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ABSTRACT  

The cognitive context of sensorimotor synchronisation (SMS) starts with the 

assumption that performance of relatively simple behaviour emerges through the  

background noise of a psychological context.  The need to acknowledge this 

assumption becomes more apparent when clear definitions are sought. For example 

SMS  has been defined as the “coordination of a rhythmic action with a rhythmic event 

sequence” . This definition draws on the notion of measurement, (via coordination), 

the ability to produce repeated actions (rhythmic  action) and the ability to perceive a 

repetition of events (event sequence).  Each of these component notions when 

investigated empirically draws our attention to variability. Our understanding of 

variability in measurement, variability in the (re)production of action, and variability 

in perception has a long history in psychology and more broadly in science. The 

empirical findings of research on sensorimotor synchronisation outlined in the 

literature review (Chapter 1) indicate the progress that has been made in many lines 

over the last 100 years in understanding the nature of the component sources of 

variability. Despite this progress, and despite the growth in understanding the 

component sources of variability in cognition, perception and action, the role of more 

executive cognitive processes have not yet been well integrated to successful models 

of sensorimotor synchronisation.   

This thesis presents a series of studies investigating more precisely the role of 

executive control functions on the variability of repetitive production of movements. If 

executive functions are involved in such timing, then timing should be impaired in a 

dual task situation where the concurrent task also recruits executive functions. A 

simple dual task paradigm is introduced to a sensorimotor task (in ChapterChapter 2) 
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to explore this assumption with some additional analysis based on the level of musical 

experience of the participants.  A follow up study using a similar paradigm further 

explores the nature of the interference effect of a dual task on motor variability by 

varying the mode of the stimulus and responses to the secondary task. Findings from 

these experiments draw from competing information processing theories of cognitive 

sources of variability to account for the findings. Chapter 4 introduces a perturbation 

paradigm which had previously been identified as a way to measure more automated 

rhythmic movement production and online control that was considered more insulated 

from executive functions. A dual task probed the assumption that higher level 

executive processes would not interfere in perturbation recovery. A follow-up study 

using the perturbation paradigm was used with professional musicians to better 

understand the role of skill and musical training on both cognitive and motor sources 

of variability. Chapter 6 introduces a novel paradigm for assessing the variability of 

memory processes involved in rhythmic movement production by introducing 

different length gaps between synchronisation and continuation tapping movements. 

Two classes of behaviour were identified. Firstly, the introduction of the gap reduced 

the speeding up that was associated with initiating continuation tapping. Secondly, the 

introduction of the gap increased the amount of drift away from the target interval. 

The findings of the 5 experiments presented here are discussed (Chapter 7) in relation 

to existent theories and ongoing debates in the field of sensorimotor synchronisation. 

The contribution of this research highlights the importance of executive processes 

often overlooked when assessing the nature of variability in rhythmic movement 

production and opens some clear pathways for future research, adjustments to current 

models used, and novel paradigms. 
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CHAPTER 1 

 

1.1 INTRODUCTION 

 

Richard Feynman, a Professor of Theoretical Physics, recounts to his friend and 

drumming colleague Ralph Leighton (Feynman 1988) a number of basic questions 

about timing that he tried to investigate as a young student: what does determine the 

"time sense"? When you're trying to count at an even rate, what does that rate depend 

on? And what could you do to yourself to change it? 

 

He started by counting to 60 in a slow, steady rhythm: 1, 2, 3, 4, 5 .... and when he got 

to 60, he found only 48 seconds had gone by. The next time, 48. Then 47, 48, 49, 48, 

48 .... So he found he could count at a fairly standard rate, certainly more reliably than 

when attempting to guess the passing of a minute without counting. Having 

established a fairly reliable standard he wondered what would influence that rate. He 

considered heart rate may affect the rate of his count, so tried again after running up 

and down stairs, and after lying on a bed and found this made little difference to his 

reliability. He then tried other tasks, such as putting away the laundry, counting socks, 

arranging socks in different geometrical patterns, counting lines of newspaper text and 

even reading newspaper articles. He found some counting tasks interfered with his 

timing, but nothing interfered more than speaking aloud. When telling his friends of 

his discoveries, one disputed the idea that speaking would interfere, and after 

subjecting himself to a similar test, proved he could speak nonsense or read aloud and 

keep a much more reliable counting rate than Feynman when speaking whilst counting 

internally. After some discussion it emerged that his friend was counting in a different 
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way, by visualizing a passing tape with numbers on, so he was internally watching, 

rather than internally speaking the numbers. 

 

He states “We discovered that you can externally and objectively test how the brain 

works: you don't have to ask a person how he counts and rely on his own observations 

of himself; instead, you observe what he can and can't do while he counts.” This 

personal account of Fenyman, traverses the logic of many paradigms investigated 

thoroughly by psychologists in the last 100 years of timing research, and many themes 

explicitly researched in this thesis, particularly the notions of interference effects, dual 

tasks or divided attention and individual differences explored directly in Chapters 2-5. 

 

1.2 Background of Temporal Terminology in science and philosophy  

 

Before reviewing any aspect of timing in psychological research, we are confronted by 

a need to differentiate the particular aspect we are interested in from the wealth of 

themes that have been investigated. This is not only due to the importance of temporal 

measurements in almost all aspects of science, but also the wealth of associations and 

temporal assumptions that the singular word Time evokes. Time is infact the 

commonest noun used in the English language, shortly followed by year (number 3), 

day(number 5) and  month  (ranked 40th) (see Table 1). The frequent use of the word 

Time is not doubt in part due to its inclusion in common phrases and its idiomatic use 

in adverbial phrases like on time, in time, last time, next time, this time, etc. 

Nevertheless the Oxford English dictionary defines 26 different specific meanings of 

Time as a noun, 4 different definitions as an adjective, and 7 different definitions as a 

verb (OED 2012).  
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This breadth of multiple meanings and associations with the word Time seriously 

reduces its utility as a search term in the literature. For example when using PyscINFO 

database to search the psychological literature for studies on the topic of time in 

December 1999 using the dating parameters 1887-present, Rockelein (Roeckelein 

2000)found a total of 138,397 studies containing the keyword time. In Feb 2012, using 

the same search criteria returns 325,028 studies. Showing in the last 13 years more 

publications used the term as a key word than in the previous 100 years combined. 

 

Table 1:  List of the most commonly used words in the English language based on analysis of the Oxford 
Corpus texts of over 2 billion words used in literature, journals and web-blogs 

However the frequency of talk about „Time‟, is also due to the ongoing discussions, 

measurements, and disputes and definitions that have accompanied its conception 

throughout scientific and philosophical history. While the challenge of Einstein‟s 

General and Special Relativity made a huge impact to physicists that had previously 

used a Newtonian uniform and absolute time dimension for calculations, the adoptions 
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of different calendars, and even the coordination of transport timetables, had long 

since provided a backdrop for the fights between local and universally accepted 

standards(Landes 1983 ). Even more ancient Greek debates about the ontological 

status of Time, whether it was discrete or a continuum, whether it was an illusion or a 

sense, continue to ripple through to conceptual and empirical disputes today (Treisman 

1963; Lewis and Miall 2006; Torre and Balasubramaniam 2009; Bruno H 2011; 

Rodger and Craig 2011; Repp, Keller et al. 2012)  

An example of the difficulties raised by standards and measurements in science made 

the news  in September 2012 the OPERA team at CERN had announced the surprising 

results that sub-atomic particles (neutrinos) had travelled some six kilometres  per 

second faster than the velocity of light. A disconcerting finding as distance in meters is 

officially defined by the distance light travels in a portion of a second: In 1983 the 

17th CGPM (BIPM 2012)specified the current definition, as follows: 

The metre is the length of the path travelled by light in vacuum during a time interval 

of 1/299 792 458 of a second. 

 However in February 2012 a 60 nanoseconds discrepancy was tracked to a bad 

connection between a fibre optic cable that connects a GPS receiver and an electronic 

card in a computer. This glitch may infact explain the apparent faster than light travel 

of neutrinos. (News 2012). An oscillator  designed to synchronise the timing of each 

neutrino at their points of departure and landing was also reported as needing to be 

verified by the OPERA team. 

This news item highlights the need to separate issues of time definition, time 

variability in the measurement process from the timing of the thing being measured.  

The unit of time internationally recognized by definition is the second. It was defined 
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originally as the fraction 1/86 400 of the mean solar day. (NIST 2012) However, 

variability in the rotation of the Earth required the definition of the unit of time to be 

more precise. Accordingly the 11th CGPM (1960) adopted a definition given by the 

International Astronomical Union which was based on the tropical year. Experimental 

work had, however, already shown that an atomic standard of time-interval, based on a 

transition between two energy levels of an atom or a molecule, could be realised and 

reproduced much more precisely than astronomical observation. This led the 13th 

CGPM (1967) to replace the definition of the second by the following (affirmed by the 

CIPM in 1997 that this definition refers to a cesium atom in its ground state at a 

temperature of 0 K):  

The second is the duration of 9 192 631 770 periods of the radiation 

corresponding to the transition between the two hyperfine levels of the 

ground state of the cesium 133 atom.  

While changes in definitions and measurements are contended with  in all sciences, 

they are perhaps particularly acute to those investigating aspects of timing where the 

changing definition, scale and measurement can all add to the inherent variability that 

needs to be understood. In psychology this issue becomes explicit in that Time can, 

and has been investigated as both a Dependent and Independent variable (see Fig 1). 
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 Fig (1) Example of early psychology of time references drawn from Doob (1971) and Roeckelein  (1973, 2000) 

 

 Historically, the notion or variable of time may have been treated as either an 

independent variable or a dependent variable depending on the particular hypothesis 

and research goals of a given study. For example, the DV of „time estimation 

expressed as seconds‟ may be measured as a function of the IV (stimulus) of the 

“delay between two intervals to be discriminated”. (Roeckelein 2000).  This capacity 
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for temporal conceptions to represent both the figure and the ground, exposes the 

empirical need to assess variability in both. For example, attempting to measure the 

shortest duration of a sound that can be perceived is different from the measurement of 

the duration of the sounds perception.  

Psychological investigations using different temporal frameworks have resulted in a 

number of important distinctions and approaches to experimentation (fig 1). Studies of 

time as a stimulus attribute were historically regarded as investigations of temporal 

perception, whereas studies of time as a response attribute are often referred to as 

aspects of temporal performance. In studies of time as a IV, the response measure has 

often been a categorical one such as left or right lever response; whereas in studies of 

time as a DV the measure is a quantitative one on the temporal dimension.  

In the hundred years since, the need for more specific terminology in different fields 

(tempo, accelerando etc in musicology, distinctions such as short term and long term 

memory, rates of stimulus decay or extinction, even the notion of evolution and 

development) all draw on the many meanings and uses of often ancient temporal 

terminology to define perspectives, durations, relations or points on abstract 

dimensions.  

1.3 Quantifying Regular Motions 

One very ancient theme that can be traced to Aristotle is to link time with motion “the 

Number of motion”(Roeckelein 2008), while for Descartes, many centuries later, it 

was a relation derived “from a comparison of the durations of regular motions”. For 

Plato rhythm was defined as “order in movement(Roeckelein 2000), Paul Fraisse 

defined it as “order in succession”(Fraisse 1984). The link of founding time in regular 

movements finds its way to both the development of accurate clocks(Landes 1983) 
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and modern international standards of the second based on the most reliable regular 

oscillations, and to some of the earliest  experimental research by Vierordt in 1868 on 

the ability to produce regular movements by tapping rhythms (Lejeune 2009).  

Mach in 1865 made an important contribution to theories of rhythm production by 

emphasizing the predominantly motor nature of the phenomenon. Building on this 

Bolton made a stronger claim in 1896 (Roeckelein 2008) that rhythm is a universal 

phenomenon in nature and in involuntary physiological activity (such as the pulse, 

heartbeat, and respiration) and the cycles of night and day and seasons. This theme of 

exploring relations of regular motions to other regular motions, has led to great 

advances in the precision of time-keeping devices such as Huygens pendulum clock, 

and the development of modern standardised units of time. These tools have in turn 

aided the precision of measurement in science and our understanding of movement 

timing variability on many different scales(Landes 1983). For example the rotation of 

the earth producing regularities of night and day, and yearly rhythms had been a 

standard used to measure variability such as rate of growth per year, or yield per 

calendar month, or physiological activity and circadian rhythms. Mirroring the ability 

to use time as dependent or independent variable, the invention of the pendulum clock 

made it possible to mark time with less than a minute variability over the course of the 

day and become a standard to measure the variability of seasonal daylight. For smaller 

time-divisions, chronographs and stopwatches divided the minutes and seconds into 

ever smaller divisions from the 1/5
th

 second standard in 1864 to the 1/10
th

 of a second 

used to record athletic records in the 1932 Olympics. By the Olympics of 1962, what 

would have been considered a dead heat between two runners, first place could now be 

separated from second place by 100
th

 of a second. (Quercetani 1964 ) The ability to 

quantify with increasing precision the regularity of movements to ever more reliable 
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faster oscillations in time-keeping devices, has led to a number of quantitive models of 

movement timing to which we will now turn. 

 

1.3 Modern Models of Timing 

1.3.1 Regular Movements 

Studying the synchronisation of repetitive finger taps with a stream of regular external 

events has, as we have seen illustrated in Fig 1,a long history in experimental 

psychology(Stevens 1886; Dunlap 1910; Aschersleben 2002; Zelaznik 2005). 

Synchronisation requires the ability to control motor output based on the prediction of 

external events (Harry 1985; Harry 1987a; Harry 1987a). It is the combination of an 

external signal (such as a metronome) and the requirement of a controlled coordinated 

movement that separates sensory motor synchronisation (SMS) research from other 

types of timing research. While someone listening to music or a metronome may find 

their attention starts to entrain or synchronise to the beats of the sounds and may 

include imagined movements, this would not be SMS as there is no overt movement. 

Similarly, although there may be movements and synchronisation required while 

playing a musical instrument this is not considered SMS as there is no external 

stimulus beat to act as a referent.   

This specific delineated field of timing investigation has produced some well 

replicated findings that do not apply to other types of timing research. For example, 

one of the oldest findings in SMS research is that when tapping a finger to a 

metronome, the taps tend to preceded the tones by a number of milliseconds (Miyake 

1902). This anticipation tendency or mean negative asynchrony (MNA) is widely 
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replicated in SMS research and yet participants are generally unaware of this tendency 

of timed movements to be produced ahead of the sound to be synchronised with.  

Many explanations have been offered to account for this asymmetric finding 

sometimes attempting to explain it on the side of sensation (neural transmission times 

for sensory information (Fraisse 1980), or perception at the level of central 

represenation(Aschersleben 1995; Aschersleben 2002). Alternative theories posit it asa 

consequence of attempting to minimise  variance (Vorberg 1996). Empirical support 

has been found for each theory by comparing nerve conduction delays of different 

effectors and comparing the level of negative asynchrony, or by delaying the feedback 

of the tap from the perception of the tap, nevertheless no single theory yet accounts for 

all the findings.(Repp 2005). The importance of MNA in the literature lies in the 

assumption that it reveals systematic effects of variability in both perception and 

action. Moreover MNA suggests that some aspect of the external interval has been 

internalised to initiate movements to synchronise rather than simply react to regular 

sounds. It is to these sources of movement variability and their models that we now 

turn. 

SMS involves coordinating inherently variable movements with the variable 

perception of external signals. Even a perfect metronome will be subject to perceptual 

variability due to natural variability arising in the neural circuitry. Building on the 

research of Stevens (1886) who investigated the accuracy an d  i n h e r en t  

v a r i ab i l i t y  of maintaining tapping with a  metronome set pace, Wing and 

Kristofferson offered a quantitative 2 level model (Wing & Kristofferson  1973a, 

1973b); here referred to as the WK model which distinguished a central timer and 

a motor implementation process (see adapted fig 2). This model was able to develop 

the contrast of two sources of variance that Stevens' research picked up, a short  
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term  variance  around  the  mean  target  interval  which  corresponds  to  the  

variance produced by motor delays, and a longer term drift which corresponds to 

the standard of a central timer or remembered (internalised) metronome interval 

duration. Under this model, short term fluctuations around the mean of the produced 

intervals are attributed to peripheral noise associated with motor implementation. 

Whereas a second source of variability is related to the length of the interval to be 

timed and is independently attributed to central (clock) timing processes. The 

independence of these two sources of variance implies that producing longer intervals 

increases the variability of the central timing processes but not the variability of the 

peripheral motor implementation. Indeed when investigating tapping behaviour at a 

range of different tempo‟s between 290ms and 540ms, the decomposed variance of the 

central timing processes were found to increase linearly with the mean target interval 

whereas the peripheral motor delay variance was found to be relatively constant in 

accord with the Wing-Kristofferson (WK) model predictions (Wing 1980). 

 

Fig 2. The Wing-Kristofferson two-level timing model. 

 

1.3.2 Perception of regularity 
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While able to partition the variability of central timekeeping from motor variability by 

using the WK model, other lines of research have attempted to understand and model 

the variability at the level of perception. Numerous studies of time as a stimulus 

attribute combined with reliable performance knowledge about timing from classical 

conditioning and animal studies indicate that the standard deviation of the temporal 

measure is proportional to its mean. This is termed scalar or Weber law timing 

(Gibbon 1977; Gibbon 1984; Staddon 1996).A further lawful finding is that the 

relation between perceived time and a linear metric of time can be described by a 

power function (e.g. (Eisler 1975; Eisler 1976; Eisler 2008). Eisler (1976) compiled 

power function exponents from 111 time perception studies published between 1868 

and 1975, and found that the average exponent (slope value) across studies was 0.9. 

These results mean that temporal judgements follow changes in clock-time duration in 

a nearly veridical fashion. Although nether Weber law timing nor the associated power 

function holds for every temporal schedule or every duration of dependent measure 

(Staddon 1996; Staddon 1999) nevertheless for many common situations these two 

properties have been reliably found. 

