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Abstract 

The ability of E. coli to survive in extreme acid conditions is an important component of 

its physiology and it is potentially linked to pathogenesis. So far, efforts in understanding 

the molecular basis of acid resistance have focused on mechanisms related to proton 

scavenging. 

In my work I hypothesized that acid resistance may require the coordinate regulation of a 

broader spectrum of molecular pathways. I tested this hypothesis by using an Integrative 

Biology approach based on gene regulatory network inference. 

 

In my study I have profiled the Escherichia coli (E. coli) K-12 BW25113 strain using 

microarray technology and I have analysed a multi-omics dataset representing the 

transcriptional and metabolic responses of the MG1655 E. coli strain. An initial high-level 

model in the BW25113 strain representing the interaction between two component systems 

regulators and effectors functions was built using the ARACNE methodology. My model 

supported the view that acid resistance involves a mechanism based on the transcriptional 

switch between the expression of genes encoding aerobic and anaerobic enzymes and 

controlled by the two-component system (TCS) regulator OmpR. Model validation 

confirmed this hypothesis and provided the means to predict the ability of a given strain to 

survive exposure as a function of the molecular response.  

 

This model allowed me to predict that the MG1655 strain would be more sensitive to acid 

than the related BW25113 strain. Acid exposure induced an opposite response in this strain 

by repressing most of the anaerobic enzymes in favour of the aerobic metabolism. I have 

developed a dynamical model to represent several smaller sub-networks by using State 

Space Models (SSM). The model was interrogated to identify key mechanisms of acid 

resistance and revealed three potential regulators of acid adaptation in the MG1655 strain: 

OmpR, YehT and DcuR.   

 

I concluded that OmpR has a key role in acid adaptation in both strains and that, unlike 

previously thought, the ability to reassess the balance in the expression of bioenergetics 

genes is more important for survival than proton detoxification.  
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Chapter 1: Introduction 
 

In the last fifteen years, the advent of genomics has stimulated biologists to think of 

biological systems as a whole rather than focussing on detailed mechanisms of specific 

proteins. With the development of functional genomics technologies that allow tens of 

thousands of variables to be measured in single experiments, an unprecedented amount of 

large scale biological datasets have accumulated in publicly accessible databases (Hunter 

et al., 2012). This has stimulated the development of computational approaches to organize 

and model this information (Noble, 2002).  

Systems Biology developed as an integral part of this scientific and technological 

revolution. Although it is challenging to rigorously define a rapidly developing discipline, 

we could argue that Systems Biology aims to model the underlying mechanisms that 

regulate a complex biological system, by combining mathematical and computational 

modelling with biological measurements (Kitano, 2002). 

One of the biggest challenges of this new-born discipline is the integration between large 

scale Omics dataset, biochemical and physiology measurements in a comprehensive 

computational model representing the underlying biological network controlling a 

biological system. Recently, this complex challenge has been approached with a number of 

computational techniques collectively defined as network inference. 

 The overarching aim of my PhD project was to use this approach to model acid 

adaptation in two Escherichia coli K-12 strains.  Several acidic environments occur in the 

biosphere, including sulfidic mine areas and marine volcanic vents. The microorganisms 

that inhabit them are termed ‘acidophiles’ and they can resist and survive to very low pH 
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values (Baker-Austin and Dopson, 2007). Acid resistance in bacteria is thought to be an 

important pathogenic determinant and crucial for survival of pathogenic and non 

pathogenic strains when passing the gastric barrier (Foster, 2004). In order to colonise the 

mammalian intestine, E. coli needs to overcome the acidic barrier of the stomach. 

Recently, acid adaptation has been an area of active research, leading to the discovery of 

several molecular mechanisms controlling this important process (Foster, 2004). All 

mechanisms discovered so far focused on proton scavenging strategies involved in 

resetting the intracellular pH to neutrality (Richard and Foster, 2004). I have shown that, in 

addition, several changes happen in the cells, most of them involving aerobic/anaerobic 

switches, in dependence of the strain. The development of a computational model revealed 

that OmpR, the regulator of the osmoprotectant Two-component system (TCS) with EnvZ, 

is a potential regulator of the mechanisms of acid resistance. I hypothesised that TCS could 

be the key of the mechanisms underlying several stress responses and the further cascade 

of regulatory events. A gene inference network identified many TCS regulators as putative 

responsible for signal detection. The main issue at this stage of the work was the prediction 

of potential TCS regulators acting during acid response. A dynamic model was developed, 

based on the integration of transcriptomic and metabolomics data collected during acid 

exposure in MG1655 strain. After analysing the neighbours of the TCS regulators in the 

obtained network, the results confirmed that OmpR, YehT and DcuR could be potentially 

involved in acid response of the MG1655 strain.  
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1.1 Systems Biology approaches for the understanding of E. coli acid 

response 

1.1.1 Systems Biology 

 

In Systems Theory, a system is generally defined as an entity which maintains its 

existence through the mutual integration of its parts (Kohl et al., 2010). Applying the same 

concept to biology, a biological system involves the co-regulation of cellular components, 

ensuring the life and survival of the system itself. The main goal of Systems Biology is to 

offer a consistent understanding of biological systems on the basis of theories focusing on 

systems-level behaviours (Kitano, 2002). The discipline does not require any restriction 

about the definition of a System: the word can be referred to a single cell, to a tissue, even 

to a more complex organism (Kohl et al., 2010).  

Systems biology is based on the principle that the information does not flow only in one 

direction. In characterizing the molecular basis of life, the molecular biosciences have 

become one of the most successful branches of science, culminating in determination of 

the human genome sequence in 2001. However, the function of living organisms cannot be 

addressed satisfactorily by looking at molecules alone, not even if all molecules are 

studied. To address the function and dysfunction of organisms, a systems approach is 

needed (Kohl et al., 2010).The central dogma of Molecular Biology implies that most of 

the information goes from genes to RNA and to proteins, in a non reversible process 

(Crick, 1970). This paradigm implies the bottom-up chain of events: the flow of the 

information from DNA to the complete System through the different biological levels 

(Noble, 2008). Denis Noble claimed that the central dogma of Molecular Biology is not 

complete for some reasons. DNA contains the genetic information; hence it is possible to 

know which protein is going to be produced during the regulatory event. However, it is not 
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possible to quantify the amount of made protein (Noble, 2008). . Hence other controls need 

to be included in a System Biology study, which are explained in the downward causation 

(Figure 1.1). 

 

 

Figure 1.1 Downward causation chain of events 

The causal chain of events, typical of the bottom-up methods, was added with the components of 

the downward causation (top-down). This allows the understanding and control of regulative events 

not contemplated by the reductionist scheme (Noble, 2008). 

 

The downward causation characterises the top-down structure of a system, starting from a 

high level (the cell), then going down to lower levels (protein, genes) in order to get to an 

inverse solution (Kohl et al., 2010). In order to perform Systems biology studies, scientists 

need to gather information at other levels of the chain previously described, according to 

the principle that genes are not the only keepers of the information. The development of 

new technologies in molecular biology allowed the collection of multiple data, from gene 

expression levels to protein and metabolites quantifications.  After the first genome 

sequencing in 1995 (Fleischmann et al., 1995), genomic analysis and annotation were 

required. The development of data repositories to improve the data sharing was the first 
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step towards the computational approaches characterising Systems Biology. 

Bioinformatics approaches led to create collections of multi-datasets gene-gene, gene-

proteins and biochemical interactions. The KEGG pathways (Kanehisa et al., 2008), 

EcoCyc (Keseler et al., 2009) and RegulonDB (Gama-Castro et al., 2011) are only few 

examples of data repositories for E. coli. The databases not only provide information about 

the genomic data, moreover they offer datasets analysis and visualization trough 

computational tools for data interpretation and description of correlations between mRNA 

and protein levels (Waters et al., 2006). 

High-throughput experiments were increasingly employed, in order to collect genome-

level information from genes, mRNA, proteins, metabolites and potential interactions 

within these components. The measurements and analysis of these biological components 

lead to the development of Functional genomics. 

1.1.2 Functional Genomics 

 

The experiments belonging to this field provide genome-scale measurements for many of 

the molecular species existing in the cell (Joyce and Palsson, 2006). In general, all these 

experimental approaches need to be high-throughput, data-driven, holistic and top-down 

methodologies. The second feature characterising these experiments is the attempt to 

understand cellular functions as one integrated system more than single components. High-

throughput experiments can generate large amounts of data, therefore statistical and 

computational analysis is required (Zhang et al., 2010).  

The description of the cellular network that the omics data provide for a given time or 

condition can be classified into three categories, according to Joyce and Palsson: 

components, interactions and functional states (Joyce and Palsson, 2006) (Figure 1.2). 
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Figure 1.2 The omics data (adapted) 

Omics data can be categorised in three classes, comprehending components, Interactions and 

functional states, describing the main entities and interactions in the cells (Joyce and Palsson, 

2006). 

 

Components data contain the information relative to a specific molecular content inside 

the cells. Interactions data identify the connectivity within the molecular species. 

Functional states reveal the cellular phenotypes. The components data are largely collected 

by the scientific community, they give information about specific molecules inside the 

cells and they are easy to integrate. Integration of high-throughput data is an important 

feature of current Systems Biology, since one class of omics data is not enough to explain 

the complexity of a system regulation (Zhang et al., 2010). Here I am going to describe 

some of the data belonging to the class of the components. 

Genomics define the studies about genomic sequences. Since 1995 the number of 

sequenced genomes rapidly increased, allowing comparative genomics studies in order to 

find new gene regulatory elements (Kellis and Rinn, 2010). Moreover, they facilitated the 

identification of transcription factor binding sites in genomic sequences and protein-coding 
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sequences encoded by the Open Reading Frames (ORFs) (Joyce and Palsson, 2006). The 

use of high-throughput sequencing can increase studies of comparative genomics and 

decrease costs and times for the experimental procedures (Hall, 2007). One of the first 

outstanding genome sequencing was performed in 1997, when the sequence of E. coli K-

12 was presented by the Human Genome Consortium (Blattner et al., 1997). 

Transcriptomics is also defined as genome wide expression profiling and aim to 

measure the mRNA molecules in a population of cells (Zhang et al., 2010). Unlike 

Genomics, Transcriptomics focuses on the quantitative measurements of the dynamic 

expression of mRNA abundance and the associated variation between different conditions 

(Ye et al., 2012). Since the late 1990s a large number of genome-wide studies examined 

the dynamics of gene expression in many biological systems and in consideration of 

different conditions (Joyce and Palsson, 2006). The high-throughput transcriptomics 

strategies involve firstly the identification of the significant changes in gene expression 

under diverse conditions, or in comparison between different organisms. The most used 

techniques for Transcriptomics analysis are the oligonucleotides microarrays for cDNA 

and the more precise chip-based Reverse Transcript (RT)-PCR, which measures gene 

expression for several genes simultaneously and at higher sensitivity than microarrays 

(Stedtfeld et al., 2008).  

The most recent approaches involve the next-generation sequencing on cDNA converted 

from the whole transcriptome (Gilbert et al., 2008) or directly on the RNA molecules, 

without needing in additional steps of amplification (Ozsolak et al., 2009). Combined with 

the chromatin immune-precipitation (ChiP) procedure, transcriptomics can also reveal 

genome-wide location and function of DNA binding proteins (Uyar et al., 2009).  
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Recently, this technology has become common in many research laboratories; therefore 

they can be employed in molecular diagnosis studies as well as microbiological systems 

stress responses (Zhang et al., 2010). As regards E. coli, last decade has been characterised 

by studies focusing on the mechanisms underlying several stress conditions. In 2005 

Maurer et al. described the transcriptional profiling of the W3110 strain under acid and 

basic conditions, compared to pH 7. It was observed that 763 genes were differentially 

expressed between the three conditions. In basic conditions, the response was characterised 

by a reduction in the gene expression of the flagellar assembly and increase of the ATPase 

components, while low pHs were accelerating the processes of acid consumption and 

proton export (Maurer et al., 2005). Rapid acid shift experiments revealed that, beside the 

amino acid decarboxylase known to be activated during acidic conditions, also genes 

encoding the succinate dehydrogenase and biofilm associated genes were acid-induced 

(Kannan et al., 2008). One of the most recent works was comparing the mechanism of 

response in two E. coli strains, MG1655 K-12 and Sakai O157:H7. The study identified a 

strains’ specific acid response and an increased resistance of the pathogenic strain, with 

consequent persistence in environments for food production. Many of the changes induced 

by acid exposure were involving several metabolic genes in both strains during stationary 

phase acid exposure (King et al., 2010). Transcriptomics are therefore largely and 

intensively used across the scientific community. However, some scientists argued about 

the limitations of these experimental approaches, since protein abundance in the cells 

cannot  be predicted by the mRNA levels (Maier et al., 2009). Nevertheless, many 

regulatory steps are involved in the process which goes from mRNA to proteins, such pre 

and post-translational modifications (Watson et al., 2004). Therefore the data obtained 

through these methodologies cannot always be considered on its own, but should be 
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integrated with data from other biological sources, such as Proteomics and Metabolomics, 

for the understanding of the overall processes. 

Proteomics aims to identify and quantify the cellular levels of proteins and modifications 

made to proteins. Proteins are important components of the cellular structure; they can be 

important metabolic enzymes and be involved in the signalling pathways (Graham and 

Olson, 2007). The identification of protein abundance in the cells is based on high-

throughput methodologies with simultaneous measurements of the all proteins expressed in 

the cells. Based on the current knowledge, the Proteomics experiments involve strategies 

based on the separation and visualization of proteins: two-dimensional PAGE, mass 

spectrometry, and multidimensional separations with micro-capillary liquid 

chromatography (Zhang et al., 2010). This methodology has been extensively used to 

explore microbial metabolism, differentiation and relationship with environments (Lacerda 

and Reardon, 2009). Proteomic observations were also performed in E. coli during acid 

exposure. One of the studies, for instance, demonstrated the induction of periplasmic 

proteins during acid exposure, which could work as potential transporters for metabolic 

molecules. These findings were integrated with a gene expression analysis, revealing 

changes in the amino acid catabolism and energy metabolism (Stancik et al., 2002). 

Metabolomics represent the branch of the omics field which goal is the characterization 

of the dynamic cellular metabolites response to environmental stimuli or genetic 

perturbations (Raamsdonk et al., 2001). Since the metabolome represents the result from 

the cellular integration of other structural components, it provides a functional readout of 

the cellular states (Joyce and Palsson, 2006). Metabolomics analysis are performed through 

gas chromatography time-of-flight mass spectrometry (GC-TOF), high-performance liquid 

chromatography mass spectrometry (LC-MS) or capillary electrophoresis mass 
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spectrometry (CE-MS) instruments, nuclear magnetic resonance (NMR) spectroscopy, and 

more recently vibrational spectroscopy (of which the resolution and sensitivity are 

considered as being lower than mass spectrometry). Metabolomics analysis can also be 

performed through a combined application of several technologies together in order to 

achieve high coverage and better identification (Kell, 2004, Dunn, 2008). Compared with 

transcriptomics and proteomics, technologies enabling to profile metabolites are less 

mature and their measurement accuracy also needs further improvement (Cascante and 

Marin, 2008). However, microbial metabolomics studies could be a powerful tool in the 

comprehension of microbial metabolism. Metabolomics amplify changes in the proteome 

and provide a better representation of the phenotype of an organism than any other method 

(Cascante and Marin, 2008). Because of the large dynamic range of metabolite diversity 

that requires detection, modern techniques must capture hundreds of distinct chemical 

species. Microbial Metabolomics studies using isotope-labelled intermediate metabolites 

with dynamic metabolic flux modelling, have been considered for investigations of large-

scale metabolic systems, and the term ‘Fluxomics’ has been coined to describe this new 

discipline (Forster et al., 2002, Toya et al., 2007). Improvements are still needed for the 

methodologies and for the data analysis software to improve the accuracy of the 

measurements (Dunn, 2008). Metabolomics techniques are becoming popular tools for 

studying the cellular state of many systems, including microbes (Wang et al., 2006), as 

well as in pharmacology and toxicology (Robertson, 2005) and in human nutritional 

studies (Gibney et al., 2005). Several metabolomics studies have been reported in recent 

years for various microbes including E. coli and S. cerevisiae (Tweeddale et al., 1998, 

Raamsdonk et al., 2001, Castrillo et al., 2003, Garcia et al., 2008, Soga et al., 2006). One 

of the most recent studies on E. coli response to several stress conditions (cold and 
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oxidative stress, heat shock and carbon starvation) highlighted a conserved set of response 

within the different environmental conditions. Co-occurring responses of the 

transcriptomic and metabolomics levels were observed as peaks of the maximal changes 

following the considered perturbations. This co-occurrence was involving genes and 

metabolites functionally associated and it was happening during the first minutes of 

exposure to the stress condition (Jozefczuk et al.). This relationship between transcripts 

and metabolites is no always true. In fact, for most organisms there is not direct 

relationship between cellular metabolites and genes (Zhang et al., 2010). Therefore data 

integration becomes a valid alternative to fill the gaps of the cellular understanding, when 

considering only one source of data as the main information. 

Integrated omics approaches are becoming common tools for the understanding of 

global regulatory mechanisms as well as complex metabolic networks. They require many 

efforts in order to improve not only the experimental protocols but also the computational 

methodologies (Steinfath et al., 2007). In the last years many researchers have made great 

efforts in order to study the properties of omics data and to develop methods to integrate 

them.  

The integration between Transcriptomics and Proteomics data try to solve the problem 

related to the mRNA and protein abundance. In fact, as previously said, proteins can be 

subjected to pre and post-translational modifications. The integration of these data allows a 

better coverage of the understanding of the metabolic changes in the cells, but it is also 

useful for cross-validation purposes (Nunez et al., 2006). It can also reveal cellular 

mechanisms, which cannot be detected by the use of a single omics dataset. Some of those 

studies involved experiments for the understanding of physiological and metabolic changes 

of E. coli during high cell density cultivation (Yoon et al., 2003). In this work it has been 
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observed that the patterns at gene expression levels and transcriptomic levels were showing 

a similar trend.   

In addition to the biological factors to be considered in the process of integration, there 

are also the limitations of available statistical tools. Other limitations involve the processes 

of normalization and transformation of the data, plus experimental measurement errors 

(Nie et al., 2006). One of the methods for data integration, the zero-inflated Poisson 

regression model, for example considers undetected proteins and corrects the measured 

proteins abundance by considering the mRNA levels (Nie et al., 2008). An alternative is 

the use of multivariate statistical methods to study gene expression and protein abundance 

data, to visualise and explore relationships between gene and proteomic expression data 

(Fagan et al., 2007). 

The multivariate analysis methods can be also applied in the integration of 

Transcriptomics and Metabolomics data. In one of the first attempts to study the 

correlation between these two methods, the principal component analysis was used to 

compare the two sets of data. Then, in order to determine the relationship between genes 

and metabolites the Spearman correlation was used (Urbanczyk-Wochniak et al., 2003). 

The integration of multi-omics datasets requires pre-processing of each dataset, with 

normalization procedures and missing value inputs. The advent of the omics data made 

possible not only the understanding of the cells behaviour. Recently, a study performed on 

integrated transcriptomics and metabolomics data found strong relationships within the 

transcripts profiles and the metabolites of metabolic functions in response to four different 

environmental conditions in E. coli (Jozefczuk et al.). Through several mathematical 

approaches, it is also possible to make predictions on putative regulatory mechanisms, for 

instance with gene regulatory networks inference (Gupta et al., 2011). 
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1.1.3 Gene regulatory networks inference 

 

Gene regulatory networks are important structures to be considered in order to perform a 

Systems Biology study. They can be loosely defined as collections of molecular species 

and their relative interactions (Karlebach and Shamir, 2008). A gene regulatory network 

aims to capture dependences between the activity of gene functional products and 

transcription factors, post-translational modifications of proteins. The structure of a gene 

regulatory network is composed by nodes, which represents genes or proteins, and edges, 

representing molecular interactions (Hecker et al., 2009). Computational methodologies 

enabled the discovery and analysis of these networks, from observational data. These 

processes not only can help in the understanding of the regulatory mechanisms; they allow 

making predictions about new regulatory pathways. One of the goals of Systems Biology is 

the validation of these predictions for the better understanding of the system organization. 

Systems Biology aims to understand the functions connected and modulated by preferred 

target genes and proteins (Kitano, 2002), by integrating experimental and theoretical 

techniques. 

Kitano has defined the system level understanding as based on 4 properties:  

1 System structures: the network of gene interactions and biochemical pathways. 

2 System dynamics: the analysis on the system behaviour. 

3 Control method: a mechanism which controls the cells. 

4 Design method: the strategies to construct biological systems. 

Identification of gene-regulatory networks was always considered a major challenge. The 

methods for creating a network model include performing a series of experiments to 
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identify specific interactions and conducting extensive literature investigations (Kitano, 

2002). The experiments were based on the hypothesis-driven approach (Figure 1.3). 

 

Figure 1.3 Hypothesis-driven research in systems biology (Kitano, 2002). 

 

Performing a hypothesis-driven analysis needs to be specific about the experiments to 

carry out, which need to be carefully planned in advance. The research cycle behind the 

hypothesis driven research is realised with the creation of a model representing the 

phenomenon of interest. Those models can be created either automatically or manually and 

represent postulates that need to be experimentally validated (Kitano, 2002). Building a 

gene regulatory network implies an algorithm which fits a mathematical model to the 

experimental data, selected on the basis of the model architecture and the quantity and 

quality of the data (Hecker et al., 2009). In the last decade several methods for inferring 

gene networks have been proposed. Gene network inference (also called reverse 

engineering) aims to identify regulatory interactions from high-throughput data with the 

aid of computational methods (Bansal and di Bernardo, 2007). Recently a group of 



15 
 

Systems Biologists organised an annual meeting to define objective criteria to assess the 

validity of these algorithms, the DREAM (Dialogue on Reverse Engineering Assessment 

and Methods) project (Marbach et al., 2009). One of the key aims of DREAM is the 

development of community-wide challenges for objective assessment of reverse 

engineering methods for biological networks. The challenge was structured in order to 

evaluate the inference methods to predict the presence of regulatory interactions between 

genes. The used inference methods in the context were including correlation-based 

methods, information-theoretic methods, Bayesian network predictions and methods based 

on dynamical models (Marbach et al., 2009). 

Depending on the data and on the experimental conditions, several approaches can be 

considered.  For example, a system can be perturbed, genetically or by external conditions, 

at a given time. Or more, a system can be analysed in response to external stimuli during a 

time course experiment. In the first case, a model is required allowing the gene inference 

of steady state data, therefore a static model. In the second case, a dynamic model will be 

the best approach to consider. For steady state data ARACNE and other mutual 

information based methods can be used.  

ARACNE is an algorithm designed for the identification of direct transcriptional 

interactions (Margolin et al., 2006a). The algorithm defines each edge (representing a 

direct regulatory gene interaction) as a statistical dependency between microarrays gene 

expression profiles (Margolin et al., 2006a). The candidate gene interactions are identified 

by measuring gene pair wise mutual information. The algorithm does not depend entirely 

on the mutual information values, but mostly on the accuracy of the estimation of mutual 

information ranks, calculated with a Gaussian Kernel estimator, which calculates the 

probability density function of the dataset. The application of the Data Processing 
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Inequality principle is also able to remove the indirect connections found in the network. 

The Data Processing Inequality calculation is used to remove the weakest interaction from 

a triplet of gene interactions. That is, if a MI value is available between each of three 

possible pairings of three markers, the weakest interaction of the three will be removed 

from the output. (Margolin et al., 2006a). Therefore the goal of ARACNE is not based on 

discovering all the possible gene interactions but the ones that have a high likelihood of 

being the result of direct interactions.  

The context likelihood of relatedness (CLR) is another algorithm which uses 

transcriptional profiles of an organism across a diverse set of conditions to systematically 

determine transcriptional regulatory interactions (Faith et al., 2007). The algorithm is an 

extension of the relevance network method, for identifying transcriptional networks 

interactions and was used for the first time to identify a genome wide regulatory network 

in E coli K12. It was validated by comparison with the RegulonDB database and was 

proven to be slightly more effective than ARACNE, at least in discovering the context of 

Transcription factor target interactions (Faith et al., 2007). However, a recent review 

reported some limitations of this methodology (De Smet and Marchal, 2010). 

Bayesian networks, particularly in their popular implementation Banjio (Yu et al., 2004), 

are algorithms requiring the estimation of probability density distribution and therefore 

require a larger amount of data. The applications are based on the fact that gene expression 

values can be described by random variables. They can be applied to both time course and 

steady state measurements. In order to reverse-engineer a gene regulatory network, it is 

important to find the Bayesian network that better fits the dataset (Ortega et al., 2008). 

Hence, the critical step is the model selection; for this purpose the network construction is 
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always performed by applying a learning algorithm, which fits the output of the 

mathematical model to the data (Hecker et al., 2009) 

Methods based on the Ordinary Differential Equations (ODE) are also used to model 

time-course data (Bansal and di Bernardo, 2007). When using this methodology, the rate of 

a change in the concentration of a gene product at time t is described as the function of all 

the gene products in the network. Therefore they are used to model the dynamic behaviour 

of a gene regulatory network in a quantitative manner. In order to fit the experimental data, 

some parameters they need to be defined, for instant the function can be linear or non-

linear. In case of a linear model, a linear algebraic equation can be applied to describe gene 

expression kinetics. In case of complex dynamic behaviours non-linear methods are 

preferred (Ortega et al., 2008, Hecker et al., 2009). 

New technologies allowed measuring the expression of a large number of genes 

simultaneously; however they failed to model all possible transcription factors contributing 

to genetic interactions. Bayesian Networks can include hidden factors, but considering 

discretized instead of continuous data. The application of state space modelling to reverse 

engineer transcriptional networks from highly replicated expression profiling data was 

used in order to  this issue, in order to contain gene expression measurements as 

continuous variables and that can model unknown factors as hidden variables (Rangel et 

al., 2004, Beal et al., 2005). 

Recently it has been proposed a method based on the State Space Model (SSM) to infer 

module-based gene networks, which allows modelling thousands of genes with the 

currently available datasets (Hirose et al., 2008). SSMs are used for modelling time series 

data and are a subclass of Bayesian networks. They are highly considered because of the 
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high computational efficiency and the reduction of the noise. SSM considered two groups 

of variables: hidden variables (include aspects of the evolution process) and observed 

variables (microarray measurements) (Wu et al., 2011). Recently, SSM have been used for 

statistical inference of transcriptional module-based gene networks, applied on replicates 

of time course gene expression profiles (Hirose et al., 2008). The length of time course 

data is usually a limiting factor to infer gene regulatory networks. Hirose et al. proposed to 

explore genetic networks of transcriptional modules; the modules are sets of genes 

involved in the same pathway (Hirose et al., 2008). 

Gene regulatory network inference algorithms are becoming really accurate, at least when 

their performance is measured against simulated data. When inferring a gene regulatory 

network, the appropriate model architecture has to be chosen and this means to consider 

some constraints, such as sparseness of the network (Hecker et al., 2009). In a previous 

work it was demonstrated that constraints on robustness and complexity suggest that an 

optimal network, for a given function, might be preordained to only a few (sparse) 

topologies (Leclerc, 2008). Hence sparseness is an indicator of the fact that few genes can 

modulate the expression of other genes. Enforcing the sparseness constraint reduces the 

number of parameters to be considered and improves the quality of network inference 

(Hecker et al., 2009); this means a penalization in the model reduction. Hence, other 

constraints (such as scale-freeness and modular design of regulatory networks) were 

considered (Hecker et al., 2009). The integration of several datasets and prior-knowledge 

could improve the gene regulatory inference for more exact and more interpretable models.   

Several studies are in process, in order to obtain more integrative methods, for exploring 

integrated omics data (Hecker et al., 2009). The aim of gene network inference is the 
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understanding of biological developmental processes, diseases studies, drug discovery and 

understanding of the bacterial high-level organization.  

1.1.4 Network inference in Microbiology 

 

One of the first examples of gene networks modelling in E. coli was obtained through the 

Dynamic Bayesian Network, using prior biological knowledge and time course datasets 

(Ong et al., 2002). The use of gene expression data based on tryptophan metabolism 

(Khodursky et al., 2000) was important for the model structure, in order to validate the 

Bayesian network. 15 key genes, known to be affected by the presence or the absence of 

tryptophan were tested for the model.  The model was able to detect that the 15 key genes 

were correlated to most of the genes belonging to the tryptophan operon, as predicted on 

the basis of the biological knowledge (Ong et al., 2002).  

Modelling microorganism’s responses to stress conditions is another challenge of 

Systems Biology. In 2007, a high-throughput analysis was performed on mutants from the 

Keio collection (Baba et al., 2006), belonging to glycolytic pathways, during carbon 

starvation conditions and other perturbations (Ishii et al., 2007). An average expression 

index was used to define the changes in wild type and the selected mutants, in order to 

describe the severity of the perturbation on the metabolic pathways. It was observed that in 

response to the main perturbations, E. coli can control the response by increasing the 

expression of key enzyme genes in order to overcome the stress (Ishii et al., 2007).  The 

availability of many datasets and different experimental sources (gene expression, 

metabolomics, etc.) allowed the development of several methods for the integration of 

multiple information. One of the latest models was obtained through the combination of 

different methodologies (ODE framework combined with a multi-objective optimization), 
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multiple datasets and the knowledge literature base: “Network-Inference with Multi 

Objective Optimization“(NIMOO) (Gupta et al., 2011). The method was able to identify 

many interactions, using data of a compendium of gene KO exposed to pH 5.5, i.e. the 

known negative interaction between gadX and gadW. Moreover, it was able to detect a key 

interaction involving the two-component system PhoP/PhoQ, which is a known upstream 

regulator of acid adaptation (Gupta et al., 2011). 

The understanding of E. coli acid response could provide information about the survival 

processes of the microorganism during food processing. Therefore, the identification of 

potential targets responsible for the resistance to hostile environments could enable 

strategies for controlling food industry procedures. 

1.2 Acid response in Escherichia coli 

1.2.1 Gram-negative bacteria and Escherichia coli K-12 

Bacteria can be divided into Gram-positive and Gram-negative groups on the base of the 

results of a technique of coloration performed by Gram in 1884 (Bartholomew and 

Mittwer, 1952). The original procedure involved a gentian violet solution, a solution of 

iodine potassium, alcohol to decolorize cells and Bismark brown as counterstain 

(Bartholomew and Mittwer, 1952). The violet coloration is typical of Gram positive 

bacteria’ cell wall; the colour is lost by Gram negative bacteria because of the presence of 

an outer membrane which does not allow the entrance of the dye (Mitchell and Moyle, 

1954). Members of the Gram negative group are cyanobacteria, spirochaetes and green 

sulphur bacteria, and all the Proteobacteria phyla. The phylogenetic classification of 

proteobacteria is based on RNA sequences and oligonucleotides catalogues (Woese, 1987, 

Woese et al., 1985) and the first systematic characterization defined them as the purple 
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bacteria.. The Proteobacteria are divided into six classes, referred to by the Greek letters 

alpha through zeta, again based on rRNA sequences; one of the last studied was performed 

with protein sequences alignment (Bern and Goldberg, 2005). The last definition of the 

phylum was then replaced by a nomenclature at the level of class (Zavarzin et al., 1991). 

The alpha, beta, delta, epsilon sections are considered monophyletic (Ciccarelli et al., 

2006) the Gammaproteobacteria due to the Acidithiobacillus genus is paraphyletic to 

Betaproteobacteria, according to multi-genome alignment studies (Williams et al., 2010) 

(Figure 1.4). The classes of proteobacteria were once considered as subclasses (e.g. α-

subclass of the Proteobacteria), but they are now regarded as classes (Olivier et al., 2005). 

Gammaproteobacteria is the most studied class belonging to Proteobacteria and includes 

Enterobacteriaceae, Vibrionaceae and Pseudomonadacae. Escherichia coli, Salmonella, 

Yersinia pestis and Shigella are examples of microorganism belonging to the 

Enterobacteriaceae family, which includes several bacteria living in the intestine of 

mammals.  Enterobacteriaceae can be commensal members of the host gut flora, helping in 

maintaining the physiology of the system. However, some members of the family can 

produce endotoxins, inducing local and systemic infections (Milner, 1963). The members 

of the family possess flagella for motility, though some of them are not motile, are 

facultative anaerobes and they do not form spores (Sanderson, 1976) (Figure 1.4). 
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Figure 1.4 Division of the Proteobacteria classes (American Society of Microbiology 

website). 

 

Escherichia coli is a rod-shaped bacterium, found in the intestine of mammals, as most of 

the Enterobacteriaceae, occasionally cause of infection outbreaks, because of the virulence 

genes carried by pathogenic strains (Sanderson, 1976) (Swerdlow et al., 1992) (Vogt and 

Dippold, 2005). The bacterium was discovered in 1885 by Theodor Escherich, in the 

faeces of healthy individual and was firstly named “Bacterium coli”, because of the 

localization in the colon of the hosts; later was renamed after his discoverer (Deisingh and 

Thompson, 2004). The bacterium can live in several conditions; however the optimal 

temperature is 37˚C and pH close to neutrality. It is a facultative anaerobe microorganism 

and can use mixed-acid fermentation to produce lactate, acetate, succinate, hydrogen and 

carbon dioxide. E. coli has been used in the last sixty years for works on genetics, 
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molecular biology, biochemistry, making the microorganism a model for many studies in 

these fields. The most employed strain of the species is K-12, which for its versatility was 

accepted as the best candidate for all genome sequencing (Blattner et al., 1997).  

