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On class groups of random number fields

Alex Bartel and Hendrik W. Lenstra Jr.

Abstract

The main aim of this paper is to disprove the Cohen–Lenstra–Martinet heuristics in two
different ways and to offer possible corrections. We also recast the heuristics in terms of
Arakelov class groups, giving an explanation for the probability weights appearing in the general
form of the heuristics. We conclude by proposing a rigorously formulated Cohen–Lenstra–
Martinet conjecture.
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1. Introduction

The Cohen–Lenstra–Martinet heuristics [5, 7] make predictions on the distribution of class
groups of ‘random’ algebraic number fields. In this paper, we disprove the predictions in two
different ways, and propose possible adjustments. In addition, we show that the heuristics can
be equivalently formulated in terms of Arakelov class groups of number fields. This formulation
has the merit of conforming to the general expectation that a random mathematical object is
isomorphic to a given object A with a probability that is inversely proportional to #AutA. We
end by offering two rigorously formulated Cohen–Lenstra–Martinet conjectures. In particular,
we give two possible precise definitions of the notion of a ‘reasonable function’ occurring in [5,
7]. The conjectures can likely be further sharpened and strengthened. We will be pointing out
concrete avenues for further research throughout the paper.

The class group ClF of a number field F is in a natural way a module over AutF . Our
first disproof of the heuristics proceeds by pointing out restrictions on the possible module
structure that had not been taken into account. To explain this, recall that for a ring R, the
Grothendieck group G(R) of the category of finitely generated R-modules has one generator
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[L] for every finitely generated R-module L, and one defining relation [L] + [N ] = [M ] for every
short exact sequence 0 → L → M → N → 0 of finitely generated R-modules.

The rings R that we will mainly be interested in are certain group rings. For a set S of
prime numbers, we write Z(S) = {a/b : a, b ∈ Z, b �∈ ⋃

p∈S∪{0} pZ}, which is a subring of Q.
Let now G be a finite abelian group, and let S be a set of prime numbers not dividing #G.
Then if R is a quotient of the group ring Z(S)[G], the torsion subgroup G(R)tors of G(R)
may be identified with a product of class groups of certain cyclotomic rings. For example, if
G is cyclic of prime order p, then G(Z(S)[G])tors is naturally isomorphic to the class group
of Z(S)[ζp], where ζp denotes a primitive pth root of unity. For more details the reader may
consult Section 4. Assume now that G has even order, and fix an element c ∈ G of order 2. The
ring that occurs in our first disproof of the heuristics is the ring T− = Z(S)[G]/(1 + c). Every
finite T−-module represents a class in G(T−)tors. This applies, in particular, to the module
T− ⊗Z[G] ClF if F is a number field whose Galois group is identified with G such that c acts as
complex conjugation. As we will explain in Section 4, the Cohen–Lenstra–Martinet heuristics
predict that if F runs through all such fields, the class of T− ⊗Z[G] ClF is equidistributed in
G(T−)tors. We will argue that this stands in contradiction to the following theorem, which we
will prove in Section 4 as a consequence of the Iwasawa Main Conjecture for abelian fields, as
proven by Mazur–Wiles in [16].

If F is a number field, let μF denote the group of roots of unity in F .

Theorem 1.1. Let F/Q be a finite imaginary abelian extension, let G be its Galois group,
let c ∈ G denote complex conjugation, let S be a set of prime numbers not dividing #G, and
let T− = Z(S)[G]/(1 + c). Then we have [T− ⊗Z[G] ClF ] = [T− ⊗Z[G] μF ] in G(T−).

Theorem 1.1 is a variant of a result of Greither [11, Theorem 5.5], who obtained a stronger
conclusion under some additional hypotheses.

One way of obtaining a contradiction between Theorem 1.1 and the Cohen–Lenstra–Martinet
heuristics is as follows. Suppose that G is cyclic of order 58, and S consists of all prime
numbers not dividing 58. Then G(T−)tors is the class group of Z(S)[ζ29], which is elementary
abelian of order 8, and in Section 4 we will deduce from Theorem 1.1 that [T− ⊗Z[G] ClF ] is
trivial for all but one F , contradicting the equidistribution prediction of the heuristics. In the
Cohen–Lenstra–Martinet conjecture that we propose below, we will remove this obstruction
by requiring the set S to be finite, in which case one has G(T−)tors = 0. To formulate correct
heuristics, or even conjectures, when S is not assumed to be finite remains an important
problem, which we will turn to in a future paper.

Our second disproof indicates that enumerating fields by discriminant is fundamentally
flawed in the context of Cohen–Lenstra–Martinet heuristics. The heuristics were initially
formulated for number fields of degree 2. Degree 1 was skipped, since there is only one
number field of degree 1; its class group is trivial, and does not obey a Cohen–Lenstra–
Martinet law. For a similar reason we shall, in our reformulated conjecture, require that the
class F of fields be infinite (see the introduction to Conjecture 1.5). If F were finite but
non-empty, it would form a discrete probability space. In that case the distribution of the
class groups of the fields in F would be influenced by the class group of each individual
field in F , and when that is the case one would generally not expect a Cohen–Lenstra–
Martinet distribution. Also, the fact that Q has class number 1 affects other number fields,
simply because they have Q as a subfield. Indeed, if F is a Galois number field, G is
the Galois group, and S is a set of prime numbers not dividing #G, then the subgroup
of G-invariants of the group Z(S) ⊗Z ClF equals Z(S) ⊗Z ClQ and is therefore trivial, not
obeying a Cohen–Lenstra–Martinet law. Enumerating fields by discriminant may lead to
a difficulty that, imprecisely speaking, is a combination of the two issues just outlined,
namely it may induce a discrete probability distribution on subfields. We will now give a
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concrete example of this situation, which suffices to disprove the Cohen–Lenstra–Martinet
heuristics.

For a real number x, let C(x) be the set of cyclic quartic fields with discriminant at
most x inside a fixed algebraic closure Q̄ of Q, and for a quadratic number field k ⊂ Q̄ let
Ck(x) = {F ∈ C(x) : k ⊂ F}. A more precise version of the following result will be proven in
Section 6 as Theorem 6.1.

Theorem 1.2. For every quadratic field k, there exists a real number pk satisfying
0 � pk < 1, computable to arbitrary precision, and such that:

(i) if the discriminant of k is either negative or has at least one prime divisor that is
congruent to 3 (mod 4), then pk = 0 and Ck(x) is empty for all real numbers x;

(ii) otherwise one has

lim
x→∞

#Ck(x)
#C(x)

= pk > 0;

(iii) one has
∑

k⊂Q̄ pk = 1, with the sum running over all quadratic number fields k.

Thus, enumerating cyclic quartic fields by discriminant defines a discrete probability
distribution on the quadratic subfields. A concrete counterexample to the Cohen–Lenstra–
Martinet heuristics is obtained from this as follows. Let C′(x) ⊂ C(x) be the subset of those
F ∈ C(x) for which the class number of the quadratic subfield is not divisible by 3. Then,
as we will explain in Section 6, the Cohen–Lenstra–Martinet heuristics predict that the limit
limx→∞ #C′(x)/#C(x) exists and that limx→∞ #C′(x)/#C(x) ≈ 0.8402, where the notation
a ≈ b means that a rounds to b with the given precision. However, in Theorem 6.2 we will
deduce from Theorem 1.2 that the limit limx→∞ #C′(x)/#C(x) does indeed exist, and one has

lim
x→∞#C′(x)

/
#C(x) ≈ 0.9914,

contradicting the heuristics.
We propose to use an order of enumeration that, by work of Wood [21], does not induce

a discrete probability distribution on subfields when the Galois group is abelian, and is not
expected to do so in the generality of our conjecture. Enumerating number fields by discriminant
has also been observed to pose problems in the context of other questions in arithmetic
statistics, which are not obviously related to the Cohen–Lenstra–Martinet heuristics (see, for
example, [1, 21]). It would be interesting to classify all finite groups G such that enumerating
G-extensions by discriminant exhibits the same bad behaviour as described above. More
broadly, a type of question that we first heard from Wood is: which invariants of number
fields with a given Galois structure are ‘admissible’ for the purposes of ordering number fields
in the Cohen–Lenstra–Martinet heuristics?

Let us now discuss the shift of perspective towards Arakelov class groups. Let F be a number
field. For the definition of the Arakelov class group Pic0

F of F , we refer to [20]. It may be
compactly described as the cokernel of the natural map c(JF ) → c(JF /F×), where JF denotes
the idèle group of F (see [4]) and c(X) denotes the maximal compact subgroup of X; in
particular, Pic0

F is a compact abelian group. We denote the Pontryagin dual of Pic0
F by ArF . It

is an immediate consequence of [20, Proposition 2.2] that ArF is a finitely generated discrete
abelian group that fits in a short exact sequence of AutF -modules

0 → Hom(ClF ,Q/Z) → ArF → Hom(O×
F ,Z) → 0, (1.3)

where OF denotes the ring of integers of F . Thus, knowing the torsion subgroup of ArF is
equivalent to knowing ClF , and knowing its torsion-free quotient amounts to knowing O×

F

modulo roots of unity.
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The Arakelov class group of a number field is often better behaved than either the class
group or the integral unit group. As an example of this phenomenon, we mention the following
analogue of Theorem 1.1 for real abelian fields, which we will prove in Section 5, also relying
on the results of Mazur–Wiles [16].

Theorem 1.4. Let F/Q be a finite real abelian extension, let G be its Galois group, let S
be a set of prime numbers not dividing 2 · #G, and let T = Z(S)[G]. Then we have the equality
[T ⊗Z[G] ArF ] = [T ] − [Z(S)] in G(T ), where [Z(S)] denotes the class of Z(S) with the trivial
G-action.

As we will explain in Section 5, this theorem expresses that the class of T ⊗Z[G] ArF in G(T )
is ‘as trivial as it can be’, given the Q[G]-module structure of Q[G] ⊗Z[G] ArF . There is no
reason to believe that an analogous result holds for either of the other two terms in the exact
sequence (1.3).

We also reinterpret Theorems 1.1 and 1.4 in terms of the so-called oriented Arakelov class
group, a notion that was introduced by Schoof in [20] and of which we recall the definition
in Section 5. That reinterpretation results in a uniform statement for both theorems —
see Theorem 5.4 — and moreover in a statement that might conceivably hold for arbitrary
finite Galois extensions and that should point the way towards relaxing the assumption in
Conjecture 1.5 that S be finite. We intend to take up this theme in a forthcoming paper.

Above we mentioned the principle that, if a mathematical object is ‘randomly’ drawn, a given
object appears with a probability that is inversely proportional to the order of its automorphism
group. In the context of Arakelov class groups, however, the relevant automorphism groups are
typically of infinite order. In [2], we overcame this obstacle to applying the principle by means
of an algebraic theory, the consequences of which we now explain.

