to limit tumour growth by specifically destroying the established 

vasculature that supports tumour survival, expansion and metastasis, while exempting 

the normal vasculature from the same effects. Instead of preventing neo-vessels from 

growing, the established vasculature in tumours has been explored as a target for 

cancer treatment.  

 

The study which provided proof of principle that vascular targeting can be used to 

eradicate solid tumours in mice came from the work of Burrows and Thorpe in 1993 

[63]. In this study, a neuroblastoma tumour line was engineered to secrete interferon 

gamma (IFN-γ) that is known to induce the expression of MHC class II antigens on 
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endothelial cells residing in the tumour. They then coupled ricin to an anti-mouse 

MHC class II antibody and showed that a single injection resulted in extensive 

haemorhagic necrosis and elimination of the tumours [63]. A later study supported 

this strategy by directing a thrombogen, tissue factor to the tumour vasculature, which 

led to complete tumour eradication in mice [64]. A recent study targeting 

phosphatidylserine that is normally intracellular but exposed on the luminal surface of 

tumour endothelial cells, also showed inhibitory effects on tumour growth, again 

supporting a vascular targeting strategy [65].  

 

Despite success in animal models, the translation of vascular targeting agents to the 

clinic has been slow, owing largely to the absence of a rigorously characterized 

tumour vascular target in man. The success of antibody and vaccine approaches will 

be reflected by the specificity of the target for tumor endothelium, and this has 

prompted the search for well-defined targets. Indeed, as targeting can be achieved 

with antibodies, antibody conjugates, and more recently, vaccines and modified T 

cells (reviewed in [22]; [66, 67]), a naturally occurring marker of tumor endothelial 

cells would provide significant therapeutic promise. Unfortunately, the expression of 

some of these targets is not as widespread as was hoped for [22], and there remains a 

need to identify novel and improved tumour endothelial molecular targets.  
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1.7 Tumour endothelial markers (TEMs) 

Fundamental differences between tumour and normal vasculature present unique 

targets for anti-cancer therapy [68]. A major cause of these differences is the influence 

of the extracellular environment on the endothelial transcriptome. Endothelial cells 

resident within a tumour are exposed to an extracellular environment markedly 

different from that of endothelial cells resident in healthy tissue. For example, an 

endothelial cell within the tumour microenvironment will experience hypoxia and that 

alone can change the expression of up to 2000 genes [69]. Tumours also show glucose 

deprivation, acidic extracellular pH, high interstitial pressure [70], excess of 

pro-angiogenic factors and increased mechanical compression [71]. Each of these 

factors may influence the transcriptome of the endothelial cells residing within 

tumours. Considerable effort has been invested to identify and validate the genes that 

are restricted to the tumour vessel, known as Tumour Endothelial Markers (TEMs). 

Although the putative TEMs to date have not been studied in clinical trials, the 

investigation of their potential in the treatment of cancer has raised wide interest [23].  

 

Identification of TEMs 

Numerous endothelial specific genes have now been identified and functional studies 

have shown that many play a role in angiogenesis [72, 73]. Attempts to identify TEMs 

have included construction of SAGE libraries from freshly isolated endothelium [74], 

use of microarray platforms [75], proteomic analysis of freshly isolated endothelial 
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cell membranes [75, 76] as well as bioinformatics data mining [77, 78]. These efforts 

succeeded in identifying candidates including the EDB domain of fibronectin, a series 

of numbered TEM’s, annexin A and Robo4 reviewed in [79]. There nevertheless 

remains an urgent need to identify novel and improved vascular targets.   

 

In order to identify the genes that are only expressed in tumour endothelium but not 

that in normal tissue, our group have predicted novel putative tumour endothelial 

markers by bioinformatics data mining in public EST and SAGE libraries [78]. In 

brief, endothelial genes were firstly identified by in-silico subtraction of genes 

expressed in endothelial cells versus those in non-endothelial cells. Tumour genes 

were then identified by subtracting bulk tumour libraries from bulk normal ones. The 

genes present in both lists were considered putative tumour endothelial markers [78]. 

In this study, three putative TEMs have been chosen for validation based on the level 

of association with endothelial cells, previously published work, intellectual property, 

sites of expression and relation to known genes with interesting functional properties. 

 

Putative TEMs 

CLEC14A 

CLEC14A (C-type lectin domain family 14 member A), also called EGFR5 or 

C14orf27, is a type I transmembrane protein that belongs to the C-type lectin domain 

family. A C-type lectin is a type of sugar-binding protein domain [80]. The C-type 

http://en.wikipedia.org/wiki/Protein_domain
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originated from the requirement of calcium for carbohydrate binding. Proteins 

containing the C-type lectin domain have a wide range of biological functions such as 

cell-cell contact, immune response to pathogens [81] and apoptosis [82]. CLEC14A is 

a member of the Endosialin family that has three other members: Endosialin, CD93 

and thrombomodulin (Figure 1.4). Endosialin was originally reported to be found in 

small blood vessels in tumours, however its expression was later found on fibroblasts 

and pericytes [83]. CD93 is expressed on endothelium, myeloid cells, platelets and 

stem cells and is involved in leukocyte and endothelial cell adhesion. It also can have 

a role in the regulation of phagocytosis of apoptotic cells and antibody production 

[84]. Thrombomodulin is an endocytic receptor expressed in endothelial cells. It is 

involved in sequestration of thrombin and the activation of protein C [85, 86]. The 

function of CLEC14A remains unknown.  

 

Full length CLEC14A is a 51.6 kDa protein which has 490 amino acids. The 

extracellular domain (amino acids 23 to 398) includes a C-type lectin domain or 

carbohydrate recognition domain and a single EGF-like domain. The transmembrane 

domain of amino acids 399 to 421 is followed by a small cytoplasmic tail of 69 amino 

acids. Bioinformatic analysis of potential sites of glycosylation predicted one highly 

conserved N-glycosylation site and nine poorly conserved potential O-glycosylation 

sites. 

 

Previous work in our group has shown selective expression of CLEC14A in 

http://en.wikipedia.org/wiki/Calcium
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endothelial cells by PCR on various cell lines. Weak expression was detected in 

fibroblasts and placenta (site of active angiogenesis). No expression could be detected 

in a variety of primary cells or cell lines. We also found that the expression of 

CLEC14A was induced by low shear stress which strongly correlates with the reduced 

blood flow in ill formed tumour vessels [87].  

 

 

Figure 1.4 Structures of members in the endosialin family. C-type lectin domain 

(pink). 1-6 EGF domains (green). Pro/Ser/Thr rich domain (pink bar). A 

transmembrane domain (blue). 

 

GBP4 

GBP4 (Guanylate binding protein 4) is a member of the guanylate binding protein 

family which belongs to the GTPase superfamily. Seven members have been 

discovered in man: hGBP1-7 and all members are expressed by endothelial cells and 
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inducible by IFN-γ [88].  

 

GBP1 is the best characterized member in the family. In vitro studies showed that 

GBP1 can be induced by many inflammatory cytokines including IFN-γ, 

interleukin-1β (IL-1β), IL-1α and TNF-α [89]. Emerging evidence demonstrated that 

GBP1 plays a role in angiogenesis and cancer. The helical domain of GBP1 is tightly 

associated with the inhibition of endothelial cell proliferation and invasion induced by 

inflammatory cytokines [90]. The most recent publication demonstrated that induction 

of GBP1 by doxycycline inhibits tumour growth in mice [91]. GBP2 was recently 

characterized as a p53-regulated tumour marker in esophageal squamous cell 

carcinomas [92]. Three GBP5 splicing variants (gbp-5a, -5b and -5ta) that lead to two 

proteins: GBP-5a/b and GBP-5ta were identified in cutaneous T-cell lymphoma and 

melanoma cell lines at a high expression level [93].  

 

The whole GBP4 gene is 6160 bp with 10 exons (Cds 1923 bp), located on 

chromosome 1. Its protein product contains 640 aa and the molecular weight is 

predicted to be 73 kDa. It has a GTP binding site motif at aa 60-67 and aa 112-116 

and a coiled-coil domain at aa 498-612. In endothelial cells, GBP4 can be induced by 

IFN-γ but not TNF-α. Its subcellular localization was revealed in both the cytoplasm 

and the nucleus [88]. At present, there is little known about GBP4 in respect of 

tumour specificity or its function in endothelial biology.  
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IKBKE 

IKBKE (Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase epsilon), 

also named IKKi or IKKз, belongs to the IKK family which includes another three 

members: IKKα, IKKβ and a regulatory subunit IKKγ (NEMO) that play a key role in 

the NF-κB signaling pathway [94]. 

 

In the classic NF-κB pathway, IKKα, IKKβ and NEMO form a core IKK complex 

that is firstly activated by the upstream stimuli and subsequently phosphorylates the 

NF-κB inhibitory protein IκBα. This leads to the ubiquitination of IκBα and allows 

NF-κB to translocate into the nuclear and activates the transcription of target genes 

[94].  

 

IKBKE is a serine/threonine protein kinase which consists of 716 amino acids with 

predicted molecular weight of 70 kDa. The protein sequence of IKBKE shares 33% 

and 31% homology to IKKα and IKKβ respectively. Although IKBKE processes the 

function in the activation of NF-κB, it was not induced by TNF-α and IL-1 like IKKα 

and IKKβ but it is activated by interferon, phorbol12-myrisate 13-acetate or the T-cell 

receptors. Therefore IKBKE has also been described as a non-canonical IKK family 

member [95-97]. 

 

In 2007, IKBKE was characterized as a breast cancer oncoprotein using integrative 

genomic approaches. The gene was overexpressed in over 30% of breast carcinomas 
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and breast cancer cell lines [98]. The same group later reported that serine 418 of the 

tumour suppressor CYLD was directly phosphorylated by IKBKE and promotes cell 

transformation [99]. IKBKE has also been associated with tumour progression and 

cisplatin resistance in ovarian cancer [100]. These findings suggested a link between 

the IKBKE pathway and the initiation and progression of cancer where active 

angiogenesis is strongly involved.  

 

A validated TEM 

Robo4  

Robo4 was first identified as an endothelial specific gene in 2000 [77] and later 

shown by our group and others to be a gene preferentially expressed in the tumour 

compared to healthy tissue endothelium [73]. Robo4 is the smallest member of the 

roundabout family and the only one to have restricted tissue expression. The other 

Roundabouts were originally identified and are primarily characterized as axon 

guidance receptors [101], although there is increasing evidence that they are also 

involved in angiogenesis [102]. Robo4 contains two of the five Ig like regions and 

two of the three fibronectin like regions present in the Robo1~3 extracellular domain, 

a transmembrane domain and an intracellular region with two conserved motifs for 

intracellular signal transduction (Figure 1.5). Multiple functions have been identified 

for Robo4, reviewed in [103]. Robo4 is specifically expressed in endothelial cells in 

vitro, is involved in endothelial motility, which is an essential process in tumour 
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angiogenesis [104-107]. The over expression of Robo4 in placenta, as determined by 

in situ hybridization, indicates that Robo4 is preferentially expressed at sites of active 

angiogenesis. More importantly, in adult tissues, Robo4 is abundantly present on the 

endothelium in a wide range of solid tumours whereas it is almost or completely 

absent in normal tissues [73, 108, 109]. A recent study showed that in a B16/F10 

mouse melanoma model, Robo4 antibody coupled nanoparticles targeted vasculature 

associated with the tumour periphery, revealed by magnetic resonance image 

technology [110]. 

 

 

Figure 1.5 Structure of Robo4 Robo4 is comprised of two Ig and two fibronectin 

domains in the extracellular region, one transmembrane region and two conserved 

motifs in the intracellular region.  

  

1.8 Identification of novel TEMs in lung cancer 

Lung cancer remains the leading cause of cancer related death in the world and there 

is still a lack of an effective treatment. Platinum-based chemotherapies achieved a 

modest improvement of survival time for 6 months however most patients 

subsequently developed progressive disease. Although tyrosine kinase inhibitors of 

EGFR initially showed promising outcomes in several trials, resistance eventually 

developed in all patients [111]. The ineffectiveness of the classic treatments prompted 
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the search for alternative approaches for non-small cell lung cancer. More recently, 

the development of anti-angiogenic drugs such as VEGF (receptor) blockers has 

drawn greater focus to the tumour vasculature. The use of such drugs or compounds 

in treating NSCLC patients have been investigated in early clinical trials. Profiling 

differentially expressed genes in lung tumour will not only enhance our understanding 

of the molecules involved in this disease but may also provide biomarkers or targets 

that have therapeutic potential.  

 

Isolation of endothelial cells 

The first successful isolation and culture of primary human endothelial cells was 

achieved in the early 1970s, independently by Gimbrone et al. [112] and Jaffe et al. 

[113]. These findings paved the way for detailed research in vascular biology. 

However conventional tissue culture involved multiple factors such as a lack of flow 

and acidic stress that have profound effects on the transcriptome of endothelial cells. 

In rat, 40% of the original endothelial surface proteins in lung disappeared when in 

culture [114]. Thus a prerequisite for success in molecular profiling of endothelium is 

to obtain a pure endothelial specimens from in vivo physiological and pathological 

samples. To profile differential gene expression of endothelial cells in normal and 

tumour lung, endothelial cells need to be isolated from the whole tissue.  
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Laser capture microdissection  

Laser capture microdissection (LCM), often called microdissection, is a technology to 

isolate specific microscopic regions of tissue. The LCM isolating process involves a 

pre-lineation of desired regions from a tissue slide. Then a laser beam, in most cases a 

UV laser, follows the defined trajectory to microdissect the region of interest. This 

region is then transported into a cap by a laser pressure catapult. This technology has 

the advantage of maintaining the chemistry of the dissected sample, which permits an 

effective retrieval of DNA and RNA and in some cases protein. For this reason, LCM 

has been widely used for molecular profiling downstream work. LCM can precisely 

dissect and collect the desired tissue at a cellular level which is particularly useful as 

endothelium only accounts for a minor proportion of the whole tissue. There are a 

number of endothelial profiling studies published using this technology [115-117]. 

The main challenge for LCM is to obtain enough high quality RNA material to 

perform gene expression profiling analysis. 

 

Ulex-bead approach 

Ulex europaeus agglutinin I is a lectin that specifically binds to L-fucose residues on 

the human endothelial surface [118, 119]. Previous studies have shown high purity of 

endothelial isolates using Ulex-conjugated beads [120-124].  

 

The Ulex-bead isolation approach is preferentially performed on fresh tissue, 
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therefore requiring a fresh clinical specimen. A major benefit from this approach is 

that the RNA integrity is high and the yield is good. Therefore, the bead isolation 

approach permits studies using 2
nd

 generation sequencing platforms, whereas the laser 

microdissection technique, due to its low RNA yield, is only suitable for microarray 

analyses.  

 

Although both techniques have been previously described in isolating endothelium 

from various types of tissue [115, 117, 125-127], an attempt in lung cancer has not yet 

been reported and remains a challenge.  

 

2nd generation sequencing (Deep sequencing)  

RNA-seq deep sequencing or 2nd generation sequencing is a parallel sequencing 

method for transcriptome analysis. It facilitates RNA snapshots of a tissue by 

sequencing millions of short reads that can be assembled into a transcriptome and be 

used to measure differential gene expression. The two major systems of 2nd 

generation sequencing are Applied Biosystems SOLiD4 and Illuminas Gene Analyser 

II/Hiseq sequencers [128]. These technologies have the advantage of querying both 

known and previous undescribed transcripts and therefore, unlike microarrays, do not 

rely on prior knowledge of transcripts. In the same way, it neither suffers from probe 

cross hybridization of closely similar genes. Deep sequencing also provides rich 

information splice variants, isoform switching and non-coding RNAs such 
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microRNAs and pseudogenes.  

 

1.9 Targeting tumour vasculature by vaccination 

Cancer immunotherapy  

Immunotherapy is the use of the host immune system to treat disease, often involving 

the elicitation, enhancement or suppression of an immune response. Cancer 

immunotherapy is particularly designed to stimulate a cancer patients’ immune system 

to kill malignant cells and in turn, achieve tumour regression. Administration of 

therapeutic antibodies can direct one’s immune system to specifically attack tumour 

cells. Cell based immunotherapy involves in vivo or ex vivo activation of immune 

cells including natural killer (NK) cells, cytotoxic T cells (CTL) and dendritic Cells 

(DCs) followed by transfusing them back into patients.  

 

Immunotherapy that targets the tumour vasculature has been explored in the last two 

decades. Although the use of VEGF blockers in combination with chemotherapies 

have shown clear clinical benefit, in certain types of cancer resistance eventually 

developed and disease progressed in almost all patients [129]. Cancer vaccination is a 

strategy to boost the patient’s own immune system against tumour cells by inducing 

an immune response that can recognize antigens present on the tumour cells.  
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Cancer vaccine 

The vaccine approach has been used to protect people from diseases for decades, for 

instance: measles, chicken pox and the flu. The idea of a cancer vaccine is to treat 

existing cancer or prevent cancer occurring in people at high risk. At present, two 

vaccines have been approved by the FDA for preventing cancer but only one cancer 

vaccine, Sipuleucel-T, was approved by FDA for the treatment of metastatic 

hormone-refractory prostate cancer [130]. Although promising, the development of an 

effective cancer vaccine is slow and proven difficult. A major obstacle for developing 

an effective vaccine is the choice of appropriate targets.  

 

Most identified vascular targets associated with tumour angiogenesis are endogenous 

proteins, which are considered a self-antigen for immunization. These self-antigens 

normally have considerably low immunogenicity of which the immune surveillance 

often are unaware so that the cells that express them are well tolerated and easily 

escape immunity [131]. Therefore, it is essential to develop an effective strategy to 

break the immunogenic tolerance to such molecules. 

 

A vaccine against tumour vasculature 

Advanced knowledge of the molecular signatures of the tumour vasculature has 

provided several promising targets that can be used as the vaccine immunogen. These 

targets are specifically present on the new formed tumour vasculature but low in or 

http://en.wikipedia.org/wiki/Hormone-refractory_prostate_cancer
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absent from normal vasculature. Accumulating pre-clinical data suggests that 

vaccination against these molecules is a feasible and promising strategy that holds 

therapeutic potential [132, 133]. Compared to the anti-angiogenic drugs, such as 

monoclonal antibodies or inhibitors, vaccination is particularly preferential because of 

its long lasting effects and low cost. 

 

Vaccination against VEGF receptors provided first proof of principle of this strategy. 

As described earlier, VEGF is a critical signaling molecule involved in physiological 

and tumour angiogenesis. All members of the VEGF family activate the cellular 

signaling pathways by a ligand-binding to their corresponding tyrosine kinase 

receptors present on the cell membrane. VEGFR2 is upregulated in activated 

endothelial cells in tumours and involved in critical steps in angiogenesis such as 

endothelial cell proliferation, migration and survival. VEGFR2 targeting by oral DNA 

vaccination showed significant inhibition of tumour growth and increase of the 

median survival rate in mice [134-136]. Similar effects were also observed when mice 

were immunised with VEGFR1 or VEGFR2 derived peptides [137, 138]. However, 

the wide expression of VEGF receptors in many healthy tissues might raise a safety 

concern when considering their uses in the clinic [139]. Other targets that are 

preferentially expressed on the tumour vasculature have been investigated as a 

vaccine and resulted in anti-angiogenic and anti-tumour effects. These targets are 

fibroblast growth factor receptor-1 [140], endothelial specific Tie2 [141], endoglin 

[142], integrin-αvβ3 [143] and angiomotin (the receptor of angiostatin) [144].  
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More recently, encouraging results were seen in vaccination against targets that are 

predominantly present on the tumour vasculature. Olsson and colleagues 

demonstrated that vaccination against the extra domain-B of fibronectin evoked 

antibody response which, resulted in a 70% tumour size reduction in mice [67]. 

Listeria-based vaccination directly against CD105 led to a 20% prevention of tumour 

occurrence in an autochthonous breast cancer model [145]. Targeting delta-like ligand 

4 that is present in endothelial tip cells by plasmid DNA vaccination dramatically 

decreased orthotopically implanted tumour growth [146]. No evidence of adverse 

effects on physiological angiogenesis were found from the above studies which 

further prove that selective targeting of the tumour vasculature holds clear therapeutic 

potential.  

 

Compared to currently available anti-angiogenic drugs such as small molecule 

tyrosine kinase inhibitors or monoclonal antibodies, vaccination is a less advanced but 

a promising approach that has many advantages. Instead of using externally 

administered drugs, vaccination induces anti-angiogenic effects by the immune 

system within individual patients and such immunity provides long-term protection. 

Such protection otherwise can only be achieved by repeated administration of 

anti-angiogenic substances. Potentially, the specificity of the immune response 

elicited by a vaccine is expected to be more restricted to the target which means less 

toxicity than many angiogenesis inhibitors.  
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Targeting the tumour vasculature has many attractive advantages compared with a 

vaccine against cancer cells. As mentioned earlier, endothelial cells are genetically 

more stable than cancer cells and thus the chance of developing resistance to the 

vaccine is minimized when endothelial cells are used as the target. Targeting tumour 

vasculature may also be effective in a wider spectrum of cancer patients, because the 

angiogenic processes are similar in different tumour types. In contrast, vaccination 

against cancer cells tends to be more specific to the cancer type due to the restriction 

of their expressed cancer associated antigens. Finally, the immune cells are much 

more accessible to the vasculature compared to tumour cells. To target the tumour 

cells, multiple tissues or cell layers need to be crossed to reach the targeted cells. 
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1.10 Aims and objectives 

Validation of putative tumour endothelial markers 

A list of putative TEMs, CLEC14A, GBP4 and IKBKE will be validated by IHC or 

IHF on human tissue arrays or clinical samples. 

 

Functional characterization of CLEC14A in endothelial cell biology 

The aim is to determine the function of CLEC14A in endothelial cell biology. 

Silencing or overexpression of CLEC14A in HUVEC will be achieved with siRNA or 

lentiviral system respectively. Manipulated cells were studied in a scratch wound 

assay to determine CLEC14A’s role in endothelial migration. Polyclonal antisera to 

CLEC14A will also be tested in a wound healing assay. Recombinant CLEC14A 

protein will be purified to enable the generation of monoclonal CLEC14A antibodies. 

To facilitate future in vivo functional work, a CLEC14A KO mouse will be generated.  

 

Identification of novel TEMs in non-small cell lung carcinoma 

Two methods, laser microdissection and Ulex-bead isolation will be compared in their 

success in isolating endothelial cells from frozen and fresh tissue respectively. Gene 

expression in the isolated endothelial cells from normal and tumour lung tissue will be 

analysed by deep sequencing and microarray analysis. Data derived from both 

technologies will be merged and a list of lung TEM candidates will be generated.  
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Investigation of Robo4 as a cancer vaccine 

This will explore the possibility of using the validated TEM Robo4 as a cancer 

vaccine. As Robo4 is a self-antigen, the immune tolerance will be broken by protein 

immunization with adjuvants. The effect of vaccination on angiogenesis will be 

investigated in a rodent sponge assay. Whether vaccination against Robo4 has an 

effect on tumour growth will also be tested in Lewis lung carcinoma model.  