 

 

E. coli MG1655 and BW25113 strains are probably the most studied and used strains. In 

terms of their strain history, it is know that MG1655 (Genotype F- λ- ilvG- rfb-50 rph-1) 

and BW25113 (Genotype ∆(araD-araB)567, ∆lacZ4787(::rrnB-3), lambda-, rph-1, ∆(rhaD-

rhaB)568, hsdR514) strains are both derived from the ancestral K-12 strain (Baba et al., 

2006). The divergence happened at the second step of evolution (Figure 1.5): BD792 is the 

direct ancestor of BW25113 which is the result of a 13 steps of genetic manipulations 

process. 

 

Figure 1.5 Derivation of E. coli K-12 BW25113 (Baba et al., 2006).  

Strain BD792, like MG1655, is a two-step descendent of ancestral E. coli K-12. BW25113 was 

derived from BD792 in a series of steps involving generalized transduction and allele replacements, 

which included introducing the pseudo reversion rpoS (Q33) allele from MG1655 into a 

predecessor of BW25113. 
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Many studies have confirmed that the wild type BW25113 showed a similar behaviour, in 

physiological conditions, to another strain, also derived from the ancestral K-12 of 

MG1655: W3110 (Hua et al., 2003) (Figure 1.6). 

 

Figure 1.6: The relationships of E. coli K-12 MG1655 and W3110 (Bachmann et al., 1972; 

Hayashi et al., 2006). 

 

The differences between W3110 and MG1655 strains consist of only 10 genes, on the 

basis of the annotation made in 2005: 4464 genes in MG1655 against 4474 genes in 

W3110 (Hayashi et al., 2006). The genes missing in the BW25113 compared to the 

MG1655 are the araBD, the rhaBAD and lacZ operons (Orth et al., 2011). On the basis of 

the pedigree, the differences between the two strains analysed in this work should be 

minimal.  

E. coli K-12 is also the ancestor of many pathogenic strains, in which category is located 

the EHEC SAKAI O157:H7. The time separation between the K-12 and SAKAI is 4.5 

million years, it has been found that all the lineages have acquired virulence factors in 

parallel (Reid et al., 2000) (Figure 1.7). 
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Figure 1.7 Rooted phylogeny of pathogenic strains 

The tree is based on concatenated sequences of 6 loci (a total of 5.0 kb) rooted with homologous 

sequences from S. enterica Typhimurium (Reid et al., 2000). 

 

Natural selection has produced several genetic mechanisms, facilitating acclimation to 

external stimuli (Moxon et al., 1994).  These virulence attributes are frequently encoded on 

genetic elements that can be mobilized into different strains to create novel combinations 

of virulence factors, or on genetic elements that might once have been mobile (Kaper et al., 

2004). The best combinations of virulence factors identified strong pathotypes, which can 

generate three different syndromes: enteric/diarrhoeal disease, urinary tract infections 

(UTIs) and sepsis/meningitis. Six categories were identified within the intestinal 

pathogens: Enteropathogenic E. coli (EPEC), Enterohaemorrhagic E. coli (EHEC), 

Enterotoxigenic E. coli (ETEC), Enteroaggregative E. coli (EAEC), Enteroinvasive E. coli 

(EIEC) and Diffusely Adherent E. coli (DAEC) (Nataro and Kaper, 1998) (Figure 1.8). 
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Figure 1.8 Pathogenic E. coli categories. 

The six recognized categories of diarrhoeagenic E. coli each have unique features in their 

interaction with eukaryotic cells. Here, the interaction of each category with a typical target cell is 

schematically represented. a) EPEC adhere to small bowel enterocytes, but destroy the normal 

microvillar architecture, inducing the characteristic attaching and effacing lesion. Cytoskeletal 

derangements are accompanied by an inflammatory response and diarrhoea. b) EHEC induce the 

attaching and effacing lesion in the colon. The distinguishing feature of EHEC is the production of 

Shiga toxin (Stx). c) ETEC adhere to small bowel enterocytes and induce watery diarrhoea by the 

secretion of heat-labile (LT) and/or heat-stable (ST) enterotoxins. d) EAEC adheres to small and 

large bowel epithelia in a thick biofilm and produces secretory enterotoxins and cytotoxins. e) 

EIEC invades the colonic epithelial cell, lyses the phagosome and moves through the cell, 

spreading laterally to the other cell. f) DAEC elicits a characteristic signal transduction effect in 

small bowel (Kaper et al., 2004). 

 

The characterization of the pathotypes was done by considering clonal groups sharing K 

(Polysaccharide) O (lipopolysaccharide, LPS) and H (flagellar) antigens which define 

serogroups (O antigen only) or serotypes (O and H antigens) (Kaper et al., 2004). The 

infection scheme used by pathogenic E. coli is characterised by the colonization of a 

mucosa, resistance to host defence, multiplication and host damage. Colonization occurs 

through adherence factors, which in the EHEC could also involve outer membrane 
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proteins. Moreover, some strains can secrete toxins which can affect several host 

processes, i.e. Shiga toxins of the EHEC can affect protein synthesis and kill endothelial 

and epithelial cells (Melton-Celsa et al., 1998). 

Within the pathogenic strains, EHEC is the most known for the outbreaks caused by 

contaminated food. First recognised cases were involving consumption of poorly cooked 

meat (Vogt and Dippold, 2005, Riley et al., 1983), lately also other foods were described 

as potentially dangerous due to infection by these bacteria (Tzschoppe et al., 2012). The 

key virulence factor for EHEC is Shiga toxin, which is also known as verocytotoxin. The 

bacteria belonging to this group were firstly recognised as a human disease in 1982, when 

two outbreaks occurred in Oregon and Michigan (Johnson et al., 1995, Vogt and Dippold, 

2005); they are able to cause bloody and non-bloody diarrhoea and the haemolytic uremic 

syndrome (HUS) (Nataro and Kaper, 1998). The infection process usually happens by 

contamination of meat with faeces or intestinal contents after slaughter (Pierard et al., 

1997). Another outbreak occurred in 2011 after vegetable contamination (Werber et al., 

2012). This pointed out other aspects about infective diseases which should be regarded, 

because of the changes in animal production and in consideration of the increased 

international food trade (Sofos, 2008). Food preservation is involved in the process of 

infection control and became even more important when it was observed that many 

pathogenic bacteria can easily overcome external stress conditions, such as temperature, 

low pH, disinfectants etc (Samelis et al., 2003). Moreover, bacteria can easily adapt 

themselves to non optimal conditions, therefore becoming a big issue for the food industry 

management (Leyer et al., 1995, Altekruse et al., 1997). Optimization of the Risk-

assessment procedures and research based on the microorganisms’ adaptation to food 
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preservative conditions (non-optimal conditions) are increasing the knowledge about the 

bacterial mechanisms of response to the hostile environment (Sofos, 2008). 

The resistance to acidic pH shifts observed in many pathogenic (and non pathogenic) E. 

coli strains has been considered a potentially important pathogenic factor. Therefore, in the 

last two decades, several research groups have intensively studied mechanisms of acid 

adaptation (Mellmann et al., 2011). The aim of these studies involves the comprehension 

of the regulation processes in order to improve food production industry, but also for the 

understanding of the effects of a natural acidic barrier, the stomach, encountered by 

bacteria during the process of infection. 

 

1.2.2 Chemistry and definition of acids 

 

Citing the Arrhenius definition, an acid is a substance which, when dissolved in water, 

can increase the concentration of H3O
+

 in aqueous solution. In pure water a small part of 

the molecules are in constant association-dissociation equilibrium, on the basis of the 

following equation:  

H2O(l) + H2O(l) ↔ H3O
+

(aq) + OH
−

(aq) 

The reaction of an acid is always indicated by the following formula: 

HA ↔ H
+
 + A

−
 

in which H
+ 

represents the acid and A
- 
is the conjugate base. The equilibrium of an acid 

and base in solution is defined by K, the equilibrium constant, which is the expression of 

the equilibrium concentrations between the two components. The Ka  is  the acid 

dissociation constant, which could be considered an equilibrium constant for a weak acid 

equilibrium, calculated with the following formula:  
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which is more frequently used as  

pKa = -log10 Ka 

since the many levels of magnitude of the Ka constant. Ka is also a measure of the acid 

strength: strong acids usually have smaller values of pKa. 

Hydrochloric acid (HCl), hydriodic acid (HI), hydrobromic acid (HBr), perchloric acid 

(HClO4), nitric acid (HNO3) and sulphuric acid (H2SO4) are examples of strong acids, 

since in water they completely dissociate. Acids are usually used for many applications; 

they play also very important roles in the human body. The HCl present in the stomach is 

important to break down molecules during the process of digestion, but also constitutes an 

important barrier for the pathogenic microorganisms (Smith, 2003). 

1.2.3 Effects of acid on E. coli cells 

 

Gastric acid is an ancient mechanism of protection against infections, probably developed 

in cartilaginous fishes more than 400 million years ago. HCl is usually secreted in the 

human stomach by parietal cells, which are controlled by a complex system of endocrine 

cells and neurons. It is important for the denaturation of proteins, for activating pepsinogen 

and inactivating the ingested microorganisms (Martinsen et al., 2005). 

Exposure to acid can affect several functions in E. coli. Among these are changes in 

membrane structure, protein transport and metabolism (Krulwich et al., 2011). pH 

homeostasis is really important for the cells during challenging acid conditions. The 

membranes are not permeable to protons. Proton pumps, such as the ATPase FOF1, allow 

the entry of protons (Senior, 1990). At pH 2.5 undissociated HCl could cross the 
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membrane as uncharged (Foster, 2004);  inside the cells HCl deprotonates and acidifies the 

cytoplasm  (Gutknecht and Walter, 1981). At pH 2.5, E. coli internal pH assumes values 

around 4.5: with this pH decrease, most of the functions will be prevented, because of the 

ability of the enzymes to work only at specific pH ranges. Therefore events of protein 

denaturation, DNA and membrane damages will begin to happen in the cells (Foster, 

2004). 

Therefore pH homeostasis is a very important aspect for prokaryotic and eukaryotic cells. 

Maintaining pH homeostasis requires several molecular components, such as the proton 

motive force (PMF). The PMF, defined as the electrochemical gradient of H
+ 

across the 

cell membrane, is an important factor for pH homeostasis  (Kashket, 1985). PMF in 

bacteria is generated by proton pumps, which could be respiratory or redox-potential 

driven pumps or an electron transport chain (Rottenberg and Koeppe, 1989). On the basis 

of the pH affinity for each class of bacteria, different patterns of a proton motive force are 

described (Figure 1.9). It has been observed that E. coli can act as an acidophile 

microorganism in acid conditions (Foster, 2004). 

 

Figure 1.9 The PMF patterns of bacteria growing in different ranges of pH 

In figure are shown PMF and Δψ  values for the acidophile Acidithiobacillus ferrooxidans 

growing at pH 2.0, the neutralophile Escherichia coli growing at pH 7.0 and the alkaliphile 

Bacillus pseudofirmus OF4 growing at pH 10.5 (Krulwich et al., 2011). 
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PMF is calculated with the following formula: 

PMF (mV) = Δψ – (2.3 × (RT / F) × ΔpH) 

in which Δψ represents the membrane electrical potential, R the gas constant, T the 

temperature, F the Faraday constant and ΔpH the pH gradient. In E. coli the value for the 

PMF is between –140 mV and –180 mV. When ΔpH increases, ΔΨ is usually reduced to 

keep stable the PMF. During growth, neutralophiles always have a negative-inside ΔΨ, 

which for E. coli is usually about -90 mV. Surprisingly, ΔΨ was considerably decreasing 

when stationary phase E. coli cells were exposed to low pHs. When glutamate or arginine 

were added to media, ΔΨ was then flipping to a positive value (+0 mV with glutamate, +80 

mV with arginine), which is the same strategy adopted by acidophiles microorganism for 

pH homeostasis (Foster, 2004). Acidophiles maintain internal pH near neutrality; they have 

a large ΔpH and must compensate for this large chemical force by reversing ΔΨ, making it 

inside positive to prevent PMF from becoming too negative. Excessive PMF could create 

an excessive draw of external H
+
, creating something similar to a short in a battery (Foster, 

2004).  

1.2.4 Mechanisms of acid resistance 

 

Most of the theories underlying acid adaptation in E. coli are centred on the role of proton 

detoxification systems in re-establishing a neutral intracellular pH. Here I will review these 

studies and later explain how the approach proposed in this thesis has contributed to 

improve general knowledge in acid response. 

Acid resistance is the mechanism which enables microorganism to survive at low pHs, 

such as gastric acidity and volatile fatty acids produced during fermentation (Giannella et 
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al., 1972, Giannella et al., 1973). Different species have adapted in order to overcome the 

host defences, for example Vibrio cholerae attacks the host cells in large numbers (Foster, 

2004). Other species have developed cellular components which allow resisting the acidic 

barriers, i.e. Salmonella enterica and E. coli. Cultures of E. coli challenged at pH 2 for 

several hours were able to survive and to recover when exposed to neutral pH (Hall et al., 

1995, Lin et al., 1995). In order to comprehend to which extent enteric microorganism 

could survive strong acidic conditions, many experiments were performed in the last years, 

using a multitude of different conditions (Foster, 2004). Interestingly, one of the best 

approaches involved the utilization of diverse media of growth, therefore mimicking 

external conditions for the cells. When MG1655 strain was challenged in rich media, such 

as Luria Bertani broth, in which concentration of nutrients is extremely high, they were 

showing a high resistance to acid, which was lost when the experiments were performed in 

minimal glucose media (Small et al., 1994, Lin et al., 1996). The utilization of different 

media induced scientists to identify the effects of acid in important metabolic components. 

For this reason, the experiments were focusing on important enzymes (for E. coli and 

Salmonella), and the results highlighted the great contribution to resistance of important 

decarboxylases (Epps and Gale, 1942). Three of these enzymes and their related amino 

acids were characterised and identified as components of regulatory machineries essential 

for acid response: Acid Response systems (ARs). Four ARs have been recognised in E. 

coli, three of them were discovered with the external supply of amino acids, therefore they 

are considered amino acid dependent; the only AR which is not amino acid dependent is 

also the less known to date.  

AR1: This system was discovered when cells were grown in Luria Bertani broth, 

buffered at pH 5.5, and then challenged at pH 2.5 in minimal medium. The activation of 
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the system is dependent on the alternative 
S
 factor (RpoS), therefore when cells are in 

stationary phase of growth (Foster, 2004). It has been seen that this system, because of the 

growth conditions, is glucose repressed, hence the involvement of another important 

regulator, Crp (cAMP receptor protein) (Castanie-Cornet et al., 1999). Moreover, the 

system seems to be activated when glutamate (or glutamine) is present in the medium, but 

if those amino acids are added during the challenge from external sources, AR1 is 

inhibited.  

The AR1 mechanism which helps the cells to prevent acid stress damages is not clearly 

understood yet. It has been observed the potential involvement of the H
+
 pump (Richard 

and Foster, 2004), the FOF1 ATPase, which generates ATP from ADP and Pi, using the 

protons entering the cytoplasm (Tanabe et al., 2001), as happens in Streptococcus (Martin-

Galiano et al., 2001). The pump could also work in the opposite direction, therefore 

extruding protons by hydrolyzing ATP (Hicks and Krulwich, 1986). It is not clear whether 

it can work as H
+ 

extrusion system or to satisfy the energy requirements for the system to 

work  (Foster, 2004). Even though the pump was important for the protection acquired 

through AR1, it has been observed that gene KO encoding the FoF1 ATPase were still 

showing some acid resistance (Richard and Foster, 2004). 

Recently it has been discovered that the ATP hydrolysis activity of the pump is slight at 

pH less than 5 and the Km (the Michaelis constant for substrate affinity) was 0.6 mM for 

ATP (Kobayashi and Anraku, 1972), which corresponds to 1.8 nmol ATP per milligram of 

protein. In these conditions, it would be really difficult for the ATPase to extrude protons 

because of thermodynamic reasons (Sun et al., 2011). 
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AR2 (GAD SYSTEM):  AR2 is the best understood of the acid response mechanisms. It 

was discovered by accident, together with the AR3, during studies on AR1 (Lin et al., 

1995) with external supply of amino acids, glutamate and arginine. AR2 is activated when 

cells, which were grown in reach media, where then challenged with low pH in minimal 

media with the exogenous glutamate (Foster, 2004, Richard and Foster, 2004). The system 

is characterised by the presence of two decarboxylase isozymes, GadA and GadB, which 

replace the α-carboxyl groups of glutamate with a proton recruited from the cytoplasm 

(Castanie-Cornet et al., 1999, Smith et al., 1992, De Biase et al., 1999) (Figure 1.10), with 

the production o CO2 and GABA (γ-amino butyric acid). Moreover, a glutamate/GABA 

antiporter, GadC, is involved in the process of resistance by extruding the decarboxylates 

products to increase the glutamate concentration (Richard and Foster, 2004). 

 

Figure 1.10 Consumption of protons during decarboxylation of glutamate. 

Decarboxylation of glutamate to produce GABA. Numbers in green indicate pKa values of 

ionizable groups. The numbers in the parentheses are the charge values of the compound during the 

reactions (Foster, 2004). 

 

The damages of acid stress could also involve the translational processes and protein 

folding, especially for the periplasmic proteins, which are strongly and primarily exposed 

to the pH shift. Two chaperones were discovered to help in the protection against acid 
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condition, which are periplasmic proteins and can both become dimers at pH 2.5: HdeA 

and HdeB (Gajiwala and Burley, 2000, Mates et al., 2007).  

 The regulation of the system is mainly based on the activity of the central regulator 

GadE (YhiE), a member of the LuxR-family, which binds a gadbox 63 bases upstream the 

starting sites of the gadA and gadBC genes (Ma et al., 2003). Moreover, 10 regulators are 

involved in the modulation of the mechanism, on the basis of the acid conditions (Foster, 

2004).  A big difference in the activation circuit of the GAD genes has been observed 

when using LB medium or glucose minimal medium in mild pH conditions, whereas GadE 

is always activated at pH 2.5. The activation or inhibition of gadE depends on a 750 bp 

region, located upstream of the starting codon. This region contains three different 

promoters’ sites, which are targets of different regulators and determine activation and also 

auto inhibition of the regulator (Sayed et al., 2007). Three different ways of GadE 

activation are known to date (Figure 1.11).  

 

Figure 1.11 Three circuits involved in the activation of the GAD system. 
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Large arrows represent genes, regulatory genes are coloured blue. Smaller red arrows indicate 

positive control, black lines denote negative control (Foster, 2004). 

 

The first circuit involves the Two-component system EvgA/EvgS and AraC-like 

regulator YdeO: when over-expressed, EvgA can indirectly activate the regulator YdeO, 

which in turn activates GadE, but in physiological conditions EvgA could directly activate 

GadE (Ma et al., 2004). The second activation circuit involves the regulators CRP, RpoS 

and the two AraC-like regulators GadX and GadW. GadX and GadW genes are 

downstream gadA, however they are transcribed from independent promoters (Tucker et 

al., 2003). They directly activate GadE and indirectly gadA and gadBC (Tramonti et al., 

2002). In some conditions, it has been seen that both regulators can bind the decarboxylase 

genes promoters and could also be involved in repression events. GadW can inhibit RpoS 

expression, hence GadX expression. In a GadW mutant, GadX is usually overexpressed; 

hence the circuit is based on the inhibitory effects of each of the two-regulators towards the 

other (Foster, 2004) CRP is a repressor of RpoS, but its action is reduced during acidic 

conditions, because of its own repression, hence RpoS gene can be expressed and activate 

the GAD response (Ma et al., 2003). The third factor involved in the activation of AR2 is 

TrmE (MnmE), which prevents gadA and gadBC expression when cells grow in LB 

medium. TrmE is also indirectly involved in the regulation of GadE, through a possible 

stationary phase regulator. The three circuits were added in 2006 of new regulators and 

potential modulators of the response, i.e. Two-component systems, which will be further 

discussed. One of the regulators recently discovered is a small-RNA regulator, GadY. It 

has been observed that this regulator is directly involved in the regulation of the glutamate-

dependent system, by positive regulation of the regulator GadX (Opdyke et al., 2004). 
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AR3: The third acid response system is amino acid dependent, as the GAD system. The 

decarboxylase present in the system AdiA, reduces the cytoplasmic proton concentration 

by the decarboxylation of arginine, with the production of agmatine and CO2. The 

antiporter AdiC extrudes the produced amine in order to increase the amino acid pool of 

arginine for the system to work (Iyer et al., 2003) (Figure 1.12). 

 

Figure 1.12 Consumption of protons during decarboxylation of arginine. 

Decarboxylation of arginine to produce agmatine. Numbers in green indicate pKa values of 

ionizable groups. The numbers in the parentheses are the charge values of the compound during the 

reactions (Foster, 2004). 

 

The use of decarboxylase for AR2 and 3 requires that internal pH values should be as 

close as possible to the optimum pH for the enzymes to work, hence about 4-4.5 (Capitani 

et al., 2003); the systems help the cells in maintaining the pH homeostasis. The protons 

from undissociated HCl are largely used by the decarboxylase, while it was proposed that 

the Chloride ions are transported outside the cells through a Chloride transporter (ClC), 

which also prevents the hyperpolarization of the membrane (Iyer et al., 2003). Potential 

membrane measurements however demonstrated that E. coli can actually reverse its 

when cells are exposed to pH 2.5: protons enter the cells and the ClC channel could 

import Cl
- 
in order to balance the positive charge of the cells (Richard and Foster, 2004) 

(Figure 1.13). 
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Figure 1.13 Model for the arginine-dependent acid resistance. 

When the internal pH drops, the arginine decarboxylase consumes protons, producing agmatine, 

increasing the positive charges inside the cells. The ClC channel would be therefore required for 

increasing negative charges by intruding Cl
-
 (Richard and Foster, 2004). 

 

 

The regulation of AR3 is also similar to the GAD system: AdiY, an AraC-like regulator, 

is directly involved in the activation of the decarboxylase and antiporter genes. RpoS is 

also involved in the regulation, but it does not directly activate the genes of the system. 

Moreover, under anaerobic conditions, it has been seen that CysB can be an activator of 

the system (Shi and Bennett, 1994). 

AR4: The fourth and last acid response system in E. coli is based on the contribution by 

the amino acid lysine. The system usually works during carbohydrate fermentation, under 

anaerobic conditions and also phosphate starvation, through the decarboxylase reaction of 

the CadA decarboxylase, and consequent production of cadaverine (Yamamoto et al., 

1997). The antiporter associated to the system is CadB, which extrudes the amine, as 
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previously seen for the AR2 and 3 antiporters. The regulation of the system is exerted by 

CadC, but in a LysP dependent manner (Neely et al., 1994). In presence of exogenous 

lysine, LysP, which inhibits cadC expression, is not active, therefore the regulator can 

trigger the system to work when pH values are low (Tetsch et al., 2011). 

AFI: Recently a region of 12 genes at 79 centisomes was observed, called Acid Fitness 

Island (AFI), which also participate in acid resistance (Mates et al., 2007). Two genes 

belonging to this cluster (slpA and gadA) are unique to E. coli, though they are relatively 

close to Shigella genome. The 12 genes are usually activated under acidic conditions; when 

mutated, the microorganism can lose the ability to survive at pH 2.5 (Hommais et al., 2004, 

Mates et al., 2007). In specific conditions at acidic pHs, the cells can extrude toxic 

metabolites and three genes belonging to the AFI (slp, yihF and hdeA) were required for 

resistance to the toxic effects. The study also discovered that the resistance to acidic 

conditions was not only achieved by exogenously added glutamate: E. coli was perfectly 

able to obtain the required amino acid through slp and the glutamate transporter gene, also 

belonging to the AFI. Moreover, it has been observed that cells at stationary phase become 

more resistant to acid because of the involvement of two AFI genes: yhiD and hdeD, both 

membrane proteins (Mates et al., 2007). 

1.2.5 The mechanism of acid adaptation  

 

In pathogenic and non pathogenic E. coli strains the ability survive to strong acid 

conditions is enhanced when cells are pre-exposed to mild acid conditions. This 

mechanism, known as acid adaptation or acid tolerance, is also common to other enteric 

bacteria, such as Salmonella (Foster, 1999). However, during stationary phase conditions, 

E. coli cells become further more resistant than Salmonella (Bearson et al., 1998). This 
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process is used by E. coli in order to maintain the internal pH as close as possible to 

neutrality, which is not possible for not adapted cells, since their internal pH values shift to 

4-4.5.  The role of acid adaptation in pathogenic strains has been discovered after analysing 

their survival in some foods and weak organic acids, which can also induce cross-

protection against other stress conditions (Leyer and Johnson, 1993). Acid tolerance in 

Salmonella involves a two-stage process: the first one at a mild pH condition (pre-shock) 

and the second one at pH values smaller than 4 (post-shock) (Hill et al., 1995). It has been 

observed that during the pre-shock 18 polypeptides are affected, 12 are induced and 6 are 

repressed; those changes reduce the possibility to get denatured acid sensitive proteins. 

Moreover, the pre-shock stage induces the expression of acid shock proteins (Foster, 

1993). The studies performed on Salmonella identified five regulator loci including Fur 

and OmpR (Hill et al., 1995). In E. coli pathogenic and non pathogenic strains, the 

regulation of acid adaptation is mainly based on the contribution of RpoS and CRP (Foster, 

2004). The GAD system is also involved in the process, depending on the growth 

conditions and the medium  (Foster, 2004). Recently it has been discovered the 

involvement of the outer membrane protein TolC (Deininger et al., 2011), which is part of 

the EvgA regulon (Masuda and Church, 2002). 

The mechanism of acid adaptation is extremely important for the food industry, since the 

conditions required for food preservation, such as apple cider, include temperature shifts 

and low pH environments (Sofos, 2008) 

The control of acid adaption is mainly based on the regulation of the systems for acid 

resistance, however, only few works were focusing on finding out the mechanisms 

enabling E. coli to sense the pH shift. New mechanisms could involve different elements 

from the canonical response, such as transporters and two-component systems, which can 
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act as sensors and activators of the response to stress conditions (Soncini and Groisman, 

1996). 

1.3 The TCS signalling pathway 

1.3.1 Structure and mechanisms of Two-component systems 

 

Bacteria commonly use two-component signal transduction pathways to couple 

environmental stimuli to adaptive responses (Gao and Stock, 2009). TCS are the most 

common signal transduction mechanism in bacteria (Zhou et al., 2003). The mechanism is 

based on a stimulus-response coupling which allows sensing and responding to external 

changes. The typical structure for a TCS consists of a histidine protein kinase (HK) and a 

response regulatory protein (RR) (Stock et al., 2000) (Figure 1.14).  

 

Figure 1.14 Two-component phosphotransfer mechanism. 

A typical two-component phosphotransfer system consists of a dimeric transmembrane sensor 

HK and a cytoplasmic RR and transmembrane segments (TM1 and TM2). Conserved sequence 

motifs N, G1, F and G2, are located in the ATP-binding domain. The autophosphorylation happens 

on a specific conserved His residue (H). The phosphoryl group (P) is then transferred to a specific 

Asp residue (D) in the conserved regulatory domain of the RR (West and Stock, 2001).  

 

 

Three phosphorylation events are involved in the functioning of TCS: 
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1. Autophosphorylation: HK-His + ATP ↔ HK-His~P + ADP 

2. Phosphotransfer: HK-His~P + RR-Asp ↔ HK-His + RR-Asp~P 

3. Dephosphorylation: RR-Asp~P + H2O ↔ RR-Asp + Pi 

The three reactions require divalent metal ions with Mg
2C+ 

as the relevant cation in vivo 

(Stock et al., 2000). 

The events happening following external stimuli are regulatory effects exerted by 

phosphorylation of the RR component. The activity of the kinase is modulated by the 

signals sent to the sensing domain; the HK is involved in a process of autophosphorylation 

at a conserved His residue in the kinase core. Subsequently, with a stoichiometric reaction 

the phosphoryl group is transferred from the HK to an Asp residue in the RR regulatory 

domain. In the amino acid sequence of prokaryotic and eukaryotic HKs kinase core (about 

350 amino acids) there are five conserved amino acids; the His represents the most 

important part of the core (Figure 1.14) (Stock et al., 2000).The stimuli can be detected by 

the N-terminal sensing domain of the HK, on the basis of a specific stimulus interaction. 

The phosphorylation of RR, on the conserved Asp, can happen through different molecules 

which act as donors, such acetyl phosphate and imidazole phosphate (Lukat et al., 1992). 

Two domains are present in each RR: a conserved N-terminal regulatory domain and a 

variable C-terminal effector domain, however the majority of the RR are transcription 

factors with DNA-binding effector domains (Mizuno and Tanaka, 1997). These domains 

can be classified into three major families, in which OmpR, NarL and NtrC are the most 

representative (Mizuno and Tanaka, 1997). The effector domains are important because of 

their activation/repression ability, binding specific sequences which are recognised in 
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dependence of the stimulus. The great diversity of the binding sites allowed the 

specialization of the TCS for several stimuli.  

The HK input domains are well known to date, contrarily to N-terminal sensor domains, 

which are different in sequence, membrane topology and domain arrangement. This great 

variability could probably reflect different principles in stimulus sensing and transduction 

of the event. The signal domains could be therefore classified on the basis of their 

localization and therefore on the stimuli detected and transducted.  

Periplasmic sensing HK: The TCS belonging to this group represent the most studied 

and well known to date. They are formed by the N-terminus periplasmic sensing domain 

and by a C-terminus cytoplasmic transmitter domain, connected by transmembrane helices. 

The linking domain is usually used as an additional criterion for the classification of the 

members of the group. EnvZ, PhoP and TorS belong to this group and they can be 

considered as prototypical examples.  

EnvZ with its correspondent RR, OmpR, belong to the most studied and known TCS in 

E. coli, which promptly respond to osmolarity changes (Stock et al., 2000). An event of 

trans-autophosphorylation on the conserved His-243 of EnvZ determines the activation of 

the TCS; the phosphoryl group is then transferred to the Asp-55 of the RR OmpR (Yang 

and Inouye, 1993). This event determines the regulation of the outer membrane proteins 

OmpF and OmpC, which then allow the passage of small hydrophilic molecules through 

the membrane (Nikaido and Vaara, 1985)EnvZ is 450 amino acids long, it consists of a 

transmembrane dimer in the inner membrane of E. coli and it is connected to OmpR are by 

a flexible linker. The RR OmpR showed, through X-ray crystallography, a helix-turn-helix 

structure. It was observed that in vivo and in vitro studies OmpR-P binds to the -100 to -38 
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region of ompC, one to the -380 to -361 and -100 to -39 regions of ompF (Bergstrom et al., 

1998). 

The role of OmpR is well known in literature to date, in E. coli and Salmonella. OmpR 

not only can exert a regulatory action during osmotic stress conditions, it is also involved 

in the regulation of biofilm formation and curli fimbriae, moreover can inhibit the 

expression of flagellar genes (Vidal et al., 1998). The PhoP/PhoQ TCS has an important 

function for the pathogenesis in Salmonella and other enteric bacteria, by increasing the 

concentrations of lipid A, including the ones for antimicrobial peptide resistance (West and 

Stock, 2001). PhoQ, which is the sensor kinase, is activated at low concentrations of Mg
2+ 

and repressed by high concentrations of divalent cations (Gunn and Miller, 1996). The 

sensor contains a periplasmic PAS domain, which structure matches with CitA and DcuS 

sensors. The binding of the cations happens in the acidic surface of the cytoplasmic 

membrane; the Mg
2+ 

cations form bridges between this region and the acidic phospholipid 

membrane (Kim and Cho, 2006). When the antimicrobial peptides break this bridge, PhoQ 

becomes active, therefore allowing its auto-phosphorylation. The corresponding RR, PhoP, 

belong to the subfamily OmpR/PhoB, and it is characterised by a winged-helix DNA-

binding domain (Bachhawat and Stock, 2007). In vitro PhoP is a dimeric protein in both 

phosphorylated and not phosphorylated states. In vivo studies indicated that the 

unphosphorylated and phosphorylated PhoP dimers have structural relationships that allow 

similar binding of their C-terminal effector domains to the target DNA. The fact that only 

phosphorylated PhoP dimers can induce or repress gene transcription suggests that 

phosphorylation could require transcriptional components in association with other 

regulators (Birck et al., 2003). Recently PhoP was found to regulate virulence and 

membrane potential in the uropathogenic E. coli; moreover alterations in the expression of 
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genes encoding respiratory chain components also occurred in the phoP mutant (Alteri et 

al., 2011). A second group belonging to periplasmic HK group is characterised by 

NarX/NarQ like sensors. In E. coli and Salmonella the regulation of anaerobic respiration 

is exerted by two nitrate reductase TCS: NarX/NarL and NarQ/NarP. A sequence of 18 

conserved amino acids was found flanking the two transmembrane sites of the sensors; 

however only one transmembrane site is required for the nitrite and nitrate detection. NarL 

is a nitrite/nitrate dual regulator which activates the expression of the genes involved in the 

nitrate respiration. The response regulator NarL belongs to the LuxR/UhpA family and 

contains the N-terminal receiver domain and a C-terminal DNA-binding domain. In 

unphosphorylated NarL, the DNA-binding site of the output domain is blocked by the 

receiver domain (Baikalov et al., 1996). The phosphorelay signal transduction pathway 

induces the separation of the two domains and the formation of a new dimerization 

interface in the C-terminal domain. The RR NarP is another regulates of many aerobic and 

fermentative genes, dependent on nitrate and nitrite concentrations. It has been observed 

that between the two RR, NarX and NarL, exists 44% homology in the structure (Baikalov 

et al., 1996) and they can cooperate in the regulation of the anaerobic processes (West and 

Stock, 2001). 