Let G be a finite group, and let A be a quotient of the group ring Q[G] by some two-sided
ideal. If p is a prime number and S = {p}, then we write Z(p) for Z(S). We say that a prime
number p is good for A if there is a direct product decomposition Z(p)[G] = J × J ′, where J is a
maximal Z(p)-order in A, and the quotient map Z(p)[G] → A equals the projection Z(p)[G] → J
composed with the inclusion J → A. For example, all prime numbers p not dividing #G are
good for all quotients of Q[G]. Let S be a set of prime numbers that are good for A, and let R
denote the image of Z(S)[G] in A. Let M be a set of finite R-modules with the property that
for every finite R-module M ′ there is a unique M ∈ M such that M ∼= M ′, and let P be a
set of finitely generated projective R-modules such that for every finitely generated projective
R-module P ′ there is a unique P ∈ P such that P ∼= P ′. Note that M and P are countable sets.

Assume for the rest of the introduction that S is finite. As we will show in Section 3, it
follows from our hypotheses that for every finitely generated A-module V , there is a unique
PV ∈ P such that A⊗R PV

∼=A V ; and that moreover for every finitely generated R-module
M satisfying A⊗R M ∼=A V , there exists a unique module M0 ∈ M such that M ∼= PV ⊕M0.
For a finitely generated A-module V , we define MV = {PV ⊕M0 : M0 ∈ M}.

Let V be a finitely generated A-module. In Section 3, we will deduce from [2] that there is
a unique discrete probability measure P on MV with the property that for any isomorphism
L⊕ E ∼= M of R-modules, where L and M are in MV , and E is finite, we have

P(L) = (AutM : AutL) · P(M),

where the inclusion AutL ⊂ AutM is the obvious one. This condition expresses that one can
think of P(M) as being proportional to 1/#AutM .

We will now formulate an incomplete version of our conjecture on distributions of Arakelov
class groups, leaving the discussion of the crucial missing detail, the notion of a ‘reasonable’
function, to Section 7. If f is a complex valued function on MV , then we define the expected
value of f to be the sum E(f) =

∑
M∈MV

(f(M) · P(M)) if the sum converges absolutely.
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Let G, A, S, R, and V be as above, and assume that
∑

g∈G g = 0 in A. Let K be a number
field, let K̄ be an algebraic closure of K, and let F be the set of all pairs (F, ι), where
F ⊂ K̄ is a Galois extension of K that contains no primitive pth root of unity for any prime
p ∈ S, and ι is an isomorphism between the Galois group of F/K and G that induces an
isomorphism A⊗Z[G] O×

F
∼= V of A-modules. Assume that F is infinite. For all (F, ι) ∈ F , we

will view ArF as a G-module via the isomorphism ι. Let (F, ι) ∈ F be arbitrary. It follows
from the exact sequence (1.3) that we have an isomorphism A⊗Z[G] ArF ∼= Hom(V,Q) of A-
modules. Moreover, every finitely generated Q[G]-module is isomorphic to its Q-linear dual
(see, for example, [8, §10D]), so we have an isomorphism Hom(V,Q) ∼= V of A-modules. Thus,
R⊗Z[G] ArF is isomorphic to a unique element of MV .

If F/K is a finite extension, let cF/K be the ideal norm of the product of the prime ideals of
OK that ramify in F/K. For a positive real number B, let Fc�B = {(F, ι) ∈ F : cF/K � B}. If
M is a finitely generated R-module satisfying A⊗R M ∼=A V , and f is a function defined on
MV , then we write f(M) for the value of f on the unique element of MV that is isomorphic
to M .

Conjecture 1.5. Let f be a ‘reasonable’ complex valued function on MV . Then the limit

lim
B→∞

∑
(F,ι)∈Fc�B

f(R⊗Z[G] ArF )

#Fc�B

exists, and is equal to E(f).

For any (F, ι) ∈ F , the assumption that S only contain prime numbers that are good for A
implies that the short exact sequence of R-modules that one obtains by applying the functor
R⊗Z[G] • to the exact sequence (1.3) splits, so that the isomorphism class of the R-module
R⊗Z[G] ArF is determined by those of R⊗Z[G] ClF and of R⊗Z[G] O×

F . Moreover, the additional
assumption that S be finite implies that the isomorphism class of R⊗Z[G] O×

F is determined by
the isomorphism class of the A-module A⊗Z[G] O×

F , and in particular is constant as (F, ι) ∈ F
varies. Thus, for all (F, ι) ∈ F the isomorphism class of R⊗Z[G] ArF carries precisely the same
information as the isomorphism class of R⊗Z[G] ClF .

In order to allow the reader to compare our conjecture with the Cohen–Lenstra–Martinet
heuristics, we will prove in Section 3 that the probability distribution PV on M that P induces
on the set of Z(S)-torsion submodules of M ∈ MV satisfies, for all L0, M0 ∈ M,

PV (L0)
PV (M0)

=
#Hom(PV ,M0) · #Aut(M0)
#Hom(PV , L0) · #Aut(L0)

.

The distribution PV is, in fact, the probability distribution that is used in the original Cohen–
Lenstra–Martinet heuristics, a version of which we will give in Section 2. In other words,
the probability distribution that we postulate on ArF recovers, and explains, the probability
distribution of Cohen–Lenstra–Martinet on ClF . The main differences between our conjecture
and the original heuristic are: the hypothesis that S be finite; and the changed ordering on F .

In substance, there is only one piece of theoretical evidence for Conjecture 1.5 that we
are aware of, which also appears to be the only piece of evidence for the original conjecture.
It is the work of Davenport–Heilbronn [10], as generalised by Datskovsky–Wright [9], which
implies that Conjecture 1.5 holds if G has order 2, and f is the function f(M) = #(M/3M).
The theorem actually addresses the average of the function f when the quadratic extensions are
enumerated by ideal norm of the relative discriminant rather than of the product of ramified
primes, but also shows that the average is unchanged if one restricts to quadratic extensions
with prescribed local behaviour at the primes above 2 — see also [3, Corollary 4] for the special
case K = Q. It is not hard to deduce from this refined statement that Conjecture 1.5 itself also
holds for this choice of G and f .
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As for computational evidence, in almost all large scale computational data for Cohen–
Lenstra–Martinet related questions assembled to date that we are aware of fields are
enumerated by the absolute value of their discriminant, as in the original heuristics. It would
be desirable to have a large body of computational data, not only for Conjecture 1.5, but also
for variants with other orders of enumeration that do not suffer from the problem pointed out
in this paper.

We conclude the introduction by discussing the notion of a ‘reasonable function’. It already
appears in the original heuristics of Cohen–Lenstra [5] and Cohen–Martinet [7], but has never
been made precise. In order to turn the heuristics into actual conjectures, with a truth value,
we will offer two possible definitions of this notion in Section 7.

Of course, the minimal requirement that a function f has to fulfil in order to satisfy
the conclusion of Conjecture 1.5 is that the expected value E(f) should exist. It may be
tempting to conjecture that, at least for R�0-valued functions f , this minimal condition is
in fact sufficient. However, the following result, which we will prove as Theorem 7.1, using a
construction communicated to us by Bjorn Poonen, shows that the conjecture is likely false in
that generality.

Theorem 1.6. Let X be a countably infinite set, and let p be a discrete probability measure
on X. For all x ∈ X, abbreviate p({x}) to p(x) and assume that p(x) > 0. Let B be the
subset of XZ�1 consisting of those sequences (yi)i∈Z�1 ∈ XZ�1 for which there exists a function
f : X → R�0 such that:

(i) the expected value
∑

x∈X f(x)p(x) is finite, but
(ii) the limit limn→∞ 1

n

∑n
i=1 f(yi) does not exist in R.

Then the measure of B with respect to the product measure induced by p on XZ�1 is equal
to 1.

Theorem 1.6 suggests that if the sequence of dual Arakelov class groups really were a random
sequence with probability measure P, then with probability 1 there would be a function f for
which E(f) exists but the conclusion of Conjecture 1.5 is violated, and such functions f should
therefore not be considered ‘reasonable’.

One of our two ways of narrowing down the class of reasonable functions is to require,
in Conjecture 7.3, that for all j ∈ Z�1 the jth moment of |f | be finite. In Question 7.4, we
raise the probability-theoretic problem of showing that this additional requirement suffices
to eliminate the difficulty mentioned. In our second proposal, in Conjecture 7.6, we take a
completely different, computer science perspective.

2. The Cohen–Lenstra–Martinet heuristics

In this section, we give a version of the heuristics of Cohen–Lenstra and Cohen–Martinet. Our
formulation differs from the original one in several ways, as we will point out, but does not yet
incorporate the corrections that will be necessary in light of the results of Sections 4 and 6.

Let G be a finite group, let A be a quotient of the group ring Q[G] by some two-sided ideal
that contains

∑
g∈G g, let S be a set of prime numbers that are good for A, let R be the image

of Z(S)[G] in A under the quotient map, let P be a finitely generated projective R-module,
and let V denote the A-module A⊗R P . Let M be as in the introduction. If B = (BA′)A′ is a
sequence of real numbers indexed by the simple quotients A′ of A, then let M�B be the set
of all M ∈ M such that for every simple quotient A′ of A we have #(R′ ⊗R M) � BA′ , where
R′ denotes the image of R in A′. We will write B → ∞ to mean minA′ BA′ → ∞.
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If f is a function on M, and M is a finite R-module, then we will write f(M) for the value
of f on the unique element of M that is isomorphic to M . For a finite module M , define
wP (M) = 1

#Hom(P,M)·#AutM .
Let K be a number field, let K̄ be an algebraic closure of K, and let F be the set of all pairs

(F, ι), where F ⊂ K̄ is a Galois extension of K that contains no primitive pth root of unity for
any prime p ∈ S, and ι is an isomorphism between the Galois group of F/K and G that induces
an isomorphism A⊗Z[G] O×

F
∼= V of A-modules. If (F, ι) is in F , then the class group ClF is

naturally a G-module via the isomorphism ι. Let ΔF/K denote the ideal norm of the relative
discriminant of F/K. For a positive real number B, let FΔ�B = {(F, ι) ∈ F : ΔF/K � B}.

Heuristic 2.1 (Cohen–Lenstra–Martinet heuristics). With the above notation, assume that
F is infinite, and let f be a ‘reasonable’ C-valued function on M. Then:

(a) the limit

lim
B→∞

∑
(F,ι)∈FΔ�B

f(R⊗Z[G] ClF )

#FΔ�B
(2.2)

exists;
(b) the limit

lim
B→∞

∑
M∈M�B

wP (M)f(M)∑
M∈M�B

wP (M)
(2.3)

exists;
(c) the two limits (2.2) and (2.3) are equal.

The notion of a ‘reasonable’ function was left undefined in [5] and [7], and has never been
made precise.

Let us briefly highlight some of the differences between Heuristic 2.1 and [7, Hypothesis 6.6].
While Cohen–Martinet assume that the families of fields under consideration are non-empty,

we assume in Heuristic 2.1 that F is infinite. If F was finite, then Heuristic 2.1 would almost
certainly be false for any reasonable interpretation of the word ‘reasonable’, so we avoid
dependencies on some form of the inverse Galois problem.

The original heuristics did not include the condition that the fields F should not contain a
primitive pth root of unity for any p ∈ S. However, work by Malle [15] suggests that if that
condition was omitted, then for those primes p that do divide the order of the group of roots
of unity of F for a positive proportion of all (F, ι) ∈ F , the probability measure governing the
p-primary parts of the class groups would likely need to be modified.

