

University of Bath

PHD

Automatic contouring by piecewise quadratic approximation.

Thomson, G. D.

Award date:
1984

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jul. 2021

https://researchportal.bath.ac.uk/en/studentthesis/automatic-contouring-by-piecewise-quadratic-approximation(9475a525-06e6-48aa-9673-537606e2bdd9).html

AUTOMATIC CONTOURING BY

PIECEWISE QUADRATIC APPROXIMATION

submitted by G.D.^homson

for the degree of Ph.D.

of the University of Bath

1984

COPYRIGHT

Attention is drawn to the fact that copyright of

this thesis rests with its author. This copy of the

thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright

rests with its author and that no quotation from the thesis

and no information derived from it may be published without

the prior written consent of the author.

This thesis may be made available for consultation

within the University Library and may be photocopied or

'Î * lent to other libraries for the purposes of consultation.

G.D. Thomson

ProQuest Number: U346394

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U346394

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

CONTENTS Page

SUMMARY (iii)

ACKNOWLEDGEMENTS

INTRODUCTION
(v)

1.1 Introduction to contouring; definitions and assumptions i
1.2 A word on interpolation methods 4
1.3 Contouring methods in the literature; 'contour following'

methods 8
1.4 Contouring by surface approximation 11

1.4.1 Piecewise linear contouring 11
1.4.2 Piecewise quadratic contouring 18

1.5 Summary of what follows in the thesis 25

2. A SEAMED QUADRATIC ELEMENT FOR CONTOURING 28
2.1 Introduction 28
2.2 A quadratic element on the line 30
2.3 Continuity and Uniqueness 31
2.4 Some expressions required for contouring 34
2.5 Application of the method: an introduction 37
2.6 Bounds over triangles, etc 41
2.7 Breakdown of the Implicit Function Theorem 48
2.8 Comparisons with cubic elements 55

3. THE CONICON PACKAGE 60
3.1 Introduction 60

3.1.1 Quadratic contouring routines 61
3.2 Producing a simple contour plot using CONICON 63
3.3 Minor features of the package 66

3.3.1 Gradient estimation 68
3.3.2 Automatic selection of contour heights 70
3.3.3 Automatic choice of label length 70

3.4 Linking contour segments 71
3.4.1 Data structure for linking contours 72
3.4.2 How conic sections are linked 76
3.4.3 Updating the array K3 78
3.4.4 Retrieval of information from XY 79
3.4.5 Garbage routine 80

3.5 Plotting and annotation of contours 81
3.6 Crosshatching 84

3.6.1 Creation of hatching styles 85
3.6.2 Intersections with contours 87
3.6.3 How algorithm A works 87
3.6.4 How algorithm B works 90
3.6.5 Algorithm A vs Algorithm B 92
3.6.6 Crosshatching in combination with annotation 93
3.6.7 Examples 94

3.7 Local suppression of contour plotting 96
3.8 Gradient contouring and marking of stationary points 99

(i)

Page
4. MISCELLANEOUS APPLICATIONS 106

4.1 Introduction 106
4.2 Contouring bivariate density estimates 107
4.3 Looking at likelihood functions 112
4.4 Contouring meteorological data 123
4.5 Plots of published data. 143

5. ERROR ANALYSIS 156
5.1 Introduction 156

5.1.1 Notation and Assumptions 156
5.1.2 Application of Taylor’s Theorem 157

5.2 Third order error functions 159
5.3 Bounds for error 167

5.3.1 Maximum error 167
5.3.2 Integrated square error 169

5.4 Discussion 170
5.4.1 Using bounds for error alone 171
5.4.2 Combining with measures of slope 175
5.4.3 Horizontal vs vertical error 182

5.5 Fourth order error functions 184

6. CONTOURING OVER LOCALLY ADAPTIVE GRIDS 192
6.1 Introduction 192
6.2 Computational implementation 193

6.2.1 Quad trees 193
6.2.2 Coding policy for elements 197
6.2.3 Data structure used in adaptive contouring 202
6.2.4 Incorporation in the CONICON framework 207

6.3 Splitting criteria based on maximum vertical error 209
6.3.1 Introduction 209
6.3.2 Use of true third order partial derivatives 213
6.3.3 Estimating third order partial derivatives 217

6.4 Splitting criteria based on horizontal error 225
6.4.1 Introduction 225
6.4.2 Combining vertical error with flatness

measurements 230
6.5 Discussion 239

7. A BRIEF COMPARISON OF 14 CONTOURING PACKAGES 246
7.1 Introduction 246
7.2 General purpose or ’mainstream' contouring packages 255
7.3 Packages for the oil exploration industry 264
7.4 Packages written for single organisations 273
7.5 Packages which specialise in a subset of the

contouring process 279

8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 282

REFERENCES 287

APPENDICES
(ii)

SUMMARY

In this thesis we introduce and develop a new method for the

automatic contouring of smooth surfaces, which produces high quality

results at relatively low cost.

We begin (Chapter 1) by reviewing the contouring methods in the

literature; serious limitations are revealed which appear to justify

a search for a new and better method. In Chapter 2 a seamed quadratic

finite element is introduced which is suitable for approximating

smooth functions whose values and gradients may be evaluated at the

nodes of a rectangular grid. We suggest using an efficient published

subroutine due to Marlow and Powell (1976) or some suitable alternative

to plot the contours of the approximant surface; the resulting method

produces accurate and visually smooth contours at relatively little

expense.

Chapter 3 is an explanation of CONICON, the Fortran subroutine

package which implements this contouring method. In Chapter 4 CONICON

is used to contour surfaces arising from a variety of applications.

Chapter 5 describes an error analysis of the seamed quadratic

element which enables us to obtain bounds for the error involved in

using the element to approximate a function.

In Chapter 6 we implement an extension of our contouring method

which uses local subdivision of elements in order to reduce local

variations in the error involved in contouring a function. Various

possible criteria for splitting are suggested, some of which are tested

on known functions.

Finally (Chapter 7) we conduct a (fairly superficial) comparison

of a number of contouring packages which are currently available. We

(iii)

discuss the features which each package offers and attempt to assess

their quality, simply on the evidence available from user documentation

and advertising literature.

Reference

MARLOW, S. and POWELL, M.J.D. (1976). A Fortran subroutine for plotting

the part of a conic that is inside a given triangle. UKAEA Harwell

Paper AERE-R 8336, HMSO London.

(iv)

ACKNOWLEDGEMENT S

I should like to record here my deep gratitude to my supervisors,

Robin Sibson and Bernard Silverman, for all the friendly assistance which

they have given in guiding me through the course of my research, and in

particular for a large number of stimulating and invaluable discussions.

The project's successful completion is due in no small part to their

support and enthusiasm.

I also wish to thank John Fitch, Julian Padget, John Slape and

especially Adrian Bowyer for their help with computational aspects of the

project; and Chris Dorling, David Hocken, M.C. Jones, Wyn Lotwick, Clive

Osmond, Brian Woodward and numerous other colleagues and friends for

helping to make my time at Bath an enjoyable one, and for encouragement

during the seemingly endless 'writing up' stage.

Persons from organisations outside the University of Bath to whom

I am particularly indebted are Ann Francescon, Jens Daabeck and Dr. M.A.

Sabin.

The Social Science Research Council deserves my thanks for its

funding of the whole enterprise; and the European Centre for Medium-range

Weather Forecasts for generously allowing me to report work carried out

while under its employment. I am also grateful to Kansas Geological

Survey, Numerical Algorithms Group and John Wiley and Sons for granting me

permission to reproduce published illustrations whose respective copyrights

they hold; and to Applied Research of Cambridge Ltd for the use of its

computer drafting system CDS in the preparation of diagrams.

Finally I wish to thank my typist Jacqui Walker for her accurate and

obliging preparation of the script.

(v)

CHAPTER 1

INTRODUCTION

1.1 Introduction to contouring; definitions and assumptions

In this thesis we shall consider the problem of constructing contour

maps of smooth surfaces automatically, with the aid of digital computers

and associated graphics devices. Particular attention will be paid to the

aim of achieving a high quality of output without incurring inefficiency in

the use of computer resources.

The history of automatic contouring is a short one:- before the

beginning of the 1960s, contouring was necessarily a long laborious process

carried out by hand by skilled draftsmen; but the advent of computer graphics

provided the opportunity to reduce the typical construction time for a

contour plot from several hours to a few minutes or less, and at the same

time to introduce a degree of scientific objectivity into a process which

had previously been subject to the whims and prejudices of the individual

draftsman.

At the outset of this project nearly twenty years had passed since

the publication of the first automatic contouring algorithms, but the state

of the art was still not satisfactory: though several contouring methods

had been suggested and implemented, none was capable of combining high

quality results with efficient use of resources. Consequently it was felt

that further attempts to discover improved methods would be fully justified,

particularly in view of the considerable importance of the contouring

problem.

This importance is a consequence of the generality and widespread

applicability of the problem; a contour map is an attempt to represent a

three dimensional surface in two dimensions, and is simply a higher

dimensional analogy of a curve or graph. Though it is not the only such

— 1 —

means of displaying a surface (probably the most familiar alternative method

is the perspective block diagram), it has the distinction that it may

readily be combined with maps of related data (for example geographical

features such as coastlines and political boundaries), and for this reason

it has long been the most frequently used and best understood means of

surface display. This is not to berate some of the alternative methods,

which are sometimes to be preferred as a means of providing an instantly

cognizable qualitative impression of the nature of a surface; however the

contour map has undoubtedly superior qualities from a quantitative point of

view.

Applications of contouring occur in virtually all scientific discip

lines, and it would be pointless to attempt to list them comprehensively

probably the most familiar application areas are relief mapping in

cartography (though surfaces encountered in this area are not always smooth

and are therefore not wholly amenable to contouring by the methods discussed

in this thesis) and plotting of isobars, isotherms, etc in meteorology. The

oil exploration industry is another very important application area, several

contouring packages having been designed specifically for use in such

applications. In Chapter 4 we shall consider examples from a few of the

areas in which contouring can be beneficial to the scientist.

We begin though by defining precisely what is meant by contouring and

by making some assumptions.

Our first assumption is that the function f(x, y) which represents

the surface which we wish to display is i.e. it has continuous first

derivatives - and this is what will be implied when a surface is referred to

as smooth. Our function is therefore prohibited from exhibiting either

'cliff edges' or 'ridges' (discontinuities in the function itself and its

first derivatives respectively). However, higher order discontinuities,

which are not normally detectable by eye, will be permitted.

— 2 —

Secondly the surface is assumed to be a known function f of the

dependent variables x and y throughout the region of interest. This is not

such a restrictive assumption as it might at first appear: it is true that

in many applications the form of function being contoured is unknown and

that typically we are faced with a finite number of surface measurements

taken at irregularly scattered data sites (for example these might corres

pond to the sitings of weather stations or balloons); however in such

circumstances several methods of interpolation are available to the scientist

which will enable him to construct a smooth surface passing exactly through

all known points, which can be evaluated anywhere within the 'window* or

region of interest. This interpolant then becomes the known function which

may be displayed by contouring. As an alternative to interpolation, on

those occasions when measurements are subject to error, the investigator

may opt to carry out a process of smoothing, which does not fit the surface

to the original data values exactly, but trades off goodness of fit of

the function against some appropriate measurement of its smoothness.

In either case it is important to emphasize that we regard the surface-

fitting process as being entirely separate from the contouring process.

Many authors in the literature have attempted to merge the two into a single

process, but such efforts invariably result in restricting the quality of

performance of both.

Our final assumption is that the surface is never constant (that is,

its first derivative is never zero) over a region of finite area.

Stationary points are of course not prohibited by this assumption.

The contour of the function f at level h is then defined simply as

{(x, y); f(x, y) = h; (1.1)

Properties of contours follow immediately from the following well-

known theorem in analysis:-

- 3 -

IMPLICIT FUNCTION THEOREM (stated without proof)

Let f(x, y) have continuous derivatives f^ and f^ in a neighbourhood

of a point (x^, y^), where

f(%o' * ° (1-2)

Then, centred at the point (x^, y^), there is some rectangle

- a < X < x^ + a, y^ - 3 < y < y^ + 3 (1.3)

such that for every x in the interval I given by x^ - a < x ^ x^ + a, the

equation f(x, y) = 0 has exactly one solution y = g(x) lying in the interval

y^ - 3 < y < y^ + 3. This function g satisfies the initial condition

y^ = g(x^) and, for every x in I,

f(x, g(x)) = 0 (1.4)

y^ - 3 ^ g(x) 3 y^ + 3 (1.4a)

fy(x, g(x)) ^ 0 (1.4b)

Furthermore, g is continuous and has a continuous derivative in I,

given by the equation

fxy' = g* (x) = -"I- (1.5)
y

As a consequence of this theorem, contours of any surface satisfying

our assumptions will be smooth lines with no visible 'corners’. Contours

(at the same level) cannot cross each other except at stationary points

where the Theorem breaks down (such behaviour is investigated in Chapter 2);

contours at different levels can of course never touch or cross each other.

1-. 2 A word on interpolation methods

The field of interpolation and smoothing is a wide one, which it

is possible only to touch upon within the context of this thesis. Smoothing

is a particularly difficult problem which is still not very satisfactorily

- 4 -

developed computationally, and we shall choose to ignore it for the

remainder of this thesis. However, as the raw data which we use for

contouring often arise in the form of measurements at irregularly dist

ributed locations in space, we shall devote the current section to a very

brief discussion of some of the interpolation methods available.

Sibson (1982) provides a highly readable introduction to the subject,

and lists those properties which he considers desirable in any interpolation

method. These may be summarised as follows:-

* The function must be at least continuously differentiable; higher

order continuity is less important as this does not appear to be

detectable by eye, except in special cases.

* The function should run as little risk as possible of provoking

misinterpretation of the data.

* The data sites should occupy most of the window; their precise

setting should not matter, and the interpolant should have at

least a continuous response to data site position i.e. the inter

polant should not jump from one state to another in response to a

small change in data site position.

* The method should not depend on arbitrary choices unrelated to the

data e.g. choice of coordinate system, number of points influencing

the interpolated value at any location, etc.

* The dependence of the interpolant function on the data values should

be reasonably well behaved and simple: if possible it should be

linear, so .that if the system of data values is multiplied throughout

by a scalar, the interpolant is also multiplied by that scalar, and

if two systems of data values at the same data sites are added, the

interpolant for the sum should be the sum of the interpolants.

* The interpolant should be localised, in that in some suitable sense

only data sites which are reasonably near neighbours should

influence the interpolated value at a point.

— 5 -

* The method should be directly computationally feasible on a reasonably

large scale - Sibson suggests 10,000 data sites and interpolation to

as many points without undue difficulty.

* It is attractive if the theory generalises to n dimensions.

* It is helpful in applications if the gradient, as well as value, of

the interpolant is calculable.

* We would expect the interpolation method to recover exactly functions

from some simple class - a method which could not recover linear

functions at least would be unacceptable. However in general a

tradeoff will exist between the degree of localisation and the

complexity of the class of recoverable functions.

A host of alternative methods for interpolation exist in the litera

ture, several of which have been implemented in practice; however few, if

any, satisfy all the criteria outlined above, and many fail to conform to

a number of them. It is very common to find, for example, that a truly

local method has been rendered so only by forcing the user to make one or

more arbitrary decisions regarding the number and means of selection of

those neighbouring surface measurements which influence the value of the

interpolant at a point.

Sibson regards only three standard classes of interpolation method as

worthy of serious discussion; finite element methods, kriging and stiff

lamina methods.

Finite element methods (see for example Lawson (1977)) split up the

window into polyhedral panels in a data-determined manner, and fit together

smooth functions (finite elements) across the panels. Such methods can be

very efficient, but the major disadvantage of all such methods is their

discontinuous response to data site position; and it is particularly

awkward that discontinuities occur, which must be resolved artificially,

when the data sites are partially or wholly on a regular rectangular grid.

— 6 —

Kriging methods (see for example Delfiner and Delhomme (1975))

present interpolation as a process of statistical estimation within the

context of an elaborate stochastic model based on spatial moving averages.

Sibson contends that such a model is usually not well-related to the

phenomena it purports to describe. He also notes that many unresolved

questions remain regarding the degree of smoothness of the interpolant

functions and the behaviour of their gradients, and 'the computational

position appears to be highly unsatisfactory'.

Finally Sibson considers stiff lamina methods (see Wahba and Wold

(1975), Wahba (1979)). In two dimensions, at the lowest degree of smooth

ness the physical model is a uniform stiff lamina constrained to take the

data values as (infinitescimal) displacements at the data sites. Like

kriging, these methods are not localised, and this results in major com

putational difficulties. Wahba reports successful results working with

120 data sites, but warns of the difficulty of attacking substantially

larger problems.

Sibson presents his own method. Natural Neighbour Interpolation, as

an alternative to the existing methods. The method is based on the

Dirichlet Tessellation (see for example Green and Sibson (1979)), a

geometrical construction which divides the window into 'tiles', regions

within which all points share a common nearest data site. The tessellation

is used by Natural Neighbour Interpolation as a means of defining the

'neighbours' of any point in a natural and completely data-determined

manner. The method also succeeds in satisfying all the desiderata for a

good interpolation method which were set out above. For these reasons,

and because the author had the good fortune to have access to the TILE

software package in which the method is implemented, the C Natural

Neighbour method has been used in all examples in this thesis which re

quired interpolation to be carried out prior to contouring.

— 7 —

1.3 Contouring methods in the literature; 'contour following'

methods

In general contouring methods in the literature may be divided into

two categories:- 'contour following' methods, which attempt to contour

directly, following the true contours of the known function; and

approximation methods, which replace the function f by a function f of

a simpler form, whose contours are relatively easy to plot directly. In

this section and the next we shall examine these two categories of method

in some detail.

In the course of these sections, and indeed throughout the thesis,

it should be borne in mind by the reader that currently most graphics

devices are capable of plotting straight lines only, and it is therefore

necessary to approximate a curved line by a sequence of straight lines

using software. As long as the lines forming this approximation are

sufficiently short the approximation will be undetectable to the eye.

However the use of excessively short straight line segments is inefficient.

The goal which we are therefore aiming for is to achieve an approximation

which is good enough to deceive the eye but uses as small a number of

straight line segments as possible. This implies that the segments should

be of variable length, and that length should be inversely related to

contour curvature.

'CONTOUR FOLLOWING' METHODS

These methods take the most direct approach to contouring a function,

following each contour along, point by point, interpolating from values

close to the track of the contour to determine its position.

Variations are described by Batcha and Reese (1964), Lodwick and

Whittle (1970), Falconer (1971) and Schagen (1982). Leaving aside a number

of details, the principle behind these methods may be summarized by Figure

1.1. Suppose plotting of the contour has begun, and the last straight line

- 8 -

B

segment on the contour is the line XY. The next point is determined by

making a pair of probes, at A and B, where A and B are say 10% to the

left and right of the point Z (2Y-X in vector notation). If the surface

heights at A and B are on opposite sides of the contour level, inverse

linear interpolation is used to derive the next point on the straight

line between A and B, If however they are on the same side, then A is

replaced by A* = (A + Y)/2 and B by B* = (B + Y)/2 and the test repeated.

Step length is therefore to some extent adaptive. However this basic

method is clearly not robust: the point Y does not in general lie pre

cisely on the contour and consequently there is a danger that the true

contour may not enter the sector bordered by the lines AY and YB; the

method must therefore be complicated by the introduction of a safety

modification of some kind.

An alternative strategy, suggested by Sabin (1980) (see Figure 1.2)

evaluates the surface height at the point Z and then, depending on whether

F igure 1.2

X
-e-
Y

A
-f

é

Z

- 9 -

this is above or below the contour, at a fixed distance to the left or

right. The smaller this fixed distance is, the greater will be the visual

smoothness of the contours.

If the second probe point is on the same side of the contour as the

first, then instead of halving the scale of the probe, iterated inverse

interpolation is used along a line parallel to the previous step to locate

the next point. The next step will then automatically be shorter, so that

as curvature increases the step length shortens appropriately.

If the second probe point is on the opposite side of the contour,

inverse linear interpolation gives the next point as in the previous

example, and the fact is used to indicate that the step size for the next

probe can be increased.

However some serious problems associated with this class of method

remain which have never been satisfactorily solved:- firstly it is by no

means obvious how to locate a starting point on every separate section of

contour, and to avoid finding more than one starting point on the same

section. Lodwick and Whittle (1970) and Falconer (1971) both advocate the

use of a regular grid to locate starting points, but the effectiveness of

such a method is obviously restricted by the coarseness of the grid.

Sabin suggests computing all stationary points and then constructing a

spanning tree joining all of these by straight lines, cutting all contours

at least once. Iterated linear interpolation could then be used to give

the starting points. Though theoretically attractive, such an approach

would be difficult to implement in practice and would impose severe

limitations on the degree of generality of the method, and the ease of its

use by non-specialists.

Another major problem associated with these methods is that of

identifying when the end of a closed loop has been reached, since return to

the exact starting point of the contour is extremely unlikely (and in an

area of relatively low contour curvature it may be possible to overshoot

— 10 —

by a considerable distance). The danger of tracing a contour section more

than once from a single starting point therefore arises, and this problem

has not been dealt with satisfactorily in the literature.

Finally, if evaluation of the function f at an arbitrary point is a

relatively expensive operation then contour-following methods can turn out

to be very costly, as they require a relatively large number of surface

evaluations to be made in the course of contour construction. This number

will increase in proportion with the number of contour levels plotted.

For these reasons, contour-following methods have met with very

little practical success; nearly all widely used contouring packages employ

methods of the type discussed in the following section.

1.4 Contouring by surface approximation

The other important category of contouring methods is based around

the idea of approximating the (relatively complicated) known function f by

a simpler function f whose contours may be followed directly with little

difficulty. In practice this has meant that f has been approximated by

piecing together linear or quadratic functions only, since the difficulties

of contouring polynomials increase very considerably with their complexity.

We shall begin by examining the simpler of the two, piecewise linear

methods, which are still probably the most frequently used class of auto

matic contouring methods.

1.4.1 Piecewise linear contouring

The simplest imaginable function of two variables (constants excluded)

is a linear function or plane, and the contours of such a function, being

straight lines, may be plotted trivially. For this reason the most popular

means historically of contouring a function has been to approximate that

— 11 —

function by piecing together planar sections and to plot the contours of

the resulting piecewise linear surface.

Several variations of such an approach have been taken both in the

literature and in practice. In cases where the data sites are scattered

irregularly in space a common strategy is to construct a triangulation of

the area of interest (see for example the Delaunay triangulation (Green

and Sibson, 1979)) with the data sites lying at the vertices of that

triangulation. A unique piecewise linear surface of triangular'patches*

is then defined. However this is one of the most primitive contouring

methods imaginable, and like other methods which attempt to merge the

processes of interpolation and contouring has a number of inherent defects,

To begin with, it only permits contouring within the convex hull of the

data sites while in practice it is usually desirable to contour throughout

a rectangular window containing all the data sites.

The appearance of the contours themselves is a matter of still

greater concern: in areas where data are sparse the triangular patches

are necessarily large and consequently contours often exhibit pronounced

'corners' along the boundary lines between triangles. Such behaviour will

indeed occur, though usually less markedly, wherever a contour crosses the

boundary line between a pair of triangles and is a property of all piece-

wise linear methods - it follows from the discontinuous nature of the

first derivatives of the piecewise linear approximant along triangle edges,

If is also worth noting that one can often identify quite clearly the

locations of the data sites simply from viewing the pattern of contours -

obviously this can never be considered an accurate likeness of the true

underlying surface.

Further problems arise in the implementation of methods of this sort:

in practice we usually wish not to plot the contours of each triangular

patch individually, but to trace each contour without break (except

- 12 -

possibly for labels) from start to end, in order to minimise pen movement

(an important consideration on a pen plotter) and to facilitate contour

annotation (a necessary addition in most applications). This can be done in

either of two ways:- (a) by contouring each triangle individually and

carrying out an internal matching and linking process, or, preferably (b) by

following each contour along from start to end as it is constructed. The

use of the method described above makes (b) a relatively difficult operation,

requiring a fairly complex data structure, and it may therefore be necessary

to resort to (a), which is generally less efficient.

Those piecewise linear methods which do not attempt to combine the

processes of interpolation and contouring, normally evaluate the known

function (or interpolant) at the nodes of a regular (almost always rectangular

and usually square) grid, which becomes the basis for contouring. A review

and discussion of these methods and the relatively trivial differences be

tween them is given by Sutcliffe (1980). A considerable number of authors

(for example Cottafava & Le Moli (1969), Heap & Pink (1969), Rothwell (1971)

and Crane (1972)) advocate an approach which is not, strictly speaking,

piecewise linear in our terminology, but is very closely related.

F igure 1.3

-3 3
X / X

1 z

Figure 1.3 provides a simple illustration of the behaviour of such

methods within a single rectangular grid cell. The points where the contour

(in this case at level 0) intersects the edges of the cell are calculated by

- 13 -

inverse linear interpolation and then linked by straight lines. However this

is not a true linear fitting of the function values at the vertices, since

linear functions having three free parameters cannot in general be fitted to

four data values. Consequently degeneracies must occur, and this happens

whenever data of the type indicated by Figure 1.4(a) are encountered.

F Ig u r e 1.L
(c o n t o u r l e v e l = h)

(a) < h X > h

> h X X < h

(I I) X (ill

In cases of this type inverse linear interpolation yields four inter

sections between the contours and the cell's edges. We are therefore faced

with three possible outcomes, all of which fit correctly, and it is

impossible to determine on the basis of the available data which is the true

solution (though case (iii) occurs with probability zero). In the literature

a number of alternative proposals for the systematic resolution of

degeneracies of this type have been offered:- examples are a 'high ground

on the right' rule (Heap & Pink (1969)) and the slightly less arbitrary idea

of choosing the possibility which in some sense minimises the change in

contour direction (Robinson & Scarton (1972)). However the only solution

considered by the present author to be of any real worth is one advocated

— 14 —

by Dayhoff (1963) and others; this is to make a further evaluation (or

more normally an estimate) of the function value at the centre of the

rectangle and to divide the rectangle into four triangles (Figure 1.5)

which may be contoured without ambiguity. Indeed this author's personal

F Igure 1.5

preference is to carry out such a process in all grid cells regardless of

whether a degeneracy has occurred; if the central value is estimated by

averaging the values at the vertices then this is an inexpensive operation,

and besides increasing contour smoothness by reducing the length of

straight line segments it has the highly beneficial effect of producing a

true piecewise linear approximation of the underlying surface. An import

ant consequence of this, though one which is often overlooked in the

literature, is that the contouring method may then be subjected to a proper

error analysis which will enable the user to obtain bounds for the error

involved in using the piecewise linear approximation. Though an analogous

but considerably more difficult task has been carried out successfully (see

Chapter 5) in the case of the piecewise quadratic element which will be

introduced in Chapter 2, this does not appear to have been attempted in the

literature in the context of piecewise linear methods.

— 15 —

Given this simple approach to constructing contours across individual

grid cells, the following of contours from cell to cell and the avoidance

of repetition are relatively straightforward tasks; we shall not go into

the details, which are discussed adequately by Sutcliffe (1980).

We now present an example (Figure 1.6) of a surface which has been

contoured by the method suggested above ; the function is

f(x, y) = exp(-j(4(x - 1)^ + 6(y - 1)^)) + exp (-à(10(x - 2)^ +

6(y - 1.3)2 + I4(x - 2)(y -1.3))) (1.6)

and has been evaluated at the nodes of a 31 x 21 square grid of points (or

30 X 20 grid of cells) covering the area{(x, y); xe[0, 3], ye[0, 2]}.

Values at the centres of grid cells were estimated by the mean of the four

values at the vertices.

The major problem associated with all piecewise linear contouring is

immediately apparent from this illustration: although the function is a

smooth one and the grid reasonably fine, the contours of the approximation

display sharp angularities in areas where the curvature of the true contours

is highest, and in very few areas of the plot can they truly be described

as 'visually smooth'. The smoothness of the map can of course be improved

by choosing a finer grid; however this results in increased use of both CPU

and memory and in this example it was found that contouring over a 120 x 80

grid of cells, a very costly operation, was still not sufficient to create

an impression of smoothness at the highest contour on each peak.

The function which we have considered in this example is considerably

less complex than many of those functions which are encountered in practical

applications. If a satisfactory degree of smoothness is to be achieved in

practical examples the use of piecewise linear contouring methods must

therefore incur considerable expenses in computer resources, and these

expenses are unacceptably high in many applications.

— 16 —

#

Figure 1.6 An example of contouring by piecewise linear
approximation (30 x 20 grid of cells).

— 17 —

In an attempt to solve this problem many authors have suggested the

use of a relatively coarse grid to define contour 'vertices', followed by

the application of a curve-fitting algorithm to smooth the contours. A

multitude of curve-fitting algorithms appear in the literature, many of

which have been suggested as suitable for contour smoothing (e.g.

McConalogue (1970, 71), Butland(1980)). However, all suffer from the same

crucial flaw:- because they take no account of the 3-dimensional nature of

the problem, none can guarantee that contours at different levels will not

cross each other. Such behaviour is particularly prone to occur near

saddle points, and is of course totally unacceptable. Instead it makes

much more sense to look for an approximation whose contours are themselves

smooth and are relatively easy to plot.

1.4.2 Piecewise quadratic contouring

The function which most readily lends itself to contouring in this

way is the quadratic function: though finding ways of piecing together

quadratic functions in a suitable manner is a non-trivial affair, once this

has been accomplished it is then possible to follow the contours of each

quadratic relatively easily by expressing them in parametric form. This

does not apply to many other types of function: as the complexity of a

function increases the difficulty of following its contours grows very

considerably:- suppose for example we take a biquadratic function of the

form,

2 2 . ,
f(x, y) = Z Z a. . x^ y^ (1.7)

i=0 j=0

a function only slightly more complicated than a quadratic. Consider the

special case f(x, y) = x(l - x) y (1 - y). This clearly has a 'noughts and

crosses' grid as the zero contour, and contours close to level zero will

approach this pattern, comprising four or five separate pieces. The author

knows of no existing method which is capable of contouring directly a

— 18 —

function of this or greater complexity; consequently as we now consider

surface approximations for contouring we shall concentrate exclusively on

piecewise quadratic approximations.

It can be shown that a regular rectangular mesh is unsuitable for

piecing together quadratic functions, for once the function is known in all

rectangles along the left hand and bottom edges of the approximation, the

rest is then uniquely determined. Thus the approximations which we shall

consider tend to be constructed from piecing together triangular panels,

though we shall still prefer to contour from data lying on a rectangular

grid.

A published Fortran subroutine due to Marlow and Powell (1976)

conveniently contours a quadratic function across a triangle given six

parametrising values at the vertices and at the midpoints of its sides.

This efficient routine has the additional advantage of an adaptive step-

length rule: by keeping constant the product of straight line segment

length and maximum distance from the true contour, it ensures that segments

are relatively short in areas of high contour curvature, and longer where

curvature is low. The user controls the magnitude of this step length

parameter and can therefore tune the contours produced by the routine to

any desired degree of smoothness.

Taking the Marlow-Powell routine as a 'black box' for the present,

we are now free to concentrate our efforts on finding the most convenient

method of piecing together quadratic functions without losing continuous

differentiability across panel boundaries.

Powell (1974) considers piecewise quadratic approximations of functions

from height data at the nodes of a rectangular grid. He begins by consider

ing the possibility of approximating the function f on the basis of the

four-triangle-per-grid-point construction illustrated by Figure 1.7, and

suggests two possible schemes of approximation based on this construction;

- 19 -

however the first does not in general fit the data values exactly, while

VL:_'j
/:L..xxX...x:x:X
y-ix.

XXX/'x:-x6”""x

F I g u r e 1 .9

the second is not localised to the desired degree. Powell therefore goes

on to present a second, eight-triangle-per-grid-point construction, which

is illustrated by Figure 1.8.

- -(^----- 7

/I"

- 6 - 4

X O '

- ; 0

6 - - 0 - - 6

- - Ô - -

c ------------------ ~ ■

L----

I

F i g u r e 1 . 8

In this case he succeeds in finding a C approximation which fits

the data exactly, is truly local, (changes in the value at a grid point

have no effect outside a square of side 4h centred at that grid point)

and which reproduces exactly an arbitrary quadratic function - though it

— 20 —

does suffer from mild edge effects. Powell’s method has apparently met

with considerable practical success (though unfortunately no examples of

its use appear in his paper); however it uses value data alone and, as

in multivariate optimisation, there are many attractions (particularly

from the viewpoints of accuracy and localisation) in using gradient as

well as value data to fit the approximant function. Gradients are avail

able in a surprisingly high proportion of applications, and when they are

not reliable methods exist for their estimation, which detract little

from the advantages of using gradient as well as value data.

Attempts have therefore been made recently in the literature to

discover conforming seamed quadratic finite elements:- that is, construct

ions normally of a triangular or rectangular shape,subdivided internally

into a number of quadratic panels, which may be fitted to value and

gradient data on a triangular or rectangular grid, one per cell, in such

a way that continuous differentiability is preserved both within each

element and across element boundaries. Finite elements are used

extensively in numerical analysis and have generated a considerable

volume of literature; however in such applications higher order functions

possess strong advantages over quadratics from the point of view of

accuracy of approximation, and consequently piecewise quadratic finite

elements appear to have been neglected.

Powell and Sabxn (1977) are therefore possibly the first authors to

have considered the problem of constructing triangular seamed quadratic

finite elements, whose quadratic panels are also triangular. Such con

structions might be used to contour across a regular triangular grid, but

Powell and Sabin were interested in the general case of contouring across

a triangulation of the original data sites, and were thus attempting to

merge the processes of interpolation and contouring.

— 21 —

Powell and Sabin demonstrated that the six-triangle internal sub

division illustrated by Figure 1.9 (where 0 is any point inside the

A F igure 1.9

cB

triangle, and P, Q and R are located at arbitrary points on each side)

provides a unique piecewise quadratic to fit value and gradient data

at the triangle’s vertices. Moreover they showed that, using this

construction, continuous differentiability may be preserved within any

triangulation - the interior point 0 within each triangle should be chosen

so that, if a pair of triangles have a common edge, then the line joining

their interior points intersects the common edge between its vertices.

This will always happen if, for example, the incentre of each triangle is

chosen.

We would in general prefer to choose the circumcentre rather than

inceqtre of each triangle as its internal point, as this would result in

lines joining internal points bisecting triangle edges at right angles.

However this is not possible in general because the circumcentre falls

outside any triangle which is obtuse. This restriction results in a

serious loss of accuracy of approximation, which causes Powell and Sabin

to consider also the twelve-triangle subdivision illustrated by Figure 1.10,

By imposing the additional condition that the component of the

derivative normal to each edge of A ABC must vary linearly (a condition

- 22 -

A
e

B P C

necessary and sufficient for correct reproduction of an arbitrary quadratic),

Powell and Sabin succeeded once again in constructing a unique piecewise quad

ratic surface to fit the (value and gradient) data at the vertices. In

this case the construction preserves continuous differentiability across

any triangulation with points, P, Q and R chosen as the midpoints of the

triangle’s sides.

Powell and Sabin's final recommendation was therefore as follows:

"In each triangle the points P, Q and R are chosen to be the midpoints of

the sides. In each triangle that is sufficiently acute, for instance this

may mean that no angle exceeds 75°, we define cj) (x, y) by the (6-triangle^

method that chooses 0 to be the circumcenter of AABC. In all other cases

we apply the 12-triangle method, where the required normal derivatives

are obtained by linear interpolation".

There is undoubtedly considerable merit in the method proposed by

Powell and Sabin (though once again we are not presented with any examples

of its practical realisation); however it cannot be considered totally

satisfactory as a general method for contouring known functions:- in

practice it is attractive to be able to use a rectangular (usually square)

grid rather than a triangular one. Such a grid may of course be

triangulated using right-angled triangular elements, but the problem

arises that we are faced with an arbitrary choice as to which diagonal

- 23 -

should be used to split a rectangular cell into two triangular ones; and

the result of this choice will affect the nature of the approximation.

This is a highly unsatisfactory state of affairs and for this reason we

now finally consider the problem of constructing rectangular seamed

quadratic finite elements to fit value and gradient data on a rectangular

grid.

