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Abstract

The enormous power of modern computers has made possible the statistical modelling
of data with dimensionality that would have made this task inconceivable only decades
ago. However, experience in such modelling has made researchers aware of many issues
associated with working in high-dimensional domains, collectively known as ‘the curse
of dimensionality’, which can confound practitioners’ desires to build good models of
the world from these data. When the dimensionality is very large, low-dimensional
methods and geometric intuition both break down in these high-dimensional spaces.

To mitigate the dimensionality curse we can use low-dimensional representations
of the original data that capture most of the information it contained. However, lit-
tle is currently known about the effect of such dimensionality reduction on classifier
performance. In this thesis we develop theory quantifying the effect of random pro-
jection – a recent, very promising, non-adaptive dimensionality reduction technique –
on the classification performance of Fisher’s Linear Discriminant (FLD), a successful
and widely-used linear classifier. We tackle the issues associated with small sample
size and high-dimensionality by using randomly projected FLD ensembles, and we de-
velop theory explaining why our new approach performs well. Finally, we quantify the
generalization error of Kernel FLD, a related non-linear projected classifier.
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Fare forward, travellers! not escaping from the past
Into different lives, or into any future;
You are not the same people who left that station
Or who will arrive at any terminus,
While the narrowing rails slide together behind you;
And on the deck of the drumming liner
Watching the furrow that widens behind you,
You shall not think ‘the past is finished’
Or ‘the future is before us’.
At nightfall, in the rigging and the aerial,
Is a voice descanting (though not to the ear,
The murmuring shell of time, and not in any language)
‘Fare forward, you who think that you are voyaging;
You are not those who saw the harbour
Receding, or those who will disembark.’

- T.S.Eliot - ‘The Dry Salvages’
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1
Introduction

1.1 Problem Statement

Machine learning (‘learning’) is the computer analogue of ‘learning from experience’. If
we take H to be a class of learning functions then such learning comprises finding the
(parameters of a) function ĥ ∈ H which minimises the expected error of the learned
function given an observation xq ∼ Dx|y. Usually the data generating distribution Dx,y
is unknown, and so it must be estimated from a collection of examples (‘training set’)

T i.i.d∼ Dx,y. Typically the function evaluation h(xq) is either a class label or a real
number depending on whether the problem to be solved is a classification problem
or a regression problem respectively. Learning algorithms may also be further classi-
fied by the learning approach employed ‘supervised’, ‘unsupervised’, ‘semi-supervised’,
‘reinforcement’ and so on depending on the information that is available to the learner.

Now consider the case where the data observed have very high dimensionality, for
example they are real valued vectors with arity in the thousands. Such high dimen-
sional (HD) datasets arise in many areas of practical application of machine learning
approaches, from gene array datasets to dictionaries for spam filters, and these HD
data exhibit characteristics leading to a range of problems collectively known as ‘the
curse of dimensionality’ (Bellman, 1970) that can make learning from the HD data
difficult.
Two common situations in practice are:
When data are high dimensional and cheap to collect (a common situation in domains
such as retail and web-mining) then both the dimensionality, d, and the number of
observations, N , is large. In principle there should be no problem with statistical in-
ference in this setting, however in practice when N � d and d is large there are time-
and space-complexity issues arising which can mean that efficient algorithms, i.e. those
polynomial in d, run too slowly to be of practical use. In particular fitting the data in
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memory can be a problem, and the speed of data processing is then bottle-necked by
the speed of disk access.
On the other hand when data are expensive to collect then typically N � d and the
main issues in this setting concern bogus interactions in the training data and the
quality of parameter estimates. This is an increasingly common situation in scientific
domains such as medical imaging and bioinformatics.
Some further aspects of the curse include that, as data dimensionality grows:

• The number of data examples required to estimate the distribution of the data,
to some fixed level of confidence, grows exponentially with the dimensionality
(Hastie et al., 2001).

• If the relative variance in the pairwise distances between points, as measured in
any metric, goes to zero then the distance between the closest together and far-
thest apart points becomes almost the same (and vice-versa); hence the concept
of near neighbours becomes meaningless (Beyer et al., 1999; Durrant & Kabán,
2009). It can be shown that in high dimensions this happens under quite general
conditions.

• Our intuition regarding the geometric structure of data lets us down in high
dimensions. A simple, but powerful, example is the fact that the Euclidean
norm of a point drawn from the univariate standard normal distribution N (0, 1)
is typically not very far from zero (e.g. with probability about 1/2 its norm
is no more than 2/3), whereas a point drawn from the d-dimensional standard
normal distribution N(0, Id) has Euclidean norm close to

√
d – with overwhelming

probability when d is large (Ledoux, 2001).

This list is not exhaustive, but even from just these few examples it is apparent
that HD data bring with them their own particular problems that are not observed
when working in lower dimensional domains. Furthermore, the first of these problems
essentially guarantees that for all HD problems one never has as much data with which
to train a learner as one would like, while the computational issues mean that even
when sufficient data is available processing it efficiently may be difficult. Clearly, if one
could work with a lower dimensional representation of the data then these problems
would be mitigated.

There are many dimensionality reduction techniques that aim to achieve low di-
mensional representations of HD data (see, for example, Fodor (2002) for a survey)
but, as is frequently the case when working on complex problems, there is no ‘silver
bullet’ approach guaranteed to work well on every data set.

A recent research direction in signal processing, the field of ‘compressed sensing’
(CS), has raised hopes however that for sparse data (that is, data where the observa-
tions can be represented in some basis by vectors with mostly zero components) the
situation is better. We can apply a very simple, non-adaptive, and computationally
cheap method of dimensionality reduction called random projection to such signals as
follows: If the original data were d-dimensional and the number of non-zero compo-
nents in some linear basis (for example a wavelet or Fourier basis) is m then, provided
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that the projected dimension is at least k = O(m log d), with high probability the
signal can be perfectly (and efficiently) reconstructed from such a projection (Candes
et al., 2008; Donoho, 2006).

This exciting result implies that, with high probability, no information is lost by
randomly projecting the sparse data in this way and that therefore we could learn as
good a model from the k-dimensional randomly-projected data as we could from the
initial high dimensional data. On the other hand, data are very frequently not sparse in
a linear basis. For example, this is the case when the data are noisy or the underlying
classes are not linearly separable (Eltoft & deFigueiredo, 1996; Khor et al., 2005).

Although the sparsity condition of CS has recently been shown to imply a learning
guarantee for randomly-projected soft-margin SVM (Calderbank et al., 2009), it is not
clear if this condition is actually required for a learning task such as classification.
Indeed, earlier empirical and theoretical results concerning classification in randomly-
projected domains (e.g. Arriaga & Vempala, 1999; Bingham & Mannila, 2001; Fradkin
& Madigan, 2003a; Indyk & Motwani, 1998) suggest that sparsity of the data may
not be a requirement for successful classification. This thesis will study this issue by
determining what dimensionality k is required for classification from random projec-
tions of data to succeed without assuming any sparse structure on the data, and which
quantities k depends on.
The starting point for this investigation is the observation that classification is an in-
trinsically simpler task than the perfect reconstruction of signals. This is not a novel
observation, indeed it is the fundamental idea underlying Support Vector Machine and
other discriminative classifiers, but it leads us to conjecture that it may be possible to
relax some of the constraints that apply to compressed sensing whilst still maintaining
learning performance working with random projections of the data.

Our main focus in this thesis is on random projections and learning in randomly-
projected domains. This may seem counterintuitive since it is easy to believe that
the best possible dimensionality reduction scheme in any particular situation would
be one which took account of properties of the data relevant to the problem at hand,
and therefore random projection must be a sub-optimal approach to dimensionality
reduction. However, a key motivation in studying random projections is that we are
not aware of any non-adaptive deterministic dimensionality reduction approach for
which one can derive the kind of strong guarantees that we will be presenting later
in this thesis. Furthermore randomness is now a standard tool in algorithm design;
for instance, it is the basis of the only known polynomial-time algorithm for primality
testing (Dasgupta et al., 2008) and of the only known algorithms for reaching consensus
in distributed systems in finite time (Dubhashi & Panconesi, 2012; Panconesi, 2012).

1.2 Research Questions
We are interested in the effect of random projection on the generalization performance
of a classifier. Examples of questions we would like to know the answers to include:

• What qualitative and quantitative guarantees can we give for classifiers working
with randomly-projected data?
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– Under what conditions does random projection degrade generalization per-
formance, and why?

– Under what conditions does random projection improve generalization per-
formance, and why?

– Can we give sharp estimates of the level of degradation or improvement?

– Are there intuitive ways to understand the effect of random projections on
classifier performance?

• To what extent do the data dimensionality and projection dimensionality affect
the generalization performance of a randomly projected classifier? What is the
interplay between them?

• Are Johnson-Lindenstrauss- and compressed sensing-type results the only ways
in which to quantify the effect of random projections? In particular, can the
effect of random projection on classification be quantified without resorting to
uniform geometry preservation, or without requiring data to be sparse?

1.3 Contributions of this Thesis
The main contributions of this thesis are theoretical results focusing on randomly-
projected Fisher linear discriminants (RP-FLD), an instance of which is kernel Fisher
discriminant (KFLD), and on voting ensembles of randomly-projected linear discrim-
inants. More specifically: In chapter 4 we develop some general tools bounding the
generalization error of FLD in the dataspace: These we use in the subsequent chapters
5, 7 and 8 to quantify the generalization error of randomly-projected FLD classifiers
(RP-FLD), ensembles of RP-FLD classifiers, and kernel Fisher discriminant classifiers
(KFLD).

In chapter 5 we analyse Fisher’s Linear Discriminant (FLD) when the classifier is
both learned from and employed on randomly-projected data. Two reasons why we
find this analysis interesting are that (1) Presently such data arise in practice when
random projections have been used as a preprocessing step to reduce the dimensional-
ity of high dimensional observations, and (2) The technological promise of compressed
sensing theory is that in the future (compressible) data might be collected, stored and
processed in just such a compressed form.
Unlike previous analyses of other classifiers in this setting, we integrate the random
projections which will reduce the dimensionality of the data and the specific classifier
(FLD) to be employed on the randomly-projected data into a single random system
to be analyzed, and by doing this we avoid the unnatural effects that arise when one
insists that all pairwise distances are approximately preserved under projection. This
enables us to take advantage of the class structure inherent in the classification problem
– in particular our analysis requires no sparsity or underlying low-dimensional struc-
ture restrictions on the data.
We obtain upper bounds on the estimated misclassification error on average over the
random choice of the projection, which are always non-trivial (less than 1) and which
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are tight up to a small constant scaling factor. In contrast to early distance preserving
approaches, our bounds tighten in a natural way as the number of training examples
increases and we are able to show that, for good generalization of FLD, the required
projection dimension only grows logarithmically with the number of classes. We also
show that the error contribution of a covariance misspecification is always no worse in
the low-dimensional projected space than in the initial high-dimensional data space.
Our analysis also reveals and quantifies the effect of class ‘flipping’ – a potential issue
when randomly projecting a finite sample.
A preliminary version of part of the work in chapter 5 received an IBM Best Student
Paper Award at the 20th International Conference on Pattern Recognition.

In chapter 6 we formally derive the ‘flip probability’ discussed in chapter 5 and
give probabilistic and geometric characterizations of this quantity. To the best of our
knowledge this probability has not been exactly quantified before for any projection
dimension greater than 1. Using straightforward tools we also derive a tight upper
bound on the flip probability that applies in a more general setting than was analyzed
earlier in the chapter. This upper bound has completely intuitive behaviour (given the
findings that precede it) and reveals more about the general class-flipping problem.

In chapter 7 we examine the performance of a voting ensemble of randomly pro-
jected Fisher Linear Discriminant classifiers, focusing on the case when there are fewer
training observations than data dimensions. The specific form and simplicity of this
ensemble permits a direct and much more detailed analysis than existing generic tools
in previous works. In particular, we are able to derive the exact form of the generaliza-
tion error of our ensemble, conditional on the training set, and based on this we give
theoretical guarantees which directly link the performance of the ensemble to that of
the corresponding linear discriminant learned in the full data space.
Furthermore we show that the randomly projected ensemble implements a sophisticated
regularization scheme to the linear discriminant learned in the original data space and
this prevents overfitting in conditions of small sample size where pseudo-inverse FLD
learned in the data space is provably poor.
To the best of our knowledge these are the first theoretical results to prove such an
explicit link for any classifier and classifier ensemble pair.
We confirm our theoretical findings, and demonstrate the utility of our approach, with
experiments on several gene array datasets from the bioinformatics domain where fewer
observations than dimensions are the norm.

In chapter 8 we derive a bound on the generalization error of KFLD which, under
mild assumptions, holds with high probability for any training set of a given size. KFLD
can be viewed as a particular kind of instance of a randomly-projected FLD classifier,
but now the training observations are replaced by their feature-mapped counterparts
and the projection is onto the (random w.r.t the random training set) subspace spanned
by these feature vectors. Our bound is always non-trivial (less than 1), and is given in
terms of quantities in the full Hilbert space in which the feature-mapped data lie. A
key term in our bound turns out to be the distance between the class mean functions
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scaled by the largest eigenvalue of the covariance operator; this implies that (with a
suitable kernel choice) classes can always be separated in the feature space except when
the densities of the two classes coincide in the input (data) space, and therefore good
generalization can be achieved by KFLD as long as the original data have different
class-conditional densities.

1.4 Organization of this Thesis
This thesis contains nine chapters, including this one. In the next chapter 2 we in-
troduce the mathematical notation and conventions that we follow in the majority of
this thesis (for chapter 8 we need some additional notation which we introduce there)
and we survey the mathematical tools and results that we will use frequently: The
majority of these are standard, and we indicate any novel lemmas of our own where
they appear. In chapter 3 we briefly summarize the state of the art in learning from
randomly projected data. Chapters 4, 5, 6, 7 and 8 are described above. In chapter 9
we summarize our findings, and highlight some remaining open problems and potential
research directions that we believe are interesting.

6



2
Mathematical Background and Tools

Summary In this chapter, we review some background and tools from linear algebra,
random matrix theory and statistics and applied probability that we will use later in
this thesis. For standard results we give sources, and for tools which were derived as
part of this research we give full proofs.
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2.1 Notation and Conventions

We denote by lower-case Roman characters a column vector, e.g. v, x, and by sub-
scripted lower-case Roman characters entries of the same vector, e.g. vi, xj are the
i-th entry of v and the j-th entry of x respectively. We denote scalars by lower-case
Greek characters, e.g. α, β, λ. We denote by upper-case Roman and Greek characters
a matrix, e.g. R,Σ,Λ and we denote the entry in the i-th row and the j-th column of
the matrix A by aij or (A)ij. Transposition is indicated by a superscripted ‘T’, e.g. xT

is a row vector and AT is the transpose of the matrix A. We denote the set of k × d
matrices, that is matrices with k rows and d columns, by Mk×d.
We denote by µ, σ2, and Σ the mean, variance and covariance matrix of a probability
distribution and denote estimated quantities by adding a hat: µ̂, σ̂2, Σ̂.
For a square matrix A we denote by λmin(A), λmax(A) its least and greatest eigenvalues
respectively, and by λmin 6=0(A) the least non-zero eigenvalue of A.
Throughout this thesis R is always a random projection matrix but it may have entries

rij
i.i.d∼ N (0, σ2) or rij

i.i.d∼ N (0, 1/d) (i.e. with variance chosen to normalize the rows) or

it may be that R = (R̃R̃T )−
1
2 R̃ and r̃ij

i.i.d∼ N (0, σ2) (i.e. R has orthonormalized rows).
We will make clear which particular flavour of R is being considered in the different
sections of this thesis.1

In chapter 8 the part of R is played by an orthogonal projection onto the span of the
training data, and we introduce the appropriate notation for that setting there.

2.2 Linear Algebra

Linear algebra is the study of vector spaces and linear operators (matrices). We review
briefly some key facts relating to real-valued vector spaces that we will use without
further reference in the following chapters - a thorough treatment of the basics can be
found in Artin (2010). We also review some key properties of real positive semi-definite
(p.s.d) matrices for which an exhaustive treatment can be found in Horn & Johnson
(1985). Although these results typically hold for complex-valued vector spaces and
p.s.d matrices too, e.g. by taking real and imaginary parts separately or replacing
transposition with Hermitian transposition, here and from now on we will restrict our
attention to the real-valued setting.

2.2.1 Normed Vector Spaces

Recall that a vector space (V,+, ·) over a field F is a set of elements (vectors) that is
closed under vector addition (+) between elements of V and scalar multiplication (·) of
elements of V by elements of F. Here we will always take F = R and we will drop the
references to vector addition and scalar multiplication and simply write V for a real
valued vector space. Furthermore we will usually denote scalar multiplication of the
vector v by the scalar α using αv rather than α·v. Examples of vector spaces include the

1We shall see later that the choice of the form of random projection matrix from any of these
alternatives, or from the further alternatives given in Achlioptas (2003), is not crucial to the conclusions
we can draw about their effect.
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real line R with the usual definitions of addition and multiplication, the d-dimensional
real coordinate space Rd under element-wise addition and scalar multiplication, square
m×m matrices under matrix addition and scalar multiplication, polynomials of degree
no more than d with the usual definitions of addition and multiplication, and so on. A
concrete example of a real vector space is R3 = {(x, y, z)T : x, y, z ∈ R}, i.e. the set of
ordered triples of real numbers.
A vector subspace is a subset, U ⊆ V , that is a vector space in its own right when
inheriting the notions of vector addition and scalar multiplication from V . Every vector
space V has at least the two subspaces V and {0}; a concrete example of a non-trivial
vector subspace is {(x, y, 0)T : x, y ∈ R} which is a 2-dimensional subspace of R3.
A normed vector space is a vector space equipped with a positive real measure of the
magnitude of a vector called a norm. The canonical example is Euclidean space, namely
Rd equipped with the `2 (or Euclidean) norm ‖ · ‖ defined by:

‖x‖ :=

√√√√ d∑
i=1

x2
i

Normed vector spaces are metric spaces if we take the distance between vectors to be
the norm of their difference, since all norms then satisfy the requirements of a metric.
For all v1, v2, v3 ∈ V we have:

1. ‖v1 − v2‖ = 0 if and only if v1 = v2.

2. ‖v1 − v2‖ = ‖v2 − v1‖.

3. ‖v1 − v3‖ 6 ‖v1 − v2‖+ ‖v2 − v3‖.

In this thesis we work in Rd (and its subspaces) and, unless otherwise noted, norms in
this thesis are always the Euclidean norm. From time to time we will also make use of
the `∞ norm:

‖v‖∞ := sup{|vi|}

Furthermore although in Euclidean space a vector is an element that has both direction
and magnitude, the term vector is frequently overloaded to mean the point described by
a vector; throughout this thesis we will use the terms point and vector interchangeably
and the meaning intended will be clear from context.
Closely related to the Euclidean norm is the standard inner product or dot product on
Rd. This is the element-wise product of two vectors v, w defined by:

vTw :=
d∑
i=1

viwi

Note that therefore vTw = wTv and also that vTv =
∑d

i=1 v
2
i = ‖v‖2. The dot product

has an equivalent definition in terms of the principal angle, θ ∈ [−π/2, π/2], between

9



Mathematical Background and Tools

two vectors which is:
vTw := cos(θ)‖v‖‖w‖

Rearranging we see that therefore:

θ = arccos

(
vTw

‖v‖‖w‖

)
and, in particular, v is orthogonal to w if and only if vTw = 0 (where, by convention,
we take the zero vector to be orthogonal to any other).

2.2.2 Linear Independence and Bases

If V is a vector space, v1, v2, . . . , vn are vectors in V and α1, α2, . . . , αn are scalars, then
the vector v = α1v1 +α2v2 + . . .+αnvn is called a linear combination of the vectors vi.
If the linear equation β1v1 + β2v2 + . . .+ βnvn = 0 is satisfied by some set of βi which
are not all zero, then we say the vectors vi are linearly dependent (or just dependent).
If this equation is only satisfied when all of the βi are zero, then we say the vi are
linearly independent (or just independent). Note that any subset of an independent
set must itself be independent and furthermore, since {0} is a dependent set, any
set containing the zero vector is linearly dependent. It can be that a set of vectors
is linearly dependent, but that any proper subset of it is independent (e.g. the set
{(1, 0)T , (0, 1)T , (1, 1)T} has this property).
It is easy to check that the set of all linear combinations of the set of vectors {v1, v2, . . . , vn}
is a vector space. We call this the vector space spanned by the vi and write 〈vi〉ni=1

for this space. The dimension of this space is the size of the largest linearly inde-
pendent subset from {v1, v2, . . . , vn}. A set of linearly independent vectors is called
a basis for the space it spans. An example of a (dependent) set which spans R2 is
{(1, 0)T , (0, 1)T , (1, 1)T}, so 〈(1, 0)T , (0, 1)T , (1, 1)T 〉 = R2. Furthermore, any two vec-
tors chosen from {(1, 0)T , (0, 1)T , (1, 1)T} are independent and span R2 and hence form
a basis for R2; we therefore see that bases are not unique.
We define the standard basis for Rd to be the set of vectors {ei}di=1, in which ei is the
vector with zero entries everywhere except for a 1 in the i-th entry. That is:

(ei)j =

{
1 if i = j

0 otherwise.

For example, the standard basis for R2 is {(1, 0)T , (0, 1)T}. When the vectors in a
basis are all of unit norm and orthogonal to one another we say that they form an
orthonormal basis. The standard basis is a particular example of an orthonormal
basis.
Of particular interest to us will be eigenvector bases of Rd. Recall that a non-zero
vector x is called an eigenvector of the matrix A with scalar eigenvalue λ if Ax = λx.
Eigenvectors are not uniquely defined since any scaling of x is also an eigenvector of A
with the same eigenvalue. By convention, we always take x to be an eigenvector that
has unit norm so that x is then unique up to its sign.
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If A ∈Md×d has d distinct eigenvalues then the corresponding eigenvectors are linearly
independent and hence form a basis for Rd (likewise if there are k distinct eigenvalues
then the eigenvectors of A span a subspace of dimension at least k). In general the
eigenvectors of a matrix are not pairwise orthogonal, and it is not true in general that
the eigenvectors of a matrix span Rd if it does not have d distinct eigenvalues. However,
for the special case of symmetric matrices A = AT it is true that one can always find
a basis for Rd of eigenvectors of A even when there are repeated eigenvalues; moreover
for symmetric matrices the eigenvectors are always pairwise orthogonal and so one
can always find an orthonormal basis of eigenvectors (although if there are repeated
eigenvalues this basis is not uniquely determined). We will use these facts often when
we work with positive semi-definite matrices.

2.2.3 Positive (Semi-)definite Matrices

We begin this section by defining what we mean by a positive definite or semi-definite
matrix.

Definition 1 (Positive (Semi-)Definite Matrices, Horn & Johnson (1985))
Let A be a square symmetric matrix. We say that A is positive semi-definite (p.s.d) if,
for every vector v ∈ Rd, A has the property vTAv > 0, and we write A < 0. Similarly
if B is p.s.d and A − B < 0 we write A < B. If A also satisfies vTAv > 0, ∀v ∈ Rd

then we say that A is positive definite (p.d), and we write A � 0.

Note in particular that every p.s.d matrix A is symmetric: There are non-symmetric
real matrices B for which xTBx > 0 ∀x ∈ Rd holds2 but such matrices are not p.s.d
according to our definition.
We will make frequent use of several standard results and properties in this thesis.
Apart from lemma 7 (for which we give a proof) these are more or less well-known,
but for convenience we state them here for later reference.

Lemma 1 (Properties of symmetric matrices)
Let A,B ∈Md×d be symmetric matrices, i.e. such that A = AT and B = BT , then:

1. A+B and A−B are symmetric.

2. All eigenvalues of A are real.

3. A is diagonalizable as A = UΛUT where Λ = diag(λi) is a diagonal matrix
of the eigenvalues of A and U is an orthogonal matrix whose columns are unit
eigenvectors of A, i.e. such that UUT = I = UTU .

4. AB is symmetric if and only if AB = BA. Equivalently, if and only if A and B
are both diagonalized by the same orthogonal matrix of eigenvectors.

5. Corollary to 3 and 4: For all non-negative integers, n, An is symmetric and if A
is invertible then A−n is symmetric. An = UΛnUT where Λn = diag(λni ) and, if
A is invertible, A−n = UΛ−nUT where Λ−n = diag(λ−ni ).

2For example, it is easy to verify that for x ∈ R2 the matrix
(

1 1
−1 1

)
has this property.
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6. xTAy = yTAx, ∀ x, y ∈ Rd if and only if A is symmetric.

Lemma 2 (Properties of p.s.d matrices)
Let A,B ∈ Md×d be positive semi-definite matrices, Q ∈ Md×d be a positive definite
matrix and R ∈Mk×d be any matrix then the following hold:

1. The eigenvalues of A are all non-negative.

2. The eigenvalues of Q are all strictly positive.

3. Q is invertible and Q−1 � 0.

4. RART < 0. If rank(R) = k (i.e. R has full row rank) then RQRT � 0 and, in
particular, if rank(R) = k then RRT = RIRT � 0.

5. A has a unique p.s.d square root A
1
2 =

(
AT
) 1

2 =
(
A

1
2

)T
and Q has a unique p.d

square root Q
1
2 =

(
QT
) 1

2 =
(
Q

1
2

)T
. (Theorem 7.2.6, pg. 406 Horn & Johnson,

1985)

6. A+B < 0 and A
1
2BA

1
2 < 0.

Lemma 3 (Eigenvalue and Trace identities)
1. Let A ∈Md×k and B ∈Mk×d then the non-zero eigenvalues of AB and BA are

the same and have the same multiplicity. If x is an eigenvector of AB associated
with a non-zero eigenvalue λ, then y = Bx is an eigenvector of BA with the same
non-zero eigenvalue. (Theorem A.6.2 Pg 468 Mardia et al., 1979).

2. Corollary to 1: Tr(AB) = Tr(BA).

3. Let C ∈ Md×d be an invertible matrix, then λmax(C) = 1/λmin(C−1), λmin(C) =
1/λmax(C−1).

4. Corollary to 3: The condition number of C, κ(C) = λmax(C)
λmin(C)

= κ(C−1).

Lemma 4 (Weyl’s inequality. Horn & Johnson (1985) Theorem 4.3.1 Pg 181)
Let A,B ∈Md×d be symmetric matrices and arrange the eigenvalues λi(A), λi(B) and
λi(A + B) in increasing order, i.e. λmax = λd > λd−1 > . . . > λ1 = λmin. Then, for
each j ∈ {1, 2, . . . , d} we have:

λj(A) + λmin(B) 6 λj(A+B) 6 λj(A) + λmax(B)

In particular, λmin(A)+λmin(B) 6 λmin(A+B) and λmax(A+B) 6 λmax(A)+λmax(B).
Equality holds when A and B have the same eigenvectors and eigenvalue ordering.
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Lemma 5 (Rayleigh quotient. Horn & Johnson (1985), Theorem 4.2.2 Pg 176)
If Q is a real symmetric matrix then, for any non-zero vector v, its eigenvalues λ
satisfy:

λmin(Q) 6
vTQv

vTv
6 λmax(Q)

and, in particular:

λmin(Q) = minv 6=0
vTQv
vT v

= minvT v=1 v
TQv and (2.2.1)

λmax(Q) = maxv 6=0
vTQv
vT v

= maxvT v=1 v
TQv (2.2.2)

Lemma 6 (Poincaré Inequality. Horn & Johnson (1985), Cor 4.3.16 Pg 190)
Let A be a symmetric matrix A ∈ Md×d, let k be an integer, 1 6 k 6 d, and let
r1, . . . , rk ∈ Rd be k orthonormal vectors. Let R ∈ Mk×d be the matrix with ri its i-th
row, and let T = RTAR ∈Mk×k (in our setting, R is instantiated as an orthonormal-
ized random projection matrix). Arrange the eigenvalues λi of A and T in increasing
magnitude, then:

λi(A) 6 λi(T ) 6 λi+d−k(A), i ∈ {1, . . . , k}

and, in particular:

λmin(A) 6 λmin(T ) and λmax(T ) 6 λmax(A)

Lemma 7 (Corollary to lemmas 5 and 6. Durrant & Kabán (2010b))
Let Q be positive definite, such that λmin(Q) > 0 and so Q is invertible. Let u =
Rv, v ∈ Rd, u 6= 0 ∈ Rk, with R any k× d matrix with full row rank and orthonormal
rows. Then:

uT
[
RQRT

]−1
u > λmin(Q−1)uTu > 0

Proof: We use the eigenvalue identity λmin(Q−1) = 1/λmax(Q). Combining this identity
with lemma 5 and lemma 6 we have:

λmin([RQRT ]−1) = 1/λmax(RQRT )

Since RQRT is positive definite. Then by positive definiteness and lemma 6 it follows
that:

0 < λmax(RQRT ) 6 λmax(Q) (2.2.3)

⇐⇒ 1/λmax(RQRT ) > 1/λmax(Q) > 0 (2.2.4)

⇐⇒ λmin([RQRT ]−1) > λmin(Q−1) > 0 (2.2.5)

And so by lemma 5:

uT
[
RQRT

]−1
u > λmin([RQRT ]−1)uTu (2.2.6)

> λmin(Q−1)uTu (2.2.7)

= uTu/λmax(Q) > 0 (2.2.8)

13



Mathematical Background and Tools

Lemma 8 (Kantorovich Inequality. Horn & Johnson (1985), Theorem 7.4.41 Pg 444)
Let Q be a positive definite matrix Q ∈Md×d with eigenvalues 0 < λmin 6 . . . 6 λmax.
Then, for all v ∈ Rd:

(vTv)2

(vTQv)(vTQ−1v)
>

4 · λminλmax

(λmin + λmax)2

With equality holding for some unit vector v.
This can be rewritten:

(vTv)2

(vTQv)
> (vTQ−1v) ·

4 ·
(
λmax

λmin

)
(

1 + λmax

λmin

)2

Lemma 9 (De Bruijn. De Bruijn (1956), Theorem 14.2)
Let Q be a positive definite matrix Q ∈ Md×d, let k be an integer, 1 6 k 6 d, and let
R be an arbitrary k × d matrix then:

λmin(RQRT ) > λmin(Q) · λmin(RRT ) (2.2.9)

and:
λmax(RQRT ) 6 λmax(Q) · λmax(RRT ) (2.2.10)

Lemma 10 (Corollary to lemma 9)
Let Q ∈Md×d be a positive definite matrix and A ∈Md×d be a positive (semi-)definite
matrix, then:

λmin(QA) > λmin(Q) · λmin(A) (2.2.11)

and:
λmax(QA) 6 λmax(Q) · λmax(A) (2.2.12)

Proof: Take A
1
2 for R in lemma 9.

2.3 Random Matrix Theory

2.3.1 Random Projections

Random projection (RP) is a simple method of non-adaptive dimensionality reduction.
Given d-dimensional data, which is to be compressed to a k-dimensional representa-
tion, the procedure is to generate a k × d matrix, R, with entries drawn i.i.d from a
zero-mean Gaussian or subgaussian distribution (Achlioptas, 2003; Arriaga & Vempala,
1999; Dasgupta & Gupta, 2002), and then left multiply the data with R. Note that,
with respect to the Gaussian measure, the random matrix R almost surely (or for the
sub-Gaussians given in (Achlioptas, 2003), with high probability) has rank k.
Theoretical treatments of RP frequently assume that the rows of R have been or-
thonormalized, but in practice if the original data dimensionality d is very high this
may not be necessary (Bingham & Mannila, 2001; Dasgupta, 2000a; Fradkin & Madi-
gan, 2003a) as the rows of R, treated as random vectors, with high probability will
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have nearly identical norms and be approximately orthogonal to each other. These
facts are folklore in the data mining community, but we have not seen a formal proof
of this very general phenomenon. For completeness we will address this point now, in
the following lemma:

Lemma 11 (Durrant & Kabán (2011))
Let s and t be vectors in Rd with their components si, ti

i.i.d∼ D, a non-degenerate zero-
mean distribution i.e. with finite non-zero variance 0 < σ2 < ∞. Let ‖ · ‖ denote the
Euclidean norm of its argument and 〈s, t〉 denote the inner product of s and t. Then:

Prs,t

{
lim
d→∞

〈
s

‖s‖
,
t

‖t‖

〉
= 0

}
= 1 (2.3.1)

and

Prs,t

{
lim
d→∞

‖s‖
‖t‖

= 1

}
= 1 (2.3.2)

that is, as d → ∞, s becomes orthogonal to t almost surely and the norms ‖s‖, ‖t‖
become the same almost surely.
Proof: First, we show that ‖s‖/

√
d converges almost surely to σ. We start by noting

E[s2
i ] = Var[si] = σ2. Then, since s2

i , d and σ2 are all positive and the s2
i are i.i.d, we

have:

Prs

{
lim
d→∞

∑d
i=1 s

2
i

d
= σ2

}
= Prs

 lim
d→∞

√∑d
i=1 s

2
i

d
= σ

 (2.3.3)

and this probability is equal to 1 by applying the strong law of large numbers for i.i.d
random variables (e.g. (Rosenthal, 2006) Thm. 5.4.4 Pg 62) to the LHS of (2.3.3). A
similar argument shows that ‖t‖/

√
d also converges almost surely to σ.

Next, since si and ti are independent and zero-mean we have E[siti] = 0 for all i, so
applying the strong law of large numbers once more we see that:

Prs,t

{
lim
d→∞

〈s, t〉
d

= 0

}
= Prs,t

{
lim
d→∞

∑d
i=1 siti
d

= 0

}
= 1 (2.3.4)

We may rewrite (2.3.4) as:

Prs,t

{
lim
d→∞

∑d
i=1 siti
d

= 0

}
= Prs,t

{
lim
d→∞

〈s, t〉
‖s‖‖t‖

· ‖s‖‖t‖
d

= 0

}
(2.3.5)

we will prove (2.3.1) by showing that ‖s‖‖t‖
d

a.s.−→ σ2 ∈ (0,∞) and hence conclude that
〈s,t〉
‖s‖‖t‖

a.s.−→ 0.
Utilising the independence of s and t we see, via the strong law and by applying the
product rule for limits of continuous functions to (2.3.3), that:

Prs,t

{
lim
d→∞

‖s‖‖t‖
d

= σ2

}
= 1 (2.3.6)
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Indeed, negating and combining (2.3.4) and (2.3.6), via the union bound we observe:

Prs,t

{(
lim
d→∞

〈s, t〉
d
6= 0

)
∨
(

lim
d→∞

‖s‖‖t‖
d

6= σ2

)}
6 Prs,t

{
lim
d→∞

〈s, t〉
d
6= 0

}
+ Prs,t

{
lim
d→∞

‖s‖‖t‖
d

6= σ2

}
= 0 + 0 = 0 (2.3.7)

and so:

Prs,t

{(
lim
d→∞

〈s, t〉
d

= 0

)
∧
(

lim
d→∞

‖s‖‖t‖
d

= σ2

)}
> 1−

(
Prs,t

{
lim
d→∞

〈s, t〉
d
6= 0

}
+ Prs,t lim

d→∞

{
‖s‖‖t‖
d

6= σ2

})
= 1 (2.3.8)

Finally, since 0 < σ2 <∞ we conclude that:

Prs,t

{
lim
d→∞

〈s, t〉
‖s‖‖t‖

· σ2 = 0

}
= Prs,t

{
lim
d→∞

〈
s

‖s‖
,
t

‖t‖

〉
= 0

}
= 1 (2.3.9)

as required.
To prove the almost sure convergence of norms (2.3.2) we again use equation (2.3.3)
and the fact that ‖s‖/

√
d and ‖t‖/

√
d converge almost surely to σ. Then applying the

quotient rule for limits, we have (since σ 6= 0):

Prs,t

 lim
d→∞

(∑d
i=1 s

2
i

d

)1/2

(∑d
i=1 t

2
i

d

)1/2
= 1

 = Prs,t

{
lim
d→∞

‖s‖
‖t‖

= 1

}
= 1 (2.3.10)

as required. �

In what follows we will frequently be interested in the spectral properties of random
projection matrices. In particular in the extreme singular values of k × d rectangular
random matrices R, with rij ∼ N (0, σ2) and k � d, and the extreme eigenvalues of the
related p.s.d matrices RRT and RTR. Recall that if sj(A) is the j-th non-zero singular
value of the matrix A ∈ Mk×d then λj(AA

T ) is the j-th non-zero eigenvalue of the
p.s.d square matrix AAT and λj(AA

T ) = (sj(A))2 = λj(A
TA). The following result

bounds the extreme (non-zero) singular values of an instance of the random projection
matrix R with high probability.