Considering pairs (F, ι) consisting of a number field and an isomorphism between its Galois
group and G, as in Heuristic 2.1, is one way of making precise the original formulations of
Cohen–Lenstra and Cohen–Martinet, who speak of the family of extensions of K ‘with Galois
group G’. In the above formulation, some concrete conjectures of [6] become trivially true. An
example of this is [6, (2)(a)], where it is conjectured that if C3 is a cyclic group of order 3,
then among Galois number fields with Galois group isomorphic to C3 and with class number
7, each of the two isomorphism classes of non-trivial C3-modules of order 7 appears with
probability 50%. We do not know how to make the notion of a family of fields ‘with Galois
group G’ precise in a natural way that would render this and similar examples well defined, but
not trivial.

In [7, Hypothesis 6.6], the analogue of the expected value (2.3), which is denoted by
MS

u (f) there, is defined as a sum over representatives of isomorphism classes of all finite
O-modules, where O is a maximal Z-order of Q[G] containing Z[G]. This differs in two ways
from Heuristic 2.1.
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Firstly, in that version the sums that are analogous to the numerator and denominator
of expression (2.3) contain summands corresponding to modules M whose order is divisible
by primes not in S, even when f(M) depends only on the isomorphism class of Z(S) ⊗Z M .
It can be easily deduced from [5, Proposition 5.6] that this is a purely cosmetic difference. In
particular, one can show that if S′ is a subset of S, and f(M) only depends on the isomorphism
class of Z(S′) ⊗Z(S) M , then Heuristic 2.1 holds if and only if it holds with S replaced by S′.

Secondly, in [7, Hypothesis 6.6] the expected value MS
u (f) does not depend on the quotient

R of Z(S) ⊗Z O ∼= Z(S)[G], and that is certainly not what was intended: if the set S is finite
and non-empty, and the function f satisfies f(M) = 0 for all those Z(S)[G]-modules M that are
annihilated by the kernel of the map Z(S)[G] → R, and f(M) = 1 for all other Z(S)[G]-modules,
then the limit in (2.2) is zero, while MS

u (f) is non-zero.

Remark 2.4. There are some curious functions that may be considered reasonable, but
for which the limit (2.3) does not exist when S is too large. Suppose, for example, that S
contains almost all prime numbers, and that R is the product of two rings T and T ′, where
T ∼= T ′ ∼= Z(S), so that A is a product of two Q-algebras C = Q ⊗Z(S) T and C ′ = Q ⊗Z(S) T

′,
both isomorphic to Q. Take P = {0}. Define f(M) = 1 if #(T ⊗R M) > #(T ′ ⊗R M), and
f(M) = 0 otherwise. If BC is fixed and BC′ tends to ∞, then the limit of∑

M∈M�B
wP (M)f(M)∑

M∈M�B
wP (M)

is 0; while if BC′ is fixed and BC tends to ∞, then that limit is 1. From this observation it can
be deduced that the limit in (2.3) does not exist. Such examples can be realised in the context
of number fields: let C2 be a cyclic group of order 2 and S3 the symmetric group on a set of 3
elements, suppose that F/Q is Galois with Galois group isomorphic to C2 × S3 such that the
inertia groups at ∞ are subgroups of S3 of order 2, and let S contain almost all prime numbers.
Then F contains two imaginary quadratic subfields, one that is contained in a subextension
that is Galois over Q with Galois group isomorphic to S3, and one that is not, and the question
of how often the order of the S-class group of the former is greater than that of the latter
cannot be answered by Heuristic 2.1. We leave it to the reader to check that this example can
indeed be realised in the framework of Heuristic 2.1 with a judicious choice of A and V .

If instead S is finite, then all the relevant sums converge absolutely, and the limit (2.3) is
well defined. This adds to our reasons for demanding in Conjecture 1.5 that S be finite.

3. Commensurability of automorphism groups

In this section, we recall the formalism of commensurability from [2], and deduce the existence
of the probability measure P as described in the introduction.

A group isogeny is a group homomorphism f : H → G with #ker f < ∞ and (G : fH) < ∞,
and its index i(f) is defined to be (G : fH)/#ker f . For a ring R, an R-module isogeny is an
R-module homomorphism that is an isogeny as a map of additive groups. A ring isogeny is a
ring homomorphism that is an isogeny as a map of additive groups. The index of an isogeny
of one of the latter two types is defined as the index of the induced group isogeny on the
additive groups.

If X, Y are objects of a category C, then a correspondence from X to Y in C is a triple
c = (W, f, g), where W is an object of C and f : W → X and g : W → Y are morphisms in C;
we will often write c : X � Y to indicate a correspondence. A group commensurability is a
correspondence c = (W, f, g) in the category of groups for which both f and g are isogenies. For
a ring R, we define an R-module commensurability to be a correspondence of R-modules that
is a commensurability of additive groups, and a ring commensurability is defined analogously.
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If c = (W, f, g) is a commensurability of groups, or of rings, or of modules over a ring, then its
index is defined as i(c) = i(g)/i(f).

Let R be a ring, and let c =(N, f, g) : L � M be a correspondence of R-modules. We define
the endomorphism ring Endc of c to be the subring {(λ, ν, μ) ∈ (EndL) × (EndN) × (EndM) :
λf = fν, μg = gν} of the product ring (EndL) × (EndN) × (EndM). There are natural ring
homomorphisms Endc → EndL and Endc → EndM sending (λ, ν, μ) to λ and μ, respectively;
we shall write e(c) : EndL � EndM for the ring correspondence consisting of Endc and those
two ring homomorphisms. Similarly, we define the automorphism group Autc of c to be the
group (Endc)×, and we write a(c) : AutL � AutM for the group correspondence consisting of
Autc and the natural maps Autc → AutL, Autc → AutM .

The following result is a special case of [2, Theorem 1.2].

Theorem 3.1. Let G be a finite group, let A be a quotient of Q[G] by some two-sided ideal,
let S be a set of prime numbers, let R be the image of Z(S)[G] in A, and let L, M be finitely
generated R-modules. Then:

(a) there is an R-module commensurability L � M if and only if the A-modules A⊗R L
and A⊗R M are isomorphic;

(b) if c : L � M is an R-module commensurability, then e(c) : EndL � EndM is a ring
commensurability, and a(c) : AutL � AutM is a group commensurability;

(c) if c, c′ : L � M are R-module commensurabilities, then one has

i(e(c)) = i(e(c′)), i(a(c)) = i(a(c′)).

Notation 3.2. For the rest of the section, let G, A, S, and R be as in Theorem 3.1. If L
and M are finitely generated R-modules such that there exists a commensurability L � M ,
then we define ia(L,M) = i(a(c)) for any commensurability c : L � M .

Lemma 3.3. Let L, M , and N be finitely generated R-modules such that there are
commensurabilities L � M and M � N . Then there is a commensurability L � N , and we
have ia(L,M)ia(M,N) = ia(L,N).

Proof. See [2, Theorem 7.3]. �

Proposition 3.4. Let P be a finitely generated projective R-module, let L0 and M0 be finite
R-modules, let L = P ⊕ L0, and M = P ⊕M0. Then there is an R-module commensurability
L � M , and we have

ia(L,M) =
#Hom(P,M0) · #AutM0

#Hom(P,L0) · #AutL0
.

Proof. By Theorem 3.1(a), there exist commensurabilities L � M , P � L, and P � M .
We will first compute ia(P,L) and ia(P,M). The split exact sequence

0 → L0 → L
π→ P → 0,

where π is the natural projection map, induces a surjective map

AutL → AutL0 × AutP,

whose kernel is easily seen to be canonically isomorphic to Hom(P,L0). It follows that if
c is the commensurability (L, π, id) : P � L, then the map Autc → AutL is an isomorphism,
while the map Autc → AutP is onto, with kernel of cardinality #Hom(P,L0) · #AutL0. Hence,
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ia(P,L) = i(a(c)) = #Hom(P,L0) · #AutL0, and analogously for ia(P,M). By Lemma 3.3, we
therefore have that

ia(L,M) =
ia(P,M)
ia(P,L)

=
#Hom(P,M0) · #AutM0

#Hom(P,L0) · #AutL0
,

as claimed. �

For the rest of the section, assume that S is a finite set of prime numbers that are good for
A, and let M and P be sets of finitely generated R-modules as in the introduction.

Lemma 3.5. Let V be a finitely generated A-module. Then there exists a unique PV ∈ P such
that A⊗R PV

∼=A V . Moreover, if M is a finitely generated R-module such that A⊗R M ∼=A V ,
then there exists a unique M0 ∈ M such that M ∼= PV ⊕M0.

Proof. Let T be any finitely generated subgroup of V such that QT = V . Then P = RT
is a finitely generated R-submodule of V such that A⊗R P = V . By [18, Corollary 11.2], the
ring R is a maximal Z(S)-order in A. It follows from [18, Theorems 18.1 and 2.44] that P is a
projective R-module, and is isomorphic to a unique element PV of P.

Let M be a finitely generated R-module such that A⊗R M ∼=A V , let Mtors be the R-
submodule of M consisting of Z(S)-torsion elements, and let M̄ = M/Mtors be the Z(S)-torsion-
free quotient. It follows from [18, Theorem 18.10, §18 Exercise 3] that M̄ ∼=R PV . Since PV

is projective, we have M ∼=R PV ⊕Mtors, and Mtors is isomorphic to a unique element M0 of
M. �

Recall from the introduction that if V is a finitely generated A-module, and PV ∈ P is
such that A⊗R PV

∼=A V , then we define MV = {PV ⊕M0 : M0 ∈ M}. By Lemma 3.5, every
finitely generated R-module M satisfying A⊗R M ∼=A V is isomorphic to a unique element of
MV . We now state and prove the main result of the section.

Proposition 3.6. Under the assumptions of Notation 3.2, suppose that S is a finite set of
prime numbers that are good for A, let V be a finitely generated A-module, and let PV ∈ P
be such that A⊗R PV

∼= V . Then:

(a) there exists a unique discrete probability distribution PV on M such that for all L0,
M0 ∈ M we have

PV (L0)
PV (M0)

=
#Hom(PV ,M0) · #Aut(M0)
#Hom(PV , L0) · #Aut(L0)

;

(b) there exists a unique discrete probability distribution P on MV such that for any
isomorphism L⊕ E ∼= M of R-modules, where L and M are in MV , and E is finite,
we have

P(L) = (AutM : AutL) · P(M),

where the inclusion AutL ⊂ AutM is the obvious one;
(c) for all E ∈ M, we have P(PV ⊕ E) = PV (E).

Proof. For L0 ∈ M, write

w(L0) =
1

#Hom(PV , L0) · #Aut(L0)
.
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By [7, Theorem 3.6], the sum
∑

L0∈M w(L0) converges, to α, say, so that we may define the
probability distribution PV on M by PV (L0) = w(L0)/α for L0 ∈ M. It satisfies the conclusion
of part (a), and is clearly the unique such distribution. This proves part (a).