On the theoretical side, several quantitative models have been advanced to explain 

such data, including scalar expectancy theory (SET) model, an information-processing 

model developed by Gibbon (Gibbon 1977; Gibbon 1991; Gibbon 1992; Penney 

2008), the learning-to-time (LeT) model, a behavioral model developed by Machado 

(1997), the multiple-oscillator model (Church & Broadbent 1990) the spectral theory 

of timing, Packet Theory (Guilhardi & Church, 2005) the multiples-time-scale model 

of time (Staddon 1996) and real-time models of conditioning. They differ in their 

perceptual representations of time, in their memory representations, and their decision 

processes. An important implication of these theoretical assumptions is  how varied 
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the internal representation of time is for each of these models. For example, from an 

interval model perspective, the indifference interval (where subjects neither 

overestimate nor underestimate a time period) is a memory trace of a single discrete 

interval, whereas from multiple time scale models the representation of time is a 

relatively deteriorating memory trace, whereas from an entrainment perspective a 

global context could be said to induce one or more internal periodicities that contribute 

to an overall sense of pace that may be expressed as a reverberating circuit or 

emergent internal period (e.g., McAuley & Jones, 2003). 

1.3.3 Information Processing 

Alternative clock models come from information processing perspectives that 

emphasise memory components. Most theories that incorporate explicit memory for 

time involve three independent components: an internal clock used to estimate 

duration, a reference memory used to store information about duration, and a 

comparison mechanism used to make judgments about how much time has elapsed 

relative to a remembered (expected) standard duration (Church and Broadbent, 1991). 

The traditional heuristic used to describe interval timing is an based on a model first 

proposed by (Treisman 1963).  

 

The model entails three distinct stages in which temporal information about an event is 

abstracted, encoded, and acted upon. Building on this framework, scalar expectancy 

theory (SET) has been particularly influential because it has been successfully applied 

to both human and animal data (Gibbon 1977; Gibbon 1984; Gibbon 1991; Penney 

2000; Penney 2008). SET posits a neural pacemaker that emits a continuous stream of 

pulses. Stimulus events marking the beginning and ending of event durations trigger 

the closing and opening of a switch that gate pulses into an accumulator. The count of 
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the pulses accumulated over the target event duration represents a subjective duration 

code that is stored in reference memory. Successive time intervals are estimated 

independently, with relative duration judgments about time intervals involving a 

comparison between a working memory representation of the accumulator and a 

criterion time sampled from reference memory. A schematic of the various 

components of SET is shown in Fig.3 

 

Fig 3 An information processing model of internal clock processes. 

 

Notwithstanding the success of the WK model and the SET model, the assumption that 

a unitary „internal clock‟ underpins movement timing control is perhaps overly simple. 

For example, different forms of internal clocks or pacemakers have been proposed 

(Gibbon 1984; Treisman 1990; Wearden 1995) and the outputs of these different 

internal clocks might interact in various ways with other processes such as sensory 

feedback, memory and decision mechanisms. Fig 4 illustrates a number of conceptual 

models that allow for separate model timers, multiple oscillators, shared or 
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independent accumulators. These alternate models can account for slightly different 

empirical findings and lend themselves to different predictions for where resources 

may be shared or bottlenecked. For example it has been proposed that  accumulators, 

could underlie the estimation of both time and number or counting processes (Meck & 

Church, 1983). An accumulator could then represent the duration or the numerosity of 

objects or events through different operative modes, by summing the impulses 

produced by a generator either at a given frequency for duration processing or each 

time an event or an object was encountered for numerosity processing (Meck, 1997; 

Meck & hurch, 1983; Meck, Church & Gibbon, 1985). This would explain some of the 

bidirectional interference often found when doing mathematical calculations and 

regular movements. (Brown 1990; Brown 1997). However, if a separate accumulator 

was available for each mode, interference during counting or timing of visual and 

auditory stimuli would be predicted to interfere less than if a single amodal 

accumulator was assumed. (see fig 4) 

While the stages and components of the information processing models mimic many 

of the executive processes of models of working memory or short term memory such 

as those proposed by The Atkinson–Shiffrin model in 1968, or the Badley & Hitch model of 

working memory (1986), these tend not to be used or referenced in SMS research as they offer 

no specific timing module or clock component see Fig 3a.  

.  

Fig 3a Badley & Hitch 2000 model of working memory 
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While some researchers in the fields of music and memory have argued that rhythm 

may be a component part of the phonological loop (Saito 1977; Saito 1994; Saito 

2001) most researchers take it to represent the short term store of auditory linguistic 

information. The absence of an explicit temporal module or patterns of temporal 

features found in metronomic rhythm have tended to see limited use of these more 

traditional models of executive functions and memory in the timing domains for the 

SET models. (Fig 4) 

 



Chapter 1: Introduction       25 

 

 

Fig 4. Illustration of 3 different information processing models of timing accommodating theories of single or multiple 

pacemakers, accumulators and modal interactions. Different roles for attention are identified in each, switching on one or more 

pacemakers, or time-sharing between them. 

 

There have been several proposals about how attention might influence timing 

performance within the information processing or scalar expectancy framework. One 
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proposal is that attention influences the probability that participants‟ behaviour is 

controlled by stimulus timing on a given trial (Church and Gibbon, 1982; (Gibbon 

1992; Macar 1994; Meck 2002; Coull 2004). In this view, divided attention decreases 

the probability that attention is focused on any single stimulus, resulting in an 

increased asymmetry of the response distributions for each stimulus. An alternative 

proposal is the attentional switch hypothesis.  

 

The attentional switch hypothesis proposes that attention operates as a switch at the 

clock stage. The attentional switch influences timing by altering the efficiency with 

which pulses from the pacemaker are transferred to the accumulator (Allan, 1992; 

Lejeune, 1998; Macar et al., 1994; (Meck 2002). Under focused attention conditions, 

pulses accumulate as a function of time, and the subjective experience of duration is 

directly proportional to the count of the number of pulses that occur over the temporal 

extent of the stimulus. However, when attention is divided between two tasks (e.g., a 

temporal and a nontemporal task or two timing tasks), the assumption is that some 

pulses may be “lost,” with the proportion of lost pulses inversely related to the amount 

of attention allocated to the timing task. 

 

Alternative models (Block 1978; Block 1980; Block 1982; Jones 1989; Block 1990; 

Block 1992; Block 1997; Barnes 2000; Barnes and Jones 2000; Jones 2004; Block 

2010; Ogden, Salominaite et al. 2011) posit even greater roles for memory and 

attention processes dispensing with a general purpose amodal pacemaker altogether. 

These models, like the information processing models have developed to explain 

different types of timing variability than rhythmical movements, such as perceptual 

judgements, retrospective judgements, and time estimation and anticipation. The 
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contextual change model (Block 1978, 1985, 1989, 1990)  proposes that judged 

duration is monotonically increasing function of the number of contextual changes 

which are encoded into memory during a time period. These contextual changes 

include both those taking place in the external environment and those occurring in the 

internal events, such as in meaning, cognitive strategies, and mood states.  

The contextual change model uses this attentional and memory based explanation for 

why „empty‟ durations are often perceived and estimated to be shorter than filled 

durations. Ordinarily, fewer contextual changes will occur during an „empty‟ duration 

than a duration filled with an information processing task. Accordingly, empty 

durations are characteristically underestimated compared with durations filled with 

information processing tasks. 

Error correction 

A major characteristic to emerge as fundamental to research on SMS is that it cannot 

be maintained without error correction. Once again variability is a central issue as the 

variability even in a periodic movement like finger tapping will produce ever 

accumulating descrepancies from subsequent taps if attempting to match a precise 

periodic signal such as a metronome. The perception of growing asynchrony between 

tapping and a metronome beat offers a chance to correct the phase or the period of the 

tap to return to a more synchronised rhythm. The significant issue at stake with these 

two options of error correction (phase vs period) is that both assume some sort of 

internal time-keeper but a phase correction leaves the internal timekeeper period 

unchanged and adjusts the phase of the movement onset. This is considered a 

relatively peripheral and automated process of online control.  Whereas a period 

correction refers to a change to the period of the internal timer while keeping the 
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peripheral movement initiation the same. (Bruno H 2001; Repp 2001; Repp 2001; 

Repp 2002; Repp 2002a; Keller and Repp 2004; Repp and Penel 2004; Thaut and 

Kenyon 2004; Repp 2008; Repp and Keller 2008; Delignières and Torre 2011; Repp 

and Moseley 2012).  

Perturbation studies have typically been used to probe the SMS error correction 

models. By inserting a phase shift in an otherwise isochronous sequence of metronome 

beats, it forces the tapping participant to produce a large synchronisation error which 

they need to correct to return to synchronised tapping. While noticing the error in 

phase between the tap and the metronome, „perceiving‟ the error might be considered 

the clearest candidate for requiring an important role for attention and executive 

processes in SMS models. However in series of studies conducted by Repp, Repp 

showed the recovery pattern following a perturbation (roughly exponential in 

asynchrony reduction as predicted by linear first order phase correction models) even 

when below the perceptual detection threshold. This surprising result has provided 

strong support for quantitative models of timing in SMS without needing any recourse 

to explicit roles for memory and attention that dominate time in time judgement and 

time perception research. 

Two studies of note seem to buck this trend. The first being Sergent (Sergent 1993) 

who explored the variability of tapping when conducting a dual task of anagram 

solving while looking at the influence of handedness. Using the WK model to partition 

the variance they were able to show increased variability of central timing processes 

but not motor implementation when solving anagrams. The second was an experiment 

by Miyake et al (Takano and Miyake 2007)who explored tapping variability while 

conducting a word memory task. Miyake concluded that tapping to an interstimulus 

onset interval (ISI less than 1500ms is mainly based on automatic processes which are 
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not influenced by the secondary task. These two studies found contrary findings and 

used different methods to assess tapping variability and different secondary tasks. 

Neither have been replicated nor explored for different measures of tapping variability, 

different effectors or different secondary tasks. While Sergent considered a number of 

structural limitations of shared neural circuitry for the nature of the interference found, 

Miyake was looking more at capacity limitations of attention and working memory as 

indicated by changes in MNA. Both approaches nevertheless assume an amodal 

general purpose internal timekeeper capable of both peripheral automatic error 

correction and more central executive control. 

1.4 Summary 

The analysis of regular motions and repetitive actions have lent themselves to a variety 

of quantitive models of timing and made use of precision instruments with more 

frequent regular oscillations to measure their variability. However the focus on regular 

motions has perhaps come at a price of removing consideration to other fields 

exploring different ways of looking and defining temporal relationships. For example 

Church notes that Psychologists interested in temporal aspects of action and cognition 

do not typically attend to research on classical conditioning or schedules of 

reinforcement. One reason for this is that conditioned responses reside in the domain 

of „learning‟ not „cognition or „perception‟. Similarly (Church 2003) highlights that 

studies of the temporal dimension by psychophysics, biological rhythms and animal 

learning paradigms progressed independently. Church elaborates that “articles based 

on studies in these three fields typically were published in different journals and they 

rarely cited each other. The secondary literature also typically treated these three fields 

as separate topics”. A similar concern is highlighted by (Boltz 1995) in the relative 

independence of clinical and cognitive literatures on time estimation with the result 
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that “each has often ignored certain theoretical ideas or empirical findings that might 

be useful for the development of the other”. 

It is a central theme of this thesis, that having established a very good understanding of 

the variability of movements to a range of variable regular stimuli over the last 

hundred years (see Fig 1), that it is through linking back with developments in other 

fields of timing research such as memory, learning, perception and attention, that more 

elusive aspects of movement timing variability will be better contextualised. 

Nevertheless, in contrast to the success of many quantitive models of movement 

timing, those models that already give a greater role to processes of  memory and 

attention such as the contextual change model of Block assume that time judgements 

are inferred from the amount of some nontemporal parameter (the number of chunks in 

memory or the number of contextual changes, or degree of segmentation respectively). 

Although these attributes may be important aspects of an event they do not specify the 

intrinsic timing of information within an interval or the total time span itself.   

Thus while some models can explain the variability of time estimations and time 

perception well with a clear role for attention and and memory processes, how they 

interact with very precise, often automatic, motor control is not clear. It is toward a 

better understanding of this interplay of low level sensorimotor control and higher 

level cognitive factors that the experiments in ChapterChapter 2-6 are directed.If 

executive functions are involved in such timing, then timing should be impaired in a 

dual task situation where the concurrent task also recruits executive functions. A 

simple dual task paradigm is introduced to a sensorimotor task (in Chapter 2) to 

explore this assumption. A follow up study in Chpater 3 using a similar paradigm 

further explores the nature of the interference effect of a dual task on motor variability 
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by varying the mode of the stimulus and responses to the secondary task. Findings 

from these experiments draw from competing information processing theories of 

cognitive sources of variability to account for the findings. Chapter 4 introduces a 

perturbation paradigm which had previously been identified as a way to measure more 

automated rhythmic movement production and online control that was considered 

more insulated from executive functions. A dual task probed the assumption that 

higher level executive processes would not interfere in perturbation recovery. A 

follow-up study Chapter 5 using the perturbation paradigm was used with professional 

musicians to better understand the role of skill and musical training on both cognitive 

and motor sources of variability. Chapter 6 introduces a novel paradigm for assessing 

the variability of memory processes involved in rhythmic movement production by 

introducing different length gaps between synchronisation and continuation tapping 

movements. Two classes of behaviour were identified. Firstly, the introduction of the 

gap reduced the speeding up that was associated with initiating continuation tapping. 

Secondly, the introduction of the gap increased the amount of drift away from the 

target interval. 

The findings of the 5 experiments presented here are discussed (Chapter 7) in relation 

to existent theories and ongoing debates in the field of sensorimotor synchronisation. 

The contribution of this research highlights the importance of executive processes 

often overlooked when assessing the nature of variability in rhythmic movement 

production and opens some clear pathways for future research, adjustments to current 

models used, and novel paradigms. 
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CHAPTER 2: 

 ADDITIVE FACTORS, ATTENTION AND TIMING  

2.1 ABSTRACT 

When performing simple or complex tasks we may expect to see a performance cost 

during distractions or if attention is divided with another task. When the task requires 

evenly timed movements, the cost of divided attention may be an increase in the 

variability of the movements. In this study we explored the cost of divided attention 

(single task vs counting backwards in threes) on the variability of repetitive finger 

tapping movements in 42 healthy participants. We used a 3-factor counterbalanced 

within-subjects design to explore the cost of divided attention in the interactions with 2 

different movement types (index finger vs little finger) and 2 different intervals (400 

vs 650ms). According to the Wing-Kristofferson (WK) timing model, motor variance 

is independent from the variance of central clock processes.  Therefore we expected 

greater variability when participants tapped with the little finger compared to the index 

finger due to additional motor control variance. Whereas, we expected greater 

variability of tapping responses at the longer interval duration due to variability in 

central clock processes. Importantly, according to the (WK) model, we would expect 

no interactions of movement type with either interval duration or divided attention. In 

contrast we expect a strong interaction between divided attention and interval duration 

both due to variability of central clock processes.  In Line with the WK model we 

found a significant interaction with interval duration and divided attention and no 

interactions with movement type in line with WK model. However further analysis 

revealed that the degree of prior musical experience heavily moderated the cost of 
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divided attention on timing variability, particularly at longer intervals and with the 

more unusual movements. 

2.2  INTRODUCTION 

Timing Variability 

 

“Repeated movements are rarely, if ever, exactly the same but are subject to variation” 

(Wing 2004). Although some variation may be intentional, or contextual, some may 

reflect the difficulty of the movement, or inherent noise in the component 

processes(Van Beers 2004), or indeed the timescale or speed of the  movement 

investigated (Repp 2003b). Stevens (Stevens 1886) noted that even with a simple 

repetitive movement such as a finger tap along to a metronome-set rhythm, that the 

continued taps, with the metronome turned off,  seem to vary more with the length of 

the target interval aimed at. Additionally he observed that this subsequent behavioural 

variability had two components, a short term fluctuation around the mean of the 

interval and a longer term drift. The two level timing model of Wing and Kristofferson 

(Wing 1973)  could account the trends found by Stevens in the way it partitioned the 

variance. The model assumes that variability of interresponse intervals is a product of 

central timekeeping variability on the one hand, and the independent variability of 

motor implementation delays on the other. Wing and Kristofferson (Wing 1973) 

assumed that, in self- paced tapping, a succession of command pulses is generated by 

an internal timekeeper. Each pulse initiates a motor implementation process which 

leads, after some delay (motor implementation delay), to an observable response. The 

intervals marked off by the timekeeper as well as the motor delays are assumed to be 

subject to independent chance fluctuations. If these assumptions hold, then the 

intervals between responses (IRI) are decomposable into contributions of the 
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timekeeper and of the motor system. Wing and Kristofferson (1973) assumed that 

timekeeper intervals and motor delays are independent random variables. They also 

assumed mutual independence between the timekeeper intervals and the motor delays. 

These assumptions imply that the variance of the observable interresponse intervals 

equals the timekeeper variance plus twice the motor delay variance (see Fig5).  On this 

basis, an empirical finding (Wing 1980) that variability increases along with an 

increase in the mean of the set interval, is thought to reflect the increase of variability 

in the central timekeeping processes with the relatively unchanged additional 

variability of motor implementation. Indeed when investigating tapping behaviour at a 

range of different tempo‟s between 290ms and 540ms, the decomposed variance of the 

central timing processes were found to increase linearly with the mean target interval 

whereas the peripheral motor delay variance were found to be relatively constant in 

accord with WK model predictions (Wing 1980). Further empirical tests of the model 

have been reviewed by Vorberg and Wing (1994, 1996). 

 

Fig 5. The Wing-Kristofferson two-level timing model. 
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Additional support for the independence of these two sources of variance comes from 

Sergent, Hellige, and Cherry (1993) who analysed the effects of concurrent anagram 

solving on timing in terms of the two-level timing model and found the secondary task 

increased the variance of the central timekeeper leaving the variance of the motor 

implementation relatively unchanged.  

 

The resulting interference of the concurrent task could be a consequence of the 

intrinsic anatomical and functional properties of the brain centres involved in the tasks 

and limiting their processing capabilities. This interference is usually referred to as 

“structural interference” similar to the “functional cerebral distance principle” posed 

by Hiscock (1996). This posits that two concurrent activities interfere with each other 

to the extent that they share the same functional cortical space .  