To this author’s knowledge the only successful attempt at such a

task prior to the work described later in this thesis is due to Lancaster

and Ritchie (Ritchie, 1978) . Their seamed element is based on a special

case of Powell and Sabin’s 6-triangle seamed element. Figure 1.11

illustrates a pair of right-angled Powe11-Sabin elements arranged in such

a way that together they may be used to fit a piecewise quadratic

surface to value and gradient data at the vertices of a rectangle. It is

easy to demonstrate that if such ’composite’ elements are used to

F igure 1.11

approximate a surface across a complete grid, the resulting approximant

surface is also continuously differentiable. However, as we have just

pointed out, the rectangular element could equally have been constructed

from a pair of triangular elements whose common edge was the other diag

onal of the rectangle, resulting in a significantly different

approximation. Ritchie demonstrates that the difference between these

two schemes can sometimes be great, and therefore recommends the compromise

— 24 —

of employing the mean of the two possibilities, which results in the seamed

quadratic element illustrated by Figure 1,12,

F igure 1,12

The Lancaster-Ritchie element comprises a total of 32 quadratic

pieces; however eight of these pieces are quadrilaterals and therefore a

further eight internal subdivisions are required to produce a (40-triangle)

construction which is suitable for contouring using the routine of Marlow

and Powell,

Once again published examples of the practical implementation of

this element are lacking, and it is therefore difficult to judge how well

it performs. However, given the fact that Powell and Sabin’s elements may

be used to construct a six-triangle-per-grid-point approximation for data

on a triangular grid, the large number of quadratic pieces in the Lancaster-

Ritchie element seems rather excessive. At the time when this project was

begun it was however the only rectangular seamed piecewise quadratic

element known to this author.

1,5 Summary of what follows in the thesis

The subject of this thesis is the investigation and exploitation of a

new rectangular seamed quadratic finite element comprising just sixteen

quadratic pieces: half the number contained in the Lancaster-Ritchie

- 25 -

element. The discovery of this new element is due to Professor R. Sibson,

but a study of its properties and an implementation of the contouring

method of which it forms the basis have been carried out by this author;

these are described in the pages which follow.

We begin in Chapter 2 by introducing the element and proving that

the use of several such elements juxtaposed across a rectangular grid of

value and gradient data defines a unique piecewise quadratic surface

suitable for contouring by a routine such as that of Marlow and Powell.

Much of the material in this chapter may be found in Sibson and Thomson

(1981).

Chapter 3 provides a detailed explanation of how the piecewise

quadratic method was implemented in the form of CONICON, a Fortran sub

routine package which incorporates a wide range of features including

contour annotation and crosshatching between contour levels.

We then proceed in Chapter 4 to apply the CONICON package to the

contouring of a collection of data sets arising in a wide variety of

disciplines. In some cases we are able to compare the performance of

CONICON with other contouring packages, and results are encouraging in all

cases.

In Chapter 5 we present an error analysis of the seamed quadratic

element, conducted with the aid of CAMAL, a computer package which carries

out algebraic manipulations; results are used to derive bounds for the

error involved in approximating a known function by the element. We con

sider ways in which our results might be put to practical use both in the

design and in the analysis of contour maps produced by piecewise quadratic

approximation.

In Chapter 6 we explore the idea of varying the size of grid cells

within a single plot in order to even out local fluctuations in error of

approximation (results derived in the previous chapter are put to use here)

— 26 —

A computational implementation is described which is based on the concept

of the quad tree, and a number of alternative methods of constructing the

grid are investigated. Results here are inconclusive and it is believed

that further work in this area might be particularly beneficial.

Finally we conduct a comparison of existing contouring packages,

based on user documentation alone, or in some cases only on sales litera

ture. A large and varied selection of packages is discussed, but it is

felt that, in terms of quality of output, few can be regarded as serious

competitors to CONICON.

- 27 -

CHAPTER 2

A SEAMED QUADRATIC ELEMENT FOR CONTOURING

2,1 Introduction

In Chapter 1 we discussed the possibility of contouring a smooth

function by evaluating its heights and gradients at the nodes of a regular

grid, approximating the surface within each grid cell by a piecewise

quadratic function, and plotting the contours of the resultant surface

using the Marlow-Powell (1976) or some similar quadratic contouring

algorithm. We noted that the seamed elements of Powell and Sabin (1977)

and Lancaster and Ritchie (Ritchie, 1978) provided suitable approximants

over triangular and rectangular grids respectively; however it was felt

that a method which used the Lancaster-Ritchie element would be of limited

practicability due to the large number (32) of regions which comprise the

element. Indeed it would have to be subdivided further, into forty

triangles, to be used in conjunction with the Marlow-Powell algorithm.

In this chapter we introduce a sixteen-triangle rectangular element

which carries out the same task as the Lancaster-Ritchie element more

economically. We therefore propose to use the sixteen-triangle element as

the basis of a method for contouring data over a rectangular grid, and we

proceed with the development and application of this method in this and

subsequent chapters of the thesis.

The element which we introduce is indeed optimally parsimonious, in

the sense that the specification of value and gradient data at the

vertices, and the requirement of linearity of normal component of the

gradient along the edges, leave no spare degrees of freedom. The linearity

condition ensures that when such elements are juxtaposed to form a grid,

the resultant function is continuously differentiable across the grid

lines. On a rectangular grid the use of this element leads to a sixteen-

- 28 -

triangles-per-grid-point- subdivision, a performance reasonably competitive

with the 12-triangle subdivision obtained on a triangular grid using the

Powell-Sabin element.

The subdivision employed is shown in Figure 2,1. It consists (to

borrow Professor Lancaster's terminology) of four rectangular subelements

arranged in a St, George pattern, each being internally subdivided in a

St, Andrew pattern.

NW

k

SU

NE

OF OC

SE
h

F igure 2.1

Figure 2,1 shows some of the notations and conventions we use; the

element is 2h x 2k, its four corners, at which value and gradient are given,

being SW, SE, NE, NW. The value and eastwards and northwards components of

the gradient at a point are written (z; zx, zy),

— 29 —

2.2 A quadratic element on the line

We first establish a result for a 1-dimensional piecewise quadratic

element. The result is a consequence of the tangent intersection property

of quadratic functions, which may be stated as follows ; given an arbitrary

quadratic Q on the line, with tangents constructed at any two points, say

(Xj, Q(Xj))and (Xg, QCxg)), then whatever the coefficients in Q are, the

tangents have a common value at x = &(X| + X 2). Thus we define the

tangent intersection value of a quadratic on a line segment to be the value

taken by tangents constructed at either end of the quadratic at their point

of intersection mid-way along the line segment.

Now consider a line segment of length 2h, divided at its centre (the

origin). We show that the specification of value and gradient at the ends

(z^, g^ at -h, z^, g^ at +h) determines without spare degrees of freedom

a two-segment continuously differentiable quadratic element, and we obtain

a relationship between the tangent intersection values of the two quad

ratics and the value at the origin. Figure 2.2 explains the notation.

----------- h Figure 2.2

■O------------- O ------------- O

\

^ 9 q ^
We first make a change of parametrisation, replacing g^, ĝ ̂by the

tangent intersection values z^ + ^hg^, z^ - ghg^ (= T^, T^). It is then

easy to check that the quadratics
2Q^(x) = ZQ + g^x + p^x (-h < X < 0)

Q%(x) = ZQ + g^x + p^x^ (0 3 X 3 h)

where

=0 -

— 30 —

R

= =R + : - 3/2 \

(2.2)

(2.3)

(2.4)

uniquely have the desired property. Equation(2.1) is obviously a necessary

and sufficient condition on the three values for the two quadratics to have

a common gradient at 0. Figure 2.3 gives a pictorial representation.

F igure 2.3

2.3 Continuity and Uniqueness

Equation (2,1) provides us with a simple method of checking that a

surface can be fitted over our element. Beginning with value and gradient

data at the vertices of the element, we apply equation (2.1) repeatedly until

a comprehensive picture has been built up of the values along the element’s

seams which are analagous to the values T^, and Zq in the 1-dimensional

element described in the previous section. We check for inconsistencies in

these values, and on finding none, conclude that a continuously different

iable surface may be fitted over the element as a whole.

- 31 -

We write expressions as hollow arrays, in terms of corner values and

tangent intersections, that is

^NW ^NW

NW

SW

’NE 'NE

NE

SE

?sw* ?SE* =SE

where

NW

y _
NW = zNW ^/2 *̂ NW etc.

Thus, on applying (2.1) to and we see that the height of the

surface at B (Figure 2.1) can be written as

0 0
0
0

1 0

Using the condition of linearity of the normal component of the

gradient, it follows that the tangent intersection at C (T^) has value

0 0
0
1

1 - 1

Similarly the tangent intersection on the north side of D will have

value

- 32 -

-1

1

0
0

Application of (2,1) therefore gives the value at D as

- 1

1

1
- 1 1 1

- 1

1
1

- 1

from the symmetry of this expression it is immediately obvious that

the same result would have been obtained if we had approached D from east

and west rather than from north and south. Thus continuous differenti

ability has been established along the St. George seams, and it only

remains to show that the surface is within each St. Andrew subelement.

Now clearly

?R= i (?A +?C)' ?T = s + Tp)

Thus, from (2.1), the value at P is

i (T^ + Tc + Tg + Tp)

/8

1

0
0
1

- 1

from south east - north west approaches.

Now approaching P from the south west and north east, we find

T q = i (?A + Ip). Tg = I (Tc + Tg)

SO again 5 (T. + T + T + T) is the value at P.

— 33 —

In this way we fill in values in all four subelements, and there are

no inconsistencies.

We have now shown that a continuously differentiable surface can be

fitted over our element. To show that this surface is uniquely defined we

must prove that it is impossible to fit a non-zero surface to data con

sisting of zero value and gradient at each vertex. Now the one dimensional

element described in Section (2.2) is identically zero if the value and

gradient at the end points are zero. Thus the surface must vanish along

our element’s edges. Also, as a result of the gradient restriction which

has been imposed, the inwards component of the derivative at the midpoint

of each edge is zero; hence the internal south-north and west-east dividing

lines are identically zero, so the derivatives at D are zero. We have now

shown that each St. Andrew cross diagonal has zero value and gradient at

its ends, and is therefore identically zero. Thus all the seams of the

element are identically zero, and the surface vanishes over the element as

a whole. Uniqueness has been established.

2.4 Some expressions required for contouring

As has already been indicated, the major use to which we intend to put

the seamed element described above is in contouring, using a subroutine such

as that of Marlow and Powell (MP) to trace the conic sections over each tri

angle. MP exploit the fact that a quadratic on a triangle may conveniently

be parametrised by its values at the vertices and the midpoints of the edges,

and these data are required as input for their routine. We therefore give

explicitly the values at A, B, C, D, P, Q, R, S (see Figure 2,1) as linear

combinations of values and normalised inwards components of derivatives that is

W
-kt

hsNW -hsNE

NW

NE
-kt:NE

ktSW ktSE

"SW hsSW -hs SE 'SE

— 34 —

All other values follow by symmetry. The linear combinations are as

follows

A: Vl6

C: /32

0 0 0 0 0 0 0 0

0 0 0 0
B: i

0 0 0 0

14 5 1 2 2 1 1 2

~ 2 1 1 2 " 2 1 1 2

1 1 D: 1/8 1 1

5 5 1 1

_14 7 7 14 2 1 1 2

” 2 1 0 0 ~ 2 1 0 0

P: '/l6 1 0
Q' 1/64

1 0

4 1 12 1

12 4 1 2 60 12 1 2

R: 1/64

2 1 0 0 14 7 2 4

1 0 7 2
S: 1/64

3 5 14 7

44 20 9 18 32 14 7 14
(2.5)

We note that all coefficients encountered in these linear combinations

are binary fractions with largest denominator 64. This makes the actual

computation as numerically stable as we could wish.

It is not necessary, however, to use the linear combinations above

directly in evaluating the heights at P, Q, R and S. Instead, we may find

it more convenient to use the expressions above only to calculate values

along the external boundaries of the element and on the St. George seams.

Now it can be shown (see Powell (1974)) that the eight peripheral values on

- 35 -

each rectangular subelement uniquely define the surface within that sub

element. Thus we can write those values internal to the subelement as

linear combinations of the peripheral values. The following expressions

are used to evaluate P and Q. Again all other values follow by symmetry,
- - -
-1 2 -1 -3 2 -1

P: i 2 2 Q: */l6 10 2

-1 2 -1 -1 10 -3

In practice, however, a slightly different approach turns out to be

faster still. Examination of the coding of the MP routine reveals that the

algorithm uses the function values at the midpoints of the triangle’s sides

once only, to evaluate the tangent intersection values at those points. We

may therefore reduce the amount of work done by the MP routine a little by

passing tangent intersection values to it directly, in place of the function

values themselves. Again we find it convenient to carry out a two-stage

process:- first we evaluate height and tangent intersection data along the

boundary of the element, plus the height at the centre and tangent inter

section values on the St. George seams (an expression for the tangent

intersection value at C is given in the previous section). We can then

evaluate the five values inside each subsquare as linear combinations of

the four tangent intersection values on the borders of that subsquare.

Each internal tangent intersection is simply the mean value of the two

nearest tangent intersections, and the central value is the mean of all four

peripheral tangent intersections. Thus the calculations required are even

simpler than those given by the expressions (2,5) and (2.6).

Finally, for completeness, we give expressions for the tangent

intersection values at A, C, Q, R, S as direct linear combinations of values

and normalised inwards components of derivatives. They are as follows:-

- 36 -

^A=

"s =

T^= i

0 0 0 0 0 0 0 0

0 0 0 0

0 0
4

1 1

2 1 0 0 2 1 1 2

0 0 0 0 0 0 0 0

0 0
Vs

0 0

1 0 1 1

4 1 0 0 6 3 1 2

0 0
0
1

1 2 (2.7)

2.5 Application of the method; an introduction

Before plotting it is usually convenient to link the partial contours

produced by the quadratic contouring routine into complete contours, which

will normally either be closed loops or will begin and end on the boundaries

of the grid. This makes it possible to reduce 'pen-up’ movement by the

graphics device - a significant consideration with a pen plotter - and also

allows for such refinements as contour annotation and properly constructed

broken-line contours. Figure 2,4 shows a single seamed element in which

such a linking process has been carried out; the data are shown at the

vertices, and the element has been contoured with annotation.

The power of the method which we are proposing should be immediately

apparent from this first illustration. The acceptability of any contour

as actually drawn by a normal graphics device is measured by two criteria;

the extent to which it truly represents the function being contoured and

also its visual smoothness. In this example there is strong evidence to

- 37 -

JC

#*

CO
«»
in(W*

quadratic element

- 38 -

suggest that the method can produce contours satisfying both criteria with

out having to use a particularly fine grid; whereas piecewise linear methods

have only the grid size as a control parameter, the use of a continuously

differentiable piecewise quadratic approximant allows us to control

approximation accuracy and visual quality independently:- the fineness of

the grid controls the former and the typical segment length controls the

latter. Moreover, accurate approximation can be obtained without using a

particularly fine grid; since the approximant is fitted using value and

gradient rather than just value, accurate approximation is possible at much

coarser grid spacings than with the piecewise linear approach:- in this

example both a local minimum and a saddle point (the feature which piecewise

linear methods find most troublesome) have been accommodated into a single

element. MP* s technique varies the length of individual line segments

according to the curvature of the contour, and it is quite easy to produce

contours of excellent visual quality. Of course we cannot reproduce second

derivative continuity in the function which we are contouring, but this is

of limited importance since the eye is very bad at detecting discontinuities

in curvature - it is much more skilled at detecting discontinuities in

gradient.

Figure 2.5 shows a complete contour map produced by the method. This

plot may be compared with Figure 1.6, which shows the same function (1.6)

contoured by a piecewise linear method. The grid in this example is the

same as that used to produce Figure 1.6, that is a 30 x 20 grid of elements

or a 31 X 21 grid of points. It is felt that comparisons between the two

plots demonstrate very convincingly the superiority of the piecewise quad

ratic method over the piecewise linear method.

Of course, given equal grid sizes, the piecewise linear method is

much faster than the piecewise quadratic method (in this example it is

approximately three times faster); however to achieve the degree of smooth

ness (and accuracy) attained in Figure 2.5 using a piecewise linear method

- 39 -

furic tia

elements;

" 40

it would be necessary to reduce the grid spacing to such an extent that the

method would become prohibitively expensive: in fact reduction to a

120 X 80 grid of elements is still not sufficient to eradicate all the

'corners’ in the most sharply curving areas of the contours. Moreover quite

acceptable piecewise quadratic plots of this function can be achieved at a

lower cost than Figure 2.5:- if the grid size is doubled and a 15 x 10 grid

of elements is used (see Figure 2.6) then the plot produced by the piecewise

quadratic method is only slightly inferior to Figure 2.5 and takes just

under half the time to produce. The only noticeable differences occur in

the top contours of the higher peak, and these are only slight.

A single example is not, of course, sufficient information on which to

judge the merits of a contouring method; however we do not present any more

complete plots at this stage, but instead we refer the reader to the

numerous other plots of real and artificial data which appear later in this

thesis. It is hoped that the aggregate of these illustrations will be

sufficient to convince the reader of the excellent quality achievable with

the seamed quadratic element.

2.6 Bounds over triangles, etc.

When a large number of elements is used in the production of a contour

map, considerable savings in efficiency can be made if good bounds are

available for bracketing the range of values which the piecewise quadratic

approximant takes in individual triangles, over rectangular subelements and

over complete elements. We therefore consider some possibilities here.

In the case of a single triangle, it is not too difficult to calculate

exact bounds for the quadratic over its area. If the quadratic is positive

or negative definite with its centre (X^, Y^) inside the triangle (this is

determined at an early stage of the MP algorithm) then one extremum will

be the value of the quadratic at (X , Y) and the other will occur at oneo o

— 41 —

(0

00

Figure 2.6 Standard function contoured using the seamed
quadratic element (15 x 10 grid of elements)

— 42 —

of the vertices. Otherwise the maximum and minimum values will both occur

on the triangle’s edges. Consider a single edge of the triangle; the

maximum and minimum values along that edge will occur at the ends, unless

the tangent intersection T on that edge is either larger or smaller than

both values z and z at the ends. In this case one bound for the edge

will be

(z^ \ / (Zl + ZR - 2T) (2.8)

and the other will be z^ or ẑ .̂ Repetition of this process on the other

two edges yields a set of values whose maximum and minimum are exact bounds

for the values taken by the quadratic within the triangle.

Computation of exact bounds therefore takes a non-trivial (though not

substantial) amount of time. VJhat we really require is a very fast test,

powerful enough to discard a large proportion of those triangles which the

current contour does not traverse. As a preliminary step towards deriving

such a test, it is convenient at this stage to give a brief introduction to

homogeneous (or ’areal’) coordinates (Milne, 1924),

Figure 2.7 shows an arbitrary point 0 lying inside a triangle ABC. The

A
F igure 2.?

B
areas of triangles BOC, AOC and AOB are a^ a^, respectively. We define the

homogeneous coordinates (Xj, x^, x^) of 0 with reference to triangle ABC

""2 ' a, + a, + a ^ *3 = a, + a^

term in the denominators is not strictly an essential part of the definition

— 43 —

(a more general definition would allow any non-zero multiple of (Xj, x^,

Xg)), but the normalizing condition x^ + x^ + x^ = 1 is convenient for our

present purpose. The definition can also be extended to include points

outside triangle ABC, but we shall not be interested in such points; we
Ttherefore have the additional property that x > jO* where x = (x^, x^, x^).

To convert the homogeneous point (x^, x^, x^) to Cartesian coordinates

we use the formulae

Y = X, + %2 + ^3 (2.9)

where (X^, Y^), (X^, Y^) and * are the Cartesian coordinates of the

vertices of AABC.

Now if P, Q, R are the mid-points of the sides of A ABC (see Figure

2.7) and the quadratic takes values f ., f , f , f , f , f at the verticesA ü L» It K.
and mid-points of the edges of AABC, then it is easy to show that the

equation of the quadratic in homogeneous coordinates is

f (x) T= X M X

M is a 3 x 3 symmetric matrix

“ n =

^22 = S

^33 =

M i2 =
- ^(^A + fs)

M i3 = ZfQ- i(fA + fc)

^23 =
-

ij

(2 . 10)

The quantities Mj 2 » .̂nd are simply the tangent intersection values

at R, Q and P respectively.

We are now in a position to consider some easy-to-calculate bounds for

— 44 —

the values taken by the quadratic within a single triangle. Some useful

ones are given in Lemma 2.1.

Lemma 2,1

A quadratic parametrised by the values which it takes at the vertices

and midpoints of the sides of a triangle is bounded above and below within

that triangle by the maximum and minimum of the set of values comprising

the values at the vertices plus the tangent intersection value on each

side.

Proof

Consider the maximum value over the triangle

T Tmax {_x M _ x ; _ x 2 0,_l_x=J}

- max { M _y : x - 0, _}'̂ _x = 1, y - 0, _I*̂_y = 1}

= max M. .
i.j

T TSimilarly min {_x M x ; x > 0 , _ l x = 1}

> '- min M. .
i.j

and the proof is complete.

The bounds given by this lemma are simple to compute and although they

are non-minimal, empirical tests have shown that they are exact bounds in a

high proportion (about two-thirds) of cases; typically 98-99% of those

triangles which remain after use of these bounds actually contain segments

of contour at the current level. These bounds are also useful in enabling

us to find bounds for the values taken by the piecewise quadratic over

large areas. We now consider bounds for a rectangular subelement (compris

ing four triangles).

Lemma 2.1 tells us that the values (crosses) and tangent intersections

(rings) indicated in Figure 2.8(a) give bounds for the values taken by the

— 45 —

(a b

F Igure 2.8

piecewise quadratic wlthir. subelement. However, as explained

in Section 2.4, the fxve iiiuerior values xn this diagram are all

weighted averages of the f exterior taaaent intersections, so we
need not consider t- e " t: i rnal to the subsquare. Thus bounds are

given by the eight peripheral values indicated in Figure 2.8(b).
Finally we consider bounds over a complete element. We may obviously

begin by taking the aggregate of the values just found for the four sub

elements which form the element. However we can discard the values at the

midpoints of the sides and at the centre as a consequence of equation (2.1)

We are left with the four values and twelve tangent intersections indicated

in Figure 2.9.

bIgure 2.9
In practice, of course, we consider bounds in reverse order to that in

which we have just derived them: for each contour level we begin by

— 46 —

discarding as many complete elements as the bounds will allow; we then

consider the four subelements in each element that remains, discarding

those whose bounds do not include the current contour height. For each

triangle that remains we begin by making the simple calculation of non-

minimal bounds given in Lemma 2.1. If a triangle survives this test we

have found that it is so likely that the contour passes across the current

triangle that it is inefficient to calculate exact bounds within the

triangle; instead we proceed immediately with the quadratic contouring

routines.

It is important that the calculation of the bounds discussed above

is a numerically stable operation; otherwise there is a danger that areas

containing sections of the current contour may be discarded erroneously. Con

sider the bounds given by Lemma 2.1, which are simply a subset of the

values at the vertices and the tangent intersections on the edges of a

triangle. In the context of numerical stability, the calculation of the

former is the more crucial of the two operations: the bounds supplied

by Lemma 2.1 can only be attained by the function if they occur at the

vertices and it has already been stated that they are attained on a large

proportion of occasions in practice. In fact it was shown in section 2.4

that the evaluation of both values and tangent intersections on each

triangle is a very stable operation. Thus the bounds for a triangle given

by Lemma 2.1 are stable, and it follows that the bounds derived for sub

elements and complete elements will also be reliable.

Of course the phenomenon of rounding error can never be eliminated

completely; however it is unlikely to be harmful if it is kept to a

minimum and if steps are taken to ensure that when it does occur, it occurs

consistently. For example, when implementing the method, it is desirable

(leaving aside considerations of efficiency) to calculate all heights and

tangent intersection values internal to an element once only; and the data

— 47 —

along the edge of an element, which usually have to be evaluated twice,

should be calculated in exactly the same way on both occasions, in the

sense that identical operations are carried out in identical order. In

this way any rounding errors which occur will occur consistently; therefore

continuity of the contours can be preserved and differences between the

true contour and the plotted one will nearly always be imperceptible.

2.7 Breakdown of the Implicit Function Theorem

The existence of a well-defined smooth contour line is guaranteed by

the Implicit Function Theorem (see section 1.1); this theorem breaks down

in regions where the function is locally constant, or at any other points

where it has zero partial derivatives, and the computation must follow the

mathematics in failing to produce proper contours at the corresponding

levels. The cases of local maxima and minima and saddle points present

few difficulties, but areas where the function is locally constant can

cause problems. In practice, contours will start to display anomalous

behaviour as such levels are approached. The particular form which this

behaviour takes in our case is a tendency for such contours to follow the

seam lines in elements. Figure 2.10 is an artificial example to illustrate

this, suggested by Dr. M.A. Sabin.

On a 2 X 2 grid of unit size elements, zero value and gradient are

imposed at all eight peripheral grid points, and the value and gradient at

the centre are (1 ; 4,-4). The unlabelled contours are at i 0.0001; they

coalesce visually into a close approximation to the non-anomalous part of

the zero contour internal to the large square, lut follow seam lines

closely in an octagonal shape round the edge. This effect carries over

in less extreme form to other contours at low positive and negative levels.

Figure 2.11 is a practical example where this sort of effect is visible.

The function is a nonnegative probability density estimate (con

structed by Dr. B.U. Silverman to investigate metallurgical data collected

— 48 —

#s

#5
0.5

0.05

05

Figure 2.10 Breakdown of the Implicit Function Theorem:
an artificial example.

- 49 -

Figure 2.11 Near breakdown of the Implicit Function Theorem
in a bivariate probability density estimate.

— 50 —

by Dr. A. Bowyer) which approaches zero closely away from its mode. The

oscillations visible clearly in the lowest level contour appear to be

associated with the position and size of the 5 x 5 grid of elements; it

seems very likely that they arise for the reason explained above. Possible

methods of eliminating such oscillations (the most obvious being an overall

reduction in grid size) are discussed later in this thesis, in Chapters 4,

5 and 6.

The behaviour just described is not the only anomalous behaviour which

may occur in contours of the piecewise quadratic approximant when the Implicit

Function Theorem breaks down. It has been stated that contours of the same

height will only touch or cross each other in exceptional circumstances; the

saddle point is clearly one exception, but it is not the only one. Figure

2.12 illustrates an unusual case in which five contours meet at a single

point and three meet at another point.

In this example we have data lying on a 3 x 3 square grid of points

with points four units apart, and we are plotting the zero contour. Although

some rescaling has been carried out to help the reader assimilate the data

easily, it should be emphasized that the data were not constructed artific

ially, but arose in a practical application in which the natural

neighbour method was used to interpolate value-only data on a square grid

with missing values. It appears that the true surface was locally constant

in this area, but that the influence of surrounding data values (only a

small part of the complete grid is shown here) caused the method to estimate

non-zero gradients in most cases. Figure 2.13 indicates the positions of

the triangular panels and numbers the quadratics in the area of interest

from 1 to 10. The quadratics are as follows:-

I = q 2 = 16 xy

q^ = -23/32 y^ + ̂ /l6 xy

q^ = -23/32 + ̂ /16 xy

q^ = & x~ - 2/32 y^ - 2 / 1 6 xy

- 51 —

o

r~-I

I
CN

O

o

o o

ON
00

o
oo

o

Figure 2.12. Anomalous behaviour caused by breakdown of the
Implicit Function Theorem.

- 52 -

Figure 2.13 Triangular panels plotted over the contour map
Figure 2.12.

of

- 53 -

= -7/32 + 2 - 7/16 xy

q? = qg = -^/32 (x + y)^

qg = qjQ = 1/64 (x^ + y^) - ^^/32 xy + 1^/16 (-x + y + 1)

It is easy to verify that these quadratics do indeed form a continu

ously differentiable surface; we can check that all pairs of neighbouring

quadratics fit together smoothly using the following condition:-

Suppose the quadratics q^ and q^ lie on either side of the line

Ix + my + n = 0

Then the resulting surface is continuously differentiable along the line if

and only if

qj (x, y) = q^ (x, y) + X(lx + my + n)^ (2.11)

for some constant X,

It can now be seen that the approximant is nowhere locally constant,

but that the Implicit Function Theorem is broken along a straight line from

the origin (the centre of the plot) to the point (1, -1); the contour which

occurs here traces the maximum value of the paraboloid -7/32 (x + y)^.

This contour can be considered to be the limiting case, as the contour level

approaches zero from below, of pairs of parallel straight-line contours

equidistant from the line x + y = 0. Thus we can regard the contour as a

pair of coincident contours, and this explains the phenomenon of an odd

number of contours meeting at a point.

It might at first seem surprising that an example in which five or

six contours meet at a point in this manner can occur when the functions

being contoured are only polynomials of degree 2; however this is the result

of the piecewise nature of the surface and the discontinuities in second

derivative which result from this. Consider plotting the contours of

linear functions; the contours of a single linear function are simply

straight lines, but by piecing together linear functions with discontinuities

in first derivative across the joins it is easy to construct a function with

— 54 —

an arbitrary number of contours meeting at a single point. This can also

be done by piecing together quadratic functions with discontinuities in

second derivative where they meet, for example by piecing together sections

of hyperbolae around a point in such a way that the asymptotes of each

hyperbola run along the boundaries between them.

Examples like the one which we have just discussed cannot be ignored;

however it is important to emphasize that they will occur extremely in

frequently, and indeed can only occur when our approximant has zero partial

derivatives somewhere on the boundary line between two or more quadratics.

In general contours produced by our method will be smooth curves of the

highest quality.

2.8 Comparisons with cubic elements

The 1-dimensional element discussed in Section 2.2 invites comparison

with the familiar cubic element. In terms of the conventional approach to

error analysis, the latter is certainly to be preferred for the usual

applications, but the similarities are remarkably close: equation (2.1),

if rewritten as

0̂ " ̂ «iR (2-'2)

(where q^ = hg^, q^ = -hg^) holds for both; and both have integral

I = h(3z^ + q^ + q% + 3Zg) / 3 (2.13)

It is not hard to show that there is a piecewise cubic analogue of

our sixteen-triangle quadratic element. It is a four-triangle subdivision

of the rectangle on the St. Andrew pattern, as illustrated in Figure 2.14,

and again is characterised by value and gradient data at the vertices and

linearity of the normal component of the derivative along the edges. As

in the case of the quadratic element, we use a two-part argument to show

- 55 -

a, a

a
F Igure 2.14

that a unique C^ piecewise (cubic) polynomial surface is determined over

the element; we show first that it is possible to fit a continuously

differentiable surface to arbitrary data and we then prove uniqueness by

showing that zero value and gradient data at all vertices must lead to the

disappearance of the function throughout the element.

To show that a surface may be fitted to any data set it is

sufficient to construct functions (usually termed 'cardinal* functions)

satisfying the following two data sets:-

(i) Value = 1 at a single vertex; all other values and gradients equal

zero.

(ii) Normalised inwards component of x-derivative = I at a single vertex;

all other data are zero.

Given such a pair of cardinal functions, the other ten cardinal

functions for the element can be constructed trivially using symmetry

arguments and it is then possible to fit a surface to any given set of

data values by constructing a linear combination of the cardinal functions.

We now explain the notation given in Figure 2.14. The four triangles

into which the rectangle R is subdivided are Tj, T^, T^, T^, meeting at a,

the centre of the element. The vertices of R are labelled a^, a^, a^, a^.

— 56 —

We denote the values of the cardinal function corresponding to value 1 in

the south west corner of the element by Xj, X^, X^ and X^, the cubic X^

occurring in triangle T^. In the same way we denote the values of the

cardinal function corresponding to (normalised) x-derivative 1 in the south

west corner by pjj p^^ and p^^.

For convenience, but without loss of generality, we regard the centre

of the element as the origin and take h = 1, k = 1. Then the cardinal

functions have the following values

Xj(x, y) = ;x^ + ^/Sxy^ + Vsy^ + |xy + ^/S (-x - y) + &

2

3

X,(x, y) = '/8x^ + ^/Sx^y + ;y^ + ;xy + ^/S (-x - y)+ { (2.14)

X^(x, y) = I/8x^ - 3/gx^y + ;xy + ^/S (-x - y) + ;

X_(x, y) = -^/8xy^ + VSy^ + |xy + ^/8 (-x - y) + &

Pjj(x, y) = ;x^ + Vsxy^ - ^x^ + ;xy - V8y^ - Vs x - |y + ̂̂ 8

^12(x, y) = VSx^ - |x^y - VSx^ + ̂xy - V s x - ly + VS

P|g(x, y) =-V8xy^ + |xy + Vsy^ - Vsx - &y + Vg

pj^(x, y) = ^/Sx^ + jx^y - VSx^ - V8x - iy + Vs (2.15)

It is straightforward to check that the functions X^ and p ̂ ̂ fit the

data, that the normal component of the derivative along the edges varies

linearly, and that the surface is continuously differentiable across the

seams of the element. It remains to be proven that the surface fitted

from the obvious linear combination of these and the other cardinal functions

is unique. The proof of uniqueness is almost identical to a proof given by

Percell (1976) of the uniqueness of the surface determined by the Clough-

Tocher triangular element, which was introduced in Clough and Tocher (1965).

For use in this proof, we define to be the (unique) linear function such

- 57 -

that (p̂ (a) = 1 and (j)̂ vanishes on the exterior edge of T^. Furthermore, let

be the function on R defined by

1 < i < 4

where the vertical bar means restriction of a function, <p is well-defined

and continuous on R because cj). and à. , are identical on T. a T. . , since1 1+1 i " 1+1
both are 0 at a^^^ and 1 at a. (Throughout this argument subscripts will

be counted mod 4.) We also denote our piecewise cubic by y, and the part

of it which lies in T. by y .. So1 1

Yi = y |t ^, 1 < i < 4

Now when the data at the vertices are zero, y and Vy vanish on each

exterior edge of T (Vy is zero as a result of the gradient restriction).

It therefore follows that y = , where = &|T^ is a linear function.

Note that Ü is continuous because y is continuous and (}) does not vanish on

T. 0 T. except at a. On T. T. ,, Vy is well-defined and is given1 1 + 1 1+1 1 1 + 1 °
by either

2 2 2£(j)Vcf). + (j) V£. or 2&^V^. , + (p VZ.,T Ti T 1 T T 1+1

Thus

2AV(*^+| - 4)̂) + *V(4^+| - £.) = 0

on T^ Since 4>(a^^j) = 0 and V(^^^^ - (j)̂) f 0 (because the lines

(j)̂ = 0 and = 0 are not parallel) it follows that £(a^^^) = 0. Therefore

Z. vanishes at the exterior vertices a., a.., of the triangle T., so Z.1 1 1 + 1 1 1
vanishes on the exterior edge of T.. Hence Z. = c.<p. for some constant c . .1 1 1 1 1
But since Z is continuous and 4^(a) = 1, c^, c^, c^ and c^ must be the same.

3 . 1so £ = c(J) for some real c. Thus y = ctj) , which cannot be C unless c = 0

because (j) is not . Uniqueness is therefore proven.
The element introduced above and the sixteen-triangle quadratic element

preserve the same similarities observed between the two 1-dimensional elements

- 58 -

For both elements, che value at the centre, z^. Is given by the relation

^0 ̂ ^NW + ^SW "SE+ + h / 8 (- s.̂ + Sjĵj + - S g g) +

*■" *̂NE * *̂ SW * *̂SÊ (2.16;

and both have integral given by the linear combination

3

3zNW

+ (kCgy)

(hS-_.) + (-hs„„)NW NE' 3zNE

(ktsE>

+ 3zSW (hs_„) + (-hs„„)SW SE' 3zSE J
(2.17)

It is tempting to conjecture that in n dimensions there is a cubic

element with nl2^ ̂ simplexes and a quadratic element with nl2^^ ̂ simplexes

and that both satisfy the obvious n-dimensional generalisations of (2.12),

(2.16) for the value at the centre and of (2.13), (2,17) as integral formula

No attempt has been made to verify this.

If a subroutine were available which employed a method of parametric

contour generation for a cubic, analogous to the method used by MP for a

quadratic, then it might well be attractive to use the four-triangle cubic

element as an alternative to the sixteen-triangle quadratic element;

unfortunately no such subroutine has yet been written. It would provide an

interesting opportunity to examine the tradeoff between the number of

triangles per grid point and the complexity of the function on each triangle

We are therefore forced to confine our attention to the development of the

piecewise quadratic method for contouring in the remainder of this thesis.

- 59 -

CHAPTER 3

THE CONICON PACKAGE

3.1 Introduction

The contouring method proposed in Chapter 2 has been implemented by the

author in the form of CONICON, a self-contained package of subroutines which

comprises approximately 7500 lines (including copious comments) of ANSI

Fortran. Some examples of output from CONICON have already appeared in this

thesis; in this chapter we explain the structure of the package, giving

details of its more important subroutines, and present further illustrations

of its capabilities.

At the highest level of the package are eight master routines, any one

of which may be called by the user to produce a complete contour plot with

or without features such as annotation, crosshatching and local suppression

of contour plotting. A comprehensive description of the functions of these

subroutines and the features which they offer can be found in the CONICON

users' guide, which forms Appendix A of this thesis. Also documented in

Appendix A are a pair of routines for indicating stationary points of the

piecewise quadratic approximant, and a number of utility routines which help

the user to set up data for his chosen master routine.