We now prove part (b). By combining the convergence of
∑

L0∈M w(L0) with Proposition 3.4,
we see that for all M ∈ MV , the sum

∑
L∈MV

ia(L,M) also converges, to βM , say, so that
we may define a probability distribution P on MV by P(L) = ia(L,M)/βM for L ∈ MV .
Note that it follows from Lemma 3.3 that the definition of P is independent of the choice
of module M ∈ MV . If there is an isomorphism L⊕ E ∼= M of R-modules, where L and M
are in MV and E is finite, and ι is the inclusion L ↪→ L⊕ E ∼= M , then by definition, we have
ia(L,M) = ia(c), where c is the commensurability c = (L, id, ι) : L � M . Thence it immediately
follows that P satisfies the conclusion of part (b), and it is clearly the unique such probability
distribution.

Part (c), finally, follows from Proposition 3.4. �

4. Class groups of imaginary abelian fields

In this section, we prove Theorem 1.1, and use it to give a disproof of Heuristic 2.1. We begin
by establishing some notation for the section and recalling some well-known facts that will also
be useful in the next section.

Generalities on group rings

Let Q̄ be an algebraic closure of Q. Let G be a finite abelian group, with dual Ĝ = Hom(G, Q̄×).
For χ, χ′ ∈ Ĝ, we write χ ∼ χ′ if kerχ = kerχ′, or equivalently if there exists σ ∈ Gal(Q̄/Q)
with χ = σ ◦ χ′. Each χ ∈ Ĝ extends to a ring homomorphism χ : Q[G] → Q̄, of which the
image is the cyclotomic field Q(χ(G)), and the natural map Q[G] → ∏

χ∈Ĝ/∼ Q(χ(G)) is an
isomorphism of Q-algebras.

Let S be a set of prime numbers not dividing #G, and write T = Z(S)[G], which is
a maximal Z(S)-order in Q[G]. For χ ∈ Ĝ, the image χ(T ) of T in Q(χ(G)) is the ring
Z(S)[χ(G)], which is a Dedekind domain. We have a ring isomorphism T ∼= ∏

χ∈Ĝ/∼ χ(T ), so
each T -module M decomposes as a direct sum

⊕
χ∈Ĝ/∼(χ(T ) ⊗T M), which leads to a group

isomorphism G(T ) ∼= ⊕
χ∈Ĝ/∼ G(χ(T )), where we recall from the introduction that G denotes

the Grothendieck group.
Since for each χ ∈ Ĝ the ring χ(T ) = Z(S)[χ(G)] is a Dedekind domain, by [19, Theorems

1.4.12 and 3.1.13], there is a canonical isomorphism G(χ(T )) ∼= Clχ(T )⊕ Z, where Clχ(T ) is
the class group of the Z(S)-order χ(T ), and in particular is finite. Explicitly, the projection
map G(χ(T )) → Z is defined by sending the class of a finitely generated χ(T )-module M to
dimQ(χ(G))(Q(χ(G)) ⊗χ(T ) M), and a canonical splitting Z → G(χ(T )) is given by 1 �→ [χ(T )];
moreover, if the χ(T )-module M is a non-zero ideal of χ(T ), then the element [M ] of G(χ(T ))
projects to the ideal class of M under the projection map to Clχ(T ). In particular, if M is a
finite T -module, then the class [M ] in G(T ) is contained in the torsion subgroup G(T )tors ∼=⊕

χ∈Ĝ/∼ Clχ(T ).

The Cohen–Lenstra–Martinet prediction

In this subsection, we show that Heuristic 2.1 implies that if c ∈ G is an element of order 2,
and we choose A = Q[G]/(1 + c), R = Z(S)[G]/(1 + c), and P to be the zero A-module in the
heuristic, then the class of R⊗Z[G] ClF is equidistributed in G(R)tors as (F, ι) varies over F .
The main technical ingredient is Theorem 4.2. It is a generalisation of [5, Corollary 3.7] from
the trivial character to arbitrary Dirichlet characters.
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Let M(T ) be a set of finite T -modules such that for every finite T -module M there
is a unique M ′ ∈ M(T ) satisfying M ∼= M ′. For M ∈ M(T ), s = (sχ)χ∈Ĝ/∼ ∈ CĜ/∼, and

u = (uχ)χ∈Ĝ/∼ ∈ (Z�0)Ĝ/∼, we recall the following definitions from [5] and [7]:

|M |s =
∏

χ∈Ĝ/∼
#(χ(T ) ⊗T M)sχ ,

Su(M) = #{T -linear surjections Q → M},
where Q is a projective T -module such that dimQ(χ(G))(Q(χ(G)) ⊗T Q) = uχ for all χ ∈ Ĝ; it
is easy to see that Su(M) is well defined, that is, does not depend on the choice of Q;

wu(M) =
Su(M)
|M |u · 1

#AutM
,

w∞(M) = lim
u→∞wu(M),

where we recall that the notation u → ∞ was defined at the beginning of Section 2.
Observe that for u ∈ (Z�0)Ĝ/∼, one has |M |u = #Hom(Q,M), where Q is as in the definition
of Su. Moreover, if for all χ ∈ Ĝ the ranks uχ are ‘large’, then ‘most’ homomorphisms
Q → M , in a precisely quantifiable sense, are surjective. Making this precise, one deduces
that w∞(M) = 1/#Aut(M). If u and s are as above, and f : M(T ) → C is any function, we
define the following quantities when the respective limit exists:

Zu(f, s) = lim
B→∞

∑
M∈M(T )�B

wu(M)|M |−sf(M),

Z(f, s) = Z∞(f, s) = lim
u→∞Zu(f, s),

Zu(s) = Zu(1, s), Z(s) = Z(1, s),

where 1 denotes the function M �→ 1 for all M ∈ M(T ), and M(T )�B is defined analogously
to M�B from Section 2. If T ′ is a quotient of T , we also define ZT ′

u (f, s) analogously to Zu(f, s),
and ZT ′

(f, s) analogously to Z(f, s), but with the sums running only over T -modules that factor
through T ′, that is, that are annihilated by the kernel of the quotient map T → T ′, and we
again set ZT ′

(s) = ZT ′
(1, s). With these definitions, the limit in (2.3) can be rewritten as

lim
s→sP

ZR(f, s)
ZR(s)

, (4.1)

where sP = (dimQ(χ(G))(Q(χ(G)) ⊗T P ))χ∈Ĝ/∼, provided that the limit lims→sP ZR(f, s) exists
and is finite and that ZR(sP ) �= 0. We stress that this is true even if the infinite sum ZR(sP )
diverges, in which case both the limit in (2.3) and that in (4.1) are equal to 0.

If T ′ = χ(T ) for some χ ∈ Ĝ/∼, then ZT ′
u (f, s) as a function of s depends only on the entry

sχ of s, and similarly for u, so we will write Zχ(T )
uχ (f, sχ) in this case. In particular, if f is

multiplicative in direct sums of the form M =
⊕

χ∈Ĝ/∼ Mχ, where for each χ ∈ Ĝ/∼, the
summand Mχ is a χ(T )-module, then one has

Zu(f, s) =
∏

χ∈Ĝ/∼
Zχ(T )
uχ

(f, sχ).

Recall from the discussion at the beginning of the section that for each χ ∈ Ĝ we have a
canonical isomorphism G(χ(T )) ∼= Clχ(T )⊕ Z, and that if M is a finite χ(T )-module, then
[M ] ∈ G(χ(T )) is contained in the torsion subgroup Clχ(T ) of G(χ(T )).
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Theorem 4.2. Let Ĝ′ be a subset of Ĝ, let T ′ =
∏

χ∈Ĝ′/∼ χ(T ), let φ = (φχ)χ∈Ĝ′/∼ :⊕
χ∈Ĝ′/∼ Clχ(T ) → C× be a group homomorphism, and define f : M(T ) → C by f(M) = 0

if M does not factor through T ′, and f(M) = φ([M ]) otherwise. For χ ∈ Ĝ′/∼, define τχ = 0
if φχ is trivial, and τχ = −1/[Q(χ(G)) : Q] otherwise. Assume that S contains all but finitely

many prime numbers. Then for all s ∈ CĜ/∼ satisfying 
sχ > τχ for all χ ∈ Ĝ′/∼, we have

Z(f, s) = ZT ′
(f, s) =

∏
χ∈Ĝ′/∼

∞∏
k=1

L
(S)
Q(χ(G))(φ

−1
χ , sχ + k),

where L
(S)
Q(χ(G))(φ

−1
χ , s) denotes the Dirichlet L-function corresponding to the Dirichlet charac-

ter φ−1
χ of the field Q(χ(G)) with the Euler factors at prime ideals not dividing any element

of S omitted.

Proof. The proof proceeds very similarly to those of [5, Corollary 3.7; 7, Corollary 3.9(ii)],
so we only sketch the main steps.

One has, for all M , M1, M2 ∈ M(T ) and u, v ∈ (Z�0)Ĝ/∼, the identities

Su+v(M) =
∑

N⊂M

Su(N)Sv(M/N)(#N)v

with the sum running over submodules N of M , and∑
M∈M(T )

(wu(M) · #{N ⊂ M : N ∼= M1,M/N ∼= M2}) = wu(M1)wu(M2);

see [5, Proposition 3.2, Theorem 3.5]. Using the fact that f is multiplicative in short exact
sequences of modules, one deduces from these two identities and a short calculation that
there is a formal identity of Dirichlet series Zu+v(f, s) = Zu(f, s) · Zv(f,u + s). In particular, if
1χ ∈ (Z�0)Ĝ/∼ denotes the element that has χ-entry 1 and all other entries equal to 0, then

Zu+1χ
(f, s) = Zu(f, s) · Zχ(T )

1 (f, uχ + sχ).

A direct calculation shows that for each χ ∈ Ĝ, one has Zχ(T )
1 (f, s) = L

(S)
Q(χ(G))(φ

−1
χ , s + 1). It

follows that for all u ∈ (Z�0)Ĝ/∼, one has a formal identity between Dirichlet series

Zu(f, s) =
∏

χ∈Ĝ′/∼

uχ∏
k=1

L
(S)
Q(χ(G))(φ

−1
χ , sχ + k). (4.3)

By [14, Chapter VIII, Theorems 5 and 7], the Dirichlet series for L(S)
Q(χ(G))(φ

−1
χ , s + 1) converges

for 
s > τχ, and for all k ∈ Z�2, the Dirichlet series for L
(S)
Q(χ(G))(φ

−1
χ , s + k) converges

absolutely for 
s > τχ. It follows from this and from a classical result of Landau on convergence
of products of Dirichlet series (see [13, Theorem 54]) that equation (4.3) is an equality of
analytic functions, valid whenever 
sχ > τχ for all χ ∈ Ĝ′/∼. Finally, since, for every s ∈ C

with 
s > τχ, one has L
(S)
Q(χ(G))(φ

−1
χ , s + k) = 1 + O(2−k), we may take the limit of equation

(4.3) as u → ∞, and the result follows. �

Now, let c ∈ G be an element of order 2, let A = Q[G]/(1 + c), let R = Z(S)[G]/(1 + c),
let P be the zero A-module, and let M and F be as in the introduction. Let
Ĝ′ = {χ ∈ Ĝ : χ(c) = −1}, so that G(R)tors ∼=

⊕
χ∈Ĝ′/∼ Clχ(T ). For a group homomorphism

φ = (φχ)χ∈Ĝ′/∼ : G(R)tors → C×, define fφ : M → C× by fφ(M) = φ([M ]) for all M ∈ M.
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Proposition 4.4. Suppose that for all group homomorphisms φ : G(R)tors → C×, Heuris-
tic 2.1 holds with K = Q, with R and P as just defined, and with f = fφ. Then, as (F, ι) ranges
over F , the class of R⊗Z[G] ClF in G(R)tors is equidistributed.