 

In other cases an interference of a secondary task takes place although the concurrent 

activities do not share any obvious common perceptual or motor mechanism. This has 

been explained by postulating that attentional mechanisms of the human operator have 

a limited capacity.Therefore, when the attentional demand exceeds its limited capacity, 

performance deteriorates even though there is no competition for any specific brain 

area. This second type of interference has been called “capacity interference”. Reasons 

why there may be selective central interference of a concurrent task comes from an 

information processing perspective, whereby oscillations or pacemaker components 

interact with memory and attentional resources before passing timing information for 

use in movement.  A theoretical account of these cognitive processes in central timing 

was provided by Gibbon, Church, and Meck (1984), based on the work of Creelman 

(1962) and Treisman (1963). Gibbon et al. assumed that timekeeping is based on 
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pacemaker pulses gated into an accumulator with a count being compared against a 

target value maintained in a reference memory to determine when a response should 

be made (see Fig. 6).  
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Fig 6 Information processing model of timing. Clock, memory and decision processes each require resources that 

could be compromised with a secondary task. Dotted lines represent potential costs of divided attention at specific 

stages in addition to the explicit role attention is given in models with gating or switches. 

 

From this perspective impaired timing during simultaneous performance of another 

task might result from disturbances to decision processes, memory processes or 

disruption of the attentional gating process (Zakay & Bloch, 1996)  

 

Dual tasks were initially developed to study divided attention. When performing a dual 

task, the requirements of each task have to be held concurrently in working memory 

with sufficient resources being allocated to each task performed. The limited capacity 

of the attention explains why the performance of concurrent tasks leads to increased 

cognitive demands. Since coordination of the tasks requires additional resources, the 

amount of resources allocated to the performance of each task decreases.  

 

It has been shown, for instance, that the presence of a concurrent task during a timing 

task decreases the accuracy of time estimations when compared with a single-task 
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(temporal) condition (Brown, 2006, 2008; Brown & Merchant, 2007; Field & Groeger, 

2004; Zakay, 1998). According to Brown (2008), the interference caused by 

competing tasks on timing is “the most well-replicated finding in all the time 

perception literature”. 

 

The attentional gate or switch  (see fig 6) is the part of the clock process that is directly 

associated with the mechanisms of attention (Meck, 1984). When the switch is closed, 

the pulses that are emitted by the pacemaker are accumulated in the 

counter/accumulator. It is the amount of attention paid to time that determines the 

accumulation of pulses in the counter. When full attention is dedicated to time, the 

switch is closed and the accumulation is at its maximum. Some authors also refer to 

the existence of a gate that determines the flow of pulses when attending to time, the 

switch being associated with attending to a duration-onset signal (Block & Zakay, 

2008). Therefore a concurrent task might change the flow of pulses to the accumulator, 

resulting in more variable counts in the accumulator, interfere with memory processes 

or decision processes as comparisons are made with reference intervals. 

 

 

Both the nature of dual task interference and the independence of two sources of 

variance in the WK model makes applicable Sternberg‟s additive factor method 

(Sterberg 1969) whereby experimental factors that influence distinct processes can 

have selective additive effects. Although originally formulated to explore independent 

stages of processesing with reaction time studies, the logic of Sterberg‟s additive 

factor method is simply that if processes a and b can be influenced independently, then 

an appropriately targeted experimental factor A influences a but not b, whereas a 

appropriately targeted experimental factor B influences process b but not a.  
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While previous research has indicated factors that may target specific processes 

involving timing variability in either perception or action, little is known about how 

these factors may interact. By selecting different factors that both target central timing 

processes alongside a 3
rd

  factor that targets  peripheral motor implementation 

variability, we aim to expose more about the role of attention through these 

interactions (Fig 7). The role of attention as indicated by information processing 

models (Fig 3) is combined with the assumptions of the WK model in Fig 8. 

 

Fig 7. Experimental Factors. According to the WK model, a longer interval increases VAR (C) but not VAR (D) if the two 
sources of variability are independent. An unusual movement might increase VAR (D) but would not effect the VAR (C). If 

divided attention also interferes with central timing processes, variability should be additive, resulting in maximal VAR (I) in dual 

task conditions at longer intervals. 
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Fig 8. Combination of WK models independence of two factors affecting variability and Information Processing model of Timing. 

 

In this study we explore the effects of divided attention through the interactions 

between 3 different factors known to individually effect timing variability using the 

additive factor approach pioneered by Sternberg. We used 2 different movement types 

(index finger vs little finger) and 2 different intervals (400 vs 650ms) with and without 

a secondary task. We expected greater variability when participants tapped with the 

little finger compared to the index finger due to additional motor control variance. 

Whereas, we expected greater variability of tapping responses at the longer interval 

duration due to variability in central clock processes. Importantly, according to the 

(WK) model, we would expect no interactions of movement type with either interval 

duration or divided attention. In contrast we expect a strong interaction between 

divided attention and interval duration both due to variability of central clock 

processes (as indicated in fig 4). This paradigm also offers a strong test of the logic of 

additive factors and the independent sources of variability assumed in the WK model.  
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2.3 METHOD 

An opportunity sample of 41 undergraduate participants (mean age 20) were tested. 

They were right handed, had normal or corrected vision and gave informed consent 

before taking part in the experiment. Each participant completed a background 

questionnaire and then completed 8 blocks of experimental conditions comprising 1 

practice trial then 3 experimental trials in each condition. 

2.3.1Apparatus 

Subjects were seated comfortably on a chair facing a 19inch computer monitor with 

their hand on the mouse which was used as the response manipulandum. The stimulus 

presentation and collection of the behavioral  responses were controlled by a 

customised program (LV-APP) written in labview (version 6.5). The LV-APP 

displayed a visual metronome at a fixed pace, and recorded the interresponse intervals 

of the participants synchronized mouse clicks to an accuracy of +/-1 ms. See Appendix 

for calibration issues. 

 

 

2.32 Experimental Task 

Subjects were trained to produce tapping movements by clicking the mouse button to  

synchronise with a sensory stimulus and then to continue tapping with the same 

interval without sensory stimulus. At the beginning of the trial, the stimuli were 

presented with a preset interstimulus interval  (ISI) appropriate for that block (either 

400ms or 650ms). Subjects were required to tap the mouse button each time a stimulus 

was presented, which resulted in a stimulus–movement synchronisation. After 10 
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consecutive synchronized movements the pacing stimulus was eliminated, and the 

subjects continued tapping at the same interval for 30 additional intervals per trial. 

During the practice trial feedback was displayed graphically on the screen, indicating 

the participantsmean intertap interval, to ensure subjects were adjusting to the 

appropriate ISI for that block of trials. No feedback was displayed during experimental 

trials and 3 experimental trials would follow with an intertrial interval of 3s. 

Participants would complete the task using either their index finger or their little finger  

to click the mouse button, either as a single task condition or alongside a secondary 

task according to the counterbalanced block design. The secondary task required 

participants to silently count backwards in 3‟s from a random whole number (greater 

than 30 and less than 100) provided by the experimenter. At the end of the trial the 

participant would reveal the number they had reached. 

 

The pacing stimuli were in the form of an orange circle (4-cm side) presented in the 

center of a computer screen for 33 ms and was fully detectable. Means and standard 

deviations of the interesponse intervals were recorded for analysis along with the 

results of the secondary task and the written questionnaire. Data values above or below 

3 SD from the mean were removed, corresponding to either accidental doubleclicks, or 

missed clicks of the mouse (This excluded only 3 values from experimental trials). 

The reported P values in the repeated-measures ANOVAs correspond to the 

Greenhouse–Geisser test, which corrects for possible deviations in sphericity. The 

level of statistical significance to reject the null hypothesis was 0.05. SPSS statistical 

package(version 12 2003, SPSS, Chicago, IL) were used for the statistical analyses. 
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Fig 9. Indicates the block design of all conditions completed by participants. 
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2.4 RESULTS  

 

  

Fig 10. Average Standard deviation plotted against all trials conducted with conducted with single task or counting 

task (plot A); all trials conducted with movement type 1 or 2 (index or little finger, plot B); all trials conducted with 

IRI of 400 or 650 ms (plot c). Error bars indicate +/- 1 Standard error 

 

MAIN EFFECTS 

DUAL TASK: 

The results of the ANOVA (fig 10A) reveal significant effects of dual task [F(1, 40) = 

28.48, p < .001] confirming that divided attention (couting backwards in 3‟s) 

significantly interfered with the ability to maintain the lower tapping variability of 

single task conditions.  

MOVEMENT: 
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While variability was greater in each condition when using the little finger compared 

to the index finger (fig 10B), the increase was slight and did not reach a level of 

significance [F(1, 40) = 3.21, p 0.081] 

INTERVAL: 

The results of the ANOVA show the longer interval of 650ms (fig 10C)contributed 

significantly more variability than the shorter interval of 400 ms [F(1, 40) = 51.44, p < 

.001] 

 

INTERACTIONS: 

The resultant interactions were central to the logic of this experimental paradigm, that 

is, confirmation of each hypothesis regarding the expected outcomes relied not only on 

some results being significant, but importantly that others were not. The results of the 

ANOVA revealed a significant interaction between Dual Task * Interval [F(1, 40) = 

6.10, p < .05] and importantly, no significant interaction between Dual Task 

*movement [F(1,40)=5.74, p .87] and no interaction between Interval * movement 

[F(1,40)=0.96, p .75]. Lastly the ANOVA found no 3 way interaction between Dual 

Task*Interval*Movement  [F(1,40)=1.04, p .31]. The lack of interaction between 

movement and interval is visible in the almost parallel slope of the plotted standard 

deviation (fig 13). By comparison, the significant interaction between Dual task and 

Interval shows the steeper slope at the longest interval (650ms) as predicted.  
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Fig 11. A comparison of single task and dual task effects on the mean Interresponse intervals (ms)  for tasks 

completed in each condition and with each movement type. Error bars represent standard error.   

 

 

INTERESPONSE INTERVALS: 

Fig 11 allows a comparison of the cost of divided attention on the mean interresponse 

intervals. Although the primary interest of this study was variability, it is worthy to 

note that the dual task cost lengthened the mean interesponse interval in every 

condition. The single task mean IRI is longer than might be expected at 400 ms and 

shorter than might be expected at 650ms. This is consistent with findings in time 

perception and retrospective time estimation studies that short intervals are lengthened 

and long intervals shortened, but less common in rhythmic timing research. The effect 

of using a more unusual movement was also to lengthen the mean IRI. When looking 

at the results of condition on variability (fig 12) the effect of the unusual movement 

(little finger) had a more moderate outcome indicating a comparable stability with 
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slightly more variance than usual movement (index finger) at the cost of accuracy 

(slightly longer IRI). 

 

Fig 12 Plots the effect of condition on the mean standard deviation for both single tasks and dual tasks. 

 

Fig 13. 2 way Interactions illustrated with slope of the average standard deviation of movement type (little finger or 

index finger) against interval (400 x 650ms) left, and right the average standard deviation of trials conducted with 

different attentional demand (single task or dual task) against interval (400 x 650 ms).  
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SKILL: 

Using the answers from the background questionnaire participants were coded by the 

level of prior music training and regularity of performance (more than once a week 

practice for more than a year). This divided the group almost into equal halves, with 

19 coded as musicians, and 21 as non-musicians. The mean standard deviation of the 

interresponse intervals were grouped according to the level of musical experience in 

figure 14. Although musical expertise has been shown to lower movement variability 

however it is clear that any advantage conferred by musical experience only showed in 

this study in relation to the dual task conditions where the musical group scored 

significantly less variability (M=53.93, SD=10.42) than non-musicians (M=63.13, 

SD=20.36) conditions; t (4)=2.44, p = 0.02 but were indistinguishable in single task 

conditions. 
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Fig 14 Mean Standard Deviation of musicians and non-musicians plotted for each of the 8 conditions 

CONDITION         N400M1    N400M2     N650M1      N650M2             A400M1          A400M2             A650M1            A650M2 

GROUP                Mus/Non           Mus/Non     Mus/Non     Mus/Non           Mus/Non        Mus/Non         Mus/Non           Mus/Non 
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2.5 DISCUSSION 

The results from this study support the main assumptions behind the hypothesis and 

experimental design. Due to the independence of central timing processes and 

peripheral motor implementation processes assumed in the WK model, support was 

gleaned from both a significant interaction between factors acting on central timing 

processes (interval length and attention demanding task) and a lack of significant 

interaction on the factor targeted to influence peripheral motor processes (use of index 

finger or little finger). Therefore the results found offer strong support for the the logic 

of additive factors as introduced by Sternberg, and the independent sources of 

variability assumed in the WK two-level timing model. In addition, the combination of 

factors allow us to see the relative contribution that each factor plays in the variability 

of rhythmic tapping. For example in this study, as indicated in Fig 10, the interference 

of an attention demanding task such as counting backwards in 3‟s increased variability 

more than either the longer interval or the unusual movement type, as the dual task 

cost clearly resulted in greater variability in every condition.  

 

However a number of factors may have additionally contributed to the main effects 

that raise further questions. For example, the strong increase in interference of the 

secondary task, could be due to the use of visual pacing stimulus rather than auditory 

pacing signal requiring more attention and memory resources to maintain the interval 

in mind than if an auditory stimulus had been used. This question arises due to the 

powerful effect of auditory distractors that lead Repp to suggest this reflects “a basic 

attraction of rhythmic movement to auditory rhythms”(Repp 2006). Furthermore when 

Repp put auditory and visual pacing target stimulus in direct comparison with cross 
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modal distracters participants taps were found to track the timing pattern of auditory 

distractor sequences when slightly in phase with targeted visual sequences but not the 

reverse (Repp 2004). Although prior research has shown visual pacing was generally 

more variable than than tapping with  an auditory stimuli (Jäncke, Loose et al. 2000), 

the relative increase in variability that a secondary task induces raises some questions 

about  the structural and capacity explanations of this interference. The Jancke et al 

2000 study used imaging while comparing continuation tapping with both visual and 

auditory pacing stimulus. This study trevealed that paced finger tapping in the context 

of auditory pacing stimuli relies more on brain structures subserving internal motor 

control while paced finger-tapping in the context of visual pacing stimuli relies on 

brain structures relying on the subserving processing or imagination of visual pacing 

stimuli(Jäncke, Loose et al. 2000). Thus a structural explanation of the interference 

found in this study would suggest any use of imagery in the secondary task 

(visualizing the running total) might interfere more with the timing of longer intervals 

that also rely on similar brain structures (contributing to this significant main effect of 

interaction) while avoiding interaction with the movement type. 

 

An alternative explanation of the significant interaction comes from the possibility that 

individuals covertly verbalised (rather than visualised) the running total in the 

secondary task. Speaking has been found to reduce the rate of tapping and to increase 

its variability (particularly in younger children) and that this has been shown to effect 

the right hand more than the left (Hiscock, Kinsbourne et al. 1985). This asymmetric 

effect of handedness has also been given a structural explanation of interference, 

attributed to the fact that speaking and right-hand movements are both controlled by 

the left cerebral hemisphere of right-handers. (Kinsboume & Hicks, 1978). 



Chapter 2: Additive Factors, Attention and Timing variability      52
  

This structural interference has been used to explain why concurrent reading of 

paragraphs reduced unimanual tapping rates more for the right hand than the left even 

when reading silently (Hellige and Longstreth 1981). Participants in this study were all 

right handed and both movement types were conducted with the right hand, the 

additional variability of this structural interference would be equal with both 

movement types. While structural interference may have played a part in the overall 

variability, the pattern of the interactions cannot be explained by structural limitations 

alone. For example, although dual task mean IRI was shown to be longer than mean 

IRI with single task tapping, the mean single task tapping was already longer than the 

target interval for short intervals, and shorter than the target interval for longer 

intervals, a finding which is more compatible with perceptual distortions (Nakajima 

2004; Grondin 2005). It is also possible that the strategy used to avoid a capacity 

limitation induced by the dual task resulted in slowing the timing of movements to 

adjust to the rate or speed of mental calculation. This possibility cannot be ruled out as 

the rate of calculation was left to the participants to control. Thus although the mode 

of the stimulus and the possibility for structural sources of interference might have 

contributed additional sources of variability, and strategy could be used to compensate 

for capacity limitations during dual tasks, the pattern of interaction, between dual task 

and interval (but not between dual task and movement type, and not between interval 

and movement type) are still best explained by the independence of the two-level WK 

model.  

 

Just as there may be individual difference in the style and strategy used for mental 

arithmetic, there may also be background differences in the experience and skill of 

timed movements through musical practice. Although musical expertise has been 

shown to lower movement variability which might confer an advantage at shorter 
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intervals, or when using more unusual movements (Franek 1991) (for example piano 

players may have more experience initiating timed movements with their little finger). 

It is clear that any advantage conferred by musical experience only showed in this 

study in relation to the dual task conditions where the musical group scored 

significantly less variability than non-musicians conditions but were indistinguishable 

in single task conditions. This advantage could be from experience in changing focal 

attention between a number of different temporal patterns as suggested by the dynamic 

attending theory (Jones 1976, 1987, 1990; Jones and Boltz 1989). This theory suggests 

that experience of music containing periodicity at more than one level, such as 

tracking both melodic and harmonic changes, is explained by the listener making use 

of multiple oscillators rather than a single oscillator or pacemaker, and so gives 

experience in directing attention between multiple temporal patterns. It is also possible 

that musical experience might give more of an advantage of protecting movement 

timings from irrelevant or distracting interference, a role attributed to the central 

executive(Krampe, Mayr et al. 2005; Brown 2006). 

 

However even though the participants with greater musical experience exhibited less 

variability during the dual task trials than non-musicians, they still showed greater 

variability than when conducting single task trials, and greater variability at the longer 

interval as predicted by the additive factors. Thus although musical experience can 

moderate the nature of these interactions, it cannot eliminate the same trends found by 

less musically experienced participants. 

 

 

 



Chapter 2: Additive Factors, Attention and Timing variability      54
  

2.6 SUMMARY 

The effect of divided attention was explored through a pattern of interactions between 

2 other factors, interval and movement type, each targeting variability of an 

independent process in the WK model. Using the logic of additive factors, that factors 

operating on the same processes will interact and add to the exhibited variability, an 

attention demanding task was found to interact with the interval but not movement 

inline with the predictions and assumptions of the WK model. The results implicate 

capacity limitations of attention, but do not rule out contributions of stimulus mode 

and structural limitations in the pattern of variability which are addressed directly in 

the following Chapter. 
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CHAPTER 3: 

ADDITIVE FACTORS II – Modal Effects 

3.1 INTRODUCTION 

The results of the previous experiment implicate capacity limitations of attention as a 

major source of variability in continuation tapping, but do not rule out contributions of 

individual differences in strategy and skill or more subtle interference with stimulus 

and response modalities. Some improvements to the paradigm to further explore these 

modal interactions involve controlling the rate at which participants proceed with 

calculations, and comparing mixed modes to assess any greater tendency for 

secondary task entrainment. In addition, a 700 ms interval was used as this was the 

interval resulting in least over or underestimations in the literature.(Fraisse 1957; 

Glover SR 2001).  