Theorem 1 (Singular Values of Gaussian Random Matrices. Vershynin (2012))
Let R be a k × d matrix with i.i.d N (0, 1) entries. Then for all ε > 0 with probability
at least 1− 2 exp(−ε2/2) we have:

√
d−
√
k − ε 6 smin(R) 6 smax(R) 6

√
d+
√
k + ε (2.3.11)

In particular, the extreme singular values of (1/
√
d)R are approximately 1 ±

√
k/d

with high probability, so that when d is large (compared to k and ε) these matrices act
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like approximate isometries on their range. Closely related (and earlier) results, which
are the basis of earlier theory for randomly-projected learning, are the following rather
surprising facts:

Theorem 2 (Johnson-Lindenstrauss Lemma (JLL)) Let ε ∈ (0, 1). Let N, k ∈
N such that k > Cε−2 logN , for a large enough absolute constant C. Let V ⊆ Rd be
a set of N points. Then there exists a linear mapping R : Rd → Rk, such that for all
u, v ∈ V :

(1− ε)‖u− v‖2 6 ‖Ru−Rv‖2 6 (1 + ε)‖u− v‖2

There are several elementary proofs of the Johnson-Lindenstrauss lemma e.g. (Achliop-
tas, 2003; Dasgupta & Gupta, 2002; Matoušek, 2008) in which it is demonstrated that
random projection is, with high probability, a suitable choice for the linear mapping
R. The key step in each of these proofs is to show that, with high probability, the
norm of a randomly projected unit vector is close to its expected value. The proof of
the existence of a suitable linear mapping R then follows by applying the probabilistic
method to the following obtained ‘randomized’ version of the JLL, and taking δ = 1/N .

Theorem 3 (Randomized Johnson-Lindenstrauss Lemma (JLL)) Let ε ∈ (0, 1).
Let k ∈ N such that k > Cε−2 log δ−1, for a large enough absolute constant C. Then
there exists a random linear mapping P : Rd → Rk, such that for any unit vector
x ∈ Rd:

PrP
{

(1− ε) 6 ‖Px‖2 6 (1 + ε)
}
> 1− δ

One suitable family of choices for P is the family of random matrices with zero-mean
i.i.d subgaussian entries. Note that by linearity of norms, theorem 3 implies that the
random matrix P approximately preserves norms for any fixed vector z ∈ Rd with high
probability, i.e. by taking x := z/‖z‖ to be the unit vector in theorem 3.

2.4 Other Useful Inequalities

Lemma 12 (Markov’s Inequality)
Let X be any (scalar) random variable and let ε > 0. Then:

Pr{|X| > ε} 6 E(|X|)
ε

The following proof is folklore. Let E be an event, and let 1E be the indicator function
which returns 1 if E occurs and 0 otherwise. Then:

ε1|X|>ε 6 |X|
E[ε1|X|>ε] 6 E[|X|]
εE[1|X|>ε] 6 E[|X|]

εPr{|X| > ε} 6 E[|X|]

There is also a matrix variant of Markov’s Inequality:
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Lemma 13 (Matrix Markov Inequality)
Let X be a random positive semi-definite matrix and A a fixed positive definite matrix.
Then:

Pr{X 64 A} 6 Tr
(
E[X]A−1

)
The following proof is very similar to the one for the scalar case given above, and is
due to Recht (2011). First note that if X 64 A, then A−1/2XA−1/2 64 I, and hence
λmax

(
A−1/2XA−1/2

)
> 1. Then 1X 64A 6 Tr

(
A−1/2XA−1/2

)
as the right hand side is

always nonnegative, and, if the left hand side equals 1, the trace of the right hand side
must exceed the largest eigenvalue of the right hand side which is greater than 1. Thus
we have:

Pr{X 64 A} = E [1X 64A] 6 E
[
Tr
(
A−1/2XA−1/2

)]
= Tr

(
E[X]A−1

)
where the last equality follows from the linearity and cyclic properties of the trace,
lemma 3.

Lemma 14 (Jensen’s Inequality (e.g. Anthony & Bartlett (1999), Sec A1.1 Pg 358))
Let V be a vector space and let f : V → R be a convex function. That is, f satisfies
for all x1, x2 ∈ V and all α ∈ (0, 1):

f(αx1 + (1− α)x2) 6 αf(x1) + (1− α)f(x2)

Then if X is a random variable taking values on V :

E[f(X)] > f(E[X])

If g : V → R is a concave function, that is for all x1, x2 ∈ V and all α ∈ (0, 1):

g(αx1 + (1− α)x2) > αg(x1) + (1− α)g(x2)

and X is a random variable taking values on V , then the sense of the inequality is
reversed:

E[g(X)] 6 g(E[X])

Lemma 15 (McDiarmid’s Inequality. McDiarmid (1989))
Let X1, . . . , Xn be independent random variables taking values in a set A.

1. Let f : An → R be a real-valued function and assume there are fi : An−1 → R
functions such that, for all 1 6 i 6 n the bounded differences condition:

sup
x1...xn

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− fi(x1, . . . , xi−1, xi+1, . . . , xn)| 6 ci

holds almost surely. Then, ∀t > 0 we have:

Pr {|f(X)− E[f(X)]| > t} 6 2 exp

(
−2t2∑n
i=1 c

2
i

)
(2.4.1)
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2. Let g : An → R be a real valued function. Assume that, for all 1 6 i 6 n, the
bounded differences condition:

sup
x1...xn,x′i

|g(x1, . . . , xi−1, xi, xi+1, . . . , xn)− gi(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| 6 ci

holds almost surely. That is, if we exchange one instance of the random variable
Xi for any other instance of the same random variable, then the difference in the
evaluation of g is almost surely bounded. Then, ∀t > 0 we have:

Pr {|g(X)− E[g(X)]| > t} 6 2 exp

(
−2t2∑n
i=1 c

2
i

)
(2.4.2)
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3
State of the Art

Summary This chapter reviews the current literature, both empirical and theoreti-
cal, on random projections for dimensionality reduction for learning. We highlight some
gaps in the current knowledge, and outline the contribution that this thesis makes.
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Random projection is a recent and very promising non-adaptive dimensionality
reduction procedure, for which a diverse collection of motivations and wide range of
applications can be found in the literature. These different motivations for the use of
random projections include:

• To trade some accuracy in order to reduce computational expense and/or stor-
age overhead (e.g. KNN (Indyk & Naor, 2007), low-rank matrix approximation
(Recht, 2011)).

• To bypass the collection of lots of data then throwing away most of it at pre-
processing (compressed sensing (Donoho, 2006), compressed imaging (Mu et al.,
2011)).

• To create a new theory of cognitive learning (RP perceptron (Arriaga & Vempala,
2006)).

• To replace a heuristic optimizer with a provably correct algorithm with perfor-
mance guarantees (mixture learning (Dasgupta, 1999)).

• To obscure identifiable properties of data to allow third-party data processing
(privacy-preserving data-mining (Liu & Liu, 2009; Zhou et al., 2009)).

• To improve the speed and accuracy of local search algorithms for identifying re-
curring substrings in DNA sequences (‘motif’ detection (Buhler & Tompa, 2002)).

while the growing list of applications includes:

• Dimensionality Reduction. e.g. (Bingham & Mannila, 2001)

• Classification. e.g. (Blum, 2006; Boyali & Kavakli, 2012; Calderbank et al., 2009;
Chen et al., 2011; Durrant & Kabán, 2012b; Fradkin & Madigan, 2003a; Goel
et al., 2005; Pillai et al., 2011; Rahimi & Recht, 2008a; Schclar & Rokach, 2009;
Wright et al., 2009)

• Regression. e.g. (Boutsidis & Drineas, 2009; Hegde et al., 2007; Maillard &
Munos, 2009; Zhou et al., 2009)

• Clustering and Density estimation. e.g. (Ailon & Chazelle, 2006; Avogadri &
Valentini, 2009; Dasgupta, 1999; Fern & Brodley, 2003; Indyk & Motwani, 1998;
Kalai et al., 2012)

• Other related applications: structure-adaptive kd-trees (Dasgupta & Freund,
2008), low-rank matrix approximation (Recht, 2011; Sarlos, 2006), sparse sig-
nal reconstruction (compressed sensing, compressed imaging) (Candes & Tao,
2006; Donoho, 2006; Mu et al., 2011), data stream computations (Alon et al.,
1996), search (Buhler & Tompa, 2002).
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In this thesis we study the effect of random projection on classification, and our moti-
vation is to mitigate two common aspects of the dimensionality curse. More precisely:
When data are high-dimensional and plentiful, we can view random projection as a
form of lossy compression which allows us to reduce the algorithmic time and space
complexity of learning a classifier and carrying out classification. In this setting we
want to quantify the expected cost, in terms of classification accuracy, of working in
the randomly projected domain. On the other hand when data are high-dimensional
and scarce, we can view random projection as a regularization scheme which trans-
forms an ill-posed parameter estimation problem into a well-posed one. A side-effect
of this approach will be that it also allows reductions in algorithmic time and space
complexity -vs- working in the data space. In this setting we want to understand
this regularization effect and quantify the likely improvement, in terms of classification
accuracy, from working in the randomly projected domain.

3.1 Summary of Existing Work

Before briefly summarizing the state-of-the-art, it is useful to highlight two theoreti-
cal results concerning randomly projected data. The first is the randomized version
of the Johnson-Lindenstrauss Lemma (JLL) which we gave in Chapter 2 as theorem
3; namely that with high probability random projection approximately preserves the
distances between a point set of N vectors, provided that the projection dimension-
ality k is taken to be at least k ∈ O(ε−2 logN). The second is the key result from
the literature on Compressed Sensing which states that for an s-sparse vector x ∈ Rd,
i.e. x is d-dimensional but admits a sparse representation in some linear basis such
that it has no more than s � d non-zero entries, then the original vector x can be
perfectly reconstructed from a k-dimensional representation of x, Rx, provided that
R satisfies the so-called ‘restricted isometry property’ (RIP). One can show that, with
high probability, if R is a (dense) random projection matrix then it satisfies the RIP
provided that the projection dimensionality k is taken to be at least k ∈ O(s log d).
Armed with these results, we are ready to make a brief tour of the existing literature.
Empirical results on random projections in the literature were noted in (Bingham &
Mannila, 2001) to be sparse and, within the machine learning and data-mining lit-
erature, that is still the case. Motivated by theoretical findings in the domain of
compressed sensing (CS) the last few years have, however, seen a rapid growth in the
number of experimental papers adopting random projection as a preprocessing step for
classification of sparse data, especially in associated fields such as computer vision.
Within the machine learning and data-mining literature, experimental papers using
random projection are typically method-specific and mainly focus on methods where
the uniform approximate geometry preservation properties of random projection (via
the JLL) are the key theoretical property motivating the use of RP. These include un-
supervised methods such as density estimation (Dasgupta, 2000a), clustering (Kaski,
1998), clustering ensembles (Fern & Brodley, 2003), and SOM (Kurimo & IDIAP,
2000), as well as classification using decision trees, 1-NN, 5-NN, and linear SVM (Frad-
kin & Madigan, 2003a), AdaBoost (Paul et al., 2009), ensembles of IB1 (Aha et al.,
1991) classifiers (a variant of 1-NN) (Schclar & Rokach, 2009), and also regression on
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sparse data (Fard et al., 2012) - the latter motivated by CS-type results. Within the
vision community, experimental papers are also method-specific and focus on applica-
tions using image data, which admit a sparse representation. Here signal reconstruction
guarantees from compressed sensing are the key theoretical idea motivating the use of
RP; in particular the central intuition applied in this setting is that when data are
sparse then with high probability no information is lost by randomly projecting them,
and so with the same probability there should be no degradation in the performance
of a classifier or regressor following preprocessing by random projection. Examples of
papers in the vision literature making empirical studies of classification of randomly
projected data include: Target recognition and anomaly detection using linear discrim-
inants (Chen et al., 2011), gesture recognition using a ‘closest match’ classifier (Boyali
& Kavakli, 2012), face recognition using a 1NN variant employing the Hamming metric
(Wright et al., 2009) and iris recognition using the same classifier (Pillai et al., 2011),
face recognition using ‘closest match’, a majority-voting ensemble of 5 ‘closest match’
classifiers, and a ‘scoring’ ensemble that weights the ensemble votes according to the
number of training examples (Goel et al., 2005) - the last of these papers gives the JLL
as motivation, the others are motivated by CS results.
For the experimental papers above, with the sole exception of (Dasgupta, 2000a) where
the theory supporting the approach appears separately in (Dasgupta, 1999; 2000b), al-
though theory clearly motivates the authors’ use of random projections no serious at-
tempt at theoretical analysis of the combination of random projection with the learning
approaches employed is made. The experiments are carried out using different methods
and on different data sets all with different characteristics and therefore it is hard to
draw firm conclusions about which problem-specific properties are affected by random
projection and which properties (if any) indicate that random projection will or will
not work well. On the other hand, a common and particularly striking property of the
experimental papers on learning a classifier from randomly-projected data is that, even
when the projection dimension k is taken to be considerably smaller than one would
expect for geometry preservation guarantees under the randomized version of the JLL,
good classification performance can still be achieved. This mirrors the similar findings
in (Bingham & Mannila, 2001) where the authors empirically verified the randomized
JLL by measuring the amount of distortion random projection actually gives rise to in
practice. On image data they found empirically that there was a low level of distortion
on a sample of 100 interpoint distances even when taking k = 50� ε−2 logN .1

Theoretical results concerning random projections applied to learning are somewhat
more common. However, although there is a sizeable corpus on compressed (or com-
pressive) sensing (CS) in the signal processing literature stemming from the work of
(Candes & Tao, 2006; Donoho, 2006), there is not a great deal of theory on applying
CS results to learning. The prototype for the majority of the theoretical papers in
the machine learning literature is the seminal work of Arriaga and Vempala on RP
perceptron (Arriaga & Vempala, 2006) where high probability guarantees on uniform
geometry preservation via the JLL are the main tool employed. Contemporaneous work

1Rather surprisingly they also found that, to keep the distortion in interpoint distances at a compa-
rable level, when applying PCA to the same data required retaining the first 600 principal eigenvectors!
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by (Indyk & Motwani, 1998) gave the first algorithm for approximate nearest neigh-
bour classification which was polynomial in both its time and space requirements.
Around the same time (Garg et al., 2002) considered the use of random projections
as a tool to develop PAC guarantees for non-projected classifiers and, more recently,
the effect of RP on regression was considered in (Maillard & Munos, 2009). Semi-
supervised learning of large margin classifiers is considered in (Balcan et al., 2006)
where random projection is treated as an alternative to the ‘kernel trick’. There is also
theory for the unsupervised learning of Gaussian mixtures, where the first algorithm
for learning a separated Gaussian mixture with high probability guarantees (Dasgupta,
1999) used random projections, as does the more recent algorithm for learning a non-
separated mixture proposed by (Kalai et al., 2012) (which is, at present, a theoretical
construct). The unsupervised learning of low-dimensional manifolds was also analyzed
in (Baraniuk & Wakin, 2009). Very recently work by (Shi et al., 2012) considered mar-
gin preservation under random projection, while unpublished manuscripts by (Paul
et al., 2012) and (Zhang et al., 2012) consider the question of how close the optimal
linear classifier in the randomly-projected space is to the optimum in the dataspace
and speeding up SVM learning using random projection respectively. For sparse data,
where the guarantees derive from CS-type theory, exemplars are learning an SVM from
RP sparse data (Calderbank et al., 2009) and learning a privacy-preserving regressor
from RP sparse data (Zhou et al., 2009). A more extensive list of examples of empir-
ical and theoretical papers on random projection and its application to learning (and
related problems) can be found in the references to the slides of my ECML-PKDD
2012 tutorial ‘Random Projections for Machine Learning and Data Mining: Theory
and Applications’(Durrant & Kabán, 2012a). These are available on the internet at
https://sites.google.com/site/rpforml/.
Finally we note, with an eye on chapter 8 of this thesis, that kernel classifiers have a
similar form to the randomly-projected classifier we consider here; the key difference
being that in kernel classifiers the role of the random projection is filled instead by
orthogonal projection on to the span of the (feature mapped) training examples. We
do not survey the very substantial literature on kernel learning here, rather we note
that in the case of Kernel Fisher Discriminant (KFLD) - the setting we will later ana-
lyze - there are to the best of our knowledge only two existing results considering the
generalization error of this classifier. The earliest attempts are in (Mika, 2002) which
approaches the analysis of KFLD from the starting point of the KFLD objective func-
tion and its algorithmic solution as an eigenproblem, and try to quantify the quality of
the eigenvector estimates. Unfortunately these still leave unanswered the question of
the generalization performance of KFLD. A more informative bound appears in (Diethe
et al., 2009) but for a sparse variant of KFLD. Moreover they require that the induced
distribution of the feature-mapped data has bounded support and their bounds are
somewhat loose.
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3.2 Inadequacies in previous work and our Contri-

bution

There are several deficiencies in the existing literature on learning from randomly-
projected data. In particular, there is a significant disconnection between the theo-
retical and empirical work and, furthermore, the random projections are considered in
isolation from the classification setting in which the randomly-projected data will be
employed.
The empirical work is essentially ad hoc: Practitioners show that approach A works on
dataset B, and conclude that therefore approach A is a good one. In reality though,
the results are limited to the data and evaluation criteria used, and these are all dif-
ferent. There is little or no attempt made in the experimental papers to understand
the results in the context of existing (or new) theoretical knowledge, which could il-
luminate the findings, and so these papers do not reveal why performance is good or
when we can expect it to remain good. We need theory to understand what is going
on, and to come up with improved algorithms that do better. On the other hand, the
theory developed to date does not answer all of the questions that one might like to
see answered. There is already considerable theory giving guarantees for the case of
learning from finite training data outside of randomly-projected domains, and this has
enhanced our understanding of statistical learning in a variety of settings, but there
is little theoretical work to date incorporating the effect of dimensionality in these
bounds. Given the increasing prevalence of high-dimensional data and the widespread
application of dimensionality reduction techniques, this appears to be a subject that
could be of particular interest.
We can broadly summarise previous theoretical work on learning in randomly-projected
domains as belonging to one of two camps: In the first camp are guarantees based on
geometry preservation via the JLL. These proceed by showing that with high probabil-
ity all norms and dot products that appear as quantities in the learning algorithm in
the randomly-projected space take values close to the corresponding quantities in the
data space. The whole of the effect of the random projection is disposed of in this way,
and then one simply works with these distorted quantities in the data space to derive
guarantees. The major drawback to this uniform geometry preservation approach is
that one then obtains a bound that, contrary to experience and expectation, grows
looser as the number of training observations increases.
In the second camp are guarantees for sparse data based on the RIP of CS. These are
similar in flavour to the JLL-based approaches but, by assuming sparse data and work-
ing with the RIP property of random projection matrices, one removes the unwanted
logarithmic dependence on the number of observations and therefore the unnatural
behaviour of bounds employing this approach, but at the cost of a linear dependence
on the number of non-zero entries of the sparse data instead. However, this is the same
dependence as is required for perfect reconstruction of randomly projected data and
classification should be a far simpler task than that. For classification it is reasonable
to believe that either stronger results should be achievable for sparse data, or that
the sparsity condition on the data can be relaxed without substantially weakening the
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guarantee, or perhaps both.
This thesis attempts to advance theoretical understanding of issues related to learn-

ing, and specifically we aim to answer some questions that may be relevant to practical
applications.
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4
Fisher’s Linear Discriminant

Summary In this chapter, we consider Fisher’s Linear Discriminant (FLD) - a pop-
ular choice of linear classifier.
We first provide some preliminary background, in which we introduce the classification
problem and describe the decision rule implemented by FLD. We show that the FLD
decision rule for multiclass settings can be decomposed as a sequence of two-class clas-
sification problems, and therefore we focus mainly on two-class classification problems
in the remainder of this thesis. We develop upper bounds on the classification perfor-
mance of FLD working in the data space of two types: Firstly, we give an upper bound
on the FLD generalization error when the class-conditional distributions are subgaus-
sian; Secondly, we provide elementary proofs of the results of Bickel & Levina (2004);
Pattison & Gossink (1999) giving the exact generalization error of FLD conditional on
a fixed training set when the query point class-conditionals are Gaussian with identical
covariance.
These two data space bounds (and variants of similar form) will be used frequently
in future chapters when we analyze randomly-projected FLD (RP-FLD), ensembles of
RP-FLD classifiers, and kernel FLD.
Our main aim in deriving these results is to eventually quantify the effect of random
projection on the performance of FLD classification, therefore here and in the subse-
quent chapter 5 we take the training set to be fixed. In the final two chapters 7 and 8
we consider the effect of random training sets of fixed size.
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4.1 Preliminaries

4.1.1 The classification problem

In an m-class classification problem we observe N examples of labelled training data

TN = {(xi, yi)}Ni=1 where (xi, yi)
i.i.d∼ Dx,y a (usually unknown) distribution. For a given

class of functions H, our goal is to learn from TN the function ĥ ∈ H with the lowest
possible generalization error in terms of some loss function L. That is, find ĥ such
that L(ĥ(xq), yq) = minh∈H Exq ,yq [L(h(xq), yq)], where (xq, yq) ∼ Dx,y is a query point
with unknown label yq.
In the case we consider here, the class of functions H consists of instantiations of FLD
learned from the training data, and we use the (0, 1)-loss L(0,1) : {0, 1}×{0, 1} → {0, 1}
as a measure of performance defined by:

L(0,1)(h(xq), yq) =

{
0 if h(xq) = yq
1 otherwise.

We seek to quantify the generalization error or expected (0, 1)-loss of FLD which, for
the (0, 1)-loss, is equivalent to the probability that an arbitrarily drawn query point
(xq, yq) ∼ Dx,y is misclassified by the learned classifier. Our approach is therefore to
upper bound:

Exq ,yq [L(0,1)(ĥ(xq), yq)] = Prxq ,yq [ĥ(xq) 6= yq : (xq, yq) ∼ Dx,y]

Where ĥ is the classifier decision rule learned from the training data. For concrete-
ness and tractability, we do this for Fisher’s Linear Discriminant (FLD) classifier,
which we briefly review in the next Section 4.1.2. With our eye on classification in
the randomly-projected domain, which is our main interest and the subject of later
chapters, our motivation for choosing RP-FLD as our object of study was threefold:
In the first place, FLD and closely-related variants are a popular and successful family
of classification methods with applications in diverse areas including Medicine, Eco-
nomics, Spectroscopy, and Face Recognition (Dudoit et al., 2002; Guo et al., 2007;
Kim & Kittler, 2005; Lu et al., 2005; McLachlan, 2004; Pang et al., 2005; Wu et al.,
1996), therefore results concerning RP-FLD are likely to be of interest. Secondly, dis-
criminative linear classifiers working on randomly projected data have been studied
before in (Arriaga & Vempala, 2006; Calderbank et al., 2009) (where the authors con-
sidered Perceptron and SVM respectively) and it is therefore interesting to consider a
randomly-projected linear generative classifier – RP-FLD is such a classifier. Thirdly,
for discriminative classifiers we found it hard to see how to avoid using the geometry-
preserving properties of RP as the basis for any quantitative analysis, while on the
other hand it seemed possible that a generative classifier might present opportunities
for different proof techniques and therefore results with a quite different flavour from
the existing ones. We shall see in the subsequent chapters 5, 7 and 8 that this is indeed
the case.
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4.1.2 Fisher’s Linear Discriminant

FLD is a generative classifier that seeks to model, given training data TN , the optimal
decision boundary between classes. Let Σ0 and Σ1 be the class-conditional covariance
matrices and µ0 and µ1 be the class-conditional means of the data distribution D. If
Σ = Σ0 = Σ1 and µ0 and µ1 are known, then the optimal classifier is given by Bayes’
rule (Bickel & Levina, 2004):

h(xq) = 1
{

log f1(xq)

f0(xq)
> 0
}

(4.1.1)

= 1
{

(µ1 − µ0)TΣ−1
(
xq − (µ0+µ1)

2

)
> 0
}

(4.1.2)

where 1(P ) is the indicator function that returns one if P is true and zero otherwise,
and fy is the Gaussian density N (µy,Σ) with mean µy and covariance Σ, namely:

(
(2π)d/2 det (Σ)1/2

)−1
exp

(
−1

2
(x− µy)TΣ−1(x− µy)

)
To construct the FLD classifier from training data, one simply replaces the true pa-
rameters µy and Σ in equation (4.1.2) with estimates made from the data to obtain:

ĥ(xq) = 1

{
(µ̂1 − µ̂0)T Σ̂−1

(
xq −

(µ̂0 + µ̂1)

2

)
> 0

}
(4.1.3)

where Σ̂ is a positive definite covariance matrix estimated from data or assigned
a specific form due to prior knowledge or problem characteristics. An asymptot-
ically unbiased choice for Σ̂ is the maximum likelihood (ML) covariance estimate:

Σ̂ = 1
N

∑0
y=1

∑Ny
i=1(xi − µ̂y)(xi − µ̂y)

T where the second summation is over the Ny

training examples from class y. If the ML estimate is singular then either one can use a
regularization scheme (for example, ridge regularization (Hastie et al., 2001) or shrink-
age regularization (Friedman, 1989; Ledoit & Wolf, 2004)) or one can pseudo-invert
to obtain a working classifier - both approaches are used in practice (Raudys & Duin,
1998). In the case of very high-dimensional data a simplified covariance model may
instead be used for computational tractability, with common choices being a diagonal
covariance estimate consisting of the feature sample variances: Σ̂ = diag(Var(xi))

d
i=1

or the identity matrix. Other approaches which essentially interpolate between these
diagonal schemes and the full ML covariance estimate have also been proposed (Ma
et al., 2010).
In the following we shall generally assume equal class covariance matrices in the true
data distribution, both for simplicity and to reduce notational overload. Although
the FLD model constrains the covariance estimate to be shared across the classes, i.e.
Σ̂y = Σ̂,∀y, different true class covariance matrices Σy can be introduced into the
bounds we derive in a straightforward manner; we show in section 4.2, corollary 1, how
this can be done. On the other hand allowing the model covariances to be different
gives rise to a non-linear (quadratic) decision boundary – this class of classifiers is called
the Quadratic Normal-based Discriminant Rule in McLachlan (2004) and Quadratic
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Discriminant Analysis (QDA) in Friedman (1989); Lachenbruch & Goldstein (1979).
In principle one would expect QDA to generally outperform FLD but it is known that,
in practice, QDA rarely outperforms FLD unless the number of training observations
for each class is large compared to the dimensionality and the class-conditional covari-
ance matrices are very different (Friedman, 1989; Wu et al., 1996). Moreover empirical
results in Friedman (1989); Wu et al. (1996) show that regularized variants of FLD
can still outperform QDA even in those cases where QDA improves on the standard
‘vanilla’ FLD, while Lachenbruch & Goldstein (1979) shows that FLD is more robust to
both systematic and random labelling errors in training data than QDA. In this thesis
we therefore restrict our attention to FLD and we do not analyze the QDA model.
Finally we note that FLD can be extended from the two-class setting to the multi-class
setting; if there are m class labels then the decision rule is given by:

ĥ(xq) = j ⇐⇒ j = arg max
i
{Pry(y = i|xq)} y, j, i ∈ {0, 1, . . . ,m− 1}

We shall see in section 4.2.3 that, for multi-class FLD with this decision rule, upper
bounds on the generalization error in the multi-class setting can be given by a sum of
two-class generalization errors and so multi-class generalization error bounds can easily
be derived from our two-class bounds.

4.2 Dataspace analysis of FLD

We use two approaches to quantify the generalization error in the dataspace:
In our first approach in Section 4.2.1 we derive an upper bound on the dataspace gener-
alization error that holds for Gaussian and subgaussian classes. In our second approach
in Section 4.2.2 we show that if the modelling assumptions of FLD are satisfied, that is
we have a two-class classification problem where the classes are multivariate Gaussian
with different means but equal covariance matrices, then we can give the exact gener-
alization error of FLD. We note that since FLD is the Bayes’ optimal classifier when
its modelling assumptions hold, this exact error is therefore also a lower bound on the
generalization error of FLD when the class-conditional distributions are not Gaussian
and also for any two-class classifier when the assumption of Gaussianity holds.
We shall see that our upper bound obtained in Section 4.2.1 for subgaussians has the
same form as the error obtained in Section 4.2.2 when the classes are Gaussian, and the
cost of allowing for subgaussianity is a small multiplicative absolute constant. Specifi-
cally, we shall see that the bound for subgaussian classes we derive here is exactly twice
a corresponding upper bound for Gaussian classes.

4.2.1 Upper bound on the generalization error of two-class
FLD with subgaussian class conditionals

In this section we derive an upper bound on the generalization error of two-class FLD
in the data space assuming subgaussian classes (in fact, we derive these bounds also
under the assumption of Gaussian classes, but we highlight in the proofs how the
relaxation to subgaussianity becomes possible). For this upper bound we require the
condition αy = (µ̂¬y + µ̂y − 2µy)

T Σ̂−1(µ̂¬y − µ̂y) > 0 to hold; this condition arises from
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the optimization step in the proof of the bound, and amounts only to requiring that,
∀y ∈ {0, 1}, µy and µ̂y lie on the same side of the classification hyperplane estimated
by FLD in the dataspace.

Theorem 4 (Upper bound on generalization error of two-class FLD) Let xq|yq =
y ∼ N (µy,Σ) or a multivariate subgaussian with mean µy and covariance Σ. Let

πy = Pr{yq = y}. Let H be the class of FLD functions and let ĥ be the instance learned

from the training data TN . Assume that we have sufficient data so that Σ̂ is full-rank
and αy = (µ̂¬y + µ̂y − 2µy)

T Σ̂−1(µ̂¬y − µ̂y) > 0 (i.e. µy and µ̂y lie on the same side
of the decision hyperplane) ∀y,¬y ∈ {0, 1}, y 6= ¬y. Then the probability that xq is
misclassified is bounded above by:

Prxq ,yq [ĥ(xq) 6= yq] 6
1∑
y=0

πy exp

−1

8

[
(µ̂¬y − µ̂y)T Σ̂−1(µ̂1 + µ̂0 − 2µy)

]2

(µ̂1 − µ̂0)T Σ̂−1ΣΣ̂−1(µ̂1 − µ̂0)

 (4.2.1)

with µy the mean of the class from which xq was drawn, estimated class means µ̂0 and

µ̂1, model covariance Σ̂, and true class priors πy.

Proof 1 (of Theorem 4)
We prove one term of the bound using standard techniques, the other term being proved
similarly.
Without loss of generality let xq have label yq = 0. Then the probability that xq is

misclassified is given by Prxq |yq=0[ĥ(xq) 6= yq|yq = 0]:

= Prxq |yq=0

[
(µ̂1 − µ̂0)T Σ̂−1

(
xq − µ̂0+µ̂1

2

)
> 0
]

= Prxq |yq=0

[
(µ̂1 − µ̂0)Tα0Σ̂−1

(
xq − µ̂0+µ̂1

2

)
> 0
]

for all α0 > 0. Exponentiating both sides gives:

= Prxq |yq=0

[
exp
(
(µ̂1 − µ̂0)Tα0Σ̂−1

(
xq − µ̂0+µ̂1

2

))
>1
]

6 Exq |yq=0

[
exp

(
(µ̂1 − µ̂0)Tα0Σ̂−1

(
xq − µ̂0+µ̂1

2

))]
by Markov’s inequality. Then, isolating terms in xq we have:

Prxq |yq=0[ĥ(xq) 6= yq|yq = 0]

6 Exq |yq=0

[
exp

(
(µ̂1 − µ̂0)Tα0Σ̂−1xq −

1

2
(µ̂1 − µ̂0)Tα0Σ̂−1(µ̂0 + µ̂1)

)]
= exp

(
−1

2
(µ̂1 − µ̂0)Tα0Σ̂−1(µ̂0 + µ̂1)

)
Exq |yq=0

[
exp

(
(µ̂1 − µ̂0)Tα0Σ̂−1xq

)]
This expectation is of the form of the moment generating function of a multivariate
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Gaussian and so:

Exq |yq=0

[
exp

(
(µ̂1 − µ̂0)Tα0Σ̂−1xq

)]
=

exp

(
1

2
(µ̂1 − µ̂0)Tα2

0Σ̂−1ΣΣ̂−1(µ̂1 − µ̂0) + µT0 α0Σ̂−1(µ̂1 − µ̂0)

)
(4.2.2)

where µ0 is the true mean, and Σ is the true covariance matrix, of Dxq |yq=0. Thus, we
have the probability of misclassification is bounded above by the following:

exp

(
−1

2
(µ̂1 − µ̂0)Tα0Σ̂−1(µ̂0 + µ̂1) + µT0 α0Σ̂−1(µ̂1 − µ̂0) +

1

2
(µ̂1 − µ̂0)Tα2

0Σ̂−1ΣΣ̂−1(µ̂1 − µ̂0)

)
Now, since this holds for every α0 > 0 we may optimise the bound by choosing the best
one. Since exponentiation is a monotonic increasing function, in order to minimize
the bound it is sufficient to minimize its argument. Differentiating the argument w.r.t
α0 and equating to zero then yields:

α0 =
(µ̂1 + µ̂0 − 2µ0)T Σ̂−1(µ̂1 − µ̂0)

2(µ̂1 − µ̂0)T Σ̂−1ΣΣ̂−1(µ̂1 − µ̂0)
(4.2.3)

This is strictly positive as required, since the denominator is always positive (Σ is
positive definite, then so is Σ̂−1ΣΣ̂−1), and the numerator is assumed to be positive as
a precondition in the theorem. Substituting α0 back into the bound then yields, after
some algebra, the following:

Prxq |yq=0[ĥ(xq) 6= 0|yq = 0] 6 exp

−1

8

[
(µ̂1 − µ̂0)T Σ̂−1(µ̂1 + µ̂0 − 2µ0)

]2

(µ̂1 − µ̂0)T Σ̂−1ΣΣ̂−1(µ̂1 − µ̂0)


The second term, for when xq ∼ Dxq |yq=1, can be derived similarly and gives:

Prxq |yq=1[ĥ(xq) 6= yq|yq = 1] 6 exp

−1

8

[
(µ̂0 − µ̂1)T Σ̂−1(µ̂0 + µ̂1 − 2µ1)

]2

(µ̂0 − µ̂1)T Σ̂−1ΣΣ̂−1(µ̂0 − µ̂1)


Finally, putting these two terms together and applying the law of total probability

we arrive at Theorem 4, i.e. that:

Prxq ,yq [ĥ(xq) 6= yq] 6 π0 exp

−1

8

[
(µ̂1 − µ̂0)T Σ̂−1(µ̂1 + µ̂0 − 2µ0)

]2

(µ̂1 − µ̂0)T Σ̂−1ΣΣ̂−1(µ̂1 − µ̂0)

+

(1− π0) exp

−1

8

[
(µ̂0 − µ̂1)T Σ̂−1(µ̂0 + µ̂1 − 2µ1)

]2

(µ̂0 − µ̂1)T Σ̂−1ΣΣ̂−1(µ̂0 − µ̂1)
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Comment 1

We see from the proof above, that it is straightforward to introduce different true
class-conditional covariance matrices into the bound in Theorem 4. In particular,
when xq|y ∼ N (µy,Σy) we see that Σy will appear in the bound via the step employing
the class-conditional m.g.f, equation (4.2.2), and for the y-th class we may therefore
replace Σ everywhere with Σy. In this case αy then becomes:

αy :=
(µ̂1 + µ̂0 − 2µ0)T Σ̂−1(µ̂¬y − µ̂y)
2(µ̂1 − µ̂0)T Σ̂−1ΣyΣ̂−1(µ̂1 − µ̂0)

which does not affect the constraint αy > 0, ∀y at all since the sign of αy is determined
completely by its numerator. Therefore, under the same conditions as before, we have
the following upper bound on the generalization error when Σ0 6= Σ1:

Corollary 1 (Different Class-conditional Covariances)
Under the same conditions as theorem 4, except relaxing the requirement that Σ0 =
Σ1 = Σ (i.e. the class-conditional covariances need no longer be the same), the proba-
bility that xq is misclassified is bounded above by:

Prxq ,yq [ĥ(xq) 6= yq] 6
1∑
y=0

πy exp

−1

8

[
(µ̂¬y − µ̂y)T Σ̂−1(µ̂1 + µ̂0 − 2µy)

]2

(µ̂1 − µ̂0)T Σ̂−1ΣyΣ̂−1(µ̂1 − µ̂0)

 (4.2.4)

Comment 2

We should confirm, of course, that the requirement that αy > 0 is a reasonable one.
Because the denominator in (4.2.3) is always positive the condition αy > 0 holds when:

(µ̂¬y − µ̂y)T Σ̂−1(µ̂¬y + µ̂y − 2µy) > 0

It can be seen that αy > 0 holds provided that for each class the true and estimated
means are both on the same side of the decision hyperplane.