HK linked to transmembrane regions:  In this group the transmembrane regions have a 

predominant role, since they are directly involved in the stimuli detection. The grouping is 

mainly based on their functioning and on their structure. These sensors are not present in 

E. coli, however two phylogenetically unrelated groups of cell envelope stress-sensing 

HKs show similarities to members of this group, in consideration of their size and domain 

organization: PmrB/BasS-like HKs mediating resistance to cationic antimicrobial peptides 

in E. coli and Salmonella (West and Stock, 2001). PmrB/BasS-like HKs possess a 
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periplasmic linker of 30 to 35 amino acids between the transmembrane regions. It has been 

demonstrated that PmrB senses ferric iron through two conserved ExxE (involved in iron 

uptake) motifs in this short extracytoplasmic sensor domain. Therefore, PrmB-like proteins 

are periplasmic-sensing HKs with a HK linked to transmembrane region. 

Cytoplasmic sensing HK: The sensing domain of these HK is located in the cytoplasm. 

The sensor region could be partly membrane integrated, associated to membrane proteins 

or permanently located in the cytoplasm.  

The membrane anchored HK groups contains almost 100 members, in which it can be 

catalogued the sensor KdpD, which controls turgor in E. coli under limiting K
+
 

concentrations, with its associated RR KdpE. Sensing of osmolality occurs indirectly by 

measuring the intracellular parameters K
+
, ATP concentration, and ionic strength, which 

respond to osmolality changes (Bang et al., 2002). The TCS controls the K
+
 uptake by 

sensing also ATP concentrations (West and Stock, 2001). The transmembrane helices were 

not found important for the sensing, however they are required for the correct positioning 

of the sensing region in the cytoplasm. The ArcA/ArcB TCS has a very important role in 

the facultative anaerobic metabolism of E. coli in response to O2. ArcA can repress genes 

of the aerobic metabolism and activate genes of the fermentative pathways (Iuchi and Lin, 

1988). ArcB can sense the O2 levels through an intermediate molecule of the anaerobic 

respiration, but in non stimulating conditions it could also work as a phosphatase of ArcA 

(Georgellis et al., 2001). 

1.3.2 TCS Cross-talking events and stress responses  

 

Events of cross-talking (cross-regulation and cross-phosphorylation) are defined such as 

mechanism in which one TCS can control another regulatory system (Wanner, 1992). 
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The phosphorylation events between the Histidine kinase of the HK and the RR are 

usually specific for each TCS, however, it was observed that some phosphorelay systems 

are not limited to only one regulator, but can have multiple targets (Goulian, 2010)A 

typical example for this “one-to-many” trend of regulation is the CheA sensor, which can 

easily phosphorylate two response regulators: CheY and CheB (Kirby, 2009). NarX and 

NarQ can also both regulate the phosphorylation of NarL and NarP. In contrast, unwanted 

events of cross-phosphorylation could negatively affect the specificity of the signal (Laub 

and Goulian, 2007), therefore it was observed that HK prefers the interaction with its 

cognate RR. Cross-phosphorylation could be interpreted as an integration of signals to 

control multiple targets, but only few examples have been reported to date (Laub and 

Goulian, 2007). The cross-talk is based on the lack of specificity of the interaction but 

could also play a role in inhibiting the phosphorylation from a non cognate HK. 

Additionally, the RR could also suppress cross-talking events by competing with other RR, 

in order to prevent non specific signals (Siryaporn and Goulian, 2008). Recently it was 

discovered an evidence of cross talking between the TCS EnvZ/OmpR and CpxA/CpxR, 

by studying the mechanism of suppression of this cross talking which can be described by 

the 3 proposed mechanisms (Siryaporn and Goulian, 2008). The first mechanism involves 

the suppression by EnvZ, the second is based on the fact that phosphorylation of OmpR by 

CpxA is negligible when EnvZ is present; the third mechanism involves the suppression by 

CpxR (Siryaporn and Goulian, 2008). Kinetic studies revealed that the events of cross-

phosphorylation usually happening in vitro, are not visible in vivo because of  the double 

phosphatase activity of the sensors, fast enough to remove the phosphates that get 

transferred via non-cognate interactions (Groban et al., 2009). Those mechanisms are also 

considered buffering mechanisms and could emerge from the ability of the histidine kinase 
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to both phosphorylate and dephosphorylate the response regulator (Alves and Savageau, 

2003). Many TCS can regulate other TCS through auxiliary proteins which modulate the 

activity of either the HK or the RR; these connectors can mediate positive and negative 

feedback on the TCS. 

TCS are in control of many stress responses in bacteria and important for sensing several 

environmental conditions. A phenotypic analysis on the gene KO of E. coli TCS (HK and 

RR) revealed that some TCS can sense many extracellular changes (Zhou et al., 2003). For 

example, CpxA/CpxR, which is known to control cell envelope stress, was found to 

respond also to ethylene glycol sensitivity; EnvZ/OmpR mutant increased the use of 

carbohydrates and showed resistance to cephalosporin. The TCS PhoP/PhoQ showed 

increased use of fructose and mannitol and RssB, which regulates the RpoS degradation 

process, was found to decrease the use of C4 di- and mono-carboxylates and amino acid N 

sources (Zhou et al., 2003).A summary of the findings is shown in Table 1.1. 
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Table 1.1 Phenotypes that two-component and other mutants have in common (Zhou et al., 

2003). 

 

 

 

These findings lead to the hypothesis that a potential regulatory network can connect the 

TCS, in order to satisfy the need of the cells to respond to the external stimuli. High-

throughput technologies and Systems Biology approaches can help in developing models 

in order to explain the intricate system of responses and interactions within TCS (Soncini 

and Groisman, 1996, Zhou et al., 2003). A first evidence of transcriptional interaction was 

found in a gene expression analysis performed on the entire gene KO of the TCS in E. coli 

(Oshima et al., 2002). Functional analysis performed on each mutant pointed out the main 

changes at metabolic, energetic and in general, cellular levels in Luria Bertani broth and 



50 
 

under aerobic conditions. The cellular pathways affected could be determined by pattern 

matching. More than half the TCS mutants showed major alterations in a small number of 

genes. The most dramatic changes were detected in mutants of ArcB/ArcA, the 

osmoresponsive EnvZ/OmpR system and the response regulator UvrY. It has been also 

discovered that multiple TCSs are involved in the regulation of cellular functions such as 

RpoS regulon, flagellar synthesis and maltose transport; most importantly, several TCSs 

would control other TCSs (Oshima et al., 2002). Evolutionary processes might prefer to 

simplify the signalling cascade of events by involving only few components, which can 

detect several external conditions. Nevertheless, environmental bacteria which can adapt to 

different metabolic conditions were found to code for more TCSs than microorganisms 

living in a uniform habitat, for example bacteria that need to adapt to host organisms (Beier 

and Gross, 2006). For example, the role of the TCSs in virulence is still poorly understood, 

however few examples of involved TCSs in infection processes were found in different 

pathogenic bacteria.  

1.3.3 Two-component systems and acid resistance 

 

I have previously described the role of the two-component system (TCS) EvgA/EvgS in 

acid response, which initiates a transcriptional cascade of events modulating acid 

resistance genes, encoding the regulators EvgA, YdeO, and GadE (Eguchi et al., 2011)The 

function of Two-component systems in acid response is becoming even more intriguing 

since the role of EvgA/EvgS was explained. However, an additional finding pointed out 

the role of PhoP/PhoQ in the regulation of AR1 in both E. coli and Salmonella. The 

involvement of PhoP in the regulation of the AR2 genes was discovered when it has been 

observed that the expression of GadW was PhoP
 
dependent (Eguchi et al., 2004, Zwir et 
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al., 2005). Moreover, through foot-printing experiments, both hdeA and gadW were 

identified as PhoP targets. This study highlighted also another aspect, which could 

potentially spread the interest of the Two-component systems in the study of the acid 

response regulation. EvgS/EvgA is able to enhance the expression of a protein, which 

connects the previous cited Two-component system and PhoP/PhoQ: SafA. SafA is a small 

inner membrane protein which can bind the sensor PhoQ, after being activated by EvgA 

(Eguchi et al., 2007). The role of TCS connectors is not limited to the previous finding. A 

circuit of connectors has been lately discovered, which involves the SafA protein and 

IraM, a small protein which inhibits proteolysis of RpoS through RssB (Eguchi et al., 

2011) (Figure 1.15). 

 

Figure 1.15 Model of regulation network of AR genes initiated by the EvgS/EvgA system. 

EvgS/EvgA induces the EvgA-YdeO-GadE cascade of AR gene regulation and SafA, which then 

activates the PhoQ/PhoP system. PhoP/PhoQ then induces the expression of GadE and GadW and 

through the connector IraM regulates RssB, which controls RpoS proteolysis (Eguchi et al., 2011). 
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Recently, the involvement of another TCS was studied in the activation process of AR2, 

with the possible involvement of GadE. RcsB was seen to activate genes required for acid 

resistance during stationary phase (Castanie-Cornet et al.), which promoters could be either 

dependent or independent of GadE (Johnson et al., 2011). The regulator OmpR, which is 

involved in the response to osmotic stress conditions, was also observed as potential 

regulator of the response to mild acidic conditions in Salmonella (Bang et al., 2000) and in 

E. coli (Schwan, 2009, Stincone et al., 2011). 

The model input-output characterising the TCS response has always been considered of 

great interest for the understanding of the biological systems, last decade has been 

characterised by several studies on the potential involvement of TCS in sensing external 

adverse conditions and regulating the response to them, i.e. acid stress response. 
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Chapter 2: Characterization of the BW25113 

strain response to acid 
 

2.1 Introduction 

 

The acidic barrier of the stomach represents a strong challenge for many pathogenic 

enterobacteria (Giannella et al., 1972). The ability of some E. coli strains to survive 

exposure to strong acid conditions is potentially relevant for pathogenicity (Benjamin and 

Datta, 1995, Conner and Kotrola, 1995, Foster, 2004). For this reason, the molecular and 

physiological response to acid stress has been the subject of intense investigation (Foster, 

2004). Four acid stress response systems (ARs) that can protect E. coli from low pH are 

known to date (Foster, 2004, Richard and Foster, 2003, Richard and Foster, 2004). Three 

of those systems are amino acid dependent (glutamate, arginine, and lysine); one of them is 

instead characterised by a mechanism which involves the FoF1 ATPase and the two master 

regulators CRP and RpoS (Foster, 2004). E. coli also shows acid adaptation, characterised 

by enhanced resistance to low pH following exposure to mild acidic conditions (Foster and 

Hall, 1990, Boot et al., 2002). This mechanism is mediated by the up-regulation of acid 

shock proteins, including components of the acid response systems described above. 

Exposure to acid induces a sudden drop of the intracellular pH (Foster, 2004), which 

despite the beneficial effect of the ARs, has profound effects on the physiology of the cell. 

For example, high intracellular proton concentration may induce uncoupling of oxidative 

phosphorylation resulting in alteration of energy metabolism (Richard and Foster, 2004). 

More generally, genes involved in energy metabolism, transport and amino acid 

biosynthesis are known to be modulated at both mRNA (Jozefczuk et al.) and protein level 

(Stancik et al., 2002) suggesting that a much broader spectrum of adaptation pathways may 
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be modulated in response to acid exposure. Therefore, the understanding of acid stress 

response goes beyond the study of the ARs.  

A number of genome wide expression profiling studies, performed in W3110 strain,  

representing different acid stress conditions have been recently published (Maurer et al., 

2005, Hayes et al., 2006, Kannan et al., 2008). Although they have contributed to the 

identification of novel genes transcriptionally regulated during acid exposure, they do not 

yet provide with a comprehensive model of E. coli acid resistance. Therefore, my work is 

focused on the general understanding of the mechanisms involved in acid adaptation 

(required also for acid resistance), in order to develop and validate a model for the 

identification of new potential regulators. 

In this chapter the effects of acid adaptation on the E. coli BW25113 strain are shown, 

with particular attention to the modulated pathways and their corresponding components.  

 

2.2 Materials and Methods 

2.2.1 Bacterial strains 

 

All the experiments described here were based on E. coli K-12 BW25113, which is 

directly derived from BD792, itself a two-step descendent of the E. coli K-12 ancestral 

strain (Hayashi et al., 2006, Bachmann, 1990). All mutant strains analyzed in this study 

originated from the Keio collection (Baba et al., 2006) and were checked by PCR to verify 

the presence of the deletion before being used. For this purpose a combination of locus and 

kanamycin specific primers were used as described in the original publications (Datsenko 

and Wanner, 2000). 
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2.2.2 Culture conditions 

 

Bacterial strains were cultured in Luria-Bertani (LB) medium (Sigma Aldrich, USA) 

supplemented with kanamycin (50g/ml). In all our experiments, pH was adjusted to 

neutrality using sterile 5 M NaOH. In the acid adaptation and acid shock experiments pH 

was adjusted using sterile 1 M HCl. Media were buffered with MES (final solution 10%). 

In order to maintain optical density within a narrow range (1.85 – 2.15) and to keep 

growth rate constant during the experiment, I used a medium replenishment strategy in 

which medium and cells were removed and replaced by an equal volume of pre-warmed 

medium (37°C) at regular intervals (every 5 minutes).  

Cultures were grown for 16 hours from a single colony at 37°C in a shaking incubator at 

200 rpm in 10 ml of LB adjusted to at pH 7. 200 ml of pre-warmed LB medium at pH 7 in 

a 1 litre conical flask was inoculated with overnight culture to a starting OD600nm = 0.1. 

The culture was grown at 37°C and 200 rpm until it reached OD600nm = 2. At this point I 

initiated the medium replenishment procedure by removing 10 ml of culture and adding 10 

ml of pre-warmed medium at pH 7 every 5 minutes. Using this procedure I kept the culture 

at OD600nm = 2 and neutral pH for 1 hour. This ensures that cells reached a steady state 

before addition of acid (Figure 2.1). The technique, aiming to reproduce the conditions of 

continuous cultures, allows the cells growth at a constant rate and in a constant 

environment (Herbert et al., 1956). 

 

 

The pH of the culture was then shifted to pH 5.5 by addition of 14 ml of 1M HCl while 

maintaining a constant OD for the duration of the experiment (1 hour). After addition of 

acid, replenishment was performed as before but with buffered medium at pH 5.5.  
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2.2.3 Phenotypic analysis of mutant strains using flow cytometry 

 

Wild type and mutant strains were phenotypically characterized using flow cytometry 

analysis (Hewitt et al., 1999, Shapiro and Nebe-von-Caron, 2004). In this application I 

used propidium iodide (PI) and bis-(1,3-diethylthiobarbituric acid) trimethine oxonol 

(BOX) to respectively monitor membrane permeability and polarization. Briefly, bacterial 

cells were added to 2 ml of freshly made, filtered-sterilised (0.2M filter) PBS 

supplemented with EDTA, PI and BOX (final working concentrations of 4 mM, 5 g/ml 

and 10 g/ml respectively). 

Percentages of healthy and stressed cells were derived from the fluorescence emitted by 

the cell populations after staining, in relation to reference samples of alive or dead 

(ethanol-treated) cells (Figure 2.2).  

 

2.2.4 Expression profiling by microarray 

 

Ten ml samples of cultures were killed by adding them to a phenol-ethanol solution (final 

concentration of 19% phenol and 1% ethanol). Samples were left on ice for 20 minutes and 

then centrifuged (4°C and 5000 rpm) for 10 minutes to recover cell pellets. Stabilized cells 

were recovered and stored at -80°C. RNA was isolated using the Quiagen RNeasy® kit 

(Quiagen, USA) according to the manufacturer's instructions. Ten micrograms of input 

RNA was labelled with using Cy5 labelled dCTP (Amersham Biosciences, USA) using the 

CyScribe Post-Labelling Kit (Amersham Biosciences, USA), and purified using CyScribe 

purification Kit (Amersham Biosciences, USA) according to the manufacturer's 

instructions. Operon E. coli Ultra GAPS microarray slides (Corning, USA) were 

hybridized overnight with 80 pmol of labelled cDNA. The slides were washed in 
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AdvaWash automated washing station (Adavlytix, USA) and scanned with the 

ScanArray® GX (PerkinElmer®, USA), using the ScanArray® software. 

2.2.5 Data Analysis 

 

Data processing: The single channel array data were normalized using quantile 

normalisation (Irizarry et al., 2003) in order to correct for systematic errors.  

Clustering and Principal Component Analysis (PCA): Multivariate exploratory 

analysis of the gene expression datasets was performed using a combination of clustering 

and PCA. In order to identify clusters of genes with similar expression profiles I have used 

SOTA, a clustering methodology based on an appropriate distance function (Bolstad et al., 

2003) with Pearson correlation coefficient as a similarity measure. The relationships 

between the transcriptional states of the different cell populations were represented using 

the first two PCs defined by PCA (Bolstad et al., 2003). The number of components was 

chosen to represent at least 80% of the total sample variance. Bacterial survival and death 

kinetics, defined by flow cytometry analysis, were visualized using a standard average 

linkage hierarchical cluster analysis (Raychaudhuri et al., 2000) with Pearson correlation 

as a similarity measure. Both clustering and PCA were performed using the TMEV 

software application (Raychaudhuri et al., 2000, Bar-Joseph et al., 2001).  

Identification of differentially expressed genes: Differentially expressed genes in the 

time course experiment were selected using a fold-based rule (the absolute value of the 

log2 of the ratio between gene expression intensities between pH 5.5 and pH 7 larger than 

1.5 at any time point. Note that this corresponds to a 3-fold increase or decrease in a linear 

scale). This identified 2137 differentially expressed genes. Whenever experimental 

replicates were available, differentially expressed genes were identified using Significance 
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Analysis for Microarrays (SAM) (Tusher et al., 2001) as implemented in the TMEV 

software application (Saeed et al., 2006, Saeed et al., 2003) by employing a 10% FDR 

threshold, unless otherwise specified in the text. 

Functional annotation of the gene lists: Gene lists obtained by cluster or differential 

expression analysis were assessed for over-representation of KEGG (Ogata et al., 1998) 

and Gene Ontology (Ashburner et al., 2000) functional terms using the open-source 

software DAVID (Dennis et al., 2003, Huang da et al., 2009) 

(http://david.abcc.ncifcrf.gov/). The GO analysis was performed with the lowest level of 

GO terms. In all cases I used an FDR<1% threshold to define a statistically significant 

enrichment. 

 

2.3 Results 

2.3.1 E. coli adaptation to acid involves a rapid but transient transcriptional 

response 

 

The approach I took in this study was to first characterize the dynamics of the 

transcriptional response of E. coli to acid adaptation. In order to do this, I monitored 

cultures that were kept in a balanced state of growth by removal of culture and 

replenishment with pre-warmed medium at regular intervals, a procedure that maintains 

cells in a constant transcriptional state (Figure 2.1).  
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Figure 2.1 Variability between samples at pH 7 in continuous culture experiments. 

The above graph shows plots of control pH 7 culture collected after reaching steady state as 

described in materials and methods at a) 0 min, b) 15 min, c) 30 min and d) 1 hour of growth at 

pH7 in a microarray experiment. On the X-axis the mean log signal intensity across the four time 

points is plotted against the log signal microarray intensity of each replicate subtracted from the 

mean divided by the mean log signal intensity. The graphs clearly show that the variation between 

replicates is about 5%. The median of coefficient of variation between the control replicates is 

10%. 
 

 

The effect of acidification on gene expression was analysed using microarrays with RNA 

samples from six time points: prior to treatment, and 30 seconds, 5, 15, 25 and 60 minutes 

after exposure to pH 5.5. A high level representation of the changes in the cells' molecular 

state, performed using PCA, revealed that the process is defined by a rapid (5 seconds to 

15 minutes) but transient response leading, after one hour, to cells whose transcriptional 

state is similar to cells grown at neutral pH (Figure 2.2). However, the return to pH 7 

conditions does not concern the proteome. 
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Figure 2.2 Principle component analysis of the transcriptional response of BW25113 to acid 

adaptation.  

This analysis shows the change in the transcriptional response of BW25113 in the first hour of 

acid adaptation. The x and y axes represent respectively the first and second components in the 

PCA. 

 

 

 

A more detailed analysis of the gene expression dynamics both by visual inspection of 

the data and using clustering revealed that the transcriptional events during this period of 

adaptation could be summarised by four main clusters of gene expression profiles (Figure 

2.3) 
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Figure 2.3 Cluster analysis of gene expression profiles in response to acid adaptation. 

Genes which showed the largest transcriptional response to pH 5.5 were clustered using SOTA 

(Irizarry et al., 2003). The four different clusters identified by the analysis are shown on the left by 

heat maps where green and red correspond respectively to expression levels below and above the 

mean gene expression values. Clusters 1 and 3 show genes which are transiently down-regulated 
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whereas cluster 2 and 4 show genes which are transiently up-regulated. The table to the right of the 

heat maps shows GO and KEGG functional terms significantly enriched in each cluster. (Count: 

number of genes for each pathway; Benjamini: p-value correction; ASRs: Acid Stress Response 

Systems genes; AFI: Acid Fitness Islands genes). 

 

The first two clusters represented the earliest response to stimulation, including down-

regulated and up-regulated genes (Figure 2.3, cluster 1 and 2 respectively). In these two 

clusters, the largest changes in absolute value were detected five minutes after acid 

exposure. The second set of two clusters represented genes that are more gradually down 

or up-modulated in response to acid exposure pH 5.5 (Figure 2.3, cluster 3 and 4 

respectively) and where the largest change in absolute value was seen 25 minutes post-

treatment.  

I looked to see whether genes in each cluster were significantly enriched for any specific 

GO and KEGG functional terms (Figure 2.3). Genes represented in the significant terms 

were then mapped on the BW25113 genome and, as an additional level of quality control, 

the transcriptional response of genes in operons was analyzed to check that all genes in a 

given operon showed that same transcriptional response (Figure 2.4: A, B, C, D). 
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OXIDATIVE 

PHOSPHORYLATION

ANAEROBIC RESPIRATION

Figure 2.4 (A) 

Figure 2.4 (B) 
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Glycolysis/Gluconeogenesis

 

 Figure 2.4 (C) 



65 
 

 

 

 

Figure 2.4 Identification of the genes modulated during acid adaptation at operon level. 

I have considered the most modulated functions: (A) Oxidative phosphorylation, with some of the 

representative enzymes; (B) Anaerobic respiration; (C) Glycolysis/Gluconeogenesis; (D) ABC 

transporters. In the figure are shown some of the components belonging to the modulated functions 

and their regulation at the operon level. The red arrows are indicative of up-regulation, vice versa 

for the green arrows. 

 

Consistent with our current understanding of acid adaptation, I observed the up-

regulation of many of the genes associated with the glutamate, arginine and lysine 

dependent acid response systems, and members of the AFI such as gadW, gadX, hdeA, 

hdeD, hdeB, yhiD, slp and yhiF. The exceptions found in this preliminary analysis were the 

genes coding for the isozyme GadA, and the GadX and the GadE regulators, since during 

early stationary phase they are supposed to be active, following the expression of RpoS 

(Weber et al., 2005). In my data, rpoS was induced at pH 7, suggesting that the considered 

ABC Transporters

Figure 2.4 (D) 
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conditions could be considered an early stationary phase. Genes coding for the FoF1 

ATPase complex (thought to be a component of the amino acid-independent acid stress 

response system AR1) were also down-regulated. In addition, the transcriptional response 

to acid exposure involved the concomitant up-regulation of genes involved in anaerobic 

respiration (GO:0009061) and down-regulation of genes involved in aerobic respiration 

(GO:0009060). Genes involved in the regulation of the cell wall (GO:0005618) and 

translation (GO:0006412) were down-regulated whereas genes involved in membrane 

transport (GO:0055085 ecd02010) were up-regulated in response to acid exposure (Table 

2.1 and Figure 2.4).  
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Table 2.1 Gene expression in response to acid adaptation. 

The table list genes belonging to some of the pathways that are down (oxidative phosphorylation, 

glycolysis and translation) and up-regulated (anaerobic respiration and transport). The p-values 

obtained from DAVID functional annotation analysis are shown in the right side of the table 

alongside the direction of change. 
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Between the genes up-regulated, I also found several genes coding for membrane proteins 

involved in osmoregulation (Figure 2.5).  

 

 

Figure 2.5 Schematic representation of the genes involved in the regulation of the osmotic 

response. 

The proteins of the inner membrane (IM) and periplasmic membrane (PM) are represented in the 

figure. The green arrows indicate the effect of down-regulation; the red arrows instead are for the 

up-regulation after acid adaptation. 

 

More specifically, a number of osmoprotectant transporters involved in the response to 

hyperosmotic shock were transiently up-regulated together with the genes mscL and mscS 

coding for the mechano-sensors involved in the response to hypo-osmotic shock. As the 

analysis of the time course data was carried out using  one replicate of the time course, I 

also compared three replicates of wild type control cells with cells 15 minutes after acid 

exposure. Statistical analysis of the data identified 1871 differentially expressed genes. The 
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result was largely overlapping with the results of the time course analysis (83% of the 

genes identified in the time course experiment were also identified by the single time point 

analysis, (Figure 2.6 and Figure 2.7), showing our time course data to be robust. 

 

 

Figure 2.6  SAM analysis of the three replicates at pH 7 compared with the three replicates 

at pH 5.5 of the wild type strain, 15 minutes time point. 

The SAM analysis (10% FDR) found 973 genes down-regulated and 898 genes up-regulated. 

After a functional annotation analysis, I have found that most of the functions down-regulated 

are involved in the energy metabolism and the up-regulated are characterised by genes coding 

for membrane transporters. 

 

SAM 10% FDR - 973 negative genes

SAM 10% FDR - 898 positive genes 
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Figure 2.7 Gene expression profiles of selected genes in the three replicates. 

Expression levels of each gene are shown at pH 7 and at pH 5.5. The error bars represent standard 

deviations of the three replicates. 
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2.3.2 Genes transcriptionally regulated by mild acid are generally required for 

surviving acid shock 

 

Having performed an initial characterization of the E. coli transcriptional response during 

acid adaptation, I wished to see what fraction of the differentially expressed genes was 

required for survival during acid shock. In order to address this question, I selected 38 

genes representative of the main functions modulated during acid adaptation (Table 2.2) 

and tested the ability of strains where each of these genes was deleted to survive in strong 

acid conditions (pH 2.5), following the protocol in Figure 2.8..  

 

Figure 2.8 Variability between samples at pH 7 in continuous culture experiments. 

The above graph shows plots of control pH 7 cultures collected after reaching steady state as 

described in materials and methods at a) 0min, b) 15min, c) 30min and d) 1hour of growth at pH7 

in a microarray experiment. On the X-axis the mean log signal intensity across the four time points 

is plotted against the log signal intensity of each replicate subtracted from the mean divided by the 

mean log signal intensity. The graphs clearly show that the variation between replicates is about 

5%. The median of coefficient of variation between the control replicates is 10%. 

 

 

 

 

 

 

Healthy cells EtOH treated cells

Bis-Oxonol Bis-Oxonol 
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Table 2.2 Selection of the genes from the wild type time course. 

 

 

 

 

The mutants were assayed at different time points (5, 30, 60, 90, 120, 150 and 180 

minutes) after acid exposure, and alive and dead cells were quantified by flow cytometry 

analysis. All tested mutants showed a detectable increase in sensitivity to low pH in the 

assay, though some effects were small (Figure 2.9, Table 2.3 and Table 2.4). 



73 
 

 

Figure 2.9 Clustering of mutant strains according to their phenotypic response to acid 

shock.  
Survival of exposure to LB at pH 2.5, without prior adaptation, was monitored over time using 

flow cytometry, taking samples every 30 minutes for three hours. The colour bar indicates the 

percentage of survival determined by flow cytometry analysis at each time point. Hierarchical 

clustering of the survival time course data revealed three clusters of strains on the basis of their 

survival profiles at pH 2.5, defined here as weak, intermediate and strong phenotypes. 
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Table 2.3 Phenotypes p-values for gene KO and WT not adapted. 
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Table 2.4 Phenotypes p-values for gene KO and WT adapted. 
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Tables 2.3 and 2.4: Mutant strains showing a significant acid response phenotype. 

The tables show, for each mutant, the p-values obtained from the Fisher exact test compared to 

the Wild Type. P-values were computed on the percentages of healthy cells as defined by the flow 

cytometry. Where two p-values are present, two biological replicates were considered. Table 2.3 

shows the values of the not adapted mutants; in Table 2.4 are shown the values of the adapted 

samples.  
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In order to define the severity of the phenotype, I have considered a threshold which 

allowed me to cluster the mutants in three different groups: strong, weak or intermediate 

phenotype. I have considered 30 minutes of exposure at pH 2.5 the parameter for the 

definition of the phenotype: strong phenotype mutants show less than 35-40% of healthy 

cells after 30 minutes at pH 2.5, intermediate phenotype show between 60 and 40% of 

healthy cells, while the weak phenotype show more than 60% of healthy cells (Figure 2.9). 

The choice of 30 minutes exposure, although arbitrary, relies on the clear difference 

between the mutants to acid exposure. I did not consider the time point 180 minutes since 

for the majority of the mutants, the number of healthy cells was nearly close to 0 for the 

three groups of phenotypes. Cluster analysis of the survival and death kinetic profiles was 

used to classify the mutant strains into three main groups which displayed strong, weak or 

intermediate phenotypes (Figure 2.9). The wild type strain, included for comparison, 

shows the weakest phenotype, as expected, as this strain is quite acid resistant under the 

growing conditions of this assay.  

Genes that when mutated gave a strong phenotype include transcriptional regulators 

(phoP, rpoS and ihfB), a glycine decarboxylase (gcvP), the 2-oxoglutarate dehydrogenase 

(sucB), and the two-component system sensor phoQ. Strains with an intermediate 

phenotype included mutants of two acid stress chaperones (hdeA and hdeB) and nitrate 

reduction (narJ and narX). Strains with a weak phenotype included mutants of several 

transcriptional regulators (crp, rpoD, hns, phoB, ihfA, fliA, fnr) and, interestingly, included 

three of the GAD system specific regulators (gadE, gadW and gadX).  
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2.3.3 Defective expression of cell wall and energy metabolism genes correlates with 

increased sensitivity to acid 

 

The experiments described above showed that the inactivation of genes that are 

transcriptionally regulated during adaptation often results in a significant loss of survival 

following acid shock. I reasoned that analysis of the transcriptional response to acid 

exposure in the different phenotypic groups would enable me to formulate hypotheses 

concerning the molecular pathways that are more important for survival of acid stress. 

Therefore, I subjected the same 38 mutants used above to a microarray analysis after acid 

adaptation and asked whether any component of the transcriptional response was 

predictive of loss of acid resistance. For practical purposes, this experiment was performed 

on a single time point (15 minutes after exposure at pH 5.5) which is where the highest 

change in gene expression in the early response clusters of the wild type strain occurred 

(Figure 2.3). A PCA analysis confirmed that the acid adaptation transcriptional program 

was defective in the mutant strains (Figure 2.10). The effects of the mutation compared to 

the wild type strains were not considered for this purpose.  
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Figure 2.10  Principal component analysis of the gene KO. 

The three replicates of the wild type are indicated in blue for the pH 7 and in red for the pH 5.5 

treatment. The mutants at pH 7 are represented by the light blue dots, at pH 5.5 by the pink dots. 

The first component, which defines the shift following acid exposure, is on the X axis. 

 

 

In order to identify molecular pathways linked to the severity of the phenotype I 

compared the gene expression profiles (expressed as a log-ratio between expression values 

at pH 5.5 and pH 7) between the wild type (represented by four replicated experiments) 

and mutated strains that showed either an intermediate or a strong phenotype. I found 221 

genes to be differentially expressed between the three experimental groups (FDR<10%). 

Among the list of genes up-regulated in the wild type strain I found some of them involved 

in anaerobic respiration (hyfC, nrfF, menA), sugar transport (xylE, ulaA, ycjP, sgcC, malF, 

agaD, agaV), lipopolysaccharide biosynthesis (ylbH, rfaF, rfe, rfaJ, rhsA) and purine 
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metabolism (yqeA, nudF, allB), whereas the list of down- genes was enriched in aerobic 

respiration genes (including oxidative phosphorylation and TCA cycle) (ubiA, nuoF, acnB, 

sdhC, acnA, sdhD, ppc, nuoN, cyoA, cyoB, cyoD), DNA repair (uvrC, xthA, nei, exoX) and 

cell cycle (mrdB, ftsY, mukE, ftsA) (Figure 2.11 and Table 2.5).   