 

This thesis covers a broad area of tumour vascular targeting, ranged from validation 

of identified putative TEMs, functional characterization of a validated TEM in 

endothelial biology, using deep sequencing to identify novel TEMs in lung cancer and 

exploring the use of a pre-validated TEM as a cancer vaccine. These objectives are 

interlinked and build a picture of tumour vascular targeting; from discovery to 

exploring their potential clinical use.  
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2.1 Materials 

2.1.1 Equipment 

Centrifuge Source  

Bench centrifuge Biofugepico Heraeus, Newport Pagnell, UK 

Mikro 22R Centrifuge Hettich Zentrifugen, Tuttlingen, Germany 

Biofuge Primo Centrifuge Heraeus, Newport Pagnell, UK 

Avanti J-20 XP Beckman Coulter, Brea, USA 

MC 6 Centrifuge Sarstedt, Leicester, UK 

 

Microscopes  Source 

DM 1000 light microscope Leica, London, UK 

USB 2.0 2M Xli camera Xli, Carrollton, US 

Leica MZ 16 Leica, London, UK 

Leica DME Leica, London, UK 

Axiovert 100M laser confocal microscope Carl Zeiss, Göttingen, Germany 

 

Plate reader and spectrophotometer  Source 

1420 Multilabel Coulter VICTOR
3 
, Singapore  

ND-1000 Spectrophotometer Nanodrop Technologies, Wilmington, USA 

ELISA plate reader  VICTOR
3 
, Singapore 

 

Equipment for biochemistry  Source 

XCell SureLock™ Mini-Cell electrophoresis 

apparatus 

Invitrogen, Paisley, UK 

Xcell II™ Blot Module wet transfer apparatus Invitrogen, Paisley, UK 

Electrophoresis Power supply EPS 301 Amersham Biosciences, Sweden 

Polyvinylidene difluoride membranes Immobilon-P, Billerica, USA 

Chromatography paper Whatman, Brentford, UK 

Block heater SBH 200D Stuart, Stone, UK 

AccuBlock
TM

 Digital Dry Bath Labnet International, Inc, Woodbridge, USA 

Gyro-rocker SSL3 Stuart, Stone, UK 

Rocker 25  Labnet International, Inc, Woodbridge, USA 

Rotator SB3 Stuart, Stone, UK 

Heating Magnetic stirrer FB15001 Fisher Scientific, Loughborough, UK 

3510 pH meter Jenway, Stone, UK 

Scale EK-300i A&D, Seoul, Korea 

ROTO-SHAKE Scientific Industries, New York, USA 

Compact x4 X-ray film developer  Xograph Imaging System, Tetbury, UK 

LKB Pump P-1 Pharmacia, Uppsala, Sweden 
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Hitrap Protein A column GE Healthcare Life Sciences , Little Chalfont, 

UK 

AKTA purifier (FPLC) Biotech, London, UK 

 

Equipment for molecular biology Source 

Gallenkamp Orbital Incubators Gallenkamp, Loughborough, UK 

BIO Imaging system Gene Genius, UK 

Electrophoresis tank Jencons, Leighton Buzzard, UK 

Incubator for Bacteria Cellstar Borolabs, Basingstoke, UK 

Peltier Thermal Cycler PTC-225 MJ Research, Waltham, USA 

Rotor-Gene RG3000 thermal cycler Corbett Research, Cambridge, UK 

MilliQ water purification system Millipore, Billerica, USA 

 

Equipment for cell biology Source 

Cell culture sterile hood, Advanced Bio Safely 

Cabinet Class 2 

Microflow, Andover, UK 

Incubator, 37
o
C, 5% CO2, 95% filtered air Heraeus, Newport Pagnell, UK 

BD FACSCalibur Flow Cytometer Becton Dickinson, Franklin Lakes, USA 

Water bath  Fisher Scientific, Loughborough, UK 

Amaxa nucleofector II Amaxa, Wolverhampton, UK 

20 µl filter tip Starlab, Milton Keynes, UK 

Glass cell counter Marienfeld, Lauda-Königshofen, Germany 

FastRead counting slides Immune system, Devon, UK 

Glass micro-well chambers  Nunc, Loughborough, UK 

 

Facilities  Source 

CRUK animal service  Clare Hall, London, UK 

Histology units  NHS, Birmingham, UK 

High speed cell sorter MoFlo Beckman Coulter, High Wycombe, UK 

Plasmid sequencing service  Technology Hub, Birmingham, UK 

Microarray scanning Technology Hub, Birmingham, UK 

Microarray data analysis Technology Hub, Birmingham, UK 

Deep sequencing service (SOLiD 4
TM

) Technology Hub, Birmingham, UK 

Deep sequencing data analysis  Technology Hub, Birmingham, UK 

 

2.1.2 Consumables, chemicals and reagents  

Biochemistry Source 

Bio-Rad Dc Protein assay Bio-Rad, Hemel Hempstead, UK 

Protein A Sepharose Sigma, Gillingham, UK 

Protein G Sepharose Sigma, Gillingham, UK 

http://www.gelifesciences.com/APTRIX/upp01077.nsf/content/Products?OpenDocument&parentid=566&moduleid=13157&zone=Labsep
http://bmbsgi10.leeds.ac.uk/labman/orb.html
http://www.ihampshire.co.uk/profile/275887/Basingstoke/Borolabs-Ltd/
http://www.mmcri.org/facility/pdf%20files/facs/FACScalibur.pdf
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Histoclear  National diagnostics, Hessle, UK 

20x SSC Eppendorf, Stevenage, UK 

Ultra pure ProtoGel GeneFlow, Lichfield, UK 

Phosphate Buffered Saline tablets Sigma, Gillingham, UK 

Tween 20 Sigma, Gillingham, UK 

Ponceau S Sigma, Gillingham, UK 

Enhanced chemiluminescent substrate Amersham Biosciences, Amersham, UK 

Hyperfilm MP GE Healthcare Life Sciences , Little Chalfont, UK 

Igepal (NP-40) Sigma, Gillingham, UK 

Precision plus protein standard 250 – 10 kDa Bio-Rad, Hemel Hempstead, UK 

Papain  Sigma, Gillingham, UK 

L-Cysteine Sigma, Gillingham, UK 

Iodoacetic acid Sigma, Gillingham, UK 

OPD (o-Phenylenedia mine dihydrochloride) Sigma, Gillingham, UK 

Phosphate-citrate buffer tablets  Sigma, Gillingham, UK 

Calcium chloride powder Sigma, Gillingham, UK 

Protease Inhibitor tablet Sigma, Gillingham, UK 

Ammonium persulphate  Amresco, Solon, USA 

TEMED Sigma, Gillingham, UK 

PMSF Sigma, Gillingham, UK 

Azide  Sigma, Gillingham, UK 

 

Molecular biology  

SensiMix
TM

 NoRef Bioline, London, UK 

ProbeLibrary Real-time PCR Assay System Exiqon, Woburn, USA 

TRI reagent  Sigma, Gillingham, UK 

Agarose Sigma, Gillingham, UK 

SYBR safe DNA gel stain Invitrogen, Paisley, UK 

10 mM dNTP Fermentas, Cambridge, UK 

6x DNA loading buffer New England Biolabs, Herts, UK 

High-Capacity cDNA Archive kit Applied Biosystems, Paisley, UK 

Fusion DNA polymerase New England Biolabs, Herts, UK 

Taq DNA polymerase Bioline, London, UK 

EcoRI New England Biolabs, Herts, UK 

NotI New England Biolabs, Herts, UK 

PacI New England Biolabs, Herts, UK 

PmeI New England Biolabs, Herts, UK 

T4 ligase New England Biolabs, Herts, UK 

α-Select competent cells Gold efficiency  Bioline, London, UK 

α-Select competent cells Bronze efficiency  Bioline, London, UK 

 

Cell biology   

Lymphoprep Axis-Shield, Stockport, UK 

http://www.gelifesciences.com/APTRIX/upp01077.nsf/content/Products?OpenDocument&parentid=566&moduleid=13157&zone=Labsep
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Trypan blue Sigma, Gillingham, UK 

Lipofectamine RNAiMax Invitrogen, Paisley, UK 

Recombinant hRobo4-Fc protein CRT, London, UK 

Recombinant human IgG-Fc fragment Bethyl, Montgomery, USA 

Papain cleaved human / mouse Robo4 Bicknell lab, Birmingham, UK 

 

2.1.3 Water 

NF water was used in all molecular biology experiments, purchased from Qiagen, 

Crawley, UK. Solutions and buffers were made using MilliQ filtered water.  

 

2.1.4 Antibodies and probes 

Catalogue Specificity  Characteristics Appl. / dilution Source  

AF4968 Human CLEC14A Sheep polyclonal antibody 

0.2 mg/ml 

WB: 1/1000 

IF: 1/20 

ELISA: 1/1000 

R&D system, 

Abingdon, 

UK 

ab70058 Human GBP4 Mouse polyclonal antibody 

0.4 mg/ml 

WB: 1/1000 

IF: 1/40 

Abcam, 

Cambridge, 

UK 

I4907 Human IKBKE Rabbit polyclonal antibody 

0.5 mg/ml 

WB: 1/1000 

IF: 1/50 

R&D system, 

Abingdon, 

UK 

Ab5512 Human ROS1 Rabbit polyclonal antibody 

0.25 mg/ml 

IHC: 1/50 Abcam, 

Cambridge, 

UK 

Ab117257 Human STEAP1 Rabbit polyclonal antibody 

0.2 mg/ml 

IHC: 1/40 Abcam, 

Cambridge, 

UK  

Ab469 Human BIRC5 Rabbit polyclonal antibody 

0.97mg/ml  

IHC: 1/100 Abcam, 

Cambridge, 

UK 

Ab38584 Human GJB2 Rabbit polyclonal antibody 

0.25 mg/ml 

IHC: 1/50 Abcam, 

Cambridge, 

UK 

Ab55506 Human PCDH7 Mouse polyclonal antibody 

0.5 mg/ml 

IHC: 1/50 Abcam, 

Cambridge, 

UK 

Ab118492 Human PROM2 Rabbit polyclonal antibody 

0.5 mg/ml 

IHC: 1/20 Abcam, 

Cambridge, 
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UK 

JC70 Human CD31 Mouse monoclonal antibody  

0.5 mg/ml 

IHC: 1/100 Dako, 

Glostrup, 

Denmark 

Ab10547 Human/mouse 

Robo4 

Rabbit polyclonal antibody 

0.5 mg/ml 

WB: 1/1000 

 

Abcam, 

Cambridge, 

UK 

MR7 Human Robo4 Mouse monoclonal antibody  WB: 1/1000 

FACs: 1/1000 

CRT, 

London, UK 

81-8611  

 

Sheep IgG (H+L) Rabbit polyclonal antibody - 

FITC 

IF: 10 μg/ml or 

1/100 

Zymax, 

Paisley, UK 

81-6711  

 

Mouse IgG (H+L) Rabbit polyclonal antibody - 

FITC 

IF: 10 μg/ml or 

1/100 

Zymax, 

Paisley, UK 

A3673 Mouse IgG 

(γ-chain specific) 

Rabbit polyclonal antibody 

peroxidase conjugated 

ELISA: 

1/10000 

Sigma, 

Gillingham, 

UK 

A6154 Rabbit IgG Goat polyclonal antibody 

peroxidase conjugated 

ELISA: 

1/10000 

Sigma, 

Gillingham, 

UK 

A1949 Rabbit IgG 

(γ-chain specific) 

Mouse monoclonal antibody 

peroxidase conjugated 

6.5 mg/ml 

WB: 1/10000 Sigma, 

Gillingham, 

UK 

A8667  Human IgG Goat polyclonal antibody 

peroxidase conjugated 

ELISA: 

1/10000 

Sigma, 

Gillingham, 

UK 

A6029 Human IgG 

(γ-chain specific) 

Goat polyclonal antibody 

peroxidase conjugated 

6.5 mg/ml 

WB: 1/10000 Sigma, 

Gillingham, 

UK 

A0080 Human/mouse 

fibrinogen 

Rabbit polyclonal antibody 

0.5 mg/ml  

IF: 1/500 Dako, 

Glostrup, 

Denmark 

553123 Mouse (Gr-1) Ly6G 

and Ly-6C 

Rat monoclonal antibody 

0.5 mg/ml 

IF: 1/1000 BD 

Biosciences, 

Stockholm, 

Sweden 

RL-1062  Endothelium Ulex europaeus agglutinin I 

(UEAI)- rhodamine 

IF: 10 μg/ml or 

1/100 

Vectorlabs, 

Orton 

Southgate, 

UK 

P36935 

 

Nucleus  Prolong gold anti-fade 

reagent including DAPI 

Neat  Invitrogen, 

Paisley, UK 

*WB: Western blot; IF: Immunofluorescence; IHC: Immunohistochemistry; ELISA: Enzyme-linked 

immunosorbent assay 

 

http://www.sigmaaldrich.com/catalog/product/sigma/a8667?lang=en&region=GB
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2.1.5 DNA vectors and plasmids 

Vector Characteristics Sources 

pWPI  Lentivector, EF1α promoter,  

separated GFP driven by IRES  

Bicknell group, Birmingham, 

UK 

pMD2G Envelop plasmid for lentivirus 

expression system 

Bicknell group, Birmingham, 

UK 

psPAX2 Packaging plasmid for lentivirus 

expression system 

Bicknell group, Birmingham, 

UK 

pIG vector Mammalian expression vector, 

human Fc tag in C-terminus 

with a short span 

Bicknell group, Birmingham, 

UK 

pcDNA3.1 Mammalian expression vector, 

human Fc tag in C-terminus 

Invitrogen, Paisley, UK 

pEGFP-N1 Mammalian expression vector, 

CMV promoter, GFP tag in 

C-terminus 

BD Bioscience, Oxford, UK 

Plasmids  Source / cloning strategy Application  

FL-hCLEC14A-pEGFP1 Bicknell group, Birmingham, 

UK 

Template for sub cloning  

FL-mCLEC14A-pCMV6 OriGene, Cambridge, UK Template for sub cloning 

FL-hCLEC14A-pWPI PCR with PacI & SwaI 

overhangs primers 

Transduction of HUVEC 

Ex-hCLEC14A-pIG PCR with EcoRI & NotI 

overhangs primers 

Template for sub cloning into 

pWPI lentivector 

Ex-mCLEC14A-pIG PCR with EcoRI & NotI 

overhangs primers 

Template for sub cloning into 

pWPI lentivector 

Ex-hCLEC14A-Fc-pWPI PCR with PmeI & PacI 

overhangs primers 

Recombinant hCLEC14A-Fc 

protein production  

Ex-mCLEC14A-Fc-pWPI PCR with PmeI & PacI 

overhangs primers 

Recombinant mCLEC14A-Fc 

protein production 

Ex-mRobo4-pIG CRT, London, UK Template for sub cloning into 

pWPI lentivector 

Ex-mRobo4-Fc-pWPI PCR with PacI & SwaI 

overhangs primers 

Recombinant mRobo4-Fc 

protein production 

2.1.6 Oligonucleotides  

Oligonucleotides  Application  Sequence  

CLEC14A-qPCR 

Probe 24 

qPCR 5’-CTGGGACCGAGGTGAGTG-3’ 

5’-CGCGATGCAAGTAACTGAGA-3’ 

CD31-qPCR qPCR 5’-GCAACACAGTCCAGATAGTCGT-3’ 
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Probe  5’-GACCTCAAACTGGGCATCAT3’ 

TBGP-qPCR 

Probe 70 

qPCR 5’-CGC-TAC-TCT-GGT-GGA-ACT-CA-3’ 

5’-CCT-CTT-CGC-CTC-TTG-TTG-G-3’ 

LMTK3-qPCR 

Probe 18 

qPCR 5’-GCC-TTA-CGC-GGA-CTA-CTG-G-3’ 

5’-TGG-AGA-TCA-GAG-GCT-GAA-GG-3’ 

STEAP1-qPCR 

Probe 76 

qPCR 5’-GGA-TTG-GCA-ATA-CTG-GCT-CT-3’ 

5’-GAA-ACA-ATT-CCT-AGC-TTG-CTC-TG-3’ 

TEM7-qPCR 

Probe 22 

qPCR 5’-GAC-ACG-CTG-CCA-GAT-AAC-AG-3’ 

5’-GCC-ATA-GAG-ACG-GGA-CAC-AT-3’ 

ROS1-qPCR 

Probe 78 

qPCR 5’-CGG-GAG-AAA-ATA-GCA-CCT-CA-3’ 

5’-ATT-TGG-GAA-TGC-CTG-GTT-TA-3’ 

BAMBI-qPCR 

Probe 71 

qPCR 5’-CGC-CAC-TCC-AGC-TAC-ATC-TT-3’ 

5’-CAC-AGT-AGC-ATC-GAA-TTT-CAC-C-3’ 

GJB2-qPCR 

Probe 71 

qPCR 5’-GAG-CAG-GCC-GAC-TTT-GTC-T-3’ 

5’-TGA-TCG-TAG-CAC-ACG-TTC-TTG-3’ 

SLCO1B3-qPCR 

Probe 59 

qPCR 5’-CGG-CCT-AAC-CTT-GAC-CTA-TG-3’ 

5’-TGA-GTT-GCA-ATA-AGA-AAG-TGG-TAC-A-3’ 

SYT12-qPCR 

Probe 1 

qPCR 5’-CGA-AGC-CAT-GAT-CTT-CTC-G-3’ 

5’-GCT-CTC-AGC-CAC-CGT-CAC-3’ 

BIRC5-qPCR 

Probe 36 

qPCR 5’-TCT-GCT-TCA-AGG-AGC-TGG-A-3’ 

5’-AAA-GTG-CTG-GTA-TTA-CAG-GCG-TA-3’ 

PCDH7-qPCR 

Probe 15 

qPCR 5’-CTA-CCA-CCA-GCC-AAC-ACA-TTT-3’ 

5’-TGT-ATG-GAT-GTA-GAC-GCA-TCT-GT-3’ 

PROM2-qPCR 

Probe 25 

qPCR 5’-TGC-AGC-TCA-ACG-ACT-CCT-AC-3’ 

5’-ACT-CCT-GCC-GTA-GCT-TGT-TG-3’ 

Flotillin 2-qPCR 

Probe 28 

qPCR 5’-TGTTGTGGTTCCGACTATAAACAG-3’  

5’-GGGCTGCAACGTCATAATCT-3’ 

Mouse CLEC14A 400/R600 

Expected size: 200 bp 

Genotyping 5’-CCACAACGTTCCTGTACAGTG-3’ 

5’-GCTGCTCAGCCGGAAGGGAGC-3’ 

UNeo-Fwd/SD 

Expected size: 404 bp 

Genotyping 5’-TCATTCTCAGTATTGTTTTGCC-3’ 

5’-GAATAGGAAAATGTCTCTTGCC-3’ 

CLEC14A duplex set: 

 
siRNA 

Duplex1: GAACAAGACAATTCAGTAA 

Duplex2: CAATCAGGGTCGACGAGAA 

GBP4 duplex set: 
siRNA 

Duplex1: GAACAAGACAATTCAGTAA 

Duplex2: CAATCAGGGTCGACGAGAA 

IKBKE duplex set: 

 
siRNA 

Duplex1: GGAACAAGGAGATCATGTA 

Duplex2: AGGAGTGCGTGCAGAAGTA 

Negative control duplexes siRNA Scrambled 

Ex-mRobo4-Fc  

PacI / SwaI 

Cloning into 

pWPI vector 

Forward:  

5’-TAGTAGATTTAAATACCATGGGCTCTGGAGGAACG-3’ 

Reverse:  

5’-TAGTAGTTAATTAATCATTTACCCGGAGACAGGGAGAG-3’ 

Ex-hCLEC14A 

EcoRI / NotI 

Cloning into 

pIG vector 

Forward:  

5’ – TAGTAGGAATTCTATGAGGCCGGCGTTCGCCCTGTGC – 3’  
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Reverse:  

5’ – GCGGCCGCTGGAGGAGTCGAAAGCCTGAGGAGTGGC – 3’ 

Ex-mCLEC14A 

EcoRI / NotI 

Cloning into 

pIG vector 

Forward:  

5’ – TAGTAGGAATTCTATGAGGCCAGCGCTTGCCCTGTGC – 3’ 

Reverse:  

5’ – GCGGCCGCTCGTGGAAGAGGTGTCGAAAGTCAG – 3’ 

FL-hCLEC14A 

PacI / SwaI 

Cloning into 

pWPI vector 

Forward: 

5’-TAGTAGTTAATTAAGAGAGAATGAGGCCGGCGTTC-3’ 

Reverse:  

5’- CTACTAGTTTAAACCTATGCATCACTAGAGCCAAG – 3’ 

Ex-hCLEC14A-Fc 

PmeI / PacI 

Cloning into 

pWPI vector 

Forward:  

5’-TAGTAGTTAATTAAGAGAGAATGAGGCCGGCGTTC-3’ 

Reverse:  

5’-TAGTAGGTTTAAACTCATTTACCCGGAGACAGGGAGAG -3’    

Ex-mCLEC14A-Fc 

PmeI / PacI 

Cloning into 

pWPI vector 

Forward:  

5’- TAGTAGTTAATTAATCCAGGATGAGGCCAGCGCTTGCCCTGTGC -3’  

Reverse:  

5’-TAGTAGGTTTAAACTCATTTACCCGGAGACAGGGAGAG -3’   

2.1.7 Primary isolates, cell lines and culture media 

Primary isolates Source  

Human umbilical vein endothelial cells (HUVEC) Processed within Bicknell lab, Birmingham, UK 

Human dermal microvascular endothelial cells 

(HDMEC)  

TCS Cell Works, Buckingham, UK 

Human aortic smooth muscle cells (HASMC) TCS Cell Works, Buckingham, UK 

Human bronchial epithelial cells (HBE) TCS Cell Works, Buckingham, UK 

Human lung fibroblasts (MRC5) CRUK Central Services, London, UK 

Human peripheral blood mononuclear cells 

(PBMCs) 

University of Birmingham, Birmingham, UK 

Hepatocytes Dr Patricia Lalor University of Birmingham, 

Birmingham, UK 

Cell lines  

293T cells TCS Cell Works, Buckingham, UK 

4T1 cell line TCS Cell Works, Buckingham, UK 

EL4 University of Birmingham, Birmingham, UK 

SEND University of Oxford, Oxford, UK 

Lewis lung carcinoma cells CRUK Central Services, London, UK 

Media  

Fetal calf serum CRUK Central Services, London, UK 

M199 media  Sigma, Gillingham, UK 

Large vessel endothelial cell growth supplement TCS Cell Works, Buckingham, UK 

Bronchial Epithelial cell medium TCS Cell Works, Buckingham, UK 
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OptiMEM serum low media Invitrogen, Paisley, UK 

Collagenase type I A Sigma, Gillingham, UK 

Type I gelatin from porcine skin  Sigma, Gillingham, UK 

Aim V serum low media Invitrogen, Paisley, UK 

 

2.1.8 Physiological and pathological specimens  

Materials Company  

Normal / cancer tissues CRUK Central Services, London, UK 

Cancer / matching normal tissue array SuperBiochips Inc, Seoul, Korea 

Umbilical cords  NHS, Birmingham, UK 

Fresh lung tissue Heartlands hospital, Birmingham, UK 

Heparinised whole blood  QEH, Birmingham, UK  

Human serum  QEH, Birmingham, UK 

Mouse serum CRUK Central Services, London, UK 

Basic fibroblast growth factor R&D system, Abingdon, UK 

2.1.9 Buffers and solutions  

Buffer  Recipe  

HBS buffer (2x) 2.73 mM NaCl, 48.5 mM KCl, 15.2 μM  

Na2HPO4x2H2O, 0.11 mM Dextrose, 0.42 mM 

HEPES, pH 7.05; sterilized with 0.22-micron 

filter 

NP40 lysis buffer  50 mM Tris-HCl, 150 mM NaCl, 1% NP-40, pH 

8.0 with addition of protease inhibitors tablets 

6x SDS Loading Buffer 30 % (v/v) glycerol, 0.25 % (w/v) bromophenol 

blue, 0.25 % (w/v) xylene cyanol FF 

2x SDS Loading Buffer 100 mM Tris-Cl, pH 6.8, 20% (v/v) 

β-mercaptoethanol, 4% (w/v) SDS, 0.2% (w/v) 

bromophenol blue, 20% (v/v) glycerol 

Coomassie staining buffer 

 

40 % (v/v) methanol, 10 % (v/v) acetic acid, 0.2 g 

Coomassie Brilliant Blue dye 

Running buffer 25 mM Tris, 250 mM glycine, 5% SDS  

Transfer buffer 25 mM Tris, 192 mM glycine, 20% methanol pH 

8.3 

Tris-Buffered Saline Tween-20 (TBST) 1 M Tris pH 7.5, 5 M NaCl, 20% (v/v) Tween-20 

Blocking buffer 5% dried skimmed milk in TBST 

pH 3 buffer Sodium Citrate 100 mM 

pH 7 buffer Sodium phosphate 20 mM 

TAE buffer 40 mM Tris-base, 18 mM glacial acetic acid, 1 
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mM EDTA 

10x Papain buffer 1.5 M NaCl, 6.7 mM EDTA, 50 mM L-Cysteine, 

100 mM Na2HPO4, pH 7.3 

Tris buffer pH 9 CRUK Central Services 

0.5M EDTA CRUK Central Services 

 

 

2.2 Molecular biology methods 

2.2.1 DNA / RNA handling and quantification 

All DNA and RNA work was carried out using sterile tips and NF water. DNA 

samples were resuspended in elution buffer (Sigma, Gillingham, UK) and stored at 

-20
o
C. RNA or siRNA duplexes were resuspended in nuclease free water and stored at 

-80
o
C. The quantification of DNA or RNA was performed on a Nano-drop 

spectrophotometer. The OD 260/280 ratio was used as a measure of sample purity.  

