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resumo  
 
 

A maioria das funções celulares, incluindo expressão de genes, crescimento e 
proliferação celulares, metabolismo, morfologia, motilidade, comunicação intercelular e 
apoptose, é regulada por interações proteína-proteína (IPP). A célula responde a uma 
variedade de estímulos, como tal a expressão de proteínas é um processo dinâmico e 
os complexos formados são constituídos transitoriamente mudando de acordo com o 
seu ciclo funcional, adicionalmente, muitas proteínas são expressas de uma forma 
dependente do tipo de célula. 
Em qualquer instante a célula pode conter cerca de centenas de milhares de IPPs 
binárias, e encontrar os companheiros de interação de uma proteína é um meio de 
inferir a sua função. Alterações em redes de IPP podem também fornecer informações 
acerca de mecanismos de doença. O método de identificação binário mais 
frequentemente usado é o sistema Dois Hibrido de Levedura, adaptado para rastreio 
em larga escala. Esta metodologia foi aqui usada para identificar os interactomas 
específicos de isoforma da Proteína Fosfatase 1 (PP1), em cérebro humano. A PP1 é 
uma proteína fosfatase de Ser/Thr envolvida numa grande variedade de vias e eventos 
celulares. É uma proteína conservada codificada por três genes, que originam as 
isoformas α, β, e γ, com a última a originar γ1 e γ2 por splicing alternativo. As diferentes 
isoformas da PP1 são reguladas pelos companheiros de interação – proteínas que 
interagem com a PP1 (PIPs). A natureza modular dos complexos da PP1, bem como a 
sua associação combinacional, gera um largo reportório de complexos reguladores e 
papéis em circuitos de sinalização celular. 
Os interactomas da PP1 específicos de isofoma, em cérebro, foram aqui descritos, com 
um total de 263 interações identificadas e integradas com os dados recolhidos de várias 
bases de dados de IPPs. Adicionalmente, duas PIPs foram selecionadas para uma 
caracterização mais aprofundada da interação: Taperina e Sinfilina-1A. 
A Taperina é uma proteína ainda pouco descrita, descoberta recentemente como sendo 
uma PIP. A sua interação com as diferentes isoformas da PP1 e localização celulares 
foram analisadas. Foi descoberto que a Taperina é clivada e que está presente no 
citoplasma, membrana e núcleo e que aumenta os níveis de PP1, em células HeLa. Na 
membrana ela co-localiza com a PP1 e a actina e uma forma mutada da Taperina, no 
motivo de ligação à PP1, está enriquecida no núcleo, juntamente com a actina. Mais, foi 
descoberto que a Taperina é expressa em testículo e localiza-se na região acrossómica 
da cabeça do espermatozoide, uma estrutura onde a PP1 e a actina estão também 
presentes. 
A Sinfilina-1A, uma isoforma da Sinfilina-1, é uma proteína com tendência para agregar 
e tóxica, envolvida na doença de Parkinson. Foi mostrado que a Sinfilina-1A liga às 
isoformas da PP1, por co-transformação em levedura, e que mutação do seu motivo de 
ligação à PP1 diminuiu significativamente a interação, num ensaio de overlay. Quando 
sobre-expressa em células Cos-7, a Sinfilina-1A formou corpos de inclusão onde a PP1 
estava presente, no entanto a forma mutada da Sinfilina-1A também foi capaz de 
agregar, indicando que a formação de inclusões não foi dependente de ligação à PP1.  
Este trabalho dá uma nova perspetiva dos interactomas da PP1, incluindo a 
identificação de dezenas de companheiros de ligação específicos de isoforma, e 
enfatiza a importância das PIPs, não apenas na compreensão das funções celulares da 
PP1 mas também, como alvos de intervenção terapêutica. 
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abstract  
 

Most of the crucial functions in the cell, including gene expression, cell growth and 
proliferation, metabolism, morphology, motility, intercellular communication and 
apoptosis, are regulated by protein-protein interactions (PPIs). Cells respond to a variety 
of stimuli, thus protein expression is a dynamic process and the complexes formed are 
transiently assembled and change during their functional cycle; additionally, many 
proteins are expressed in a cell type-dependent manner.  
At any time, cell may contain about hundreds of thousands of binary PPIs, and finding 
interaction partners of a certain protein it’s a mean of discovering its function. Changes 
in PPIs networks may also provide information about disease mechanisms. The most 
frequently used binary identification method is the Yeast Two Hybrid system, adapted to 
high-throughput screening. This approach was here used in order to identify the Protein 
Phosphatase 1 (PP1) isoform specific interactomes, in the human brain. PP1 is a 
Ser/Thr protein phosphatase involved in a large variety of cellular pathways and events. 
It is a conserved protein codified by three genes giving rise to the α, β and γ isoforms, 
with the last originating γ1 and γ2 by alternative splicing. PP1 isoforms are regulated by 
the binding partners – PP1 interacting proteins (PIPs). The modular nature of the PP1 
complexes, as well as their combinational assembly, generates a large repertoire of 
regulatory complexes and roles in signaling circuits.  
The human brain isoform specific interactomes of PP1 were here described, with a total 
of 263 interactions identified and integrated with the data collected from several PPIs 
databases. Also, two PIPs were selected for further characterization of the interaction: 
Taperin and Synphilin-1A. 
Taperin is a poorly described protein, recently found to be a PIP. Its interaction with PP1 
different isoforms and localization in the cell was analyzed. Taperin was found to be 
cleaved and to be present in the cytoplasm, membrane and nucleus and to increase the 
levels of PP1, in HeLa cells. In the membrane it co-localizes with PP1 and actin and a 
mutant form of Taperin, in the PP1 binding motif, is enrich in the nucleus together with 
actin. Moreover, Taperin was found to be expressed in testis and to localize in the 
acrossome region of the sperm head, a structure where PP1 and actin are also present. 
Synphilin-1A, an isoform of Synphilin-1, is an aggregation prone and toxic protein 
involved in Parkinson`s Disease. Synphilin-1A was shown to bind PP1 isoforms, by 
yeast co-transformation, and mutation of its PP1 binding motif decrease significantly the 
interaction in an overlay assay. When overexpressed in Cos-7 cells, synphilin-1A formed 
inclusion bodies where PP1 was present, but the mutated form of Synphilin-1A was also 
able to aggregate indicating that inclusions formation was not dependent on PP1 
binding. 
This work gives a new perspective of PP1 interactomes, including the identification of 
dozens of isoform specific binding partners, and emphasizes the importance of PIPs, not 
only in the understanding of PP1 physiological functions but also, as targets for 
therapeutic interventions. 

 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I have never know whether you should say one with your 
foot on the sidewalk, two with the following foot on the first 
step, and so on, or whether the sidewalk shouldn`t count. At 
the top of the steps I fell foul of the same dilemma. 
(...) After all it is not the number of steps that matters. 
 
Samuel Beckett, The Expelled. 
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I  |   INTRODUCTION  

 

Protein Phosphorylation 

 

Post-translational modifications of proteins, which are not gene-template based, regulate 

protein function, through changes within its activity, cellular location and interactions 

with other proteins. The dynamic arrangement, by various combinations, of modular 

domains in different signaling proteins allows the creation of complex signaling 

networks and pathways. In addition to performing catalytic functions, signaling proteins 

modified by phosphorylation, ubiquitination, acetylation, methylation, nitrosylation, etc, 

serve as scaffolds for the assembly of multiprotein signaling complexes, as adaptors, 

transcription factors and signal pathway regulators (Figure 1). 

 

 
Figure 1 |  Schematic representation of protein post-translational modifications related to the regulation 

of biological processes. 

 

Protein (de)phosphorylation is the best known modification involved in activation and 

inactivation of enzymes and modulation of molecular interactions in signaling 

pathways, having the highest number of reported publications in PubMed (Seo, 2004). 

Decades of research have shown that reversible phosphorylation of proteins, carried out 

by protein kinases (PK) and phosphatases (PP), constitutes an essential form of cell 
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signaling and an important mechanism of regulation in all living organisms. In 

eukaryotic cells, phosphorylation mainly occurs on three hydroxyl-containing amino 

acids, serine (Ser), threonine (Thr) and tyrosine (Tyr), of which Ser is the predominant 

target. A proteomic analysis of 6600 phosphorylation sites on 2244 human proteins 

revealed that Ser, Thr and Tyr account for 86%, 12%, and 2% of the phosphorylated 

residues, respectively (Olsen, 2006). 

The fully sequenced human genome is thought to contain 518 putative protein kinases 

(Lander, 2001;  Venter, 2001;  Johnson, 2005) from two families: 90 Tyr-kinases 

(PTKs) and 428 Ser/Thr-kinases (PSKs). The specificity of this signaling event and its 

reversible nature would suggest that there should be similar numbers of protein 

phosphatases in the human genome. However, there are only 107 putative protein Tyr 

phosphatases (PTPs) and far fewer (~40) protein Ser/Thr phosphatases (PSPs) (Alonso, 

2004;  Moorhead, 2007). Whereas the numbers of PTKs and PTPs roughly match each 

other, the number of catalytic subunits of PSPs is, by far, lower than that of PSKs. This 

dissimilarity is explained by the combinatorial formation of PSP holoenzymes from a 

shared catalytic subunit and a large number of target and regulatory subunits. There 

could be as many distinct PSPs complexes as there are protein PSKs, suggesting that 

both types of enzymes have a similarly restricted substrate specificity at the holoenzyme 

level. 

 

 

Protein Ser/Thr Phosphatases (PSPs) 

 

The initial classification of PSPs was made based on biochemical assays, as either type 

1 (PP1) or type 2 (PP2), the last was further subdivided based on metal ion requirement: 

PP2A, no metal ion; PP2B, Ca2+ stimulated; PP2C, Mg2+ dependent (Ingebritsen, 1983;  

Cohen, 1989). The elucidation of complete cDNA and amino acid sequences allowed 

the separation of PSPs on three major families: phosphoprotein phosphatases (PPPs), 

metal-dependent protein phosphatases (PPMs), and the aspartate-based phosphatases 

represented by FCP/SCP (TFIIF-associating component of RNA polymerase II CTD 

phosphatase/small CTD phosphatase) (Chambers, 1994;  Cohen, 2002;  Yeo, 2003;  

Moorhead, 2009) (Figure 2).  
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variety of regulatory subunits. Representative members of the PPP family include 
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PPP family, members of the PPM family do not have regulatory subunits but contain 

instead additional domains and conserved sequence motifs that may help determine 

substrate specificity (Moorhead, 2009). For both PPP and PPM, metal ions play a 

catalytic and central role through the activation of a water molecule for the 

dephosphorylation reaction (Egloff, 1995;  Goldberg, 1995;  Barford, 1996;  Moorhead, 

2009). In contrast, FCP/SCP uses an aspartate-based catalysis mechanism. The only 

known substrate for FCP/SCP is the C-terminal domain (CTD) of RNA polymerase II, 

which contains tandem repeats of a serine-rich heptapeptide (Chambers, 1994;  Yeo, 

2003;  Kamenski, 2004;  Zhang, 2010). The conserved structural core of FCP/SCP is the 

FCP homology (FCPH) domain. FCPs, but not SCPs, contain a BRCT (BRCA1 C-

terminal domain like) domain that is C-terminal to the FCPH domain (Yeo, 2003;  

Qadota, 2008;  Zhang, 2010) (Figure 2).  

For more than two decades of investigation, cellular functions of PSPs have been 

documented with increasing detail. Functional characterization has been complemented 

by biochemical, structural and proteomic research of all three major families of PSPs, 

giving rise to major advances in mechanistic understanding (Cohen, 2002;  Ceulemans, 

2004;  Cohen, 2004;  Kamenski, 2004;  Gallego, 2005;  Flores-Delgado, 2007;  

Moorhead, 2008;  Fardilha, 2010;  Zhang, 2010;  Fardilha, 2011b;  Esteves, 2012) 

 

 

Protein Phosphatase 1 (PP1)  

 

PP1 is a major PSP and is ubiquitously expressed in all eukaryotic cells. PP1 regulates a 

variety of cellular processes, including cell cycle, meiosis, apoptosis, protein synthesis, 

metabolism, cytoskeletal reorganization, regulation of membrane receptors and channels 

and muscle contraction (Cohen, 2002;  Ceulemans, 2004;  Fardilha, 2010). 

PP1 exhibits broad substrate specificity in vitro, however each assembled and functional 

PP1 complex is thought to display stringent substrate specificity and elicits specific 

biological responses. The PP1 holoenzyme consists of a catalytic subunit (PP1c) and a 

regulatory (R) subunit. PP1c is a 35–38 kDa protein that exists as three isoforms: α 

(PPP1CA), β/δ (PPP1CB) and γ (PPP1CC) sharing ~90% amino acid sequence 
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similarity (Figure 3). Two splice variants of PP1γ (PP1γ1/PPP1CC1 and 

PP1γ2/PPP1CC2) have also been identified.  

 

 
PPP1CC1         MADLDKLNIDSIIQRLLEVRGSKPGKNVQLQENEIRGLCLKSREIFLSQPILLELEAPLK 60 
PPP1CC2         MADLDKLNIDSIIQRLLEVRGSKPGKNVQLQENEIRGLCLKSREIFLSQPILLELEAPLK 60 
PPP1CA          MSDSEKLNLDSIIGRLLEVQGSRPGKNVQLTENEIRGLCLKSREIFLSQPILLELEAPLK 60 
PPP1CB          MADG-ELNVDSLITRLLEVRGCRPGKIVQMTEAEVRGLCIKSREIFLSQPILLELEAPLK 59 
                *:*  :**:**:* *****:*.:*** **: * *:****:******************** 
 
PPP1CC1         ICGDIHGQYYDLLRLFEYGGFPPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFL 120 
PPP1CC2         ICGDIHGQYYDLLRLFEYGGFPPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFL 120 
PPP1CA          ICGDIHGQYYDLLRLFEYGGFPPESNYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFL 120 
PPP1CB          ICGDIHGQYTDLLRLFEYGGFPPEANYLFLGDYVDRGKQSLETICLLLAYKIKYPENFFL 119 
                ********* **************:*********************************** 
 
PPP1CC1         LRGNHECASINRIYGFYDECKRRYNIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDL 180 
PPP1CC2         LRGNHECASINRIYGFYDECKRRYNIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDL 180 
PPP1CA          LRGNHECASINRIYGFYDECKRRYNIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDL 180 
PPP1CB          LRGNHECASINRIYGFYDECKRRFNIKLWKTFTDCFNCLPIAAIVDEKIFCCHGGLSPDL 179 
                ***********************:************************************ 
 
PPP1CC1         QSMEQIRRIMRPTDVPDQGLLCDLLWSDPDKDVLGWGENDRGVSFTFGAEVVAKFLHKHD 240 
PPP1CC2         QSMEQIRRIMRPTDVPDQGLLCDLLWSDPDKDVLGWGENDRGVSFTFGAEVVAKFLHKHD 240 
PPP1CA          QSMEQIRRIMRPTDVPDQGLLCDLLWSDPDKDVQGWGENDRGVSFTFGAEVVAKFLHKHD 240 
PPP1CB          QSMEQIRRIMRPTDVPDTGLLCDLLWSDPDKDVQGWGENDRGVSFTFGADVVSKFLNRHD 239 
                ***************** *************** ***************:**:***::** 
 
PPP1CC1         LDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVDETLMCSFQILKPAE 300 
PPP1CC2         LDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVDETLMCSFQILKPAE 300 
PPP1CA          LDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVDETLMCSFQILKPAD 300 
PPP1CB          LDLICRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGGMMSVDETLMCSFQILKPSE 299 
                ****************************************.*****************:: 
 
PPP1CC1         KKK---------PNATRPVTPPRG------MITKQAKK-------- 323 
PPP1CC2         KKK---------PNATRPVTPPRVGSGLNPSIQKASNYRNNTVLYE 337 
PPP1CA          KNKGKYGQFSGLNPGGRPITPPRN-------SAKAKK--------- 330 
PPP1CB          KKAKYQYG---GLNSGRPVTPPRT--------ANPPKKR------- 327 
                *:            . **:****          :  :     
 

Figure 3 |  PP1 isoforms sequence alignment. ClustalW2 alignment shows a great homology between 

all isoforms: PP1α (PPP1CA), PP1β/δ (PPP1CB), PP1γ1 (PPP1CC1) and PP1γ2 (PPP1CC2). The PPP 

family is defined by three signature motifs (-GDXHG-, -GDXVDRG-, -GNHE- and -HGG-; in bold 

underlined; also in figure 2) within the conserved catalytic domain (in grey shadow). The -LMC- 

hydrophobic pocket (in italics underlined) is important for the recognition of RVxF PP1 binding motif-

containing proteins. 

 

All PP1c isoforms are ubiquitously expressed, except for PP1γ2 that is testis and sperm 

enriched. PP1 cellular activity can be regulated by: reversible phosphorylation of the R 

subunits, dissociation of the R and the PP1c subunits, allosteric regulation of the R 

subunits and inducible expression of the R subunits (Cohen, 2002). 
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PP1c is also highly conserved among all eukaryotes, with ~70% amino acids sequence 

identity. These sequences support a conserved fold and a similarly positioned active site 

for all members of the PPP family (Figure 2, 3 and 4).  

 

 

Figure 4 |  Conserved active site metal-binding residues in PPP family members. Position of the 

residues is indicated, D – Aspartic acid; H – Histidine and N – Asparagine. Adapted from Shi, 2009. 

 

About 200 putative R subunits have been identified, with many more expected to be 

found (Moorhead, 2008;  Hendrickx, 2009;  Fardilha, 2010). These R subunits, PP1 

interacting proteins – PIPs, may target the PP1 catalytic subunit to specific subcellular 

compartment, modulate substrate specificity, or serve as substrates themselves. Thus, 

the interactions between the catalytic subunit and specific R subunits are central to the 

physiological functions of PP1. PP1c adopts a compact α/β fold, with a β sandwich 

wedged between two α-helical domains (Egloff, 1995;  Goldberg, 1995). Two metal 

ions, Mn2+ and Fe2+, are located in the active site at the three-way joint of the β 

sandwich and the two helical domains. Coordination of these two metal ions is provided 

by three histidines, two aspartic acids and one asparagine. These residues are highly 

conserved in all members of the PPP family (Figure 4), suggesting a common 

mechanism of metal-catalyzed reaction in the protein family.  

The two metal ions are thought to bind and activate a water molecule, which initiates a 

nucleophilic attack on the phosphorous atom (Egloff, 1995;  Goldberg, 1995). Three 

shallow surface grooves roughly follow the domain boundaries and converge at the 

catalytic center, forming a Y-shaped surface feature. 
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PP1 Binding Motifs  

 

Early studies suggested that most PIPs contain the sequence motif RVxF. This notion 

was supported by the crystal structure of PP1 bound to a peptide containing the 

sequence RRVSFA (Egloff, 1997). The valine and phenylalanine residues of the peptide 

stack against hydrophobic amino acids on the surface of PP1, whereas the side chain of 

the first, but not the second, arginine residue makes hydrogen bonds to PP1. Subsequent 

studies focused on the identification and improvement of the consensus peptide 

sequence. Most of the PIPs were thought to contain a surface motif of [RK][X]0-

1[VI]{P}[FW] (Wakula, 2003). It seems that RVxF-consensus sequences function as 

PP1 interaction sites only when they are present in a flexible and exposed loop that can 

be modeled into a β-strand (Wakula, 2003). A systematic analysis of the docking 

peptides that combined biochemistry with molecular dynamics gave rise to the refined 

consensus sequence [HKR][ACHKMNQRSTV][V][CHKNQRST][FW] (Meiselbach, 

2006). This consensus sequence allowed the accurate prediction and experimental 

confirmation of several previously unknown PIPs. Within this consensus sequence, the 

most conserved valine and phenylalanine/tryptophan residues appear to anchor the 

binding of the PIP to PP1, whereas the other residues provide the needed specificity for 

recognizing different PIPs. More recently, a new redefinition of the RVxF motif and its 

flanking residues was made, based on the sequences of 143 PIPs: 

[KRL][KRSTAMVHNQ][VI]{FIMYDP}[FW] (Hendrickx, 2009) . 

Other PP1 binding motif (BM) the MyPhoNE motif, was found in the myosin 

phosphtase targeting subunit (Mypt) family RXXQ[VIL][KR]X[YW] (Terrak, 2004;  

Hendrickx, 2009). 

Another consensus site for PP1 binding has been described, the so called apoptotic 

signature, F-X-X-R-X-R, that also appears to exist in several PP1 interactors, and first 

identified in the apoptotic Bcl family (Ayllon, 2002). Recently, the generic PP1 BM 

was identified, the SILK-motif: [GS]-IL-[KR]. It was first described for I2, a specific 

PP1 inhibitor (Huang, 1999;  Wakula, 2003;  Lin, 2005;  Hurley, 2007;  Hendrickx, 

2009). This motif is present in nearly 10% of proteins containing the RVxF-motif and is 

usually N-terminal to it. The SILK and RVxF-motifs are functionally interchangeable 

and can both be essential for PP1 anchoring.  
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Comprehensive mechanistic understanding of PP1 will likely require the structural 

elucidation of PP1 bound to different classes of PIPs whose functions have been 

biochemically characterized. 
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Protein Phosphatase 1 Interactome 

 

The broad in vitro substrate specificity of PP1 leads to the idea that its enzymatic 

specificity is mainly dictated by the PIPs. PP1 is a highly specific and regulated PP, 

owing to the unusual diversity and structural design of its regulatory toolkit. A variety 

of approaches has identified more than 200 mammalian proteins known to interact with 

PP1 but relatively little is known about isoform specific PP1 regulators.  

PIPs were originally identified using classical biochemical approaches as well as the 

Yeast Two Hybrid (YTH) technique. Recently, in silico screenings based on stringent 

definitions of the RVxF PP1 BM, combined with a biochemical validation procedure, 

have led to a near doubling of the PP1 interactome (Meiselbach, 2006;  Hendrickx, 

2009). Novel PP1 complexes also have been identified by affinity chromatography with 

covalently bound microcystin-LR, a potent small-molecule inhibitor of PP, in 

combination with the selective elution of PP1-bound proteins, by competition with a 

synthetic RVxF-type docking peptide (Moorhead, 2008). Yet another set of PP1 

complexes has been identified using antibody arrays (Flores-Delgado, 2007). More 

recently, high throughput YTH screens were used to characterize the human testis PP1γ 

interactome and was shown that there are isoform tissue-specific PIPs (Fardilha, 

2011b). Some PIPs were identified when PP1γ1 was used as bait while others were only 

obtained when the bait was PP1γ2. Even more interesting was the fact that the majority 

of PIPs obtained with a single bait were with the unique C-terminal of PP1γ2. 

Given the number of PPs and phosphoprotein substrates encoded in the human genome, 

a large number of PIPs surely remain to be discovered. In fact, a bioinformatics-assisted 

screen recovered only about one-third of the previously known mammalian PIPs with 

an RVxF motif (Hendrickx, 2009), indicating that about 450 genes, instead of the 

currently validated 150, are likely to encode this type of PIP. Clearly, much more work 

is required to uncover the true diversity of the PP1 interactome. 

Although only a minority of PP1 complexes has been functionally analyzed it is known 

that PIPs function as inhibitors, substrate specifiers, and substrate targeting proteins, or 

a combination thereof.  

More than a dozen vertebrate PIPs have been identified as PP1 substrates. They are 

often activated by dephosphorylation, as is the case for BRCA1, an E3 ubiquitin ligase, 
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focal adhesion kinase (FAK), the PP CDC25C and caspase 2 (Zhao, 1991;  Allen, 2000;  

Ban, 2000;  Bottini, 2002). By contrast, PP1 maintains the associated PKs NEK2 and 

Aurora-A in an inactive state (Lopez, 1996). Dephosphorylation by PP1 stabilizes the 

transcription factor Ikaros (Orengo, 1976) and regulates the binding of ligands to 

various PIPs (Barford, 1996;  Draznin, 2006;  Fry, 2008;  Qadota, 2008). Some 

substrate-PIPs also regulate PP1 function. Inhibitor-2 (I2) and the PKC potentiated 

inhibitor (CPI-17) are both substrates and potent inhibitors of PP1 (Ohnishi, 2005;  

Hurley, 2007). 

Many PIPs contain specific domains that mediate the binding of PP1 to specific cellular 

compartments or macro-molecular complexes. Indeed, PIPs can target PP1 to such 

diverse structures as the plasma membrane (e.g. integrin aIIB), mitochondria (e.g. URI), 

endoplasmic reticulum (e.g. the stress-induced protein GADD34), glycogen particles 

(e.g. G-subunits), the actin cytoskeleton (e.g. Neurabin II), chromatin (e.g. Repo-man) 

and nucleoli (e.g. NOM1). The targeting by PIPs brings PP1 into close proximity to 

specific subsets of substrates; the associated increased local substrate concentration is 

sufficient to increase the dephosphorylation rate by up to several orders of magnitude 

(Bertorello, 1991). 

More than half of all PIPs inhibit PP1 when glycogen phosphorylase is used as a 

substrate (Hendrickx, 2009). Most of these PIPs are poor inhibitors, but some substrate 

and targeting PIPs, including GADD34 (Walaas, 1991b), the Neurabins (Walaas, 

1991a), PNUTS (Auerbach, 2002) and NIPP1 (Suter, 2008), are inhibitory at the low 

nanomolar range. 

Nonetheless, some PIPs are true PP1 inhibitors because they block access to the active 

site and inhibit the dephosphorylation of all substrates. Some PIPs, including Inhibitor-1 

(I1), CPI-17 and DARPP-32 (Walaas, 1991b) are inhibitory only when phosphorylated, 

functioning as pseudosubstrates (Desdouits, 1995;  Ceulemans, 2004;  Ohnishi, 2005) . 

Some PIPs, including MYPT1 (Terrak, 2004) and the Neurabins (Colbran, 1997;  Terry-

Lorenzo, 2002a), interact with PP1 in an isoform-dependent manner, suggesting that 

they possess isoform-specific docking sites. Because the PP1 isoforms differ mainly at 

the N- and C-termini, these represent obvious binding places for specific docking 

sequences. 
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A complete understanding of PP1 function requires the identification of the associated 

subunits that direct PP1 specific functions, as well as functional analysis of PP1 

holoenzymes. 

 

PP1 and its regulators in Brain 

 

Protein phosphorylation is a fundamental process associated with memory, learning and 

brain function, with prominent roles in the processing of neuronal signals and in short-

term and long-term modulation of synaptic transmission (Winder, 2001;  Koshibu, 

2009;  Graff, 2010). Of all mammalian tissues, the brain expresses the highest levels of 

PKs and PPs. A wide range of specific inhibitors and targeting partners such as 

scaffolding, anchoring, and adaptor proteins also contribute to the control of PKs and 

PPs and recruit them into signaling complexes in neuronal cells (Sim, 1999;  Winder, 

2001). Phosphorylation events, therefore, are controlled not only by the balanced 

activity of PKs and PPs but also by their restricted localization.  

The importance of PP1 in neural systems became apparent after the discovery that its 

catalytic subunits α, β, γ1 and γ2, are expressed in the brain (Takizawa, 1994;  da Cruz e 

Silva, 1995;  Ouimet, 1995;  Strack, 1999). PP1 is highly expressed in brain both in 

neurons and glia (da Cruz e Silva, 1995;  Ouimet, 1995). In the brain the mRNAs for 

PP1α, PP1β and PP1γ1 were found to be particularly abundant in hippocampus and 

cerebellum (da Cruz e Silva, 1995). At the protein level PP1α and PP1γ1 were found to 

be more highly expressed in brain than in peripheral tissues (Figure 5), with the highest 

levels being measured in the striatum, where they were shown to be relatively enriched 

in the medium-sized spiny neurons (da Cruz e Silva, 1995). Mammalian PP1α, PP1β 

and PP1γ1 localize to distinct subcellular locations in mammalian cells (Andreassen, 

1998;  Trinkle-Mulcahy, 2001;  Lesage, 2005). At the electron microscopic level, PP1 

immunoreactivity was demonstrated in dendritic spine heads and spine necks, and 

possibly also in the postsynaptic density (Ouimet, 1995). PP1 immunoreactivity has also 

been reported in human hippocampal neuronal cytoplasm (Pei, 1994). In addition, most 

neuronal nuclei were not immmunoreactive for PP1γ1 but were usually strongly 

immunoreactive for PP1α (Ouimet, 1995). The detection of the PP1γ2 isoform in brain 

extracts was unexpected (Takizawa, 1994;  Strack, 1999), because its expression was 
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previously reported to be testis specific (Kitagawa, 1990, Shima, 1993). PP1γ2 protein 

is uniformly expressed in most forebrain regions, but is especially enriched in the 

striatum. Lower levels were detected in hindbrain and cerebellum, similarly to PP1γ1 

and PP1α (Strack, 1999).  
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Figure 5 |  Brain distribution of PP1α and PP1γ1. Diagram of the comparison of the relative abundance 

of PP1α and PP1γ1 isoforms in different rat brain tissues. Levels of abundance indicated in grey color 

intensity, expressed in relation to the striatum (black). Adapted from da Cruz e Silva, 1995. 

 

In the nervous system PP1 regulates short term signaling such as the phosphorylation 

status of receptors, ion channels, and signaling proteins, as well as long term signalling, 

requiring changes in protein translation, gene expression and neuronal morphology that 

together modify neuronal plasticity (Lisman, 1989;  Nairn, 1992;  Mulkey, 1994;  

Terry-Lorenzo, 2000;  Winder, 2001;  Tweedie-Cullen, 2011). PP1 activity controls 

both long term potentiation (Blitzer, 1995;  Blitzer, 1998) and long term depression 

(Mulkey, 1994;  Morishita, 2001) in the hippocampal synapse. High concentrations of 

PP1, specifically PP1γ1 and PP1α, in the actin-rich structure known as the Post 

Synaptic Density (Ouimet, 1995;  Strack, 1997a;  Terry-Lorenzo, 2000), correlate with 

the regulation of substrates such as NMDA (Snyder, 1998;  Westphal, 1999) and AMPA 
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subtypes of glutamate receptors (Wang, 1991;  Yan, 1999), calcium (Surmeier, 1995) 

and potassium (Endo, 1995) channels, and CaMKII (Strack, 1997a;  Blitzer, 1998). In 

summary, PP1 is an essential regulator of protein function and neuronal activity, with 

multiple PIPs regulating their activity and substrate specificity, some of which will be 

discussed below. 

DARPP-32 (PPP1R1B) is one of several PKA-regulated inhibitors of PP1. It is 

expressed only in some specific neuronal populations in the brain and at low levels in a 

few non-neuronal cell types in the brain (e.g., tanycytes, choroid plexus) and other 

organs (e.g., adrenal medulla, parathyroid cells, kidney) (Ouimet, 1984;  Hemmings, 

1986;  Meister, 1989). DARPP-32 phosphorylation status has been thoroughly 

investigated and it is the core of a rich network of regulation events. It controls a wide 

variety of neuronal properties, from ion channel permeability and synaptic plasticity, to 

nuclear chromatin response. The combination of experimental and modeling studies 

suggests that in medium-size spiny neurons DARPP-32 is a robust integrator of 

signaling whose main role may be to increase the reliability in decoding the information 

mediated by glutamate and dopamine, as well as other inputs  (Yger, 2011). 

DARPP-32 is phosphorylated at various sites, the most extensively studied is at Thr34 

which turns DARPP-32 into a potent inhibitor of PP1 (Hemmings, 1984a). Thr34 in 

DARPP-32, like Thr35 of I1 are excellent substrates for both PKA and cGMP-

dependent protein kinases (Hemmings, 1984b). They are dephosphorylated by PP2B 

(calcineurin/PPP3) and by the catalytic subunit of PP2A (PPP2) in vitro (King, 1984;  

Hemmings, 1984a) and in striatal neurons (Halpain, 1990;  Nishi, 1999). DARPP-32 

has been implicated in the regulation by dopamine of several ion channels in striatal 

neurons, including the AMPA an dNMDA glutamatereceptors (NMDAR) and voltage-

gated Na+ and Ca2+ channels (Svenningsson, 2004). Studies in neurons in culture with 

the inhibitor of nuclear export leptomycin B revealed that DARPP-32 undergoes a 

continuous shuttling between the cytoplasm and the nucleus (Stipanovich, 2008). Since 

PP1 has many substrates in the nucleus (Moorhead, 2007), it is likely that the 

consequences of the accumulation of phosphorylated Thr34-DARPP-32 has multiple 

consequences on chromatin and other nuclear targets. For example, a recent report 

shows that DARPP-32 interacts with tra2-beta1, a factor involved in the regulation of 

alternative splicing (Benderska, 2010). 
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Neurabin I (PPP1R9A) and spinophilin (Neurabin II/PPP1R9B) are brain actin binding 

protein specifically enriched in dendritic spines (Allen, 1997;  Satoh, 1998;  Grossman, 

2002) as is PP1 (Ouimet, 1995) and are modulators of PP1 activity. In hippocampal 

slices, inhibition of PP1 activity caused a rapid increase in dendritic spines and 

filopodia (Jourdain, 2003), suggesting that the ongoing synaptic activity associated with 

the Neurabin I/PP1 complex maintains normal spine number and morphology. Neurabin 

II has the properties expected of a scaffold protein localized to the cell membrane 

(Allen, 1997) it plays an important role in the regulation of glutamate receptors by 

anchoring PP1 in the proximity of AMPA and NMDA receptors, thus regulating the 

efficacy of postsynaptic glutamatergic neurotransmission. As phosphorylation of 

neurofilament proteins is associated with depolymerization, neurofilament-associated 

PP1 may regulate neurofilament stability. Neurabin I and Neurabin II were identified to 

bind PP1γ1 and PP1α, but not PP1β (MacMillan, 1999;  Terry-Lorenzo, 2002a). 