 

Figure 2.11 Differential gene expression on exposure to acid varies between phenotypic 

groups.  
221 genes were identified which showed significant differential expression between the wild type 

(WT) and the mutants belonging to the intermediate (INT) and strong (STR) phenotype groups. 

The annotation on the right refers to functional groups of genes which were down-regulated (green) 

or up-regulated (red) in the wild type strains at pH 5.5 relative to their expression at pH 7. These 

are shown in the first column of the heat map. In the second and third columns, the means of the 

log ratios of expression at pH 7 and pH 5.5 for these same genes are shown for the intermediate and 

strong groups. 
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I observed that the large majority of the genes predictive of phenotypic outcome (89%) 

were also differentially expressed in response to acid exposure (Figure 2.11). Remarkably, 

the ratios of the expression between cells grown at pH 5.5 and at pH 7 were generally 

reversed in mutant strains that had an intermediate phenotype, while mutant strains with a 

strong phenotype were characterized by a minor ability to regulate most of these genes. 
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Table 2.5 Enriched functions of  the genes differentially expressed between the three 

phenotypic groups 
The analysis performed between the three groups considering log2 ratios of gene expression 

values gave me a list of 221 genes. I have performed a functional annotation analysis, results of 

which are shown in this table. I have selected the functions more represented and the representing 

genes. 



83 
 

 

 



84 
 

2.4 Discussion 

2.4.1 A rapid shift between the expression of genes involved in aerobic and 

anaerobic energy metabolism is a key landmark of acid adaptation  

 

Several lines of evidence that emerge from this work support the view that acid exposure 

induces a shift between aerobic and anaerobic metabolism and that this is a strong 

requirement for survival during acid shock. First of all, E. coli BW25113 cells under the 

conditions of our experiment express high levels of mRNA for enzymes involved in 

aerobic metabolism and lower levels of genes involved in anaerobic energy metabolism. A 

shift to low pH culture conditions induces a reversal of this pattern. The functional analysis 

revealed a trend in the modulation of the genes belonging to the anaerobic respiration and 

fermentation pathways (according to GO terms), which involves the down-regulation of 

the fumarate dependant respiration and the up-regulation of nitrate and formate respiratory 

enzymes (Table 2.6). 
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Table 2.6 Regulation of the genes involved in the anaerobic respiration pathway, according 

to GO terms. 

The list includes genes down-regulated in response to acid exposure (left) and up-regulated 

(right). 

 

 

 

 

aceF

Dihydrolipoyllysine-residue acetyltransferase component of 

pyruvate dehydrogenase complex aceE Pyruvate dehydrogenase E1 component

acnA Aconitate hydratase 1 fdnH

Formate dehydrogenase, nitrate-inducible, iron-

sulfur subunit

acnB Aconitate hydratase 2 fdnI

Formate dehydrogenase, nitrate-inducible, 

cytochrome b556(fdn) subunit

dcuR Transcriptional regulatory protein dcuR fdoI

Formate dehydrogenase, cytochrome b556(fdo) 

subunit

dmsA Anaerobic dimethyl sulfoxide reductase chain A glpA

Anaerobic glycerol-3-phosphate dehydrogenase 

subunit A

dmsB Anaerobic dimethyl sulfoxide reductase chain B glpB

Anaerobic glycerol-3-phosphate dehydrogenase 

subunit B

fdhE Protein fdhE glpC

Anaerobic glycerol-3-phosphate dehydrogenase 

subunit C

fdnG Formate dehydrogenase, nitrate-inducible, major subunit hyaA Hydrogenase-1 small chain

fdoG Formate dehydrogenase-O major subunit hyaB Hydrogenase-1 large chain

fnr Fumarate and nitrate reduction regulatory protein hyaE Hydrogenase-1 operon protein hyaE

frdA Fumarate reductase flavoprotein subunit hyaF Hydrogenase-1 operon protein hyaF

frdB Fumarate reductase iron-sulfur subunit hycE Formate hydrogenlyase subunit 5

frdC Fumarate reductase subunit C hycF Formate hydrogenlyase subunit 6

frdD Fumarate reductase subunit D hyfD Hydrogenase-4 component D

fumC Fumarate hydratase class II hyfE Hydrogenase-4 component E

glpE Thiosulfate sulfurtransferase glpE hyfF Hydrogenase-4 component F

glpR Glycerol-3-phosphate regulon repressor hyfG Hydrogenase-4 component G

gltA Citrate synthase hyfR Hydrogenase-4 transcriptional activator

hybB Probable Ni/Fe-hydrogenase 2 b-type cytochrome subunit menA 1,4-dihydroxy-2-naphthoate octaprenyltransferase

hybC Hydrogenase-2 large chain napD Protein napD

hybD Hydrogenase 2 maturation protease napF Ferredoxin-type protein napF

hybF Probable hydrogenase nickel incorporation protein hybF narG Respiratory nitrate reductase 1 alpha chain

hybO Hydrogenase-2 small chain narH Respiratory nitrate reductase 1 beta chain

hypD Hydrogenase isoenzymes formation protein hypD narI Respiratory nitrate reductase 1 gamma chain

hypE Hydrogenase isoenzymes formation protein hypE narJ Respiratory nitrate reductase 1 delta chain

hypF Carbamoyltransferase hypF narL Nitrate/nitrite response regulator protein narL

icd Isocitrate dehydrogenase [NADP] narX Nitrate/nitrite sensor protein narX

lldD L-lactate dehydrogenase [cytochrome] narY Respiratory nitrate reductase 2 beta chain

lpd Dihydrolipoyl dehydrogenase narZ Respiratory nitrate reductase 2 alpha chain

mdh Malate dehydrogenase ndh NADH dehydrogenase

menC o-succinylbenzoate synthase nikE Nickel import ATP-binding protein nikE

mltD Membrane-bound lytic murein transglycosylase D nirB Nitrite reductase [NAD(P)H] large subunit

napC Cytochrome c-type protein napC nrfA Cytochrome c-552

narW Respiratory nitrate reductase 2 delta chain nrfE Cytochrome c-type biogenesis protein nrfE

nrfD Protein nrfD pflC Pyruvate formate-lyase 2-activating enzyme

nuoB NADH-quinone oxidoreductase subunit B pflD Formate acetyltransferase 2

nuoC NADH-quinone oxidoreductase subunit C/D torA Trimethylamine-N-oxide reductase 1

nuoE NADH-quinone oxidoreductase subunit E torC Cytochrome c-type protein torC

nuoF NADH-quinone oxidoreductase subunit F torT Periplasmic protein torT

DOWN-regulated UP-regulated
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 Enterobacteria are predominantly fermentative anaerobes that generate acids. In an 

anaerobic environment E. coli can utilize mixed acid fermentation, and the adaptation to 

readily decrease external pH, for example by inducing the synthesis of formate hydrogen 

lyase pathway. The metabolic switches seem to imply that acid triggers a response from 

aerobic respiration to adaptation to oxygen-limited growth (Hayes et al., 2006). This 

suggests that E. coli BW25113 has evolved the ability to prepare for anaerobic lifestyle by 

a pre-emptive induction of anaerobic respiration and fermentation. The comparison 

between the wild type and mutant strains (with intermediate and severe phenotypes) 

revealed that failure to invert the expression of aerobic and anaerobic metabolism genes 

correlates with a strongly acid sensitive phenotype. Moreover, many of the strains which 

show a strong phenotype are mutated in genes involved in energy metabolism (Figure 

2.5). This indicates that under the conditions described here, effective proton scavenging 

alone may not be sufficient for survival unless the expression of bioenergetics genes is also 

modulated during adaptation to low pH conditions. I have seen that the genes 

transcriptionally controlled by the pH change are essential for the entire process previously 

described. This implies that the gene products are part of an integrated adaptive process in 

which transcription regulation depends on the completion of the process itself. There are 

currently few insights into the mechanism underlying this response. Hypotheses can be 

made if an fnr mutant could possibly be defective in adaptation to low pH. Although FNR 

is an iron-sulphur protein that is inactivated by oxygen (George et al., 1998, Marteyn et al., 

2010) in cultures of moderately high density such as those used in the current experiments, 

FNR is partially active despite vigorous aeration. It would also be interesting to see 

whether FNR is critical for adaptation to acid of cultures at a much lower bacterial density. 
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2.4.2 The relevance of the osmotic stress response to acid adaptation 

 

A potential connection between the activation of anaerobic metabolism (an important 

feature of acid adaptation in this strain) and osmotic stress has been previously described 

(Ni Bhriain et al., 1989), where it was linked to changes in DNA topology. Many genes 

involved in the response to osmotic shock are also modulated in response to acid in our 

experiments (Figures 2.6 and 2.8). Most of the channels involved in the transport of 

osmoprotectants were down-regulated at pH 5.5. However, the H+/proline symporter 

(Culham et al., 1993), the choline transporter (Lamark et al., 1991) and two K+ channels 

(Bossemeyer et al., 1989a, Bossemeyer et al., 1989b) genes were up-regulated after acid 

exposure, a response that makes adaptive sense in light of the finding that K+ and proline 

have a beneficial effect on pH homoeostasis in E. coli (Kitko et al.). It may also be the case 

that the increase of amino acids into the cytoplasm (data will be shown further in the 

MG1655 strain), as part of the acid adaptation response, could drive the cells to a weak 

condition of hypo-osmolarity. Consistent with this hypothesis, the mechano-sensor 

channels, MscS (Akitake et al., 2005) and MscL (Sukharev et al., 1993), with the 

acquaporine AqpZ (Borgnia et al., 1999) and the K+ mechanosensor (Booth et al., 1985) 

were up-regulated in the first 15 min after acid exposure. Substantial changes are known to 

take place in the balance of ions across the membrane on acid shock in E. coli, leading to 

reversal of membrane polarity. 

2.5 Conclusion 

 

The aim of this chapter was the description of the general response of E. coli BW25113 

strain during the process of acid adaptation. As seen in previous works, environmental 

perturbations can drastically affect the metabolic pathways, therefore modulating them in 
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order to promptly adapt to the new conditions. My data clearly showed a change in most of 

the aerobic mechanisms at pH 5.5, confirmed by the gene deletion of important regulators 

and enzymes. These data are the basis for the next step, the identification of potential 

regulators of acid adaptation through a Systems Biology approach. 
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Chapter 3: A Network inference approach 

identifies new regulators of acid response in E. coli 

K-12 BW25113 

 

3.1 Introduction 

Until recently, researchers have assumed that the ability of E. coli to survive strong acid 

conditions is dependent on the activation of four ARs (Foster, 2004). The results I reported 

in Chapter 2 show that, unexpectedly a shift in the pattern of expression of genes coding 

for the energy metabolism enzymes is the most predictive signature of survival. The 

control of the energy metabolism could be an important feature of acid resistance. The 

hydrolysis of the ATP results in proton production while the reduction of  electron 

acceptors  leads to the consumption of protons (Jones et al., 1980). If this hypothesis were 

correct, it would be important to identify the regulators of the metabolic switch and address 

whether the regulation of the ARs and metabolic enzymes is integrated in the same 

regulatory network.  

I addressed these questions by using a well-validated network inference approach. The 

networks I identified led to the hypothesis that the two-component system regulator OmpR 

may be the key regulator of the complex transcriptional program involved in acid 

adaptation.  Experimental validation of this model, based on the analysis of a ΔompR 

strain, supported this hypothesis and showed that the deletion of this gene induces a much 

stronger phenotype than any of the genes involved in the gad system. These results 
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therefore support the hypothesis that the OmpR dependent control of energy metabolism 

may be a novel important acid response system. 

3.2 Materials and Methods 

3.2.1 Bacterial strains 

All the experiments described here were based on E. coli K-12 BW25113, which is 

directly derived from BD792, itself a two-step descendent of the E. coli K-12 ancestral 

strain (Hayashi et al., 2006, Bachmann, 1990). All additional mutant strains analyzed in 

this study  originated from the Keio collection (Baba et al., 2006) and were checked by 

PCR to verify the presence of the deletion before being used.  For this purpose a 

combination of locus and kanamycin specific primers were used as described in the 

original publications (Datsenko and Wanner, 2000). 

The green fluorescent protein constructs plasmids used for the flow cytometry assay for 

the verification of the gadW/atp interaction (Figure 3.1) were extracted by the promoter 

library developed by Uri Alon’s laboratory (Zaslaver et al., 2004) and inserted in the gene 

KO strains gadWandgadX from the Keio collection. 

 

Figure 3.1 Plasmid reporter with gfp insertion (Zaslaver et al., 2004). 

 

3.2.2 Culture conditions 
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The conditions followed for the experiments were the same as described in chapter 2, 

section materials and methods. 

3.2.3 Phenotypic analysis of ompR strain using flow cytometry 

 

The phenotypic analysis of the mutant ompR was performed as described in chapter 2, 

section materials and methods. 

3.2.4 pZCompR Plasmid construction 

 

The plasmid construction was performed by Matthew D. Johnson, from Peter Lund 

laboratory. To generate the complementation plasmid pZCompR the complete ompR gene 

and the native promoter were amplified by PCR from the BW25113 chromosome using 

primers ompR-348F (GGTTGCTCGAGCGCCCAGACTTGCGGCCCAGG) and 

ompR+720R (GGTTGGGATCCTCATGCTTTAGAGCCGTCCGG) that introduce unique 

XhoI-BamHI restriction sites. The fragment was introduced into the multiple cloning site 

of the low copy number plasmid, pZC320, as described in the original protocol (Shi and 

Biek, 1995). 

3.2.4 Green Fluorescent Protein detection with flow cytometry 

 

Plasmids containing the reporter construct (Figure 3.1) for the genes atpI and gadB were 

extracted using the MiniPREP® Quiagen Kit. gadX and gadW  were then transformed 

with the isolated plasmid using the CaCl2 method. A time course experiment was 

performed at pH 5.5, in the conditions previously described, in order to keep constant 

optical densities. Samples were collected every 30 minutes from exposure, for a total of 2 

hours and 30 minutes experiment. 0.5 ml cells were stabilised with formaldehyde (final 

concentration 1%). Samples were left on ice for 20 minutes and then stored at -20°C for a 
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month maximum. 0.5 ml of the stored samples were then centrifuged (4°C and 5000 rpm) 

for 10 min and washed in PBS for flow cytometry analysis.  

For the data analysis, the mean of the fluorescence distributions was considered in three 

biological replicates for each construct and a T-TEST was performed for significance. 

3.2.5 Expression profiling by microarray of ompR strain 

 

Expression profiling of the ompR was performed as described in chapter 2, section 

Materials and Methods, paragraph 2.2.4 Expression profiling by microarray. 

3.2.6 Quantitative PCR 

 

To validate gene expression profiles results, E. coli cells were grown and stabilised as for 

the microarray samples.  RNA extraction was performed as described in the expression 

profiling section.  40 ng of cDNA were analysed with SYBR-Green method, after reverse 

transcription of the RNA with  2000 units SuperScript II-Invitrogen kit, according to the 

manufacturer's instructions. The primers were designed using Primer3Plus 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) and verified for 

specificity with Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).  The 

sequences for the primers were as follows: csrA (left primer 

CGAGTTGGTGAGACCCTCA, right primer AGCCTGGATACGCTGGTAGA); ompR 

(left primer CGTCGCTAATGCAGAACAGA, right primer 

GGTCCACTTCTTCCCCTTTC).  Invitrogen primers (25 nmol) were used at a final 

concentration of 10 M.  SYBR-Green mix from ABGene, with ROX as passive reference, 

was used in a final volume of 10 l.  The analysis was performed with a 7900HT Fast 

Real-Time PCR System.  I have obtained the following values of slope and r
2
 for the 



93 
 

efficiency and the accuracy of the measurements: csrA slope = -3.1 cycles/logdecade, r
2
 = 

0.99; ompR slope = -3.01 cycles/logdecade, r
2
 = 0.99. 40 cycles were done with an 

annealing temperature of 60ºC.  Three technical and biological replicates were analysed 

and the gene expression of ompR was considered relative to the gene expression of csrA, 

the expression of which does not change under acid conditions (Burton et al., 2010).  The 

three biological replicates were then analysed with the SDS software (Applied Biosystems) 

and a t-Test was performed for significance.  

3.2.7 Data Analysis 

 

Microarray Data processing, data exploration and identification of differentially 

expressed genes were performed as described in chapter 2, section materials and methods. 

Flow cytometry analysis of gfp constructs: the mean of the distribution of gfp fluorescence 

was considered for each replicate. Statistical analysis was performed on the averages of 

replicates and the standard deviation was considered for reproducibility.  

 

Network Inference: Gene networks were inferred using the software application 

ARACNE (Margolin et al., 2006a, Margolin et al., 2006b) using the expression matrix 

representing the transcriptional state of 27 mutant strains and 3 replicates of the wild type 

strain profiled at pH 7 and pH 5.5 (for a total of 60 arrays) as an input.  ARACNE is an 

algorithm used for the identification of transcriptional interactions between gene products, 

by identifying statistical interactions based on mutual information (Margolin et al., 2006a).  

Significant interactions were defined by a p-value threshold of p<10-7 (corresponding to 

one over 2000 false positive connections).  In order to eliminate non-direct interactions I 

used the inequality principle as implemented in ARACNE with a DPI of 0.1, which will 
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remove the indirect connection without interfering with the path of the information flow 

(Margolin et al., 2006b). The resulting networks were visualised using the Cytoscape 

software application (Shannon et al., 2003). 

ARACNE uses a probabilistic measure of dependency (mutual information) to identify 

potential targets of a given transcription factor.  It relies entirely on the analysis of a 

compendium of expression profiles representing different perturbations of a cell's 

homeostatic state.  Genes are inferred to be transcriptionally coupled when there is a 

statistically significant correlation between their levels of expression, across all samples in 

the compendium dataset and after potential indirect connections are removed using the 

inequality principle criterion (Margolin et al., 2006a). In this analysis I have considered a 

dataset of 60 experiments representing expression profiles of genes in mutants and wild 

type strains at pH 7 and pH 5.5, described in the previous chapter.  This had the advantage 

that it represented a collection of mutant strains relevant for acid adaptation while being 

sufficiently large to allow reliable inference (Daub et al., 2004). In the visualised network, 

the distance between two genes is a direct measure of the mutual information, therefore the 

higher is the value of mutual information, the shorter is the distance between two genes. 

ARACNE cannot detect the direction of a potential interaction; a list of transcription 

factors was therefore considered in the algorithm. 

Promoter analysis: To identify potential binding sites for OmpR, I have used the online 

tool Virtual Footprint (http://prodoric.tu-bs.de/vfp/) using the Prodoric library and 

performing the Regulon and the Promoter analysis (Munch et al., 2005). The PWM 

(Position Weight Matrix) considered were for the OmpC-box and OmpF-box of E. coli 

strain K-12. 
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3.3 Results 

3.3.1 Network inference analysis reveals a new regulator of the global 

transcriptional response to acid stress 

 

In the previous chapter I reported the intriguing discovery that  resistance to mild acidic 

conditions is also characterised by an anaerobic switch in E. coli BW25113.   

In order to assess whether this transcriptional signature is truly linked to survival in acid 

conditions I first set to identify the putative regulators using a network inference approach.  

By using the well-validated network inference platform ARACNE I could develop 

networks representing the neighbourhood of TCSs regulators, which represent the higher 

level of regulation in E. coli (Figure 3.2). In order to identify the most likely regulator of 

acid response I ranked all the E. coli TCS regulators on the basis of the number of 

connections with genes belonging to energy metabolism pathways (Table 3.1).  
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Table 3.1 Potential two-component systems regulators targets as defined by the ARACNE 

analysis. 

Regulators were ranked on the basis of how many connections were found to functions that were 

modulated during the acid adaptation time course (in red). P-values of the DAVID functional 

annotation analysis are shown 
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Figure 3.2 Two-component systems network from ARACNE, in a cell structure. 

This is a schematic representation of the ARACNE network of the Two-component systems 

neighbourhood. In red are reported the two-component systems, in yellow the membrane proteins. 

The others groups are related to genes encoding amino acid metabolism, aerobic and anaerobic 

respiration pathways. 
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The highest-ranking gene was OmpR, the regulatory subunit of the osmoregulator two-

component system EnvZ/OmpR.  OmpR was connected to genes involved in aerobic 

energy metabolism (pyruvate metabolism and glycolysis), signal transduction, and 

transport, as well as some of the components of the GAD system (Figure 3.3 and Table 

3.2). 

 

 

 

 

 

Figure 3.3 Network of regulatory interactions in the neighbourhood of OmpR, inferred 

using ARACNE.   

Nodes represent genes and edges represent inferred connections (p<10
-7

) between them.  Genes 

are colour-coded on the basis of their function.   
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Table 3.2 SAM comparison performed considering ompR at pH 7, 5.5 and the wild type. 

The functions enriched by the genes differentially expressed between the wild type at pH 7 and 

the mutant at pH 7 (column 1), wild type pH 5.5 and mutant at pH 5.5 (column 2) and wild type at 

pH 7 and pH 5.5 (column 3) are represented. In the table the functions are also represented that for 

each analysis were found up and down-regulated. 

 

 

 

 

NarP, the nitrate/nitrite response regulator, was connected to nucleotide and amino acid 

metabolism; the envelope stress response regulator BaeR was connected to genes involved 

in transport and metabolism.  Most of the other two component system regulatory subunits 

were poorly connected to genes in the pathways I had previously identified.  On the basis 

of these observations, I proposed the novel hypothesis that OmpR may be a key regulator 

of acid response in E. coli BW25113. 

 

3.3.2 Model validation shows that OmpR is a key regulator of acid response 

 

If my hypothesis is correct, I expect a mutant strain lacking ompR to display the 

following properties.  First, those genes differentially regulated between ompR and the 

wild type strain should significantly overlap with genes differentially regulated during acid 

adaptation in the wild type.  Second, this overlap should be consistent with the regulation 

of ompR itself during acid adaptation in the wild type strain.  For example, if ompR 

expression decreases on acid shock, then those genes that are normally repressed by OmpR 
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should increase after acid shock, and show significant overlap with genes that are up-

regulated if ompR is deleted.  Third, the ompR mutant strain should be less able to initiate 

the normal transcriptional response to acid adaptation and, hence, should show a 

significant decrease in survival of acid shock relative to the wild-type strain.  In order to 

test these predictions, I analysed the expression profile of a ompR mutant strain at pH 7 

and 5.5, and performed a phenotypic characterization of this strain by flow cytometry after 

a direct challenge at pH 2.5.  The results of this analysis closely matched my predictions.  

Genes differentially regulated between wild type and the ompR mutant strain showed 

significant overlaps with genes differentially expressed in the wild type strain during acid 

adaptation (Figure 3.4, panels C and D).   
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Figure 3.4 Figure 3.4: Comparison of transcriptional responses of ompR and wild-type to 

acid stress of pH 5.5. 
Panels (A and B) show the expression levels of ompR at pH 7 and after 15 min exposure at pH 

5.5, based on either microarray data (A) or qPCR data (B). Bars show standard deviations of three 

biological replicates. ompR is significantly down-regulated at pH 5.5 in both data sets (P-value 0.02 

and 0.01, respectively, for microarrays and qPCR  data, obtained with t-test). (C and D) show the 

extent of overlap between genes which are differentially up-regulated (C) or down-regulated (D) in 

the wild-type at pH 5.5, relative to expression at pH 7, and genes which are over-expressed (C) or 

under-expressed (D) in ompR at pH 7, relative to the wild-type at pH 7. (E) PCA plot of 

transcriptome changes in wild-type and the ompR mutant, analysed at pH 7 and 5.5. Blue dots, 

wild-type pH 7, pink dots: wild-type pH 5.5, black dots ompR at pH 7, red and orange dots ompR 

at pH 5.5 after 30 s and 15 min of exposure, respectively. 
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More specifically, 120 (23%) of the up-regulated genes in the wild type during acid 

adaptation were also expressed more highly in the ompR mutant than in the wild-type at 

pH7, while 280 genes (71%) that were down-regulated in the wild type during acid 

adaptation were expressed more weakly in the ompR mutant than the wild type at pH 7.  

The direction of the overlap was consistent with the observed down-regulation of ompR in 

response to acid exposure (Figure 3.4, panels A and B).  qPCR showed the down- 

regulation of ompR at pH 5.5 with values of slope and r
2
 for the efficiency and the 

accuracy of the measurements: csrA slope = -3.1 cycles/logdecade, r
2
 = 0.99; ompR slope 

= -3.01 cycles/logdecade, r
2
 = 0.99.  Even more strikingly, there was no transcriptional 

response detectable to acid exposure in the ompR mutant either using a univariate 

statistical analysis approach (no differentially expressed genes were identified up to a 

FDR<50% threshold) or using a multivariate exploratory analysis approach (Figure 3.4, 

panel E).   

From my analysis the role of OmpR appeared to be crucial in order to allow the cells to 

adapt to mild acid conditions. The next step was to understand whether this mutation could 

also phenotypically affect the cells at pH 2.5 

 

3.3.3 Comparison between effects of acid exposure in different mutant strains 

confirms the importance of OmpR 

 

The phenotypic experiments showed that mutant cells showed increased resistance to acid 

shock if pre-adapted to mild acid conditions, suggesting a small residual ability to mount 

an effective response, although they were still significantly less resistant than the 

unadapted wild-type strain (Figure 3.5, panel A). Complementation of the ompR mutant 

strain with a copy of the wild-type ompR gene expressed under its own promoter in the 
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low-copy-number plasmid pZC320 led to restoration of normal levels of acid resistance, 

whereas the vector alone had no effect (Figure 3.5, panel B). 

 

 

 

Figure 3.5: Comparison between phenotypes. 

 (A) Acid sensitive phenotype of the ompR strain. Survival of wild type and ompR strains in 

response to exposure to pH 2.5, either directly or after prior adaptation to pH 5.5, was measured by 

flow cytometry. Error bars show standard deviations of four independent biological replicates. The 

y axis shows % survival relative to viable cell numbers at t0. Wild type without adaptation, pale 

blue; wild-type with adaptation, dark blue; ompR without adaptation, red; ompR with 

adaptation, brown. (B) Complementation of the ompR strain restores acid resistance. The ompR 

mutant was complemented with the plasmid pZCompR, or as a control with the empty vector 

pZC320, and acid resistance measured at pH 2.5 without prior adaptation Error bars show standard 

deviation values of four biological replicates for WT and ompR and three biological replicates for 

the complemented strain. Wild type, pale blue; ompR without vector, red; ompR with empty 

vector, green, ompR with pZCompR mauve. (C, D) Comparison of the ompR acid resistance 

phenotype with those of other mutations in key acid response genes. Survival curves of the 

following mutants after exposure to pH 2.5, without (A) or with (B) prior adaptation at pH 5.5 for 

one hour: ompR (red), gadE (yellow), gadC (purple), adiC (green) and rpoS (dark blue) 

compared to the wild type (blue). Error bars show standard deviation values of four independent 

biological replicates for wild-type and ompR and three biological replicates for the other mutant 

strains. 
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Having demonstrated that OmpR truly regulates the shift in the expression of metabolic 

genes, I set to establish whether the process controlled by OmpR may be more important in 

survival to acid shock than the GAD system itself. Since I have shown that the expression 

of energy metabolism genes is the best predictor of survival our expectation was that a 

ompR should have a stronger phenotype than mutants belonging to the AR systems. 

 I confirmed that the ompR strain showed the strongest phenotype of all these mutants 

when cells were not adapted with a prior shock at pH 5.5 (Figure 3.5, panel C). After 10 

minutes of exposure less than 30% of the ompR cells were still alive, while in the other 

strains more than 70% of the cells were healthy at this stage.  Strains carrying mutations in 

either of the two amino-acid antiporters showed a weak phenotype, in the culture 

conditions considered in the considered conditions. Different effects were seen when cells 

were induced at pH 5.5, before exposure to acid shock at pH 2.5 (Figure 3.5, panel D).   

All mutants in this case (apart from the adiC mutant) showed large reductions in viability 

compared to the wild-type strains; however, the ompR strain still had the most severe 

phenotype. 

 

3.3.4 Inferring a connection between different ARs: A cross talk between the GAD 

and FOF1 ATPase systems? 

 

Having successfully applied ARACNE to identifying regulatory networks controlling the 

metabolic switch underlying acid response I set to explore whether the approach could be 

used to test the hypothesis that the classical ARs represent an integrated system. We 

reasoned that if this is the case we should be able to identify higher-level regulators 

controlling their differential usage. 
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We therefore applied ARACNE to study the neighbourhood of 36 genes belonging to the 

ARs (Figure 3.6). Among the strongest connections there were several genes representing 

GAD System components (e.g. gadA, gadB, gadC, gadE, gadX, gadW, hdeA, hdeB, hdeD) 

(Figure 3.6). 

 

 

Figure 3.6 Gene network ARACNE of the genes belonging to the ARs. 
 

After selecting the genes belonging to ARs, 36 genes were found in the network. The colour of 

the nodes connections is indicative of the correlation found between the genes: red for a positive 

correlation and green for a negative correlation. ARACNE was able to find most of the connections 

between ARs, which are already known in literature. The genes belonging to the GAD system 

(pink nodes) were highly connected between them; the same behaviour was found for the atp genes 

(green nodes). The gene gadW was also connected to the genes of the FoF1 ATPase. Interestingly, 

another connection found by the software involves the TCSs PhoP/PhoQ and EvgA/EvgS (red 

nodes) which are known to interact through the SafA protein (Eguchi, 2007). In the network were 

also considered the genes belonging to the AR3 (light blue nodes) and AR4 (purple nodes). Master 

regulators are indicated in gray.  
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 The network identified several known regulatory interactions, such as the connection 

between the regulators GadXW with the decarboxylase encoding genes gadA and gadB 

(Tramonti et al., 2002). More specifically, gadW was positively correlated with the general 

regulator of the GAD system, gadE (Figure 3.7, panel A). The connection between the 

Two-component systems PhoP/PhoQ and EvgA/EvgS (Eguchi et al., 2007) was also 

represented in the model. 

 The network also revealed a potentially interesting, previously unreported link with ARs. 

More specifically, I discovered that the expression of the gadW gene is negatively 

correlated to the expression of genes encoding for components of the FOF1 ATPase (atpD, 

atpG, atpH (Figure 3.7, panels B, C and D).  
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Figure 3.7 Gene correlation between the gadW and gadE, atpD, atpG and atpH. 

The four panels represent gene expression correlations plots between gadW and the gadE (A), 

atpC (B), atpD (C) and atpH (D). While the correlation between gadW and gadE was clearly 

positive, the genes of the ATPase showed a negative trend of correlation.  

 

The FOF1 ATPase is not known to be involved in the mechanism in mild acid conditions 

(Richard and Foster, 2004). Instead it plays a role at very low pH (< 2.5) where it works 

extruding protons at expense of ATP (Richard and Foster, 2004). The mechanism 

underlying the reversing action of the pump at a pH 2.5 is still unknown. However, it is 

important to consider that changes in enzymatic activities are dependent on 

thermodynamic conditions, which could determine reversibility in their action (Rottenberg, 

1973). The negative correlation between GadW and the atp genes could therefore represent 
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a regulatory mechanism, mediated by the araC-like regulator GadW and aiming at 

switching off the expression of the FOF1 ATPase system when it is not needed. 

I reasoned that it is possible that the negative correlation observed between GadW and 

the atp genes may be the result of a direct regulatory role of the gadW gene. If this 

hypothesis is correct, the expression of the atp genes, coding for FoF1, in a gadW mutant 

background should be higher than in the wild type strain. 

I tested this hypothesis by using a gfp reporter system to monitor the expression of 

specific ATPase genes in different mutant strains. More specifically, I have used a gfp 

promoter reporter construct for the controller of the i-subunit of the ATPase (atpI), as a 

representative of the F0F1ATPase system (Matthies et al., 2011). I have then considered 

the gene gadB, coding for one subunit of the glutamate decarboxylase, as control reporter 

for the classical regulatory action of GadW/X (Tramonti et al., 2006, Ma et al., 2002). The 

plasmids carrying the two considered promoters were inserted in gadW and gadX strains 

and the experiments were performed in constant growth conditions at pH 5.5 for 2 hours 

and 30 minutes. I have considered 6 time points at pH 5.5 (one time point every 30 

minutes) and one at pH 7. The fluorescence was then measured with flow cytometry. The 

results of the experiments are shown in Figure 3.8.  
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Figure 3.8 Acid adaptation assays performed with flow cytometry on gfp promoter 

constructs for atpI and gadB. 