Comment 3

We note that, in equation (4.2.2) it is in fact sufficient to have inequality. Therefore
our bound also holds when the true distributions of the data classes are such that
they have a moment generating function no greater than that of the Gaussian. By
Remark 5.6.2 of Vershynin (2012) any such distribution has the super-exponential tail
decay characteristic of the Gaussian distribution (in fact, has all of the equivalent
properties (1)-(3) of Lemma 5.5 in (Vershynin, 2012)) and such distributions are called
subgaussian distributions.

4.2.2 Exact generalization error for two-class FLD with Gaus-
sian class-conditionals

In this section we derive the exact generalization error of FLD when the classes have
Gaussian distribution with identical covariance matrices.
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Theorem 5 (Exact generalization error with Gaussian classes) Let Σ ∈Md×d
be a full rank covariance matrix and let xq|yq = y ∼ N (µy,Σ). Let Σ̂ ∈ Md×d be a

p.s.d covariance estimate and let Σ̂−1 be its inverse or pseudo-inverse. Then the exact
generalization error of the FLD classifier (4.1.2) is given by:

Prxq ,yq [ĥ(xq) 6= yq] =
1∑
y=0

πyΦ

−1

2

(µ̂¬y − µ̂y)T Σ̂−1(µ̂0 + µ̂1 − 2µy)√
(µ̂1 − µ̂0)T Σ̂−1ΣΣ̂−1(µ̂1 − µ̂0)


where Φ is the c.d.f of the standard Gaussian.

Proof 2 (of Theorem 5)
The proof of this theorem is similar in spirit to the ones given in Bickel & Levina
(2004); Pattison & Gossink (1999). Without loss of generality let xq have label 0. By
assumption the classes have Gaussian distribution N (µy,Σ) so then applying (4.1.2)
the probability that xq is misclassified by FLD is given by:

Prxq |yq=0

{
(µ̂1 − µ̂0)T Σ̂−1

(
xq −

µ̂0 + µ̂1

2

)
> 0

}
(4.2.5)

Define aT := (µ̂1 − µ̂0)T Σ̂−1 and observe that if xq ∼ N (µ0,Σ) then:(
xq −

µ̂0 + µ̂1

2

)
∼ N

((
µ0 −

µ̂0 + µ̂1

2

)
,Σ

)
and so:

aT
(
xq −

µ̂0 + µ̂1

2

)
∼ N

(
aT
(
µ0 −

µ̂0 + µ̂1

2

)
, aTΣa

)
which is a univariate Gaussian. Therefore:

aT
(
xq − µ̂0+µ̂1

2

)
− aT

(
µ0 − µ̂0+µ̂1

2

)
√
aTΣa

∼ N (0, 1)

Hence, for the query point xq we have the probability (4.2.5) is given by:

Φ

(
aT (µ0− µ̂0+µ̂12 )√

aTΣa

)
= Φ

(
−1

2
(µ̂1−µ̂0)T Σ̂−1(µ̂0+µ̂1−2µ0)√
(µ̂1−µ̂0)T Σ̂−1ΣΣ̂−1(µ̂1−µ̂0)

)
where Φ is the c.d.f of the standard Gaussian.
A similar argument deals with the case when xq belongs to class 1, and shows that if
xq belongs to class 1, then the probability of misclassification is given by:

Φ

−1

2

(µ̂0 − µ̂1)T Σ̂−1(µ̂0 + µ̂1 − 2µ1)√
(µ̂1 − µ̂0)T Σ̂−1ΣΣ̂−1(µ̂1 − µ̂0)
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Finally, applying the law of total probability: Prxq ,yq [ĥ(xq) 6= yq] =
∑1

y=0 Pr[xq ∼
N (µy,Σ)] · Pr[ĥ(xq) 6= y|xq ∼ N (µy,Σ)], completes the proof. �

Comment 4

We note that starting from Theorem 5 which holds for Gaussian classes, we can see
how much the relaxation to subgaussian classes costs us (in terms of the tightness of
our bound) by directly bounding the exact error of FLD derived there in a similar way.
The exact error derived in Theorem 5 is:

1∑
y=0

πyΦ

−1

2

(µ̂¬y − µ̂y)T Σ̂−1(µ̂¬y + µ̂y − 2µy)√
(µ̂1 − µ̂0)T Σ̂−1ΣyΣ̂−1(µ̂1 − µ̂0)


where Φ(·) is the Gaussian CDF. Then using equation (13.48) of Johnson et al. (1994)
which bounds this quantity we get:

Φ(−x) = 1− Φ(x) 6 1− 1

2

[
1 +

√
1− e−x2/2

]
6

1

2
exp(−x2/2) (4.2.6)

The upper bound on the RHS follows from observing that
√

1− e−x2/2 > 1 − e−x2/2,
and so we obtain a bound exactly half of that in Theorem 4.

4.2.3 Multi-class FLD

The multi-class version of FLD may be analyzed in extension to the two-class analyses
above as follows:
Lemma 16
Let C = {0, 1, . . . ,m} be a collection of m+ 1 classes partitioning the data. Let xq|y ∼
N (µy,Σ) (or xq|y drawn from a subgaussian distribution with mean µy and covariance
matrix Σ).

Let H be the class of FLD functions and let ĥ be the instance learned from the training
data TN . Then, the probability that an unseen query point xq is misclassified by FLD
is upper bounded by:

Prxq ,yq [ĥ(xq) 6= yq] 6
m∑
y=0

πy

m∑
i 6=y

exp

−1

8

[
(µ̂y − µ̂i)T Σ̂−1(µ̂y − µ̂i − 2µy)

]2

(µ̂y − µ̂i)T Σ̂−1ΣΣ̂−1(µ̂y − µ̂i)

 (4.2.7)

Proof 3
The decision rule for FLD in the multi-class case is given by:

ĥ(xq) = j ⇐⇒ j = arg max
i
{Pryq(yq = i|xq)} j, i ∈ C

Without loss of generality, we again take the correct label of xq to be 0. Then:

ĥ(xq) = 0 ⇐⇒
∧
i 6=0{Pryq(yq = 0|xq) > Pryq(yq = i|xq)} (4.2.8)

⇐⇒
∧
i 6=0

{
Pryq (yq=0|xq)
Pryq (yq=i|xq) > 1

}
(4.2.9)
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and so misclassification occurs when:

ĥ(xq) 6= 0 ⇐⇒
∨
i 6=0

{
Pryq(yq = i|xq)
Pryq(yq = 0|xq)

> 1

}
Then since if A ⇐⇒ B then Pr(A) = Pr(B), we have:

Prxq |yq=0[ĥ(xq) 6= 0] = Prxq |yq=0

[∨
i 6=0

{
Pryq(yq = i|xq)
Pryq(yq = 0|xq)

> 1

}]

6
m∑
i=1

Prxq |yq=0

{
Pryq(yq = i|xq)
Pryq(yq = 0|xq)

> 1

}
(4.2.10)

=
m∑
i=1

Prxq |yq=0

{
log

Pryq(yq = i|xq)
Pryq(yq = 0|xq)

> 0

}
(4.2.11)

where (4.2.10) follows by the union bound. Writing out (4.2.11) via Bayes’ rule, we
find a sum of two-class error probabilities of the form that we have dealt with earlier,
so (4.2.11) equals:

m∑
i=1

Prxq |yq=0

{
(µ̂i − µ̂0)T Σ̂−1

(
xq −

µ̂0 + µ̂i
2

)
> 0

}
(4.2.12)

The result for the other possible values of yq 6= 0 now follows by applying the bounding
technique used for the two-class case m times to each of the m possible incorrect classes.
The line of thought is then the same for y = 1, . . . , y = m in turn.

Comment 5

Owing to the straightforward way in which the multiclass error can be split into sums of
two-class errors, as shown in lemma 16 above, it is therefore sufficient for the remainder
of our analysis to be performed for the two-class case, and for m + 1 classes the error
will always be upper bounded by m times the greatest of the two-class errors. We will
use this fact later in Section 5.2.3.

4.3 Summary and Discussion
We prepared the way for the later chapters in this thesis by deriving upper bounds on
the generalization error of Fisher’s Linear Discriminant (FLD) for the large family of
subgaussian distributions, under the mild constraint that we have enough observations
to estimate the class means well enough to ensure that the sample mean in each class
is closer to its true value than it is to the means of the other classes. In the two-class
case this constraint on our bounds amounts to requiring only that, for both classes,
the training examples for each class are not mostly outliers located in the same half
space as the mean of the other class. We also derived the exact error for FLD in the
case of Gaussian classes with the same covariance matrix, the situation in which FLD
is Bayes optimal, without the constraint on the sample size. Finally we showed that we
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can bound the error of multi-class FLD by decomposition into a collection of two-class
problems.
We note that for FLD we have left open the problems of data distributions where the
classes are not Gaussian or subgaussian. Although we do not consider settings other
than the Gaussian or subgaussian ones in this thesis we expect that for many unimodal
class-conditional distributions, the error of FLD will exhibit qualitatively similar be-
haviour to that we find here. In particular, one could truncate such a distribution
to obtain a two term bound containing a subgaussian part plus a constant term, the
size of which will depend on how fat the tails of the distribution are. If we exclude
distributions with particularly fat tails (e.g. classes that are t-distributed with very
few degrees of freedom) then the sum of the two obtained terms will behave similarly
to the bounds we derived here. We therefore see that our error bounds for subgaussian
distributions should provide a reasonable characterization of the generalization error
of FLD for many unimodal distributions.
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5
Randomly-projected Fisher Linear

Discriminant

Summary In this chapter, we consider random projections in conjunction with clas-
sification, specifically the analysis of Fisher’s Linear Discriminant (FLD) classifier in
randomly projected data spaces.
We focus on two-class classification problems since, as we saw from lemma 16 in the
previous chapter, the FLD decision rule in multiclass settings can be decomposed as a
sequence of two-class classification problems.
We are interested in quantifying the generalization error of randomly-projected FLD
(RP-FLD) with respect to the {0, 1}-loss and discovering which are the key properties
of a classification problem that make learning easy or hard in this setting.
We focus in this chapter on the setting where data are plentiful, which is a common
situation in many problem domains including web-mining applications (e.g. search,
data from social sites), science (e.g. Sloan Digital Sky Survey, Large Hadron Collider),
and commerce (customer profiling, fraud detection)(Cukier, 2010). We defer dealing
with the case when observations are few compared to the data dimensionality, another
common situation, to our treatment of RP-FLD ensembles in chapter 7. In this chap-
ter, and those that follow, we do not assume that the data have any special structural
properties (such as sparsity). We derive average-case guarantees (w.r.t to random pro-
jection matrices) for the performance of RP-FLD and, in view of our findings that
random projection reduces the condition number of the projected covariance matrix
-vs- the data space covariance matrix, we also make an in-depth study of RP-FLD
when the model covariance matrix is taken to be spherical.
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5.1 Preliminaries

5.1.1 The randomly-projected classification problem

We recall the general problem setting of chapter 4 where, in a classification problem
we observe N examples of labelled training data and we want to learn from this data a
classifier which gives the lowest possible generalization error in terms of the (0, 1)-loss
L(0,1). The case we consider here consists of instantiations of FLD learned on randomly-
projected training data, T RN = {(R(xi), yi)}Ni=1 and we seek to bound the probability
that an arbitrarily drawn query point xq ∼ Dx|y is misclassified by the learned classifier.
In particular, we want to link the error of RP-FLD to the error of FLD learned in the
dataspace, thereby quantifying the cost of working with the randomly projected data.
Our approach is to upper bound the dataspace generalization error:

Prxq ,yq [ĥ(xq) 6= yq : (xq, yq) ∼ Dxq ,yq ] = Exq ,yq [L(0,1)(ĥ(xq), yq)]

Where ĥ is the classifier decision rule learned from the training data using the results
derived in chapter 4, and then to bound the corresponding probability in a random
projection of the data:

PrR,xq ,yq [ĥ
R(R(xq)) 6= yq : (xq, yq) ∼ D] = ER,xq ,yq [L(0,1)(ĥ

R(Rxq), yq)]

Where ĥR is the decision rule learned from the randomly-projected data. In the next
section 5.1.2 we derive the decision rule for RP-FLD as the first step in this approach.

5.1.2 Decision rule for RP-FLD

Recall from chapter 4 that the FLD classifier learned from training data applies the
decision rule:

ĥ(xq) = 1

{
(µ̂1 − µ̂0)T Σ̂−1

(
xq −

(µ̂0 + µ̂1)

2

)
> 0

}
(5.1.1)

When the training data are of the form T RN = {(R(xi), yi)}Ni=1 then, by linearity of the
projection matrix R and of the expectation operator E[·] we see that the decision rule
for RP-FLD is given by:

ĥR(xq) = 1

{
(µ̂1 − µ̂0)TRT

(
RΣ̂RT

)−1

R

(
xq −

(µ̂0 + µ̂1)

2

)
> 0

}
(5.1.2)

The derivation of the RP-FLD parameters is straightforward – details are in the ap-
pendix section A.2.

5.2 Analysis of RP-FLD

We now present two similar, but different, upper bounds on the generalization error
of RP-FLD using theorem 4 and lemma 17 as our starting point. In this section we
focus on the setting in which both the dimensionality, d, and the sample size N are
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large – these are typical properties of ‘big data’ problems such as data-mining of high
throughput retail data. We consider the large d, small N case later in Chapter 7. For
the bounds we derive here we consider finite random projection matrices with entries
drawn i.i.d from the Gaussian N (0, σ2), though we shall see that our final bounds also
hold mutatis mutandis for random projection matrices with entries from zero-mean
subgaussian distributions also. We use our first bound (Theorem 6), a version of which
was originally published in Durrant & Kabán (2010b), to analyze the effect of covari-
ance misspecification on RP-FLD and to quantify the projection dimension required
to control the generalization error of RP-FLD. We find, in common with Dasgupta
(1999), that random projection improves the conditioning of Σy and Σ̂ and that there-

fore covariance misspecification, for example by approximating Σ̂ with the identity I
in the projected space, has a relatively benign effect on generalization error compared
to a similar misspecification in the data space. Using the same bound we also quantify
the projection dimension required for performance guarantees and in doing so we im-
prove considerably on previous theoretical work which used the Johnson-Lindenstrauss
lemma (JLL) or compressed sensing (CS) to derive generalization guarantees; we show
that, unlike those settings where one takes the projection dimension logarithmic in the
number of observations (JLL) or linear in the number of non-zero components (CS),
in order to control the generalization error of RP-FLD it is enough to take the projec-
tion dimension, k, logarithmic in the number of classes which is of course typically a
much smaller quantity. Finally we show that as the projection dimension k ↗ d the
generalization error of RP-FLD decreases nearly exponentially; this is similar to the
behaviour observed by Davenport et al. (2010); Haupt et al. (2006) where the authors
analyze m-ary hypothesis testing of signals, but here we explicitly consider learning
a classifier from data whereas in those works the authors assume the set of possible
signals and all parameters to be estimated are perfectly known.
Our second bound, which was published in Durrant & Kabán (2010a; 2011) is simpler
but is also tighter than our first bound when we take Σ̂ to be spherical, and we there-
fore use this bound to analyze more carefully the case when Σ̂ = σ2I (where σ2 > 0 is
a real-valued scalar) in the projected space.
We begin this section by decomposing the FLD bound of theorem 4 into two terms,
one of which will go to zero as the number of training examples increases. This gives
us the opportunity to assess the contribution of these two sources of error separately.

5.2.1 Decomposition of data space FLD bound as sum of
‘estimated error’ and ‘estimation error’

Here, and from now on, we will write Dx,y for the joint distribution of data points
and labels and Dx|y for the class-conditional distribution of x. We will assume that
either xq has a multivariate Gaussian class-conditional distribution so then xq|yq =
y ∼ N (µy,Σy) with Pr{yq = y} = πy, or else xq is class-conditionally multivariate
subgaussian with mean µy and covariance matrix Σy.

Lemma 17
Let (xq, yq) ∼ Dx,y and let H be the class of FLD functions and ĥ be the instance
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learned from the training data TN . Write for the estimated error:

B̂ :=
1∑
y=0

πyB̂y =
1∑
y=0

πy exp

−1

8

[
(µ̂1 − µ̂0)T Σ̂−1(µ̂1 − µ̂0)

]2

(µ̂1 − µ̂0)T Σ̂−1ΣyΣ̂−1(µ̂1 − µ̂0)

 (5.2.1)

Similarly write B :=
∑1

y=0 πyBy for the right hand side of the corollary to theorem 4,
namely (4.2.4). Then:

Prxq ,yq [ĥ(xq) 6= yq] 6 B̂ + C ·
∑
y,i

|µ̂yi − µyi| (5.2.2)

with C := max
y,i

sup
{∣∣∣ ∂By∂µyi

∣∣∣} a constant, µy the mean of the class from which xq was

drawn, estimated class means µ̂y with µ̂yi the i-th component, and model covariance
ˆ̂
Σ.

Proof 4
We will use the mean value theorem1, so we start by differentiating B =

∑1
y=0 πyBy

with respect to µy. Recalling that B̂0 and B̂1 are the two exp terms in (5.2.1), we have
for the case yq = 0:

∇µ0B = π0B̂0 ×
1

2
α0Σ̂−1(µ̂1 − µ̂0) (5.2.3)

Now, provided that ‖µ̂1 + µ̂0 − 2µ0‖ < +∞ and 0 < ‖µ̂1 − µ̂0‖ < +∞ then π0B̂0 is
bounded between zero and one and the supremum of the i-th component of this gradient
exists. Therefore we have that:

B 6 π0B̂0 + max
i

sup

{∣∣∣∣∂By

∂µ0i

∣∣∣∣}∑
i

|µ̂0i − µ0i| . . .

. . .+ (1− π0)Prxq |yq=1[ĥ(xq) 6= 1] (5.2.4)

Then by applying the mean value theorem again w.r.t. µ1 with ‖µ̂1 + µ̂0 − 2µ1‖ < +∞
we can approach the yq = 1 case similarly, and taking the maximum over both classes
then yields lemma 17.

We call the two terms obtained in (5.2.2) the ‘estimated error’ and ‘estimation error’
respectively. The estimation error can be bounded using Chernoff bounding techniques,
and converges to zero as the number of training examples, N , increases. In particular,
for the Gaussian and subgaussian distributions we consider here this convergence to
zero is exponentially fast as a function of increasing N since, by lemma 5.9 of Vershynin
(2012), the components µ̂yi−µyi are zero-mean subgaussian random variables with the
tails of their distribution decaying like those of the Gaussian N (0, σyi/N).

1Mean value theorem in several variables: Let f be differentiable on S, an open subset of Rd, let
x and y be points in S such that the line between x and y also lies in S. Then ∃t ∈ (0, 1), such that
f(y)− f(x) = (∇f((1− t)x+ ty))T (y − x)
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We now have the groundwork necessary to prove the main results in this section,
namely bounds on this estimated misclassification probability if we choose to work with
a k-dimensional random projection of the original data. From the results of lemma 17
and lemma 16, in order to study the behaviour of our bounds, we may restrict our
attention to the two-class case and we focus on bounding the estimated error term
which, provided sufficient training data, is the main source of error. From hereon we
will use P̂r := π0B̂0 + (1− π0)B̂1 to denote the estimated error.

5.2.2 Main results: Generalization error bounds on RP-FLD

Our first bound on the (estimated) generalization error of RP-FLD is the following
Theorem 6:

Theorem 6 Let (xq, yq) ∼ Dx,y. Let R ∈ Mk×d be a random projection matrix with
entries drawn i.i.d from the univariate Gaussian N (0, σ2). Let H be the class of FLD
functions and let ĥR be the instance learned from the randomly-projected training data
T RN .
Assume that αRy := (µ̂¬y + µ̂y − 2µy)

TRT (RΣ̂RT )−1R(µ̂¬y − µ̂y) > 0, ∀y.

Then the estimated misclassification error P̂rR,xq ,yq [ĥ
R(Rxq) 6= yq] is bounded above by:

1∑
y=0

πy

(
1 +

1

4
g(Σ̂−1Σy) ·

1

d

‖µ̂1 − µ̂0‖2

λmax(Σy)

)−k/2
(5.2.5)

with µy the mean of class y, πy the prior probability that xq is drawn from class y,

estimated class means µ̂0 and µ̂1, shared model covariance estimate Σ̂, and g(Q) =

4 · λmax(Q)
λmin(Q)

·
(

1 + λmax(Q)
λmin(Q)

)−2

.

Proof 5 (of Theorem 6)
We will start our proof in the dataspace, highlighting the contribution of covariance
misspecification in the estimated error, and then make a move to the projected space
with the use of a result (lemma 18) that shows that this component is always non-
increasing under the random projection.
Without loss of generality we take xq ∼ N (µ0,Σ0) then, by theorem 4 and lemma 17,
the estimated misclassification error in this case is upper bounded by:

exp

−1

8
·

[
(µ̂1 − µ̂0)T Σ̂−1(µ̂1 − µ̂0)

]2

(µ̂1 − µ̂0)T Σ̂−1Σ0Σ̂−1(µ̂1 − µ̂0)

 (5.2.6)

Now, in the Kantorovich inequality (lemma 8) we can take:

v = Σ̂−1/2(µ̂1 − µ̂0)

where we use the fact from lemma 2 that since Σ̂−1 is symmetric positive definite it has
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a unique symmetric positive definite square root:

Σ̂−1/2 =
(

Σ̂−1
)1/2

=
(

Σ̂1/2
)−1

=
(

Σ̂−1/2
)T

and, again by the properties given in lemma 2, we can take our positive definite Q to
be Q = Σ̂−1/2Σ0Σ̂−1/2. Then, by lemma 8 we have the expression (5.2.6) is less than
or equal to:

exp

−1

8
· (µ̂1 − µ̂0)T Σ̂−1/2

[
Σ̂−1/2Σ0Σ̂−1/2

]−1

Σ̂−1/2(µ̂1 − µ̂0) . . .

. . .× 4 ·
λmax

(
Σ̂−1Σ0

)
λmin

(
Σ̂−1Σ0

) ·
1 +

λmax

(
Σ̂−1Σ0

)
λmin

(
Σ̂−1Σ0

)
−2

 (5.2.7)

where the change in argument for the eigenvalues comes from the use of the identity
given in lemma 3 eigenvalues(AB) = eigenvalues(BA). After simplification we can
write this as:

exp

(
−1

8
· (µ̂1 − µ̂0)TΣ−1

0 (µ̂1 − µ̂0) · g(Σ̂−1Σ0)

)
(5.2.8)

The term g(Σ̂−1Σ0) is a function of the model covariance misspecification, e.g. due to
the imposition of diagonal or spherical constraints on Σ̂. The following lemma shows
that this term of the error can only decrease or stay the same after random projection.

Lemma 18 (Non-increase of covariance misspecification error in projected space)
Let Q be a positive definite matrix. Let κ(Q) = λmax(Q)

λmin(Q)
∈ [1,∞) be the condi-

tion number of Q. Let g(Q) be as given in the theorem 6. Then if we take Q :=
(RΣ̂RT )−1/2RΣyR

T (RΣ̂RT )−1/2 we have, for any fixed k × d matrix R with full row
rank:

g((RΣ̂RT )−1RΣyR
T ) > g(Σ̂−1Σy) (5.2.9)

Proof: We will show that g(·) is monotonic decreasing with κ on [1,∞), then show that
κ((RΣ̂RT )−1RΣyR

T ) 6 κ(Σ̂−1Σy), and hence g((RΣ̂RT )−1RΣyR
T ) > g(Σ̂−1Σy).

Step 1 We show that g is monotonic decreasing:
First note that for positive definite matrices 0 < λmin 6 λmax, and so κ is indeed
in [1,∞). Differentiating g(·) with respect to κ we get:

dg

dκ
=

4(1 + κ)− 8κ

(1 + κ)3
=

4(1− κ)

(1 + κ)3

Here the denominator is always positive on the range of κ while the numerator
is always non-positive with maximum 0 at κ = 1. Hence g(·) is monotonic
decreasing on [1,∞).
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Step 2 We show that κ((RΣ̂RT )−1RΣyR
T ) 6 κ(Σ̂−1Σy):

We will show that if Σ̂ and Σy are symmetric positive definite and R is a matrix
with full row rank then:

λmin([RΣ̂RT ]−1/2RΣyR
T [RΣ̂RT ]−1/2) (5.2.10)

> λmin(Σ̂−1Σy) = λmin(Σ̂−1/2ΣyΣ̂
−1/2) (5.2.11)

and

λmax([RΣ̂RT ]−1/2RΣyR
T [RΣ̂RT ]−1/2) (5.2.12)

6 λmax(Σ̂−1Σy) = λmax(Σ̂−1/2ΣyΣ̂
−1/2) (5.2.13)

Combining these inequalities then gives:

κ((RΣ̂RT )−1RΣyR
T ) 6 κ(Σ̂−1Σy)

We give a proof of the first inequality, the second being proved similarly.

First, by lemma 5:

λmin([RΣ̂RT ]−1/2RΣyR
T [RΣ̂RT ]−1/2) (5.2.14)

= minu∈Rk
{
uT [RΣ̂RT ]−1/2RΣyRT [RΣ̂RT ]−1/2u

uTu

}
(5.2.15)

Writing v = [RΣ̂RT ]−1/2u so that u = [RΣ̂RT ]1/2v then we may rewrite the
expression (5.2.15), as the following:

= min
v∈Rk

{
vTRΣyR

Tv

vTRΣ̂RTv

}
(5.2.16)

Writing w = RTv, and noting that the span of all possible vectors w is a k-
dimensional subspace of Rd, we can bound the expression 5.2.16 by allowing the
minimal vector w ∈ Rd not to lie in this subspace:

> minw∈Rd
{
wTΣyw

wT Σ̂w

}
(5.2.17)

Now put y = Σ̂1/2w, with y ∈ Rd. This y exists uniquely since Σ̂1/2 is invertible,
and we may rewrite (5.2.17) as the following:

= miny∈Rd
{
yT Σ̂−1/2ΣyΣ̂−1/2y

yT y

}
(5.2.18)

= λmin(Σ̂−1/2ΣyΣ̂
−1/2) = λmin(Σ̂−1Σy) (5.2.19)

This completes the proof of the first inequality, and a similar approach proves the
second. Taken together the two inequalities imply κ(Σ̂−1Σy) > κ([RΣ̂RT ]−1RΣyR

T )
as required. Finally putting the results of steps 1 and 2 together gives the lemma
18. �
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Back to the proof of theorem 6, we now move into the low dimensional space defined
by any fixed instantiation of the random projection matrix R (i.e. with entries drawn
from N (0, σ2)). By lemma 18, we can upper bound the projected space counterpart of
(5.2.8) by the following:

exp

(
−1

8
· (µ̂1 − µ̂0)TRT

[
RΣ0R

T
]−1

R(µ̂1 − µ̂0) · g(Σ̂−1Σ0)

)
(5.2.20)

This holds for any fixed matrix R with full row rank, so it also holds with probability 1
for any instantiation of a Gaussian random projection matrix R. Note, in the dataspace
we bounded Prxq ,yq [ĥ(xq) 6= y] but in the projected space we want to bound:

PrR,xq ,yq [ĥ
R(Rxq) 6= yq] = ER,xq ,yq [L(0,1)(ĥ

R(Rxq), yq)] (5.2.21)

= ER[Exq ,yq [L(0,1)(ĥ
R(Rxq), yq)]|R] (5.2.22)

This is the expectation of (5.2.20) w.r.t. the random choices of R. Restricting to the
estimated error, and recalling that here yq = 0 by assumption, we now have:

P̂rR,xq ,yq [ĥ
R(Rxq) 6= 0|yq = 0]

6 ER

[
exp

(
−1

8
· (µ̂1 − µ̂0)TRT

[
RΣ0R

T
]−1

R(µ̂1 − µ̂0)g(Σ̂−1Σ0)

)]
= ER

[
exp

(
−1

8
· (µ̂1 − µ̂0)TRT

[
RRT

]−1/2 [
RRT

]1/2 [
RΣ0R

T
]−1 [

RRT
]1/2

. . .

. . .
[
RRT

]−1/2
R(µ̂1 − µ̂0)g(Σ̂−1Σ0)

)]
= ER

[
exp

(
−1

8
· (µ̂1 − µ̂0)TRT

[
RRT

]−1/2
[[
RRT

]−1/2
RΣ0R

T
[
RRT

]−1/2
]−1

. . .

. . .
[
RRT

]−1/2
R(µ̂1 − µ̂0)g(Σ̂−1Σ0)

)]
6 ER

[
exp

(
−1

8
·

(µ̂1 − µ̂0)TRT
[
RRT

]−1/2 [
RRT

]−1/2
R(µ̂1 − µ̂0)

λmax(Σ0)
· g(Σ̂−1Σ0)

)]
(5.2.23)

where the last step substituting 1/λmax(Σ0) for
[[
RRT

]−1/2
RΣ0R

T
[
RRT

]−1/2
]−1

is

justified by lemma 7, since
[
RRT

]−1/2
R has orthonormal rows. Now, by corollary 5

given in the Appendix, the moment generating function (5.2.23) is bounded above by
the similar m.g.f:

ER

[
exp

(
− 1

8d
· (µ̂1 − µ̂0)TRTR(µ̂1 − µ̂0)

λmax(Σ0)σ2
· g(Σ̂−1Σ0)

)]
(5.2.24)

where the entries of R are drawn i.i.d from N (0, σ2).

Then the term (µ̂1−µ̂0)TRTR(µ̂1−µ̂0)/σ2 = ‖R(µ̂1−µ̂0)‖2/σ2 is χ2
k distributed and

(5.2.24) is therefore the moment generating function of a χ2
k distribution (Weisstein).

Hence we can upper bound (5.2.23) by the moment generating function of a χ2 to

48



Randomly-projected Fisher Linear Discriminant

obtain:

ER

[
exp

(
−1

8
· (µ̂1−µ̂0)TRTR(µ̂1−µ̂0)

λmax(Σ0)
· g(Σ̂−1Σ0)

)]
(5.2.25)

6
[
1 + 1

4
· g(Σ̂−1Σ0) · ‖µ̂1−µ̂0‖

2

d·λmax(Σ0)

]−k/2
(5.2.26)

A similar sequence of steps proves the other side, when xq ∼ N (µ1,Σ1), and gives an
expression of the same form except with Σ0 replaced by Σ1. Then putting the two terms
together, applying the law of total probability with

∑
y πy = 1 finally gives theorem 6.

A High Probability Guarantee

Following similar steps to those in the proof above it is possible to take a different route
to obtain high probability guarantees with respect to the random projection matrix R
on the estimated generalization error of RP-FLD. Starting from the expression (5.2.24)
instead of taking expectation we could instead use Rayleigh quotient to obtain:

exp

(
− 1

8d
· (µ̂1 − µ̂0)TRTR(µ̂1 − µ̂0)

σ2λmax(Σy)
· g(Σ̂−1Σy)

)
(5.2.27)

= exp

(
− 1

8d
· ‖R(µ̂1 − µ̂0)‖2

σ2λmax(Σy)
· g(Σ̂−1Σy)

)
(5.2.28)

Now using the Johnson-Lindenstrauss lemma 3, which controls the magnitude of the
distortion under random projection of ‖µ̂0 − µ̂1‖2, we obtain the following high prob-
ability bound on the estimated generalization error of RP-FLD:

PrR

{
P̂rxq ,yq [ĥ

R(Rxq) 6= yq] 6 exp

(
− 1

8d
· σ

2k(1− ε)‖µ̂1 − µ̂0‖2

σ2λmax(Σy)
· g(Σ̂−1Σy)

)}
> 1−exp(−kε2/8)

(5.2.29)

Comment: Other projections R

Although we have taken the entries of R to be drawn from N (0, σ2) this was used
only in the final step, in the form of the moment generating function of the χ2 distri-
bution. In consequence, other distributions that produce inequality in the step from
equation (5.2.23) to equation (5.2.26) suffice. Such distributions include subgaussians;
this is quite a rich class which includes, for example, Gaussian distributions and any
distribution with bounded support (Vershynin, 2012) and some examples of suitable
distributions may be found in (Achlioptas, 2003). Whether any deterministic projec-
tion R can be found that is both non-adaptive (i.e. makes no use of the training labels)
and still yields a non-trivial guarantee for FLD in terms of only the data statistics seems
a difficult open problem.

5.2.3 Bounds on the projected dimensionality k and discussion

For both practical and theoretical reasons, we would like to know to which dimension-
ality k we can project our original high dimensional data and still expect to recover
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good classification performance from RP-FLD. This may be thought of as a measure
of the difficulty of the classification task.

By setting our bound in Theorem 6 on the average estimated generalization error
to be no more than δ ∈ (0, 1) and solving for k we can obtain such a bound on k for
RP-FLD that guarantees that the expected misclassification probability (w.r.t. R) in
the projected space remains below δ.2

Corollary 2 (to Theorem 6)
Let k, d, g(·), µ̂y, Σy, Σ̂ be as given in theorem 6. Let C = {0, 1, . . . ,m− 1} be a set
indexing the different classes. Then, in order that the probability of misclassification
in the projected space remains below δ it is sufficient to take:

k > 8 · 1

min
i,j∈C,i 6=j

‖µ̂i − µ̂j‖2
·max
y∈C

{
dλmax(Σy)

g(Σ̂−1Σy)

}
· log(m/δ) (5.2.30)

Proof 6 (of corollary 2)
In the 2-class case we have:

δ >

[
1 + 1

4
· min
y∈{0,1}

{
g(Σ̂−1Σy) · ‖µ̂1−µ̂0‖

2

dλmax(Σy)

}]−k/2
⇐⇒ (5.2.31)

log(1/δ) 6 k
2

log
[
1 + 1

4
· g(Σ̂−1Σy) · ‖µ̂1−µ̂0‖

2

dλmax(Σy)

]
(5.2.32)

then using the inequality (1 + x) 6 ex, ∀ x ∈ R we obtain:

k > 8 · dλmax(Σy)

‖µ̂1−µ̂0‖2 ·
1

g(Σ̂−1Σy)
· log(1/δ) (5.2.33)

Using (5.2.33) and lemma 16, it is then easy to see that to expect no more than δ error
from FLD in an m+1-class problem, the required dimension of the projected space need
only be:

k > 8 · dλmax(Σy)

mini,j∈C,i 6=j ‖µ̂i − µ̂j‖2
· 1

g(Σ̂−1Σy)
· log(m/δ) (5.2.34)

as required.