At a much lower level, the simple graphics routines which are needed to

carry out tasks such as (i) plotting a straight line from the current

position to (x, y), or (ii) moving the plotter position invisibly to (x, y),

are assumed to be supplied by the user's system and are not an integral part

of the CONICON package. The set of such graphics routines which the user

is expected to provide is also described in Appendix A.

The CONICON package was developed on the Avon Universities Honeywell

Multics system and has been run successfully by the author and a number of

other users on several hundred data sets. The package is interfaced to a

—60 —

highly efficient package of graphics subroutines, which allows plots to be

displayed directly on both the Tektronix 4015 graphics terminal and the

Tektronix 4663 pen plotter belonging to the School of Mathematics at Bath

University. Most of the CONICON plots which appear in this thesis are hard

copies from the former device, since the latter was not available for most

of the duration of this project. Principal advantages of using the latter

device are the ability to create larger scale plots and the opportunity to

use more than one pen colour in the creation of a single plot (a facility

which is utilised by the CONICON package’s crosshatching feature).

Following the completion of this project the package was installed

(with no major problems) on CDC Cyber 175 and 835 machines at the European

Centre for Medium Range Weather Forecasts, Shinfield Park, Reading. A

number of further improvements were made by the author to this version of

the package, but these were made at too late a date for inclusion in the

current chapter and are not documented in Appendix A. However some examples

of plots produced by this version of the package appear in Chapter 4.

Unlike the other plots in this thesis these were produced by a raster device

(Versatec 8122 electrostatic plotter) after vector to raster conversion.

3.1.1 Quadratic contouring routines

In the original version of CONICON the routine of Marlow and Powell

(1976) was used to trace the contours of the piecewise quadratic approximant

across individual triangles. However it soon became apparent that in its

published form this subroutine would not be reliable enough for the produc

tion of contour maps in large quantities: the routine was found to have an

inherent numerical instability, which sometimes resulted in exponent

underflow (or overflow) in relatively straightforward non-pathological

examples; and it produced incorrect results in some special cases. An

attempt to alter MP’s routine to improve its stability was not a complete

— 61 —

success, and therefore the routine was eventually replaced by a number of

new subroutines due to Professor R. Sibson (pers. comm.). The resulting

version of the package, CONICON 2, is the one which we describe in this

Chapter.

The new routines have a number of distinct advantages over the routine

of Marlow and Powell: they have proven to be extremely reliable, are

considerably faster (especially over large contour maps) and were carefully

designed to ensure that the endpoints of those individual conic sections

which in theory are identical are also numerically identical.

Sibson’s routines employ a much simpler parametrisation for conic

sections which appears a more natural choice than that used by Marlow and

Powell and retains a sensible adaptive step length policy. Each conic

section is parametrised in terms of its endpoints ((xO, yO, zO)

and (xl, y 1, zl) in homogeneous coordinates normalised to sum to unity)

and the point of intersection (xh, yh, zh) of tangents constructed at the

endpoints, which is known as the pole. The normalisation of the pole is

dependent on the conic; it is not in general the case that xh + yh + zh = 1.

The parametric equations for the conic section are then
2 2

x (t) = xQT + 2xhT(l-x) + x I(I-t)

y(x) = yOx^ + 2yhx(l-x) + yl(l-x)^

z(x) = zOt ^ + 2zhx(l“x) + zl(l-x)^

0 < X (3.1)

These values are unnormalised.

Ring contours lying completely within the reference triangle are

divided into two separate pieces, each with its pole at infinity. All cases

where the contour degenerates into a pair of straight lines are dealt with

correctly by a separate subroutine.

— 62 —

A further advantage of these subroutines is that they always generate

conic sections in the same direction, with high ground on the left. At

present this fact is ignored by the routine in CONICON which links conic

sections to each other, but the potential exists to reduce by 50% the

number of comparisons carried out by the linking routine: features such

as ’ticking’ of contours on the lower (or upper) side could then also be

incorporated with no great difficulty.

Experience has indicated that in plots with large numbers of elements

the great majority of conic sections need only be approximated by a single

straight line; in view of this it is felt that MP’s routine with its

relatively large overheads wasted a large amount of CPU time making un

necessary calculations. The burden of such calculations imposed by Sibson’s

routines is light in comparison and this is probably an important contribut

ory factor to the relatively fast speed of these routines. In the current

CONICON set-up the number of straight line segments used to approximate a

conic section across a triangle is a linear function (rounded to the

nearest integer) of 180 degrees minus the angle subtended by the endpoints

at the pole, a method which adapts itself according to the fineness of the

grid employed and the curvature of the contours. Once this number has been

determined the range of the parameter t is simply divided into the

appropriate number of equal intervals and each interval is represented by a

single straight line segment. This rather simple-minded choice of adaptive

segment length may well be improveable without the need for the complexity

of the MP approach, but it appears to work reasonably well in practice.

3.2 Producing a simple contour plot using CONICON

In order to present as simple as possible a description of the basic

structure of the CONICON package to begin with, we shall follow through the

process of creating a simple contour plot without any of the special

— 63 —

features described in the documentation in Appendix A. In addition we shall

assume that the user has on file or can calculate both the heights and

gradients of the surface which he wishes to contour at the nodes of a

square grid. Some of the subroutines encountered in this section will be

explained in greater detail below; for the moment we wish simply to

summarise the process involved in the creation of a CONICON plot.

The CONICON documentation instructs the user to call either subroutine

CONICl or C0NIC2 to produce any plot without crosshatching, since these are

the master routines with the shortest argument lists and are therefore the

easiest to use. We shall assume that the user wishes opening and closing

of the plot frame to be carried out automatically: therefore he should

choose to call subroutine CONICl. CONICl simply opens the plot frame,

plots the (rectangular) boundary of the grid in a style chosen by the user,

resets the line style to solid for contour plotting, calls subroutine

C0NIC2 and finally closes the plot frame before returning.

C0NIC2 is another short subroutine which sets the dimensions of a

number of arrays not required when the crosshatching feature is not being

used, and in examples such as ours in which the local contour suppression

feature is not wanted sets all values in the array ZLIM to zero (see 3.7

or CONICON documentation for further explanation). Finally it calls sub

routine ALLCON before returning.

Subroutine ALLCON is a vital part of the CONICON structure. This

routine is called, directly or indirectly, by all master routines in the

package with the exception of those which are used to contour the gradient

of the approximant surface. In the case of our simple plot this routine

will carry out the following tasks:-

(a) Check for illegal values of a number of variables.

(b) Calculate the bounds given in Section 2.6 for values taken by the

surface within each element in the grid and store in the array ZLIM.

— 64 —

(c) Bypass the section which selects contour levels automatically, as we

have supplied our own levels.

(d) Enter the main loop. For each contour level do the following

(i) Initialise variables to indicate that the current contour is of

standard thickness and without annotation, and by-pass those

sections which might alter these values if the labelling or

thick-line options were being used.

(ii) Initialise variables indicating the position of the first free

space in the working arrays K , XY and K3 (see 3.4 for an

explanation), and set the current contour height.

(iii) For each element of the grid, check whether the current contour

level lies between the bounds for that element stored in ZLIM.

If not, there is nothing to do. Otherwise call subroutine

SQUARE which, along with those routines which it calls directly

or indirectly, calculates the conic sections within each

triangle of the element, attempts to link them to others which

have been calculated earlier, and plots any contours which have

now been completed.

(iv) If any contours in the data structure have not yet been plotted

(this should only happen if the contour suppression feature has

been used) call subroutine EMPTY which plots these contours.

(e) Bypass the crosshatching section of the routine and exit.

We now consider what happens on arrival at subroutine SQUARE. This

subroutine deals with each of the four subelements in turn, beginning by

calculating the bounds given in 2.6 for values taken by the function within,

the subelement. If the current contour level fails to lie between these

bounds we proceed to the next subelement. Otherwise we pass on the eight

values (four heights and four tangent intersection values) just calculated

as arguments in a call to subroutine SUBSQ.

— 65 —

Subroutine SUBSQ does a simple calculation (as explained in 2.4) to

evaluate the four tangent intersection values and one surface height needed

within the subelement. Each triangle within the subelement is then checked

against the bounds given by Lemma 2.1 and when it is possible that a

section of the current contour may cross a triangle, subroutine TRICON is

called to construct the conic section(s) across the triangle and add it to

the data structure; however before TRICON is called it is necessary to

calculate the intersections of the contour with the triangle’s edges, a

task which is carried out by calling subroutine EJCUT once for each of its

edges. Care is taken to ensure that this subroutine is called no more than

once to calculate the intersections along each edge within the subelement.

(Some repeat calls may however be made during later calls to SUBSQ.)

Subroutine TRICON calls subroutine CONSEG which identifies the contour

segments within the reference triangle and returns the endpoint-and-pole

parametrisation for each separate piece of conic. Subroutine PLTCON is

then called once for each section of conic.

PLTCON is described in detail in Section 3.4; the first part of this

routine calculates the straight line segments used to approximate the conic

section, and the second part adds the conic section to the data structure

and attempts to link it to partial contours already in the data structure.

If the current conic section completes a contour, subroutine LABEL (see

section 3.5) carries out the trivial task of plotting the contour, using

the graphics routines which will have been supplied by the user’s system.

To produce our simple plot we must therefore travel along a chain of

several subroutines; this chain is illustrated by Figure 3.1.

3.3 Minor features of the package

Before examining major features of the CONICON package such as

annotation and crosshatching we shall discuss some of those features which

were simpler to incorporate but are nevertheless very useful.

— 66 —

FIGURE 3. HIERARCHY OF SUBROUTINES USED IN THE
CONSTRUCTION OF A SIMPLE CONTOUR PLOT

Called by user's program. Opens and closes
plot frame and plots boundary of grid.

Provides a relatively simple
interface to ALLCON.

Produces (with subroutines below) a
complete contour plot with any number

Contours a single element at one
leva I.

Contours a single subelement
at one level

Calculates intersections of conic
with one triangle edge.

Contours a single triangle
at one level.

Identifies and parametrises conic
sections within a triangle.

Approximates a conic section by a sequence
of points, adds it to the data structure &
attempts to link it to other conic sections

in the data structure.

Plots a complete contour.

Supplied by user.

(I I) Moves plotter position

EJCUT

LABEL

SUBSQ

TRICON

PLTCON

CONSEG

SQUARE

ALLCON

C0NIC2

C0NIC1

Graphics routines;
I PLTLIN, (ii) PLTMOV

- 57 -

3.3.1 Gradient Estimation

In practice the user is very often unable to calculate the true first

order partial derivatives of his surface, and in such circumstances it is

essential that a reliable gradient estimation routine should be available.

CONICON provides two such subroutines, called GRSET and GRSUB, and

when gradient estimation is required one of these routines should be called

prior to calling one of the master routines in the package. It is

appropriate to call subroutine GRSET in normal circumstances and GRSUB in

cases where the contour suppression feature is being used. Estimation is

done in the most localised way possible, by fitting a parabola through a

point and its two nearest neighbours in the relevant direction, and using

the gradient of this parabola at the point of interest as our estimate.

This technique preserves the contouring method's property of correct

reproduction of quadratic surfaces, and given the piecewise quadratic nature

of the approximant it seems the most natural method of gradient estimation.

Subroutine GRSUB will not, however, use any point lying inside an area of

local contour suppression for gradient estimation purposes. It sometimes

therefore fits a straight line rather than a parabola to estimate the

gradient at a point and in such cases the property of quadratic reproduction

is lost in some areas of the plot.

Besides the usual case where the rectangular boundary of the map is

probably a fairly arbitrary cut-off point, subroutine GRSET can cater for

examples in which the surface can be thought of as a function over a

cylinder or a torus and heights and gradients on opposite edges of the

rectangle are therefore identical. In such cases the nearest neighbours

of a point lying on the edge of the plot will still be situated in opposite

directions.

The simplicity of this method of estimation belies its effectiveness.

Figure 3.2 shows the superposition of two plots (both using a 31 x 21 grid

— 68 —

Figure 3.2 Standard example function, contoured using (a)
true gradient values and (b) CONICON gradient
estimates.

— 69 —

of points) of the same function (the function which was plotted in Figure

2.5), one using the true gradient values and the other using gradient

estimiates provided by subroutine GRSET. The only visible differences occur

in some areas of the outermost contours where the line thickness appears

greater than it should be.

3.3.2 Automatic selection of contour heights

The CONICON package offers the user the option of choosing contour

heights himself, or of having them chosen automatically. Automatic choice

of contour levels is carried out at an early stage of subroutine ALLCON, as

soon as the bounds for values taken by the function within each element

have been calculated. At the same time as these bounds are evaluated we

calculate (in the obvious way) a pair of bounds for the complete region of

interest. Contour levels (a number specified by the user) are then chosen

at regular intervals to lie between this pair of values (alternatively the

user may specify such a pair of values himself). The contour levels are

chosen to be 'round* numbers, so far as this is possible by a subroutine,

SCZZZ, originally written for scaling graphs by P.J. Green (pers. comm.).

Subroutine SCZZZ chooses contour levels to be integer multiples of any

one of the following multiplied by an integer power of ten:-

1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8

It therefore follows that it is not always possible to select exactly

the number of contour levels requested by the user, but the routine will

choose the greatest possible number of contour levels less than or equal to

the number selected by the user.

3.3.3 Automatic choice of label length

In the CONICON package the user is free to choose how many decimal

places the numbers which label his contours should carry; alternatively, he

— 70 —

may leave the package to determine this for itself. One advantage of the

latter c:curse of action is that labels on different contours can then have

differenit numbers of decimal places.

Subroutine WIDTH determines the number of characters (including decimal

point anid minus sign) in a label , whether or not the number of decimal places

is chosen automatically.

The number of digits preceding the decimal place is determined easily,

by examining the integer part of the logarithm (base 10) of the absolute

value of the number. If the number of decimal places has been selected by

the user then the only other information to be determined relates to the

presence or absence of a minus sign and/or decimal point. Otherwise the

routine must then determine the number of decimal places in the label.

This is limited to a maximum of four. The following extract from subroutine

WIDTH shows exactly how this number is determined (CT here represents the

contour level itself, and NFRAC the number of decimal places).

DATA n , EPS/1.0E04, 5.0E-05/

NFRAC = 0

ACT = ABS(CT) + EPS

1 ACT = (AINT(ACT*TT))/TT - AINT(ACT)

IF(ACT.LT.EPS) GOTO 2

NFRAC = NFRAC + 1

IF (NFRAC.EQ.4) GOTO 2

ACT = ACT *10.0 + EPS

GOTO 1

2 CONTINUE

3.4 Linking contour segments

It would of course be a simple task to ignore the continuity of the

piecewise quadratic approximant and to plot each conic section produced by

- 71 -

the package immediately after generating it. Indeed some of the more

primitive contouring packages which employ piecewise linear methods do

draw contours in such a manner, plotting individual straight line segments

separately. However, a number of practical considerations dictate that

such a policy should be avoided if possible; instead it is preferable to

carry out a linking process of all conic sections at each contour level

prior to plotting, and to plot complete contours without (in the case of a

pen plotter) the pen having to leave the paper. The most important reasons

for doing this are as follows;

(i) To save on 'pen-up* time on a graphics device - a significant

consideration when a pen plotter is used.

(ii) To allow a sensible annotation algorithm to be incorporated into

the package.

O-ii) To allow the proper construction of broken-line contours.

The CONICON package therefore incorporates such a linking process as

an obligatory part of the production of contour plots, and in this section

we explain the data structure used to implement this feature and how it is

updated by subroutine PLTCON each time a new conic section is produced.

3.4.1 Data structure for linking contours

It can be seen from the CONICON documentation in Appendix A that even

the simplest routine for contour plotting, subroutine CONICl, includes the

working arrays XY, CONT, K and K3 in its argument list. These arrays are

all connected with the data structure which is used in the process of

linking conic sections into complete contours. Their functions are as

follows:-

The array XY(2, NXY) holds the Cartesian coordinates of all the points

used to approximate sections of the current contour across triangles,

s tored in the order in which they are generated. Thus when a new set of

- 72 -

such points representing a conic section is generated early in subroutine

PLTCON it is added to the next free space in XY. The first dimension of

the array K(3, KTOP) provides a look-up table for the locations in XY of

the end points of these conic sections; so if, for example, the first two

conic sections in XY comprise 4 and 7 points respectively we will have

K(l, 1) = 1; K(l, 2) = 4; K(1, 3) = 5 and K(l, 4) = 11.

The second dimension of K indicates the way in which conic sections

are linked to each other. Entries are initialised to be zero and altered

after the successful linking of pairs of conic sections. For example, if

the 'bottom* end of conic section 2 is joined to the 'top* end of conic

section 4, thenK(2, 3) = 8 and K(2, 8) = 3. In addition, if we find that

the Nth segment endpoint lies on the boundary of the grid, we set

K(2, N) = KTOP + 1.

The vector K3(NK3) can be dimensioned considerably shorter than the

other three working arrays discussed here; the odd entries are used as

pointers to those segment ends in the data structure which remain unlinked,

while the entry in K3(2N) is the index number of the segment end at the

opposite end of the chain of linked conic sections which begins at the Nth

'free* segment end. The segment endpoint indicated by K3(2N) will either

lie on the boundary of the plot, or will also be available for linking.

Information in the even entries of K3 is kept so that it can quickly be

determined whether a complete contour has been linked up after the

addition of a new conic section.

The third dimension of K simply performs the inverse transformation

of odd entries in K3; thus if K3(2M-1) = N, then K(3, N) = 2M-1. This

information is needed for successful updating of K3. The third dimension

of K also performs a vital role in CONICON's garbage collection routine

(see subsection 3.4.5).

- 73 -

Finally the array C0NT(2, NXY) is used when a complete contour is

linked and ready to be plotted. The coordinates of the points which form

the contour are copied from XY to CONT in their correct order, and the

contour is then plotted by subroutine LABEL. All contours are plotted as

soon as they have been completed, beginning at the end nearer to the

current plotter position. As they are copied from XY into CONT the values

in the second dimension of K which have become redundant are flagged with

minus signs. It then becomes possible to call an efficient garbage

collecting routine which removes all the redundant information from the

arrays XY and K; this permits major savings in storage space in examples

where contours at all levels tend to be short and numerous.

We now present an example which illustrates the state of the data

structure at a single instant during the construction of a contour plot.

For simplicity we are contouring within a single element, which is

illustrated by Figure 3.3. The dotted lines delineating the panels of the

element are superimposed in order that the separate conic sections may be

distinguished. Of course CONICON does not normally plot contours until

they are fully linked, but here we plot all conic sections which have been

generated regardless of their current state of linkage. The index numbers

of all conic section ends are indicated in Figure 3.3; in this example we

have interrupted the program immediately before conic sections in the NW

subelement are calculated. At this stage eleven separate conic sections

have been generated, two complete contours have been linked (and plotted)

and there are two conic section ends which remain unlinked. KTOP in this

example has been set to 200. The values in K3 and the second dimension

of K at this stage are as follows

— 74 -

19 18
20 ■16

22

Figure 3.3 A single element example to illustrate the data
structure used in linking contours.

- 75 -

K(2,l) = 4 K(2,9) = -14 K(2,17) = -16

K(2,2) = 5 K(2,10) = -201 K(2,18) = -201

K(2,3) = 8 K(2,l1) = -13 K(2,19) = 201

K(2,4) = 1 K(2,12) = -201 K(2,20) = 22

K(2,5) = 2 K(2,13) = -11 K(2,21) = 0

K(2,6) = 0 K(2,14) = -9 K(2,22) = 20

K(2,7) = 201 K(2,15) = -201

K(2,8) = 3 K(2,16) = -17

K3(l) = 6

K3(2) = 7

K3(3) = 21

K3(4) = 19

3.4.2 How conic sections are linked

As was mentioned earlier, subroutine PLTCON carries out the tasks of

updating the data structure and linking following the generation of a new

conic section. The steps which PLTCON takes after it has approximated a

conic section by a sequence of points are listed below (though for the

present we shall omit reference to the rather complicated process of up

dating K3, which will be discussed separately).

1. Carry out a garbage collection if the new data will not otherwise fit

into K and XY. If there is still insufficient space on return, STOP

620 or 621,

2. Determine whether either end of the conic section lies on the boundary

of the plot, and store this information. If both ends lie on the

boundary call LABEL immediately to plot the contour with or without

annotation, and return.

— 76 —

3. Add all points of the conic section to XY, and make appropriate

additions to the first two dimensions of K. At this stage the values

added to K ’s second dimension will be 0 or KTOP + 1.

4. Return if no free segment ends are available for possible linking to

the current segment.

5. If the top end of the new conic section lies on the boundary of the

plot, go to (8). Otherwise search through all available segment ends

and determine whether any should be linked to the top end of the new

segment (allowing linking only if a pair of points is numerically

identical). If so, make appropriate alterations to the second

dimension of K; also use K3 to find the index number of the point at

the far end of the newly extended chain of linked conic sections.

6. If we have succeeded in linking the top end of the new segment to

another conic section, check whether a closed loop has been completed.

If so, go to (10).

7. If the bottom end of the new segment lies on the boundary of the plot,

then either (i) If the top end was linked to another segment, thereby

completing a contour, go to (9)

or (ii) return,

8. Carry out a similar matching process on the segmentas bottom end to

that attempted with its top end. If it cannot be linked to another

segment, return. If it can be linked to another segment, check to

see whether a contour has been completed. Return unless this is so.

9. Determine which end of the new contour is closer to the current

plotter position (stored as (XPT, YPT)),

10. Copy the various conic sections which form the new contour from XY

into CONT in their correct order, with the first point being at the

end nearer to (XPT, YPT). Flag values in the second dimension of K

with negative signs as they become redundant. Reset (XPT, YPT) to

- 77 -

be the final pair of coordinates in the contour. Call LABEL to plot

the contour and return,

3.4.3 Updating the array K3

The updating of K3 after a new conic section has been added to the data

structure needs to be treated with some care, particularly if we succeed in

linking one or both ends of the new segment to other conic sections.

When an endpoint of the new conic section has been linked to another

conic section, K3 is immediately amended to take account of this. For

example, suppose the new conic section is the 8th and we are successful in

linking its bottom end to the top end of the 5th conic section in the data

structure, which happens to be the third ’available* segment end in K3 i.e.

K3(5) = 10. Then we will update K3 so that K3(5) = 16, indicating that the

top end of segment 8 is now the third free segment end (whether or not it

is indeed free). K3(6) does not require updating, because the segment end

point at the far end of the chain of conic sections is unaltered. However

we must look to see if this segment endpoint is also available for linking:-

if it is not (i.e. it lies on the boundary of the plot) then there are no

more alterations to be made. Suppose though that it is free; we then look

up its location in K3 using the value in the third dimension of K and find

that this is, say, the first location. It follows that the value in K3(2)

will be 10 ; this we must update to 16 to take account of the newly added

segment.

We may however discover later that the top end of segment 8 had already

been linked to another segment or alternatively that it lies on the boundary

of the plot. In such cases we will therefore have to remove the third pair

of entries from K3 (and in the former case a second pair of entries must

also be removed from K3) and replace them by the final pair of non-zero

entries in K3 before either returning or calling subroutine LABEL,

- 78 -

Thus, before leaving subroutine PLTCON we must carry out the following

tasks

(i) Make one pair of deletions from K3 for each endpoint of the new

segment which has successfully been linked to another segment.

(ii) Make one pair of additions to K3 for each endpoint of the new segment

which we have failed to link to other segments (unless it lies on

the boundary of the plot).

The net effect of this however, on the frequent occasions when a single

end of the new segment is linked to another segment (and the other end does

not lie on the boundary of the plot) is that no changes are made.

3.4.4 Retrieval of information from XY

CONICON's conic-following routines guarantee exact matching of conic

section endpoints and for this reason the package always succeeds in

correct construction of complete contours by the linking together of conic

sections. However if the local contour suppression feature (see section

3.7) is used the package cannot always recognise when a contour has been

completed: subroutine PLTCON can identify complete contours (a) which

are closed loops or (b) whose endpoints lie on the (rectangular) boundary

of the plot, but if the local contour suppression feature is used the

package will usually generate some contours which fall into neither of

these categories and will not be recognised as complete contours by the

package. Therefore, in order that this does not result in contours being

omitted from the plot, a check is carried out after all elements have been

processed to determine whether NENDS (twice the number of 'free' segment

ends in the data structure) equals zero. If NENDS is non-zero then not

all complete contours have been recognised as such and it is therefore

necessary to retrieve and plot the information still held in XY. This is

done by calling subroutine EMPTY. This routine simply locates the segment

ends which have not been linked, and copies each contour into CONT before

- 79 -

calling subroutine LABEL, which plots it. When a contour has been plotted,

the value in K3 corresponding to the end not yet located by EMPTY (if this

does not lie on the boundary of the grid) is flagged with a minus sign in

order to prevent contours from being plotted twice,

A second use for this subroutine, which is currently implemented only

in the ECMWF version of CONICON, prevents the necessity of aborting a job

if the dimensions of the arrays K or XY turn out not to be large enough:

In the standard version of the package the user's program is forced to

terminate at STOP 620 or STOP 621 if either of the variables KTOP or NXY

turns out to be too small to allow all contours to be fully linked

internally; however if subroutine EMPTY is called instead of aborting in

such circumstances it will plot all partial contours generated up to that

point and allow the job to be continued, with all space in XY and K once

again free for use. This has little adverse effect on total CPU time:

the only disadvantage is that annotation can become sparse if either KTOP

or NXY is considerably below the ideal.

3.4.5 Garbage routine

As has been mentioned above, CONICON employs a garbage collecting

routine to clear redundant information from the arrays XY and K when there

is insufficient room for new information to be added to the free space in

either one of these arrays. Subroutine GARB carries out this task in the

following way:-

We begin by searching through the second dimension of K to find the

location of the first piece of redundant information in XY (flagged as

negative in K) . We then find the next block of useful information in XY

and transfer this down XY so that the first pair of values is moved to

where the first pair of redundant values occurred, and so on. We continue

locating blocks of useful information and shifting them down XY in this

- 80 -

way until all the useful information on contour segments is located at

the bottom end of XY, and IXY (the location of the first free space in

XY) is then updated. The first dimension of K is also updated as this

process is carried out; however K's second dimension remains unaltered

at this stage. The third dimension of K is used to keep a temporary

record of the movement of contour segments down the array XY. For

example, if the seventh segment becomes the third segment after discard

ing four redundant segments, we will have K(3,13) = 5 and K(3,14) = 6.

We now move on to the updating of the second dimension of K. In

cases where a segment end has not been linked to another segment end,

values (either 0 or KTOP + 1) are simply transferred down the array.

However, when a value in this array indicates that the conic section has

been linked to another conic section, it is probable that the index of

the segment end to which it is linked will have changed. The new index

of that segment end is given by the value stored in the third dimension

of K. After this process has been completed KBASE (the beginning of

the next free space in K) is updated and we move on to the updating of

K3.

K3 is updated in a similar way to the second dimension of K, using

information on the changes in indices stored in the third dimension of

K. Finally values are replaced in the third dimension of K using the

information now in the odd entries in K3.

3.5 Plotting and annotation of contours

These functions are carried out by subroutine LABEL. Using a

graphics interface conforming to the specifications outlined in the

CONICON documentation, plotting of a contour without annotation is a

trivial operation, whether thick or ordinary line styles are used.

- 81 -

Thus most of subroutine LABEL is devoted to finding the locations at

which labels occur and calculating the correct points where plotting of

a contour should end and begin in the locality of a label.

Subroutine ALLCON determines whether or not contours should be

annotated and whether they should be plotted using thick lines, by

examining first the value of 11 and then, if necessary, examining the

values of ITH and ILAB once each at every contour level.

If it has been decided that the current contour requires annotation,

the positions of the labels need to be determined. The algorithm which

subroutine LABEL employs to select label positions is as follows

(i) Calculate a pair of critical values. Cl and C2 (Cl < C2),

depending on the dimensions of the plot and the lengths (i.e.

number of characters) of labels on the current contour.

(ii) Calculate the length of the current contour.

(iii) (a) If contour length < Cl, plot the contour without labels.

(b) If Cl < contour length < C2, annotate the contour once

only at its midpoint. (If the contour is a closed loop

we regard the position where plotting begins and ends as

its endpoints.)

(c) If C2 < contour length, provide the contour with two or

more labels, the first occurring a short distance from

where plotting starts and the remainder at equal intervals

along the contour (the size of these intervals also

depending upon the dimensions of the plot, etc.)

These choices of label position are all however subject to the

constraint that a small rectangle surrounding each label should not over

lap the boundary of the plot. If such an overlap would normally occur

the current label and all subsequent labels are shifted in short steps

- 82 -

along the contour until the rectangle around the current label falls

completely within the plot, or the contour ends.

In the current implementation CONICON uses hardware characters

for labelling and plots them all at the same (vertical) orientation,

unlike a number of other contouring packages whose labels are plotted

at orientations depending on the direction of the contours in the areas

where they occur. It is felt that this policy makes CONICON's labels

easier to read in general, except in cases where contours are closely

spaced relative to label size and are near vertical. It is also felt

that the algorithm outlined above for choosing label positions usually

results in a highly satisfactory pattern of sites, and that this is

borne out by the examples which appear in this thesis.

The steps carried out by subroutine LABEL are as follows

1. Move plotter position invisibly to the start of the contour. Jump

to (8) if annotation is not required.

2. Calculate the length of the current contour, critical values Cl

and C2 and hence the distance D2 of the next (first) label along

the contour. If the contour is too short to be annotated proceed

to (8) .

3. Keep a running total of the lengths of the straight line segments

which form the contour, until the total exceeds D2. Find the

correct position of the centre of the label on the last straight-

line segment.

4. If a small rectangle around the current label would overlap the

boundary of the plot, make a small addition to D2 (assuming there

will still be enough space on the contour for a label a little

further along; if not, go on to (8)) and return to (3).

5. Keep stepping back along the contour from the label's centre, one

straight line segment at a time, until a point is reached which

- 83 -

lies outside the rectangle around the current label. Then find

the intersection of the rectangle edge with the straight line

segment which crosses it. Plot the contour (with a thick or

ordinary line style) from the current plotter position as far as

this point, and then plot the label itself.

6. Now step forward along the contour until we find the straight

line segment which leaves the rectangle around the current label

and find its intersection with the rectangle edge. Move the

plotter position here invisibly.

7. If the current label is the final one jump ahead to (8). Other

wise increment D2 and determine whether the next label will be the

final one. Go back to (3).

8. Plot the remainder of the contour in a standard or thick line

style.

9. End.

3.6 Crosshatching

A technique which has long been used in conjunction with hand drawn

contour plots of relief, population density, rainfall etc. is that of

crosshatching. This refinement is most commonly employed to achieve the

effect of a progressive darkening of the map as the height of the surface

increases and in such a form crosshatching is a useful aid to fast and

easy assimilation of contour plots. The piecewise quadratic nature of

the surface generated by our contouring method makes the automation of

crosshatching a relatively straightforward problem to solve in our case,

and this technique has therefore been incorporated into the CONICON

package.

Broadly speaking, the problem of crosshatching can be subdivided

into two distinct problems;- firstly the creation of the various patterns

- 84 —

which might be required by the user, and secondly, finding all inter

sections of lines forming these patterns with the contours themselves.

The former of these two problems has already been solved and implemented

in the TILE 4 package (Sibson, 1980), which is able to crosshatch the

area within an arbitrary convex polygon. The piecewise quadratic nature

of the approximant means that the latter problem reduces to one of finding

the intersections of straight lines and conic sections, which presents

few difficulties. Of course the solution would be even simpler if a

true piecewise linear contouring method were used; however to the author's

knowledge no other contouring package suitable for vector graphics devices

offers this extremely attractive and useful facility.

The CONICON package includes two fundamentally different cross-

hatching algorithms, both of which are described in some detail below.

Both algorithms do however solve the two major problems described above

in an identical manner, and we therefore precede discussion of the

algorithms by a description of how the package tackles these problems.

3.6.1 Creation of hatching styles

In order to explain how the numerous crosshatching patterns avail

able in CONICON are created, we refer to two subroutines, XHATCH and

HATCH, from the TILE 4 package. With the obvious exception of the simplest

style of hatching, patterns are created by superimposing two or more

rasters of parallel, equidistant lines, lines being either solid or

broken. Solid lines will usually be sufficient for the sort of progressive

darkening of hatching styles mentioned above, but the ability to construct

broken lines makes it possible to produce (at the cost of very little extra

labour) quite elaborate patterns which may be useful alternatives in

certain special applications. Subroutine XHATCH, the higher level routine.

- 85 -

crosshatches the area within an arbitrary convex polygon by calling

subroutine HATCH once for each raster of lines required. Indeed XHATCH

is composed almost entirely of calls to HATCH, the particular calls

which are selected on any one occasion depending on the code number

of the crosshatching style chosen. The arguments of HATCH include

variables (ANG, QO, Q1, PO, PI, P2 and P3) representing the values

of seven parameters which together specify the raster completely.

The meanings of these parameters are explained in the comments at the

beginning of the code for subroutine HATCH, and the appropriate part

is reproduced here (with permission).

"ANC is the angle in radians (anticlockwise positive) between

the (X, Y) axes and the (P, Q) axes. Hatch lines are produced

parallel to the P axis. Q1 (assumed positive) is the spacing of

hatch lines in the Q direction and QO is the offset of some line in

the raster (visible or not within the polygon) from the origin. P3

is nonnegative. If it is zero, solid lines are produced, and PO, PI,

P2 are ignored. If it is positive, it is taken as the gap length in

broken lines, with P2, assumed positive if P3 is, as the dash length.

On the line at Q, a dash starts at PO + Q*P1 and extends in the

positive direction. If any of the assumptions do not hold, no hatching

is done".

Subroutine HATCH begins by finding Q values for all vertices of

the polygon and is then able to determine the line of the raster lying

within the polygon which has minimum Q value. Intersections of this line

with the sides of the polygon are calculated and the line is then plotted,

care being taken in the case of broken lines that dashes begin and end in

the correct positions. Q is incremented in steps of Q1 and the remainder

of the lines of the raster are plotted - in alternating directions to

— 86 —

minimise 'pen up' time. Eventually Q exceeds the maximum value for any

of the vertices and the hatching is completed.

3.6.2 Intersections with contours

The problem of finding the points where hatching lines and contours

of the piecewise quadratic approximant intersect reduces to finding the

intersections of a straight line and a conic section within a triangle.

In CONICON, this is done by solving the equations of the conic and straight

line in homogeneous coordinates. Since we have three coordinates and two

equations the condition x + y + z = 1 is imposed to obtain a solution,

thus specifying barycentric coordinates. As was stated in Section 2.6,

the coefficients in the equation of the conic in homogeneous coordinates

are simply the values at the vertices and the tangent intersection values

on the triangle's sides. The equation of the straight line (in the form

Ix + my + nz = 0) is easily calculated from its intersections with the

triangle's sides. We therefore derive a quadratic in one of the three

variables x, y or z. If the discriminant is negative, the two curves do

not meet; otherwise we test to discover whether each intersection lies

within the triangle (i.e. all homogeneous coordinates are positive) and,

if so, convert the homogeneous coordinates of the intersection back to

Cartesian coordinates.

3.6.3 How algorithm A works

This algorithm ties the process of crosshatching closely to that of

contouring, by employing a strategy which relies on information discovered

in the contouring part of the process: namely, whether or not each

triangle of the piecewise quadratic is traversed by the current contour.

- 87 -

As the contouring is carried out, lists of information (vertices, values

at vertices and tangent intersection values) on those triangles which are

crossed by the contour are built up in the arrays XD and ABC at virtually

no extra cost (except in storage space). The algorithm maintains two such

lists throughout its course, one list for each of the contour levels

between which the next band of hatching is to be carried out. Thus

contours must be plotted in order of height (by convention, ascending),

and contouring and crosshatching at each level are carried out alternat

ely. After contouring at any particular level has been completed,

subroutine ALLCON calls subroutine AHATCH (c.f. XHATCH in TILE 4, which it

resembles closely), one of its arguments being the code number for the

current style of hatching. AHATCH first checks to see if both lists of

triangles are empty: if so, either there is no hatching to do (so RETURN),

or the complete area of interest requires hatching, a task best performed

by subroutine XHATCH. Normally, however, some of the triangles of the

piecewise quadratic will have been crossed by one or both of the contours

currently being considered, and in such cases subroutine RASTA is called

one or more times, once for each raster of lines required, with parameters

set appropriately for the current hatching style. RASTA, the heart of

algorithm A, is a long subroutine which produces a single raster of

hatching across that part of the surface which lies between a pair of

specified contour levels, or above or below a specified contour level.

The major stages of subroutine RASTA are outlined below. We describe

here the case where hatching is carried out between a pair of contours:

the differences which occur when hatching above or below a single contour

level are obvious.