The gfp expression was analysed in both gadX andgadW. Panel A) The atpI gfp reporter did 

not show any induction in gadW (red) and gadX (orange) mutant when compared to the wild type 

(dark red). Panel B) The gadB promoter construct was highly induced in a gadW background 

(blue), while in a gadX (light blue) background  when compared to the wild type (dark blue). The 

bars in both panels represent the standard deviations values of the three biological replicates for 

each time point. The gadB gfp reporter was highly induced in gadW, but the induction was not 

observed in gadX. The gfp expression of atpI promoter was not induced in the three considered 

conditions, therefore in the WT and the two mutant strains.
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The inhibition exerted by GadW on gadB was confirmed by the results obtained during 

acid adaptation. In absence of GadW, the gfp expression of the gadB promoter construct 

was significantly higher when compared to WT (Table 3.3), although not in all the time 

points. The possible explanation for these results could be a problem due to the considered 

experimental conditions: I have encountered a big variability related to the gadB-gfp 

construct. In a gadX background, the gadB-gfp expression was not induced, confirming 

the activating role of this regulator on the GAD genes (Table 3.3). 

 

Table 3.3: T-test for detection of significant inductions of the gfp reporters atpI and gadB. 

  

The T-test was performed for each time point for both the constructs. wt vs. gadW is the 

comparison between the gfp expression found in the Wild Type and the gadW condition. wt vs. 

gadX is the comparison between the gfp expression found in the Wild Type and the gadX 

condition. gadW vs. gadX is the comparison between the gfp expression found in the gadW 

and the gadX conditions. The atpI construct did not show any significant induction. The gadB 

construct was significantly induced in gadW when compared to the wild type and to gadX. 

Significant values are indicated by yellow cells and red font. p-values were corrected for multiple 

comparisons by using the Benjamini and Hochberg correction (Benjamini and Hochberg, 1995). 

 

 
 
 

 

Moreover, no significant induction was observed for the atpI-gfp reporter construct in the 

three considered conditions (WT, gadW and gadX). Consequently I concluded that the 

negative correlation observed between the expression of GAD and the atp genes may not 

be the result of a direct regulatory role of GadW. 

p-value Benjamini p-value Benjamini p-value Benjamini p-value Benjamini p-value Benjamini p-value Benjamini

pH 7 1.22E-01 5.02E-01 2.70E-01 7.29E-01 4.90E-01 6.86E-01 9.00E-03 3.15E-02 3.30E-01 3.30E-01 2.00E-02 4.67E-02

pH 5.5 - 5' 4.04E-01 5.02E-01 6.25E-01 7.29E-01 8.60E-01 8.60E-01 4.65E-05 3.26E-04 1.08E-05 7.56E-05 5.70E-02 7.98E-02

pH 5.5 - 30' 1.76E-01 5.02E-01 5.30E-01 7.29E-01 1.30E-01 6.86E-01 5.40E-01 6.30E-01 2.18E-02 7.63E-02 4.10E-02 7.18E-02

pH 5.5 - 60' 3.10E-01 5.02E-01 5.12E-01 7.29E-01 6.00E-01 7.00E-01 2.70E-02 4.73E-02 7.20E-02 1.68E-01 3.25E-05 2.28E-04

pH 5.5 - 90' 2.70E-01 5.02E-01 1.00E+00 1.00E+00 2.41E-01 6.86E-01 8.00E-02 1.12E-01 1.32E-01 2.11E-01 9.00E-02 1.05E-01

pH 5.5 - 120' 5.20E-01 5.20E-01 4.90E-01 7.29E-01 3.40E-01 6.86E-01 1.70E-02 3.97E-02 1.76E-01 2.11E-01 6.70E-01 6.70E-01

pH 5.5 - 150' 4.30E-01 5.02E-01 4.60E-01 7.29E-01 4.86E-01 6.86E-01 9.50E-01 9.50E-01 1.81E-01 2.11E-01 9.40E-04 3.29E-03

wt vs gadX

gadB  gfp reporter

gadW vs gadX

atpI  gfp reporter

wt vs gadW wt vs gadX gadW vs gadX wt vs gadW
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3.4 Discussion 

3.4.2 OmpR: an important acid response regulator 

 

Our study provides strong evidence for a role of OmpR as a regulator of the 

transcriptional response to acid adaptation in BW25113. Although OmpR has not been 

directly implicated hitherto in acid resistance in E. coli , it has been shown that an ompR 

UPEC mutant shows reduced survival in the mouse urinary tract, and that the growth 

defect seen in this mutant in high salt is enhanced at low pH (5.5); lethal pH was not tested 

in this experiment (Schwan, 2009). OmpR has been shown to regulate the stationary phase 

acid inducible response in Salmonella Typhimurium (Bang et al., 2000) potentially by 

counteracting H-NS-mediated repression (Bang et al., 2002), and an OmpR-like regulator 

(HP0166) has also been implicated in the acid response of Helicobacter pylori (Bury-Mone 

et al., 2004) suggesting a broader role for regulators of this type in acid stress responses. 

Gene expression in the ompR mutant partially mimics the response to acid of the parent 

strain (Figure 3.5, panels A and B) but mutant cells are unable to mount any response to 

acid, suggesting that modulation of OmpR is required for an effective response to acid. 

This result, coupled with the acid sensitivity of the ompR mutant, are consistent with a 

model where OmpR is required for the expression of cellular components, or for the 

establishment of a particular cellular state, which is needed for the cells to be able to 

respond to acid stress in a way that enhances their survival. In the absence of OmpR, this 

state no longer exists and so the ompR mutant fails to respond to acidification and shows 

enhanced acid sensitivity. Cells lacking this important regulator are even less able to 

survive in extreme acid conditions than those carrying mutations in other important genes 



112 
 

implicated in acid resistance. The key role of OmpR in regulating adaptation to low pH 

was unexpected and has not featured in an extensive literature on the EnvZ–OmpR two-

component system. Key questions for future research to answer are whether EnvZ 

mediates the response and, if so, to what chemical signal EnvZ responds. In a previous 

study on Shigella, FNR, the dual transcriptional regulator of the switch between aerobic 

and anaerobic metabolism, was found to regulate the length of type III secretion system 

needles, required for secretion of the invasion plasmid antigen. Exposure to oxygen at the 

surface of the gastrointestinal mucosa inactivates FNR, reversing the block on invasion 

antigen secretion and hence priming the bacteria for the attack (George et al., 1998, 

Marteyn et al., 2010). Moreover, a deeper analysis of FNR targets revealed a down-

regulation of the functions modulated by FNR, which I found important for my work 

(Table 3.2).  

Whether OmpR exerts its function directly or by modulating the activity of other 

regulators remains an important question. I found that some of the genes downstream from 

OmpR (as defined by correlation and KO analysis) have OmpR-binding sites in their 

promoter regions (Figure 3.9, A-B-C-D), suggesting that at least in some cases OmpR 

may directly activate genes involved in acid response.  
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cyoA: cytochrome bo terminal oxidase subunit II

ACAGCTTCTTAAAATCAACCTGATATGTTTTGCAACATATGTGACCTGGCAGCCAAATCCAAGTAACAGG 

TGAA-CAT-T

Start End Strand PWM Score(s) SEP Score ATG-Distance Location

450955 450964 - 12.18 -6.68 121 intergenic

AGTAATCCTCCCGGATGCACCATCTCTTACTTGATACGGCTTTAGTAGCG ... (130)...

argQ: tRNAargQ

TCGAATCCTCCCGGATGCACCATCTCTTACTTGATATGGCTTTAGTAGC

TGAA-CAT-T

TTCGAATCCTCCCGGATGCACCATATTCTACGTACTTTCAGCGATGAAGG ... (124)...

argZ: tRNAargZ

CCCGGATGCACCATCTCTTACTTGATACGGCTTTAGTAGCGGTATC

TGAA-CAT-T

C-BOX

+

Start End Strand PWM Score(s) SEP Score ATG-Distance Location

2815943 2815952 - 12.04 -7.01 61 intergenic

2816217 2816226 - 12.04 -6.84 335 coding region

+

+

Start End Strand PWM Score(s) SEP Score ATG-Distance Location

2816217 2816226 - 12.04 -6.84 60 coding region

2816358 2816367 - 12.04 -6.96 201 coding region
+

+

CCTCCCGGATGCACCATCTCTTACTTGATACGGCTTTAGTAGCGGTATCA

argY: tRNAargY

TGAA-CAT-T

AACTGGTCAATATGATTCAGGTGCAACGCGCTTACGAAATCAACAGTAAA ... (50)...

flgH: flagellar L-ring protein

CCACCGATCAGATGCTGCAAAAACTGACGCAACTCTAAGGCTTAACCGGT

TGAA-CAT-T

Start End Strand PWM Score(s) SEP Score ATG-Distance Location

1134706 1134715 + 12.16 -7.2 72 coding region

1134646 1134655 + 12.55 -7.55 132 coding region

Start End Strand PWM Score(s) SEP Score ATG-Distance Location

2816358 2816367 - 12.04 -6.96 62 intergenic+
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Figure 3.9 Binding site analysis of potential OmpR targets. 

The potential binding sites of OmpR are shown, which were detected on the basis of the similarity 

with ompC-box and ompF-box. For each gene considered, the genome sequence, the statistical 

relevance of the similarity and the relative operon are shown. PWM scores and SEP scores were 

determined for the selection of the targets. 

 

 

F-BOX

TTTACA TTTT

ATATTCGTGCTGCATTTACTTATTATCAATTAACTGTTATGCAAAACTAC

gadW: DNA-binding transcriptional dual regulator

CCGTAAATCAGATGCTACAAAATGTAAAGTTGTGTCTTTCTGGTGACTTA ... (100)...

htpX: heat shock protein, integral membrane protein

TTTTGTTAAACTGAGGTAAAAATGAAAATTATG

T TTACATTTT

Start End Strand PWM Score(s) SEP Score ATG-Distance Location

1910603 1910612 - 13.5 -6.42 3 intergenic

1910713 1910722 - 14.09 -7 113 intergenic

+

glnK: nitrogen regulatory protein GlnK

ATTTCATCGTTGGTGCAAAAATGTAACGCACTGTGCACTGTCATAGTGCGTTTTCATTTTCAAACTTCTT

TTTACATTTT TTTACATTTT

Start End Strand PWM Score(s) SEP Score ATG-Distance Location

471669 471678 - 13.48 -7.01 144 intergenic

471702 471711 + 13.5 -7.01 111 intergenic

TCGTCAGGTCGGTAAAAAGGTAAACTTTGAGCCAGACAGC GCCTTCCGCG ... (310)...

yjfH (rlmB): 23S rRNA 2'-O-ribose G2251 methyltransferase

TAGTGCATCAGGCAAAACGTAAACAACGAGTACATTA ATG

TTTACATTTT

Start End Strand PWM Score(s) SEP Score ATG-Distance Location

4406507 4406516 - 13.59 -7.44 337 coding region

4406829 4406838 - 13.59 -7 15 intergenic
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3.4.3 Role of OmpR in acid resistance and osmotic stress 

 

The novel role I have found for OmpR suggests a link between osmotic and acid stress 

responses. A potential connection between the activation of anaerobic metabolism (an 

important feature of acid adaptation in this strain) and osmotic stress has been previously 

described (Ni Bhriain et al., 1989), where it was linked to changes in DNA topology. Many 

genes involved in the response to osmotic shock are also modulated in response to acid in 

my experiments, as previously seen (Chapter 2).  

A major two-component system involved in regulating the acid stress response, the 

EvgAS system, did not emerge from this study. This is unsurprising as it is known that the 

expression of the evgAS operon is little affected by acid and so it would not have been 

detected as being important using the methods described here (Ma et al., 2004). 

Furthermore, the EvgAS system is mainly thought to be important in regulating the gad 

system, but this system has a limited role in the conditions described here, as can be seen 

by the fact that a gadE deletion only confers a mild phenotype. Different E. coli strains 

show a wide range of resistance to acid. It is not yet clear whether OmpR expression can 

explain some of the variation in this naturally occurring resistance. It may be that the 

relative importance of OmpR may depend on the strain being used, and that BW25133 is 

particularly dependent on OmpR. We are in the process of testing this hypothesis. Overall, 

three aspects of the physiological response of E. coli K-12 to mild acid stress require 

further explanation. First, the response regulator OmpR, which normally is thought of as 

responding to osmotic stress, is essential for adaptation to low pH and for priming survival 

of more severe acid stress. Second, many genes previously identified as components of 

OmpR regulon as well as additional previously unrecognized members, are essential for 

adaptation. Third, mild acid stress induces various metabolic switches, for example, from 
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glycolysis to gluconeogenesis and fatty acid synthesis, and from energy generation 

powered by the TCA cycle to expression of FNR-regulated genes associated with 

anaerobic respiration (Table 3.4). 

 

3.4.1 GadW is a potential repressor of the FOF1 ATPase 

 

Although the involvement of the FOF1 ATPase in the process of resistance to strong acid 

conditions is known, the mechanism of regulation is still unclear (Foster, 2004). The genes 

encoding the pump were all down-regulated in response to the acid exposure during the 

time course, as described in Chapter 2. These results, according to the general knowledge 

about acid resistance, confirmed that the ATPase is not expressed at pH 5.5 and in a rich 

growth medium, such LB. In the mutual information network I have identified a negative 

connection between GadW and atpDGH, encoding for 3 subunits of the FOF1 ATPase. 

GadW can be both activator and repressor of gadA and gadBC (Tramonti et al., 2008). The 

repression of the GAD system happens when cells enter the stationary phase, so under 

RpoS control (Burton et al., 2010). Therefore, the inhibition exerted by GadW during acid 

exposure involves not only the genes belonging to the GAD system but could also include 

the atp operon (Figure 3.10), perhaps under direct control of RpoS, since my experiments 

were performed at an early stationary phase of growth.  
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Figure 3.10 GadW repression of the atp operon hypothesis. 

In figure are shown interactions from RegulonDB 9http://regulondb.ccg.unam.mx/), in red 

(activation) and green (repression), for GadW, GadX, and GadE towards the main component of 

the GAD system. In light blue, the interaction found in ARACNE, which describes the negative 

correlation between the two ARs. 

 

 

The results of my experiments do not support the hypothesis that the negative correlation 

is a result of a direct regulatory role of GadW.  

However, we cannot rule out the possibility that since the ATPase operon is composed of 

9 genes and 3 transcription units (Figure 3.11), it is possible that the reporter gene I have 

chosen may not be relevant. Therefore further experiments would be required to 

completely rule out the regulatory role of GadW. 

 

Figure 3.11 FOF1 ATPase gene operon (EcoCyc). 

All the genes belonging to the ATPase are shown. atpI, even though belongs to the operon, does 

not seem to be essential for the functioning and the activation of the pump. 
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3.5 Conclusions. 

 

In this chapter, a gene inference based model identified OmpR as a new regulator of acid 

response in E. coli BW25113, required for the switch from aerobic to anaerobic 

respiration. In the next chapter I will describe the mechanisms underlying acid response in 

another E. coli strain, the MG1655. 
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Chapter 4: Characterization of the genome-wide 

transcriptional response of the E. coli MG1655 

strain to mild acid exposure 

 

4.1 Introduction 

 

In the previous chapters I have described a new acid response system and have shown 

that in the E. coli strain BW25113 this is playing a very important role, perhaps even more 

important than the classical ARs. 

Although the result is important in its own right, the molecular response to acid 

adaptation is a complex phenomenon and involves the modulation of more genes than just 

the ARs and the novel OmpR dependent system I discovered. Moreover, it is possible that 

strain specific differences may play an important role. Indeed the analysis of BW25113 

mutant strains suggested that there would be three different types of response to acid 

exposure, which may be indicative of the strain to strain variation in naturally occurring 

strains. For example, mutants belonging to an intermediate resistance group were showing 

up-regulation of aerobic and down-regulation of anaerobic pathways in response to pH 5.5, 

which is the opposite of what was observed in the wild type BW25113 strain.  

Evidence exists for the involvement of other metabolic pathways in different stress 

responses. For example, E. coli W3110 also modulates the expression of genes encoding 

for enzymes involved in catabolism of sugar and amino acid in response to pH changes 

(Maurer et al., 2005). The increase of the amino acids levels is a typical feature of acid 

resistance, as previously described, but it also characterises other stress conditions 

(Jozefczuk et al.). In a recent study, based on the comparison of acid effects on the 
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MG1655 K-12 and SAKAI O157:H7 strains, it has been observed that the increase of the 

amino acid levels was in part due to the activation of de-novo biosynthesis pathways (King 

et al., 2010). In the same work it was also observed that the pathogenic E. coli strain was 

increasing the fermentative pathways and decreasing the aerobic metabolism (King et al., 

2010), as seen for the BW25113 strain. Hence, the responses to stress conditions are also 

considerably variable between strains. 

In order to fully understand the process underlying stress response, the comparison 

between strains becomes crucial. However, not many studies have been performed in this 

field by keeping the cultures of the analysed strains in identical conditions of growth. 

Moreover, it is unlikely that the analysis of transcriptomics data on its own can provide a 

full representation of the processes involved in acid adaptation, hence the need to use 

additional analytical techniques such as metabolomics. 

The results reported in this chapter address these issues by providing the first 

characterization of the transcriptional and metabolic response of the E. coli MG1655 strain 

during acid adaptation. Since I wanted to make sure that a model built in the MG1655 

strain could be compared with the results I previously obtained on the E. coli BW25113 

strain I performed all culturing in exactly the same conditions.  

My analysis revealed that, consistent with the model built in BW25113, the MG1655 

intermediate acid resistant strain respond to acid exposure by up-regulating several 

enzymes involved in aerobic pathways and increasing the intracellular levels of amino 

acids. Moreover, the NMR metabolomics analysis showed an increase in amino acid 

levels, which could be caused by de-novo biosynthesis and/or proteolytic events.  
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4.2 Materials and Methods 

4.2.1 Bacterial strains and culture conditions 

 

MG1655 time course experiment. In order to perform a comparison with the BW25113 

strain, the same experimental conditions were considered for the analysis of the MG1655 

strain, as described in chapter 2. The experiments were performed by Dr Ayesha S. 

Rahman and Dr Sue Manzoor. The 1 hour time course experiment was performed, 

considering a total of fourteen time points every five minutes after exposure. Samples for 

transcriptomics and metabolomics analysis were collected every 5 minutes (14 time points 

in total), for 1 hour after the shift to pH 5.5. A time course experiments of 2 hours was 

carried out for comparison purposes with the lon strain. The time course consisted of 8 

time points, collected 30 seconds, 5’, 15’, 30’, 45, 1 hour, 1hr 30’ and 2 hours from 

exposure.  

Lon mutant experiment. lon strain was obtained from Dr P. Lund’s laboratory. I have 

performed the time course experiment as described above for the wild type MG1655 strain 

2 hours time course. 

4.2.2 Expression profiling by microarray 

 

The expression profiling microarray was performed as described in chapter 2, in materials 

and methods section. 

4.2.3 Metabolomics experiments   

 

The NMR metabolomics experiments for the characterization of the E. coli MG1655 

strain were performed by Prof Mark Viant’s laboratory, Dr A. Raman and Dr S. 
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Manzoor. Bacterial cultures were subjected to rapid filtration and washing prior 

metabolite extraction and NMR analysis.  More precisely, a volume of culture (20ml) was 

applied to a 90 mm diameter Nylaflo membrane (Gelman) placed in a filtration assembly 

apparatus. The liquid culture was rapidly drawn through the filter using a Knf Neuberger 

Laboport vacuum pump. 20ml PBS (Lonza) was applied to the membrane to wash the 

bacterial cells and again this was rapidly drawn through the filter. The filter was then 

placed in a glass Petri dish containing 3 ml of 2:1 methanol water mix. This was then 

transferred onto dry ice to allow the contents to rapidly freeze thus preserving the 

metabolites present (this process was completed in less than 1 minute). After 

approximately 30 minutes on dry ice, the filter with the bacteria was transferred to a 

centrifuge tube and 1ml of 100% methanol was added to the Petri dish to remove any 

remaining metabolites/culture. The tube was then rotated and rocked on platform at room 

temperature for 5 minutes and then transferred to -20
o
C. Bacterial cell debris was 

removed after the samples were defrosted by two centrifugation steps.  The supernatant 

was then removed to a fresh 2 ml eppendorf and evaporated to dry in a speed vacuum 

rotor (Thermo Electron Corporation) attached to a pump (Knf laboport) and refrigerated 

vapour trap (Thermo Electron Corporation). Samples were then resuspended in 600 µl 

200 mM 10% D2O buffer. Metabolite standards were analyzed on a DRX-500 NMR 

spectrometer (Bruker Biospin, Coventry, UK) equipped with a 5 mm TXI cryoprobe and 

BACS-60 automatic sample changer (Ludwig et al., 2012). Identification of metabolites 

in NMR spectra was performed through the Madison Metabolomics Consortium 

Database (MMCD) (Cui et al. 2008) 

4.2.3 Data analysis 
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Microarrays Data processing and Functional annotation of the gene lists were 

performed as described in chapter 2, section materials and methods.   

Metabolomics Data analysis: 1801 bins were identified.. After SAM analysis between 

the three replicates, 58 significant bins were found. The annotation was possible only for 

12 metabolites. 

4.3 Results 

4.3.1 The transcriptional response of E. coli MG1655 to acid exposure is transient 

 

The analysis of the time course microarray data identified 1831 genes differentially 

expressed (FDR<1%).  These were used as an input of PCA to visualize the overall 

dynamics of transcriptional change during acid adaptation. Similarly to the BW25113 

strain (chapter 2), the transcriptional profile of the MG1655 strain was characterised by a 

rapid shift in the first 30 seconds of exposure at pH 5.5, followed by a further shift on the 

first and second components in the 25 minutes post exposure (Figure 4.1). After 30 

minutes, the transcriptional state of the cells gradually realigned to the transcriptional state 

seen at pH 7.  
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Figure 4.1 Principle component analysis of the transcriptional response of MG1655 to acid 

adaptation. 

This PC plot shows the dynamics of change in the transcriptional response of MG1655 during the 

first hour of acid adaptation. The x and y axes represent the first and second principal components 

respectively. For the analysis were considered the 1831 differentially expressed genes. 

In order to further characterize the dynamics of gene expression I performed cluster 

analysis. The analysis identified 10 clusters (Figure 4.2).  
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Figure 4.2 Hierarchical clustering of the genes differentially expressed in response to acid 

exposure in the strain MG1655. 

The hierarchical clustering performed on the genes differentially expressed during the time course 

experiments identified 10 clusters. 5 clusters (1,2,3,4,5) were showing a trend of down-regulations, 
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while the rest of the clusters (6,7,8,9,10) were up-regulated in response to acid. The functional 

annotation analysis, performed with DAVID, defined a switch of regulation in favour of the genes 

encoding aerobic respiration pathways. The genes coding for TCA cycle, Glycolysis and oxidative 

phosphorylation were mainly found in clusters in 6, 9 and 10. For the other functions, such as 

flagellar assembly and ABC transporters, it was not possible to identify a specific trend.  

 

 

Clusters 1-5 represented down-regulated gene expression profiles followed by a recovery 

phase with the exception of cluster 5 that showed a persistent down-regulation. Clusters 6-

10 represented up-regulated gene expression profiles. Clusters 8 and 10 also showed a later 

recover phase. The fact that most of the clusters show a recovery phase is consistent with 

the results of the PCA. In order to allow biological interpretation, I performed a functional 

enrichment analysis. Clusters 4, 5, 8 and 10 were characterised by oscillations, which were 

not due to the normalization process but could be considered effects of acid exposure. 

This analysis revealed a clear trend in the regulation of aerobic and anaerobic pathways. 

More precisely I observed  an increase in the expression of the genes involved in aerobic 

metabolic processes (Figures 4.4 and 4.5) and the down-regulation of 42 genes coding for 

anaerobic and fermentative pathways (Figure 4.3). Therefore the two strains (BW25113 

and MG1655) were showing a completely opposite profile of gene expression during acid 

exposure (Table 4.1). However, some of the genes encoding anaerobic respiration 

enzymes were found up-regulated in response to acid exposure (Figure 4.3) 

 A similar behaviour was found in the BW25113 mutant strains belonging to the 

intermediate phenotype group (described in chapter 2, Table 2.1).  
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Table 4.1 Comparison of aerobic and anaerobic functions in BW25113 and MG1655 strains. 

 
The response to pH 5.5 was characterised by two opposite trend in BW25113 and MG1655 

strains. While in the first strain the major aerobic functions encoding genes (Oxidative 

phosphorylation, TCA cycle, Pyruvate metabolism) are strongly down-regulated, an opposite trend 

was detected in the MG1655. The p-values for each function were calculated with DAVID cluster 

analysis, based on the groups of up and down-regulated genes for each strain.  
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Functions Regulation p-value Regulation p-value

GO - Aerobic respiration down-regulated 5.70E-19 up-regulated 9.70E-22

GO - Anaerobic respiration up-regulated 2.70E-24 down-regulated 1.80E-28

KEGG - Oxidative phosphorylation down-regulated 2.80E-26 up-regulated 3.70E-13

KEGG - TCA cycle down-regulated 2.70E-21 up-regulated 1.00E-13

KEGG - Glycolysis/Gluconeogenesis down-regulated 1.20E-10 up-regulated 9.50E-04

KEGG - Pyruvate metabolism down-regulated 2.40E-18 up-regulated 4.00E-10

BW25113 MG1655
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Figure 4.3 Heat map of the genes belonging to the anaerobic respiration pathway 

(GO:0009061). 
In this figure are shown the genes encoding for the anaerobic respiration pathway differentially 

expressed in E. coli MG1655 strain. 43 genes over 79 were down-regulated in response to pH 5.5 

(green line), while 36 were up-regulated (red line) on the cluster based analysis. Between the up-

regulated genes, many of them encode for components (enzymes and transporters) involved in both 

aerobic and anaerobic mechanisms. 
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The cluster of the anaerobic respiration encoding genes showed that 36 genes of 79 were 

up-regulated over time (Figure 4.3). It is important to notice that this cluster included 

genes coding for enzymes that catalyse both aerobic and anaerobic reactions. For example, 

the NADH dehydrogenase enzyme, which was highly induced, is involved in the oxidative 

phosphorylation (Jaworowski et al., 1981) as well as in anaerobic processes (Matsushita et 

al., 1987). The genes aceE and aceF encode both components of the pyruvate 

dehydrogenase, which again is involved in aerobic (Abdel-Hamid et al., 2001) and 

anaerobic  pathways (Clark, 1989). A total of 15 genes belonging to the cluster of the up-

regulated anaerobic genes encode for components (enzymes and transporters) which entail 

both aerobic and anaerobic processes (Table 4.2). 
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Table 4.2  Anaerobic respiration genes up-regulated during acid exposure 

The cluster analysis identified 36 genes coding for anaerobic respiration pathways induced at pH 

5.5. 15 genes belonging to this cluster can be involved in both aerobic and anaerobic functions 

(yellow cells). Between them I have identified the NADH dehydrogenase, the pyruvate 

dehydrogenase, the malate dehydrogenase and the essential respiratory protein A encoding genes. 

 

 

 

Gene Function

aceE Pyruvate dehydrogenase E1 component

aceF
Dihydrolipoyllysine-residue acetyltransferase 

component of pyruvate dehydrogenase complex

acnA Aconitate hydratase 1

acnB Aconitate hydratase 2

fdoH Formate dehydrogenase-O iron-sulfur subunit

fnr Fumarate and nitrate reduction regulatory protein

fumC Fumarate hydratase class II

glpR Glycerol-3-phosphate regulon repressor

gltA Citrate synthase

hyaC
Probable Ni/Fe-hydrogenase 1 B-type cytochrome 

subunit

hyaD Hydrogenase 1 maturation protease

hyaF Hydrogenase-1 operon protein hyaF

hycG Formate hydrogenlyase subunit 7

hyfF Hydrogenase-4 component F

hyfH Hydrogenase-4 component H

hyfR Hydrogenase-4 transcriptional activator

lldD L-lactate dehydrogenase [cytochrome]

lpd Dihydrolipoyl dehydrogenase

mdh Malate dehydrogenase

narG Respiratory nitrate reductase 1 alpha chain

narH Respiratory nitrate reductase 1 beta chain

narI Respiratory nitrate reductase 1 gamma chain

narL Nitrate/nitrite response regulator protein narL

narX Nitrate/nitrite sensor protein narX

nfsA Oxygen-insensitive NADPH nitroreductase

nuoE NADH-quinone oxidoreductase subunit E

nuoF NADH-quinone oxidoreductase subunit F

nuoG
NADH-quinone oxidoreductase; NADH-quinone 

oxidoreductase subunit G

nuoI NADH-quinone oxidoreductase subunit I

nuoK NADH-quinone oxidoreductase subunit K

nuoM NADH-quinone oxidoreductase subunit M

pflA Pyruvate formate-lyase 1-activating enzyme

torS Sensor protein torS

ugpB
sn-glycerol-3-phosphate-binding periplasmic protein 

ugpB

ugpE
sn-glycerol-3-phosphate transport system permease 

protein ugpE

yadR essential respiratory protein A
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Since MG1655 response is characterised by an aerobic switch, it is possible to consider 

the induction of these components as part of the aerobic response to pH 5.5.  

Between the anaerobic processes genes showing up-regulation, I have identified hyaD, 

hyaF, hyfF, hyfH and hyfR, encoding for the hydrogenases 1 and 4 in E. coli (Andrews et 

al., 1997, Sargent et al., 1998). The genes coding for the nitrate reductase system (narG, 

narH, narI, narL and narX) were also up-regulated. This enzyme is required for respiration 

with nitrate as final electron acceptor (Guigliarelli et al., 1996). The gene expression is 

controlled by RpoS during stationary phase of growth (Chang et al., 1999), which might 

activate the enzyme during acid exposure in early stationary phase of growth.  

In the oxidative phosphorylation pathway, I have observed the activation of the genes of 

the NADH dehydrogenase, as previously described, together with the succinate 

dehydrogenase and the cytochrome c-oxidase genes (Figure 4.4).The anaerobic 

components of this pathway, the frdABCD (fumarate reductase) and the cydAB 

(cytochrome bd complex), were instead down-regulated (Figure 4.4).  
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Figure 4.4 Gene regulation of oxidative phosphorylation pathway (KEGG:eco00190). 

The increased expression of the NADH dehydrogenase, succinate dehydrogenase and the 

cytochrome c oxidase was a result of the aerobic respiration induction (in red), while the fumarate 

reductase and the cytochrome bd genes were down-regulated (in green). The genes encoding the 

FOF1ATPase were also down-regulated, as expected from literature on acid response. 

  

 

 

TCA cycle pathway encoding genes were all up-regulated (Figure 4.5) with the exclusion 

of the phosphoenolpyruvate carboxykinase gene, pck.  
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Figure 4.5 Regulation of the genes belonging to the TCA cycle pathway (KEGG:eco00020). 

The majority of the genes belonging to this pathway were up-regulated at pH 5.5 (in red). The 

only exception was the pck gene, encoding for the phosphoenolpyruvate carboxykinase (in green). 

 

 

Furthermore, I found an increase in the expression of the gene fumC, one of the fumarase 

isozymes, which is not essential when oxygen concentrations are limited, whereas fumB is 

significantly down-regulated. 

ABC transporters are also affected by acid exposure, but it is not possible to identify a 

clear trend of regulation for them (Figure 4.6).  
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Figure 4.6 Heat map of the genes belonging to the ABC transporter family (eco02010). 

The genes encoding for the ABC transporters were not characterised by a defined trend. 

However, many amino acid and sugar transporters were found to be down-regulated. 
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However, some of the amino acid transporters, such as arginine, valine, aspartate, and 

tyrosine transporters appeared down-regulated with most of the sugars transporters. The 

KEGG pathway for ribosome (Figure 4.7) was mostly up-regulated after 25 minutes of 

exposure.  

 

Figure 4.7 Heat map of the genes belonging to the ribosome pathway (eco03010). 

The ribosome encoding genes were all highly induced after 35 minutes of exposure, denoting a 

potential need of the cells to re-activate translational pathways. 
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 My data also showed another interesting pattern involving the genes coding for the 

flagellar assembly (Figure 4.8).  

  

 

Figure 4.8 Regulation the genes belonging to the flagellar assembly pathway 

(KEGG:eco02040). 

Several genes encoding for the filament part of the flagellum were significant induced in 

response to acid (in red), while the main components of the basal ring were repressed (in 

green).  
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The trend found was not typical for the general stress response in E. coli, in fact most of 

the times genes belonging to this pathway are usually down-regulated in response to mild 

acidic conditions (Maurer et al., 2005, Hayes et al., 2006). In my data, most of the genes 

coding for the filament part of the flagellum were immediately up-regulated after the 

switch to pH 5.5; vice versa, the genes for the flagellar motor was down-regulated after 

only 30 seconds of exposure. This could be a strategy of the bacterium to respond to acid 

condition, probably because of the damage of low pH exposure to the filament.  