 

2.2.2 DNA preparation 

Mini-prep, Midi-prep or Maxi-prep kits (Sigma, Gillingham, UK) were used for 

different scales of DNA preparation according to manufacturer’s instructions. In brief, 

a starting culture from a bacterial clone was initiated for 16 - 18 hs. The overnight 

culture was then subjected to alkaline lysis followed by the removal of RNA by 

treatment with RNAse A. The debris and genomic DNA were removed by SDS 

precipitation. The eluted DNA was further concentrated by adding a DNA 

precipitation step using isopropanol. After 70% ethanol washing, plasmid DNA was 



45 

 

dissolved in elution buffer.  

 

2.2.3 RNA extraction 

Total RNA was isolated from primary cells or cell lines using TRI reagent (Sigma, 

Gillingham, UK) following manufacturer’s instructions. In brief, for one well of a 

6-well plate, 500 μl of TRI reagent was applied to lyse the cells. 200 μl of chloroform 

was added to the cell lysate and incubated on ice for 30 mins. Following 15 mins 

centrifugation at 14000 x g and 4
o
C, two phases were separated. RNA was 

precipitated from upper aqueous phase with 750 μl of isopropanol. After washing 

once with 70% ethanol, the RNA pellet was dissolved in NF water.  

 

2.2.4 Agarose gel electrophoresis  

1% agarose gel was prepared in TAE buffer with appropriate dilution of SYBR safe 

DNA gel stain (Invitrogen, Paisley, UK). DNA or RNA samples were mixed with 6x 

loading buffer and loaded into each well. The loaded samples were run at 60 to 80 V 

for 1 h. A picture of the gel was then taken using the BIO Imaging system machine 

under ultraviolet light. These were further modified using GeneSnap software (Gene 

Genius, Cambridge, UK). 
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2.2.5 Polymerase chain reaction 

For screening purpose  

Reaction mix µl 

Template 1 

10x NH4 buffer 5 

10 mM dNTPs 1 

Forward primer (10 µM) 0.5 

Reverse primer (10 µM) 0.5 

MgCl2 (50 mM) 2.5 

Taq polymerase 0.5 

H2O 39 

Total 50 

PCR program 

Temperature Time Cycle 

94
 o
C 2 min 1 

94
 o
C 1 min 

30 60
 o
C 30 sec 

72
 o
C 1 min 

72
 o
C 5 min 1 

4
 o
C Hold  

 

For cloning purpose 

Reaction mix µl 

Template 1 

5x buffer 10 

10 mM dNTPs 1 

Forward primer (10 µM) 0.5 

Reverse primer (10 µM) 0.5 

Fusion polymerase 0.5 

H2O 36.5 

Total 50 

PCR program 

Temperature Time Cycle 

98
 o
C 30 sec 1 

98
 o
C 10 sec 

24 60
 o
C 30 sec 

72
 o
C 1 min 

72
 o
C 5 min 1 
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4
 o
C Hold  

 

2.2.6 Restriction enzyme digestion 

Restriction enzymes were supplied with appropriate reaction buffers and 100x BSA. 

The digestion was performed following the manufacturer’s instructions. In brief, 1 µg 

of DNA vector was mixed with 1 µl of enzyme (normally 10 units) for 5 hs at 37
o
C. 

An overnight incubation was used for PCR products to ensure complete digestion. A 

sequential digestion was performed when the double digestion was not feasible 

because of buffer incompatibility.  

 

2.2.7 Genotyping of knockout mice 

Ear clips were collected from mice for genotyping. Genomic DNA was isolated using 

extraction mix (25 mM NaOH, 0.2 mM EDTA; shake at 1200 rpm for 30 min at 98
o
C). 

PCR reactions were performed to identify wild type, heterozygous and homozygous 

mice. Two primer sets: F400/R600 (internal WT CLEC14A) and UNeo-Fwd/SD 

(selection from the cassette insert linked to downstream CLEC14A) were used to 

discriminate the genotype of mice. The PCR mix and program are shown below:  

 

 1 x 20 µl reaction (µl) 

Template 1 

10 x NH4 buffer 2 

10 mM dNTP 0.4 

50 mM MgCl2 1 

10 µm Primer 1 2 
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10 µm Primer 2 2 

10 µm Primer 3 2 

10 µm Primer 4 2 

Taq polymerase 0.2 

H2O 7.4 

Total 20 

PCR program 

Temperature Time Cycle 

94
 o
C 5 min 1 

94
 o
C 15 sec 

35 62
 o
C 30 sec 

72
 o
C 1 min 

72
 o
C 5 min 1 

15
 o
C Hold  

 

2.2.8 Ligation 

T4 ligase was used for the generation of all DNA constructs. A 20 µl reaction was 

routinely carried out. The reaction mix was incubated at RT for 1 h followed by a 

heat-shock transformation (see below).  

 Vector + Insert (µl) Vector only (µl) 

Insert 15 - 

Vector 3 3 

10x Buffer 2 2 

T4 ligase 1 1 

H2O 0 15 

Total 20 20 

 

2.2.9 E. coli Transformation  

‘Gold efficiency α-Select’ competent cells were used for cloning while ‘Bronze 

efficiency α-Select’ competent cells were used for the amplification of plasmid. A 50 

µl aliquot of frozen competent cells was thawed on ice for 30 mins. 10 µl of the 
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ligation mix was added to the thawed competent cells and mixed well. Heat shock 

was achieved by placing the tube into a heated block at 42
o
C for 45 seconds. After 2 

mins incubation on ice, 250 µl of LB was added and the tube was placed at 37
o
C on 

bacterial shaker at 220 rpm for 1 h. The mix was then spread on an LB agar place 

with ampicillin or kanamycin antibiotic at 100 µg/ml.  

 

2.2.10 Long-term bacteria storage 

500 µl of overnight bacterial culture in LB broth was added to an equal volume of 30% 

glycerol in a cryovial and stored at -80
o
C. 

 

2.2.11 Complementary DNA synthesis 

In order to perform real time PCR analysis, RNA isolated from primary cells or 

tissues was converted to cDNA using a High-Capacity cDNA Archive kit (Applied 

Biosystems, Warrington, UK). In brief, RNA was diluted in NF water at 0.2 mg/ml. 2 

µg of RNA was added to 10 µl of 2x RT master mix which was made up following the 

manufacturer’s instructions. The synthesis reaction was performed in the PCR 

machine following the program below: 

 Step 1 Step 2 Step 3 Step 4 

Temperature 25 
o
C 37

o
C 85

o
C 4

o
C 

Time 10 min 120 min` 5 sec ∞ 
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2.3 Mammalian cell isolation and culture 

2.3.1 HUVEC isolation from umbilical cords 

HUVECs were isolated from umbilical cords donated by the NHS with donor consent 

and in accordance with UK Ethics approval from the Birmingham Biobank. Cords 

were dissected from placentas and the vein was washed with sterile PBS to remove 

blood. 1 mg/ml of collagenase type I A diluted in M199 medium was injected into the 

vein and then incubated at 37˚C for 20 mins to detach the endothelial cells. HUVEC 

were collected by washing in M199 complete medium containing 10% FCS, 10% 

large vessel endothelial cell growth supplement, 4 mM L-glutamine and then seeded 

on plates coated with 0.1% Type 1 gelatin from porcine skin. 

 

2.3.2 Adherent cell culture  

Culture was performed at 37
o
C in a 5% CO2 atmosphere. HUVEC and HDMEC were 

both cultured on a 1% gelatin coated plates with M199 media containing 10% FCS, 4 

mM L-glutamine and 10% large vessel endothelial cell growth supplement. Cells 

were passaged 1 in 3 when they reached confluence. MRC5 and HASMC were 

cultured in DMEM media containing 10% FCS and 4 mM L-glutamine. Bronchial 

epithelial cell medium supplied by TCS Cell Works was used specifically for human 

bronchial epithelial cells culture. Cell lines including HEK 293T, SEND, 4T1 and 

Lewis lung carcinoma were cultured in DMEM media containing 10% FCS and 4 
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mM L-glutamine. These cell lines can be passaged 1 in 10 due to their fast growth 

rate.  

 

2.3.3 Release by exposure to trypsin 

Media was removed and the plate washed with sterile PBS. 2 ml of trypsin/EDTA was 

applied for one 10 cm tissue culture dish followed by 3 mins incubation at 37
o
C. Cells 

were totally detached by gently tapping the plate. 8 ml of PBS or complete media was 

used to neutralize the trypsin and wash the cells off the plate. After 5 mins 

centrifugation at 1000 rpm, the cell pellet was resuspended in an appropriate volume 

for cell counting. 

 

2.3.4 Cell counting  

Released adherent cells or non-adherent cells were resuspended in an appropriate 

volume of media. 10 µl of 5 x trypan blue was added to 40 µl of cell suspension and 

mixed well by pipetting up and down. 10 µl of the mix was loaded onto the glass cell 

counter or into a pocket of the FastRead counting slideswhen multiple samples needed 

to be counted. The cell number was calculated using the following formula: (average 

count from one 4 x 4 grid) x 10
4
 x dilution factor = cell number/ml 
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2.3.5 Freezing and thawing of mammalian cells 

To cryo-preserve, released adherent cells or non-adherent cells were centrifuged at 

1000 rpm for 5 min and resuspended in pre-cooled filtered FCS containing 10% 

DMSO. The cryovials were placed at RT in a freezing container (Thermo Scientific, 

Langenselbold, Germany) and immediately transferred to the -80
o
C freezer. The next 

day, the cells were transferred to the liquid nitrogen storage. When thawing cells, the 

cryovials were submerged in the waterbath at 37
o
C. Contents were transferred to a 15 

ml tube, and diluted with 9 ml of media. Cells were spun down and then resuspended 

in 10 ml of DMSO free media after the two washes.  

 

2.3.6 Blood sampling 

Fresh blood from healthy donors or cancer patients was collected with patient consent 

and ethics approval (Project Licence PPL 70/6082). 60 ml of whole blood from each 

collection was mixed with 0.5 ml of 1000 U/ml preservative-free sodium heparin. 

 

2.3.7 Preparation of PBMC and serum 

Heparinised blood was diluted 1:1 in RPMI 1640 at 37
o
C. 25 ml of diluted blood was 

slowly layered onto 15 ml of lymphoprep and centrifuged at 1600 rpm for 30 min. 

The upper layer of the supernatant which contains the serum was collected and stored 

at -20
o
C. PBMC at the interface were collected and pooled followed by three washes 
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with warm RPMI. Cell number and viability was determined by trypan blue exclusion. 

PBMCs need a recovery procedure before putting into an assay. In brief, 10 ml of cell 

suspension after thawing was transferred into a 25 cm
2
 flask and incubated at 37

o
C 

overnight. 

 

2.3.8 Isolation of endothelial cells from lung tissues using Ulex magnetic beads 

Surgically removed bulk lung tissues were obtained from Heartlands hospital with 

patient consent and ethics approval (Heartlands hospital, REC reference no. 

07/MRE08/42). Tumour tissue was resected near the tumour core while the matched 

healthy tissue was resected at least 10 cm away from the tumour. The endothelial 

isolation procedure was performed within 2 hs. Tissues were weighed and minced, 

then digested for 1.5 h with DMEM containing 2 mg/ml collagenase type V (Sigma, 

Gillingham, UK), 7.4 mg/ml of actinomycin (Sigma, Gillingham, UK) and 30 kU/ml 

of DNAse I (Qiagen, Crawley, UK) at 37
o
C on a shaker. Streptavidin-coated 

Dynabeads (Invitrogen, Paisley, UK) were incubated with 20 mg/ml of biotinylated 

Ulex lectin (Vectorlabs, Orton Southgate, UK) for 30min at 37
o
C on a shaker. The 

digested cell suspension was filtered through a 70 μm cell strainer following three 

washes with cold DMEM. Endothelial cells were then isolated by positive selection 

using Ulex coated beads and a magnet. This method was modified from previously 

described methods [121, 122].  
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2.3.9 Isolation of endothelial cells from lung sections using laser microdissection 

Cresyl violet or CD31 stained slides were used for laser microdissection on a P.A.L.M. 

machine to collect blood vessels for downstream applications. In brief, the stained 

slides were air dried in a fume hood for 10 min then placed on the P.A.L.M. section 

platform. 20 μl of RNA extraction buffer from miRNeasy Mini kit (Qiagen, Crawley, 

UK) was pipetted into the inner ring of the cap to which the dissected tissue is 

catapulted. Upon completion of microdissection, the captured tissue was centrifuged 

for 1 min at 13000 rpm and stored at -80
o
C until RNA extraction. Due to the low yield 

of RNA, multiple laser dissected samples were pooled before RNA extraction. 

 

2.4 Transfection and transduction of mammalian cells 

2.4.1 Calcium-phosphate transfection 

Calcium phosphate transfection is a transient transfection method and was used to 

transfect 293T cells. In brief, 3 x 10
6
 of 293T cells were plated in a 10 cm tissue 

culture dish at 37
o
C overnight. Medium (DMEM, 10% FCS, 4 mM glutamine) was 

changed 1 h before the transfection. 5 µg of plasmid DNA, 63 µl of 2 M CaCl2 and an 

appropriate volume of water were mixed to make up a final volume of 500 µl. An 

equal volume of 2x HBS was added to the mixture dropwise and left on ice for 10 

mins. Media was replaced by complete media or OptiMEM low serum media the 

following day.  
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2.4.2 Lentivirus production 

The gene of interest was cloned into the lenti-vector pWPI containing an untagged 

GFP expressed from an IRES site. A standard calcium phosphate method was used to 

produce Lentivirus from 293T cells. In brief, 3 x 10
6
 of 293T cells were seeded in 10 

cm dishes and transfected with 20 µg transfer vector (pWPI containing the gene of 

interest), along with 15 µg of the packaging plasmid (2nd generation, psPAX2) and 6 

µg of the envelope plasmid (PMD2G). 48 h post-transfection, the supernatant which 

contains the virus was harvested and stored at -80
o
C. 

 Normal cal-phosphate Lentivirus 

Vector with gene 5 µg 20 µg 

psPAX2 - 15 µg 

pMD2G - 6 µg 

CaCl2 63 µl 63ul 

H2O Up to 500 µl Up to 500 µl 

2 x HBS 500 µl 500 µl 

Total 1 ml 1 ml 

 

2.4.3 Lentiviral transduction of 293T cells and HUVECs 

To transduce 293T cells or HUVECs, the frozen viral supernatant was thawed at RT. 3 

ml of the viral supernatant was added to 3 x 10
6 
cells and incubated at 37

o
C for 7 h. 

The media was then replaced with complete media and the culture left for a further 48 

hs.  
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2.4.4 Generation of lentivector containing human Fc tagged Robo4 or CLEC14A 

The extracellular mouse Robo4-Fc was subcloned into a pWPI lentivector from the 

pIG vector using PacI and SwaI ended primers. The extracellular domain of human or 

mouse CLEC14A was first cloned into a pIG vector which contains a C-terminal Fc 

tag using EcoRI and NotI ended primer set. Then the human or mouse CLEC14A-Fc 

was subcloned into an empty pWPI lentivector containing a GFP expressed from an 

IRES site, using PacI and PmeI ended primers. In brief, inserts were amplified by 

PCR reaction using Fusion polymerase. EcoRI, NotI, PacI, PmeI or SwaI was chosen 

as the restriction sites for different inserts. A sequential or double digestion was 

performed to create the inserts and the open vector. Overnight ligation was performed 

using T4 ligase followed by a heat shock transformation using ‘α-Select Gold 

efficiency’ competent cells. Colonies were picked and screened by PCR reaction 

using EF1α primer which is from the vector and a reverse primer from the gene. Each 

generated lentivector with the Fc fusioned insert was verified by sequencing. The 

derived constructs were scaled up by maxi-prep and stored at -20
o
C. 

 

2.4.5 Generation of a stable line expressing Fc fusion protein by FACs sorting 

The procedure for lentivirus generation is described above. FACs sorting was used to 

generate a population that stably produces recombinant protein. Cells transduced with 

mRobo4-Fc-pWPI, hCLEC14A-Fc-pWPI or mCLEC14A-Fc-pWPI were passed 

through a MoFlo high speed cell sorter and GFP positive cells were collected and 
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cultured in 10 % FCS DMEM. The selected cells were then expanded for a large scale 

production of the Fc fusion protein. FACs sorting was also used to obtain a population 

of CLEC14A overexpressing cells for functional assays from FL-CLEC14A-pWPI 

transduced HUVEC. 

 

2.5 Protein analysis methods 

2.5.1 Protein quantification  

Protein was quantified using either a Bio-Rad Dc protein assay or the Nano-drop 

machine. Bio-Rad assay was used when the protein sample was at a low concentration 

or a relative accurate readout was required. The Nano-drop machine was used for 

approximate concentrations.  

 

2.5.2 Western blotting 

Cell lysates were prepared using NP40 lysis buffer. Protein samples were mixed with 

6x protein loading buffer and denatured by boiling for 3 mins before loading onto a 

SDS-PAG gel. After SDS PAG electrophoresis, the gel was blotted onto a PVDF 

membrane at 30 Volt for 2 hs at 4
o
C. The membrane was blocked with 5% milk in 

wash buffer (PBS 0.1% Tween-20) for 1 h at RT. The membrane was washed (4 x 5 

min) and primary antibody diluted in blocking buffer was applied and incubated for 1 

h at RT or overnight at 4
o
C. After washing, horseradish peroxidase conjugated 
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secondary antibody with 1 in 10000 dilution in blocking buffer was applied for 1 h at 

RT. Following antibody staining, the membrane was again washed and 400 µl of ECL 

western blotting detection reagents was added for 3 mins. A piece of Hyperfilm was 

then exposed to the membrane for different lengths of time and the luminescence 

created by horseradish peroxidase detected. 

 

2.5.3 Membrane antibody stripping  

When a single membrane was to be probed with more than one antibody, a membrane 

stripping procedure was carried out. In brief, the membrane was washed 3 times with 

PBS 0.1% Tween-20 and incubated in stripping buffer at 70
o
C for 45 mins. The 

membrane was washed 3 times with PBS containing 0.1% Tween-20 followed by 

blocking with 5% milk for 1 h at RT.   

 

2.5.4 Coomassie brilliant blue staining 

Gels were stained with Coomassie brilliant in the microwave at high power for 1 min. 

The gel was destained by incubating with destain buffer on a rocker at RT as required. 
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2.6 Protein purification and Fc fragment removal 

2.6.1 Purification of Fc fusion proteins using a protein A column 

FACs sorted lentivirus transduced 293T cells (mRobo4-Fc, hCLEC14A or 

mCLEC14A) were expanded with complete media in 15 cm tissue culture dishes. 

Once 80% confluent, the old media was replaced with fresh OptiMem low serum 

media. 5 collections within 10 days produced 1~3 L of conditioned media. The 

collected media was adjusted to pH 8.0. 1 mM EDTA and a few PMSF crystals were 

added to inhibit serine proteases. A protein A column was prepared by washing with 

20% ethanol and then equilibrated with pH 7 buffer (sodium phosphate 20 mM). 

Conditioned media was run through a Hi-Trap protein A column at 2 ml/min at 4
o
C 

followed by a 5x column volume wash with pH 7 buffer. pH gradient elution was 

achieved by FPLC chromatography using pH 3 buffer (sodium citrate 100 mM). The 

major products were eluted at pH 3.5 ~ 4. 0.1% Azide was added to the eluate to 

avoid potential bacterial contamination and stored at 4
o
C.  

 

2.6.2 Papain cleavage of recombinant human or mouse Robo4-Fc 

In brief, 10x buffer (1.5 M NaCl, 6.7 M EDTA, 5 mM L-Cysteine) was prepared and 

stored at -20 
o
C. Papain at 20 mg/ml was diluted 1 in 100 in PBS (0.2 mg/ml). The 

final mixture for a 1 ml reaction contained 1.6 μg/ml papain, 600 μg/ml of human or 

mouse Robo4-Fc protein in 1x buffer. Reaction was performed at 37
o
C for 40 mins. 
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For optimization of papain cleavage, samples were collected every 10 mins. 50 µl of 

iodoacetic acid (130 mM, pH 6.8) was added to quench a 1 ml reaction [147, 148]. 

 

2.6.3 Depletion of Fc fragments from a papain reaction mix 

To remove the Fc fragments from 1 ml of papain reaction mix, 50 µl of cold PBS 

washed protein G beads have added to the mix and placed on a wheel at 4 
o
C for 2 hs. 

Protein G beads were pelleted down and the supernatant was collected followed by a 

western blot to confirm cleavage and depletion. The supernatant containing the 

untagged protein was stored at 4
o
C. This protein was used for Robo4 antibody 

detection or monoclonal CLEC14A antibody screening. 

 

2.7 Methods used in expression analysis  

2.7.1 Real time PCR analysis 

Following cDNA synthesis, the ProbeLibrary Real-time PCR Assay System was 

employed in the primary cell screening of gene expression. Flotillin 2 was chosen as 

the housekeeping gene to which the expression of each putative TEM was normalized. 

Primer and probe sets were designed by ProbeFinder software. Quantitative PCR was 

performed with the Rotor-Gene RG3000 thermal cycler. Reaction mix was prepared 

in triplicate for each primary cell type and 5 ng of cDNA was used in each reaction. 

The fold change of each primary isolate was normalized to HUVEC using the ΔΔCt 
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method. 

 

2.7.2 Paraffin embedded section preparation for immunostaining 

Paraffin embedded tissue arrays or single tissues (CRUK histology service, REC 

reference no. 06/Q2707/338) were used. Paraffin was removed by washing the slides 

three times with histoclear and re-hydrated by incubation in a series of ethanol, water 

and then PBS. For antigen retrieval, slides were placed in citrate buffer (pH 6.0) and 

microwaved at medium power for 5 min twice. When cooled, sections were washed 

with PBST 0.1% for 2 min twice followed by 1 h blocking with 10% FCS 3% BSA 

PBS. 

 

2.7.3 Immunohistochemical staining 

Antigen retrieved and serum blocked tissue was incubated with the diluted primary 

antibody in PBS for 1 h. For frozen lung tissue, sections were fixed in acetone at 

-20
o
C for 5 min before staining with primary antibodies. Following a PBS 1% 

Tween-20 wash, sections were visualized using Vector ImmPRESS universal antibody 

kit and Vector NovaRed chromagen (Vectorlabs, Orton Southgate, UK) following 

manufacturer’s instructions. Finally sections were counterstained with Mayers 

hematoxylin (Surgipath, Peterborough, UK), dehydrated, cleared and mounted in 

distyrene-plasticizer-xylene (DPX, Surgipath, Peterborough, UK) resin. Slides were 
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examined on a Nikon Eclipse E400 microscope (Nikon, Kingston upon Thames, UK) 

and images captured with a Nikon Coolpix 995 camera. Cresyl violet staining was 

performed using the LCM Staining Kit (Ambion, Paisley, UK) following the 

manufacturer’s instructions.  

