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Figure 1. Schematic of the slits occurring between different coloured weft regions of the tapestry 
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Figure 2. Flow chart showing DIC assessment process. 
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Figure 3. Two Episodes from a Chivalric Romance, Perhaps the Tale of Florence of Rome, c. 1480, ~2.10 × 
3.0m, The Burrell Collection, Glasgow Museums, © CSG CIC Glasgow Museums Collection. 
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Figure 4: A close up from Figure 3; the effect of self-weight loading on damage propagation (a) just before 
and (b) two weeks after unsupported tapestry display. Velcro fastener was used to hang the tapestry 
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Figure 5: Digitally generated using Perlin speckle pattern with identical dimensions to the corresponding 
tapestry 

426x284mm (72 x 72 DPI) 
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Figure 6: Nominal stress-strain curves for 20 specimens extracted from 7 historic tapestries (different colour 
code represents different historic tapestry). The selected curve is highlighted by the star symbol. 
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Figure 7: (a) Weak stitched zones, identified using the Canny edge detector (blue colours). Fabric tears were 
introduced by elimination of the elements along the edges (black colour), (b) the corresponding Abaqus 

model.     
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Figure 8: (a) The patch support sections overlaying the tears’ regions (red colours), (b) the corresponding 
Abaqus modelling.     
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Figure 9: Three times image magnification of the region of interest for the tapestry image containing tears. 

873x290mm (72 x 72 DPI) 
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Figure 10: Simulated vertical strain fields for the 1.5x1.2m tapestry: (a) with homogenous material 
assignment, (b) including stitched join lines, (c) including randomised tears along stitched join lines, (d) 

including patch restorations over tears 
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Figure 11: (a) Homogeneous strain field subtracted from heterogeneous (join line) strain field, (b) 
heterogeneous strain field subtracted from tear strain field, (c) heterogeneous strain field subtracted from 

patched strain field, (d) the tear strain field subtracted from the patched strain field. 
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Figure 12: Left: DIC-measured LE22 strains deformed using predicted simulation strains from homogenous 
material assignment (Case 1). (a-c) using speckle pattern image to track deformation and subset sizes, 

shown by yellow corner square, of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels. (d-f) using tapestry image to 
track deformation and subset sizes of (d) 33 pixels, (e) 69 pixels, (f) 99 pixels. 
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Figure 13: Right: The DIC-measured LE22 strains deformed using predicted simulation strains from 
heterogeneous material assignment (Case 2): (a-c) using speckle-pattern images to track deformation and 

subset sizes shown by yellow corner square, of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels. (d-f) using 
tapestry image to track deformation and subset sizes of (d) 33 pixels, (e) 69 pixels, (f) 99 pixels 
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Figure 14: The DIC-measured LE22 strain fields for the images deformed using the computer model with the 
heterogeneous material assignment and five tears for the tapestry-pattern images by the applied subset 

sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.   
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Figure 15: The difference between the DIC-measured LE22 strain fields for the images deformed using the 
computer model with the heterogeneous material assignment and five tears and the Figure 13 for the 

tapestry-pattern images by the applied subset sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.   
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Figure 16: The DIC-measured LE22 strain fields for the images deformed using the computer model with the 
heterogeneous material assignment and five patch support treatments for the tapestry-pattern images by 

the applied subset sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.   
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Figure 17: The difference between the DIC-measured LE22 strain fields for the images deformed using the 
computer model with the heterogeneous material assignment and five patch support treatments and Figure 
12 for the tapestry-pattern images by the applied subset sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.   
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Figure 18: DIC difference plots for the images with the tapestry-patterns and applied subset size of 33 
pixels: (a) Homogeneous strain field subtracted from heterogeneous (join line) strain field, (b) 

heterogeneous strain field subtracted from tear strain field, (c) heterogeneous strain field subtracted from 
patched strain field, (d) the tear strain field subtracted from the patched strain field. 
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Figure 19: The Abaqus LE22 strain contours for the selected region of interest 
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Figure 20: The DIC-measured LE22 strain fields for the magnified deformed images using the tapestry-
pattern images by the applied subset sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.   
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Abstract
An analysis technique to assess the viability of digital image correlation (DIC) in tracking the full 

field strains across the surface of hanging historic tapestries, is presented. Measurement 

uncertainty related to the use of the inherent tapestry image in tracking displacements is 

investigated through use of ‘synthetic’ deformation fields. The latter are generated by mapping 

the details of a given tapestry image into finite element analyses. The combination of self-weight 

loading, material non-linearity and image specific heterogeneity (related to slit-stitching, damage 

and patch-restorations), serve to generate a bespoke deformation field complex enough to 

assess the reliability of DIC measurements. Accuracy is evaluated by comparing measured results 

with the original known deformations. The technique demonstrates that the optimum imaging 

settings and the choice of subset size for DIC analysis are strongly influenced by the tapestry 
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image and the goal of the measurement, they are found using a compromise between conflicting 

objectives: minimising measurement error while maximising resolution.