Proof. It follows from Theorem 4.2 that if φ = (φχ)χ∈Ĝ′/∼ is a group homomorphism as in
the hypotheses, then the limit (2.3) for f = fφ is equal to

lim
s→0

∏
χ∈Ĝ′/∼

∞∏
k=1

⎛⎝L
(S)
Q(χ(G))(φ

−1
χ , s + k)

ζ
(S)
Q(χ(G))(s + k)

⎞⎠,

where ζ
(S)
Q(χ(G))(s) denotes the Dedekind zeta function of the field Q(χ(G)) with the Euler

factors at prime ideals not dividing any element of S omitted. If φ is non-trivial, that is, at
least one φχ is non-trivial, then for any such χ the pole of the Dedekind zeta function of
Q(χ(G)) at s = 1 ensures that this limit is 0. If x ∈ G(R)tors is arbitrary, and fx : M → C is
defined by fx(M) = 1 if [M ] = x and fx(M) = 0 otherwise, then by the usual Fourier theory
(which, in this case, is character theory of finite abelian groups), we have

fx =
1

#G(R)tors

∑
φ

φ(x) · fφ,

where the sum runs over all homomorphisms φ : G(R)tors → C×. Thus, the limit (2.3) for f = fx
is 1

#G(R)tors
, with the only non-zero contribution coming from the trivial homomorphism, as

claimed. �

In the remainder of the section, we will show that the conclusion of Proposition 4.4 is, in
fact, false, in general.

Roots of unity

Let F/Q be an imaginary abelian field with Galois group G, and let c ∈ G be the automorphism
of F given by complex conjugation. We write Ĝ− = {χ ∈ Ĝ : χ(c) = −1}, and T− = T/(1 + c);
the latter ring may be identified with

∏
χ∈Ĝ−/∼ χ(T ), and one has

G(T−) ∼=
⊕

χ∈Ĝ−/∼
G(χ(T )). (4.5)

For each m ∈ Z>0, we denote by ζm a primitive mth root of unity in some algebraic closure
of F . Let U be the set of prime numbers q ∈ S for which F contains ζq. Recall from the
introduction that μF denotes the group of roots of unity in F .

Proposition 4.6. The group T− ⊗Z[G] μF is cyclic of order
∏

q∈U q.

Proof. Since μF is finite cyclic, the group Z(S) ⊗Z μF is cyclic of order equal to the
largest divisor of #μF that is a product of primes in S. If q is a prime number for which q2

divides #μF , then q divides [F : Q] = #G, and therefore q �∈ S. This implies that Z(S) ⊗Z μF

is cyclic of order
∏

q∈U q. It is also a Z(S)[G]-module on which c acts as −1, so it equals
T− ⊗Z[G] μF . �

For each q ∈ U , denote by ϕq : T− → End〈ζq〉 ∼= Z/qZ the ring homomorphism that describes
the T−-module structure of 〈ζq〉.

Proposition 4.7. For each q ∈ U there is an element χq ∈ Ĝ−, unique up to ∼, such that
ϕq factors as T− → χq(T ) → Z/qZ, and it is characterised by the subfield F kerχq ⊂ F being
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equal to Q(ζq). Also, if pq denotes the kernel of χq(T ) → Z/qZ, then the image of the element
[T− ⊗Z[G] μF ] ∈ G(T−) under the isomorphism (4.5) equals the image of (χq(T )/pq)q∈U under
the natural inclusion

⊕
q∈U G(χq(T )) ⊂ ⊕

χ∈Ĝ−/∼ G(χ(T )).

Proof. Since Z/qZ is a field, the map ϕq factors through exactly one of the components in
the decomposition T− =

∏
χ∈Ĝ−/∼ χ(T ), say through χq(T ). By the irreducibility of the qth

cyclotomic polynomial, the induced map G → χq(G) → (Z/qZ)× is surjective, and since q does
not divide #G, the map χq(G) → (Z/qZ)× is injective, so the map χq(G) → (Z/qZ)× is an
isomorphism. This shows that kerχq = ker(G → (Z/qZ)×), so we have indeed F kerχq = Q(ζq).
In particular, the order of χq equals q − 1, so χq �= χq′ for distinct q, q′ ∈ U . We have an isomor-
phism of T−-modules T− ⊗Z[G] μF

∼= ⊕
q∈U χq(T )/pq, and this implies the last assertion. �

Maximal ideals

Let χ ∈ Ĝ−. We describe the set of non-zero prime ideals of the Dedekind domain
χ(T ) = Z(S)[χ(G)], which for non-empty S coincides with the set Maxspecχ(T ) of its maximal
ideals. Denote by [χ] ∈ Ĝ− the equivalence class of χ under ∼. For each p ∈ S, let an embedding
of Q̄ in an algebraic closure Q̄p of the field Qp of p-adic numbers be fixed, so that the group
Ĝ = Hom(G, Q̄×) may be identified with Hom(G, Q̄×

p ); for ψ, ψ′ ∈ [χ], we write ψ ∼p ψ′ if there
exists σ ∈ Gal(Q̄p/Qp) with ψ′ = σ ◦ ψ. For each (p, ψ) ∈ S × [χ], the map ψ induces a ring
homomorphism ψ : χ(T ) → Q̄p of which the image is contained in the discrete valuation ring
Zp[ψ(G)]; we write mp,ψ for the kernel of the resulting map from χ(T ) to the residue class field of
Zp[ψ(G)]. This kernel is a non-zero prime ideal of χ(T ). Each non-zero prime ideal of χ(T ) is of
the form mp,ψ with (p, ψ) ∈ S × [χ], and one has mp,ψ = mp′,ψ′ if and only if p = p′ and ψ ∼p ψ′.

Example 4.8. The prime ideal pq of χq(T ) occurring in Proposition 4.7 equals mq,ωq
, where

ωq : G → Z×
q is the unique group homomorphism for which the induced map G → (Z/qZ)×

describes the G-module structure of 〈ζq〉. The character ωq ∈ Ĝ is called the Teichmüller
character at q.

Bernoulli numbers

Let χ ∈ Ĝ−, and let f(χ) ∈ Z>0 be minimal with F kerχ ⊂ Q(ζf(χ)). For each t ∈ Z that is
coprime to f(χ), denote by ηt the restriction to F kerχ of the automorphism of Q(ζf(χ)) that
sends ζf(χ) to ζtf(χ); note that ηt belongs to the Galois group Gal(F kerχ/Q), which may be
identified with G/ kerχ and with χ(G), and indeed we shall view ηt as an element of the
cyclotomic field Q(χ(G)). We define the Bernoulli number

β(χ) =
∑

1�t�f(χ),
gcd(t,f(χ))=1

t

f(χ)
· η−1

t ,

which is also an element of the cyclotomic field Q(χ(G)). For each (p, ψ) ∈ S × [χ], the character
ψ induces a field embedding Q(χ(G)) → Q̄p, which we simply denote by ψ. The following result
relates the image ψ(β(χ)) of the Bernoulli number to the ψ-component Zp[ψ(G)] ⊗Z[G] ClF of
the class group of F .

Proposition 4.9. (a) Let χ ∈ Ĝ− and (p, ψ) ∈ S × [χ]. If q ∈ U is such that χ ∼ χq, assume
(p, ψ) �= (q, ωq), where ωq is as in Example 4.8. Let g be the rank of Zp[ψ(G)] as a Zp-module.
Then the order of Zp[ψ(G)] ⊗Z[G] ClF equals a unit of Zp[ψ(G)] times ψ(β(χ))g.

(b) Let q ∈ U . Then Zq[ωq(G)] ⊗Z[G] ClF = {0}, and q · ωq(β(χq)) ∈ Z×
q .
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Proof. Part (a) is, stated with different notation, the same as [16, Theorem 2, Chapter
1, §10]. The first assertion of part (b) is [16, Remark 1, Chapter 1, §10] following the same
theorem. For the second assertion of (b), note that by Proposition 4.7 we have F kerχq = Q(ζq),
so f(χq) = q, and therefore

q · ωq(β(χ)) =
q−1∑
t=1

t · ωq(ηt)−1.

Here, ωq(ηt) is a (q − 1)th root of unity in Zq, and, by definition of ωq and ηt, it maps to
(t mod q) in Z/qZ. Hence, q · ωq(β(χq)) is an element of Zq that maps to (q − 1 mod q) and
therefore belongs to Z×

q . �

The following result describes, for each χ ∈ Ĝ−, the finite χ(T )-module χ(T ) ⊗Z[G] ClF up
to Jordan–Hölder isomorphism in terms of Bernoulli numbers. We let pq be the prime ideal of
χq(T ) introduced in Proposition 4.7.

Proposition 4.10. Let χ ∈ Ĝ−.

(a) If there does not exist q ∈ U such that χ ∼ χq, then one has β(χ) ∈ χ(T ), and the
χ(T )-modules χ(T ) ⊗Z[G] ClF and χ(T )/(β(χ)) have isomorphic Jordan–Hölder series.

(b) If q ∈ U is such that χ = χq, then one has pqβ(χ) ⊂ χ(T ), and the χ(T )-modules
χ(T ) ⊗Z[G] ClF and χ(T )/pqβ(χ) have isomorphic Jordan–Hölder series.

Proof. In case (a), one sees from Proposition 4.9(a) that for every non-zero prime ideal
m = mp,ψ of χ(T ) the element β(χ) ∈ Q(χ(G)) has non-negative valuation at m, so one has
β(χ) ∈ χ(T ). In case (b), Proposition 4.9 shows that the same assertion has the single exception
m = pq = mq,ωq

, and that β(χ) has valuation −1 at pq; so in that case one has pqβ(χ) ⊂ χ(T ).
Proposition 4.9 implies that β(χ) �= 0, so all χ(T )-modules occurring in Proposition 4.10 are

finite; and two finite χ(T )-modules have isomorphic Jordan–Hölder series if and only if, for each
non-zero prime ideals m = mp,ψ of χ(T ), their m-primary parts have the same cardinality. In
case (a), Proposition 4.9(a) shows that this is indeed the case for the two modules χ(T ) ⊗Z[G]

ClF and χ(T )/(β(χ)). In case (b), there is again a single m = mq,ωq
that requires special

treatment; Proposition 4.9(b) shows that in this exceptional case both modules have trivial
m-primary parts. �

We are now ready to prove Theorem 1.1. We first recall the statement.

Theorem 4.11. Let F/Q be a finite imaginary abelian extension, let G be its Galois group,
let c ∈ G denote complex conjugation, let S be a set of prime numbers not dividing #G, and
let T− = Z(S)[G]/(1 + c). Then we have [T− ⊗Z[G] ClF ] = [T− ⊗Z[G] μF ] in G(T−).