We find it interesting to compare our k bound with that given in the seminal paper of
Arriaga and Vempala (Arriaga & Vempala, 1999). The analysis in (Watanabe et al.,
2005) shows that the bound in (Arriaga & Vempala, 1999) for randomly projected
2-class perceptron classifiers means requiring that the projected dimensionality

k = O
(

72 · L
l2
· log(6N/δ)

)
(5.2.35)

where δ is the user-specified tolerance of misclassification probability, N is the number
of training examples, and L/l2 is the diameter of the data (L = maxn=1,...,N ‖xn‖2)

2Although we do not do so here, we note that a variant of corollary 2, that holds with high
probability, can be derived from the inequality (5.2.29) and lemma 16 using very similar steps.

50



Randomly-projected Fisher Linear Discriminant

divided by the margin (or ‘robustness’, as they term it). In our bound, g(·) is a
function that encodes the quality of the model covariance specification, δ and k are the
same as in (Arriaga & Vempala, 1999) and the factor dλmax(Σy) · ‖µ̂1− µ̂0‖−2 – which,
should be noted, is exactly the reciprocal of the squared class separation as defined by
Dasgupta in (Dasgupta, 1999) – may be thought of as the ‘generative’ analogue of the
data diameter divided by the margin in (5.2.35).

Observe, however, that (5.2.35) grows with the log of the training set size, whereas
ours (5.2.33) grows with the log of the number of classes. This is not to say, by any
means, that FLD is superior to perceptrons in the projected space. Instead, the root
and significance of this difference lies in the assumptions (and hence the methodology)
used in obtaining the bounds. The result in (5.2.35) was derived from the precondition
that all pairwise distances between the training points must be approximately preserved
uniformly cf. the Johnson-Lindenstrauss lemma (Dasgupta & Gupta, 2002). It is well
understood (Alon, 2003) that examples of data sets exist for which the k = O(logN)
dimensions are indeed required for this. However, we conjecture that, for learning, this
starting point is too strong a requirement. Learning should not become harder with
more training points, assuming of course that the additional examples add ‘information’
to the training set.

Our derivation is so far specific to FLD, but it is able to take advantage of the
class structure inherent in the classification setting in that the misclassification error
probability is down to very few key distances only – the ones between the class centres.

Despite this difference from (Arriaga & Vempala, 1999) and approaches based on
uniform distance preservation, in fact our conclusions should not be too surprising.
Earlier work in theoretical computer science in (Dasgupta, 1999) proves performance
guarantees with high probability (over the choice of R) for the unsupervised learning of
a mixture of Gaussians which also requires k to grow logarithmically with the number
of centres only. Moreover, our finding that the error from covariance misspecification
is always non-increasing in the projection space is also somewhat expected, in the light
of the finding in (Dasgupta, 1999) that projected covariances tend to become more
spherical.

It is also worth noting that the extensive empirical results in e.g. (Dasgupta, 2000a)
and (Fradkin & Madigan, 2003b) also suggest that classification (including non-sparse
data) requires a much lower projection dimension than that which is needed for global
preservation of all pairwise distances via the JLL. We therefore conjecture that, all
other things being equal, the difficulty of a classification task should be a function only
of selected distances, and preserving those may be easier that preserving every pairwise
distance uniformly. Investigating this more generally remains for further research.

5.2.4 Numerical validation

We present three numerical tests that illustrate and confirm our main results.
Lemma 18 showed that the error contribution of a covariance misspecification is al-

ways no worse in the low dimensional space than in the high dimensional space. Figure
5.1 shows the quality of fit between a full covariance Σ and its diagonal approximation
Σ̂ when projected from a d = 100 dimensional data space into successively lower dimen-
sions k. We see the fit is poor in the high dimensional space, and it keeps improving as k

51



Randomly-projected Fisher Linear Discriminant

gets smaller. The error bars span the minimum and maximum of g([RΣ̂RT ]−1RΣyR
T )

observed over 40 repeated trials for each k. The second set of experiments demon-
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Figure 5.1: Experiment confirming Lemma 18; the error contribution of a covariance
misspecification is always no worse in the projected space than in the data space. The best
possible value on the vertical axis is 1, the worst is 0. We see the quality of fit is poor in high
dimensions and improves dramatically in the projected space, approaching the best value as
k decreases.

strates Corollary 2 of our Theorem 6, namely that for good generalization of FLD in
the projected space, the required projection dimension k is logarithmic in the number
of classes.
We randomly projected m equally distanced spherical unit variance 7-separated Gaus-
sian classes (‖µi − µj‖ = 7, ∀i 6= j ∈ {0, 1, . . . ,m − 1}, Σi = I, ∀i)from d = 100
dimensions and chose the target dimension of the projected space as k = 12 log(m).
The boxplots in figure 5.2 show, for each m tested, the distribution of the empirical
error rates over 100 random realisations of R, where for each R the empirical error was
estimated from 500 independent query points. Other parameters being unchanged, we
see the classification performance is indeed maintained with this choice of k.

The third experiment shows the effect of reducing k for a 10-class problem in the
same setting as experiment two. As expected, the classification error in figure 5.3
decreases nearly exponentially as the projected dimensionality k tends to the data
dimensionality d. We note also, from these empirical results, that the variability in the
classification performance also decreases with increasing k. Finally, we observe that
the worst performance in the worst case is still a weak learner that performs better
than chance.

We now come to our second bound on RP-FLD, which is derived similarly to The-
orem 6 but using a slightly more straightforward approach. This bound is generally
quantitatively sharper and especially so when Σ̂ (or Σ) is spherical, and we therefore
use this bound to study in depth the case of spherical model covariance. We shall see
that in this case we can also quantify exactly the probability that, if the condition
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Figure 5.2: Experiment illustrating Theorem 6 & its Corollary 2. With the choice
k = 12 log(m) and ‖µi − µj‖ = 7, ∀i 6= j, the classification performance is kept at similar
rates while the number of classes m varies.
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Figure 5.3: Experiment illustrating Theorem 6. We fix the number of classes, m+ 1 =
10, and the data dimensionality, d = 100, and vary the projection dimensionality k. The
classification error decreases nearly exponentially as k → d.

αy > 0, ∀y holds in the data space (i.e. the estimated and true means for each class
are both on the same side of the decision boundary as one another in the data space),
then the corresponding condition in the projected space αRy > 0, ∀y fails with a corre-
sponding reduction in generalization performance. That is, we give the exact formula
for Pr{∃y : αRy 6 0}.

Theorem 7 Under the same conditions as theorem 6 the estimated misclassification
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error P̂rR,xq ,yq [ĥ
R(Rxq) 6= yq] is bounded above by:

P̂rR,xq ,yq [ĥ
R(Rxq) 6= yq]

6
1∑
y=0

πy exp

(
−k

2
log

(
1 +

1

4d
· ‖µ̂y − µ̂¬y‖2 · λmin(Σ̂−1)

λmax(ΣyΣ̂−1)

))
(5.2.36)

Working as before, we bound the estimated error and the proof of this bound is very
similar to that employed for Theorem 6: We first obtain a bound that holds for any
fixed instantiation of the random projection matrix R, and finally on average over all
R.

Proof 7 (of Theorem 7)
By theorem 4 and lemma 17, the estimated error in the projected space defined by any
given instance of R is upper bounded by:

P̂rxq ,yq

[
ĥR(Rxq) 6= yq

]
6

1∑
y=0

πy exp

−1

8
·

[
(µ̂¬y − µ̂y)TRT (RΣ̂RT )−1R(µ̂¬y − µ̂y)

]2

(µ̂¬y − µ̂y)TRT (RΣ̂RT )−1RΣyRT (RΣ̂RT )−1R(µ̂¬y − µ̂y)


(5.2.37)

We would like to analyse the expectation of (5.2.37) w.r.t the random choices of R in
terms of the quantities of the original space. To this end, we first proceed by rewriting
and further bounding (5.2.37) using majorization of the numerator by the Rayleigh

quotient (lemma 5), where we take v =
(
RΣ̂RT

)−1/2

R(µ̂¬y− µ̂y) and take, for the y-th

class, our positive definite Qy to be Qy =
(
RΣ̂RT

)−1/2

RΣyR
T
(
RΣ̂RT

)−1/2

where we

use lemma 2 and take
(
RΣ̂RT

)−1/2

to be the unique symmetric positive definite square

root of
(
RΣ̂RT

)−1

. Then, we have (5.2.37) is less than or equal to:

1∑
y=0

πy exp

−1

8
·

[
(µ̂¬y − µ̂y)TRT

(
RΣ̂RT

)−1

R(µ̂¬y − µ̂y)
]2

λmax(Qy)(µ̂¬y − µ̂y)TRT
(
RΣ̂RT

)−1

R(µ̂¬y − µ̂y)

 (5.2.38)

Simplifying and using the fact that, whenever both multiplications are defined, the non-
zero eigenvalues of the matrix AB are the same as the non-zero eigenvalues of the ma-

trix BA, for each term in the summation we may write λmax(Qy) = λmax

(
(RΣ̂RT )−1RΣyR

T
)
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and we may now further bound the expression (5.2.37) from above with:

1∑
y=0

πy exp

−1

8
·

(µ̂¬y − µ̂y)TRT
(
RΣ̂RT

)−1

R(µ̂¬y − µ̂y)

λmax

(
(RΣ̂RT )−1RΣyRT

)
 (5.2.39)

6
1∑
y=0

πy exp

−1

8
· ‖R(µ̂¬y − µ̂y)‖2

λmax(Σ̂)

1

λmax(
(
RΣ̂RT

)−1

RΣyRT )

 (5.2.40)

where in the last line we used minorization by Rayleigh quotient of the numerator and
inserted (RRT )−1/2(RRT )1/2, as we did before in equation (5.2.23), in order to apply

Poincaré separation theorem 6 to
(
RΣ̂RT

)−1

.

Continuing, we upper bound equation (5.2.40) with:∑1
y=0 πy exp

(
−1

8
· ‖R(µ̂¬y−µ̂y)‖2

λmax(Σ̂)

1

λmax(ΣyΣ̂−1)

)
(5.2.41)

=
∑1

y=0 πy exp
(
−1

8
· ‖R(µ̂¬y − µ̂y)‖2 · λmin(Σ̂−1)

λmax(ΣyΣ̂−1)

)
(5.2.42)

where the change of term in the denominator uses the fact that λmax(RΣyR
T Σ̂−1

R ) 6
λmax(ΣyΣ̂

−1), which we proved earlier in lemma 18.

The bound in (5.2.42) holds deterministically, for any fixed projection matrix R.
We can also see from (5.2.42) that, by the Johnson-Lindenstrauss lemma, with high
probability (over the choice of R) the misclassification error will also be exponentially
decaying, except with k

d
(1− ε)‖(µ̂1− µ̂0)‖2 in place of ‖R(µ̂1− µ̂0)‖2. However, we are

more interested in the misclassification probability on average over all random choices
of R. To complete the proof we again upper bound this expression with the m.g.f of a
χ2
k distribution using the corollary 5 given in the Appendix to obtain:∑1

y=0 πyER

[
exp

(
−1

8
· ‖R(µ̂¬y − µ̂y)‖2 · λmin(Σ̂−1)

λmax(ΣyΣ̂−1)

)]
=

∑1
y=0 πy

(
1 +

(
1
4d
· ‖(µ̂¬y − µ̂y)‖2 · λmin(Σ̂−1)

λmax(ΣyΣ̂−1)

))−k/2
=

∑1
y=0 πy exp

(
−k

2
log
(

1 + 1
4d
· ‖(µ̂¬y − µ̂y)‖2 · λmin(Σ̂−1)

λmax(ΣyΣ̂−1)

))
which, noting that under the (0, 1)-loss the probability of an error coincides with the
expected error, finally yields theorem 7.

5.2.5 Relation to Theorem 6

It is interesting to briefly compare the upper bound we just derived on the average
estimated error of randomly projected FLD with the alternative bound we gave in
theorem 6. Both bounds have the same preconditions, but theorem 6 has (after a little
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algebra) the following different form:

1∑
y=0

πy exp

(
−k

2
log

(
1 +

1

4d
· ‖µ¬y − µy‖2 · g(ΣyΣ̂

−1)

λmax(Σy)

))
(5.2.43)

where g(Q) = 4 · λmax(Q)
λmin(Q)

·
(

1 + λmax(Q)
λmin(Q)

)−2

.

We see by comparing the final forms of theorems 6 and 7 that the two bounds differ
in that theorem 6 has the function f1(Σ̂,Σ) := g(ΣΣ̂−1)/λmax(Σ) in the bound whereas
in theorem 7 we have f2(Σ̂,Σ) := λmin(Σ̂−1)/λmax(ΣΣ̂−1) in its place. Note that there-
fore both bounds are invariant to scalings of Σ̂, but monotonic in the eigenvalues of
Σ. This is a desirable property in this setting, because it mirrors the behaviour of the
FLD classifier. Denote by f ∗1 , f ∗2 the maximum values taken by these functions (that
is, when the bounds are tightest). Then both f1 and f2 take their maximum value
when Σ̂ = Σ and we then have:

f ∗1 = f1(Σ̂ = Σ,Σ) =
1

λmax(Σ)
= f2(Σ̂ = Σ,Σ) = f ∗2 (5.2.44)

so both bounds coincide when Σ̂ = Σ. For Σ̂ 6= Σ in turn f1 becomes smaller (the
bound becomes larger) and this property makes it useful for studying the effects of
covariance misspecification in the projected space, as we saw earlier in this chapter.

On the other hand, the bound of theorem 7 is quantitatively sharper in particular
covariance settings, most notably it also takes its best value when Σ̂ is estimated to be
spherical (i.e. a scalar multiple of the identity matrix). Indeed in this case the λmax

term in the denominator of theorem 7 factorizes and we have

f2(Σ̂ = I,Σ) =
1

λmax(Σ)
= f ∗1 (5.2.45)

since the λmin(Σ̂−1) in the numerator cancels with the λmax(Σ̂−1) in the denominator.
Hence, it is natural to use the bound of theorem 7 to study the spherical model covari-
ance setting in more detail.
Furthermore, this setting is one of particular interest since our earlier analysis above
showed that the error arising from covariance misspecification in the projected space is
never greater than the corresponding error in the data space, and therefore a simplified
covariance model in the projected space has a relatively benign effect on classification
performance compared to a similar covariance misspecification in the data space.
For these two reasons the remainder of this chapter will consider randomly projected
FLD in the spherical model setting in more depth, and we will see that in the spherical
covariance setting we can bound the average estimated error tightly even if we relax
the condition required on theorem 7. Figure 5.2.5 gives a comparison of the bounds of
theorem 6 and theorem 7 against empirical estimates of the misclassification error of
randomly projected FLD. The misclassification error is estimated from 2000 random
query points drawn from one of two Gaussian classes with identical covariance matrices
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and averaged over 2500 random projections. The data dimensionality is d = 100 in
each case and the projected dimensionality is k ∈ {1, 10, 20, . . . , 100}. The constant

c := ‖µ0−µ1‖√
d·λmax(Σ)

is the class separation metric used by Dasgupta in (Dasgupta, 1999;

2000a).
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Figure 5.4: Comparison of our bounds from theorem 6 and 7 against empirical estimates
of misclassification error for two identical c = 0.4-separated Gaussian classes with λmax(Σ) '
4. We ran 2500 trials, fixing the data dimensionality at d = 100 while k varies. Error
bars mark one standard deviation. In each trial the empirical error is estimated from 2000
randomly drawn query points.

5.2.6 The mean flipping problem

In theorem 7 we give the probability of misclassification error in the projected space,
conditional on αRy > 0. We mentioned that this was equivalent to requiring that none of
the class means were ‘flipped’ by random projection, which requires some explanation.
Recall that in our data space bound we make the (reasonable) assumption that if
we have sufficient data then in the pairs of true and estimated means for each class,
both means lie on the same side of the decision boundary. However, in the projected
space it is not at all obvious that this remains a reasonable assumption; in fact it
seems quite possible that the true mean vector could be ‘flipped’ across the decision
boundary by random projection. It is interesting to consider if this is in fact the case
and, if so, can we quantify the likelihood of this event? We are in fact able to find the
exact probability of this event in the case that we replace Σ̂ with a spherical model
covariance (i.e. a scalar multiple of the identity) as is sometimes done in practice for
computational reasons. However from simulations (see figure 6.3) it appears that for
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non-spherical Σ̂ the flipping probability is typically greater than in the spherical case
and also far less well-behaved.
We therefore once again restrict our attention in the following discussion to the case
of spherical Σ̂ where we can show that for any fixed pair of vectors n = (µ̂¬y + µ̂y −
2µy) and m = (µ̂¬y − µ̂y) ∈ Rd with angular separation θ ∈ [0, π/2] in the data space,
the probability of flipping: (i) reduces exponentially with increasing k and is typically
very small even when k is very small (for example, when k = 5 the two vectors must be
separated by about 30◦ for the flip probability to be much above machine precision),
and (ii) is independent of the original data dimensionality d.
We will recall these properties shortly, when we combine our estimated error bound
with the flip probability in section 5.2.7. For now, we state the theorem:

Theorem 8 (Flip Probability) Let n, m ∈ Rd with angular separation θ ∈ [0, π/2].

Let R ∈ Mk×d be a random projection matrix with entries rij
iid∼ N (0, σ2) and let

Rn, Rm ∈ Rk be the projections of n, m into Rk with angular separation θR.
Then the ‘flip probability’ PrR[θR > π/2|θ] = PrR[(Rn)TRm < 0|nTm > 0] = PrR[αRy <
0|αy > 0] is given by:

PrR[θR > π/2|θ] =

∫ θ
0

sink−1(φ) dφ∫ π
0

sink−1(φ) dφ
(5.2.46)

The proof of theorem 8 is given in the next chapter 6. Note particularly the surprising
fact that the flip probability in theorem 8 depends only on the angular separation of
the true and sample means in a particular class and on the projection dimensionality
k. In fact equation (5.2.46) decays exponentially with increasing k. To see this, we
note that this probability can be interpreted geometrically as the proportion of the
surface of the k-dimensional unit sphere covered by a spherical cap subtending an an-
gle of 2θ (see section 6.6 in the next chapter), and this quantity is bounded above by
exp

(
−1

2
k cos2(θ)

)
((Ball, 1997), Lemma 2.2, Pg 11).

5.2.7 Corollary to theorems 7 and 8

Taking into account the flip probability, we may now give the following bound on the
estimated error when Σ̂ is replaced by a multiple of the identity matrix and assuming
only that αy > 0 holds in the data space (i.e. with no similar condition in the projected
space):

Corollary 3
Let (xq, yq) ∼ Dx,y. Assume there is sufficient training data so that in the data space
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αy > 0. Let Σ̂ be spherical. Then with the notation of theorems 7 and 8 we have:

Prxq ,yq ,R[ĥR(Rxq) 6= yq] 6
1∑
y=0

πyPrR[αRy > 0] · exp

(
−k

2
log

(
1 +

1

4d
· ‖µ̂y − µ̂¬y‖2 · 1

λmax(Σy)

))

+
1∑
y=0

πy(1− PrR[αRy > 0]) (5.2.47)

where πy = Pr[y = yq]

Proof 8
Consider xq drawn from class yq ∈ {0, 1}. We have, by the law of total probability:

Prxq ,yq ,R[ĥR(Rxq) 6= yq] =
∑1

y=0 πy

(
PrR[αRy > 0] · Prxq ,R[ĥR(Rxq) 6= yq|yq = y, αRy > 0]

+(1− PrR[αRy > 0]) · Prxq ,R[ĥR(Rxq) 6= yq|yq = y, αRy 6 0]
)

(5.2.48)

Then expanding the bracket and taking the worst case when flipping occurs, we get the
stated bound.

Note that the first sum is always no greater than the bound given in Theorem 7 since
PrR[αRy > 0] is always smaller than 1. Furthermore, the second sum

∑1
y=0 πy(1 −

PrR[αRy > 0]) is a convex combination of flip probabilities, and this term is typically
small because it is independent of d and decays exponentially with increasing k.
We conclude that, provided we have a sufficient number of observations to ensure
that αy > 0 in the data space, the problem of flipping typically makes a very small
contribution to the error (on average, over the random picks of R) of the projected
FLD classifier unless k is chosen to be extremely small (for example, k = 1).

5.3 Summary and Discussion

This chapter presented our findings concerning the effect of dimensionality reduction
using random projection on the performance of FLD. In this chapter our conceptual
view of random projection was as a form of lossy data compression, and we aimed to
give a characterization of how lossy it is in the context of classification.
We restricted our attention to the setting of high-dimensional data and sufficient
training examples, in which setting our bound on the ‘estimated error’ captures faith-
fully the generalization performance of FLD and RP-FLD. In particular, in the ran-
domly projected domain we have fewer parameters to estimate than in the data space,
but the same amount of data with which to estimate them, and so we can expect the
‘estimation error’ in the projected domain to be generally small – the estimated error
of course increases.
Our main aim in this chapter was to quantify the performance cost of working with
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randomly-projected data, at least for FLD, and this was achieved by assuming a fixed
training set and evaluating the effect of random projection on the estimated error term.
Our central motivation for taking this approach was the observation that, in a classifi-
cation setting, often some distances are more important than others and so it should be
possible to preserve classification performance provided one could preserve only those
important distances. In particular uniform approximate preservation of data geometry
through the JLL, and the consequent unnatural behaviour w.r.t the number of obser-
vations in bounds utilising it, appeared to us to be too strong a requirement in order
to give guarantees on classification performance.
We conjectured that one should therefore be able to give guarantees on classifier per-
formance in the randomly projected domain where, all other things being equal, the
performance guarantee depends only in some simple way on the projection dimension-
ality and the number of important distances. In the case of RP-FLD this is indeed
the case, and the number of important distances is the same as the number of classes
because of the particularly simple structure of this classifier. Most other classification
regimes have a significantly more complex structure than FLD but, since other gen-
erative classifiers still use the notion of the distance between a query point and some
modelled distribution in order to assign a label to the query point, we believe that it
should be possible to extend this approach to (at least some of) these more complex
scenarios. We recognize however that such extensions are unlikely to be straightfor-
ward, even if one were to restrict the possible data distributions as we have here.
Finally, we see that the generalization error of RP-FLD depends on the data distri-
bution and the parameters estimated from the data. Therefore a further alternative
approach to bounding the generalization error would be to work with the data space
bound (Thm. 4) or the exact error (Thm. 5) from Chapter 4 and then to quantify
how good the parameter estimates can be expected to be with high probability over
training sets of size N . From there we could derive high probability guarantees on
the worst-case generalization error for subgaussian classes in terms of the sample size,
data and projected dimensions, and true parameters. In fact this approach did not
occur to us until we had already completed the work covered in this chapter, although
with hindsight it looks very natural. We follow this approach in Chapter 7 where we
consider an RP-FLD ensemble to address the issue of a small training sample, and
in Chapter 8 when we study the generalization error of Kernel FLD. The techniques
applied in those two chapters can be applied in an obvious way to extend the results
in this chapter to give high-probability guarantees, but to avoid unnecessary repetition
we have not done so here.
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6
Flip Probabilities for Random Projections

of θ-separated Vectors

Summary In theorems 6 and 7 we gave average case bounds (w.r.t Gaussian random
projection matrices R) on the estimated error of RP-FLD for a fixed training set,
provided that the condition αRy > 0 held in the projected space. Although we see that
this condition αy > 0 is not a particularly restrictive one in the data space, given our
assumption in chapter 5 of sufficient data, in order to understand better how restrictive
our condition is in the projected space we would like to better quantify the probability
that αRy 6 0 in the projected space when αy > 0 in the data space.
In this chapter we therefore derive the exact probability that αy and αRy have different

signs in the restricted case when Σ̂ = σ2I is a scalar multiple of the identity matrix
(e.g. taken to be a scalar matrix for computational reasons).
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6.1 Preliminaries

We consider the case of two vectors n,m ∈ Rd with the angle between them θ ∈ [0, π/2]
which we randomly project by premultiplying them with a random matrix R with
entries drawn i.i.d from the Gaussian N (0, σ2). As a consequence of the Johnson-
Lindenstrauss lemma, the angle between the projected vectors Rn,Rm is approxi-
mately θ with high probability (see e.g. (Arriaga & Vempala, 1999)), so the images of
the vectors n,m under the same random projection are not independent. We want to
find the probability that following random projection the angle between these vectors
θR > π/2, i.e. switches from being acute to being obtuse, which we call the ‘flip prob-
ability’. In the context of RP-FLD and our condition αy > 0, if we take Σ̂ = σ2I then
we have n = µ̂¬y + µ̂y − 2µy and m = σ2(µ̂¬y − µ̂y), and without loss of generality we
can assume the positive scaling constant σ2 = 1 since it does not affect the sign of the
dot product nTm.
The proof proceeds by carrying out a whitening transform on each coordinate of the
pair of projected vectors, and will make use of techniques inspired from the study of
random triangles in (Eisenberg & Sullivan, 1996) to derive the probability. We obtain
the exact expression for the flip probability in the form of an integral that has no gen-
eral analytic closed form, although for any particular choice of k and θ this integral can
be evaluated (in principle) using integration by parts. However this integral does turn
out to have a natural geometrical interpretation as the quotient of the surface area of
a (hyper-)spherical cap by the surface area of the corresponding (hyper-)sphere.
Before commencing the proof proper we make some preliminary observations. First re-
call, from the definition of the dot product, nTm = ‖n‖‖m‖ cos θ, where θ ∈ [−π/2, π/2]
is the principal angle between n and m, we have nTm < 0⇔ cos θ < 0 and so the dot
product is positive if and only if the principal angle between the vectors n and m is
θ ∈ [0, π/2].
Hence, for θ ∈ [0, π/2] in the original d-dimensional space and θR in the k-dimensional
randomly projected space we have PrR[θR > π/2] = PrR[(Rn)TRm < 0], and this is
the probability of our interest1. Regarding random Gaussian matrices we note that,
for any non-zero vector x ∈ Rd, the event: Rx = 0 has probability zero with respect
to the random choices of R. This is because the null space of R, ker(R) = R(Rd)⊥,
is a linear subspace of Rd with dimension d − k < d, and therefore ker(R) has zero
Gaussian measure in Rd. Hence PrR{x ∈ ker(R)} = PrR{Rx = 0} = 0.
In a similar way, R almost surely has rank k. Denote the i -th row of R by (ri1, . . . , rid),
then the event: span{(ri1, . . . , rid)} = span{(ri′1, . . . , ri′d)}, i 6= i′ has probability zero
since span{(ri1, . . . , rid)} is a 1-dimensional linear subspace of Rd with measure zero.
By induction, for finite k < d, the probability that the j -th row is in the span of the
first j − 1 rows is likewise zero. In this setting we may therefore safely assume that
n,m /∈ ker(R) and that R has rank k.
Finally, since we are concerned only with the angles between n,m and Rn,Rm which
are unaffected by their norms, we may assume without loss of generality that ‖n‖ =

1In fact the arguments for the proof of our first two parts of our theorem will not rely on the
condition θ ∈ [0, π/2], which is only needed for the third part of the theorem.
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‖m‖ = 1.
With these preliminaries out of the way, we begin our proof.

6.2 Statement of Theorem and Proofs

Theorem 9 (Flip Probability) Let n, m ∈ Rd and let the angle between them be
θ ∈ [0, π/2]. Without loss of generality take ‖n‖ = ‖m‖ = 1.

Let R ∈ Mk×d, k < d, be a random projection matrix with entries rij
i.i.d∼ N (0, σ2) and

let Rn, Rm ∈ Rk be the images of n, m with angular separation θR.

1. Denote by fk(θ) the ‘flip probability’ fk(θ) := Pr[θR > π/2] = Pr[(Rn)TRm < 0].
Then:

fk(θ) =
Γ(k)

(Γ(k/2))2

∫ ψ

0

z(k−2)/2

(1 + z)k
dz (6.2.1)

where ψ = (1− cos(θ))/(1 + cos(θ)).

2. The expression above can be shown to be of the form of the quotient of the surface
area of a hyperspherical cap subtending an angle of 2θ by the surface area of the
corresponding hypersphere:

fk(θ) =

∫ θ
0

sink−1(φ) dφ∫ π
0

sink−1(φ) dφ
(6.2.2)

This form recovers Lemma 3.2 of (Goemans & Williamson, 1995) where the flip
probability θ/π for k = 1 was given, and extends it for k > 1 showing that the
flip probability is polynomial of order k in θ.

3. The flip probability is monotonic decreasing as a function of k: Fix θ ∈ [0, π/2],
then fk(θ) > fk+1(θ).

6.3 Proof of Theorem 9

Proof of part 1.

First we expand out the terms of (Rn)TRm:

PrR[(Rn)TRm < 0] = PrR

[
k∑
i=1

(
d∑
j=1

rijmj

)(
d∑
j=1

rijnj

)
< 0

]
(6.3.1)

Recall that the entries of R are independent and identically distributed with rij
i.i.d∼

N (0, σ2) and make the change of variables ui =
∑d

j=1 rijmj and vi =
∑d

j=1 rijnj. A
linear combination of Gaussian variables is again Gaussian, however ui and vi are now
no longer independent since they both depend on the same row of R. On the other
hand, for i 6= j the vectors (ui, vi) and (uj, vj) are independent of each other since the
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i-th row of R is independent of its j-th row. Moreover (ui, vi) ∼ (uj, vj), ∀i, j so it is
enough to consider a single term of the outer sum in (6.3.1). We have:(

ui
vi

)
∼ N

(
ER

[(
ui
vi

)]
,CovR

[(
ui
vi

)])
Since ui and vi are zero mean, the expectation of this distribution is just (0, 0)T , and
its covariance is:

Σu,v =

[
Var(ui) Cov(ui, vi)

Cov(ui, vi) Var(vi)

]
(6.3.2)

Then:

Var(ui) = E[(ui − E(ui))
2]

= E[(ui)
2] since E(ui) = 0

= E

( d∑
j=1

rijnj

)2


= E

 d∑
j=1
j′=1

rijrij′njnj′


=

d∑
j=1
j′=1

njnj′E [rijrij′ ]

Now, when j 6= j′, rij and rij′ are independent, and so E[rijrij′ ] = E[rij]E[rij′ ] = 0.
On the other hand, when j = j′ we have E[rijrij′ ] = E[r2

ij] = Var(rij) = σ2, since
rij ∼ N (0, σ2). Hence:

Var(ui) =
d∑
j=1

σ2n2
j = σ2‖n‖2 = σ2 (6.3.3)

since ‖n‖ = 1. A similar argument gives Var(vi) = σ2.
Now we want to find the covariance Cov(ui, vi):

Cov(ui, vi) = E [(ui − E[ui]) (vi − E[vi])] = E[uivi]

= E

[(
d∑
j=1

rijnj

)(
d∑
j=1

rijmj

)]

=
d∑
j=1
j′=1

njmj′E[rijrij′ ] (6.3.4)
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Now, when j 6= j′ the expectation is zero, as before, and similarly when j = j′ we have
for (6.3.4):

=
d∑
j=1

njmjE[(rij)
2] =

d∑
j=1

njmjVar(rij) = σ2nTm (6.3.5)

Hence for each i ∈ {1, . . . , k} the covariance matrix is:

Σu,v = σ2

[
1 nTm

nTm 1

]
and so, (ui, vi)

T i.i.d∼ (0,Σu,v). Now we can rewrite the probability in (6.3.1) as:

Pr

{
k∑
i=1

uivi < 0

}
(6.3.6)

Next, it will be useful to use the identity uivi = (ui, vi)
( 0 1/2

1/2 0

)
(ui, vi)

T and rewrite

the probability (6.3.6) as:

Pr

{
k∑
i=1

(ui, vi)

[
0 1

2
1
2

0

](
ui
vi

)
< 0

}
(6.3.7)

where the probability is now over the distribution of (ui, vi)
T . We will make a further

change of variables and write:

(xi, yi)
T = Σ−1/2

u,v (ui, vi)
T (6.3.8)

so that the new variables xi, yi are independent unit variance spherical Gaussian

variables, (xi, yi)
T iid∼ N (0, I). Substituting back into (6.3.7) the probability we want

to find is then:

Pr

{
1

2

k∑
i=1

(xi, yi) Σ1/2
u,v

[
0 1
1 0

]
Σ1/2
u,v

(
xi
yi

)
< 0

}
(6.3.9)

where the probability now is w.r.t the standard Gaussian distribution. Now diagonal-

izing the positive definite matrix Σ
1/2
u,v

[
0 1
1 0

]
Σ

1/2
u,v as UΛUT with UUT = UTU = I

and Λ a diagonal matrix of its (necessarily positive) eigenvalues we rewrite (6.3.9) as:

Pr

{
1

2

k∑
i=1

(xi, yi)UΛUT

(
xi
yi

)
< 0

}
(6.3.10)

and note that, as the standard Gaussian distribution is invariant under orthogonal
transformations, the form of U does not affect this probability. Therefore without loss
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of generality we can take it to be the identity matrix to rewrite (6.3.10) as:

Pr

{
1

2

k∑
i=1

(xi, yi)Λ

(
xi
yi

)
< 0

}
Now we need the entries of Λ. These are the eigenvalues of:

Σ1/2
u,v

[
0 1
1 0

]
Σ1/2
u,v

and using the fact that the eigenvalues of AB are the same as the eigenvalues of BA
(Horn & Johnson, 1985) these are the eigenvalues of

σ2

[
1 nTm

nTm 1

] [
0 1
1 0

]
= σ2

[
nTm 1

1 nTm

]
= σ2

[
cos(θ) 1

1 cos(θ)

]
which are λ = σ2(cos(θ)± 1).
Substituting this back into the inequality (6.3.10) we may drop the positive scaling
constant 1

2
σ2 since it does not affect the sign of the left hand side, and so the probability

to find can now be written as:

Pr

{
k∑
i=1

(xi, yi)
T

[
cos(θ) + 1 0

0 cos(θ)− 1

](
xi
yi

)
< 0

}

= Pr

{
k∑
i=1

((cos(θ) + 1)x2
i + (cos(θ)− 1)y2

i ) < 0

}

= Pr

{
(cos(θ) + 1)

k∑
i=1

x2
i + (cos(θ)− 1)

k∑
i=1

y2
i < 0

}

= Pr

{
(cos(θ) + 1)

∑k
i=1 x

2
i

(cos(θ)− 1)
∑k

i=1 y
2
i

+ 1 < 0

}

= Pr

{∑k
i=1 x

2
i∑k

i=1 y
2
i

<
1− cos(θ)

1 + cos(θ)

}
(6.3.11)

Now, xi and yi are standard univariate Gaussian variables, hence x2
i , y

2
i
iid∼ χ2, and so

the left hand side of (6.3.11) is F -distributed ((Mardia et al., 1979), Appendix B.4, pg
487). Therefore:

PrR[(Rn)TRm < 0] =
Γ(k)

(Γ(k/2))2

∫ ψ

0

z(k−2)/2

(1 + z)k
dz

where ψ = (1− cos(θ))/(1 + cos(θ)) and Γ(·) is the Gamma function. This proves the
first part of Theorem 9. �
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6.4 Proof of part 2.