1. Introduction
Historic tapestries are an important part of a nation’s cultural heritage. Over time, exposure to 

mechanical stresses and strains can lead to damage and the subsequent need for expensive 

repair and restoration. In the UK alone over £3m is allocated annually to the conservation of 

historic tapestries [Lithgow, 2013]. In the attempt to both conserve and display such tapestries, 

conservators and curators must make choices that influence both the load and load distributions 

acting across these fragile works of art.

The effects of loading on a hand-woven historic tapestry are difficult to anticipate due to its 

inherently heterogeneous mechanical properties, resulting from its complex mesoscale 

structure. Tapestries consist of undyed warp threads and coloured weft threads (which due to 

their close packing, completely cover the warps). The weaver typically works on one weft colour 

at a time, resulting in discontinuities of the weft yarns (see Figure 1). Frequently, a gap or ‘slit’ is 

left during weaving and subsequently stitched together; a technique known as ‘slit stitching’, this 

creates a relatively weak join. Over time, it is very common for slit stitching to fail (and later to 

be repaired). Slit stitching is found across both large and small slits all over a tapestry and 

commonly runs horizontally when the tapestry is hung, creating likely regions for subsequent 

damage and tears.
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Figure 1. Schematic of the slits occurring between different coloured weft regions of the tapestry 

In addition to the mechanical complexity attributable to joining methods, conservation 

techniques such as mechanical reinforcement of tears and holes via stitching,  reweaving or the 

application of backing patches [Lennard and Hayward, 2006], as well as the choice of display 

method such as vertical hanging from multiple fixed points, attachment along a continuous strip 

or support using sloping boards [Lennard and Hayward, 2006] all inevitably influence the stress 

and stress distributions acting on a tapestry in complex and possibly undesirable ways. Use of 

different stitching threads (e.g. polyester, wool or cotton) and the stitching pattern (e.g. size, 

density, style) can all significantly influence the mechanical behaviour and longevity of a repair 

[Benson et al. 2014] and interventions in one part of the tapestry can lead to unintended 

increased stresses in neighbouring regions. Typically, the choice of mechanical conservation and 

display technique is based on practical shared experience with little reliance on full-field strain 

measurement or without the insights offered by computational modelling. The goal of this work 

is to help determine how the application of state-of-the-art engineering technology can inform 

conservation and display strategies. In developing a more robust understanding of the 

consequences and efficacy of the wide range of display and conservation intervention strategies, 
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we aim to inform and improve existing practice and ultimately reduce the damage and resulting 

high costs involved in conserving historic tapestries.

1.1 Use of DIC in conservation
Digital image correlation (DIC) is a convenient non-contact full-field optical technique [Sutton et 

al. 2009] that has already been trialled as a method to measure strains acting across historic 

tapestries [Lennard and Dulieu-Barton, 2014]. The aim is to investigate the influence of different 

display methods and conservation interventions on the resulting local and global strain 

distributions across the tapestry. For optimum performance, DIC requires a detailed, isotropic 

and non-periodic image, such as a random speckle pattern, printed or sprayed onto the surface 

of an object to produce accurate full-field displacement data [Sutton et al. 2009]. In most 

engineering applications, the speckle pattern is typically applied to the target object using paint 

[e.g. Harrison et al. 2017], though clearly this is not an option when analysing valuable historic 

tapestries. Consequently, previous attempts to use DIC with tapestries [Khennouf et al. 2010] 

(and also oil paintings [Dureisseix et al. 2011, Gauvin et al. 2014]) have used the inherent image 

and texture of the artwork itself to track displacements. Nevertheless, while promising, such an 

approach can lead to significant hidden errors in the DIC measurements, potentially large enough 

to throw doubt on interpretations of the results. 

1.2 Understanding the experimental error due to use of the inherent tapestry image in 
tracking the strains
When performing any experimental measurement, it is important to understand the associated 

error and confidence in the resulting data. DIC algorithms can often provide a full field strain 

measurement, even when using a non-ideal target pattern, but the accuracy of the measurement 

in such cases is far from guaranteed. Quantifying the error in DIC is a non-trivial matter, even 

when using purpose-designed speckle patterns to track deformations. Factors such as the quality 

of the imaging system, the signal to noise ratio, the correlation algorithm, the influence of non-

planar surface geometries and out-of-plane motion and of course, the quality and properties of 

the speckle pattern itself are all important [Amiot et al. 2013, Ke et al. 2011, Schreier et al. 2000, 

Pan et al. 2008, Sutton et al. 2008]. See Pan, 2018 for a comprehensive recent review on this 

matter. 
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The complexity of the strain field and the size of the region of interest are important 

considerations when choosing the optimum DIC setup. A localised region around a specific tear 

or repair will require a different setup compared with a more extensive region of interest, 

covering much of the tapestry and potentially possessing a more undulating, out-of-plane surface 

morphology. In this paper, a technique to highlight the likely limitations or the potential utility of 

a given tapestry is demonstrated, and employed to estimate the optimum DIC set-up parameters 

prior to conducting experiments. This is the first time that the accuracy of using DIC to directly 

monitor the full field strains across historic tapestries has been systematically analysed. Previous 

attempts to use DIC with historic tapestries (e.g. Khennouf et al. 2010) while ground-breaking, 

paid little attention to the errors that naturally arise when using the inherent tapestry image to 

track displacements and strains, leading to unknown and potentially significant errors in the 

results. 