Proof. We will compute [T− ⊗Z[G] ClF ] ∈ G(T−) ∼= ⊕
χ∈Ĝ−/∼ G(χ(T )) component by com-

ponent, and compare the result with Proposition 4.7. Let χ ∈ Ĝ−. If for all q ∈ U one has
χ �∼ χq, then by Proposition 4.10(a) the χ-component [χ(T ) ⊗Z[G] ClF ] equals [χ(T )/(β(χ))],
and the exact sequence

0 −→ χ(T )
β(χ)−→ χ(T ) −→ χ(T )/(β(χ)) −→ 0

shows that [χ(T )/(β(χ))] = 0. If, on the other hand, q ∈ U is such that χ = χq, then one has
[χ(T ) ⊗Z[G] ClF ] = [χ(T )/pqβ(χ)], and the exact sequence

0 −→ pq
β(χ)−→ χ(T ) −→ χ(T )/pqβ(χ) −→ 0
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shows that [χ(T )/pqβ(χ)] = [χ(T )] − [pq] = [χ(T )/pq]. Comparing this description of [T− ⊗Z[G]

ClF ] with the description of [T− ⊗Z[G] μF ] given by Proposition 4.7, one finds that they are
equal. �

Corollary 4.12. Under the hypotheses of Theorem 4.11, suppose that for all q ∈ U , the
class group of Q(ζq−1) is trivial. Then [T− ⊗Z[G] ClF ] = 0 in G(T−).

Proof. By Theorem 4.11, we have [T− ⊗Z[G] ClF ] = [T− ⊗Z[G] μF ] in G(T−). Since for all
q ∈ U , the class group of Q(ζq−1) is trivial, the ideals pq from Proposition 4.7 are principal for
all q ∈ U , so the result follows from Proposition 4.7. �

Counterexample to the Cohen–Lenstra–Martinet heuristics

We will now show that the conclusion of Corollary 4.12 contradicts the conclusion of
Proposition 4.4, thus disproving Heuristic 2.1.

Let G be a cyclic group of order 58, let S contain all prime numbers except 2 and 29, and
let c ∈ G be the unique element of order 2. With these choices, if F/Q is a Galois extension
with Galois group isomorphic to G such that complex conjugation is given by c, then T− ∼=
Z(S) × Z(S)[ζ29]. Let R = T−, let P be the zero A-module, and let M and F be as in the
introduction. With these choices, F is the family of imaginary cyclic number fields of degree
58. The group G(R)tors is isomorphic to the class group ClZ(S)[ζ29], which one can check to
be elementary abelian of order 8. For every F in the family under consideration except for
F = Q(ζ59), the set U that was introduced before Proposition 4.6 is either empty or equal to
{3}. It follows from Corollary 4.12 that, unless F = Q(ζ59), the class [R⊗Z[G] ClF ] in G(R) is
0, contradicting the conclusion of Proposition 4.4.

5. Arakelov class groups of real abelian fields

In this section, we reinterpret Theorem 4.11 in terms of so-called oriented Arakelov class
groups, proving Theorem 1.4 along the way. This reinterpretation leads to a more general
result, Theorem 5.4, which pertains to all finite abelian extensions of Q, and which might
conceivably be true in much greater generality; see Question 5.5.

We will use the generalities on group rings explained at the beginning of Section 4. In
particular, G still denotes a finite abelian group, and we retain the notation S, T , Ĝ.

Assume that S does not contain any prime numbers dividing 2 · #G. Let F be a real abelian
number field with Galois group G over Q, and let O denote the ring of integers of F . If
k �= Q is a subfield of F that is cyclic over Q, let αk = NormQ(ζf )/k(1 − ζf ), where f ∈ Z>0 is
minimal with k ⊂ Q(ζf ), and ζf denotes an arbitrarily chosen primitive fth root of 1 in an
algebraic closure of F . Let D be the subgroup of F× generated by the G-orbits of αk for all
subfields k �= Q of F that are cyclic over Q. We follow Mazur–Wiles [16] in defining the group
of cyclotomic units of F to be C = D ∩ O× = ker(|NormF/Q| : D → Q×). This group forms a
Z[G]-submodule of O×. We will write −(S) for Z(S) ⊗Z −. We will write the T -modules D(S),
C(S), O×

(S) additively, so that C(S) is the kernel of the map D(S) → D(S), x �→ NormF/Qx,
where NormF/Q =

∑
g∈G g ∈ T .

Proposition 5.1. The T -module C(S) is isomorphic to T/(
∑

g∈G g).

Proof. We will use without further explicit mention the facts that the ring Z(S) is flat over
Z, and, for every χ ∈ Ĝ, the ring χ(T ) is flat over T .

By [16, Theorem 1, Chapter 1, §10], the subgroup C has finite index in O×. It follows that
the annihilator of C(S) in T is generated by

∑
g∈G g ∈ T . The assertion of the proposition is
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therefore equivalent to the statement that for every non-trivial χ ∈ Ĝ, the module χ(T ) ⊗T C(S)

is free of rank 1 over χ(T ), which we will now prove.
First, suppose that χ ∈ Ĝ is faithful, non-trivial. In particular, G is non-trivial, cyclic. Then

for all k � F distinct from Q, we have χ(T ) ⊗T Tαk = 0, since all elements of Tαk are fixed by
a proper subgroup of G, while χ is faithful. Since the image of NormF/Q ∈ T in the quotient
χ(T ) is 0, we have

χ(T ) ⊗T C(S) = χ(T ) ⊗T ker(NormF/Q : D(S) → D(S))

= χ(T ) ⊗T D(S) = χ(T ) ⊗T TαF ,

so χ(T ) ⊗T C(S) is cyclic.
Now, we deduce the general case. Let χ ∈ Ĝ be arbitrary non-trivial, and let F ′ ⊂ F be

the fixed field of kerχ. Temporarily write CF,(S) = C(S), and let CF ′,(S) = Z(S) ⊗Z CF ′ , where
CF ′ is the analogously defined group of cyclotomic units of F ′. The image of the element
NormF/F ′ =

∑
g∈kerχ g of T in the quotient χ(T ) is [F : F ′], which is invertible in χ(T ). It

follows that χ(T ) ⊗T CF,(S) = χ(T ) ⊗T NormF/F ′(CF,(S)). Moreover, it follows from a direct
calculation, which we leave to the reader, that NormF/F ′CF,(S) ⊂ CF ′,(S), and in fact, we
have equality, since NormF/F ′ acts as [F : F ′], and thus invertibly, on CF ′,(S) ⊂ CF,(S). In
summary, we have χ(T ) ⊗T CF,(S) = χ(T ) ⊗T CF ′,(S). The assertion therefore follows from the
special case proved above, applied to F ′ in place of F . �

The map G → G given by g �→ g−1 for all g ∈ G extends Z(S)-linearly to an isomorphism
between T and its opposite ring T opp. If M is any T -module, then the above isomorphism
makes Hom(M,Z(S)) and Hom(M,Q/Z) into T -modules, which we denote by M∗ and
M∨, respectively.

We can now prove Theorem 1.4. Let us recall the statement.

Theorem 5.2. Let F/Q be a finite real abelian extension, let G be its Galois group, let S
be a set of prime numbers not dividing 2 · #G, and let T = Z(S)[G]. Then we have the equality
[T ⊗Z[G] ArF ] = [T ] − [Z(S)] in G(T ), where [Z(S)] denotes the class of Z(S) with the trivial
G-action.

Proof. Recall from the exact sequence (1.3) that we have the equality

[T ⊗Z[G] ArF ] = [(O×
(S))

∗] + [(T ⊗Z[G] ClF )∨]

in G(T ). By [16, Theorem 1, Chapter 1, §10], we have [O×
(S)/C(S)] = [T ⊗Z[G] ClF ], or dually,

[(C(S))∗/(O×
(S))

∗] = [(T ⊗Z[G] ClF )∨],

whence [T ⊗Z[G] ArF ] = [(C(S))∗]. The theorem therefore follows from Proposition 5.1. �

Theorem 5.2 expresses that the class of the T -module T ⊗Z[G] ArF in G(T ) is ‘as simple as
it can be’ given the Q[G]-module structure of Q[G] ⊗Z[G] ArF . Indeed, as the discussion at the
beginning of Section 4 shows, the class [T ⊗Z[G] ArF ] in G(T ) is determined by its images under
the projection G(T ) → G(T )/G(T )tors and under the canonical splitting G(T ) → G(T )tors; the
former is determined by the Q[G]-module structure of Q[G] ⊗Z[G] ArF , and the theorem implies
that the latter is 0.

Theorems 5.2 and 4.11 can be elegantly combined into one statement, using the so-called
oriented Arakelov class group of a number field F , defined by Schoof in [20]. To explain this,
we will briefly recall the definition and the most salient properties of the oriented Arakelov
class group, and refer the reader to [20] for details.
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Let F/Q be a finite extension, let IdF be the group of fractional ideals of OF , and let FR

denote the R-algebra R ⊗Q F . The maximal compact subgroup c(F×
R ) of F×

R is isomorphic to
{±1}r × {z ∈ C× : |z| = 1}c, where r and c denote the set of real, respectively, complex places
of F . It contains the group μF of roots of unity of F as a subgroup. We have canonical maps
IdF → R>0 and F×

R → R>0, the first given by the ideal norm, and the second given by the
absolute value of the R-algebra norm. Let IdF ×R>0 F

×
R be the fibre product with respect to

these maps. The oriented Arakelov class group P̃ic
0

F of F is defined as the cokernel of the map
F× → IdF ×R>0 F

×
R that sends α ∈ F× to (αOF , α). It is a compact abelian AutF -module,

whose dual Hom(P̃ic
0

F ,R/Z) will be denoted by ÃrF . One has an exact sequence of finitely
generated discrete AutF -modules

0 → ArF → ÃrF → Hom(c(F×
R )/μF ,R/Z) → 0.

Let K be an algebraic number field, let F/K be a finite Galois extension, let G be its Galois
group, let S is any set of odd prime numbers, let Σ be the set of infinite places of K, and for v ∈
Σ let Iv ⊂ G denote an inertia subgroup at v. Then one has an isomorphism of Z(S)[G]-modules

Z(S) ⊗Z Hom(c(F×
R ),R/Z) ∼=

⊕
v∈Σ

IndG/Ivτv,

where IndG/Iv denotes the induction from Iv to G, and

τv =

{
Z(S)[Iv]/〈

∑
g∈Iv

g〉, v is real,
Z(S), v is complex.

Let d be the degree of K over Q. By combining the above observation with the exact sequence
(1.3), we deduce the equalities

[ÃrF,(S)] − [ArF,(S)] = d · [Z(S)[G]] −
∑
v∈Σ

[Z(S)[G/Iv]] − [μ∨
F,(S)],

and hence

[ÃrF,(S)] = d · [Z(S)[G]] −
∑
v∈Σ

[Z(S)[G/Iv]] + [(O×
F,(S))

∗] + [Cl∨F,(S)] − [μ∨
F,(S)] (5.3)

in G(Z(S)[G]), where Z(S)[G/Iv] denotes the permutation module with a Z(S)-basis given by the
set of cosets G/Iv, and with G acting by left multiplication. Note that this equality holds for all
finite Galois extensions, not just abelian ones. From this equality, together with Theorems 5.2
and 4.11, one easily deduces the following result.