 

3.2 METHODS: 

An opportunity sample of 11 undergraduate participants (mean age 19) were tested. 

They were right handed, had normal or corrected vision and gave informed consent 

before taking part in the experiment. Each participant completed a background 

questionnaire and then completed 8 blocks of experimental conditions comprising 1 

practice trial then 3 experimental trials in each condition. Prior to the experimental 

conditions, participants first attempted an example of the secondary task by itself 

(without tapping). Only if they scored 80% pass (2 missed identifications out of  

possible 10) could they initiate the experimental blocks otherwise they had to repeat 
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the secondary task until they reached the 80% inclusion criterion. No participants were 

eliminated at this stage. 

3.21 Apparatus 

Subjects were seated comfortably on a chair facing a 19inch computer monitor with 

their hand on the mouse which was used as the response manipulandum. Participants 

were asked to wear headphones throughout the experiment even though sounds would 

only be heard on some of the trials according to the block design. The stimulus 

presentation, secondary task display, and collection of the behavioral  responses were 

controlled by a customised program (LV-APP) written in labview (version 6.5). The 

LV-APP displayed a visual metronome at a fixed pace, and recorded the interresponse 

intervals of the participants synchronized mouse clicks to an accuracy of +/-1 ms.  See 

Appendix for calibration issues. 

 

3.22 Experimental Task 

Subjects were trained to produce tapping movements by clicking the mouse button to  

synchronize with a pacing stimulus and then to continue tapping with the same interval 

without pacing stimulus. At the beginning of the trial, the pacing stimuli were 

presented with a preset interstimulus interval (ISI) appropriate for that block (either 

400ms or 700ms). Subjects were required to tap the mouse button each time a stimulus 

was presented, which resulted in a stimulus–movement synchronisation. After 10 

consecutive synchronized movements the pacing stimulus was eliminated, and the 

subjects continued tapping at the same interval for 30 additional intervals per trial. 

During the practice trial feedback was displayed graphically on the screen, indicating 

the participant‟s mean intertap interval, to ensure adjustments were being made to the 
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appropriate ISI for that block of trials. No feedback was displayed during experimental 

trials and 3 experimental trials would follow with an intertrial interval of 3s. 

 

3.33 Secondary Task: 

A major difference from the previous experiment was the automated initiation of the 

stimulus for the secondary task from within the application. The LV-App would 

launch an executable macromedia flash file which would initially display a white 

background beside the lvapp display at the start of the trial. After 5 seconds of 

continuation tapping (where the pacing signal has been switched off) one of two 

different stimulus conditions would be displayed through the flash file window. In the 

visual condition, a series of randomised low numbers (1-9) would appear at 1450ms 

intervals (each onscreen for 66ms) until the end of the trial. In the auditory condition a 

cross hairs would appear with the same onset times as the visual stimulus but with 

embedded wav files of each equivalent number being “spoken” that played through 

participants headphones every 1450ms. Each digitised voiced number was also 

normalised to 66ms and was clearly comprehensible to all participants. In both 

conditions (auditory and visual presentation of the numbers) the task of the 

participants was the same. Participants were asked to track the total number of 

switches from odd to even or even to odd numbers. Thus in the sequence: 

2  4  1  7  9  3 5 8 6   

there would only be a total of 2 changes from odd to even or even to odd numbers see 

Fig 15. 
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Fig 15. Secondary task. Number series appears sequentially (in either visual or auditory mode) Participants pay attention to any 

instance the number sequence changes from odd to even number or the reverse (arrows). Participants update the running total 
either silently or out loud. 

 

Each trial had the same mean number of changes (6) to attend to and would vary by no 

more than  + or – 2 changes per stimulus set. According to the block design 

participants were instructed to either a) silently add the number of changes and keep a 

running total and then verbally give the total to the experimenter at the end of the trial, 

or b) say outloud the running total as each change was noticed. 

 

The pacing stimuli were in the form of an orange circle (4-cm side) presented in the 

center of a computer screen for 33 ms and was fully detectable. Means and standard 

deviations of the interesponse intervals were recorded for analysis along with the 

results of the secondary task and the written questionnaire. Data values above or below 

3 SD from the mean were removed, corresponding to either accidental doubleclicks, or 

missed clicks of the mouse (This excluded only 8 values from experimental trials). 

The reported P values in the repeated-measures ANOVAs correspond to the 

Greenhouse–Geisser test, which corrects for possible deviations in sphericity. The 

level of statistical significance to reject the null hypothesis was 0.05. SPSS statistical 

package(version 12 2003, SPSS, Chicago, IL) were used for the statistical analyses. 

Total Errors in the secondary task were averaged and itemised according to errors of 
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omission (missing a change that was present) or errors of addition (counting a change 

when there was none). 

A three-factor experiment was run in a randomised block design with participants 

tapping at each of two intervals (400 x 700ms)  with a concurrent attention-demanding 

task (counting the number of switches from odd to even numbers either silently or 

outloud) using two different modes of presentation  (visual or auditory). This resulted 

in the following 8 conditions. 
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3.3 RESULTS 

The results of the ANOVA  reveal significant main effects for Tempo [F(1, 10) = 

16.61, p < .01] confirming that the longer interval of 700ms added significantly more 

variability than the shorter interval of 400ms.   

 STIMULUS MODE: 

While the average variability was greater in each condition when the stimulus mode 

was auditory rather than visual, the increase was of no statistical significance [F(1, 10) 

= 2.170 p .175] The added variability of the auditory stimulus conditions is visible in 

Fig (17) . 

RESPONSE MODE: 

The results of the ANOVA show marginally significant effect when the response 

mode was speaking outloud compared to silent calculation the secondary task [F(1, 

10) = 3.645, p  .089] 

 

INTERACTIONS: 

The resultant interactions were central to the logic of this experimental paradigm, that 

is, it is through how these factors interact that we may better understand their shared 

resources or independent sources of variability. The results of the ANOVA revealed a 

significant interaction between the Response mode * Interval [F(1,10) = 5.290, p < 

.05] indicating that at slow speeds, speaking outloud significantly increased the 

variability beyond the increase of tempo or speaking alone. No interaction was found 

between Stimulus mode * Interval nor for the 3 way interaction between Stimulus 

mode * Response mode * Interval. The lack of interaction between stimulus mode and 
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interval is visible in the almost parallel slope of the plotted standard deviation (fig 16). 

By comparison, the significant interaction between response mode and Interval shows 

the steeper slope at the longest interval (700ms) as predicted.  

 

 

 

Fig 16. Interactions. Left shows small additive variability (SD) for auditory stimulus presentation at each ISI but no interaction. 

Right shows significant interaction with greater variability (SD) of speaking outloud at a longer ISI. 
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Fig 17. Shows the average IRI for each of the 8 conditions. Error bars represent standard deviation. 
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Fig 18A (Above). Variability (average standard deviation ms) of responding as a function of silently or out loud versions of the 

secondary task (collapsed across stimulus mode) Fig 18B (Below) Compares the variability (Average Standard deviation ms) of 

tapping to either an auditory or visual stimulus in the secondary task (collapsed across response mode) 

 

 

. 
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Fig 19. Illustrates the average pattern of secondary task errors. The total error (top) is broken down into an error of omission 

(where a change was missed) or addition (where a non-existent change was perceived or counted). These errors are presented for 

comparison of Audi vs visual Stimulus (left), Silent or Outloud Responses (middle), and Fast or slow ISI (right) 
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Fig 20. Examples of trials from the 3 individuals. All trials are taken from the slower ISI 700. A) Illustrates a participant with 

wider intertrial variability and a general trend toward speeding as the for both speaking and silent trials. Despite this trend the 

slowing peaks common in speaking trials are highlighted. B) Illustrates a participant with less intertrial variability yet also 
illustrating a tendency to speed up as the trial progresses and slowing peaks for speaking trials. C) Illustrates a participant with 

low intertrial variability and less trend of speeding up, yet slowing peaks are clearly visible for speaking trials.   
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3.4 DISCUSSION: 

As expected from the previous experiment (CChapter 2) and from extant research 

(Repp 2003b; Flach 2005; Repp 2005; Repp and Doggett 2007) the results of the 

ANOVA confirm that the longer interval of 700ms adds significantly more variability 

than the shorter interval of 400ms. This can be explained by the added variability 

accumulated by the clock processes of information processing models discussed in the 

previous Chapter. That no main effect was found for the stimulus mode (auditory or 

visual) of the secondary task is more interesting. We expected that the distraction of a 

regular auditory sound in the secondary task might interfere with the continuation 

timing of responses much more than a visual distraction (Kato and Konishi 2006; 

Repp 2006). We also considered that the English language of the auditory stimulus 

might interfere with the subvocal language mediating  participants self-

direction(Baddeley 2003), and also interfered with the language based running totals 

that would also require resources from the articulatory loop of Baddeley‟s model of 

working memory. Lastly we considered that as language is predominately left sided, 

that more language and auditory processing might increase structural interference with 

right hand movements (Hiscock, Kinsbourne et al. 1985; Keefe 1985; Hiscock, 

Kinsbourne et al. 1987). The fact that no such differences were found supports the idea 

that both the visual and auditory stimulus were treated in much the same way, either 

by conversion via accumulators to an amodal count, or via the phonological loop 

whereby visual images of numbers can be transferred to equivalent verbal 

representation rendering little difference to the mode of the stimulus(Baddeley 1986; 

Alan 2000). Another possibility is that timing is reliant on the currently employed 

neural networks (Jantzen 2007) and as the visual pacing signal employed visuo-motor 
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networks rather than auditory ones, they may be of lower temporal resolution 

contributing to more equal variability despite the secondary stimulus mode.  Another 

alternative explanation is that participants used a different executive strategy to give 

higher priority of shared attentional resources to maintain tapping at a cost to the 

attention given to the secondary task(Brown 1990; Brown 2002; Brown 2006). Some 

support for this possibility comes from the pattern of errors in the secondary task (Fig 

19) which were higher overall for auditory vs visual stimulus trials and more errors of 

omission occurred in trials with an auditory stimulus. This bidirectional interference 

might therefore have lessened the cost on timing variability.  

The marginal main effect of response mode is also quite surprising. Given the strong 

support in the literature for the interference effects of speaking on movement timing 

(Thornton and Peters 1982; Hiscock, Kinsbourne et al. 1985; Keefe 1985; Hiscock, 

Kinsbourne et al. 1987).  However the nature of this interference was much clearer 

when looking at the pattern of interactions. 

 

INTERACTIONS: 

The resultant interactions were central to the logic of this experimental paradigm, that 

is, it is through how these factors interact that we may better understand their shared 

resources or independent sources of variability. The significant interaction between the 

Response mode * Interval indicating that at slow speeds, speaking outloud 

significantly increased the variability suggests that speaking outloud shares some 

resource (structural or capacity) with timing processes. If the increase in variance was 

due for example to the fact that speaking is itself a motor act, we would expect 

additive interference at both 400ms interval and 700ms. The greater inference 

exhibited at 700ms suggests there is an increase in complexity not reducible to either 
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tempo, additional motor planning or difficulty in calculation by themselves. One 

explanation of the additional difficulty comes from considering the extra demands of 

sustained coordination of the tasks. For example, (Engle 1999; Engle 2004; Oberauer, 

Lange et al. 2004) proposed that working memory capacity is the ability to temporarily 

maintain representations activated in the face of distraction. Their view can be 

summarized by the equation „„complex span=simple span + controlled attention. This 

characterization of a difficulty of attentional control over a longer span would explain 

why attentional resources might be stretched by both a longer interval and an 

additional goal to keep the running total + keeping the running goal to remember to 

say it outloud each time it increases. A traditional information processing model 

supports this view  (Fortin 2000) suggesting  that shifting from one task to another or 

simply to interrupting time estimation  could lead to loss of temporal information in 

the accumulation process. A consequence of this timesharing with other information-

processing loads is that time is lost! More specifically the time-sharing assumption 

(Buhusi 2009) is that when subjects attend to a second task, estimated durations are 

shorter, due to resources being taken away from timing. Support for this can be seen in 

the shorter IRI for all intended 700ms intervals (fig 17). Buhusi (2009) conclude on 

the basis of their own evidence that the brain circuits engaged by timekeeping 

comprise not only those primarily involved in time accumulation, but also those 

involved in the maintenance of attentional and memory resources for timing, and in 

the monitoring and reallocation of those resources among tasks. This view is supported 

by findings in this and the last study and suggestive of a useful combination of the 

Church 1984/Baddeley2000 timing model developed in the last Chapter (Fig 21) 

whereby attention when drawn to the memory processes and information management 
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of complex secondary tasks, attention is withdrawn from the switch to accumulators 

resulting in shorter time estimations/productions. 

 

Fig 21. Combination Church/Baddeley Information Processing Model  

An additional  benefit of mixing the Baddeley 2000 model with the current 

information processing models of timing is it brings the interplay of language use in 

memory and in vocalisation into the range of factors known to add to timing 

variability. It also helps to consider more directly the use of language used by 

participants to coordinate actions,  strategise with secondary tasks demands and 

remember task instructions.  The inclusion of the episodic buffer as distinct from the 
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central executive is suggested (Baddeley 2003) to be capable of binding together 

information from a number of sources and modalities into a single multifaceted code. 

This distinct addition may support a different sort of timing mirroring the distinction 

between more automatic aspects of timing and action from the more deliberate. This 

distinction has proved necessary to account for the ability to synchronise with regular 

stimulus that include perturbations below the conscious threshold yet seem to produce 

rapid automatic responses. This distinction will be investigated in Chapter 4 and 5. 

Finally a closer look at individual differences illustrated in Fig 20 raises 2 additional 

points. On the one hand the slowing peaks visible above the intertrial variance are 

characteristic slowing of movements on speaking outloud tasks commonly mentioned 

in the literature (Thornton and Peters 1982; Hiscock, Kinsbourne et al. 1985; Keefe 

1985; Hiscock, Kinsbourne et al. 1987). These slowing of movements increase the 

variability of speaking costs at slower intervals, but seem to be in one direction (i.e. 

they do not include downpeaks below the intertrial variability. On the other hand a 

general drift toward speeding up in the continuation stage may be due to the increasing 

clock time since the pacing signal was last refreshed. This last point is investigated 

more directly in Chapter 6. 
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CHAPTER 4: 

  

PERTURBATION RECOVERY 
 
4.1 ABSTRACT 

 
As discussed in the introduction, models of movement timing do not typically 

consider a critical role for attention, working memory  processes or executive 

control when correcting asynchronies in simple, repetitive movements. However 

these processes have been strongly implicated in studies with duration perception, 

and  duration  performance  judgements.  This  study  offers  an  appraisal  of  the 

assumption  that  automatic  error  correction  in  sensorimotor  synchronisation  has  

limited involvement  of  higher  cognitive  processes.  In  contrast  to  a   common  

assumption  of automaticity of error correction in SMS research, attention 

demanding dual task conditions were  found  to  broadly  increase  asynchrony  and  

slow  error  corrections  directly  after  a perturbation. Interpretations are offered for 

this finding in the context of current models and measures used in SMS research. 
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4.2 INTRODUCTION 

 
Sensorimotor  synchronisation  (SMS)  has  been  defined  as  the  rhythmic  

coordination  of perception and action (Repp 2005). Linear models of 

sensorimotor synchronisation account well for much of the variance during 

paced repetitive movements within certain parameter ranges  (Vorberg  &  Wing  

1996).  Linear  models  can  also  account  for  patterns  of  error corrections  

required  to  maintain  synchronicity  with  regular  and  perturbed  metronomes 

without explicit recourse to higher level cognitive functions (Schulze & Vorberg 

2002, 2005). As a result, support has grown for the assumption that error 

corrections are largely automatic and independent of higher level functions such as 

awareness, and attention. 

 

 
 

Extant research into the role of awareness, attention, intention, and working 

memory in repetitive  movement synchronisation, has tended to confirm a 

dissociation between a low level  peripheral  automatic  corrective  process  and  

a  central  timekeeping  process  more influenced by higher level factors (Sergent, 

Hellige, Cherry 1993; Repp 2001a, 2002c, 2002d, Repp & Keller 2004, 2008). 

Specifically, performed error corrections required to maintain synchrony 

following a perturbed stimulus, have been found to be as accurate below as above 

perceptual thresholds suggesting no benefit of conscious attention (Vorberg and 

Wing 1996; Repp 2002a,c; Ivry & Hazeltine 1995; Semjen, Vorberg & Schulze 

1998; Semjen, Schulze & Vorberg 2000). 
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However the ability to automatically adjust phase of repetitive movements has 

itself recently been found to be influenced by higher level contextual factors such 

as the way instructions are framed to participants and the perceived difficulty of a 

task at hand (Repp 2002b, Repp & Keller 2008). This suggests that a phase 

correction process may be more influenced directly by higher level factors than 

previously thought, or that the behavioural expression of phase correction is 

mediated or overlapped by different processes which are responsive to higher 

level factors. 

 

 
 

The following sections of this Chapter recount some of the main approaches and 

models used to explain  the timing variance of simple finger tapping followed 

by the extensions required to model synchronisation and error corrections. 

Finally, issues will be highlighted which are directly explored in the research 

reported here which further explores the role of attention in sensorimotor 

synchronisation and error correction. 

 

 
 

Sensorimotor Synchronisation 

 
Building on the research of Stevens (1886) who investigated the accuracy of 

maintaining tapping with a  metronome set pace, Wing and Kristofferson offered 

a quantitative 2 level model (Wing & Kristofferson  1973a, 1973b); which 

distinguished a central timer and a motor implementation process (see Fig 22). 

This model was able to develop the contrast of two sources of variance that 

Stevens' research picked up, a short  term  variance  around  the  mean  target  

interval  which  corresponds  to  the  variance produced by motor delays, and a 

longer term drift which corresponds to the standard of a central timer or 

remembered metronome interval duration.  
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The WK model provides estimates of two sources of variance that contribute 

differentially to the statistics derived from a series of observable interresponse 

intervals (IRI). Extending this model to account for re-synchronisation with a 

metronome after a perturbation or asynchrony to an isochronous pattern requires 

feedback to account for any asynchronies between the variable taps and  the 

external metronome standard. Error corrections can be accounted for with a 

relatively simple phase correction strategy which compensate for phase differences  

between  the  response  and  the  metronome  in   a  fixed  proportion  of  the 

synchronisation error from the timekeeper interval α. Moreover, the next-to last 

asynchronycan be  brought  in  to  the  calculation,  as  well.  Then,  the  underlying  

timekeeper  will  be additionally corrected by a proportion of the previous error 

with error correction parameter β, (Vorberg & Schulze 2002; Vorberg & Wing 

1996) here referred to as VWS model. 