 

2.7.4 Immunofluorescence staining  

For co-localization studies, slides were then incubated in primary antibodies at the 

appropriate concentration overnight at 4 
o
C. After 3 washes with PBS 1% Tween-20, 

sections were probed with 1 in 100 diluted fluorescence conjugated secondary 

antibodies. Endothelium was visualized with 1 in 100 diluted Ulex europaeus 

agglutinin I conjugated to rhodamine. Slides were permanently mounted with 

‘Prolong gold anti-fade’ reagent with DAPI to counterstain cell nuclei. Sections were 

then examined using an Axiovert 100M laser scanning confocal microscope.  

 

2.8 Gene expression profiling methods 

2.8.1 Microarray  

Total RNA extracted from laser microdissected or Ulex-bead isolated samples were 

first converted to cRNA, then subjected to amplification and labeling using Low Input 

Quick Amplification labeling kit (Agilent, Wokingham, UK) following the 

manufacturer’s protocol. The input RNA samples were confirmed to be of good 
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quality (RIN > 7) on a Bioanalyzer machine prior to the array. The specific activity of 

Cy3 labeled cRNA samples was determined on a NanoDrop spectrophotometer. 

Labeled cRNA samples were then hybridized to an Agilent whole human gene 

expression microarray. After washing steps using Gene expression and hybridization 

and wash buffer kits (Agilent, Wokingham, UK), the slide was scanned for feature 

extraction using Agilent Feature Extraction software v.11.0.1.1 (Agilent, Wokingham, 

UK). The Bioconductor packages Core and Limma were used to back ground subtract 

and Quantile normalize probe signal intensities prior to performing differential gene 

expression analyses Correlation distances, 2d-clustering and principle component 

analyses were performed in R.  

 

2.8.2 Next generation sequencing and data analysis 

Reads were mapped to the Human genome (University California Santa Cruz, version 

hg19) with Tophat 1.3.3 [149]. Default parameters for colour space mapping were 

used with the exception of the following;  

1. -g/--max-multihits was set to 1 to only report best uniquely mapping reads 

2. –library-type was set to fr-secondstrand to reflect the sequencing library 

preparation 

3. –G provided Tophat with a model set of gene annotation genome positions 

from the Refseq hg19 transcriptome.  

The Tophat output bam files were sorted using samtools (Version: 0.1.8, [150]), and 
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'HTSeq-count' version 0.4.7p4 [151] was used, in conjunction with the Human 

transcriptome GTF Refseq version 19, to assign gene counts to produce a tab 

delimited file of transcript/gene counts. Differential gene expression analysis and 

p-value generation on the count data was carried out using the R Bioconductor 

package DESeq v1.5 [152]. This method was provided by John Herbert (Bicknell 

group, Birmingham, UK). 

 

2.9 In vitro angiogenesis assays  

2.9.1 Small interfering RNA (siRNA) knockdown of HUVECs 

2.5 x 10
5
 HUVEC were seeded into one well of a 6-well plate the day before 

transfection. Two siRNA duplexes were designed by the online SMARTselection 

siRNA design software. Negative control duplexes (scrambled) were included in all 

experiments. The transfection was performed using 0.3% lipofectamine RNAiMax 

with 10 nM duplex in OptiMEM. The transfection mix was incubated with the cells 

for 4 hs before replacing with complete HUVEC media (antibiotic free). Cells were 

used 48 hs post transfection and knockdown of protein expression was assessed by 

western blotting.  

 

2.9.2 Scratch wound assay  

The scratch wound assay was performed on HUVECs in a 6-well plate. A scratch was 
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made with a 10 µl sterile tip. Migration of HUVECs was assessed by acquiring 

images of wound closure at time 0, 8, 12 and 24 hs. Images were acquired with a 

Leica DM 1000 light microscope and USB 2.0 2M Xli camera. The open area of the 

wound was highlighted and quantitated using the ImageJ or Photoshop CS4 software.  

 

2.10 In vivo angiogenesis assay  

2.10.1 Sponge assays 

C57BL/6 mice received a sponge subcutaneously under the dorsal skin. 200 µl of 10 

ng/ml of bFGF was injected into the sponge on alternate days. On day 14, sponges 

were excised, fixed in 4% formalin for no longer than 24 h followed by 70% ethanol. 

The fixed sponges were then paraffin embedded and sectioned. H&E staining was 

performed on the sections. Slides were then mounted with DPX. The picture of the 

whole sponge was acquired using a Leica MZ 16 microscope at 10x lens. The 

invasive edge of the sponge which was acquired using Leica DME microscope at 40X. 

The invaded area was highlighted and analysed using Photoshop CS4 and Image J 

software. 

 

2.10.2 Tumour growth experiments 

C57BL/6 mice were implanted with 10
6
 Lewis lung carcinoma cells subcutaneously. 

Tumour size was measured at three day interval. Tumour size was measured twice 
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weekly. The tumour volume was calculated using the formula: length x width
2
 x 0.4 

[153]. ANOVA analysis was performed for comparison of tumour growth between 

Robo4 vaccinated and control mice.  

 

2.11 Generation of CLEC14A knockout mice 

ES cells containing CLEC14A targeting vector were purchased from the Knockout 

Mouse Project (KOMP, Davis, USA). The targeting vector contains a β-galactosidase 

coding sequence from the E.coli lacZ gene and a coding sequence for neomycin. To 

target the CLEC14A gene locus, 5’ and 3’ homology arms of 2 kb were used (Figure 

2.1). The cryovial preserved targeted ES cells were expanded and injected into the 

inner cell mass of blastocysts which were then implanted into pseudopregnant 

C57BL/6 mice. Chimeric mice were mated to Albino mice to screen for germline 

transmission by color recognition of the offspring. This identified #15 mouse as 

having germline transmission. Mouse #15 was used to generate heterozygous 

offspring on a C57BL/6 background. Three pairs of CLEC14A heterozygous crossing 

were set up to generate complete CLEC14A knockout mice.  
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Figure 2.1 Targeting strategy for generation of CLEC14A knockout mice. Top: 

Wild type CLEC14A allele. Middle: Targeting vector containing a cassette of a lacZ 

reporter gene, a neomycin resistant gene. 5’ and 3’ homology arms of 2 kb each end 

(in gray) were used to target the gene locus. Bottom: Targeted allele after homologous 

recombination in ES cells. 

 

2.12 Immunogenicity assay 

2.12.1 Generation of a standard curve for antibody assay  

ELISA plate was coated with papain cleaved human or mouse Robo4 (25 µl - 0.008 µl) 

at 4oC overnight. The wells were blocked with 100 µl of blocking buffer (3% BSA, 

PBS) for 1 h at RT. Serial dilutions of primary Robo4 antibody (MR7 against human 

Robo4 raised from mouse; Abcam antibody against human/mouse Robo4 raised from 

rabbit) from 1 µg/ml to 0.008 µg/ml were applied. After 1 h incubation at RT and 6 

washes with wash buffer (0.1 % Tween-20 PBS), peroxidase conjugated anti-mouse 

IgG or anti-rabbit IgG antibody was diluted 1/10000 in the blocking buffer and 100 µl 

was applied to each well followed by a 1 h incubation at RT. After 6 washes with wash 

buffer, 100 µl of substrate contained OPD (o-phenylenediamine dihydrochloride) at 0.4 

mg/ml in 0.05 M phosphate citrate buffer containing 0.03 % sodium perborate was 

applied to each well. The reaction was stopped by adding 50 µl of 3M HCl. The ELISA 
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plate was read at 490 nm (0.1 s) absorbance on an ELISA plate reader. 

 

2.12.2 Investigation of Robo4 antibody in human and mouse serum  

An ELISA plate was coated with 5 µl per well of papain cleaved human or mouse 

Robo4 protein stock overnight at 4
o
C. After 1 h blocking with 3% BSA PBS, 5 µl of 

serum from man or mouse were diluted in 45 µl of PBS and applied to the antigen 

coated plate. After 6 washes, peroxidase conjugated anti-human IgG or anti-mouse 

IgG antibody was applied as the secondary. For characterizing antibody isotypes from 

mouse serum, peroxidase conjugated anti-mouse IgG1, 2a, 2b and 3 and IgM 

secondary antibody (Southern Biotech, Cambridge, UK) was applied. The rest of the 

procedure was as previously described. 

 

2.13 Mouse immunization  

2.13.1 Immunization with Robo4 protein and Freud’s adjuvant in mice 

FPLC purified mouse Robo4 protein or commercial human-Fc protein control was 

subcutaneously injected into C57BL/6 mice with 2 weekly intervals. Two groups of 

mice received 50 µg of mouse Robo4-Fc protein or human Fc protein respectively 

with complete Freunds for the first injection and incomplete Freunds afterwards. 20 µl 

of serum from each mouse was collected before each injection. The level of Robo4 

specific antibody was tested by ELISA assay using papain cleaved mouse Robo4 as 
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the coating protein. Organs including brain, heart, lung, liver, kidney and spleen from 

both groups were collected and fixed in 4% formalin. The tissues were then paraffin 

embedded and sectioned following H&E staining. The pictures from the stained 

sections were acquired using a Leica DM IL microscope and USB 2.0 2M Xli camera. 

Larger scale experiments were performed for further in vivo angiogenesis assays.  

 

2.13.2 Immunization with Robo4-CGG conjugate in CGG primed mice 

Purified mouse Robo4-Fc protein was cross-linked to CGG (Chicken γ globulin) 

using glutaraldehyde as previously described [154]. In brief, 2 µl of glutaraldehyde 25% 

stock (Sigma, Gillingham, UK) was added to 1 ml of reaction mix containing 1 mg of 

mouse Robo4-Fc protein and 1 mg of CGG in PBS (pH 7.5 - 8). The human Fc 

protein alone was also CGG crosslinked following an identical procedure. The 

reaction mix was incubated at RT for 10 min. The reaction was quenched by adding 

100 µl of 1 M Tris-HCl (pH 8) and left at RT for 15 min. Before injecting into mice, 

the mix was dialysed (10,000 MWCO) with PBS overnight.  

 

50 µg of Robo4-CGG or Fc-CGG conjugate was subcutaneously injected into 5-week 

CGG primed mice. Simultaneously, each mouse received 10
6
 Lewis lung carcinoma 

cell subcutaneously as describe above.  
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2.14 Bioinformatics websites and programs 

Websites  

Universal ProbeLibrary Assay Design Center:  

https://www.roche-applied-science.com 

 

siDESIGN
TM

 center:  

http//www.dharmacon.com/sidesign 

 

NCBI:  

http://ncbi.nlm.nih.gov/ 

 

Pubmed:  

http://www.ncbi.nlm.nih.gov/sites/entrez/ 

 

SVMtm Transmembrane Domain Predictor:  

http://bioinformatics.org.au/ 

 

TMHMM Server v. 2.0:  

http://www.cbs.dtu.dk/services/TMHMM/ 

 

BioInformatics and Molecular Analysis Section:  

http://www-bimas.cit.nih.gov/index.shtml 

 

NEBcutter V2.0:  

http://tools.neb.com/NEBcutter2/index.php 

 

UCSC Genome Bioinformatics Site:  

http://genome.ucsc.edu/ 

 
SMART:  

http://smart.embl-heidelberg.de/ 

 
Knock out mouse project:  

http://www.komp.org/ 

 

Programs: 

AdobePhotoshopCS4 

 

https://www.roche-applied-science.com/
http://ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/sites/entrez/
http://bioinformatics.org.au/
http://www.cbs.dtu.dk/services/TMHMM/
http://www-bimas.cit.nih.gov/index.shtml
http://www-bimas.cit.nih.gov/index.shtml
http://tools.neb.com/NEBcutter2/index.php
http://genome.ucsc.edu/
http://smart.embl-heidelberg.de/
http://www.komp.org/
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ImageJ 

 

ChromasPro 

 

Rotor-Gene RG-3000  

 

2.15 Statistical methods 

Excel was used to generate graphs and perform statistical analysis. The parametric 

Student t-test and Two-way analysis of variance test (ANOVA) with Dunnett’s 

Multiple comparison post-hoc test were used to compare the means of two and among 

more than two independent groups respectively. A minimum 95% confidence interval 

was used in all statistical tests. All error bars depict the standard error of the mean 

(SEM). 

 

P value Summary 

< 0.001 *** 

to 0.01 ** 

0.01 to 0.05 * 

>0.05 Non significant (ns) 
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Chapter three 

 

 

 

 

 

 

Validation of potential TEMs
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3.1 Introduction 

Bioinformatics predicted several putative TEMs [78]. cDNA libraries were used to 

predict putative TEMs essentially by various methods involving in silico subtraction 

of libraries. The predicted TEM candidates needed validation by profiling their 

expression in human tissues. An ideal TEM should fulfill the following criteria: 

1. Expression in endothelial cells  

2. Expression on tumour vessels 

3. Absent or low expression in healthy adult tissues. 

 

In this chapter, three putative TEMs: CLEC14A, GBP4 and IKBKE are respectively 

validated as a TEM on a human cancer array and healthy adult tissues by various 

techniques, including quantitative real-time PCR, immunohistochemistry and 

immunofluorescence.  
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3.2 CLEC14A is predominantly expressed in endothelial cells 

To confirm the endothelial specificity of CLEC14A, real-time PCR using CLEC14A 

primers was performed across a range of primary cell isolates including HUVEC, 

HDMEC (human dermal microvascular endothelial cells), MRC5 (fibroblasts), 

HASMC (human aortic smooth muscle cells), PBMC (peripheral blood mononuclear 

cells), hepatocytes and HBE (human bronchial epithelium). Flotillin 2 was employed 

as the house keeping gene to which CLEC14A expression was normalized [155]. The 

ΔΔCt method was used to calculate the fold change.  

 

As shown in Figure 3.1, CLEC14A was predominantly expressed in endothelial cells 

with some expression in MRC5 fibroblasts. We note, however, that MRC5 is a diploid 

cell line derived from fetal lung tissue [156] and not a primary cell isolate. Aside from 

MRC5, CLEC14A expression is essentially absent in other primary cell types.  
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Figure 3.1 Expression analysis of CLEC14A in primary cell isolates by real-time 

PCR. HUVEC: human umbilical vein endothelial cells; HDMEC: human dermal 

microvascular endothelial cells; MRC5: MRC5 fibroblasts; HASMC: human aortic 

smooth muscle cells; PBMC: peripheral blood mononuclear cells; HEPAT: 

hepatocytes; HBE: human bronchial epithelium. The experiment was repeated three 

times with similar results. 
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3.3 CLEC14A siRNA knockdown in HUVEC 

Two CLEC14A specific duplexes were transfected into HUVECs at a concentration of 

10 nM. Scrambled negative control siRNA duplex, with no homology to known 

human DNA sequences, was used as control. Mock control with no siRNA but 

transfection reagent alone was also used to show that the transfection process alone 

had no effect on cell behavior.  

 

The efficiency of the knockdown was evaluated by western blotting of cell lysate. The 

predicted molecular weight of CLEC14A is 51.6 kDa. As CLEC14A is heavily 

glycosylated (one highly conserved N- and nine poorly conserved O-glycosylation 

sites), the band at around 100 kDa is presumably the glycosylated form of the full 

length CLEC14A (Figure 3.2). No band was detected at 51.6 kDa. The level of 

tubulin expression was used as the protein loading control. Antisera failed to detect 

CLEC14A in knockdown cells but clear bands were seen in mock and scrambled 

siRNA controls. Thus, the specificity of the commercial CLEC14A antisera used later 

in immunochemistry and immunofluorescence staining was confirmed. 
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Figure 3.2 Western blot of CLEC14A siRNA knock-down in HUVEC. Western 

blot of CLEC14A knockdown in HUVECs shows that both siRNA duplexes were 

effective. Tubulin was used as the protein loading control. M: Mock, S: Scrambled; 

D1: Duplex1, D2: Duplex2. 

 

3.4 CLEC14A is expressed on vessels in tumours but not those in 

healthy tissue  

To investigate CLEC14A expression, we performed double immunofluorescence 

staining with CLEC14A antibody and the human endothelial marker Ulex lectin. 

Commercial polyclonal antibody to the extracellular domain of CLEC14A was used 

to define its expression pattern. FITC conjugated anti-sheep antisera was used to 

visualize CLEC14A expression in green. Ulex is a lectin that specifically binds to the 

alpha-L-fucose containing glycocoproteins present on the surface of human 

endothelial cells [119]. Rhodamine conjugated Ulex was used to visualize the 

endothelium in red. Co-staining was performed on human tissue arrays which had 12 

different types of carcinoma and matching adjacent healthy tissue and 10 samples of 

each. A confocal microscope was used to acquire the fluorescent images. 

Fluorescence detected within the vessel lumen was the autofluorescence of 

erythrocytes leaking through to the red and green channels.  
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Widespread expression of CLEC14A co-localized with Ulex on tumour vessels 

(Figure 3.3 a-c). In contrast we failed to detect CLEC14A on vessels in most of the 

adjacent healthy tissues. The result of the multiple tissue array staining has been 

summarized in Figure 3.4. Some adjacent healthy tissues showed positive CLEC14A 

antibody staining that may be due to its proximity to the tumour. 

 

To determine whether CLEC14A is truly absent from healthy tissue, the co-staining 

was performed on non-tumour related clinical samples derived from various organs. 

As shown in Figure 3.5a-b, CLEC14A was undetectable in healthy bladder, breast, 

liver, ovary, brain, colon, lung and kidney. Taken together, the expression profile 

confirmed CLEC14A as a tumour endothelial marker (TEM).  
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Figure 3.3a Confocal microscopic images (63X) of a human cancer tissue array 

stained with CLEC14A antibody. Endothelial cells were stained with 

rhodamine-conjugated Ulex europeaus lectin (Red). CLEC14A antibody was labeled 

with a FITC conjugated secondary antibody (Green). (i) oesophageal carcinoma (ii) 

thyroid carcinoma (iii) breast carcinoma (iv) lung carcinoma 
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Figure 3.3b Confocal microscopic images (63X) of a human cancer tissue array 

stained with CLEC14A antibody. Endothelial cells were stained with 

rhodamine-conjugated Ulex europeaus lectin (Red). CLEC14A antibody was labeled 

with a FITC conjugated secondary antibody (Green). (v) liver carcinoma (vi) stomach 

carcinoma (vii) pancreatic carcinoma (viii) kidney carcinoma 
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Figure 3.3c Confocal microscopic images (63X) of a human cancer tissue array 

stained with CLEC14A antibody. Endothelial cells were stained with 

rhodamine-conjugated Ulex europeaus lectin (Red). CLEC14A antibody was labeled 

with a FITC conjugated secondary antibody (Green). (ix) bladder carcinoma (x) ovary 

carcinoma (xi) rectal carcinoma (xii) prostate carcinoma 
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Figure 3.4 Summary of CLEC14A expression in cancer and matched adjacent 

healthy tissue arrays.  
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Figure 3.5a Confocal microscopic images (63X) of healthy tissues stained with 

CLEC14A antibody. Endothelial cells were stained with rhodamine-conjugated Ulex 

europeaus lectin (Red). CLEC14A antibody was labeled with a FITC conjugated 

secondary antibody (Green). Nuclei were stained with DAPI (Blue). (i) brain (ii) 

breast (iii) lung (iv) liver. 
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Figure 3.5b Confocal microscopic images (63X) of healthy tissues with CLEC14A 

antibody. Endothelial cells were stained with rhodamine-conjugated Ulex europeaus 

lectin (Red). CLEC14A antibody was labeled with a FITC conjugated secondary 

antibody (Green). Nuclei were stained with DAPI (Blue). (v) kidney (vi) bladder (vii) 

colon (viii) ovary. 
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3.5 Confirmation of CLEC14A as a tumour endothelial marker 

by immunohistochemistry 

To further confirm that CLEC14A is differentially expressed between healthy and 

tumour tissues, immunohistochemistry staining was performed on a hepatocellular 

carcinoma tissue using the same commercial polyclonal antisera to CLEC14A. In a 

liver cancer section, the tumour tissue was delineated from the adjacent healthy tissue 

by a fibrotic capsule, strong CLEC14A staining on the vessels was observed in the 

tumour area but not in the healthy tissues (Figure 3.6, top). Higher magnification of 

the images of vessels in tumour and adjacent healthy tissues are shown in Figure 3.6, 

bottom. Comparison of CLEC14A expression between healthy and tumour tissues 

derived from other organs was then performed using the same technique. As shown in 

Figure 3.6, CLEC14A was strongly present on tumour vessels in prostate, breast, 

kidney and thyroid but absent in vessels of corresponding healthy tissue.  
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Figure 3.6 Immunostaining of human liver showing adjacent healthy liver and 

hepatocellular carcinoma in the same section. White arrows indicate invasion of 

the nearby carcinoma into the healthy tissue. Scale bar = 200 mm (top). Intense 

staining of vessels in hepatocellular carcinoma while lack of immunostaining of 

vessels in healthy liver tissue was observed (bottom). Scale bars = 25 mm. (Data 

provided by Gary Reynolds) 
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Figure 3.7 Comparison of CLEC14A immunostaining of healthy and tumor 

tissue. (A-B) prostate, (C-D) breast, (E-F) kidney and (G-H) thyroid. Scale bars = 100 

mm. (Data provided by Gary Reynolds) 
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3.6 GBP4 is highly expressed on tumour vessels and on vessels in 

some adjacent tissue 

To determine whether there is a differential expression pattern of GBP4 in cancer and 

healthy tissues, we performed immunofluorescence staining on human tissue arrays 

using a polyclonal antisera to GBP4. The specificity of the antibody was verified by 

siRNA knockdown of GBP4 in HUVECs (Figure 3.8). The efficiency of knockdown 

was confirmed by Western blotting of cell lysate. GBP4 antibody detected a clear 

band at 74 kDa which is consistent with the predicted molecular weight of GBP4 (74 

kDa).  

 

FITC conjugated secondary antibody was used to demonstrate GBP4 expression. Ulex 

was used to visualize the blood vessels. Tissue arrays were used as previously 

described. The results demonstrated that GBP4 displayed a differential expression 

pattern across a wide range of cancer tissues (Figure 3.9a-c). GBP4 expression was 

restricted to the endothelium in thyroid, pancreas, kidney, bladder, ovarian and colon 

carcinoma while in the liver and prostate carcinoma, it is present in both endothelium 

and tumour cells. The percentage of positive sections was summarized in Figure 3.10. 

With the exception of stomach where there were more GBP4 positive tissues in the 

adjacent healthy than that in the cancer tissues, the overall percentage of GBP4 

positive tissues in tumour was greater than that in the healthy tissues.  
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Figure 3.8 Western blot on HUVEC of GBP4 siRNA knock-down. Western blot of 

HUVECs with GBP4 knockdown using the commercial GBP4 antibody shows that 

both siRNA duplexes worked efficiently. The level of tubulin expression was used as 

the protein loading control. M: Mock, S: Scrambled; D1: Duplex1, D2: Duplex2. 
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Figure 3.9a Confocal microscopic images (63X) of a human cancer array with 

GBP4 antibody. Endothelial cells were stained with rhodamine-conjugated Ulex 

europeaus lectin (Red). GBP4 antibody was labeled with a FITC conjugated 

secondary antibody (Green). Nuclei were stained with DAPI (Blue). (i) oesophageal 

carcinoma (ii) thyroid carcinoma (iii) breast carcinoma (iv) lung carcinoma 

 



91 

 

 
 

Figure 3.9b Confocal microscopic images (63X) of a human cancer array with 

GBP4 antibody. Endothelial cells were stained with rhodamine-conjugated Ulex 

europeaus lectin (Red). GBP4 antibody was labeled with a FITC conjugated 

secondary antibody (Green). Nuclei were stained with DAPI (Blue). (v) liver 

carcinoma (vi) stomach carcinoma (vii) pancreas carcinoma (viii) kidney carcinoma 



92 

 

 
 

Figure 3.9c Confocal microscopy images (63X) of a human cancer array with 

GBP4 antibody. Endothelial cells were stained with rhodamine-conjugated Ulex 

europeaus lectin (Red). GBP4 antibody was labeled with a FITC conjugated 

secondary antibody (Green). Nuclei were stained with DAPI (Blue). (ix) bladder 

carcinoma (x) ovary carcinoma (xi) colon carcinoma (xii) prostate carcinoma 
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Figure 3.10 Summary of GBP4 expression in cancer and matched adjacent 

healthy tissue arrays 

 

3.7 GBP4 is absent from vessels in healthy tissue  

In order to determine whether GBP4 is present in the non-cancer related healthy 

tissues, we performed a screen on tissues derived from healthy donors. 