Theorem 5.4. Let F/Q be a finite abelian extension, let G be its Galois group, let S be
a set of prime numbers not dividing 2 · #G, and let T = Z(S)[G]. Then we have the equality

[T ⊗Z[G] ÃrF ] = [T ] − [Z(S)] in G(T ).

The theorem suggests the following question.

Question 5.5. Let K be an algebraic number field, let d be its degree over Q, let F/K be a
finite Galois extension, let G be its Galois group, let S be a set of prime numbers not dividing
2 · #G, and let T = Z(S)[G]. Is the class of ÃrF,(S) in G(T ) equal to d · [T ] − [Z(S)]?
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Equation (5.3) shows that the answer to Question 5.5 is affirmative when the natural map
G(T ) → G(Q ⊗Z(S) T ) is injective, which is the case for example when S is finite, as can be
deduced from Lemma 3.5 and [18, Theorem 21.4].

6. Enumerating number fields

In this section, we give our second disproof of the Cohen–Lenstra–Martinet heuristics. We
begin by proving Theorem 1.2, and then compare its consequences with the predictions of
Heuristic 2.1.

Our disproof suggests that the discriminant is not a good invariant to use for purposes of
arithmetic statistics, and we investigate alternatives.

Let Q̄ be a fixed algebraic closure of Q, and let C(x) be the set of all fields F ⊂ Q̄ that
are Galois over Q with cyclic Galois group of order 4 and whose discriminant is at most x. If
k ⊂ Q̄ is a quadratic field, let Ck(x) = {F ∈ C(x) : k ⊂ F}. If n is a positive integer, let σ0(n)
denote the number of positive divisors of n. The following result is a more precise version of
Theorem 1.2.

Theorem 6.1. Define

t =
24 +

√
2

24
·

∏
p≡1(mod 4)

(
1 +

2
(p + 1)

√
p

)
− 1,

where p ranges over primes. If k ⊂ Q̄ is a quadratic field, and d is its discriminant, then define
pk by

(i) pk = 0 if d < 0 or d has at least one prime divisor that is congruent to 3 (mod 4);
(ii) pk = σ0(d)

t·∏p|d(p+1)
√
p if d > 0, all odd prime divisors of d are congruent to 1 (mod 4), and

d is even, where the product runs over all prime divisors of d;

(iii) pk = σ0(d)
16t·∏p|d(p+1)

√
p if d > 0 and all prime divisors of d are congruent to 1 (mod 4),

where the product runs over all prime divisors of d.

Then:

(a) in case (i) the set Ck(x) is empty for all real numbers x;
(b) in the other two cases, the limit

lim
x→∞

#Ck(x)
#C(x)

exists, and is equal to pk;
(c) one has

∑
k pk = 1, where the sum runs over all quadratic fields in Q̄.

Proof. First we prove part (a). If k is a quadratic field, and F is a cyclic quartic field
containing k, then any place of Q that ramifies in k must be totally ramified in F , so k must
be real, and only primes that are congruent to 1 or 2 (mod 4) can ramify in k. This proves the
first assertion.

Now, we prove part (b). Let k be a quadratic field, let d be its discriminant, and assume
that d is positive and not divisible by any primes that are congruent to 3 (mod 4). We will use
the estimates of [17]. Write d = 2βd′, where β ∈ {0, 3}, and d′ is a product of distinct prime
numbers that are congruent to 1 (mod 4). Then the discriminant of any cyclic quartic field
containing k is of the form n = 2αd′3a2, where a is an odd square-free positive integer that is
coprime to d′, and α = 11 if β = 3, and α ∈ {0, 4, 6} if β = 0 (see [17]). Note that k = Q(

√
n),

so the discriminant of a cyclic quartic field determines its unique quadratic subfield. Let h(n)
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be the number of cyclic quartic fields inside Q̄ of discriminant n. By [17, equation (3.3)], we
have

h(n) =

⎧⎪⎨⎪⎩
2σ0(d′) : α = 11,
σ0(d′) : α = 6,
1
2σ0(d′) : α = 0 or 4.

For a real number x, let γ(x) denote the number of square-free positive integers that are at
most x and coprime to 2d. It follows from the above discussion, that if d is odd, then

#Ck(x) =
∑

a�
√

x/d3

h(d3a2) +
∑

a�
√

x/(24d3)

h(24d3a2) +
∑

a�
√

x/(26d3)

h(26d3a2)

= σ0(d)
(

1
2γ

(√
x/d3

)
+ 1

2γ
(√

x/(24d3)
)

+ γ
(√

x/(26d3)
))

,

where the sums run over square-free positive integers a that are coprime to 2d; while if d is
even, then

#Ck(x) =
∑

a�
√

x/(211d′3)

h(211d′3a2) = 2σ0(d′)γ
(√

x/(211d′3)
)
,

with the sum again running over square-free positive integers a that are coprime to 2d. A
standard estimate shows that for a positive integer m, we have

γ(x) =
6x
π2

∏
p|2d

p

p + 1
+ O(x1/2),

where p ranges over primes. Combining this estimate with the above formulae for #Ck(x)
yields

#Ck(x) = σ0(d)
3x1/2

d3/2π2

∏
p|d

p

p + 1
+ O(x1/4)

= σ0(d)
3x1/2

π2

∏
p|d

1
(p + 1)

√
p

+ O(x1/4)

if d is odd, and

#Ck(x) = σ0(d′)
x1/2

25/2d′3/2π2

∏
p|d′

p

p + 1
+ O(x1/4)

= σ0(d′)
x1/2

25/2π2

∏
p|d′

1
(p + 1)

√
p

+ O(x1/4)

if d is even, where again p ranges over primes. On the other hand, by [17] we have

#C(x) =
3
π2

tx1/2 + O(x1/3(log x)3),

whence part (b) of the theorem follows.
The last part is readily verified by an easy direct computation, and we leave this to the

reader. �
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Theorem 6.2. Let C(x) be the set of cyclic quartic fields inside Q̄ with discriminant at
most x, and let C′(x) ⊂ C(x) be the subset of those for which the class number of the quadratic
subfield is not divisible by 3. Then the limit limx→∞ #C′(x)/#C(x) exists, and one has

lim
x→∞#C′(x)

/
#C(x) ≈ 0.9914.

Proof. For a quadratic field k and a positive real number x, let pk(x) = #Ck(x)/#C(x).
Then by Theorem 6.1 one has limx→∞ pk(x) = pk, where pk is defined as in that theorem.

Let K be any set of real quadratic fields. Then we claim that

lim
x→∞

∑
k∈K

pk(x) =
∑
k∈K

lim
x→∞ pk(x). (6.3)

This is clear when K is finite. In general, for every finite K′ ⊂ K, we have

lim inf
x→∞

∑
k∈K

pk(x) � lim inf
x→∞

∑
k∈K′

pk(x),

so applying identity (6.3) to finite subsets of K, we obtain

lim inf
x→∞

∑
k∈K

pk(x) � sup
K′⊂K
finite

∑
k∈K′

lim
x→∞ pk(x) =

∑
k∈K

lim
x→∞ pk(x), (6.4)

where the last equality follows from the fact that all the summands are non-negative. By
Theorem 6.1(c) one has

∑
k limx→∞ pk(x) = 1, where the sum runs over all real quadratic

fields. By combining this with inequality (6.4) applied to the complement of K in the
set of all real quadratic fields in place of K, one deduces that lim supx→∞

∑
k∈K pk(x) �∑

k∈K limx→∞ pk(x), whence the claimed equality (6.3) follows.
When applied to the set K of real quadratic fields whose class number is not divisible by

3, this shows that the limit limx→∞ #C′(x)/#C(x) exists. Moreover, by summing pk from
Theorem 6.1 over those real quadratic fields of discriminant less than 3.1 × 109 whose class
number is, respectively, is not, divisible by 3 one obtains sufficiently tight upper and lower
bounds on that limit to obtain the estimate in the theorem. �

Remark 6.5. If, in Heuristic 2.1, we take G = 〈g|g4 = id〉, A = Q[G]/(1 + g) ∼= Q, S = {3}
(so that in particular R ∼= Z(3)), the module P to be free of rank 1 over R, and

f : M �→
{

0, 3 | #M ;
1, 3 � #M,

then the value of (2.2) is nothing but the limit limx→∞ #C′(x)/C(x) referred to in Theorem 6.2.
The same argument as in the proof of the theorem shows that, more generally, if one chooses
A and G as just described, S to be any set of odd primes, the projective module P to have
rank 1 over R, and f to be any computable bounded C-valued function on M, then the limit
(2.2) exists and can be computed to any desired precision.

Theorem 6.2 contradicts the predictions of Heuristic 2.1, as we will now explain. As just
remarked, the limit limx→∞ #C′(x)/C(x) of Theorem 6.2 is equal to the value of (2.2) for
suitable choices of G, A, S, P , and f . The value of (2.3), on the other hand, with these choices is
the same as with a different choice, namely, as with G′ = 〈h|h2 = id〉, A′ = Q[G′]/(1 + h) ∼= A,
and S′ = S, P ′ = P , and f ′ = f . With that latter choice, the value of (2.3) was computed
in [6, (1.2)(b)] to be ≈ 0.8402, and thus not equal to the value of (2.2), which is given by
Theorem 6.2. This completes our disproof of Heuristic 2.1.

The above disproof relies on the observation that enumerating number fields by non-
decreasing discriminant has the undesirable feature that certain fields may appear with positive
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probability as intermediate fields, so that Heuristic 2.1 for those number fields clashes with that
for the intermediate fields. We conjecture that instead enumerating fields by the ideal norm
cF/K of the product of the primes of OK that ramify in F/K does not exhibit this feature.
The following is a result in support of this conjecture. Recall that if F is a set of pairs (F, ι) as
in the introduction, where all fields F are Galois extensions of a given field K, then for every
positive real number B we define Fc�B = {(F, ι) ∈ F : cF/K � B}.

Proposition 6.6. Let K be a number field, let K̄ be an algebraic closure of K, let G
be a finite abelian group, let V be a finitely generated Q[G]-module, and let F be the set of
all pairs (F, ι), where F ⊂ K̄ is a Galois extension of K, and ι is an isomorphism between
the Galois group of F/K and G that induces an isomorphism Q ⊗Z O×

F
∼= V of Q[G]-modules.

Assume that F is not empty. Let k ⊂ K̄ be a field properly containing K. Then the limit
limB→∞ #{(F, ι) ∈ Fc�B : k ⊂ F}/#Fc�B is zero.

Proof. Let T be an infinite set of prime ideals of OK with odd residue characteristics that
are not totally split in k/K. Then for any F ⊂ K̄ that contains k, and for all p ∈ T , we have
F ⊗K Kp �∼= K#G

p as Kp-algebras, where Kp denotes the field of fractions of the completion of
OK at p. It follows that for all positive real numbers B, we have

#{(F, ι) ∈ Fc�B : k ⊂ F} � #{(F, ι) ∈ Fc�B : ∀p ∈ T : F ⊗KKp �∼= K#G
p }.