 

 

 

Fig 22. (WK) Model of Timing and extended (VWS) Model of Synchronisation 
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The WK model contrast between central/cognitive timer and 

peripheral/automated motor components shares with VWS model an assumption 

that during action there is a progression from awareness and planning which rely 

on perceptual and central cognitive information to one of a more peripheral 

automated online control ( G l o v e r  S R  2 0 0 1 ) . Accordingly, higher level 

factors would seem to be required at this early planning stage and more liable to 

disruptive effects of a secondary task. Indeed this is what Sergent, Hellige & 

Cherry (Sergent 1993) found when they  examined  the  effect  of  anagram  

solving  on  free  finger  tapping  they  showed  after decomposing the variance 

according to the WK model that only the time-keeper variance was affected. 

 

 
 

The VWS  model  concentrated  primarily  on  one  type  of  error  correction,  that  

of  phase correction typically induced in isochronous meters. However a different 

type of correction, that  of  period  correction,  could  be  distinguished  to  account  

for  changes  required  when adjusting  to  a  change  in  tempo.  Repp  (2001b)  

following  Mates  (1994)  explored  error correction  in  both  changes  of  phase  

and  period  and  pursued  the  conscious/automatic distinction in these two types 

of error correction. This distinction has tended to preserve the dissociation 

between an automatic online control process (phase correction) whereas a more 

conscious perception based process that involved planning was proposed in period 

correction. Repp and Keller (2004) proposed a model referred to as RK model 

(Fig 23) relating these two types of  error  correction  (period  and  phase)  to  the  

WK  tiered  model  to  include  motor variance. 
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Empirical support for this dissociation of  peripheral/automatic/phase change and 

central/explicit/period  change  is  drawn  on  the  one  hand  from  the  findings  

that  error corrections can occur to subliminal perturbations of sequence timing 

(Hary & Moore 1985, Repp 2001a; Thaut, Miller & Schauer 1998), which suggest 

that a direct coupling of sensory information and synchronised action can occur 

without mediation by awareness or perceptual judgement; and on the other hand 

from findings that this  corrective process is difficult to suppress intentionally 

even when directly requested (Repp 2002a 2002c;  Repp and Keller 

2004.) Furthermore  phase  correction  seems  as  effective  above  or  below  the  

perception detection thresholds (Repp & Penel 2002).  By contrast when a change 

in tempo is required to  adapt  synchrony  with  a  change  in  target  interval  

duration,  attention  has  been  found necessary to effect a period change (Repp and 

Keller 2004; Repp 2001b). 

 

 
 

The empirical findings are therefore highly suggestive of a dissociation between 

automatic bottom  up,  stimulus  driven  phase  correction  and  a  top  down  

period  correction  process influenced by intentions and awareness. Further 

support for such a dissociation can be found from  neurophysiological research 

Fig 23. Schematic illustration of Repp and Keller (RK) SMS Model 
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based on the relationship between brain areas activated during the performance 

of different timing tasks. Although not intended to map onto Repp‟s phase and 

period mechanisms, Lewis & Miall‟s (2003) literature review led them to suggest 

two  mechanisms  or  networks  that  seemed  differentially  responsible  for  short  

and  long intervals. One mechanism associated with areas of the brain associated 

with movement such as  the  cerebellum  and  premotor  cortex  which  are  

activated  mainly  during  shorter  time interval (< 1 sec). In contrast a cognitive 

controlled mechanism was associated with the areas linked to higher brain 

function such as the prefrontal cortex observed in perception of longer time 

intervals (> 1 sec). 

 

 
 

However the distinction between controlled and automatic processes involved in 

SMS may not be so distinct and indeed, their functions may overlap as Repp & 

Keller (2004) also found some automatic error correction of period change in the 

absence of awareness. Furthermore, Repp‟s  (2006)  research  into  an  auditory  

perceptual  illusion  on  both  period  and  phase corrections following event onset 

shifts showed differential effects to positive and negative phaseshifts, strong 

individual differences and a more  complicated pattern of effects to a perceptual 

illusion than would be expected for automatic error correction. Although no firm 

evidence has been found specifically for the role of attention in SMS models 

of phase correction, it has been proposed as relevant in explanations of upper and 

lower limits to SMS and subjective thresholds (Repp 2005) and moreover, SMS 

models imply that changes must be attended to (whether these changes are 

asynchronies or stimulus or movement intervals) even if the perceptual attending 

is below conscious thresholds. 
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According to the considerations outlined above, there are three main ways 

attention could be important for successful rhythmic synchronisation and error 

correction. Firstly, attention can be  involved  in  the  perception,  detection,  or  

monitoring  of  patterns  of  durations.  These patterns  could  be  the  onsets  of  

stimulus,  onsets  of  movements  or  onsets  of  perceived asynchronies  

(Aschersleben  2002;  Repp  2005).  Secondly,  attention  can  be  involved  in 

accessing  and  comparing  recent  memory  of  intervals  of  taps  or  stimulus  

(Repp  2005) Aschersleben (2002), Thirdly, attention can be required to initiate 

and stop, (Repp 2001a, 2002b;  Glover  and  Dixon  2001,  2002)  continue  and  

adjust,  (Vorberg  &  Wing  1996) movements   while  ignoring  internal  or  

external  distractions  of  irrelevant  timings  and movements (Repp 2001b, 

Miyake, Onishi & Pöppel 2004). 
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Present Research 

 
There seems agreement amongst researchers (Vorberg & Wing 1996; Sergent et 

al 1993; Repp 2002c;  Repp & Keller 2008) that to initiate synchrony of 

tapping to a metronome requires directing attention to the pattern of the stimulus 

subject to experimental instructions (Repp 2001b, 2005). However once initiated 

both controlled and automatic processes may be involved to different degrees in 

maintaining synchrony. 

 

 
 

The goal of this study was to explore the cognitive context of synchronisation 

abilities by changing the demands put on attention during a tapping task to 

observe the effects on timing variability and error correction.   A dual task 

paradigm was used to increase the demands on attention. Mental arithmetic was 

chosen for the  secondary task as this was considered an attention demanding 

exercise that could be easily varied for complexity and any errors could be easily 

verified and coded. Furthermore it has been used as a secondary  task in SMS 

research (Repp & Keller 2004) and is commonly used to modify attention in 

cognitive research (Conway, Kane, Bunting, Hambrick, Wilhelm, & Engle 2005). 

 

 
 

Two aspects of asynchrony were of particular interest in this study, the variability 

of tapping in  synchrony  with  the  metronome  in  differentially  attention-

demanding  conditions,  and secondly,  the  effect  of  these  conditions  on  the  

pattern  of  recovery  from  a  metronome perturbation.  According  to  the  VWS  

and  RK  models,  without  a  change  of  tempo,  any adjustments required to 

maintain synchrony with the isochronous metronome is hypothesised to be 

accomplished with phase correction alone, and would therefore show little  effect 

of secondary task demands to the extent that phase correction could be 

accomplished in an automatic fashion 
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In keeping with the findings of the previous Chapters, and in contrast to 

the assumption of automaticity of error correction, we hypothesise that any 

component  attention plays in perceiving and comparing relevant stimulus and 

movement onsets  to  maintain  or  assist   synchrony  would  become  

increasingly  compromised  as attentional demand is increased by the secondary 

task conditions. As a consequence it would be expected that as attention is 

increasingly demanded, that  variability of tapping would increase, as would 

errors in the secondary task. Secondly, to the extent that recovery from phase 

shifts in the stimulus requires attentional resources to notice asynchronies, we 

would expect a slower recovery during conditions of high  attentional  demand.  

Finally,  to  the  extent  that  executive  attention  is  the  critical component in 

working memory (Conway et al, 2005), and primarily responsible for ignoring 

irrelevant transient associations, we expect that  as secondary task difficulty 

increases, that asynchrony increases with task condition and recovery from 

perturbation is slower. 
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4.3  METHOD 

 
Participants: The original sample consisted of 16 participants (7 male, 9 

female) paid for their participation. 

 

 
 

Apparatus and stimuli: Participants rested the index finger of their dominant 

hand on a wooden surface  (4×3cm) mounted on top of a force transducer (see 

fig 3). The auditory metronome was delivered by an amplified loudspeaker 

played through a computer speaker. Stimulus presentation and movement 

recordings used a National Instruments data acquisition card (DAQ) controlled by 

MATLAB. An auditory waveform sent to the loudspeaker was fed back into the 

DAQ, enabling measurement of the timing difference between the metronome 

pulse and the corresponding participant tap response with sub-millisecond 

accuracy and precision.  Dual  task  information  was  displayed  on  the  screen  of  

a  Pentium  4  portable computer running windows XP placed on the lab bench in 

front of participants (fig 24) 

 
 
 

 

 
 
Fig 24a.  Experimental arrangement with subject tapping a force transducer whilst watching the screen 
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Procedure 

 
Participants were instructed to tap in the closest synchrony they could manage 

with an auditory metronome that might occasionally vary. Participants were given 

4 trials to get used to the task set up and to allow a check that their tap strength 

was sufficient to provide a clear signal through the force transducer.  Trials 

alternated the inclusion of either a positive or negative phase shift at 15% of the 

otherwise isochronous metronome beat at 500ms (s.d. 10). These pre-test trials 

also allowed a vetting of any subjects who might perform too erratically at a 

simple auditory synchronisation task. Participants would then receive 5 trials in 

each of 5 conditions, an Ignore condition (1), where participants were able to see 

presentation stimulus at the same  rate of presentation as dual task conditions but 

were instructed to ignore the stimulus,  and  then  4  increasingly  demanding  

dual  task  tapping  conditions  (2-5)  where participants were asked to perform 

simple arithmetic operations on the presented stimulus. 

 

 
 

Secondary Task 

 
To scale the effect of increasing demand, two manipulations were used in the 

secondary task, the first was to offer two levels of difficulty of the arithmetic 

calculations The other was to offer two levels of complexity a  simple condition 

that required participants to hold one resultant  calculation  in  memory  between  

stimulus   presentations,  and  a  more  difficult condition of holding two resultant 

calculations in memory between  stimulus presentations. Thus  there  were  five  

levels  of  executive  attentional  demand  from the  low  level  ignore condition to 

the highest demand of complexity and difficulty and this are detailed below: 
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Ignore Condition (1): Participants would face the screen displaying “Ready?” 

and press the space bar to initiate a flash movie which would cycle through 1 

complete trial of presentation stimuli at a fixed paced before pausing at a 

“Ready?” screen for the next trial Participants were asked to  watch the screen 

but to ignore the presented stimuli which made sequential requests for simple 

calculations, whilst maintaining synchrony with the metronome even if it seemed 

to vary (fig 24b). 

 

 
 

DT (2): In this condition, in addition to the auditory synchronization, 

participants were requested to perform the requested calculations of the stimulus, 

which involved retaining a running total as a result of sequential additions and 

subtractions until the end of the trial (8 small  integers  needed  to  be  added  or  

subtracted  per  trial  ranging  from  -1<0<1).  Each calculation request was 

displayed sequentially every 3.75s. At the end of the trial participants were 

requested to report back the cumulative total of all 8 calculations.   After 

reporting the total, participants would press the space bar to initiate the next trial. 

DT (3): identical to DT2 whilst undertaking a more demanding mathematical task 

of addition and subtraction of numbers that ranged from -7<0<7(fig 24b). 

DT (4): identical to DT2 but Subjects were here requested to compute operations 

of pairs of stimuli (stimuli  pairs were consistently coloured, and spatially 

separated) at low range (-1<0<1), reporting back two cumulative totals at the end 

of each trial. 

 
DT (5): identical to DT (4) but the two parallel display of sequential numbers 

were of the greater potential range of -7<0>7 (fig 24b). 
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Fig 24b  Examples of sequential stimuli presented on screen instructing participants to perform arithmetic 

operations with one (top) or two (bottom) totals to keep in memory
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Data Processing 

 
One participant was excluded from analysis due to excessively erratic and 

asynchronous tapping at a base rate level according to criterion reported below. 

This left 15 participants (7 male and 8 female mean age=27) for analysis. 

Synchronisation  performance  was  quantified  in  terms  of  the  asynchrony  

between  the metronome pulse onset and the participant‟s tap onset as registered 

by the force-transducer. Mattap programme (Elliott,  Welchman & Wing 2009) was 

used to run the experiment via Matlab  and  recorded  both  the  onsets  of  

metronome  pulses  and  responses  calculating asynchrony using an algorithm for 

matching pulses and responses. 

Relative Asynchrony was calculated by taking a mean of 4 taps (IRI) prior to the 

phase shift and subtracting this from each subsequent tap at the occurrence of the 

phase shift onwards. The 15% phase shift of 500ms interval resulted in a forced 

positive or negative asynchrony of approximately 75ms at the phase shift (once 

normalized to zero) allowing a slope of recovery from  this  perturbation  to  be  

illustrated  when  plotted.  See  Fig  28.  This  also  allowed  an estimation of alpha 

as the percentage of correction on the first tap after a phase shift (PCR Repp 

2008). 

 
 

The standard deviation of asynchrony of 4 taps before the phase shift was taken 

for each subject and  collapsed between trials for compatible direction of phase 

shift, and a second average measure of standard deviation was taken 15 taps after 

the phase shift of another 4 taps and similarly collapsed across trials for each 

subject. These before and after measures were used to assess the effect of the dual 

task conditions on the variability of tapping before and after a phase shift 

 

 
 

The results of the dual task calculations were also recorded to assess accuracy trade 
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off and a division between  a low error group (less than 4 total errors/30) and a 

high error group between 4-10 errors/30). An error constituted any incorrect 

cumulative total from any of the 5 trials per condition. 
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4.4 RESULTS 

 
In accordance with the hypothesis stated earlier, the results are grouped into three 

sections, namely, the effect of dual task condition on timing variability, on 

secondary task errors; and the effect of dual task condition on phase-shift recovery. 
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Dual task condition and Timing Variability 

When compared directly a within subject ANOVA was run with condition (5) x 

phase (2) x position (2) as factors, a significant difference was found between the 

greater deviation after the phase shift compared to before F(1,14)=12.731; p=0.03 

(partial eta squared 0.476) (fig 25) and  a  significant  interaction  was  found   

between  condition*phase*postition  measures F(1,4)=3.465; p=0.01 partial eta 1.98 
 
 

 
 

Errors and Condition 

 
Although 3.75 seconds was more than enough time for an adult to calculate small 

additions and subtractions, the cost of task switching seems to have resulted in 

increasing errors (fig 26) as the conditions  became more demanding. More 

errors were produced during negative phase-shift  trials  than  positive  phase-

shift  trials  in  all  conditions  with  a  slightly  higher proportion of errors in the 

hardest condition. 

Fig 25 Relative Variability (standard deviation) before and after the phase shift collapsed across all conditions 
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Fig 26. Effect of Condition on Perceptage Error in Secondary Task 

Fig 27. Illustration from one individual of recovery from positive and negative phaseshifts with subsequent 5 taps 
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Fig 29. Illustration of phase shift at tap 1, followed by recovery over next 10 taps collapsed for direction of phase shift for all 

subjects 

Fig 28. Illustration of relative asynchrony in recovery from positive and negative phase shifts (with signs adjusted) at tap 1, 

followed by recovery over the next 10 taps for all subjects (Lines represent different conditions of increasing demand) 
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 Effect of Condition on Phase shift recovery  

 
For illustrative purposes the (fig 27) includes the phase shift at point 4 and the 

recovery  from  both  positive  and  negative  phase-shifts  over  subsequent  5  

taps  for  one individual in one condition (following Semjen et al, 1998). Fig 28 

illustrates this same general pattern of recovery for all subjects including the 

subsequent 10 taps after a phase shift (once the signs have been adjusted). 

Different conditions are represented by different lines in fig 28, whilst all 

conditions are collapsed across all 15 subjects in fig 29. As  the asynchrony is 

forced to increase by the phase-shifted onset of the metronome, only the taps after 

the phase shift where participants have a chance to correct this forced asynchrony 

were included for analysis in 5(conditions) x2(direction of phase shift) 

x10(measure of relative asynchrony by tap) within subject repeated measures 

ANOVA. 

  

 
The relative asynchrony was calculated for the first 10 taps after either a positive 

Fig 30. Relative asynchrony collapsed across all subjects and illustrated across the 5 conditions 
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or negative phase shift and these results were collapsed over trials within each 

condition for each subject for  each  tap.  A  within  subject  repeated  measures  

ANOVA  with  the  following  factors, condition (5) x direction of phase shift (2) 

x tap (10) was run on these valuse. Condition was found to be significant F (4, 

56) =3.328; p=0.040 (Partial eta squared 1.92) after greenhouse geiser adjustment 

(fig 31). 

 

 
 

Relative asynchrony for (alpha) the first tap after the phase shift in each condition 

was found to be highly  significant F(4,56)=3.53; p=0.12 (Partial eta squared 

=0.202) Phase seemed to have no significant effect or interaction at alpha with 

both positive and negative phase shifts resulting in increasing asynchrony with 

increasingly demanding conditions (fig 31). 

 

 

 

 

 

 

 

Fig 31 Relative Asychrony separated by direction of phase shit (with signs adjusted) across all conditions 
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4.5 DISCUSSION 

 
 
 
 

The main goal of the present study was to investigate the effect of increasing 

attentional demand on the ability to maintain synchrony with an auditory 

metronome when regular and perturbed. A comparison of the  level of asynchrony 

found during the ignore task with all other dual task conditions gives the clearest 

indication that an increase in attentional demand results in an increase in 

asynchrony for all measures utilised. This is instructive, as for any automatic 

responses, the disruptive effects on attention of both the novelty of the stimulus 

presentation and its period (which was a complicated ratio of the metronome rate) 

could have been difficult to ignore or control. However any automatic effects 

elicited during the ignore task were clearly dwarfed by the consequence of more 

demanding conditions on measures of asynchrony. Together with the  increase in 

errors found for the secondary task, this result seems to support the hypothesis 

that attention is required to maintain synchrony and recover from perturbations. 

However the levels of asynchrony do not increase in direct proportion to the 

attention demands  of all secondary task conditions. 