Note that ψ = tan2(θ/2) and make the substitution z = tan2(θ/2). Then, via the
trigonometric identity sin(θ) = 2 tan(θ)/(1+tan2(θ)) and dz

dθ
= tan(θ/2)(1+tan2(θ/2)),

we obtain:

fk(θ) =
Γ(k)

2k−1(Γ(k/2))2

∫ θ

0

sink−1(φ)dφ (6.4.1)

To put the expression (6.4.1) in the form of the second part of the theorem, we need
to show that the gamma term outside the integral is the reciprocal of

∫ π
0

sink−1(φ)dφ.
This can be shown in a straightforward way using the beta function.

Recall that the beta function is defined by (e.g. (Abramowitz & Stegun, 1972),
6.2.2, pg 258):

B(w, z) =
Γ(w)Γ(z)

Γ(w + z)
= 2

∫ π/2

0

sin2w−1(θ) cos2z−1(θ)dθ, Re(w),Re(z) > 0 (6.4.2)

Then from (6.4.2) we have:

1

2
B

(
k

2
,
1

2

)
=

∫ π/2

0

sink−1(θ)dθ

and from the symmetry of the sine function about π/2, equation (6.4.2), and using
Γ(1/2) =

√
π we have:∫ π

0

sink−1(θ)dθ = 2

∫ π/2

0

sink−1(θ)dθ = B

(
k

2
,
1

2

)
=

√
π Γ(k/2)

Γ((k + 1)/2)

Now we just need to show that the left hand side of (6.4.1):

Γ(k)

2k−1(Γ(k/2))2
=

Γ((k + 1)/2)√
π Γ(k/2)

(6.4.3)

To do this we use the duplication formula ((Abramowitz & Stegun, 1972), 6.1.18, pg
256):

Γ(2z) = (2π)−
1
2 22z− 1

2 Γ(z)Γ((2z + 1)/2)

with z = k/2.
Then the left hand side of (6.4.3) is equal to:

2k−
1
2 Γ(k/2)Γ((k + 1)/2)√
2π 2k−1(Γ(k/2))2

=
Γ(k/2)Γ((k + 1)/2)√

π (Γ(k/2))2
=

Γ((k + 1)/2)√
π Γ(k/2)

as required. Putting everything together, we arrive at the alternative form for (6.4.1)
given in equation (6.2.2), namely:

PrR[(Rn)TRm < 0] =

∫ θ
0

sink−1(φ) dφ∫ π
0

sink−1(φ) dφ
(6.4.4)
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This proves the second part of Theorem 9. �
We will give a geometric interpretation of this form of the flip probability in the next
section.

Remark. It is easy to verify that (6.4.4) recovers the known result for k = 1, namely
θ/π, as given in (Goemans & Williamson, 1995) (Lemma 3.2). Further, for general k,
the expression (6.4.4) is polynomial of order k in θ. This can be seen by using the fact

that sin(φ) 6 φ, which gives us the upper bound PrR[(Rn)TRm < 0] 6 θk

k·
∫ π
0 sink−1(φ) dφ

.

6.5 Proof of part 3.

Finally, we prove that the flip probability is monotonic decreasing in the projection
dimension k. Note that although the value of the expressions in (6.2.2) and (6.2.1)
can be calculated exactly for any given k and θ (e.g. using integration by parts) there
is no general closed form for either the integral or the gamma term and, as k grows,
this becomes increasingly inconvenient. The final part of the theorem, bounding the
flip probability in the (k + 1)-dimensional case above by the flip probability in the
k-dimensional case, is therefore useful in practice.

To prove the final part of the theorem we will show that for all θ ∈ [0, π/2], the
ratio of successive flip probabilities:

fk+1(θ)

fk(θ)
=

(∫ θ
0

sink(φ) dφ∫ π
0

sink(φ) dφ

)
(∫ θ

0
sink−1(φ) dφ∫ π

0
sink−1(φ) dφ

) 6 1 (6.5.1)

which is sufficient.
Let us rewrite the ratio (6.5.1) above as:( ∫ θ

0
sink(φ) dφ∫ θ

0
sink−1(φ) dφ

)
( ∫ π

0
sink(φ) dφ∫ π

0
sink−1(φ) dφ

) (6.5.2)

Call the numerator of (6.5.2) gk(θ), and notice that the denominator is nothing but
gk(π). Now observe that the denominator, gk(π) = gk(π/2). Since:∫ π

0
sink(φ) dφ∫ π

0
sink−1(φ) dφ

=
2
∫ π/2

0
sink(φ) dφ

2
∫ π/2

0
sink−1(φ) dφ

=

∫ π/2
0

sink(φ) dφ∫ π/2
0

sink−1(φ) dφ

where the first equality follows from the symmetry of the sine function about π/2.
Thus we see that the whole expression (6.5.2) is equal to 1 when θ = π/2. It remains
now to show that the gk(θ) 6 gk(π/2),∀θ ∈ [0, π/2] and k ∈ N . In fact more is true:
We show that ∀k, gk(θ) is monotonic increasing as a function of θ on [0, π/2]. From this
the required inequality follows, and therefore the expression (6.5.2) has its maximum
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value of 1 on this domain, and the result follows.
To show monotonicity, we differentiate the function gk(θ) with respect to θ to obtain:

d

dθ
gk(θ) =

sink(θ)
∫ θ

0
sink−1(φ)dφ− sink−1(θ)

∫ θ
0

sink(φ)dφ(∫ θ
0

sink−1(φ)dφ
)2 (6.5.3)

Then (6.5.3) is greater than zero when its numerator is, and:

sink(θ)

∫ θ

0

sink−1(φ)dφ− sink−1(θ)

∫ θ

0

sink(φ)dφ

= sink−1(θ)

[
sin(θ)

∫ θ

0

sink−1(φ)dφ−
∫ θ

0

sink(φ)dφ

]
= sink−1(θ)

[∫ θ

0

sin(θ) sink−1(φ)dφ−
∫ θ

0

sin(φ) sink−1(φ)dφ

]
> 0

Where the last step follows from monotonicity of the sine function on [0, π/2] and so
sin(θ) > sin(φ) for θ > φ > 0, θ ∈ [0, π/2]. It follows now that the numerator of
(6.5.2) is monotonic increasing with θ ∈ [0, π/2] and so the whole expression (6.5.1)
takes its maximum value of 1 when θ = π/2. This proves the final part of Theorem 9
and completes the proofs. �

Remark. We note that for θ ∈ [π/2, π] it is easy to show, using the symmetry of
sine about π/2, that the sense of the inequality in part 3 of the theorem is reversed.
Then: fk+1(θ) > fk(θ), θ ∈ [π/2, π].

6.6 Geometric Interpretation

In the case k = 1, the flip probability θ/π (given also in (Goemans & Williamson,
1995)) is the quotient of the length of the arc subtending an angle of 2θ by the circum-
ference of the unit circle 2π. In the form of (6.4.4) our result generalizes this geometric
interpretation in a natural way, as follows. Recall that the surface area of the unit
hypersphere in Rk+1 is given by (Kendall, 2004):

2π ·
k−1∏
i=1

∫ π

0

sini(φ)dφ

(which is is also (k+ 1)/r times the volume of the same hypersphere.) This expression
is the extension to Rk+1 of the standard ‘integrating slabs’ approach to finding the
volume of the 3-dimensional sphere S2, and so the surface area of the hyperspherical
cap subtending angle 2θ is simply:

2π ·
k−2∏
i=1

∫ π

0

sini(φ)dφ ·
∫ θ

0

sink−1(φ)dφ
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If we now take the quotient of these two areas all but the last terms cancel and we
obtain:

2π ·
∏k−2

i=1

∫ π
0

sini(φ)dφ ·
∫ θ

0
sink−1(φ)dφ

2π ·
∏k−1

i=1

∫ π
0

sini(φ)dφ
=

∫ θ
0

sink−1(φ) dφ∫ π
0

sink−1(φ) dφ

which is exactly our flip probability as given in (6.4.4).
Hence, the probability that a dot product flips from being positive to being negative
(equivalently the angle flips from acute to obtuse) after Gaussian random transforma-
tion is given by the ratio of the surface area in Rk+1 of a hyperspherical cap subtending
an angle of 2θ to the surface area of the unit hypersphere. Note particularly the sur-
prising fact that therefore the flip probability depends only on the angular separation
of the two vectors and on the projection dimensionality k: It is independent of the
embedding dimensionality d. Moreover our geometric interpretation shows that equa-
tion (6.4.4) decays exponentially with increasing k as the proportion of the surface of
the k-dimensional unit sphere covered by a spherical cap subtending an angle of 2θ is
known to be bounded above by exp

(
−1

2
k cos2(θ)

)
((Ball, 1997), Lemma 2.2, Pg 11).

6.7 Empirical Validation

Our results seem quite counterintuitive, especially the fact that the flip probability is
independent of the embedding dimensionality d. To confirm our theoretical findings
we ran Monte Carlo trials to estimate the flip probability as follows: We let d ∈
{50, 100, . . . , 500}, k ∈ {1, 5, 10, 15, 20, 25} and θ ∈ {0, π/128, . . . , t · π/128, . . . , π/2}.
For each (d, θ) tuple we generated 2 randomly oriented d-dimensional θ-separated unit
length vectors m,n. For each (k, d, θ) tuple, we generated 5000 k×d random projection
matrices R with which we randomly projected m and n. Finally we counted the number
of times, N , that the dot product (R(m))TR(n) < 0 and estimated the flip probability
by N/5000.
We give plots of the results: Figure 6.1 shows the close match between our theoretical
values and empirical estimates of the flip probabilities, while figure 6.2 gives empirical
validation of the fact that the flip probability is independent of d. We note that, for
non-spherical Σ̂ empirical trials show that the flip probability can be significantly higher
than in the spherical case and also less well-behaved – see figure 6.3. The following
upper bound (6.7.1) on the flip probability in the non-spherical case, which is tight
since in the spherical case (i.e. when we estimate RΣ̂RT = I in the projected space) it
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recovers our theorem 9, indicates why this is the case:

PrR

[(
(RΣ̂RT )−1/2Rn

)T
((RΣ̂RT )−1/2Rm) < 0

]
= PrR

[
1

2

(
‖(RΣ̂RT )−1/2Rn‖2 + ‖(RΣ̂RT )−1/2Rm‖2 − ‖(RΣ̂RT )−1/2(Rn−Rm)‖2

)
< 0

]
6 PrR

[
1

2

(
λmin((RΣ̂RT )−1)

(
‖Rn‖2 + ‖Rm‖2

)
− λmax((RΣ̂RT )−1)‖Rn−Rm‖2

)
< 0

]
= PrR

[
1

2

((
‖Rn‖2 + ‖Rm‖2

)
− κ((RΣ̂RT )−1)‖Rn−Rm‖2

)
< 0

]
= PrR

[
1

2

((
‖Rn‖2 + ‖Rm‖2

)
− κ(RΣ̂RT )‖Rn−Rm‖2

)
< 0

]
6 PrR

[
1

2

((
‖Rn‖2 + ‖Rm‖2

)
− κ(Σ̂)‖Rn−Rm‖2

)
< 0

]
(6.7.1)

where the step from the first to the second line is the parallelogram law, the second last
step uses the identity κ(A) = κ(A−1) for invertible matrices A, and the last step follows
from our findings in chapter 5 that the covariance estimated in the randomly-projected
space is better conditioned than its data space counterpart. Note that we also recover
our original theorem when k = 1, since then κ(RΣ̂RT ) = 1.

6.8 Summary and Discussion

We derived the exact probability of ‘label flipping’ as a result of random projection,
for the case where Σ is estimated by a spherical covariance matrix Σ̂ = αI, and proved
a simple, yet tight, upper bound on this probability for the general setting when Σ̂ is
allowed to be non-spherical. The inequality 6.7.1 agrees with theoretical and empirical
findings of (Dasgupta, 1999; 2000a) in particular when d is large, even if Σ̂ is very
eccentric, it can be that κ(RΣ̂RT ) � κ(Σ̂) where the difference in the two condition
numbers may be several orders of magnitude. In practice therefore it seems that for
non-spherical Σ̂ there is likely to be a trade off between reducing k which reduces
κ(RΣ̂RT ) and increasing k which makes the flip probability smaller in the spherical
case and, therefore, presumably also does the same in the non-spherical case. Testing
this intuition by better quantifying the flip probability for non-spherical Σ̂ remains for
future research.
We also note that, via existing VC-type bounds, our flip probability implies an upper
bound on the (0, 1)-generalization error of any linear classifier trained by empirical risk
minimization (ERM) in a randomly projected space. More specifically, the empirical
risk minimizer learned in the projected space has training error no greater than the
projection of the ERM classifier learned in the data space, and the training error of
the projection of the data space ERM classifier is simply the training error of the data
space ERM classifier plus the flip probability. The same observation was made, for
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Figure 6.1: Experiment illustrating match between probability calculated in theorem 9
and empirical trials. We fixed d = 500 and allowed k to vary. For each trial we generated
two random unit-length vectors in R500 with angular separation θ and for each (θ, k) pair
we randomly projected them with 5000 different random projection matrices to estimate
the empirical flip probability. Circles show the empirical flip probabilities, lines show the
theoretical flip probability.

different reasons, by Garg et. al. in (Garg & Roth, 2003; Garg et al., 2002): In those
papers however the authors’ motivation was to provide bounds on the generalization
error of the data space classifier, and they obtained only a loose upper bound on the
flip probability.
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Figure 6.2: Experiment illustrating d-invariance of the flip probability of theorem 9. We
fixed k = 5 and allowed d to vary, estimating the empirical flip probability with 5000 different
random projections from Rd into R5 for each (θ, d) pair. The results for each of six choices
of d are plotted on separate graphs, highlighting the similarity of the outcomes.
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Figure 6.3: Experiment illustrating irregularity in flip probability when the two vectors
are drawn from an eccentric Gaussian. We fixed k = 5 and allowed d to vary. For each set of
trials we randomly generated an eccentric Gaussian and estimated the flip probability using
Monte Carlo trials as before.
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7
Voting Ensembles of RP-FLDs

Summary In this chapter we derive theory for, and empirically evaluate the perfor-
mance of, an ensemble of randomly projected Fisher Linear Discriminant classifiers.
We focus on the case when there are fewer training observations than data dimensions,
which is a common situation in a range of problem domains such as radiology, biomed-
ical imaging, and genomics (Candes & Tao, 2007). Our ensemble is learned from a
sequence of randomly projected representations of the original high dimensional data
and so, for this approach, data could be collected, stored and processed in such a com-
pressed form.
The specific form and simplicity of the ensemble we consider permits a direct and
much more detailed analysis than can be obtained using existing generic tools applied
in previous works. In particular, we are able to derive the exact form of the generaliza-
tion error of our ensemble, conditional on the training set, and based on this we give
theoretical guarantees which directly link the performance of the ensemble to that of
the corresponding FLD classifier learned in the full data space. Furthermore we show
that our randomly projected ensemble implicitly implements a sophisticated regular-
ization scheme to FLD learned in the original data space and this prevents overfitting
in conditions of small sample size where pseudoinverted FLD learned in the data space
is provably poor. To the best of our knowledge these are the first theoretical results to
provide such an explicit link between any classifier and classifier ensemble pair.
We confirm the utility of our ensemble approach with a range of experiments on real
datasets from the bioinformatics domain; for these data the number of observations
in each dataset is orders of magnitude smaller than the data dimensionality, yet our
ensemble still achieves performance comparable with the state-of-the-art. Moreover
desirable properties of our ensemble approach include (i) fitting the regularization pa-
rameter is straightforward, and (ii) a well-performing ensemble can be constructed for
generally lower computational cost than working in the full data space.
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7.1 Preliminaries

As in the previous chapters of this thesis, we consider a binary classification problem
in which we observe N i.i.d examples of labelled training data TN = {(xi, yi)}Ni=1 where
the xi ∈ Rd are d-dimensional real valued observations. Unlike the previous chapters
of this thesis, here we assume that N � d, and we are interested in comparing the
performance of an ensemble of RP-FLD classifiers working in the projected space Rk,
k < d, to the performance achievable by the corresponding FLD classifier working in
the data space Rd.
Recall that the decision rule for FLD learned from training data is given by:

ĥ(xq) := 1

{
(µ̂1 − µ̂0)T Σ̂−1

(
xq −

µ̂0 + µ̂1

2

)
> 0

}
where µ̂0, µ̂1, and Σ̂ are maximum likelihood (ML) estimates of the class-conditional
means and (shared) covariance matrix respectively, and 1(·) is the indicator function
which returns 1 if its argument is true and 0 otherwise.

In the setting considered here we assume that N � d and therefore Σ̂ will be
singular. In order to obtain a working decision rule one can either pseudo-invert or
regularize Σ̂; both approaches are used in practice (Raudys & Duin, 1998).
To construct the randomly projected ensemble, we choose the number of ensemble
members M and the projection dimensionality k, and generate M random matrices
R ∈ Mk×d with i.i.d entries rij ∼ N (0, σ2), and we take σ2 = 1 without loss of
generality.1.
Pre-multiplying the data with one of the matrices R maps the training examples to a
k-dimensional subspace of the data space Rd and, by linearity of expectation and of
the projection operator, the decision rule for a single randomly projected classifier is
then given by:

ĥR(xq) := 1

{
(µ̂1 − µ̂0)TRT

(
RΣ̂RT

)−1

R

(
xq −

µ̂0 + µ̂1

2

)
> 0

}
For an ensemble, various different combination rules can be applied. The most common
choices include majority voting (when there is an odd number of classifiers in the
ensemble) and linear or convex combination (e.g. Brown, 2009). We may interpret
the magnitude of the output of an individual RP-FLD classifier as a measure of the
confidence in that classifier’s decision, and we want to make use of these confidence
estimates. For this reason we choose to employ the averaged linear decisions of M base
learners – which gives the following ensemble decision function:

ĥens(xq) := 1

{
1

M

M∑
i=1

(µ̂1 − µ̂0)TRT
i

(
RiΣ̂R

T
i

)−1

Ri

(
xq −

µ̂1 + µ̂0

2

)
> 0

}

1We find empirically that, as one would expect, other common choices of random projection matrix
with zero-mean i.i.d subgaussian entries (e.g. Achlioptas, 2003) do not affect the ensemble performance.

76



Voting Ensembles of RP-FLDs

This decision rule is called ‘voting’ in the ensemble literature2. Unlike majority voting,
this choice of decision rule does not require the number of classifiers in the ensemble
to be odd for good generalization and, as we shall see, it also has the advantage of
analytical tractability.

7.2 Theory: Linking the ensemble error to the full

data space error

We are interested in the generalization error of our voting ensemble in the setting
where rank(Σ) = d, but rank(Σ̂) = ρ � d and, especially, in linking the performance
of this ensemble to the corresponding data space FLD. We will start by examining the
expected performance of the RP-FLD ensemble when the training set is fixed, which
is central to linking the ensemble and data space classifiers, and then later in Theorem
10 we will consider random instantiations of the training set.
To begin, observe that by the law of large numbers the LHS of the argument of the
decision rule of our ensemble converges to the following:

lim
M→∞

1

M

M∑
i=1

(µ̂¬y − µ̂y)TRT
i

(
RiΣ̂R

T
i

)−1

Ri(µ̂0 + µ̂1 − 2µy)

= (µ̂¬y − µ̂y)TE

[
RT
(
RΣ̂RT

)−1

R

]
(µ̂0 + µ̂1 − 2µy) (7.2.1)

provided that this limit exists. It will turn out that for R ∈ Mk×d having i.i.d zero-
mean Gaussian entries rij ∼ N (0, 1), if k ∈ {1, ..., ρ − 2} ∪ {ρ + 2, ..., d}, then this
expectation is indeed defined for each entry. From equation (7.2.1) we see that, for a
fixed training set, in order to quantify the error of the ensemble it is enough to consider
the expectation (w.r.t random matrices R):

E

[
RT
(
RΣ̂RT

)−1

R

]
(7.2.2)

To smooth our way, we will emulate Marzetta et al. (2011) and make use of the following
two lemmas in the next subsections:

Lemma 19 (Orthogonal invariance)
Let R ∈ Mk×d with rij

i.i.d∼ N (0, σ2). Let Σ̂ be any symmetric positive semi-definite

matrix, and let Û be an orthogonal matrix such that Σ̂ = Û Λ̂ÛT , where Λ̂ is a diagonal
matrix with the eigenvalues of Σ̂ in descending order along the diagonal. Then:

E

[
RT
(
RΣ̂RT

)−1

R

]
= ÛE

[
RT
(
RΛ̂RT

)−1

R

]
ÛT

2Voting is distinct from majority voting: In majority voting one considers only the sign, and not
the magnitude, of the decisions of the individual classifiers comprising the ensemble. In voting both
the sign and magnitude of the output from each individual ensemble member is taken into account.
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Proof 9
(of Lemma 19) We use the facts that Û ÛT = ÛT Û = I and that the rows of R are
drawn from a spherical Gaussian, and therefore their distribution is invariant under
orthogonal transformations. Hence:

E

[
RT
(
RÛ Λ̂ÛTRT

)−1

R

]
= E

[
Û ÛTRT

(
RÛ Λ̂ÛTRT

)−1

RÛÛT

]
= ÛER̃

[
R̃T
(
R̃Λ̂R̃T

)−1

R̃

]
ÛT

= ÛE

[
RT
(
RΛ̂RT

)−1

R

]
ÛT

since R̃ = RÛ ∼ R

Next the easily proved fact that if A is a square matrix then A is diagonal if and only
if V AV T = A for all diagonal orthogonal matrices V = diag(±1) yields the following
useful lemma:

Lemma 20 (Expected preservation of eigenvectors)
Let Λ̂ be a diagonal matrix, then E

[
RT
(
RΛ̂RT

)−1

R

]
is a diagonal matrix.

Furthermore, if Û diagonalizes Σ̂ as Û Λ̂ÛT , then Û also diagonalizes E

[
RT
(
RΣ̂RT

)−1

R

]
.

We omit the proof of Lemma 20, which is very similar to that for lemma 19 using the
facts that V is orthogonal and that if ÛV diagonalizes Σ̂ then so does Û . It follows
from lemmas 19 and 20 that at convergence our ensemble preserves the eigenvectors
of Σ̂, and so we only need to consider the diagonal entries (i.e. the eigenvalues) of

E

[
RT
(
RΛ̂RT

)−1

R

]
, which we do in the next subsection.

Before starting our analysis we should note that, for the cases k ∈ {1, ..., ρ−2} and
taking R to be a random projection matrix with the rows orthonormalized, Marzetta
et al. (2011) provide a (rather complicated) procedure to compute this expectation
exactly. Instead, in our context, we are more interested in how this expectation relates
to characteristics of Σ̂. In particular, we are interested in how the ensemble reduces
the ill-conditioning of this matrix since we shall see in Section 7.3 that this has a direct
impact on the generalization error of the FLD classifier. We answer this question
by bounding this expectation from both sides in the positive semi-definite ordering.
Furthermore, Marzetta et al. (2011) did not consider the case k > ρ + 1, when the
expectation can still be computed exactly and has a meaningful interpretation in our
context. Finally, in the cases k ∈ {ρ − 1, ρ, ρ + 1} we will see that although this
expectation is no longer defined for all of the matrix entries, we can still interpret its
limiting form in terms of a pseudoinverted data space covariance.
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7.2.1 Analysis of E

[
RT
(
RΛ̂RT

)−1

R

]
There are three cases to consider:

Case k < ρ− 1

To fix ideas we will look first at the case k = 1, when we are projecting the high
dimensional data on to a single line for each classifier in the ensemble. In this case

the i-th diagonal element of E

[
RT
(
RΛ̂RT

)−1

R

]
is E

[
r2i∑ρ

j=1 λjr
2
j

]
, where ri is the i-th

entry of the single row matrix R. This can be upper and lower bounded as:

1

λmax

E

[
r2
i∑ρ

j=1 r
2
j

]
6 E

[
r2
i∑ρ

j=1 λjr
2
j

]
6

1

λmin 6=0

E

[
r2
i∑ρ

j=1 r
2
j

]
where λmin 6=0 denotes the smallest non-zero eigenvalue of Λ̂ (and of Σ̂), and λmax its
largest eigenvalue.
Recall that as a result of lemmas 19 and 20 we only need consider the diagonal entries
of this expectation as the off-diagonal terms are known to be zero.
Now, we evaluate the remaining expectation. There are two cases: If i > ρ then ri is

independent from the denominator and we have E
[

r2i∑ρ
j=1 r

2
j

]
= E [r2

i ] E
[
1/
∑ρ

j=1 r
2
j

]
=

1
ρ−2

, ρ > 2 where we used the expectation of the inverse-χ2 with ρ degrees of freedom,

and the fact that E [r2
i ] = 1. When i 6 ρ, then in turn we have E

[
r2i∑ρ
j=1 r

2
j

]
= E

[
r2i
‖r‖2

]
=

1
ρ
. That is,

diag

(
E

[
r2
i∑ρ

j=1 r
2
j

])
=

[
1
ρ
Iρ 0

0 1
ρ−2

Id−ρ

]

and so E

[
RT
(
RΛ̂RT

)−1

R

]
is full rank, hence invertible. Its inverse may be seen as

a regularized covariance estimate in the data space, and its condition number, κ, is
upper bounded by:

κ 6
ρ

ρ− 2
· λmax

λmin 6=0

(7.2.3)

whereas in the setting N < d the ML covariance estimate has unbounded condition
number.
For the general k < ρ−1 case we write R as a concatenation of two matrices R = [P, S]

where P is k×ρ and S is k× (d−ρ), so that E

[
RT
(
RΛ̂RT

)−1

R

]
can be decomposed

as two diagonal blocks: E[P T
(
P Λ̂P T

)−1

P ] 0

0 E[ST
(
P Λ̂P T

)−1

S]

 (7.2.4)
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Where here in P Λ̂P T we use Λ̂ to denote the ρ× ρ positive definite upper block of the
positive semi-definite matrix Λ̂. Now, rewrite the upper block to orthonormalize P as

the following: E[P T
(
P Λ̂P T

)−1

P ] =

E[P T (PP T )−
1
2

(
(PP T )−

1
2P Λ̂P T (PP T )−

1
2

)−1

(PP T )−
1
2P ]

Denoting by Pi the i-th column of P , we can write and bound the i-th diagonal element
as:

E[P T
i (PP T )−

1
2

(
(PP T )−

1
2P Λ̂P T (PP T )−

1
2

)−1

(PP T )−
1
2Pi]

6 E

[
P T
i (PP T )−1Pi

λmin((PP T )−
1
2P Λ̂P T (PP T )−

1
2 )

]

6 E

[
P T
i (PP T )−1Pi
λmin6=0

]
with λmin 6=0 the smallest non-zero eigenvalue of Λ̂ as before, and where we used the
Rayleigh quotient and the Poincaré separation theorem respectively (e.g. Horn & John-
son, 1985, Thm 4.2.2, Corr 4.3.16). This holds for all i, so then replacing we have:

E[P T (PP T )−1P ]/λmin 6=0 < E
[
P T (P Λ̂P T )−1P

]
(7.2.5)

where A < B denotes A−B is positive semi-definite.

Now the remaining expectation can be evaluated using the expectation of the ρ-
dimensional Wishart matrix P TP with k degrees of freedom:

E[P T (PP T )−1P ] = E[P TP ]/ρ =
k

ρ
· Iρ (7.2.6)

Similarly to eq. (7.2.5) we can also show that:

E
[
P T (P Λ̂P T )−1P

]
< E[P T

(
PP T

)−1
P ]/λmax (7.2.7)

in much the same way. Put together, the diagonal elements in the upper block are all
in the interval: [

1

λmax

k

ρ
,

1

λmin 6=0

k

ρ

]
Hence, we see that in this upper block the condition number is reduced in comparison
to that of Λ̂ in its column space.

λmax(E[P T (P Λ̂P T )−1P ])

λmin(E[P T (P Λ̂P T )−1P ])
6

λmax(Λ̂)

λmin 6=0(Λ̂)
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That is, in the range of Σ̂, the ensemble has the effect of a shrinkage regularizer
(Friedman, 1989; Ledoit & Wolf, 2004). Next, we consider its effect in the null space
of Σ̂.

The lower block is E
[
ST (P Λ̂P T )−1S

]
= Tr

(
E
[
(P Λ̂P T )−1

])
· Id−ρ since S is in-

dependent of P . We again rewrite this to orthonormalize P . Going through similar

steps, we obtain: Tr
(

E
[
(P Λ̂P T )−1

])
=

Tr

(
E

[(
PP T

)− 1
2

((
PP T

)− 1
2 P Λ̂P T

(
PP T

)− 1
2

)−1 (
PP T

)− 1
2

])

6
Tr
(

E
[(
PP T

)−1
])

λmin 6=0

=
k

ρ− k − 1
· 1

λmin 6=0

where we used the Poincaré inequality, lemma 6, followed by taking the expectation of
the inverse Wishart. Likewise,

Tr

(
E

[(
P Λ̂P T

)−1
])
>

k

ρ− k − 1
· 1

λmax

(7.2.8)

Hence, the lower block is a multiple of Id−ρ with the coefficient in the interval:[
k

ρ− k − 1

1

λmax

,
k

ρ− k − 1

1

λmin 6=0

]
That is, in the null space of Σ̂ the ensemble acts as a ridge regularizer (Hastie et al.,
2001), and the strength of the regularization depends on k and ρ, and the condition
number of Σ̂ restricted to its range. Specifically, k

ρ−k−1
increases monotonically with

k (and decreases with ρ). Since we are talking about an inverse covariance estimate,
this implies that the extent of regularization decreases with increasing k (and increases
when ρ gets larger). Hence, k takes the role of the regularization parameter and the
analysis in this and the following subsections provides us with insight for setting this
parameter.

Putting everything together, the condition number of the covariance (or inverse
covariance) estimate is upper bounded by:

κ 6
ρ

ρ− k − 1
· λmax

λmin 6=0

(7.2.9)

which we see reduces to eq.(7.2.3) when k = 1.

Case k > ρ+ 1

In this case the single RP-FLD is known to have an error that increases at the rate
ρ/k (Bickel & Levina, 2004).

We use the form in eq. (7.2.4) again, with P a k × ρ matrix and S a k × (d − ρ)
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matrix. Since here we have k > ρ + 1 we replace
(
P Λ̂P T

)−1

by its pseudo-inverse.

Then we can rewrite this as:

(
P Λ̂P T

)+

=

[(
P Λ̂

1/2
)(

P Λ̂
1/2
)T]+

=

[(
P Λ̂

1/2
)T]+ [(

P Λ̂
1/2
)]+

(7.2.10)

=

[(
P Λ̂

1/2
)+
]T [(

P Λ̂
1/2
)]+

(7.2.11)

= P Λ̂
1/2
(

Λ̂
1/2
P TP Λ̂

1/2
)−1 (

Λ̂
1/2
P TP Λ̂

1/2
)−1

Λ̂
1/2
P T (7.2.12)

= P (P TP )−1Λ̂
−1

(P TP )−1P T (7.2.13)

Where (7.2.10) and (7.2.11) use lemmas 1.5 and 1.2 of Penrose (1955) respectively,

and (7.2.12) follows since ρ < k and so Λ̂
1/2
P TP Λ̂

1/2
is invertible w.p. 1. Then using

(7.2.13), the first diagonal block becomes:

E

[
P T
(
P Λ̂P T

)+

P

]
= E

[
P TP (P TP )−1Λ̂

−1
(P TP )−1P TP

]
= Λ̂

−1
(7.2.14)

The second diagonal block evaluates as E
[
ST (P Λ̂P T )+S

]
:

= Tr

(
E

[(
P Λ̂P T

)+
])
· Id−ρ

= E

[
Tr

((
P Λ̂P T

)+
)]
· Id−ρ

= E
[
Tr
(
P TP

(
P TP

)−1
Λ̂
−1 (

P TP
)−1
)]
· Id−ρ

=
Tr(Λ̂

−1
)

k − ρ− 1
· Id−ρ (7.2.15)

where we used the expectation of the inverse Wishart matrix (P TP )−1 in the last
step, and the property Tr(AB) = Tr(BA) in the previous step.

Hence, in this case we obtained the exact form:

E

[
RT
(
RΛ̂RT

)+

R

]
=

[
Λ̂
−1

0

0 Tr(Λ̂
−1

)
k−ρ−1

· Id−ρ

]
(7.2.16)

It follows that implicitly when k > ρ+ 1 the data space covariance estimate gets regu-
larized only in its null space by the ensemble, with zero eigenvalues replaced by k−ρ−1

Tr(Λ̂
−1

)
.
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We see that, unlike the previous case, here the amount of regularization increases as
we increase k.

Case k ∈ {ρ− 1, ρ, ρ+ 1}

For a single RP-FLD, the choice k = ρ or k = ρ± 1 is bad because the ML covariance
estimate in the projection space remains poorly conditioned. Detailed analysis in Hoyle
(2011) has shown that having the number of points or the rank of covariance equal to
the dimensionality (which is k for RP-FLD) performs even worse than pseudo-inverse
FLD would when having fewer points than dimensions (which is also bad, cf. the
analysis in Section 7.4 and in Bickel & Levina (2004)).

However we will show that the ensemble of RP-FLDs with the choice k = ρ in fact
implements an unregularized FLD in the data space.

To make this connection, we again use the block-diagonal form of equation (7.2.4).
Now, because k = ρ, P is a square matrix with independent N (0, 1) entries and
therefore it is invertible with probability 1. Hence, the upper block is

E[P T
(
P Λ̂P T

)−1

P ] = E[P T
(
P T
)−1

Λ̂
−1
P−1P ] = Λ̂

−1
(7.2.17)

The lower block is E[ST
(
P Λ̂P T

)−1

S] = Tr(E[
(
P Λ̂P T

)−1

]) and this expectation is

infinity when k = ρ (and also for k = ρ±1) since the expectation of the inverse Wishart
is undefined when its dimension is not strictly greater than its degrees of freedom. We
obtain:

E

[
RT
(
RΛ̂RT

)−1

R

]
=

[
Λ̂
−1

0
0 diag(+∞)

]
(7.2.18)

Of course, in practice, a finite average still produces a finite large number, however
this has a negligible regularization effect on the covariance estimate, therefore we have
essentially a pseudo-inverse like effect. It should be noted that the pseudo-inverse in
the data space is not necessarily bad, but it is bad except when the original data
dimension is far from being twice the number of points (Raudys & Duin, 1998). We
will see in the experiments section that indeed the performance of the ensemble can
be good with the settings k > ρ tested – however, because the individual ensemble
members are so poor it takes a much larger ensemble for the average decision to reach
a reasonable performance.
To complete the cases k = ρ ± 1, it is easy to see (from the previous cases) that for
k = ρ − 1 the upper left-hand block is of the form of the corresponding block in the
k < ρ−1 case, while the lower right-hand block has unbounded diagonal entries where
the expectation is undefined. Similarly when k = ρ + 1, the upper left-hand block is

Λ̂
−1

and the lower right-hand block has unbounded diagonal entries.