Because the PP1 isoform-binding selectivity of Neurabin II and Neurabin I in vitro 

matches the selective enrichment of PP1 isoforms in isolated postsynaptic densities 

(Strack, 1997a;  Strack, 1999;  Terry-Lorenzo, 2002b), it is likely that spinophilin 

and/or Neurabin selectively target PP1α and PP1γ1 activity to actin-rich dendritic spines 

and postsynaptic densities (Colbran, 2004). Neurabins target the PP1-I2 complex to 

actin cytoskeleton and regulate cell morphology (Terry-Lorenzo, 2002b). In fact 

Neurabins bind PP1 and I2 and mutation of a conserved PP1 BM abolished Neurabins 

binding to both proteins. PP1 association to brain microtubules also occurs through the 

microtubule-associated protein tau. Tau acts as targeting protein that bridges PP1 to 

microtubules and can also be a substrate for the PP (Liao, 1998). 

Myr8 myosins comprise a new class of myosins that has been designated class XVI. 

The head domain contains a large N-terminal extension composed of multiple ankyrin 

repeats implicated in mediating an association with PP1α and γ1 (Patel, 2001). The 

structural features and restricted expression patterns suggest that members of this novel 

class of unconventional myosins comprise a mechanism to target selectively the PP1 in 

developing brain (Patel, 2001).  

Neurofilament-L (NF-L), a membrane-bound protein, was identified as a PP1 binding 

protein in bovine brain cortex plasma membranes. Bovine NF-L, at nanomolar 

concentration, inhibited the activity of rabbit skeletal muscle PP1c but not of PP2A. NF-
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L may target the functions of PP1 in membranes and cytoskeleton of mammalian 

neurons (Terry-Lorenzo, 2000).  

Type 1 inositol (1,4,5)-trisphosphate receptors (IP3R1s)  play a major role in neuronal 

calcium (Ca2+) signaling. The IP3R1s are phosphorylated by PKA. PP1α was isolated in 

a YTH screen of rat brain cDNA library using InsP3R1 as bait (Tang, 2003). The 

specificity of the IP3R1-PP1α association was confirmed and the IP3R1-PP1 complex 

was immunoprecipitated from rat brain synaptosomes and neostriatal lysate. PP1 

facilitates the dephosphorylation of PKA-phosphorylated IP3R1.  

PP1 complexes in response to ischemia-reperfusion stress and ischemic tolerance were 

studied in brain (Cid, 2007). PP1α and PP1γ were immunoprecipitated and resolved by 

2-D electrophoresis. DIGE analysis detected 14 different PIPs that exhibited significant 

changes in their association with PP1α or PP1γ. Ischemia-reperfusion altered the 

interaction of heat shock cognate 71 kDa-protein, creatine kinase B and DARPP-32 

with both PP1α and PP1γ, and the interaction of phosphodiesterase-6B, transitional 

endoplasmic reticulum ATPase, lamin-A, glucose-regulated 78 kDa-protein, 

dihydropyrimidinase-related protein-2, gamma-enolase, neurofilament-L, and ubiquitin 

ligase SIAH2 with PP1γ. 

 

PP1 and its regulators in Testis and Sperm 

 

Splicing of the PP1γ gene originates two isoforms, PP1γ and PP1γ2, PP1γ2 is enriched 

in testis and virtually exclusive to sperm (Kitagawa, 1990;  Shima, 1993;  da Cruz e 

Silva, 1995;  Smith, 1996;  Fardilha, 2008). In testis, PP1γ2 localizes in the cytoplasm 

of secondary spermatocytes and round spermatids, as well as elongating spermatids and 

testicular and epididymal spermatozoa, while PP1γ1 expression is observed in 

interstitial cells and PP1α in spermatogonia, pachytene spermatocytes and interstitial 

cells (Chakrabarti, 2007). PP1γ gene null male mice are infertile due to impaired 

spermatogenesis, leading to the absence of epididymal spermatozoa (Varmuza, 1999). 

Although PP1α expression was increased and its localization altered, it could not 

substitute for PP1γ, further suggesting a specific role for PP1γ2 in sperm differentiation 

and morphogenesis (Chakrabarti, 2007). Several studies have demonstrated that PP1γ2 
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is important in the regulation of sperm motility (Smith, 1996;  Smith, 1999;  Huang, 

2002;  Mishra, 2003). In sperm, PP1γ2 is present along the entire flagellum including 

the middle-piece, consistent with a role in sperm motility, but it is also found in the 

posterior and equatorial regions of the head, suggesting a role in the acrosome reaction 

(Huang, 2002). Furthermore, Visconti and co-workers have recently shown that 

inhibition of PPs induces capacitation-associated signaling (Krapf, 2010). Immotile 

spermatozoa possess higher activity levels of PP1γ2 compared with motile spermatozoa. 

Inhibition of protein phosphatase activity by okadaic acid and calyculin A initiates 

motility in caput epididymal sperm without requirement for a change in cAMP levels 

(Smith, 1996;  Vijayaraghavan, 1996).  

Significantly, some testis/sperm-specific PIPs have been identified. For example, the 

spermatogenic zip protein 1 (Szp1), a member of the basic helix-loop-helix family of 

transcription factors, which binds to PP1γ2 in mouse testis (Hrabchak, 2004). 

Overexpression of Szp1 and loss of PP1γ in the testis show similar phenotypes, such as 

spermatogenic arrest and germ cell apoptosis (Hsu, 2004).  Another example is 

endophilin B1t. This testis enriched isoform of endophilin B1a was shown to bind 

PP1γ2 but did not interact with a mutant form of PP1γ2, lacking the specific C-terminus, 

nor with PP1α (Hrabchak, 2007). Moreover, the somatic isoform did not interact with 

any of the PP1 isoforms and the characteristic punctuate expression pattern of 

endophilin, in testis, was absent in PP1γ null mice. Finally, endophilin B1t was able to 

inhibit recombinant PP1γ2 activity (Hrabchak, 2007).  

Inhibitor-2 (I2) is capable of inhibiting the catalytic subunit of PP1 leading to the 

production of a stable PP1-I2 complex. GSK-3 phosphorylates I2 in the PP1-I2 

complex, relieving the inhibition and producing active PP1. The complex PP1γ2-I2 is 

inactive in motile caudal sperm and the PP activity is re-established in immotile sperm 

by the higher GSK-3 activity (Smith, 1996;  Vijayaraghavan, 1996). 

Inhibitor-3 (I3) is a potent PP1 inhibitor (Giffon, 1996;  Zhang, 1998) and a human 

homologue of the mouse t-complex expressed protein 5 (Tctex5), being genetically 

linked to the male sterility phenotypes of impaired sperm tail development and poor 

sperm motility in t complex mice (Cebra-Thomas, 1991;  Pilder, 1991;  Pilder, 1993). In 

epididymal mouse spermatozoa Tctex5 is present in the head and principal piece of the 

tail (Pilder, 2007). These are also the locations where PP1γ2 is expressed (Huang, 
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2005). I3 is a substrate for caspase-3 and is degraded in vivo during apoptosis (Huang, 

2008) and PP1γ2 has an anti-apoptotic effect in testis that might result from its ability to 

increase I3 stability (Cheng, 2009).  

In male germ cells PP1γ2, I3, sds22 and actin form a multimeric complex in which 

PP1γ2 seems to be inactive (Cheng, 2009). The stability of the complex depends on 

functional PP1 interaction sites in sds22 and I3, indicating that PP1 mediates the 

interaction between sds22 and I3, forming a catalytically inactive complex in the cell 

(Lesage, 2007). Sds22 (PPP1R7) was identified in sperm (Mishra, 2003) and rat testis 

(Chun, 2000), and inhibits the PP1 catalytic subunit in rat liver nuclei (Dinischiotu, 

1997). The expression pattern of rat sds22 matches that of PP1γ2, suggesting that its 

involvement in spermatogenesis relates to the control of PP1γ2 activity. Sds22 was 

identified in motile caudal spermatozoa as a regulator of PP1γ2 catalytic activity 

(Huang, 2002). In caput sperm sds22 is bound to a 17 kDa protein, suggesting that 

binding to PP1γ2 requires sds22 dissociation from p17. 

The cyclic AMP-dependent PK (PKA) and PP1 are broad specificity signaling enzymes 

with opposing actions that catalyze changes in the phosphorylation state of cellular 

proteins. PKA is a ubiquitous, multifunctional enzyme involved in the regulation of 

several cellular events. PKA holoenzyme consists of four subunits, two catalytic and 

two regulatory (RI and RII). compartmentalization of PKA is mediated through 

association of its regulatory subunits with A-kinase anchoring proteins (AKAPs) (Faux, 

1996). Several anchoring proteins have been identified that can simultaneously 

associate with PKs and PPs (Faux, 1996). In testis and/or sperm there are three AKAPs 

that have been shown to be related to PP1γ2, AKAP220, AKAP4 and AKAP3. 

AKAP220 binds PKA and PP1, being a competitive inhibitor of PP1 (Schillace, 2001). 

In spermatozoa, Akap4 gene knockout mice that lack flagellar movement, exhibit a 

significant change in the activity and phosphorylation of PP1γ2 (Huang, 2005). This 

suggests the involvement of AKAP4 in the regulation of PP1γ2 activity in the principal 

piece of mouse spermatozoa. 

Given that many AKAPs have been shown to be present in germ cells and localized to 

compartments related to motility where PP1γ2 is also present (for instance, 

mitochondrial sheath or axoneme, Table 1), they might be putatively involved in 

motility acquisition (Fardilha, 2011a).  
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A study showed that inhibition of PPs, with calyculin A, resulted in an enhancement of 

the phosphorylated state at the activation loop of the PKA catalytic subunit in the mouse 

sperm principal and middle-pieces (Goto, 2009). Also, PKA and PP1γ2 co-localized in 

the principal piece, but PP1γ2 was not present in the middle piece. It was suggested that 

PP1 and PP2A suppress full activation of PKA, as well as enhancement of the 

phosphorylated states of other flagellar proteins, in order to prevent precocious changes 

of flagellar movement from the progressive type to hyperactivation (Goto, 2009). 

Nevertheless, a study from Fardilha and co-workers has shown that PP1γ2 is also 

present in the middle-piece of human sperm attributing to this PP the dephosphorylation 

of PKA in the entire tail (Fardilha, 2008). Together, these findings suggest that the 

AKAP/PKA/PP1 complex is important for regulation of sperm motility. 

 

Table 1 |  Functions and sub-cellular localization of the AKAPs present in male germinative tissues. 

Adapted from Fardilha, 2011a. 

Name 
Tissue and cell 

expression 

Subcellular 
localization in 

sperm 

Sperm 
associated 
function 

References 

AKAP220/ 
AKAP11 

Testis 
Spermatid 
Spermatocyte 
Spermatozoa 

Cytoplasm, 
centrosome, 
middle piece and 
peroxisomes 

Sperm  
maturation and 
motility  

(Lester, 1996) 
(Vijayaraghavan, 1997) 
(Reinton, 2000) 

AKAP3/ 
AKAP110/ 
FSP95/ 
SOB1 

Testis 
Spermatozoa 
Spermatid 

Fibrous sheath, 
principal piece 
and acrosome 

Acrosome 
reaction and 
sperm motility 

(Horowitz, 1984) 
(Vijayaraghavan, 1997) 
(Lin, 1995) 
(Mandal, 1999) 
(Lefevre, 1999) 

AKAP4/ 
AKAP82/ 
FSC1 

Testis 
Spermatid 
Spermatozoa 

Fibrous sheath 
and principal 
piece 

Sperm motility 

(Carrera, 1994) 
(Fulcher, 1995) 
(Johnson, 1997) 
(Visconti, 1997) 
(Turner, 1998) 
(Turner, 2001) 

D-AKAP1/ 
S-AKAP84/ 
AKAP121/ 

Testis 
Spermatid 

Middle piece 
Sperm 
maturation and 
motility ? 

(Lin, 1995)  
(Huang, 1999) 
(Feliciello, 1998)  

TAKAP80 Testis Fibrous sheath Sperm motility ? (Mei, 1997) 

AKAP14/ 
AKAP28 

Testis Axoneme Sperm motility ? (Kultgen, 2002) 

WAVE1 

Testis 
Spermatid 
Spermatocyte 
Spermatozoa 

Mitochondrial 
sheath /middle 
piece 

Sperm motility ? (Rawe, 2004) 

 

Other proteins have also been implicated in the regulation of PP1γ2 in testis/sperm 

either by inducing (14-3-3) or inhibiting (hsp90) PP1γ2 activity during sperm 
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maturation, which correlates with increased spermatozoa motility (Shima, 1993b;  

Jurisicova, 1999;  Huang, 2002;  Mishra, 2003;  Hrabchak, 2004;  Huang, 2004;  Huang, 

2005).  
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PP1 regulation  

 

The existence of common binding sites for PIPs explains why a relatively small protein 

such as PP1 can interact with numerous different regulatory proteins and why the 

binding of most regulatory subunits is mutually exclusive. The relative abundance of 

each PP1 isoform may be an important factor in determining the composition of 

numerous PP1 holoenzymes and the relative contribution of each PP1 isoform to 

different biological functions.  

The role played by PPs in health and disease, and particularly the involvement of PP1, 

makes it and the proteins that regulate its function (PIPs) excellent targets for 

pharmacological intervention. PP1/PIPs complexes seem to be the future targets for 

several diseases since PP1 has been associated to several disorders. Nevertheless, the 

specificity of PP1 targeting should be achieved by two means: PP1 isoform specificity 

and differential PIP association. These meaning that each PP1 isoform has its tissue and 

event-specific expression pattern and the same happen with the PIPs, leading to the 

formation of a specific PP1/PIP complex in a certain place and time and event. This 

highly specific complex formation can then be target by an inhibiting or stimulating 

molecule.  

The exquisite specificity of PP1 in vivo is explained by the structural design and 

diversity of its toolkit, and by various regulatory mechanisms that impose on PIPs. 

Some PIPs are expressed in a cell type-dependent manner, accounting for cell type-

specific PP1 activity (Ceulemans, 2004;  Moorhead, 2007;  Virshup, 2009). Recent data 

show that the concentration of several PIPs is controlled by regulated proteolysis 

(Kloeker, 1997;  Strack, 1997a;  Strack, 1997b;  Huang, 2008). Moreover, many 

signaling pathways interfere with the affinity of specific PIPs for PP1. For example, 

phosphorylation of Ser/Thr residues in or near RVxF-type docking sequences is often 

associated with a reduced binding affinity for the RVxF-binding channel (Bollen, 2001). 

Signaling through phosphorylation can also result in the recruitment or release of 

inhibitory PIPs (Tavalin, 1999;  Ceulemans, 2004;  Ohnishi, 2005). 

Another PIP control mechanism involves positive or negative allosteric regulation by 

metabolites or other proteins (Chen, 1999;  Westphal, 1999). The PP1-mediated 

dephosphorylation of some substrate - PIPs - is restrained through regulated masking of 
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the phosphorylated residues by 14-3-3 proteins (Ree, 1991;  Schillace, 1999;  Allen, 

2000;  Trinkle-Mulcahy, 2001;  Bottini, 2002). Finally, PP1–PIP complexes are highly 

dynamic and different PIPs compete for the same PP1 binding sites (Schillace, 1999;  

Trinkle-Mulcahy, 2001). Ultimately, the concentration and PP1-binding affinities of 

PIPs determines which PP1 holoenzymes are formed.  

In recent years, PKs have become highly successful drug targets, mainly for the 

treatment of cancer (Scott, 1999). As most phosphorylations are reversible, PPs are 

equally powerful drug targets to interfere with protein phosphorylation. This is 

impressively illustrated by the PP2B inhibitors cyclosporin A and FK506, which are 

clinically used as potent immunosuppressants. 

Clearly, PP1 inhibitors hold great promise for the treatment of various human 

pathologies, including cancer, neurodegenerative diseases, type 2 diabetes, heart failure 

and viral diseases (Strack, 1997c;  Chen, 1999;  Schillace, 1999;  Tavalin, 1999;  

Koshibu, 2009). However, highly specific cell-permeating inhibitors for the PP1 

catalytic subunit are not yet available and it is questionable whether such agents could 

ever be used therapeutically, as they would be likely to inhibit all PP1 holoenzymes 

(Trinkle-Mulcahy, 2001). A more selective approach, could involve the functional 

disruption of subsets of PP1 holoenzymes with small molecule compounds that bind to 

PIP interaction sites on PP1, such as the hydrophobic binding grooves for the RVxF, 

SILK and MyPhoNE sequences (Bollen, 2010;  Fardilha, 2010). Blocking the less 

prevalent SILK and MyPhoNE motifs will affect smaller subsets of PP1 holoenzymes; 

however, even compounds that interfere with the docking of RVxF sequences can 

provide greater selectivity than predicted from the abundance of this motif, as its 

importance is holoenzyme-dependent (Bollen, 2010). Moreover, RVxF competing 

agents can be used at concentrations that disrupt only the binding of low-affinity RVxF 

variants. Another PP1 targeting strategy aims to interfere with substrate recruitment at 

extended docking sites of specific holoenzymes (Bollen, 2010). At the very least, 

inhibitors of subsets of PP1 holoenzymes could be employed for functional studies 

(Bollen, 2010;  Fardilha, 2010). 

An increasing number of proteins have been identified in diverse cell types that regulate 

the catalytic activity of PP1. Indeed, the diversity of such PP1 regulatory subunits 

makes them attractive pharmacological targets. Besides, PP1 isoforms are highly mobile 

in cells and can dynamically re-localize through the direct interaction with targeting 
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subunits (Trinkle-Mulcahy, 2001). Clearly, a full understanding of the regulation of 

different cellular processes by PP1 requires the identification and characterization not 

only of the various PP1 regulatory proteins and holoenzyme, but also the isoform and 

tissue specific PP1-PIPs complexes. 
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AIMS 

 

 

Protein Phosphatase 1 (PP1) is a major Ser/Thr phosphatase whose function is highly 

dependent on the proteins it binds to - referred as PP1 Interacting Proteins - PIPs. 

Today, more than 200 PIPs have been identified that specify PP1 subcellular 

localization, substrates and activity. The identification of novel PIPs is a mean to 

unravel novel PP1 functions. A novel approach was followed, in which the aim was to 

determine PP1 isoform-specific functions, using a high throughput strategy - the YTH 

system. 

 

Thus, the main aims of this PhD thesis were: 

 

1 | To characterize PP1α, PP1γ1 and PP1γ2 isoform-specific interactomes in human 

brain; 

 

2 | To confirm and describe two novel PP1/PIP complexes - PP1/Taperin and 

PP1/Synphilin-1A - and to address their physiological relevance. 
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II  |   PP1 INTERACTION NETWORKS IN BRAIN  

 

 

A variety of approaches has identified more than 200 mammalian proteins known to 

interact with PP1, known as PIPs (Moorhead, 2008;  Hendrickx, 2009;  Fardilha, 2010;  

Fardilha, 2011b). PIPs function as inhibitors, substrate specifiers, and substrate targeting 

proteins, or a combination thereof and sometimes PP1 interactors are themselves 

substrates for the associated PP1 (Bollen, 2001;  Ceulemans, 2004;  Fardilha, 2010;  

Fardilha, 2011a). Given the number of PPs and phosphoprotein substrates encoded in the 

human genome, a large number of PIPs surely remain to be discovered. Moreover, 

relatively little is known about PP1 isoform-specific regulators.  

The majority of the putative PP1 interactions proposed derived primarily from 

biochemical approaches, high-throughput YTH screens, mass spectrometry and in silico 

screenings (Hrabchak, 2004;  Bennett, 2006;  Trinkle-Mulcahy, 2006;  Flores-Delgado, 

2007;  Moorhead, 2008;  Hendrickx, 2009;  Fardilha, 2011b). Recently, the human testis 

PP1γ interactome was characterized, by YTH, and it was shown that there are isoform 

tissue-specific PIPs (Fardilha, 2011b). Some PIPs were identified when PP1γ1 was used 

as bait while others were only obtained when the bait was PP1γ2. Even more interesting 

was the fact that the majority of PIPs obtained with a single bait were with the unique C-

terminal of PP1γ2 (Fardilha, 2011b). Thus, clearly, there exists a PP1 isoform specificity 

in what concerns PIPs binding, which is highly relevant for PP1 isoform particular 

functions. 

The YTH technique, as originally developed by Fields and Song, relies on the modular 

properties of eukaryotic transcription factors, which typically comprise at least two 

structurally and functionally separate domains: a DNA-binding domain (BD) and an 

activator domain (AD) (Fields, 1989;  Chien, 1991). A bait gene is expressed as a fusion 

to the BD, of a specific transcription factor, while another gene or cDNA is expressed as 

a fusion to the AD. It exploits the fact that the BD cannot function as a transcription 

activator unless physically near the AD, through an interaction that does not need to be 

covalent, thus activating transcription of reporter genes. The YTH assays are performed 

by expressing the two fusion proteins in yeast. When using a large scale screen, a plasmid 

library, expressing cDNA-encoded AD-fusion proteins, can be screened by being 
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introduced into adequate yeast strains. These larger scale YTH approaches typically rely 

on interaction by yeast mating (Finley, 1994;  Serebriiskii, 2001).  When the two 

transformant cultures, from compatible yeast strains, are matted, diploid cells containing 

the reporter genes are originated. If the protein interaction occurs, transcription of the 

reporter genes is activated allowing growth on selective media. 

The YTH system provides a sensitive method for detecting relatively weak and transient 

protein interactions. High-throughput YTH screens, which generated most of the binary 

protein interaction data currently available, are providing samples of complete 

interactomes. Some online databases function as interaction repositories with data from 

literature compiled through comprehensive curation efforts, enabling data sharing of 

protein-protein interactions (PPIs). The databases include direct and predicted PPIs and 

integrate interaction of a large number of organisms.  

Even though PPIs mapping lacks sufficient coverage and dynamic information for a 

complete interactome, they greatly increased our knowledge, although understanding the 

global organization of proteomes is still far from complete. 

Using the YTH system we made high throughput screens into human brain libraries using 

the different PP1 isoforms (α, γ1, γ2 and the specific C-terminal of the γ2 isoform) as 

baits, in order to identify the isoform-specific PP1 interactors. After, an in depth database 

search for PPIs was made, to build PP1 isoform-specific networks, so that key functional 

proteins could be identified. 
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Supplementary data 

 

Table 1 |  Complete list of PPP1CC interacting proteins present in the searched databases. 

Protein 
Interactor 

ID 

Interaction 
Detection 
Method 

Database Pubblication Identifier 

ACTB P60709 
ICU 
TM 

STRING 

20562859                     
omim:00602021  
omim:00602468  
omim:00608724  

ADHFE1 Q8IWW8  PRED  iRefIndex 15657099 

AGL P35573 PRED iRefIndex 15657099 

AHCTF1 Q8WYP5 
ICU 
EX 

STRING 
Reactome 

20482850 

AK2 P54819 PRED iRefIndex 15657099 

AKAP1 Q92667 TM STRING 
omim:00602449                
09238861                                   
09880537  

AKAP11 Q9UKA4  

VT 
AC 
WB 
EX 
TM 

iRefIndex 
APID 
STRING 
BioGrid 
HPRD 
PINA 

10209101  
12147701  
11152471                                  
19008911  

AKAP4 Q5JQC9 TM STRING 15385410 

AKT1 P31749 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00601728  
omim:00605035                     
08798763 
20482850  

AKT2 P31751 
ICU 
EX 

STRING 
Reactome 

20482850 

AKT3 Q9Y243 
ICU 
EX 

STRING 
Reactome 

20482850 

ANAPC7  Q9UJX3  EX Reactome 20482850 

APITD1  Q8N2Z9  EX Reactome 20482850 

ARFGEF1 Q9Y6D6 TM STRING 
10212259                                   
14724321                                
16737766  

ARFGEF2 Q9Y6D5 TM STRING 
10212259                                 
16737766                                   
17360629  

ARHGAP9 Q9BRR9 TM STRING 
omim:00176914                   
08914631  

AT5F1 P24539  PRED iRefIndex 15657099 

ATM Q13315 AA 
APID 
IntAct 
PINA 

17274640 

ATP5C1 Q8TAS0  PRED iRefIndex 15657099 

ATP6V1E1 P36543  PRED iRefIndex 15657099 

ATPO P48047 PRED iRefIndex 15657099 

ATXN2 Q24JQ7 TM STRING 9529352 
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Protein 
Interactor 

ID 

Interaction 
Detection 
Method 

Database Pubblication Identifier 

AURKA O14965 

YTH 
VV 
VT 
EX 
TM 

APID 
STRING 
iRefIndex 
HPRD 
PINA 

11551964 
11039908 
11551964 
12490715  

AURKB Q96GD4 
ICU 
TM 
EX 

STRING 
Reactome 

10385519                               
11350965                             
11801737 
20482850 

B9D2 Q9BPU9 
ICU 
EX 

STRING 
Reactome 

20482850 

BAD Q92934 
TM 
IM  

STRING 
omim:00138079  
omim:00176875  
omim:00176911  

BCL2 P10415 
AA 
EX 

APID 
IntAct 
PINA 
Reactome 

17274640 
20482850 

BCL2L1 Q07817 AA 
APID 
IntAct 
PINA 

17274640 

BIRC5 O15392 
AA 
ICU 
EX 

APID 
STRING 
IntAct 
PINA 
Reactome 

17274640 
20482850 

BMI1 P35226 COEX STRING 
 

BRCA1 P38398 
COIP 
EX 
TM 

APID 
STRING 
IntAct 
iRefIndex 
PINA 

17511879                
omim:00601728  
omim:00601772                  
12438214  

BUB1 O43683 
ICU 
EX 

STRING 
Reactome 

20482850 

BUB1B O60566 
ICU 
EX 

STRING 
Reactome 

20482850 

BUB3 O43684 
COEX 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

BYSL Q13895  PRED iRefIndex 15657099 

C11orf58 O00193 
COEX 
TM 

STRING 
02987020 
16467385  

CALM1 P62158 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00176915                   
01328240                                
01331060 
20482850 

CALM3 Q9BRL5  EX Reactome 20482850 

CALML3 P27482 
ICU 
EX 

STRING 
Reactome 

20482850 

CALML5 Q9NZT1 
ICU 
EX 

STRING 
Reactome 

20482850 

CALML6 Q8TD86 
ICU 
EX 

STRING 
Reactome 

20482850 

CAMK2A Q9UQM7 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 
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Protein 
Interactor 

ID 

Interaction 
Detection 
Method 

Database Pubblication Identifier 

CAMK2B Q13554 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00176875                    
01660400                                 
01719969 
20482850 

CAMK2D Q13557 
ICU 
EX 

STRING 
Reactome 

20482850 

CAMK2G Q13555 
ICU 
TM 
EX 

STRING 
Reactome 

20562859              
omim:00176960                   
01660400                             
01719969 
20482850 

CASC5 Q8NG31 
ICU 
TM 
EX 

STRING 
Reactome 

20231380 
20482850 

CBS P35520 PRED iRefIndex 15657099 

CBX1 P83916 
COEX 
TM 

STRING omim:00601772  

CCDC99 Q96EA4 
ICU 
EX 

STRING 
Reactome 

20482850 

CCND1 P24385 
AA 
EX 

APID 
IntAct 
PINA 
Reactome 

17274640 
20482850 

CCND3 P30281 
AA 
EX 

APID 
IntAct 
PINA 
Reactome 

17274640 
20482850 

CCNG1 P51959 COEX STRING 
 

CDC14A Q9UNH5 PRED iRefIndex 15657099 

CDC20 Q12834 
ICU 
TM 
EX 

STRING 
Reactome 

12490715 
20482850 

CDC25C P30307 
ICU 
TM 

STRING 

20562859                     
omim:00300415  
omim:00601728  
omim:00607566  

CDC34 P49427 AA 
APID 
IntAct 
PINA 

17274640 

CDCA2 Q69YH5 TM STRING 
16492807                             
16998479  

CDCA8 Q53HL2 
ICU 
EX 

STRING 
Reactome 

20482850 

CDK1 P06493 
AA 
EX 

APID 
IntAct 
PINA 
Reactome 

17274640 
20482850 

CDK2 P24941 
AA 
EX 

APID 
IntAct 
PINA 
Reactome 

17274640 
20482850 

CDK3  Q00526  EX Reactome 20482850 

CDK4 P11802 
AA 
EX 

APID 
IntAct 
PINA 
Reactome 

17274640 
20482850 
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Protein 
Interactor 

ID 

Interaction 
Detection 
Method 

Database Pubblication Identifier 

CDK5  Q00535  EX Reactome 20482850 

CDK6  Q00534  EX Reactome 20482850 

CDK7  P50613  EX Reactome 20482850 

CDKN1B P46527 VT 
HPRD 
PINA  

CDKN2A (isoform 
1/2/3) 

P42771 AA IntAct 17274640 

CDKN2A (isoform 
4) 

Q8N726 AA 
APID 
PINA 

17274640 

CENPA P49450 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00117141 
20482850 

CENPC1 Q03188 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00117141 
20482850 

CENPE Q02224 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00602259 
20482850 

CENPF P49454 
ICU 
EX 

STRING 
Reactome 

20482850 

CENPH Q9H3R5 
ICU 
EX 

STRING 
Reactome 

20482850 

CENPI Q92674 
ICU 
EX 

STRING 
Reactome 

20482850 

CENPK Q9BS16 
ICU 
TM 
EX 

STRING 
Reactome 

1312079 
20482850 

CENPL Q8N0S6 
ICU 
EX 

STRING 
Reactome 

20482850 

CENPM Q9NSP4 
ICU 
EX 

STRING 
Reactome 

20482850 

CENPN Q96H22 
ICU 
EX 

STRING 
Reactome 

20482850 

CENPO Q9BU64 
ICU 
EX 

STRING 
Reactome 

20482850 

CENPP Q6IPU0 
ICU 
EX 

STRING 
Reactome 

20482850 

CENPQ Q7L2Z9 EX Reactome 20482850 

CENPT Q96BT3 
ICU 
EX 

STRING 
Reactome 

20482850 

CEP250 Q9BV73 TM STRING 17283141 

CHEK2  O96017  EX Reactome 20482850 

CKAP5 Q14008  
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

CLASP1 Q7Z460 
ICU 
EX 

STRING 
Reactome 

20482850 

CLASP2 O75122 
ICU 
EX 

STRING 
Reactome 

20482850 

CLIP1 P30622 
ICU 
EX 

STRING 
Reactome 

20482850 

CNBP P62633 COEX STRING 
 

CNIH Q8TBE1 COEX STRING 
 

COPB1 P53618 COEX STRING 
 

COPS2 P61201 COEX STRING 
 

COPS5 Q92905 COEX STRING 
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Protein 
Interactor 