 

 
 

The relative increase in variability 15 taps after the phase correction in the ignore 

condition (see Fig 25) was unexpected as recovery from phase perturbations 

typically occur within 3 or 4 taps (Repp 2005). Excluding error correction from 

the reason for this increase in variability later in the trial might suggest that the 

cumulative effect of stimulus presentation increased the attentional demands 

required to ignore them. This increasing attention cost for ignoring may then 

have resulted in less attention free for timing control and consequently led more 

variability. Alternatively, the consequence of a phase shift and its associated 

recovery may 
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have continued to interfere with the attentional demand of all secondary task 

conditions much longer than is generally expected. 

 

 
 

The second hypothesis predicted a slower rate of recovery to a phase shift 

as a consequence of increasing demands on attention during the secondary tasks. 

Our results show support for this hypothesis most clearly in  the ignore condition 

where recovery was maximal and the hardest dual task condition where recovery 

was minimal (see Fig 28). However, the levels of recovery in the intermediate 

conditions do not describe a clear trade-off between attentional demand and cost 

in recovery from perturbation. The last hypothesis predicted that difficulty in 

noticing the asynchrony might be hardest during the hardest dual task condition, 

however excluding the ignore conditions, the levels of asynchrony and variability 

before a phase shift were very similar  for all other dual task conditions (see Fig 

25) which suggests the role of attention specifically in detecting the stimulus 

onsets was not the role most compromised by increasingly demanding conditions. 

 

 
 

The main findings of this study were an increase in asynchrony, an increase in 

variability and a slowing  recovery PCR following conditions of increasing 

demands on attention. These findings provide strong  evidence to question the 

assumption of automaticity in phase shift compensation and highlight a more  

active  role for attention than previous research had suggested, however some 

limitations in the study design with regard to control for individual differences 

force a more cautious interpretation of  the  findings.   



Chapter 4: Perturbation Recovery  95 

 
Individual Differences 

 
Although none of the participants were professional musicians, no attempt was 

made to control  for  their  variable  musical  training.  The  difference  between  

novice  and  expert musicians can account for as much as 5% variability (Franek, 

Mates, Radil, Beck, & Pöppel 1991; Keele, Pokorny, R, Corcos & Ivry 1985; 

Repp 1999, 2005). Similarly, the mean asynchrony  can  vary  by  up  to  100ms  

between  individuals  with  musically  untrained participants showing larger 

negative asynchronies than even amateur musicians (Franek et al, 1991; Keele et al 

1985; Repp 1999). Controlling for musical experience would help to minimise any 

more subtle differences underlying the averages used to assess the effect of 

secondary task conditions. In a similar vein, differences between participants in 

their affinity and  ability  with  mental  arithmetic  would  give  competent  

individuals  potentially  more resources to devote to timing. Steps are taken to 

address these concerns of individual differences that might impact variability in both 

the primary and secondary tasks in the following Chapter. 



Chapter 5: Perturbation Recovery II - Skill  96 

 
CHAPTER 5: 

  

PERTURBATION RECOVERY II - Skill 
 

 

5.1 INTRODUCTION 

 

In the previous Chapter the main findings were that an increase in asynchrony, 

variability and a slowing  recovery PCR followed from conditions of increasing 

demands on attention. These findings highlighted a more  active  role for 

attention than previous research had suggested in synchronization, and 

perturbation recovery. While results of the interference were strong, they were not 

parametrically increased in line with the assumed difficulty of the secondary task. 

This could have been due to uncontrolled individual differences in the levels of 

skill at managing either the timing of the secondary task or the ability to perform 

fast mental arithmetic calculations. To assess how important these factors may 

have been a similar but simplified paradigm was used to explore the effects of dual 

task complexity on timing accuracy using a group of professional musicians as 

participants. Additional improvements to the paradigm were to include a 

continuation phase to allow comparisons with timing variability of non musicians 

and amateur musicians in ChapterChapter 2 and 3, and a free tap before and after 

the experimental blocks. This would enable an assessment of any tendency toward 

a shorter preferred tempo leading to shorten length of IRI (speeding up) in 

continuation phases as found in ChapterChapter 2 and 3.  

 

 

5.2 METHOD 
 

 

Participants: The participants were professional session musicians  working at 

Shepards Bush Music Studio in London (7 male, 2 female, mean age 28) and 

all were paid for their participation. All participants practiced playing music on 

a daily basis and all had proficient experience with at least 3 types of musical 
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instrument yet greatest expertise in one. The favoured instrument of the 

participants was 3 drummers, 4 guitarists (1 base guitar, 3 lead/rhythm) and 2 

keyboard  players/pianists. 

 

 
 

Apparatus and stimuli:  

 

Participants were comfortably seated at a desk facing a Pentium 4 portable 

computer. Participants rested the index finger of their dominant hand on a 

wooden surface  (4×3cm) mounted on top of a force transducer (see fig 24 last 

Chapter). The auditory metronome was delivered by an amplified loudspeaker 

played through a computer speaker. Stimulus presentation and movement 

recordings used a 6229 National Instruments data acquisition card (DAQ) 

controlled by MATLAB. An auditory waveform sent to the loudspeaker was fed 

back into the DAQ, enabling measurement of the timing difference between the 

metronome pulse and the corresponding participant tap response with sub-

millisecond accuracy and precision.  Dual  task  information  was  displayed  on  

the  screen  of  a  Pentium  4  portable computer.  

 
Procedure 

 
Participants were instructed how to perform  the synchronise and continuation 

paradigm by tapping  in the closest synchrony they could manage with an 

auditory metronome that might occasionally vary then to continue tapping after the 

metronome stopped  at the same rate until they heard an end of trial beep. 

Participants were given 2 trials to get used to the task set up and to allow a check 

that their tap strength was sufficient to provide a clear signal through the force 

transducer.  After the practice trials, participants were asked to perform a free tap, which was to 

tap without any pacing stimulus at their preferred tempo (or a tempo they felt comfortable 

maintaining) until they heard an end of trial beep after 30 seconds. Participants then started the 
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blocks of experimental trial conditions. 6 blocks of 3 trials for each secondary task condition 

resulted in a total of 54 experimental trials. Trials included both positive and negative 

phase shift at 15% of the otherwise isochronous metronome beat at 500ms. The 

phase of the phaseshift was alternated like the experimental blocks with a latin 

square design. Finally participants performed a final freetap trial which ended 

the experiment. 

 

 
 

Secondary Task 

 
The secondary task was simplified from the previous experiment to offer only two 

levels of mathematical difficulty to scale the effect of increasing cognitive demand 

and two different instructions sets, either to ignore the stimulus or keep a running 

total of the additions and subtractions. Participants were instructed prior to starting 

each block whether to ignore or silently count according to the block design. This 

resulted in 3 types of trial condition listed below that were evenly distributed in the 

block design. 

 

 
 

Ignore Condition (1): Participants would face the screen displaying “Ready?” 

and press the space bar to initiate a flash movie which would cycle through 1 

complete trial of presentation stimuli at a fixed paced before pausing at a 

“Ready?” screen for the next trial Participants were asked to  watch the screen 

but to ignore the presented numerical stimuli which made sequential requests 

for simple calculations, whilst maintaining synchrony with the metronome even if 

it seemed to vary (fig 24b). 

 

 
 

Counting E a s y (2): In this condition, in addition to the auditory 

synchronization, participants were requested to perform the requested 

calculations of the stimulus, which involved retaining a running total as a result 
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of sequential additions and subtractions until the end of the trial (8 small  

integers  needed  to  be  added  or  subtracted  per  trial  ranging  from  -3<0<3).  

Each calculation request was displayed sequentially every 3.75s. At the end of the 

trial participants were requested to report back the cumulative total of all 8 

calculations.   After reporting the total, participants would press the space bar to 

initiate the next trial. 

Counting Hard (3): identical to DT2 whilst undertaking a more demanding 

mathematical task of addition and subtraction of numbers that ranged from -7<0<7  

 

 
 

Data Processing: 

Synchronisation  performance  was  quantified  in  terms  of  the  asynchrony  

between  the metronome pulse onset and the participant‟s tap onset as registered 

by the force-transducer. Mattap programme (Elliott,  Welchman & Wing 2009) 

was used to run the experiment via Matlab  and  recorded  both  the  onsets  of  

metronome  pulses  and  responses  calculating asynchrony using an algorithm for 

matching pulses and responses. 
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Relative Asynchrony was calculated by taking a mean of 4 taps (IRI) prior to the 

phase shift and subtracting this from each subsequent tap following the occurrence 

of the phaseshift to its recovery. The 15% phase shift of 500ms interval resulted in 

a forced positive or negative asynchrony of approximately 75ms at the phase shift 

followed by its return to baseline in subsequent taps.  The first tap following the 

phaseshift represented alpha as the percentage of correction on the first tap (PCR 

Repp 2008). 

Standard descriptives (Means and Standard Deviations) were taken  from  30  IRI in 

continuation phase after the first 3 taps of transition were eliminated, to characterise 

timing variability in the continuation phase. 

 

Any incorrect scores of the dual task calculations were also totalled  for each trial 

and averaged by condition and by individual to assess bidirectional accuracy trade 

off . An error constituted any incorrect cumulative total from any of the  56 trials. 
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5. 3 RESULTS 

 

Fig 32. Illustrates the mean IRI for each individual in their free tap trials before the experiment (dark columns) and after the 

experiment (light columns). 
 

 

 
 

 

 

Fig 33. Illustrates the average recovery from perturbation for all participants separated by Condition. Error bars represent the 

standard deviation 
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Fig 34. Illustrates the Total number of Errors in the secondary task (easy or hard) counting trials accumulated by all 

participants 
 

 

 
 

 

Fig 35 Illustrates the total secondary task errors separated by individual participants. The square highlights participants who 
scored less than the mean error for easy counting trials. 
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Fig 36 Illustrates a comparison of the phaseshift recovery over 5 taps for those participants who were identified as ‘good’ at 
mental arithmetic (with less than mean error) from those who scored more errors . 

 

 

Fig 37 Illustrates a slight trend toward more variability of tapping in the continuation phase following trials with counting 
tasks. Error bars represent Standard deviation. 
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Fig 38. Illustrates the Mean IRI for each participants continuation phase. Error bars represent standard error. 

 

EFFECT OF SECONDARY TASK CONDITION 

 

Repeated measures ANOVA was run on the first 5 taps following the phase shift 

resulting in  Condition (easy vs hard vs ignore) * Tap (5) with pairwise comparisons. 

The effect of condition revealed the secondary task had a dramatic effect on the 

pattern of recovery .  With significant differences between the recovery pattern of the 

first 5 taps following the phaseshifts. the  [F(2, 7) = 330.4, p<.0.01].  Pairwise 

comparison reveals a significant difference between all conditions  p<0.01 between 

either the easy or hard task and the control, and p<0.05 between easy and hard 

conditions. (fig 33) 

EFFECT OF SECONDARY TASK CONDITION AT ALPHA 

 

The effect of condition at alpha confirmed that the effect of condition significantly 

influenced the recovery of the first tap following a perturbation (PCR) [F(2, 7) = 
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17.40, p<.0.01] and pairwise comparisons confirmed this way not due only to the 

slow ignore condition recovery but also between easy and hard conditions (p=0.03). 

 

FREE TAP COMPARISON 

There was a not a significant difference in the Mean IRI of participants freetap 

before (M=563.8, SD=114.9) and after (M=558.8, SD=83.8) experimental 

conditions; t(8)=0.2, p = 0.8 see fig 32. This indicates that participants had not 

become entrained by the experimental conditions 

 

CONTINUATION DATA 

The mean IRI of the continuation data for all musicians was 489.6 which was only 

slightly more than 10ms away from the target pacing stimuli.  Standard deviation (fig 

37) grouped by condition and Mean IRI  grouped by participant (fig 38) show how 

well the musicians maintained the target ISI, with all individual mean totals being 

<20ms from the target ISI. 
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5.4 DISCUSSION: 

The effect of condition revealed the secondary task had a dramatic effect on the 

pattern of recovery which adds further support to the previous finding that attention 

when manipulated by different demands plays a greater role in even the most 

automatic aspects of movement timing. As predicted the easy-calculation condition 

resulted in less interference to the recovery, than the hard-calculation conditions, 

which significantly slowed the recovery. However the ignore condition, which was 

found to be the least demanding task for non-musicians, seemed to result in the 

biggest interference for these musicians. As musicians often illustrate much smaller 

NMA than non musicians, we might have expected much better performance than 

nonmusicians for such a low demanding task. There is nothing in the literature to 

lead this us to expect this result, in fact musicians tend to show lower variability, 

smaller asynchronies and greater perceptual sensitivities (Repp 2010). While Repp 

was surprised to find in his 2010 paper, even more sensitive and immediate 

responses to phase-shifts and perturbations from musicians who had not conducted 

his research before I can only posit that the simplicity of the task leant to more 

sensitivity and reactivity to their own ideation given nothing of any external 

difficulty. 

On the basis of the individual cumulative errors (Fig 35) a group of 4 participants 

were identified as being good at mental arithmetic as demonstrated by accumulating 

less trial errors than the mean number of errors  (16.44) for the total group at the easy 

maths task. This division was used to compare average phase recovery of the two 

groups to look for any additional bidirectionality beyond the number of errors by 

condition (Fig 34)  
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Having established  a  role  for  attention  in  synchronisation  and  error  

correction  an  important development would be to dissociate any contribution that 

period corrections may be making to add or minimise phase correction responses 

(Repp 2002b; Repp & Keller 2004, 2008). The addition  of  a  tempo  change  would  

enable  a  separation  of  period  and  phase  correction processes  and  any  

differential  effects  of  secondary  task  conditions  on  these  processes 

accordingly.  

 

Size of Perturbation 

 
According to Repp (2002b), when perturbations larger than10% of the sequence 

interonset interval (IOI) are introduced the function relating the average PCR to 

perturbation magnitude begins to exhibit  nonlinearities.  As 15% was used, 

some increase in variance could be because of the inherent non-linearities. This 

might explain some of the intermediate dual task condition variability in PCR 

response,  but it is unlikely to explain the clear difference between the maximal 

PCR (ignore condition) and minimal PCR (hardest dual task condition). 

 

Period of Secondary Task 

 
The presentation rate of the secondary task was both fixed and unsynchronised 

with the metronome onsets. It is possible this stimulus onset could have provided 

a competing tempo to entrain to which increased both asynchrony and variability. 

This was not expected as the period of secondary task stimulus onsets was  3.75s 

which is much larger than distracter periods shown to have effects (e.g. 

Woodrow 1932) estimated what he called the “vanishing point of the capacity for 

synchronization” at about 3.4s). Furthermore, as it was a visual stimulus this 
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tends to be less distracting than tones to the extent that even when instructed to tap 

to flashes rather than tones, the tones tend to drive the synchronisation (Repp & 

Penel 2002). Repp & Penel (2002) also found auditory attractor effects began to 

wear off after128ms. Lastly, as the free tap following the experimental conditions 

was not significantly different from the free tap before, this casts doubt on the 

notion of entrainment, but does not rule out distraction. 

Despite the massively improved acuracy of continuation tapping from this group of 

musicians, all mean IRI were shorter than the pacing signal. One factor that could 

lead to shortening and to increasing variability in continuation tapping is any 

systematic drift after the metronome is switched off. The increasing time elapsing 

without the reinforcement or feedback of the metronome pacing signal could be one 

factor that increases the chance of drift or increases the reliance on memory 

(retrospective) memory of the reproduction standard. These questions are explicitly 

investigated in the next Chapter. 
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CHAPTER 6:  

GAP TAP -The Art of Motor-Synchronisation Maintenance  

 

6.1 ABSTRACT 

 

Resuming rhythmic activity after a pause results in a drift toward shorter inter-

response intervals, which has been identified with memory decay. To investigate 

underlying memory process in motor timing we investigated the effect of both short 

and long pauses. When gaps of either 14 or 56 s were introduced to synchronisation 

and continuation tapping, two classes of behaviour were identified. Firstly, the 

introduction of the gap reduced the speeding up that was associated with initiating 

continuation tapping. Secondly, the introduction of the gap increased the amount of 

drift away from the target interval. Taken together these findings are difficult to 

explain with traditional models of timing performance that rely on the dependence 

between mean interval and variance. The findings are discussed with reference to 

memory models and time perception models in addition to models of sensory motor 

synchronisation. 
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6.2 INTRODUCTION 

 

Adept movement often amounts to achieving coincidence between self-initiated 

actions and perceived regularities in the environment. For a child catching a ball, a 

dancer keeping in step with music, or an athlete jumping hurdles, the 

synchronization of perception and action can be explained with reference to precise 

timing control drawing on a common mechanism (a central timekeeper) to mediate 

between perception and action initiation. Alternatively, timing control might be 

understood as an emergent property deriving from the inherent dynamics of the task 

and different internal processes each with their own durational specificities or modal 

constraints (Jones 1989; Kelso 1995). A potential difficulty in assuming that timing 

emerges from dynamics is how to account for timing when actions are temporarily 

inhibited. However, if movements following such a “silent” phase are considered to 

be internally represented by a motor image (Todd, O'Boyle et al. 1999), it might be 

assumed that timings „emerge‟ from a motor image that mimics the biological and 

physical constraints of the musculoskeletal system when moving. 

 

Strong evidence in favour of the use of a internal timekeeper by the central nervous 

system has been provided by simple timing tasks, such as finger tapping in 

synchrony with the regular beat from a metronome. Such research has reliably 

shown that a stable phase-relation between stimulus (metronome) and response (tap) 

can be established relatively quickly within 3-5 taps (Fraisse 1966). The timing of 

the produced tap is characteristically found to be slightly ahead (negative 

asynchrony) of the stimulus metronome beat (Dunlap 1910; Woodrow 1932). 
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Negative asynchrony and the ability to continue tapping at a similar rate when the 

metronome is switched off are suggestive of internal time-keeping mechanisms and 

provide strong contrast to the positive asynchrony (lag) one might expect from 

simple reaction-time responses to regular external stimuli.  