Summary

Summing up, we now see how the regularization implemented by the ensemble acts to
improve the conditioning of the covariance estimate in small sample conditions, through
a combination of regularization schemes all parameterized by the integer parameter k:
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When k 6 ρ − 1 the ML estimate Σ̂ is replaced with a shrinkage regularized upper
block and a spherical lower block, and as k → 1 the new estimate becomes more and
more spherical. Hence when k is too small the ensemble can underfit the data and
perform poorly, while on the other hand a careful choice of k can do well in this range.
For the data sets we used in our experiments k ' ρ/2 appears to be a reasonable rule
of thumb choice.
When k ↗ ρ − 1 or k ↘ ρ + 1 the values in the upper block approach the non-zero
eigenvalues of Σ̂+ while in the lower block the diagonal entries become extremely large,
and we recover the data space pseudo-inverse performance. Hence when k ' ρ we
overfit about as badly as pseudo-inverting in the data space.
Finally, when k ∈ [ρ+2, d] we recover the original non-zero eigenvalues of Σ̂ in the upper
block, but regularize in its null space. In this case the individual ensemble members
still have singular covariances though the expectation does not, however noting that

1
dd/ke

∑dd/ke
i=1 Ri(RiΛ̂R

T
i )−1Ri is full rank with probability 1 implies that an ensemble

size of dd/ke already achieves a full rank covariance estimate. Alternatively one can
simply pseudo-invert in this range, as we did for our experiments, or indeed use some
additional regularization scheme.
Note that when we plug the expectation examined above into the classifier ensemble,
this is equivalent to an ensemble with infinitely many members and therefore, for
any choice of k /∈ [ρ − 1, ρ + 1], although we can underfit (with a poor choice of k)
we cannot overfit any worse than the unregularized (pseudo-inverse) FLD data space
classifier regardless of the ensemble size, since we do not learn any combination weights
from the data. This intuition will be made more precise in Sections 7.3 and 7.4. This
is quite unlike adaptive ensemble approaches such as AdaBoost, where it is well-known
that increasing the ensemble size can indeed lead to overfitting. Furthermore, we shall
see from the experiments in Section 7.6 that this guarantee vs. the performance of
pseudo-inversion appears to be a conservative prediction of the performance achievable
by the randomly-projected ensemble.

7.2.2 Generalization error of the ensemble for a fixed training
set

Traditionally ensemble methods are regarded as ‘meta-learning’ approaches and al-
though bounds exist (e.g. Koltchinskii & Panchenko, 2002) there are, to the best of
our knowledge, no results giving the exact analytical form of the generalization error of
any particular ensemble. Indeed, in general it is not analytically tractable to evaluate
the generalization error exactly, so one can only derive bounds. Because we deal with
an FLD ensemble we are able to derive the exact generalization error of the ensemble
in the case of Gaussian classes with shared covariance Σ, the setting in which FLD is
Bayes’ optimal. This allows us to explicitly connect the performance of the ensemble
to its data space analogue. We note that an upper bound on generalization error with
similar behaviour can be derived for the much larger class of subgaussian distribu-
tions (see e.g. Durrant & Kabán, 2010b), therefore this Gaussianity assumption is not
crucial.

Theorem 10 (Exact generalization error with Gaussian classes) Let xq|yq ∼
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N (µy,Σ), where Σ ∈ Md×d is a full rank covariance matrix. Let R ∈ Mk×d be a ran-

dom projection matrix with i.i.d. Gaussian entries and denote Ŝ−1 := ER

[
RT
(
RΣ̂RT

)−1

R

]
.

Then the exact generalization error of the converged randomly projected ensemble clas-
sifier (7.1) is given by:

Pr
xq ,yq
{ĥens(xq) 6= yq} =

1∑
y=0

πyΦ

−1

2

(µ̂¬y − µ̂y)T Ŝ−1(µ̂0 + µ̂1 − 2µy)√
(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)

 (7.2.19)

The proof of this theorem is similar in spirit to the one for a single FLD we gave in
chapter 4. For completeness we give it below.

Proof of Theorem 10

Without loss of generality let xq have label 0. By assumption the classes have Gaussian
distribution N (µy,Σ) so then the probability that xq is misclassified by the converged
ensemble is given by:

Prxq |yq=0

{
(µ̂1 − µ̂0)T Ŝ−1

(
xq −

µ̂0 + µ̂1

2

)
> 0

}
(7.2.20)

Define aT := (µ̂1 − µ̂0)T Ŝ−1 and observe that if xq ∼ N (µ0,Σ) then:(
xq −

µ̂0 + µ̂1

2

)
∼ N

((
µ0 −

µ̂0 + µ̂1

2

)
,Σ

)
and so:

aT
(
xq −

µ̂0 + µ̂1

2

)
∼ N

(
aT
(
µ0 −

µ̂0 + µ̂1

2

)
, aTΣa

)
which is a univariate Gaussian. Therefore:

aT
(
xq − µ̂0+µ̂1

2

)
− aT

(
µ0 − µ̂0+µ̂1

2

)
√
aTΣa

∼ N (0, 1)

Hence, for the query point xq we have the probability (7.2.20) is given by:

Φ

(
aT (µ0− µ̂0+µ̂12 )√

aTΣa

)
= Φ

(
−1

2
(µ̂1−µ̂0)T Ŝ−1(µ̂0+µ̂1−2µ0)√
(µ̂1−µ̂0)T Ŝ−1ΣŜ−1(µ̂1−µ̂0)

)
where Φ is the c.d.f of the standard Gaussian.
A similar argument deals with the case when xq belongs to class 1, and applying the
law of total probability then completes the proof.
Indeed equation (7.2.19) has the same form as the error of the data space FLD, as we
saw in chapter 4, and the converged ensemble, inspected in the original data space,
produces exactly the same mean estimates and covariance matrix eigenvector estimates
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as FLD working on the original data set. However it has different eigenvalue estimates
that result from the sophisticated regularization scheme that we analyzed in section
7.2.1.

Comment: On the effect of eigenvector estimates

We have seen that the quality of the eigenvector estimates are not affected (in expec-
tation) by this regularization approach. These depend on the eigengaps (differences
between ordered eigenvalues) of Σ =

∑1
y=0 πyΣy as well as on the data dimension and

number of training examples. Although this fact is well-known from perturbation the-
ory, the following simple but powerful example from Horn & Johnson (1985) shows
clearly both the problem and the importance of eigenvalue separation. Let:

Σ =

[
1− ε 0

0 1 + ε

]
so that Σ has eigenvalues 1 ± ε and eigenvectors (1, 0)T , (0, 1)T . On the other hand
consider the following perturbed matrix (where the perturbation could arise from, say,
estimation error or noise):

Σ + E =

[
1− ε 0

0 1 + ε

]
+

[
ε ε
ε −ε

]
=

[
1 ε
ε 1

]
This matrix also has eigenvalues 1 ± ε, but has eigenvectors 1√

2
(1, 1)T , 1√

2
(1,−1)T re-

gardless of how small ε is.
Data-dependent guarantees for the quality of eigenvector estimates from finite samples
are an active area of current research (for example, see Johnstone & Lu, 2009; Paul
& Johnstone, 2012; Vu, 2011; Vu & Lei, 2012), and we do not review this theory here.
However, in order to give a flavour of how bad the eigenvector estimates could be in
this setting and how they are affected by the eigengaps of Σ we note that in the sparse
setting considered in Johnstone & Lu (2009) for high probability guarantees on the

quality of the first j eigenvector estimates one requires N ∈ O
(

1
(λi−λi+1)2

log d
)

, ∀i 6 j

as well as that the remaining d− j eigenvalues are not far from zero. We therefore see
that in the small sample setting we consider here if the eigengaps of Σ are too small we
can expect bad estimates of eigenvectors and therefore, following the argument made
in Ledoit & Wolf (2004), a small value of k is likely to be a good choice since the more
spherical regularized covariance will tend to reduce the effect of the poor eigenvec-
tor estimates. Conversely, following Johnstone & Lu (2009) if the eigengaps are large
then better eigenvector estimates are likely from the same sample size and a larger k
should then work better. We will make this intuition more concrete later, and show
how it affects the generalization error of the ensemble, in Section 7.3 (and particularly
in Section 7.3) where we will show that the generalization error of the ensemble can
be bounded above by an expression that depends on covariance misestimation only
through the condition number κ(Σ(Σ + E)−1). For the above toy example, the eigen-

values of Σ(Σ+E)−1 are 1±ε
√

2−ε2
1−ε2 , so its condition number is 1+ε

√
2−ε2

1−ε
√

2−ε2 . For small ε this
remains fairly close to one – meaning that eigenvector misestimation has a negligible
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effect on classification performance when the eigengap of this toy example of Σ is small.

7.3 Tail bound on the generalization error of en-

semble when k < ρ− 1

The previous section gave the exact generalization error of our ensemble conditional
on a given training set. In this section our goal is to derive an upper bound with high
probability on the ensemble generalization error w.r.t. random draws of the training
set. We restrict ourselves to the choice k < ρ − 1 (in Section 7.3), which is arguably
the most interesting one in practice; and the range where we empirically observe the
best classification performance for the smallest computational cost.

We will use the following concentration lemma:

Lemma 21 (Concentration inequalities for exponential random variables)
Let X = (X1, X2, X3, . . . , Xd) be a sequence of Gaussian random variables in Rd with
mean vector E[X] = µ and covariance matrix Σ. Let ε > 0. Then:

Pr
{
‖X‖2 > (1 + ε)

(
Tr (Σ) + ‖µ‖2

)}
6 exp

(
−Tr(Σ) + ‖µ‖2

2λmax(Σ)

(√
1 + ε− 1

)2
)
(7.3.1)

Furthermore, if ε ∈ (0, 1):

Pr
{
‖X‖2 6 (1− ε)

(
Tr (Σ) + ‖µ‖2

)}
6 exp

(
−Tr(Σ) + ‖µ‖2

2λmax(Σ)

(√
1− ε− 1

)2
)

(7.3.2)

This result follows immediately as a special case of the more general result, lemma 23,
used in the next chapter 8. We give the proof in the appendix. Now we can bound the
generalization error of the RP-FLD ensemble. We begin by decomposing the numerator
of the generalization error term (for a single class) obtained in Theorem 10 as follows:

(µ̂1 + µ̂0 − 2µ0)T Ŝ−1 (µ̂1 − µ̂0)

= (µ̂1 − µ̂0)T Ŝ−1 (µ̂1 − µ̂0) + 2 (µ̂0 − µ0)T Ŝ−1 (µ̂1 − µ̂0) (7.3.3)

Using this decomposition we can rewrite the argument of the first term in Theorem 10
in the following form:

Φ

(
−1

2
[A−B]

)
Where:

A =
(µ̂1 − µ̂0)T Ŝ−1 (µ̂1 − µ̂0)√

(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)
(7.3.4)

and:

B =
2 (µ0 − µ̂0)T Ŝ−1 (µ̂1 − µ̂0)√
(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)

(7.3.5)
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We will lower bound A and upper bound B to bound the whole term from above and,
since Φ is monotonic increasing in its argument, this will give the upper bound on
generalization error.

Lower-bounding the term A

Applying the Kantorovich inequality, lemma 8, A is lower bounded by:

‖Σ−
1
2 (µ̂1 − µ̂0) ‖ ·

2

√
κ(Ŝ−

1
2 ΣŜ−

1
2 )

1 + κ(Ŝ−
1
2 ΣŜ−

1
2 )

(7.3.6)

where κ(A) := λmax(A)
λmin(A)

denotes the condition number of the matrix A.

Next, since Σ−
1
2 µ̂1 and Σ−

1
2 µ̂0 are independent with Σ−

1
2 µ̂y ∼ N (Σ−

1
2µy, Id/Ny),

we have Σ−
1
2 (µ̂1 − µ̂0) ∼ N (Σ−

1
2 (µ1 − µ0), N/(N0N1) · Id).

Applying the concentration bound Lemma 21, (7.3.2), we have:

‖Σ−
1
2 (µ̂1 − µ̂0)‖ >

√
(1− ε)

(
d ·N
N0N1

+ ‖Σ−
1
2 (µ1 − µ0)‖2

)
(7.3.7)

with probability at least:

1− exp

(
−d+ ‖Σ−

1
2 (µ1 − µ0)‖2N0N1/N

2

(√
1− ε− 1

)2)
(7.3.8)

To complete the bounding of the term A, we denote g(a) :=
√
a

1+a
, and observe that

this is a monotonic decreasing function on [1,∞). So, replacing a with the condition

number κ(Ŝ−
1
2 ΣŜ−

1
2 ) ∈ [1,∞) we need to upper bound this condition number in order

to lower bound g. Denoting this upper bound by κ̄, which will be quantified in Section
7.3, then the term A is lower bounded with high probability by:

A > 2g(κ̄)

√
(1− ε)

(
‖Σ− 1

2 (µ1 − µ0)‖2 +
d ·N
N0N1

)
(7.3.9)

Upper-bounding the term B

We can rewrite B by inserting Σ−
1
2 Σ

1
2 , and using Cauchy-Schwarz in the numerator to

give:

B 6
2‖Σ− 1

2 (µ0 − µ̂0)‖ · ‖Σ 1
2 Ŝ−1(µ̂1 − µ̂0)‖√

(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)
(7.3.10)

After cancellation, this simplifies to:

= 2‖Σ−
1
2 (µ0 − µ̂0)‖ (7.3.11)
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and so by Lemma 21, 7.3.1, we have:

B 6 2
√

(1 + ε)d/N0 (7.3.12)

with probability at least 1− exp(−d
2
(
√

1 + ε− 1)2).

Upper-bounding κ(Ŝ−
1
2 ΣŜ−

1
2 ) for k < ρ− 1

Upper-bound on largest eigenvalue

By Jensen’s inequality, and noting that λmax(·) is a convex function, we have:

λmax(Σ
1
2 ER[RT (RΣ̂RT )−1R]Σ

1
2 )

6 ER[λmax(Σ
1
2RT (RΣ̂RT )−1RΣ

1
2 )]

= ER[λmax((RΣ̂RT )−1RΣRT ]

= ER[λmax((RΣRT )
1
2 (RΣ̂RT )−1(RΣRT )

1
2 )]

= ER

[
1

λmin((RΣRT )−
1
2RΣ̂RT (RΣRT )−

1
2 )

]
6

N

(
√
N − 2−

√
k − ε)2

with probability at least 1 − exp(−ε2/2),∀ε > 0, where throughout we use the fact
that the non-zero eigenvalues of AB are the same as non-zero eigenvalues of BA,
in the second to last step we used the fact that for invertible matrices A we have
λmax(A) = 1/λmin(A−1), and in the last step we used that for any full row-rank matrix

R, (RΣRT )−
1
2RΣ̂RT (RΣRT )−

1
2 is distributed as a k-dimensional Wishart with N − 2

degrees of freedom and scale matrix Ik (e.g. Mardia et al., 1979, Corr. 3.4.1.2), and
used the high probability lower-bound for the smallest eigenvalue of such a matrix, Eq.
(2.3) in Vershynin (2012).

Lower-bound on smallest eigenvalue

Dealing with the smallest eigenvalue is less straightforward. Although λmin(·) is a
concave function, Jensen’s inequality does not help with lower bounding the smallest
eigenvalue of the expectation since the matrix Σ̂ in the argument of this expectation
is singular. We therefore take a different route and start by rewriting as follows:

λmin(Σ
1
2 ER[RT (RΣ̂RT )−1R)]Σ

1
2 )

=
1

λmax(Σ−
1
2 (ER[RT (RΣ̂RT )−1R)])−1Σ−

1
2 )

=
1

λmax(Σ−
1
2{Σ̂ + (ER[RT (RΣ̂RT )−1R)])−1 − Σ̂}Σ− 1

2 )
(7.3.13)
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Now, using Weyl’s inequality, and the SVD decomposition Σ̂ = Û Λ̂ÛT combined with
Lemma 19, the denominator in (7.3.13) is upper-bounded by:

λmax(Σ−
1
2 Σ̂Σ−

1
2 ) + λmax(Σ−

1
2 Û{(ER[RT (RΛ̂RT )−1R])−1 − Λ̂}ÛTΣ−

1
2 )

6 λmax(Σ−
1
2 Σ̂Σ−

1
2 ) + λmax((ER[RT (RΛ̂RT )−1R])−1 − Λ̂)/λmin(Σ) (7.3.14)

Now observe from Lemma 20 that the matrix ER[RT (RΛ̂RT )−1R])−1 − Λ̂ is diagonal
and, from our analysis in Section 7.2.1, it has the upper ρ diagonal entries in the
interval: [

(
ρ

k
− 1)λmin6=0(Λ̂), (

ρ

k
− 1)λmax(Λ̂)

]
and the lower d− ρ diagonal entries in the interval:[

ρ− k − 1

k
λmin 6=0(Λ̂),

ρ− k − 1

k
λmax(Λ̂)

]
. Hence, λmax((ER[RT (RΛ̂R)−1R])−1 − Λ̂) 6 ρ

k
λmax(Λ̂) and so the lower-bounding of

(7.3.14) continues as:

>
1

λmax(Σ−
1
2 Σ̂Σ−

1
2 ) + ρ

k
λmax(Λ̂)
λmin(Σ)

(7.3.15)

Now observe that Σ−
1
2 Σ̂Σ−

1
2 is a d-dimensional standard Wishart with N − 2 degrees

of freedom and scale matrix Id (e.g. Mardia et al., 1979, Corr. 3.4.1.2), and using the
bound in Vershynin (2012) for largest eigenvalues of standard Wishart matrices we get
(7.3.15) lower-bounded as

>
1

(
√
N − 2 +

√
d+ ε)2/N + ρ

k
λmax(Λ̂)
λmin(Σ)

(7.3.16)

w.p. at least 1− exp(−ε2/2).

Finally, we bound λmax(Λ̂) as:

λmax(Λ̂) = λmax(Σ̂) = λmax(ΣΣ−1Σ̂)

6 λmax(Σ)λmax(Σ−1Σ̂) = λmax(Σ)λmax(Σ−
1
2 Σ̂Σ−

1
2 )

6 λmax(Σ)(
√
N − 2 +

√
d+ ε)2/N

To complete the bound on the condition number we combine the eigenvalue estimates
to get, after simple algebra:

κ =
λmax(Σ

1
2 · ER[RT (RΣ̂RT )−1R] · Σ 1

2 )

λmin(Σ
1
2 · ER[RT (RΣ̂RT )−1R] · Σ 1

2 )
(7.3.17)

6
(
√
N − 2 +

√
d+ ε)2(1 + ρ/k · κ(Σ))

(
√
N − 2−

√
k − ε)2

=: κ̄(ε) (7.3.18)

90



Voting Ensembles of RP-FLDs

w.p. at least 1− 2 exp(−ε2/2).

Remarks about the effect of k

Before proceeding to assemble our results to give the promised tail bound on the
generalization error, a comment about the obtained condition number bound in (7.3.18)
is now in order. It is interesting to notice the trade-off for the projection dimension
k, which describes very well its role of regularization parameter in the context of our
RP-FLD ensemble and places our discussion in Section 7.2.2 on firm foundations: To
make the numerator smaller k needs to be large while to make the denominator larger
it needs to be small. We also see natural behaviour with N , d and the conditioning of
the true covariance.

From equations (7.3.9) and (7.3.12) we see that the condition number bounded
by equation (7.3.18) is the only term in the generalization error bound affected by the
choice of k, so we can also partly answer the question left open in Marzetta et al. (2011)
about how the optimal k depends on the problem characteristics, from the perspective
of classification performance, by reading off the most influential dependencies that the
problem characteristics have on the optimal k. The first term in the numerator of
(7.3.18) contains d but does not contain k while the remaining terms contain k but do
not contain d, so we infer that in the setting of k < ρ−1 < d the optimal choice of k is
not affected by the dimensionality d. Noting that, for N < d we have ρ = N − 2 with
probability 1 we see that for small N or ρ the minimizer of this condition number is
achieved by a smaller k (meaning a stronger regulariser), as well as for a small κ(Σ).
Conversely, when N , ρ, or κ(Σ) is large then k should also be large to minimize the
bound.

Putting everything together

Collating the results derived so far, and re-arranging, we can state the following non-
asymptotic error bound.

Theorem 11 Let T = {(xi, yi)}Ni=1 be a set of training data of size N = N0 + N1,
subject to N < d and Ny > 1 ∀y with Gaussian class-conditionals x|y ∼ N (µy,Σ).
Let ρ be the rank of the maximum likelihood estimate of the covariance matrix and let
0 < k < ρ−1 be an integer. Then for any δ ∈ (0, 1) and any training set of size N , the
generalization error of the converged ensemble of randomly projected FLD classifiers is
upper-bounded w.p. 1− δ over the random draws of training set of size N = N0 + N1

by the following:

Pr
xq

(ĥens(xq) 6= yq) 6
1∑
y=0

πyΦ

(
−

[
g

(
κ̄

(√
2 log

5

δ

))[√
‖Σ− 1

2 (µ1 − µ0)‖2 +
dN

N0N1

. . .

. . .−
√

2N

N0N1

log
5

δ

]
+

−

√
d

Ny

(
1 +

√
2

d
log

5

δ

)])

where κ̄ is given by eq. (7.3.18) and g(·) is the function g(a) :=
√
a

1+a
.
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Having completed the groundwork, the proof is now simple algebraic manipulation – we
give the details in the appendix. This bound motivates our focus on RP-FLD only in
the case where N � d. Specifically, it is easy to see (by plugging in the true parameters
µy and Σ in the exact error (7.2.19)) that the Bayes’ risk for FLD in the data space is∑1

y=0 πyΦ
(
−1

2
‖Σ− 1

2 (µ1 − µ0)‖
)

but the expression in Theorem 11 converges to:

1∑
y=0

πyΦ

(
−g
(

1 +
d

k
κ(Σ)

)
‖Σ−

1
2 (µ1 − µ0)‖

)

where we recall that g(1) = 1
2
. In particular, we see from equation (7.3.18) that letting

N → ∞ (and so ρ → d) while enforcing k < d = ρ that our ensemble implements a
biased estimator. When N < d however, we see that the generalization error of our
RP-FLD ensemble is upper bounded for any training sample containing at least one
point for each class whereas, in the next Section 7.4, we show that this is not the case
in the dataspace setting if we regularize by pseudo-inverting.

7.4 Lower bound on the error of pseudo-inverted

FLD in the data space

In this section we give a lower bound on the error of pseudo-inverted FLD in data
space by deriving a non-asymptotic extension to the negative result in Bickel & Levina
(2004).
We start from the exact form of the error of FLD in the data space with a fixed training
set. Using a similar approach to that employed in proving Theorem 10, this can easily
be shown to be:

Pr(ĥ+(xq) 6= yq) =
1∑
y=0

πyΦ

−1

2

(µ̂¬y − µ̂y)T Σ̂+(µ̂0 + µ̂1 − 2µy)√
(µ̂1 − µ̂0)T Σ̂+ΣΣ̂+(µ̂1 − µ̂0)

 (7.4.1)

where Σ̂+ is the pseudo-inverse of the maximum likelihood covariance estimate.

Make the rank ρ SVD decomposition Σ̂ = Û Λ̂Û
T

, where Û is the d × ρ matrix of

eigenvectors associated with the non-zero eigenvalues, Û
T
Û = Iρ, and as before Λ̂ is
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the diagonal ρ× ρ matrix of non-zero eigenvalues. Then we have:

(µ̂1 + µ̂0 − 2µ0)T Û Λ̂
−1
Û
T

(µ̂1 − µ̂0)√
(µ̂1 − µ̂0)T Û Λ̂

−1
Û
T

ΣÛ Λ̂
−1
Û
T

(µ̂1 − µ̂0)

6
(µ̂1 + µ̂0 − 2µ0)T Û Λ̂

−1
Û
T

(µ̂1 − µ̂0)√
λmin(Σ)

√
(µ̂1 − µ̂0)T Û Λ̂

−2
Û
T

(µ̂1 − µ̂0)

6
‖Û

T
(µ̂1 + µ̂0 − 2µ0)‖ · ‖Λ̂

−1
Û
T

(µ̂1 − µ̂0)‖√
λmin(Σ)‖Λ̂

−1
Û
T

(µ̂1 − µ̂0)‖

=
‖Û

T
(µ̂1 + µ̂0 − 2µ0)‖√

λmin(Σ)

where we used minorization by Rayleigh quotient and the fact that Σ was taken to be
full rank, and the Cauchy-Schwartz inequality. We will use the well-known fact that Σ̂

and µ̂1 + µ̂0 are independent (Mardia et al., 1979). Observe that Û
T

is a ρ× d random
matrix with orthonormal rows representing the eigenvectors of the sample covariance
of the canonical d-variate Gaussian distribution. Using the rotational invariance of this
distribution, these eigenvectors are uniformly distributed over the d-dimensional hyper-
sphere Sd−1 and with high probability the action of this matrix on any d-dimensional
vector, x, is therefore a Johnson-Lindenstrauss embedding of x into a random sub-
space of dimension ρ which approximately preserves its norm (Dasgupta & Gupta,
2002). Conditioning on µ̂1 + µ̂0 to hold this quantity fixed, and using independence of
Û and µ̂1 + µ̂0, we have with probability at least 1− exp(−Nε2/8) that:

‖Û
T

(µ̂1 + µ̂0 − 2µ0)‖√
λmin(Σ)

6
√

1 + ε

√
ρ

d

‖µ̂1 + µ̂0 − 2µ0‖√
λmin(Σ)

Further, applying Lemma 21 (7.3.1) to the norm on the r.h.s and replacing in the
generalization error expression, we have the following lower bound:

Φ

−1

2

√
(1 + ε1)(1 + ε2)

√
ρ

d

‖µ1 − µ0‖2 + Tr(Σ) N
N0N1

λmin(Σ)


with probability at least 1− [exp(−Nε21/8) + exp(−Tr(Σ)+‖µ1−µ0‖2N0N1

N

2λmax(Σ)
(
√

1 + ε2 − 1)2)].

Setting both of these exponential risk probabilities to δ/2 and solving for ε1 and ε2,
we have the following lower bound on the generalization error of pseudo-inverted FLD:

Theorem 12 (Lower bound on generalization error of pseudo-inverted FLD)
For any δ ∈ (0, 1) and κ(Σ) <∞, under the same assumptions as theorem 11, the gen-
eralization error of pseudo-inverted FLD is lower-bounded w.p. at least 1− δ over the
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random draws of training set by:

Pr(ĥ+(xq) 6= yq) > Φ

−1

2

√
1 +

√
8

N
log

2

δ

(
1 +

√
2λmax(Σ) log(2/δ)

Tr(Σ) + ‖µ1 − µ0‖2N0N1
N

)√
ρ

d

‖µ1 − µ0‖2 + Tr(Σ) N
N0N1

λmin(Σ)


It is interesting to notice that this lower bound depends on the rank of the covariance
estimate, not on its form or on its fit to the true covariance Σ. We see when ρ < d
the bound proves the bad performance of pseudo-inverted FLD since, as Σ̂ is the ML
estimate of Σ, the rank of Σ̂ is at most N − 2 and the lower bound (7.4.2) becomes
tighter as ρ/d decreases. Allowing the dimensionality d to be large, as in (Bickel &
Levina, 2004), so that ρ/d → 0, this fraction goes to 0 which means the lower bound
(7.4.2) converges to Φ(0) = 1/2 – in other words random guessing.

7.5 Variability reduction and bounding the devia-

tion of a finite ensemble from its expectation

So far we have demonstrated that our ensemble of RP-FLD classifiers implements a
sophisticated regularization scheme at convergence. Moreover, for any choice of k for
which ER[RT (RΛ̂RT )−1R] exists, the law of large numbers implies that increasing the
ensemble size acts to reduce the variance of the ensemble classifier on average. It would
be interesting to know how quickly a finite ensemble approaches the converged ensem-
ble, and this could be achieved by quantifying the rate at which the extreme eigenvalues
of the covariance matrix of a finite ensemble approach the extreme eigenvalues of the
covariance matrix of the converged ensemble. Furthermore, since the error of the en-
semble can be bounded via the condition number of the ensemble covariance matrix,
a natural question to ask anyway is how far the condition number of the covariance
matrix of a finite ensemble of M RP-FLD classifiers lies from the condition number of
the covariance matrix of its expectation, with high probability.
Here we derive some simple high probability guarantees on the scale of the extreme
eigenvalues of the ensemble covariance, for the case k < ρ, under some boundedness
conditions. For the largest eigenvalue of the covariance matrix of a finite ensemble we
also prove as a corollary a looser, but somewhat more informative, high probability
guarantee upper-bounding this quantity.

Theorem 13 (Large deviation inequalities for sums of symmetric random matrices)

Let S1, . . . SM be a sequence of independent positive semi-definite symmetric random
matrices such that ∀i we have, almost surely, that: 0 6 λmin(Si) 6 λmax(Si) 6 L. Let
t > 0. Then ∀t ∈ (0, λmax(E[S])):

Pr

{
λmax

(
1

M

M∑
i=1

Si

)
− λmax (E [S]) 6 −t

}
6 exp

(
−2t2M

L2

)
(7.5.1)
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and ∀t > 0:

Pr

{
λmax

(
1

M

M∑
i=1

Si

)
− λmax (E [S]) > t+ (Tr (E [S])− λmax (E [S]))

}
6 exp

(
−2t2M

L2

)
(7.5.2)

Furthermore ∀t > 0:

Pr

{
λmin

(
1

M

M∑
i=1

Si

)
− λmin (E [S]) > t

}
6 exp

(
−2t2M

L2

)
(7.5.3)

and ∀t ∈ (0,E
[
λmin

(
1
M

∑M
i=1 Si

)]
]:

Pr

{
λmin

(
1

M

M∑
i=1

Si

)
− λmin (E [S]) 6 −t+ E

[
λmin

(
1

M

M∑
i=1

Si

)]
− λmin (E [S])

}
6 exp

(
−2t2M

L2

)
(7.5.4)

Proof 10 (of Theorem 13)
We begin by confirming the result of Shawe-Taylor et al. (2005) that the extreme eigen-
values of the empirical average:

λmin

(
1

M

M∑
i=1

Si

)
and λmax

(
1

M

M∑
i=1

Si

)

are concentrated, not as one might expect about λmin (E[S]) and λmax (E[S]), but rather

about E
[
λmin

(
1
M

∑M
i=1 Si

)]
and E

[
λmax

(
1
M

∑M
i=1 Si

)]
. Furthermore these are not, in

general, the same quantities.
We will employ the following standard tools (which are all given in Chapter 2): Weyl’s
inequality (Lemma 4), McDiarmid’s Inequality (Lemma 15), and Jensen’s Inequality
(Lemma 14). First note that the functions:

λmin

(
1

M

M∑
i=1

Si

)
and λmax

(
1

M

M∑
i=1

Si

)

satisfy the bounded differences condition on McDiarmid’s inequality, lemma 15, in each
case with constant terms 1

M
L, ∀i. This is because, by Weyl’s inequality, removing any

single matrix in the sum changes the upper and lower bounds on the extreme eigenvalues
of the sum by at most the difference between the least and greatest possible values that
the eigenvalues can take, and these quantities are almost surely bounded in absolute
value since they are non-negative and (by assumption) almost surely bounded above.
Therefore, as previously shown in (Shawe-Taylor et al., 2005), a direct application of
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McDiarmid gives the following high probability concentration guarantees:

Pr

{∣∣∣∣∣λmax

(
1

M

M∑
i=1

Si

)
− E

[
λmax

(
1

M

M∑
i=1

Si

)]∣∣∣∣∣ > t
}
6 2 exp

(
−2t2M

L2

)
and (7.5.5)

Pr
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1

M

M∑
i=1

Si
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− E

[
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(
1

M

M∑
i=1

Si

)]∣∣∣∣∣ > t
}
6 2 exp

(
−2t2M

L2

)
(7.5.6)

where we see that the concentration is indeed about the expectations of the eigenvalues
and not about the eigenvalues of the expectation. The following Lemma 22 shows clearly
that these quantities are, in general, different:

Lemma 22 (Non-linearity of extreme eigenvalues of symmetric matrices)
Let λmax(·) and λmin(·) be, respectively, the greatest and least eigenvalue of their sym-
metric (or Hermitian) matrix argument. Then λmax(·) is a convex function and λmin(·)
is a concave function.
Proof: Let A,B be Hermitian or symmetric matrices then, by Weyl’s inequality, we
have:

λmax (αA+ (1− α)B) 6 λmax (αA)+λmax ((1− α)B) = αλmax (A)+(1−α)λmax (B) , ∀ α ∈ [0, 1]

The proof for λmin(·) is much the same, using the other side of Weyl’s inequality.

Using the facts that λmax is non-negative by the assumption of positive semi-definiteness,
and is a convex function of its matrix argument by lemma 22, by Jensen’s inequality
we see that:

λmax

(
1

M

M∑
i=1

Si

)
− E

[
λmax

(
1

M

M∑
i=1

Si

)]
6 λmax

(
1

M

M∑
i=1

Si

)
− λmax (E [S])

and therefore applying this to the expression (7.5.5), we obtain the one-sided bound:

Pr

{
λmax

(
1

M

M∑
i=1

Si

)
− λmax (E [S]) 6 −t

}
6 exp

(
−2t2M

L2

)
(7.5.8)

which holds ∀t > 0. Similar reasoning, using the fact that λmin is concave, applied to
the expression (7.5.6) gives a further one-sided bound:

Pr

{
λmin

(
1

M

M∑
i=1

Si

)
− λmin (E [S]) > t

}
6 exp

(
−2t2M

L2

)
(7.5.9)

These one-sided bounds only prove that the empirical average of our random matrices
can be more poorly conditioned than E[S] with high probability. We also want to know
how well-conditioned this empirical average is compared to its expectation. In particular
we would like to show that the condition number converges quickly as a function of
increasing M . To show this we start by rewriting the other side of the first bound, the
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expression 7.5.8, above from McDiarmid’s inequality:

Pr

{
λmax

(
1

M

M∑
i=1

Si

)
− λmax (E [S]) > t− λmax (E [S]) + E

[
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(
1

M

M∑
i=1

Si

)]}
6 exp

(
−2t2M

L2

)
(7.5.10)

Clearly the LHS of this inequality is converging to t as M increases, but this is some-
what unsatisfactory as the RHS is likewise converging (to zero) with M at the same
time. We would like to bound the magnitude of the LHS to obtain a high probability
large deviation guarantee where the probability of failure will be exponentially decreasing
as a function of M .
Taking this route then, for the largest eigenvalue we have the following corollary ∀t ∈
(0, λmax(E[S])):
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6 exp
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(7.5.11)

That is, with high probability, the largest eigenvalue of the empirical average of the
sequence of random matrices is overestimated by no more than the sum of the d − 1
smallest eigenvalues of the matrix expectation.
For the smallest eigenvalue, directly from McDiarmid, we have:

Pr

{
λmin

(
1

M

M∑
i=1

Si

)
− E

[
λmin

(
1

M

M∑
i=1

Si

)]
6 −t

}
6 exp

(
−2t2M

L2

)
(7.5.12)

and this completes the proof of the theorem.

Comment

It is worth noting here that, since all matrices in the sum are p.s.d (and therefore all
eigenvalues are bounded below by zero with certainty), in order to apply these results
in our ensemble setting the crucial quantity over which we would need control is the
largest eigenvalue of the inverse covariance estimate of each ensemble member. Specif-
ically, we would need to show that these largest eigenvalues are bounded above almost
surely by an absolute constant.
Unfortunately this appears to be very hard to do, and the main technical issues arise
from the fact that Σ̂ is singular. To see this consider any fixed instance of a Gaus-
sian random projection matrix R and observe that in RT (RΛ̂RT )−1R, although the
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central matrix RΛ̂RT is almost surely full rank, its smallest eigenvalue which controls
λmax(RT (RΛ̂RT )−1R) can be arbitrarily close to zero. One could bound the smallest
eigenvalue of RΛ̂RT away from zero with high probability, but then the probability
there exists some matrix in the ensemble violating such a lower bound on λmin(RΛ̂RT )
will go to 1 as the ensemble size increases, and the condition on McDiarmid’s inequality
then fails to hold. Therefore, to make progress in bounding the largest eigenvalue it
appears that one has to either work with the full matrix RT (RΛ̂RT )−1R, which has
a complicated form and distribution, or with the sum of these matrices which looks
equally hard.
On the other hand, our experimental results in the next section 7.6, in particular
the stability of the classification performance of the finite ensembles considered there,
suggest that theorem 13 characterizes the rate of convergence of the ensemble well.