Immunofluorescence was performed on a wide range of healthy tissues using the 

same GBP4 antibody. As shown in Figure 3.11a-b, the expression of GBP4 was 

absent or essentially low in all healthy tissues include brain, breast, lung, liver, kidney, 

bladder, colon and prostate.  
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Figure 3.11a Confocal microscopy images (63X) of healthy tissues with GBP4 

antibody. Endothelial cells were stained with rhodamine-conjugated Ulex europeaus 

lectin (Red). GBP4 antibody was labeled with a FITC conjugated secondary antibody 

(Green). Nuclei were stained with DAPI (Blue). (i) brain (ii) breast (iii) lung (iv)  

liver 
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Figure 3.11b Confocal microscopy images (63X) of healthy tissues with GBP4 

antibody. Endothelial cells were stained with rhodamine-conjugated Ulex europeaus 

lectin (Red). GBP4 antibody was labeled with a FITC conjugated secondary antibody 

(Green). Nuclei were stained with DAPI (Blue). (v) kidney (vi) bladder (vii) colon 

(viii) prostate 
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3.8 Validation of an IKBKE antibody by siRNA knockdown 

Two IKBKE specific siRNA duplexes were transfected into HUVECs at a 

concentration of 10 nM. The efficiency of the knockdown was evaluated by western 

blotting of the cell lysate. Consistent with predicted molecular weight, IKBKE 

appeared at 75 kDa, which was weakly detectable in the siRNA knockdown lysates. 

The expression level of tubulin control remained the same (Figure 3.12). This 

experiment not only confirmed the efficiency of both siRNA duplexes but also 

validated the specificity of the commercial IKBKE antibody, which permitted 

expression profiling of clinical tissue. 

 

 

Figure 3.12 SiRNA knock-down of GBP4 in HUVEC. Western blot of HUVECs 

with IKBKE knockdown shows that both siRNA duplexes worked efficiently. The 

level of tubulin expression was used as the protein loading control. 
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3.9 Immunofluorescence of IKBKE on tissue samples 

To determine whether IKBKE is present in healthy tissues, a preliminary screen of 

IKBKE expression on multiple healthy samples was performed using the commercial 

IKBKE antibody (green). Rhodamine conjugated Ulex (red) was used as the positive 

control for endothelium.  

 

The tissue screen showed that IKBKE has a widespread expression and is seen in 

most healthy tissues being particularly high in the ovary and in tissues involved in the 

immune system including lymph nodes and spleen. It is also present in vessel 

surrounding cells in healthy liver, colon and bladder. The expression of IKBKE is 

relatively rare in brain and heart (Figure 3.13a-c). The initial screen suggests that 

IKBKE is not a TEM due to its expression pattern in the healthy tissues. 

 

We also performed immunofluorescence staining to investigate IKBKE expression in 

tumour sections including breast, rectal, bladder and endometrial carcinoma. The 

results showed that IKBKE is also expressed in the tumour cells. However IKBKE 

expression was found in endothelial cells from breast, bladder and endometrial 

carcinoma tissues when it was absent from the endothelium in healthy tissues (Figure 

3.14). 
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Figure 3.13a Confocal microscopy images (63X) of healthy tissues with IKBKE 

antibody. Endothelial cells were stained with rhodamine-conjugated Ulex europeaus 

lectin (Red). IKBKE antibody was labeled with a FITC conjugated secondary 

antibody (Green). Nuclei were stained with DAPI (Blue). (i) brain (ii) heart (iii) lung 

(iv) stomach. 
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Figure 3.13b Confocal microscopy images (63X) of healthy tissues with IKBKE 

antibody. Endothelial cells were stained with rhodamine-conjugated Ulex europeaus 

lectin (Red). IKBKE antibody was labeled with a FITC conjugated secondary 

antibody (Green). Nuclei were stained with DAPI (Blue). (v) liver (vi) kidney (vii) 

colon (viii) bladder. 
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Figure 3.13c Confocal microscopy images (63X) of healthy tissues with IKBKE 

antibody. Endothelial cells were stained with rhodamine-conjugated Ulex europeaus 

lectin (Red). IKBKE antibody was labeled with a FITC conjugated secondary 

antibody (Green). Nuclei were stained with DAPI (Blue). (ix) lymph node (x) spleen 

(xi) ovary. 
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Figure 3.14 Confocal microscopy images (63X) of cancer tissues with IKBKE 

antibody. Endothelial cells were stained with rhodamine-conjugated Ulex europeaus 

lectin (Red). IKBKE antibody was labeled with a FITC conjugated secondary 

antibody (Green). Nuclei were stained with DAPI (Blue). (i) breast carcinoma (ii) 

rectal carcinoma (iii) bladder carcinoma (iv) endometrial carcinoma. 
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3.10 Conclusions 

Three putative TEM's were validated using various techniques. CLEC14A was 

predominantly found in endothelial cells by qPCR analysis of primary cell isolates. 

Immunofluorescence and immunohistochemical staining of human cancer tissue 

arrays using CLEC14A antisera revealed a differential expression pattern in the 

tumour compared to healthy tissue. Across a wide range of common cancers, 

CLEC14A was strongly expressed on vessels in ovarian cancer (100%), liver cancer 

(100%), bladder cancer (90%), prostate cancer (90%), breast cancer (80%) and kidney 

cancer (70%) but completely absent from all non-cancer related healthy tissues. This 

data identifies CLEC14A as a novel TEM. Similar validation approaches performed 

on GBP4 showed a tumour-vessel preferential expression in most common cancers. 

There was some expression in adjacent healthy tissue but GBP4 was completely 

undetectable in non-cancer related healthy tissue, indicating potential as a tumour 

vascular target. IKBKE has been ruled out as a TEM in this study, based on its 

widespread expression in healthy human tissues. Nevertheless, it is worth noting that 

IKBKE is found on the endothelium in breast and bladder cancer.  
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Functional characterization of CLEC14A
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4.1 Introduction  

Validation of putative TEM expression in human cancer and healthy tissue confirmed 

CLEC14A as a novel TEM. Past evidence suggested that endothelial specific genes 

are often functionally involved in endothelial biology and angiogenesis [103, 157]. 

This chapter explores the function of CLEC14A in endothelial biology, particularly its 

role in endothelial cell migration, which is a critical step engaged in tumour 

angiogenesis [16].  

 

In vitro angiogenesis assays are important tools for understanding the molecular 

mechanisms and identifying new regulators of the angiogenesis cascade [158]. The 

most widely used in vitro assays involve working with cultured endothelial cells, in 

most cases HUVEC, in systems mimicking each step of the angiogenesis process such 

as migration, proliferation and tube formation. The scratch wound assay is a well 

established approach to investigate endothelial cell migration in vitro. The assay 

involves making a ‘wound’ in a confluent cell monolayer and subsequently 

monitoring the closure of the wound by migrating cells at different time points. This 

method has been widely used with siRNA knockdown technology to investigate the 

function of genes in cell migration [159].  

 

The possibility of using CLEC14A antibodies to block endothelial migration is also 

investigated in this chapter. To further characterize CLEC14A’s role in physiological 

angiogenesis and tumour angiogenesis, CLEC14A knockout mice were generated. 
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4.2 CLEC14A knockdown inhibits endothelial cell migration  

To investigate whether CLEC14A plays a role in endothelial cell migration, a scratch 

wound assay was performed on HUVEC after CLEC14A knockdown by siRNA. 

Reagent only (Mock) and negative duplex (Scrambled) were employed as controls. 

The effect of CLEC14A knockdown on closure of a scratch wound in a confluent 

HUVEC monolayer was measured at 0, 6 and 12 hours after injury. At the end of the 

assay, cells were collected to confirm the knockdown of CLEC14A lasted to the end 

of the assay.  

 

Figure 4.1a shows representative images of the wound area at each time point for 

mock, scrambled, D1 and D2 treated cells. Cells treated with mock or control siRNA 

had fully closed the wound at 12 hours while 50 - 60% of the wound area remained 

open in the CLEC14A knockdown cells (Figure 4.1b). Western blot analysis was 

performed on the cell lysates at the end of the scratch wound assay (Figure 4.1c). 

This confirmed that CLEC14A was knocked down during the assay. The results 

suggest that CLEC14A may play a role in endothelial cell migration.  
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Figure 4.1 siRNA knockdown of CLEC14A inhibits endothelial cell migration. 

Scratch wound healing assay in a HUVEC monolayer transfected with mock, 

scrambled, CLEC14A siRNA duplex 1 or duplex 2. (a) Images at 0, 12 and 24 hour 

time points were acquired after wounding. The open wound area was highlighted and 

quantified using ImageJ software. (b) Values represent the means from three 

independent experiments. Error bars depict the standard error of the mean (Two-way 

ANOVA, P < 0.001). (c) CLEC14A knockdown was confirmed by western blotting 

the cell lysates at the end of the assay. 

a 

b 

c 
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4.3 Polyclonal antisera to CLEC14A inhibits endothelial cell 

migration  

To investigate whether commercial CLEC14A polyclonal antisera had an effect on 

endothelial cell migration, antisera at 5, 10 or 20 μg/ml was added to HUVEC cells 

immediately after wounding. The closure of the wound area of each treatment was 

than recorded at 0, 12 and 24 hours.  

 

Figure 4.2a shows the delay in wound closure in cells treated with 5, 10 or 20 μg/ml 

of CLEC14A antibody compared with the untreated cells. Quantification of the 

remaining area relative to the initial wound showed that 14% of the wound area 

remained open after 24 hour when HUVECs were treated with 10 or 20 μg/ml of 

anti-CLEC14A antisera. Controls had almost closed (Figure 4.2b). This result 

suggests that there may be an epitope in CLEC14A that mediates the cell motility that 

is blocked by polyclonal antibody. If so, it could be possible to generate a monoclonal 

antibody to CLEC14A that specifically inhibits endothelial cell migration.  

 

The effect of antisera on HUVEC tube formation was examined in the Matrigel assay 

by colleagues. The formation of the tube-like structures was impaired when cells were 

treated with 10 μg/ml [109]. This suggests a role for CLEC14A in the process of tube 

formation.  
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Figure 4.2 CLEC14A polyclonal antisera inhibits cell migration. Scratch wound 

healing assay in HUVECs, showing a retardation of wound closure in the presence of 

5, 10 and 20 μg/ml of CLEC14A polyclonal antisera. Pictures were taken at 0, 12 and 

22 h post wounding. (n = 2). Due to the cost of the antisera, replication of this data 

was prohibited.  

  

b 

a 
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4.4 Production of human and mouse CLEC14A protein using 

lentivirus 

Given the inhibitory effects on endothelial migration and tube formation by the 

commercial CLEC14A polyclonal antiesra, a monoclonal antibody to both human and 

mouse CLEC14A that has the same function would be of therapeutic interest. Pure 

CLEC14A protein was required for mouse immunization. Mouse CLEC14A protein 

was used to immunize mice while the human protein was for the screening. 

 

To express these proteins, the extracellular domain of human or mouse CLEC14A-Fc 

was inserted into a lentivector (pWPI) which contains a separate GFP expressed from 

an IRES site. GFP facilitated FACs sorting of the infected cells. The lentivector was 

transfected with an envelope plasmid and a packaging plasmid into 293T cells for 

viral production. The supernatant containing the virus was then added to fresh 293T 

cells following a FACs sorting procedure for a positive selection of GFP expressing 

cells. A pure population of 293T cells stably expressing human or mouse 

CLEC14A-Fc was obtained. The recombinant protein was secreted into low serum 

media and purified by pH gradient (pH 7 to pH 3) elution from a protein A column. 

Each eluted protein fraction was collected and quantified on a Nanodrop machine at 

280 nm (Figure 4.3a). The purity of the protein was confirmed by coomassie staining 

(Figure 4.3b). Since the extracellular domain of mouse CLEC14A was predicted to 

be 85 kDa and human Fc tag was 25 kDa, the band running at 110 kDa is recombinant 

mouse CLEC14A-Fc protein. The recombinant human CLEC14A-Fc protein was also 
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purified following the same procedure. To further confirm the purified product, 

western blot analysis was performed using in house rabbit anti human and mouse 

CLEC14A antisera and a commercial anti human Fc antibody (Figure 4.4).  

 

 

 

Figure 4.3 Purification of mouse CLEC14A-Fc protein. (a) Elution of protein was 

performed by pH gradient and the concentration of each fraction was quantified by 

Nanodrop at 280 nm. (b) The purity of each fraction was confirmed by running the 

samples on a SDS PAGE followed by coomassie staining. 

 

 

Figure 4.4 Western blot of purified human and mouse CLEC14A-Fc protein. The 

purified protein fractions were pooled and run on a SDS gel following a western blot 

against in house rabbit anti mouse CLEC14A antisera. The purified CLEC14A protein 

was detected between 100 kDa and 150 kDa. 
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4.5 Generation of monoclonal antibodies to both human and 

mouse CLEC14A 

Monoclonal antibodies to CLEC14A were generated by Serotec (Oxford, UK). The 

aim was to produce monoclonal antibodies that recognize both human and mouse 

CLEC14A-Fc, which can then be used in functional assays with human or mouse 

endothelial cells. Purified mouse CLEC14A-Fc protein was used in the immunization. 

Human and mouse CLEC14-Fc protein and a commercial purified human Fc fragment 

were used in the screening process to identify the monoclonal antibodies that 

recognize both human and mouse CLEC14A and not the human Fc tag. Five 

monoclonal antibodies were identified following affinity purification (Table 1).  

 

Code Concentration Isotype Buffer 

CRT1 5.2 mg/ml IgG1 PBS 

CRT2 5.8 mg/ml IgG1 PBS 

CRT3 6.1 mg/ml IgG1 PBS 

CRT4 7.7 mg/ml IgG1 PBS 

CRT5 6.7 mg/ml IgG1 PBS 

 

Table 1 Monoclonal antibodies to human and mouse CLEC14A. 
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4.6 Papain cleavage of CLEC14A-Fc protein and Fc fragment 

depletion 

To confirm reactivity of the monoclonal antibodies to human and mouse CLEC14A 

and not the Fc tag, an ELISA assay with CLEC14A minus the Fc tag was required. 

The protease papain has been used to cleave the Fc region of antibodies to release a 

Fab fragment and was used to cleave the Fc tag off recombinant CLEC14A-Fc protein 

(Figure 4.5). 

 

Optimization of the papain digestion reaction was performed on Fc tagged Robo4 

protein described in Chapter five, 5.1. Using this protocol, papain reaction mix was 

added to human or mouse CLEC14A-Fc protein followed by an Fc fragment depletion 

using protein G beads. Digestion was followed by western blotting for CLEC14A or 

Fc.  

 

Multiple bands were seen in both papain cleaved human and mouse CLEC14A 

Figure 4.5 (left). CLEC14A minus Fc is seen at 80 kDa. Other bands at 60 and 37 

kDa were further breakdown products. Western blot for Fc showed it had all been 

removed by the beads (Figure 4.5, right). As the purpose of this experiment is to 

release the Fc tag from CLEC14A, the mixture of CLEC14A protein fractions should 

not affect the downstream ELISA screening assay. 
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Figure 4.5 Papain cleavage of human/mouse CLEC14A-Fc following Fc fragment 

depletion. Recombinant human and mouse CLEC14-Fc protein were digested in a 

papain reaction. The cleaved Fc fragments were depleted by protein G beads. The 

final protein stocks were run on an SDS gel followed by a western blot using 

homemade rabbit anti mouse CLEC14A antibody (left) or a commercial anti human 

Fc antibody (right).  
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4.7 Evaluation of the CLEC14A monoclonal antibodies 

An ELISA assay was designed to evaluate the specificity of the CLEC14A 

monoclonal antibodies. Human or mouse CLEC14A protein was coated onto ELISA 

plates. CLEC14A monoclonal antibodies were diluted 1 in 500 (10 μg/ml) and added 

to the coated wells. Homemade rabbit antisera to both mouse and human CLEC14A 

was used as the positive control for the coated antigens. PBS or rabbit pre-bleed was 

used as negative controls for the monoclonal antibodies and anti sera respectively.  

 

As shown in Figure 4.6, all monoclonal antibodies recognized both human and mouse 

CLEC14A. In general, higher absorbance was observed for human CLEC14A coated 

wells compared to wells coated with the mouse CLEC14A protein. This was probably 

due to the variable concentrations of the two coating antigens. There is also a 

possibility that the monoclonal antibodies had higher affinity to human CLEC14A 

than mouse CLEC14A. This data confirms that these monoclonal antibodies 

recognize both human and mouse CLEC14A. 
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Figure 4.6 Confirmation of the specificity of monoclonal antibodies to human 

and mouse CLEC14A protein. An ELISA assay was performed in human or mouse 

CLEC14A protein coated wells by applying each CLEC14A monoclonal antibody into 

the assay. PBS and rabbit pre-bleed was used as the negative control for the 

monoclonal antibodies and the positive anti-sera.  
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4.8 Monoclonal antibody to CLEC14A inhibits endothelial cell 

migration  

Given the inhibitory effect of the commercial CLEC14A antisera on endothelial 

migration, a monoclonal antibody which can functionally block endothelial cell 

motility holds therapeutic potential. The five CLEC14A monoclonal antibodies were 

screened to determined whether they inhibited endothelial cell migration using a 

HUVEC scratch wound assay. 

 

1 μg/ml or 10 μg/ml of each monoclonal antibody was added to the assay. PBS 

containing 0.09% sodium azide was used as control treatment. Wound areas for each 

condition were captured at 0, 4 and 12 hours after injury. Among these five 

monoclonal antibodies, only CRT3 showed a significant delay of the wound closure in 

a dosage dependant manner (P < 0.05). Other monoclonal antibodies failed to show 

any effect in this assay.  

 

Images of the effect on wound closure by CRT3 monoclonal antibody are shown in 

Figure 4.7a. After 12 hours, 25% and 15% of the original wound remained open 

when cells were treated with 10 μg/ml and 1 μg/ml of CRT3 respectively compared to 

the control (Figure 4.7b). Although the inhibitory effect was not dramatic, a statistical 

significance was observed in a dosage dependent manner. The cross reactivity 

between human and mouse would also allow future assessments of this particular 

CLEC14A monoclonal antibody in other HUVEC based in vitro assays or in vivo 
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angiogenesis models in mice. 

 

 

  

Figure 4.7 A monoclonal antibody to CLEC14A inhibits endothelial cell 

migration. Scratch wound healing assay in HUVECs, showing a retardation of 

wound closure in the presence of 1 and 10 μg/ml of CLEC14A monoclonal antibody 

(CRT3). Images were taken at 0 and 12 h post wounding. Values represent the means 

from three independent experiments. Error bars depict the standard error of the mean 

(Two-way ANOVA, P < 0.05). 

 

 

 

 

 

a 
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4.9 Overexpression of CLEC14A in HUVEC using a lentiviral 

system  

Given that CLEC14A knockdown and antisera treatment inhibited endothelial cell 

migration, we further explored how overexpression of this protein would affect 

endothelial cell motility. The lentiviral expression system was used to achieve stable 

overexpression of CLEC14A in HUVECs.  

 

Full length human CLEC14A was constructed into a lentivector (pWPI) which 

contains independent GFP driven by an IRES site. Production of the virus from 293T 

cells was performed as described previously. HUVECs were then transduced with this 

lentivirus following a positive FACs sorting procedure for GFP to obtain a pure 

population of CLEC14A overexpressing HUVECs. Western blot was performed on 

the HUVEC lysates to confirm the overexpression (Figure 4.8). Tubulin staining 

confirmed equal protein loading.  
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Figure 4.8 Western blot of CLEC14A transfected cells. HUVECs were transduced 

with lentivector containing full length human CLEC14A and IRES linked GFP. Cells 

were FACs sorted and then analyzed by Western blot against CLEC14A antibody. 

Tubulin, at 50 kDa, was employed as the loading control for the lysates. 
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4.10 Overexpression of CLEC14A inhibits HUVEC migration  

To assess whether overexpression of CLEC14A has an effect on endothelial cell 

migration, FACs sorted HUVECs overexpressing CLEC14A were used in a scratch 

wound assay. The uninfected or solely GFP infected HUVECs were used as negative 

controls. Images of the wound area were captured at 0, 4, 8 and 12 hour and the open 

wound area was quantified using ImageJ software.  

 

A significant delay in the wound closure was observed in the CLEC14A 

overexpressing cells compared to the control cells (Figure 4.9). Thus, overexpression 

of CLEC14A phenocopied the effect caused by CLEC14A knockdown. Migration is 

clearly sensitive to the precise level of CLEC14A in the cell.  
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Figure 4.9 Overexpression of CLEC14A inhibits cell migration. Scratch wound 

healing assay in HUVECs, showing a retardation of wound closure in the CLEC14A 

overexpressing cells. Images were taken at 0, 4, 8 and 12 hours post wounding. 

Values represent the means from three independent experiments. Error bars depict the 

standard error of the mean (Two-way ANOVA, P < 0.001 at 8 h, P < 0.001 at 12 h). 
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4.11 Generation of germline transmission mice carrying a 

CLEC14A knockout allele  

In vitro functional assays have shown that CLEC14A plays a role in endothelial cell 

migration and tube formation. The inhibitory effect of CLEC14A monoclonal 

antibodies on endothelial cell migration indicates a possible therapeutic potential for 

anti-vascular or anti-angiogenesis treatment. It is important to determine the function 

of CLEC14A in vivo to further understand its role in development and physiological 

and pathological angiogenesis.  

 

Targeted vector transfected embryonic stem cells [160] were purchased and injected 

into the inner cell mass of blastocysts which was then implanted into pseudopregnant 

C57BL/6 mice. 22 Chimeric mice were born and mated to Albino mice for germline 

transmission screening. Chimera No.15 showed germline transmission by offspring 

color recognition (Figure 4.10). Chimera No.15 was then used to generate 

heterozygous offspring on a C57BL/6 background.  

 

Figure 4.10 Chimera No.15 was identified carrying CLEC14A KO in the 

germline cells. 
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4.12 Generation of CLEC14A knockout mice 

Chimera No.15 was crossed with wild type C57BL/6 mice to generate heterozygous 

mice. Three pairs of CLEC14A heterozygous crossings were set up to generate 

complete knockout offspring. Two sets of primers were optimized to genotype the 

genomic DNA isolated from ear clips of the offspring (Figure 4.11). The resulting 

offspring were born in the expected Mendelian ratios (Table 2) 

 

 

Figure 4.11 PCR on wild type and crossed arm of target vector and CLEC14A in 

wild type, CLEC14A heterozygous and KO mice. Ear clips were collected for 

genomic DNA isolation. Genotyping was performed using an internal CLEC14A 

primer set and a crossed neomycin and downstream arm of CLEC14A primer set 

which generated a 200 bp and 404 bp fragment respectively.  

 

 

Genotype Mice generated Mendelian genetics prediction 

+/+ 24%, 18 25%, 18.75 

+/- 48%, 36 50%, 37.5 

-/- 28%, 21 25%, 18.75 

 

Table 2 Number of offspring of each genotype from CLEC14A heterozygous 

parents. The ratio of each group was in line with the Mendelian genetics prediction (n 

= 75). 
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4.13 Confirmation of CLEC14A knockout in mice at the protein 

level 

Organs including brain, heart, lung, liver, spleen, kidney and colon from wild type and 

CLEC14A KO mice were snap-frozen in liquid nitrogen. Each organ was lysed and 

analyzed by western blot using rabbit anti mouse CLEC14A anti sera. A band detected 

at 30 kDa was due to non specific binding of the anti serum and it was used as the 

loading control. As shown in Figure 4.13, CLEC14A runs between 75 and 100 kDa. 