Finally we note that error due to non-planarity of the target object is sometimes also an 

important factor in generating errors but is not considered in this investigation. For example, if 

there is significant non-planarity of the tapestry due to out-of-plane undulations [Lou et al. 1993, 

Orteu, 2009, Tang et al. 2010] or if the tapestry moves due to circulating air currents during the 

experiments further error can creep into the DIC measurements. Rather than introducing a 

detailed consideration of this particular influence on the optimum experimental DIC setup this 

paper deals only with flat specimens. Future experimental work following on from this 

investigation will aim to constrain any target tapestry to 2-D, avoiding the not insignificant 

practical issues associated with long-term usage of stereoscopic 3-D systems in public spaces. 

2. Method
2.1 Error assessment
A common approach to error assessment across planar surfaces is to perform a numerical 

transformation of a reference image (i.e. to stretch and rotate the reference image) by a known 

amount and to then compare this known deformation with that measured by the DIC system 

[Bornert et al. 2012]. To investigate DIC measurement errors for heterogeneous deformations, 

Lecompte et al. 2006, Lava et al. 2009, 2010 and Wang et al. 2012, all used the technique of 

interpolation-based image transformation using displacement fields predicted from finite 
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element simulations. These studies revealed a strong relationship between the subset-size, the 

quality of the speckle pattern and the accuracy of the measured displacement fields. In this 

investigation we aim to automatically and quickly generate a bespoke full-field synthetic strain 

field for any given tapestry that bears some probable relation to reality including likely sites for 

concentrated strains and damage. The simulations are by no means designed to be accurate and 

truthful mechanical predictions. Such an endeavour would be an extremely complex and time-

consuming task involving detailed material characterisation and dedicated constitutive 

modelling. Nevertheless, this difference between the ‘true’ and the ‘representative’ strain field 

is not an issue for our purposes; namely, to generate an informed synthetic strain field and use 

this to provide an indication of the viability of using DIC to monitor the strains for a given tapestry. 

The approach employed in this investigation is summarised in Figure 2.

Figure 2. Flow chart showing DIC assessment process.

To illustrate the method and demonstrate the image-dependent effectiveness of DIC in analysing 

historic tapestries, an example tapestry image is considered (see Figure 3). This specific tapestry 

was chosen due to its complex and intricate image, a favourable property when aiming to 

conduct DIC. In order to evaluate the potential of image-based DIC in measuring full-field strains, 
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a representative tapestry model is subject to progressively more complex, heterogeneous strain 

fields. The motivation behind each additional layer of complexity is related to the:

1. Hanging boundary conditions used to display the tapestry (different hanging techniques 

can alter the self-weight induced stress distribution across the tapestry across the 

tapestry)

2. Structure-induced heterogeneity due to weakness along stitched slits 

3. Damage (e.g. tears and holes due to failed stitching - see Figure 4)

4. Conservation treatment (e.g. patching) 

Figure 3. Two Episodes from a Chivalric Romance, Perhaps the Tale of Florence of Rome, c. 1480, ~2.10 × 3.0m, The 
Burrell Collection, Glasgow Museums, © CSG CIC Glasgow Museums Collection.

Figure 4: A close up from Figure 3; the effect of self-weight loading on damage propagation (a) just before 
and (b) two weeks after unsupported tapestry display. Velcro fastener was used to hang the tapestry 
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For reference, the most accurate DIC parameters were selected in the software, including an 

optimised 8-tap interpolation shape function, with normalised squared differences and Gaussian 

weights, together with exhaustive search, low pass filter and incremental correlation. A subset 

step size of 1 was used and the software’s default options were applied for thresholding. These 

parameters are set to produce the greatest accuracy and were kept constant throughout the 

investigation to focus on the effect of changing subset size. The latter is perhaps the most difficult 

parameter to choose when conducting DIC as it involves a trade-off between measurement 

accuracy and resolution of detail in the strain field (as will be demonstrated later in this 

investigation). The strain fields are analysed first using an ideal speckle pattern and next using 

the inherent tapestry image; both techniques employ a range of subset sizes to determine the 

optimum subset size for a given strain measurement. The reason for using both an ideal speckle 

pattern and the inherent tapestry image is to differentiate between the errors introduced by the 

node to pixel displacement mapping (Steps B & C in Figure 2). Because the number of nodes in 

the finite element mesh is different (less) than the number of pixels in the tapestry image, 

interpolation is required to map the displacement field from the simulation to the pixels in the 

tapestry image. Cubic interpolation is used in this study, introducing a small but unavoidable 

systematic error [Schreier et al. 2000, Bornert et al. 2012]. To mitigate this interpolation bias 

particularly for noisy data, pre-smoothing process using a Gaussian low-pass filter is 

recommended, as proposed in Pan, 2013. To decouple this systematic interpolation error from 

the tapestry’s image-related DIC error, a digitally-generated random speckle pattern is created 

using the Perlin noise technique [Orteu et al. 2006] (see Figure 5). 
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Figure 5: Digitally generated using Perlin speckle pattern with identical dimensions to the corresponding tapestry