1. Calculate maximum and minimum Q values for all triangles in both

lists. Rearrange the data in each list efficiently according to

minimum Q values, using a Shellsort (Shell, 1959).

— 88 —

2. Enter the main loop. Find the Q value of the next (first) line of

the raster. RETURN if this exceeds the maximum Q value for the plot.

Otherwise calculate the intersections of the line with the boundary

of the plot.

3. Find those triangles in the lists which are crossed by the current

line (a simple task since they have been ordered according to their

Q values),

4. For each triangle in each list which is crossed by the current line,

find intersections (if any) with the current contours (see 3.6.2) and

place these intersections in a list in the array XI.

5. Calculate the height of the surface at both ends of the current line.

Determine whether these heights are consistent with the number (odd

or even) of intersections with each contour. If we fail the test,

shift the line a small, invisible distance ’upwards’ by making a

small addition to Q, then subtracting Q1 and going back to (2).

However, omit this test if one of the current contour heights is very

close to the surface height at an end of the current line. Normally,

we pass the test and proceed to the next stage.

6. Order the list of intersections according to their P values.

7. If one of the two current contour heights is very close to the height

of the surface at the end where we should begin plotting, reverse the

direction of the line. Then determine whether the line should be

begun with a visible or invisible movement of the pen from the edge of

the grid.

8. Plot the line, normally in the opposite direction from that of its

predecessor, in an "off-on" manner (switching on or off as each contour

intersection is reached), using solid or broken lines. Then return to

(2) .

9. End.

- 89 -

The test carried out in stage (5) is necessary to protect against

failing to detect (or double counting of) intersections which occur in

close proximity to the boundary lines between individual quadratics.

However the test is unreliable in cases where the height of the surface

along its edge is very close to one of the current contour heights, so it

is omitted in such cases.

It should also be noted that sections (4) to (7) inclusive may be

bypassed if we find that the previous and current lines cross none of the

triangles in our lists, and that none of these triangles are situated

between the two lines.

3.6.4 How algorithm B works

In contrast with algorithm A, this algorithm completely divorces the

two processes of crosshatching and contouring, and this allows for much

greater flexibility in its use. The number of bands of crosshatching

produced is entirely independent of the number and positions of contours

in a plot, and it is also feasible using algorithm B to superimpose

different bands of crosshatching. This makes it possible to achieve the

effect of progressive darkening of hatching with many fewer calls to the

equivalent of subroutine RASTA than would be necessary if algorithm A were

used. It is even possible, if desired, to crosshatch a plot using

algorithm B without carrying out any of the calculations required to plot

the contours of the surface.

For each desired band of hatching subroutine C0NXB2, the appropriate

master routine, makes a call to subroutine BHATCH. Unlike in the case of

AHATCH (algorithm A) it is not possible to determine immediately whether

the whole grid should be hatched in this style (though using the bounds

for heights of the surface calculated early in ALLCON we can sometimes

conclude that no hatching is required). Like AHATCH, BHATCH decides on

- 90 -

the number and nature of the calls which must be made to subroutine RASTB

(c.f. RASTA) and carries these out. RASTB has much in common with RASTA,

but there are some major differences. It can be divided into the

following stages:

1. Initialisation of variables.

2. (Same as RASTA). Enter the main loop. Find the Q value of the next

(first) line of the raster (RETURN if this is greater than the max.

Q value for the plot) and calculate its points of intersection with

the edges of the plot.

3. Follow the current line along from ’left* to ’right’. For each

element of the grid which it crosses, check whether either contour

height lies within the bounds for that element stored in ZLIM. If

so, consider the four subelements in turn. If and only if (a) the

subelement is traversed by the current line, and (b) the bounds for

function values within the subelement contain either contour height,

call subroutine SUBHAT which finds all intersections with the

current contours within the subelement and makes appropriate addit

ions to the list of intersections in XI. After each subelement has

been considered (or if it is not necessary to consider the current

element) proceed to the next element which the current line crosses

and continue in this manner until the boundary of the plot is

reached.

4. etc. Very similar to section (5) onwards of subroutine RASTA.

Return to (2) when plotting of a line is completed.

5. End.

Subroutine SUBHAT finds those triangles within the current subelement

which

(a) are crossed by the current line, and

(b) contain at least one of the current contour heights within their

bounds,

— 91 —

and calls subroutine TRIHAT once for each such triangle. TRIHAT simply

calculates intersections of a straight line and a conic section within a

triangle (as explained in 3.6.2) and adds these to the list of inter

sections in XI,

3.6.5 Algorithm A vs Algorithm B

A discussion of the relative merits of the two crosshatching algorithms

is included in the CONICON documentation (Appendix B) in the Section

entitled 'Choice of crosshatching algorithm'. The previous two subsections

help to explain how the differences arise: algorithm A requires a large

amount of memory for grids of large numbers of cells because it stores

information on all triangles which are crossed by either of the current

contours in the arrays ABC and XD. Additional storage space is also

required for maximum and minimum Q values for each triangle in each list

(TQ) and for sorting (LV and TS), We might also expect algorithm A to be

inefficient in terms of run time due to the necessity of sorting each list

once for every raster of lines required; however other factors more than

offset this. Most importantly, we can immediately 'home in' on those

triangles which might contain intersections of contours and raster lines,

discarding most of those which do not. In areas where raster lines are

free of such intersections no time is wasted, and this is also true in

cases where the whole grid requires hatching in a single style; so in this

sense algorithm A is more foolproof than algorithm B.

The advantages of algorithm B over A do therefore not usually relate

to faster run time, but to less extrav<*gonce in the use of memory and much

greater flexibility. In some cases this increased flexibility can also

lead to greater efficiency in the use of CPU time:- in particular in the

common case where we wish to produce an effect of increasing darkness of

the plot as the height of the surface increases, the opportunity to super

impose different levels of hatching can be taken to good effect. One minor

- 92 -

problem related to such a strategy does however exist - the user cannot

exercise quite the same degree of control over how gradual the changes

in intensity are from one band to the next.

3.6.6 Crosshatching in combination with Annotation

A further refinement of the CONICON package is a facility which

allows the user to incorporate both crosshatching and annotation within

the same plot, in such a way that crosshatching lines respect the positions

of labels by leaving a rectangular area around each label blank. This

allows labels which would otherwise have been obliterated by crosshatching

lines to be read with ease.

Such a facility must only be considered a minor embellishment to the

package (indeed it might be argued that crosshatching and annotation are

alternative means of achieving the same effect and are in no way complem

entary) , but its implementation was a non-trivial task involving hundreds

of lines of code (it allows annotation to be combined with hatching

produced by either algorithm A or algorithm B) and we therefore give some

details here. The additional steps required for this feature are as

follows

(a) When plotting contours

For each label that is plotted, save (in the array ALAB) the

coordinates of its centre and its length (number of characters).

(b) During subroutine RASTA or RASTB

(i) At an early stage find maximum and minimum Q values for

rectangular boxes surrounding each label and store these

{also in ALAB). Then reorder the list of rectangles

efficiently according to minimum Q values.

For each line of the raster;

(ii) Determine which labels, if any, are crossed by the current

line and place information on them in a separate array AN.

- 93 -

(iii) Find the Cartesian coordinates of the intersections of the

current line and rectangles around labels, and replace those

values in A1>I by these.

(iv) Order the pairs of intersections according to their minimum

P values.

(v) If any overlaps exist between rectangles, remove these by

reducing the number of intersections in the list.

(vi) Combine the lists of contour intersections and label inter

sections (discarding some) into a final list of 'effective

intersections' in the array XI. Plot as before.

Crosshatching accounts for a large proportion of the code in CONICON;

at least half the code is devoted solely to crosshatching. There are

three major contributing factors to this:- the use of two alternative

crosshatching algorithms; the wide range of hatching styles available; and

the capability to handle crosshatching and annotation simultaneously.

3.6.7 Examples

We conclude this section by presenting examples of CONICON plots

which use the crosshatching facility. As explained in Appendix A, a total

of 51 styles of crosshatching are currently available, of which the final

six styles were added to those already available in TILE 4 by the author.

Figure 3.4 shows a single seamed element contoured and crosshatched

using some of the more sophisticated styles available. It is also an

example of the use of crosshatching and annotation in combination, and

utilises the feature of automatic choice of label lengths to allow

differing numbers of decimal places in labels on contours at different

heights. The crosshatching in this plot was produced using algorithm A,

which carries out the task more cheaply than algorithm B and does not

require significantly more storage space in single element examples.

- 94 -

Figure 3.4 A single element showing some of the available
hatching styles; contour annotation also
included.

- 95 -

Figure 3.5 shows a contour plot in which the effect of progressive

darkening of hatching styles has been achieved by the superposition of

hatches using algorithm B (a similar plot produced by algorithm A turned

out to be significantly more expensive). The function being plotted is

one of several utility functions produced from data provided by A.

Francescon from the Dept, of Operational Research at the University of

Sussex. The original data were value-only and lay on a square grid with

missing values. Therefore an interpolant was constructed, using the

Natural Neighbour method (Sibson, 1982) to fill in missing values as well

as gradients and this was contoured over the original grid, that is a

grid of 36 x 24 points or 35 x 23 elements.

3.7 Local suppression of contour plotting

In many applications the user wishes to produce a contour plot of his

function over a rectangular area; but sometimes a rectangular plot may be

wasteful, or inconvenient, or even meaningless. For example, if the

variable being investigated is the concentration of a particular organism

within a circular pond, extrapolation to areas outside the pond will be

totally inappropriate. In such cases we would prefer to define an M x N

grid of elements as before, but only to contour those cells of the grid

which lie completely within the area of interest. In addition we might

wish to suppress contouring within some internal areas of the plot if,

for example, one or more islands were present in the pond.

CONICON has a facility which allows the user to suppress contouring

within a subset of grid cells of his choice. Implementation of this

feature within the package was a straightforward task; the array ZLIM

(2, MM, N) which stores bounds for values attained by the surface within

each cell of the grid is used to double up as an indicator variable

specifying those cells within which contouring should be suppressed. Thus

- 96 -

C*APfI?w'»k'»c»if

Û

Figure 3.5 A complete contour map illustrating progressive
darkening of hatching styles (algorithm B).

- 97 -

if the user indicates that he wishes to use the local contour suppression

feature he is required to set values in the array ZLIM in the following

way:- if he wishes the (I, J)th cell to be contoured he should set

ZLIM(1, I, J) less than or equal to ZLIM(2, I, J); if not, ZLIM(1, I, J)

should be set greater than ZLIM(2, I, J), When the stage of calculating

bounds for each cell is reached, bounds are only calculated and made to

replace the existing values in ZLIM in cases of the latter type; therefore

when we come to the stage of contouring the (I, J)th element we simply

check that the contour level C and the values in ZLIM satisfy

ZLIM(1, I, J) < C < ZLIM(2, I, J) and only in such cases do we proceed

with a call to subroutine SQUARE.

In a significant number of examples users may wish to restrict

contouring to the area within a convex polygon; CONICON incorporates a

subroutine called CONVEX which will automatically set suitable values in

the array ZLIM to suppress contouring outside a convex polygon specified

by the user. The polygon is defined by a number of linear constraints of

the form ax + by + c < 0; all values in ZLIM are initialised as 0.0 by the

routine and if the (I, J)th cell fails to satisfy one or more of the

constraints ZLIM (1, I, J) is re-set to 1.0.

CONICON also contains a subroutine called BORDER which plots the

boundary of the part of the grid lying inside the same convex polygon

within which contouring has taken place. The subroutine relies on the

convexity of the polygon and can be broken down into four stages:- in

the first it zigzags up and from left to right; in the second stage up and

from right to left; then down and from right to left; and finally down and

from left to right.

As has been mentioned above, subroutine EMPTY will often be called

upon to plot a number of contours in plots of this type and the arrays

K3, K and XY should therefore be dimensioned longer in such examples. It

should also be noted that labels cannot always be prevented from overlapping

the boundary of the plot.

- 98 -

The crosshatching feature has not yet been combined with local contour

suppression, but conceptually the problem appears only a little more

difficult to solve than the crosshatching problem for a rectangular area.

An algorithm similar to algorithm B would seem appropriate, since it

would be necessary to trace each line of the raster from cell to cell,

checking whether the area within each new cell has been contoured or

deliberately left blank. The algorithm would have to evaluate the height

of the surface at every point where a line of the raster crossed the

boundary between a blank cell and a contoured cell. Every such point

could then either be treated as an additional intersection or discarded,

depending upon whether or not the height of the surface at the point lay

within the band of hatching.

Figure 3.6 shows a plot in which subroutine CONVEX has been used.

The function is the Natural Neighbour Interpolant constructed from

another data set provided by A. Francescon. Subroutine BORDER has been

used to plot the boundary of the contoured area and the polygon itself is

also indicated.

It should be noted that, useful though the contour suppression

facility is, it is still nothing more than a selector facility for plotting

or not plotting in each grid cell. Contouring exactly over an arbitrary

(in practice polygonal) region, even in the convex case, is not yet

supported by the package; equally, there is nothing to prevent the future

development of such a facility.

3.8 Gradient contouring and marking of stationary points

One minor criticism which may be levelled against contour plots

produced by CONICON is that the high visual quality of these maps may

delude the user into believing that they must always give an accurate

representation of the surface being considered. Indeed because we use

— 99 —

ut

Out

ut

o

ut

3.6 An exampln to illustrate local contour suppression.

- 100 —

gradient as well as value data CONICON plots are likely by and large to be

accurate over most of their area; but in locations where the gradients of

the surface are small and the Implicit Function Theorem (see Section 1.1)

is close to breaking down, contours produced by this or any other package

should be treated with a little more caution.

In Chapter 5 we discuss just how serious this problem really is, and

conclude that there are grounds for believing that it is not very severe.

Nevertheless some methods of reducing the errors in the contours in such

areas are presented in Chapters 5 and 6. These methods have not however

been included in the CONICON package, but the package does offer the

facility to produce a contour plot of the squared magnitude of the

gradient of the piecewise quadratic approximant. Gradient plots are

produced by calling either of the master routines CONGRl and C0NGR2 con

tained in CONICON; a study of such a plot will give the user some

indication of those areas in which contours of the function itself may be

unreliable.

Plotting of the gradient of the approximant function is possible

within the framework of CONICON because the approximant function is

piecewise quadratic and continuously differentiable: the former property

means that the partial derivatives of the surface vary linearly over

triangles, and across such areas contours of the gradient will therefore

be conic sections. The latter property means that contours of the

gradient, though not continuously differentiable, will be continuous and

can therefore be linked by subroutine PLTCON.

CONICON therefore produces plots of gradients in very much the same

way as it produces ordinary surface plots; from TRICON downwards the

subroutines employed in their production are identical. One difference

which occurs is in bounds for values taken by the surface within elements,

subelements and triangles. Since the first order partial derivatives

— 101 —

over a triangle vary linearly, they can be represented by an expression of

the form

Vf = ;b + C X (3.1)

So Vf^Vf = b \ + 2b^ C X + C^C X (3.2)

TNow C C is positive definite, so a local minimum of the gradient may

occur anywhere within a triangle, but the maximum value within any triangle

must occur at one of its vertices.

Thus, in order to find the maximum value taken by the gradient within

either an element or a subelement we need only look at the gradients at

the vertices of the triangles which form that construction. Bounds for

the minimum value, whether exact or not, are much more difficult to

calculate: we can of course still use the bounds for triangles given by

Lemma 2.1, but the logic used in constructing bounds for larger areas no

longer holds. Thus we have to consider all height and tangent intersection

values within an element or subelement in order to obtain a non-minimal

lower bound for the gradient within that construction. (When contouring

the gradient of a function, the tangent intersection value at the mid

point of a line in terms of the partial derivatives (s t) and (s , t)
L y Li it K

at either end is simply s^s^ + t^t^y)

We now present an example of the use of this technique. Figure 3.7

shows a plot of the gradient of the function contoured in Figure 2.5, etc.

As we might have expected, the areas where the gradient is smallest occur

around the function's two peaks, the saddle point and near the perimeter

of the plot. Since we have plotted few contours round the outside of the

plot in Figure 2.5, the low gradient in this area is unlikely to worry us.

It is indeed a common feature of gradient plots that they tend to indicate

areas where few contours have been plotted as least reliable; this is a

result of the very nature of gradient plots and the fact that in most maps

contour levels are chosen at regular intervals.

- 102 -

Figure 3.7 Gradient contour plot of standard example function,

- 103 -

Although we have not implemented this, it would in principle be

fairly straightforward to use the gradient function to control contour

plotting of the original function. For example, contours in areas of low

gradient could be omitted or plotted as dashed lines to emphasise

uncertainty. Also, in areas of very high gradient, subsidiary contours

(e.g. those between "thick line" levels) could be omitted to avoid

overcrowding. Such techniques are common in manual cartography.

Another use of the gradient function might be to improve annotation,

to prevent labelling occurring in areas of high gradient where contours

are close together and labels might become obscured.

The last of the facilities in CONICON which we describe, and one

which is closely related to plotting the gradient of the approximant

function, is the calculation and plotting of its stationary points. This

is useful in certain applications, particularly in meteorology for isobar

plots, where the labelling of 'H's and 'L's at highs (local maxima) and

lows (local minima) respectively is common practice.

Use of the piecewise quadratic approximant makes the calculation of

stationary points a relatively simple affair. No more than one stationary

point may occur within a single triangle of the approximation and the

simple form of the approximant within an individual triangle means that

there is little difficulty in discovering the locations of such points.

It is possible to calculate positions of stationary points directly as a

fairly simple function of the six parametrising values on the triangle's

edges (see for example Marlow and Powell (1976), p.10) but in examples

where these values are large and close together a considerable amount of

numerical instability is introduced into the calculations. CONICON there

fore employs an alternative procedure, which makes use of the property that

all the triangular panels of the approximant are right angled (and isoscles)

and therefore the homogeneous coordinates corresponding to the two 45°

vertices (x and y by convention) at any point are simple linear

— 104 -

transformations of the Cartesian coordinates of that point. We therefore

regard these coordinates as Cartesian coordinates during our calculations

for convenience. The steps required to determine the position and type

of a stationary point within a triangle are then as follows

1. From the six parametrising values calculate partial derivatives in

"x" and "y" directions at each vertex.

2. Determine whether both partial derivatives take at least one positive

and at least one negative value at the triangle's vertices. If not,

return.

3. Calculate the pairs of points along the triangle's sides where x and

y derivatives respectively are zero.

4. If the four points just determined are not situated in such a way
9f 9fthat the straight lines = 0 and = 0 meet within the triangle,

return.

5. Calculate the point of intersection of the lines = 0 and -^ = 0,

and convert to true Cartesian coordinates.

6. Calculate the three second order partial derivatives of the quadratic

and use these to determine whether the stationary point is a minimum,

a saddle point or a maximum, and return.

7. End.

An example of the use of this facility appears in Chapter 4.

- 105 -

CHAPTER 4

MISCELLANEOUS APPLICATIONS

4.1 Introduction

In this Chapter we illustrate the wide variety of applications

of the piecewise quadratic contouring method by applying it, as

implemented in the CONICON package, to a number of data sets arising

in disciplines as diverse as statistics, metallurgy, meteorology and

geology.

It would of course be beyond the scope of this thesis to attempt

to explain the significance of most of the surfaces which are contoured

in this Chapter, and therefore we do not in general provide more than

the minimum amount of background information about the data sets - most

of the examples are presented to illustrate the high quality of the

quadratic contouring method, the facilities offered by the CONICON

package and its capacity to cope with the largest and most complicated

data sets; some examples also afford a means of comparing alternative

contouring packages with CONICON directly.

We begin in Section 4.2 by studying further the bivariate

probability density estimate which was contoured, not entirely success

fully, in Figure 2.11. This density estimate arose from a metallurgical

application and the method of its construction and the significance of

its appearance are amply explained in Silverman (1982) - our concern is

merely with improving the accuracy of the plot.

Section 4.3 shows an application in statistical methodology:- we

investigate a series of two-parameter empirical likelihood functions

arising from simulated data, using a model suggested by Professor M.

” 106 -

Aitkin (pers. comm.). In these examples we do attempt to provide some

explanation of the behaviour of the functions which we contour, and

we find that contouring is a particularly useful means of improving

our understanding of them - probably much more useful than any alter

native method of display.

In Section 4.4 the CONICON package is used to contour data sets

arising in meteorology, provided by the European Centre for Medium-

range Weather Forecasts. Although these data sets comprise grids of

up to 240 X 61 data sites the package is shown to cope with them quite

adequately. These data sets also provide an excellent means of

illustrating many of CONICON’s features; and we include some examples

which highlight the further improvements incorporated in the ECMWF

version of the package.

Finally we use CONICON to contour a small assortment of published

data sets in order to compare its plots directly with plots produced by

other contouring packages. In all cases CONICON appears to produce

plots of a quality at least as high as that attained by its rivals.

4.2 Contouring bivariate density estimates

We now return to the bivariate probability density estimate

constructed by Dr. B.W. Silverman, a plot of which appeared as Figure

2.11. A full explanation of the variables represented by the x and y

axes and the manner of construction of the estimate (in this case

window width = 2.0) is presented in Silverman (1982); here we are

concerned simply with the accuracy of the contour plot as a representa

tion of the underlying surface.

It should be noted however that this density estimate was

constructed from nearly 15,000 observations and therefore each evaluation

- 107 -

of the height and gradient of the surface at a point requires a

considerable amount of computation (though fortunately gradients

involve little extra cost after calculation of heights); it is there

fore important that as coarse a grid as possible should be used as

input data for CONICON. For this reason, and because the error

involved in using the seamed quadratic element is known to be of order
3h (see Chapter 5 for further details), Silverman recommends the use

of the seamed quadratic element not only for contour construction but

also as a means of interpolation from true values and gradients on a

coarse grid to estimated values on a finer grid which will allow

density estimates to be displayed by the alternative means of pers

pective block diagrams.

We have already seen that the very coarse grid chosen by

Silverman, one of just 25 elements, results in some very unnatural-

looking behaviour on the outer (lowest) contour on the plot. We

speculated in Chapter 2 that this behaviour was the result of near

breakdown of the Implicit Function Theorem (see Section 1.1) around

the edge of the plot: it should be noted that gradient values on

the boundary of the grid are all either zero or very close to zero;

the contours begin at the 0.001 level and are plotted at intervals

of 0.002 - thus the highest contour level is 0.027.

The most obvious way to improve Figure 2.11 is of course to use

a finer grid, but as we have seen this is costly in terms of generat

ing the data (the additional time involved in contouring itself is of

lesser importance), so if an alternative method which did not involve

use of a finer grid were to prove satisfactory, this would be

preferable. Probably the only alternative method which does not rely

on a different grid is to take a strictly monotonie transformation of

- 108 -

the data and to plot transformed contour levels; such a process will

of course have no effect on the true contours of the surface, but

can have an adverse or beneficial effect on contours produced by the

piecewise quadratic method, depending upon the suitability of the

transformation. We will need to use a transformation which allows

us to retain correct gradients at the grid points, or it is very

unlikely that any improvement will be made. The obvious candidate

would appear to be the logarithmic transform, as this will clearly

remove the flatness near zero which appears to be the main source of

trouble. However a log transform cannot be carried out on the data

as it stands, because some data values are zero; therefore we add a

small constant e (= l.Oe-06) to each z value before taking the log

transformation, and to obtain gradient values we simply divide the

partial derivatives of the true surface by (z + e) at each point.

The contour plot which results from this process is illustrated

by Figure 4.1. This shows apparent success in that most of the un

wanted oscillations have been eliminated from the outermost contour.

However at the same time we have clearly altered the appearance of

the map around the density estimate's mode: in this area contours

appear less rounded than the corresponding contours in Figure 2.11,

having apparently been stretched to some extent along a line running

from the bottom left to top right hand corners of the plot, so that

contours in the plot as a whole are more uniform in shape. It is

impossible to tell whether or not this is an improvement over Figure

2,11 unless we know the appearance of the true contours of the

surface; thus we have decreased grid size by a factor of two and

plotted the contours of the (untransformed) surface over an 11 x 11

grid of points in Figure 4.2. This plot clearly has much more in

- 109 -

Figure 4.1 Logarithmic transform of a bivariate probability
density estimate (5 x 5 grid of elements).

- no -

Figure 4.2 Untransformed probability density estimate (10 x 10 grid
of elements).

- I l l -

common with Figure 4.1 than with Figure 2.11 and we can therefore

conclude that use of the log transform has led to a considerable

improvement; indeed it appears that if this particular example is

a typical one (and plots of other window widths offer no evidence

to the contrary) then the extremely cheap method of using a 6 x 6

grid of points and a log transform is likely to be suitable for

contouring most bivariate probability density estimates, provided

the window width (which controls the smoothness of such estimates)

is not excessively small.

It should be borne in mind that in an example such as this

the contours produced by a piecewise linear contouring method over a

grid of such coarseness would be so poor as to be unacceptable even

to someone accustomed to using such contouring methods; thus the

production of even barely acceptable contours using such a method

would still be a much more costly process than the production of

highly acceptable contours with the method recommended above.

4.3 Looking at likelihood functions

in this section we use CONICON to look at surfaces which arise

in a wholly statistical application, a two-parameter likelihood model

formulated by Professor M. Aitkin (pers. comm.). The model which we

are investigating is a Normal mixture model: data are assumed to

arise from a pair of Normal distributions, one of which is the

Standard Normal (i.e. mean = 0, standard deviation = 1) and the

other, the contaminating distribution, is Normal with mean = y and

standard deviation = 1. Our two unknown parameters are the distance

parameter y and the mixing proportion, denoted by X.

— 1 1 2 —

The likelihood function L (y, X [y) for a single observation y is thus

proportional to

X exp [(y - u)] + (1 - X) exp [- 2 y] (4.1)

However it is more convenient to consider log likelihood (as

this function is much easier to analyse mathematically); therefore

for a vector ŷ of n observations we have log likelihood:

2 -
n

log L (y, X|y) = E log {X exp [- g (y. - y)]
i=l 1

+ (1 - X) exp (- 2 y^)}

plus a constant term.

The first order partial derivatives are then

aiogL =ax
n
Ei=l

1 - exp {y(&y - y^)}
X + (1 -X) exp (y(2h - y^)}

(4.2)

3 log L
9y

nE
i=l

^i -

1 + (1-X) exp {y (2 U - y^)} (4.3)

Given any data set 2 which is assumed to satisfy our model, the (log)

likelihood function tells us which combinations of the parameters X

and y are most likely to have caused such a data set to arise. In

general we are not particularly interested in the magnitude of the

likelihood at any point; more important are the shape of the surface

and the positions of its local maxima.

The data used to generate the likelihood functions plotted in

this section did not arise from a 'real' source, but were simulations

from the NAG pseudo-random number generator (Numerical Algorithms

Group, 1982), which uses the algorithm of Brent (1974). By providing

- 1 1 3 -

data sets with known values of y and A we hope to assess how the

likelihood functions ought ideally to appear. This should aid our

understanding of likelihood functions arising from data with unknown

parameter values and might also help us to identify data sets not

satisfying our assumptions.

In all likelihood plots presented in this section the horizontal

axis is used to represent A varying from 0 to 1, and the vertical axis

to represent y as it varies between -2 and 3.

However before we begin to examine individual plots a minor but

unfortunate deficiency of the quadratic contouring method which was

brought to light by the likelihood functions in this section must be

pointed out:- when investigating this model initially it was dis

covered that in nearly all the contour plots of likelihood functions

produced by CONICON a peak covering only a small area but higher than

the maximum value attained by the surface elsewhere appeared within

the element in the top right hand corner of the plot, and in one case

spread to a neighbouring element; this phenomenon occurred in an area

throughout which the surfaces should all have been rapidly decreasing

as both A and y increased. Examination of the gridded data in this

locality revealed no errors, and it eventually became apparent that

the cause of these anomalies was behaviour similar in some character

istics to the familiar ’Gibbs phenomenon' in Fourier analysis: the

piecewise quadratic method of approximation was incapable of handling

in a sensible way the very large (negative) gradient in the A direction

in the extreme north eastern corner of the plot - the only way that

this could be accommodated was by inserting a spurious peak in that

area of the surface.

- 1 1 4 -

To explain this further we consider the problem in a single

dimension only, looking at the line segment which forms the 'top'

edge of the element in this corner of the plot. Suppose this element

is of length h with values and gradients (zl, si) and (zr, sr) at its

ends-> then the value at the midpoint of the segment can easily be shown

to be &(zl + zr) + h/8(sl - sr). It can therefore be seen that, what

ever the (fixed)values of zl, zr and si, the value at the midpoint of

the line segment increases as sr decreases, and a point will arise at

which the only way to fit a pair of quadratics smoothly along the line

segment (assuming both si and sr are negative) will be to force a

turning point in each piece of quadratic and therefore a local maximum

somewhere in the right hand half of the line segment. If the value of

sr is very large (and negative) then there is no reason why this local

maximum might not also be the global maximum in the piecewise quadratic

along this line. Examination of our data supports the view that a

two-dimensional manifestation of such behaviour was the cause of the

phenomenon described above.

Reduction to a finer grid would appear to be the obvious solution

to this problem; however it would have been necessary to increase the

fineness of the grid quite considerably to achieve our objective, and

such an alteration was clearly totally unnecessary in all other areas

of the plot. It was therefore decided to take the alternative course

of replacing the true gradients in the top right hand corner of all

plots by estimated values. This of course is a rather ad hoc and

unsatisfactory solution, though it was successful in eliminating the

spurious peaks from all plots illustrated in this section. The

possibility remains that less extreme forms of behaviour of this

sort might well pass undetected by users and could provoke misinter

- 1 1 5 -

pretation of contour maps produced by the piecewise quadratic method.

The author is however of the firm belief that these examples are quite

exceptional and that the phenomenon described above has not been

observed in any other contour plots produced by the method. One

potential means of eliminating the behaviour which we have described

is to use a locally adaptive (non-uniform) grid to approximate our

surface, and this idea is followed up in some depth in Chapter 6.

We now consider the (corrected) plot of our first data set, which comprises

twenty pseudo-random Standard Normal observations from the NAG

generator; these values are listed as data set no 1 in Table 4.1. In

theory the function should be maximised on the dotted line y = 0,

along which the likelihood is constant, but in practice we will only

expect to observe an approximation to such behaviour, as a result of

sampling error. In fact Figure 4.3 (which, in common with Figures 4.4

and 4.5, uses an 11 x 11 grid of points) suggests that the maximum

occurs some distance from this line, indicating approximately a 15%

contamination of observations with mean around -1.3 as the most likely

cause of such a data set. This maximum is not very much greater than

the value at y =0, the surface being relatively flat over a large

area of the plot, but it must be borne in mind that the log transform

(base e) which we use has a distorting effect on the flatness of the

surface. If the values listed as data set no 1 in Table 4.1 are plotted

on graph paper there is indeed a strong suggestion of bimodality in the

observations; it was therefore decided to examine a second set of

pseudo-random Standard Normal observations produced by the NAG

generator (listed as data set no 2 in Table 4.1).

— 116 —

-12

11.5

11.25
- 11.5

It.9

Figure 4.3 Log likelihood of data set no.l (20 values).

- 117 -

Table 4.1

Data sett no. 1 Data set no. 2

-2.475 0.492 0.126 0.147
0.419 0.550 -1.402 -1.029
0.932 0.819 -0.489 —0.676
0.441 0.664 0.392 0.384
-1.052 -0.319 -0.908 -0.326
0.763 -1.350 0.648 -0.668
0.304 0.233 0.754 0.032
-1.328 -1.623 0.444 -0.854
-0.639 -0.344 -0.861 -0.967
-1.509 1.599 -1.252 0.137

Figure 4.4 shows the likelihood plot resulting from the use of

data set no 2. In this case there is no hint of bimodality in the data,

but the data set is still not entirely satisfactory: both sample mean

(-0.3184) and standard deviation (0.672) are disturbingly (though not

quite significantly) lower than they should be. The maximum appears to

occur at À = 1, y = y, but the surface is relatively flat whatever the

mixing proportion for values of y close to y; other plots of pseudo

random Standard Normal variâtes indicate that the closer y is to 0, the

flatter the surface becomes in the X direction for y = y. This is an

intuitively obvious point: its interpretation is simply that the closer

the sample mean is to zero, the more indifferent the model becomes to

the value of the mixing proportion A, with aliasing becoming total at

y =0.

Another property of the model, which is evident in all plots in

this section, is that it tends to regard as equally likely a high mixing

proportion with y close to y on the one hand and a low mixing proportion

with a more extreme value of y on the other hand. This property

- 118 -

1#

5.5

>4.44.6
4.8 -5

5.5
-6

5.5

Figure 4.4 Log likelihood of data set no.2 (20 values).

- 1 1 9 -

manifests itself in the tendency of most contours to veer away from

the line y = 0 as À decreases. However, this breaks down for the most

likely sets of pairings of X and y, which tend to occur within more

limited ranges of y and (to a lesser extent) X. Such cases are

represented by contours which form single (rather than pairs of)

branches lying on one side only of the line y = 0.

Although it is arguable whether data set no. 2 is really any more

satisfactory than data set no. 1, the second data set was retained and

transformed (by adding 2 to each value in the final column in Table

4.1) into a data set with values X = 0.5, y = 2.0. The resultant

likelihood function is contoured in Figure 4.5, the ideal maximum being

indicated by a cross. It can be seen that the maximum occurs at a

point where y is barely greater than unity (though X is nearly correct),

but this is hardly unexpected given the low mean of the original data

set. The method has at least recognised that the data is probably

bimodal.

In an attempt to eliminate some of the sampling error which has

been so much in evidence thus far, we have simulated a much larger

data set of 100 pseudo-random Standard Normal observations, to produce

the likelihood function which is plotted as Figure 4.6. Even in this

example the mean is rather low, but the likelihood function does

appear to be settling down in its behaviour. This plot and the others

in this section illustrate the intuitively obvious point that the

method will always find the pairing X = 1, y = y more likely than X = 0,

y = 0, no matter how close to Standard Normal the data are: this is a

consequence of having to fix one of the means at zero in order that

there should be no more than two parameters in the model.

— 120 —

'5#

45

-42
-41
40

38
38

40
39

45
50

Figure 4,6 Log likelihood of 100-value data set

- 122 -

Finally Figure 4.7 was produced by adding a value of 2 to half of

the data used in the construction of Figure 4.6 (both plots use a

21 X 21 grid of values and gradients). It can be seen that the maximum

is very much closer to the ideal maximum (again marked by a cross) than

was the case in Figure 4.5.

It might be felt that we have been unlucky in this section in

generating data sets of a fairly atypical nature. However it is import

ant that we should not conveniently brush them aside in the hope of

getting something better next time. The use of these data provides an

important warning to the statistician that it is dangerous to make

strong inferences from a small sample and provides an effective

illustration of the phenomenon of sampling error.

However interpretation of the meaning of surfaces is a secondary

consideration in this thesis. The most important conclusion which we

draw from this section is that contouring by the piecewise quadratic

method provides a highly effective means of studying the likelihood

functions which arise from our model. A number of the details of

surfaces which we have commented upon would almost certainly have

passed unnoticed if an alternative method of presentation (such as the

perspective block diagram) had been used.

4.4 Contouring meteorological data

Weather forecasting is undoubtedly one of the most important

application areas for automatic contouring methods. The data which are

contoured in this section were generated by the European Centre for

Medium-range Weather Forecasts (ECMWF), and represent a selection of

fairly typical surfaces which have arisen in global weather forecasting

in recent years. The surface heights were provided already in gridded

- 1 2 3 -

t s

9S

90
95

(bimodal transformation)

Figure 4.7

- 124

form but gradient values were not available and have therefore been

estimated in all examples. A distinctive feature of these data sets

is their magnitude, the largest being a 240 x 61 grid of values. In

most or all cases the grids were found to be unnecessarily large for

contouring by CONICON, but were useful for the construction of accurate

gradient estimates. Nevertheless the package succeeded in contouring

all the complete data sets without error.

Unlike the illustrations elsewhere in this thesis, a number of the

plots in this section were produced by an electrostatic plotter,

following vector-to-raster conversion, at ECMWF, The size of these

plots has been photographically reduced from 550mm square to 158mm

square. The implementation of CONICON used at ECMWF incorporates a

number of extra features which are not in the standard version of the

package ^nd are therefore not described in Chapter 3 or documented in

Appendix A; most of these features are illustrated in one or more of the

plots in this section.