This was detected in lung and weakly in kidney from the wild type C57BL/6 mice 

while the protein was completely absent in the CLEC14A KO mice. Endothelial 

specific genes are most easily detected in the lung where 30% of the cells are 

endothelial compared to the 1 – 3% in most tissues. No obvious developmental defect 

was observed in all CLEC14A KO mice. These mice are fertile and remain healthy 

throughout their adult life.  
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Figure 4.12 Confirmation of CLEC14A KO at the protein level. Organs including 

brain, heart, lung, liver, spleen, kidney and colon were collected from wild type and 

CLEC14A KO mice. Each organ was lysed in protein lysis buffer. The lysates were 

run on an SDS gel following a western blot probed with homemade rabbit anti mouse 

CLEC14A antisera 
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4.14 Conclusions 

To begin to understand the role of CLEC14A in endothelial biology and angiogenesis, 

this chapter describes a preliminary functional characterization. Endothelial cell 

migration was the focus of the study. Silencing of CLEC14A in HUVEC using siRNA 

technology showed an inhibitory effect on endothelial migration, suggesting a 

pro-angiogenic role of CLEC14A. Unexpectedly, overexpression of CLEC14A in 

endothelial cells resulted in the same effect, indicating that a fine tuning of CLEC14A 

expression is critical for endothelial cell function. Furthermore, an identical inhibitory 

effect on migration was observed when HUVEC were treated with polyclonal 

CLEC14A antisera, which prompted the idea of generating monoclonal antibodies 

that may also be inhibitory to endothelial migration. Five monoclonal antibodies to 

CLEC14A were produced and indeed one of them (CRT3) phenocopied the 

polyclonal antisera. To address the in vivo role of CLEC14A, a knockout mouse was 

generated. CLEC14A KO mice are fertile, showing no developmental defect and 

remained healthy throughout their lifetime. Others in the group have investigated 

tumour growth in CLEC14A KO mice. Regulation of CLEC14A expression in tumour 

vessels was also investigated. The outcomes will be discussed in the last chapter.  
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Chapter five  

 

 

 

Identification of TEMs in lung cancer 
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5.1 Introduction  

Lung cancer remains difficult to treat largely due to the lack of a well-defined target. 

Here we attempt to identify novel TEMs in lung cancer using 2
nd

 generation 

sequencing technology.  

 

To profile the differential gene expression between normal and tumour lung 

vasculature, endothelial cells need to be isolated from whole tissue. To this end, two 

independent approaches were investigated (Figure 5.1).  

 

Laser microdissection was specially designed for acquiring a pure cell population 

from heterogeneous tissue samples. The advantage of this approach was that it can 

precisely dissect and collect the desired tissue at a cellular level. The technology was 

chosen to dissect endothelial cells from blood vessels of frozen lung slides. In 

addition, such technology is meant to be particularly useful due to its accuracy 

because endothelium accounts for only a minor proportion of the whole tissue. Laser 

microdissection normally yields a small amount of RNA allowing downstream work 

such as qPCR and microarray.  

 

The magnetic bead isolation approach is performed on fresh tissue from surgery. A 

major benefit of this approach is that the RNA integrity is secured and the yield is 

greater. Thus, the bead isolation approach not only permits downstream gene profiling 

work involving microarray but also allows 2
nd

 generation sequencing, with which 
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laser microdissection is not compatible (Figure 5.1). 

 

Although both approaches have been used in isolating endothelium from several 

tumour types, the attempt to do so in lung cancer has not yet been reported and 

remained a challenge.  

 

 

 

Figure 5.1 Scheme of strategies to identify TEMs in lung cancer. Two strategies 

were used to enrich the endothelial population from normal and tumour lung tissue. 

The laser capture microdissection technique was used to isolate vessels from frozen 

sections for microarray, but not for 2
nd

 generation sequencing due to the limited yield 

of RNA. The bead isolation performed on fresh lung tissue would permit both 

microarray and 2
nd

 generation sequencing due to a greater yield of RNA.  
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5.2 Laser microdissection approach  

5.2.1 Comparison of staining methods to visualize vessels and preserve RNA 

integrity  

To obtain quality RNA from endothelium using laser microdissection, there exists a 

major technical challenge, namely, visualizing the blood vessels while preserving 

RNA quality. To this end, two staining methods (i) Cresyl violet and (ii) 

immunohistochemistry for the endothelial marker CD31 were tested on frozen lung 

tumour sections.  

 

Cresyl violet is a basic dye that stains the negatively charged nucleus and is often 

used for visualization of malignant cells and revealing basic tissue morphology [161]. 

Although its rapid staining protocol preserves the RNA quality, whether the cresyl 

violet method would help visualizing vessels in lung is not clear. CD31 is a 

well-validated endothelial marker and the monoclonal antibody (JC70, Dako) has 

been long-known to label endothelium. However the immunostaining procedure 

involves multiple washing and incubation steps and may result in RNA degradation. 

Thus RNA integrity number (RIN) derived from the Bioanalyzer was used to assess 

the quality of RNA extracted from slides stained by both methods. A RIN above 7 was 

taken as high enough quality to permit downstream applications [162, 163].  

 

Frozen lung tumour slides were stained with cresyl violet or CD31 

immunohistochemistry. RNA integrity was then analysed on a Bioanalyzer. As shown 
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in Figure 5.2 left, although the RIN was well preserved (RIN = 8.8), Cresyl violet 

staining failed to highlight the blood vessels in the tissue, making it impossible to 

distinguish blood vessels from small bronchial tubes (Figure 5.2 left, white arrows). 

On the other hand, immunohistochemistry of CD31 clearly delineated the 

endothelium within the tumour however significant degradation of RNA was observed 

after the staining process (RIN = 5), (Figure 5.2, right). This probably arose from 

multiple incubation and washing steps where the tissue was exposed to aqueous 

solutions that reactivate endogenous nucleases. Thus, neither method could achieve 

the vessel visualization and RNA preservation at the same time.  

 

 

Figure 5.2 Comparison of Cresyl violet and CD31 staining in the use of vessel 

dissection and RNA preservation. Cresyl violet or CD31 immunohistochemistry 

staining was performed on frozen lung tumour tissue. After staining, RNA was 

extracted from the whole tissue section and RNA integrity determined on a 

Bioanalyzer.  
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5.2.2 Mapping strategy, the combination of two staining methods 

A combined strategy was developed to overcome the drawbacks of each staining 

method. Firstly, one slide was immune stained with CD31 antibody to highlight the 

blood vessels and this slide was used as a ‘map’. Secondly, the adjacent two slides 

derived from either side of the ‘map’ were cresyl violet stained. Cresyl violet staining 

revealed a basic tissue morphology which facilitated the reorientation according to the 

‘map’. Eventually, the vessels that need to be laser dissected were selected on the 

CD31 stained ‘map’ and the laser microdissection was carried out on adjacent cresyl 

violet stained slides (Figure 5.3a). Total RNA was then isolated from the dissected 

samples and shown to be of good quality (RIN = 7), (Figure 5.3b).   
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Figure 5.3 Mapping strategy to obtain high quality RNA from laser 

microdissected samples. (a) A ‘map’ slide was stained with CD31 antibody to 

visualize blood vessels. The adjacent two slides were cresyl violet stained to display 

basic morphology and used for laser microdissection. (b) The RIN value of laser 

dissected samples was determined on a Bioanalyzer. 

 

  

a 

b 
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5.2.3 Microarray of laser microdissected samples 

Using the mapping strategy, good quality and sufficient RNA was obtained. Two laser 

microdissected endothelial samples from lung tumour (LCM1 and LCM2) were 

amplified and labeled using an Agilent Quick-Amp kit. Two RNA samples extracted 

from fresh lung tissue were included as controls. The specific activity of all samples 

was above 6, which is considered the minimal requirement for array analysis.  

 

Single color microarray analysis was performed on an Agilent 4x44k chip. The 

analysis of microarray data was performed using the Quantile normalization method 

and the gene expression level was normalized to Flotilin 2, a house keeping gene. The 

expression level of epithelial cell adhesion molecule (EPCAM) which is expressed on 

most normal epithelial cells and almost all carcinomas was used as a measure of 

purity. Figure 5.4a shows that CD31 and EPCAM were expressed at an equal level in 

the laser dissected samples indicating considerable epithelial/carcinoma 

contamination. Despite that an equal amount of labeled cRNA was applied to the 

microarray. Weaker signals were detected in the laser dissected samples than that in 

control samples (Figure 5.4b).  

 

http://en.wikipedia.org/wiki/Carcinomas
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Figure 5.4 Microarray of laser microdissected samples. (a) Comparison of 

endothelial and epithelial compartments in two laser dissected samples: LCM1 and 

LCM2; (b) Weak signals were detected in laser microdissected samples compared 

with control samples. 
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5.2.4 Potential difficulty of capturing vessels from normal lung tissue by laser 

microdissection  

To make a comparison of gene expression between normal and tumour endothelial 

cells, laser microdissection also needs to be performed on normal lung tissues. To first 

understand the morphology and vessel distribution, CD31 immunohistochemistry was 

performed on normal lung tissue. Figure 5.5a shows intense staining throughout the 

whole lung tissue. This was presumably due to the high endothelium content of 

normal lung, which adds extra difficulty to identify vessels for laser dissection. To 

avoid damaging the RNA, the vessel area for laser dissection has to be delineated. It 

proved unavoidable to exclude mural cells (pericytes and smooth muscle cells) in the 

dissected materials, due to their proximity to the endothelium (Figure 5.5b).  

 

In conclusion, laser microdissection proved unsuitable to isolate endothelial cells, 

particular those in lung tissue. In parallel, an alternative, Ulex-bead isolation approach 

was investigated for the same purpose.  
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Figure 5.5 Potential difficulties for laser microdissection of normal and tumour 

lung. (a) Frozen normal lung sections were stained with CD31 monoclonal antibody. 

Images were captured under a light microscope. (b) Examples of laser 

microdissection of vessels from cresyl violet stained lung normal and tumour tissue. 
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5.3 Endothelial isolation using Ulex coated beads 

Endothelial cells were isolated from fresh healthy and tumour lung tissue using 

Ulex-conjugated beads. To determine the endothelial enrichment, total RNA extracted 

from endothelial isolates or whole tissue was converted to cDNA. The expression of 

CD31 in bead isolated samples was compared with that in whole tissue by real-time 

PCR.  

 

As shown in Figure 5.6a, a 15 fold increase of CD31 expression was achieved in the 

bead isolated samples compared to the whole lung tumour extracts. A 4 fold 

enrichment of endothelial cells was seen in endothelial cells isolated from normal 

lung compared to the whole tissue. The different fold increase of CD31 expression 

between normal and tumour samples was due to the fact that the proportion of 

endothelial cells is higher in normal (30%) than in tumour (3-5%). Therefore, the 

endothelial enrichment was expected to be more dramatic in the tumour sample than 

in the normal tissue. RNA quality of the Ulex-bead isolated samples were confirmed 

to be good (RIN > 7) on a Bioanalyzer (Figure 5.6b).  

 

Generally a lower RNA yield was seen from endothelial cells isolated from healthy 

lung tissue compared with that from tumour. This was possibly due to the endothelial 

cells in the healthy lung tissue being in a quiescent state. In the tumour, endothelial 

cells are active and transcription possibly more extensive. To obtain sufficient RNA (5 

μg) to perform the deep sequencing, three endothelial isolates of normal lung were 
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pooled together to make up 4.8 μg while 6.1 μg of RNA was isolated from the 

endothelium from a single tumour.  

 

 

 

 

 
 

Figure 5.6 Confirmation of endothelial enrichment and RNA integrity of 

Ulex-coated bead isolated endothelial samples. Endothelial cells were isolated from 

lung normal or tumour tissue using Ulex coated beads. (a) Real-time PCR using a 

primer set for CD31 was performed on the bead isolated endothelial cells and bulk 

tissue. The expression level of CD31 in the bead isolated sample was normalized to 

that in the bulk tissue. (b) RNA was extracted from the bead isolated endothelial cells 

from normal lung or tumour tissue. The RNA integrity of normal and tumour lung 

endothelial cells was determined on a Bioanalyzer machine. 

  

a 

b 
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5.4 RNA-seq of lung endothelium 

RNA-seq using deep sequencing (2nd generation sequencing) is a large scale parallel 

sequencing method for transcriptome analysis. It utilizes short read sequencing 

technologies such as the SOLiD 4 platform to sequence millions of reads from a 

cDNA library prepared from RNA. RNA-seq has the advantage of querying both 

known and novel transcripts and does not rely on a prior knowledge and annotation. 

Neither does it suffer from probe cross hybridization of closely similar genes that can 

occur on a microarray.  

 

As described earlier, RNA of endothelial cells isolated from three normal lung tissues 

(pooled) and one tumour lung tissue were sequenced as 1 tumour and 1 normal 

sample on a SOLiD4 sequencer. Bioinformatics analysis of the deep sequencing data 

confirmed the purity of the endothelium by comparing the expression level of CD31 

to EPCAM, CD68, PDGFR2 and CD11b. As shown in Figure 5.7a, the level of 

markers for non-endothelial cell types including epithelium, macrophage, pericytes 

and leukocytes was absent or at a low level compared to that of CD31. 

 

Angiogenesis occurs with proteolysis of the extracellular matrix followed by 

endothelial proliferation and migration [164, 165]. MMPs open the path for 

endothelial migration by remodeling and degrading the extracellular matrix. To test 

whether known angiogenic associated genes and MMPs were elevated in lung tumour 

endothelium, a differential gene expression analysis was performed using the DESeq 
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v1.5 package. The results showed a number of known angiogenic genes and MMPs to 

be elevated in lung tumour versus healthy tissue endothelium (Figure 5.7b, c).  

 

 

 

 

Figure 5.7 RNA-seq confirmation of endothelial enrichment and elevation of 

MMPs and angiogenic associated genes. (a) According the analysis of RNA-seq 

data, expression of EPCAM, CD68, PDGFR2 and CD11b in both normal and tumour 

samples were normalized to that of CD31/PECAM1, confirming the endothelial 

enrichment by the Ulex-bead isolation approach. Differential gene expression analysis 

revealed a panel of angiogenic genes (b) and MMPs (c) that were elevated in lung 

tumour endothelium 

.  
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5.5 Microarray of biological replicates 

As described earlier, the large amount of RNA (5 µg) and high cost restricted deep 

sequencing to one tumour and normal sample. Therefore, to perform differential gene 

expression analysis that compensates for patient variability, a microarray was 

experiment was performed on 4 pairs of normal and tumour endothelial isolates from 

lung on an 8x60k microarray chip (Figure 5.8a). 

 

A PCA plot in Figure 5.8b shows variation in both tumour and normal samples and 

between samples of each group. This was to be expected as samples were collected 

and extracted from different patients and statistically significant genes are those that 

are consistent across replicate samples. Nevertheless, it is clear that all normal 

endothelial isolates are more similar to each other than to any tumour endothelium.  
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Figure 5.8 Microarray of endothelial isolates from multiple patient samples. (a) 4 

pairs of normal and tumour endothelial isolates were analysed by microarray on an 

8x60k Agilent microarray chip. (b) A PCA plot demonstrates variation between 

endothelium isolated from normal and tumour samples.  

 

 

  

a 
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5.6 Identification of lung TEM candidates   

For target identification, differentially expressed genes obtained from deep 

sequencing data were filtered with multiple criteria. 477 genes with log2 fold change 

magnitude > 1, a p-value < 0.5 and containing a transmembrane or signal peptide 

domain was generated. 

 

Differential gene expression analysis was performed on the microarray data using the 

program Limma and genes were filtered based on the same criterion as RNA-seq. 

This resulted in 584 genes. The intersection of the microarray and deep sequencing 

gene pools were assigned lung TEM candidates, consisting of 126 genes. 13 lung 

TEM candidates were chosen for further validation based on additional criteria 

including the level of association with endothelial cells, previously published work, 

intellectual property, sites of expression and relation to known genes with interesting 

functional properties (Figure 5.9). 
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Figure 5.9 Deep sequencing and microarray for the identification of putative 

lung TEMs 
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5.7 Validation of lung TEM candidates in EC isolated from 

NSCLC patients  

To validate putative lung TEMs, primer sets of each candidate were designed. A 

quantitative real-time PCR was performed on four pairs of normal and tumour 

endothelial isolates from lung. Flotillin 2 was used as the house keeping gene to 

which the data was normalized. The double delta Ct method was used to compare 

expression levels in tumour relative to normal endothelial isolates.  

 

Figure 5.10 demonstrates that all candidates had elevated expression in tumour ECs 

versus normal ECs, which ranged from a 3 to 60 fold increase.  
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Figure 5.10 Quantitative real-time PCR validation of lung TEM candidates in 

EC isolated from NSCLC patients  
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5.8 Expression of TEM candidates in angiogenic tissue and lung 

cancer 

Immunohistochemistry staining was performed on placental and lung tumour tissues 

using antibodies to the lung TEM candidates. Among the fourteen candidates, the six 

genes: BIRC5, GJB2, PCDH7, PROM2, ROS1 and STEAP1 showed endothelial 

expression in placenta which is a site of active angiogenesis (Figure 5.11). Lung 

tumour tissue was also immunostained and Figure 5.12 shows that these six 

candidates are indeed expressed on the tumour vessels.  
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Figure 5.11 Immunohistochemistry of lung TEM candidates on placental tissue. 

Scale bar = 25 mm 
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Figure 5.12 Immunohistochemistry of lung TEM candidates on lung cancer 

tissue. Scale bar = 25 mm 
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5.9 Conclusions  

A major barrier to effective treatments for lung cancer is the lack of well characterized 

markers or targets. In this chapter we aimed to identify novel lung cancer vascular 

targets by transcriptional profiling of lung endothelium. Two methodologies were 

investigated and compared to characterize healthy and cancerous lung endothelium. 

Laser microdissection technology proved problematic for isolating lung endothelial 

cells. Beside an inadequate endothelial enrichment, the poor RNA integrity and 

limited yield restricted downstream work. In contrast, the Ulex-bead isolation 

approach achieved excellent endothelial purity and RNA quality and yield from fresh 

clinical samples. Using this approach, deep sequencing technology was combined 

with microarray analysis to profile the transcriptome of endothelial isolates from 

tumour and healthy lung of multiple cancer patients. Differential gene expression 

analysis of the two data sets identified 126 TEM candidates. The subsequent qPCR 

validation on tumour and healthy endothelial isolates from multiple patients produced 

a short list of 13 genes. Immunohistochemistry staining on placental and lung tumour 

sections identified six lung vascular targets with strong endothelial expression, 

namely STEAP1, ROS1, PCDH7, BIRC5, GJB2 and PROM2. Further 

characterization of these targets is on-going. 
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Chapter six 

 

 

 

Robo4 as a cancer vaccine 
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6.1 Introduction 

TEMs localized at the plasma membrane or secreted into the extracellular matrix are 

accessible for targeting by antibody, and such antibodies can be either infused or 

generated de novo via vaccination with the TEM. An advantage of active vaccination 

is the possibility of generating both antibody production in situ and cytotoxic T-cell 

mediated immunity. In experimental mouse models, reduction of tumour growth has 

been demonstrated after vaccination with a range of endothelial expressed proteins 

including the vascular endothelial growth factor receptor (VEGFR) -2, 

Endoglin/CD105, Delta-like 4 (DLL4) and the extra domain-B of fibronectin 

(reviewed in [166], [67, 146]) 

 

Crucially important to the success of the immunotherapy is the selection of the TEM. 

The TEM should ideally be present throughout the tumour vasculature and show 

negligible expression on the normal vasculature. An example of such a TEM is Robo4. 

Expression of Robo4 on the vasculature in tumour but not healthy tissues identifies it 

as a potential target for immunotherapeutic approaches such as vaccination. Its 

expression is up-regulated by low shear stress, and it is present on the vessels of a 

number of tumour types including pancreatic, bladder, lung and prostate cancer [73, 

108, 109, 167, 168]. This chapter investigates the effect of Robo4 vaccination on 

angiogenesis and tumour growth. 
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6.2 Papain cleavage of human Robo4-Fc  

Prior to vaccination to a self-antigen, it is necessary to show that there is no 

pre-existing immunity. An ELISA assay was designed to investigate whether Robo4 

antibodies are present in serum from healthy people and cancer patients. In this assay, 

the ELISA plate was coated with pure Robo4 protein as the antigen. Robo4 protein 

was expressed fused to an Fc tag that allowed purification on a protein A column. 

Unfortunately the Fc tag was recognised by the secondary anti-human IgG antibody 

and so was first removed by papain digestion.  

 

Pilot experiments showed that although the Fc tag was cleaved off, the papain rapidly 

digested the remaining Robo4. To optimize the yield of cleaved Robo4, the cleavage 

reaction mix was sampled at a series of time points over one hour. Samples were 

resolved on acrylamide gel followed by coomassie staining. As shown in Figure 6.1, 

the top band (intact Robo4-Fc) gradually disappeared across the time points while the 

cleaved band at 50 kDa (cleaved Robo4) increased during the papain digestion. 40 

min was chosen as the optimal reaction time to maximize the yield of cleaved Robo4. 
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Figure 6.1 Optimization of papain cleavage of recombinant human Robo4-Fc. 

Intact human Robo4-Fc protein was cleaved in a papain digestion. The reaction mix 

was sampled at serial time points and run on a SDS PAGE gel following coomassie 

staining. The band between 75 – 100 kDa is the intact human Robo4-Fc protein while 

the band at 50 kDa is the cleaved Robo4 without the Fc tag.   
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6.3 Depletion of Fc fragments after papain digestion of human 

Robo4-Fc protein 

To avoid cross reaction with the secondary anti-human Ig antibody in the ELISA assay, 

the papain cleaved Fc fragments from recombinant Robo4-Fc protein need to be 

removed. Protein G beads which have high affinity for human Fc were used to deplete 

the Fc fragments from the papain digested mix. After the papain reaction was 

quenched, protein G beads were added and incubated for 1 hour. The beads were then 

removed and the resulting supernatant contained Robo4 only. This supernatant was 

collected and analyzed by Western blot. A clean band of human or mouse Robo4 was 

detected at 50 kDa by the Robo4 antibody while both were absent when re-probed 

with human IgG antibody (Figure 6.2). The results show that, with the optimized 

protocol, an effective Fc cleavage and depletion was achieved in both human and 

mouse Robo4-Fc. 
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Figure 6.2 Depletion of Fc fragments from papain cleaved human/mouse 

Robo4-Fc. The depletion of Fc fragments from papain cleaved human/mouse 

Robo4-Fc was performed using protein G beads. Beads to which the Fc fragments 

bound were spun down and the supernatant containing Robo4 only was collected and 

western blotted against human or mouse Robo4 antibody and human Fc antibody 

respectively. The upper figure is the western blot on papain cleaved human Robo4-Fc 

using human Robo4 and human Fc antibody. The lower figure is the western blot on 

papain cleaved mouse Robo4-Fc using mouse Robo4 and human Fc antibody. 
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6.4 Generation of a standard curve for assay of Robo4 antibodies 

in serum  

We first developed a standard curve for the ELISA in order to measure antibodies in 

serum. To optimize the amount of coating antigen (papain cleaved Robo4), 5-fold 

titration of coating antigen and a monoclonal antibody to human Robo4 - MR7 or a 

polyclonal antisera to mouse Robo4 (1 to 0.008 µg/ml and 25 to 0.2 µl respectively) 

was applied to the assay. The result shows that the minimum amount of coating 

antigen (5 µl) used gives a valid read out. The detection limit of the assay was found 

to be an antibody concentration of 8 ng/ml (Figure 6.3).  
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Figure 6.3 Standard curves for the assay of Robo4 antibodies in serum. 