The speckle-pattern and tapestry images are both deformed using the same interpolated 

heterogeneous displacement field. Consequently, both the speckle pattern and the tapestry 

images contain the same error due to interpolation. The difference in accuracy between the 

results produced by analysis of the speckle and tapestry images is therefore entirely attributable 

to the use of the tapestry image in tracking the deformation and is highlighted in Section 3.1 by 

directly comparing results from both types of target tracking image. As discussed, the main focus 

of the investigation is in demonstrating a technique to evaluate the suitability of a given inherent 

tapestry image in measuring the full-field strains occurring across a tapestry, due to, for example, 

the tapestry’s inherent mechanical heterogeneity, hanging conditions, tapestry damage and 

conservation treatments. 

2.2 Material properties
Finite element simulations are used to provide an estimate of strains that might be 

representative of those occurring in an actual tapestry. The true mechanical behaviour of historic 

tapestries is extremely complex. Aside from the usual anisotropic response of fabrics, in which 

each property is almost entirely independent from all other properties (e.g. tensile, shear, torsion 

and flexural properties in the warp and weft directions are all uncoupled) [Hu 2004, Harrison 

2017], other factors such as aging and degradation, humidity and creep all influence material 

properties [Khennouf et al. 2010] making accurate modelling of tapestries a significant challenge. 

To avoid this complexity, a pragmatic approach is followed that relies on the fact that tapestries 
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are predominantly loaded in one direction during display, i.e. in the direction of gravity due to 

their own self-weight. For this limited case, an isotropic mechanical model can provide a 

reasonable first order estimate of the strains likely to occur within any given homogeneous region 

of a tapestry assuming its density and dimensions are known. Experimental data on the 

representative uniaxial properties along the highly crimped weft direction of the fabric are used 

as almost all tapestries are hung such that the weft yarns support the tapestry [Khennouf et al. 

2010]. To this end a series of mechanical tests were conducted and are reported in Section 2.2.1.

2.2.1 Uniaxial tensile properties along the weft yarns
Twenty rectangular test specimens measuring 10x40mm, taken from seven different historic 

tapestries were used (each represented by its own colour in Figure 6). The thickness of the 

specimens was approximately 1 mm and so a thickness of 1mm was used in calculating the 

nominal tensile stress (ignoring subsequent changes in thickness resulting from the tensile 

loading). All uniaxial tensile tests were performed along the weft direction. The tests were carried 

out using an Instron 5544 test machine, fitted with a 1kN loadcell, at an extension rate of 10 

mm/min. The nominal stress-strain data and densities are shown in Figure 6. The stress-strain 

curves are clearly highly non-linear. For this reason, and because for the purpose of this 

investigation a one-way loading is sufficient, a hyper-elastic material model was used to 

represent the data.

Figure 6: Nominal stress-strain curves for 20 specimens extracted from 7 historic tapestries (different colour code 
represents different historic tapestry). The selected curve is highlighted by the star symbol.
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A stress-strain curve with low stiffness and high density was used as input for the simulations 

(again favourable choices in generating larger, more measurable strains). The Abaqus material 

evaluation tool [Abaqus v6.14, User Manual] was used to fit the parameters of an isotropic 

‘Ogden N2’ model [Abaqus v6.14, User Manual, Section 22.5.1], giving the following parameters 

                                                                                Eq1.   2

1 2 32
1 1

2 13 1
N N ii i i eli

i i ii

U J
D

  
  

 

      

μ1=1.68MPa, μ2=-1.62MPa, α1=9.35, α2=7.32, D1=0, D2=0

In the above equation,  represent the deviatoric principal stretches,  is the elastic volume i elJ

ratio, is the material parameter; where ,  and  denote temperature-dependent N i i iD

material parameters. Only uniaxial data were used in the fitting process, this was considered 

enough to provide reasonable strains with which to evaluate the DIC measurements.

2.3 Generating an image-dependent heterogeneous strain field
A known heterogeneous strain field is a useful tool to determine the optimum DIC subset size 

[Lava et al. 2010]. On the one hand, use of a relatively large subset size means that each subset 

contains more information. Larger subsets are therefore more likely to be unique and 

identifiable, making them easier to track following deformations. However, implicit in the DIC 

technique is the assumption that the deformation within each subset is homogeneous. If the 

heterogeneity of the applied strain field occurs at length scales smaller than the subset 

dimensions, then the DIC algorithm is less able to identify the details of the local strain field. 

When the tracking pattern is not ideal, as in the case of a tapestry image, the problem is 

exacerbated. Here, larger subsets are preferred to ensure that each subset is unique and 

identifiable. 