ID 

Interaction 
Detection 
Method 

Database Pubblication Identifier 

CPSF3 Q9UKF6 PRED iRefIndex 15657099 

CPSF4 O95639 PRED iRefIndex 15657099 

CROCC Q5TZA2 TM STRING 17283141 

CSNK1E P49674  PRED iRefIndex 15657099 

CSTF3 Q12996 PRED iRefIndex 15657099 

CTCF P49711 COEX STRING 
 

DCP2 Q8IU60  PRED iRefIndex 15657099 

DDX1 Q92499 
COEX 
TM 

STRING 
omim:00400010  
omim:00605281                      
17661632  

DDX10 Q86VR6  PRED iRefIndex 15657099 

DDX18 Q9NVP1  PRED iRefIndex 15657099 

DDX3X O00571 TM STRING 
omim:00400010 
omim:00605281 
17661632  

DDX3Y O15523 TM STRING 
omim:00117141 
omim:00176914 
omim:00182465  

DDX4 Q9NQI0 TM STRING 
omim:00117141  
omim:00126420  
omim:00176914  

DEK P35659 
COEX 
TM 

STRING 19103207 

DHX15 O43143 
COEX 
TM 

STRING 
omim:00400010 
omim:00605281                  
17661632  

DKC1 O60832  PRED iRefIndex 15657099 

DLD P09622 COEX STRING 
 

DNM1L O00429  PRED iRefIndex 15657099 

DONSON Q9NYP3 TM STRING omim:00182465  

DPM1 O60762 
COEX 
PRED 

STRING 
iRefIndex 

15657099 

DPYS Q14117 TM STRING 
17683050 
20701987  

DSN1 Q9H410 
ICU 
EX 

STRING 
Reactome 

20482850 

EFHA1 Q8IYU8 COEX STRING 
 

EIF2AK2 P19525 

YTH 
VV 
VT 
EX 
TM 

APID 
STRING 
iRefIndex 
HPRD 
PINA 

12138106 
20562859                             
01556141                             
10696424                             
11070019  

EIF2B1 Q14232  PRED iRefIndex 15657099 

EIF2S1 P05198 

AA 
EX 
TM 
PRED 
IM 

APID 
STRING 
IntAct 
iRefIndex 
PINA 
Reactome 

17274640 
20562859              
omim:00611048  
omim:00613257                   
02246237 
15657099 
20482850 

EIF2S2 P20042  PRED iRefIndex 15657099 

EIF3E P60228 
COEX 
TM 

STRING 
02246237                                      
03021534                                     
06301469  
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Protein 
Interactor 

ID 

Interaction 
Detection 
Method 

Database Pubblication Identifier 

EIF3H O15372 
COEX 
TM 

STRING 
02246237                                   
03021534                                   
06301469  

EP300  Q09472  EX Reactome 20482850 

ERBB2IP  Q96RT1  EX Reactome 20482850 

ERCC6L Q2NKX8 
ICU 
EX 

STRING 
Reactome 

20482850 

ESR1 P03372 AA 
APID 
IntAct 
PINA 

17274640 

FAM33A  Q8WVK7  EX Reactome 20482850 

FBL Q96BS4  PRED iRefIndex 15657099 

FER P16591 EX IntAct 
20711500 
IM-13779 

FGR P09769 TM STRING 
omim:00601728                  
01637843                                 
02854198  

FTSJ3 Q8IY81  PRED iRefIndex 15657099 

GABARAP O95166 COIP IntAct 
20562859 
IM-15184 

GABARAPL2 P60520 COIP 
IntAct 
PINA 

20562859 
IM-15184 

GBAS O75323 COEX STRING 
 

GLO1 Q04760 
COEX 
TM 

STRING 16555297 

GRB2 P62993 COIP IntAct 
IM-15417 
21706016 

GRM7 Q14831 TM STRING 
02153935                                  
07517497                                 
09326275  

GRPEL1 Q9HAV7 PRED iRefIndex 15657099 

GSK3A P49840 TM STRING 
omim:00601792 01312697 
02822414  

GSK3B P49841 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00601792  
omim:00607566  
omim:00613275 
20482850 

GYS1 P13807 

ICU 
TM 
IM 
PRED 
EX 

STRING 
iRefIndex 
Reactome 

20562859                      
omim:00601792  
omim:00602999  
omim:00607566 
15657099 
20482850 

GYS2 P54840 

ICU 
TM 
IM 
EX 

STRING 
Reactome 

20562859                       
omim:00601792  
omim:00602999  
omim:00607566 
20482850 

H2AFV Q71UI9 
COEX 
TM 

STRING 
omim:00117141  
omim:00600849  
omim:00601772  

H2AFX P16104 TM STRING 
omim:00117141  
omim:00126420  
omim:00176914  
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H2AFZ P0C0S5 
COEX 
TM 

STRING 
omim:00117141  
omim:00600849  
omim:00601772  

HAT1 O14929 COEX STRING 
 

HCFC1 P51610 

VV 
VT 
EX 
ICU 
TM 

APID 
STRING 
iRefIndex 
HPRD 
PINA 

10637318 
12788939  

HCK P08631 TM STRING 
15090593                              
16283202  

HDAC1 Q13547 

COEX 
EX 
TM 
AC 

STRING 
iRefIndex 
PINA 

20562859                        
omim:00176883  
omim:00613275                    
12567184 
19070599 

HDAC10 Q969S8 
EX 
TM 

STRING 
PINA 

14670976                        
omim:00600849  
omim:00613275                 
10207071  

HDAC6 Q9UBN7 
EX 
TM 

STRING 
PINA 

14670976                        
omim:00600849  
omim:00613275                   
10207071 

HDAC8 Q9BY41 
EX 
AC 

STRING 
iRefIndex 
PINA 

19070599 

HMGN4 O00479 COEX STRING 
 

HNRNPA2B1 P22626 COEX STRING 
 

IARS2 Q9NSE4 COEX STRING 
 

IF5A1 P63241 PRED iRefIndex 15657099 

IKBKG Q9Y6K9 
PRED 
COIP 
AP 

APID 
MINT 
IntAct 
PINA 
iRefIndex 

15657099 
14743216 

INCENP Q9NQS7 
ICU 
EX 

STRING 
Reactome 

20482850 

INS P01308  
TM 
EX 

STRING 
Reactome 

omim:00138079  
omim:00176883  
omim:00600849 
20482850 

INSR P06213 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00176883 
omim:00601728                 
01637843 
20482850 

ITGB3BP  Q13352  EX Reactome 20482850 

KIF18A Q8NI77 
ICU 
EX 

STRING 
Reactome 

20482850 

KIF2A O00139 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

KIF2B Q8N4N8 
ICU 
EX 

STRING 
Reactome 

20482850 

KIF2C Q99661 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

KM-PA-2 Q96Q25  PRED iRefIndex 15657099 
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ID 
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KNTC1 P50748 
ICU 
EX 

STRING 
Reactome 

20482850 

LIPA P38571 PRED iRefIndex 15657099 

LYPLA1 Q6IAQ1 COEX STRING 
 

MAD1L1 Q9Y6D9 
ICU 
EX 

STRING 
Reactome 

20482850 

MAD2L1  Q13257  EX Reactome 20482850 

MAP1LC3A Q9H492 COIP 
IntAct 
PINA 

20562859 
IM-15184 

MAP1LC3B Q9GZQ8 COIP 
IntAct 
PINA 

20562859 
IM-15184 

MAP3K3 Q99759 
AP 
COIP 
PRED 

APID 
MINT 
IntAct 
iRefIndex 
PINA 

15657099 
14743216  

MAPRE1  Q15691 
COEX 
ICU 
EX 

STRING 
Reactome 

20482850 

MAX P61244 AA 
APID 
IntAct 
PINA 

17274640 

MDH2 P40926  PRED iRefIndex 15657099 

MIS12 Q9H081 
ICU 
EX 

STRING 
Reactome 

20482850 

MLF1IP Q71F23 
ICU 
EX 

STRING 
Reactome 

20482850 

MLL5 Q8IZD2 
ICU 
COIP 

STRING 
IntAct 

19377461 

MRPL3 P09001 COEX STRING 
 

MST1R  Q04912 COIP InnateDB 14505491 

MYL10 Q9BUA6 
ICU 
EX 

STRING 
Reactome 

20482850 

MYL12A P19105 
ICU 
EX 

STRING 
Reactome 

20482850 

MYL12B O14950 
ICU 
EX 

STRING 
Reactome 

20482850 

MYL2 P10916 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00603768  
omim:00609172                     
01657915 
20482850 

MYL5 Q02045 
ICU 
EX 

STRING 
Reactome 

20482850 

MYL6 P60660 ICU STRING 20562859 

MYL6B P14649 ICU STRING 
 

MYL7 Q01449 
ICU 
EX 

STRING 
Reactome 

20482850 

MYL9 P24844 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00603768  
omim:00609172  
omim:00613245 
20482850 

MYLPF Q96A32 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 
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MYO16 Q9Y6X6 
EX 
TM 
VT 

STRING 
iRefIndex 
HPRD 
PINA 

11588169                                   
09332696                              
09332704                              
14989261 

NACA B2R4P8  PRED iRefIndex 15657099 

NAE1 Q13564 
COEX 
IM 

STRING 
 

NAP1L1 P55209 COEX STRING 
 

NARS O43776 COEX STRING 
 

NCOR1 O75376 
EX 
TM 

STRING 
PINA 

12410313                        
omim:00600849               
12410313                                   
15773917  

NDC80 O14777 
ICU 
TM 
EX 

STRING 
Reactome 

20921135 
20482850 

NDE1 Q9NXR1 
ICU 
EX 

STRING 
Reactome 

20482850 

NDEL1 Q9GZM8 
ICU 
EX 

STRING 
Reactome 

20482850 

NDUFB5 O43674 COEX STRING 
 

NEK2 P51955 TM STRING 
10880350                               
12221103                                    
15659832  

NOM1 Q5C9Z4 TM STRING 17965019 

NOP56 O00567  PRED iRefIndex 15657099 

NOP58 Q9Y2X3  PRED iRefIndex 15657099 

NSL1 Q96IY1 
ICU 
EX 

STRING 
Reactome 

20482850 

NUDC Q9Y266 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

NUF2 Q9BZD4 
ICU 
TM 
EX 

STRING 
Reactome 

10385519 
20482850 

NUP107 P57740 
COEX 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

NUP133 Q8WUM0 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

NUP160 Q12769 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

NUP37 Q8NFH4 
COEX 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

NUP43 Q8NFH3 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

NUP85 Q9BW27 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

NUP98  P52948  EX Reactome 20482850 

OAT P04181 PRED iRefIndex 15657099 

OGT O15294 
ICU 
TM 

STRING 

20562859                                   
12510058                                    
15014073                                    
15247246  
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P2RY1 P47900 TM STRING 
10919872                                     
19286657                                     
20570683  

PAFAH1B1 P43034 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

PAPOLA P51003  PRED iRefIndex 15657099 

PCMT1 P22061 COEX STRING 
 

PCNA P12004 
AA 
EX 

APID 
IntAct 
PINA 
Reactome 

17274640 
20482850 

PES1 B2RDF2  PRED iRefIndex 15657099 

PFDN4 Q9NQP4 TM STRING omim:00117141  

PHKA1 P46020 
ICU 
EX 

STRING 
Reactome 

20482850 

PHKA2 P46019 
ICU 
EX 

STRING 
Reactome 

20482850 

PHKB Q93100 
COEX 
ICU 
EX 

STRING 
Reactome 

20482850 

PHKG1 Q16816 
ICU 
EX 

STRING 
Reactome 

20482850 

PHKG2 P15735 
ICU 
EX 

STRING 
Reactome 

20482850 

PLA2G6 O60733 TM STRING 
08978503                                   
09882488                                    
16099093  

PLIN1 O60240  
ICU 
TM 
EX 

STRING 
Reactome 

01313435                                  
01321155                               
01324971  
20482850 

PLK1 P53350 

ICU 
TM 
EX 
IM 

STRING 
Reactome 

11572854                                   
15090593                                     
17028581 
20482850  

PMF1  Q6P1K2  EX Reactome 20482850 

POLR1D Q9Y2S0  PRED iRefIndex 15657099 

POLR2A P24928 
MI 
EX 

APID 
BIND 

12036313 

POLR2B P30876 
COEX 
TM 

STRING 
01313364                                  
 01429657                                   
02537149  

PPA1 Q15181  PRED iRefIndex 15657099 

PPP1R11 O60927 TM STRING 
omim:00109091  
omim:00126449 
omim:00138079  

PPP1R14A Q96A00 
ICU 
TM 

STRING 
omim:00109091  
omim:00126449  
omim:00138079  

PPP1R14B Q96C90 
COIP 
EX 
TM 

APID 
STRING 
MINT 
iRefIndex 
PINA 

17022978                       
omim:00109091  
omim:00126449  
omim:00138079  
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PPP1R15A O75807 

WB 
EX 
TM 
AC 
GI 

APID 
STRING 
BioGrid 
iRefIndex 
PINA 

12016208 
11564868 
14670976                            
omim:00109091  
omim:00126449  
omim:00138079  

PPP1R1A Q13522 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00109091  
omim:00126449  
omim:00138079 
20482850 

PPP1R1B Q9UD71 TM STRING 
omim:00176915  
omim:00604399                     
01313435  

PPP1R2 P41236 

YTH 
VT 
EX 
TM 
IM 
PRED 

APID 
STRING 
iRefIndex 
HPRD 
PINA 
Reactome 

15657099 
10807923 
8119416 
20482850                     
omim:00109091  
omim:00126449  
omim:00138079  

PPP1R3A Q16821 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00109091  
omim:00126449  
omim:00138079 
20482850 

PPP1R3C Q9UQK1 TM STRING 
omim:00109091  
omim:00126449  
omim:00138079  

PPP1R3D O95685 

RC 
EX 
TM 
BC 
VV 
PD 

APID 
STRING 
BioGrid 
iRefIndex 
HPRD 
PINA 
Reactome 

20562859                        
omim:00109091  
omim:00126449 
omim:00138079 
9414128 

PPP1R7 Q15435 
TM 
IM 
PRED 

STRING 
iRefIndex 

omim:00109091  
omim:00126449  
omim:00138079 
15657099  

PPP1R8 Q12972 

VV 
RC 
EX 
COEX 
TM 
IM 
BC 
PRED 
PD 
VT 

APID 
STRING 
BioGrid 
iRefIndex 
HPRD 
PINA 
Reactome 

11104670                       
omim:00109091  
omim:00126449  
omim:00138079 
20482850 
15657099 
7499293 

PPP1R9B Q96SB3 

WB 
RC 
EX 
TM 
IM 
AC 
BC 
PD 

APID 
STRING 
BioGrid 
iRefIndex 
PINA 

10194355                      
omim:00602021  
omim:00602468  
omim:00603325 
10391935 
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PRKACA P17612 TM STRING 
omim:00613256                      
15385410  

PRKAG2 Q9UGJ0  PRED iRefIndex 15657099 

PRKCH P24723 TM STRING 
omim:00176960                     
01310215                                
01312697  

PRKG1 Q13976 
ICU 
TM 

STRING 
06330098 
06501303 
07592887  

PRKRIR O43422 COEX STRING 
 

PSMA2 P25787 COEX STRING 
 

PSMC6 P62333 COEX STRING 
 

PSMG2 Q969U7 COEX STRING 
 

PYGL P06737  PRED iRefIndex 15657099 

RAF1 P04049 

YTH 
EX 
TM 
VV 
VT 
COIP 

APID 
STRING 
iRefIndex 
HPRD 
PINA 
InnateDB 

12374792 
omim:00176960                     
02562181                             
02690080  

RAN P62826 COEX STRING 
 

RANBP2  P49792  EX Reactome 20482850 

RANGAP1 P46060 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

RB1 P06400 
VV 
VT 

HPRD 
PINA  

RBM34 P42696  PRED iRefIndex 15657099 

RCC2 Q9P258 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

RIOK2 Q9BVS4  PRED iRefIndex 15657099 

RIPK3 Q9Y572 
AP 
COIP 
PRED 

APID 
MINT 
IntAct 
iRefIndex 
PINA 

15657099 
14743216 

RMP O94763 
COIP 
COEX 
TM 

IntAct 
PINA 
STRING 

17936702                             
18285608  
IM-15772 
21397856 

ROCK1  Q13464  EX Reactome 20482850 

ROCK2 O75116 
ICU 
EX 

STRING 
Reactome 

20482850 

RPL6 Q02878 
COEX 
TM 

STRING 9529352 

RPS27  P42677  EX Reactome 20482850 

RUVBL1 Q9Y265 PRED iRefIndex 15657099 

RYR2 Q92736 

CoFR 
EX 
TM 
BC 

APID 
STRING 
BioGrid 
iRefIndex 
PINA 

10830164               
omim:00180902  
omim:00600620                   
07836435  

SACM1L Q9NTJ5 
COEX 
TM 

STRING 17605038 

SARS P49591 PRED iRefIndex 15657099 

SCP2 P22307 COEX STRING 
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SDHD O14521 COEX STRING 
 

SEC13 P55735 
ICU 
PRED 
EX 

STRING 
iRefIndex 
Reactome 

20562859 
15657099 
20482850 

SEC23B Q15437 PRED iRefIndex 15657099 

SEC24B O95487 COEX STRING 
 

SEH1L  Q96EE3  EX Reactome 20482850 

SEP15 O60613 COEX STRING 
 

SEPT7  Q16181  EX Reactome 20482850 

SERBP1 Q8NC51 COEX STRING 
 

SET Q01105 
COEX 
TM 

STRING 
07531497                                
08626647                                  
18214640  

SF3B3 Q15393  PRED iRefIndex 15657099 

SGOL1 Q5FBB7 
ICU 
TM 
EX 

STRING 
Reactome 

20562859                     
omim:00176915 
20482850 

SGOL2 Q562F6 
ICU 
TM 
EX 

STRING 
Reactome 

omim:00176915 
20482850 

SIAH2 O43255 TM STRING 17683050 

SIRT2  Q8IXJ6  EX Reactome 20482850 

SKA1 Q96BD8 
ICU 
EX 

STRING 
Reactome 

20482850 

SKP1 P63208 

AA 
COEX 
EX 
TM 

APID 
STRING 
STRING 
IntAct 
PINA 
Reactome 

omim:00607566                       
17274640 
20482850  

SLITRK1 Q96PX8 TM STRING 
18061458                                   
20013999  

SLTM Q9NWH9 COEX STRING 
 

SMARCB1 Q12824 

WB 
RC 
EX 
TM 
BC 
AC 
GI 
PD 
VV 

APID 
STRING 
BioGrid 
iRefIndex 
HPRD 
PINA 

20562859                      
omim:00601607  
omim:00611048 
12016208 

SMC1A  Q14683  EX Reactome 20482850 

SMNDC1 O75940 
COEX 
IM 

STRING 
 

SNX2 O60749 COEX STRING 
 

SON P18583 
COEX 
TM 

STRING omim:00182465  

SPA17 Q15506 TM STRING 15385410 

SPC24 Q8NBT2 
ICU 
EX 

STRING 
Reactome 

20482850 

SPC25 Q9HBM1 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

SRM P19623 PRED iRefIndex 15657099 

SSU72 Q9NP77  PRED iRefIndex 15657099 
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ST13 P50502 COEX STRING 
 

STK38 Q15208 ICU STRING 
 

SUMO1 P63165 
COEX 
TM 

STRING 11861864 

TAF7 Q15545 COEX STRING 
 

TAOK1 Q7L7X3 
ICU 
EX 

STRING 
Reactome 

20482850 

TCEA1 P23193 COEX STRING 
 

THOC7 Q6I9Y2 COEX STRING 
 

TLX1 P31314 

WB 
RC 
BC 
AC 
PD 

APID 
BioGrid 
iRefIndex 
PINA 

9009195 

TLX1NB P0CAT3 
EX 
TM 

STRING 

9009195                                  
09009195                                   
09673847                                     
15090593 

TMEM123 Q8N131 COEX STRING 
 

TMSB4Y O14604 TM STRING 
omim:00400010 
omim:00602021 
omim:00602468  

TOMM20 Q15388 COEX STRING 
 

TOP1 P11387 TM STRING 
omim:00117141  
omim:00126420  
omim:00176914  

TOP2B Q02880 
COEX 
TM 

STRING 
omim:00126420                 
07954457                             
08297104  

TOX4 O94842 
ICU 
TM 

STRING 20516061 

TP53 P04637 

COIP 
AA 
VT 
VV 

APID 
IntAct 
IntAct 
iRefIndex 
HPRD 
PINA 

17274640 

TP53BP2 Q13625 

YTH 
COIP 
PD 
EX 
TM 
PA 
VV 
VT 
PRED 

APID 
STRING 
MINT 
iRefIndex 
HPRD 
PINA 

8549741 
20562859                         
omim:00606455  
omim:00607463 
doi:10.1074/jbc.M708717200 
15657099 

TPT1 P13693 PRED iRefIndex 15657099 

TRAPPC8 Q9Y2L5 COEX STRING 
 

TSR1 Q2NL82  PRED iRefIndex 15657099 

UBA2 Q9UBT2 
COEX 
IM 

STRING 
 

UBE4A Q14139 COEX STRING 
 

USF1 P22415 
EX 
TM 
COIP 

STRING 
IntAct 
iRefIndex 
PINA 

19303849                      
omim:00601728                   
18572192 
IM-12076 
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USP1 O94782 COEX STRING 
 

USP9Y O00507 TM STRING omim:00400010  

VAMP7 P51809 COEX STRING 
 

VARS P26640 PRED iRefIndex 15657099 

VBP1 P61758 
COEX 
IM 

STRING 
 

VPS53 Q5VIR6  PRED iRefIndex 15657099 

WBP11 Q9Y2W2 

YTH 
VT 
EX 
TM 
VV 

APID 
STRING 
iRefIndex 
HPRD 
PINA 

14640981 

WDR12 Q53T99  PRED iRefIndex 15657099 

WDR82 Q6UXN9 
ICU 
TM 
IM 

STRING 
18342605                                   
20516061 
20562859 

WIPF2 Q8TF74 TM STRING omim:00601772  

XPO1 O14980 

COEX 
ICU 
TM 
IM 
EX 

STRING 
Reactome 

20562859                              
16251346                                   
17661632 
20482850 

YME1L1 Q96TA2 COEX STRING 
 

YWHAQ P27348 
COEX 
TM 

STRING 9705329 

YWHAZ P63104 

VV 
VT 
COIP 
PD 
EX 
TM 

HPRD 
APID 
STRING 
iRefIndex 
PINA 
Reactome 

20562859                               
15469938                              
18753613 
15028637 
20482850 

ZFYVE9 O95405 
YTH 
PRED 
EX 

APID 
BIND 
MINT 
iRefIndex 
HPRD 
PINA 
Reactome 

15231748 
15657099 
20482850 

ZW10 O43264 
ICU 
EX 

STRING 
Reactome 

20482850 

ZWILCH Q9H900 
ICU 
EX 

STRING 
Reactome 

20482850 

ZWINT O95229 
ICU 
EX 

STRING 
Reactome 

20562859 
20482850 

Legend: 

Interaction Detection Method Acronym 

Inferred by curator (STRING) ICU 

In vivo (APID, HPRD) 
vv (iRefIndex) 

VV 

In vitro (APID, HPRD) 
vt (iRefIndex) 

VT 
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Two hybrid (APID, BIND, MINT, iRefIndex) 
Two hybrid pooling approach (IntAct) 
Yeast 2 Hybrid (HPRD) 

YTH 

Western blot (APID) WB 

Antibody array (APID, IntAct) AA 

OPHID Predictive protein interaction (iRefIndex) PRED 

Predictive text mining (STRING) TM 

Tandem-affinity purification (APID, IntAct) 
Tap (iRefIndex) 

AP 

Experimental knowledge based (Reactome) 
Experimental interaction detection (STRING) 
Experimental (BIND) 

EX 

Unspecified method - coexpression (STRING) 
Co-expression (STRING) 

CoEX 

Co-immunoprecipitation 
Anti bait coimmunoprecipitation (APID, IntAct) 
Anti tag coimmunoprecipitation (MINT, InnateDB, IntAct) 
Anti bait coip (iRefIndex) 
Anti tab coip (iRefIndex) 

CoIP 

Affinity chromatography (BioGrid) 
Affinity chromatography technology (iRefIndex) 

AC 

Peptide array (MINT) PA 

Biochemical (BioGrid, iRefIndex) BC 

Interologs Mapping (STRING) IM 

Molecular interaction (APID) MI 

Co-fractionation (APID) CoFR 

Reconstituted complex (APID) RC 

Pull down (APID, iRefIndex) PD 

Genetic interference (BioGrid, iRefIndex) GI 
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|  Chapter III 
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III  |   NOVEL PIPS IN BRAIN AND TESTIS  

 

 

Protein-Protein interactions (PPIs) are a common aspect in virtually all biological 

processes, including formation of macromolecular complexes, signaling pathways, 

regulation and metabolism. PPIs are also a clue of functional relationships between the 

interacting proteins.  

The YTH system allowed the identification of a large number of putative PP1 interaction 

partners. Nevertheless, particular PP1-PIP interactions need to be validated by other 

methods, to exclude the possibility of a false positive interaction. From the four screens 

performed (Chapter II) 263 interactors were retrieved for PP1 different isoforms. From 

the PP1 interactions identified, two proteins were chosen for further studies: Taperin and 

Synphilin-1A. 

Taperin was the most abundant clone in the screen with PP1α in brain, with a total of 45 

hits, and was also identified in a screen with PP1γ1 in brain and testis (Fardilha, 2011; 

Esteves, 2012a,b).  

Synphilin-1A was chosen based on its relevance to PD, besides being a less characterized 

isoform of Synphilin-1. Furthermor, phosphorylation is an important regulatory method 

in the formation of LBs and the phosphatases involved in the pathways are far from being 

fully described. 
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Abstract 

 

C9ORF75, also known as taperin, was associated with autosomal-recessive non-

syndromic hearing loss by target genome capture combined with next-generation capture 

and by homozygosity mapping. Immunolocalization studies of mouse cochlea 

demonstrated the presence of taperin at the taper regions of hair cell stereocilia. Taperin 

was identified as a Protein Phosphatase 1 (PP1) α and γ binding protein, by SILAC-based 

quantitative proteomics, displacement affinity chromatography and Yeast Two Hybrid. 

Recently, taperin was found to shuttle between the nucleus and cytoplasm, to accumulate 

at sites of DNA damage in the nucleus and to interact with DNA damage response 

proteins. 

In our study, taperin was not only found in nucleus and cytoplasm but also in the 

membrane, where it was observed to co-localize with PP1 and actin. When mutated in the 

PP1 binding motif, the taperin mutant accumulates in the nucleus with actin. In 

agreement with a role in actin cytoskeleton, taperin overexpression in HeLa cells altered 

the cellular morphology and actin dynamics. Interestingly, taperin has homology with 

phostensin, a known PP1 binding protein and an actin filament pointed-end-capping 

protein. Confirming a role for taperin and PP1 in actin depolymerisation, mutant taperin 

leads to a high F-actin depolymerisation and altered surface homeostasis. We also 

detected taperin presence in testis and found that it is expressed and is primarily present 

in the acrosome of elongating spermatids, a structure where PP1 and actin have important 

functions in capacitation and acrosome reaction. This study first reveals a functional 

relation between taperin, PP1, and actin that, together with taperin high expression in 

sperm cells, has potential interest in male reproductive physiology  
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Introduction 

 

The C9orf75 protein is also known as taperin due to its localization in the taper regions of 

hair cells stereocilia (Rehman, 2010). Targeted genome capture, applied to the genomic 

DNA of an affected individual from a DFNB79 (nonsyndromic recessive deafness locus) 

linked family, identified a nonsense mutation in the taperin gene, and three additional 

frameshift mutations in the same gene were also found in other three DFNB79-linked 

families (Rehman, 2010). Immunolocalization in mouse cochlea demonstrated that 

taperin is located prominently at the taper regions of hair cell stereocilia. Sequencing of 

the four exons of taperin gene (TPRN), revealed a homozygous 11 bp deletion in exon 1, 

which cosegregated with the disease in all affected members from a Morocco family; and 

a 1 bp deletion, also in exon 1, predicted to cause a premature protein truncation, in a 

Dutch family (Li, 2010). Taken together, both studies suggest that mutations in TPRN 

can be a frequent cause of autosomal-recessive nonsyndromic hearing loss, by taperin 

loss-of-function, although its actual cellular function(s) is still unknown.  

In various Protein Phosphatase 1 (PP1) interactome studies, taperin was found to be a 

PP1 Interacting Protein (PIP). This was shown by SILAC-based quantitative proteomics 

(Trinkle-Mulcahy, 2006), displacement affinity chromatography (Moorhead, 2008) and 

Yeast Two Hybrid (YTH) screens with cDNA libraries of human testis (Fardilha, 2011) 

and human brain (Esteves, 2012a,b). PP1 is a major protein Ser/Thr phosphatase involved 

in a broad diversity of cellular functions. The holoenzyme consists of a catalytic subunit 

(PP1c) and a regulatory subunit, the PIPs. PP1c is a 35–38 kDa protein that exists as three 

isoforms: PP1α (PPP1CA), PP1β/δ (PPP1CB) and PP1γ (PPP1CC) with two splice 

variants PP1γ1 (PPP1CC1) and PP1γ2 (PPP1CC2). All PP1c isoforms are ubiquitously 

expressed, except for PP1γ2 that is testis and sperm enriched. About 200 putative PIPs 
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have been identified, with many more expected to be found (Moorhead, 2008;  

Hendrickx, 2009;  Fardilha, 2010;  Heroes, 2012). PIPs may target PP1c to specific 

subcellular compartments, modulate substrate specificity, inhibit its activity or serve as 

substrates themselves. Thus, the interactions between the different PP1 isoforms and 

specific PIPs are central to the understanding of PP1 physiological functions. The binding 

of PIPs to PP1 is made through binding motifs (BMs) present on the PIPs, the most 

common being the RVxF motif (Egloff, 1997;  Wakula, 2003;  Meiselbach, 2006;  

Hendrickx, 2009). 

A recent study characterized the PP1 and taperin interaction (Ferrar, 2012) and described 

that taperin binds preferentially PP1α over PP1γ (but does not bind PP1β), and can inhibit 

PP1 activity. Taperin was also found to shuttle between the nucleus and cytoplasm, but 

accumulates in the nucleus at sites of DNA damage. Of note, this study also identified 

other nuclear interaction partners of taperin, by SILAC-based quantitative 

immunoprecipitation, and among them were DNA damage proteins like PARP1 and 

TOPOI (Ferrar, 2012).  

Taperin is a vertebrate protein with the highest level of sequence conservation on the C-

terminal, where the RVxF (KISF) PP1 BM is present (Ferrar, 2012). Database search 

with taperin sequence showed that it has some homology with phostensin (Rehman, 

2010), with the region with more similarity being the one containing the KISF PP1 BM, 

present in both proteins (Ferrar, 2012). Phostensin is also a known PIP (Kao, 2007) and, 

most importantly, an actin filament pointed-end-capping protein, which modulates actin 

dynamics by targeting PP1 to the F-actin cytoskeleton (Kao, 2007;  Lai, 2009). 

This study aimed to characterize in more detail the interaction between PP1 and taperin, 

and this protein isoforms in brain, testis and sperm. Our results show that taperin, in vivo 

and ex vivo, binds to PP1α and γ isoforms. Taperin and PP1α co-localize in the nucleus, 
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cytoplasm and membrane of HeLa cells, with the PP1 membranar localization appearing 

to be depend on its binding to taperin, once it is altered by the absence of the PP1 BM in 

taperin. Further, binding to PP1 was found to be of major importance in regulating 

taperin effects on the actin cytoskeleton. Also, the expression of taperin in male germ 

cells and its localization in testis were analysed, as it was detected as a human testis PIP 

(Fardilha, 2011). Taperin was found to have a high expression level in spermatocytes and 

shows an acrosome pattern staining in elongating spermatids. Taperin, actin and PP1 

share the same localization in the acrosome, which suggests that in sperm they can form a 

complex, with a possible function in F-actin dynamics necessary for capacitation and 

acrosome reaction. 
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Material and Methods 

 

Interaction of PP1 and taperin by yeast co-transformation 

Small-scale LiAc yeast transformation procedures were performed combining the bait 

plasmid pAS2-PP1α (Gal4 binding domain expression vector) with specific taperin 

positive clones isolated from an human brain cDNA library (Esteves, 2012a) in pACT2 

vector (Gal4 activation domain expression vector) (Fardilha, 2004). In brief, salmon 

testes carrier DNA was added to the plasmidic DNA, and then freshly prepared yeast 

strain AH109 competent cells were further added, followed by 600 µL of sterile 

PEG/LiAc (40% PEG 4000/ 1X TE/ 1X LiAc). The mixture was incubated at 30 ºC for 

30 min with shaking (200 rpm). After adding DMSO, the solution was mixed gently and 

then heat-shocked at 42 ºC for 15 min. The cells were chilled on ice and pelleted by 

centrifugation for 5 sec at 14,000 rpm and resuspended in 0.5 mL of 1X TE buffer. In 

parallel, co-transformation with the empty vectors pAS2-1 and pACT-2 was performed, 

as a negative control. The association of murine p53 (encoded by plasmid pVA3) and 

SV40 large T antigen (plasmid pTD1) served as a positive control. To confirm protein-

protein interactions, the fresh diploid colonies were assayed for growth on SD/QDO (high 

stringency medium) plates with X-α-Gal to check for MEL-1 expression (indicated by the 

appearance of blue color). All reagents and media were purchased from Clontech (Saint-

Germain-en-Laye, France). 