We begin by investigating a 500mb geopotential field; that is the

altitude (in tens of metres) at which atmospheric pressure equals 500

millibars. Fields of this type are often studied in preference to

measurements of surface pressure because they are unaffected by changes

in relief, A polar stereographic projection has been carried out on

our data sites so that the area over which we are contouring, the

Northern Hemisphere, appears flat and circular. The data were provided

in the form of an 86 x 86 grid of heights, with all values falling

outside the circle of interest being set to very large negative

numbers,

- 125

Figure 4.8 is a plot of the complete data set, produced by the

standard version of the package. As the circular area of our plot

might have been approximated by a convex polygon, subroutine BORDER

has been called to plot the boundary of the contoured area, though the

values in ZLIM specifying where contouring should be suppressed were

not in fact set by subroutine CONVEX,

It can be seen that the surface is a relatively simple one and

there appears to be little justification for the use of such a fine grid.

Figure 4,9 shows that this is true; in this illustration we have super

imposed two plots of the surface, each of which uses a 29 x 29 subset of

the original grid (every third point in each direction), the two subsets

being mutually exclusive. It can be seen that over most of the plot the

contours in each map are indistinguishable (and this is still true when

the physical scale of the plot is increased by a factor of 2.8), and

only in the flattest areas of the plot is there a slight visible differ

ence, It should be noted that the full 86 x 86 grid of points was

used in estimating the gradients in this example:- if the 29 x 29 grids

alone had been used the discrepancies between the two surfaces would

have been slightly greater.

Each of the 29 x 29 plots appearing in Figure 4,9 used approximately

a third of the CPU time required to construct Figure 4,8; and in general

we have found that for a given data set CPU usage tends to increase

roughly in proportion with 1/grid size. There is a small quadratic term

in the relationship but this is of little importance relative to the

linear term; we infer from this that the bounds derived in Section 2,6

for values attained by the function within each element are accurate

enough to allow us to discard almost all of the unwanted elements at any

particular level without incurring significant costs.

— ! 2 6 -

80

540

520 580560 540
520

,520580

500

520

540,

560

,540

580 560

Figure 4,8 First ECMWF data set: 500 mb geopotential field
(85 X 85 grid of elements, gradients estimated),

- 127 -

Figure 4.9 First ECMWF data set: two plots superimposed (each
using a 28 X 28 grid of elements).

- 128 -

The reader may have noticed the policy adhered to in this thesis

of not quoting absolute CPU timings; the major reason for this is a

practical one - over the course of the project improvements have con

tinually been made to different parts of the package which have reduced

CPU usage and therefore rendered all previous CPU timings obsolete.

Unfortunately constraints on time have prevented those jobs which

created the illustrations in this thesis from being repeated, and there

fore it has only been possible to provide an impression of relative

times where it is felt that these might be of interest. A further

problem arises in separating the CPU usage of the CONICON package itself

from that of the basic graphics software provided by the user's system,

which even in the case of the Avon Universities Honeywell Multics System

implementation (which uses a highly efficient package of simple graphics

routines) is believed to be responsible for 40% or more of total CPU

usage. Thus when we do quote comparative CPU timings it should be borne

in mind that these timings are inclusive of both the CONICON and basic

graphics packages in the Avon Universities implementation, and it is

therefore necessary to assess what proportion of the discrepancy can be

explained by differences in the number of simple graphics instructions

in each plot. It is clear that if a less efficient graphics package

were interfaced to CONICON (and it is not uncommon to come across

graphics packages which are several times less efficient than the package

currently used) the basic graphics routines could dominate CPU usage to

such an extent that the CONICON part of the job became relatively

unimportant.

In the ECMWF implementation of CONICON CPU times have been compared

with those relating to a piecewise linear package in regular use at that

- 129

installation, which was written by staff at the Weather Centre (Petersen,

1978) and employs the algorithm of Dayhoff (1963). For a fixed grid

size CONICON appears to use very approximately three times as much CPU

time as the piecewise linear package, after CPU usage by the basic

graphics software has been deducted. Now since Dayhoff's version of the

piecewise linear method divides each grid cell into four triangles only

we would expect CONICON to use more than twice as much CPU time as this

package, even if it were to approximate each conic section by a single

straight line segment and therefore omit calculation of conic parametrisa-

tions, the angle subtended by endpoints at the pole, etc. Moreover

CONICON, unlike the piecewise linear package, has to perform an internal

linking process and has not yet been compiled with the optimising compiler

at the ECMWF installation (which can be expected to reduce CPU usage by

up to 20%). It is therefore very unlikely that any gross inefficiencies

remain i>.. CONICON.

Of course it would be unfair to state without qualification that

CONICON is three times slower than a piecewise linear package, because

results produced by each package given a fixed grid sizLe are so vastly

different. As we stated early on in this thesis, in order to obtain

results comparable in quality with those produced by CONICON using a

piecewise linear method, grid size must be reduced to such an extent

that contouring may become prohibitively expensive in terms of CPU time,

memory requirements or the calculation of the grid values themselves.

We now present, in Figure 4.10, a single plot of a 29 x 29 subset

of our data, on this occasion produced by the ECMWF version of the

package. In this case, the coarse grid alone has been used for gradient

estimation, but there is very little change in the appearance of the plot.

Local minima and maxima of the surface have been plotted as 'L's and 'H's

— 1 3 0 “

Figure 4.10 500 mb geopotential field contoured by ECMWF
version of CONICON, with local maxima and
minima indicated (28 x 28 grid of elements).

— 131 -

respectively (saddle points are not included), and one of the improvements

made to the ECMWF implementation of the package is now apparent: labels

have been plotted along contours in the same orientation as the contours

themselves.

The number and positions of the 'high* and 'low* symbols in this

particular plot would probably be quite acceptable to meteorologists;

however, in plots of the same surface contoured over finer grids (in

particular the full 86 x 86 grid of points) some extra stationary points

occurred, resulting in some cases in the overlapping of pairs of *H* and

L symbols. Checks showed that the extra stationary points were genuine;

one such example is illustrated by Figure 4.11. Here we have a single

element from the 86 x 86 grid in which a pair of minima (+ signs) and a

pair of saddle points (Os) occur in very close proximity to one another.

It is believed that such behaviour is a reflection of a suggestion in

the gridded values that some higher derivative(s) may vanish at or near

the cluster. This phenomenon would clearly be unacceptable to meteorolog

ists and therefore a 'thinning out* process of some kind needs to be

devised with their assistance. Such a process has been incorporated

into ECMWF*s piecewise linear contouring package - this requires the user

to specify a radius of search in grid units; the package will then only

plot local minima and maxima which are also extrema within a circle of

that radius. To locate these extrema the package needs only to inspect

values of the surface at grid points - clearly a more sophisticated

approach would be required for use in conjunction with CONICON, where

extreme values are not constrained to occur at nodes of the grid.

The final plot of this data set. Figure 4.12, shows the contours

from Figure 4.10 crosshatched (using algorithm B) with a simulated

- 132 -

Figure 4.11 Clustering of stationary points within a
single element.

- 133 -

Figure 4.12 500 mb geopotential field contoured with
crosshatching and annotation (28 x 28 grid
of elements).

- 1 3 4 -

greyscale. Two more special features of the ECMWF implementation of

CONICON are at once apparent:- crosshatching has been combined with

the contour suppression feature (using an algorithm along the lines of

that suggested in Chapter 3) and the construction of hatching lines

has been modified to take account of the new labelling policy.

Unfortunately the nature of the variable being investigated in

our second example is unknown; however we include plots of this data

set to illustrate further features of the ECMWF implementation of

CONICON. The data in this example have been projected onto a grid with

a (nearly) square boundary, but in this case the elements are not square,

the grid comprising 31 rows and 120 columns. The standard version of

CONICON insists on the use of square elements, but as we have seen in

Chapter 2 there is no theoretical reason why rectangular elements should

not be used and the ECMWF implementation of the package has accordingly

been adapted to contour a general rectangular grid. The number of

alterations required to accommodate this useful extension was consider

able, but all alterations were of a fairly trivial nature, one important

reason for this being that the quadratic contouring routines employed

in CONICON were designed to handle arbitrarily-shaped triangles.

Figure 4.13 illustrates how the ECMWF version of CONICON contoured

this particular data set. It can be seen that none of the labels in

this plot overlap each other or neighbouring contours, and this is not

the result of a coincidence:- this version of the package includes a

number of checks which will normally prevent labels from occurring in

unsuitable positions.

Firstly, once the package (in particular subroutine LABEL) has

calculated the intended position of a label it carries out a pair of

checks in an attempt to ensure that the contour is relatively straight

- 135 -

r \

m - j] \ \

Figure 4.13 Second ECMWF data set (119 x 30 grid of
rectangular elements).

- 136 -

in this area:- it begins by stepping along the contour from the centre

of the label in both directions, until it locates the first point on

the contour in each direction which is a distance greater than half the

length of the label from the label's centre. It then calculates the

angle subtended by these two points at the centre of the label and only

allows the label to be plotted if this angle exceeds 150°. At the same

time the slope of the straight line joining the two points just

located is used to fix the orientation of the label. The second check

considers the angle at which the contour enters the rectangular box

around the label: if this is not within 30° of a right angle the package

again refuses to plot a label in this position.

However, if we pass both these tests and the package therefore

considers the curvature of the contour in this area not to be excessive,

we go on to examine the gradient of the surface in this area. This is

done by locating the element in which the centre of the label is

situated and considering the magnitude of the gradient at its centre

and vertices; the maximum of these five values is used to summarize the

gradient in this area of the plot. We are interested in the derivative

in the direction normal to the orientation of the label, but this is

also the gradient in the direction normal to the contour; that is,

simply the magnitude of the gradient. We can therefore immediately

compare our gradient value with the (vertical) distance to the nearest

neighbouring contour level and decide whether there is sufficient room

to fit the label (without obscuring any label which might exist on the

neighbouring contour). If we fail any of these three tests the package

immediately abandons its attempt to fit a label in the current position,

and begins again at a point a little further along the contour.

- 137 -

The tests described above which consider the curvature of the

contour at a proposed label site leave some opportunities for the

occasional special case to escape detection, particularly if the surface

is a very complicated one; however our tests are unlikely to fail often,

and a foolproof method would probably be considerably more expensive.

The gradient test has one obvious failing in that it cannot detect the

close proximity of a contour at the same level; one example where this

has led to a contour almost touching a label is evident at the 250 level

in Figure 4.13. This test may also fail to detect the odd special case,

but nevertheless it is in general effective and very cheap. The

alternative method of storing all contours before plotting them and then

taking elaborate precautions to ensure that all contours respect the

positions of all labels and no two labels overlap has been implemented

in some packages (for example see the contouring feature of the DISSPLA

graphics package (ISSCO, 1982)), but in the author’s experience it tends

to be excessively expensive both in terms of CPU and memory usage.

Moreover it is often difficult to identify to which contour a label

belongs in areas of high gradient. The alterations made to the ECMWF

version of CONICON regarding positioning of labels make no significant

difference to the overall cost of producing a contour plot and are in

general highly effective.

Returning once again to our second data set. Figure 4.14 was

produced by removing three out of every four columns from the original

grid, leaving a 29 x 30 grid of square elements. Values on the coarser

grid alone were used for gradient estimation and the combination of

sparser data and poorer gradient estimates has in this case undeniably

resulted in the loss of a large amount of detail from the contours. In

In this example the complexity of the surface does appear to warrant

- 138 -

1000 500

500 ,50)

501 000

'000 501
500

1000

500
2001

500,

1501
100j

500

1000500
1500

1000

Figure 4.14 Second ECMIVF data set, contoured by the
standard version of CONICON. (29 x 30
grid of square elements.)

- 13 9 -

the use of a relatively large data set, even if only for gradient

estimation. In order to compare the standard and improved labelling

policies directly we have on this occasion illustrated a plot produced

by the standard version of the package: useful comparison is however

impaired by the use of characters of different sizes.

Figure 4.15 shows how CONICON handles the largest data set which

it has thus far had to contour, a 240 x 61 grid of values representing

relative humidity (expressed as a percentage). The plot is indeed

complex, but there can be no justification for the use of 240 columns

in the grid: even in the largest-scale plot which the graphics device

can produce (a 550mm square) elements would be less than 2 5 mm across

in the horizontal direction. Reduction to a 60 x 61 grid of square

elements has very little effect on the appearance of the plot (once

again CPU usage falls by about 50%), particularly if the full grid is

used for gradient estimation.

However we have retained the full grid for the production of

Figure 4.16, a crosshatched version, in order to illustrate that cross-

hatching algorithm B copes easily with a data set of this magnitude.

In this and other plots (produced by algorithm B) in which crosshatching

is used to build up density in this way, the crosshatching part of the

job tends to be less time-consuming than the contouring part:- in a

typical plot crosshatching might involve around 35% of the total CPU

usage.

Finally we note that in a few areas of these plots the surface has

exceeded the 1 0 0 level, behaviour which is of course impossible in

practice - this is not a fault of the method, but rather reflects the

fact that the surface is not wholly suitable for contouring by any

general contouring method. Problems of a similar nature but greater

- 140 —

M \0 / / Vu
I \ a/

Figure 4.15 Third ECMWF data set: relative humidity
(239 X 60 grid of rectangular elements).

- 141 -

Figure 4.16 Relative humidity plot, crosshatched
(239 X 60 grid of elements).

— 142 -

severity can arise if we attempt to contour rainfall data which may

have extensive flat patches where the surface is zero. If we attempt

to identify the dry areas by contouring very close to the zero level

then breakdown of the Implicit Function Theorem can lead to the sort of

anomalous behaviour in contours which was documented in Chapter 2 of

this thesis. However, so long as we do not venture too close to the

zero level, CONICON is perfectly capable of contouring rainfall data

and has done so successfully on a number of occasions.

4.5 Plots of published data

In this final section we use the piecewise quadratic method to

map three data sets which are contoured by alternative methods in the

literature, and for the purpose of comparison we reproduce (with per

mission) the relevant illustrations from published sources. When

comparing plots of the second and third surfaces it should be borne in

mind that differences are not purely a consequence of using different

contouring techniques - in these examples data sites are scattered

irregularly and the methods of interpolation used also differ.

However we begin with a relatively simple example in which the

data sites form a 30 x 20 square grid of points. These data were taken

from the NAG Graphical Supplement (Numerical Algorithms Group, 1981),

which gives no indication of the nature of the variable being measured.

The NAG Graphical Supplement uses the piecewise linear method of Heap

and Pink (1969) to construct contours, but also provides optionally a

choice of two curve-fitting algorithms to increase their visual smooth

ness. Figure 4.17 shows the effect of selecting the piecewise cubic

method of Butland (1980) to smooth contours of the surface. This may

be compared with the CONICON plot of the same data set (with gradients

— 143 —

J06GBF EXAMPLE PLOT

o

Figure 4.17 NAG Graphical Supplement contour algorithm
example plot (29 x 19 grid of cells.
Reproduced by permission of Numerical
Algorithms Group).

— 144 -

estimated by subroutine GRSET) which we present as Figure 4.18. The

latter plot has been rotated through 90° to allow a larger scale.

Comparisons between the plots show that even following the

application of a curve-fitting algorithm to the contours defined by

the piecewise linear method (with the consequent risks of neighbouring

contours crossing each other), contours are still considerably less

smooth than those produced by the piecewise quadratic method. In

addition, one of the contours in Figure 4.17 touches itself in a manner

which, though possible, is extremely unlikely and is probably an arti

fact of the smoothing technique. It is therefore felt that Figure

4.18 provides a much more convincing representation of the surface

than Figure 4.17.

It was stated in Chapter 1 that we regard the two processes of

contouring and interpolation as quite separate. However in some cases

in the literature authors present a single method which combines the

two processes (for example Powell and Sabin, 1977), and in many other

cases the distinction between the two processes is hazy. An example

of the latter type is Schagen (1982), who suggests using a method of

the contour-following type in combination with his own two-dimensional

interpolation method (Schagen, 1979). Ostensibly we have two separate

processes here; however Schagen*s contouring method relies on knowledge

of the original data sites to enable itself to locate contours and

cannot therefore be separated entirely from the interpolation process

without alteration.

Schagen presents a pair of contour plots arising from a set of 72

measured permeability values from oilwells in a Russian oilfield, the

Shkapovskii oil deposit, which we reproduce here (with permission)

as Figure 4.19. The first plot was produced by the GPCP package (CALCOMP

Inc, 1971) and the second by LUCAS, an implementation of his own

— 145 —

ta

Figure 4,18 NAG example contoured by CONICON (29 x 19 grid
of elements).

— 1 4 6 —

31S

Figure 4.19 Shkapovskii data contoured by (a) GPCP and
(b) Schagen* 8 method, (Reproduced from
the Computer Journal by permission of John
Wiley and Sons.)

— 147 —

method. Comparison of these plots shows the strikingly different

interpretations of the underlying surface which the two methods have

provided.

Since the GPCP package employs what is essentially a piecewise

linear contouring method and an interpolation method which is funda

mentally different from Schagen*s we find ourselves at the same time

comparing different contouring and interpolation methods. Both

contouring methods have succeeded in producing smooth curves (probably

at considerable expense), though as we shall see this does not mean

that the contouring techniques have both performed satisfactorily.

Not surprisingly Schagen argues that the plot created by his own

method is the more plausible of the two; he points out that GPCP has

produced some unlikely and apparently unjustified features which

include a steep cliff-edge in the middle of a large area where there

are no data sites, and that the contours in the GPCP plot are not

always consistent with the original data. Schagen*s criticisms of

GPCP seem well founded, but his arguments in favour of his own method

are much less convincing. He attempts to justify the conspicuous

absence of contours in areas where there are no data sites by saying

that this is an indication of "unknown territory" - a rather startling

claim when one considers that the very purpose of an interpolation

method is to attempt to provide an explanation of what might be

happening in such areas.

However confusion arises at this point because it is not perfectly

clear that Schagen*s interpolant really is flat in these areas. His

interpolation m»=thod considers the data to be a realisation of a

stationary correlated random process in the plane; it is therefore

possible that in parts of the plot which are a long distance from the

- 148 -

nearest data site correlations are so low that the mean parameter

becomes dominant - this would result in flatness even if there was

evidence to support some other form of behaviour. However we cannot

be certain that this is happening because any peaks which do occur in

the interpolant in such areas would not in any case have been plotted

by the contouring technique. Schagen's contouring method can only

plot what he calls 'definable* contour segments - that is contour

segments which divide the area of interest into two parts, each con

taining at least one data point - and will therefore not plot a

closed loop unless it contains at least one data site. This is quite

evident in Figure 4.19, though the appearance of a pair of ring

contours which contain no data sites is now a mystery. This suggests

that Schagen may have added heuristics to his algorithm to help

identify contour segments which would not otherwise be 'definable*.

If this is true then it seems likely that the interpolant is indeed

flat in the central area of the plot.

Another disturbing feature of Schagen*s map is that an inordin

ately large number of data sites occur at or very close to local

minima and maxima of the surface, suggesting that the surface is much

'rougher* than it needs to be. The interpolation method is probably

largely responsible for this behaviour, but the fault in the contouring

method which we have discussed reduces the number of stationary points

identifiable in the plot and therefore makes this property even more

noticeable.

We note also that it is not at all clear that Schagen has solved

the problems associated with contour-following methods which were

mentioned in Chapter 1; he does not state how the method recognises

when a closed loop has been completed; nor does he explain adequately

- 149 -

his algorithm for locating contours which, in any case, as we have

seen, is imperfect. The algorithm is based on a system of 'reference

points' (intersections of contours with straight lines linking pairs

of data sites), but the way in which this system is constructed is

barely touched upon.

The data which Schagen contours originate from a paper by

Schvidler (1964) , but in neither publication are the coordinates of

the data sites tabulated: they are simply plotted as symbols on a

map. Thus a rather inaccurate digitisation process had to be carried

out before the Natural Neighbour method of Interpolation (Sibson,

1982) was applied to the data to construct values and gradients on a

36 X 29 grid of points. This grid was then contoured using CONICON,

resulting in the plot which we present as Figure 4.20. As we know

that the piecewise quadratic method can be relied upon to produce

smooth and accurate contours we are carrying out largely a comparison

of interpolants when we compare this illustration with those in Figure

4J.9 .

The Natural Neighbour Interpolant of these data has features in

common with both interpolants contoured in Schagen's paper and indeed

appears to some extent to be a compromise between the two plots:- in

the large central area which is free of any data sites it exhibits

neither of the extremes which occur in the other two plots, but

instead makes what appears to be a plausible guess on the basis of

the available evidence as to the behaviour of the surface in this

area. In common with the GPCP interpolant there are cases (though no

more than two or three) where contours are inconsistent with data

values (a property of the contouring method - not of Natural

Neighbour Interpolation), but none of the spurious near-cliff edges

- 150 -

m

m

m
tA

m ♦

m

■r>

Figure 4.20 Shkapovskii data interpolated by the C
Natural Neighbour method and contoured
by CONICON (35 x 28 grid of elements).

- 151 -

which occur in the GPCP interpolant are present in this plot; and it

is no longer the rule that we find a data site somewhere within each

closed loop contour. For these reasons it is believed that the

Natural Neighbour Interpolant is by far the most plausible of the

three. This example provides us with further justification for the

use of the Natural Neighbour method in examples in this thesis which

require interpolation as well as contouring.

The differences between interpolation methods which we encounter

above afford us few opportunities to compare contouring techniques,

but the following example presents us with a much better chance to do

this. Once again we have a set of scattered data, 190 values re

presenting a geological variable - elevation of the top of the Lansing

Group (Pennsylvanian) in a part of Graham County, Kansas. These data

were taken from the user's guide for the Surface II Graphics System

(Sampson, 1975, revised 1978) and are used extensively in that

publication to illustrate features of the package. Like most other

contouring packages. Surface II Graphics employs a piecewise linear

method of approximation and this is immediately evident from Figure

4.21 which illustrates a pair of typical plots of our data set. Even

in the lower plot, which employs a 1 0 1 x 61 grid of values, a con

siderable amount of angularity is apparent in areas of high

curvature.

In Figure 4.22 we have interpolated the data by means of the C^

Natural Neighbour Method to give values and gradients on a 21 x 13

square grid of points, and plotted the contours using the piecewise

quadratic method. Refinement to a 40 x 24 grid of elements makes

little difference to the appearance of the map. In this case the

two interpolants which we are comparing are very similar in

- 152 -

G

4

2

00 2 4 6
Figure 76.--Contour map showing subsurface struc-

8 1 0

tural elevation of the top of the Lansing Group
in part of Graham Co., Kansas. Grid matrix con
tains 16 rows and 26 columns.

6

4

2

00 2 1 04 6 8
Figure 77.--Contour map of data from Figure 76,

gridded with 61 rows and 101 columns.

Figure 4.21 Surface II Graphics System example plots
(Reproduced by permission of Kansas Geological
Survey).

- 153 -

Figure 4.22 Surface II example interpolated by the C
Natural Neighbour method and contoured by
CONICON (20 X 12 grid of elements).

— 154 —

appearance and we can therefore compare contouring methods more or

less directly. Such comparisons show that the use of a 21 x 13 grid

of points with the piecewise quadratic method produces contours of a

much higher quality than the Surface II package, even when the latter

uses the finest of grids.

- 155 -

CHAPTER 5

ERROR ANALYSIS

5.1 Introduction

In this chapter we study the errors involved in using the seamed quad

ratic element introduced in Chapter 2 to approximate well-behaved functions

which it cannot reproduce exactly.
3Since the errors are of order h we concentrate on investigating that

part of the error which is induced by the third order partial derivatives,

and we give bounds for maximum error and integrated square error over the

element in terms of these derivatives. A discussion of some of the possible

applications of these bounds is then presented.

We also examine briefly the fourth order components of the error:

their speedy calculation is rendered possible by the use of the CAMAL

algebraic manipulation computer package (Fitch, 1982).

We begin, though, by applying Taylor’s Theorem in two dimensions (see,

for example, Phillips (1962) or Apostol (1969)) to find explicit forms for

the third order part of the error; the forms which we derive express this

error in terms of the cardinal functions of the seamed quadratic element

and the four third order partial derivatives of the function which is being

approximated.

5.1.1 Notation and Assumptions

For simplicity, we assume the element to be square in shape, with sides

of length 2 h parallel with the coordinate axes, and centred at the origin;

results for the 2 h x 2 k rectangular element generalise readily from those

obtained for the square element.

We define x^, i = 1,..., 4 to be the vertices of the ’unit’ square; that is,
the square described above with h=l . Ordering of the x^s is arbitrary. Each x. is

— 1 5 6 —

a vector with components (x^j> ^£ 2 ̂ but for convenience the conventional

underlining will be dispensed with for all vectors in this section, More-
2over an expression such as x^ denotes a 2 x 2 matrix with (j , k)th

3component x^^ x_^; similarly x^ is a 2 x 2 x 2 tensor with (j, k, l)th

component x^^ x^^ ^il* so on.

The true function f which we are approximating is assumed to be at

least four times continuously differentiable throughout the element, f*

denotes Vf, the vector of first order partial derivatives; similarly f’’

and f**’ are used to denote the matrix of second order partial derivatives

and the tensor of third order partial derivatives respectively. The

piecewise quadratic approximant is denoted by for the h-square or simply

f on the unit square. The value of f at hx^ is and the vector of partial
. *derivatives is s.. e, = f, - f is the error involved in using f, to i n n n

approximate f.

Finally denotes the cardinal function corresponding to value 1 at x^
Tand is the vector (P^j» of cardinal functions corresponding to

partial derivatives of 1 in the x and y directions respectively at x^.

5.1.2 Application of Taylor’s Theorem

If we approximate the function f at some point x within the unit square

using the seamed quadratic element we then have

4 4
f(x) = Z X.(x)f(x.) + Z p.(x)f’(x.) (5.1)

i=i ̂ I i=i 1 ^

In the general case, for an h-square,

f,(hx) = ZX.(x)z. + Zhp.(x)s. (5.2)n £ 1 1 £ 1 1

Now, taking a two-dimensional Taylor Series expansion, we have for all

X within the element
2 3

f(hx.) = f(hx) + h(x.-x)f’(hx) + -y (x.-x)^f’’(hx) + ^ (x.-x)^f’’’(hx) +
1 1 Z 1 0 1

£ (h^) (5.3)

- 1 5 7 -

where is the supremum of all five fourth order partial derivatives over

the square.
3Note that terms such as (x^ - x) f’’’(hx) have an implied (triple)

3 3inner summation and are scalar quantities. Thus if x and y are both
3 3 . 3 32 x 2 x 2 tensors, x y is defined as ZEZ x -y . It follows that

ikl 2 3

differentiating with respect to x gives the vector 3x y , the 1th component
2 3 . 3 3of which is defined as 3 ZZ x ., y ... , and in general terms like x y can be

jk ̂ ^
differentiated using the conventional rules of calculus; we make use of this

fact below.

Note also that the order of the final (remainder) term in (5.3) follows

from inspection of the Lagrangian remainder term which in this case is

Y ^ (x ^ - x) ^ f (hÇ), whereÇ is a point on the straight line joining x to x^.

Now define

q(x^) = f(x) + (x^-x)f’(x) + i(x^-x)^f’*(x) (5.4)

q is a quadratic function with second order contact at x with f; that

is, q and its first and second derivatives are identical to f and its first

and second derivatives respectively at x; generalising to the h-square we

have

q^(hx^) = f(hx) + h(x^-x)f ’ (hx) + -j (x^-x) f” (hx) (5.5)

has second order contact with f at hx. From (5.3) and (5.5) we have

, 3 3 M
^i ^ q^Chx^) + j (x^-x) f ' * ' (hx) + 0 (h) (5.6)

Differentiating with respect to hx^, we find
u ̂ 9 g

®i ^ + j (x^-x) f''(hx) + ~ £ (b) (5.7)

Now since q^^hx^) has second order contact with f at hx it follows that

the terms in q^ will exactly interpolate to f(hx) = q^(hx).

i.e. Z[X^(x)q^(hx^) + hp^(x)q’̂ (hx^)] = f(hx) (5.8)

- 158 -

Therefore, applying (5.2) to (5.6) and (5.7) we find

e^(x) = f, (hx) - f(hx) = h^Z[Vô X,(x.-x)^+&p.(x.-x)^]f'''(hx) + h h i

5N. ,
2 ^ 0 (hS (5.9)

The term in the square brackets is a 2 x 2 x 2 tensor We re

write (5.9) as

e^(x) = h [cjjj(x)9jjjf(x) + 3 C j ^ ^^ 1 2 2 ^*^^1 2 2 ^^*^ ^

5M ,
0222^*)-222^^*^^ + -yT £) (5.10)

where

Cjjj(x) = Bjjj = Z[Vô X^(x^-x)^ + jP^^(x^-x)j] (5.11)

3= 1 1 2 <*) “ ®1 1 2 " * 1 2 1 " * 2:11 =

Z[iX^(x.-x)j(x^-x> 2 + p^^(x^-x) j(x^-x> 2 + 2p£2(^i"^)l3 (5.12)

3C|22(x) B%22 ^212 *221

2 2
Z[^X^(x^-x)j(x^-x) 2 + 2 P^j(x^-x) 2 +Pi2(*i"*)l(*i"*)2] (5.13)

and C 2 2 2 (x) = B 2 2 2 = ^ [^ ^ 6 X^ (x^-x) 2 + &p£2(*i"*)2] (5.14)

We have therefore succeeded in splitting the third order part of the

error into four components, each one corresponding to one of the four third

order partial derivatives. Since we know the cardinal functions X^ and p^

it is possible to calculate the functions exactly.

5.2 Third order error functions

In this section we employ the CAMAL algebraic manipulation package to

159 -

calculate the error functions c . d e r i v e d in the previous section, andijK
present them as piecewise cubics in x and y (we drop the vector notation of

Section 5.1). We also give illustrations of the functions and discuss the

significance of some of their more notable features.

Initial inspection of the expressions (5.10)-(5.13) suggests that the

functions c^j^ will be piecewise quintic in x and y , since we know that the

cardinal functions and are both piecewise quadratic in x and y . How

ever these are the third order error terms : consequently if the function f

is in fact cubic then the error surface must be a linear combination of the

c^j^, and clearly the error surface in such a case will be piecewise cubic;

thus the functions c^j^ must also be piecewise cubic, so when the

expressions (5.10)-(5.13) are evaluated the fourth and fifth order terms

must drop out. Calculation of these functions by hand would be a lengthy,

tedious process, even if full use were made of the extensive degree of

symmetry involved. Fortunately it was not necessary to carry out the

evaluations manually; instead use was made of the CAMAL algebraic manipula

tion package (Fitch, 1982): a computer package whose capabilities include

the multiplication and addition of algebraic expressions. Using this

package it was necessary merely to write a single program to evaluate

expressions (5.10)-(5.13) given values for the functions X^ and p^, and to

run the program for a minimum of two sets of values of the X^ and p^.

The values of the functions c . o b t a i n e d by running such a programIJK.
are presented in Figures 5.1-5.4. We find that the functions are each

composed of either two or four (and not sixteen) distinct cubic pieces, and

for this reason the elements in these diagrams are pictured divided not

into the sixteen constituent triangles, but just into as many pieces as

there are separate cubic functions.

Note that, as we would expect, the functions 0 ^ 2 2 ^222 simply

reflections of c^^^ respectively in the line y = x. We therefore

limit our attention to a discussion of the functions c^^^ and Cjj2 > all

160 -

F Igure 5.1

C m (x)

-^Gx(x+1)

F igure 5.2

3Cn2(x) -V2 (y-1) (x^-y)

- Vgy (x~1)

— 161 —

F Igure 5.3

- ’̂ 2 X (y-1)

-V2 (x+1) (y^+x) "/XT-V2 (x-1) (y^-x)

- V2 X (y+1)

Figure 5.^

- Vg y (y-1)

-^ty(y+i)

— 162 —

conclusions will generalise readily to the other two error functions.

Inspection of the formulae for c^^^ and 3 Cjj2 (and their derivatives)

reveals that both have continuous first derivatives, but have discontinuities

in second derivative. In addition the third derivatives are constant every

where except along the element^s seams (where they are undefined). This is

hardly surprising when we consider that the error surface which we are
3 . ! . .studying is the difference between a C function and a C piecewise quadratic

surface with discontinuities in its second derivatives.

It can also be seen that the only third order term in the formula for
3Cjjj(x, y) is an x term and likewise the only third order term in the

2formula for 3 Cjj2 ^^» y) is an x y term. This feature is also readily
3explicable: consider a function f of the form f(x, y) = ax + q(x, y),

where q is a quadratic in x and y and a a constant. The error involved in

approximating this function using the seamed quadratic element must be a

constant multiple of c...(x, y), because there is only a single third or
: a3f

higher order partial derivative which is non-zero, namely — ^ , and this3x-̂
is constant throughout the domain of f. Thus Cjjj(x, y) must be a constant

multiple of the difference between a function of the form of f and a piece-

wise quadratic: hence there is only the single cubic term in c^jj. A

similar argument can be used to show that the only cubic term in c^^2 (X; y)
2 ^IS an X y term.

Pictorial representations of these functions are given in Figs. 5.5

and 5.6. For Cjj^(x, y) we show a cross-sectional view for constant y

rather than a contour plot because the function is a cubic in x only. Fig.

5.6 is a contour plot of Cjj2 (̂ » y)»

Inspection of Figures 5.5 and 5.6 reveals other features of the

functions:- has a maximum value of 3/81 along the line x = -1/3 and

a minimum of - ^^81 at x = 1 /3 . y) has a maximum of I/ 3 at (0 ,-%)

and a minimum of - ^ / 8 at (0,)̂ . Both functions are zero at the origin;

- 163 -

(U

N<D» U)00
m

u>

ni

Figure 5.5 The third order error function (x, y)

- 164 -

-0 * 3
0.05

- 0.11

-0.03

- 0.01
0 .01

0.03

0.09
05

0.03
0.01 0.09

0.11

0.07
0.05

0.03
0.01

Figure 5.6 Contour plot of the third order error function
3Cjj2 (x, y).

- 165 -

indeed Cjjj(x, y) is zero along the y axis while y) is zero along

the X axis. It follows that the other two error functions will also

disappear at the origin, and that the seamed quadratic element will there

fore reproduce any cubic function exactly at the origin. (Note that we

stated in Chapter 2 that both the seamed quadratic and seamed cubic elements

have the same value at the origin; however we have a slightly stronger

result here because, as a result of the gradient linearity condition, the

cubic element cannot reproduce exactly a general cubic function.)

We note also that the function Y) disappears along the

boundary of the square and has zero gradient when x = i 1. It is easy to
2see why this happens: consider a function f of the form f(x, y) = 3x y +

q(x, y) where q is quadratic in x and y and 6 constant, which will lead to

a constant multiple of y) as error function, f is quadratic in x

for constant y , and quadratic in y for constant x, so the seamed quadratic

element will reproduce it exactly along its boundary. Moreover the x

derivative is a linear function of y for constant x, so this too will be

reproduced correctly along the lines x = - 1. We have therefore reproduced

value and gradient correctly at the points (-1, 0) and (1,0), and therefore

the method will also reproduce f correctly along the line joining these

points; that is, the error function Cjj2 (^> y) is zero along the x axis.

Finally, to show why the function c^^^ is zero along the y axis we

recall from Chapter 2 that both one dimensional elements (seamed quadratic

and cubic) yield identical values at their mid-points. Thus the one

dimensional seamed quadratic element reproduces a cubic function correctly

at its mid-point. Therefore the 2-dimensional seamed quadratic element
3will reproduce a function of the form f(x, y) = ax + q(x, y) correctly at

the points (0, 1) and (0, -1), The y-derivative, which varies linearly

in X, will also be reproduced correctly at these points. Now for fixed x,

in particular x = 0, f is quadratic in y so once again f will be

— 166 —

duplicated when x = 0; in other words the error function Cjjj(x, y) will

disappear along the y axis.

5.3 Bounds for error

The error functions calculated in Section 5.2 enable us to determine

bounds for the error (maximum error or integrated square error) involved

in approximating a function by the seamed quadratic element. As will be

seen in the following section and in Chapter 6, a number of possible

applications for such bounds suggest themselves and we therefore derive

two bounds for error in this section. These are presented as Theorems 5,1

and 5,2,
3We need only assume now that the function f is C within the element.

Using Lagrange's form for the remainder term and taking one term fewer in

the Taylor Series expansion (5.3), we obtain

2 3
f(hx^) = f(hx) + h(x^-x)f'(hx) + y (x_-x)^f*'(hx) + ^ (x^-x)^f'''(hÇ^) (5.15)

where is a point somewhere on the straight line joining x to x^.