 

Further support for the assumption of an internal clock follows from the success of 

the Wing-Kristofferson model (WK model) (Wing 1973). This model can account 

for the negative lag-1 correlation in continuation tapping by partitioning the variance 

into two parts; a central and more peripheral source of variability. Under this model, 

short term fluctuations around the mean of the produced intervals are attributed to 

peripheral noise associated with motor implementation. Whereas a second source of 

variability is related to the length of the interval to be timed and is independently 

attributed to central (clock) timing processes. The independence of these two sources 

of variance implies that producing longer intervals increases the variability of the 

central timing processes but not the variability of the peripheral motor 

implementation. Indeed when investigating tapping behaviour at a range of different 

tempo‟s between 290ms and 540ms, the decomposed variance of the central timing 

processes were found to increase linearly with the mean target interval whereas the 

peripheral motor delay variance were found to be relatively constant in accord with 

the Wing-Kristofferson (WK) model predictions (Wing 1980). 

 

Notwithstanding the success of the WK model, the assumption that a unitary 

„internal clock‟ underpins movement timing control is perhaps overly simple. For 

example, different forms of internal clocks or pacemakers have been proposed 
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(Gibbon 1984; Treisman 1990; Wearden 1995) and the outputs of these different 

internal clocks might interact in various ways with other processes such as sensory 

feedback, memory and decision mechanisms. A possible role for memory 

mechanisms in timing behaviour is suggested by the presence of drift in the 

continuation phase away from the desired tempo (Gibbon 1984; Staddon 1999; 

Delignieres, Lemoine et al. 2004) and erratic adjustments for the first few taps in the 

immediate transition from synchronisation to continuation (Drewing 2003). 

Although both of these phenomena are widely recognised, they have often been 

considered more as a practical problem for analysis rather than being of theoretical 

interest in their own right. Thus, to obtain stationary time series data (no change in 

moments - mean, variance etc - with time, which is a requirement of the WK model), 

it is common practice to remove the first few taps of continuation tapping behaviour 

(Daffertshofer 1988; Flach 2005; Vardy, Daffertshofer et al. 2008) and to use short 

continuation time-series data to minimise the chance of drift away from the desired 

tempo in the continuation phase. Another approach to the problem of drift during 

continuation tapping has been to detrend the data, leaving a stationary sequence 

which can once again be analysed in terms of the WK model (Vorberg and Wing 

1996). Collier (Collier 2004) extended the WK model by including a drift 

component in the decomposition of variance independent of and in addition to the 

drift-free timekeeper variance.  

In an analysis of drift during intentional slowing down during tapping, (Vardy, 

Daffertshofer et al. 2008) showed the WK model accounts for the structure of 

variability in the interresponse intervals after the drift component was extracted.  
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These methodological approaches to treating drift in time-series data have tended to 

bypass the interesting question of whether drift reflects the operation of memory 

mechanisms in timing. For example, if memory degradation was a contributing 

factor we might expect that drift would show up in extended continuation tapping as 

a consequence of the increased absolute duration from the original metronome 

pacing signal. This would be expected if memory for movement intervals were 

treated akin to other serial order memory data investigated by (Brown 2001). Brown 

et al found costs in a wide range of serial order memory data, including the effects of 

item lag and separation in judgments of relative and absolute recency, probed serial 

recall data, and grouping effects at various temporal resolutions. If the memory of a 

tapped interval suffers the same interference over temporal gaps as other serial order 

phenomena we might place limits on the time that temporal representations can be 

maintained without exhibiting drift. 

 

An interesting approach to study memory mechanisms in timing is to introduce a 

temporal gap with a pause in tapping between synchronise and continue phases. 

(Jantzen 2007) used such periods of movement cessation while comparing  brain 

activation during synchronisation and syncopation tapping. On finding that 

activation during continuation reflected the context during the initial synchronise vs 

syncopate phase, they sought to demonstrate a reduction in this contrast with longer 

gaps. However, no effect of gap length in the 3 - 9 s range was found, indicating a 

degree of permanency in the context effect – and hence robustness of the associated 

memory set up in the initial phase. The authors also noted with interest that the 

cessation and reestablishment of motor activity did not disrupt the context dependent 

activation.  
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The goal of the present study was to explore the effect of different length delays 

(cessation of tapping) in rhythmic movement on behavioural measures of timing 

performance after the gap in order to probe further the role of memory in 

sensorimotor synchronization. By extending the durations and methods used in the 

previous study (Jantzen 2007), we expected to find more variability in tapping after a 

longer pause. We also wanted to explore any interaction between the length of the 

IRI and the length of the pause to contrast the effect of event based or duration based 

factors which might mitigate or exaggerate the role of memory in the timing of 

movements once reinitiated. 
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6.3. METHOD 

 

Participants and Apparatus 

9 right handed participants, mean age 26 yrs, gave written informed consent to take 

part. The behavioral paradigm was implemented via Matlab. Mattap software 

(Elliott, Welchman et al. 2009) was used to initiate metronome sequences and record 

tapping responses via Matlab and a National Instruments 6229 DAQ Force 

transducers were used to receive tapping responses with temporal resolution <1 ms. 

 

Experimental Setup and Behavioural paradigm 

Participants were seated comfortably in a chair in front of the computer screen. Their 

dominant forearm was supported by a cushion on the table top allowing a 

comfortable tapping motion onto a force-transducer which was used as response 

manipulandum. The auditory metronome was delivered by an amplified loudspeaker. 

Both the auditory stimulus presentation and the tap onsets were recorded using a 

National Instruments data acquisition card (DAQ) controlled by MATLAB. The 

square waveform sent to the loudspeaker was fed back to the DAQ, enabling precise 

measurement of timing differences between the metronome pulse and the 

corresponding participant response.  After reading instructions, participants were 

given a chance to familiarize themselves with the setup and tapping motion before 

commencing a self-paced tapping trial for 30 (s). After this trial, participants were 

tested in a synchronise and continuation paradigm with a block design. Participants 
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synchronised to the auditory metronome for 30 s followed by 30 s continuation 

tapping subsequent to either: Pause of 14 s, 56 s or no pause in their tapping for 86 s. 

The pace of the metronome inter-stimulus interval was 400, 700, or 1000ms 

respectively with a fixed tone duration of 100ms. 

Analysis: 

Descriptives were calculated on individual trials then averaged within condition and 

across participants. Examining the autocovariance values, a number of approaches 

were followed from the literature in how to treat positive values, including using 

positive lag1 autocovariance values, or changing the positive lag1 values to zero, as 

results were similar for all treatments only one is reported below. Data from the 

continuation stage were assessed in terms of interresponse interval mean, variance, 

slope of the variance vs mean and the contribution of clock and motor variance (lag1 

autocovariance) according to the WK model. Results were assessed in gap length 

(none, short or long) by tempo (400, 700 or 1000 ms) ANOVAs for each descriptive 

variable.  
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6.4 RESULTS 

 

Our results show that participants are capable of maintaining the appropriate tempo 

even after a long 56 s gap between synchronization and continuation. This is shown 

by the mean IRI data (Figure 39a) in which there is only a main effect of tempo [F(2, 

7) = 330.4, p<.01]. This tells us that Gap length did not differentially affect the IRI 

regardless of the tempo we asked them to produce. 

 

Similarly, Gap length showed little effect upon the other standard dependent 

variables of the W-K model, including the clock variance estimate [F(2,7) = 10.3, 

p<.01], variance [F(2,7) = 9.5, p<.01], and the Lag1 Autocovariance [F(2,7) = 7.8, 

p<.01], (Figure 39b-d). Using these relatively standard analyses, these data suggest 

that, overall, participants were quite capable of performing the continuation tapping 

even after a long Gap of 56 s. 

 

However, visual inspection of the series of taps in the continuation phase for each 

condition reveals a tendency to drift towards faster responses. To quantify this effect 

we calculated the slope of the best linear fit of the sequential taps in each 

continuation phase (Figure 40). The ANOVA for this slope data revealed that there is 

a significant main effect of Gap condition [F(2, 7) = 14.1, p<.01], and a significant 

interaction between Gap and tempo [F(2, 7) = 4.8, p<.05]. The main effect of Gap is 

driven by a steady increase in the negative drift as the gap is lengthened (Figure 

41a). That is, the least negative slope is in the no Gap condition, followed by the 14 s 
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Gap, and finally the steepest slope in the 56 s Gap condition. Post-hoc comparisons 

of the interaction reveal that this effect is mostly driven by the 1000 ms tempo. At 

this tempo, the 56 s gap produced a slope that was more negative than the 14 s Gap, 

Mdiff= -1.3,t(14) = -2.96, p = .05, and no Gap, Mdiff= -1.7,t(14) = -3.63, p<.05. 

 

 

These findings raise the question of whether drift is related simply to the absolute 

passage of time, or to the fact that they are not tapping in the 56 s Gap. In order to 

explore this question further, we conducted an analysis on the slope of the linear fit 

of the sequential taps on the time-matched series of taps from the no Gap condition 

instead of the entire series of taps. For the 14 s Gap (Figure 41b) no difference 

between the slope in this ANOVA. That is, there was no main effect of tempo (p > 

0.1), or Gap (p> 0.5), and no interaction (p> 0.9). However, for the 56 s Gap (Figure 

41c) the main effect of Gap in the slope measure is still marginally significant 

[F(2,7) = 4.8, p = .06],  and in the same direction (i.e., the slope of the taps in the no 

gap condition is less negative than the long gap condition). This suggests that even 

when taps from the same time-point of the no gap condition are expected, 

participants drift at a faster rate with a long Gap, than they do when they are tapping 

the whole time. A final interesting finding from visual inspection of the series of taps 

was that the initial speeding of the first few taps in the continuation phase that 

commonly characterizes the initial transition from synchronization to continuation 

tapping seems to be absent when a 14 s, or 56 s Gap was introduced (Figure 42). To 

quantify this observation we calculated the best linear fit of the first 5 taps from each 

continuation phase. The ANOVA of this “initial slope” analysis reveals a significant 
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main effect of Gap condition [F(2, 7) = 13.1, p<.0.01].  This main effect (Figure 42) 

confirms that the initial speeding up was largest when there was no gap between 

synchronization and continuation tapping, and was reduced as the gap was 

lengthened (i.e., less speeding up with a 14 s gap, and no speeding up with a 56 s 

gap) 
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Figure 39. Illustrating the standard WK dependent variables: mean IRI (a), Clock Variance (b) Variance of the IRI (c), and Lag1 Auto-

covariance (d) for each Gap condition, at each tempo. Note that for each measure there are significant effects of tempo, but no 
significant differences between the Gap conditions. Error bars represent standard error of the mean. 
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Figure 42. Graph of the first five taps from each series in sequential order from each Gap condition for the 1000 ms inter-tap 

interval (panel A), the 700 ms inter-tap interval (panel B), and 400 ms inter-tap interval (panel C). This graph demonstrates the 

drift away from the intended inter-tap interval during the continuation phase. The values are averaged across participants for 
each sequential tap. 
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Figure 43. Illustrating the slope of the best linear fit of the first five taps from each Gap condition, collapsed across inter-tap 
interval (ITI). The values represent the slope averaged across each trial for each participant, and then averaged across 

participants. The error bars are standard error of the mean. 
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6.5 DISCUSSION 

 

The focus of this Chapter has been the effect of suspending rhythmic movement on 

timing of continuation tapping to probe the role of memory for sensorimotor 

synchronization. By extending the pause durations used in previous work (Jantzen 

2007), we expected to find more variability in tapping after a longer pause in the 

rhythmic tapping. We also wanted to determine whether there was an interaction 

between the length of the target interval and the length of the pause to contrast the 

effect of event based or duration based factors which influence memory for timing of 

movements after the pause. 

 

In keeping with (Jantzen 2007), when the detrended data were analysed using 

traditional measures of timing variability, the results show that participants were able 

to perform the continuation task successfully whether tapping with or without gaps 

between synchronization and continuation phases.  The increase in variability found 

at slower tempos is in line with early research findings (Wing 1980). On face value 

these results indicate that the representation of tempo can be maintained, stored or 

recalled beyond the 9 s found by Jantzen (Jantzen 2007) up to 56 s without feedback. 

As 56s without activity would cause any emergent timing property to be lost, this 

finding is suggestive of the need for an additional form of memory or explicit 

temporal representation to achieve this level of performance. 
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Nevertheless the mean continuation IRI was found to be shorter than the target 

interval set in the synchronization phase for all conditions. Although no significant 

differences were found between conditions based on gap length on mean IRI, closer 

inspection of the data revealed two different contributing factors to this shorter mean 

IRI. The first factor was a tendency to shorten the IRI during the initiation of 

continuation phase in no-gap conditions. The second factor was the presence of 

increasing drift in gap conditions toward shorter IRI.  

 

The finding that participants tap slightly faster during the continuation phase has 

been reported by researchers incidentally when investigating other issues in timing 

(Repp 2006; Grondin 2009) and more directly in regard to a tendency toward 

returning to a preferred or spontaneous tempo (Fraisse 1980; McAuley 2006). An 

alternative explanation for shorter IRIs in the continuation phase was offered by 

Vorberg & Wing (Vorberg 1996). They proposed that shorter IRI‟s could minimise 

both the variability of the timekeeper intervals and the variabilities of asynchronies if 

compensated with error correction mechanisms during the synchronization phase. 

However, during the continuation phase, the shorter interval would be revealed in the 

shorter interresponse intervals, now without the possibility asynchrony-based error 

correction.  

 

If we accept the explanation that a reduction in the represented interval is a means to 

reduce the variability of asynchrony during synchronization phase, we can explain an 

overall shorter mean IRI in the continuation phase. However this is insufficient to 

explain the two separate effects observed in the present study, namely the absence of 
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acceleration at initiation of continuation following a long gap and increasing drift 

with long gap conditions. We now propose an account of the maintenance of timing 

during synchronization and then to those changes enforced by the gap to consider 

how this might relate to the two findings.  

 

During synchronisation a single parameter error correction mechanism that 

(automatically) adjusts the phase relation between stimuli and response without 

affecting the period of the internally represented interval has been proposed by 

(Vorberg 1996). Another possibility is that errors could be minimized by (explicitly) 

changing the period of the internally represented interval. Dual process models of 

error correction (Harry 1985; Mates 1994a; Repp 2001) suggest both phase and 

period error correction are possible during synchronization with an external stimulus. 

In addition to these forms of correction, the interresponse intervals could be 

influenced by the asynchrony between the feedback of metronome to tap; or tap to 

metronome or a mixture of the two  (Harry 1985). Repp (Repp 2008) suggested that 

these phase resetting sources (explicit, event-based; and implicit, emergent tap-

based) are in dynamic competition. 

 

Repp (2008) suggests that emergent timing corresponds to a tendency to maintain 

repetitive motor activity like the „maintenance tendency‟ of (Holst 1937,1939/1973). 

Repp suggests that maintenance tendency is strongly reduced after a pause or gap, 

which lowers the interference this has with more explicit discrete timing. 

Accordingly, the absence of immediate acceleration after a gap could be explained 

by the reduction of maintentance tendency that the gap affords. In contrast, 
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acceleration may result in an additive fashion during a small temporal window when 

explicit internally-paced timing takes over from more automatic externally paced 

timing.  

 

The fact that the acceleration at the initiation of continuation disappeared not with a 

change in IOI, but only after a long gap, indicates that it is not the number of tapping 

events that is critical to this reorganisation, but the temporal constraints of this 

reorganization from more automatic externally paced timing to explicit internally 

paced timing required in the continuation phase. 

 

 

The tendency to drift faster (and increasingly so after gaps of movement cessation) is 

not explained by the models of sensorimotor synchronization maintenance described 

above. It is a challenge for internal clock models to explain why increasing length 

gaps might influence the rate of drift once tapping recommences at close to the 

correct ITI. Classical accounts of factors affecting clock rate such as arousal (Boltz 

1994; Penton-Voak 1996; Burle 2001) suggest that clock rate when manipulated by 

stress-induced stimulation by light or noise frequencies can speed up the timing of 

movements. Thus an arousal account of the observed rate of drift would suggest that 

an effect of gap directly increases arousal leading to shorter productions due to an 

increased tick-rate of central timekeeper. Alternatively, a relative-arousal 

explanation would suggest that arousal was higher during early novel and engaging 

synchronization phase and then drops increasingly during the gap so that when 
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tapping is reinitiated after the gap, the memory of the interval was quicker than 

whatever is currently performed at lower arousal levels leading to a speeding up to 

match the comparison. A more direct test of the effect of different length gaps on 

arousal levels would help to distinguish between these two contrasting possibilities. 

However as participants start close to the mean ITI and drift faster only after 

reinitiating tapping, arousal levels alone are insufficient to explain this data. 

 

Information processing models that include clock-like components in conjunction 

with memory and comparator processes (Gibbon 1977; Gibbon 1984; Church 2003; 

Meck 2003) offer a chance to consider combinations of factors at a price of increased 

complexity. If we assume the memory for the interval is perfect (illustrated by very 

little effect of gap length on the mean IRI when initiating tapping after 56s), the 

increase in drift could then be due to errors in the comparison/decision component. 

When synchronizing to a metronome, this could equate to what (Block 1992) called 

experienced duration, a forward looking prospective production of regular 

movements (where attention play a greater role). However when continuing to tap 

after a gap, the assessment of current tapping in comparison with a remembered 

standard becomes a remembered duration (where memory and contextual factors 

play a greater role,(Block 1978; Block 1982; Block 1986; Block 1990; Block 1997; 

Block and Zakay 1997), in conjunction with an ongoing prospective task. Block 

following (James 1890) suggested different variables thus influence the retrospective 

and prospective aspects of the tasks. In retrospective judgments both positive and 

negative time-order effects have been noted. (Wearden 1993)obtain such evidence 

when asking people to judge the relative duration of two brief identical stimuli. The 

second (more recent) sound was judged to be longer than the first. They called this 
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effect subjective shortening effect. It is unclear how a gap of 14 s compared to 56 s 

could influence the relative judgements of neighbouring intervals via subjective 

shortening to the extent that intervals approximately 400ms apart are seen to be more 

subjectively shorter than each other after 56 s than after 14 s. This would require an 

additional combination of memory trace decay or comparison with a standard that 

was increasingly distant from recency. 

 

A temporal distance model of memory SIMPLE (Scale invariant memory perception 

and learning) is a model developed by (Brown 2001).The SIMPLE model assumes 

items are represented in terms of their position along a logarithmically transformed 

dimension of time elapsed since memory formation. Thus items arrayed along a 

logarithmically transformed temporal dimension become closer to one another as 

they recede into the past (compression). This would explain a subjective shortening 

in terms of distance from the original standard leading to a drift towards speeding to 

match the logarithmically compressed standard. However when the measures of drift 

after a 56s gap are compared with time matched portions of no-gap continuation 

conditions (fig 41c ) the gap condition shows greater drift; therefore an explanation 

for this increased drift using a temporal distance model alone is not so simple!  