In this study, a similar approach to that used by Lecompte et al. 2006 is adopted to artificially 

deform the reference images of the tapestries using a heterogeneous strain field predicted via 

finite element simulations. By progressively introducing deformations that represent the distinct 

origins of the heterogeneous strain field, the ability of DIC to measure these strains using the 

inherent tapestry image are assessed. A finite element model with the same dimensions as the 
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tapestry image was generated within Abqus ExplicitTM and meshed with equal-sized rectangular 

membrane elements (M3D4R). Isotropic nonlinear hyperelastic material properties, described in 

Section 2.2.1, were initially assigned to all elements. To stretch the fabric model using its own 

weight, the Abaqus gravity loading option was utilised.   

Curators and conservators can choose a variety of options to display a tapestry [Lennard and 

Hayward, 2006]. In this investigation, Velcro® fastening is assumed in which the tapestry is 

secured to a wooden batten (a wooden strip attached to the wall) by stitching on Velcro® tape. 

This boundary condition creates vertical loading due to self-weight together with a resulting 

inward contraction of the upper side-edges of the tapestry due to the Poisson’s ratio effect. To 

simulate this condition, the upper side nodes of the finite element model are constrained along 

a straight line using an ‘encastre’ (fully fixed) boundary condition. This boundary condition is used 

for all simulations in this investigation.

2.3.1 Modelling slit stitching
Historic tapestries are woven textiles but boundaries between different coloured weft yarns, 

known as slits, are joined with stitching (see Section 1). The slit stitching creates a region of 

relatively low stiffness and is prone to failure [Lennard and Hayward, 2006], see Figure 4. In order 

to recreate similar heterogeneity in the finite element model of the tapestry, shown in Figure 3, 

the Matlab Canny edge detection algorithm [Canny, 1986] is applied to detect the boundaries 

between different coloured regions within the image of the tapestry (see, for example, Figure 7a 

which is generated from Figure 3). By mapping the results of the edge detection algorithm onto 

the finite element mesh, elements lying within boundary regions (blue lines in Figure 7a) are 

flagged as stitched regions and are assigned relatively low material stiffness properties, half that 

of the native tapestry material measured in Section 2.2.1 (μ1=0.84MPa, μ2=-0.81MPa, α1=9.35, 

α2=7.32, D1=0, D2=0). Note, in reality a combination of joining techniques would probably be 

used, though for the sake of simplicity only slit stitching is modelled in this investigation.
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Figure 7: (a) Weak stitched zones, identified using the Canny edge detector (blue colours). Fabric tears were 
introduced by elimination of the elements along the edges (black colour), (b) the corresponding Abaqus model.    

2.3.2 Modelling tears (Damage along slit stitching)
Slit stitching in historic tapestries is a likely site for accumulation of micro-damage and can 

ultimately lead to propagating tears due to the self-weight loading of the fabric. To incorporate 

representative tears into simulations, five randomly selected sections along existing slit stitching 

locations were chosen. Tears were modelled simply by deleting the elements along selected 

sections (see Figure 7).

2.3.3 Modelling conservation patches
A common conservation practice for historic tapestry is the application of a full backing or 

patches of linen or cotton fabric. Stitching through the tapestry into the backing fabric often 

serves a dual purpose of stabilising the weak and damaged textile structure and contributing to 

the redefinition of the image. To model patches, rectangular areas large enough to cover the 

tears were incorporated in the finite element simulations (see Figure 8). Patch elements were 
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assigned to relatively stiff material properties, double that of the native tapestry material 

described in Section 2.2.1  (μ1=3.36MPa, μ2=-3.24MPa, α1=9.35, α2=7.32, D1=0, D2=0).

Figure 8: (a) The patch support sections overlaying the tears’ regions (red colours), (b) the corresponding Abaqus 
modelling.    

2.4 Zooming into a region of interest 
As discussed in the introduction, one of the goals of using DIC on historic tapestries is to explore 

the effects of repairs on the resulting strain field. As such, understanding the effect of patches in 

mitigating strain localisation is of primary importance. However, when a defect’s dimensions (e.g. 

the length of a tear) is relatively small compared to the size of the entire tapestry, the image 

resolution of the original photograph and consequently, the detail in the DIC strain measurement 

is often too low to provide a sufficiently detailed strain map at the length-scale of the tear. In 

such cases, a natural solution could be to use the camera to zoom into the region around the 

defect or perhaps to move the camera closer to the tapestry. Part of this investigation explores 

the merits and effectiveness of such a strategy, in particular we examine how the loss of 

Page 34 of 48Strain

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

information associated with the zoomed tapestry image affects the uncertainty in the measured 

strain field [Reu et al. 2015].

To do this, a rectangular region of interest around a tear was scaled up by a factor of three using 

the MATLAB imresize function, see Figure 9. As before, the strain field generated using FEA (see 

Section 2.3) was interpolated, mapped, and used to transform both the zoomed speckle pattern 

and tapestry images. The DIC algorithm was then applied to generate a full-field strain map of 

the zoomed region. Results are discussed later in Section 3.2.

Figure 9: Three times image magnification of the region of interest for the tapestry image containing tears. 