This preliminary analysis of the transcriptomic data for the MG16555 strain therefore 

showed a completely opposite behaviour when compared to the BW25113 strain. As a 

result of the acid exposure, it was seen that the cells immediately required the transcription 

of the aerobic pathways (Table 4.3 and Figure 4.9).  
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Table 4.3 Regulation of the main components of Oxidative phosphorylation and TCA cycle 

in BW25113 and MG1655 strains 

The differentially expressed genes encoding the enzymes of two main aerobic pathways were 

considered in this table. As previously described, the BW25113 showed a trend of down-regulation 

of all the considered enzymes. The aerobic components of oxidative phosphorylation and TCA 

cycle were all up-regulated in MG1655, with the exception of cytochrome - bd, the fumarate 

reductase and the phosphoenolpyruvate carboxykinase encoding genes. In both the strains, the gene 

atpD, coding for the -subunit of the FOF1 ATPase was down-regulated in both strains. Up-

regulated genes are indicated with red upward arrows; down-regulated genes are indicated with the 

green downward arrows. 
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Figure 4.9 Selection of the genes encoding for important enzymes involved in aerobic 

pathways. 

The genes encoding for the NADH dehydrogenase, succinate dehydrogenase, 2-oxoglutarate 

decarboxylase, cytochrome-bd and cytochrome-bo and the fumarate reductase were selected 

between the genes differentially expressed in the two strains. The BW25113 strain was 

characterised by the down-regulation of all these components during the time course, while 

MG1655 showed an increased expression of the NADH dehydrogenase, cytochrome-bo and the 2-

oxoglutarate genes, and down-regulation for the fumarate reductase, the FOF1 ATPase and the 

cytochrome-bd encoding genes. 

  

 

In order to understand these results, I have considered also a metabolomics screening, for 

identification of the metabolites affected by acid exposure.  

 

 



141 
 

4.3.2 Metabolomics analysis of the E. coli MG1655 strain during acid adaptation  

 

Since the transcriptomic analysis revealed that genes involved in central metabolism were 

all differentially regulated in response to acid exposure I decided to use a metabolomics 

approach to integrate the analysis at the metabolite level (Figure 4.10).  

 

 

Figure 4.10 Principle component analysis of the metabolomics response of MG1655 to acid 

adaptation. 

The PCA plot was performed on the significant metabolites changed after acid exposure. The 

trend is characterised by a rapid shift across the first component, denoting the change due to the 

acid perturbations. In contrast to the previous findings at the transcriptomic level, the metabolites 

did not restore their molecular state, seen at pH 7. 
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PCA plot performed on the significant metabolites confirmed the ability of acid exposure 

to affect the cells at different levels. However, in contrast to the transcriptional response, 

the metabolites did not restore the metabolic state seen at pH 7. After one hour at pH 5.5, it 

was not possible to detect further changes. The same experiment performed for 2 hours and 

30’ did not show further changes at metabolites level (data not shown).  

Of the 1350 integrated peaks that represented the NMR spectra 58 were significantly 

different during the time course, (Figure 4.11). These were used as input of a hierarchical 

clustering procedure.  

 

 

Figure 4.11 Hierarchical clustering of the significant metabolites. 

The main result of this analysis was the rapid increase found at the amino acid levels. Threonine, 

glutamate, leucine, valine and isoleucine were rapidly increasing after pH 5.5 exposure, while 

putrescine and glycine betaine were decreasing. Between the identified bins, I have also seen the 

ADP+ATP. The technique did not allow distinguishing between the two species. 
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The concentration of Putrescine, a poly-amine formed either directly from L-ornithine by 

ornithine decarboxylase or indirectly from L-arginine by arginine decarboxylase, was 

found reduced in response to acid. Same effects were seen for the osmolyte glycine 

betaine, for the peaks considered for ATP/ADP and UDP glucose/sucrose. Finally, for the 

amino acids threonine, glutamate, leucine, valine and isoleucine and propionate I found a 

considerable increase in concentration in response to pH 5.5. 

4.3.3 Increased concentration of amino acids may be the result of protein 

degradation 

 

This increase of amino acids following acid exposure is interesting and could be the 

result of increased synthesis or import or be the result of protein degradation. I first 

decided to test the hypothesis that it may be dependent on increased transport. I tested this 

hypothesis by looking at the expression of genes encoding for amino acid co-transporters 

(Figure 4.12). 



144 
 

 

Figure 4.12 Genes coding for the amino acid biosynthetic and metabolic processes. 

The genes encoding for important enzymes involved in amino acid metabolism and amino acid 

transporters were considered. After functional annotation of the up and down-regulated genes, it 

was not possible to identify a regulatory trend, since many amino acid metabolism pathways were 

found induced and repressed. 
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The increase of the significant amino acids could be caused by de-novo synthesis or 

external uptake. I looked at the genes of the main transporters: glutamate and the poly-

amine putrescine transporters were up-regulated, valine and threonine transporter genes 

were down-regulated, while the genes for leucine and isoleucine transport were not 

differentially expressed. 

I have then analysed in detail amino acid metabolism pathways linked to the metabolites 

detected by the NMR analysis (Figures 4.13, 4.14, 4.15, 4.16 and 4.17). 

 

 

Figure 4.13 Regulation of the genes encoding for the arginine and proline metabolism. 

The KEGG pathway in figure showed that a high percentage of the genes involved in arginine 

and proline metabolism were down-regulated (in green). 
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Figure 4.14 Regulation of the genes encoding for the alanine, aspartate and glutamate 

metabolism. 

Alanine, aspartate and glutamate metabolism genes were mostly down-regulated (in green). 

However, the genes coding for the glutamate biosynthesis enzymes were found up-regulated (in 

red). 
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Figure 4.15 Regulation of the genes encoding for the glycine, serine and threonine 

metabolism. 

Glycine, serine and threonine metabolism pathway was characterised by the down-regulation of a 

high percentage of genes (in green). 
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Figure 4.16 Regulation of the genes encoding for the cysteine and methionine  metabolism 

The genes involved in the cysteine and methionine pathway were mostly down-regulated in 

response to pH 5.5 (in green). 

 

 

 

Figure 4.17  Regulation of the genes encoding for the lysine biosynthesis. 

Only few genes were found differentially expressed in the lysine biosynthesis, however they were 

mostly repressed in response to acid exposure (in green). 
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Figure 4.18 Regulation of the genes encoding for the valine, leucine and isoleucine 

metabolism. 

The pathway of valine, leucine and isoleucine metabolism did not exhibit a clear trend since the 

genes differentially expressed belonging to this pathway were both up and down-regulated (in red 

and green respectively). 

 

On the basis of these results, several trends of regulation of the amino acids pathways 

were found. For example genes in the cysteine and methionine metabolism pathway, the 

arginine and proline metabolism pathway and the lysine biosynthesis pathway were mostly 

down-regulated. The alanine, aspartate and glutamate pathway was also down-regulated, 

with the exceptions of the functions involved in the glutamate biosynthesis. The glutamate 

increase could be therefore considered as an effect of the transporters and biosynthesis 

encoding genes up-regulation. The glycine, serine and threonine metabolism pathway and 

the valine, leucine and isoleucine metabolism pathway were showing a mixed trend of 

regulation, in which several enzymes were both up and down-regulated. However, when 

looking at the expression of the genes involved in the degradation process of Valine, 

leucine and isoleucine, I found that most of them where induced during acid conditions 

(Figure 4.19).  
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Figure 4.19 Regulation of the genes encoding for the valine, leucine and isoleucine 

degradation. 

The pathway of valine, leucine and isoleucine degradation was instead characterised by the up-

regulation of the majority of the genes differentially expressed (in red). 

 

 

These results showed that, for some of the significant amino acids (threonine, leucine, 

valine and isoleucine), the increase could not be considered an effect of de-novo 

biosynthesis or external uptake, but could be considered a consequence of protein 

degradation. During stress conditions the probability of proteins misfolding is high 

(Mandelstam, 1958). Events such as proteolysis of damaged proteins to increase the amino 

acids pools is usually required, together with the chaperones involvement, in order to avoid 

misfolding events (Tomoyasu et al., 2001). Hence, I have focused my analysis on the 

understanding of the modulation of E. coli protease and chaperone genes during acid 

adaptation.   

In order to address the question involving the increase of some amino acids, I have 

selected the genes coding for the major proteases in E. coli, all differentially expressed 

(Figure 4.20). 
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Figure 4.20 Genes coding for the major proteases differentially expressed. 

The gene expression values are relative to pH 7 and pH 5.5 after 10 minutes. The error bars are 

related to standard deviation values on the three biological replicates. 
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To describe the modulation of the protease genes I have considered the time point 10 

minutes from pH 5.5 exposure. At this stage, the selected genes were all significantly up-

regulated in response to acid. The involvement of proteases in adverse conditions is 

already known; in acid stress response for example, a potential involvement of the Lon 

protease in the direct control of the GAD system was seen (Heuveling et al., 2008) 

The protease pathway is not the only option for the cell to avoid the problem of misfolded 

proteins. In both prokaryotes and eukaryotes, chaperone molecules are involved in the 

process of protein folding, in order to reduce the possibility to get abnormal and unstable 

proteins (Liberek et al., 2008). In the time course data of the MG1655 strain, I have seen 

up-regulation of the genes of the major chaperones (Figure 4.21). 

 

Figure 4.21 Genes coding for the major chaperones differentially expressed. 

Most of the chaperone genes were positively regulated after 5-10 minutes exposure, few of them 

after 30 minutes. Only one gene was down-regulated, the uncharacterised YgeG protein. 

 

4.3.3 A role for the protease LON in acid adaptation? 
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A recent study on Lon revealed that this protease has an important regulatory role in 

controlling the GAD AR system (Heuveling et al., 2008). More precisely, in this study it 

was observed that in a lon mutant strain, several GAD genes (such gadE, gadBC, gadA) 

were up-regulated (Heuveling et al., 2008).  In both wild type and mutant GadE was 

degraded in response to acid exposure (Heuveling et al., 2008); in the mutant the 

degradation was less evident when compared to the WT. 

The observation that in a lon mutant background the GAD genes are up-regulated is 

interesting, but the effect of loss of this protease may be much wider than suggested by that 

paper and therefore changes in acid sensitivity may not be only dependent on the effects on 

the GAD system. 

 I set to test this hypothesis by performing a microarray analysis of the wild type 

MG1655 and lon mutant strains over 2 hours after shift to pH 5.5. Consistent with the 

original hypothesis I have found that the loss of Lon protease induced profound changes in 

the transcriptional state of E. coli. I could identify 2336 genes (corresponding to more than 

40% of the E. coli genome) differentially expressed at 1% FDR. I first analyzed the overall 

response by using the principal component analysis (Figure 4.22) 
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Figure 4.22 PCA plot of the MG1655 and lon strains at pH 7 and in a 2 hours time course 

experiment at pH 5.5. 

This PC plot shows the dynamics of change in the transcriptional response of lon (red dots) and 

MG1655 (green dots) during 2 hours acid adaptation time course. The x and y axes represent 

respectively the first and second principal components. For the analysis were considered the 2336 

differentially expressed genes. The difference between mutant and WT is the most evident aspect 

of these results, represented by the shift on the first component. lon response to acid was more 

enhanced when compared to the wild type (shift across the second component). 

 

 

The most evident aspect seen in the PCA plot was the difference between the two strains: 

the shift across the first component indicated differences between wild type and mutant, 

which is independent from the pH change. Moreover, changes across the second 

component of the plot represented the response to acid exposure. I have seen that the 

response to pH 5.5 in lon was more enhanced when compared to the wild type.  
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We first set to repeat the observations published by Heuveling et al.  (2008) and analysed 

the expression of genes involved in the ARs (Figure 4.23).  

 

Figure 4.23 ARs gene selection from the time course experiments in the LON protease gene 

KO and the wild type. 

After the normalization of both lon and WT data I have selected the genes encoding the ARs (23 

genes). The majority of the genes coding for the ARs were highly expressed in the LON compared 

to the wild type, with few exceptions.  

 

Consistent with what was reported previously, lon mutant strain was characterized by 

increased expression of most of the ARs genes when compared to the wild type, with only 

few exceptions (Figure 4.23): adiC, ydeO, cadC and phoP.  

Interestingly, most of the ARs genes in lon were transcriptionally regulated in response 

to acid in the same direction than the wild type (Figure 4.24). The only exceptions were 

the genes lysU, down-regulated in the WT and induced in the mutant, and phoP, which 

vice versa was up-regulated in WT and oppositely modulated in lon (Figure 4.24). 
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Figure 4.24 ARs gene selection from the time course experiments in the LON protease gene 

KO and the wild type. 

In this figure, the genes were selected from the datasets of both WT and mutant with single 

normalization. Most of the GAD genes were induced in both strains and the atp genes were instead 

down-regulated. The trend followed by the ARs genes was similar between the two strains, with 

few exceptions: phoP and lysU. 

 

Having analysed the response of the genes involved in the ARs I then set to perform a 

broader analysis of the genome–wide transcriptional state of the wild type and mutant 

strains. Key drive for this analysis was to identify the molecular functions affected by the 

Lon mutation and to assess to what extent the general response to acid exposure may be 

similar in the two strains. 

 I addressed these questions by performing a cluster analysis on the differentially 

expressed genes, in order to identify the functions modulated in the two strains and in 

response to acid, obtaining four clusters (Figure 4.25). 

pH 

7

pH 5.5

30’’

pH 5.5

15’

pH 5.5

30’

pH 5.5

45’

pH 5.5

1 hr 30’

pH 5.5

2 hrs

pH 5.5

1 hr
pH 

7

pH 5.5

30’’

pH 5.5

15’

pH 5.5

30’

pH 5.5

45’

pH 5.5

1 hr 30’

pH 5.5

2 hrs

pH 5.5

1 hr

lon WT



157 
 

 

Figure 4.25  Cluster analysis of the genes differentially expressed between the two strains. 

The cluster analysis identified 4 clusters pointing out the main differences between the two 

strains. Clusters 1 and 3 were defined by the genes differentially expressed which were up-
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regulated in the mutant. Clusters 2 and 4 were characterised by the lon genes down-regulated 

when compared to the WT. 

 

 

The 4 clusters showed the difference within the two strains; in addition, they showed the 

functions which significantly changed in lon in response to acid exposure. Some of the 

aerobic pathways, such as pyruvate metabolism (KEGGeco00620), pentose phosphate 

pathway (KEGGeco00030) were up-regulated in the mutant when compared to the WT 

(Figure 4.26).  
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Figure 4.26 TCA cycle differentially expressed genes between the Lon mutant strain and the 

Wild Type 

Many aerobic functions were up-regulated in the Lon mutant when compared to the WT. lon 

was showing increased expression of most of the genes encoding for important enzymes of the 

TCA cycle (panel A), except for the genes encoding the fumarate reductase and some of the genes 

coding for the succinate dehydrogenase. Different behaviour was exhibited by the two strains in 

response to acid: many of the genes in lon were down-regulated after exposure, while in the 

MG1655 strain they were mostly induced at pH 5.5 (Panel B). 
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The flagellar assembly (KEGGeco02040) was down-regulated in lon, not only in 

response to acid but also when compared to the wild type; a different behaviour was 

instead found for the genes encoding the ribosome pathway (KEGGeco03010). 

Interestingly, all the genes coding for the anaerobic respiration pathways (GO:0009061) 

were significantly down-regulated in the mutant in relation to the wild type, however 

positively and negatively regulated in response to the pH change.  

In order to evaluate the response of the lon strain to acid adaptation, a cluster analysis 

was performed, identifying 4 clusters which trends were defined by up and down-

regulation of the genes in response to acid (Figure 4.27) 
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Figure 4.27 Cluster analysis of lon time course data. 

This analysis was performed on the genes differentially expressed between the WT and lon. The 

analysis revealed 4 clusters modulated in response to acid: cluster 1 and 2 were down-regulated, 

while cluster 3 and 4 were up-regulated after acid exposure. The functional annotation analysis 

revealed that flagellar assembly and ABC transporters were strongly repressed, while the ribosome 

encoding genes and the purine and pyrimidine metabolism were highly induced at pH 5.5. It was 

not possible to identify a trend of regulation for the metabolic pathways. 
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4.4 Discussion 

4.4.1 Acid adaptation in MG1655 is characterized by up-regulation of several 

aerobic enzymes and a considerable increase of amino acids 

In order to respond to stress conditions, all the microorganisms have developed 

adaptation mechanisms to facilitate survival. Although each environmental stress 

represents a specific challenge some aspects of stress response can be general.  The ability 

to adjust the energy balance is one of these features. In contrast with the response seen in 

the BW25113 strain, MG1655 showed an increased expression of the aerobic functions at 

pH 5.5. The result is surprising, since the two strains, which derive from the same ancestor, 

differ for few sites in the genome sequence (Baba et al., 2006, Hayashi et al., 2006).  

The results obtained from the time course data on the MG1655 strain did not show trends 

comparable to previous works in consideration of different environmental conditions. 

Carbon starvation and oxidative stress induced in E. coli, during logarithmic phase, the 

same profile of response: inactivation of the metabolic pathways involved in the process of 

the conservation of energy (Weber et al., 2005, Jozefczuk et al.). Most of the times, those 

stress conditions also involve the down-regulation of the aerobic functions genes, 

especially during oxidative stress (Chang et al., 1999) (Chang et al., 2002; Nystrom et al., 

2005). In my data, I have seen up-regulation of TCA cycle, glycolysis and oxidative 

phosphorylation, and consequent inhibition of the anaerobic components. Some features of 

acid response could be compared to other mechanisms of regulation seen in previous 

works. For instance, I have seen the down-regulation of the genes coding for the ribosome 

for the first 30 minutes of acid exposure (Figure 4.7), therefore a decrease of de-novo 

synthesis of proteins, which is typical of the stress response (Weber et al., 2005). 
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Moreover, the analysis performed on the metabolomics data showed the increase of some 

of the essential amino acids, an aspect in common with other works; it has been reported 

that the increase of the amino acid levels could be associated with protein degradation 

(Mandelstam, 1958). Any cause of stress for the cells requires new proteins to promptly 

respond to the new condition; therefore the accumulation of those amino acids could be 

associated to the cells requirements. In fact, after 30 minutes of exposure at pH 5.5, the 

ribosome genes were gradually up-regulated, therefore increasing the translational 

pathway, probably using the amino acids accumulated during acid response. Additionally, 

the genes coding for important chaperones differentially expressed in my data, were mostly 

up-regulated. The cells which are not in their physiological state require the chaperones for 

the correct folding of the stress response proteins but also for the disaggregation and 

reactivation of aggregated proteins (Liberek et al., 2008). The increase in amino acids was 

also found in previous works based on metabolomics data, one of them in particular was 

focused on different stress conditions. In this work the analysis was performed in heat, cold 

and oxidative stress conditions and during carbon starvation. The researchers found an 

increase of several essential amino acids, such as arginine, threonine, leucine, valine 

(Jozefzuck et al., 2010). This increase was attributed to the stress conditions, as increased 

activity of the cellular proteolytic activity.  The transporters, together with the biosynthesis 

pathways, are the easiest way to supply the cells with the amino acids; in my experiments 

E. coli MG1655 exhibited a decreased expression of the genes coding for the amino acid 

biosynthesis and transporters, except for the ones involved in mechanisms of acid 

resistance (i.e. GadC and AdiC). Furthermore, many amino acids metabolism pathways 

were not induced at pH 5.5. Consequently, most of the amino acids accumulated could 

probably be considered a result of protein degradation. The potential role of other amino 
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acids (such threonine, valine etc.), besides the known in acid response, could involve 

regulatory mechanisms of acid resistance. For example, it would be possible that other 

ARs, not described yet, could be involved. Moreover, the events of proteolysis happening 

inside the cells to increase the amino acid pools can require several proteases: one of those 

is known to have a role for the degradation of GadE (Heuveling et al., 2008).  

The increased expression of the genes encoding the major proteases in E. coli proved that 

those molecules are essential for stress responses (Gottesman, 1996). Furthermore, RpoS is 

stabilised when the cell enter into the stationary phase (Hengge, 2009) by the complex 

CplP/X (Takayanagi et al., 1994; Schweder et al., 1996) because of its short life.. At the 

beginning of the stationary phase, the short life rapidly increases to 30 minutes, therefore 

becoming more stable (Schweder et al., 1996).    It has been observed that the regulation at 

the beginning of the stationary phase of RpoS is exerted by the involvement of the RssB 

two-component system, which is likely to promote the activation of CplP/X (Hengge et al., 

2009). For all those reasons, the involvement of the proteases in acid response (or in 

general, for stress responses), is probably essential for the amino acid supply and for the 

stabilization of the RpoS stress factor. 

Another aspect to be considered is the reduction of the osmoprotectant glycine betaine. 

This molecule is known to be important for osmotic stress (Landfald and Strøm, 1986), 

from its precursor choline. In the previously considered strain, BW25113, I have seen that 

during acid adaptation the cells could experience situations similar to hypo-osmotic stress 

conditions.  However, the contribution of this osmolite at acid pHs is not known yet, 

further studies will be required for the comprehension of the overlapping of the two stress 

conditions. 
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4.4.2 Lon in control of acid resistance: only a GadE protease? 

 

Lon is one of the major proteases in E. coli and many microorganisms (Heuveling et al., 

2008), but is also an important mitochondrial protease in humans (Fu and Morkovitz, 

1998). Lon can degrade many transcription factors (Tsilibaris et al., 2006), but is not 

directly involved in the process of the stress factor degradation; however it has been seen 

that some of the RpoS downstream factors (i.e. GAD system regulators) could be degraded 

by Lon (Heuveling et al., 2008). The results obtained until now, with a microarray based 

approach, showed that in a lon context, E. coli MG1655 not only has a different 

transcriptomic state, but exhibited a stronger response to acid exposure (Figure 4.15). The 

changes caused by the lon mutation are extremely wide and involve a broad spectrum of 

variation in many pathways when compared to the wild type. Lon can directly degrade the 

GadE regulator; hence its role in acid response could be extremely important. 

Nevertheless, I have seen that the role of Lon is not restricted to a simple degradation of 

the transcription factors essential for acid response. Possibly, the protease could affect 

more regulators and more stress proteins, thus changing completely the molecular structure 

in the bacteria. Most of the changes happening in lon (when compared to the WT) 

involved all the energetic and translational pathways analysed until now (Figure 4.28). 



166 
 

 

Figure 4.28 Differences between the MG1655 strain and lon. 

Most of the metabolic pathways were up-regulated in lon when compared to the WT strain 

(red). However, many genes encoding anaerobic functions, such fumarate, formate and nitrate 

involving processes, were down-regulated in the mutant (green). 

 

The figure was obtained considering the most important metabolic and energetic pathways in E. 

coli and their regulation during acid adaptation in the mutant lon compared to the WT strain. It was 

unmistakable that most of the functions are up-regulated in the gene KO, except for the anaerobic 

respiration pathways. 

The aerobic pathways together with amino acid metabolism and biosynthesis were highly 

up-regulated when compared to the wild type, except for the function involved in the 

anaerobic respiration, which employs formate, fumarate and nitrate as final electron 

TCS

HK

Ribosome

Flagellar assembly

TCA cycle

PEP

Glycolysis / 

Gluconeogenesis

Pentose phosphate 

pathway
Pyrimidine metabolism

Purine metabolism

Pyruvate

metabolism Fatty acid biosynthesis

Val, Leu and Ile biosynthesis

Fatty acid metabolism

Val, Leu and Ile metabolism

Ascorbate, and aldarate metabolism

Alanine, aspartate and glutamate metabolism

Tyrosine metabolism

Arginine and proline metabolism

Alanine, aspartate and 
glutamate metabolism

Glyoxylate and 
dicarboxylate metabolism

Glyicine, serine and 
threonine metabolism

Oxidative 

phosphorylation

Anaerobic respiration

Formate

Fumarate

Nitrite

TMAO

Valine transport

Leucine transport

Ile transport

Alanine transport

D-Gln and D-Glu metabolism

Aspartate transport

Glutamate transport

Tyrosine transport

Arginine transport

Proline transport

Sugar transport 
(PTS system)

Glycine transport

Serine transport

Threonine transport

Chemotaxis

Starch and sucrose metabolism

Amino sugar and nucleotide 
metabolismFructose and mannose 

metabolism

Nitrogen metabolism

Nitrate assimilation

ABC 

transporters

Cell 
cycle

Peptidoglycan metabolism

P

RR

Cysteine and methionine metabolism

Histidine metabolism

Glycerolipid metabolism

Escherichia coli MG1655

lon strain-Significant SAM Strains

Lysine transport



167 
 

acceptors. Since the expression of the ARs significantly changed in response to the 

mutation, in fact was strongly acid induced, probably it is not enough to acknowledge Lon 

as a protease of the Gad system. My hypothesis is that Lon (with other proteases) has 

probably more targets than the ones known until now and probably some of those targets 

are essential regulators in E. coli. Thus, the control of the acid resistance genes could be 

not the only aspect which defines Lon as an acid resistance factor. 

 

4.5 Conclusions. 

 

This chapter studied MG1655 during acid adaptation. The regulation of the important 

cellular functions was much different when compared to the BW25113 strain. In the next 

chapter I will use two gene models for the identification of regulators potentially important 

for acid adaptation in this strain.  

  
 

 

 

 

 

 

 



168 
 

Chapter 5: Dynamical modelling of E. coli 

MG1655 acid response by using a reverse 

engineering approach 
 

5.1 Introduction 

In Chapter 3, I have described the application of ARACNE to unravel the regulatory 

interactions underlying transcriptional response of the E. coli strain BW25113 during acid 

adaptation. The approach relied on a compendium of microarray data generated using 

strains mutated in genes modulated during acid response. Although the strategy has been 

indeed very successful, it is based on observed gene-gene correlations across several 

steady state snapshots and therefore cannot reveal the dynamics of the regulatory events 

(Hecker et al., 2009). However, dynamical modelling of gene regulatory networks can be 

achieved with a number of methodologies (Ortega et al., 2008) and naturally it relies on the 

availability of high resolution time course datasets. Moreover, even though reverse 

engineering gene regulatory networks from gene expression data is effective, these 

methodologies may also be used to integrate data from different sources (i.e. 

transcriptomics, proteomics, metabolomics, physiology measurements and published 

literature) with better results in terms of understanding biologically relevant regulatory 

processes(Hecker et al., 2009, Gupta et al., 2011).  

Several approaches are currently used for inferring dynamical models of gene regulatory 

networks. These are information-theoretic approaches such as time-delay ARACNE 

(Zoppoli et al., 2010), Bayesian Networks (Perrin et al., 2003) and differential equations-

based methods, such as ODEs (De Jong et al., 2004). Even though “omics” technologies 
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allow measuring the expressions of tens of thousands of genes, proteins and metabolites in 

a single experiment, they cannot measure all the factors that contribute to the regulatory 

interactions. In order to overcome this problem other formalisms, such as state-space 

models (SSMs) can be used. These consider hidden variables, which model biological 

processes that have not been measured (Rangel et al., 2004). Unfortunately, these methods 

are not suitable to model a large number of variables, at least not with the number of time 

points that can be realistically measured with current technologies. 

In order to build a genome-level model for acid response there was a need of a 

methodology that could reliably infer networks with thousands of molecular components 

from a relatively low resolution time course. This was achieved by using a simplification 

of the methods originally developed in my group (Rangel et al., 2004), which was 

proposed by Hirose et al. (Hirose et al., 2008). This method can analyse time course data 

considering the aggregation of gene expression profiles and the temporal gene networks, at 

the module level. SSM have been used for statistical inference of transcriptional module-

based gene networks, applied on replicates of time course gene expression profiles (Hirose 

et al., 2008). The length of time course data is usually a limiting factor to infer gene 

regulatory networks. Hirose et al. proposed to explore genetic networks of transcriptional 

modules; the modules are sets of genes involved in the same pathway (Hirose et al., 2008). 

The model can identify potential transcriptional modules and map them into gene-level 

networks (Hirose et al., 2008). The assumption of the SSM is that the dynamic of observed 

data is regulated by the time evolution of few latent factors. The model is built on two 

matrices; one of them takes into account the relationships of genes, while the second one 

considers the hidden state vectors.  
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Here I describe the analysis of a model based on the SSM framework developed by 

Hirose (Hirose et al., 2008)integrating both transcriptional and metabolic response to acid 

adaptation. The conceptual integration of the dynamical model with an ARACNE network 

inferred from a large compendium of gene perturbation experiments (Faith et al., 2007) 

identified TCS regulators as the most upstream regulatory components. This hypothesis 

was successfully validated against EcID (Leon et al., 2009), a database for E. coli gene 

interactions.  

 

5.2 Materials and Methods 

5.2.1 Datasets for the analysis 

SSM model: the dataset considered was obtained from the time course experiment during 

acid conditions in the E. coli MG1655 strain, as described in Chapter 4. The time course 

consisted in 14 time points collected every 5 minutes during pH 5.5 exposure. 

Transcriptomic and metabolomics experiments were considered. Microarrays data were 

quantile normalised and de-noised by a) removing data where SD/mean was more than 0.9 

and b) removing data where maximum–minimum was less than 1.5. The noise level for 

each metabolomics NMR spectrum was estimated by dividing the spectrum into 32 regions 

and calculating the smallest bin SD for each region and multiplying this by 3. These results 

were used to de-noise the data. Data from metabolomics and transcriptomics were then 

combined. Normalised combined microarray and metabolomics data were input to 

Genespring GX 7.3.1 (Agilent Technologies, Santa Clara, CA, USA). Statistically 

significantly changing genes were found by 1-way ANOVA with a multiple testing 

correction for a false discovery rate (FDR) <0.05, and with Welch T-tests employing the 

same FDR. Fold change cut offs of 1.5-fold were additionally applied. A classification 
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algorithm was used to compare previous data with the current data; this employed the 

Support Vector Machines algorithm within Genespring with the Kernel Function 

Polynomial Dot Product (Order 3), a Diagonal Scaling Factor of 0, for all genes passing 

QC cut-offs in both experiments. Gene ontology (GO) analyses were carried out within 

Blast2GO employing the GOSSIP package (Williams et al., 2011). 

ARACNE model:  the dataset consisted of 907 new and previously published E. coli 

Affymetrix Antisense2 microarray expression profiles already normalised, collected under 

various conditions including pH changes, growth phases, antibiotics, heat shock, different 

media, varying oxygen concentrations, and numerous genetic perturbations (Faith et al., 

2008). The dataset was previously used for assessing the genome scale performance of the 

context likelihood of relatedness (CLR) algorithm (Faith et al., 2007). 

5.2.2 ARACNE gene inference 

 

The gene network from steady state data was obtained by using the software application 

ARACNE (Margolin et al., 2006 - b), considering a compendium of 907 Affymetrix arrays 

data representing (Faith et al., 2007). ARACNE is an algorithm used for the identification 

of molecular networks from observational data and is based on the mutual information 

(Margolin et al., 2006 - a). The algorithm is based on the assumption that the expression 

level of a gene can be considered as a random variable. The edges identified by the 

algorithm are described as irreducible statistical dependencies between gene expression 

profiles. The candidate interactions are identified by the estimation of pair wise gene 

expression profile mutual information, using the Gaussian Kernel estimator. The algorithm 

performs ranking of the gene expression profiles before estimating mutual information 

values. This step is required to decrease the arbitrary transformations in the data 
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processing. In order to eliminate non direct interactions the data processing inequality 

principle (DPI) was applied. When considering a triplet of interaction, the DPI can remove 

the edge with the smallest mutual information value.  

Significant interactions were defined by a P-value threshold of P<10
-18

. In order to 

eliminate non-direct interactions, I used the inequality principle as implemented in 

ARACNE with a DPI of 0.1 (Margolin et al., 2006 - b). The resulting network was 

visualized using the Cytoscape software application (Shannon et al., 2002). The network 

consisted of 4118 nodes and 17275 edges, with MI values between 0.064 and 0.675. The 

network was then further tresholded, considering MI values greater than 0.15, therefore 

obtaining a new matrix of 3113 nodes and 8503 edges. Selected hubs were validated by 

using the web based tool Hubba (Lin et al., 2008), with the Degree topology-based 

algorithm scoring method (Jeong et al., 2001). 

5.2.3 State Space Model 

 

In order to develop a genome-wide dynamical model of acid response a computational 

method was used, originally developed by Hirose and colleagues (Hirose et al., 2008). This 

method is able to infer genome-wide molecular networks   underlying complex biological 

processes. In order to overcome the complexity of reconstructing the interaction between 

thousands of molecular components this algorithm incorporate the concept of network 

modularization, where each module represents a number of genes with similar expression 

profiles.  

A general SSM is supported by the concept that the dynamical behaviour of the observed 

data is based on the time evolution of few hidden transcription factors. Previous proposed 

SSM were input-driven based, such as:  
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yn = Hxn + Ayn + wn 

xn = Fxn + Bxn + vn 

in which A captures the causal relationships between genes and B captures the influences 

of the genes on the hidden state vectors (Rangel et al., 2004; Beal et al., 2005). The input-

driven model not only considers gene expression profiles, but also concentrations of 

proteins or other factors. Therefore the model is more specific compared to a basic SSM. 