Expression (5,9) then becomes

e^(x) = h^Z [1/6 X^(x^-x)^ + 5 p^(x_-x)^]f'*'(hC^) (5,16)
i

Thus the total error has been expressed in terms of the third order

partial derivatives at four points within the square. We can therefore

derive expressions giving bounds for maximum error and integrated square error

over the element in terms of the supremum of the moduli of the four third

order partial derivatives, which we shall refer to as Mg,

5.3,1 Maximum error

We note that the functions Cjjj(x, y) and 0 2̂ 2 ^̂ * y) are symmetric about

the x-axis and antisymmetric about the y-axis, and both are positive when

X < 0 and negative when x > 0, The functions Cjjg(x, y) and 0 2 2 2 ^ »̂ y),

— 167 —

being reflections in the line y = x of y) and Cjjj(x, y) respect

ively, have similar properties but with directions reversed. It follows

that calculation of a bound for maximum error in terms of is a trivial

operation:- the worst case will clearly occur when the partial derivatives

are equal in modulus, and since the four error functions are all positive

throughout the part of the element which lies in the third quadrant we

simply need to maximise the sum of the error functions (that is Cjjj(x, y) +

3C ii2(x , y) + 3C j22(x , y) + y)) in this region. In fact the

maximum occurs at (“ V 3 , - V 3) and has a value of 16/g], We therefore have

the bound for maximum error within the element given by the following theorem.

Theorem 5.1

If a seamed quadratic element of dimension 2h x 2h, centred at the
3point (a, b), is used to approximate a C function f, then the maximum error

in approximation is bounded by the following:

maximum error - ^^/81 h^M^ (5.17)

where = sup (l^-jl > , I 2 1 » |-^|)
|x-a|^h 9x 3x 3y 3x3y 3y
1y-bI-h

Note that, ignoring the trivial case where f is quadratic, this bound

can only be attained at the points (i I/3 , - V 3), and if it is to be

attained we require that the greatest magnitude of each of the third order

partial derivatives should occur at all of the points corresponding to

this particular value of x; at these points the third order partial

derivatives must be equal in modulus with sign appropriate to the particular

quadrant in which x lies. The bound is clearly attainable: for example

it would be attained at both (^/g, - Vs) and (-V3, Vs) if f were of the

form

f(x, y) = a(Vôx^ - ix^y + gxy^ - ^/by^) + q (x, y)

where a is a constant, and q is a quadratic function in x and y .

- 168 —

5.3.2 Integrated square error

As a consequence of (5.16), the following expression will clearly

be a bound for the integrated square error (i.s.e.) over the element

2 g ̂ 1
i.s.e. ^ h / /(|c,,,(x, y)| + 3jcjj2(x, y)| + 3|c,T^(x, y)| +3 •''111 122

1^222^^’ y)|) dx dy

The component parts of this integral are as follows:

1 1 2
/ / c (x, y) dx dy =

- 1 - 1
1 1 2 1
/ / C222(%. y)dx ^ = 945

- 1 - 1

9 / 2 1 ̂ 2 4^112 y) dx dy = 9 f f 7)dx dy = jjj
- 1 - 1

1 1
c,,^(x, y)c,,,(x, y)|dx dy = 6 / / |c,.,.,(x, yOc^^^Cx, y)|dx dy =

— 1 — 1
11

1 1
Cjjj(x, y)Cj2 2 ^x, y)dx dy = 6 j f Cjj2 (x, y) C 2 2 2 (%, y)dx dy =122 - 1 — 1 112 222

Cjj|(x, y)cTT^(x, y)|dx dy = ~222 648

1 1
18 / / |c^j2 ^x, y)c^ 2 2 (x, y)|dx dy =

- 1 - 1
3
280

It follows that

1 1
f /(lcjjj(x, y) I + 3lcjj2(x, y) 1 + 3|cj22^^» y) I '^1^222^^» y)|) dx dy-1-1

703
Ï1340

0.062

- 169 -

and therefore we have the bound for i.s.e. given in Theorem 5.2.

Theorem 5.2

If a seamed quadratic element of dimension 2h x 2h, centred at the
3

point (a, b), is used to approximate a C function f, then the integrated

square error in approximation is bounded by the following:

i-s.e. < h*M3 ^ (5.18)

(M^ defined as in Theorem 5.1).

Unlike the bound derived for maximum error, this bound is not

attainable except in the trivial case where f is quadratic. For if it

were attainable we would require f to be a piecewise cubic of the form

a(-l/6x^ - 2X^y - ^xy^ - Vôy^) + q^(x, y) x z 0, y 2 0
a(V6x^ - ix^y + ^xy^ - Vby^) + q 2 (x, y) x < 0, y > 0

a(l/6x^ + &x^y + jxy^ + ^/6y^) + q^Cx, y) x < 0, y < 0

a(-l/6x^ + &x^y - |xy^ + Vby^) + q,(x, y) x > 0, y < 0

f(x, y) = 4

where q^, i = 1, ..., 4 are quadratic in x and y and a is a constant.

However such a function, though it could be made continuous, could not be
2 1made C or even G for non-zero a. Therefore this bound is only attained

when f is reproduced perfectly.

Thus, to summarize this section, we have found a pair of bounds,

one for maximum error and the other for integrated square error over the

element. In the non-trivial case where the error is non-zero the former

is attainable, but the latter is not.

5.4 Discussion

The bounds for error determined in the previous section may be put

to practical effect in a number of different ways, and in this section we
discuss some of the possibilities.

- 170 -

We begin by considering how the bounds may be used in the analysis

of contour plots, to determine the error involved in contouring a function

using the piecewise quadratic approximant; or in their design, to provide

an automatic method of choosing the grid size. In addition we explain

how the bounds may be employed to provide a criterion for local splitting

of grid squares so that the grid size is allowed to vary over different

areas of a single plot, according to the behaviour of the function.

In the second part of the discussion we consider combining the bounds

with some measure of slope over an element to provide a criterion for

local splitting which depends not simply on vertical error in approximation

but on 'horizontal error', or vertical error relative to local slope. We

examine a number of possible measures for slope in an element and arrive

at a recommendation for the use of one of these. We then derive a possible

index for horizontal error within an element from a combination of this

measure and our bounds for error.

Finally we discuss the relative merits of using vertical error or

horizontal error as criteria for local splitting of grid elements. Mainly

as a result of practical considerations, we prefer the use of the former.

5.4.1 Using bounds for error alone

Probably the most obvious application of the bounds is in the analysis

of contour maps produced by the seamed quadratic element: if it is

possible to determine the maximum (in modulus) of each of the function's

third order partial derivatives in the area of the plot, then a bound for

the maximum error involved in the contouring process can immediately be

found using the bound given by Theorem 5.1. To obtain a useful bound for

integrated square error, however, we require the maxima of the third order

partial derivatives in each element used in the plot. Calculation of these

maxima may be a formidable task, and this is one reason why we shall

concentrate most of our attention on maximum error rather than integrated

- 171 -

square error. A further reason for doing so is that non-zero bounds for

maximum error, unlike those for integrated square error, are attainable in

at least a few cases and are therefore perhaps likely to be closer to the

true error in general. But probably the most important reason is that the

non mathematically-minded scientist using the seamed quadratic element to

produce contour plots is likely to find the concept of maximum error much

simpler to grasp intuitively than that of integrated square error, and he

will therefore be less likely to misunderstand the information given to

him by these bounds.
We return now to Figure 5.6, which is a contour p^ot of the

function ^ piecewise cubic in x and y. The error in this
2example is the same as that for the cubic -&x y , since the piecewise ^

quadratic part of the function is reproduced correctly given our 8 x 8

grid of elements. Thus = 1, and expression 5.17 provides a bound for

maximum error over the whole plot of ^^/si . (*/3)^ . 1 = 0.00039. In

this particular example it is also simple to compute the bound for inte

grated square error using expression 5.18. This will be

. 1 .(Vs) • 64 = 2.365e-0711340

As a result of the special nature of the example chosen here, it is

a simple task to evaluate exactly for comparison with our bounds both the

maximum error and the integrated square error involved in approximating

the function by the piecewise quadratic element. The maximum error is

given by

V g • (^/d)^. 1 - 0.00024 (since V g is the maximum value of

3Cii2(x , y)) and the integrated square error by

2 . 1 1 . g ,
64 h 9/ / (x, Y) dx dy = 64. 1 . (Vg) . yjy = 4.844e-08

However in the vast majority of cases it will not be possible to

calculate the error exactly and the bounds derived in the previous section

- 172 -

will have to suffice. Note though that in the example above the bound

for maximum error gives a better approximation (in relative terms) to the

true maximum error than the bound for integrated square error gives to

the true i.s.e.

As an alternative to using the bounds as a tool in the analysis of a

contour plot they may also be used in the design stages of the contouring

process. Thus, if we know the maximum third order partial derivative of

the function to be contoured in the area of interest, then we can use the

bound for maximum error to determine the largest grid size which will

result in the approximant never differing from the true function by more

than a fixed amount, say 6, which in theory can be set as small as we

wish (in practice limitations will be set by the availability of memory

and CPU time). Thus, if we wished to contour the function y)
with maximum error no greater than 0.0002 then we would require

■|| h^ .l < 0 .0002

i.e. h < 0.1004

Therefore, since unity must be an integer multiple of h, we would

choose h = 0.1 and use a 10 x 10 grid of elements for our plot. Note that,

as a result of the third order nature of the error, a near 50% reduction

in the size of the bound results from a 20% reduction in grid size.

Using the bound for maximum error in the design of the contour map

thus provides an automatic method of choosing the grid size, which solves

one of the major problems faced by anyone wishing to produce a contour map

of a known function using the CONICON software.

In an example such as the one which we have chosen we could similarly

control integrated square error; note that the reduction in

integrated square error is proportional to h^ rather than h^ since the
2number of elements in the plot increases proportionally tol/h .

$

- 173 -

Of course in the vast majority of practical applications it will not

be possible to determine the maxima of the third order partial derivatives

analytically; instead numerical methods will have to be employed. In some

cases it may prove too difficult or too costly even to apply numerical

methods. In such examples the only alternative is to approximate the

maxima in some way. Since the bound for maximum error is not usually

exact, a good approximation of maximum third order partial derivative will

in the vast majority of cases result in bounds which do contain the true

maximum error. If the bound is to be utilised in the analysis rather than

the design of a contour map, then the maximum (in modulus) of the third

order partial derivatives at all grid points will usually give a good

enough approximation. However when it is wrong it will underestimate the

true maximum and as a result of this the (remote) possibility that the

bound does not contain the true maximum error cannot be ruled out; and

the certainty is thus removed from our conclusions. If the bound is to

be employed in the design stage of the contour plot then uncertainty about

its validity is probably less important: in such circumstances the user

will usually be more concerned with making a sensible choice of grid size

than with precise knowledge of the maximum error involved in the approxim

ation.

If it is possible to find (either exactly or approximately) the

maximum of the third order partial derivatives within any element of the

contour map, then either of the bounds can be used to form a criterion for

local splitting of grid squares, rather than being used to determine the

overall (constant) grid size: so long as the opportunity to make

additional function and gradient evaluations exists, it is quite possible

to split any existing elements of the grid into four, retaining continuous

differentiability of the surface, and to continue to do so until all

elements in the grid, whatever their size, fulfil a certain criterion.

A suitable criterion could obviously be that the maximum error (or i.s.e.

— 174 —

per unit area) within each element is less than a certain value. Rather

than splitting all elements in the grid until this is achieved it is

preferable for reasons of efficiency to split only those elements which

do not fulfil the criterion and to carry on doing so recursively until all

elements satisfy it.

5.4.2 Combining with measures of slope

Until this point we have considered only the vertical error involved

in approximating the true function by the seamed quadratic element.

However it can be argued that this is not what we should be examining: if

we require our contours to be close in some sense to the true contours

then it is the horizontal error which we must keep under control.

'Horizontal error' is a rather difficult concept to define (for example,

in some cases a contour which exists in the approximant may have no contour

to correspond to it in the true surface), but it can be thought of, loosely

speaking, as vertical error relative to the local slope, since a vertical

error of 6 in an area where the surface slopes steeply will result in a

much smaller error in the contours than will a vertical error of 6 in an

area where the surface is nearly flat.

Thus we would like to have some sort of measure to summarise the slope

within an element, to accompany the bound for maximum error within that

element; in particular we are concerned with the gradient in parts of the

element where the 'surface is relatively flat, so our measure ought to be

a measure (even if only a crude one) of the flattest triangle within an

element. Note that a triangle in which a maximum or minimum occurs will

not necessarily be considered to be as flat as one in which the surface

slopes very gently throughout. For simplicity it would be convenient if

the slope within an element could be summarised by a single simple function

of the data at the vertices. Averaging the sums of squares of the two

partial derivatives at each vertex will not result in a reliable measure,

- 175 -

for each of the cardinal functions is zero in the two triangles opposite

the vertex at which the non-zero datum occurs; thus if the data are zero

at three vertices of the element then, whatever the data at the fourth

vertex are, the surface will be flat over at least two of the element's

constituent triangles. However the measure suggested would give no

indication of this fact if either of the derivatives at the fourth vertex

were large.

It might appear that this problem could be solved by taking the

average of the three (or two) smallest sums of squares of partial deriva

tives at the vertices. However flat areas might still occur undetected by

such a measure: Figure 5.7 shows an example in which the surface is flat

over a single triangle of the element, and the partial derivatives are

both zero at a single vertex of the element. The unlabelled contours in

this diagram are at 1.0 ± 0.0001. In fact it is possible for flat areas

to occur when all the gradients at the vertices are non-zero, and such an

example is illustrated in Figure 5.8. The flat areas in this map will

occur given any constant multiple of the data at the vertices, so clearly

a different measure of flatness will have to be considered. To derive a

suitable measure it is helpful to examine the conditions required on the

data which will result in the approximant being constant over a triangle.

Using the cardinal functions we can evaluate the coefficient of each term

of the quadratic in a particular triangle in terms of the data at the

vertices. For the function to be a constant we require that the co-
2 2efficients of x , y , xy, x and y are all zero; thus we have five linear

conditions on the data. Figure 5.9 numbers two of the triangles within an

element 1 and 2, and labels the vertices of the subsquares which form the

element in an obvious way.

- 176 -

(UV
s
#

ai

4»

<0

Figure 5.7 A single element illustrating constant approximant
value across an 'external* triangular panel.

- 1 7 7 -

#

:
*

«

ni
#

t
T
i

n

T V
3

Figure 5.8 A single element illustrating constant approximant
value over two ’internal’ triangular panels.

- 178 -

NW N NE

Figure 5.9
w

0 / ^ X .

/ X 1

su SE
We define and t_,_ to be the partial derivatives in the SW corner bw bw

of the element in the x- and y-directions respectively, and gradients at

all other vertices of the element are given a similar notation. The

gradients at N, E, S, W and 0 can all be calculated as linear combinations

of the data at the vertices and we refer to these as s^, t^, s^ and so on.
2 2 .Now by examining the coefficients of x , y , etc. in the quadratic on

triangle 1, and then taking linear combinations of the resulting conditions,

we find the following five conditions for the quadratic on triangle 1 to

be constant:-

(i) "sw = 0
(iii) Sg = 0 (iv) tg = 0

(v) (5.19)

(Note that the data in Figure 5.7 can be shown to satisfy these conditions.)

The reasons for conditions (i) to (iv) are simple to grasp intuitively

but no obvious intuitive reason offers itself for the final condition:- it

should be noted though that the negative coefficient of t^ means that the

two partial derivatives at W in the direction of triangle 1 are equal.

For triangle 2 we have a similar set of conditions:

(i) Sg = 0

(iv) tg = 0

(ii) tg = 0

®SW ” ^SW

(iii) Sg = 0

(5.20)

- 179 -

Note that in this case none of the gradients at the vertices are

required to be zero; the data in Figure 5.8 can be shown to satisfy these

conditions.

All triangles within the element are essentially of the same type as

triangle 1 (one side forms part of the element's border) or triangle 2

(one vertex touches 0) and the conditions for the surface to be flat over

any triangle will be similar to those given for triangles 1 and 2.

Therefore, in order to be certain that the surface is nowhere constant

within an element it will normally suffice to check gradients at the

vertices and centre of the element; occasionally we might also have to

check gradients at N, E, S or W. (For the remainder of this discussion,

the 'gradient' at a point will denote the sum of squares of the two first

order partial derivatives at that point.) This suggests that a crude

measure of flatness might be obtained from some function of the gradients

at the vertices and centre of the element.

The simplest such measure to suggest itself would appear to be the

minimum of these five gradients. Such a measure could be computed very

quickly and would automatically be zero if the surface was constant over

any of the sixteen triangles of the element. However, as a result of its

simplicity, it could give misleading values in a number of cases: for

example, if a local maximum or minimum of the surface were to occur close

to one of the points at which gradients were being evaluated.

The following algorithm will produce an alternative measure which

should always give reliable results:

(1) Evaluate gradients at the vertices of all sixteen triangles (thirteen

points in all).

(2) Find the maximum of the gradients at the vertices of each triangle.

(3) Regard the infimum of these sixteen values as the measure of flatness,

This measure might however prove to be too much of a burden in terms

of the amount of computation required, and so a third measure of flatness

- 180 -

has been selected as a compromise between the two already mentioned. This

is evaluated in the following way:-

(1) Calculate gradients at the nine subelement vertices.

(2) Find the pair of neighbouring vertices with the smallest average

gradient.

(3) Select this average gradient as a measure of flatness.

Such a measure will, as a result of conditions (5.19) and (5.20),

always equal zero if the surface is constant over any triangle, but will

not usually be close to zero if a local maximum or minimum happens to

occur in the neighbourhood of a vertex or the centre of an element. The

measure is guaranteed to be small in cases where a flat triangle exists

and will usually be large if a flat triangle does not exist; thus any

errors which do occur will lead only to elements being divided unnecessar

ily, on outcome which is preferable to the alternative of neglecting to

divide elements which ought to be split up.

The reader will recall that our measure of flatness was chosen in

order to be used in combination with the bound for maximum error in

forming a criterion for local splitting of elements, and therefore an

expression which combines the two has to be selected. We require something

similar to the quotient of maximum error over (flatness of) gradient, but

this ratio cannot be used as it stands because our gradient measure may

sometimes turn out to be zero. Note also that in cases where the surface

is constant along the edge of an element then, irrespective of the number

of times that the element and its constituent parts are subdivided, the

measure will always equal zero for some elements. Thus to guarantee

termination of the process as well as to avoid division by zero it seems

appropriate to add a positive constant parameter k to the denominator of

the quotient. The measure of error involved in approximating f by the

piecewise quadratic element then becomes:

- 181 -

bound for maximum error k > 0
measure of flatness + ic ’

and we will decide to subdivide an element into four if this measure turns

out to be greater than a certain positive constant, e. k will be chosen

in such a way that when the measure of flatness is zero, the process will

terminate at or before a selected grid size. Thus if we do not wish to

split elements more than j times we will choose < in such a way that

ii . X k < ,91 <

but 16
81 * < ^

where hj is the size of an element which has resulted from j splitting

processes (hj = ^hj_j), and refers to the maximum third order partial

derivative for the entire area of interest.

5.4.3 Horizontal vs Vertical error

Unfortunately the practicability of using a criterion such as the

one derived above for local splitting of grid squares is very much open to

question. Probably its greatest disadvantage is that the user is faced

with the difficult task of selecting the values of two parameters, while

if only the vertical error was considered a single parameter would have

sufficed. In addition, it may well be the case that the approximations

involved in measuring maximum error and flatness in an element will, when

combined, result in poor behaviour of the method. It is perhaps there

fore worth discussing the relative importance of horizontal and vertical

error in contour plots at this point.

The case for treating horizontal error as more important has already

been advanced in this discussion; it is that large discrepancies between

the contours of the approximant and those of the true function may pass

unnoticed in flat areas if no account is taken of local slope. However

- 1 8 2 -

vertical error has the advantage that it can be defined precisely, which

horizontal error cannot be, and we have shown that it is the easier error

to measure and can be measured reasonably accurately. If we know that

the surface being contoured is never farther than a small amount 6

vertically from the true surface then perhaps there is little cause for

concern when contours depart significantly from their true positions; in

areas where this happens the contours will in any case be large distances

apart and the experienced reader of contour plots will realise the

dangers of inferring very much from their positions. Such contours,

although unreliable in terms of distance from the true contours, will

still give an accurate representation of the nature of the surface in

these areas.

Besides the practical obstacles towards implementing a method which

chooses the grid size on the basis of a measure of horizontal error, a

number of other problems exist which might lead us to doubt the wisdom of

proceeding with such a method. Firstly, any measure of horizontal error,

though it may be suited to local refinement of grid size, is likely to be

extremely difficult to use to select an overall grid size (since many

surfaces which would be well approximated by a large grid for the most

part include areas where the function is very flat); secondly, it is much

more difficult to gain an intuitive appreciation of measures of horizontal

error than is possible in the case of vertical error; and finally, a

method which tended to split up elements more often in areas where the

surface is relatively flat would probably be wasteful because, as a direct

consequence of the flatness of these areas, very few contours would pass

through them (az_aming contour intervals to be constant).

It is therefore felt, for the various reasons outlined above, that

the extra effort required to measure horizontal error in contours will in

most cases probably not be justified by improved results. However, in the

- 1 8 3 -

following Chapter, we shall attempt to put to practical use some of the

measures of both horizontal and vertical error derived in this section,

5.5 Fourth order error functions

In this section we present the fourth order equivalents of the

error functions given in Section 5.2. These error functions are not as

useful as the third order error functions in that we are unlikely to wish

to use them to construct bounds for error in the way that we used the

third order error functions in Section 5.3; however, by comparing these

functions with each other it is possible to gain some insight into the

relative importance of the various fourth order partial derivatives in

determining the error at any given point in the element.

In order to derive these functions we must assume that f is five

times continuously differentiable throughout the element. We take an

extra term in the Taylor Series expansion (5.3), which results in (5.9)

becoming the following;

e^(x) = h^ I[V6 (x^-x)^ + (x^-x)f ' * ' (hx) + h^ Z[V24 X̂ (x^-x)^ +

>/6 0 (h^) (5 . 2 1)

here is defined in an analogous manner to and ; and with the

obvious extension of notation, the fourth order equivalents of expressions

(5.11)-(5.14) are thus as follows;-

Ciiii(x) = E {V24 X_(x_-x)^ + Vb p^j(x^-x)^} (5.22)

4ciii2(x) = E {V6 X^(x_-x)^(x^-x)2 + (x^-x)^(x^-x)^ + ^6

(5.23)

- 184 -

2 2 2
6 Cii2 2 (x) = E{iX^(x^-x)J(x^-x)^ + j(x^"x)^(x^-x)^ +

(5.24)

4Ci222(x) = Z { Vb X̂ (x̂ -x) J (x̂ -x)̂ + Vbp̂ jCx̂ -x)̂ + i p ^ ^ 1 2̂
 ̂ (5.25)

^2222^*) ̂ ̂1/24 ^i(%i"%)2 '"' (5.2b)i

Once more the expressions appear to be of a higher order than expected

(sextic rather than quartic), but the fifth and sixth order terms all drop

out when functions (5.22) to (5.2b) are calculated. Use was again made of

the CAMAL algebraic manipulation package in evaluating these functions, with

an even greater saving in time and effort than resulted from its earlier use;

indeed it would probably not have been a practicable proposition to find the

functions without the use of such a package in the context of a project

of this nature.

The functions Cjjjj(x, y), ^C||22^^» 7) and y) are presented

in Figures 5.10-5.12 respectively (returning once again to conventional

Cartesian notation); the functions 4Cj222^^» y) and 0 2̂ 2 2 ^̂ * y) are omitted

because they are simply reflections of y) and Cjjjj(x, y)

respectively in the line y = x. ‘^ 1 1 1 2 the most complex error function

encountered in this chapter in the sense that it is the only one to be

composed of sixteen distinct polynomials; for this reason we employ a key

numbering the triangles which comprise the element from 1 to lb.

Inspection of the formulae for ^C|j | 2 and bC | ^ 2 2 (and their
2derivatives) reveals that they are each C with discontinuities in third

derivative. The functions display similar behaviour to the third order
4error functions in that x is the only fourth order term in the formula

3

for Cjjjj(x, y), X y is the only fourth order expression in ^jjj2 (^> y),
and so on. This can be explained using an argument only slightly more

- 185 -

F Igure 5.10

2̂ ̂ (x + 1) ̂ (3x-1) ̂ 1) ̂ (3x+1)

F I gure 5.11

(x-1) (-2x+3y -1)

(y+1) (2y+3x -1)

- 186 -

F igure 5.12

Key:

12
10 11

y / 9

16 //
14 ^ > (^ 1 5

2 y><^ 3

1 X.

8 y X
6 7

y X 5 X.

TRIANGLE NO.

1

2

3

L

5

6

7

8

9

10

1 1

12

13

U

15

16

VALUE OF FUNCTION 4c,,i2(x,y)

/g (y+1) (3x+1) (x^+y) + (y+1) (x+1)

/g (x+1 (3xy+2y+1)

/gx(3(y+1)(x +y) + x(2y+1))

/gy(-y + X (3x+5) (x+1))

/g (y+1) (3x-1) (x +y) - Vg (y+1) (x-1)

/g x(3(y+1) (x^+y) + x(-2y-D)

/g (x-1) ̂ (3xy-2y-1)

/gy(y + X (3x-5) (x-1))

/g y (y + X (3x+5) (x+1))

/g (x+1) (3xy+2y-1)

/gX(3(y-1)(x -y) + x(2y-1))

/- (y-1) (3x+l) (x^-y) + V, (y-l)(x+l)

y (-y + X (3x-5) (x-1))

/gx(3(y-1)(x -y) + x(-2y+1))

/g (x-1) ̂ (3xy-2y+1)

/ (y-1) (3x-1) (x^-y) - V (y-1) (x-1)

- 187 -

complicated than the one used in the case of the third order error

functions: let us consider the function y) and suppose the

function being approximated is of the form ax^ + q(x, y), where a is

constant and q is quadratic in x and y . Then (5.21) shows that the error

function must be of the form 3xCjjj(x, y) + 3Cjjjj(x, y) for some constant

3. Now the only fourth order term in the error in approximating a function
4of this form by a piecewise quadratic will clearly be the x term; but
3we know that the only third order term in Cj^^Cx, y) is an x term and

4therefore the only fourth order term in c^jjj(x, y) must be an x term.

Figures 5.13, 5.14 and 5.15 give pictorial representations of the

functions ^^\\\2 ^^1122 respectively. Figure 5.13 shows
CiiijCx, y) to be negative except at x = ± 1, with a minimum value of

- V 2 4 at X = 0. y) rs zero round the boundary of the element

and along the x and y axes, with zero gradient when x = ± 1. The maxima

and minima do not appear to be easily solvable analytically; numerical

methods show that local maxima of approximately 0.0345887 occur at

± (0.4079010, 0.4472246), and the antisymmetry of the function means that

minima of the same magnitude and opposite sign occur at ± (0.4079010,

-0.4472246). Figure 5.15 indicates that the function 6 ^ 1 1 2 2 ^^’ y) bas a
single minimum value of -| at the origin; this function is zero with

zero gradient along the boundary of the element and is negative everywhere

inside the boundary.

In theory there is no reason why we cannot evaluate fifth, sixth and

even higher order error functions. However there is little benefit to be

gained from doing so: as the order increases the error functions become

less important and more difficult to interpret; and of course they become

extremely difficult to evaluate. We shall therefore conclude our error

analysis having studied the third order error functions in some depth and

having carried out a briefer examination of the fourth order corrections.

- 188 -

Al

lA

(A

09ru 00 m
lA

lA

r*

Figure 5.13 The fourth order error function (x, y)

- 189 -

e.02- 0.02
0.01

- 0 . 01

0.03

0.02

Figure 5,14 Contour plot of the fourth order error function
^ ‘= 1 1 1 2 y) •

- 1 9 0 -

- 0 .0 1

0.07
- 0.01

■0.09
-0.13

-0.05
0.11

0.1

-0.07 0.1
-0.23

- 0 .21
-0.19

-0.17

0.130.03 0 .11

0.09

-0.03-0.05
0.01

Figure 5,15 Contour plot of the fourth order error function
 ̂^1122 * y)'

- 191 -

CHAPTER 6

CONTOURING OVER LOCALLY ADAPTIVE GRIDS

6.1 Introduction

The idea of contouring across a grid with local variation in cell

size in applications where value and gradient are calculable at any

point was raised and discussed briefly in Chapter 5. The motivation

for such a strategy stems from the observation that in most maps

produced by CONICON, as the (uniform) grid size is decreased, the

surface becomes well approximated in some areas of the plot long before

it is adequately approximated in others; therefore, if a reliable

indicator of goodness of approximation could be derived, we would

prefer to carry out a local division of the grid cells confined to ill-

approximated areas until the surface is well approximated everywhere.

By doing this it ought to be possible to achieve considerable CPU

savings (by comparison with taking an everywhere fine grid) with no

appreciable visible effect on the plot, and we should also make impor

tant savings in memory usage.

We therefore need to derive some suitable splitting rule to

apply recursively to all cells within the grid. Many possible criteria

for subdividing suggest themselves and some of these, based on maximum

error etc, were considered in Chapter 5. In this chapter we shall test

the performance of some of these ideas on known mathematical functions

and we shall make further suggestions for splitting rules.

We begin though by considering the computational implementation

of locally adaptive contouring, which is by no means a trivial problem

to solve, and which of course is a prerequisite for further study of

suggested splitting criteria.

- 192 -

6.2 Computational Implementation

6.2.1 Quad trees

The particular sort of data structure which it is natural to

associate with local splitting of grid squares is known as a quad tree;

this is simply a tree whose nodes are either leaves or have four

branches.

A review of the history of quad trees may be found in Klinger

and Dyer (1976). In our case a leaf of the tree represents an element

of the grid constructed in the manner explained above, and each node is

associated with a quad, or square region of the plot which may or may

not be subdivided into four smaller quads. Figure 6.1 shows an example

of a typical grid structure and its associated quad tree (in which

leaves are hatched).

In fact if we make use only of data at the vertices of an element

when considering whether or not it requires splitting (which will

usually be the case if the function is fairly intractable analytically)

we will probably construct a number of distinct quad trees, each

emanating from a single cell of an initial coarse, regular grid. This

will be done to lessen the likelihood (and the potential costs) of

mistakenly failing to split an element because the data at the

vertices happen erroneously to give the impression that the function

is well approximated by the piecewise quadratic within the element.

Thus we are likely to begin construction of the grid by selecting

a regular grid of elements in such a way that we do not believe the

behaviour of the function within any single element to be excessively

complicated. It follows that each tree in our data structure will

usually be a relatively small one, probably with at most three or four

levels, and extremely unlikely to consist of more than five levels.

- 193 -

Figure 6, 1 a typical grid structure and its associated quad tree.

Lave L 1 Lave I 2

Lava I 3 Lava I ^

— 194 -

Up to now the main use of quad trees has been as a memory-

efficient method for picture storage on graphics devices (see for

example Warnock (1969), Klinger and Dyer (1976), Woodwark (1982)),

In such applications quads are subdivided until either the whole

screen within an area can be represented by a single colour, or the

resolution of the graphics device for which the picture is being pre

pared is reached. The greater the degree of coherence within the

picture, the greater the saving in memory achieved using a quad tree.

Quad trees have been developed extensively in such a way as to

facilitate the various basic operations which are required in picture

processing. In our case, however, few operations remain to be carried

out once the tree has been set up, so we can dispense with most of the

refinements which have been suggested to improve the execution of

these operations.

There appears to exist two fundamentally different approaches to

the problem of constructing a quad tree. The usual approach is to

store a quad tree in the form of a linked tree structure, with links

from a father to each of his sons, and sometimes additional links from

a son to his father for back-tracking (see for example Klinger and

Dyer (1976) or Hunter and Steiglitz (1979)),

The alternative, as proposed by Woodwark (1982) is to use an

explicit or full quad tree, that is, a tree with storage locations

assigned to every possible leaf which might occur in the tree, down to

the smallest possible level where in the usual application individual

leaves correspond to pixels, Woodwark argues that the absence of

links in an explicit quad tree makes it more storage efficient than

might be expected compared with a linked quad tree, particularly in

cases where the number of bits required to store the data at each

quad is small. However since, as we shall see below, a relatively

- 1 9 5 -

large amount of information is stored at each quad in our case (and of

course Fortran is too high-level a language to allow fine manipulation

of the number of bits used at each quad) this argument is not very

relevant to the contouring application. There is undoubtedly a

significant saving in storage to be gained by using a linked tree

structure.

Moreover, we can turn to our advantage a property that would

normally be considered a disadvantage of using a linked tree structure:

since the user has no precise knowledge of the final number of leaves

in the tree he normally has to allocate significantly more storage than

is necessary for the tree to ensure that the program does not fail.

But in our case a program failure of this nature can indicate that the

user has been too ambitious in the amount of accuracy demanded from

his approximation, and it can save the user from carrying out a need

lessly expensive contouring process and allow him to re-set his

parameters.

Another reason advanced by Woodwark for the use of an explicit

quad tree is the increase in speed of data input into and retrieval

from the quad tree. In our case the former is not applicable, since

no new data are input into the tree once its construction has been

completed; and the effect of the latter is unlikely to be great, since

as stated above, our quad trees are in general small in size and the

time involved in processing links is therefore of no great order.

For the reasons outlined above it was felt that the case for

using a linked tree structure was very strong in this application, and

such a structure has therefore been adopted.

- 196 -

6.2.2 Coding policy for elements

Perhaps the most distinctive feature of the construction of the

quad trees in our application is the need to determine the ’neighbours'

of an element which we have decided to subdivide into four smaller

elements. By 'neighbour', we mean an element which shares a common

edge with the element being considered. The reason why we must locate

an element's neighbours is explained below.

Suppose, for simplicity, that we are currently considering a

neighbouring pair of elements A and B from the original regular grid

of elements. After having considered whether each element of the grid

needs to be subdivided we must evaluate a height and pair of gradients

at every new node of the grid. Suppose a new node arises at the mid

point of the boundary line between A and B. This can occur for one

of two reasons:-

(a) Both A and B need to be subdivided; or

(b) One of the elements (say A) requires subdivision and the other

(B) does not.

These two cases require separate treatment: in the first case

we simply evaluate the true height and gradients of the surface at

the point of interest; however in the second case this is not possible,

for the height and gradients at the midpoint of the boundary line

are predetermined for us and are constrained to be the values taken

by the piecewise quadratic on B at this point. To insert the true

value and gradients of the surface at this point when contouring the

two new elements bordering B on this side would result in a dis

continuity of the surface along the boundary line between A and B.

Note though that no difficulties are caused by the fact that along

each half of this boundary line we have a single quadratic on one side

but a pair of quadratics on the other side; for the pair of quadratics

- 197 -

is uniquely defined along the boundary line and so these two functions

must be identical and the same as the quadratic on the other side of

the line; also the condition of linearity of the normal component of

the derivative ensures that this too is the same everywhere on both

sides of the line.

Thus at this stage of constructing the tree we must first consider

all elements of the grid in order to determine whether or not each one

requires subdividing, and only then should we begin to determine the

five new sets of data values required to complete the subdivision of

those elements which are divided into four. One of these sets of

values occurs in the centre of the parent element and can always be

determined correctly. The other four lie on boundary lines with

neighbouring elements from the original grid (unless they lie on the

edge of the grid, in which case the true value and gradients of the

surface may again be calculated); for each one of these we must locate

the neighbour of the parent element in order to determine whether it

too requires subdividing - if it does then we may determine the true

value and gradients of the surface at this point (though we should be

careful to avoid needless repetition of such evaluations by checking

that the neighbouring element has not been dealt with already);

otherwise we must evaluate the value and gradients of the neighbouring

piecewise quadratic approximant at this point.

When we consider all quads at the next and subsequent levels of

the tree, we proceed in a similar manner, but the process is slightly

complicated by the fact that an element may not have a neighbour of

the same size on one or two of its sides; this case however is

resolved in exactly the same manner as it would have been if a neigh

bouring element of the same size did exist but did not require further

subdivision.

- 1 9 8 -

It is therefore important to find a reasonably efficient method for

locating the neighbouring element of the same size as the current element

(if it exists) in any direction. This is a simple task if an explicit

quad tree is used and quads are addressed according to their X and Y

values, in the same way as a two-dimensional array might be addressed

(such a policy is suggested - but not recommended - by Woodwark (1982)),

but it would not be advantageous to implement a coding policy along such

lines in the case of a linked tree because moving up or down the tree

would become a major task, involving a substantial amount of computation.

The coding method employed in this application is therefore of a

different nature (which does allow easy movement down the tree) and is

illustrated by Figure 6.2. It has the advantage that once the code

number of a neighbour has been established, information on the neighbour

can be located reasonably quickly, because processing of links is a

simple operation. Its disadvantage is that determining the code number

of a neighbour is not as simple as the Cartesian coding system suggested

above would allow. The figures in brackets in Figure 6.2 express the

code number in base 4 (using digits 1-4 rather than 0-3 in order that

each node of the tree at whatever level has a distinct code number).

For any element in the grid (except those in the original regular grid)

the code numbers of two of its neighbours (those two which share the

same parent) may be determined by a simple alteration to the final

digit. The code numbers of the other two neighbours are a little more

difficult to determine.