3. Results and discussion 
Four different fabric simulations were conducted, referred to subsequently as Cases 1 to 4:

1. Homogeneous properties (see Section 2.2.1)

2. Added heterogeneity to Case 1, due to stitched join lines (see Section 2.3.1)

3. Increased heterogeneity of Case 2 by including tears (see Section 2.3.2)

4. Increased heterogeneity of Case 2 by including patches (see Section 2.3.3)

The vertical component of the logarithmic (or Hencky) strain tensor (LE22) is plotted for each 

type of simulation (Cases 1-4) in Figure 10. The colour legend of the strain map is the same for all 

images. Sections 3.1-2 examines the use of DIC in measuring the strains across the entire 

tapestry, as opposed to zooming in to a particular region of interest to examine the strain field 

near defects such as tears or patches. This latter option will be considered in Section 3.3.
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3.1 Analysis of entire tapestry
Figure 10a (Case 1) shows how the strongly non-linear stiffness behaviour fitted in Section 2.2.1 

(due to the large degree of crimp in the weft yarns), results in significant LE22 strains at the top 

of the tapestry (of over 5%). The highest strains occur near the top corners of the model due to 

the combination of self-weight and Poisson’s ratio effect. At the bottom of the specimen, as the 

self-weight loading tends towards zero, so too do the strains, an effect that makes accurate DIC 

measurement progressively more difficult as the signal to noise ratio approaches zero. Figure 10b 

(Case 2) includes the heterogeneity caused by the weaker slit stitching. The latter clearly 

introduce a great deal of complexity into the strain field and result in higher strains towards the 

top of the tapestry due to the increased compliance caused by the stitched slits. Figure 10c (Case 

3) demonstrates that tears in the tapestry create highly localised LE22 strains at the ends of each 

tear, particularly if a tear is orientated horizontally rather than vertically or diagonally, and serve 

to decrease the LE22 strains directly above and below the tear. Finally, Figure 10d (Case 4) 

demonstrates that the use of relatively stiff patches produces lower LE22 strains over and to the 

sides of the area of the patch but creates slightly higher strains above and below the patch. 
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Figure 10: Simulated vertical strain fields for the 1.5x1.2m tapestry: (a) with homogenous material assignment, (b) 
including stitched join lines, (c) including randomised tears along stitched join lines, (d) including patch restorations 

over tears

These changes are more easily observed by looking at the difference plots of the strain fields. 

This technique helps to isolate the signal of interest by removing much of the heterogeneous 

complexity of the tapestry strain field due to stitched slits (noise) as well as the background strain 

gradient resulting from the self-weight of the tapestry, see Figure 11 (note the change in colour 

scale compared to Figure 10). 

 

Figure 11: (a) Homogeneous strain field subtracted from heterogeneous (join line) strain field, (b) heterogeneous 
strain field subtracted from tear strain field, (c) heterogeneous strain field subtracted from patched strain field, (d) 

the tear strain field subtracted from the patched strain field.

Figure 11a – the homogeneous strain field (Figure 10a, Case 1) subtracted from the 

heterogeneous strain field (Figure 10b, Case 2) - shows the increase in LE22 strains due to the 

stitched slits. Figure 11b – the heterogeneous strain field (Fig 10b, Case 2) subtracted from the 

tear strain field (Figure 10c, Case 3) - highlights the localised increase in strains at the ends of the 

tears and also reveals a significant relaxation of LE22 strain directly above and below the tears. 
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Likewise Figure 11c – the heterogeneous strain field (Figure 10b, Case 2) subtracted from the 

patched strain field (Figure 10d, Case 4) - clearly highlights a relative reduction in LE22 strain both 

across and at the sides of the patches but reveals an increase in strain above and below the 

patches. Finally Figure 11d - the tear strain field (Figure 10c, Case 3) subtracted from the patched 

strain field (Figure 10d, Case 4) - shows the effect of patching on the torn tapestry strain field. As 

expected, the patches serve to eliminate the localised stresses previously located at the tips of 

the tears (shown by a negative change in strain) but do inevitably introduce an increase in strain 

in the previously unloaded regions above and below the tears. 

The strain fields shown in Figure 10 and the resulting changes in the strain fields highlighted in 

Figure 11 serve as test cases with which to examine the performance of the DIC algorithm using 

both the speckle pattern image and the inherent tapestry image to track deformations. DIC 

analysis was performed using correlated solutions VIC-2D (2009) software. The effect of subset 

size on the accuracy of the DIC measurement was also examined by using three different subset 

sizes for each case (33x33, 69x69 and 99x99 pixels). A step size of 1 pixel was used in all DIC 

analyses. 

3.2 Evaluation of DIC performance
Beginning with Case 1, Figure 12 shows that DIC measurements using both the speckle pattern 

images (a-c) and the inherent tapestry images (d-f) as tracking images provide reasonably 

accurate results for all subset sizes. The smallest subset size provides greater resolution but also 

increased error for both tracking images (speckle pattern and tapestry images). 
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Figure 12: Left: DIC-measured LE22 strains deformed using predicted simulation strains from homogenous 
material assignment (Case 1). (a-c) using speckle pattern image to track deformation and subset sizes, 

shown by yellow corner square, of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels. (d-f) using tapestry image to track 
deformation and subset sizes of (d) 33 pixels, (e) 69 pixels, (f) 99 pixels.