7.6 Experiments
We now present experimental results which show that our ensemble approach is com-
petitive with the state of the art in terms of prediction performance. We do not claim
of course that the choice of FLD as a classifier is optimal for these data sets, rather
we demonstrate that the various practical advantages of the RP-FLD approach do not
come at a cost in terms of prediction performance. For example, some nice properties
of the RP-FLD approach include: Covariance matrices are interpretable in a range of
problem settings, the RP-FLD ensemble is simple to implement, fitting k carefully can
be done exhaustively if needed, training data can be collected, stored and processed
in compressed form, and, (both for training and classification) the ensemble members
can run on separate cores. We also note that when d is large and k is small savings
in time and space complexity (vs FLD in the data space) are possible with our en-
semble approach. For example, inverting a full covariance matrix in the data space
using Gauss-Jordan has time complexity O(d3) while the corresponding step for the
projected ensemble takes M · O(k3) on a single core.

7.6.1 Datasets

We used five publicly available high dimensional datasets from the bioinformatics do-
main (colon, two versions of leukemia, prostate, and duke breast cancer), whose char-
acteristics are as described in Table 7.1. The first two (colon and leukemia) have the
smallest dimensionality amongst these and were the highest dimensional data sets used
in the empirical RP-classifier study of Fradkin & Madigan (2003a) (although that pa-
per focuses on a single randomly projected classifier vs. the data space equivalent).

7.6.2 Protocol

We standardized each data set to have features with mean 0 and variance 1, and ran
experiments on 100 independent splits. In each split we took 12 points for testing and
used the remainder for training. For our data space experiments on colon and leukemia
we used FLD with ridge regularization and fitted the regularization parameter using
5-fold cross-validation on the first five data splits following Mika et al. (2002). However

98



Voting Ensembles of RP-FLDs

Table 7.1: Datasets

Name Source #samples #features
colon Alon et al. (1999) 62 2000
leukemia Golub et al. (1999) 72 3571
leukemia large Golub et al. (1999) 72 7129
prostate Singh et al. (2002) 102 6033
duke West et al. (2001) 44 7129

Table 7.2: Mean error rates ± 1 standard error, estimated from 100 independent splits
when k = ρ/2.

Dataset ρ/2 100 RP-FLD 1000 RP-FLD SVM

colon 24 13.58± 0.89 13.08± 0.86 16.58± 0.95
leuk. 29 1.83± 0.36 1.83± 0.37 1.67± 0.36
leuk.lge 29 4.91± 0.70 3.25± 0.60 3.50± 0.46
prost. 44 8.00± 0.76 8.00± 0.72 8.00± 0.72
duke 15 17.41± 1.27 16.58± 1.27 13.50± 1.10

on these data this provided no statistically significant improvement over employing a
diagonal covariance in the data space, most likely because of the data scarcity. There-
fore for the remaining three datasets (which are even higher dimensional) we used
diagonal FLD in the data space. Indeed since diagonal FLD is in use for gene array
data sets (Dudoit et al., 2002) despite the features being known to be correlated (this
constraint acting as a form of regularization) one of the useful benefits of our ensemble
is that such a diagonality constraint is no longer necessary.
The randomly projected base learners are FLDs with full covariance and no regular-
ization when k 6 ρ (as the projected sample covariances are invertible) and we used
pseudo-inversion in the projected space when k > ρ – cf. the setting analyzed in the
previous section.

To satisfy ourselves that building on FLDs was a reasonable choice of classifier we
also ran experiments using SVM with linear kernel, as was done in Fradkin & Madigan
(2003a).

7.6.3 Results

In each case we compare the performance of the RP ensembles with (regularized) FLD
in the data space and also with SVM. Summary results for the rule of thumb choice
k = ρ/2 are listed in Table 7.2. In figure 7.1 we plot the results for the regularized
data space FLD, for a single RP-FLD, and for ensembles of 10, 100, and 3000 RP-FLD
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classifiers. We see in all cases that our theoretical analysis is well supported, the RP-
FLD ensemble outperforms traditional FLD on a range of choices of k, and the rule of
thumb choice k = ρ/2 is not far from the optimal performance. It is interesting to see
that, despite the statistically insignificant difference in performance of full-vs-diagonal
covariance models we found for the two lower-dimensional data sets in the data space,
for the three higher dimensional data sets (where we used a diagonality constraint for
computational tractability) the gap in generalization performance of the data space
FLD vs SVM is very large, whereas the gap in performance between the RP-FLD en-
sembles and SVM is small. Empirically we see, as we might reasonably expect, that
capturing the feature covariances via our ensemble approach produces better classifi-
cation results than working in the data space with a diagonal covariance model.
We ran further experiments on the colon and leukemia data sets to compare the per-
formance of the fast random projections from Achlioptas (2003) to Gaussian random
projection matrices, and to compare our decision rule to majority vote. Quite inter-
estingly, the picture is very similar and we find no statistically significant difference
in the empirical results in comparison with the ensemble that we have presented and
analyzed in detail here. The results of these experiments are plotted in figure 7.2. The
performance match between the different choices of random matrix is unsurprising,
but the agreement with majority vote is both striking and rather unexpected - we do
not yet have an explanation for this behaviour, although it does not appear to arise
from the unsigned confidences of the individual ensemble members being concentrated
around a particular value.

7.7 Summary and Discussion

We considered a randomly projected (RP) ensemble of FLD classifiers and gave theory
which, for a fixed training set, explicitly links this ensemble classifier to its data space
analogue. We have shown that the RP ensemble implements an implicit regularization
of the corresponding FLD classifier in the data space. We demonstrated experimentally
that the ensemble can recover or exceed the performance of a carefully-fitted ridge-
regularized data space equivalent but with generally lower computational cost. Our
theory guarantees that, for most choices of projection dimension k, the error of a large
ensemble remains bounded even when the number of training examples is far lower than
the number of data dimensions and we gained a good understanding of the effect of our
discrete regularization parameter k. In particular, we argued that the regularization
parameter k allows us to finesse the known issue of poor eigenvector estimates in this
setting. We also demonstrated empirically that we can obtain good generalization
performance even with few training examples, and a rule of thumb choice k = ρ/2
appears to work well.
We showed that, for classification, the optimal choice of k depends on the true data
parameters (which are unknown) thereby partly answering the question in Marzetta
et al. (2011) concerning whether a simple formula for the optimal k exists. It would
be interesting to extend this work to obtain similar guarantees for ensembles of generic
randomly-projected linear classifiers in convex combination. Furthermore, it would be
interesting to derive concentration inequalities to quantify with what probability the
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condition number of the sample covariance matrix of a finite ensemble of the form we
consider here is far from its expectation – however this appears to be a hard problem
and, in particular, the rank deficiency of Σ̂ is problematic.
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Figure 7.1: Effect of k. Plots show test error rate versus k and error bars mark 1 standard
error estimated from 100 runs. In these experiments we used Gaussian random matrices with
i.i.d N (0, 1) entries.

102



Voting Ensembles of RP-FLDs

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

colon

 

 

FLD
RP−FLD k=5 MajVote
RP−FLD k=25 MajVote
RP−FLD k=100 MajVote
RP−FLD k=500 MajVote

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

leukemia

 

 

FLD
RP−FLD k=5 MajVote
RP−FLD k=25 MajVote
RP−FLD k=100 MajVote
RP−FLD k=500 MajVote

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

colon

 

 

FLD
RP−FLD k=5 Averaging
RP−FLD k=25 Averaging
RP−FLD k=100 Averaging
RP−FLD k=500 Averaging

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

leukemia

 

 

FLD
RP−FLD k=5 Averaging
RP−FLD k=25 Averaging
RP−FLD k=100 Averaging
RP−FLD k=500 Averaging

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

colon

 

 

FLD
RP−FLD k=5 Averaging
RP−FLD k=25 Averaging
RP−FLD k=100 Averaging
RP−FLD k=500 Averaging

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

leukemia

 

 

FLD
RP−FLD k=5 Averaging
RP−FLD k=25 Averaging
RP−FLD k=100 Averaging
RP−FLD k=500 Averaging

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

colon

 

 

FLD
RP−FLD k=5 Averaging
RP−FLD k=25 Averaging
RP−FLD k=100 Averaging
RP−FLD k=500 Averaging

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100

Nr classifiers

A
cc

ur
ac

y(
%

)

leukemia

 

 

FLD
RP−FLD k=5 Averaging
RP−FLD k=25 Averaging
RP−FLD k=100 Averaging
RP−FLD k=500 Averaging

Figure 7.2: Row 1: RP Majority Vote using Gaussian random matrices with i.i.d N (0, 1)
entries; Row 2: RP Voting using Gaussian random matrices with i.i.d N (0, 1) entries; Row 3:
RP Voting using ±1 random matrices with i.i.d entries; Row 4: RP Voting using the sparse
{−1, 0,+1} random matrices from Achlioptas (2003).
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8
Kernel FLD

Summary The previous chapters 5 and 7 have treated high-dimensional classifica-
tion by analyzing the performance of FLD when working with random projections of
the original dataspace. That is, we considered FLD classification in spaces created
by non-adaptive linear transformation of the original data via random matrices with
i.i.d zero-mean Gaussian entries. A different setting in which randomized dimension-
ality reduction takes place as an intrinsic part of the algorithm is in the application of
kernel methods to classification; for these algorithms one uses linear projection of the
data, represented by features in a very high dimensional or infinite dimensional Hilbert
space, H, onto the finite dimensional subspace spanned by the training data – called
the ‘feature space’.
Although this setting is conceptually and mathematically quite different from the ran-
domly projected settings we treated in our earlier chapters, since the principal aim of
mapping the data to feature representations in the Hilbert space is to tackle problems
where the original data are not linearly separable, we shall see that one can adapt
some of the tools and approaches we developed earlier to analyze the generalization
performance of the popular Kernel Fisher Linear Discriminant (KFLD) classifier. This
is because the KFLD algorithm is mathematically equivalent to a regularized FLD
algorithm operating in the feature space, and the role of the random projection matrix
is taken by the operator which projects H onto the feature space.
In this chapter we derive a non-trivial, non-asymptotic upper bound on the classifica-
tion error of KFLD under the assumption (motivated by theoretical (Dasgupta et al.,
2012; Diaconis & Freedman, 1984; Huang et al., 2005) and empirical (Huang et al.,
2005) results) that the kernel-induced feature space is a Gaussian Hilbert space – that
is, a Hilbert space equipped with a Gaussian probability measure.
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8.1 Preliminaries

Kernel Fisher Linear Discriminant (KFLD), first proposed by (Mika et al., 2002), is a
generalization to feature space of Fisher’s Linear Discriminant (FLD) classifier.
We have discussed the canonical FLD classifier in chapter 4 and the performance
of Fisher Linear Discriminant (FLD) in finite-dimensional data space has been well-
studied elsewhere in the literature in the asymptotic regime; for example, in the two
class setting under the assumption of Gaussian classes the exact error is given in (Bickel
& Levina, 2004; Pattison & Gossink, 1999). KFLD has a similar form – when the
training observations used to construct the classifier are points in a feature space, then
the resulting classifier is KFLD (Mika et al., 2002), however this classifier presents
specific technical challenges to deriving generalization bounds that are not present in
the data space setting. The work of (Mika et al., 2002) gives a full account of these
but, in particular, the kernel induced space in which the classification is carried out
need not be finite-dimensional, and even if it is finite dimensional the sample covari-
ance matrix is always singular. Furthermore, since the dimensionality of the feature
space in the finite sample setting is of the order of the number of training examples it
seems that any bound which accurately reflects the behaviour of the classifier should
be dimension-free.

Previous attempts at analyzing KFLD by Mika (2002) approached the analysis from
the starting point of the KFLD objective function and its algorithmic solution as an
eigenproblem, and tried to quantify the error of the eigenvector estimates. Unfortu-
nately these leave open the question of the generalization error of the KFLD classifier.
Diethe et al. (2009) developed a generalization error bound for a sparse version of
KFLD. However, their bounds are rather loose and they assume that the induced dis-
tribution of the feature-mapped data has bounded support.
In a different vein, theoretical analysis by Huang et al. (2005), which draws on the
work of Diaconis & Freedman (1984), focuses on justifying an interesting empirical
observation, namely that data mapped in the feature space tend to have a Gaussian
distribution. The work of Diaconis & Freedman (1984) showed that, under conditions,
high-dimensional data projected onto a line converges in distribution to a univariate
Gaussian. More recent theoretical work by Dasgupta et al. (2012) extends those find-
ings to data projections onto spaces of dimension k > 1, and shows that the convergence
in distribution of high-dimensional data projected to a lower dimensional space to a
multivariate Gaussian is in fact quite a general phenomenon.
KFLD is a well-performing and popular classifier, yet very little is known about its
generalization guarantees – in this chapter we take steps to improve this situation by
deriving a bound on the generalization error of KFLD which, under mild assumptions,
holds with high probability for any training set of a given size. Our bound is always
non-trivial (less than 1), and is given in terms of quantities in the full Hilbert space.
A key term in our bound turns out to be the distance between the class mean functions
scaled by the largest eigenvalue of the covariance operator. Since with a suitable kernel
choice (any universal kernel, e.g. the radial basis kernel) there is a one-to-one mapping
between a data density function in the input space and a mean function in the feature
space (Smola et al., 2007), it follows that the classes are always separated and good
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generalization can be achieved unless the densities of the two classes coincide in the
input space.

Furthermore, although given in the context of functional data, our bound also
applies to FLD in finite fixed dimensional settings as a special case, and exhibits
the natural properties that it becomes tighter (i) as the number of training examples
increases, (ii) when the classes are balanced, (iii) when the sample covariance is a good
estimate of the true covariance, and (iv) as the separation of the classes increases.

The structure of the remainder of the chapter is as follows: We briefly recall the
classification problem,introduce notation, and describe the problem setting. We then
give the generalization error of KFLD when the training set is fixed under the assump-
tion of Gaussian classes in the feature space. Next we give high probability guarantees
on the generalization error of KFLD for any training set of size N . Finally we discuss
our findings and indicate some possible future directions for this work.

8.1.1 The classification problem

Recall that in a classification problem we observe N examples of labelled training data

TN = {(zi, yi)}Ni=1 where (zi, yi)
i.i.d∼ Dz,y. For a given class of functions F , our goal is to

learn from TN the function f̂ ∈ F with the lowest possible generalization error in terms
of some loss function L. That is, find f̂ such that L(f̂) = minf∈F Ezq ,yq [L(f)], where
(zq, yq) ∼ Dz,y is a query point drawn from a distribution over some input space, I. As
in the previous chapters we use the (0, 1)-loss, L(0,1), as our measure of performance
here.
In the setting we consider here, the class of functions F consists of instantiations of
KFLD learned from points in a feature space. That is, the training observations are
functions of the original data mapped to a feature space HN ⊆ H, where H is a
separable Hilbert space1, via a kernel mapping φ:

φ : I −→ H (8.1.1)

z 7−→ φ(z) (8.1.2)

Since the space H := φ(I) is a separable Hilbert space, there exists an isometric
isomorphism (that is, a bijection which preserves norms) between H and `2. Hence,
without loss of generality we can work in `2.

8.1.2 Notation

We now introduce some new notation, specific to the setting we consider in this chapter.
As noted in the previous section, if (zi, yi) is a training observation from the original
data domain Z with label yi, then (φ(zi), yi) is the corresponding training example in
the feature space induced by the feature mapping φ. To keep our notation compact, we
will write xi for φ(zi) from now on, andDx,y for the induced probability distribution over
H. For convenience we assume that the xi are linearly independent since otherwise very
similar arguments to those we will present here still go through when dim(〈xi〉Ni=1) <

1A Hilbert space is a (finite- or infinite-dimensional) vector space equipped with an inner product.
A Hilbert space is called separable if and only if it admits a countable orthonormal basis.
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N . The feature space HN is then the N -dimensional subspace of `2 spanned by the
observations xi and, as a consequence of the representer theorem, this is where the
KFLD algorithm operates. We denote by µy the true mean element in H of the class
y, and by Σ = Σ0 = Σ1 the (shared) true covariance of the classes, where Σ is a
positive-definite trace-class covariance operator (i.e. such that the projection of Σ to
any subspace of H is invertible and Tr(Σ) < ∞). These properties are a technical
requirement if Dx|y is to be a non-degenerate probability distribution over H. We

indicate estimated quantities by adding a hat: µ̂y, Σ̂.
Note that linear independence of the xi implies (Schölkopf & Smola, 2002) that we
always have ‖µ̂1 − µ̂0‖ > 0 in our setting.
We use the subscript N to indicate when an object of interest is restricted to HN ; in
particular we will denote by xN the projection of the vector x ∈ H onto the subspace
HN spanned by the observations, that is if X ∈ M∞×N is the matrix with the xi as
columns and P = (XTX)−

1
2XT then xN = Px, ΣN = PΣP T , and so on. Note that P

is not a canonical projection operator, rather it is a ‘projection’ in precisely the same
sense that the random projection matrices R considered earlier are - i.e. Px is the
orthogonal projection of x onto the subspace spanned by the rows of P .
We assume, as the KFLD model implicitly does, that a probability distribution exists
over the xi and we consider the two-class setting only, since upper bounds on the multi-
class generalization error can be obtained via lemma 16 of chapter 4.
The set of training observations for KFLD as treated here is therefore: TN = {(xi, yi) :
(xi, yi) ∼ Dx,y}Ni=1, and we bound the probability that an arbitrary query point xq with
its true class label yq unknown is misclassified by the learned classifier. Specifically,
with high probability we upper bound the classification error of KFLD under the
assumption that Dx|y ≡ N (µy,Σ) in a separable Hilbert space, H, (here taken to
be `2 equipped with Gaussian probability measure over Borel sets) with πy the prior
probability that xq belongs to class y. We further denote by N0 and N1 the number of
training observations in the two classes. We will assume throughout this chapter that
in TN we have N0 and N1 both greater than 0, which is the case of practical interest
for a classification task.

8.2 Results

We assume functional data (Ramsay, 1997), namely that the original data observations
have been mapped into a feature space by some (linear or non-linear) function φ, and
that this mapping imposes a Gaussian distribution on the features in each class. There
are several reasons why we might consider that this assumption is not too restrictive.

Firstly, Huang et al. (2005) have shown that most low-dimensional projections, i.e.
from H onto HN , are approximately Gaussian when the mapping to the feature space
is a proper kernel. This phenomenon is a consequence of central limit like behaviour
and is very general.
Furthermore, our assumption allows us to potentially extend our work to a more general
setting than is often considered in theoretical treatments of kernel learning, where
boundedness of random variables is frequently assumed.
In order to bound the generalization error of KFLD we work with the decision function,
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assuming access to the feature space. We find this a more convenient formalism in
which to derive generalization guarantees than the formulation of this classifier as
an optimization problem (the representation via the kernel trick that is required for
algorithmic implementation).
Without loss of generality we consider the infinite-dimensional Hilbert space `2 and we
work in the feature space, namely the space spanned by the features from the training
set or, equivalently, the orthogonal projection of `2 on to the span of the training
features which we denote HN . For convenience we will assume the features span the
first N dimensions of `2 (since otherwise we can rotate `2 so that this is the case).
Our starting point is the decision function for KFLD which, for a training set of size
N , is (Herbrich, 2002):

f̂(xq) := 1

{
(µ̂1 − µ̂0)TN Σ̂−1

N

(
xq −

(µ̂0 + µ̂1)

2

)
N

> 0

}
where µ̂y = 1

Ny

∑Ny
i=1 xi and the training observations xi in the summation all have label

y, and Σ̂N is a (regularized) sample covariance matrix with its precise form depending
on the choice of regularization scheme. Recall that the subscript N indicates that these
quantities are orthogonally mapped from H in HN . Then the generalization error w.r.t
L(0,1) is given by:

Exq ,yq

[
L(0,1)

(
f̂(xq), yq

)]
(8.2.1)

= Prxq ,yq

{
f̂(xq) 6= yq

}
and we upper bound this probability. To achieve this, we first develop a very general
bound on sub-exponential random variables that will be one of our main tools, and
may also be of independent interest.

8.2.1 Dimension-free bound on (sub)-exponential
random variables

Lemma 23
Let X = (X1, X2, X3, . . .) be a sequence of Gaussian random variables in the Hilbert
space H with mean vector E[X] = µ and covariance operator Σ, such that the `2 norm:
‖E[X]‖ = ‖µ‖ < +∞ and Σ is trace-class: Tr(Σ) < +∞. Let ε > 0. Then:

Pr
{
‖X‖2 > (1 + ε)

(
Tr (Σ) + ‖µ‖2

)}
6 exp

(
−Tr(Σ) + ‖µ‖2

2λmax(Σ)

(√
1 + ε− 1

)2
)

(8.2.2)
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Furthermore, if ε ∈ (0, 1):

Pr
{
‖X‖2 6 (1− ε)

(
Tr (Σ) + ‖µ‖2

)}
6 exp

(
−Tr(Σ) + ‖µ‖2

2λmax(Σ)

(√
1− ε− 1

)2
)

(8.2.3)

Lemma 23 is an extension to Hilbert space of classical finite dimensional results e.g.
(Dasgupta, 2000b; Laurent & Massart, 2000). The proof of Lemma 23 uses a combi-
nation of elementary techniques and is given in the Appendix.
The proof makes use of the moment generating function (m.g.f.) of (non-central) χ2

variables, hence the obtained bounds hold for distributions whose m.g.f. is dominated
by that of the χ2 – these are called sub-exponential distributions.

We note that the Bernstein-type bounds we give in lemma 23 are able to exploit
variance information and hence avoid the worst-case approach commonly employed
in conjunction with bounded random variables. The latter would lead to the data
diameter appearing in the bound, e.g. as in (Diethe et al., 2009; Rahimi & Recht,
2008b; Shawe-Taylor & Cristianini, 2003). In particular, our bounds have

√
Tr(Σ) in

this role, which can be considerably smaller than the data diameter, and moreover do
not require the boundedness assumption.

8.2.2 Bound on generalization error of KFLD when the training
set is fixed

We will use the following bound on the generalization error of KFLD in the feature
space HN .

In the KFLD setting, Σ̂−1 (and Σ) are operators, so the notation Σ̂−1 will mean
the operator inverse, i.e. inverse on its range. For KFLD it is always the case that the
estimated covariance without regularization is singular (it has rank at most N−2) and
so if we choose to regularize Σ̂ on the subspace HN , as is usual in practice, then this
regularization ensures that Σ̂N has rank N and Σ̂−1

N denotes the usual matrix inverse.

Lemma 24
Let xi ∼

∑1
y=0 πyN (µy,Σ), and assume that some suitable regularization scheme en-

sures that the rank of Σ̂N is N, then the error of KFLD in eq.(8.2.1) is given by:

π0Φ

−1

2

(µ̂1 − µ̂0)TN Σ̂−1
N (µ̂0 + µ̂1 − 2µ0)N√

(µ̂1 − µ̂0)TN Σ̂−1
N ΣN Σ̂−1

N (µ̂1 − µ̂0)N

+

π1Φ

−1

2

(µ̂0 − µ̂1)TN Σ̂−1
N (µ̂0 + µ̂1 − 2µ1)N√

(µ̂0 − µ̂1)TN Σ̂−1
N ΣN Σ̂−1

N (µ̂0 − µ̂1)N

 (8.2.4)

Where Φ is the c.d.f of the standard Gaussian distribution.

The proof of lemma 24 is much the same as that for theorem 5 given in chapter 4,
noting that for KFLD the decision of which label to assign to a query point xq is
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made with respect to the projection of xq onto HN ; for completeness we give it in the
Appendix.

In what follows, we bound the deviation of the quantities appearing in (8.2.4)
from their expectations with high probability with respect to the training set, TN =
{(xi, yi)}Ni=1.

8.2.3 Main Result: Tail bound on generalization error of KFLD

We will now estimate the various quantities in (8.2.4) with high probability over all
training sets of size N = N0 + N1. This will ultimately enable us, with confidence
1 − δ (where δ(Σ, ε1, ε2, ε3, N0, N1) is an exponentially small quantity), to bound the
effect of the parameter estimates with quantities depending on the true parameters
and the sample size. We will assume for concreteness that the query point xq should
be assigned the label 0, which entails no loss of generality as similar arguments apply
when the label should be 1.
We begin by decomposing the bilinear form β = (µ̂1 − µ̂0)TN Σ̂−1

N (µ̂1 + µ̂0 − 2µ0)N in
the numerator of (8.2.4) as follows:

β = (µ̂1 − µ̂0)TN Σ̂−1
N (µ̂1 − µ̂0)N

. . . +2 (µ̂0 − µ0)TN Σ̂−1
N (µ̂1 − µ̂0)N (8.2.5)

Using the decomposition (8.2.5) we can rewrite the first term of lemma 24 in the
following form:

Φ

(
−1

2
(A−B)

)
Where:

A =
(µ̂1 − µ̂0)TN Σ̂−1

N (µ̂1 − µ̂0)N√
(µ̂1 − µ̂0)TN Σ̂−1

N ΣN Σ̂−1
N (µ̂1 − µ̂0)N

(8.2.6)

is the term responsible for the estimated error, and:

B =
2 (µ0 − µ̂0)TN Σ̂−1

N (µ̂1 − µ̂0)N√
(µ̂1 − µ̂0)TN Σ̂−1

N ΣN Σ̂−1
N (µ̂1 − µ̂0)N

(8.2.7)

is the term responsible for the estimation error. We will lower bound A and upper
bound B to bound the whole term from above.

Lower-bounding the term A

We will make use of the Kantorovich inequality, lemma 8, with the choice of positive

definite Q = Σ̂
− 1

2
N ΣN Σ̂

− 1
2

N and we can then lower bound A with:

√
(µ̂1 − µ̂0)TN Σ−1

N (µ̂1 − µ̂0)N ·
2

√
λmin(Σ̂

− 1
2

N ΣN Σ̂
− 1

2
N )λmax(Σ̂

− 1
2

N ΣN Σ̂
− 1

2
N )

λmin(Σ̂
− 1

2
N ΣN Σ̂

− 1
2

N ) + λmax(Σ̂
− 1

2
N ΣN Σ̂

− 1
2

N )
(8.2.8)
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Note that by positive definiteness of Σ̂N ,ΣN and the arithmetic-geometric mean in-
equality we have:

1 >
2

√
λmin(Σ̂

− 1
2

N ΣN Σ̂
− 1

2
N )λmax(Σ̂

− 1
2

N ΣN Σ̂
− 1

2
N )

λmin(Σ̂
− 1

2
N ΣN Σ̂

− 1
2

N ) + λmax(Σ̂
− 1

2
N ΣN Σ̂

− 1
2

N )
> 0

For convenience we now rewrite (8.2.8) in terms of the condition number, κ, of Σ
− 1

2
N Σ̂NΣ

− 1
2

N

using the identity for square invertible matrices κ(A) = λmax(A)
λmin(A)

= κ(A−1) to give:

‖Σ−
1
2

N (µ̂1 − µ̂0)N ‖
2

√
κ(Σ

− 1
2

N Σ̂NΣ
− 1

2
N )

1 + κ(Σ
− 1

2
N Σ̂NΣ

− 1
2

N )
(8.2.9)

Now applying Rayleigh quotient, lemma 5, to the norm above we see:

‖Σ−
1
2

N (µ̂1 − µ̂0)N ‖ >
‖ (µ̂1 − µ̂0)N ‖√

λmax(ΣN )
=
‖µ̂1 − µ̂0‖√
λmax(ΣN )

>
‖µ̂1 − µ̂0‖√
λmax(Σ)

(8.2.10)

where the equality in the chain (8.2.10) follows because the mean estimates lie in
the span of the observations HN , and the final inequality follows from the fact that
λmax(ΣN) = λmax(PΣP T ) = λmax(P TPΣ) 6 λmax(P TP )λmax(Σ) = 1 · λmax(Σ) where
the penultimate step uses lemma 9 and the last equality holds since P TP is a projection
operator.

Next, since µ̂1 and µ̂0 are independent with µ̂y ∼ N (µy,Σ/Ny) we have (µ̂1− µ̂0) ∼
N (µ1− µ0,Σ/N1 + Σ/N0) = N (µ1− µ0, (N0 +N1)Σ/N0N1) = N (µ1− µ0, NΣ/N0N1).
Applying lemma 23 (7.3.2) to ‖µ̂1 − µ̂0‖ we lower bound this as:

‖µ̂1 − µ̂0‖ >

√
(1− ε)

(
N

N0N1

Tr (Σ) + ‖µ1 − µ0‖2

)
(8.2.11)

with probability at least:

1− exp

(
−

Tr(Σ) + ‖µ1 − µ0‖2N0N1

N

2λmax(Σ)

(√
1− ε− 1

)2

)
(8.2.12)

To complete the bounding of the term A, we denote g(a) :=
√
a

1+a
, and observe that this

is a monotonic decreasing function on [1,∞). So, replacing a with the condition number

κ(Σ
− 1

2
N Σ̂NΣ

− 1
2

N ) ∈ [1,∞) we see that upper bounding the condition number allows us
to lower bound g. Hence, it remains to estimate the least and greatest eigenvalues of

Σ
− 1

2
N Σ̂NΣ

− 1
2

N – this we do in the next subsection (section 8.2.3), and the resulting upper
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bound on the condition number of this matrix we denote by κ̄(ε) (see eq. (8.2.19)).

Now, replacing, the term A is lower bounded w.h.p by:

A > 2g(κ̄(ε))

√
(1− ε)

(
‖µ1 − µ0‖2

λmax(Σ)
+

N

N0N1

Tr (Σ)

λmax(Σ)

)
(8.2.13)

The first summand under the square root in (8.2.13), represents a bound on the negative
log of the Bayes error of the classifier. It is governed by the scaled distance between
the true mean functions in H and the larger this distance is the better the performance
guarantee. The second summand represents the extent of overestimation of this relative
distance – that is the extent to which the estimated error underestimates the true
error due to the use of estimated parameters in the place of the true ones. We see
this term is largest when the number of training points is smallest and when the
‘effective dimension’ of the true data density, Tr(Σ)/λmax(Σ), is largest. The optimistic
misestimation of the true error by the estimated error term will of course be countered
by the other terms in the overall error decomposition, namely those that quantify the
quality of the parameter estimates κ and B.

Upper-bounding κ(Σ
− 1

2
N Σ̂NΣ

− 1
2

N )

Because in KFLD we estimate an N ×N covariance matrix in an N -dimensional sub-
space of H, and the sample means are linear combinations of the labelled features,
the scatter matrices

∑Ny
i=1(xi − µ̂y)(xi − µ̂y)

T have rank at most Ny − 1 and so the
unregularized covariance estimate has rank at most N − 2. Since the sample covari-
ance matrix is inverted in building the classifier, one must deal with the fact that this
matrix is singular. We will hence assume that some suitable form of regularization is
employed that ensures that Σ̂N is full rank, and this is indeed what allowed us to write

κ(Σ̂
− 1

2
N ΣN Σ̂

− 1
2

N ) = κ(Σ
− 1

2
N Σ̂NΣ

− 1
2

N ) earlier in eq.(8.2.9).

The most common form of regularizing the covariance estimate in the feature space
is:

XΣ̂URX
T + αC (8.2.14)

where α is the regularization parameter, Σ̂UR is the unregularized estimate (e.g. the
maximum likelihood estimate), which is nothing but the within-class scatter matrix (as
defined in e.g. S 4.10 of Duda et al., 2000), normalized by the total number of training
points, i.e.:

Σ̂UR =
1

N

1∑
y=0

Ny∑
i=1

(xi − µ̂y)(xi − µ̂y)T (8.2.15)

The regularization term may be chosen as C = IN , or C = XXT . The former is more
common, the latter is proposed by Centeno & Lawrence (2006) by drawing a parallel
between KFLD and a Bayesian reformulation of it, which was also demonstrated to
have superior performance. It is interesting to note that this latter option corresponds
to regularizing with αIN after orthogonal projection (i.e. projection by P rather than
X) into the N -dimensional linear span of the training points. Indeed, using our earlier
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notation:

Σ
− 1

2
N Σ̂NΣ

− 1
2

N

= (PΣP T )−
1
2 (P Σ̂URP

T + αIN)(PΣP T )−
1
2

= (XΣXT )−
1
2 (XΣ̂URX

T + αXXT )(XΣXT )−
1
2

after cancellation of the terms (XXT )−1/2, and we recognise XXT in place of C. In
the following we will employ this regularization choice to have Σ̂N ≡ P Σ̂URP

T + αIN ,
noting that the alternative C = IN may be analysed in a similar way.

Then λmax(Σ
− 1

2
N Σ̂NΣ

− 1
2

N ) is equal to:

λmax

(
1

N

1∑
y=0

(PΣP T )−
1
2

Ny∑
i=1

P (xi − µ̂y)(xi − µ̂y)TP T (PΣP T )−
1
2

+ α(PΣP T )−1

)

Now, observe that for each class:

Sy := (PΣP T )−
1
2

Ny∑
i=1

P (xi − µ̂y)(xi − µ̂y)TP T (PΣP T )−
1
2

has an N -dimensional singular Wishart distribution (Srivastava, 2003) with Ny − 1
degrees of freedom, WN(Ny − 1, IN). Hence S0 + S1 is Wishart with N − 2 d.f.,
S0 + S1 ∼ WN(N − 2, IN). This means that there exists a matrix Z ∈MN×(N−2) with
standard normal entries s.t. ZZT has the same distribution as S0 + S1.
Now, to bound the scatter matrix terms we use the following high probability bound
on the singular values of Z:

Lemma 25
Singular values of Gaussian matrices. ((Rudelson & Vershynin, 2010), Eq.
(2.3)) Let A be an n×N matrix with standard normal entries, and denote by smin(A),
smax(A) its least and greatest singular values. Then:

Pr{
√
N −

√
n− ε 6 smin(A) 6 smax(A) 6

√
N +

√
n+ ε}

> 1− 2e−ε
2/2, ∀ε > 0

We can use Weyl’s inequality, which gives the crude bound λmax(A+B) 6 λmax(A) +
λmax(B), to decouple the within class scatters and the regularization term. Then we
use the bounds on the extreme singular values of Gaussian matrices given in lemma 25
to bound the eigenvalues of the terms of the unregularized covariance estimate. Hence
we have:

λmax

(
Σ
− 1

2
N Σ̂NΣ

− 1
2

N

)
(8.2.16)

6
(

1 +
√

N−2
N

+ ε√
N

)2

+ α/λmin(ΣN)
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with probability at least 1− e−ε2/2.

The smallest eigenvalue is governed by the regularization term, and may be lower
bounded as:

λmin(Σ
− 1

2
N Σ̂NΣ

− 1
2

N ) = λmin(Σ
− 1

2
N Σ̂URΣ

− 1
2

N + α(Σ−1
N ))

> λmin(α(Σ−1
N )) = α/λmax(ΣN) (8.2.17)

> α/λmax(Σ) (8.2.18)

by using the other side of Weyl’s inequality with λmin(A+B) > λmin(A)+λmin(B) and

noting that the scatter matrix is singular, λmin(Σ
− 1

2
N Σ̂URΣ

− 1
2

N ) = 0.

Putting these together, the condition number is upper bounded with probability at
least 1− e−ε2/2 by:

κ
(

Σ
− 1

2
N Σ̂NΣ

− 1
2

N

)
6 λmax(Σ)

α

(
1 +

√
N−2
N

+ ε√
N

)2

+ κ(ΣN)

=: κ̄(ε) (8.2.19)

The first term in eq. (8.2.19) is independent of the data. The last term κ(ΣN),
however, is the condition number of the projection of the true covariance onto the span
of the training points. While λmax(ΣN) 6 λmax(Σ) for any projection P , removing the
data-dependence of λmin(ΣN) seems to be tricky in a general setting — clearly if the
condition number of Σ is finite then we can write κ(ΣN) 6 κ(Σ) — however finiteness
of κ(Σ) is not necessary for κ(ΣN) to be finite. Comments. We note that (for either
regularizer) there is a trade-off regarding the regularization parameter α: To minimize
the condition number α needs to be small to decrease the λmax term, while it has to
be large to increase the λmin term. This is indeed how we would expect the classifier
error to behave w.r.t the regularization parameter.