The derived network was estimated on the basis of this equation: 

yn = (HB+A)yn-1 + HFxn-1 + wn + Hvn 

However, since the temporal regulation is based on (HB+A), which is a likelihood 

estimation, as the Vector Autoregressive Model (VAR), when the number of the genes is 

much larger then time course data, A and B cannot be efficiently estimated. Therefore the 

Hirose method was not based on the input-driven model, but on a standard SSM: 

Yn = Hxn + wn  n  Nobs 

moreover the evolving time course is modelled following this equation 

Xn = Fxn-1 + vn  n  N 

The model considers a parameter estimation process for the evaluation of the state 

dimension, hence of the k modules of genes relevant to the temporal structure of gene 

expression (Hirose et al., 2008). The temporal structure of the modules was defined by the 

autoregressive coefficient matrix 

D
T ∧FD 
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which allows controlling the complexity of the system by selecting the dimensions of the 

state vector k. Since the method was based on replicated time-course data, it was possible 

to achieve highly efficient estimation of gene networks, by using permutation tests on the 

autoregressive coefficient matrix. The method can identify the temporal aggregations of 

the gene expression profiles and assemble them into large scale gene networks (Hirose et 

al., 2008).  

The model was developed by Dr Francesco Falciani and was performed on an integrated 

dataset of transcriptomic and metabolomics experiments collected during acid exposure 

time courses in E. coli MG1655. 10 modules were identified after fitting the model under 

the likelihood estimation parameter k = 5. The definition of the positive and negative 

modules is made on the basis of the ranking of the highest and lowest 100 genes in the 

estimated projection matrix. The temporal structure of the network was determined by the 

estimated coefficient matrix ψ, with 5% value for significance. The network consisted of 

1672 nodes and 438665 edges. The matrix ψ was then tresholded by selecting transcription 

factors of TCS and seven global regulators of E. coli (Martinez-Antonio and Collado-

Vides, 2003). First neighbours of the selected hubs were considered, therefore obtaining a 

network of 1174 nodes in total (Figure 5.1 and Table 5.3). Ten regulators were identified 

with the largest number of connections: creB, narL, dcuR, fis, ihfB, lrp, ompR, phoP, rstA 

and yehT. 

5.2.4 SSM Model validation 

 

EcID (Escherichia coli Interaction Database) was used for validation of the gene-gene 

interactions found in the SSM. It provides interactions based on the following sources: 

(metabolic pathways, protein complexes and regulatory information), KEGG (metabolic 
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pathways), MINT and IntAct (protein interactions), high-throughput pull-down 

experiments and potential interactions extracted from the literature using the web services 

associated with the iHOP text-mining system and various prediction methods based on 

genomic sequences, such phylogenetic profiles (Andres Leon et al., 2009). The database 

consists of 1384359 interactions, each of them annotated on the basis of the source of 

origin and classified by an assigned score, the AODE score, which gives a reliability 

measure associated with each connection.  

5.3 Results 

5.3.1 A SSM defines a temporal hierarchy of events linking transcriptional and 

metabolic response during acid adaptation 

 

The SSM model we developed summarizes the transcriptional and metabolic response of 

the E. coli MG1655 strain in five modules, each one with a positive and negative 

component, hence obtaining a total of 10 modules equal to the number of clusters 

previously seen in chapter 4 (Figure 5.1 and Figure 5.4.). 
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Figure 5.1 obtained from the SSM with the relative temporal structure. 

The SSM allowed the identification of 5 modules, each of them was characterised by two 

symmetrical transcriptional profiles: + modules in red, - modules in blue. The structure shows that 

the TCS were located in the top module, the cellular metabolism functions were instead in the 

bottom modules. Most of the ABC transporters were found in the module 1+ and 3+, amino acid 

metabolism in module 4-. The metabolites (underlined uppercase words) were not identified in the 

first two modules of the model. Sucrose and glutathione were located in modules 3+ and 4+ 

respectively, glycine betaine and ADP+ATP in module 5+. Module 5- exhibited most of the amino 

acids (valine, leucine and isoleucine), while threonine was observed in module 4-. 
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The model shows that transporters and regulatory molecules such as TFs and TCSs sit on 

the highest level of the hierarchy alongside genes encoding for flagellum and cell cycle 

proteins (module M1 and M2). The lower level modules (modules M3, M4 and M5) were 

all characterised by the presence of energy metabolism pathways and by the metabolites 

measured with NMR. More specifically, glutathione and threonine were in M3 and M4 

respectively and the majority of the amino acids, alongside with glycine betaine and 

ATP/ADP were represented in M5. This representation of the model somehow 

recapitulates a paradigm for response to external stimuli. TCSs can sense and transmit the 

signal to specific transcription factors, and these control the modulation of effector 

pathways such as energy metabolism and protein translation. Interestingly sucrose was 

found in the third module, which represents a rapidly decreasing profile. This is consistent 

with an earlier decrease in the expression of most of the ABC transporters (present in M1 

and M2), as well as glucose specific transporters (Chapter 4). We could observe a similar 

relationship between early transcriptional activity followed by late metabolite changes in 

the amino acid metabolism pathways (M4 and M5 respectively). 

 

5.3.2 Network inference reveals that TCS regulators coordinate the genome-wide 

response to environmental perturbations  

 

The SSM described in the previous paragraph represents a high level model of acid 

response in the E. coli MG1655 strain. Since our ultimate aim is to identify the most 

important regulatory components it is necessary to select genes and metabolites in order to 

generate a more detailed model.  
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In order to support the selection of key regulatory genes in stress response, I developed 

an ARACNE network model from a compendium of 907 Affymetrix arrays, representing 

the same response of the strain to a wide range of stresses (Faith et al., 2008) (Figure 5.2). 

In order to identify key regulators in this network, I identified the most highly connected 

genes (network hubs) (Table 5.1).  
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Table 5.1 Hubs identification in the MI based network with the web based tool Hubba-

Hubba (Lin et al., 2008). 

 

 

 

 

 

 

 

 

Name Score Rank Name Score Rank Name Score Rank

uvrY 1013 1 yebR 9 24 stfR 8 36

cpxR 990 2 ycdY 9 24 pdxB 8 36

yehT 708 3 yajC 9 24 yibN 8 36

rssB 623 4 wbbL 9 24 lolB 8 36

yfjR 550 5 ycgL 9 24 chbG 8 36

evgA 524 6 rzpR 9 24 dnaB 8 36

rcsB 480 7 pdxJ 9 24 yrhC 8 36

ompR 454 8 yifL 9 24 ompG 8 36

dpiB 399 9 grxC 9 24 minC 8 36

rstA 368 10 glf 9 24 yqiB 8 36

torR 366 11 uhpA 8 36 dapF 8 36

cusR 297 12 trkH 8 36 ydaW 8 36

phoB 295 13 dsbB 8 36 ydjA 7 63

fimZ 281 14 ychE 8 36 rhlB 7 63

phoP 228 15 yiaM 8 36 ydhP 7 63

narL 220 16 narV 8 36 slyA 7 63

creB 217 17 yniB 8 36 selD 7 63

dcuR 143 18 ycgM 8 36 prmB 7 63

narP 142 19 rfaD 8 36 rfbC 7 63

basR 81 20 pphA 8 36 ycbV 7 63

baeR 70 21 tatB 8 36 ynfB 7 63

qseB 46 22 trpE 8 36 ycgJ 7 63

tehB 10 23 hemD 8 36 hyfR 7 63

ftsY 9 24 yeaX 8 36 ddpD 7 63

yiaA 9 24 minD 8 36 gcvR 7 63
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The network was also graphically represented using a force driven layout and the top 

most highly connected hubs were labelled in red (Figure 5.2). 

 

Figure 5.2  Mutual Information based network. 

The network consisted of 3118 nodes, after performing a spring embed layout, I obtained the 

structure in figure. The nodes in red were the most highly connected genes, which also happened to 

be TCS regulators, except for the sensor of the DpiB (in orange). 
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Remarkably, I discovered that the top 22 gene hubs were either genes encoding for TCS 

regulators (21/22) or in case of dpiB a TCS sensor. Some of the nodes with the largest 

number of connections (uvrY and yehT) were putative TCS whose function in E. coli is yet 

largely uncharacterized. 

In order to generate hypotheses on the biological processes controlled by each TCS, I 

performed a functional annotation analysis for the neighbours of each hub. Interestingly 

most of the energy metabolism pathways (both aerobic and anaerobic) were highly 

connected to ompR, rcsB, cpxR, uvrY and yehT. Consistent with what was reported in the 

literature we also found that a regulator of central carbon metabolism, uvrY, was 

characterized by the largest number of connections (1013), with genes involved in energy 

metabolism, ribosome and cell cycle (Table 5.2).  
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Table 5.2 Functional annotation analysis of ARACNE hub neighbours. 

Functional annotation analysis of cpxR neighbours 

Category Term Count p-value Benjamini 

KEGG Oxidative phosphorylation 28 1.10E-26 1.80E-23 

GO_BP aerobic respiration 22 8.80E-08 2.40E-06 

GO_BP carbohydrate biosynthetic process 79 8.40E-20 3.20E-17 

KEGG Aminoacyl-tRNA biosynthesis 19 1.90E-18 3.90E-16 

GO_BP anaerobic respiration 35 7.30E-16 9.80E-14 

GO_BP cell cycle 26 5.00E-10 2.00E-08 

GO_BP cell division 25 3.10E-07 6.90E-06 

KEGG Purine metabolism 31 4.80E-19 1.30E-16 

KEGG Pyrimidine metabolism 15 1.20E-07 3.00E-06 

KEGG Ribosome 17 3.10E-09 1.20E-07 

KEGG Glycolysis / Gluconeogenesis 18 4.30E-13 2.40E-11 

KEGG Fatty acid biosynthesis 9 1.30E-08 4.40E-07 

KEGG Glutathione metabolism 9 5.10E-07 1.00E-05 

KEGG Pentose phosphate pathway 14 4.30E-10 1.80E-08 

KEGG Two-component system 25 1.90E-08 5.90E-07 

KEGG Amino sugar and nucleotide sugar metabolism 14 1.00E-07 2.60E-06 

KEGG Fructose and mannose metabolism 12 3.50E-07 7.50E-06 

KEGG Protein export 10 2.60E-08 7.90E-07 

KEGG Bacterial secretion system 10 2.20E-06 3.60E-05 

KEGG Pyruvate metabolism 13 3.50E-07 7.40E-06 

KEGG RNA degradation 8 3.00E-06 4.60E-05 

Functional annotation analysis of ompR neighbours 

Category Term Count p-value Benjamini 

KEGG Ribosome 31 1.40E-32 1.80E-29 

KEGG Protein export 13 1.80E-15 1.80E-13 

KEGG Bacterial secretion system 14 4.30E-13 3.00E-11 

KEGG Pyrimidine metabolism 14 2.20E-09 1.10E-07 

KEGG Purine metabolism 14 4.50E-07 1.60E-05 

GO_BP cell cycle 12 1.80E-04 4.10E-03 

GO_BP cell division 13 3.90E-04 7.60E-03 

KEGG Two-component system 16 7.50E-06 1.90E-04 

KEGG Pentose phosphate pathway 7 1.40E-04 2.40E-03 

KEGG DNA replication 5 1.00E-03 1.30E-02 

KEGG ABC transporters 19 6.10E-06 1.60E-04 

GO_BP anaerobic respiration 13 1.10E-04 2.90E-03 

KEGG Lipopolysaccharide biosynthesis 7 1.10E-04 1.90E-03 

KEGG Amino sugar and nucleotide sugar metabolism 10 4.30E-06 1.20E-04 

Functional annotation analysis of rcsB neighbours 

Category Term Count p-value Benjamini 
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GO_BP carboxylic acid biosynthetic process 41 5.20E-10 1.50E-07 

GO_BP cell cycle 15 7.80E-07 3.40E-05 

KEGG Amino sugar and nucleotide sugar metabolism 12 7.10E-09 9.90E-07 

KEGG Glycolysis / Gluconeogenesis 12 6.60E-10 2.10E-07 

KEGG Glycine, serine and threonine metabolism 10 4.20E-08 3.70E-06 

KEGG Vitamin B6 metabolism 6 1.10E-06 4.40E-05 

KEGG Fructose and mannose metabolism 9 1.10E-06 4.30E-05 

KEGG Bacterial secretion system 12 1.70E-11 2.20E-08 

KEGG Protein export 7 2.30E-06 7.80E-05 

KEGG 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 8 3.40E-07 1.60E-05 

KEGG Oxidative phosphorylation 8 2.10E-05 5.80E-04 

GO_BP anaerobic respiration 12 2.90E-04 4.90E-03 

KEGG Lysine biosynthesis 5 3.20E-04 5.90E-03 

KEGG Glycerophospholipid metabolism 6 1.80E-04 3.60E-03 

KEGG Cysteine and methionine metabolism 6 4.90E-04 8.10E-03 

KEGG Two-component system 13 8.40E-05 1.90E-03 

KEGG Nitrogen metabolism 7 2.10E-04 4.20E-03 

KEGG Purine metabolism 9 6.10E-04 9.30E-03 

KEGG Pyrimidine metabolism 7 1.80E-03 2.30E-02 

KEGG Pentose phosphate pathway 6 8.20E-04 1.20E-02 

KEGG Alanine, aspartate and glutamate metabolism 5 4.30E-03 4.70E-02 

Functional annotation analysis of uvrY neighbours 

Category Term Count p-value Benjamini 

KEGG Ribosome 51 9.50E-57 1.40E-53 

SP_PIR cell cycle 30 3.20E-22 4.80E-21 

KEGG Lipopolysaccharide biosynthesis 18 5.50E-15 2.50E-13 

KEGG Purine metabolism 32 1.20E-17 1.10E-15 

KEGG Pyrimidine metabolism 26 1.20E-17 1.10E-15 

KEGG Aminoacyl-tRNA biosynthesis 16 6.40E-13 2.20E-11 

KEGG Fatty acid biosynthesis 11 3.10E-11 8.80E-10 

KEGG Bacterial secretion system 18 3.00E-14 1.30E-12 

KEGG Protein export 14 1.90E-13 7.30E-12 

KEGG Oxidative phosphorylation 23 2.70E-17 2.20E-15 

GO_BP anaerobic respiration 28 7.40E-10 2.90E-08 

GO_BP aerobic respiration 17 1.90E-04 2.60E-03 

KEGG Homologous recombination 13 1.30E-08 3.30E-07 

KEGG Peptidoglycan biosynthesis 7 1.10E-03 9.40E-03 

KEGG Pentose and glucuronate interconversions 11 3.70E-06 6.60E-05 

KEGG Arginine and proline metabolism 15 2.20E-08 5.30E-07 

KEGG Pentose phosphate pathway 11 5.20E-06 8.90E-05 

KEGG Glyoxylate and dicarboxylate metabolism 10 2.00E-04 2.10E-03 

KEGG ABC transporters 28 4.20E-06 7.20E-05 

KEGG Glycolysis / Gluconeogenesis 12 4.60E-06 8.00E-05 

http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0007049
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KEGG Pyruvate metabolism 12 3.80E-05 5.20E-04 

KEGG Two-component system 21 9.60E-05 1.10E-03 

KEGG Amino sugar and nucleotide sugar metabolism 12 3.80E-05 5.20E-04 

Functional annotation analysis of yehT neighbours 

Category Term Count p-value Benjamini 

KEGG Oxidative phosphorylation 18 1.10E-15 1.80E-12 

GO_BP aerobic respiration 27 1.10E-14 8.40E-12 

GO_BP anaerobic respiration 26 5.20E-12 7.70E-10 

KEGG Amino sugar and nucleotide sugar metabolism 14 4.90E-09 3.10E-07 

KEGG ABC transporters 32 5.80E-13 1.90E-10 

KEGG Flagellar assembly 14 2.90E-10 3.50E-08 

KEGG 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 9 5.30E-07 2.20E-05 

KEGG Alanine, aspartate and glutamate metabolism 10 5.50E-07 2.20E-05 

KEGG Nitrogen metabolism 9 3.10E-05 7.70E-04 

KEGG Pyrimidine metabolism 13 3.90E-07 1.70E-05 

KEGG Glycine, serine and threonine metabolism 10 1.90E-06 6.80E-05 

KEGG Aminoacyl-tRNA biosynthesis 7 1.70E-04 3.40E-03 

KEGG Arginine and proline metabolism 10 1.80E-05 5.00E-04 

KEGG Two-component system 16 8.10E-05 1.80E-03 

KEGG Fatty acid biosynthesis 5 8.00E-04 1.20E-02 

KEGG Fructose and mannose metabolism 10 9.20E-06 2.70E-04 

KEGG Phosphotransferase system (PTS) 8 8.00E-04 1.20E-02 

KEGG Purine metabolism 12 1.80E-04 3.60E-03 

KEGG Pyruvate metabolism 10 3.30E-05 8.10E-04 
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Table 5.3 TCS regulators and connected sensors. 

Connections between TCS regulators and sensors (in red) were detected in ARACNE. The nodes 

basR, dcuR, narP, ompR, phoP, qseB, rcsB and yehT were all presenting interactions with their 

corresponding sensors. yehT showed the highest number of interactions with TCS sensors. 

 

 

 

Half of the TCS regulators (BasR, CpxR, DcuR, NarP, OmpR, PhoB, PhoP, QseB, RcsB, 

RstA and YehT) were also directly connected to genes encoding for their partner sensor 

proteins. This observation is consistent with the literature where several studies (Wulf et 

al., 2000; Groisman, 2001) report that regulators are able to modulate the expression of 

their sensor components. Interestingly, the uncharacterized yehT gene was directly 

connected to 6 TCS sensors suggesting that it could be involved in the coordination of 

other TCS (Table 5.3).  

 

 Tresholded (0.15 > MI > 0.6)

Regulator Sensors neighbours

baeR rcsC, rcsD

basR basS

cpxR phoR, arcB, glnL, cheA, cpxA

creB dcuS, arcB

cusR rcsC

dcuR dcuS

dpiB cheY, narX, narQ

evgA ypdA, dcuS, arcB, yedW

fimZ qseC

kdpE

narL narX

narP narX

ompR envZ, dcuS, torS

phoB  phoR , uhpB

phoP phoQ , rcsD

qseB qseC

rcsB rcsC , qseC, arcB,  rcsD

rssB yfhK, rcsC, kdpD

rstA rstB , phoQ, rcsC

torR cheY, cheB, kdpD, cheA

uhpA

uvrY narX, yedV, yedW

yehT cheA, narX, rcsC,  yehU , dcuS, narQ

yfjR arcB, narQ
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5.3.3 A TCS-centric model of acid response  

 

 Since the ARACNE model supported the hypothesis that TCS regulators are likely to be 

the highest level of the hierarchy, I extracted from the SSM model a sub-graph that 

represented the neighbourhood of the TCS regulators. I obtained a network of 1174 nodes 

and 4946 edges (Figure 5.3).  

 

 

Figure 5.3 Network obtained from the selection of the TCS regulators and master 

regulators. 

The network was obtained from the estimated coefficient matrix ψ after selection of the main 

regulators of TCS (in red) and the master regulators in E. coli (in green).  
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In order to identify the regulators that are more likely to control the main functions we 

knew are modulated during acid adaptation, I have performed a functional annotation 

analysis on the neighbours of each seed hub in the network (Table 5.4).  The analysis 

revealed that TCS regulators ompR, yehT, dcuR, rstA and phoP have the highest number of 

connections to the genes coding for aerobic and anaerobic respiration pathways, amino 

acid metabolism,  sugar metabolism and TCS. 

Table 5.4 Functional annotation of the main hubs of the SSM network. 

Functional annotation rstA neighbours 

Category Term Count p-value Benjamini 

GOTERM_BP_FAT anaerobic respiration 42 1.70E-36 3.30E-34 

GOTERM_BP_FAT oxidation reduction 78 2.80E-11 1.80E-09 

KEGG_PATHWAY Citrate cycle (TCA cycle) 19 1.80E-23 2.30E-20 

KEGG_PATHWAY Oxidative phosphorylation 16 3.20E-15 3.10E-13 

KEGG_PATHWAY Phosphotransferase system (PTS) 12 8.20E-10 4.30E-08 

KEGG_PATHWAY Fructose and mannose metabolism 10 2.60E-08 8.70E-07 

KEGG_PATHWAY Amino sugar and nucleotide sugar metabolism 7 2.60E-04 2.80E-03 

KEGG_PATHWAY Pyruvate metabolism 11 1.40E-08 5.20E-07 

KEGG_PATHWAY Nitrogen metabolism 8 7.60E-06 1.30E-04 

KEGG_PATHWAY Alanine, aspartate and glutamate metabolism 7 2.20E-05 3.40E-04 

KEGG_PATHWAY Two-component system 14 3.20E-06 6.40E-05 

KEGG_PATHWAY ABC transporters 15 3.10E-05 4.50E-04 

KEGG_PATHWAY Glycerolipid metabolism 4 1.20E-03 1.10E-02 

Functional annotation dcuR neighbours 

Category Term Count p-value Benjamini 

GOTERM_BP_FAT anaerobic respiration 43 8.00E-32 1.80E-29 

KEGG_PATHWAY Two-component system 29 1.60E-17 2.40E-14 

KEGG_PATHWAY Ribosome 16 2.80E-11 1.50E-09 

KEGG_PATHWAY Citrate cycle (TCA cycle) 15 1.70E-14 2.00E-12 

GOTERM_BP_FAT fermentation 16 8.60E-14 1.20E-11 

KEGG_PATHWAY Oxidative phosphorylation 14 9.70E-11 4.40E-09 

KEGG_PATHWAY Fructose and mannose metabolism 11 2.50E-08 7.80E-07 

KEGG_PATHWAY Amino sugar and nucleotide sugar metabolism 10 4.90E-06 8.90E-05 

KEGG_PATHWAY Phosphotransferase system (PTS) 10 8.70E-06 1.40E-04 

KEGG_PATHWAY Purine metabolism 13 2.30E-06 4.80E-05 

KEGG_PATHWAY Flagellar assembly 10 8.00E-07 1.80E-05 

KEGG_PATHWAY ABC transporters 18 2.30E-05 3.40E-04 

KEGG_PATHWAY Glycerolipid metabolism 5 1.50E-04 1.80E-03 

KEGG_PATHWAY Glycine, serine and threonine metabolism 7 2.70E-04 3.20E-03 

KEGG_PATHWAY Bacterial chemotaxis 6 2.50E-04 3.10E-03 
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KEGG_PATHWAY Pyruvate metabolism 9 2.40E-05 3.60E-04 

KEGG_PATHWAY Nitrogen metabolism 9 2.60E-06 5.20E-05 

KEGG_PATHWAY Alanine, aspartate and glutamate metabolism 4 4.60E-02 2.90E-01 

KEGG_PATHWAY Glycolysis / Gluconeogenesis 7 6.40E-04 6.50E-03 

KEGG_PATHWAY Galactose metabolism 6 2.10E-03 2.00E-02 

KEGG_PATHWAY Glycerophospholipid metabolism 5 3.80E-03 3.30E-02 

      

Functional annotation yehT neighbours 

Category Term Count p-value Benjamini 

GOTERM_BP_FAT anaerobic respiration 33 6.70E-26 1.80E-23 

GOTERM_BP_FAT carbohydrate catabolic process 53 9.90E-23 1.10E-20 

KEGG_PATHWAY Glycolysis / Gluconeogenesis 11 1.80E-09 1.00E-07 

KEGG_PATHWAY Citrate cycle (TCA cycle) 14 2.30E-15 2.50E-12 

GOTERM_BP_FAT aerobic respiration 22 5.10E-15 4.60E-13 

KEGG_PATHWAY Oxidative phosphorylation 10 9.10E-08 2.20E-06 

KEGG_PATHWAY ABC transporters 18 1.40E-07 3.10E-06 

KEGG_PATHWAY Phosphotransferase system (PTS) 13 2.00E-11 2.10E-09 

KEGG_PATHWAY Amino sugar and nucleotide sugar metabolism 8 1.80E-05 2.50E-04 

KEGG_PATHWAY Two-component system 16 3.40E-08 1.10E-06 

KEGG_PATHWAY Alanine, aspartate and glutamate metabolism 10 2.00E-09 1.10E-07 

KEGG_PATHWAY Nitrogen metabolism 6 4.00E-04 4.00E-03 

KEGG_PATHWAY Pyruvate metabolism 10 1.10E-07 2.70E-06 

KEGG_PATHWAY Fructose and mannose metabolism 7 5.10E-05 6.20E-04 

KEGG_PATHWAY Cysteine and methionine metabolism 6 2.00E-04 2.30E-03 

KEGG_PATHWAY Glutathione metabolism 5 2.70E-04 2.90E-03 

KEGG_PATHWAY Pentose phosphate pathway 7 1.90E-05 2.60E-04 

KEGG_PATHWAY Lysine degradation 4 6.80E-04 6.40E-03 

KEGG_PATHWAY Arginine and proline metabolism 6 1.20E-03 1.10E-02 

KEGG_PATHWAY Glycine, serine and threonine metabolism 5 3.70E-03 2.90E-02 

Functional annotation ompR neighbours 

Category Term Count p-value Benjamini 

GOTERM_BP_FAT carbohydrate catabolic process 32 4.70E-15 1.90E-12 

KEGG_PATHWAY Alanine, aspartate and glutamate metabolism 7 3.00E-07 2.00E-05 

GOTERM_BP_FAT anaerobic respiration 12 2.00E-07 2.00E-05 

KEGG_PATHWAY Citrate cycle (TCA cycle) 5 2.00E-04 3.70E-03 

KEGG_PATHWAY Phosphotransferase system (PTS) 9 8.40E-09 6.60E-06 

KEGG_PATHWAY Fructose and mannose metabolism 6 2.30E-05 7.20E-04 

KEGG_PATHWAY Glycolysis / Gluconeogenesis 6 3.60E-05 9.90E-04 

KEGG_PATHWAY ABC transporters 10 9.30E-05 2.20E-03 

GOTERM_BP_FAT aerobic respiration 11 3.50E-07 2.10E-05 

KEGG_PATHWAY Amino sugar and nucleotide sugar metabolism 7 4.10E-06 1.70E-04 

KEGG_PATHWAY Fructose and mannose metabolism 6 2.30E-05 7.20E-04 
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KEGG_PATHWAY Arginine and proline metabolism 5 7.50E-04 1.00E-02 

KEGG_PATHWAY Pentose phosphate pathway 5 2.00E-04 3.70E-03 

KEGG_PATHWAY Glyoxylate and dicarboxylate metabolism 4 3.90E-03 4.10E-02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Functional annotation phoP neighbours 

Category Term Count p-value Benjamini 

KEGG_PATHWAY Two-component system 16 4.10E-10 8.60E-08 

KEGG_PATHWAY Glycine, serine and threonine metabolism 8 3.20E-07 1.30E-05 

GOTERM_BP_FAT carbohydrate catabolic process 34 7.00E-13 3.30E-10 

KEGG_PATHWAY Alanine, aspartate and glutamate metabolism 10 1.30E-10 1.10E-07 

KEGG_PATHWAY Nitrogen metabolism 6 9.60E-05 1.70E-03 

KEGG_PATHWAY Glyoxylate and dicarboxylate metabolism 8 5.10E-07 1.80E-05 

KEGG_PATHWAY Starch and sucrose metabolism 8 4.00E-07 1.50E-05 

KEGG_PATHWAY Citrate cycle (TCA cycle) 5 8.10E-04 9.60E-03 

KEGG_PATHWAY Arginine and proline metabolism 6 2.90E-04 4.20E-03 

KEGG_PATHWAY Glycolysis / Gluconeogenesis 7 1.50E-05 3.60E-04 

KEGG_PATHWAY Pentose phosphate pathway 6 5.70E-05 1.20E-03 

KEGG_PATHWAY Pyruvate metabolism 6 4.70E-04 6.20E-03 

KEGG_PATHWAY ABC transporters 12 7.00E-05 1.40E-03 

KEGG_PATHWAY Amino sugar and nucleotide sugar metabolism 6 3.70E-04 5.10E-03 
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I therefore set to further simplify the networks focussing on the neighbourhoods of these 

genes. Figure 5.4 shows the hierarchical view of such a network. 

 

Figure 5.4 Hierarchical structure obtained by the selection of TCS regulators and sensors. 

OmpR and CreB are on the top of the hierarchy controlling the TCS regulatory structure. The 

central role of DcuR is also shown, on the basis of the high number of connections with most of the 

TCS found in the network. The edges are based on the estimated coefficient: in green a negative 

value and red a positive value. 

 

OmpR and CreB represent the highest level of the regulatory hierarchy. Lrp and Fis are 

important regulators in E. coli, additionally they belong to another important category for 

microorganisms: One Component Systems, OCS. I have performed a functional annotation 

analysis for the neighbours of these regulators and I have seen that lrp was highly 

connected to the genes encoding translational and amino acids biosynthesis pathways, 
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while fis neighbours were mostly involved in energetic and metabolic pathways (Table 

5.5). 

Table 5.5 Functional annotation analysis of fis and lrp neighbours found in the SSM. 

Functional annotation of lrp neighbours 

Category Term Count p-value Benjamini 

KEGG_PATHWAY Two-component system 32 3.90E-18 5.80E-15 

GOTERM_BP_FAT anaerobic respiration 28 3.90E-13 4.30E-11 

KEGG_PATHWAY Ribosome 19 2.40E-13 1.70E-11 

KEGG_PATHWAY Alanine, aspartate and glutamate metabolism 15 7.50E-14 6.60E-12 

KEGG_PATHWAY Nitrogen metabolism 14 1.90E-11 8.80E-10 

KEGG_PATHWAY Purine metabolism 20 1.70E-11 8.00E-10 

KEGG_PATHWAY Starch and sucrose metabolism 12 8.60E-09 2.00E-07 

KEGG_PATHWAY Glyoxylate and dicarboxylate metabolism 13 8.40E-10 2.40E-08 

KEGG_PATHWAY ABC transporters 28 2.30E-10 7.70E-09 

KEGG_PATHWAY Glycine, serine and threonine metabolism 10 1.00E-06 1.80E-05 

KEGG_PATHWAY Arginine and proline metabolism 12 2.10E-07 3.80E-06 

KEGG_PATHWAY Flagellar assembly 12 3.50E-08 7.50E-07 

KEGG_PATHWAY Pyruvate metabolism 11 2.50E-06 3.90E-05 

KEGG_PATHWAY Cysteine and methionine metabolism 9 3.60E-06 5.50E-05 

KEGG_PATHWAY Bacterial chemotaxis 7 5.80E-05 7.40E-04 

KEGG_PATHWAY 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 7 5.80E-05 7.40E-04 

KEGG_PATHWAY Pyrimidine metabolism 10 9.70E-05 1.20E-03 

KEGG_PATHWAY 
Amino sugar and nucleotide sugar 

metabolism 10 2.40E-05 3.20E-04 

Functional annotation of fis neighbours 

Category Term Count p-value Benjamini 

GOTERM_BP_FAT anaerobic respiration 19 9.50E-10 8.40E-08 

GOTERM_BP_FAT aerobic respiration 17 3.80E-09 2.90E-07 

KEGG_PATHWAY Two-component system 18 3.70E-09 5.30E-07 

KEGG_PATHWAY Alanine, aspartate and glutamate metabolism 14 7.30E-15 8.40E-12 

KEGG_PATHWAY Nitrogen metabolism 8 6.20E-06 1.10E-04 

KEGG_PATHWAY Arginine and proline metabolism 10 2.30E-07 7.20E-06 

KEGG_PATHWAY ABC transporters 20 2.60E-08 1.80E-06 

KEGG_PATHWAY Glycine, serine and threonine metabolism 8 6.20E-06 1.10E-04 

KEGG_PATHWAY Starch and sucrose metabolism 10 3.40E-08 2.10E-06 

KEGG_PATHWAY Glyoxylate and dicarboxylate metabolism 10 4.60E-08 2.40E-06 

KEGG_PATHWAY Citrate cycle (TCA cycle) 6 4.50E-04 4.90E-03 

KEGG_PATHWAY Ribosome 9 5.30E-05 7.20E-04 

KEGG_PATHWAY Purine metabolism 11 1.10E-05 1.70E-04 

KEGG_PATHWAY Cysteine and methionine metabolism 9 1.30E-07 4.80E-06 

KEGG_PATHWAY Glutathione metabolism 5 4.50E-04 4.90E-03 
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KEGG_PATHWAY Pyruvate metabolism 7 4.90E-04 5.20E-03 

KEGG_PATHWAY Pentose phosphate pathway 7 4.00E-05 5.60E-04 

KEGG_PATHWAY Glycolysis / Gluconeogenesis 7 1.80E-04 2.10E-03 

 

 

The node lrp was also connected to 13 TCS encoding genes (arcB, phoQ, narL, cusR, 

dcuR, cheW, cheB, phoP, creB, cheA, baeR, uhpT and rstA). This regulator belongs to an 

important group of transcription factors in E. coli (Martinez-Antonio and Collado-Vides, 

2003), which are in control of several functions and stress responses. These global 

regulators were described as the most connected components for several regulatory 

mechanisms, based on experimental validation from RegulonDB (Martinez-Antonio and 

Collado-Vides, 2003). 

In order to evaluate the reliability of the connections found in the SSM model, a different 

database was considered, the EcID database (Andres Leon et al., 2009), which considered 

EcoCyc and KEGG validated interactions, in combination with results obtained from 

various prediction methods. 

 

5.3.4 SSM validation through the EcID database 

 

The TCS centric SSM suggested that ompR, dcuR and yehT may be the regulators of the 

transcriptional response to acid adaptation in the MG1655 strain.  