 

Consistent with the results obtained it appears that Repp‟s  distinction (Repp 2001) 

provides a useful starting point; whereby event-based resetting as a form of explicit 

or discrete timing is aided during the gap by removing the competing maintenance 

tendency of continuous motor activity and emergent timing. While this affords a 

smoother initiation of movement in the continuation phase of gap conditions 
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compared to no-gap conditions, the experience of the gap leads to further 

consequences. One possible consequence of the experience of longer gaps of 

movement cessation is that greater attention can be drawn to the prospective 

production of movements once reinitiated which could inflate the comparison of 

recent intervals with those of a remembered or condensed (possibly logarithmically 

condensed) retrospective standard.  

 

6.6. CONCLUSION 

 

The introduction of gaps of movement cessation between the synchronise and 

continuation stages of tapping produces two novel types of behaviour. Firstly it 

removes a common acceleration found during the transition which we attribute to 

reduced maintenance tendency. Secondly it increases the rate of drift in IRI away 

from target ITI which we attribute to the effect of differently experienced duration 

during the gaps of movement cessation, and the consequent change in relations to 

contextual and cognitive processes that support timing abilities.  

 

More specific targeting of the component cognitive processes assumed to be required 

at different stages of this paradigm will help to further elucidate the consequence of 

different durations of movement cessation; however it is clear from these early 

results that in terms of the art of motor synchronisation maintenance – we do mind 

the gap. 
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CHAPTER 7: CONCLUSION 

THE COGNITIVE CONTEXT OF SENSORIMOTOR SYNCHRONISATION  

7.1 CHAPTER SUMMARY 

In Chapter 1 we saw that many temporal conceptions involve a framework of 

arguments and assumptions that shape the kinds of psychological knowledge that are 

produced by and through them, and further that the study of any particular temporal 

conception appears almost systematically beset with the problem of taking into 

account the role time has already played in constituting the very terms and standards 

within which such a study takes place. 

Having explored some of the models used to predict movement variability and those 

designed to explain conditioning, perception, and time estimation, a clear role for 

attention memory and executive factors was contrasted with more automatic low 

level quantitative models of movement timing.  This set the context for an important 

role being identified for attention and memory in many contexts that might also 

prove useful in motor context.  

This thesis presented a series of studies investigating more precisely the role of 

executive control functions on the variability of repetitive production of movements. 

In the first study Chapter 2 we explored the cost of divided attention (single task vs 

counting backwards in threes) on the variability of repetitive finger tapping 

movements in 42 healthy participants. We used a 3-factor counterbalanced within-

subjects design to explore the cost of divided attention in the interactions with 2 

different movement types (index finger vs little finger) and 2 different intervals (400 
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vs 650ms). According to the Wing-Kristofferson (WK) timing model, motor 

variance is independent from the variance of central clock processes.  Therefore we 

expected greater variability when participants tapped with the little finger compared 

to the index finger due to additional motor control variance. Whereas, we expected 

greater variability of tapping responses at the longer interval duration due to 

variability in central clock processes. Importantly, according to the (WK) model, we 

would expect no interactions of movement type with either interval duration or 

divided attention. In contrast we expect a strong interaction between divided 

attention and interval duration both due to variability of central clock processes.   

Due to the independence of central timing processes and peripheral motor 

implementation processes assumed in the WK model, support was gleaned from both 

a significant interaction between factors acting on central timing processes (interval 

length and attention demanding task) and a lack of significant interaction on the 

factor targeted to influence peripheral motor processes (use of index finger or little 

finger). Therefore the results found offer strong support for the the logic of additive 

factors as introduced by Sternberg, and the independent sources of variability 

assumed in the WK two-level timing model. In line with the WK model we found a 

significant interaction with interval duration and divided attention and no 

interactions with movement. Further analysis revealed that the degree of prior 

musical experience heavily moderated the cost of divided attention on timing 

variability, particularly at longer intervals and with the more unusual movements.  

A follow up study in Chapter 3 further explored the paradigm by varying the mode 

of the stimulus and responses to the secondary task. This enabled some further 

examination on the relative importance of structural vs capacity limits to attention as 

distinct from variability due to the mode of the secondary task and mode of response. 
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For example, we expected that the distraction of a regular auditory sound in the 

secondary task might result in greater interference with the continuation timing of 

responses than when the mode of the secondary task was visual (Kato and Konishi 

2006; Repp 2006). We also expected that the secondary task stimulus might interfere 

more with any sub-vocal language mediating  participants self-direction when 

presented in auditory mode rather than visual (Baddeley 2003).  The finding that no 

main effects were found for the mode of the stimulus indicated that both the visual 

and auditory stimulus were treated in much the same way. However the significant 

interaction found between the response mode and the interval showed that slow 

speeds, speaking outloud significantly increased the variability suggests that 

speaking outloud shares some resource (structural or capacity) with timing 

processes. 

Findings from these interactions were best explained by combining predictions of 

information processing models of variability that include both language, working 

memory, temporal accumulator and gate/switches which are influenced by the 

executive control of attention. whereby attention when drawn to the memory 

processes and information management of complex secondary tasks, attention is 

withdrawn from the switch to accumulators resulting in shorter time 

estimations/productions. 

 

Chapter 4 introduced a perturbation paradigm which had previously been identified 

as a way to measure more automated rhythmic movement production and online 

control that was considered more insulated from executive functions. A dual task 

probed the assumption that higher level executive processes would not interfere in 
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perturbation recovery. The main findings of this study were that an increase in 

asynchrony, an increase in variability and a slowing  recovery from perturbations 

w e r e  f o u n d  following conditions of increasing demands on attention. Having 

established a level of interference even in the most automatic process as identified in 

the literature, the importance of understanding the role of attention in motor timing 

was again emphasised.  

A follow-up study in Chapter 5 using the perturbation paradigm was used with 

professional musicians to better understand the role of skill and musical training on 

both cognitive and motor sources of variability. Support was found for the lower 

variability of musicians in continuation tapping reported in the literature. Support 

was also found for the secondary task interference of attentional demand on recovery 

from perturbation even amongst this skilled group. Yet a finding of increased 

variability in the condition with the lowest external demand (the ignore condition) 

was a definite surprise. Despite their better accuracy, musicians also showed some 

speeding up in the continuation tapping similarly found non musicians suggestive of 

an underlying memory decay. 

Chapter 6 introduced a novel paradigm for assessing the variability of memory 

processes and specifically any trend for memory to decay in rhythmic movement 

resulting in shorter IRI in continuation tapping. This was investigated by looking at 

the statistics of rythmic tapping following different length gaps between 

synchronisation and continuation tapping movements. Two classes of behaviour 

were identified which help to explain a general trend of shortened IRI in 

continuation tapping found in the literature and in all the experiments from Chapters 

2-5. Firstly, the introduction of the gap reduced the speeding up that was associated 

with initiating continuation tapping which was attributed to a reduction in motor 
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maintenance tendency. Secondly, the introduction of the gap increased the amount of 

drift away from the target interval which was attributed to memory processes. 

 

7.2 DISCUSSION 

We can I think return with better understanding to the themes introduced by 

Feynman in Chapter 1 . He described his surprise that physical activity did not seem 

to disrupt the timing of his subvocal counting. Like Sergent (Sergent 1993), our first 

experiment showed that simple quick movements did not interact with the secondary 

task of counting backwards but simply added a stable amount of motor variance 

whether the movement was fast or slow. This lack of interaction we now understand 

to be due to the independence of more central and peripheral sources of variability as 

predicted by the WK model. Feyman also found that nothing interfered with his 

count more than speaking aloud. In Chapter 3 our follow-up experiment would 

suggest this was due to memory processes drawing executive attention away from 

accumulation of timing information. Our attempt to introduce a combination of 

Church and Baddeley information processing model and working memory allowed 

us to consider the role of language and working memory components not 

traditionally modelled in SMS as necessarily interacting and limiting the shared 

capacity of attention to timing.  

In returning these findings to the broader themes still unresolved in SMS research, 

namely the role executive functions like attention, and memory may contribute to the 

variability of central timekeeping and sensorimotor synchronisation; we find support 

for both Sergent (1993) and Miyake (2004, 2007) who seemed to previously have 

conflicting or contrary findings.  Like Sergent we found that at ISI less than 1500ms 
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a secondary task could interfere with central timekeeping variability more than 

motor variability (Chapter 2&3). We found like Miyake that capacity limitations of 

attention rather than simply structural limitations were needed to understand and 

predict this interference. 

In contrast to Repp (2001, 2003, 2005) who found a marked distinction between 

more automatic fast phase correction and more deliberate slow period correction, we 

found that attention and memory processes when pushed more through a demanding 

secondary task revealed a cost in variability of even the most automatic recovery 

patterns. This cost was visible even using a sensitive index of phaseshift recovery 

previously considered immune and distinct from interference of such factors.  

Lastly, the novel paradigm introduced in Chapter 6 offers an important  

methodological contribution to SMS research in uncovering two contributory factors 

that could explain a common finding that IRI tend to shorten in continuation phase 

tapping. In the Sergent 1993 study, as with the majority of SMS research, it is 

common practice to remove from analysis the speeding taps in the transition from 

synchronisation to continuation tapping. Similarly any drift in the Time series is 

often corrected (detrended) before analysis. The fact that the pattern of drift could 

itself be a sensitive index to different length of timing intervals beyond those looked 

at by Jantzen (2007) highlights the importance of both the time-scale used, the 

methods of assessment and the assumptions inherent in any temporal research.  

7.3 DIRECTIONS FOR FUTURE RESEARCH 

The findings of the 5 experiments presented here offer a strong case for broadening 

the context of sensorimotor synchronisation to include more executive processes 

such as memory and attention. Each of the paradigms used provided a different 
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avenue for exploring interacting factors. Nevertheless the paradigms were not 

without limitations. Despite the improvements in control of the secondary task rate 

introduced in Chapter 3, it shared with Chapter 2 a use of a visual pacing signal 

(rather than auditory or haptic pacing signal for example). An interesting 

development would be to systematically compare the sorts of interference patterns of 

the secondary task and the response mode with the mode of the pacing signal. This 

would allow a direct assessment of the assumption of  Jancke et al (2000) who 

suggest the brain structures used when tapping in the context of an auditory pacing 

signal include networks shared with motor control, whereas when tapping in the 

context of a visual pacing signal include networks shared with imagination.  If they 

are correct we may expect differentially more capacity limitations and interference to 

be found from responses and secondary tasks that utilise the same networks as the 

modes of the pacing signal.  

Another development follows from the interesting implication of using information 

processing models such as those integrated with timing models in Chapter 3. These 

information processing models such as Baddeley (2000) show it may be possible to 

verbalise calculations required in a secondary task when presented visually, or 

similarly to visualise secondary task calculations when presented auditory. 

Separating individuals by preference or ability in verbal or visual calculations or 

controlling for modal strategy may also help understand some of the variability in 

secondary task interference during movement timing tasks. 

Chapters 4 and 5 indicated that secondary task calculations could interfere with 

phaseshift recovery from perturbation. Chapter 5 also indicated that an ignore 

condition could also interfere with recovery patterns for professional musicians to a 

surprising degree. It is possible that frustration and lack of stimulation may be more 
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difficult to ignore for professional musicians when conducting simple rhythmic 

movements than for non musicians. The implication is that the executive control of 

attention, whether attention is drawn from either sources of internal frustration or 

external sources of task difficulty, can both disturb movement timing by drawing 

resources away from timing. Individual differences in the ability to manage this 

executive control of attention, and any anxiety or arousal that might be induced when 

executive control is required or pressured would be an interesting avenue to explore. 

For example, if an individual were to find either meditation or exercise more 

beneficial for managing executive control, we might expect less interference in a 

secondary task following a relaxation break than an unrelaxing break. Such a line of 

enquiry might help to distinguish the more high level explanations of disruption to 

movement timing from more classical accounts of arousal and anxiety affecting 

clock rate (Boltz 1994; Penton-Voak 1996; Burle 2001) which suggest that it is more 

directly the rate of an internal clock that changes when manipulated by stress-

induced stimulation. 

A natural development of the final paradigm would be to explore the cost of a 

secondary task conducted during the different length gaps between synchronisation 

and continuation tapping. For example if during the gap, which we suggest requires 

the use of working memory to hold the timing information before continuation, 

participants were required to listen to distracting timing information presented in 

mixed or complementary modes we might expect that participants could be induced 

to shorten or lengthen their continuation tapping toward the direction of the 

distracting stimuli. We might expect this distraction would bias more if the mode 

was auditory according to Repp & Penel (2002). It may induce more bias if it were 

the same mode as the pacing signal according to Jantzen (2007). It may also 
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represent more or less difficulty due to differences in the individual strategy of 

executive control management which could be enhanced or reduced by practice and 

breaks. In this way the component processes and associated variability of memory, 

attention and the timing of motor actions could be further teased out.  

 

Finally, while variability and reliability are the complimentary concepts required to 

understand our subjective experience of timings and our timing behaviour, they are 

also the complimentary concepts required to assess them. As our understanding 

grows, it is in the interactions of these different sources of variability that I think our 

more reliable findings about the broader cognitive context of movement timing start 

to emerge. 

At the start of the thesis there was clear sympathy for the views expressed by 

Nicols (Nichols 1891) in attempting to review the timing research of the day:  

“Casting an eye backward we can be struck by the wide variety of explanations offered for the time-

mystery. Time has been called an act of mind, or reason, of perception, of intuition, of sense, or memory, of 

will, of all possible compounds and compositions to be made up of them. It has been deemed a General 

Sense accompanying all mental content in a manner similar to that conceived of pain and pleasure. It has 

been assigned a separate, special, disparate sense, to nigh a dozen kinds of ‘feeling’, some familiar, some 

strange invented for the difficulty. It has been explained by ‘relations’, by ‘earmarks’, by ‘signs’, by 

‘remnants’, by ‘struggles’, and by ‘strifes’, by ‘luminous trains’, by ‘blocks of specious-present’, by 

‘apperception’. It has been declared a priori, innate, intuitive, empirical, mechanical. It has been deduced 

from within and without, from heaven and from earth, and from several things difficult to imagine as 

either.” 

However at the end of the thesis I feel more support for the quote of (Fisher 1926)  

“No aphorism is more frequently repeated…than that we must ask Nature…ideally, one question at a time. 

The writer is convinced that this view is wholly mistaken. Nature, he suggests, will best respond to a logical 

and carefully thought out questionnaire; indeed, if we ask her a single question, she will often refuse to 

answer until some other topic has been discussed”.
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APPENDIX 

Assessing Temporal parameters of stimulus presentation  

LV-App, Mattlab & Flash Presentation Data  

The LV-App, written in labview was an application for both stimulus presentation 

and recording of IRI (key taps or mouse clicks). The temporal accuracy of the 

intervals were contingent on the polling rate of the usb mouse and the amount of 

available RAM on the machine it was run on, plus any additional operating system 

delays. As these sources of variability are considered <5ms and the range of timings 

of interest were in the hundreds of milliseconds, this was not considered a problem. 

However when running the application on a different system (with Windows Vista 

operating system and associated antivirus applications competing for RAM) some 

unusual results during pilot studies raised the need for calibration. All calibration and 

subsequent testing was conducted on a computers running windows XP with 

minimal background tasks. 

To calibrate, a Force Sensitive Resistor pad (Model FSR406) 

http://www.steadlands.com/data/interlink/fsr406.pdf was placed over the key and 

connected to National instruments 6229 in a similar set up to the Force transducer 

used in Chapters 4a and 4b. Using Mattap software with the same ISI as the lV-APP 

program, a tapping could be simultaneously recorded in mattap and the LV-app and 

their recorded IRI could be compared. Over comparable lengths of time to 

experimental conditions (60-80 taps for a synchronise and continue trial, difference 

between the two programs was <1ms for runs at 200ms, 400ms 800ms IOI. 

variability. 

https://owa.bham.ac.uk/owa/redir.aspx?C=270d5c24dc364095a1dc6d286f59c0eb&URL=http%3a%2f%2fwww.steadlands.com%2fdata%2finterlink%2ffsr406.pdf
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Secondary Task Visual Stimulus presentation from both matlab and LV-APP utilised 

executable flash files, written using Macromedia Flash. The timing of stimulus 

onsets in flash files is restricted by their use of frames. The smallest frame is 33 ms. 

Scripting onsets by the frame rates available in Flash is utterly reliant on RAM 

buffer for the accuracy of their display.  

To test the variability of the flash file script and stimulus onsets, a black square was 

inserted in alternate frames of the flash movie (playing at 60 fps) and a photoreceptor 

attached to the analogue input of the 6229 allowed the intervals of the alternating 

signal to be processed by MATTAP to produced a sequence of IRI to compare. 

Variability of the frame rate for all experimental length stimulus (less than 2 mins) 

was  <1ms from expected. However when trying an extended run for comparison of 

up to 10 minutes, huge variability crept in that seemed to be related to buffer 

underun. This resulted in frozen frames and variability >100ms compared to data 

collected on the 6229 which is protected from such operator system delays. Ending a 

trial and loading another flash file cleared the buffer and accuracy was returned. 

One additional factor apparent when launching the flash files from Mattap (in 

experiments Chapter 4 and 5), was that the first flash file window took about 300ms 

to load into memory. Once open, new trials would start without this initial delay. 

Accordingly, the flash file window was preemtively loaded before any experimental 

trial scripts were initiated. 

Example data from 2 trials of Mattap recorded Asychronies between expected IOI 

and analogue recording of data from the photoreceptor 
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  -0.344 -0.264 

  -0.395 -0.857 

  -0.325 -0.743 
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  -0.596 -0.054 
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  -0.623 -0.641 
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  -0.459 -0.293 

  0.001 -0.202 
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  0.018 -0.711 

  -0.356 -0.361 

  -0.281 -0.598 

  -0.258 -0.086 

  -0.354 -0.46 

  -0.372 -0.385 

  -0.02 -0.362 

  -0.137 -0.458 

  -0.175 -0.476 

  -0.332 -0.125 

  -0.257 -0.242 

  -0.322 -0.28 

  -0.195 -0.437 

  -0.241 -0.362 

  -0.363 -0.427 

  -0.504 -0.3 

  -0.356 -0.347 

MEAN -0.40793 -0.51702 

STD 0.275532 0.282071 
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