 

Taperin-GFP construct 

Taperin cDNA was subcloned in pEGFP-N1 vector (Clontech) to produce taperin-GFP. 

Taperin cDNA, recovered from an YTH screen (Esteves, 2012a), with the incomplete 
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coding sequence of isoform 1 was PCR amplified to originate the CDS of isoform 2; 

specific primers with EcoRI and SalI restriction sites were used. PCR product and pEGFP 

vector were digested with EcoRI and SalI (New England Biolabs), following the 

manufacturer’s instructions. Ligation was performed according to ligase manufacturer’s 

instructions (New England BioLabs). 

 

Direct Mutagenesis 

Taperin-RVTA-GFP - Mutagenesis of the PP1 BM RVTF in taperin cDNA was 

performed using the QuikChange Site-Directed Mutagenesis Kit (Stratagene, now 

Agilent Technologies) by mutating the last amino acid (phenylalanine) to alanine in order 

to disrupt the PP1 BM. 

 

Cell culture and transfection 

HeLa cells were grown in Minimal Essential Medium with Earle's salts and GlutaMAX 

(MEM, Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco), 1% Non-

Essential aminoacids (Gibco, Invitrogen) and 100 U/mL penicillin and 100 mg/mL 

streptomycin (Gibco). Cultures were maintained at 37º C and 5% CO2.  

For transfection, the culture medium was replaced with complete medium 

(antibiotic/antimycotic-free) and the DNA diluted in Opti-MEM (serum- and 

antibiotic/antymicotic-free). The Lipofectamine 2000 reagent (Invitrogen) was diluted 

appropriately in the same medium, and the DNA solution was added to the Lipofectamine 

solution drop by drop, mixed by gentle bubbling with the pipette and allowed to rest for 

25 min at room temperature. The complexes solution was directly added into the cell 



2012 PP1 interactomes as a means of characterizing protein functions 

 

124 Doutoramento em Bioquímica 

 

medium, drop by drop and with gentle rocking of the plate. The cells were further 

incubated at 37º C/5% CO2 for 24 hrs. 

 

Antibodies 

Anti-PP1α antibody (CBC2C) – antiserum was raised in rabbits against the PP1α C-

terminal peptide NKGKYGQFSGLNPGG. Anti-PP1γ antibody (CBC3C) – antiserum 

was raised in rabbits against the PP1γ C-terminal peptide, 

KKPNATRPVTPPRGMITKQAKK, which detects the two γ isoforms (da Cruz e Silva, 

1995). Both were affinity purified, at the Centre for Cell Biology, University of Aveiro.  

Anti-GFP antibody – Monoclonal JL8 antibody, obtained from Clontech. 

Anti-taperin antibodies – Rabbit polyclonal SAB2103870 (Ab70) and SAB2103485 

(Ab85) antibodies were obtained from Sigma-Aldrich. 

Anti β-tubulin – Monoclonal antibody 32-2600, from Invitrogen. 

Anti pan-Cadherin antibody – Rabbit polyclonal Ab6529, from Abcam. 

Anti actin antibody – Monoclonal anti-α-actin 2G2 antibody, kindly provided by Brigitte 

M. Jockusch, Cell Biology, Zoological Institute, Technical University of Braunschweig, 

D-38092 Braunschweig, FRG. 

Secondary antibodies used were Texas Red-conjugated anti rabbit IgGs, Alexa Fluor 

350/488-conjugated anti-mouse IgGs (Molecular Probes), for immunocytochemistry 

analyses; and horseradish peroxidase-linked IgGs antibodies (GE Healthcare), for 

enhanced chemiluminescence detection (ECL kit; Pierce). 
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Immunoprecipitation 

After 24 hrs of transfection, cells were washed once with PBS 1X and then collected with 

lysis buffer (50 mM Tris HCl, pH 8; 120 mM NaCl; 4% CHAPS) containing a protease 

inhibitor cocktail. The samples were sonicated for 10 sec and mass normalized lysates 

were precleared with Protein A Sepharose beads (Pharmacia) for 1 hr at 4 ºC with 

agitation. After centrifuging for 5 min at 10000 g at 4 ºC, the supernatant was transferred 

to a new Sepharose beads and the primary antibody was added and incubated overnight 

with shaking at 4º C. The mixture was then centrifuged for 1 min at 4 ºC at 10000 g and 

the pellet washed four times with washing solution (50 mM Tris HCl, pH 8; 120 mM 

NaCl), for 15 min with agitation at 4ºC. After the last wash, the tubes were centrifuged 

for 10 min at 18000 g and 4 ºC, and the supernatant was fully discarded. The beads were 

then resuspended in fresh Loading Buffer/1% SDS; boiled for 10 min. Lysates were also 

collected, 10% SDS solution was added in order to obtain a final concentration of 1% 

SDS, and lysates boiled for 10 min and frozen at - 80 ºC. 

Immunoprecipitates and lysates were electrophoreted through in a 10% SDS-PAGE gel 

and transferred to a nitrocellulose membrane. The membrane was then incubated with 

anti-GFP, anti-PP1α or anti PP1γ1 antibodies and developed by enhanced 

chemiluminescence (ECL, Amersham). Between the different antibodies membrane 

stripping was performed. Briefly, the membrane was incubated for 30 min with stripping 

solution (62,5 mM Tris-HCl, pH 6,7; 2%SDS; 100mM β-mercaptoethanol) at 50º C and 

75 rpm, washed three times with TBST, for 15 min with agitation, and two times with 

water and left to air dry; membrane exposure to film was also performed, in order to 

confirm the loss of signal from the previous antiboby. 
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Overlay blot assay 

Transfect cells lysates were separated on a SDS-PAGE gel and transferred to a 

nitrocellulose membrane. The membrane was blocked with TBST/5% non-fat milk for 1 

hr and then overlaid with purified PP1γ1 protein (1 µg/mL) (Browne, 2007) in TBST/3% 

non-fat milk for 1 hr. After washing three times with TBST, to remove excess protein, the 

bound PP1γ1 was detected by incubating the membrane with anti-PP1γ antibody in 

TBST/3% non-fat milk, for 1 hr. Immunoreactive bands appeared after incubating with 

horseradish peroxidase conjugated secondary antibody, in 3% non-fat milk in TBST for 1 

hr, and developing with ECL (Pierce). 

 

Immunocytochemistry 

Cells were cultured in glass coverslips until 70-80% confluence and transfected as 

described above. Each well was washed three times with 1X PBS and then a 4% 

paraformaldehyde fixative solution was gently added and left to stand for 30 min. Finally, 

cells were washed three times with 1X PBS. For permeabilization, methanol was added 

for 2 min followed by 5 washes with 1X PBS. Blocking was carried out for 1 hour with 

PBS/3%BSA, and then primary antibodies (and phalloidin) diluted in PBS/3% BSA were 

added and incubated at room temperature for 2 hrs. After three washes with 1X PBS, the 

secondary antibody was added using the same methodology and incubated for 2 hrs. 

Finally, three washes were performed and coverslips were mounted on microscope glass 

slides with anti-fading reagent containing DAPI for nucleic acid staining (Vectashield, 

Vector Laboratories). For confocal microscopy, images were acquired in a LSM 510 

META confocal microscope (Zeiss) using an Argon laser line of 488 nm (GFP channel), 
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a 561 nm DPSS laser (Texas red labels channel), and a Diode 405-430 laser (Alexa Fluor 

350/DAPI labels channel). 

 

Isolation of testicular germ cells 

C57/Bl6 mice were used for the isolation of testicular germ cells. Mouse housing was 

approved by the governmental commission and all animals were kept under standard 

conditions at the animal facility of the Philipps University of Marburg, with light/dark 

cycles of 12 hours. Isolation of cell populations from mouse testis was performed 

according to (Bellve, 1993). Animals were killed by cervical dislocation and testes were 

removed and decapsulated. Decapsulated testes of six mice were incubated in PBS 

without Ca/Mg (PAA, Colbe, Germany), supplemented with collagenase, dispase and 

DNase (20 µg/mL each) at 37°C for 30 min in a Falcon tube under slow rotating motion 

to dissociate the seminiferous tubules and to liberate interstitial cells. The suspension was 

then filtered through a Nylon sieve (mesh with 70-µm pore size) and the retained 

seminiferous tubules were resuspended in the same buffer and triturated with a Pasteur 

pipette until they were dissociated to a single cell suspension. Cells were sedimented by 

centrifugation for 10 min at 500g at 4°C to remove the enzymes and resuspended in 

DMEM (PAA, Colbe, Germany) containing 0.5% BSA (w/v). Cells were further 

subjected to velocity sedimentation at unit gravity for 2 hours in a BSA gradient (1–5% 

of BSA (w/v) in DMEM), using a Celsep sedimentation chamber (ECET Celsep-System 

5440, Eppendorf, Hamburg, Germany) with a cushion of DMEM supplemented with 10% 

(w/v) BSA at the bottom of the sedimentation chamber (total volume 1 L). Gradient 

fractions of 50 mL each were collected and cells were sedimented by centrifugation at 

500g for 10 min at 4°C. Isolated cells were analyzed by phase contrast microscopy and 
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DAPI staining, and homogeneous cell populations were used for further analysis. Isolated 

cells were processed for RNA isolation (RNeasy mini kit, Qiagen, Hilden, Germany). 

 

Expression analysis in isolated testicular germ cells 

Total RNA from the isolated cells was prepared using the RNeasy Plus Universal Midi 

Kit (Quiagen, Germany). RNA concentration was determined spectrophotometrically 

(NanoDrop 1000 Spectrophotometer, Thermo Scientific, Germany).  

For synthesis of cDNA, a reverse transcription reaction was carried out using 1 µg of 

RNA and the Transcriptor First Strand cDNA Synthesis Kit for RT-PCR (Roche, 

Germany). Expression levels of distinct mRNAs were determined by qRT-PCR using the 

LightCycler 480 SYBR Green I Master (Roche, Germany) and the following cycle 

conditions. An initial denaturation at 95°C for 15 min was followed by 45 cycles of 

denaturation (94°C, 15 sec), annealing (58°C, 30 sec) and polymerization (72°C, 30 sec). 

Thereafter, a melting curve was generated over temperatures of 55–95°C with 30 

sec/1°C. 

PCR analysis was performed on 96-well plates with the LightCycler® 480 Real-Time 

PCR System (Roche, Germany). A combination of Gapdh and Hprt was identified as 

optimal reference genes for the testis and all expression levels were calculated as relative 

values using the mean of both reference genes. All samples were run in triplicate and the 

averages were used for the calculation of the relative expression levels of the genes. The 

expression quantification of the target gene was calculated using the difference of the CT-

values (∆CT) from the mean of the target gene and the mean of the CT-values from both 

housekeeping genes (CT reference gene). The expression levels were further related 

(∆∆CT) to control samples using the difference of the ∆CT-value from the sample (∆CT 
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sample) and the ∆CT-value from a control (∆CT control) and the relative values were 

calculated as the 2T
-∆∆C (Livak and Schmittgen, 2001). A cDNA obtained from the cell 

suspension of whole testis was used as control sample for qRT-PCR reactions. All 

primers used for qRT-PCR are listed in a supplementary Table 1. 

 

Human testicular biopsies 

Testicular biopsies for immunofluorescence microscopy were obtained from patients 

presenting at the Department of Andrology, University Hospital Hamburg-Eppendorf, 

Germany. Informed consent was obtained and the study conducted in accordance with the 

guidelines of the ‘Helsinki Declaration’. Only samples presenting normal 

spermatogenesis on the histological analysis were used. 

 

Immunohistochemistry 

For immunofluorescence microscopy of paraffin-embedded sections, human testes 

biopsies were fixed with 4% paraformaldehyde, 0.1 M HEPES pH 7.4, and embedded in 

paraffin. Paraffin embedded testis were cut on a microtome into 5 µm thick sections. 

Sections were deparaffined and rehydrated as follows: Xylol 3 x 10 min, absolute ethanol 

2 x 5 min 96% ethanol, 80% ethanol, 70% ethanol, and ddH2O, each step for 1 x 5 min at 

RT. 

Non-specific binding sites were blocked with 4% BSA for 2 hrs at RT and washed 3 x 

with TBST. After, sections were incubated with Ab70 primary antibody in 1% BSA in 

TBST overnight at 4°C. On the following day, sections were washed 3 x 5 min in TBST, 

incubated with fluorochrome-conjugated rabbit secondary antibody (diluted in 1% BSA 

in TBST) for 2 hrs and lastly washed 2 x 5 min with TBST. Negative control was 
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processed in parallel by adding TBST instead of the first antibody. Nuclei were 

visualized with DAPI (1:200) for 5 min at RT and washed 2 x with TBST for 5 min. 

Finally, slides were inspected with LEICA fluorescence microscope (Leica, Germany). 

  



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 131 

 

Results 

 

Interaction of Taperin with PP1 

Previous studies from our laboratory, aiming to identify the PP1 interactomes in human 

brain and testis by the YTH method, screened human cDNA libraries using PP1α, γ1 and 

γ2 as baits, and yielded many PP1 isoform specific binding partners (Fardilha, 2011;  

Esteves, 2012a,b). One of the most abundant positive clones obtained in the screens was 

taperin, found to interact with PP1γ1 in testis and brain, and with PP1α in brain. 

Taperin has four isoforms present on Uniprot (entry: Q4KMQ1) and only one on NCBI 

(acession number: NM_001128228.2), corresponding to isoform 1 of Uniprot. The clones 

recovered from the YTHs some corresponded to isoform 1 and others could correspond to 

isoform 1, 2 or 4, as they were incomplete in the N-terminus. Isoform 1 is the longest 

one, with 711 aminoacids, while the other 3 isoforms have between 405 and 433 

aminoacids, with isoform 3 having a longer C-terminal (Figure 1). Taperin from rat and 

mouse (with only one isoform each) is very similar to human isoform 1 (Figure 1), in 

fact, a recent analysis (Ferrar, 2012) showed that taperin is a vertebrate specific protein 

with the highest conservation found in the C-terminal, were the PP1 BM (KISF) is 

located. Actually, human taperin has two potential PP1 BMs (RAIRW and KISF; red 

underlined in Figure 1). However, while the predicted KISF motif is a conserved PP1 

BM, the other one (RAIRW) is quite different from the common PP1 BMs and is less 

likely to be physiologically functional; indeed the motif RAIRW is not present in the 

other species.  
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Several taperin clones from the human brain library, found in the YTH screen (Esteves, 

2012a), were selected for analysis of the interaction with PP1 isoforms, by yeast co-

transformation (Figure 2A). Clones C1 and C3 have the complete coding sequence of 

taperin isoform 2 (corresponding to incomplete isoform 1) in the correct frame. Clones 

C2 and C6 are also complete clones, but were out of frame. Clone C5 does not has the 

RAIRW PP1 BM and is out of frame, and clone C4 misses part of the same PP1 BM and 

is also out of frame. All the clones have a second PP1 BM, corresponding to the 

aminoacids KISF. All clones tested were found to interact with PP1α and PP1γ1, as 

expected, but also revealed a positive interaction with PP1γ2. Light blue colonies also 

represent positive interactions that took longer to turn blue in the presence of X-α-GAL.  

 

Cleavage of Taperin in cells 

The expression of taperin-GFP fusion protein in human HeLa cells revealed the existence 

of two bands, when the anti-GFP antibody was used (Figure 2B). The immmunoreactive 

proteins have apparent molecular mass of 86,6 kDa and 66,4 kDa (Figure 3). As the 

theoretical molecular mass of taperin isoform 2 is 44.2 kDa and the GFP-tag has 

approximately 30 kDa, the expected molecular mass for the fusion protein would be 

around 74 kDa. The observed higher molecular mass protein (86,6 kDa) probably 

represents the full length fusion protein, and its abnormal higher migration  is most 

probably due to post-translational modifications on the protein. The smaller band has a 

corresponding molecular mass of approximately 66 kDa and may result from proteolytic 

cleavage of the full length protein. This fragment contains the PP1 BM. Interestingly, an 

apparent increase of PP1α protein cellular levels could be observed with increasing 

amounts of transfected taperin-GFP (Figure 2B).  
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Figure 2 |  Taperin binds PP1 and is cleaved in the cell. A. Analysis of interaction of taperin YTH clones 

and PP1 isoforms by yeast co-transformation. Blue color indicates positive interaction. Plus and minus 

represent positive and negative controls, respectively. B. Taperin-GFP expression in HeLa cells. The lanes 

correspond to non transfected (NT) cells and cells transfected with 0,5 µg, 1 µg and 2 µg of taperin-GFP 

DNA. Immunoblot analysis of taperin-GFP in lysates of transfected HeLa cells, using an antibody against 

the GFP tag. Immunoblot analysis of endogenous PP1 levels with increasing amounts of transfected 

taperin, detected with anti-PP1α antibody. Beta-tubulin was used as a loading control. C. Overlay assay of 

taperin with PP1γ1. The total protein amounts of HeLa cell lysates loaded on each well are indicated on 

top. NT, lysate from non transfected cells; taperin-GFP, lysate from cells transfected with the taperin-GFP 

construct. D. Co-immunoprecipitation of taperin with PP1. Immunoblot analysis of HeLa cells tranfected 

with taperin-GFP (or APP-GFP, Amyloid Precursor Protein, as a control) and immunoprecipitated with 

anti-PP1α (CBC2C) and anti-PP1γ1 (CBC3C) antibodies. D.I. Membrane immunoblotted with anti-GFP 

antibody. D.II:  Membrane immunoblotted with anti-PP1α and anti-PP1γ antibodies. D.III. Membrane 

immunoblotted with anti-PP1α and anti-PP1γ antibodies. NT, non-tranfected cells; APP, cells transfected 

with APP-GFP; Taperin, cells transfected with taperin-GFP; IP Ab, immunoprecipitation antibody; and IM 

Ab, immunoblot antibody. 
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In order to further confirm the interaction of taperin with PP1, a blot overlay analysis was 

performed (Figure 2C). The results obtained from this experiment confirm the interaction. 

Once more, two bands were observed for taperin and both fragments showed an 

interaction with PP1, which is in agreement with the presence of the PP1 BM (Figure 3). 

Also with the purpose of confirming and provide an ex vivo evidence for the interaction 

of taperin with PP1, immunoprecipitation of protein extracts obtained from HeLa cells 

transfected with taperin-GFP was performed, using highly specific anti-PP1α (CBC2C) 

and anti-PP1γ (CBC3C) antibodies (Figure 2D.I). Proteins from cells lysates and 

immunoprecipitates (IPs), immunobloted (IB) with anti-GFP (Figure 2D.I), anti-PP1γ and 

PP1α antibodies (Figure 2D.II and III) were used.  

From the analysis of Figure 2D.I it is obvious that taperin co-immunoprecipitates with 

PP1α and PP1γ. Appropriate controls were included in parallel: immunoprecipitation 

from non-transfected cells and from cells transfected with APP (Alzheimer’s amyloid 

precursor protein). In agreement with the observed in Figures 2B and C, two bands were 

again observed following taperin-GFP transfection, with the previously referred 

molecular mass. Since protein degradation is an unlikely explanation, given the use of 

protease inhibitors during the process of immunoprecipitation, this observation suggests 

that the complete protein may have been cleaved in vivo. This cleavage must occur on the 

N-terminus side of the protein, since the GFP tag is on the C-terminus (Figure 3) and 

detection was achieved with an anti-GFP antibody. This experiment clearly shows that 

taperin interacts with PP1 isoforms α and γ, in agreement with the yeast co-

transformation assays (Figure 2A) and previous data from Ferrar and co-workers (Ferrar, 

2012). This interaction is likely to be direct in accordance with the presence of a 

canonical PP1 binding motif (KISF) in taperin, and with the result of the overlay.  

 



2012 

 

136 

 

 

Figure 3 |  Schematic representation

detected in cellular lysates are here represented

cleaved shorter fragment below (~

approximately 178 aminoacids but keeps the KISF PP1 BMs (indicat

 

Taperin and PP1 colocalize in the nucleus and 

The expression of taperin-GFP fusion protein in HeLa cells allowed the analysis of its 

subcellular localization and co

nuclear taperin distribution 

exclusively nuclear distribution, but some was also found distributed throughout the 

cytoplasm and plasma membrane

patterns was apparently dependent on the levels of 

results from (Ferrar, 2012) 

nucleoplasm and cytoplasm, although a clear enrichment o

was detected. These observations are in accordance with the putative Nuclear 

Localization Signals (NLS, green in Figure 1) and Nuclear Export S

Figure 1) that are conserved between the species, found by 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

Schematic representation of the observed taperin protein forms. The two forms of taperin

ar lysates are here represented: the full-length protein (~86,6 kDa)  

horter fragment below (~66,4 kDa). Cleavage occurs N-terminally and could lead

approximately 178 aminoacids but keeps the KISF PP1 BMs (indicated in light grey). GFP, C

Taperin and PP1 colocalize in the nucleus and plasma membrane of HeLa cells

GFP fusion protein in HeLa cells allowed the analysis of its 

subcellular localization and co-localization with PP1α, revealing a 

 (Figure 4). The majority of taperin-GFP population has an 

exclusively nuclear distribution, but some was also found distributed throughout the 

and plasma membrane (Figure 4). Of note, none of these two distribution 

patterns was apparently dependent on the levels of taperin-GFP expression

 also showed that taperin could associate with PP1 in both 

nucleoplasm and cytoplasm, although a clear enrichment of taperin in the nucleoplasm 

These observations are in accordance with the putative Nuclear 

s (NLS, green in Figure 1) and Nuclear Export Signal (NES, blue in 

Figure 1) that are conserved between the species, found by taperin sequence search.

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 

The two forms of taperin 

 on the top and the 

could lead to the loss of 

ed in light grey). GFP, C-terminal tag. 

HeLa cells 

GFP fusion protein in HeLa cells allowed the analysis of its 

, revealing a highly enriched 

GFP population has an 

exclusively nuclear distribution, but some was also found distributed throughout the 

one of these two distribution 

GFP expression. Previous 

also showed that taperin could associate with PP1 in both 

f taperin in the nucleoplasm 

These observations are in accordance with the putative Nuclear 

ignal (NES, blue in 

sequence search. 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

Figure 4 |  Subcellular localization of taperin

and cytoplasmic distribution, being

membrane and nucleus, where PP1α

(blue); taperin-GFP green fluorescence; endogenous PP1

PP1α antibody; co-localization observed in the merged image (yellow/orange).

 

Interestingly, cells with high taperin cytoplasmic distribution exhibited a less rounded 

morphology (around 90% of this population

plasma membrane and in fillopodia

while in non-transfected cells

(under the conditions used), taperin cytoplasmic presence relocates PP1

structures (Figures 4 and 5A), where they co

Co-localization analysis using an anti

taperin/PP1α co-localization. 

taperin transfected cells, in comparison to non

PP1 interactomes as a means of characterizing protein functions 

Figure 4 |  Subcellular localization of taperin-GFP and co-localization with PP1α. 

eing enriched in the nucleus, and co-localizes with PP1

PP1α is also enriched, in HeLa cells. Nucleic acids were stained using DAPI 

GFP green fluorescence; endogenous PP1α (red) detected with Texas Red

localization observed in the merged image (yellow/orange). 

ells with high taperin cytoplasmic distribution exhibited a less rounded 

around 90% of this population), and taperin could also be observed 

plasma membrane and in fillopodia-like structures (ROIs in Figure 5A). 

transfected cells cytoplasmic PP1α is not observed in the plasma membrane 

(under the conditions used), taperin cytoplasmic presence relocates PP1α

structures (Figures 4 and 5A), where they co-localize. 

localization analysis using an anti-PP1α antibody revealed a high degree of nuclear 

localization. Very interestingly, PP1α nuclear staining increase

taperin transfected cells, in comparison to non-transfected cells, in a taperin dose

2012 

137 

 

 Taperin has nuclear 

localizes with PP1α in the plasma 

enriched, in HeLa cells. Nucleic acids were stained using DAPI 

 (red) detected with Texas Red-conjugated anti-

ells with high taperin cytoplasmic distribution exhibited a less rounded 

, and taperin could also be observed at the 

like structures (ROIs in Figure 5A). Remarkably, 

 is not observed in the plasma membrane 

(under the conditions used), taperin cytoplasmic presence relocates PP1α to the referred 

vealed a high degree of nuclear 

 nuclear staining increases in 

transfected cells, in a taperin dose-



2012 

 

138 

 

dependent manner. Further, 

abundance of PP1α increases but its cytoplasmic amounts also appear to increase slightly, 

suggesting that PP1α protein levels 

Figure 2B. 

 

Figure 5 |  Subcellular localization 

cells. A. wildtype KISF taperin and PP1

mutant form of taperin (KISA) does not localizes in the cell membrane and does not increas

PP1α in the nucleus. Nucleic acids were stained using DAPI (blue); Taperin

fluorescence; endogenous PP1α (red) detected with Texas Red

localization observed in the merged image (yellow/

 

When a mutant form of taperin in the PP1 BM (KISF to KISA) was used (Figure 5B) the 

same localization of taperin was observed, but the enrichment of PP1 levels on the 

transfected cells was highly decreased and the 

the transfected cells also showed an enrichment of PP1

lesser extent, in comparison with the KISF form of taperin. Also much less PP1 

localization in the cell membrane 

with the mutant taperin. Of note, 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

Further, in the most highly transfected cells not only the nuclear 

 increases but its cytoplasmic amounts also appear to increase slightly, 

α protein levels are up-regulated by taperin, in accordance with 

Figure 5 |  Subcellular localization of wildtype taperin and taperin mutated in the PP1 BM

taperin and PP1α co-localize in the nucleus and in the membrane. 

does not localizes in the cell membrane and does not increas

 in the nucleus. Nucleic acids were stained using DAPI (blue); Taperin-KISF/KISA

α (red) detected with Texas Red-conjugated anti-PP1

localization observed in the merged image (yellow/orange). ROI, Region of interest. 

When a mutant form of taperin in the PP1 BM (KISF to KISA) was used (Figure 5B) the 

same localization of taperin was observed, but the enrichment of PP1 levels on the 

highly decreased and the distribution of PP1 was different. Some of 

the transfected cells also showed an enrichment of PP1α in the nucleus, but 

extent, in comparison with the KISF form of taperin. Also much less PP1 

localization in the cell membrane and cytosolic co-localization with taperin 

Of note, we were still be able to see some co-localization of PP1 

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

ted cells not only the nuclear 

 increases but its cytoplasmic amounts also appear to increase slightly, 

regulated by taperin, in accordance with 

 

of wildtype taperin and taperin mutated in the PP1 BM, in HeLa 

localize in the nucleus and in the membrane. B. the PP1 BM 

does not localizes in the cell membrane and does not increases the levels of 

KISF/KISA-GFP green 

PP1α antibody; co-

When a mutant form of taperin in the PP1 BM (KISF to KISA) was used (Figure 5B) the 

same localization of taperin was observed, but the enrichment of PP1 levels on the 

ution of PP1 was different. Some of 

 in the nucleus, but to a much 

extent, in comparison with the KISF form of taperin. Also much less PP1 

lization with taperin was observed 

localization of PP1 



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 139 

 

with mutant taperin, despite the mutated PP1 BM, but probably as a result of the great 

overexpression of this form of taperin.  

The morphology of the mutant taperin transfected cells was also highly irregular and 

seemed deregulated. This, together with the homology of this protein to the PIP 

phostensin (Rehman, 2010), led us to analyze actin distribution on these cells (Figure 

6A). Interestingly, on the cells expressing taperin-KISF, actin co-localized with PP1 and 

taperin on the membrane (ROIs on Figure 6A). But more significant was the fact that, on 

the cells expressing mutant taperin-KISA, this localization was no longer observed and 

actin was clearly enriched in the nucleus, especially on the cells where taperin had an 

high nuclear localization (Figure 6A). Only in about 20% of the cells expressing taperin-

KISF actin was enriched in the nucleus (in comparison to non-transfected neighbour 

cells) while, in contrast, 78% of the cells expressing the taperin-KISA had an obvious 

enrichment of actin nuclear levels. This was accompanied with a decrease in actin 

localization at the plasma membrane. We went further and look for pan-cadherin, as a 

membrane marker, to analyse if mutant taperin was altering its homeostasis. As it can be 

seen in Figure 6B, when the mutant form of taperin was expressed, the levels of cadherin 

in the membrane were greatly decreased, particularly when higher amounts of this form 

of taperin were in the cytoplasm and membrane. When cells were stained with phalloidin 

(Figure 6C), which binds to filamentous actin (F-actin), a clear function of taperin in 

actin polimerization could be observed. In cells where wildtype taperin-GFP was 

expressed, less F-actin stress fibers were observed (70% of the cells), and when taperin 

was at the cytoplasm stress fibers were abolished and F-actin was only cortical. This was 

strongly enhanced in cells expressing taperin-KISA, where F-actin staining was greatly 

decreased (in 94% of the cells), and no stress fibers could be observed, indicating highly 

depolymerised F-actin, (32% out of the 94%).  
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Figure 6 |  Taperin, PP1α and actin co-localize in the cell membrane of HeLa cells. A. Wildtype 

taperin/Taperin-KISF co-localizes with PP1α and actin in the cell membrane and mutant taperin/Taperin-

KISA accumulates with actin in the nucleus. Endogenous actin (blue) detected with Alexa Fluor 350-

conjugated anti-actin antibody; Taperin-KISF/KISA-GFP green fluorescence; endogenous PP1α (red) 

detected with Texas Red-conjugated anti-PP1α antibody; co-localization observed in the merged image 

(yellow/orange). ROI, Region of interest. B. Cells overexpressing mutant taperin (Taperin-KISA) have 

lower level of cadherin in the membrane than cells expressing wildtype taperin (Taperin-KISF). Nucleic 

acids were stained using DAPI (blue); Taperin-KISF/KISA-GFP green fluorescence; endogenous cadherin 

(red) detected with Texas Red-conjugated anti-cadherin; co-localization observed in the merged image. C. 

Wildtype (Taperin-KISF) and mutant (Taperin-KISA) taperin overexpression affect actin dynamics in cells. 

Taperin-KISF/KISA-GFP green fluorescence; endogenous F-actin detected with plalloidin red 

fluorescence; co-localization observed in the merged image. 

 

Taperin differential expression in male germ cells 

Taperin was shown to be expressed in rat testis by western blot (Ferrar, 2012) and was 

identified in a human testis cDNA library in a screen for PIPs by the YTH technique 

(Fardilha, 2011). Thus, we decided to look for taperin expression and localization during 

spermatogenesis. 

We made use of an already established protocol based on unit gravity sedimentation to 

isolate germ cell populations from a heterogeneous suspension of mouse whole testis 

(Dastig, 2011). Three major homogenous fractions were separated (fractions 7, 13 and 

17) and microscopically evaluated. Moreover, genes already established as markers for 

each step of the spermatogenesis were analyzed. The fraction 7 showed high relative 

expression levels for the spermatocytes markers, synaptonemal complex protein 3 

(Sycp3) and stathmin 1 (Stmn1), as well as, the tumor-associated calcium signal 

transducer 1 (Tacstd1), a marker for spermatogonia. Fraction 13 showed the highest 

expression for the spermatid marker, transition protein 1 (Tpn1), and fraction 17 for other 

spermatid marker, protamine 2 (Prmn2). These results are in accordance with previous 

data that showed the use of these germ cell markers for the isolated fractions validation 
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(Dastig, 2011). Additionally, other expression markers were also used to check for 

fraction contamination with somatic cells. We found low relative expression levels in all 

the fractions analyzed for actin alpha 2 (Acta2) for peritubular myoid cells, 

hydroxysteroid 17 beta dehydrogenase (Hsd17b3) and c-kit for Leydig cells and the 

androgen receptor (AR) for Sertoli cells. The exception was for Acta2 in fraction 13. The 

expression profiling of the somatic and germ cells specific markers showed that cell 

populations isolated were enriched in spermatocytes (fraction 7), round spermatids 

(fraction 13) and elongated spermatids (fraction 17). 