Recombinant human or mouse Robo4-Fc protein underwent papain cleavage followed 

by Fc fragment depletion. Titration of papain cleaved Robo4 stock (25 µl ~ 0.2 µl) 

and antibody (1 µg / ml ~ 0.008 µg / ml) enables generation of a standard curve. (a) 

and (b) show the standard curve generated by papain cleaved human and mouse 

Robo4 respectively.  
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6.5 Assay for Robo4 antibody in serum from cancer patients and 

healthy individuals 

It is important to determine whether Robo4 antibody is present in the serum from 

healthy people and cancer patients. This is particularly critical for cancer patients, 

because overexpression of Robo4 in tumour vessels could potentially induce an 

immune response.  

 

An ELISA assay was used to determine whether Robo4 antibodies could be detected 

in the serum of colorectal cancer patients. ELISA wells were coated with Robo4 

protein. Serum samples at different dilutions were applied to the plate in a range from 

neat to a dilution of 1 in 25. Six serum samples from either healthy donors or cancer 

patients were tested in this assay. Robo4 monoclonal antibody (MR7) was employed 

as the positive control. As shown in Figure 6.4, there was no Robo4 antibody 

detected in the serum of either patient sera or healthy donors.  
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Figure 6.4 Assay of Robo4 antibody levels in serum from cancer patients. An 

ELISA plate was coated with papain cleaved human Robo4 and the neat serum from 6 

healthy donors or cancer patients were applied to each well. A Robo4-specific 

monoclonal antibody MR7 (R4 mAb) was used as the positive control with 5-fold 

dilution ranging from 40 to 1.6 ng/ml.  

  



162 

 

6.6 Expression of mouse Robo4-Fc in 293T cells after calcium 

phosphate transfection. 

To vaccinate mice, pure mouse Robo4 protein was required. Plasmids with the 

extracellular domain of mouse Robo4 fused to a human Fc tag were obtained from 

Cancer Research Technology. Mouse Robo4-Fc-pIG was transfected into HEK 293T 

cells using calcium phosphate. As the recombinant protein was secreted from the cells, 

the conditioned media was collected and run through a protein A column that has high 

affinity for the Fc tag. Robo4-Fc loaded column was then eluted with a pH gradient 

on an FPLC machine. The purity of the protein was verified by western blot and 

coomassie staining.  

 

Abcam anti-human Robo4 antibody that cross reacts with mouse Robo4 revealed 

clear bands between 75 kDa ~ 100 kDa (Figure 6.5a). The purity of the protein was 

confirmed by coomassie staining (Figure 6.5b).  

 

The aim was to produce sufficient mouse Robo4 protein for mouse immunization. 

However the expression was lost a few days after transfection and the protein yield 

was limited. To overcome this, a stable cell line that expresses mouse Robo4 using a 

lentiviral system was generated. 



163 

 

 

 

Figure 6.5 Coomassie stain and western blot of Robo4 fractions from FPLC 

purified mouse Robo4-Fc. (a) For western blot, 10 µl of each fraction was added to 

2 µl of 6x SDS loading buffer and 10 µl was loaded on to a 10% SDS PAGE gel. 

Western blot was performed using Abcam antisera which cross reacts with mouse 

Robo4. (b) Coomassie stain was performed on each fraction with 1 µg of human 

Robo4–Fc as the positive control. For coomassie stain, 30 µl of each fraction was 

added to 6 µl of 6x SDS loading buffer and 25 µl was loaded on to a 10% SDS PAGE 

gel.  

 

 

  

a 

b 
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6.7 Generation of a stable cell line expressing mouse Robo4 using 

lentivirus 

Lentiviral expression systems are widely used in the transduction of non-dividing 

cells. These systems provide long term expression of the delivered genes, and we 

adopted a lentiviral approach to generate a stable cell line that expressed mouse 

Robo4.  

 

Mouse Robo4-Fc was amplified by PCR from the Robo4 containing pIG vector and 

sub-cloned into a lentivector: pWPI, which contains a GFP tag after an IRES 

sequence. Lentivirus was produce by calcium phosphate transfection of 293T cells 

with the lentivector that contains mouse Robo4-Fc, packaging plasmid (psPAX2) and 

envelope plasmid (PMD2G). The transduction efficiency of 293T cells (87.62%) 

4-days post-transduction is shown. Transduced cells were sorted for GFP by flow 

cytometer and the percentage of the GFP positive cells (99.39%) is shown in Figure 

6.6a.  

 

Further experiments were performed to optimize the number of collections from the 

stable line. Five collections of conditioned media were analyzed by coomassie stain 

and all of them were confirmed to be mouse Robo4-Fc (Figure 6.6b). Quantification 

allowed comparison of the yield to the calcium phosphate method. The comparison 

showed that the stable cell line produced 4x the amount of protein (6 mg) compared to 

the calcium phosphate method (Table 3). 
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Figure 6.6 Generation of a stable cell line expressing Robo4 and the purification 

of recombinant Robo4 protein. (a) Generation of a stable cell line that expresses 

mouse Robo4-Fc by FACs sorting of GFP positive cells (FL1). 293T cells transduced 

by lentivirus were analyzed before and after FACs sorting. The number highlighted in 

the red box indicates the transduction efficiency (top profile) and the percentage of 

GPF
+
 cells after sorting (bottom profile). (b) Coomassie stain for Robo4 from media 

conditioned by the stable line expressing mouse Robo4-Fc. 10 ml of conditioned 

media was collected on alternate days for 10 days. Recombinant protein was purified 

using protein A beads. The protein bound beads were boiled in 50 µl of 1xSDS 

loading buffer and 25 µl was loaded on a 10% SDS PAGE gel.  

 

  Culture size Volume Yield Highest conc. of 1 ml elution 

Calcium phosphate 40 dishes 3 L 3 mg 0.8 mg/ml 

Lentiviral cell line 20 dishes 1.5 L 6 mg 3 mg/ml 

 

Table 3 Comparison of protein production by calcium phosphate transfection 

and lentiviral expression systems 

 

a 

b 
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6.8 Immunization with Robo4 in mice using protein vaccination 

In order to break immune tolerance to Robo4, protein immunization was performed in 

C57B/6 mice. Freund’s complete adjuvant was used to achieve immunization because 

Robo4 is a self antigen and self antigens often show low immunogenicity. The 

antibody response was then characterized using the ELISA assay. Papain cleaved 

mouse Robo4 was used as the coating antigen. 

 

For immunization, six mice received 50 µg of mouse Robo4-Fc protein or Fc control 

subcutaneously at two-week intervals. Complete Freund’s adjuvant was used on day 0 

and incomplete Freund’s on day 14 (Figure 6.7a). Serum was collected on day 0, 14 

and 28 and assayed for Robo4 antibodies by ELISA. As shown in Figure 6.7b, a 

robust antibody response against Robo4 was induced by day 28 in the Robo4 

vaccinated groups, suggesting that tolerance to Robo4 had been broken by the 

immunization.  

 

Further characterization of the induced antibodies showed that there were high levels 

of IgG1, with lower titres of IgG3 and IgG2b (Figure 6.7c). Immunization with 

proteins tends to induce Ig class switching to the IgG1 isotype associated with T 

helper 2-type immunity [169]. This result confirmed that vaccination stimulated a 

TH2 response. 
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Figure 6.7 Vaccination of mice with mouse Robo4 generates a Robo4-specific IgG 

response. (a) Protocol for Robo4 vaccination prior to in vivo angiogenesis assays and 

tumour experiments. (b) Vaccination with Robo4-Fc induces Robo4-specific antibody 

production. Mice (C57B/6) were vaccinated with Fc or mouse Robo4-Fc protein 

injection according to the protocol in (a). Robo4 antibodies were determined by 

ELISA at day 14 and day 28. (c) Determination of antibody isotypes in control and 

Robo4 vaccinated mouse sera. Sera, harvested at day 28 from Fc or Robo4-Fc 

vaccinated mice, was diluted tenfold and used in an ELISA with secondary antibody 

specific for mouse IgG1, 2a, 2b, 3 or IgM. 

a 

b 

c 
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6.9 Sponge implantation assay in Robo4 immunized mice 

Subcutaneous implantation of a sponge is a robust technique to study in vivo 

angiogenesis [170, 171]. To investigate whether there is an anti-angiogenic effect in 

Robo4 vaccinated mice, single sponges were implanted into Robo4 immunized and 

control mice. bFGF was delivered to the sponge on alternate days. At the end of the 

experiment, the implanted sponges were resected and fixed in formalin following 

paraffin embedding and sectioning. Hematoxylin and eosin staining was carried out to 

reveal the cellular morphology of the sponge implant. 

 

Invasion of the sponge by new vessels and fibrotic tissue was assessed by microscopic 

imaging. Pictures of whole sponges were captured and the area of invasion was 

analyzed. A dramatic reduction in invaded fibrotic tissue and blood vessels was 

observed in sponges from Robo4 vaccinated mice compared to controls. Two 

representative pictures from Robo4 vaccinated group and controls are shown in 

Figure 6.8a. The invaded area was quantitated using Image J software. The 

percentage of invaded area was quantitated for each individual sponge and results 

shown in Figure 6.8b. Comparison of the mean values showed, 77.6% of the control 

sponge was invaded by blood vessels and fibrotic tissue while only 36.2% of the 

Robo4 vaccinated group was invaded.  

 

The vessel density of each sponge was determined by counting vessel numbers in 

random fields. As shown in Figure 6.9a, there was a significant decrease of vessel 

http://www.google.com.hk/search?hl=zh-CN&safe=strict&client=aff-maxthon-newtab&hs=4i&channel=t4&biw=1669&bih=884&site=webhp&sa=X&ei=82_nTtnCEdCBhQf11cW3Cg&ved=0CBgQvwUoAA&q=Hematoxylin+and+eosin&spell=1
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density in sponges from Robo4 vaccinated mice (average 2 vessels per field) 

compared to those from control mice (average 10 vessels per field).  

 

A noteworthy observation was that when comparing the size of the blood vessels in 

the invaded area between these two groups, large vessels were observed in sponges 

from control mice while these were rarely seen in sponges from Robo4 vaccinated 

mice (Figure 6.9a). Quantification of the actual vessel dimension from each group 

was performed using Image J software (Figure 6.9c). A significant decrease in vessel 

dimensions was seen in Robo4 vaccinated mice (4.5 x 10
3
 pixels) compared to that in 

control mice (9.3 x 10
3
 pixels).  

 

Taken together, an immune response against Robo4, and most likely Robo4-specific 

antibodies, elicited by protein vaccination induced a striking anti-angiogenic effect in 

vivo.  
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Figure 6.8 Sponge implantation assay in Robo4 vaccinated mice. (a) Sponges 

were harvested, sectioned, and stained with H&E. The invading blood vessels and 

fibrotic tissue were visualized under a light microscope (10X); (top). Pictures of the 

implanted sponges were taken on a light microscope and the invaded areas analysed 

using Image J software (bottom). Areas in red show the invaded areas which were 

quantified by the software. (b) The invaded area of each sponge from Robo4 

immunized or control mice was quantified using Image J software and the percentage 

of the invaded area versus the whole sponge was calculated. Invaded area as a 

percentage of the whole sponge was plotted for a representative section for each 

mouse. The mean and standard error of the mean (SEM) are shown (P = 0.0006, 

Mann-Whitney test). 

  

a 

b 
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Figure 6.9 Comparison of vessel size between the sponges from Robo4 vaccinated 

and control mice. (a) Representative H&E stained sections show fewer and smaller 

vessels in Robo4-Fc vaccinated mice compared with control Fc vaccinated mice. (b) 

Vessel numbers from 3 random sections per mouse were quantitated and plotted, the 

mean and SEM are indicated (p <0.0001, Mann-Whitney test). (c) The area of 10 

random vessels per group was quantitated using ImageJ and plotted in x10
3
 pixels. 

The mean and SEM are shown (p <0.0001, Mann-Whitney test). 

a 

b c 
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6.10 Expression of Robo4 in the vasculature of the Lewis lung 

carcinoma tumour  

Since angiogenesis plays a key role in the growth of solid tumours, the effect of 

Robo4 vaccination on the growth of subcutaneously implanted mouse tumour cells 

was examined. Lewis lung carcinoma (LLC) is a highly aggressive cancer cell line 

derived from the C57Black/6 mouse strain. It is a widely used model for investigating 

effects on the tumour vasculature [172, 173]. To determine whether an immune 

response to Robo4 would target the tumour vessels in the LLC mouse model, 

immunostaining of Robo4 was performed on formalin fixed LLC tumour sections.  

 

Antisera to human Robo4 (Abcam) that cross reacts with mouse Robo4 was used. 

CD31 antibody was used as a positive control for the vasculature. Staining showed 

that Robo4 is indeed expressed in the vessels of Lewis lung carcinoma tumour 

(Figure 6.10). The staining pattern is consistent with previous studies [174].  
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Figure 6.10 Expression of Robo4 in the vasculature of the Lewis lung carcinoma 

tumour. Immunohistochemistry was performed on Lewis lung carcinoma tumour 

sections. CD31 or Robo4 antibody was used as the primary antibody. A similar 

staining pattern was observed in the tumour vasculature for both antibodies (This 

figure courtesy of Dr. F. Ahmed). 
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6. 11 Effect of Robo4 vaccination on growth of Lewis lung 

carcinoma in mice 

To determine whether Robo4 vaccination affected tumour growth, a dose of 10
6
 LLC 

cells were implanted into Robo4 vaccinated and control (Fc) mice. The cells were 

injected subcutaneously on the back of the mice and the growth of tumour was 

measured three times a week. The tumour volume was calculated according to the 

formula described previously. A significant delay of tumour growth was seen in the 

Robo4 vaccinated mice compared with that in control mice (Figure 6.11).  

 

In order to elucidate the effect of the Robo4 specific immune response on the tumour 

vessels, tumour samples from both groups were harvested and fixed for further 

analysis.  

 

 

Figure 6.11 Tumour growth in Robo4 vaccinated mice. Each mouse was implanted 

with 10
6
 Lewis lung carcinoma cells subcutaneously and the size of tumour measured 

three times weekly. Tumour volume was plotted and two-way ANOVA analysis of 

tumour volume was performed (P < 0.05, n = 6 per group ±S.E.M.). 
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6.12 Increased vascular leakage and neutrophil infiltration in 

tumours grown in Robo4 vaccinated mice 

Fibrinogen deposition has been used as an indicator of increased vascular leakage 

[175]. To examine whether Robo4 vaccination had an effect on the tumour 

vasculature, an immunofluorescence staining of fibrinogen was performed on tumour 

sections from control or Robo4 vaccinated mice. The fibrinogen antibody was labeled 

with FITC (green). Stained sections were analyzed with a confocal microscope and 

images were captured of random fields for statistical analysis. The fluorescence of 

fibrinogen was quantitated using Image J software. Quantification showed there was a 

significant increase of extravasated fibrinogen in the tumours derived from Robo4 

vaccinated mice (Figure 6.12a), indicating increased vessel damage. Antibody to the 

neutrophil marker Gr-1 was used to stain tumour sections derived from control and 

Robo4 vaccinated mice. Images of random fields were taken on a confocal 

microscope. As shown in Figure 6.12b, increased neutrophil infiltration was observe 

in tumour tissue derived from Robo4 vaccinated mice confirming increased 

inflammation in these tumours.  
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Figure 6.12 Staining of fibrinogen and neutrophils in Lewis lung tumour from 

control and Robo4 vaccinated mice. (a) Immunofluorescent staining of fibrinogen 

was performed using polyclonal fibrinogen antisera on 4 sections for 4 tumours per 

group. Quantification of the area positive for fibrinogen staining (green) determined 

using ImageJ. The mean and SEM are indicated (p <0.0001, Mann-Whitney test). (b) 

Neutrophil invasion was assessed by immunofluorescent staining with monoclonal 

anti-Ly6G and Ly-6C antibody. The number of infiltrating neutrophils (red) was 

counted from 4 sections for each of 4 independent tumours. The mean and SEM are 

shown (p <0.0001, Mann-Whitney test). 

 

 

 

 

 

 

 

a 

b 
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6.13 Soluble Robo4 conjugated to a carrier protein can induce a 

rapid protective antibody response in the absence of adjuvants  

As strong adjuvants such as Freund’s adjuvant cannot be used in humans, the 

efficiency of a milder conjugate vaccine immunization protocol was tested. Mice were 

primed with chicken gamma globulin (CGG). Five weeks later, after immunological 

memory had developed, mice were immunized with soluble Robo4-Fc chemically 

crosslinked to CGG without further adjuvants. Simultaneously tumor growth was 

induced by subcutaneous injection of Lewis lung carcinoma cells (Figure 6.13a). 

Vaccination of primed animals with Robo4-Fc crosslinked to CGG led to production 

of high levels of Robo4-specific IgG (Figure 6.13b) and significant and sustained 

growth inhibition of the tumour (Figure 6.13c). Instead of a prophylactic vaccine, 

these findings suggest the possibility of developing a treatment vaccine using carrier 

conjugated Robo4 as the immunogen.  
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Figure 6.13 Induction of protective Robo4-specific antibody in carrier-primed 

animals (a) Mice receiving primary immunization i.p. with chicken gamma globulin 

(CGG) in alum [176] were reimmunised 5 weeks later subcutaneously with Robo4-Fc 

crosslinked to CGG [154]. Simultaneously 10
6
 Lewis lung carcinoma cells were 

implanted subcutaneously. (b) Induction of Robo4-specific antibody two weeks post 

immunization with Robo4-CGG determined by ELISA. (c) Significant reduction in 

tumour growth in CGG primed and Robo4-Fc-CGG immunized animals compared to 

animals primed and Fc-CGG immunized (P < 0.05, n = 6 per group). 
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6.14 Tissue screen of Robo4 vaccinated mice 

Although Robo4 vaccinated mice showed promising anti-angiogenic effects in the 

sponge implantation and tumour growth models, in the view of the therapeutic 

opportunity, it is essential to know whether the immune response against Robo4 

impaired the normal vasculature. Organs including brain, heart, lung, liver, kidney and 

spleen were collected from both Robo4 immunized and control mice and H+E stained 

tissue sections.  

 

As shown in Figure 6.14, the tissues from Robo4 immunized mice remained intact 

and exhibited no obvious difference to that from the control mice in terms of the 

morphology of tissues and the vasculature. During the immunization period, no 

weight loss, abnormal appearance or behavior was observed in Robo4 immunized 

mice. Taken together, targeting Robo4 may be a safe immunotherapeutic intervention.  
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Figure 6.14 H+E staining of tissues from control and Robo4 vaccinated mice. 

Tissues including heart, lung, kidney, spleen, brain and liver were collected from 

control or Robo4 vaccinated mice. After fixation, paraffin embedding and sectioning, 

the tissues were stained with H+E.  
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6.15 Conclusions 

Apart from chemotherapy and radiotherapy, immunotherapy has been a major 

research focus in cancer. Vaccination is an attractive approach to treat cancer, 

particularly in the context of vascular targeting. A well defined target is needed as an 

antigen for the vaccine. Robo4 is a pre-validated TEM that has been shown to be 

restricted to the vasculature in many cancer types. Robo4 was investigated as a 

vaccine immunogen in animal models of cancer. A strong antibody response was 

induced by vaccination of soluble mouse Robo4 protein with Freund’s adjuvant, 

suggesting the immune tolerance to the self-antigen was successfully broken. The in 

vivo sponge implantation assay showed strong inhibition of angiogenesis in Robo4 

vaccinated mice compared to control Fc vaccinated group. Robo4 vaccinated mice 

also showed retarded tumour growth in a Lewis lung carcinoma model. To explore the 

clinical possibility of a Robo4 vaccine, we developed an alternative immunization 

approach to avoid the use of strong adjuvants such as Freund’s adjuvant. Mice were 

initially primed with CGG protein to develop immune memory and subsequently 

immunized with Robo4-CGG crosslinked complex in the absence of adjuvant. A 

strong antibody response was seen 14 days post-immunization. Tumour implanted on 

the day of immunization was inhibited in the Robo4 vaccinated mice compared with 

the control group. Histochemistry of organs derived from Robo4 vaccinated mice 

showed no apparent pathology. Taken together, these results suggest that vaccination 

against Robo4 holds promising therapeutic potential.  

  



182 

 

 

 

Chapter seven 

 

 

 

Discussion 

 

  



183 

 

Discussion 

Considerable effort has been invested in identifying and validating novel targets 

which are restricted to tumour vessels and known as Tumour Endothelial Markers 

[177]. The study which provided the first proof of principle that vascular targeting can 

be used to eradicate solid tumours in mice came from the work of Burrows and 

Thorpe in 1993 [63]. In 1997, these studies were extended when Huang and Thorpe 

reported that targeting the inducible truncated form of tissue factor (tTF) in the 

tumour vasculature of mice by an antibody-tTF complex resulted in significant 

tumour regressions [64]. In 2002, Thorpe’s group proposed that the presence of 

anionic phospholipids on tumour vessels held potential for tumor vessel targeting and 

imaging [178] and more recently (2005), a monoclonal antibody against anionic 

phospholipids showed damage to the tumour vasculature and suppression of tumor 

growth in mouse models [179, 180]. The combined evidence strongly suggests that 

targeting molecules present in the tumour vasculature can lead to tumour shrinkage 

and cancer regression.  

 

A number of approaches have been developed to identify TEMs. One of the most 

direct screens for TEMs has been the isolation of endothelium from normal and 

tumour colon followed by immediate extraction of RNA and conversion to SAGE 

libraries for transcriptome differentiation analysis [74]. Nine TEM’s labeled TEM1 

through TEM9 were identified from this work. However further studies showed that 

TEM1, also known as endosialin, was not expressed by endothelium but enriched in 



184 

 

tumour associated fibroblasts and pericytes [181]. However TEM1 retains potential as 

a tumour target and functionally, endosialin null mice show defective angiogenesis in 

orthotopically implanted colon tumours [83]. More recently, a monoclonal antibody 

targeting TEM8 was reported to inhibit pathological angiogenesis and tumour growth 

in multiple cancer models [182]. The EDB domain of fibronectin has been used in a 

clinical trial as an anti-cancer target [79]. The EDB domain is present only in 

fibronectin expressed in the foetus or tumours. Specific antibodies to the EDB domain 

have been used in several animal models to show an antitumour effect when coupled 

to TNF-α [183] interferon-γ [184] photosensitizer [185], interleukin 12 [186] 

interleukin 15, GM-CSF [187] or interleukin 2 [188]. Annexin A and Robo4 were also 

successfully identified and characterized as TEMs and have been reviewed [79]. 

Nevertheless, the expression profile of these targets is often not as specific and 

widespread as was expected and many putative TEMs to date have not entered clinical 

trials [22]. As a result, there exists an urgent need for new TEMs.  

 

In Chapter three, a systematic approach was carried out to validate putative TEMs 

derived from a bioinformatics data mining prediction. Three candidates, CLEC14A, 

GBP4 and IKBKE were investigated.  

 

It is shown here that CLEC14A is a novel TEM. This was shown on a human cancer 

tissue array by both immunofluorescence and immunohistochemical analysis. 

Immunofluorescent images of CLEC14A showed highly specific CLEC14A 
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expression on tumour vessels in a wide range of cancers and no or very low 

expression found in the adjacent healthy tissues. The co-localization with the human 

endothelial marker Ulex lectin confirmed its endothelial expression in vivo. The 

elevation of CLEC14A was also confirmed in endothelial isolates from hepatocellular 

carcinoma compared with that from healthy liver tissue [109]. Substantial CLEC14A 

expression was found across a range of common tumour types, including 100% of the 

ovarian and liver cancer, 90% of bladder and prostate cancer and 80% of breast cancer. 

The subcellular localization study of CLEC14A in HUVEC showed that it is mainly 

expressed on the cell membrane [109], which is a desirable property because cell 

surface proteins are easier to target. These collective findings confirm that CLEC14A 

is a novel TEM.  