In order to validate this hypothesis I have used “The Escherichia coli Integration 

Database” (EcID) (Andres Leon et al., 2009), a large database of gene-gene interactions 

derived from several sources, such as EcoCyc (Keseler et al., 2009), KEGG (Kanehisa et 

al., 2008) and IntAct (Aranda et al., 2010).  
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The intersection between the EcID database and the SSM matrix consisted of a network 

of approximately 600 genes. The edges of the network were supported by experimental 

evidence (high-throughput experiments, EcoCyc TF co-regulators and KEGG pathways), 

but also by phylogenetic profiles. In order to evaluate the validated interactions between 

the TCS regulators and their target genes, confirmed in the EcID database, I have 

performed a functional annotation analysis of the TCS targets. As shown in figure 5.5, 

OmpR targets, validated by EcoCyc interactions and high throughput experiments, were 

involved in aerobic respiration pathways, amino acid and sugar metabolism and 

dicarboxylate metabolism. DcuR was found to share some of the aerobic functions with 

OmpR, but the rest of the targets were involved in nitrate respiration and anaerobic 

respiration pathways, supported by phylogenetic profiles. 
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Figure 5.5 EcID based network (Andres Leon et al. 2009). 

The network was obtained by selecting the potential relevant regulator of acid response in the 

SSM and considering the functions enriched by the genes associated to these regulators, which 

connections are based on experimental evidence, modelling and knowledge on interactions (Andres 

Leon et al., 2009). The edges overlapping with the SSM and ARACNE networks were also 

considered. 

 

In the network it was not possible to find many validated connections for YehT. This is 

not surprising since this regulator is still uncharacterized. The global regulator CreB was 

also found connected to anaerobic respiration pathways and nitrogen metabolism, which 

interactions were validated by Ihop database and phylogenetic profiles. In the network in 

figure I have also considered the master regulators Lrp, Fis and IhfB, in green, since they 
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SSM and ARACNE
Ecocyc transcription factors co-regulated
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are known as master regulators in E. coli(Martinez-Antonio and Collado-Vides, 2003). All 

the connections seen for Lrp and IhfB were confirmed by experimental validation, while 

the connection with Fis and TCS was based on phylogenetic profiles evidence.  

5.4 Discussion 

5.4.1 A model linking TCS regulators to genome wide environmental stress response 

 

TCS are known to be important component for microorganisms, because of their ability 

to sense and activate the cascade of transcriptional events allowing the cells to respond to 

external stimuli. TCS are sophisticated signalling systems which design has been adapted 

and integrated into a large variety of cellular circuits (Stock et al., 2000). Some TCS 

interactions are based on branched pathways, in which for example one sensor of the TCS 

can phosphorylate two different regulators, such the CheA-CheB/CheY TCS (Kirby, 

2009). Moreover, events of cross-talking and cross-regulation via auxiliary proteins can 

characterise the responses to several stimuli (Goulian, 2010). However, little is known 

about the ability to integrate the stimuli into the complex E. coli regulatory network. 

The results obtained from the ARACNE network were unexpected since a previous a 

study performed on the same dataset using a different gene inference approach (CLR) 

(Faith et al., 2007) failed to reveal this emerging property. Similarly to ARACNE, the CLR 

algorithm uses mutual information to estimate gene-to-gene connections. However, the 

model developed by Faith et al. was based on TFs present in RegulonDB rather than 

including every gene in the dataset. Moreover, in the ARACNE network I developed 

indirect connections were eliminated using the inequality principle. It is possible that these 

differences may explain why other groups before have not reported this finding. 
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Another important aspect to consider to fully understand the importance of our finding is 

the model of transcriptional regulation that emerges from the analyses of RegulonDB 

(Gama-Castro et al., 2011), a database based on experimentally validated transcription 

factor-target interactions (Figure 5.6). 

 

 

Figure 5.6 RegulonDB network showing the hierarchy behind the transcriptional regulation 

mechanism in E. coli (Martinez-Vides, 2003). 

 

 

On the basis of this network, the hierarchy of gene regulation in E. coli is based on the 

action of seven E. coli master regulators (ArcA, Fnr, Fis, Crp, IHF, Lrp and Hns), which 

are located on the top of the structure in Figure 5.6. The TCS regulators were all found on 

the second level of the hierarchical structure, with all the relative targets downstream. Our 

model is therefore more representative of the hypothetical role TCS should have 

considering that they are able to directly sense change in the environment and signal this 
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change to the intracellular molecular machinery. My hypothesis relies on the central role of 

TCS, which could be the main factors underling the response to a stress condition. As a 

consequence, global regulators can be activated and modulates their targets, in dependence 

of the external and internal stimuli (Figure 5.7). 

 

   

Figure 5.7 Sensing stimuli by E. coli. 

OCS (in blue) are major regulators which allow the modulation of several functions in E. coli, 

following changes in the cytoplasmic environment. TCS (HK in green and RR in red), directly 

evolved from OCS (Wuichet et al., 2010), can sense the external stimuli and therefore activate the 

canonical events cascade. The regulation of the main cellular functions could not be attributed only 

to one or the other molecule, but each of them can give its contribution for maintaining the cellular 

physiology. 

 

The SSM model identified experimentally validated interactions between Lrp and TCS. 

The Leucine Responsive regulatory Protein is one of the global regulators of E. coli, which 

could be potentially activated by TCS for activating the regulatory cascade of events. 

Stress responses require a fine mechanism of regulation, which is based on the 

cooperation of several components. The ability to respond to environmental changes is also 
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Environmental stimuli
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dependent on how the microorganisms can adapt to those changes. Since TCS are 

primarily involved in sensing the external stimuli, they can also be considered important 

components of the adaptive responses to stress conditions. The ARACNE model could 

identify several TCS regulators potentially involved in detecting stimuli; hence, the model 

could be used as a platform for mapping transcriptional regulations in different 

environmental conditions. 

 

5.4.2 OmpR, DcuR and YehT are the key regulators of the response of E. coli 

MG1655 to acid stress  

 

During acid exposure, the inner membrane of E. coli helps to avoid further acidification 

of the cytoplasm (Foster, 2004). The membrane has in principle another important role: it 

senses change and triggers the resistance regulatory mechanism via TCSs.  

Previous studies have demonstrated that cytoplasmic sensors could respond to changes in 

internal pH, by cooperating with systems on the membrane, involved in sensing external 

pH changes (Slonczewski et al., 1987). Between the pH sensing components, some TCSs 

are able to detect external pH or cytoplasmic pH(Krulwich et al., 2011). In H. pylori, for 

example, the TCS ArsRS probably responds to cytoplasmic pH changes (Casey et al., 

2010). Other TCSs detect changes that can possibly be anticipatory to a change in pH. For 

example, in E. coli the reduction of trimethylamine N‑oxide (TMAO) forms 

trimethylamine, which can alkalinize the cytoplasm. The TCS TorSR senses TMAO and 

induces the tryptophanase TnaA, which produces acid to counteract the cytoplasmic 

alkalinisation (Padan et al., 2005). Considering acid response, I have previously described 
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the TCS involved in this mechanism: EvgA/EvgS and PhoP/PhoQ (Eguchi et al., 2007; 

Eguchi et al., 2011).  

Sensing external stimuli can involve also events of cross-talking within TCS. The 

mechanism of action of a TCS is based on the molecular specificity with the interacting 

domains in the histidine kinase and cognate response regulator (Laub and Goulian, 2007; 

Skerker et al., 2008). When those domains are constituted by similar sequences in the TCS, 

the cross-talking and phosphorelay events can happen in couples of different TCS, such the 

case of EnvZ/OmpR and CpxRA (Siryaporn and Goulian, 2008).  

The gene regulatory hierarchical structure from the SSM model identified several 

connections between TCS (sensors and regulators), which could underlie potential cross-

talking regulatory events during acid stress conditions. OmpR and CreB were located on 

the top of the hierarchical structure, which led to the idea that OmpR (possibly with CreB?) 

could be the TCS activating the events cascade for acid adaptation in E. coli MG1655 

(Figure 5.4). In the gene network, OmpR was connected with YehT, with a negative 

interaction. OmpR gene expression was highly induced after few seconds of exposure in 

the time course data described in chapter 4, while yehT expression profile was down-

regulated after 5 minutes of acid exposure. 

On the basis of the hierarchy of the model structure, OmpR could have an inhibitory 

effect on YehT gene expression. In the model, YehT was negatively connected to RstA; 

rstA was up-regulated during acid exposure (Figure 5.8). Therefore the putative inhibition 

exerted by YehT on RstA was not seen, because the regulator was down-regulated itself. It 

is known that RstA is an important regulator of curli fimbria formation, anaerobic 

respiration but also acid tolerance (Ogasawara et al., 2007).  Following the model 

structure, the interaction between RstA and DcuR was negative: if rstA was up-regulated, 
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dcuR expression should have been decreased. Indeed, dcuR expression is highly induced 

after few seconds of exposure and lately inhibited, when rstA expression increased.  

Knowledge about these potential connections and their involvement in stress responses is 

poor to date. However, a new interaction between the regulator OmpR and the TCS 

YehTU in S. enterica under hypotonic conditions was recently discovered (Zhang et al., 

2012).  

OmpR gene expression was induced in the MG1655 strain, while it was down-regulated 

in the BW25113 strain. In this strain the connection between OmpR and switch towards 

the anaerobic respiration was evident, since in a ompR background BW25113 was unable 

to respond to the stress. In consideration of the MG1655 strain, the up-regulation of this 

RR could also be connected with the increased expression of the aerobic respiration 

encoding genes. 

The regulation of acid resistance does not only involve the canonical response based on 

the ARs because of the substantial changes at the cell system level. Acid and general stress 

conditions involve several changes in the cells, which could either bring to discover new 

acid response systems or to understand that ARs could be only a part of a tuned mechanism 

underlying the bacterium homeostasis. The balance within the different components and 

their modulation is probably achieved through several processes involving central 

metabolism components and the main regulators.  

 

5.5 Conclusions. 

The role of TCS during stress conditions is still unclear and a great challenge for future 

research. However, several models were created to address questions arising from recent 

findings on this field. In the last part of my PhD I have applied System Biology approaches 
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and I discovered that OmpR, YehT and DcuR could be potentially involved in the 

mechanism of acid adaptation in E. coli MG1655.  
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Chapter 6: A comparison between molecular 

responses to different sources of stress 

6.1 Introduction 

The response of biological systems to environmental perturbations is characterised by the 

adjusting of physiology on every level of the cellular and molecular network. The stress 

response is either characterised by specific responses to a stress condition and general 

responses, with the down-regulation of genes encoding translational pathways (Jozefczuk 

et al.) RpoS is the central regulator of E. coli general stress response and can modulate the 

expression of several genes, including the genes involved in metabolism, stress adaptation, 

transport and transcription regulation (Weber et al., 2005). In the previous chapters I have 

described the response to mild acidic conditions in BW25113 and MG1655 strains. I found 

that pH 5.5 exposure had different effects on the central metabolism in the two strains 

considered. Here I am going to briefly describe an analysis performed on a transcriptomic 

dataset from Jozefczuk et al. My question was that if acid conditions can have strong 

effects on the central metabolism of E. coli MG1655 and BW26113, other stress conditions 

might induce other responses. In order to address this question, I have compared the effects 

of mild acid exposure (pH 5.5) on the expression of central metabolism genes in several 

stress conditions (cold, heat and oxidative stress) from a previous work by Jozefczuk et al..  

6.2 Materials and Methods 

6.2.1 Datasets and data analysis 

Acid exposure: I have considered the datasets as previously described in Chapters 2, 3 

and 4.  
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Cold, Heat and Oxidative stress: The dataset were originally published by Jozefczuk et 

al. I have performed VSN normalization as described by authors and performed Significant 

Analysis for Microarrays of each stress condition with the physiological conditions. 
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6.3 Results and Discussion 

6.3.1 Central metabolism changes in response to different stress conditions. 

 

The main result emerging from the BW25113 analysis is the inhibition of the aerobic 

associated pathways (Figure 6.1) and the up-regulation of the anaerobic and respiratory 

enzymes during acid exposure (Chapter 2). 

 

Figure 6.1 Central metabolism gene regulation during acid adaptation in E. coli BW25113 

(Kegg Pathways). 

The identified pathways are highlighted: in red up-regulated and green down-regulated. The 

effects of acid on BW25113 bring the cells to switch to anaerobic respiration, with consequent 

inhibition of TCA cycle and oxidative phosphorylation. 

 

 

The nucleotide metabolism was following a mixed trend while the fatty acid biosynthesis 

was mostly repressed. However the general behaviour of the strain, at the transcriptomic 

level, was clearly in accordance with the principle of the energy conservation, 
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demonstrated in earlier studies (Weber et al., 2005) and described in Jozefczuk studies. 

The energy conservation program is an important feature for all stress response and 

involves the repression of genes involved in cells division and aerobic metabolism 

(Jozefczuk et al.). Different effects of acid treatment were seen in the MG1655 strain, 

which response was showing the reverse trend seen in the BW25113 (Figure 6.2). 

 

 

Figure 6.2 Central metabolism gene regulation during acid adaptation in E. coli MG1655 

(Kegg Pathways). 

The identified pathways are highlighted: in red up-regulated and green down-regulated. The 

effects of acid in MG1655 are opposite to those previously observed in BW25113. The pH shift 

increased the expression of the aerobic respiration genes. 

 

In accordance to other analysis performed in several stress conditions, the energy 

metabolism can be modulated on the basis of the external environment. I have considered 

three stress conditions from a recent study: cold, heat and oxidative stress (Jozefczuk et al., 

2010) (Figures 6.3, 6.4 and 6.5). 
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Figure 6.3 Central metabolism gene regulation during cold stress conditions in E. coli 

MG1655 (Kegg Pathways). 

The identified pathways are highlighted: in red up-regulated and green down-regulated. The 

response to the stress brought the cells to switch off the aerobic pathways. 
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Figure 6.4 Central metabolism gene regulation during heat stress conditions in E. coli 

MG1655 (Kegg Pathways). 

The identified pathways are highlighted: in red up-regulated and green down-regulated. As for the 

cold stress, the aerobic functions are strongly repressed, in agreement with the general principle of 

energy conservation. 
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Figure 6.5 Central metabolism gene regulation during oxidative stress conditions in E. coli 

MG1655 (Kegg Pathways). 

The identified pathways are highlighted: in red up-regulated and green down-regulated. Opposite 

behaviour of the strain during oxidative stress. Most of the central metabolism functions were 

highly induced in behalf of the aerobic switch. 

 

The temperature stress conditions (cold and heat) were characterised by the same 

regulatory trend, similar to the behaviour previously observed for the BW25113 strain 

during acid adaption. The genes encoding for the main metabolic aerobic functions were 

down-regulated. Different considerations could be envisaged for the oxidative stress which 

involved a higher level expression of the main metabolic pathways. These results showed 

that the strategies used by E. coli in response to environmental stress can involve 

mechanisms which are dependent on two main aspects: the strain and the stress. 

Considering a single stress condition, several other aspects need to be addressed, such as 

the growth phase, the medium of growth etc. Therefore, describing a general trend of 
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response is not possible, since even a little change in the external conditions can easily turn 

over the expected pattern of regulation for a given stress response. 
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Chapter 7: General Discussion 

7.1 A new perspective on acid resistance in the Escherichia coli 

BW25113 and MG1655 strains. 

7.1.2 An integrative biology framework to understand acid response 

 

E. coli response to acid exposure has been intensively studied. Although research has 

mainly focussed on the four ARs (Foster, 2004), some studies reported that a consequence 

of exposure to acid is the transcriptional modulation of genes involved in metabolic and 

energy pathways (Maurer et al., 2005, Hayes et al., 2006, Kannan et al., 2008)  and that 

this feature may be conserved in different strains (King et al., 2010).  

Our work has shown that the ompR dependent modulation of central metabolism 

pathways is an important determinant of acid resistance in the E. coli BW25113 strain. We 

also discovered that the response of the related strain MG1655 is very different but in 

principle still regulated by OmpR. 

A number of questions however remain open.  In the future it will be important to 

develop a model of acid response that explains the divergent and complex molecular 

response to acid exposure in different E coli strains. It is also of interest to ask whether the 

new mechanism we have discovered may play a role in other stress responses. 

7. 1.2 Characterization of the canonical acid stress response ARs in E. coli 

BW25113 and MG1655 strains 

 

In order to define the differences between the strains considered in my work, I have 

firstly considered the mechanisms of the canonical response, based on the contribution of 
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the ARs. The mechanism of acid resistance has been intensively studied during stationary 

phase conditions (Small et al., 1994). At this growth phase, the regulatory events 

characterising acid resistance events allow the cells to survive at lower nutrients 

concentrations and as a consequence further stress conditions (Siegele and Kolter, 1992). 

Additionally, RpoS is directly involved in the whole process, since it is the main stress 

regulator of the stationary phase and also the pre-stationary phase(Hengge, 2009). 

Furthermore it is also known to regulate the GAD system. The induction of rpoS 

expression is rather a consequence of pH drop, than an early stationary phase entry (Ma et 

al., 2002). The GAD system genes are known to be up-regulated in the presence of RpoS. 

In my experimental conditions they were effectively highly expressed after acid exposure 

in the MG1655 strain.  

Nevertheless, some intriguing points were found about the gene encoding the AraC-like 

regulator GadX in the BW25113 strain; in effect this regulator was repressed in response to 

acid exposure based on cluster analysis. A similar result was already observed in previous 

studies, i.e. the regulator of acid response, GadW, which activates the GAD system 

together with GadX, it could also have an inhibitory effect on gadX (Tucker et al., 2003; 

Tramonti et al., 2006). Moreover, this repression can involve the genes coding for the 

glutamate decarboxylase (gadA and gadB) and the glutamate/GABA antiporter (gadC) (Ma 

et al., 2003; Tucker et al., 2003). Interestingly, the cluster analysis performed on BW25513 

time course data showed that, between the genes differentially expressed, gadA, gadB, 

gadC, gadX were located in the down-regulated clusters. The expression of the gene 

coding for GadW was instead induced under the same conditions, together with gadE. In 

the E. coli K-12 MG1655 strain, the GAD genes together with rpoS were following the 

trend classically acknowledged in the literature of acid response, that is to say that they 
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were highly expressed after few minutes of exposure. I demonstrated that the two 

considered strains showed different ARs regulation under the same culture conditions.  

One aspect common to both considered strains was the inhibition of the genes belonging 

to the atp operon. The FOF1 ATPase is supposed to be involved in the mechanism of acid 

resistance, under the control of RpoS and CRP, in the AR1. The action of the pump was 

observed in strongly acidic conditions (pH 2-2.5) and not detected in mild acidic 

conditions (Richard and Foster, 2004). The inhibition of the gene encoding for the ATPase 

could be important for a proton scavenging strategy under mild acidic conditions, in order 

to avoid further acidification of the cytoplasm.  

. Some studies have demonstrated that various genes contribute to acid resistance (Foster, 

2004). Carbon dioxide, a substrate for nucleic acid and amino acid biosynthesis, induces 

acid resistance  (Sun et al., 2005). Hence Sun et al. assumed that nucleotide biosynthesis 

could also be important for acid resistance. They examined the participation of purine 

nucleotide biosynthesis in survival under acidic conditions and found that the genes purA 

and purB, encoding for the adenylosuccinate synthetase and lyase respectively, have been 

observed as increasing factors of the ability of E. coli to survive acid stress conditions (Sun 

et al., 2011).  This is in contrast to my data in which I was not able to identify any 

differential expression pattern related to those 2 genes in the strains considered.  

 

Three of the canonical ARs are amino acid dependent: glutamate, arginine and lysine. 

The amino acids are an essential requirement for acid response, as their decarboxylation 

reduces the intracellular H
+ 

concentration via the production of CO2 and their 

corresponding amine (Bearson et al., 1998, Foster, 2004). Metabolomics data obtained 

from the MG1655 strain during the time course in acid conditions showed a considerable 
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increase of some amino acids such as threonine, glutamate, leucine, valine and isoleucine. 

The increase of amino acids was found in other stress responses (Jozefczuck et al., 2010) 

and is a characteristic of the general and the stringent stress response (Weber et al., 2005). 

Valine production was observed during biofilm formation in continuous cultures (Valle et 

al., 2008). In a recent study performed during heat stress conditions, the increases of 

lysine, glutamate, isoleucine, leucine and valine, were observed in E. coli HB101, 

associated to the decrease of betaine and putrescine (Ye et al., 2012); I also observed this 

phenomenon in my data. It is then possible that E. coli acid resistance would require more 

amino acids for the mechanism to take place, hence the involvement of more ARs. Since 

the enhancement of intracellular amino acids quantities is not only a characteristic of acid 

response, this enhancement might also be a requirement for the general stress response in 

E. coli. 

7.2 Overlap between osmotic and acid stress responses 

 

The colonization of the gut could require E. coli to adapt to several stress conditions, such 

as pH drop but also anaerobic conditions and osmotic changes. Exposure of E. coli to high 

osmolarity results in a loss of water and shrinking of the cells (Weber et al., 2006). The 

first response to osmotic changes includes the uptake of potassium, which result in 

secondary mechanisms: accumulation of glutamate, synthesis of trehalose and release of 

putrescine (Weber et al., 2006). Some osmotic-shift induced proteins were identified and 

between them was OmpC, an outer membrane protein controlled by the TCS EnvZ/OmpR 

(Hall and Silhavy, 1981)  

One aspect in common between the BW25113 and MG1655 strains was the down-

regulation of the genes encoding the main sugar metabolism, transport pathways and the 
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PTS (Phosphotransferase system) pathway. Metabolites data collected from the MG1655 

strain, showed a huge decrease of the UDP-glucose levels during acid exposure.  The 

UDP-glucose is a precursor of the lipopolysaccharide, which are major constituents of the 

outer leaflet of the outer membranes in E. coli (Wang et al., 2006)(Wang and Quinn, 

2010). In addition, it was suggested that this molecule can exert another important function 

in response to osmotic stress conditions (Kempf and Bremer, 1998). E. coli has developed 

many mechanisms in order to respond to osmotic stresses: for example, when glycine 

betaine is not available in the external environment, the production of trehalose is preferred 

to overcome this adverse condition (Kempf and Bremer, 1998). Trehalose is a compound 

which helps the cells to maintain the integrity of their membranes (Crowe et al., 1984). The 

molecule is produced by de-novo synthesis from glucose-6-phosphate and UDP-glucose 

when glycine betaine and proline are not available (Kempf and Bremer, 1998). The 

reaction is catalysed by the OtsBA enzyme, the trehalose-6-phosphate synthase, a mutation 

of which can highly affect the cells during stationary phase of growth (Hengge-Haronis et 

al., 1991). The decrease of UDP-glucose in the metabolites analysis of MG1655 revealed 

that this molecule might be used for increasing the concentrations of trehalose in response 

to the stress, since glycine betaine levels were really low and the corresponding transporter 

genes (proVWX) were also strongly repressed during the acid time course. Moreover, after 

5 minutes of exposure, MG1655 showed an increase in the expression of otsB, while in 

BW25113 both otsAB were induced after 15 minutes of exposure. The results confirmed 

the previously discovered cross protection within several stress responses exerted by the 

mechanisms of acid resistance. However, it is not possible to explain why E. coli needs to 

silence the classic response to osmotic stress through the glycine betaine compound, by 

preferring an alternative pathway, which could probably involve trehalose and several 
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mechanosensors. My previous work also showed that the strain BW25113 can induce the 

expression of mechanosensors and aquaporins, which underlie the response to hyper-

osmotic stress (Stincone et al., 2011). 

 

 

7.3 Two-component systems: sensors of the general stress response 

 

TCS allow E. coli and enteric bacteria to respond quickly and efficiently to a large scale 

of external stimuli and conditions. Moreover, the HK, which can be located either on the 

external or on the cytoplasmic side of the membrane, can sense a wide spectrum of signals, 

in association with other components, such as the OCS.  

The knowledge about regulatory networks involving TCS and main components required 

for stress responses is rapidly expanding (DeRouchey and Rau, 2011). For example, the 

general stress RpoS factor expression is induced by the PhoP/PhoQ intervention, together 

with the BarA/UvrY TCS (Battesti et al., 2011). Moreover, RpoS degradation is controlled 

by the protease RssB, which can be activated by ArcA/ArcB (Mika and Hengge, 2005). 

This TCS can also inhibit the expression of rpoS under some stress conditions (Mika and 

Hengge, 2005). The main implication of TCS regulating expression and proteolysis of 

RpoS relies on their fundamental role not only in detecting the stimuli, but also to 

contribute with the main global regulators to promptly activate the mechanisms helping the 

cells to survive.  

The network obtained in ARACNE from a compendium of wide spread conditions data 

identified a large number of connections between the TCS regulators and the rest of the 

genes of E. coli (Chapter 5). What is the relation underlying the ARACNE network and the 
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big matrix in RegulonDB? The main aspect to consider when looking at gene inference 

data is the fact that genes are connected on the basis of statistical analysis and not on 

experimental evidence. Therefore, even though the models previously described 

(ARACNE and SSM) could show some contradictions, it is important to consider that the 

hierarchical structure of RegulonDB reports interactions experimentally validated, 

therefore having the global regulators on the top of the structure (Figure 5.6) is obviously 

related to their ability in controlling several functions in E. coli. What is the triggering 

event activating the global regulators? And on the basis of which relationship do they 

modulate different functions?  Most of the important metabolic transcription factors are 

OCS, therefore they can sense cytoplasmic changes and induce the cascade of 

transcriptional events (Ulrich et al., 2005). In the presence of an external stimulus, the HK, 

which autophosphorylates, activates the correspondent transcription factor. Interactions of 

the transcriptional and phosphorylative events can also enhance and spread the response. In 

the mutual information network, many interactions between regulators and sensing 

proteins were identified. The ARACNE network could be considered as a prospective tool 

which enables us to understand the targets potentially modulated in response to each 

stimulus.  

In the network, the node showing the highest number of connections, UvrY, is an 

important regulator of the switch between glycolytic and glycogenic metabolism (Pernestig 

et al., 2003). Most of the genes connected to UvrY in the mutual information network were 

involved in central metabolism functions. The TCS BarA/UvrY has many orthologs in 

several pathogenic bacteria, for example BarA/SirA in Salmonella enterica (Goodier and 

Ahmer, 2001), which was found involved in regulating Salmonella virulence(Teplitski et 

al., 2003).  It has been recently reported also the contribution of UvrY in the 
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Uropathogenic E. coli during the infection process (Palaniyandi et al., 2012). Not only 

mutation in the TCS decreased the virulence in a mouse model, but they also reduced the 

ability to infect the uroepithelial cells. The same TCS was controlling virulence  of another 

E. coli strain, the avian pathogen O78:K80:H9, which was unable to infect in vivo when 

the TCS was removed (Herren et al., 2006). UvrY and OmpR have an important role in 

controlling virulence in both Salmonella and E. coli.  

These findings confirm the great potential of the models previously described in the 

present work, which both could discover the available connections known in the literature 

and identify regulators which great potential involvement in stress responses, which is 

currently under investigation in several research projects. 

In a previous study, the gene KO of E. coli TCS were analysed for global characterization 

purposes (Oshima et al., 2002). I have considered those data in order to assess which 

mutants were showing a similar transcriptomic profile (Figure 7.1) (Data were 

downloaded from http://ecoli.naist.jp/Lab/joomla/index.php/jp/downloads-jp, a Principal 

Component Analysis was performed as described in Chapter 2, section Materials and 

Methods). 

http://ecoli.naist.jp/Lab/joomla/index.php/jp/downloads-jp
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Figure 7.1 PCA plot of the TCS gene KO. 

3 clusters were obtained after the analysis; one of them was containing few TCS and the Wild 

type (blue dots). Interestingly, the mutation in uvrY did not very much affect the transcriptomic 

profile of the bacterium. Oppositely, the mutants of OmpR/EnvZ (green cluster) and DcuRS (red 

cluster) were shifted across the first component, denoting a strong dissimilarity compared to the 

wild type (Oshima et al., 2002).  

 

 

Three clusters were identified in this analysis, with the wild type belonging to the middle 

one. Interestingly, the mutation in UvrY did not result in a substantial difference when 

compared to the wild type. OmpR, YehT and DcuR were instead in two different clusters, 

denoting the big effects of these mutations on the bacteria. The functional analysis of the 

genes differentially expressed between the three clusters identified that the main 

differences belong to the regulation of the cellular respiration, ribosome and translational 

pathways and the flagellar biosynthesis. Further studies will be required for understanding 

and characterising the differences between the mutant strains. 
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The role of the TCS in both eukaryotes and prokaryotes is involving different aspects of 

research; one interesting approach is their use for construction of synthetic genetic 

networks.  

Recently there was an increase in the research for production of bacteria which can sense 

presence of various compounds and conditions. The use of synthetic networks is also 

important for the creation of metabolic pathways, in order to produce molecules and 

compounds with fermentative processes. The use of biosensors based on the TCS scheme 

has  increased the quality of the products and overcame the limitations due to imbalanced 

metabolism of the cells (Zhang and Keasling, 2011) 

7.4 The importance of the studies on microorganism’s behaviour during 

stress conditions 

 

In the last years the role of food industry became predominant for the increasing demand 

of quality products and market globalization (Matsa, 2011). The best approaches to obtain 

high quality standards in food production require regular collaboration between scientific 

organizations, states and industry, and frequent updates for the control procedures (Taylor, 

2011). One of the aspects underlying the safety of food processing is related to the impact 

of contamination by pathogenic microorganisms and following studies to circumvent this 

problem, for example trough multi-factorial risk assessments (Ruzante et al., 2010). 

The understanding of the microorganism’s behaviour is important not only for food 

safety considerations but also in order to prevent and fight pathogen outbreaks and to 

improve the fermentative processes (Abee and Kuipers, 2011). A book to control safety 

parameters in food production by understanding their physiology has been recently 
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published (McMeekin et al., 2010). New approaches and technologies to study the 

pathogens and microorganism in general are useful tools to amend these parameter (Abee 

and Kuipers, 2011). During fermentative processes, the control of the cultures parameters 

is important in order to achieve good quality products. During food processing, 

combinations of different stresses can take place. It has been observed that for example a 

mild re-heating (54–62 °C) of products with reduced pH due to pre-drying acidic 

treatments (meat products) could increase the resistance of bacteria (Calicioglu et al., 2003, 

DiPersio et al., 2003, Faith et al., 1998, Yoon et al., 2006) Conventional food processing 

technologies, like pasteurization, heating, drying, are gradually replaced by new 

technologies with the production of products of higher quality, therefore higher nutritional 

and sensory characteristics. Nevertheless, when technologies such high pressure 

processing, pulsed electric field are applied, the food products could be exposed to milder 

environmental conditions, which can bring to a specific stress response and further 

tolerance via cross protection (Velliou et al., 2011). Hence, the comprehension of 

microbial adaptation when applying innovative technologies is also of great importance for 

safety parameter selection (Yousef and Courtney, 2003). 

 The analysis of the food production chart is a useful tool for considering the different 

conditions which bacteria can encounter during the process. A recent study analysed the 

various stress conditions encountered by pathogenic E. coli during the cheese production 

process from raw milk (Peng et al., 2011). A general flow chart considered for the 

production process involves several steps of heating and different conditions of humidity, 

therefore osmolarity and pH parameters can easily vary (Figure 7.2). 
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Figure 7.2 Flow chart for production of a typical semi-hard cheese 

For each production step are shown the temperatures used and the stress conditions encountered 

by the bacteria. Acid stress covers most of the process (Peng et al., 2011). 

 

Cheese production involves a lot of stresses which can happen simultaneously; therefore 

cross-protection can affect the responses of bacteria (Peng et al., 2011). A key factor for 

the general stress response, as previously described is RpoS, involved in protection from 

acid stress. The cross-protections showed that in sub lethal conditions for a stress can bring 

protection and/ or cross protection for another stress (Chung et al., 2006). Hence, the 

control of the timing of the different stress applications could be a good parameter for 

avoiding resistance of pathogens during food processing (Montet et al., 2009). Moreover 

the expression of the virulence genes is highly influences by the stress conditions, for 

example, GadE, the GAD central regulator, also down-regulates locus of enterocytes 

effacement expression under moderately acidic conditions (Kailasan Vanaja, 2009). 
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The understanding of the mechanism involved in the resistance of bacteria to stress 

conditions becomes therefore fundamental for several aspects such as health, economic and 

safety in our society. My PhD project was focused in a global understanding of the 

processes underlying acid resistance in two strains, which can have two main 

consequences for further studies. Firstly, my experiments were performed in early 

stationary phase which is usually considered for food processing and infectious diseases 

studies (King et al., 2010). The classic knowledge, based on the ARs mechanisms, is not 

enough for the explanation of the regulative mechanisms happening in the cells during acid 

exposure. Gene inference approaches, required for generating hypotheses at system level, 

can identify several regulators involved in the regulatory processes. I believe that any study 

involving resistance to environmental stress conditions should look at the whole cell, more 

than on single functions or transcriptional events. Systems Biology approaches can be 

generally applicable to the analysis of stress condition and can have a real impact on 

improving food processing protocols, decrease the costs of manufacturing and reduce risks 

of food contamination. 
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