Subsequently, we went to check for the relative expression levels of taperin isoform 1 and 

taperin isoform 3, two alternatively spliced isoforms of the gene TPRN in humans. Mouse 

taperin 3 is not present in any database when searching for mouse ESTs. Our approach to 

overcome this was to mimic, in the mouse Tprn gene, the alternative splicing that occurs 

in humans. So, we design the forward primer to match the corresponding exon-exon 

junction that exists in humans for taperin 3 and the reverse primer for an exon-exon 

junction present in both, mouse and humans. We were able to detect both transcripts in 

mouse testis showing for the first time that taperin 3 message is also made. Moreover, 

expression levels of these isoforms in each germ cell pool were compared with the 

original testicular cell suspension to retrieve the relative expression values (Table 2, 

Supplementary data). Both isoforms show a high relative expression level in 

spermatocytes with 1.9-fold and 2.5-fold, for taperin 1 and 3, respectively. However, 

whereas taperin 1 maintains its levels in round spermatids (1.5-fold) and lowers in 

elongating spermatids (0.3-fold), taperin 3 expression decreases in round spermatids (0.6-

fold) and recovers to the same levels seen in the whole testis lysates. 

Furthermore, since taperin was recovered from a human brain library we also went to 

check for the expression in hippocampus, by comparison with the whole testis relative 
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The primary antibodies recognize all taperin isoforms, however higher specificity of 

Ab70 should be assigned to taperin 3, given the fact that the epitope corresponds to this 

isoform in a larger extent (Figure 1). Fluorescence patterns showed staining of elongating 

spermatids with “cap-shaped” concentration of the immunoreactivity at one pole of the 

nucleus (acrosome pattern). Moreover, fluorescence was weak in the nucleus of 

spermatocytes and round spermatids. Sertoli cells, spermatogonia and almost mature 

spermatozoa cells showed no immunoreactive taperin staining. Non-specific fluorescence 

was observed in interstitial cells. Human testis cryosections showed the same results and 

for Ab85 no apparent specific staining was obtained (data not shown). 
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Discussion and Conclusion 

 

The regulation of the subcellular localization of signaling pathway components is a key 

determinant in the effective initiation and maintenance of signaling cascades. Regulation 

of signal transduction pathways through protein-protein interactions can thus make 

possible the activation of a particular pathway by co-localizing protein kinases and 

phosphatases with their downstream substrates. Therefore, the identification and 

characterization of the proteins implicated in cellular pathways are imperative as a mean 

to understand these cellular events and associated pathologies. 

PP1 is involved in several important physiological processes, such as cell cycle control, 

apoptosis, transcription, motility, metabolism and memory, regulating them through the 

dephosphorylation of multiple key substrates. The plasticity of PP1 is due to interaction 

with a diverse set of PIPs. Using the YTH system, new PP1 interactors from human brain 

and testis were identified in order to gain insight into the various roles of PP1 in several 

cellular processes, including brain function and neurodegeneration and male infertility. 

One of the PIPs found on those screens was taperin (Fardilha, 2011;  Esteves, 2012a,b). 

The various techniques used revealed that taperin may occur as a precursor protein, given 

that it suffers cleavage near its N-terminus. This apparent cleavage originates a fragment 

reduced in about 20 kDa, which corresponds to approximately 178 aminoacids (Figure 3). 

This being the case, the smaller protein fragment lacks the most N-terminal putative PP1 

BM, but conserves the canonical motif, thus being still able to bind PP1, and in fact both 

proteins forms bind strongly to PP1. This was confirmed by all the binding assays used: 

yeast co-transformation, immunoprecipitation and overlay. As a result, the simplest 

interpretation of this results indicates that the binding likely occurs directly and not 

through a third bridging protein.  
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Although both these fragments can bind PP1, the higher abundance of the full-length 

protein in transfected cells (Figures 2B and C), contrast the smaller fragment enriched in 

the co-immunoprecipitates (Figure 2D.I). This suggests that the taperin C-terminally 

truncated form could be the favoured PP1 binding partner.  

Another important validation of the putative interactions, discovered with the YTH 

system, is the confirmation of co-expression of the two binding partners either in the 

same cell-type or in the same subcellular compartment. A condition for in vivo interaction 

of two proteins is their simultaneous presence in the same subcellular compartment. It 

was, therefore, important to determine the subcellular localization of these proteins, the 

particular structures to which they associate and the processes where they are involved. 

With this intent, the subcellular distribution and co-localization with PP1α was evaluated 

for taperin. The expression of taperin fused to GFP in HeLa cells revealed that it is 

mainly nuclear, and co-localizes with PP1α in this subcellular compartment. Increasing 

expression of taperin enhances the amount of PP1α in the cell, although it remains to 

verify if this is due to a gene transactivation effect or to an alteration on mRNA/protein 

half-life. Furthermore, cytoplasmic/plasma membrane localization of taperin recruits 

PP1α to the same subcellular compartments (Figure 4). In another study, overexpression 

of taperin recruited most of the nuclear PP1γ, including the nucleolar pool, to the 

nucleoplasm, and mutation of the PP1 BM abolished relocalization of PP1γ (Ferrar, 

2012). It has been shown that over-expression of PP1 regulatory subunits can cause a 

relocation of PP1 itself, which functions as a strong indicator of their in vivo interaction 

(Trinkle-Mulcahy, 2001).  

In our co-localization studies it became clear that not only PP1 and taperin but also actin 

co-localize in the membrane (Figure 6A). In fact, when taperin was mutated in the PP1 
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BM, this re-localization of PP1 and its co-localization with actin was not seen, suggesting 

that taperin interaction with actin might be dependent on or regulated by PP1 binding. 

 

Already known PIPs also bind to actin 

Actin is a eukaryotic protein implicated in a number of cellular activities. It comprises a 

highly conserved family of proteins that fall into three broad classes: α, β and γ isoforms. 

It is mainly located in the cytoplasm, but it is also present in the nucleus (dos Remedios, 

2003). Cellular actin plays a variety of roles including myosin-independent changes of 

cell shape, motor-based organelle transport, regulation of ion transport, and receptor-

mediated responses of the cell to external signals (dos Remedios, 2003). Many of these 

processes require the dynamic behavior of the actin cytoskeleton which involves the 

polymerization and depolymerization of actin filaments (Welch, 1997). Monomeric actin 

(globular/G-actin) polymerizes in a head to tail fashion to form helical actin filaments 

(filamentous/F-actin) (Wegner, 1976;  Pollard, 1981;  Holmes, 1990). Several types of 

actin binding proteins (ABPs) facilitate the disassembly and assembly of actin. ABPs can 

be classified as: monomer-binding proteins, filament-depolymerizing proteins, filament 

end-binding (capping) proteins, filament severing proteins, cross-linking proteins, 

stabilizing proteins and, finally, motor proteins (dos Remedios, 2003). Some ABPs are 

not limited to one class and many bind to the same loci on the surface of actin and, 

therefore, can bind with positive cooperativity, and tend to form ternary complexes, but 

rather more bind with negative cooperativity (dos Remedios, 2003).  

PP1α and PP1γ1, but not PP1β, are enriched in dendritic spines (da Cruz e Silva, 1995;  

Ouimet, 1995;  Strack, 1999) where they associated with the actin-rich structure known 

as the post-synaptic density (PSD) (Terry-Lorenzo, 2000). Neurabin I (PPP1R9A) and 
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Neurabin II (Spinophilin/PPP1R9B) also localize in PSD, bind PP1 and are actin cross-

linking proteins (Allen, 1997;  Nakanishi, 1997;  Satoh, 1998;  MacMillan, 1999;  Oliver, 

2002;  Terry-Lorenzo, 2002a). In parallel with its localization, Neurabins also display a 

significant preference for PP1α and PP1γ1 over PP1β (Colbran, 1997), in fact there is a 

selective targeting of PP1α and PP1γ1 to the neuronal actin cytoskeleton (Terry-Lorenzo, 

2002a). Taperin was also found to preferentially bind PP1α over PP1γ, and not to bind 

PP1β (Ferrar, 2012). 

Neurabin I is specifically expressed in neural tissue whereas Neurabin II is ubiquitously 

expressed (Nakanishi, 1997;  Satoh, 1998). The later was found to be also enriched in 

adherens junction fractions in rat liver and at the cadherin-based cell-cell adhesion sites in 

Madin-Darby canine kidney cells, playing an important role in linking the actin 

cytoskeleton to the plasma membrane (Satoh, 1998). Also a multiprotein complex 

containing Neurabin, PP1, and I2 (PPP1R2) that potentially regulates dephosphorylation 

events at the actin cytoskeleton, has been described (Terry-Lorenzo, 2002b). Binding of 

Neurabin II to F-actin is inhibited by phosphorylation by PKA (Hsieh-Wilson, 2003) or 

CaMKII (Grossman, 2004). The Neurabin I/PP1 complex controls actin rearrangement to 

promote spine development in mammalian neurons (Oliver, 2002). Disrupting the 

functions of cytoskeletal Neurabin/PP1 complex enhances filopodia and impaired surface 

AMPA-type glutamate receptors expression in hippocampal neurons, hindering the 

morphological and functional maturation of dendritic spines (Terry-Lorenzo, 2005). 

Postsynaptic actin-bound Neurabin I-PP1 complex regulates synaptic transmission and 

bidirectional changes in hippocampal plasticity (Hu, 2006). Neurabin II also facilitates 

the dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the 

axonal wrist (Bielas, 2007). 
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Phostensin was identified as a PP1 F-actin cytoskeleton targeting subunit (Kao, 2007). 

Localization studies revealed that the phostensin/PP1 complex was localized with the 

actin cytoskeleton at the cell periphery in Madin–Darby canine kidney epithelial cells. 

Phostensin targets PP1 to F-actin cytoskeleton and the complex may play a vital role in 

modulating actin rearrangements (Kao, 2007). Phostensin was later found to decrease the 

elongation and depolymerization rates of actin filament pointed ends, suggesting that 

phostensin is an actin filament pointed end-capping protein that is capable of modulating 

actin dynamics (Lai, 2009).  

Analyzis of taperin sequence showed that it has some homology with phostensin 

(Rehman, 2010), the region with more similarity containing the KISF PP1 BM, present in 

both (Ferrar, 2012). The presence of the same PP1 BM in both proteins could indicate 

that they can even compete for binding to PP1, once they also have the same localization 

in the membrane. 

 

Actin, PP1 and taperin nuclear function 

In the nucleus, actin is part of the chromatin remodeling complex, it is associated with the 

transcription machineries, it associates with newly synthesized ribonucleoproteins, and it 

influences long-range chromatin organization [for review see (Visa, 2010)]. PP1 is also 

involved in transcription, mRNA processing and translation [for review see (Ceulemans, 

2004 and Moorhead, 2007)]. We found, by sequence analysis, three NLSs and one NES 

in taperin (Figure 1), and this protein was previously shown to translocate between 

cytoplasm and nucleus, besides having two RGG motifs that may facilitate nucleic acid 

binding (Ferrar, 2012). Hence, most likely, taperin also has important roles in the nucleus 

and possibly related to nucleotides regulation, once it is recruited to sites of DNA damage 
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and associates with several proteins known to play a role in the DNA damage response 

(Ferrar, 2012). In our study in HeLa cells, when taperin mutated in the PP1 BM was used, 

taperin and actin were accumulated in the nucleus, and taperin-actin nuclear export could 

therefore be dependent on PP1 binding. 

 

Taperin alters cell morphology and actin dynamics 

According to our results, transfected HeLa cells with high levels of cytoplasmic taperin 

presented a more elongated morphology and relocalized PP1 to the membrane. On the 

other hand, when a PP1 BM mutant form of taperin was expressed, the levels of cadherin 

and F-actin in the membrane were decreased and PP1 no longer localized to this structure 

(Figure 6B).  

Cadherins interact homo and heterophilic via their extracellular domain with cadherins on 

adjacent cells (Yamada, 2005). The cytoplasmic region of cadherin binds β-catenin; and 

this catenin, in turn, associates with α-catenin (Abe, 2008). Binding between cadherin 

extracellular domains is relatively weak, but cell-cell adhesion may be strengthened by 

lateral clustering of cadherins mediated by protein linkages between the cadherin 

cytoplasmic domain and the actin cytoskeleton (Jamora, 2002). Biochemical studies 

showed that α-catenin can interact with actin filaments (Rimm, 1995;  Pokutta, 2002), 

but, more recently, it was shown that α-catenin binding to β-catenin and α-catenin 

binding to actin filaments are mutually exclusive (Yamada, 2005). Several ABPs interact 

with α-catenin and could mediate linkage of the cadherin-catenin complex to actin 

filaments (Jamora, 2002).  

In HeLa cells where wildtype taperin-KISF was present, and especially when taperin was 

at the cytpoplasm/plasma membrane, F-actin had mainly a cortical distribution and, in 



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 151 

 

cells expressing the taperin-KISA, F-actin staining was highly decreased, the remaining 

F-actin was also cortical, indicating massive F-actin depolymerisation (Figure 6C). In 

none of the conditions actin presented a normal distribution and polimerization dynamics. 

We can conclude that overexpression of taperin induces actin depolimerization, a process 

highly regulated by taperin binding to PP1, which appears to be a negative regulator of 

taperin-induced actin depolymerisation. We thus hypothesize that taperin-PP1 complexes 

can reach the plasma membrane, where they bind to F-actin and regulate its rate of 

(de)polymerization. 

 

Actin and taperin in sperm 

In human sperm the regions reported to contain actin include the acrosomal space, the 

equatorial and post acrosomal regions, and the tail (Clarke, 1982;  Virtanen, 1984;  Ochs, 

1985;  Fouquet, 1992). The presence of actin in the tail might be important for the 

regulation of sperm motility, and its presence in the head suggests a possible involvement 

in the acrosome reaction. It was reported that actin polymerization is important for 

initiation of sperm motility during post-testicular maturation (Lin, 2002). 

Only capacitated sperm can undergo the acrosome reaction after binding to the egg zona 

pellucida, a process which enables sperm to penetrate into the egg and fertilize it 

(Wassarman, 1988;  Breitbart, 2003). Polymerization of G-actin to F-actin occurs during 

capacitation, depending on protein kinase A activation, protein tyrosine phosphorylation, 

and phospholipase D activation (Brener, 2003;  Cohen, 2004). Activation of protein 

kinase C during bovine sperm capacitation causes a rapid increase in actin polymerization 

which is followed by fast depolymerisation (Cohen, 2004). F-actin formation is important 

for the translocation of phospholipase C from the cytosol to the sperm plasma membrane 
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during capacitation (Breitbart, 2005;  Lai, 2009). Prior to the occurrence of the acrosome 

reaction, F-actin should undergo depolymerization, a necessary process which enables the 

outer acrosomal membrane and the overlying plasma membrane to come into close 

proximity and fuse. The binding of the capacitated sperm to the zona pellucida induces a 

fast increase in sperm intracellular calcium, and the activation of actin severing proteins 

that break down the actin fibers, and allows the acrosome reaction to take place (Tomes, 

1996;  O'Toole, 2000). 

Taperin was found to also bind the PP1γ2 isoform (Figure 2A), an isoform very enriched 

in testis and sperm. In sperm, PP1γ2 is present along the entire flagellum including the 

middle-piece, consistent with a role in sperm motility, but it is also found in the posterior 

and equatorial regions of the head, suggesting a role in the acrosome reaction (Huang, 

2002). In testis, PP1γ2 forms an inactive complex with actin, sds22 (PPP1R7), I3 

(PPP1R11), the latter being a potent PP1 inhibitor (Cheng, 2009). The formation of the 

complex was described in both differentiating and terminally differentiated male germ 

cells, in which PP1γ2 appears to be held in a catalytically inactive state. Of note, PP1γ2 

was also shown to have an anti-apoptotic effect in the testis, possibly mediated by its 

ability to enhance the stability of I3 (Cheng, 2009). 

By immunohistochemistry, taperin staining was found in elongating spermatids with 

acrosome pattern (Figure 7). Fluorescence was weak in the nucleus of spermatocytes and 

round spermatids, while spermatogonia and almost mature spermatozoa cells showed no 

immunoreactive taperin staining. This suggests that taperin is expressed in an advanced 

phase of sperm maturation, but not in mature sperm. Isoforms 1 and 3 of taperin showed 

a high relative expression level in spermatocytes. However, whereas taperin 1 maintains 

its levels in round spermatids and lowers in elongating spermatids, taperin 3 expression 

lowers in round spermatids and recovers in elongating spermatids to the same levels seen 
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in the whole testis lysates, which is in accordance to the immunohistochemistry results 

(Figure 7). 

Taperin, actin and PP1 share the same localization in the acrosome, which suggests that 

in sperm they could form a complex, as was seen in HeLa cells, with a possible function 

in capacitation and acrosome reaction through the regulation of F-actin dynamics. 

Taperin shuttles between the nucleus and cytoplasm, where it can bind PP1 and actin, and 

it would be interesting to perform functional assays for both, the nuclear and the 

cytoplasmic taperin pools. Since it was also found to be cleaved, it remains necessary to 

analyze if the two protein forms are targeted to different subcellular compartments. 

Taperin and actin direct binding steel needs to be confirmed, but the complex PP1-taperin 

appears to have a role in regulating actin dynamics. In sperm, taperin may have a function 

in the acrosome, since it localizes in this structure, where PP1γ2 and actin may have 

important roles in capacitation and acrosome reaction.  
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Supplementary data 

 

Table 1 - List of primers used in the qRT-PCR. 

Primer Gene Sequence Positions Acession number 

Mus musculus, Taperin 1- FW 

Tprn 

ACCGAAGGAGGTCATGCTCACAC 2262 – 2284 

NM_175286.4 
Mus musculus, Taperin 1 - RV TTGACTGGCTTCCAGGACCACC 2404 – 2383 

Mus musculus, Taperin 3- FW GAAGGAGGTCATGGTAAGCCAGGTG 2265 – 2289 

Mus musculus, Taperin 3- RV GCAGGTGTGAGCTTATCCAGGCTTC 2373 – 2349 

 

 

Table 2 - mRNA expression levels of Taperin isoforms. Isolated cell fractions were spermatocytes (Spc), 

round spermatids (rSpt) and elongated spermatids (eSpd). Relative expression values were calculated by the 

∆∆ Ct-method. Increased mRNA expression is indicated by orange shading and decreased expression levels 

by blue shading. Light shading indicates alterations above 1.5-fold or below 0.75-fold and intense shading 

indicates changes in expression levels of more than 2-fold or below 0.5-fold 

Gene Isoforms Spc rSpd elSpd Hippocampus 

Tprn 
Taperin 1 1,863 1,521 0,27 0,002 

Taperin 3 2,488 0,624 1,139 0,027 
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Abstract 

 

Aggregation of proteins that lead to the formation of inclusion bodies in neurons is a 

common feature of many neurodegenerative diseases. In  Parkinson`s Disease (PD) this 

inclusion bodies are referred as Lewy Bodies (LB) and result from the aggregation of 

several proteins, being α-Synuclein the most studied. Synphilin-1 is another component 

of LBs and was first identified as a binding partner of α-Synuclein. Synphilin-1A, an 

alternative spliced isoform of Synphilin-1, was described as aggregation-prone and 

toxic to neurons. It forms inclusions and recruits α-Synuclein and Synphilin-1 to the 

inclusion bodies. Diverse factors lead to the development of LBs in the affected cells, 

but deregulation in phosphorylation is probably one of the most relevant. Many kinases 

involved in those deregulated events are known but the counterpart protein 

phosphatases are far from being elucidated. Here we report the interaction of Synphilin-

1A and Protein Phosphatase 1 (PP1), a Ser/Thr phosphatase, highly expressed in brain 

tissues and enrolled in many signaling pathways. The interaction was identified by the 

Yeast Two Hybrid system and validated by biochemical methods and by co-localization 

studies. Mutation of the PP1 binding motif, present in the vast majority of the PP1 

binding proteins and also in Synphilin-1A, strongly decreases the interaction. Finally, 

an interaction mapping of α-Synuclein, Synphilin-1 and PP1 was made by a large 

database search of protein-protein interactions and five proteins were found to be 

common interactors, suggesting functional relationship among them in the process of 

LBs formation. 
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Introduction 

 

Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by 

the degeneration and progressive loss of dopaminergic neurons in the substantia nigra 

pars compacta, being one of the most common neurodegenerative diseases. 

An hallmark of PD is the presence of cytoplasmic inclusions known as Lewy bodies 

(LBs) in surviving neurons. A large number of proteins have been identified in LBs 

(Shults, 2006;  Beyer, 2007;  Wakabayashi, 2007), but the process of LB formation 

remains unclear. Alpha-Synuclein (α-Syn), a presynaptic protein of 140 amino acid 

residues, is the major component of protein inclusion found post-mortem in affected 

subjects with synucleinopathies like PD (Spillantini, 1997), dementia with LBs 

(Spillantini, 1998b), and multiple system atrophy (Spillantini, 1998a;  Tu, 1998), in 

which it is assumed to be in a fibrillar β-sheet conformation (Yoshimoto, 1995;  El-

Agnaf, 1998). α-Syn (non-A4 component of amyloid precursor) is one of three 

synuclein family members (α, β, γ) encoded by the gene SNCA identified in humans 

(Jakes, 1994;  Polymeropoulos, 1997;  Lavedan, 1998). Three mutations in the SNCA 

gene have been found in familial PD: A53T, A30P and E46K, (Polymeropoulos, 1997;  

Kruger, 1998;  Zarranz, 2004), besides duplications and triplications of the gene 

(Nuytemans, 2010). In fact, overexpression of these mutant forms in neuroblastoma 

cells and in mice was found to stimulate aggregate formation (Ostrerova-Golts, 2000;  

Sung, 2001;  Kang, 2011).  

Another important component of LBs is synphilin-1 (Sph1), which was shown to 

interact with α-Syn (Engelender, 1999;  Wakabayashi, 2000;  Kawamata, 2001;  Xie, 

2009). Sph1 is a protein with 919 amino acid residues and, although its physiological 
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functions still needs to be clarified, it is known that it gradually accumulates from 

neuronal cell bodies to nerve terminals during development, and that it is enriched in the 

presynaptic terminals, where it associates with synaptic vesicles (Ribeiro, 2002). 

Overexpression of Sph1 in cultured cells induces large juxtanuclear ubiquitin-positive 

inclusions (O'Farrell, 2001;  Lee, 2002) and its co-transfection with the non-A 

component of α-Syn leads to the formation of inclusion bodies (Ribeiro, 2002). Sph1 

has also been implicated in PD as a protein ubiquinated by Parkin for which loss of 

function results in juvenile or early-onset disease (Chung, 2001;  Ribeiro, 2002). More 

recently, it was reported that expression of Sph1 in mouse brain by adenoviral vectors 

induces the formation of aggregates and death of dopaminergic neurons (Krenz, 2009). 

These observations, all together, suggest that the interaction of α-Syn and Sph1 may 

contribute to the formation of cellular inclusions and the neural degeneration in PD.  

Sph1 has several protein-protein interacting motifs, including Ankyrin repeats, a coiled 

coil domain and an ATP and GTP binding domain (Engelender, 2000). By comparing 

the human and mouse Sph1 cDNA sequence it was confirmed that the regions 

containing these protein interacting motifs were among the most conserved together 

with a relatively long internal conserved region (O'Farrell, 2002). Amino acid 

substitutions in any of these domains  impair protein function (Marx, 2003). 

Of note, Sph1 phosphorylation by GSK3β blocks its ubiquitylation and decreases 

inclusion body formation and, phosphorylation by CKII decreases its interaction with α-

Syn and, consequently, inclusions formation but not its ubiquitylation (Lee, 2003;  

Avraham, 2005). Thus the interaction between Sph1 and α-Syn is regulated by 

phosphorylation and it seems that the phosphorylation of Sph1 is more critical to this 

interaction (Lee, 2003). Sph1 also interacts with other proteins involved in PD such as 
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Parkin, Lrrk2 and SIAH (Chung, 2001;  Liani, 2004;  Smith, 2006). An alternative 

spliced isoform of Sph1, synphilin-1A (Sph1A), was also found in PD LBs and shown 

to interact with α-Syn and Sph1 (Eyal, 2006a;  Eyal, 2006b;  Szargel, 2009). Sph1A is 

an aggregation-prone protein that can cause neuronal toxicity, and has a higher tendency 

to aggregate than Sph1 (Eyal, 2006b).  

Although many efforts have been made in the identification of the kinases involved in 

the phosphorylation of α-Syn and Sph1 (Lee, 2003;  Avraham, 2005;  Ishii, 2007;  

Szargel, 2008;  Inglis, 2009;  Qing, 2009) much less data is available on the 

phosphatases responsible for the dephosphorylation of these proteins. So far, evidence 

exist supporting in vitro dephosphorylation of α-Syn by PP2A and/or PP1, and PP2C 

(Ishii, 2007;  McFarland, 2008;  Waxman, 2008). These results need further 

clarification and there are no specific data regarding Sph1 dephosphorylation.  

Protein Phosphatase 1 (PP1) is a major protein Ser/Thr phosphatase involved in a broad 

diversity of cellular functions. The holoenzyme consists of a catalytic subunit (PP1c) 

and a regulatory subunit (PP1 Interacting Proteins - PIPs). PP1c exists as three 

isoforms: PP1α (PPP1CA), PP1β/δ (PPP1CB) and PP1γ (PPP1CC) with two splice 

variants PP1γ1 (PPP1CC1) and PP1γ2 (PPP1CC2). Of all mammalian tissues, the brain 

expresses the highest levels of protein kinases and phosphatases. All PP1 isoforms are 

ubiquitously expressed but PP1γ1 and PP1α are expressed at higher levels in several 

brain regions (Takizawa, 1994;  da Cruz e Silva, 1995;  Ouimet, 1995;  Strack, 1999;  

Bordelon, 2005). 

Sph1A was shown to interact with PP1 in human brain using the Yeast Two Hybrid 

(YTH) system (Esteves, 2012a). Here, we validated the interaction by overlay and 

demonstrated that the conserved PP1 binding motif “RVTF” (Wakula, 2003;  

Meiselbach, 2006;  Hendrickx, 2009), which is present in Sph1A, was crucial for the 
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interaction. Additionally, Sph1A and PP1 co-localized in aggregates present in Cos-7 

cells over-expressing Sph1A-GFP. Sph1A mRNA was also found in late stages of 

sperm maturation, a process in which PP1 is believed to have an important role. 
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Material and Methods 

 

PP1-Synphilin-1A binding by yeast co-transformation 

Small-scale LiAc yeast transformation procedures were performed combining the bait 

plasmid pAS2-PP1α (Gal4 binding domain expression vector) with specific Sph1A 

positive clones isolated from an human brain cDNA library  in vector pACT2 (Gal4 

activation domain expression vector), as previously described (Esteves, 2012a). 

In brief, salmon testes carrier DNA was added to the plasmidic DNA and then freshly 

prepared yeast strain AH109 competent cells, followed by 600 µL of sterile PEG/LiAc 

(40% PEG 4000/ 1X TE/ 1X LiAc). The mixture was incubated at 30 ºC for 30 minutes 

(min) with shaking (200 rpm). After adding DMSO the solution was mixed gently and 

then heat-shocked at 42 ºC for 15 min. The cells were chilled on ice and pelleted by 

centrifugation for 5 sec at 14,000 rpm and resuspended in 0.5 mL of 1X TE buffer. In 

parallel, co-transformation with the empty vectors pAS2-1 and pACT-2 was performed, 

as a negative control. The association of murine p53 (encoded by plasmid pVA3) and 

SV40 large T antigen (plasmid pTD1) served as a positive control. To confirm protein-

protein interactions, the fresh diploid colonies were assayed for growth on SD/QDO 

(high strigency medium) plates with X-α-Gal to check for MEL-1 expression (indicated 

by the appearance of blue color). All reagents and media were purchased from 

Clontech. 

 

Sph1A constructs 

pET-Sph1A - Sph1A cDNA, IMAGE clone 4838145 (BC094759.1), was subcloned in 

pET-28a vector (Novagen). The cDNA was PCR amplified using specific primers with 
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SalI and XhoI restriction sites. PCR product and pET vector were digested with SalI and 

XhoI (New England Biolabs), the manufacturer’s instructions were followed. Ligation 

was performed according to ligase manufacturer’s instructions (New England BioLabs). 

Sph1A-GFP - Sph1A cDNA, IMAGE clone 4838145 (BC094759.1), was subcloned in 

pEGFP-N1 vector (Clontech). Sph1A cDNA was amplified by PCR using specific 

primers with XhoI and SalI restriction sites. PCR product and pEGFP vector were 

digested with XhoI and SalI (New England Biolabs), the manufacturer’s instructions 

were followed. Ligation was performed according to ligase manufacturer’s instructions 

(New England BioLabs). 

 

Direct Mutagenesis 

pET-Sph1A-RVTA and Sph1A-RVTA-GFP - Mutagenesis of the PP1 BM, RVTF to 

RVTA, in Sph1A cDNA was performed using the QuikChange Site-Directed 

Mutagenesis Kit (Stratagene now Agilent Technologies) by mutating the last amino acid 

to alanine in order to disrupt the PP1 BM. 

 

Overlay blot assay 

A single Rosetta (DE3) (Novagen) colony expressing His-tagged Sph1A was selected 

and grown overnight in 3 ml Luria Bertani medium containing ampicillin (50 µg/mL) at 

37ºC. Expression was induced with 0,1mM isopropyl--D-thio-galactopyranoside at 

37ºC. Samples were then treated as described elsewhere (Browne, 2007). The same 

procedure was also performed for pET-Sph1A-RVTA, pET-NEK2A (Wu, 2007) and 

pET empty. Bacteria cells lysates were separated on a SDS-PAGE gel and transferred to 

a nitrocellulose membrane. The membrane was blocked with TBST/5% non-fat milk for 
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1 hour (hr) and then overlaid with purified PP1γ1 protein (1 µg/mL) (Browne, 2007) in 

TBST/3% non-fat milk for 1 hr. After washing three times with TBST, to remove 

excess protein, the bound PP1γ1 was detected by incubating the membrane with anti-

PP1γ antibody in TBST/3% non-fat milk, for 1 hr. Immunoreactive bands appeared after 

incubating with horseradish peroxidase conjugated secondary antibody, in 3% non-fat 

milk in TBST for 1 hr, and developing with ECL (Pierce). 

 

Antibodies 

Anti-PP1α (CBC2C) antibody - antiserum was raised in rabbits against the PP1α C-

terminal peptide, NKGKYGQFSGLNPGG. Anti-PP1γ (CBC3C) antibody - antiserum 

was raised in rabbits against the PP1γ C-terminal peptide, 

KKPNATRPVTPPRGMITKQAKK, which detects the two γ isoforms (da Cruz e Silva, 

1995); both were affinity purified. 

 

Cell culture and transfection 

Monkey kidney COS-7 cells were maintained with Dulbecco's modified Eagle's 

medium (DMEM, Sigma) supplemented with 10% (v/v) fetal bovine serum (FBS, 

Gibco), 100 U/ml penicillin/100 mg/ml streptomycin (p/s) and 3.7 g/l NaHCO3 

(complete DMEM) at 37°C and 5% CO2 For transfection, the culture medium was 

replaced with complete medium (antibiotic/antimycotic-free) and the DNA diluted in 

Opti-MEM (serum- and antibiotic/antymicotic-free). The Lipofectamine 2000 reagent 

(Invitrogen) was diluted appropriately in the same medium, and the DNA solution was 

added to the Lipofectamine solution drop by drop, mixed by gentle bubbling with the 

pipette and allowed to rest for 25 min at room temperature. The complexes solution was 
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directly added into the cell medium, drop by drop and with gentle rocking of the plate. 

The cells were further incubated at 37º C/5% CO2 for 24 hrs. 

 

Immunocytochemistry 

Cells were cultured in glass coverslips until 80-90% confluence and transfected as 

described above. Each well was washed three times with 1X PBS and 4% 

paraformaldehyde fixative solution was then gently added and left to stand for 30 min. 

Finally, cells were washed three times with 1X PBS. For permeabilization, methanol 

was added for 2 min followed by 5 washes with 1X PBS. Blocking was carried out for 1 

hr with PBS/3%BSA, and then primary antibody diluted in PBS/3% BSA was added 

and incubated at room temperature for 2 hrs. After three washes with 1X PBS, the 

secondary antibody was added using the same methodology and incubated for 2 hrs. 

Finally, three washes were performed and coverslips were mounted on microscope glass 

slides with anti-fading reagent containing DAPI for nucleic acid staining (Vectashield, 

Vector Laboratories). Epifluorescence microphotographies were acquired with an 

Olympus IX-81 inverted epifluorescence microscope, equipped with EGFP (Chroma 

41020) and Texas Red (Chroma 41004) filter cubes for fluorophore microscopy 

visualization. 