Figure 13: Right: The DIC-measured LE22 strains deformed using predicted simulation strains from 
heterogeneous material assignment (Case 2): (a-c) using speckle-pattern images to track deformation and 
subset sizes shown by yellow corner square, of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels. (d-f) using tapestry 

image to track deformation and subset sizes of (d) 33 pixels, (e) 69 pixels, (f) 99 pixels

A similar evaluation is conducted for Case 2; a more challenging and complex heterogeneous 

strain field caused by the stitched slits. Once again, the smaller subset size provides greater 

resolution (Fig 13a & 13d) but increased error, whereas the largest subset size decreases 

resolution (Fig 13c & 13f) yet decreases error. Both the speckle pattern image and the tapestry 

image provide similar strain plots, but with slightly more error when using the tapestry image. 

Case 3 incorporates tears in the tapestry model, creating significant localised strain 

concentrations. The tears are visible to varying degrees for both the speckle pattern and the 

tapestry tracking images, though the small hole in the fabric, visible in the simulations has 

disappeared as a result of the interpolated mapping of the deformation across the tear. Rather 

than a hole in the fabric, interpolation means that the DIC measures a region of high positive 

strain. The tears are more visible when located towards the top of the tapestry due to greater 

loading. 
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Once again, the effects of the tears are more clearly seen by creating difference plots, effectively 

removing the background ‘noise’ from the signal of interest. As such the DIC result for Case 3 

(tapestry with tears, see Figure 14) minus the DIC measurement for Case 2 (heterogeneous 

tapestry) is presented in Figure 15. Note that similar images created using the speckle pattern 

rather than the inherent tapestry image are provided in the Appendix (see Figures A1 and A2). 

Ideally these plots would all be the same as Figure 11b. In practice, the smallest subset size 

provides the best resolution but at the expense of introducing significant background noise. As 

might be expected, the result produced when using the speckle pattern image to track 

deformation is less prone to background noise than that produced when using the inherent 

tapestry image, though the latter is reasonably successful nonetheless. The larger subset size 

contains much less background noise but also lacks much of the detail around the tears, the mid-

subset size is better in this regard but also lacks detail. 
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Figure 14: The DIC-measured LE22 strain fields for the images deformed using the computer model with the 
heterogeneous material assignment and five tears for the tapestry-pattern images by the applied subset 

sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.  

Figure 15: The difference between the DIC-measured LE22 strain fields for the images deformed using the 
computer model with the heterogeneous material assignment and five tears and the Figure 13 for the 

tapestry-pattern images by the applied subset sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.  

Patching the tears decreases the strain concentrations at the end of the tears; nevertheless, 

depending on the stiffness of the patch, new localised strains emerge above and below the 

treated areas (see Figures 10d and 11c). As before the smallest subset size provides the best 

resolution and the largest subset size reduces noise at the expense of blurring much of the detail 

in the strain field.

 

Page 41 of 48 Strain

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 16: The DIC-measured LE22 strain fields for the images deformed using the computer model with the 
heterogeneous material assignment and five patch support treatments for the tapestry-pattern images by 

the applied subset sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.  

Figure 17: The difference between the DIC-measured LE22 strain fields for the images deformed using the 
computer model with the heterogeneous material assignment and five patch support treatments and Figure 

12 for the tapestry-pattern images by the applied subset sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.  

Visual assessment of Figures 12 to 17 (and A1-A4 in appendix) suggests that despite the extra 

noise, the smallest subset size provides the best results for both the speckle pattern and tapestry 

tracking images. As such the smallest subset size was chosen to create Figure 18, allowing a direct 

comparison with Figure 11, i.e. comparison between the actual strain difference maps (Figure 

11a-d) and the measured strain difference maps produced using the inherent tapestry image and 

smallest subset size to measure the strains (Figure 18a-d). The results are encouraging, in 

particular Figure 18d clearly shows the reduction in strain at the end of each of the tears and also 

the relative increase in strain both above and below the tears due to the bridging effect of the 

patches (i.e. the unloaded regions originally above and below the tears is now loaded, resulting 

in an increase in strain). Details around even the lowest tear location are visible, however, 

significant noise across the maps is also apparent, consequently a priori knowledge of the 

location of any defects and restoration treatment adds confidence when interpreting the 

measured strain maps. Attempts to use additional noise filters on the strain maps shown in Figure 

18 (e.g. Gaussian etc [MATLAB R2015a, User Manual, Image Acquisition Toolbox]) proved 

fruitless and generally has a similar effect as increasing the subset size used in the DIC analysis, 

i.e. a reduction in noise at the cost of decreased resolution.
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Figure 18: DIC difference plots for the images with the tapestry-patterns and applied subset size of 33 pixels: (a) 
Homogeneous strain field subtracted from heterogeneous (join line) strain field, (b) heterogeneous strain field 

subtracted from tear strain field, (c) heterogeneous strain field subtracted from patched strain field, (d) the tear 
strain field subtracted from the patched strain field.