By [21, Theorem 2.1], for every finite subset T ′ of T , each of the following limits exists, and
there is an equality

lim
B→∞

#{(F, ι) ∈ Fc�B : ∀p ∈ T ′ : F ⊗KKp �∼= K#G
p }

#Fc�B

=
∏
p∈T ′

(
lim

B→∞
#{(F, ι) ∈ Fc�B : F ⊗KKp �∼= K#G

p }
#Fc�B

)
,

moreover, [21, Theorem 2.1] also implies that each of the factors on the right-hand side is
bounded away from 1 uniformly for all p ∈ T . Thus, we have

lim sup
B→∞

#{(F, ι) ∈ Fc�B : k ⊂ F}
#Fc�B

�
∏
p∈T

(
lim

B→∞
#{(F, ι) ∈ Fc�B : F ⊗KKp �∼= K#G

p }
#Fc�B

)
= 0,

as claimed. �

7. Reasonable functions

In this section, we address the question of which functions may qualify as ‘reasonable’ for the
purposes of Conjecture 1.5. We begin by proving Theorem 1.6, which suggests that demanding
that E(|f |) should exist is likely not a sufficient criterion. After that, we offer two possible
interpretations of the word ‘reasonable’.

From now on, let (X, p) be an infinite discrete probability space such that p(x) > 0 for all
x ∈ X, where we recall from the introduction that p(x) is shorthand for p({x}), and let Y be
the probability space XZ�1 with the induced product probability measure (see, for example,
[12, §38]). When referring to subsets of a measure space, we will say ‘almost all’ to mean a
subset whose complement has measure 0.

Let us reformulate Theorem 1.6, using the above notation.
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Theorem 7.1. For almost all sequences y = (yi)i ∈ Y , there exists a function f : X → R�0

whose expected value E(f) is finite, but for which the average limn→∞ 1
n

∑n
i=1 f(yi) of f on y

does not exist in R.

The idea of the proof will be to show that, for a typical (yi)i ∈ Y , there are many elements
x ∈ X that occur much earlier in (yi)i than one would expect. The function f then gives those
elements a large weight.

Proposition 7.2. For almost all sequences y = (yi)i ∈ Y it is true that for all ε ∈ R>0

there exist infinitely many x ∈ X such that for some i � ε/p(x), one has yi = x.

Proof. Let ε ∈ R>0 be given, and let U be a finite subset of X. First, we claim that for
almost all sequences y = (yi)i ∈ Y there exists x ∈ X \ U such that for some i � ε/p(x), one
has yi = x. If x is an element of X, let Ex be the set of y = (yi)i ∈ Y for which yi �= x for
all i � ε/p(x). The probability of the event Ex, meaning the measure of Ex ⊂ Y , is equal
to (1 − p(x))
ε/p(x)�, which tends to e−ε, as p(x) tends to 0, and in particular is uniformly
bounded away from 1 for all but finitely many x ∈ X. If x1, x2, . . . , xk are distinct elements of
X, then the events Exi

are generally not independent, but the probability of Exk
given that

all of Ex1 , . . . , Exk−1 occur is clearly less than or equal to the probability of Exk
. It follows

that the probability that Ex occurs for all x ∈ X \ U is at most
∏

x∈X\U (1 − p(x))
ε/p(x)� = 0.
This proves the claim.

Since the number of finite subsets U of X is countable, it follows from countable subadditivity
that if ε ∈ R>0 is given, then for almost all y = (yi)i ∈ Y it is true that for all finite subsets U
of X there exists x ∈ X \ U such that for some i � ε/p(x), one has yi = x. This implies that
if ε ∈ R>0 is given, then for almost all y = (yi)i ∈ Y there exist infinitely many x ∈ X such
that for some i � ε/p(x), one has yi = x. By applying this conclusion to countably infinitely
many εn ∈ R>0 in place of ε, where (εn)n∈Z�1 is a sequence converging to 0, and by invoking
countable subadditivity again, we deduce the proposition. �

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Let y = (yi)i ∈ Y be a sequence for which the conclusion of
Proposition 7.2 holds. Then there is a sequence x1, x2, . . . of distinct elements of X such
that for each n ∈ Z�1, we have min{i ∈ Z�1 : yi = xn} � n−3/p(xn).

For n ∈ Z�1, let i(n) = min{j ∈ Z�1 : yj = xn} � n−3/p(xn). For x ∈ X, define f(x) = 0 if
x �= xn for any n ∈ Z�1, and f(xn) = n−2/p(xn). Then we have E(f) =

∑
n∈Z�1

n−2, which
converges. On the other hand, for every n ∈ Z�1, one has

1
i(n)

i(n)∑
j=1

f(yj) �
f(xn)
i(n)

� n−2/p(xn)
n−3/p(xn)

= n,

which gets arbitrarily large, as n varies, so the limit limn→∞ 1
n

∑n
j=1 f(yj) does not exist. �

Let us now discuss two possible interpretations of the word ‘reasonable’ in Conjecture 1.5.
As will hopefully become clear, this section should be treated as an invitation to the reader
to join in our speculations. If MV is as in Conjecture 1.5, let f : MV → C be a function. For
a positive integer j, the jth moment of f is defined to be

∑
M∈MV

(f(M)jP(M)) if the sum
converges absolutely.
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Conjecture 7.3 (Supplement 1 to Conjecture 1.5). If f : MV → C is a function such that
for all j ∈ Z�1, the jth moment of |f | exists in R, then f is ‘reasonable’ for the purposes of
Conjecture 1.5.

All bounded functions on MV , and many unbounded functions of arithmetic interest satisfy
this condition. This applies to all examples in [6], with the exception of the functions f(M) =
#M , and f(M) = (#M)2, which often have expected value ∞. Note that in [6] the set S of
prime numbers was not assumed to be finite. Here, when we talk about the examples in [6],
we mean the analogues in our setting of the functions considered there. On the other hand, it
can be shown that if X = MV , A �= 0, and S is non-empty, so that MV is infinite, then for
the function constructed in the proof of Theorem 7.1 the second moment does not exist.

Let us call a class R of C-valued functions on X promising if for all f ∈ R, the expected
value E(f) exists, and for almost all sequences y = (yi)i ∈ Y it is true that for all f ∈ R we
have limn→∞ 1

n

∑n
i=1 f(yi) = E(f). By the law of large numbers, for any function f : X → C

for which E(f) exists, the set R = {f} is promising. It immediately follows that any countable
set R of such functions is promising. On the other hand, Theorem 7.1 implies that the class of
all functions f : X → C for which E(f) exists is not promising. An affirmative answer to the
following question would strengthen our confidence in Conjecture 7.3.

Question 7.4. Is the class of all functions f : MV → C for which for all j ∈ Z�1, the jth
moment of |f | exists in R promising?

We have the following weak result in this direction.

Proposition 7.5. The class of all bounded C-valued functions on X is promising.

Proof. For any c ∈ R>0, let Rc be the class of all functions f : X → C for which
supx∈X |f(x)| � c. We will first show that for all c ∈ R>0, the class Rc is promising.

Let X1 ⊂ X2 ⊂ . . . be a sequence of finite subsets of X such that limj→∞
∑

x∈Xj
p(x) =

1. Fix c ∈ R>0, and let ε ∈ R>0 be arbitrary. Then we may choose Xj(ε) such that∑
x∈X\Xj(ε)

p(x) � ε/c. Moreover, by the strong law of large numbers, there exists a subset
Yc(ε) ⊂ Y of measure 1 with the following property: for all y = (yi)i ∈ Yc(ε) there is an
Ny(ε) ∈ Z�1 such that for all x ∈ Xj(ε) and for all n � Ny(ε) one has | 1n · #{i � n : yi =
x} − p(x)| � ε/(c · #Xj(ε)). It follows that for all y ∈ Yc(ε), for all f ∈ Rc, and for all n � Ny(ε)
one has ∣∣∣∣∣ 1n

n∑
i=1

f(yi) − E(f)

∣∣∣∣∣ =

∣∣∣∣∣∑
x∈X

(
1
n · #{i � n : yi = x} − p(x)

) · f(x)

∣∣∣∣∣
�

∑
x∈Xj(ε)

∣∣( 1
n · #{i � n : yi = x} − p(x)

) · f(x)
∣∣

+
∑

x∈X\Xj(ε)

∣∣( 1
n · #{i � n : yi = x} − p(x)

) · f(x)
∣∣

� ε +
∑

x∈X\Xj(ε)

1
n · #{i � n : yi = x} · |f(x)| +

∑
x∈X\Xj(ε)

p(x)|f(x)|

� ε +

⎛⎝1 −
∑

x∈Xj(ε)

1
n · #{i � n : yi = x}

⎞⎠ · c + ε
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� 2ε +

⎛⎝1 −
∑

x∈Xj(ε)

(
p(x) − ε

c · #Xj(ε)

)⎞⎠ · c

� 4ε.

Therefore, if (εn)n∈Z�1 is a sequence of positive real numbers converging to 0, then
the intersection Yc =

⋂
n∈Z�1

Yc(εn) has measure 1 and has the property that for every
y = (yi)i ∈ Yc and for every f ∈ Rc one has limn→∞ 1

n

∑n
i=1 f(yi) = E(f).

If (cn)n∈Z�1 is a sequence of positive real numbers tending to ∞, then the class of all bounded
functions is equal to

⋃
n∈Z�1

Rcn , and the intersection
⋂

n∈Z�1
Ycn has measure 1 and has the

property that for every sequence y = (yi)i in this intersection and for every bounded function
f one has limn→∞ 1

n

∑n
i=1 f(yi) = E(f). This completes the proof. �

We will now describe a completely different approach to the question of reasonableness,
which is based on the idea that one can distinguish between ‘highly artificial’ functions, such
as those that are constructed in the proof of Theorem 7.1, and ‘natural’ functions that one
cares about in practice by the ease with which they can be computed.

Let A, S, R and V be as in Conjecture 1.5, and suppose that S is non-empty and A �= 0.
Let Q be the set of non-increasing sequences (ni ∈ Z�0 : i ∈ Z�0) that have only finitely many
non-zero terms. Let Maxspec(Z(R)) be the finite set of maximal ideals of the centre Z(R)
of R. It follows from [7, Lemma 2.7] that the set M is canonically in bijection with the set
QMaxspec(Z(R)), and by Lemma 3.5 we also have a bijection between MV and QMaxspec(Z(R)).

Conjecture 7.6 (Supplement 2 to Conjecture 1.5). If f : MV → Z is a function such
that E(|f |) exists in R, and the function QMaxspec(Z(R)) → Z induced by f is computable
in polynomial time, where the input is given in unary notation, then f is ‘reasonable’ for the
purposes of Conjecture 1.5.

The functions that one typically cares about in practice, including all those given as examples
in [6] for which S is finite, are computable in polynomial time. On the other hand, we do not
expect the function that was constructed in the proof of Theorem 7.1 for y being the sequence
of class groups in a family of number fields to be computable in polynomial time. Indeed,
to define f(M), one needs to know roughly the first #Aut(M) terms of the sequence y, and
#Aut(M) is exponential in the size of the input.
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