We also observe that, if we were to ridge regularize with the choice C = IN then
we would have λmax and λmin of the matrix XΣXT instead of those of PΣP T in eq.
(8.2.16) and eq. (8.2.17) respectively. These extreme eigenvalues can be more spread
out since XXT is less well-conditioned than PP T = IN the identity, which suggests
support for the findings of Centeno & Lawrence (2006) that regularization with the
kernel matrix can reduce the generalization error of KFLD.
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Upper-bounding the term B

To upper bound B, first we multiply Σ̂−1
N on the left by the identity to rewrite and

bound equation (8.2.7) as:

B =
2 (µ0 − µ̂0)TN Σ

− 1
2

N Σ
1
2
N Σ̂−1

N (µ̂1 − µ̂0)N√
(µ̂1 − µ̂0)TN Σ̂−1

N ΣN Σ̂−1
N (µ̂1 − µ̂0)N

6
2‖Σ−

1
2

N (µ0 − µ̂0)N‖‖Σ
1
2
N Σ̂−1

N (µ̂1 − µ̂0)N‖

‖Σ
1
2
N Σ̂−1

N (µ̂1 − µ̂0)N‖

= 2‖Σ−
1
2

N (µ0 − µ̂0)N‖ (8.2.20)

using Cauchy-Schwarz in the numerator.
Then, using lemma 23 we further upper bound (8.2.20) with:

2
√

(1 + ε) · Tr (IN/N0) = 2
√

(1 + ε)N/N0 (8.2.21)

with probability > 1− exp
(
−1

2
N · (
√

1 + ε− 1)2
)
.

Putting everything together

Now we collate the results proved so far to arrive at our final bound. Our chain
of arguments shows that, ∀ε1, ε2 ∈ (0, 1),∀ε3 > 0 the expression Φ

(
−1

2
(A−B)

)
is

bounded above, with probability 1− δ0 by:

Φ

(
−
[
g(κ̄(ε2))

√
(1− ε1)

(
‖µ1−µ0‖2
λmax(Σ) + N

N0N1

Tr(Σ)
λmax(Σ)

)
−
√
κ̄(ε2)

√
(1 + ε3)N/N0

])
where κ̄(ε2) is given by eq. (8.2.19), and the risk probability δ0 = δ0(Σ, ε1, ε2, ε3, N0, N1)
is, by union bound,

δ0 6 exp

(
−1

2
N · (

√
1 + ε3 − 1)2

)
+exp

(
−ε22/2

)
. . . + exp

(
−

Tr(Σ) + ‖µ1 − µ0‖2N0N1

N

2λmax(Σ)

(√
1− ε1 − 1

)2)

Repeating the argument for the case when the query point has label yq = 1 and
applying the law of total probability we finally obtain our upper bound on the misclas-
sification error of KFLD. Note that in doing so, the probability bounds employed in
bounding the terms A and κ are re-used, so both sides of the final bound will hold simul-
taneously w.p. at least 1−δ(Σ, ε1, ε2, ε3, N0, N1) = 1−(δ0 +exp(−1

2
N ·(
√

1 + ε3−1)2)).

For the sake of a better interpretability, we may rearrange this result by suit-
ably choosing ε1, ε2, ε3. In particular, putting all four terms of the probability bound
δ(Σ, ε1, ε2, ε3, N0, N1) to δ/4, solving for ε1, ε2, ε3 and replacing, yields after some straight-
forward algebra the following equivalent formulation:
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Theorem 14 For any δ ∈ (0, 1), the generalization error of KFLD in a Gaussian
Hilbert space, eq.(8.2.4), is upper-bounded w.p. at least 1 − δ over the random choice
of training set TN=N0+N1{(x, y)} with Gaussian class-conditionals x|y ∼ N (µy,Σ), by:

Prxq,yq

{
f̂(xq) 6= yq

}
6

1∑
y=0

πyΦ

(
−
[

g(κ̄(ε2))× . . .

√‖µ1 − µ0‖2
λmax(Σ)

+
N0 +N1

N0N1

Tr (Σ)

λmax(Σ)
−

√
2(N0 +N1)

N0N1
log

4

δ


+

. . .−

√
N

Ny

(
1 +

√
2

N
log

4

δ

)])

where now κ̄(ε2) is given by replacing ε2 :=
√

2 log 4
δ

in eq. (8.2.19).

We proved this probability bound conditional on any fixed value of N0 ∈ {1, ..., N −
1}, therefore it also holds for a random N0 over this set. Hence we can remove the
conditioning on the value of N0 by taking expectation w.r.t N0 on both sides of the
probability bound. Alternatively, we could increase δ in theorem 14 by πN0 + πN1 to
bound both N0 and N1 away from zero with high probability. We see that a key term in
the bound is the scaled distance between the mean functions in the Hilbert space. Using
the fact (Smola et al., 2007) that with a suitable kernel choice (any universal kernel)
there is an injective mapping between a mean function in the Hilbert space and a class
density function in the input space, the distance between the mean functions may be
seen as representing a distance between the class-conditional density functions in the
input space. This is never zero unless the two class densities coincide – consequently
good generalization can be achieved unless the two classes have identical densities in
the input space.

It is tempting to attempt to interpret the behaviour of our bound with respect to the
sample size. However, we should point out that in a kernel setting the precise relation
of the various error terms to the number of training points is much more complex than
this level of analysis enables us to see. This is because both µy and Σ are functions
of the sample size, e.g. due to the fact that the kernel width needs to be decreased as
the sample size increases, and their precise relationship is not known. Therefore the
bound in Theorem 1 is for a fixed N only.

However, it is instructive to assess this aspect of our bound by noting that it applies
to non-kernel FLD as a special case. The only difference is that then N 6= N0 +N1 but
instead N is the fixed dimensionality of the data and M = M0 +M1 is the sample size
that can grow.

Corollary 4 (to Theorem 14)
Let the data be N-dimensional, and having Gaussian class-conditionals x|y ∼ N (µy,Σ).

Denote by ĥ the FLD classifier learned from training data. Then for any δ ∈ (0, 1),
and any training set of size M = M0 + M1, the generalization error of FLD in RN is
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upper-bounded w.p. 1− δ by the following:

Prxq ,yq

{
ĥ(xq) 6= yq

}
6

1∑
y=0

πyΦ

(
−
[
g(κ̄(ε2))× . . .

[√
‖µ1 − µ0‖2
λmax(Σ)

+
M

M0M1

Tr (Σ)

λmax(Σ)
−
√

2M

M0M1
log

5

δ

]
+

. . .−

√
N

My

(
1 +

√
2

N
log

5

δ

)])
(8.2.22)

where κ̄(ε2) is as in Theorem 1 when the MLE of Σ, Σ̂UR is singular (but regularized),
and when Σ̂UR is non-singular we can bound its minimum eigenvalue away from zero
using Lemma 25, which yields the following tighter κ̄(ε2):

κ
(

Σ−
1
2 Σ̂Σ−

1
2

)
6

(√
M − 2 +

√
N + ε

√
M − 2−

√
N − ε

)2

=: κ̄(ε) (8.2.23)

with probability at least 1−2e−ε
2/2. Hence in the latter case we will have ε2 :=

√
2 log 5

δ

in (8.2.22).

More interpretation may be drawn from the bound in the finite dimensional setting
in Corollary 1. The first thing to note is that Tr(Σ)/λmax(Σ) becomes of the same
order as N i.e. the dimensionality of the problem. (In fact it is not difficult to derive a
version of the bound that actually contains N in place of Tr(Σ)/λmax(Σ) in this setting.

This would also have (µ1−µ0)TΣ−1(µ1−µ0) in place of ‖µ1−µ0‖
2

λmax(Σ)
.) Then we see clearly

how the term of A that is responsible for the optimistic distance estimate, of the form
dimension/#points, gets countered by the reverse effect of the same form from B.

More importantly, the consistency of FLD follows from Corollary 1. Indeed, as the
sample sizes M0 and M1 both increase, the condition number bound (8.2.23) converges
to 1, and all the terms other than (an upper bound on) the Bayes error vanish in
(8.2.22). Hence we may conclude that our bound behaves in a desirable natural way.
We also note in both the kernel and non-kernel settings that, in addition to the good
properties already mentioned, class balance makes the bound tighter as it should.

8.3 Summary and Discussion

We derived a dimension-free bound on the generalization error of KFLD which, to the
best of our knowledge, is the first non-trivial bound for the standard KFLD model.
This puts KFLD on a solid theoretical foundation and improves our understanding
of the working of this classifier. In this work we assumed that the kernel-induced
space is a Gaussian Hilbert space. Extension to Gaussian classes with different class-
conditional covariances appears relatively straightforward using the results and tools
already developed in chapters 4, 5 and 7. It also appears, modulo careful checking,
that extending these results to give similar guarantees for the much larger family of
subgaussian class-conditional distributions should be possible using tools such as those
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in (Rudelson & Vershynin, 2010; Vershynin, 2012). Further work is required to extend
this analysis to a more detailed level, e.g. in order to determine the relationship between
kernel parameters and the generalization error. It also seems plausible that, by letting
the regularization parameter go to zero as the number of training examples increases
to infinity, one could ultimately prove the consistency of KFLD.
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9
Conclusions and Open Problems

9.1 Randomly-projected Fisher’s Linear Discriminant

In chapter 5 we quantified the cost of dimensionality reduction using random projec-
tion on the performance of a single Fisher’s Linear Discriminant classifier.
Our main contribution in that chapter was to show that, at least for FLD, uniform
approximate preservation of data geometry through the JLL, and the consequent un-
natural behaviour w.r.t the number of observations in bounds utilising it, is too strong
a requirement in order to give guarantees on classification performance. In particular,
on average one can obtain control over the generalization error of FLD even if the data
are randomly projected to a subspace with dimensionality, k, which is only logarithmic
in the number of classes, rather than logarithmic in the number of data points as was
required in earlier JLL-based bounds. More generally we can conclude that using the
JLL to uniformly approximately preserve all pairwise distances between data points
will not always be necessary when the data are to be used for classification - preserving
a subset of important distances (the number of which will depend on the classifica-
tion regime) may be sufficient. For example, consider m-class data which is uniformly
2ε-separable (i.e. the margin between any two convex hulls enclosing the classes is at
least 2ε) and the SVM classifier – intuition says that preserving the m convex hulls
bounding the classes would be sufficient to control the generalization error. Preserving
these convex hulls requires preserving at most m · V Cdim points and this would seem
to imply, via the JLL, that k ∈ O(ε−2 logm · V Cdim) should be enough to control the
generalization error of RP-SVM. Whether it is the case that for any classifier, or even
for any linear classifier, that random projection to a dimensionality k of the order of
the number of classes is sufficient to preserve good generalization performance remains
an open problem. A likely first step in examining this question would be to use the
observation made in chapter 6, that our flip probability implies an upper bound on the
(0, 1)-generalization error of any consistent linear classifier trained by empirical risk
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minimization (ERM) in a randomly projected space.
Furthermore, although intuitively one feels that carefully constructed deterministic
projections should outperform random projections in preserving important distances,
obtaining similar guarantees for classification of data following any non-adaptive de-
terministic projection technique (i.e. one that does not take account of the class labels,
such as PCA) without restrictive conditions on the data still looks like a difficult open
problem.

9.2 Flip Probability

In chapter 6 we derived the exact probability of ‘label flipping’ as a result of random
projection, for the case where Σ is estimated by a spherical covariance matrix Σ̂ = αI,
and proved a simple, yet tight, upper bound on this probability for the general setting
when Σ̂ is allowed to be non-spherical. We conjectured on the basis of this upper
bound that for non-spherical Σ̂ there could be a trade off between reducing k which
reduces κ(RΣ̂RT ) and increasing k which makes the flip probability smaller in the
spherical case and, therefore, presumably also does the same in the non-spherical case.
While testing this intuition by better quantifying the flip probability for non-spherical
Σ̂ remains for future research, we observe that evaluating the exact flip probability for
non-spherical Σ̂ looks like a particularly difficult open problem - the rotational invari-
ance of the standard Gaussian distribution was key to our approach and we do not
know of any tools that would allow us to dispense with it entirely.
Following on from the observation that, via existing VC-type bounds, our flip probabil-
ity implies an upper bound on the (0, 1)-generalization error of any (consistent) linear
classifier trained by empirical risk minimization (ERM) in a randomly projected space,
it would now be straightforward to sharpen the bounds of Garg & Roth (2003); Garg
et al. (2002) using the findings in this chapter.

9.3 RP-FLD Ensembles

In chapter 7 we considered an ensemble of RP-FLD classifiers.
Our main contribution here was to show a direct link between the structure of an
ensemble of ‘weak’ randomized classifiers and the ‘strong’ data space equivalent - in
particular the regularization effect of this ensemble on the data space FLD.
The theory we developed here guarantees that, for most choices of projection dimension
k, the error of a large ensemble remains bounded even when the number of training
examples is far lower than the number of data dimensions, while for pseudo-inverted
FLD in the data space it is known that the error is unbounded. As far as we are aware
these are the first results for any ensemble classifier which explicitly demonstrate that
the ensemble can, on average, outperform a data space equivalent.
Furthermore, we gained a good understanding of the effect of our discrete regulariza-
tion parameter k, and found that a rule of thumb choice k = ρ/2 appears to work well
in practice. In particular, we argued that the regularization parameter k allows us to
finesse the known issue of poor eigenvector estimates in this setting.
We also demonstrated experimentally that this ensemble can recover or exceed the
performance of a carefully-fitted ridge-regularized FLD in the data space, but with
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generally lower computational cost, and an empirical comparison with linear SVM on
the same data suggests that we can obtain good generalization performance with our
approach even with few training examples.
We further showed that, for classification, the optimal choice of k depends on the
true data parameters (which are unknown) thereby partly answering the question in
Marzetta et al. (2011) concerning whether a simple formula for the optimal k exists.
This chapter is new work in a so far sparsely explored area - we could find very few pa-
pers using randomly-projected ensembles in the literature - and it would be interesting
to extend this work to obtain similar guarantees for ensembles of generic randomly-
projected linear classifiers in convex combination. The fact that this ensemble has very
similar performance to a majority-voting ensemble is also striking, and we would like
to understand better why this is the case.
It would also be very interesting to improve our results on deviations of the extreme
eigenvalues of a finite ensemble from the extreme eigenvalues of the converged ensemble.
As noted already, this looks particularly challenging: The main obstacle to achieving
this is the rank deficiency of Σ̂, since this implies that, w.p. > 0 there exist matrices Ri

for which λmin(RiΣ̂R
T
i ) is arbitrarily close to zero (and therefore λmax(RT

i (RiΣ̂R
T
i )−1Ri)

can be arbitrarily large).

9.4 KFLD

In chapter 8 our main contribution is a dimension-free bound on the generalization
error of KFLD which, to the best of our knowledge, is the first non-trivial bound
for the standard KFLD model, putting KFLD on a solid theoretical foundation and
improving our understanding of the working of this classifier. Although the tools used
in our analysis are reasonably sharp, our approach does not manage to capture the
relationship between kernel parameters and the generalization error, and it could be
interesting to attempt a more detailed analysis which addresses this issue. Furthermore,
we were unable so far to prove the consistency of KFLD, although it seems plausible
that, by letting the regularization parameter go to zero as the number of training
examples increases to infinity this could be achieved. For high probability guarantees
we assumed that the kernel-induced space is a Gaussian Hilbert space and it appears,
modulo careful checking, that extending these results to include Gaussian classes with
different class-conditional covariances is possible using the results and tools already
developed in chapters 4, 5 and 7. The main difference seems to be that one would need
to use recent results for random matrices with subgaussian columns (i.e. the entries
need not be i.i.d , but the columns must be i.i.d subgaussian vectors) such as those in
(Vershynin, 2012), because the individual covariance matrices Σy would not whiten the

pooled covariance estimate Σ̂N in the feature space. Likewise similar guarantees for the
much larger family of subgaussian class-conditional distributions should be achievable
using tools such as those in (Rudelson & Vershynin, 2010; Vershynin, 2012).
Given the similarities between the setting of the previous chapter 7, where we have
to deal with a singular covariance matrix embedded in Euclidean space Rd, and the
setting considered in this chapter 8 where we have to deal with a singular covariance
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matrix embedded in HN ⊂ `2, it would appear that an ensemble of randomly-projected
KFLD classifiers could be used to improve the performance of KFLD in much the same
way. It would be interesting to find out if this is indeed the case in practice.

9.5 Some related research directions
Despite their longevity, other randomized approaches for generating ensemble members
such as bagging (Breiman, 1996) and random subspaces (Ho, 1998) are still not well
understood (Fumera et al., 2008). The scheme we use to link our RP-FLD ensemble to
its dataspace FLD equivalent, via the regularization implemented by the random pro-
jections, could potentially be extended to consider these other randomized approaches,
with the effect of each approach on the FLD ensemble captured by quantifying (using
different tools) its effect on the parameters learned by the classifier. This scheme would
avoid the weaknesses of bias-variance type decompositions, which leave the question
‘when is an ensemble better than a strong classifier?’ unanswered, and would allow us
to draw comparisons between the ensemble and its dataspace counterpart. This could
therefore be an interesting research direction.
Along rather different lines, it seems to me that random projections could be utilized
in the area of stochastic local search (SLS) with the potential to provide approximate
solutions to very large-scale optimization problems at small computational cost. In
particular the approximate geometry preservation properties of random projections,
via the JLL, and related results on randomly projected regression would appear to
be relevant to the SLS setting. We are currently exploring this possibility as a way
to scale up EDA – a state-of-the-art SLS approach though currently only practical in
low-dimensional settings.
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A.1 Joint distribution of data

Let (x, y) ∼ Dx,y where each instantiation of x is drawn i.i.d from N (µy,Σy) with
probability πy. Then for any query point xq we have xq ∼

∑1
y=0 πyN (µy,Σy).

Proof:

Pr(x = xq, y = yq) = Pr(xq, yq)

= Pr(xq|yq) Pr(yq)

= N (xq|µyq ,Σyq) · π
1−yq
0 (1− π0)yq

Then:

xq ∼ =
1∑

yq=0

Pr(xq, yq)

=
1∑

yq=0

N (xq|µyq ,Σyq) · π
1−yq
0 (1− π0)yq

=
1∑

yq=0

N (xq|µyq ,Σyq) · πyq and so:

xq ∼
1∑
y=0

πy · N (xq|µy,Σy)

A.2 Projected means and covariances

Let R be any fixed instance of a random projection matrix, then:
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(i) The sample mean of the projected data is the projection of the sample mean of the
original data set.
Proof: Let µ̂R = 1

N

∑N
i=1R(xi) (where xi ∈ Rd, the data space) be the sample

mean of the projected data and R(µ̂) be the projection of the sample mean µ̂ of

the data space. Then, by linearity, µ̂R = 1
N

∑N
i=1 R(xi) = R

(
1
N

∑N
i=1 xi

)
= Rµ̂

as claimed.

(ii) The mean of the projected data is the projection of the mean of the original data.
Proof: Let N →∞ in (i).

(iii) If Σ = Ex

[
(x− µ)(x− µ)T

]
is the covariance matrix in the data space, then

its projected counterpart ΣR is RΣRT , and likewise the ML covariance estimate
Σ̂R = RΣ̂RT :

ΣR = Ex

[
R(x− µ)(R(x− µ))T

]
= Ex

[
R(x− µ)(x− µ)TRT

]
= REx

[
(x− µ)(x− µ)T

]
RT

= RΣRT

Similarly:

Σ̂R = 1
N

∑N
i=1

[
R(xi − µ)(xi − µ)TRT

]
= R 1

N

∑N
i=1

[
(xi − µ)(xi − µ)T

]
RT

= RΣ̂RT

A.3 Moments of quadratic forms involving random

projection matrices

In chapter 5 we asserted that the m.g.f. of a quadratic form (i.e. a random variable)
involving orthonormalized random projection matrices is bounded above by the corre-
sponding m.g.f involving a normalized random projection matrix, that is by the m.g.f
of a χ2

k distribution, but we gave no proof. Here we fill that gap by proving such an
inequality holds.
Our approach is to prove the following theorem and from this its corollary, which is
the result we ultimately want:

Theorem 15 Let R be a random matrix, R ∈ Mk×d, k < d, with entries rij
i.i.d∼

N (0, σ2). Let v be any (fixed) vector in Rd. Then the moments of vTRT
(
RRT

)−1
Rv

are no greater than the moments of vRTRv/σ2d. Specifically:

ER

[(
vTRT

(
RRT

)−1
Rv
)i]
6 ER

[(
1

σ2d
· vTRTRv

)i]
, ∀i ∈ N and v ∈ Rd
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with equality only when i = 1.

Corollary 5
Let R, v be as given in theorem 15. Then:

ER

[
exp

(
vTRT

(
RRT

)−1
Rv
)]
6 ER

[
exp

(
1

σ2d
· vTRTRv

)]
, ∀v ∈ Rd

Note that taking v fixed then Rv is a k × 1 vector with zero-mean Gaussian entries
and therefore RHS above is the moment generating function of a χ2

k distribution.

Proof of Theorem 15

We want to show that:

ER

[(
vTRT

(
RRT

)−1
Rv
)i]
6 ER

[(
1

σ2d
· vTRTRv

)i]
, ∀i ∈ N and v ∈ Rd (A.3.1)

where R ∈Mk×d is a k × d random matrix with entries rij ∼ N (0, σ2) and so R/σ
√
d

is a k × d random matrix with entries rij ∼ N (0, 1/d) and normalized rows. The
normalization term (1/σ2d) on RHS of the inequality (A.3.1) is required to make the

LHS and RHS comparable, since the matrix
(
RRT

)−1/2
R already has orthonormal

rows1.
Note that by the method of construction of R its rows are almost surely linearly
independent, and hence rank (R) = k with probability 1. In the following we may
therefore safely assume that rank (R) = rank

(
RTR

)
= rank

(
RRT

)
= k.

The proof now proceeds via eigendecomposition of the symmetric positive semi-definite
matrix RTR.
When v = 0 there is nothing to prove, so let v be a non-zero vector in Rd and let xj be a
unit eigenvector of RTR with λ(xj) its corresponding eigenvalue. Since RTR ∈ Md×d
is symmetric there exists an orthonormal eigenvector basis {x1, x2, . . . , xd} for Rd,
B = {x1, . . . , xd} of eigenvectors of RTR. Since RTR has rank k < d this basis is,
of course, not unique – however it will be enough to choose any suitable orthonormal
eigenvector basis and then hold it fixed. Furthermore, since rank

(
RTR

)
= k < d we

know that k of the eigenvalues λ(xj) are strictly positive and the remaining d − k of

1Since
(
RRT

)−1/2
RRT

((
RRT

)−1/2
)T

=
(
RRT

)−1/2 (
RRT

)1/2 (
RRT

)1/2 (
RRT

)−1/2
= I
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the λ(xj) are zero. Writing v =
∑d

j=1 αjxj we then have:

1

σ2d
· vTRTRv =

1

σ2d
·

d∑
j=1

λ(xj)αjx
T
j xjαj =

1

σ2d
·

d∑
j=1

λ(xj)α
2
j‖xj‖2

=
1

σ2d

 ∑
{j:λ(xj)6=0}

λ(xj)α
2
j‖xj‖2 +

∑
{j:λ(xj)=0}

0 · α2
j‖xj‖2


=

1

σ2d
·

∑
{j:λ(xj) 6=0}

λ(xj)α
2
j‖xj‖2

=
1

σ2d
·

∑
{j:λ(xj)6=0}

λ(xj)α
2
j (A.3.2)

Next, note that if xj is an eigenvector of RTR with non-zero eigenvalue λ(xj), then
Rxj is an eigenvector of RRT with the same non-zero eigenvalue, since:

RTRxj = λ(xj)xj =⇒ RRTRxj = λ(xj)Rxj

There are k such non-zero eigenvalues, and as rank(RRT ) = k the non-zero eigenvalues
of RTR are the eigenvalues of RRT . Furthermore, since RRT ∈ Mk×k and has rank
k, RRT is invertible. It now follows that if xj is an eigenvector of RTR with non-

zero eigenvalue λ(xj), then Rxj is an eigenvector of
(
RRT

)−1
with non-zero eigenvalue

1/λ(xj). Hence:

vTRT
(
RRT

)−1
Rv =

k∑
j=1

1

λ(xj)
· λ(xj)α

2
j‖xj‖2

=
∑

{j:λ(xj) 6=0}

α2
j (A.3.3)

We can now rewrite the inequality (A.3.1) to be proved as the following equivalent
problem. For all i ∈ N:

ER

 ∑
{j:λ(xj)6=0}

α2
j

i 6 ER

 1

σ2d

∑
{j:λ(xj)6=0}

λ(xj)α
2
j

i
⇐⇒ Eλ,α

 ∑
{j:λ(xj) 6=0}

α2
j

i 6 Eλ,α

 1

σ2d

∑
{j:λ(xj)6=0}

λ(xj)α
2
j

i
⇐⇒ Eλ,α

 ∑
{j:λ(xj) 6=0}

α2
j

i 6 Eα

Eλ|α

 ∑
{j:λ(xj)6=0}

1

σ2d
λ(xj)α

2
j

i
(A.3.4)
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Now, in RHS of (A.3.4) xj and λ(xj) are independent of one another (e.g. Tulino &
Verdú (2004) Lemma 2.6, Artin (2010) Proposition 4.18) and v is arbitrary but fixed.
Since the αj depend only on v and the xj, we see that λ and α are independent of one
another, so we can rewrite this term as:

Eα

Eλ

 ∑
{j:λ(xj)6=0}

1

σ2d
λ(xj)α

2
j

i (A.3.5)

and since (A.3.5) is the expectation of a convex function, applying Jensen’s inequality
to the inner term we see that:

Eα

Eλ

 ∑
{j:λ(xj)6=0}

1

σ2d
λ(xj)α

2
j

i 6 Eα

Eλ

 ∑
{j:λ(xj)6=0}

1

σ2d
λ(xj)α

2
j

i
(A.3.6)

Note that when i = 1 we have equality in (A.3.6) and strict inequality when i > 1. If
we can show that the LHS of (A.3.6) above is no less than the LHS of (A.3.1) then we
are done. Now, equation (A.3.3) implies that all terms in LHS of (A.3.1) are positive,
and so in order to prove the theorem it is enough to show that ER [λ(xj)] /σ

2d > 1.
But this is certainly so since:

ER [λ(xj)] =
1

k

∑
{j:λ(xj)6=0}

ER [λ(xj)] =
1

k
ER

[
Tr
(
RRT

)]
=

1

k

k∑
j=1

ER

[
rTj rj

]
(A.3.7)

where rj is the j-th row of R. Then, since the rj
i.i.d∼ N (0, diag(σ2)) we have rTj rj/σ

2 i.i.d∼
χ2
d and so ER

[
rTj rj/σ

2
]

= d. Finally, it then follows that 1
k

∑k
j=1 ER [λ(xj)] /σ

2d = 1
and this completes the proof. �

Proof of Corollary 5

To prove the corollary we rewrite the inequality (A.3.1) using the Taylor series expan-
sion for exp to see that:

ER

 ∞∑
i=0

(
vTRT

(
RRT

)−1
Rv
)i

i!

 6 ER

[
∞∑
i=0

(
1
σ2d
· vTRTRv

)i
i!

]
(A.3.8)

=⇒ ER

[
exp

(
vTRT

(
RRT

)−1
Rv
)]

6 ER

[
exp

(
1

σ2d
· vTRTRv

)]
Since by theorem 15 we have the required inequality for each of the i-th powers in the
summations in equation (A.3.8), the result follows immediately. �
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A.4 Proof of Theorem 11

There are five terms to simultaneously bound with high probability, namely the two By,
A, and the two extreme eigenvalues involved in the condition number bound. We use
the standard approach of setting each of the confidence probabilities no greater than
δ/5 and solving for ε (or a function of ε appearing in the bound) then back-substituting
and applying the union bound to derive a guarantee which holds with probability 1−δ.
Firstly, for the extreme eigenvalues we have (twice):

exp
(
−ε23/2

)
6 δ/5

=⇒
√

2 log(5/δ) 6 ε3 (A.4.1)

For the upper bounds on the By we have:

exp

(
−d

2

(√
1 + εy − 1

)2
)
6 δ/5

and solving for
√

1 + εy we obtain:√
2 log(5/δ)

d
6 ±

(√
1 + εy − 1

)
=⇒ 1 +

√
2 log(5/δ)

d
>

√
1 + εy (A.4.2)

Finally, for the lower bound on A (which holds for both classes simultaneously) we
solve for

√
1− ε2 to obtain:

exp

(
−

(
dN/N0N1 + ‖Σ− 1

2 (µ1 − µ0)‖2

2N/N0N1

)(√
1− ε2 − 1

)2

)
6 δ/5

⇐⇒ 2N log(5/δ)/N0N1

dN/N0N1 + ‖Σ− 1
2 (µ1 − µ0)‖2

6
(√

1− ε2 − 1
)2

⇐⇒

√
2N log(5/δ)/N0N1

dN/N0N1 + ‖Σ− 1
2 (µ1 − µ0)‖2

6 ±
(√

1− ε2 − 1
)

=⇒ 1−

√
2N log(5/δ)/N0N1

dN/N0N1 + ‖Σ− 1
2 (µ1 − µ0)‖2

>
√

1− ε2 (A.4.3)

Plugging the left hand sides of the inequalities (A.4.1), (A.4.2) and (A.4.3) into the
bounds on κ, B0, B1 and A for ε3,

√
1 + ε0,

√
1 + ε1 and

√
1− ε2 respectively gives,

after some algebra, the stated Theorem 11.
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A.5 Proof of Lemma 23

We prove the statement of eq. (8.2.2) fully, and outline the proof of (8.2.3) which is
very similar. Let t > 0 be a positive real constant (to be optimized later), then:

Pr {‖X‖2 > (1 + ε) (Tr (Σ) + ‖µ‖2)}
= Pr {exp (t‖X‖2) > exp (t (1 + ε) (Tr (Σ) + ‖µ‖2))}
6 exp (−t (1 + ε) (Tr (Σ) + ‖µ‖2)) E[exp (t‖X‖2)] (A.5.1)

Where (A.5.1) follows by Markov’s inequality. Now, X ∼ N (µ,Σ) and so ‖X‖2 =∑∞
i=1X

2
i has a non-central χ2 distribution, and therefore E [exp (t‖X‖2)] is the moment

generating function of a non-central χ2 distribution. Hence (e.g. (Maniglia & Rhandi,
2004) proposition 1.2.8) for all t ∈ (0, 1/2λmax(Σ)) we have (A.5.1) is equal to:

= exp (−t (1 + ε) (Tr (Σ) + ‖µ‖2))
∏∞

i=1 (1− 2tλi)
− 1

2 exp
(

tµ2i
1−2tλi

)
= exp (−t (1 + ε) (Tr (Σ) + ‖µ‖2))

∏∞
i=1

(
1 + 2tλi

1−2tλi

) 1
2

exp
(

tµ2i
1−2tλi

)
6 exp (−t (1 + ε) (Tr (Σ) + ‖µ‖2))

∏∞
i=1 exp

(
1
2

2tλi
1−2tλmax(Σ)

)
exp

(
tµ2i

1−2tλmax(Σ)

)
= exp

(
−t (1 + ε) (Tr (Σ) + ‖µ‖2) +

t(
∑∞
i=1 λi+µ

2
i )

1−2tλmax(Σ)

)
= exp

(
−t (1 + ε) (Tr (Σ) + ‖µ‖2) +

t(Tr(Σ)+‖µ‖2)
1−2tλmax(Σ)

)
(A.5.2)

Now taking t = 1−(1+ε)−
1
2

2λmax(Σ)
∈ (0, 1/2λmax(Σ)) and substituting this value of t into (A.5.2)

yields, after some algebra, (8.2.2):

Pr {‖X‖2 > (1 + ε) (Tr (Σ) + ‖µ‖2)}

6 exp
(
−Tr(Σ)+‖µ‖2

2λmax(Σ)

(√
1 + ε− 1

)2
)

The second inequality (8.2.3) is proved similarly. We begin by noting:

Pr
{
‖X‖2 6 (1− ε)

(
Tr (Σ) + ‖µ‖2

)}
= Pr

{
exp

(
−t‖X‖2

)
> exp

(
−t (1− ε)

(
Tr (Σ) + ‖µ‖2

))}
6 exp

(
t(1− ε)

(
Tr (Σ) + ‖µ‖2

)
− t
(
Tr (Σ) + ‖µ‖2

)
/1 + 2tλmax(Σ)

)
and then complete the proof as before, substituting in the optimal t = 1+(1−ε)−

1
2

2λmax(Σ)
to

give the bound.

Comment: Bound on sub-exponential random variables.

Our probability bound uses the moment generating function of a non-central chi-square
and therefore also holds for probability distributions whose m.g.f is dominated by that
of the chi-square or, with the appropriate changes, by a constant multiple of it. Such
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distributions are called sub-exponential distributions (Vershynin, 2012).

A.6 Proof of Lemma 24
Without loss of generality let xq have label 0, and note that for KFLD the decision of
which label to assign to a query point xq is made with respect to the projection of xq
onto HN . The probability that xq is misclassified is therefore given by:

Prxq |yq=0

{
(µ̂1 − µ̂0)TN Σ̂−1

N

(
xq −

µ̂0 + µ̂1

2

)
N

> 0

}
(A.6.1)

Define aTN := (µ̂1 − µ̂0)TN Σ̂−1
N and observe that if xq ∼ N (µ0,Σ) then:(

xq −
µ̂0 + µ̂1

2

)
N

∼ N
((

µ0 −
µ̂0 + µ̂1

2

)
N

,ΣN

)
and so:

aTN

(
xq −

µ̂0 + µ̂1

2

)
N

∼ N
(
aTN

(
µ0 −

µ̂0 + µ̂1

2

)
N

, aTNΣNaN

)
which is a univariate Gaussian. Therefore:

aTN
(
xq − µ̂0+µ̂1

2

)
N
− aTN

(
µ0 − µ̂0+µ̂1

2

)
N√

aTNΣNaN
∼ N (0, 1)

Hence, for the query point xq we have the probability (A.6.1) is given by:

Prxq

{
(µ̂1 − µ̂0)TN Σ̂−1

N

(
xq − µ̂0+µ̂1

2

)
N
> 0
∣∣∣ y = 0

}
= Φ

(
aTN(µ0− µ̂0+µ̂12 )

N√
aTNΣNaN

)
= Φ

(
−1

2

(µ̂1−µ̂0)TN Σ̂−1
N (µ̂0+µ̂1−2µ0)N√

(µ̂1−µ̂0)TN Σ̂−1
N ΣN Σ̂−1

N (µ̂1−µ̂0)N

)
where Φ is the c.d.f of the standard Gaussian.
A similar argument deals with the case when xq belongs to class 1, and applying the
law of total probability gives the lemma.
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(1):1–24, 2004. 131

Mardia, K.V., Kent, J.T., and Bibby, J.M. Multivariate analysis. Academic Press,
London, 1979. 12, 66, 89, 90, 93

Marzetta, T.L., Tucci, G.H., and Simon, S.H. A Random Matrix–Theoretic Approach
to Handling Singular Covariance Estimates. IEEE Trans. Information Theory, 57
(9):6256–71, September 2011. 77, 78, 91, 100, 123
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