3.3 Zooming into a region of interest 
A plausible strategy to more closely examine the strain field around a defect might be to zoom 

into the region of interest. To investigate the effect of magnification when using the inherent 

tapestry image to track deformation, a zoomed region of interest containing both stitched join 

lines and a tear is considered (see Figure 9 and Figure 19). To avoid the material discontinuity 

associated with the tear (i.e. no material strain actually occurs over the tear), the latter was 

excluded from the analysis using the ‘region of interest’ selection tool available in the DIC 

software (see Figure 20 and A5 in appendix). This strategy eliminates the erroneous positive 

strain measurement that otherwise occurs across the tears due to interpolation, see for example, 

Figure 10c. Figures 20a-c and A5a-c illustrate how a smaller subset size allows analysis closer to 

the tear (because the subsets are not permitted to overlap the hole). Figure 20a-c, shows that 

use of the speckle pattern to track the deformation leads to much more accurate strain 
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measurement compared to that produced using the inherent tapestry image (Figure A5a-c). By 

zooming into the tapestry image, the amount of information available per subset has been 

reduced, creating greater error in tracking the displacements (and consequently the strains). This 

is evident in Figure A5a, created using the tapestry image using the smallest subset size. The same 

colour legend as that used in Figure 10 is employed but now the DIC strain measurement contains 

considerably more noise, making the original strain field barely recognisable. The speckle pattern 

copes much better with the magnification. As usual, increasing the subset size reduces the 

measurement error for both speckle pattern and inherent tapestry tracking images at the cost of 

losing resolution. This example demonstrates an inevitable constraint when using a tapestry 

image to visualise the strain field with DIC. Images with less complexity and detail require larger 

subset sizes to reduce measurement error to acceptable levels but in doing so, reduce the 

resolution of the measured strain map.

Figure 19: The Abaqus LE22 strain contours for the selected region of interest
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Figure 20: The DIC-measured LE22 strain fields for the magnified deformed images using the tapestry-pattern 
images by the applied subset sizes of (a) 33 pixels, (b) 69 pixels, (c) 99 pixels.  

4. Conclusion
A method to evaluate the potential of DIC in measuring the full-field strains across historical 

tapestries, prior to potentially time-consuming and costly experimental investigation, has been 

demonstrated. The technique involves generating a reasonably realistic, tapestry-specific strain 

field by projecting the image dependent heterogeneity of the tapestry onto a finite element 

mesh. The strain field generated by the simulation is then used as a test case to evaluate the 

measurement error produced using DIC with the inherent tapestry image to track deformations. 

Use of both speckle-patterns and tapestry images throughout the investigation guarantees that 

any difference between the two sets of results is a consequence of the tracking image rather than 

from interpolation error introduced when using the simulated strain field to deform the pixilated 

images analysed using the DIC algorithm.  Given the interest of conservators in understanding 

the effect of restoration treatments on the subsequent strain field in a tapestry (and 

consequently its propensity for subsequent damage), the effect of tears and patches was 

superposed onto the already complex strain field associated with self-weight loading, non-linear 

stiffness and the heterogeneous stitched nature of the tapestry. 

An effective tool in highlighting the changes induced by such treatments was the use of difference 

maps. The latter allows much of the complexity of the strain field to be eliminated in order to 

focus on the effects of conservation. The results of this particular analysis have been encouraging; 

compare Figures 11 and 18 (and A1-A4 in appendix). However, it should be noted that all 

decisions in conducting this investigation have been favourable to producing good results. For 

example:

 the chosen tapestry image contains considerable detail and complexity

 the tapestry is reasonably large

 the material behaviour used in the simulations is relatively compliant and the areal 

density relatively high

 the tears introduced into the analysis are relatively large
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 errors due to out-of-plane displacements of the tapestry have been neglected (the 

significance of this error will depend on whether 2-D or 3-D DIC is conducted)

For this reason, the results shown in this investigation are likely to lie towards the more successful 

end of the spectrum of results that might be expected when conducting DIC on historic tapestries. 

No doubt, other choices could produce less fruitful analysis. However, the main aim of the paper 

is to demonstrate a strategy for bespoke pre-experimental assessment of a given tapestry prior 

to conducting actual experiments. In some sense the technique serves as a tool for management 

of expectations.

The investigation highlights the issue that the optimum subset size is not well-defined and 

depends to a large extent on the user’s preference – how much measurement accuracy can be 

sacrificed for the sake of increased resolution and which region of the tapestry is to be analysed. 
The technique of generating difference maps proved very useful in highlighting the features of 

interest (i.e. the effect of patching tears). Such maps are relatively easy to produce using 

computational analysis but more difficult to obtain in practice. To do so would require the 

tapestry to be hung in an almost identical way before and after conservation to create equivalent 

difference maps from experimental data. This conclusion provides inspiration for the 

development of experimental equipment that can facilitate this endeavour.
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