Before describing the algorithm used to determine these code

numbers, we shall introduce some notation and conventions.

Let NCODE denote the code number of the current element.

Let MCODE denote the code number of its neighbour.

NSIDE and MSIDE are both variables representing direction. The

following conventions are employed:-

- 199 -

Figure 6.2 The second and third levels
of a quad tree, showing the

adopted coding policy.

L 3

1 2

20 1 9 16 15

(64) (43) (34) (33)

1? 18 13 1 4

) (42) (31) (32)

8 ? 12 1 1

(U) (13) (24) (23)

5 6 9 10

(11) (12) (21) (22)

- 2 0 0 -

NSIDE = 1 => LHS or RHS

NSIDE = 2 => Above or Below

MSIDE - 1 Below

MSIDE = 2 => RHS

MSIDE = 3 => Above

MSIDE = 4 => LHS

To locate both neighbours of the element with code number NCODE

which do not share the same parent (irrespective of whether they belong

to the same element of the original regular grid), we repeat the

following for NSIDE = 1 and NSIDE = 2.

(1) First decide which direction MSIDE we are looking in. Consider

the final digit N of NCODE.

Then if NSIDE = 1,

N = 1 or 4 => MSIDE = 4; N = 2 or 3 => MSIDE = 2

or if NSIDE = 2,

N = 1 or 2 => MSIDE = 1 ; N = 3 or 4 => MSIDE = 2.

(2) Determine M, the final digit of MCODE, using the following;

If NSIDE = 1,

then M = MOD (6-N, 4) + 1

If NSIDE = 2,

then M = 5 - N.

(3) Find N, the next digit (working from back to front) of NCODE.

If N = 0, return. Otherwise use the formulae in (2) to determine

M, the next digit in MCODE, and update MCODE.

(4) If MSIDE = N or MSIDE = MOD (N + 2, 4) + 1, go back to (3).

(5) The remainder of the digits in MCODE are the same as those in

NCODE. Update MCODE to take account of this and return.

(6) End.

It was noted above that this algorithm returns the correct code

value of the neighbour whether or not the neighbour lies in the same

- 201 -

cell of the original grid. However, if the neighbour does not lie in

the same cell we require some indication of this. Therefore, subroutine

NENBR, which calculates the code number of a neighbouring element,

returns the final value of N, which is the first digit of NCODE and the

final value of M, which is MCODE's first digit. The neighbouring

element belongs to a different cell of the original grid if any of the

following occur

MSIDE = 1 and N = 1, M = 4

or N = 2 , M = 3

MSIDE = 2 and N = 2, M = I

or N = 3, M = 4

MSIDE = 3 and N = 3, M = 2

or N = 4, M = 1

MSIDE = 4 and N = 1, M = 2

or N = 4, M = 3

An efficient test is used to determine whether any of the above

have occurred.

6.2.3 Data structure used in adaptive contouring

We now explain the data structure which is used in contouring

over a locally adaptive grid.

The array VALS (3, IVTOP) replaces the arrays Z, ZX and ZY which

are used when contouring across a regular grid. Each triple in VALS

represents the height and partial derivatives of the surface (which

may or may not be the true values) at a point. The data at any node

are represented once only in this array.

The array IPTR (7, IQTOP) gives essential information on various

quads of the tree, holding one set of seven values for every quad in

the tree. If the quad is a leaf, then the first two values in IPTR

- 2 0 2 -

supply the location of the element at the root of the current tree in

the original regular grid, and the third value is the current element's

code number within its particular quad tree. The final four values are

pointers to the locations in VALS of the data at the SW, SE, NE and NW

corners respectively of the current element. If the quad is not a leaf

then values in IPTR will be exactly the same, except for the first

value of the seven, which is flagged as negative to indicate this. In

the present implementation no attempt is made to remove the data in

IPTR which correspond to quads which are not leaves; some of this

information is of use if we wish to plot the grid after the data

structure has been set up, but values in the 4th to 7th dimensions are

of no further use after the subdivision of an element is complete.

Provision has however been made in the coding for these values to be

overwritten in a future implementation as a means of saving memory:

the amount of storage which might be said to be wasted through the

retention of these negatively flagged values amounts to approximately

one-seventh of the total storage used in IPTR.

Finally the array ITREE (ITOP) indicates the structure of the tree

itself. The first (M-1) x (N-1) entries in ITREE each refer to a root

of a quad tree. If the value corresponding to the Ith element is

flagged as negative, then this element is not subdivided and data

relating to it can be found in the -ITREE(I)th location in IPTR

(though in the current implementation in such a case we will always

have ITREE(I) = -I); otherwise if the value is positive the element

is subdivided and the value points to the location in ITREE associated

with the first son of the current element, information on the other

three sons occurring in the three entries in ITREE immediately

following this. After the entries in ITREE which correspond to the

elements of the original grid, we have a similarly constructed

- 2 0 3 -

series of entries relating to all quads at the next level down and then

quads at lower levels, until we arrive at the final level where all

values in ITREE are flagged with minus signs.

Note that no provision has been made for backtracking within the

tree, as we have no need for it.

Subroutine ADGRID sets up the data structure described above.

The user is required to supply a subroutine VALUES and to select a

function DIVTST; the former should return the height and gradients of

the true surface at a specified point, while the latter should deter

mine, on the basis of the twelve data values at the vertices of an

element along with its size and location, whether it requires further

subdivision and return a value which is greater than unity if the

element needs splitting and less than unity if no further subdivision

is required. We describe below the major steps which subroutine ADGRID

performs :-

1. Begin by calculating values and gradients on the original regular

grid and adding these to the array VALS. At the same time

initialise the relevant values in ITREE so that ITREE (I) = I and

set appropriate values in IPTR for these elements.

2. Work through the list of elements of the current size in ITREE

and for each one use DIVTST to determine whether it requires

subdivision. If it does, flag the appropriate entry in the first

dimension of IPTR as negative, reset the value in ITREE associated

with this quad to point to the next free space in ITREE, and up

date the variable indicating the next free space in ITREE by

making an addition of 4 to it. If the element does not require

further subdivision, flag the appropriate value in ITREE as

negative and calculate bounds for values taken by the surface

within the element; store these in ZLIM (2, IQTOP).

104 -

3. The start of the main loop. Go back through the list of elements

of the current size; if an element is a leaf of the tree then

there is nothing further to do. Otherwise four extra sets of values

need to be added to IPTR, corresponding to the four new elements,

and up to five extra sets of values must be added to VALS. This

process is carried out in Sections (4)-(7).

4. Calculate the code numbers of the new elements and place these,

along with the 'coordinates' of the root of the tree, in the first

three dimensions of IPTR.

5. Each of the four new elements has a vertex in common with its

parent element, at which height and gradients have already been

evaluated. Update IPTR to take account of this. Also each new

element has a vertex at the centre of the parent element ; call

VALUES to evaluate the true height and gradients of the surface

here, add these to VALS, and make appropriate additions to IPTR.

6. If the current element does not belong to the original regular

grid, go forward to (7). Otherwise we know that all neighbours

of the current element are of the same size, and information

relating to them is easily located in IPTR. Consider each edge

of the element in turn. For each edge, determine whether we are

on the boundary of the plot: if so, evaluate the true height and

gradients of the surface here and update VALS and IPTR accordingly.

If the edge is not on the boundary of the grid, determine whether

the neighbouring element is going to be subdivided or not. If

not, calculate the height and gradients of the piecewise quadratic

on the neighbouring element at the midpoint of the edge we are

considering and add these to VALS before updating IPTR.

If the neighbouring element does also require splitting then (a)

if we are on the upper or right hand edge of the current element,

- 2 0 5 -

evaluate the true surface height and gradients at the point of

interest and update VALS and IPTR accordingly, not only updating

the part of the latter which refers to two of the new elements

within the current parent element, but also updating the part

which is associated with the two new elements on the opposite

side of the boundary line; or (b) if we are on the lower or left

hand edge of the parent element this edge has already been dealt

with, so go forward to the end of the loop.

When we have considered all elements within the original grid,

go forward to (8).

7. When we arrive here the current element does not belong to the

original grid, so we must carry out a more complicated process

than the one described in section (6).

We follow through instructions (i)-(iv) first for NSIDE = 1

and then for NSIDE = 2 (i.e. first dealing with neighbours to

the left and right, then with neighbours above and below).

(i) Call subroutine NENBR to determine the code number of the

neighbouring element which does not share the same parent

as the current one. Determine whether this lies within

the same element of the original grid as the current

element and, if not, decide whether we are on the boundary

of the plot. If we are on the boundary, omit (ii).

(ii) Find whether a neighbour of the same size exists in this

direction and, if so, whether it is also marked for sub

division.

(iii) Now carry out a process similar to that described in (6):

if we are on the boundary of the grid, or the neighbouring

element requires subdivision, evaluate the true data to

place in VALS (as long as this has not been donealready)

— 206 —

and update IPTR accordingly. Alternatively, if there is

no neighbour of the same size in the current direction, or

if such a neighbour exists but is a leaf of the tree,

calculate the height and gradients at the appropriate point

which will not disturb continuous differentiability of the

approximant, add these to VALS and update IPTR.

(iv) Now deal with the opposite edge of the current element in a

similar manner, the only difference being that the neighbour

shares the same parent as the current element and therefore

the location of its entries in IPTR can be determined

simply without having to call NENBR or to process links of

the tree.

8. If none of the elements of the current size have been subdivided,

return. Otherwise update variables indicating the extent of

information on elements of the current size in IPTR and ITREE,

reduce the current grid size by a factor of two, and go back to (2)

6.2.4 Incorporation in the CONICON framework

The rather complicated process described above is quite straight

forward to incorporate into the main framework for CONICON. To produce

a contour plot using an adaptive grid, the user is required to call

subroutineADCON. This master routine is similar in many ways to sub

routine ALLCON, which was described in Chapter 3; the major differences

are that a call is made to ADGRID at an early stage in order to set up

the grid and then instead of considering whether to call subroutine

SQUARE once for each element of the regular grid, we consider each

element which has a set of entries in IPTR. A further difference is

that the bounds for values taken by the function over elements are not

set up directly by subroutine ADCON, but during the execution of ADGRID.

- 207 -

From subroutine SQUARE downwards all routines used are exactly the

same as those normally called in CONICON; it should be noted that in

this case it is particularly important that subroutine JOIN does not

attempt to match segment ends exactly, because at the boundary of a

pair of elements of different sizes it is particularly difficult to

calculate contour intersections on both sides in exactly the same

manner.

Crosshatching over adaptive grids has not been implemented by the

author; nor has contouring within a non-rectangular window or gradient

plotting, though these two problems can be treated in exactly the same

way as previously, and something very similar to ’algorithm A' could

be used successfully for crosshatching. The only major alteration here

would appear to be in determining the height of the surface on the

boundary of the grid and this does not appear to be particularly

difficult to implement.

It is clearly of the utmost importance to have some means of

plotting the grid over which we are contouring and, as mentioned above,

a subroutine, called PLTGRD, has been written for this purpose. This

subroutine first plots the regular grid on which the construction is

based, and then looks through the array IPTR for nodes of the tree

which have been flagged as negative i.e. elements which have been sub

divided to form four smaller elements. Whenever the routine comes

across such an element it plots the division which has occurred within

it. After all data in IPTR have been dealt with in this way the plot

is complete.

The author is aware that there is some scope for improvement in

the method described above for setting up the data structure for

adaptive contouring, both in terms of running time and memory used.

However, experimental results have shown that the time taken to set up

- 208 -

the grid in most examples is fairly insignificant in comparison with

the time taken to contour over the grid, and it is therefore felt that

efforts to improve the process of setting the grid up are only mar

ginally justifiable, as they could not possibly result in any significant

improvement in the total job execution time.

In the following sections in this Chapter we see several examples

of the use of a locally adaptive grid for contouring which use the

implementation described in this section.

6.3 Splitting criteria based on maximum vertical error

6.3.1 Introduction

In Chapter 5 we derived a bound for the maximum (absolute) error

involved in using the seamed quadratic element to approximate a function

with bounded third dérivâtes, the upper limit being a simple function

of the maximum of the four third order partial dérivâtes of the true

surface over the area of the plot. We suggested that this bound might

be used as the basis of a criterion for local splitting of grid elements,

in such a way that subdivision of an element should occur if and only

if the bound for error within that element exceeded a specified value.

So long as this prescribed value was positive, reasonably fast termin

ation of the process would be guaranteed for all but the most ill-behaved

functions, since the bound would decrease by a factor of approximately

8 with each splitting process carried out.

In this section we test the performance of such a criterion on a

pair of mathematical functions. The first is the mixture of two

bivariate Normal distributions which was introduced in Chapter 1 and

has been used as a test example on a number of occasions in previous

- 209 -

chapters. The function is

f^ (x, y) = exp (“ 5 (A(x-l)^ + 6(y-l)^))

+ exp(“ 5 (10(x“2)^ + 6(y-l.3)^+14(x-2)(y-1.3))) (6.1)

The second test function is

f2 (x, y) = exp(-hr)cos(cr) (6.2)

where r = /(x^+y^) ; b = 0.06; c = 2II/3

The latter function is particularly difficult to contour; it may

be regarded as a series of equidistant ripples of exponentially

decreasing magnitude emanating from the origin. The function is differ

entiable everywhere except at the origin and its contours are circles

centred on the origin. Figure 6,3 shows a contour plot of this

function using a regular grid of 25 x 25 points. The contour heights

are at regular intervals and the surface has been contoured over the

interval [0.25, 12.25] x [0.25, 12.25] in order to avoid discontinuity

problems. The contours in Figure 6.3 appear quite satisfactory, but when

contour levels approach any of the areas where the contribution of the

cosine function is at a maximum or minimum and the contours coincide,

behaviour is bound to be less satisfactory. Two such levels occur when

r = 12 and r = 7.5. These correspond to function values of approximately

0.48675 and -0.63763 respectively, and Figure 6.4 shows the behaviour of

a pair of contours of the piecewise quadratic approximant close to these

levels. Such behaviour can never of course be completely eliminated

using our contouring method, but we might hope to obtain some degree of

local splitting of the elements in the appropriate areas to improve

matters.

- 2 1 0 -

211 _

136
0.485

-0.636

Figure 6.4 Standard contour plot of function of f^ (x, y),
showing behaviour close to a local minimum and
and a local maximum of the cosine function.

- 2 1 2 -

6.3,2 Use of true third order partial derivatives

The suggested splitting criterion requires us to evaluate the

maximum magnitude of any of the function's third order partial

derivatives within each element of the grid. This is not really a

practicable exercise with either of our test functions so instead, as

suggested in 5.4, we opt for the alternative of choosing the largest

third order partial derivative at any of the element's vertices.

Note that this is sometimes liable to result in underestimating the

third derivative, but if the function is well-behaved this should not

happen very often and the effects will not be very serious when it

does happen.

For function 1, if we evaluate all third order partial dérivâtes

on the 21 x 31 regular grid of points used in the production of Figure

2.5, we find that the maximum value occurs at (1.9, 1.1), close to the

peak of the distribution in which the x- and y- variables are

correlated, and is approximately 43.3327. Using the bound for error

given by Theorem 5.1, this tells us that the maximum error involved in

using the piecewise quadratic approximant to approximate function 1

over this regular grid is almost certainly bounded above by 1.07e-03

(since h = 0.05), However if we use the criterion suggested and choose

the grid size adaptively, we can use a smaller number of elements and

still ensure (almost) that the error in approximation is always less

than this value, or alternatively we can use a similar number of

elements to achieve a reduction in the bound for maximum error.

In Figure 6.5 we have chosen the latter option; in fact we have

612 elements compared with 600 elements in Figure 2.5. The error in

approximation in this example has been reduced to l.Oe-03, perhaps not

as large a reduction as we might have hoped for, but this is probably

a result of the smooth, well-behaved nature of the function. The

- 213 -

m

Figure 6.5 Function fj (x, y). Splitting based on largest
third order partial derivative at any vertex.

- 214 -

pattern of elements in Figure 6.5 is encouraging nevertheless; over

most of the plot elements are of a uniform size, but near the edge of

the plot where there are few contours and the surface is relatively

flat they are larger, while around the right hand peak (which Figure

2.6 shows to be a particularly difficult area to contour) we have a

large concentration of small elements.

We now move on to consider function 2. In this case the maximum

value of all third order partial derivatives evaluated at the nodes of

the 25 X 25 grid of points used to produce Figures 6.3 and 6.4 is

approximately 8.4985, signifying a maximum error of less than 2.623e-02.

If we use our splitting criterion (beginning with a 6 x 6 grid of

elements) in an attempt to produce a locally adaptive grid with a

similar maximum error we find that there is very little difference in

the grid pattern, with just a few elements of size h = 0.5 remaining

undivided near the top right hand corner of the plot. In order to

study the behaviour of this particular splitting criterion on this

function we have therefore selected a maximum error of about half the

size, namely 1.3e-02, which resulted in the pattern of elements in

dicated by Figure 6.6.

Probably the most noteworthy feature of this illustration is the

tendency of the smaller elements to aggregate close to the x- and y-

axes, indicating an obvious failing of the method, for we would like

the method to be reasonably invariant under rotation of the axes, given an

examples of this nature. We cannot expect total invariance under rotation

of the axes, because both the partial derivatives and the grid itself are

not invariant under rotation, and for the latter reason in particular we

are bound to obtain significant departures from optimum results with a

function of this complexity.

However what is perhaps surprising is the scale of the departure

from invariance under rotation, and this gives cause for concern. An

- 215 -

0.6

0.6;

1-

Figure 6.6 Function f2 (x, y). Splitting based on largest
third order partial derivative at any vertex.

- 2 1 6 -

improvement would undoubtedly arise if it were practicable to calculate

the true maximum of the third order partial derivatives within each

element; note that another consequence of only considering dérivâtes

at the vertice: of the element is that any element which has been sub

divided is necessarily part of a block of four such elements forming a

large square.

Finally it should be noted that the grid pattern indicated by

Figure 6.6, although possessing a considerably larger number of elements

than the regular grid used to produce Figure 6.4, would have little

effect on improving the worst contours in Figure 6.4, which tend to

occur in areas some distance away from the axes.

6.3.3 Estimating third order partial derivaties

In a number of cases it is possible to evaluate the third order

partial derivatives of our function at the vertices of an element;

however this may in some examples not be achieved without considerable

labour (as well as expense for the computer) and the prospect of having

to carry out such calculations might well deter many potential users

from attempting to use the adaptive method for contouring. Indeed,

computation of the third derivatives of our two test functions is by no

means a trivial task. Therefore, as the emphasis of this work is on

developing methods which are widely applicable and can be handled by

scientists from diverse disciplines, we would prefer to be able to offer

a method which does not require the user to evaluate third order

derivatives of the functions but instead automatically estimates these

quantities in some (we hope) reliable manner. It would be particularly

useful if a reasonable estimate of the maximum value of the third order

partial derivatives could be derived solely from the twelve data values

at the vertices of an element; such an estimate is developed below.

- 217 -

We begin by considering an element on the 'unit square', as

defined in Chapter 5, with vertices at (±1, ±1). It is stressed though

that what follows is completely independent of the nature of the element

and is simply a consequence of the locations of its vertices. If value

and gradients are evaluated at each vertex of the square then we have

twelve pieces of information regarding the function we are contouring.

It therefore does not seem unreasonable to hope that from these data

values we could determine all ten parameters of a cubic polymomial if

our surface was such a function, and indeed this is possible. In fact

we can do still better than this: if we introduce a pair of quartic
3 3terms into our polynomial, namely an x y term and an xy term, the

coefficients of these terms are also identifiable. Suppose however

that the function which we are contouring is not a twelve parameter

function, but a general quartic with fifteen parameters; it will no

longer be possible to identify all the parameters of the polynomial or

indeed all the twelve parameters which we have just considered, since

some of these will be confounded with the parameters corresponding to

the coefficients of the three additional quartic terms. However, by

good fortune, we find that all the cubic coefficients as well as the
3 3coefficients of the x y and xy terms are still identifiable, so we can

still obtain a considerable amount of information regarding the third

derivative of our function. The following shows why this is true.

Consider the functions,

(j) ̂ (x̂ y) = (x + l)^(x - 1)^ = x^ - 2x^ + 1

<|) 2 (x, y) = (y + l)^(y - 1)^ = y^ - 2y^ + 1

(j) 2 (x, y) = (x +1) (x-1) (y+1) (y-1) = x^y^-x^-y^+1 (6.3)

or alternatively replace 4^(x, y) by

3

- 218 -

The three functions given by (6.3) are linearly independent and

have the following property in common; if the function cj; ^(x, y) and its

first order partial derivatives are evaluated at each of the four vertices

of our square, all twelve values and gradients are zero. Thus any

multiple of one or more of these functions could be added to the function

being contoured with no effect whatsoever on the values and gradients at

the vertices of the unit square and consequently with no effect on the

contours plotted. Therefore the effect of adding the other three quartic

terms to our twelve-parameter polynomial is to render the coefficients of

the six terms x^, y^, x^y^, x^, y^ and 1 unidentifiable. The remaining

nine parameters (which include all cubic and two quartic terms) can still

be identified and indeed they are quite simple to calculate.

The expressions derived for the six particularly useful coefficients

are of some interest, because they are closely connected with the idea

of tangent intersections which we discussed in Chapter 2. Recall that the

tangent intersection property of a one-dimensional quadratic function

states that tangents constructed at any two points x j and x^ on the line

have a common value at the point g(x^+x^). Thus we might conjecture

that if we have a function which is not quadratic with tangents constructed

at points Xj and x^, the difference between the values of these tangents

at g(Xj+X2) could perhaps be considered to be a suitable measure of the

departure from quadraticity of the function. Indeed we find that the

six identifiable parameters of our quartic which contribute to the third

derivative are all functions of such quantities, measured along the

edges and the diagonals of our element.

Suppose a^j is the coefficient of the x^y^ term in our polynomial.

Suppose also that we use the following notation to describe the differ

ence between tangent values at the midpoints of edges and diagonals of

our element (now of dimension 2h x 2h):

- 219 -

" ^^NE ” ̂ ®NE^

^W " (^SW (^NW "

^E ^ ^^SE ^^SE^ " ^^NE ~ ̂ ^NE^

^SW,NE "" [^SW ^^®SW ^SW^] ” ^̂ 1>IE ^^“®NE ~ ^NE^^

^SE,NW ̂ ^^SE ^^"^SE ^SE^^ ” ^^NW

Then the identifiable cubic and quartic coefficients are as

follows :

^30 = (^S + / 8*-̂

®21 “ (^SW,NE * ’’■SE.NW " ^W " ^

®12 “ (^SW,NE " ^SE.NW ̂ ***

"03 = (^W + ^E> / 8h3

"31 = (^N - ^g) /

"13 = (T^ - y / 8h3 (6.5)

The other identifiable parameters are:

^11 " ^^SW ~ ^SE * ^NE ^

^®SW ®SE " ®NE ^NW ^SW ’ ^SE ^NE ^

^10 = 3(-=SW " ^SE + ^NE ■ W /

("^SW ^SE ®NE ®NW ” ^SW ^SE ^NE * ^NW^ ̂ ®

^01 " " ^SE * ^NE * ^NW^ ̂ +

- 2 2 0 -

®SW ®SE ®NE ®NW ^SW ~ ^SE ^NE ” ̂ ^

and if the coefficients of x^, x^ y^ and y^ are zero, then

^20 ^SW ®SE ^ ®NE ” ®NW^ ^

^02 ^SW ^SE ̂ ^NE ^

^(^SW ®SE ®NE ®NW ̂ ^SW ^SE SîE ” ^NW^ ̂ ®

(This final expression has appeared previously as (2.16)).

We may use the six identifiable coefficients of third and fourth

order terms to estimate the maximum third order partial derivative over

an element: if we approximate the true function being contoured by a

twelve parameter polynomial of the type described above we can evaluate

the maximum third order partial derivative of this function over the

element and use this as our estimate of the maximum third order partial

derivative of the true function. As each of the four third order

partial derivatives of our polynomial is linear in x or y only, the

maximum value will occur along one of the edges of the element and is

easily calculated.

We now return to our two test functions and employ this third

derivative estimate as the basis of our splitting criterion:- in the

case of function 1, if we first evaluate the estimate on each cell of

a 20 X 30 regular grid of elements we find that a maximum of approxi

mately 42.0547 occurs within the element covering the region

[1.9, 2.0] X [1.0, 1.1], a result which is encouragingly close to the

maximum of approx. 43.3327 found at (1.9, 1.1) when we measured the true

derivatives at vertices only. We have found that in general this new

estimate of third order partial derivative tends to understate the

- 221 -

value calculated from third derivative measurements at the vertices,

which in turn of course is sometimes less than (and never greater than)

the true maximum of the third derivative of the surface within an

element. Thus Figure 6.7, which employs our estimate in combination

with the bound given by Theorem 5.1 and was the result of requesting a

maximum error of 8.0er-04 (c.f. l.Oe-03), uses only a slightly larger

number of elements (651 compared with 612) than Figure 6.5.

However the pattern of splitting of elements is broadly similar

to the one achieved in the previous subsection, suggesting that the

estimate derived above might well provide a suitable criterion for

splitting of elements in most examples, though it seems unlikely that

it could be used to obtain anything more than a very rough impression

of the accuracy of approximation.

Next we consider the performance of our new splitting criterion

on the second test function. On this occasion the estimated maximum

third order partial derivative using a regular 24 x 24 grid of elements

is 6.99385, significantly less than the value of around 8.5 which we

arrived at using the method discussed earlier. The evidence of plots

of function 2 produced using this criterion suggests that the high order

of the difference is not just confined to the area near the origin where

the maximum third derivative occurs, but throughout the area of the plot

Figure 6.8 shows a grid pattern produced using the new criterion which

is comparable with Figure 6.6, having only 60 more elements. This was

produced by setting the requested maximum error to l.Oe-02 (c.f.

1.3e —02 for Figure 6.6). It can be seen that the two patterns of

elements are again broadly similar, but if there is anything to choose

between the two then the grid shown by Figure 6.8 appears more success

ful than that illustrated by Figure 6.6: the smaller scale elements

are not quite so closely aggregated near the axes and they tend to

- 2 2 2 -

U)

Figure 6.7 Function fj (x, y). Splitting according to
estimated maximum third order partial
derivative within an element.

- 223 -

- ” {■

f—X

1—1

igure 6.8 Function f^ (x, y). Splitting according to estimated
maximum third order partial derivative within an
element.

- 224 -

occur in areas where the density of contours is high; in other words

in areas where the gradient of the function is large and we would expect

a relatively large error in approximation. Of course it is not in such

areas that the worst contours of Figure 6.4 occur, but as we are

considering vertical error only in this section this is to be expected.

In the following section we consider horizontal rather than vertical

error in an attempt to improve contour behaviour in these areas.

From the results obtained in this section we may conclude that

when maximum vertical error is used as the basis of a criterion for

local splitting of elements, the estimates of third derivative derived

above from the twelve data values at the vertices of an element lead to a

promising looking criterion for local division of grid squares which is

also simple to operate.

6.4 Splitting criteria based on horizontal error

6.4.1 Introduction

In this section we consider the performance of a splitting

criterion based on horizontal rather than vertical error on the pair of

test functions introduced in the previous section. The concept of

horizontal error and arguments for and against its usefulness were

discussed at length in Section 5.4 and we shall not dwell further on

these arguments any more than is necessary in this chapter. In 5.4

we also introduced three potential measures of flatness of the surface

within an element and suggested a way of combining any one of these

measures with some estimate of maximum vertical error in order to derive

a suitable indicator of the degree of horizontal error of the contours

within an element. Although the use of one of these three measures was

- 2 2 5 -

tentatively recommended in preference to the other two, no tests were

carried out to examine how well each behaved. We therefore begin with

a brief comparison of these measures.

In order to compare the measures of flatness we consider once

again the piecewise cubic polynomial which was plotted as Figure 5.6.

With the exception of the diagonals of the plot, where it is only once

differentiable, this function has a constant maximum (absolute) third

order partial derivative of 1.0 throughout its domain. Recall that we

defined our suggested measure of horizontal error to be

maximum vertical error ,
measure of flatness + k

It follows that if we were to construct a locally adaptive grid for

plotting this particular function using the above measure as splitting

criterion, subdivision of elements would depend only upon the measure

ments of flatness. Another reason for choosing this function is that

its value is constant with zero gradient along the vertical edges of

the plot, and we can therefore check that termination of the splitting

process always occurs at or before the selected level.

We begin by considering what we expect to be the most reliable

(but also the most time-consuming) measure, which is a function of data

at the vertices of all the triangles within the element (see 5.4 for

details); our first task is to select a pair of suitable parameters e

and K, as defined in 5.4. We therefore decide upon a minimum size of

grid element, and holding k fixed at this stage we make an initial

choice for e in the manner descibed in 5.4. However, if the selected

value of K turns out to be large in comparison with typical measurements

of flatness, there will be a tendency for k to dominate the measurements

of flatness with the result that the final grid will tend towards being

a regular grid of our chosen minimum size of elements. Conversely, if k

— 226 —

is small in comparison with most flatness measurements, splitting of

elements will tend to become over-localised, with a high degree of

splitting occurring in a few areas of the plot and little or no splitt

ing occurring over most of the plot. Therefore, after inspection of

the grid produced with the initial choices of control parameters, it

will usually be necessary to adjust k and e, in such a way that the

product KE remains approximately constant, until a suitable pair of

values is found. While this process of adjustment is being carried out

we will not of course wish to carry out any contouring and indeed it is

simple to avoid this computationally; also, as we mentioned in Section

2 of this chapter, we can prevent an excessively large data structure

from being generated in cases where parameter values have been ill-

chosen simply by dimensioning the arrays VALS, IPTR and ITREE so that

they are too small to cope with trees of an undesirably great magnitude,

Using the process described above in combination with our

measure of flatness the grid illustrated by Figure 6.9 was created.

The values of k and e used for this plot were l.Oe-03 and l.Oe-02

respectively, values which allow no more than four levels of splitting

to occur if we begin, as we do, with a 4 x 4 grid of elements. In fact

for this particular value of e we will have precisely four levels of

splitting for any k in the range [3.81e-06, 3.05e-03]. It is

emphasized that if we wished to contour this particular function, which

is very well-behaved, using the adaptive method, we would not normally

wish to use such a large number of elements as appears in Figure 6.9:

the high degree of splitting has been requested simply for illustrative

purposes. However contours are plotted in this example in order to

indicate their positions in relation to the grid cells.

Figure 6.10 illustrates a comparable grid constructed using our

recommended measure of flatness (with the same values of k and e),

- 227 -

-0.63

-6.67

t-'i-4-4»^-4-^-4-'
4-4-4-4-4-4“4-̂--

0.01

î*4-4-4--*-4-4-4-4

Figure 6.9 l^ird order error function 3 c (x, jf). Splitting
based on 'most reliable’ measure of flatness suggested

- 228 -

I-r: i i i : :
y r: : : : : :
i'-T-T-ï-i ;

r-r: : : i
r t T "X: : :

; ;

^ .L, • W • #
* « & » k ^ & ••

.1

» • I (I « * • I • •r > :-r

-k - • -k « • *k «

; : h-i-i-i-f-i-*i-4-i : :
• • • • « • ’ t t i i « •• » k.k.k.k.y.k.k.k.# • •

— f-
— L.

I I • I t • * • • I
k —k «k -k. -k .k.k » » - ̂ * —k » m »k #

: : : : : >-r-;
: : : : : >-r-:
: i i i : i-4*i
: : ; ; ; >

• • • • — » -*» - » • — a>k a * -k »» »L -k . I

: : ; :
: i ; : i h4-!-i-:
i : : : : H44-:

: : ! : y ̂
I ; : : I r |
; : : : :

mmgmm • - »L •» *k .k .L »k . k «k »,, • • • ' ê « • « * # I *

, # • « « * « # # # # ,
.. - - Ç — . j.. I.. I-- j . . j.. u .j.. j.. j...

: ; :

: : : y* * I ! k »k • k »k • k »k »k • k ••
.. U . .f c . . . f c . J . . 4. .t.k.J..I

: : : :-r— t— h "t— r-:

: : : : : r-:
: : : ; : y-r-rr:

- L m m * k w * L » k » k « k • I

rr-rr-:

f-r- : : : : : : : : : : :f* : : : : : :r'f: : : : : : : : : : : :
#•»«k vk »»»k»m»k-k*{

: : : : ; :*r-!

Figure 6.10 Pattern of elements for error function 3 C]|2 (x, y)
when splitting is based on the recommended measure
of flatness.

- 229 -

which is a compromise between the method used to produce Figure 6.9 and

the crudest suggested method which simply selects the minimum of the

five gradients at the vertices and centre of the element. The latter

method was also employed as the basis of a splitting criterion to be

used on this function, but with a resulting map so similar to Figure

6.10 that it has been omitted; note though that different parameter

values had to be chosen in order to produce a similar number of elements

to those in Figures 6.9 and 6.10.

Perhaps the most striking feature of these two illustrations is

the fact that areas with high concentrations of elements are virtually

contour-free, a property which was predicted in the previous chapter.

It appears that both measures of flatness have performed successfully

in this example; each has succeeded in locating the flattest areas of

the plot and a good impression of the overall shape of the surface can

be gained simply by looking at the patterns of elements. The differ

ences between the two grids are fairly insubstantial, and the pattern

produced by the more time-consuming measure is by no means obviously

superior. It is felt that a much more demanding test example might

make it easier to differentiate between the two measures.

In fact the computational burden of the more time-consuming measure,

which led us to recommend the use of the compromise measure in Chapter 5,

turns out to be much less severe than predicted, but is nevertheless

greater than that pertaining to the latter measure. We shall therefore

not alter our recommendation and we use the 'compromise’ measure only in

the remainder of this section.

6.4.2 Combining vertical error with flatness measurements

We return now to the two test functions which we attempted to

contour adaptively on the basis of vertical error in the previous section.

Before combining our estimate of the maximum third order partial

- 230 -

derivative with a measurement of flatness, we shall examine how the

flatness measure performs on its own (i.e. assuming vertical error to

be constant at unity) on our first test function. Its performance is

illustrated by Figure 6.11, in which the selected values of k and e

are indicated. We should therefore expect the combination of flatness

measure and third derivative estimate to result in some sort of

compromise between Figures 6.7 and 6.11.

When combining these two measures the magnitude of the parameter

K relative to our gradient measure is no longer simply the determinant

of how uniform our grid is:- it now also determines the relative

influence of our two measures on the final grid. If k is relatively

large then the third derivative measure will have the dominant effect on

the final grid, while if < is small the degree of flatness is likely to

be more important. Figure 6.12 is an illustration of a parameter choice

which it is believed tends to favour the measure of flatness slightly,

while in Figure 6.13 the balance appears to be fairly even. Note that

the increased magnitude of the product kg in Figure 6.13 eliminates all

the elements of the smallest size from Figure 6.12. It is clearly

going to be extremely difficult to determine the (in some sense)

optimum values of our control parameters using this criterion, particul

arly if this has to be done 'blindly' i.e. with little conception of

the appearance of the true contours of the function. Use of this

criterion does not therefore appear to be a practicable proposition

unless the parameters can be selected automatically in a reliable

manner; if such a choice could be made then we might be justified in

using this method, though of course the problem remains that we could

not hope to measure how good an approximation to the true contour plot

we had achieved.

- 231 -

m

a

Figure 6.11 Function (x, y). Splitting based on flatness
measure alone. < = 0.01, e = 0.003.

- 232 -

Figure 6.12 Function f (x, y). Measure of flatness and
estimate or vertical error combined
K = 0.01, £ = 0.002.

- 233 -

Figure 6.13 Function f. (x, y). Measure of flatness and
estimate of vertical error combined.

~ 0.05, £ = 0.002.

- 234 -

We now turn our attention to the second test function and begin

once again by examining the behaviour of a splitting criterion based on

the measure of flatness alone. After choosing a suitable pair of values

for the control parameters in the manner explained above, we arrived at

the construction illustrated by Figure 6.14. In this example the flat

ness measure alone appears to have given us exactly the results we

require;- the smaller scale elements are all situated close to the

'peaks’ and 'troughs' of the function, while in areas where the majority

of contours occur elements tend to be of the larger scale of the two;

thus this considerable increase over the number of elements in a 24 x 24

regular grid will normally result in a relatively small increase in the

CPU time required to produce a contour, whereas on the few occasions

when a contour is situated near to a maximum or minimum of the surface,

the method provides the large amount of elements required to produce

satisfactory results. Figure 6.15 shows the same contours which were so

badly plotted in Figure 6.4 causing no problems on this grid.