 

Animals 

C57/Bl6 mice were used for the isolation of testicular germ cells. Housing of mice was 

approved by the responsible governmental commission and all animals were kept under 

standard conditions at the animal facility of the Philipps University of Marburg, with 

light and dark cycles of 12 hrs. Male mice of 6–10 weeks of age were used 
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Isolation of testicular germ cells 

Isolation of cell populations from mouse testis was performed as previously described 

(Bellve, 1993). Animals were killed by cervical dislocation and testes were removed 

and decapsulated. Decapsulated testes of six C57/Bl6 mice were incubated in PBS 

without Ca/Mg (PAA, Colbe), supplemented with collagenase, dispase and DNase (20 

µg/mL each) at 37°C for 30 min, in a Falcon tube under slow rotating motion to 

dissociate the seminiferous tubules and to liberate interstitial cells. The suspension was 

then filtered through a Nylon sieve (mesh with 70-µm pore size) and the retained 

seminiferous tubules were resuspended in the same buffer and triturated with a Pasteur 

pipette until they were dissociated to a single cell suspension. Cells were sedimented by 

centrifugation for 10 min at 500g at 4°C to remove the enzymes and resuspended in 

DMEM (PAA, Colbe) containing 0.5% BSA (w/v). Cells were further subjected to 

velocity sedimentation at unit gravity for 2 hrs in a BSA gradient (1–5% of BSA (w/v) 

in DMEM), using a Celsep sedimentation chamber (ECET Celsep-System 5440, 

Eppendorf) with a cushion of DMEM supplemented with 10% (w/v) BSA at the bottom 

of the sedimentation chamber (total volume 1 L). Gradient fractions of 50 mL each were 

collected and cells were sedimented by centrifugation at 500g for 10 min at 4°C. 

Isolated cells were analyzed by phase contrast microscopy and DAPI staining, 

homogeneous cell populations were used for further analysis. Isolated cells were 

processed for RNA isolation (RNeasy mini kit, Qiagen). 

 

Expression analysis in isolated testicular germ cells 

Total RNA from the isolated cells was prepared using the RNeasy Plus Universal Midi 

Kit (Quiagen). The concentration of RNA was determined spectrophotometrically 
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(NanoDrop 1000 Spectrophotometer, Thermo Scientific). For synthesis of cDNA, a 

reverse transcription reaction was carried out using 1 µg of RNA and the Transcriptor 

First Strand cDNA Synthesis Kit for RT-PCR (Roche). Expression levels of distinct 

mRNAs were determined by qRT-PCR using the LightCycler 480 SYBR Green I 

Master (Roche) and the following cycle conditions. An initial denaturation at 95°C for 

15 min was followed by 45 cycles of denaturation (94°C, 15 s), annealing (58°C, 30 s) 

and polymerization (72°C, 30 s). Thereafter, a melting curve was generated over 

temperatures of 55–95°C with 30 s/1°C. 

PCR analysis was performed on 96-well plates with the LightCycler® 480 Real-Time 

PCR System (Roche). A combination of Gapdh and Hprt was identified as optimal 

reference genes for the testis and all expression levels were calculated as relative values 

using the mean of both reference genes. All samples were run in triplicate and the 

averages were used for the calculation of the relative expression levels of the genes. The 

expression quantification of the target gene was calculated using the difference of the 

CT-values (∆CT) from the mean of the target gene and the mean of the CT-values from 

both housekeeping genes (CT reference gene). The expression levels were further 

related (∆∆CT) to control samples using the difference of the ∆CT-value from the 

sample (∆CT sample) and the ∆CT-value from a control (∆CT control) and the relative 

values were calculated as the 2T
-∆∆C (Livak, 2001). A cDNA obtained from the cell 

suspension of whole testis was used as control sample for qRT-PCR reactions. All 

primers used for qRT-PCR are listed in supplementary Table 1. 
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Databases search of Protein-Protein Interactions (PPIs) 

The human specific α-Syn, Sph1 and PP1 interactors were retrieved from thirteen 

available online databases: APID, BioGRID, HPRD, InnateDB, IntAct, iRefIndex, 

KEGG PATHWAY, MINT, Ophid, PINA, Reactome-FLS, Spike and STRING. Also, 

PPIs from previews work were used (Esteves, 2012a,b). Afterwards, an exhaustive 

analysis to the PPIs was made and the proteins were grouped; only the interactions 

common to at least two of the proteins search were considered for this analysis. The 

UniProt accession numbers were used to normalize all proteins found, in order to avoid 

protein duplications of alias from different databases. The interactions maps were made 

using Cytoscape (Shannon, 2003). 

  



2012 PP1 interactomes as a means of characterizing protein functions 

 

174 Doutoramento em Bioquímica 

 

Results 

 

Interaction of Synphilin-1A with PP1 

PP1, a Ser/Thr phosphatase, whose function is dependent on the proteins it binds to, has 

more than 200 PIPs described so far (Moorhead, 2008;  Hendrickx, 2009;  Fardilha, 

2010;  Heroes, 2012). We have already described the PP1 interactomes from human 

brain and testis, by carrying out YTH screens using PP1α, γ1 and γ2 as bait, that yielded 

several PP1 specific-isoform binding partners (Fardilha, 2011b;  Esteves, 2012a,b). 

Sph1A was found to interact with PP1 in an YTH screen of a human brain library using 

the bait PP1α (Esteves, 2012a). Six clones, from the total of 298 obtained, corresponded 

to this isoform of Sph1. The PP1-Sph1A interaction was further confirmed by other 

techniques. None of the clones obtained corresponded to the complete sequence of 

Sph1A, the positions of the beginning of the YTH clones are indicated in the amino 

acids sequence in Figure 1A (arrows). 

The majority of PIPs have one or more PP1 binding motifs (PP1 BM), being the so 

called RVxF motif the most common and described, with its consensus sequence being 

continuously updated in the last decade (Wakula, 2003;  Meiselbach, 2006;  Hendrickx, 

2009). By analysis of Sph1 and 1A amino acid sequences it was found that both contain 

an RVxF PP1 BM (RVTF, Figure 1) at their C-terminal. As it was previously described, 

mouse Sph1 shows extensive homology with the human form, with greatest similarities 

in the regions that contain the Ankyrin-like motifs and the coiled-coil domain (O'Farrell, 

2002). In fact, Sph1 is a highly conserved protein, not only in primates and mammals, 

but also in zebrafish. Sph1 PP1 BM RVTF is also conserved among some species 

analyzed: Homo sapiens, NP_005451.2 and NP_001229864.1; Pan troglodytes, 

XP_003310838.1; Macaca mulatta, XP_001090698.1; Canis lupus familiaris, 
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XP_538600.3; Bos taurus, NP_001192707.1; Mus musculus, NP_080684.2; Rattus 

norvegicus, NP_001100849.1; Gallus gallus, XP_424409. and Danio rerio, 

NP_001107108.1 (Figure 1B).

 

Figure 1 |  Synphilin-1 and Synphilin

amino acid sequences, domains and motifs

splicing, Synphilin-1A lacks part of the Synphilin

ankyrin-like domains. In addition, it contains additional amino acid stretches at the N

acids) and C-terminus (51 amino acids), shown in dark blue. 

Synphilin-1 and 1A isoforms and its homologues. Protein sequences were obtained from GenBank and 

HomoloGene. Grey shadow indicates conservation of the RVTF PP1 BM motif across the species.

Numbers indicate position on the amino acid sequences.
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norvegicus, NP_001100849.1; Gallus gallus, XP_424409. and Danio rerio, 

NP_001107108.1 (Figure 1B). 
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1A lacks part of the Synphilin-1 N-terminus, including the first and part of the second 

like domains. In addition, it contains additional amino acid stretches at the N-

terminus (51 amino acids), shown in dark blue. B. ClustalW2 alignment of human 

isoforms and its homologues. Protein sequences were obtained from GenBank and 

HomoloGene. Grey shadow indicates conservation of the RVTF PP1 BM motif across the species.

Numbers indicate position on the amino acid sequences. 
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The interaction of all the Sph1

and PP1 isoforms was tested by yeast co

all clones with PP1α was corroborated, and they all also interacted with the others two 

PP1γ isoforms (Figure 2A). Light blue colonies represent positive interactions also, but 

took longer to turn blue in the presence of X

presence of a PP1 BM (RVTF) predicted by bioinformatic analysis and present in all the 

Sph1A positives isolated. Clone B in Figure 2A is the only one that stars at the position 

280 of Sph1A amino acid residue sequence; all the others start at position 377 (Figure 

1A). The fact of the clones not having

to hamper the interaction with the PP1 isoforms

PP1 BM (Figure 1) 

 

Figure 2 |  Synphilin-1A binds PP1

isoforms by yeast co-transformation. Blue color indicates posi

positive and negative controls, respectively. 

anti-PP1γ antibody(CBC3C). Lanes: 

pET vector (20µg); 3 - pET-NEK2A (1

WT, wildtype; MT, mutant. 
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The interaction of all the Sph1A clones, identified in the YTH screen (Esteves, 2012

and PP1 isoforms was tested by yeast co-transformation (Figure 2A). The interaction of 

α was corroborated, and they all also interacted with the others two 

). Light blue colonies represent positive interactions also, but 

took longer to turn blue in the presence of X-α-Gal. This is in accordance with the 

presence of a PP1 BM (RVTF) predicted by bioinformatic analysis and present in all the 

ated. Clone B in Figure 2A is the only one that stars at the position 

280 of Sph1A amino acid residue sequence; all the others start at position 377 (Figure 

The fact of the clones not having the complete Sph1A sequence was not sufficient 

e interaction with the PP1 isoforms, in accordance to the presence of the 

1A binds PP1. A. Analysis of interaction of Synphilin-1A YTH clones and PP1 

transformation. Blue color indicates positive interaction. Plus and minus represent 

positive and negative controls, respectively. B. Overlay assay of Synphilin-1A and PP1γ

Lanes: 1- Non transformed Rosetta cells (20µg of total protein loaded); 

NEK2A (1µg); 4 - pET-Sph1A-WT (1µg) and 5 - pET-
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In order to further characterize the interaction between PP1 and Sph1A, a mutant form 

of Syph1A, in the RVxF PP1 BM, was created. The mutant Sph1A was obtained by 

directed mutagenesis of the phenylalanine residue in the RVTF PP1 BM motif to 

alanine, originating the motif RVTA. To this end, the cDNA from the clone IMAGE 

4838145 (BC094759.1) was used, once none of the YTH clones was complete. This 

cDNA clone corresponds to the complete CDS, but has an aspartic acid in position 346 

instead of a glycine, this substitution is not located in any of the Sph1A relevant motifs.  

When the mutant form of Sph1A, pET-Sph1A-RVTA expressed in bacteria, was used 

on an overlay assay with PP1γ1, a significant decrease in the interaction was detected, 

when compared with the wild type Sph1A, and the well known PIP, Nek2A (Wu, 2007) 

(Figure 2B).  

The expression of Sph1A-GFP fusion protein in Cos-7 cells allowed the analysis of its 

subcellular localization, aggregates formation and co-localization with PP1α and γ 

isoforms. Transfected Cos-7 cells with Sph1A-GFP showed numerous aggregates with 

an exclusively cytoplasmic distribution (Figure 3), both for the wildtype (WT - PP1 BM 

RVTF) and mutant (MT – PP1 BM RVTA) forms of Sph1A. PP1α (Figure 3A and C) 

and PP1γ (Figure 3B and D) co-localized with Sph1A on the aggregates; although in a 

less extend on the aggregates formed by the RVTA form of Sph1A.  

The expression of the MT Sph1A did not originate fewer aggregates; in fact, there was 

no difference in the number and types of the aggregates formed by WT and MT Sph1A 

(Table 1). Our original hypothesis was that PP1 could be a phosphatase involved in the 

regulation of Sph1/1A-α-Syn interaction, by controlling the phosphorylation status of at 

least Sph1/1A. It is not probable that α-Syn and PP1 could bind directly, once α-Syn 

does not have any PP1 BM. However, the formation of the aggregates on Cos-7 cells 
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overexpressing the WT an

their interaction with any of the PP1 isoforms.

Figure 3 |  Synphiln-1A and PP1 co

(Green) co-localize in aggregates formed in Cos

(Red) and Sph1A (Green) co-localize in aggregates formed in Cos

GFP. C. PP1α (Red) and Sph1A (Green) co

Sph1A-RVTA-GFP. D. PP1γ (Red) and Sph1A (Green) co

overexpressing Sph1A-RVTA-GFP.

fluorescence; endogenous PP1

localization observed in the merged image (yellow/orange).

 

Table 1 |  Aggregates formation in Cos

in the PP1 BM. A total of 400 cells were counted for each condition

DNA 
% 

transfection 

pSph1A-WT_GFP  25 

pSyn-1A-MT_GFP  25 
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overexpressing the WT and MT forms of Sph1A suggests that it is not dependent on 

their interaction with any of the PP1 isoforms. 

1A and PP1 co-localization in cytosolic inclusions. A. PP1α

localize in aggregates formed in Cos-7 cells overexpressing Sph1A-RVTF

localize in aggregates formed in Cos-7 cells overexpressing Sph1A

 (Red) and Sph1A (Green) co-localize in aggregates formed in Cos-7 cells overexpressing 

γ (Red) and Sph1A (Green) co-localize in aggregates formed in Cos

GFP. Nucleic acids were stained using DAPI (blue); 

fluorescence; endogenous PP1 (red) detected with Texas Red-conjugated anti-

localization observed in the merged image (yellow/orange). 

Aggregates formation in Cos-7 cells overexpressing Synphilin-1A wildtype and mutated 

. A total of 400 cells were counted for each condition. 

% cells with 
aggregates 

% small 
aggregates/cell 

% medium 
aggregates/cell 

68 32 5 

79 30 3 
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-PP1 antibody; co-

wildtype and mutated 
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α-Synuclein, Synphilin-1 and PP1 interaction networks 

With the purpose of finding key proteins involved in the process of LBs formation that 

could be modulating PP1-Sph1/1A interaction and consequently Sph1/1A–α-Syn 

interaction, a map of Protein-Protein Interactions (PPIs) was drawn (Figure 4). PP1, 

Sph1 and α-Syn PPIs were retrieved from several available online databases and from 

previous results of PP1 interactomes in brain (Esteves, 2012a,b).  

 

 

Figure 4 |  Synphilin-1, α-Synuclein and PP1 common protein interactions. The human specific Sph1, 

α-Syn and PP1 interacting proteins were retrieved from available online databases, PPIs from previews 

work were also added (Esteves, 2012a,b). 
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From a total of 102 different interactions analyzed (supplementar Table 2), five were 

found to be common to PP1, Sph1 and α-Syn (GSK3A and B, CDK5, SIAH2 and 

SIRT2). Those proteins retrieved may be important in the process of inclusion body 

formation. 

 

Sph1A expression during spermatogenesis 

In an YTH screen using NUB1 (NEDD8 ultimate buster 1) as bait the cDNA of Sph1 

was isolated from a human testis cDNA library (Tanji, 2006). Once the Sph1A IMAGE 

clone cDNA used in this work was obtained from testis and also because PP1 has an 

important role in sperm development and function (Fardilha, 2011a) we decided to 

analyze the expression of Sph1 isoforms in testis, more specifically during 

spermatogenesis. 

We took advantage of an already established protocol using unit gravity sedimentation 

for the isolation of germ cell populations from a crude heterogeneous suspension of 

testicular cells (Dastig, 2011). We were able to separate three major homogenous 

fractions (fractions 7, 13 and 17) that were microscopically evaluated. Further, genes 

already established as markers for each step of the spermatogenesis were analysed 

(supplementary Table 3). The fraction 7 showed high relative expression levels of the 

synaptonemal complex protein 3 (Sycp3) and stathmin 1 (Stmn1), markers for 

spermatocytes, and also of the tumor-associated calcium signal transducer 1 (Tacstd1), a 

marker for spermatogonia. In fraction 13 the highest expression was observed for the 

spermatid marker, transition protein 1 (Tpn1), and in fraction 17 of other spermatid 

marker protamine 2 (Prmn2). These results are in accordance with previous data 

(Dastig, 2011). Additionally, expression markers for somatic cells were used to check 
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for contamination in each fraction. The levels of actin alpha 2 (Acta2) for peritubular 

myoid cells, hydroxysteroid 17 beta dehydrogenase (Hsd17b3) and c-kit for Leydig 

cells and the androgen receptor (AR) for Sertoli cells were low in the fractions 

analyzed. The only exception was for Acta2 in fraction 13. The expression profiling of 

the somatic and germ cell specific markers showed that cell populations isolated was 

indeed enriched in spermatocytes (fraction 7), round spermatids (fraction 13) and 

elongated spermatids (fraction 17). 

Next, we went to check for the relative expression levels of Sph1 and Sph1A, two 

alternatively spliced isoforms of the gene SNCAIP. Expression levels of these isoforms 

in each germ cell pool were compared with the original testicular cell suspension to 

retrieve the relative expression values. Both isoforms show a similar pattern of 

expression with higher levels in round spermatids and lower levels in elongating 

spermatids. Furthermore, the expression pattern of the SNCAIP isoforms in 

hippocampus was also assessed. Interestingly, the levels for the relative expression were 

extremely low when compared with testis, with values of 0.005 and 0.006 for Sph1 and 

Sph1A, respectively, when compared 1.647 and 1.504 in round spermatids 

(supplementary Table 3). 
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Discussion and Conclusion 

 

Sph1A was identified as a PIP first by an YTH screen from a human brain library 

(Esteves, 2012a) and later confirmed by biochemical methods. Sph1A is an isoform of 

Sph1 and an aggregation prone and neurotoxic protein, that interacts with α-Syn and 

Sph1 (Eyal, 2006b) and relevant to LBs formation. Here we suggest that Sph1A may 

target PP1 to protein complexes involved in the initial steps of inclusion body 

formation, thus potentiating the dephosphorylation of other proteins and/or being itself a 

substrate. An emerging concept that is already in clinical trials is the targeting of 

PP1/PIP complexes for therapy, e.g. by interfering with viral replication and cell 

division, in order to disrupt cellular events where PP1 containing complexes are crucial 

players in dephosphorylating key proteins (Fardilha, 2010). Modulating 

phosphorylation status in order to change the interaction of α-Syn and Sph1/1A, is 

crucial in the understanding of inclusion bodies formation and, subsequently, interfering 

with their formation. Additionally, by disturbing the system a step further can be made 

towards therapeutic strategies in LBs related disorders, including PD.   

Here we showed that, at least in Cos-7 cells, the formation of aggregates is not 

dependent of Sph1A-PP1 interaction, since Sph1A (RVTF) and Sph1A (RVTA) 

behaved exactly the same way, although we also show, in an overlay assay, that the 

interaction PP1-Sph1A (RVTF) was much stronger than PP1-Sph1A (RVTA). An 

explanation may be the fact that in the overlay the protein normal conformation may not 

be acquired, while in vivo it is fully accomplished and other point of contact (besides 

the PP1 BM) may account for the PP1-Sph1A interaction. Also, other proteins may take 

part in the complexes formed in the aggregates and may be stabilizing them, and we 

have to consider the presence of endogenous Sph1 and Spn-1A bound to PP1 in the 
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aggregates. Furthermore, we cannot forget that Sph1A-RVTA was being overexpressed 

in the experiment. 

 

PP1, Sph1 and α-Syn interactions network 

In order to draw the interaction maps of α-Syn, Sph1 and PP1 and gain some insight in 

their possible interrelation to PD, several PPIs were retrieved from online databases and 

our previous PP1 interactomes (Esteves, 2012a,b). A large number of PPIs (67) were 

found to be common to α-Syn and Sph1, as expected considering the importance of both 

and their interaction in LBs formation, but also between α-Syn and PP1 (Figure 4). Only 

a few PPIs were found to be interconnected with the three: GSK3, CDK5, SIAH2 and 

SIRT2; and SH2D3C is the only interactor common to Sph1A and PP1. 

Glycogen syntase kinase 3 (GSK3) is a Ser/Thr kinase encoded by two genes GSK3A 

GSK3B. The two isoforms are highly homologous in their kinase domains but differ in 

their N-terminal and C-terminal regions that may have a regulatory role. Also, the levels 

of both isoforms are different in diverse tissues, being GSK3B particularly abundant in 

brain (Woodgett, 1990). Phosphorylated tau is another protein also present in Lewy 

bodies (Ishizawa, 2003) and α-Syn directly stimulates tau phosphorylation through 

GSK3B (Duka, 2009) by forming a heterotrimeric complex with tau and GSK3B 

(Kawakami, 2011). Mutation analysis showed that Ser556 (Ser190 on Sph1A, Figure 1) 

is a major GSK3B phosphorylation site in Sph1 (Avraham, 2005). GSK3B was also 

shown to co-immunoprecipitate with Sph1, and protein 14-3-3, an activator of GSK3B 

activity and a PIP. GSK3B decreased the in vitro and in vivo ubiquitylation of Sph1 as 

well as its degradation promoted by SIAH. Several kinases have been found to 

phosphorylate GSK3 isoforms at their N-terminal region (Grimes, 2001). This 
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phosphorylation was found to be reverted, at least, by the action of two phosphatases 

PP1 and PP2A (Stambolic, 1994;  Grimes, 2001). A recent study determined the in vitro 

and in vivo dephosphorylation of phospho GSK3 isoforms, in the absence or the 

presence of okadaic acid and lithium (PP1 and PP2A inhibitors), and showed the 

preferential dephosphorylation of phospho GSK3A by PP2A and of phospho GSK3B by 

PP1 (Hernandez, 2010). It was also demonstrated that GSK3B complexed with 

AKAP220 is regulated by PKA and PP1 more efficiently than GSK3B free from 

AKAP220 (Tanji, 2002). Thus PP1 could be a major regulator of GSK3B in brain and 

therefore of Sph1/1A phosphorylation states.  

Cyclin-dependent protein kinase 5 (Cdk5), another Ser/Thr kinase, is an heterodimer of 

a catalytic Cdk5 and a regulatory p25 subunit (Lew, 1995;  Dhavan, 2001;  Grant, 

2001). Cdk5 is inactive in dividing cells but becomes progressively more active in 

differentiating cells (Yan, 1995;  Harada, 2001) and is predominantly expressed in 

terminally differentiated neurons (Lew, 1995;  Dhavan, 2001;  Grant, 2001). Recently, 

Cdk5 was established as a critical regulator of autophagy induction, once Cdk5-

mediated phosphorylation of endophilin B1 is essential for autophagy induction and 

neuronal loss in models of PD (Wong, 2011). PP1 is phosphorylated by Cdk5 and 

blocking PP1 phosphorylation, by inhibiting Cdk5 activity, hinder neurite outgrowth 

(Li, 2007). In dividing cells, PP1 is phosphorylated by Cdk1 and Cdk2 on Thr320 

(Dohadwala, 1994;  Berndt, 1999;  Liu, 1999). When Thr320 is phosphorylated, PP1 

activity is inhibited (Dohadwala, 1994;  Kwon, 1997). Cdk5 presence in LBs was 

revealed in several studies (Brion, 1995;  Nakamura, 1997;  Takahashi, 2000). Also, 

Cdk5 phosphorylates Parkin at Ser131 and decreases its auto-ubiquitylation (Avraham, 

2007). Furthermore, the S131A mutant form of Parkin displayed a higher auto-

ubiquitylation level, an increased ubiquitylation activity toward its substrates Sph1, 
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accumulated more into inclusions in human dopaminergic cells and increased the 

formation of Sph1/α-Syn inclusions; suggesting that the levels of Parkin 

phosphorylation and ubiquitylation may modulate the formation of inclusion bodies 

(Avraham, 2007). Sph1 and α-Syn interactions with Cdk5 in the databases searched 

(both present in STRING) were only predicted by text mining. 

A proteomics study of PP1 complexes, in response to ischemia-reperfusion stress and 

ischemic tolerance in brain, described 14 different proteins that exhibited significant 

changes in their association with PP1α or PP1γ (Cid, 2007), one of them was SIAH2 

interaction with PP1γ. Also, PP1γ complex with SIAH2 was abolished in a competition 

assay with a synthetic RVxF-containing peptide (Cid, 2007). Ubiquitin ligase SIAH 

(seven in absentia homolog) proteins mediate ubiquitination and subsequent 

proteasomal degradation of target proteins and have been implicated in the promotion of 

apoptotic death (Xu, 2006). Sph1 was reported to interact with SIAH1 and SIAH2 

(Liani, 2004). SIAH proteins ubiquitylated Sph1, promoting its degradation by the 

proteasome system. Ubiquitylation is required for inclusion bodies formation, once a 

catalytically inactive mutant of SIAH1, which was still able to bind Sph1, failed to 

promote inclusions (Liani, 2004). And, like Sph1, α-Syn also associated with SIAH, but 

the interaction with SIAH2 was much stronger than with SIAH1. SIAH2 was shown to 

monoubiquitylates α-Syn. Further evidence that SIAH proteins may play a role in 

inclusion formation comes from the demonstration of SIAH immunoreactivity in LBs of 

PD patients (Liani, 2004). Sph1A was also shown to interact, in vitro and in vivo, with 

SIAH and to regulate its activity toward α-Syn and Sph1 (Szargel, 2009). SIAH 

promoted a limited ubiquitylation of Sph1A that did not lead to its degradation by the 

proteasome. Sph1A increased the steady-state levels of SIAH by decreasing its auto-
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ubiquitylation and degradation, in addition, Sph1A decreased the monoubiquitylation of 

α-Syn by SIAH and the formation of α-Syn inclusions (Szargel, 2009). 

SIRT2 (SIR2-like protein 2), highly expressed in brain, is a cytoplasmic deacetylase 

that is associated with the microtubule network and targets lysine 40 of α-tubulin for 

deacetylation (Afshar, 1999;  North, 2004). SIRT2 has also been implicated in the 

control of cell cycle and proliferation (Dryden, 2003;  Hiratsuka, 2003). It is a target for 

the mitotic kinase Cdk1, and its phosphorylation by Cdk1 is required for SIRT2 to 

mediate a delay in cell-cycle progression (North, 2007). Inhibition of SIRT2 rescues α-

Syn toxicity, possibly by facilitating α-Syn inclusion formation or by stabilizing 

microtubules (Dauer, 2003;  North, 2003). Treatment with microtubule destabilizing 

agents, vinblastin or nocodazole, reduced the number of aggregate-containing cells 

(Kopito, 2000). All the interactions found with SIRT2 were predicted by data mining, 

no experimental confirmation was made.  

SH2D3C (SH2 domain-containing protein 3C) interaction with Sph1 was detected by an 

YTH approach that allowed the identification of 3186 interactions among 1705 proteins 

(Stelzl, 2005). And the interaction with PP1α was simply predicted by text mining 

(STRING). SH2D3C, also known as SHEP1, is a cytoplasmic protein widely expressed, 

including in brain, and involved in cell adhesion/migration (Vervoort, 2007). It contains 

an SH2 domain and an exchange factor-like domain that binds both Ras GTPases and 

the scaffolding protein Cas. Shep1 and Cas are both concentrated in the axons of 

developing olfactory sensory neurons (Wang, 2010). 

From the interactions detected we can conclude that post-translational modifications, 

such as phosphorylation and ubiquitylation, are extremely important in inclusion bodies 

formation and in the regulation of Sph1/1A - α-Syn interaction and the possible 

complexes with PP1. Sph1/1A - α-Syn interaction, in fact, is regulated by the 
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phosphorylation states of both, which also interfere in the ubiquitylation and 

proteosome degradation of Sph1/1A and α-Syn and, as a result, in inclusion body 

formation. 

 

Synphilin isoforms in testis  

Sph1 was identified as a binding partner of NUB1 in an YTH screen from a human 

testis cDNA library (Tanji, 2006). NUB1 was also found to accumulate in inclusion 

bodies from brains of patients with α-synucleinopathies. NUB1 is a potent down-

regulator of the ubiquitin-like protein NEDD8, because it targets the latter to the 

proteasome for proteolytic degradation. NUB1 physically interacts with Sph1 through 

its NEDD8 binding site, implying that NUB1 may also target Sph1 for proteasomal 

degradation (Tanji, 2006). Expression of Sph1 was also detected at the mRNA level and 

by IHC in several structures of the male reproductive system, including testis and 

epididymis (neXtProt and Human Protein Atlas platforms, Uhlen, 2010;  Lane, 2012). 

Spermatogenesis is the process by which large numbers of spermatozoa are produced, 

involving cell proliferation and differentiation, meiosis, spermiogenesis and spermiation 

(Yoshida, 2007;  Lie, 2010). During spermiogenesis spermatides undergo 

morphological transformations from a rounded shape to an elongated cell, the 

spermatozoon. 

In our study, Sph1 isoforms were found to have a parallel pattern of expression with 

higher levels in round spermatids and lower levels in elongating spermatids. This is 

similar to the expression pattern of proteins that are needed during the spermiogenesis, 

like the protamines (e.g. Prmn2) and the transition proteins (e.g. Tpn1) (Dastig, 2011). 

Protamines are nuclear proteins that replace histones in the last steps of spermatogenesis 
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having a role in DNA condensation and stabilization (Balhorn, 2007). Transition 

proteins like Tpn1 have distinct roles in histone displacement, sperm nuclear shaping, 

chromatin condensation, and maintenance of DNA integrity (Meistrich, 2003).  

We have found that Sph1A, an isoform of synphilin-1, interacts with PP1 in human 

brain, by using the YTH system. The interaction was validated by overlay, using Sph1A 

and Sph1A mutated in its canonical PP1 binding site. The results obtained demonstrated 

that the interaction decreased significantly with the mutant, demonstrating that the 

conserved PP1 BM, RVTF, which is also present in Sph1, was crucial for the 

interaction. Also, Sph1A and PP1 co-localize in aggregates formed in Cos-7 cells 

overexpressing Sph1A-GFP, indicating that the former might act as a targeting PIP or a 

substrate for PP1. 

Once, phosphorylation is an important regulation method involved in the formation of 

LBs and PD disease process, PP1-Sph1/1A complexes may modulate the 

phosphorylation states of key proteins in inclusion bodies thus regulating the formation 

of the latter as well as neuronal cell death.  

 

  



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 189 

 

Acknowledgments 

 

This work was supported by the Centre for Cell Biology of the University of Aveiro, by 

grants from Fundação para a Ciência e Tecnologia of the Portuguese Ministry of 

Science and Higher Education to SLCE (SFRH/BD/41751/2007) and LKG 

(SFRM/BD/42334/2007), and from the European project cNEUPRO to EFCS (LSHM-

CT-2007-037950).  

Hippocampus mRNAs were kindly provided by Dr. Katja Horling from the Department 

of Anatomy II: Experimental Morphology, University Medical Center Hamburg-

Eppendorf, 20246 Hamburg, Germany. 



2012 PP1 interactomes as a means of characterizing protein functions 

 

190 Doutoramento em Bioquímica 

 

Author Disclosure Statement 

 

No competing financial interests exist. 

 

 

  



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 191 

 

References 

 

Afshar G. and Murnane J. P. (1999) Characterization of a human gene with sequence homology 
to Saccharomyces cerevisiae SIR2. Gene 234, 161-8. 

Avraham E., Szargel R., Eyal A., Rott R. and Engelender S. (2005) Glycogen synthase kinase 
3beta modulates synphilin-1 ubiquitylation and cellular inclusion formation by SIAH: 
implications for proteasomal function and Lewy body formation. The Journal of biological 
chemistry 280, 42877-86. 

Avraham E., Rott R., Liani E., Szargel R. and Engelender S. (2007) Phosphorylation of Parkin 
by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and 
aggregation. The Journal of biological chemistry 282, 12842-50. 

Balhorn R. (2007) The protamine family of sperm nuclear proteins. Genome biology 8, 227. 

Bellve A. R. (1993) Purification, culture, and fractionation of spermatogenic cells. Methods in 
enzymology 225, 84-113. 

Berndt N. (1999) Protein dephosphorylation and the intracellular control of the cell number. 
Frontiers in bioscience : a journal and virtual library 4, D22-42. 

Beyer K. and Ariza A. (2007) Protein aggregation mechanisms in synucleinopathies: 
commonalities and differences. Journal of neuropathology and experimental neurology 66, 965-
74. 

Bordelon J. R., Smith Y., Nairn A. C., Colbran R. J., Greengard P. and Muly E. C. (2005) 
Differential localization of protein phosphatase-1alpha, beta and gamma1 isoforms in primate 
prefrontal cortex. Cerebral cortex 15, 1928-37. 