 

Guanylate binding proteins are the most abundant cellular proteins that belong to the 

GTPase superfamily. Seven members have been discovered in man: hGBP1-7 and all 

members are expressed by endothelial cells and can be induced by IFN-γ [88]. GBP1 

has been closely studied in the last ten years and showed inhibitory effects on 

endothelial cell proliferation, migration and tube formation in response to 

inflammatory cytokines [90, 189]. In contrast, there are few publications on GBP4 

and its expression profile and function remains unknown. Expression analysis in 

tumour / adjacent healthy tissues arrays showed that GBP4 is highly expressed on the 

tumour vascular, in some cases including the tumour cells. It is also of note that the 

expression of GBP4 was detected at a higher frequency in the adjacent healthy tissues 
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compared to CLEC14A. However, the term ‘adjacent healthy’ should be interpreted 

with some caution as the sections are from the same cancer patient. Therefore, when 

GBP4 expression was detected in adjacent healthy tissue, it may be due to the 

proximity of the tumour. In order to resolve the question of expression in healthy 

tissues, we performed a screen on tissue from healthy donors. No GBP4 expression 

was detected.  

 

Since evidence shows that long-term inflammation contributes to the initiation and 

development of cancer [190], we have reason to suggest that the expression of GBP4 

might be induced by inflammatory cytokines within the tumour microenvironment. To 

confirm this hypothesis, Dr. Mura performed a stimulation of IFN-γ or TNF-α on 

HUVEC and the results confirmed that the level of GBP4 indeed was strongly 

elevated in response to either IFN-γ or TNF-α treatment (unpublished data). However 

this result was partially contradictory to the finding from Sturzl’s group in 2007 where 

they reported GBP4 is only activated by IFN-γ but not by TNF-α [88].  

 

In conclusion, GBP4 exhibits specificity to vessels throughout the tumour in a wide 

range of cancers with complete absence in healthy tissues. Although expression of 

GBP4 was detected in other cell types within or adjacent to the tumour, it remains a 

promising TEM that requires further investigation. 

 

IKBKE is a relatively well-studied gene compared with CLEC14A and GBP4. The 
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expression profile of IKBKE suggests it is not a TEM due to its wide expression 

spectrum in healthy tissues. But interestingly, the expression of IKBKE was strongly 

detected in cells adjacent to the endothelium in healthy colon and healthy bladder 

tissues whereas in the case of carcinoma, IKBKE is enriched in the tumour vessels 

especially in the breast carcinomas, for which IKBKE is a validated oncogene [98]. 

Preliminary data showed that IKBKE siRNA knock down showed inhibition of 

HUVEC migration. This implies a role of IKBKE in controlling the transcription of 

genes that might be involved in endothelial cell migration. Although IKBKE is not a 

TEM in terms of its expression profile, it might play a role in mediating the motility 

of endothelial cells.  

 

In Chapter 4, the functional role of CLEC14A in endothelial biology was explored. 

Blocking the transcription of CLEC14A by siRNA resulted in diminished endothelial 

cell migration in wound healing assays and reduced tube formation in a Matrigel 

assay [109]. Work by Rho et al. published simultaneously to our work independently 

confirmed these findings [191]. Interestingly, a similar inhibitory effect on migration 

was observed when either the endothelial specific gene ECSCR [192] or a 

pre-validated TEM Robo4 was knocked down in HUVEC [104], indicating a 

relationship between these endothelial specific genes and endothelial cell motility. 

Such a phenotype was also observed when polyclonal antiserum to CLEC14A was 

added to the assays, which prompted the idea of generating a monoclonal antibody to 

CLEC14A that can inhibit HUVEC migration. Indeed, amongst the five CLEC14A 
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monoclonal antibodies (CRT1-5), CRT3 showed modest but statistically significant 

inhibition in a dose dependent manner. This suggests that CRT3 can be used to 

investigate the effect on angiogenesis in vivo.   

 

It has been shown that filopodia formation was strongly induced by ectopic 

overexpression of CLEC14A in 293T and CHO cells (R. Swain in [109]). As filopodia 

formation is a key feature of sprouting angiogenesis, one may speculate increased 

expression of CLEC14A could lead to an angiogenic phenotype. However, HUVEC 

migration was inhibited by overexpression of CLEC14A. These results suggest the 

expression level of CLEC14A in endothelial cells is critical for its motility. More 

interestingly, the same inhibitory effect was also observed when Robo4 was knocked 

down with siRNA or overexpressed in HUVEC [108]. 

 

Expression of CLEC14A in tumour vasculature suggests a role in pathological 

angiogenesis. However, CLEC14A also plays a role in physiological angiogenesis. 

Others have investigated the role of CLEC14A during zebrafish development.  The 

data showed that CLEC14A expression begins at 5 hpf which coincides with the 

appearance of haemangioblasts [109]. The zebrafish ortholog of CLEC14A was 

previously identified as a putative endothelial specific gene by microarray analysis of 

zebrafish cloche mutants that fail to undergo haematopoesis [193]. Also a recent study 

has shown that CLEC14A (called complement receptor C1qR-like gene) lies 

downstream of the transcription factor Etsrp, a factor required for vasculogenesis and 



189 

 

primitive myelopoiesis in the zebrafish [194]. This suggests that Etsrp may regulate 

heamangioblast migration by inducing CLEC14A expression. This is supported by 

data showing CLEC14A expression continues through the stages of development that 

involve angiogenesis. Furthermore, morpholino mediated knockdown of CLEC14A 

disrupts intersomitic vessels which are formed by sprouting angiogenesis from the 

dorsal aorta and this confirmed the role of CLEC14A in angiogenesis. Interestingly 

human CLEC14A mRNA injection rescued the vascular phenotype induced by 

knockdown of CLEC14A.  

 

CLEC14A KO mice showed no defects during development, although Rho et al. 

showed that the mouse ortholog of CLEC14A is expressed in endothelial cells during 

development [191]. This contradicts the observation in CLEC14A knockdown 

zebrafish, however it is likely due to the difference in species. Interestingly, an in vivo 

tumour challenge experiment by others in the group showed a growth delay of a 

subcutaneous Lewis lung carcinoma tumour in the CLEC14A KO mice compared 

with that in WT mice. This suggests CLEC14A may be dispensable in physiological 

angiogenesis in the mouse yet playing an essential role in tumour angiogenesis. It is 

of note that a family member of CLEC14A, endosialin or TEM1 KO mice also 

display normal developmental angiogenesis unless challenged orthotopically with 

colon tumour fragment, in which tumour growth was retarded compared with WT 

[83]. No difference was observed in body weight or fertility between wild type and 

CLEC14A KO mice.  
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Many factors modulate the endothelial transcriptome in tumours, including hypoxia, 

oxidative stress, activation of growth factors and cytokines as well as low shear stress 

caused by the ill formed vessels within the tumour. Low shear stress and turbulent 

flow have been demonstrated as mechanical factors that regulate endothelial gene 

expression [195, 196]. Endothelial cells express 20000 genes of which 3 percent are 

regulated by shear stress [197]. SAGE analysis of endothelial cells cultured in static 

conditions or shear stress showed a marked differential expression in genes involved 

in cell proliferation, angiogenesis, extracellular matrix and cell-cell adhesion 

molecules and ATP synthesis [198]. Reduced shear stress strongly upregulates 

expression of CLEC14A and Robo4 mRNA in HUVEC cells [109]. In our zebrafish 

work, CLEC14A is expressed until 24 hpf when blood circulation begins. One 

explanation for the loss of CLEC14A at later time points could be that it is down 

regulated by shear stress. This hypothesis would be consistent with increased 

CLEC14A expression in the low flow environment of the tumour endothelium. In 

contrast, GBP4 is upregulated by shear stress at the RNA level in HUVEC (S. Durrant, 

unpublished work). Thus, these findings suggest a link between the induction of 

TEMs and the low shear stress environment that is associated with the tumour 

vasculature.  

 

Lung cancer, as the leading cause of cancer related death, is still lacking a 

well-characterized vascular target. Although CLEC14A showed a high specificity and 
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a wide spectrum in tumours, its expression is low in lung cancer. In Chapter 5, 

expression profiling of lung endothelial cells isolated from NSCLC was performed 

using genomics technologies. A major obstacle that remains in the molecular profiling 

of endothelial cells is the difficulty of obtaining pure endothelial isolates. Previous 

molecular profiling work of lung endothelium was performed in mouse using in vivo 

fluorescent labeling of the vasculature to isolate ECs. In this study, Favre et al. 

isolated ECs from normal mouse lung and used the unpurified lung cells as the control, 

aiming at identifying endothelial specific genes [199]. A similar study was performed 

on colon endothelium which used long SAGE library sequencing to measure gene 

expression [74]. In this study, endothelial cells were isolated from human lung normal 

and tumour samples following downstream work involving deep sequencing and 

microarray technologies. Currently, deep sequencing technology has been intensively 

used in molecular profiling many tissue types and cell populations from different 

species. Yet not many studies have applied such technology to endothelium [200, 201], 

and not in the context of mRNA profiling of endothelial cells from lung cancer to 

identify putative vascular targets. Therefore our data provides novel insights into the 

molecular transcription signatures of endothelial cells isolated from fresh clinical 

samples.  

 

Elevated MMP activity often associates with active angiogenesis and tumour growth 

in cancer [202]. MMP2 and MMP9 have been reported as being overexpressed in 

various solid tumours and have been associated with tumour grade and malignancy 
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and associated with increased metastasis in lung cancer [202]. In fact, the expression 

of MMP7 and MMP9 were previously found to be significantly upregulated in 

NSCLC compared with that of normal lung and benign lung tumour [203]. The 

MMPs expression profile is consistent with these previous findings and support the 

potential therapeutic use of MMP inhibitors for lung cancer. Deep sequencing data 

also provided a snapshot of a panel of angiogenic associated gene including VEGF-A, 

IL8, Ang2, EPHB2, TEM2, TEM4 and TEM7 being elevated in lung tumour 

endothelium, confirming that tumour angiogenesis is a result of combined effects 

caused by multiple angiogenic factors and receptors.  

 

Differential gene expression analysis of deep sequencing combined with microarray 

of normal and tumour endothelium from multiple lung cancer patients has identified 

13 putative lung TEMs. Six putative lung TEMs including ROS1, STEAP1, BIRC5, 

GJB2, PCDH7 and PROM2 were validated by real-time qPCR and 

immunohistochemistry, displaying endothelial expression on placental and lung 

cancer tissues.  

 

ROS1 belongs to the sevenless subfamily of tyrosine kinase insulin receptor genes. 

ROS1 is a proto-oncogene and highly expressed in a variety of tumor cell lines 

[204-208]. Recently chromosomal rearrangement of ROS1 has been detected in a sub 

population of NSCLC patient [209-211]. Despite of intensive studies on ROS1 in lung 

cancer, no study regarding its role in the endothelial cell has been reported.  
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STEAP1 (six-transmembrane epithelial antigen of prostate 1) was the first member of 

a family of metalloreductases identified as cell-surface antigens in prostate tissue [212, 

213]. Its expression is highly increased in prostate, breast, bladder, colon, ovarian 

cancers and in Ewing's sarcoma [214], indicating STEAP1 may function as an 

universal tumor antigen. Alves and colleagues showed that STEAP1 peptides can be 

used to stimulate CD8
+
 T cells in healthy people, enabling them to recognize STEAP1 

expressing tumor cells, suggesting that STEAP1 may be a useful target for cancer 

immunotherapy [215]. Similar to ROS1, research on STEAP1 was predominantly 

focuse on its role in tumour cells. Its expression and function in endothelial cells and 

angiogenesis remains unexplored.  

 

BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5) or survivin, belongs to 

the family of inhibitors of apoptosis. BIRC5 inhibits caspase activation to regulate 

apoptosis. Disruption of the BIRC5 signaling pathway leads to tumour cell apoptosis 

and growth delay. BIRC5 protein is present in a range of tumour cells and fetal tissues 

but is rarely detectable in healthy tissues [216]. One can speculate that the presence of 

BIRC5 on the lung tumour vasculature could be induced by the stressed endothelial 

cells which are struggling to survive in the abnormal tumour vasculature. 

 

GJB2 (Gap junction beta-2) also known as connexin-26, belongs to the Connexins 

family. Connexins are essential for many physiological processes and embryonic 

http://en.wikipedia.org/wiki/Inhibitor_of_apoptosis
http://en.wikipedia.org/wiki/Caspase
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development including the microvasculature. Mutations in connexins can cause 

functional and developmental abnormalities. Defects in GJB2 lead to the most 

common form of congenital deafness [217]. Thus, most GJB2 studies have centered 

on this field and very little is known about GJB2 in association with endothelial cells 

and lung cancer.  

 

PCDH7 and PROM2 are less studied genes compared with other identified targets.  

PCDH7 belongs to the protocadherin gene family, a subfamily of the cadherin 

superfamily. PCDH7 encodes a single transmembrane protein that is thought to 

function in cell-cell recognition and adhesion. PROM2 is a member of the prominin 

family of pentaspan membrane glycoproteins. The limited literature of these two 

targets makes them exceptionally attractive for further characterization.  

 

From a technical point of view, investigation of laser microdissection technology in 

this report has demonstrated several critical points suggesting that such technology is 

not suitable for isolating lung endothelium: 1. Vessel visualization on the slides 

caused RNA degradation. 2. The vessel mural cells were impossible to separate from 

the endothelium and this would compromise the purity of the cell population. 3. 

Frozen normal lung slides showed poor morphology which was due to the cavities in 

the tissue. In contrast, the Ulex-bead isolation approach has been proven an effective 

approach to obtain a pure endothelial population from lung. Because of the significant 

increase in purity and amount of RNA, this approach permitted the 2
nd

 generation 



195 

 

sequencing technology, which is a new technology and the results could be compared 

with microarray data.  

 

The ineffectiveness of the comman treatments for lung cancer prompted the search for 

alternative approaches for NSCLC. Although tyrosine kinase inhibitors of EGFR 

initially showed promising outcome in several trials, resistance was eventually 

developed in all patients [111]. The development of anti-angiogenic drugs such as 

VEGF (receptor) blockers has aroused general interest in the lung tumour vasculature. 

The use of such drugs in treating NSCLC patients has been investigated in early 

clinical trials. However, concerns have arisen from the inefficacy in tumour regression 

and lack of effective biomarkers for patient selection. Thus molecular profiling the 

tumour vasculature in lung cancer will not only enhance our understanding of 

molecules involved in this disease but also may provide biomarkers and targets that 

have therapeutic potential.  

 

Evidence has been presented that vaccination to antigens over-expressed on the 

tumour vasculature holds therapeutic potential [132, 133]. For example, a significant 

delay in tumour growth and increased median survival rate by oral DNA vaccination 

against VEGFR2 has been observed in mice [134-136]. Similar effects were seen 

when mice were immunized with VEGFR1 or VEGFR2 derived peptides [137, 138]. 

In Chapter 6, investigation of a pre-validated TEM Robo4 as a cancer vaccine 

immunogen has been carried out. Robo4 was firstly characterized as a TEM in a wide 
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range of human carcinomas and absent in normal tissues in 2002 [73]. In 2005, 

Sukhatme’s paper confirmed that Robo4 is a TEM in lung, liver and kidney [108]. 

Robo4 was reported to be expressed in mouse adult tissue including lung and brain by 

northern blot [107] however the expression level was not compared to that in tumours. 

A recent study has shown that the tumour vasculature in a mouse melanoma model 

can be imaged by magnetic resonance imaging (MRI) using Robo4 antibody coupled 

nanoparticles [218]. These findings, justify the attempt to induce an anti-Robo4 

antibody response by vaccination and investigate its effect on angiogenesis and 

tumour growth. 

 

Immune tolerance to Robo4 was successfully broken in mice using self-antigen, 

recombinant mouse Robo4 protein. This was the first attempt to induce a specific 

immune response against Robo4 in vivo. Protein immunization tends to induce Ig 

class switching to IgG1 isotype and this isotype is associated with T helper 2-type 

immunity [169]. After immunization, a high level of IgG1 was detected compared to 

other isotypes including IgG2b and IgG3. The subsequent sponge implantation 

experiment exhibited a dramatic anti-angiogenic effect. Thus, the immune response to 

Robo4 and most likely the Robo4-specifc antibody, interrupted the development of 

new blood vessels within the implanted sponges. Delay in Lewis lung carcinoma 

growth and tumour vascular damage was presumably the result of Robo4 antibodies 

that attack the tumour endothelium by mediating antibody dependent cell-mediated 

cytotoxicity. During this process, effector cells including monocytes or NK cells were 
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directed to the tumour vasculature by crosslinking of their Fc receptors to the induced 

immunoglobulin, which subsequently led to apoptosis of the target cells [219]. 

Similar effects have been demonstrated for B cell expressed CD20 as the target 

antigen, in which monoclonal IgG1 antibody caused B cell depletion by interactions 

with FcγRIII [220], expressed on natural killer cells [221].  

 

Instead of using Freunds adjuvant, conjugation of Robo4 to a foreign protein CGG 

resulted in a strong anti-Robo4 response and retarded tumour growth. This strategy 

overcame the absence of Robo4 specific T cell help due to central tolerance. In 

addition, pre-existing immunity to the CGG leads to rapid B cell activation through 

recruitment of help from CGG-specific memory T cells [176]. Hence conjugating 

Robo4 to carrier proteins routinely used in human conjugate vaccines such as tetanus 

or diphtheria toxoid, may produce a vaccine that would rapidly develop protective 

antibody responses. 

 

The promise of anti-vascular immunisation in a clinical setting has been shown by 

tumour regression in some patients with brain tumours inoculated with 

glutaraldehyde-fixed human umbilical vein endothelial cells (HUVECs) which had 

been cultured for a number of passages prior to use. These patients developed 

HUVEC-specific antibodies which, although the antibodies were not characterized, 

may have recognized Robo4. Robo4 is expressed by HUVEC in tissue culture due to 

the lack of fluid shear stress [109]. The use of whole endothelial cell vaccines has the 
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advantage of presenting a set of identified or unknown targets to the immune system. 

However because of the same property, the expression or presentation level of the 

‘real targets’ might be masked to a certain extent by other unrelated antigens.  

 

A key consideration for vascular targeting strategies is the effect these treatments 

might have on the normal vasculature. While in the HUVEC-immunised patients no 

adverse effects were observed, gastrointestinal bleeding was observed in a pancreatic 

cancer trial using vaccination to peptides from VEGFR-1 [222]. Given the importance 

of VEGFR signalling in tumour angiogenesis, and the emergence of VEGF targeted 

therapies, such as bevacizumab, as approved anti-cancer therapies, significant effort 

has gone into immune targeting of this signalling pathway (reviewed in [166]). 

Though effective, in some cases wound healing was negatively affected. Indeed 

prolonged use of VEGF-based anti-angiogenics has highlighted a role for VEGF 

signalling in the maintenance of the normal vasculature [223].  

 

Delta-like 4 is an endothelial expressed protein induced by hypoxia [224], it also 

plays a critical role in angiogenesis through its activation of Notch signalling [225]. 

DLL4 is expressed on the sprouting tip cells [226] and on vessels in a number of 

tumours, including breast cancer, colon cancer and glioblastoma [227-229], making it 

an attractive tumour vascular target. Vaccination against DLL4 using a DNA-based 

approach has shown anti-tumour effects [146], but its suitability as a target has been 

called into question as prolonged blockade of DLL4 signalling was found to actually 
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induce vascular neoplasms [230]. Vaccination of Robo4, as reported here shows there 

were no obvious delays in wound healing after sponge implantation, and histological 

analysis of heart, lung, kidney, spleen, brain or liver showed no differences between 

control and Robo4 vaccinated mice, which indicates that targeting Robo4 may be a 

safe immunotherapeutic intervention. It is worth mentioning that vaccination against 

self-antigen does not normally induce a permanent response. A recent study showed 

that antibody titres dropped to the baseline level seven months after the vaccination of 

EDB-fibronectin with Freund’s adjuvant [231]. 

 

TEM expression varies in different tumour types [109]. The extra-domain B of 

fibronectin is expressed in a high percentage of certain brain tumours such as 

meningiomas and in a half of lung cancers, but in less than a quarter of the breast, 

colon and pancreatic cancers examined [232]. In an experimental mouse system this 

antigen was also successfully used to reduce tumour growth when used as an 

immunogen, with no obvious adverse effects [67]. But the applicability of this, and 

indeed any other TEM, as a therapeutic target will be limited to those tumour types 

found expressing it. Robo4 was found expressed in over 60% of pancreatic, bladder, 

prostate, stomach, lung and kidney cancer, and in a lower percentage of a number of 

other common tumour types, suggesting that a Robo4 targeted vaccination strategy 

may be effective in a variety of cancers, including cancer of the pancreas and lung 

which remain difficult to treat [233, 234].  Variation in TEM expression in different 
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tumour types justifies the concurrent study of several as targets for novel anti-cancer 

therapies.  

 

Different strategies of immunotherapy have emerged to target the tumour vasculature. 

Abengozar et al. recently showed that EphrinB2 antibody treatment alone inhibited 

VEGF-mediated angiogenesis in a Matrigel plug assay and caused reduction in 

tumour vascular density and growth delay in a xenografted tumor model [235]. 

Photosensitiser conjugated antibody to EDB domain of fibronectin selectively 

disrupted tumour vasculature and led to complete tumour ablation in both mouse and 

human xenograft models [236]. Modified T cells such as the use of engineered 

chimeric antigen receptor (CAR) have also been investigated in vascular targeting. 

Chinnasamy and colleagues showed that transferred VEGFR2 CAR infected T cells 

resulted in tumour growth inhibition in multiple tumour models [66].  

 

Compared to the current variety of immunotherapy in vascular targeting, vaccination 

is a practical approach that has clear advantages. Because of the simplicity, 

vaccination is considered more cost-effective compared to other immunotherapeutic 

approaches such as antibody conjugates or engineered T cells which are labor 

intensive. Secondly, vaccination of TEMs harnesses the body’s own immune system 

to produce antibodies with anti-tumour effects which is less arduous for the patient 

than current popular approaches involving repeated infusion of therapeutic antibody. 

Depending on the type of delivery, it is possible to generate not only a humoral 



201 

 

response, but also cytotoxic T cell responses which can augment the anti-tumour 

effect [237].   

 

The function of Robo4 in endothelial cells has been studied over the last ten years but 

remains controversial. Proposed functions fall broadly into two categories and have 

been reviewed in Legg et al. [102]. (i) A pro-filopodia, pro-migratory, pro-angiogenic 

role and (ii) an anti-migratory stabilization of the existing vasculature role. Thus, in 

support of a pro-angiogenic function, Sheldon et al. showed that Robo4 knockdown 

by siRNA inhibited endothelial cell migration, tube formation and overexpression of 

Robo4 strongly induced filopodia in endothelial cells [104]. Kaur et al. performed a 

modified Boyden chamber assay on Robo4 knockdown cells and found a similar 

effect [238]. In contrast, work originating primarily from the laboratory of Dean Li 

has used knockout mice to show that Robo4 stabilised the vasculature in for example 

retinal injury. Thus, in mouse models of retinal and choroidal vascular disease, Robo4 

knockout mice showed higher vascular leakage and permeability in response to 

exogenously administered VEGF [239]. It is of interest that the endothelial 

transmembrane protein Unc5B has recently been shown to be a ligand for Robo4 

[240]. When Robo4 binds Unc5B on an adjacent endothelial cell, Unc5B releases an 

anti-migratory stabilizing signal. 

 

The apparently conflicting observations described above could be reconciled if the 

function of Robo4 were context dependant. We propose the working hypothesis that 
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in a tip cell, unligated Robo4 stimulates filopodia formation and migration, whereas in 

a phalanx cell it binds Unc5B on adjacent phalanx cells leading to an overall 

stabilization of the vasculature. Finally, the identification of Unc5B as a ligand of 

Robo4 could explain the inhibitory, anti-angiogenic effects of the extracellular domain 

of Robo4 previously described [106]. Unc5B is highly expressed on endothelial tip 

cells [241, 242] and binding of soluble Robo4 to Unc5B may initiate an inhibitory 

signal. 
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