Brion J. P. and Couck A. M. (1995) Cortical and brainstem-type Lewy bodies are 
immunoreactive for the cyclin-dependent kinase 5. The American journal of pathology 147, 
1465-76. 

Browne G. J., Fardilha M., Oxenham S. K., et al. (2007) SARP, a new alternatively spliced 
protein phosphatase 1 and DNA interacting protein. The Biochemical journal 402, 187-96. 

Chung K. K., Zhang Y., Lim K. L., et al. (2001) Parkin ubiquitinates the alpha-synuclein-
interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. 
Nature medicine 7, 1144-50. 

Cid C., Garcia-Bonilla L., Camafeita E., Burda J., Salinas M. and Alcazar A. (2007) Proteomic 
characterization of protein phosphatase 1 complexes in ischemia-reperfusion and ischemic 
tolerance. Proteomics 7, 3207-18. 

da Cruz e Silva E. F., Fox C. A., Ouimet C. C., Gustafson E., Watson S. J. and Greengard P. 
(1995) Differential expression of protein phosphatase 1 isoforms in mammalian brain. J 
Neurosci 15, 3375-89. 

Dastig S., Nenicu A., Otte D. M., et al. (2011) Germ cells of male mice express genes for 
peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the 
protection against oxidative stress. Histochemistry and cell biology 136, 413-25. 

Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 
889-909. 

Dhavan R. and Tsai L. H. (2001) A decade of CDK5. Nature reviews Molecular cell biology 2, 
749-59. 



2012 PP1 interactomes as a means of characterizing protein functions 

 

192 Doutoramento em Bioquímica 

 

Dohadwala M., da Cruz e Silva E. F., Hall F. L., et al. (1994) Phosphorylation and inactivation 
of protein phosphatase 1 by cyclin-dependent kinases. Proceedings of the National Academy of 
Sciences of the United States of America 91, 6408-12. 

Dryden S. C., Nahhas F. A., Nowak J. E., Goustin A. S. and Tainsky M. A. (2003) Role for 
human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. 
Molecular and cellular biology 23, 3173-85. 

Duka T., Duka V., Joyce J. N. and Sidhu A. (2009) Alpha-Synuclein contributes to GSK-3beta-
catalyzed Tau phosphorylation in Parkinson's disease models. FASEB journal : official 
publication of the Federation of American Societies for Experimental Biology 23, 2820-30. 

El-Agnaf O. M., Jakes R., Curran M. D., et al. (1998) Aggregates from mutant and wild-type 
alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma 
cells by formation of beta-sheet and amyloid-like filaments. FEBS letters 440, 71-5. 

Engelender S., Kaminsky Z., Guo X., et al. (1999) Synphilin-1 associates with alpha-synuclein 
and promotes the formation of cytosolic inclusions. Nat Genet 22, 110-4. 

Engelender S., Wanner T., Kleiderlein J. J., et al. (2000) Organization of the human synphilin-1 
gene, a candidate for Parkinson's disease. Mammalian genome : official journal of the 
International Mammalian Genome Society 11, 763-6. 

Esteves S. L., Domingues S. C., da Cruz e Silva O. A., Fardilha M. and da Cruz e Silva E. F. 
(2012a) Protein phosphatase 1alpha interacting proteins in the human brain. Omics : a journal of 
integrative biology 16, 3-17. 

Esteves, S.L., Korrodi-Gregório, L., Cotrim, Z., van Kleeff, P.J., Domingues, S.C., da Cruz e 
Silva, O.A., Fardilha, M. and da Cruz e Silva, E.F. (2012b) Protein Phosphatase 1γ Isoforms 
Linked Interactions in Brain. J Mol Neurosci, Epub ahead of print.  

Eyal A. and Engelender S. (2006a) Synphilin isoforms and the search for a cellular model of 
lewy body formation in Parkinson's disease. Cell cycle 5, 2082-6. 

Eyal A., Szargel R., Avraham E., et al. (2006b) Synphilin-1A: an aggregation-prone isoform of 
synphilin-1 that causes neuronal death and is present in aggregates from alpha-synucleinopathy 
patients. Proceedings of the National Academy of Sciences of the United States of America 103, 
5917-22. 

Fardilha M., Esteves S. L., Korrodi-Gregorio L., da Cruz e Silva O. A. and da Cruz e Silva F. F. 
(2010) The physiological relevance of protein phosphatase 1 and its interacting proteins to 
health and disease. Current medicinal chemistry 17, 3996-4017. 

Fardilha M., Esteves S. L., Korrodi-Gregorio L., Pelech S., da Cruz E. S. O. A. and da Cruz E. 
S. E. (2011a) Protein phosphatase 1 complexes modulate sperm motility and present novel 
targets for male infertility. Molecular human reproduction 17, 466-77. 

Fardilha M., Esteves S. L., Korrodi-Gregorio L., et al. (2011b) Identification of the human testis 
protein phosphatase 1 interactome. Biochemical pharmacology 82, 1403-15. 

Grant P., Sharma P. and Pant H. C. (2001) Cyclin-dependent protein kinase 5 (Cdk5) and the 
regulation of neurofilament metabolism. European journal of biochemistry / FEBS 268, 1534-
46. 

Grimes C. A. and Jope R. S. (2001) The multifaceted roles of glycogen synthase kinase 3beta in 
cellular signaling. Progress in neurobiology 65, 391-426. 

Harada T., Morooka T., Ogawa S. and Nishida E. (2001) ERK induces p35, a neuron-specific 
activator of Cdk5, through induction of Egr1. Nature cell biology 3, 453-9. 

Hendrickx A., Beullens M., Ceulemans H., et al. (2009) Docking motif-guided mapping of the 
interactome of protein phosphatase-1. Chemistry & biology 16, 365-71. 



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 193 

 

Hernandez F., Langa E., Cuadros R., Avila J. and Villanueva N. (2010) Regulation of GSK3 
isoforms by phosphatases PP1 and PP2A. Molecular and cellular biochemistry 344, 211-5. 

Heroes E., Lesage B., Gornemann J., Beullens M., Van Meervelt L. and Bollen M. (2012) The 
PP1 binding code: a molecular-lego strategy that governs specificity. The FEBS journal  

Hiratsuka M., Inoue T., Toda T., et al. (2003) Proteomics-based identification of differentially 
expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochemical and 
biophysical research communications 309, 558-66. 

Inglis K. J., Chereau D., Brigham E. F., et al. (2009) Polo-like kinase 2 (PLK2) phosphorylates 
alpha-synuclein at serine 129 in central nervous system. J Biol Chem 284, 2598-602. 

Ishii A., Nonaka T., Taniguchi S., et al. (2007) Casein kinase 2 is the major enzyme in brain that 
phosphorylates Ser129 of human α-synuclein: Implication for α-synucleinopathies. FEBS 
Letters 581, 4711-4717. 

Ishizawa T., Mattila P., Davies P., Wang D. and Dickson D. W. (2003) Colocalization of tau 
and alpha-synuclein epitopes in Lewy bodies. Journal of neuropathology and experimental 
neurology 62, 389-97. 

Jakes R., Spillantini M. G. and Goedert M. (1994) Identification of two distinct synucleins from 
human brain. FEBS letters 345, 27-32. 

Kang L., Wu K. P., Vendruscolo M. and Baum J. (2011) The A53T mutation is key in defining 
the differences in the aggregation kinetics of human and mouse alpha-synuclein. Journal of the 
American Chemical Society 133, 13465-70. 

Kawakami F., Suzuki M., Shimada N., et al. (2011) Stimulatory effect of alpha-synuclein on the 
tau-phosphorylation by GSK-3beta. The FEBS journal 278, 4895-904. 

Kawamata H., McLean P. J., Sharma N. and Hyman B. T. (2001) Interaction of alpha-synuclein 
and synphilin-1: effect of Parkinson's disease-associated mutations. J Neurochem 77, 929-34. 

Kopito R. R. (2000) Aggresomes, inclusion bodies and protein aggregation. Trends in cell 
biology 10, 524-30. 

Krenz A., Falkenburger B. H., Gerhardt E., Drinkut A. and Schulz J. B. (2009) Aggregate 
formation and toxicity by wild-type and R621C synphilin-1 in the nigrostriatal system of mice 
using adenoviral vectors. Journal of neurochemistry 108, 139-46. 

Kruger R., Kuhn W., Muller T., et al. (1998) Ala30Pro mutation in the gene encoding alpha-
synuclein in Parkinson's disease. Nature genetics 18, 106-8. 

Kwon Y. G., Lee S. Y., Choi Y., Greengard P. and Nairn A. C. (1997) Cell cycle-dependent 
phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proceedings of the 
National Academy of Sciences of the United States of America 94, 2168-73. 

Lane L., Argoud-Puy G., Britan A., et al. (2012) neXtProt: a knowledge platform for human 
proteins. Nucleic acids research 40, D76-83. 

Lavedan C., Leroy E., Dehejia A., et al. (1998) Identification, localization and characterization 
of the human gamma-synuclein gene. Human genetics 103, 106-12. 

Lee G., Junn E., Tanaka M., Kim Y. M. and Mouradian M. M. (2002) Synphilin-1 degradation 
by the ubiquitin-proteasome pathway and effects on cell survival. Journal of neurochemistry 83, 
346-52. 

Lee G. (2003) Casein Kinase II-mediated Phosphorylation Regulates  -Synuclein/Synphilin-1 
Interaction and Inclusion Body Formation. Journal of Biological Chemistry 279, 6834-6839. 

Lew J., Qi Z., Huang Q. Q., et al. (1995) Structure, function, and regulation of neuronal Cdc2-
like protein kinase. Neurobiology of aging 16, 263-8; discussion 268-70. 



2012 PP1 interactomes as a means of characterizing protein functions 

 

194 Doutoramento em Bioquímica 

 

Li T., Chalifour L. E. and Paudel H. K. (2007) Phosphorylation of protein phosphatase 1 by 
cyclin-dependent protein kinase 5 during nerve growth factor-induced PC12 cell differentiation. 
The Journal of biological chemistry 282, 6619-28. 

Liani E., Eyal A., Avraham E., et al. (2004) Ubiquitylation of synphilin-1 and alpha-synuclein 
by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson's 
disease. Proceedings of the National Academy of Sciences of the United States of America 101, 
5500-5. 

Lie P. P., Mruk D. D., Lee W. M. and Cheng C. Y. (2010) Cytoskeletal dynamics and 
spermatogenesis. Philosophical transactions of the Royal Society of London Series B, 
Biological sciences 365, 1581-92. 

Liu C. W., Wang R. H., Dohadwala M., Schonthal A. H., Villa-Moruzzi E. and Berndt N. 
(1999) Inhibitory phosphorylation of PP1alpha catalytic subunit during the G(1)/S transition. 
The Journal of biological chemistry 274, 29470-5. 

Livak K. J. and Schmittgen T. D. (2001) Analysis of relative gene expression data using real-
time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-8. 

Marx F. P., Holzmann C., Strauss K. M., et al. (2003) Identification and functional 
characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease. 
Human molecular genetics 12, 1223-31. 

McFarland M. A., Ellis C. E., Markey S. P. and Nussbaum R. L. (2008) Proteomics analysis 
identifies phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteomics 
7, 2123-37. 

Meiselbach H., Sticht H. and Enz R. (2006) Structural analysis of the protein phosphatase 1 
docking motif: molecular description of binding specificities identifies interacting proteins. 
Chemistry & biology 13, 49-59. 

Meistrich M. L., Mohapatra B., Shirley C. R. and Zhao M. (2003) Roles of transition nuclear 
proteins in spermiogenesis. Chromosoma 111, 483-8. 

Moorhead G. B., Trinkle-Mulcahy L., Nimick M., et al. (2008) Displacement affinity 
chromatography of protein phosphatase one (PP1) complexes. BMC biochemistry 9, 28. 

Nakamura S., Kawamoto Y., Nakano S., Akiguchi I. and Kimura J. (1997) p35nck5a and 
cyclin-dependent kinase 5 colocalize in Lewy bodies of brains with Parkinson's disease. Acta 
neuropathologica 94, 153-7. 

North B. J., Marshall B. L., Borra M. T., Denu J. M. and Verdin E. (2003) The human Sir2 
ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular cell 11, 437-44. 

North B. J. and Verdin E. (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. 
Genome biology 5, 224. 

North B. J. and Verdin E. (2007) Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-
dependent phosphorylation. The Journal of biological chemistry 282, 19546-55. 

Nuytemans K., Theuns J., Cruts M. and Van Broeckhoven C. (2010) Genetic etiology of 
Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and 
LRRK2 genes: a mutation update. Human mutation 31, 763-80. 

O'Farrell C., Murphy D. D., Petrucelli L., et al. (2001) Transfected synphilin-1 forms 
cytoplasmic inclusions in HEK293 cells. Brain research Molecular brain research 97, 94-102. 

O'Farrell C., Pickford F., Vink L., McGowan E. and Cookson M. R. (2002) Sequence 
conservation between mouse and human synphilin-1. Neuroscience letters 322, 9-12. 



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 195 

 

Ostrerova-Golts N., Petrucelli L., Hardy J., Lee J. M., Farer M. and Wolozin B. (2000) The 
A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. The Journal 
of neuroscience : the official journal of the Society for Neuroscience 20, 6048-54. 

Ouimet C. C., da Cruz e Silva E. F. and Greengard P. (1995) The alpha and gamma 1 isoforms 
of protein phosphatase 1 are highly and specifically concentrated in dendritic spines. 
Proceedings of the National Academy of Sciences of the United States of America 92, 3396-
400. 

Polymeropoulos M. H., Lavedan C., Leroy E., et al. (1997) Mutation in the alpha-synuclein 
gene identified in families with Parkinson's disease. Science 276, 2045-7. 

Qing H., Wong W., McGeer E. G. and McGeer P. L. (2009) Lrrk2 phosphorylates alpha 
synuclein at serine 129: Parkinson disease implications. Biochemical and Biophysical Research 
Communications 387, 149-152. 

Ribeiro C. S., Carneiro K., Ross C. A., Menezes J. R. and Engelender S. (2002) Synphilin-1 is 
developmentally localized to synaptic terminals, and its association with synaptic vesicles is 
modulated by alpha-synuclein. The Journal of biological chemistry 277, 23927-33. 

Shannon P., Markiel A., Ozier O., et al. (2003) Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome research 13, 2498-504. 

Shults C. W. (2006) Lewy bodies. Proceedings of the National Academy of Sciences of the 
United States of America 103, 1661-8. 

Smith W. W., Pei Z., Jiang H., Dawson V. L., Dawson T. M. and Ross C. A. (2006) Kinase 
activity of mutant LRRK2 mediates neuronal toxicity. Nature neuroscience 9, 1231-3. 

Spillantini M. G., Schmidt M. L., Lee V. M., Trojanowski J. Q., Jakes R. and Goedert M. 
(1997) Alpha-synuclein in Lewy bodies. Nature 388, 839-40. 

Spillantini M. G., Crowther R. A., Jakes R., Cairns N. J., Lantos P. L. and Goedert M. (1998a) 
Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson's disease 
and dementia with Lewy bodies. Neuroscience letters 251, 205-8. 

Spillantini M. G., Crowther R. A., Jakes R., Hasegawa M. and Goedert M. (1998b) alpha-
Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with 
lewy bodies. Proceedings of the National Academy of Sciences of the United States of America 
95, 6469-73. 

Stambolic V. and Woodgett J. R. (1994) Mitogen inactivation of glycogen synthase kinase-3 
beta in intact cells via serine 9 phosphorylation. The Biochemical journal 303 ( Pt 3), 701-4. 

Stelzl U., Worm U., Lalowski M., et al. (2005) A human protein-protein interaction network: a 
resource for annotating the proteome. Cell 122, 957-68. 

Strack S., Kini S., Ebner F. F., Wadzinski B. E. and Colbran R. J. (1999) Differential cellular 
and subcellular localization of protein phosphatase 1 isoforms in brain. The Journal of 
comparative neurology 413, 373-84. 

Sung J. Y., Kim J., Paik S. R., Park J. H., Ahn Y. S. and Chung K. C. (2001) Induction of 
neuronal cell death by Rab5A-dependent endocytosis of alpha-synuclein. The Journal of 
biological chemistry 276, 27441-8. 

Szargel R., Rott R. and Engelender S. (2008) Synphilin-1 isoforms in Parkinson's disease: 
regulation by phosphorylation and ubiquitylation. Cell Mol Life Sci 65, 80-8. 

Szargel R., Rott R., Eyal A., et al. (2009) Synphilin-1A inhibits seven in absentia homolog 
(SIAH) and modulates alpha-synuclein monoubiquitylation and inclusion formation. The 
Journal of biological chemistry 284, 11706-16. 



2012 PP1 interactomes as a means of characterizing protein functions 

 

196 Doutoramento em Bioquímica 

 

Takahashi M., Iseki E. and Kosaka K. (2000) Cyclin-dependent kinase 5 (Cdk5) associated with 
Lewy bodies in diffuse Lewy body disease. Brain research 862, 253-6. 

Takizawa N., Mizuno Y., Ito Y. and Kikuchi K. (1994) Tissue distribution of isoforms of type-1 
protein phosphatase PP1 in mouse tissues and its diabetic alterations. Journal of biochemistry 
116, 411-5. 

Tanji C., Yamamoto H., Yorioka N., Kohno N., Kikuchi K. and Kikuchi A. (2002) A-kinase 
anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta ) and 
mediates protein kinase A-dependent inhibition of GSK-3beta. The Journal of biological 
chemistry 277, 36955-61. 

Tanji K., Tanaka T., Mori F., et al. (2006) NUB1 suppresses the formation of Lewy body-like 
inclusions by proteasomal degradation of synphilin-1. The American journal of pathology 169, 
553-65. 

Tu P. H., Galvin J. E., Baba M., et al. (1998) Glial cytoplasmic inclusions in white matter 
oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Annals 
of neurology 44, 415-22. 

Uhlen M., Oksvold P., Fagerberg L., et al. (2010) Towards a knowledge-based Human Protein 
Atlas. Nature biotechnology 28, 1248-50. 

Vervoort V. S., Roselli S., Oshima R. G. and Pasquale E. B. (2007) Splice variants and 
expression patterns of SHEP1, BCAR3 and NSP1, a gene family involved in integrin and 
receptor tyrosine kinase signaling. Gene 391, 161-70. 

Wakabayashi K., Engelender S., Yoshimoto M., Tsuji S., Ross C. A. and Takahashi H. (2000) 
Synphilin-1 is present in Lewy bodies in Parkinson's disease. Ann Neurol 47, 521-3. 

Wakabayashi K., Tanji K., Mori F. and Takahashi H. (2007) The Lewy body in Parkinson's 
disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. 
Neuropathology : official journal of the Japanese Society of Neuropathology 27, 494-506. 

Wakula P., Beullens M., Ceulemans H., Stalmans W. and Bollen M. (2003) Degeneracy and 
function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. The 
Journal of biological chemistry 278, 18817-23. 

Wang L., Vervoort V., Wallez Y., Core N., Cremer H. and Pasquale E. B. (2010) The SRC 
homology 2 domain protein Shep1 plays an important role in the penetration of olfactory 
sensory axons into the forebrain. The Journal of neuroscience : the official journal of the Society 
for Neuroscience 30, 13201-10. 

Waxman E. A. and Giasson B. I. (2008) Specificity and Regulation of Casein Kinase-Mediated 
Phosphorylation of α-Synuclein. Journal of Neuropathology and Experimental Neurology 67, 
402-416. 

Wong A. S., Lee R. H., Cheung A. Y., et al. (2011) Cdk5-mediated phosphorylation of 
endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nature cell 
biology 13, 568-79. 

Woodgett J. R. (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor 
A. The EMBO journal 9, 2431-8. 

Wu W., Baxter J. E., Wattam S. L., et al. (2007) Alternative splicing controls nuclear 
translocation of the cell cycle-regulated Nek2 kinase. The Journal of biological chemistry 282, 
26431-40. 

Xie Y. Y., Zhou C. J., Zhou Z. R., et al. (2009) Interaction with synphilin-1 promotes inclusion 
formation of  α-synuclein : mechanistic insights and pathological implication. The FASEB 
Journal 24, 196-205. 



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 197 

 

Xu Z., Sproul A., Wang W., Kukekov N. and Greene L. A. (2006) Siah1 interacts with the 
scaffold protein POSH to promote JNK activation and apoptosis. The Journal of biological 
chemistry 281, 303-12. 

Yan G. Z. and Ziff E. B. (1995) NGF regulates the PC12 cell cycle machinery through specific 
inhibition of the Cdk kinases and induction of cyclin D1. The Journal of neuroscience : the 
official journal of the Society for Neuroscience 15, 6200-12. 

Yoshida S., Sukeno M. and Nabeshima Y. (2007) A vasculature-associated niche for 
undifferentiated spermatogonia in the mouse testis. Science 317, 1722-6. 

Yoshimoto M., Iwai A., Kang D., Otero D. A., Xia Y. and Saitoh T. (1995) NACP, the 
precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer disease 
amyloid, binds A beta and stimulates A beta aggregation. Proceedings of the National Academy 
of Sciences of the United States of America 92, 9141-5. 

Zarranz J. J., Alegre J., Gomez-Esteban J. C., et al. (2004) The new mutation, E46K, of alpha-
synuclein causes Parkinson and Lewy body dementia. Annals of neurology 55, 164-73. 

 

  



2012 PP1 interactomes as a means of characterizing protein functions 

 

198 Doutoramento em Bioquímica 

 

Supplementary data 

 

Table 1 |  List of primers used in the qRT-PCR. 

Primer Gene Sequence Positions Acession number 

Mus musculus, Synphilin 1 - FW 

Sncaip 

ACCAACACCCAAGGCACGGAAG 1093 – 1114 

NM_001199151.1 

Mus musculus, Synphilin 1 - RV TGCAGCTAGGTGTGGCAAGAGC 1200 – 1179 

Mus musculus, Synphilin 1A - FW GACAGATCAGAATGGTCAGCTGGAG 307 – 331 

Mus musculus, Synphilin 1A - RV TTCCTGCCCATAGCAACCTGCG 433 – 412 
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Table 2 |  List of in common interacting proteins of PP1, Synphilin-1 and α-Synuclein previously 

identified in PP1 YTH screens and present in the databases searched. 

Protein Interactions Database 

A30 
SNCA STRING 

SNCAIP STRING 

ADRBK1 
SNCA 

STRING             
HPRD        
Reactome  

SNCAIP STRING 

ATP13A2 
SNCA STRING 
SNCAIP STRING 

ATXN2 
SNCA STRING  

PP1 STRING 

ATXN3 
SNCA STRING  
SNCAIP STRING 

BAD 

SNCA 

STRING                 
HPRD            
BioGrid    
Reactome              
iRefIndex             
KEGG PATHWAY 

PP1 
IntAct            
HPRD              
STRING 

BAX 
SNCA 

STRING                 
BioGrid                   
Reactome             
 iRefIndex 

PP1 
InnateDB          
HPRD 

BCL2L1 

SNCA 
HPRD                 
STRING                  
Reactome  

PP1 

BioGrid             
IntAct             
STRING            
HPRD               
APID 
PINA 

CALM1 
SNCA 

STRING                      
BioGrid                       
HPRD                      
 iRefIndex                 
KEGG PATHWAYS           
ophid  

PP1 
STRING 
Reactome 

CASP3 
SNCA STRING 
SNCAIP STRING 

CCL20 
SNCA STRING  

SNCAIP STRING 

CDK4 SNCA MINT  
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Protein Interactions Database 

PP1 

APID 
IntAct 
PINA 
Reactome 

CDK5 
SNCA STRING  
SNCAIP STRING  
PP1 Reactome 

CDK5R1 
SNCA STRING  
PP1 Y2H-PP1g2 

CLTC 
SNCA 

STRING              
BioGrid    

PP1 
Y2H-PP1a     
Y2H-PP1g1         

CSNK2A1 

SNCA 
HPRD             
STRING     
Reactome  

SNCAIP 
STRING      
iRefIndex      
STRING  

CSNK2A2 
SNCA 

STRING               
HPRD               
 iRefIndex 

SNCAIP STRING 

CSNK2B 
SNCA STRING 

SNCAIP 
APID              
STRING 

CYP2D6 
SNCA STRING 

SNCAIP STRING 

CYP2D7P1 
SNCA STRING 
SNCAIP STRING 

DBNDD2 
SNCA STRING  
PP1 Y2H-PP1g2 

DRD2 
SNCA STRING 
SNCAIP STRING 

EPB49 
SNCA 

STRING                      
BioGrid                                     
iRefIndex                 

PP1 Y2H-PP1g2 

FBXO7 
SNCA STRING 
SNCAIP STRING 

FGR 
SNCA 

STRING               
HPRD               
Reactome              
iRefIndex 

PP1 STRING 

G5A 
SNCA STRING 
SNCAIP STRING 

GAK 
SNCA STRING 
SNCAIP STRING 

GBA 
SNCA STRING 
SNCAIP STRING 

GIGYF2 
SNCA STRING 
SNCAIP STRING 

GLO1 SNCA STRING  
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Protein Interactions Database 

PP1 STRING 

GPR37 
SNCA STRING 
SNCAIP STRING 

GSK3A 
SNCA STRING 

SNCAIP STRING  
PP1 STRING 

GSK3B 

SNCA MINT  

SNCAIP 

STRING                    
APID                      
Reactome                      
iRefIndex 

PP1 
STRING    
BioGrid             
Reactome            

GSTO1 
SNCA STRING 

SNCAIP STRING 

GSTO2 
SNCA STRING 
SNCAIP STRING 

HTRA2 
SNCA STRING 
SNCAIP STRING 

HTT 
SNCA 

STRING               
MINT  

SNCAIP STRING 

IAPP 
SNCA STRING 
SNCAIP STRING 

JPH3 
SNCA STRING  
PP1 Y2H-PP1a 

LRRK2 
SNCA 

BioGrid         
STRING 

SNCAIP STRING 

MAP1LC3A 
SNCA 

STRING               
IntAct  

PP1 
IntAct 
PINA 

MAPK1 

SNCA 

STRING                 
 HPRD               
BioGrid                
Reactome              
KEGG PATHWAYS 

PP1 
HPRD                       
Reactome                 
STRING 

MAPK3 

SNCA 
STRING            
BioGrid               
KEGG PATHWAYS 

PP1 
HPRD         
Reactome              
STRING 

MAPT SNCA 

STRING            
HPRD                   
MINT            
BioGrid                 
iRefIndex                
ophid  



2012 PP1 interactomes as a means of characterizing protein functions 

 

202 Doutoramento em Bioquímica 

 

Protein Interactions Database 

SNCAIP STRING 

NAPEPLD 
SNCA STRING  
PP1 Y2H-PP1g1 

NDUFB11 
SNCA STRING 

SNCAIP STRING 

NLRP1 
SNCA STRING 
SNCAIP STRING 

PACRG 
SNCA STRING 
SNCAIP STRING 

PARK2 

SNCA 

Spike                                
STRING              
BioGrid                
HPRD                   
iRefIndex                
KEGG PATHWAYS   
ophid  

SNCAIP 

Spike                  
APID                
STRING              
BioGrid   

PARK7 
SNCA 

STRING           
Reactome             
InnateDB              
iRefIndex            
KEGG PATHWAYS 

SNCAIP STRING 

PICK1 
SNCA STRING  
SNCAIP STRING 

PIN1 
SNCA 

STRING         
 iRefIndex 

SNCAIP 
STRING          
iRefIndex 

PINK1 
SNCA STRING  
PP1 Y2H-PP1g2 

PLD2 
SNCA 

STRING     
Reactome  

SNCAIP STRING 

PPP1R1B 

SNCA STRING  

PP1 
HPRD            
Reactome             
STRING 

PPP2R5D 
SNCA 

STRING               
Reactome  

PP1 
STRING 
Reactome 

PRKCD 
SNCA 

STRING               
Reactome  

PP1 HPRD 

PRKCE 
SNCA 

STRING                 
HPRD  

PP1 STRING 

PSMA1 
SNCA Reactome 
SNCAIP Reactome 

PSMA2 SNCA Reactome 
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Protein Interactions Database 

SNCAIP Reactome 

PSMA3 
SNCA Reactome 
SNCAIP Reactome 

PSMA4 
SNCA Reactome 

SNCAIP Reactome 

PSMA5 
SNCA Reactome 
SNCAIP Reactome 

PSMA6 
SNCA Reactome  
SNCAIP Reactome 

PSMA8 
SNCA Reactome 

SNCAIP Reactome 

PSMB1 
SNCA Reactome 
SNCAIP Reactome 

PSMB10 
SNCA Reactome 
SNCAIP Reactome 

PSMB3 
SNCA Reactome 

SNCAIP Reactome 

PSMB7 
SNCA Reactome 
SNCAIP Reactome 

PTEN 

SNCA STRING  

PP1 

InnateDB      
IntAct             
Reactome      
HPRD 

RAB1A 
SNCA STRING  

SNCAIP STRING 

RELN 
SNCA STRING 
SNCAIP STRING 

RNF19A 
SNCA STRING 

SNCAIP 
APID               
STRING 

RNF31 
SNCA STRING 

SNCAIP STRING 

SEPT2 
SNCA 

BioGrid         
iRefIndex    
STRING  

SNCAIP STRING 

SEPT4 

SNCA 
BioGrid         
STRING          
iRefIndex 

SNCAIP 
APID              
STRING      
iRefIndex 

SEPT5 
SNCA STRING 

SNCAIP STRING 

SEPT6 
SNCA STRING 
SNCAIP STRING 

SH2D3C 
SNCAIP 

BioGrid                  
APID              
MINT              
Spike 

PP1 STRING 

SIAH1 SNCA STRING 
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Protein Interactions Database 

SNCAIP 
APID               
STRING             
iRefIndex 

SIAH2 

SNCA 
STRING              
BioGrid                 
iRefIndex 

SNCAIP 
STRING                    
iRefIndex 

PP1 STRING 

SIRT2 
SNCA STRING  
SNCAIP STRING 
PP1 Reactome 

SLC18A2 
SNCA STRING  
PP1 STRING 

SLC6A3 
SNCA 

STRING          
Reactome     

SNCAIP STRING 

SNCB 
SNCA 

STRING               
HPRD                  
BioGrid                     
iRefIndex             
Reactome               
ophid  

SNCAIP STRING 

SPTBN1 
SNCA IntAct  
PP1 Y2H-PP1g2 

SSRP1 
SNCA STRING 

SNCAIP STRING 

ST13 
SNCA STRING  
PP1 STRING 

STUB1 
SNCA 

STRING           
Reactome  

SNCAIP STRING 

SUCLA2 
SNCA STRING 

SNCAIP STRING 

SUMO1 
SNCA STRING  
PP1 STRING 

SUPT16H 
SNCA STRING 
SNCAIP STRING 

SYP 
SNCA STRING 

SNCAIP STRING 

SYT11 
SNCA STRING 
SNCAIP STRING 

TH 
SNCA 

HPRD             
STRING     
Reactome           
iRefIndex                   
KEGG PATHWAYS 

SNCAIP STRING 

THY1 
SNCA STRING  

PP1 Y2H-PP1g2 

UBA52 
SNCA STRING 
SNCAIP STRING 
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Protein Interactions Database 

UBB 
SNCA 

STRING             
KEGG PATHWAYS  

SNCAIP 
STRING     
iRefIndex 

UBE2L3 
SNCA 

STRING      
Reactome        
KEGG PATHWAYS 

SNCAIP 
STRING     
Reactome 

UBE2L6 
SNCA Reactome 
SNCAIP Reactome 

UCHL1 
SNCA 

STRING              
KEGG PATHWAYS     
Reactome               
ophid  

SNCAIP STRING 

YWHAQ 
SNCA 

STRING                  
Reactome 

PP1 STRING 
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Table 3 |  Expression levels of mRNA of Synphilin-1 isoforms. Isolated cell fractions were 

spermatocytes (Spc), round spermatids (rSpt) and elongated spermatids (eSpd). Relative expression 

values were calculated by the ∆∆ Ct-method. Increased mRNA expression is indicated by orange shading 

and decreased expression levels by blue shading. Light shading indicates alterations above 1.5-fold or 

below 0.75-fold and intense shading indicates changes in expression levels of more than 2-fold or below 

0.5-fold  

Gene Isoforms Spc rSpd elSpd Hippocampus 

Sncaip 
Synphilin1 1,015 1,647 0,563 0,005 

Synphilin1A 1,153 1,504 0,608 0,006 
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Future Work 

 

|  Taperin 

Taperin was shown to be a PP1α and γ binding protein, in brain and testis, and to 

interfere with actin dynamics in the cell, on a PP1 binding dependent way. Nonetheless, 

it still keeps to be establish the mechanism by which taperin regulates actin signaling. It 

would be important to determine if another actin binding and/or PP1 binding protein is 

involved in the process of actin depolimerization and the function of the complex in the 

nucleus. It would be interesting: 

1|  To determine if both forms of taperin, resulting from cleavage, are functional 

and if they correspond to different pools of taperin in the cell (nuclear and 

cytoplasmic). A taperin construct with an N-terminal tag would be usefull. 

2 | To determine the subcellular localization of Taperin in neuronal cell lines and 

cortical/hippocampal neurons and compare it to that of actin and PP1 isoforms. 

Once, in another study (Ferrar, 2012), taperin was shown to bind preferentially 

PP1α over PP1γ1. The same can be done for human sperm samples and 

spermatogonia cell lines. In sperm it is also necessary to analyze 

Taperin/PP1/actin co-localization (possibly in the acrosome). Analyzing taperin 

in capacitated sperm would be also important; since it may have a role in 

capacitation and acrosome reaction, in parallel with PP1 and actin. 

3 | To immunoprecipitate Taperin and look for actin and PP1 as a confirmation of 

direct interactions with actin in the formatiom of the tri-complex. 

4 | To determine the effect of known PP1 inhibitors like Inhibitor-1, Inhibitor-2, 

okadaic acid, microcystin, cantharidin, etc., and PP1 knockdown (e.g. RNAi) on 

PP1/Taperin/actin complex. 

5 | To study the PP1/Taperin complex, Taperin can be isolated by 

immunoprecipitation, using either specific antibodies or constructs, and assay 

the associated PP1 activity. This method will also allow to study whether the 

activity of the complex changes in response to different signals and/or cellular 

conditions (like alterations in actin polimerization/depolimerization). 
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6 | To determine the action of Taperin in actin and cytoskeleton. For that several 

assays could be performed: F-actin-binding and F-actin-bundling activity; Actin 

dynamics and Single filament (Kits available commercially). This assays were 

already performed for Phostensin, a protein which shows some homology with 

Taperin, and that is also a PP1 binding and cytoskeleton targeting protein (Kao, 

2007;  Lai, 2009;  Ferrar, 2012). 

 

 

|  Synphilin-1A 

The α-Synuclein interacting protein Synphilin-1A, a neurotoxic and aggregate prone 

isoform of Synphilin-1, was also found to bind PP1 in brain by the YTH technique. 

Both co-localize in aggregates formed in cells overexpressing Synphilin-1A. It is 

implicated in the process of neurodegeneration by protein aggregation and Lewy Bodies 

formation. α-Synuclein and Synphilin-1 interact with several kinases and are 

phosphorylated during the process of protein aggregation and fibrilation in α-

synucleinopathies. In addition to being phosphorylated, α-synuclein is 

monoubiquitylated in Lewy Bodies. Phosphorylation modulates the ubiquitylation and 

aggregational properties of various proteins. The interaction of Synphilin-1A with 

different proteins involved in Parkinson`s Disease (PD) suggests that it may assemble 

these proteins into a multi-protein complex. In order to further reveal the importance of 

PP1/Synphilin-1A interaction in this process, it is essencial:  

1 | To immunoprecipitate Synphilin-1A and look for PP1 different isoforms and 

immunoprecipitate α-Synuclein and look for Synphilin-1A and PP1; in order to 

further validate the interaction. For that, specific antibodies would be necessary. 

2 | To evaluate Synphilin-1A and PP1 co-aggregation, in neuronal dopaminergic 

cell lines (e.g. SH-SY5Y, PC12) and primary cortical/hippocampal neurons, and 

evaluate also the presence of α-Synuclein. For this end, a model of Lentivirus 

infection is already established, but it will be necessary to express Synphilin-1A 

fused with a tag, since the antibody available in the laboratory does not work 

properly. 
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3 | To evaluate Synphilin-1A and PP1 co-aggregation in cellular models of Lewy 

Body-like inclusions formation, like co-transfection of α-synuclein and 

Synphilin-1 and proteasome inhibition. Also, try to isolate the aggregates and 

analyze the presence of PP1. 

4 | To compare the expression and localization of the PP1 and the formation of the 

complex PP1/Synphilin-1A in normal versus disease condition (cellular models 

of PD), and assay the associated PP1 activity. This method will also allow to 

study whether the activity of the complex changes in response to different signals 

and/or cellular conditions (like in disease condition). 

5 | To determine the effect of known PP1 inhibitors like Inhibitor-1, Inhibitor-2, 

okadaic acid, microcystin, cantharidin, etc. and PP1 downregulation (e.g. RNAi) 

on PP1/Synphilin-1A-αSynuclein complex. 

6 | To identify phosphorylatable residues in Synphilin-1 and Synphilin-1A, by 

immunoprecipitation from rat brain/cell lines (control and PD model) followed 

by MS analysis in order to define their phosphorylation profiles. 

7 | To downregulate Synphilin-1/1A and PP1 (e.g. RNAi) and subject the extracts to 

a Human Parkinson’s disease PCR array. 

8 | To study PP1/Synphilin-1A complex in sperm, by immunocolocalization analysis 

 and to immunoprecipitate Synphilin-1A from sperm/tetis and look for PP1 and 

 vice versa.  

 

The proposed experiments, in addition to the preliminary results here presented, will 

lead to a deep knowledge of the role of PP1/Taperin and PP1/Synphilin-1A complexes. 
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IV  |   CONCLUSION - PIPS AS THERAPEUTIC TARGETS 

 

 

PPIs have emerged as important drug targets for small molecules binding to hotspots on 

the protein contact surfaces, being a commonly observed situation when the small 

molecule acts as a direct mimic of one of the protein partners (Fry, 2008). Some small 

molecules bind strongly to the contact surface of the target protein, and with much 

higher efficiencies, than do the contact atoms of the natural protein partner (Wells, 

2007). 

Mapping and description of PPI networks is therefore a central task in the post-genomic 

era. A comprehensive analysis of PPIs will be crucial for a global understanding of the 

cellular proteome, and is therefore a major goal in systems biology (Auerbach, 2002). 

Indeed, the recent exploration of entire interactomes was a consequence of high-

throughput methodologies applied to the field of proteomics. These technologies are 

driving our understanding of protein interactomes and will be crucial to exploit their 

therapeutic potential (Suter, 2008). It is necessary to develop large-scale screens of a 

vast number of protein complexes and find putative small-molecule, peptide or 

antibodies binding sites overlapping with protein-protein binding sites. 

PP1 is a major protein Ser/Thr phosphatase with ubiquitous distribution and broad 

specificity in vitro, but tightly regulated in vivo. In fact, only in this way it can be 

implicated in such a huge number of cellular signaling events. PP1 interactome 

comprises already hundreds of PPIs, consisting of specific-isoform binding partners, 

tissue specific interactors and specific subcellular regulators. As described in the 

previous chapters, the interaction of the majority of PIPs with PP1 surface is through 

PP1 BMs. PP1 is involved in diverse pathologies being its interacting proteins appealing 

targets for therapeutic interventions, once the specificity is achieved through them. 

In this work a total of 263 PP1α, PPγ1 and PP1γ2 interacting proteins were identified by 

large scale YTH screens. A considerable number of those interactions were concluded 

to be novel, but also some already known PP1 interactors were detected, which confers 

reliability to the method used. It would be a hard and expensive task to try to 

characterize all the interactions obtained, so the strategy adopted was to integrate the 

interactions found to the ones available on PPIs databases. It became clear that PP1 
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interactome is vast and its cellular functions diverse. Two proteins, Taperin and 

Synphilin-1A, found in the YTHs were selected for a more in depth characterization of 

the interaction. For both the interaction with PP1 was found to be dependent on the PP1 

BM RVxF, exemplifying how targeting protein contact points can be a good strategy.  

Taperin was, until very recently, a completely uncharacterized protein; it was the most 

abundant clone in the PP1α brain YTH and was also identified in a testis PP1γ1 YTH 

(Fardilha, 2011). Taperin binds PP1 in the cells and translocates between cytoplasm and 

nucleus and in, the nucleus, seems to be implicated in DNA damage processes (Ferrar, 

2012). Also, Taperin was found to be cleaved in cells into two fragments, although, the 

functional relevance of this cleavage is still unknown. Taperin localizes in the cell 

membrane with PP1 and actin and affects actin dynamics, in fact, a mutant form of 

taperin accumulates with actin in the nucleus and this seems to be dependent on PP1 

binding. 

Synphilin-1A is a protein implicated in PD through its role in LBs formation together 

with α-Synuclein. It was found to form protein aggregates when overexpressed in cells 

and to co-localize with PP1 on those structures. Both, Synphilin-1A and Taperin, were 

found to be expressed not only in brain but also in testis and sperm. 

Future work will proceed aiming to further unravel Taperin and Synphilin-1A 

physiological roles and modulate their interaction with PP1 for, not only, research 

proposes but also therapeutic if needed.  

  



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 215 

 

References 

 

Auerbach D., Thaminy S., Hottiger M. O. and Stagljar I. (2002) The post-genomic era 
of interactive proteomics: facts and perspectives. Proteomics 2, 611-23. 

Fardilha M., Esteves S. L., Korrodi-Gregorio L., et al. (2011) Identification of the 
human testis protein phosphatase 1 interactome. Biochemical pharmacology 82, 1403-
15. 

Ferrar T., Chamousset D., De Wever V., et al. (2012) Taperin (c9orf75), a mutated gene 
in nonsyndromic deafness, encodes a vertebrate specific, nuclear localized protein 
phosphatase one alpha (PP1α) docking protein. Biology Open 1, 128-139. 

Fry D. C. (2008) Drug-like inhibitors of protein-protein interactions: a structural 
examination of effective protein mimicry. Current protein & peptide science 9, 240-7. 

Suter B., Kittanakom S. and Stagljar I. (2008) Two-hybrid technologies in proteomics 
research. Current opinion in biotechnology 19, 316-23. 

Wells J. A. and McClendon C. L. (2007) Reaching for high-hanging fruit in drug 
discovery at protein-protein interfaces. Nature 450, 1001-1009.  



2012 PP1 interactomes as a means of characterizing protein functions 

 

216 Doutoramento em Bioquímica 

 

  



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

Manuscript 5 - The Physiological Relevance

and its Interacting Proteins to Health and 

 

PP1 interactomes as a means of characterizing protein functions 

The Physiological Relevance of Protein Ph

and its Interacting Proteins to Health and Disease 

2012 

217 

of Protein Phosphatase 1 

 



2012 

 

218 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

219 

 



2012 

 

220 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

221 

 



2012 

 

222 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

223 

 



2012 

 

224 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

225 

 



2012 

 

226 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

227 

 



2012 

 

228 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

229 

 



2012 

 

230 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

231 

 



2012 

 

232 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

233 

 



2012 

 

234 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

235 

 



2012 

 

236 

 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions

 

Centro de Biologia Celular 

 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions 2012 

237 

 



2012 

 

238 

 

 

 

 

PP1 interactomes as a means of characterizing protein functions

Doutoramento em Bioquímica

 

PP1 interactomes as a means of characterizing protein functions 

Doutoramento em Bioquímica 

 



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 239 

 

 

 

 

 

 

 

|  Appendix 

  



2012 PP1 interactomes as a means of characterizing protein functions 

 

240 Doutoramento em Bioquímica 

 

  



PP1 interactomes as a means of characterizing protein functions 2012 

 

Centro de Biologia Celular 241 

 

APPENDIX 

 

 

I. Culture Media and solutions 

 

Bacteria Media: 

 

LB (Luria-Bertani) Medium 

To 950 mL of deionised H2O add: 

LB 25 g 

Agar 20 g (for plates only) 

Shake until the solutes have dissolved. Adjust the volume of the solution to 1 liter with 
deionised H2O. Sterilize by autoclaving. 

 

SOB Medium 

To 950 mL of deionised H2O add: 

25,5 g SOB Broth 

Shake until the solutes have dissolved. Add 10mL of a 250mM KCl (prepared by dissolving 
1.86g of KCl in 100 mL of deionised H2O). Adjust the pH to 7.0 with 5N NaOH. Adjust the 
volume of the solution to 1 liter with deionised H2O. Sterilize by autoclaving. Just prior to use 
add 5 mL of a sterile solution of 2M MgCl2 (prepared by dissolving 19 g of MgCl2 in 90 mL of 
deionised H2O; adjust the volume of the solution to 1000 mL with deionised H2O and sterilize 
by autoclaving). 

 

SOC Medium 

SOC is identical to SOB except that it contains 20 mM glucose. After the SOB medium has 
been autoclaved, allow it to cool to 60ºC and add 20mL of a sterile 1M glucose (this solution is 
made by dissolving 18 g of glucose in 90 mL of deionised H2O; after the sugar has dissolved, 
adjust the volume of the solution to 1 L with deionised H2O and sterilize by filtration through a 
0.22-micron filter). 

 

Yeast Media: 

 

SD synthetic medium 

To 800mL of deionised H2O add:  
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6.7g Yeast nitrogen base without amino acids (DIFCO)  

20g Agar (for plates only) 

Shake until the solutes have dissolved. Adjust the volume to 850mL with deionised H2O and 
sterilize by autoclaving. Allow medium to cool to 60ºC and add glucose to 2% (50mL of a 
sterile 40% stock solution) and 100mL of the appropriate 10X dropout solution. 

 

10X dropout solution (DO 10X) 

This solution contains all but one or more of the following components: 

 

             10X concentration (mg/L)    SIGMA # 

L-Isoleucine     300       I-7383 

L-Valine     1500      V-0500 

L-Adenine hemisulfate salt   200      A-9126 

L-Arginine HCl     200      A-5131 

L-Histidine HCl monohydrate                 200      H-9511 

L-Leucine     1000      L-1512 

L-Lysine HCl     300      L-1262 

L-Methionine     200      M-9625 

L-Phenylalanine    500      P-5030 

L-Threonine     2000      T-8625 

L-Tryptophan                   200      T-0254 

L-Tyrosine     300      T-3754 

L-Uracil     200      U-0750 

10X dropout supplements may be autoclaved and stored for up to 1 year. 

 

YPD medium 

To 950mL of deionised H2O add:  

50 g YPD 

20 g Agar (for plates only) 

Shake until the solutes have dissolved. Adjust the volume to 1 L with deionised H2O and 
sterilize by autoclaving. Allow medium to cool to 60ºC and add glucose to 2% (50mL of a 
sterile 40% stock solution).  

 

2X YPDA 

Prepare YPD as above. After the autoclaved medium has cooled to 55ºC add 15mL of a 0.2% 
adenine hemisulfate solution per liter of medium (final concentration is 0.003%). 
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Solutions 

 

50X TAE Buffer 

242 g Tris base 

57.1 mL glacial acetic acid 

100 mL 0.5M EDTA (pH 8.0) 

 

TE Buffer (pH 7.5) 

10 mM Tris-HCl (pH 7.5) 

1 mM EDTA, pH 8.0 

 

Loading Buffer (LB) 

0.25% bromophenol blue 

30% glycerol 

 

STET 

8% Sucrose 

5% Triton X-100 

50 mM Tris-HCl (pH 8,5) 

50 mM EDTA 

 

Competent Cell Solutions: 

Solution I (1L) 

9.9 g MnCl2.4H2O 

1.5 g CaCl2.2H2O 

150 g glycerol 

30 mL KHAc 1M; 

adjust pH to 5.8 with HAc, filter through a 0.2µm filter and store at 4ºC 

 

Solution II (1L) 

20 mL 0.5M MOPS (pH 6.8) 

1.2 g RbCl 

11g CaCl2.2H2O 

150 g glycerol;  

filter through a 0.2µm filter and store at 4ºC  
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Miniprep Solutions: 

Solution I 

50 mM glucose 

25 mM Tris.HCl (pH 8.0) 

10 mM EDTA 

 

Solution II 

0.2 N NaOH 

1% SDS  

 

Solution III 

3 M potassium acetate 

2 M glacial acetic acid 

 

Midiprep Solutions: 

Cell Resuspension Solution 

50 mM Tris-HCl (pH 7.5) 

10 mM EDTA 

100 µg/mL RNAase A  

 

Cell Lysis Solution  

0.2 M NaOH 

1% SDS 

 

Neutralization Solution 

4.09 M Guanidine hydrochloride (pH 4.8) 

759 mM potassium acetate  

2.12 M Glacial acetic acid 

 

Column Wash Solution 

60 mM potassium acetate 

8.3 mM Tris-HCl (pH 7.5) 

0.04 mM EDTA 

60 % ethanol 

 

SDS-PAGE and Immunobloting Solutions: 

LGB (Lower Gel Buffer) 
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To 900 mL of deionised H2O add:  

181.65 g Tris  

4 g SDS  

Mix until the solutes have dissolved. Adjust the pH to 8.9 and adjust the volume to 1L with 
deionised H2O. 

 

UGB (Upper Gel Buffer) 

To 900 mL of deionised H2O add:  

75.69 g Tris  

Mix until the solute has dissolved. Adjust the pH to 6.8 and adjust the volume to 1L with 
deionised H2O. 

 

30%Acrylamide/0.8% Bisacrylamide 

To 70 mL of deionised H2O add: 

29.2 g Acrylamide  

0.8 g Bisacrylamide  

Mix until the solutes have dissolved. Adjust the volume to 100mL with deionised H2O. Store at 
4ºC. 

 

Loading Gel Buffer 

250 mM Tris-HCl (pH 6.8) 

8% SDS 

40% Glycerol 

2% 2-mercaptoethanol 

0.01% Bromophenol blue 

 

1X Running Buffer 

25 mM Tris-HCl (pH8.3) 

250 mM Glycine 

0.1% SDS 

 

1X Transfer buffer 

25 mM Tris-HCl (pH8.3) 

192 mM Glycine 

20% Methanol 

 

1X TBS  

10 mM Tris-HCl (pH 8.0) 
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150 mM NaCl 

Adjust the pH to 8.0 with HCl and adjust the volume to 1L with deionized H2O 

 

1X TBST 

10 mM Tris-HCl (pH 8.0) 

150 mM NaCl 

0.05% Tween 

Adjust the pH to 8.0 with HCl and adjust the volume to 1L with deionized H2O 

 

Membrane Stripping Solution 

2% SDS 

62.5 mM Tris-Hcl (pH= 6.7) 

100 mM  β-Mercaptoethanol 

 

Yeast Two-Hybrid Solutions: 

Yeast plasmid rescue – Breaking buffer 

2 % Triton X-100 

1 % SDS 

100 mM NaCl 

10M Tris-HCl (pH 8.0) 

 

Yeast transformation 

- PEG/LiAc (polyethylene glycol 4000/lithium acetate) 

   Final Conc.   To prepare 10 ml of solution 

PEG 4000   40%    8 ml of 50% PEG 

TE buffer   1X    1 ml of 10X TE Buffer 

LiAC    1X    1 ml of 1 M LiAc (10X) 

 

Solutions for preparation of yeast protein extracts 

- Protease inhibitor solution: always prepare solution fresh just before using. Place on ice to 
prechill.  

To prepare 688µl add in a microfuge tube: 

66µl Pepstatin A (1 mg/mL stock solution in DMSO) 

2µl Leupeptin (10.5 mM stock solution) 

500µl Benzamidine (200 mM stock solution) 

120µl Aprotinin (2.1 mg/mL stock solution) 
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- PMSF (phenylmethyl-sulfonyl fluoride) stock solution (100X) 

Dissolve 0.1742g of PMSF in 10mL isopropanol. Wrap tube in foil and store at RT. 

 

- Cracking buffer stock solution 

To 80mL of deionised H2O add:  

48g Urea  

5g SDS 

4mL 1M Tris-HCl (pH6.8) 

20µl 0.5M EDTA  

40mg Bromophenol blue  

Mix until the solutes have dissolved. Adjust the volume to 100mL with deionised H2O. 

 

- Cracking buffer 

To prepare 1.13mL add in a microfuge tube: 

1 mL Cracking buffer stock solution (recipe above) 

10 µl β-mercaptoethanol  

70 µl Protease inhibitor solution (recipe above) 

50µl 100X PMSF stock solution 

 

Immunoprecipitation solutions: 

Lysis Buffer 

50 mM Tris-HCl (pH 8) 

120 mM NaCl 

4% CHAPS 

 

Lysis Buffer + Protease inhibitors 

Add to 4 mL of Lysis buffer the following quantities for a final volume of 5 mL: 

23,8 µl Pepstatin A (1 mg/mL stock solution in DMSO) 

0,72 µl Leupeptin (5 mg/mL stock solution) 

180 µl Benzamidine (200 mM stock solution) 

43,2 µl Aprotinin (2.1 mg/mL stock solution) 

176 µl PMSF 100X 

 

Washing solution 

50 mM Tris-HCl  

120 mM NaCl  
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Cell Culture Solutions and Immunocytochemistry:  

PBS (1x) 

For a final volume of 500 mL, dissolve one pack of BupH Modified Dulbecco’s Phosphate 
Buffered Saline Pack (Pierce) in deionised H2O. Final composition: 

8 mM Sodium Phosphate  

2 mM Potassium Phosphate  

40 mM NaCl  

10 mM KCl  

Sterilize by filtering through a 0.2 µm filter and store at 4 ºC 

 

1 mg/mL Poly-L-ornithine solution (10x) 

To a final volume of 100 mL, dissolve in deionised H2O 100 mg of poly-L-ornithine (Sigma-
Aldrich, Portugal).  

 

4% Paraformaldehyde Fixative solution 

For a final volume of 100 mL, add 4 g of paraformaldehyde to 25 mL deionised H2O. Dissolve 
by heating the mixture at 58 ºC while stirring. Add 1-2 drops of 1 M NaOH to clarify the 
solution and filter (0.2 µm).  

Add 50 mL of 2X PBS and adjust the volume to 100 mL with deionised H2O. 

 

Complete MEM + GLUTAMAX 

For a final volume of 500 mL, add:  

50 mL (10% v/v) Fetal Bovine Serum (FBS) (Gibco BRL, Invitrogen)  

5 mL Non-Essential aminoacids (100x) 

Antibiotics (5mL) 

100 U/mL penicillin and 100 mg/mL streptomycin  

 

MEM + GLUTAMAX Components     

Amino Acids:                                                   Concentration (mg/L) 

L-Alanyl-Glutamine 406 

L-Arginine hydrochloride 126 

L-Cystine 24 

L-Histidine hydrochloride 42 

L-Isoleucine 52 

L-Leucine 52 

L-Lysine hydrochloride 73 

L-Methionine 15 

L-Phenylalanine 32 
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L-Threonine 48 

L-Tyrosine 10 

L-Valine 46 

Vitamins: 

Choline chloride 1 

D-Calcium pantothenate 1 

Folic Acid 1 

Niacinamide 1 

Riboflavin 0.1 

Thiamine hydrochloride 1 

i-Inositol 2 

Inorganic Salts: 

Calcium Chloride (CaCl2.2H2O) 264 

Magnesium Sulfate (MgSO4.7H2O) 200 

Potassium Chloride 400 

Sodium Bicarbonate 2200 

Sodium Chloride 6800 

Sodium Phosphate monobasic 
(NaH2PO4.2H2O) 

158 

Other components: 

D-Glucose 1000 

Phenol Red 10 

 

DMEM medium 

For a final volume of 1L, dissolve one pack of DMEM powder (with L-glutamine and 4500mg 
glucose/L, Sigma Aldrich) in deionised H2O and add: 

- NaHCO3 (Sigma-Aldrich)   3.7g 

Adjust to pH 7.4. Sterilize by filtering through a 0,2um filter and store at 4ºC. 

 

Complete DMEM 

For a final volume of 1L, when preparing DMEM medium adjust to pH 7.4 and before 
sterilizing add: 

100 mL (10% v/v) Fetal Bovine Serum (FBS) (Gibco BRL, Invitrogen)  

Antibiotics (5mL) 

100 U/mL penicillin 

100 mg/mL streptomycin  

 

 



2012 PP1 interactomes as a means of characterizing protein functions 

 

250 Doutoramento em Bioquímica 

 

DMEM Components 

Amino Acids:                                                   Concentration (mg/L) 

L-Arginine hydrochloride 84 

L-Cystine 62,6 

L-Glutamine 584 

Glycine 30 

L-Histidine hydrochloride 42 

L-Isoleucine 105 

L-Leucine 105 

L-Lysine hydrochloride 146 

L-Methionine 30 

L-Phenylalanine 66 

L-Serine 42 

L-Threonine 95 

L-Tryptophan 16 

L-Tyrosine 103,79 

L-Valine 94 

Vitamins: 

Choline chloride 4 

D-Calcium pantothenate 4 

Folic Acid 4 

Niacinamide 4 

Riboflavin 0,4 

Thiamine hydrochloride 4 

Myo-Inositol 7,2 

Inorganic Salts: 

Calcium Chloride (CaCl2.2H2O) 200 

Magnesium Sulfate (MgSO4.7H2O) 97,67 

Potassium Chloride 400 

Sodium Chloride 6400 

Sodium Phosphate monobasic 
(NaH2PO4.2H2O) 

109 

Other components: 

D-Glucose 4500 

Phenol Red 15,9 
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II. Bacteria and Yeast Strains 

 

 

- E. coli XL1-blue: recA endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F’ proAB lacZ∆M15 

Tn10(Tetr)] 

 

- Rosetta(DE3)pLysS: F- ompT hsdSB(RB
- mB

-) gal dcm λ(DE3 (lacI lacUV5-T7 gene 1 ind1 

sam7 nin5) pLysSRARE (CamR) 

 

- S. cerevisiae AH109: MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4∆, gal 80∆, 

LYS2:: GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-

lacZ, MEL1 

 

- S. cerevisiae Y187: MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4∆, met_, 

gal 80∆, URA3::GAL1UAS-GAL1TATA-lacZ, MEL1 
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III. Plasmids 

 

 

 

 

 

pACT2 (Clontech) map and MCS. Unique sites are coloured blue. pACT2 is used to generate a hybrid 

containing the GAL4 AD, an epitope tag and a protein encoded by a cDNA in a fusion library. The hybrid 

protein is expressed at medium levels in yeast host cells from an enhanced, truncated ADH1 promoter 

and is target to the nucleus by the SV40 T-antigen nuclear localization sequence. pACT2 contains the 

LEU2 gene for selection in Leu- auxotrophic yeast strains. 
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pAS2-1 (Clontech) map and MCS. Uniq

generate fusions of a bait protein with the GAL4 DNA

in yeast host cells from the full-length ADH1 promoter. The hybrid protein is target to t

by nuclear localization sequences. pAS2

strains. 
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by nuclear localization sequences. pAS2-1 contains the TRP1 gene for selection in Trp
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BD. The hybrid protein is expressed at high levels 

length ADH1 promoter. The hybrid protein is target to the yeast nucleus 

1 contains the TRP1 gene for selection in Trp- auxotrophic yeast 
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pTD1-1 map. pTD1-1 is a positive control plasmid that encodes a fusion of the SV40 large T-antigen 

(a.a. 87–708) and the GAL4 AD (a.a. 768–881). The SV40 large T-antigen cDNA (GenBank Locus 

SV4CG) was cloned into pACT2. The SV40 T-antigen insert was derived from the plasmid referenced in 

Li & Fields (1993); plasmid modification was performed at CLONTECH. pTD1-1 has not been 

sequenced and it is not known whether any of the sites are unique. 
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pVA3-1 map. pVA3-1 is a positive control plasmid that encodes a fusion of the murine p53 protein (a.a. 

72–390) and the GAL4 DNA-BD (a.a. 1–147). The murine p53 cDNA (GenBank Accession #K01700) was 

cloned into pAS1CYH2 (a precursor of pAS2-1). The p53 insert was derived from the plasmid described 

in Iwabuchi et al. (1993); plasmid modification was performed at CLONTECH. The Xba I site at bp 4763 

(†) is methylation sensitive. pVA3-1 has not been sequenced and it is not known whether any of the sites 

are unique. 
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pEGFP-N1 vector map and MCS (Clontech). This eukaryotic exppression vector was used to express 

GFPtag fusion protein mammalian cells. 
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IV. Primers 

 

Sequencing and subcloning 

Primer Sequence (5'->3') 

GAL4 AD  

Sequencing, FW 
TACCACTACAATGGATG  

GAL4 BD  

Sequencing, FW 
TCATCGGAAGAGAGTAG  

Amplimer 3’  

Sequencing, RV 
ATCGTAGATACTGAAAAACCCCGCAAGTTCAC                                                                                                           

pEGFP-N1-FW  

Sequencing, FW 
GTAGGCGTGTACGGTGGGAG 

pEGFP-N1-RV  

Sequencing, RV 
GCCGTCCAGCTCGACCAGG 

pT7 promotor-FW  

Sequencing, FW 

AATACGACTCACTATAG 

Tprn-GFP-Fw  

Subcloning in pEGFP vector 
CCCGGAATTCCGATGGAGACCATCCCCTTG 

Tprn-GFP-RV 

Subcloning in pEGFP vector 
ACGCGTCGACGTGAAATACAGGGCTGGCTC 

Sph1A-GFP-FW 

Subcloning in pEGFP vector 
CCCGCTCGAGATGACATATCTTATTCAG 

Sph1A-GFP-RV 

Subcloning in pEGFP vector 
ACGCGTCGACGCCAAGAAGAGTTCTTTTG 

pET-Sph1A-FW 

Subcloning in pET-28a vector 
ACGCGTCGACGCATGACATATCTTATTCAG 

pET-Sph1A-RV 

Subcloning in pET-28a vector 
GAATGCGGCCGCTTACAAGAAGAGTTCTTTT 
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qRT-PCR Primers 

Taperin 1 (TPRN)  

PCR template used: NM_175286.4 

Region: 1-2825 

 Sequence (5'->3') Strand Length Start Stop Tm GC% 
Self 

comp. 

Self 3' 

comp. 

Forward 

primer 
ACCGAAGGAGGTCATGCTCACAC Plus 23 2262 2284 58.65 56.52 4.00 0.00 

Reverse 

primer 
TTGACTGGCTTCCAGGACCACC Minus 22 2404 2383 58.43 59.09 5.00 1.00 

Product 

length 
143 

Exon 

junction 
2277/2278 (forward primer) 

Taperin 3 (TPRN)  

PCR template used: NM_175286.4 (plus the Taperin 3 corresponding region of mouse) 

Region: 2260-2375 

Note: forward primer was only allowed to start after 2260 and till 2290 and reverse primer was only allowed to start after 2345 and 
till 2375 

 Sequence (5'->3') Strand Length Start Stop Tm GC% 
Self 

comp. 

Self 3' 

comp. 

Forward 

primer 
GAAGGAGGTCATGGTAAGCCAGGTG Plus 25 2265 2289 58.81 56.00 4.00 2.00 

Reverse 

primer 
GCAGGTGTGAGCTTATCCAGGCTTC Minus 25 2373 2349 59.61 56.00 4.00 0.00 

Product 

length 
109 

Exon 

junction 

2273/2274 (forward primer) 

2361/2362 (reverse primer) 
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qRT-PCR Primers 

Synphilin 1 (SNCAIP)  

PCR template used: NM_001199151.1 

Region (common to all isoforms): 317-1365 

 Sequence (5'->3') 
Stran

d 
Length Start Stop Tm GC% 

Self 

comp. 

Self 3' 

comp. 

Forward 

primer 
ACCAACACCCAAGGCACGGAAG Plus 22 1093 1114 59.54 59.09 2.00 0.00 

Reverse 

primer 
TGCAGCTAGGTGTGGCAAGAGC Minus 22 1200 1179 59.41 59.09 6.00 2.00 

Product 

length 
108 

Exon 

junction 
1185/1186 (reverse primer) 

Synphilin 1A  

PCR template used: NM_001199151.1 (without the Synphilin 1 corresponding region of mouse) 

Region: 217-417 

 Sequence (5'->3') 
Stran

d 

Lengt

h 
Start Stop Tm GC% 

Self 

comp. 

Self 3' 

comp. 

Forward 

primer 
GAAGGAGGTCATGGTAAGCCAGGTG Plus 25 2265 2289 58.81 56.00 4.00 2.00 

Reverse 

primer 
GCAGGTGTGAGCTTATCCAGGCTTC Minus 25 2373 2349 59.61 56.00 4.00 0.00 

Product 

length 
109 

Exon 

junction 

2273/2274 (forward primer) and 

2361/2362 (reverse primer) 

 

 

 

 