Having achieved such satisfactory results using the measure of

flatness alone there is little incentive to attempt to combine it with

our estimate of maximum error. The only possible improvement that might

be hoped for would appear to be a greater degree of splitting near to

the origin, where the function is particularly difficult to approximate,

and a lessening of the degree of splitting in areas distant from the

origin. An attempt was made to achieve such an effect by combining the

two measures; however, largely because our third derivative estimate

failed to achieve very satisfactory results for the current function,

the best results that the author was able to produce were still inferior

to those results gained using measurements of slope alone. The best

results achieved are illustrated by Figure 6.16.

- 235 -

Figure 6.14 Function (x, y). Splitting based on flatness
measure alone. < = 0.05, e = 0.1

- 236 -

Figure 6.15 Function f^ (x, y). Splitting based on flatness
measure alone, k = 0.05, e = 0.1. Same contours
as in Figure 6.4.

- 237 -

î
Figure 6.16 Function (x, y). Measure of flatness and

estimate of vertical error combined.
K = 0.03, e = 0.05.

- 238 -

6,5 Discussion

It would be premature to offer any firm recommendations for use of

a particular splitting criterion on the basis of the results presented

in Sections 3 and 4 of this chapter, partly because these results appear

somewhat contradictory. Function 1 seems better suited to adaptive

contouring using a criterion based on vertical error only, or possibly

vertical error combined with a measure of flatness, while use of a

measure of flatness alone appears almost ideal when dealing with Function

2; probably the grid constructed to contour the latter which is

illustrated in Figure 6.14 and 6.15 is the most encouraging of all grids

presented. However, as we have already noted, choosing the control

parameters for either of the methods not based solely on vertical error

is such a difficult task that the practicability of these methods must

be called into question. Indeed when we combine measures of vertical

error and flatness it might seem more appropriate to use three control

parameters; at present we are forced to use a pair of parameters to

control three variables - the minimum size of elements within the grid,

the uniformity of element sizes in the grid, and the relative importance

of each of our two measures. Choosing three control parameters would

however be an extremely daunting prospect.

The splitting criteria which rely on measurements of flatness or

horizontal error are subject to a further problem: throughout sections

3 and 4 we have assumed that we can recognize a 'good' grid when we are

presented with one. In practice this is a particularly strong assumption

to make and it will be extremely difficult to know what to look for,

especially when the approximate form of the contours of the function is

unknown. These difficulties are compounded by the fact that it is

usually possible to derive an enormously wide range of possible grids.

In the examples presented in this chapter we have had the advantage of

- 239 -

knowing precisely how the contours ought to appear, and choice of control

parameters has still been difficult; these difficulties would be further

multiplied in circumstances in which the correct form of the contour plot

was unknown.

Choosing the single control parameter in examples which rely on

vertical error only presents no great problem. However a defect of the

method chosen for estimating third order partial derivatives which has

come to light during experimentation makes even the reliability of these

methods uncertain. We have shown above how it is possible to keep sub

dividing elements successively in such a way that we may finish up with

a pair of neighbouring elements of greatly different sizes (for example

the elements labelled A and B in Figure 6.17). Consider the stage of

grid construction at which we must decide whether the smaller of such a

pair of elements. A, requires subdivision. No matter how many levels it

is below its neighbour, B, in the tree, the values and gradients at the

two vertices which lie on the edge common to A and B must conform to

the values of the piecewise quadratic along that edge. However the

A B

F L gure 6.17

- 240 —

values at the other two vertices of element A may not suffer from similar

conditions (e.g. as in Figure 6.17) and might be the true heights and

gradients of the surface. It is likely because such a large amount of

subdivision has occurred in this area that the behaviour of the function

here will be relatively complicated. Thus the data at the vertices of

element A lying on the boundary of element B may be very different from

the true values at these points (and very different from the data at

the other two vertices) and may result in such a high estimate of maximum

third order partial derivative within element A that it has to be split

again. At the next level down we may find that the estimates of third

derivative over the new pair of elements bordering element B have risen

by a factor greater than 8 and so the splitting process may not

terminate.

One potential solution to the problem outlined above is never to

allow a pair of elements of more than (say) two levels difference in

size to be neighbours. Thus if we were to reach the point during con

struction of the grid where subdivision of an element which we wished to

split would result in such a pair of neighbours occurring we would decide

that a mistake had been made in not splitting the larger element. It

would therefore be necessary to go back and split the larger element and,

if possible, follow through all the repercussions of this on the state

of the data structure. Such a policy would however be extremely

difficult to implement computationally, and it could also prove to be

very expensive to run. A much simpler solution, though not always

guaranteed to work, would of course be to choose a larger number of

elements in the initial regular grid.

One way of lessening the computational burden of setting up the

grid, whatever splitting criterion used, would be to take account of the

contour levels requested by the user and never to split an element whose

- 241 -

bounds did not contain at least one of the contour levels selected.

Such a policy would obviously save an enormous amount of work in those

examples discussed in this chapter in which we found the areas where

the largest aggregation of elements occurred to be entirely free of

contours, and therefore appears to have great potential. There are

however one or two inherent problems associated with such a policy;

firstly, it may happen that although the bounds for values taken by the

piecewise quadratic within an element contain none of the requested

contour levels, after some degree of splitting has occurred within that

element we might find that some of the selected contours do in fact

traverse this area. A slightly more trivial problem is that if such a

policy were in operation it would no longer be possible to select

contour levels automatically in the way that this is done at present:

for we currently use the set of bounds for values of the approximant

function within each element to determine the approximate range of

contour heights and consequently the contour levels themselves; these

bounds are however determined at the same time as the grid is being

constructed. Nevertheless in spite of these difficulties the potential

savings in efficiency of grid construction to be gained from such a

policy make this idea seem very attractive.

It should be noted though that constructing adaptive grids with

out taking contour levels into consideration does not reduce signific

antly the efficiency of the contouring process; for use of the bounds

(2.6) for the values of the piecewise quadratic within an element

means that all elements which we have needlessly constructed will in

any case be discarded very quickly.

A further important computational consideration relates to the

order in which elements are examined at the contouring stage. In the

current implementation elements are simply considered in the order in

— 242 —

which they have been generated; however this probably sometimes results

in gross inefficiencies in running time because it is likely to cause

the typical contour segment produced by subroutine PLTCON to be matched

with an unnecessarily large number of unlinked segment ends. If a more

systematic ordering of elements could be used it is believed that con

siderable savings could be made in this respect.

The reader will have noticed that no attempt has been made in this

chapter to contour any real examples adaptively, in spite of the fact

that locally adaptive choice of grid size seems likely to be particularly

useful in such cases, especially when data sites tend to be clustered.

Unfortunately in such cases it is not usually possible simply to

supply a subroutine VALUES to evaluate the heights and gradients of our

interpolant at any point, since most interpolation methods involve a

high proportion of fixed costs, which are often the costs of matrix

inversion (or, in the case of Natural Neighbour Interpolation, the

setting up of the Dirichlet Tessellation (Green and Sibson, 1978) on

which the technique is based) which must be paid before any evaluations

of the interpolant (usually relatively cheap) are carried out. Thus to

use our locally adaptive contouring method on real examples we must first

bind the implementations of the interpolation and contouring stages much

more closely together.

However, once it becomes possible to carry out adaptive contouring

on real data, a number of other possible splitting criteria can be used.

One possibility is to insist on an upper limit (of perhaps just one or

two) to the number of data sites lying within each element, since our

interpolant, even if not the underlying surface itself, will usually be

relatively complex in areas where data sites are clustered. An

alternative method might be to ensure that all data sites lie within a

specified maximum distance from a node of the grid (and it would

— 243 —

probably be necessary in such a case to distinguish between nodes where

the true height and gradients had been evaluated and those where an

approximation has been made). This is suggested because probably the

major defect of using the seamed quadratic element to contour an inter

polant is that the height of the approximant does not equal the true

height of the surface at the data sites, and the criterion could

therefore be used to minimise the effects of this deficiency.

Either of the ideas suggested above might be used as a splitting

criterion in its own right, or more likely, could be used as an extra

condition in combination with some other splitting criterion.

We have explained why adaptive local choice of grid size is

possible when contouring using the seamed quadratic element. However

there is no reason why it should not also be used in conjunction with

piecewise linear contouring methods, either as a means of improving the

smoothness of the contours or to improve goodness of approximation. In

the former case a splitting criterion could be based upon changes in

direction of contours at the boundary of a pair of cells; and if it

were decided that splitting was necessary we might choose to split one

or both of these cells.

If we wished to use locally adaptive subdivision in order to

improve accuracy of approximation a slightly different approach from

any of the ideas suggested for piecewise quadratic contouring would be

required; we could not simply rely on the data at the vertices of a cell

(whether square or triangular) of the grid to determine whether sub

division was required, as this could not provide us with all the

information needed for estimation of second derivatives. We would there

fore also have to consider data situated at nearby nodes of the grid.

Such data might also play a useful part in forming a better

criterion for splitting using the piecewise quadratic method, indicating

— 244 —

the magnitude of changes in second derivatives on crossing the boundary

between one element and the next.

In conclusion, it is important to emphasise that the concept of

an adaptively chosen grid for contouring is very much in its infancy

and we have only been able to present a rather speculative introduction

to the subject. A wide variety of possible criteria for local sub

division of squares has been suggested; although those which we have

tested appear to have shortcomings which might prevent them from being

used widely, a number of promising possibilities still remain. This is

an area of study which will surely reward further work.

- 245 -

CHAPTER 7

A BRIEF COMPARISON OF 14 CONTOURING PACKAGES

7.1 Introduction

In this final chapter we shall describe and compare the features

and algorithms contained in a wide variety of the contouring packages

currently in use both in industry and in scientific research. The

comparison is carried out solely on the basis of user documentation or,

in some cases, sales literature, which is of course insufficient

information for a full evaluation of the relative merits of the

packages. Ideally we might like to compare the performances of the

packages in contouring a number of standard data sets, but such a mam

moth undertaking is practically impossible within the context of this

thesis. Equally, we would like to be able to assess in detail the

mathematical ideas on which each package is based: such information

is often unavailable or offered only in the most general of terms, with

numerical details simply being buried in the computer code. In any

case no comparison is likely to be sufficient to isolate a 'best* pack

age from the fourteen, for the priorities and needs of all potential

users are different. Later in this section we identify and discuss

six important criteria which the potential buyer of a contouring package

must take into consideration before deciding on his choice.

Although the comparison cannot be expected to produce a

'recommended best buy' it does at least give an impression of the con

siderable diversity which exists among the packages that we present;

the one important exception here is in the contouring methods used,

which are all, or almost all, of the piecewise linear type. The

— 246 —

selection is by no means exhaustive but it provides a large and, it is

hoped, representative sample from the available spectrum (and also

includes some packages which are not generally available, but have

interesting features justifying their inclusion in this survey). For

convenience the packages have been grouped into four categories

’mainstream* packages, which are generally available for purchase and

were apparently written primarily with a view to commercial exploita

tion; a group of packages written largely for the oil exploration

industry, and therefore incorporating a number of specialised features

which in all cases include the ability to accommodate geological faults;

some packages written for operation at a single organisation or

installation; and finally a pair of packages which specialise in a

subset of the contouring process.

One body of contouring packages is not considered at all in this

chapter: that is packages designed exclusively for use in combination

with raster terminals and plotters. Plotting contours on raster

devices is a separate and quite different problem from that of

contouring on vector plotting devices, and it is the latter problem

to which we have tacitly restricted attention in this thesis. The

vector problem can be thought of as a more general problem than the

raster one, not simply because contouring on vector devices is

currently more prevalent than contouring on raster devices (a

situation which cannot be guaranteed to continue indefinitely), but

because it is considerably easier to convert vector information to

raster information than the converse. In addition by its very nature

contouring is inherently a vector rather than a raster problem.

Before discussing the fourteen packages in turn we shall consider

the important properties that one should be looking for in a contouring

- 247 -

package. This thesis has focussed attention heavily, and it is believed

rightly, on matters relating specifically to the contouring algorithm or

method employed (accuracy and visual smoothness of contours, as well as

mathematical understanding of the method in use), but this is only one

of six criteria of considerable importance which the author has

succeeded in identifying. We discuss the other five below, paying

particular attention to the performance of the CONICON package.

(1) Features offered by the package

This area received a fairly substantial amount of attention in

Chapters 3 and 4, and is the one about which we can derive most informa

tion from user documentation and sales literature. Undoubtedly the most

important feature, since it is an essential part of any contouring

package, is contour annotation. At first sight there might appear to

be little to say about this, but this is far from the truth. In

Chapter 4, we discussed the alternative strategies which may be used in

an attempt to make all labels in a plot easily readable:- it seems

universally agreed that labels should not be placed in areas of high

curvature, but packages differ in their treatment of areas where slope

is great and contours are closely bunched. Of those packages which

attempt to tackle this problem some try to avoid placing labels in such

areas altogether, while others take elaborate steps to ensure that no

contour crosses any label wherever it occurs. In Chapter 4 we argued

that the former course is to be preferred, because it tends to be much

cheaper and because labels occurring in areas of high gradient can be

difficult to ’place* on the correct contour anyway. We also considered

the alternative ways of orienting labels - which of these is preferable

seems to depend upon the complexity of the contour plot:- as long as

— 248 —

they are not obscured the placing of upright labels throughout is

recommended, but when bunching of contours is widespread it seems

preferable for labels to follow contour orientation. This is also

desirable when much other information is being plotted, as in topo

graphical mapping.

We shall see that some packages label contours only with small

integer values and use a key to identify the precise level of each

contour; the most primitive packages (or primitive options within

packages) plot contours in short linear sections and can therefore label

contours only where they meet the plot boundary. Other points of

interest when we consider annotation policy are the degree of control

which the user exercises over label size and format, over minimum

inter-label distance on a single contour, and over which contours are

labelled and which are not.

Crosshatching - strictly speaking with a key provided - is prob

ably the one feature which might be considered a substitute for (and

in some cases an improvement upon) contour annotation. However not one

of the fourteen packages examined in this chapter offers such a facility.

In the author's knowledge CONICON is unique among vector-oriented packages

in this respect.

Further graphical features of importance to many users are the

ability to contour non-rectangular areas, contour thinning in areas of

high density, the marking of local maxima and minima with appropriate

labels, placing 'hachures' or tick-marks on the downward slopes of

contours and the ability to use several line styles. At present CONICON

offers neither contour thinning nor the opportunity to plot hachures;

however as we have explained above thinning could be put into practice

simply by controlling the plotting of contours according to surface

— 249 —

slope, and a facility for plotting hachures could also be added with

little difficulty (conic sections are always generated with high ground

on the right). There is also scope to refine the contour suppression

feature, perhaps to contour the area within an arbitrary polygon,

though this would undoubtedly be a more difficult problem to solve.

Linestyles are a device-dependent feature, unless generated by soft

ware (a relatively expensive alternative).

Many contouring packages also offer non-graphical features such

as volumetric and areal calculations, though such features are arguably

more closely related to interpolation than contouring; thus if the

CONICON package were to include a facility for volumetric calculations

it might be more sensible to use the cubic element introduced in Chapter

2 as the basis for such calculations, rather than the quadratic element,

for reasons of accuracy. However if we wished to calculate the volume

above or below a particular contour level such an approach would be

liable to lead to (usually very small) numerical inconsistencies.

Finally, we must mention application-dependent features, and in

particular ’faulting’ facilities. In the specialised area of oil

exploration such facilities have almost become a prerequisite for any

contouring package. A fault is of course a discontinuity in a surface

and therefore, given the assumption of continuity of the underlying

surface, faulting has not been incorporated into the CONICON package.

Indeed the extension of the package to include such a facility would be

a considerable undertaking, involving much effort both on the theoret

ical and computational sides. We make no attempt to solve this

problem in this thesis.

- 250 -

(2) Efficiency

Efficiency, in common with some of the other factors which we

identify in this section, cannot be properly assessed simply from the

examination and comparison of user documentation. When we discuss the

efficiency of a package, conventionally we break this down into two

constituents, its CPU usage and its memory needs. While the latter

may be gauged approximately from the information available in user

manuals, the former can only be measured properly by benchmarking.

Nowadays, with machines possessing virtual memories becoming the rule

rather than the exception, CPU usage will usually be regarded as the

more important of the two and in some cases its importance may be

critical.

Although it is not possible to provide many ’hard figures’ to

support our arguments, there are good reasons for believing that the

CONICON package will not compare unfavourably with other packages with

regard to efficiency. The package will of course appear slower than

packages employing piecewise linear algorithms if comparisons are made

on the basis of a fixed grid size (for example, when comparisons were

made with the ECMWF package in Chapter 4, a ratio of approximately

three to one was reported); however CONICON has been shown to be capable

of producing high quality contours using a small fraction of the data

required by piecewise linear methods, and it is in the light of this

fact that comparisons should be carried out and judged. As we have

pointed out before, this property of the package may sometimes result

in important CPU savings in the area of data value generation, beside

which times used by contouring algorithms themselves will in some cases

be insignificant.

- 251 -

The ability of CONICON to get by using a coarse grid is

particularly important from the point of view of memory (if this is

in short supply), for it means that the necessity to store five

floating point values for each point on the grid, (one height, two

gradients and a pair of bounds) in addition to the workspace required

for contour linkage, is unlikely to be a handicap in dealing with all

but the most elaborate data sets. In cases where memory is a particul

arly precious commodity CONICON memory usage can be (and indeed has

been) improved. Firstly, if gradient values are unavailable and have

to be estimated they need not be stored but may be calculated cheaply

as and when required (this has been shown to have a slightly beneficial

effect on CPU usage at the ECMWF installation, where gradient values

are generally unavailable - presumably because it has eliminated some

expensive addressing); and secondly the values in the array ZLIM can

be packed into, say, 6 bit integers (this would assume a maximum of 63

contour levels), in such a way as to indicate the pair of contour levels

between which a particular bound lies, with no loss of effectiveness

and a considerable reduction in use of memory. However on most main

frame computers the amount of memory typically used by CONICON is not

likely to approach the limit of availability and efforts of this

nature are therefore unnecessary.

(3) Financial considerations

In the real world it is not always possible to obtain the

package which best suits an installation’s needs, simply because it is

too expensive. This thesis is probably not the best place to discuss

prices of contouring packages (and indeed no attempt has been made to

- 252 -

obtain the relevant information), but the importance of financial con

siderations should not be forgotten. Such considerations do not apply

solely to the purchasing of a package, but are also of relevance when

an organization considers the amount of time which will be involved in

training personnel to use the package. The importance of the latter

will depend on the nature of the organization purchasing the package

and the experience of those individuals who will be required to use it.

This brings us directly to the next factor.

(4) Ease of use; the user interface

The user interface of the CONICON package is a relatively low-

level one and requires the user to have at least an elementary under

standing of programming in Fortran. A complete contour plot can be

set up with a single subroutine call, but because CONICON has no

concept of a default linestyle, labelling policy, etc, the user is

required to set the values of a relatively large number of parameters.

Since the package was designed primarily for use in an academic or

scientific environment it is believed that users will have little

difficulty in learning how to use the package:- indeed once the user

has created his first contour plot subsequent ones are very unlikely to

cause any problems.

In the packages which we examine in this chapter a number of

different approaches have been taken to user interface design, though

all or most packages have been written in the same language, Fortran.

Many packages define a set of default parameters specifying linestyles,

number of contours, label positioning and format, etc. which are

normally stored in labelled Common. Users wishing to alter the values

of these parameters may do so by calling an individual routine (normally

- 253 -

with just one or two arguments) for each parameter, while the user who

requires simply to examine quickly the nature of a surface may do so by

specifying a matrix of surface heights and possibly the values of one

or two parameters, before making a single subroutine call. In this way

such packages are deemed to be very easy to use while retaining a wide

range of facilities under user control. There is of course no reason

why a user interface of this type could not be built on top of CONICON -

with the one caveat that CONICON contains a relatively large number of

arrays for workspace, which might usefully be reorganised before such

an addition were to be implemented.

Other packages require the user to issue a sequence of commands to

set up values of parameters, read data etc. and finally construct the

plot. Users are not required to have any knowledge of programming in

any language, but it is felt that users who do have some Fortran

programming experience would need a relatively large amount of training,

in the use of such packages; on the other hand the user possessing no

knowledge of Fortran, though he might experience more difficulty in

learning to use a package based on Fortran subroutine calls, would at

least in doing so be gaining a skill which might prove to be of some

benefit in other areas of work. Packages with user interfaces based on

subroutine calls are therefore preferred by the author to those with

command-based user interfaces.

Finally, a few packages provide an interactive user interface,

some even going as far as to allow the user to alter contours inter

actively after they have been plotted. Insofar as such user interfaces

simplify the use of a package they are to be recommended; however

facilities which allow a user to edit a contour plot interactively must

be handled with extreme caution.

- 254 -

(5) Reliability and degree of customer support

One important factor about which little information can be derived

from user documentation or sales literature is the reliability of a

package. This will be particularly difficult to assess if it is intended

to install the software on a machine on which it has not previously

been run. Closely related is the level of supported provided - the

importance of this varying in inverse proportion with reliability.

In the sections which follow we provide descriptions of fourteen

contouring packages which for ease of assimilation and fast reference

have been broken down under a number of headings. It should not be

forgotten however that in most cases we are unable to provide any

indication of the efficiency, cost or reliability of a package - it

is therefore recommended that judgement of the packages should not be

based solely on the information presented below.

7.2 General Purpose or ’Mainstream’ Contouring Packages

GPCP Surface II Graphics System NAG Graphical Supplement

GINOSURF (Mark 1) ’Surrender’

The packages which we examine in this section are all, like CONICON,

general purpose packages which, it is believed, were not written

specifically for any one particular application area or installation.

(1) GPCP-II; A General Purpose Contouring Program and Supplement to

GPCP-II

Calcomp Applications Software (1972, 1974)

TYPE OF PACKAGE

Carries out both interpolation and contouring. No other means of

surface display is provided.

- 255 -

INTERPOLATION METHOD PROVIDED

A ’projected slope’ method:- Gradients are estimated at the

control points by a weighted least squares planar fit and interpolated

values are then calculated as a weighted average of the projections of

planes fitted at ’neighbouring’ points. The user controls the number

of neighbours (defined by distance alone) used in such calculations

and the weighting factor ensures smoothness of the interpolant.

CONTOURING ALGORITHM USED

A refinement of the piecewise linear method. After interpolating,

if necessary, to values on a rectangular matrix, each cell is divided

further into a subgrid. A bicubic polynomial is fitted across each

cell of the larger grid, with smoothness preserved across cell bound

aries. This function is evaluated as and when needed at the nodes of

the subgrid and contours are traced across subgrid cells using inverse

linear interpolation. The sixteen parameters of the bicubic function

are fitted from four values at each corner of the cell - the inter

polated height plus estimates, based on other grid values, of the first

order partial derivatives and the second order mixed derivative. The

method results in relatively smooth contours which do not cross (see

Figure 4.19).

LABELLING POLICY

Labels follow contour orientation, each digit being oriented

individually. Labels often appear ’upside down’.

- 256 -

OTHER GRAPHICAL FEATURES

* Thinning - in areas where contours are bunched contours of

the standard linestyle are omitted while bold lines remain.

* Hachures - the user controls their size and location e.g.

they may be restricted to appear only on bold lines, in

closed loops containing a local minimum.

* Contour suppression within an arbitrary polygon - the

definition also allows the creation of ’holes'.

* Production of stereoscopic pairs for viewing through tinted

lenses - an unusual feature.

* [Supplement]. Plotting of vertical cross sections.

NON-GRAPHICAL FEATURES

* Complete user control over contour levels.

* [Supplement]. A comprehensive collection of areal and

volumetric calculations.

* Contouring over skewed and rotated grids.

* [Supplement]. Least squares trend surface and residual

plotting (up to 10th order).

USER INTERFACE

Of the ’sequence of commands’ type. Various defaults provided.

COMMENTS

One of the better packages from the point of view of contour

quality. A good contour suppression feature and a fairly wide range

of facilities. The interpolation method is suspect though - see

Section 4.5.

- 257 -

(2) Surface II Graphics System Sampson (1975, revised 1978)

Kansas Geological Survey

TYPE OF PACKAGE

A general package for the display and analysis of 2D surfaces.

Includes interpolation, a crude form of smoothing, contouring and

perspective block diagrams.

INTERPOLATION METHOD PROVIDED

(i) A method very similar to that used in GPCP-II, but with a

selection of weighting factors available. In addition several

alternative methods of defining 'neighbours' are provided:-

the user controls the number of neighbours, which may be located

by a standard nearest neighbour search, by a quadrant search (a

minimum number of neighbours must be located in each quadrant -

obviously rotation dependent) or by an octant search. Alternat

ively all points lying within a fixed radius r of the point of

interest may be deemed to be neighbours.

(ii) Universal Kriging.

SMOOTHING METHOD

Following interpolation, the value at each grid point is replaced

by the mean of all values within a user-defined radius.

CONTOURING ALGORITHM USED

The most basic piecewise linear method, with no subdivision of

grid cells (see Figure 4.21). Smoothing of contours is available

(with of course the consequent risks of contours crossing) by fitting

circular arcs between the points defined by the piecewise linear

method.

- 258 -

LABELLING POLICY

Labels follow contour orientation. The package attempts to avoid

labelling in areas of high curvature, but takes no account of gradient

or contour density when placing labels. The user has a large degree of

control over inter-label distances, label size and label format.

OTHER GRAPHICAL FEATURES

* Thinning - user-specified minimum inter-contour distance.

* Hachures - with user control over size and location.

* Contour suppression - the user specifies those cells in which

this takes place by setting grid values large and negative.

NON-GRAPHICAL FEATURES

* Complete user control over contour levels.

* Least squares trend surface analysis - only 2nd order.

* Contour plots of distance to nth nearest data site - for

assessing accuracy of standard contours.

* 'Filtering' - a matrix multiplication of a point and its

neighbours is carried out to provide a weighted spatial

moving average.

* Contour plots of derivative in any specified direction -

dérivâtes are estimated at the grid points and then

contoured in the usual way.

* All grid values outside a specified range can be amended to

lie on the edge of that range.

* 'Error Analysis' feature - calculates the difference between

the true surface heights and the piecewise linear surface at

the data sites, then interpolates and contours the resulting

'error surface'.

- 259 -

USER INTERFACE

As in GPCP-II, a sequence of commands is provided by the user

to control program flow. Default parameter values may be assumed.

COMMENTS

The wide variety of features offered by this package cannot

disguise the inherently poor quality of the contouring method. Many

of the features are in any case rather unsophisticated and could

trivially be replicated in other packages.

The multitude of possibilities for interpolation, all of which

lead to different results, is likely to prove bewildering to the

inexperienced user. In the author's opinion a single interpolation

method with good mathematical properties which defines neighbours

uniquely and in a natural way would be preferable.

(3) NAG Graphical Supplement

Numerical Algorithms Group (1981)

TYPE OF PACKAGE

A general graphics package which includes facilities for contour

ing (and interpolation).

CONTOURING ALGORITHMS USED

Two piecewise linear algorithms due to Heap & Pink (1969) . The

first plots straight lines across each grid cell, ambiguities being

resolved using the rule; high ground on the right. The second

subdivides grid cells into four triangles, taking the mean of the four

corner values as the centre height.

— 260 —

Two methods for contour smoothing are provided:

(i) Rutland's method (1980). Fits smooth but tight-fitting curves,

with reduced risk of contours crossing (see Figure 4.17).

(ii) McConalogue's method (1970, 1971). Fits smooth, free-flowing

curves. Rotation dependent.

LABELLING POLICY

Contours are labelled with upright integer values and a key is

provided for translation. The package attempts to avoid labelling

where there is 'insufficient room'. The user specifies label size

and the interval at which contours are labelled.

OTHER GRAPHICAL FEATURES

None.

OTHER FEATURES

* Full user control of contour levels - or automatic

selection.

USER INTERFACE

The user calls a single Fortran subroutine with a relatively

long argument list. No concept of default parameters.

COMMENTS

Although first released in 1981, this package seems little or

no better than many packages written ten years earlier:- it offers

few facilities and employs unsophisticated contouring algorithms.

— 261 —

(4) Ginosurf (Mark 1)

CADC, Cambridge

TYPE OF PACKAGE

A general package for displaying 2D surfaces, with interpolation

as well as contouring and plotting of isometric projections.

INTERPOLATION METHOD PROVIDED

A method due to Falconer (1971). Carries out a local weighted

least squares fit of a paraboloid (4-parameter) surface. Can be

demonstrated to produce surfaces with discontinuities in first

derivative in certain special cases.

CONTOURING ALGORITHM USED

A piecewise linear algorithm due to Heap (1974) which divides

grid cells into four triangles.

Smoothing of contours is possible using the method of McConalogue

(1970, 71).

LABELLING POLICY

Labels follow contour orientation, and minimum inter-label

distances are under user control.

OTHER GRAPHICAL OR NON-GRAPHICAL FEATURES

None.

USER INTERFACE

Plots are created by a Fortran subroutine call. Default para

meter values may be overriddenby making extra subroutine calls prior

to plot construction.

- 262 -

COMMENTS

* Contours in a single plot can only be plotted at regular intervals

(though other contours may be added by overplotting).

* The following additional features are promised in Ginosurf Mark

2:- volume and surface integrals, contour suppression and

plotting of cross sections.

* The fact that a defective interpolation method is provided is

disturbing:- though discontinuities in first derivative are

unlikely to occur in practice there is no reason to believe that

such irregularities will not sometimes be closely approximated.

* We are told that run times vary in proportion with the number

of grid cells (cf CONICON, where run time is approximately

proportional to the square root of the number of cells).

* It is to be hoped that the coding in the package has been written

with considerably more care than the documentation, which contains

one contour plot ('Test Example 2') which demonstrably does not

represent the data set which it purports to represent. A similar

plot has been simulated using the CONICON package by inserting an

extra value of zero at the start of the data set and thereafter

reading all values one step away from their true positions.

(5) 'Surrender' - A Subroutine Package for rendering

bivariate surfaces

Computing Centre at the University of Trandheim

Zachrisen (1979)

TYPE OF PACKAGE

For producing contour plots and perspective block diagrams from

rectangular matrices of heights.

- 263 -

CONTOURING ALGORITHM USED

The simplest form of piecewise linear contouring, with no subdivision

of rectangular grid cells. Contour smoothing is provided using spline

interpolation.

LABELLING POLICY

Labels follow contour orientation and label format and size is

under user control.

OTHER FEATURES

None

USER INTERFACE

The package has no concept of default parameter values, but as a

result of the paucity of features available the single subroutine call

which is required has a relatively small number of arguments.

COMMENTS

A crude package, with very few facilities and at least two defects

contours within a single plot may only be placed at regular intervals,

and run times appear to increase linearly with the number of grid cells.

7.3 Packages for the oil exploration industry

CPSl ZMAP SDL (Surface Display Library) MCS (Mapping-

Contouring System)

The packages described in this section have all apparently been

designed and marketed with the objective of sales to the wealthy oil

exploration industry very much to the fore. In addition to all or

— 264 —

most of the features which appeared in the previous section, these

packages all incorporate facilities which allow for faulting (i.e.

discontinuities) in a surface when plotting contours.

This group of packages is undoubtedly the most sophisticated group

described in this chapter. However it has unfortunately only been

possible to make evaluations on the basis of sales and advertising

literature rather than user documentation and as a result explicit

details of the contouring algorithms employed are not given in general.

In addition details of the user interface and the degree of user control

over parameters are lacking.

It must also be borne in mind that the packages described in this

section are expensive: for example, in the case of the SDL and

associated packages, an installation outside North America would have

to pay a sum in the region of $75,000 for a fully supported package

incorporating interpolation, three methods of surface display and a

faulting capability. There is little reason to suppose that the other

packages will be very much cheaper.

(6) CPSl: a contour plotting system

Radian Corporation, Austin, Texas

TYPE OF PACKAGE

A general package for the creation and display of 2D surfaces. It

incorporates interpolation, smoothing and three means of surface dis

play:- contouring, perspective block diagrams and projected contour

displays (or 'floating contour projections').

- 265 -

INTERPOLATION METHOD USED

The interpolation techniques used create surfaces with 'smooth

minimum curvature between data points'. No further details known.

SMOOTHING METHOD USED

Not known.

CONTOURING ALGORITHM PROVIDED

Uses a regular grid with subgridding, probably very similar to

the method employed in GPCP-II.

LABELLING POLICY

Labels follow the orientation of contours, each digit being

oriented individually. The user has 'complete control' over labelling

and labels automatically avoid areas of high curvature.

OTHER GRAPHICAL FEATURES

* A sophisticated facility for the creation of cross-sectional

views, which accommodates non-vertical faults.

* Hachures.

* Thinning.

* Contour suppression within/outside arbitrary polygonal areas.

NON-GRAPHICAL FEATURES

* Filtering.

* Volumetric and areal calculations - with or without faulting.

* Trend surface analysis - up to 8th degree.

* 'Complete user control' over choice of contour levels.

* Several others, including an annual users' conference.

— 266 —

SPECIALISED FEATURES

* Faulting: contours are drawn right up to the fault trace. The

package defines and accommodates two types of faulting:- an

’opaque' fault treats data on opposite sides independently,

while a 'translucent' fault 'uses regional characteristics across

the fault while preserving the local discontinuity'.

USER INTERFACE

The user issues a sequence of commands via control cards which

set up parameter values, read data and create the plot.

COMMENTS

Although the available evidence is rather insubstantial, the

variety and capabilities of the features offered by this package

nevertheless appear very impressive. Contour curvature is however

imperfect and one or two other possible defects emerge from the sales

literature: for example, the thinning feature is aesthetically

unattractive, perhaps because the algorithm adheres too strictly to

a 'minimum distance' rule.

(7) ZMAP

Zycor, Inc. Austin, Texas

TYPE OF PACKAGE

A general surface display package, including interpolation,

smoothing, contouring and plotting of perspective block diagrams. The

package provides an interactive user interface with 'powerful editing

tools'.

- 267 -

INTERPOLATION METHOD USED

Several methods are available, including ’moving weighted least

squares’, ’moving weighted average’, ’closest point (polygon) method’,

projected slope method. In each case the user controls the number of

neighbours used in interpolation calculations.

SMOOTHING METHOD USED

Not known.

CONTOURING ALGORITHM USED

The algorithm takes as input data surface heights on a rectangular

grid. The sales literature claims that contouring is ’built around a

unique new algorithm that significantly reduces execution time and

the output load placed on the plotting equipment ... contour point

spacing automatically decreases in rough areas and increases in smooth

areas to minimise the number of points required to satisfactorily

define the curves’. Thus the method is probably non-linear and

possibly piecewise quadratic.

A second, coarser contouring method (presumably piecewise linear)

is also implemented.

LABELLING POLICY

Labels follow contour orientation. The user controls ’labelling

rate, size and accuracy’.

OTHER GRAPHICAL FEATURES

* Thinning.

* Hachures.

* Contour suppression inside or outside an arbitrary polygon.

* Plotting of cross sections (optional).

- 268 -

NON-GRAPHICAL FEATURES

* Full user control over contour levels.

* Filtering.

* Sophisticated multiple surface operations.

* Trend fitting and analysis (optional).

* Volumetric and areal calculations (optional).

SPECIALISED FEATURES

* Faulting. Contours run right up to the fault lines. This

feature may be combined with volumetric calculations.

USER INTERFACE

Two modes of operation are available - totally interactive

execution, or interactive set-up for batch execution. Default answers

are available to most questions. In addition in ZMAP version 2 inter

active editing is available for handling raw data, gridded values and

graphical output. The user can reshape contours, faults, etc. ’to

correct errors or problems in graphic displays of surfaces’ and add

new graphical information manually.

COMMENTS

This package is interesting from the point of view of the contour

ing algorithm used, which appears more advanced than the others found

in packages examined in this chapter.

The interactive editing facility is also unusual. It is clear

that such a powerful facility could prove very dangerous if not handled

with extreme caution. For experts only.

As in the case of the Surface 11 package, the variety of possible

approaches to interpolation could prove counter productive.

- 269 -

(8) S.D.L. (Surface Display Library)

Dynamic Graphics Inc, Berkeley CA

TYPE OF PACKAGE

The package produces displays of 2D surfaces in the form of

contour plots, perspective block diagrams and projected contour dis

plays. The vendors also supply related packages such as the Surface

Gridding Library (SGL) for interpolation and Interactive Surface

Modelling (ISM) - an interactive front end for SDL/SGL.

METHOD OF INTERPOLATION USED

Unusually the interpolation method supplied (in SGL, not SDL) is

a global one. Besides being inappropriate in most examples, such a

method is likely to be expensive (and possibly ill-conditioned) in

large examples.

CONTOURING ALGORITHM PROVIDED

Not known - but probably piecewise linear (the package 'routinely

copes' with grids of over 100,000 cells).

LABELLING POLICY

The package, 'considers several factors as it labels contour

lines'. Labels are only placed where room exists for them, and they

follow the orientation of contours.

OTHER GRAPHICAL FEATURES

* Contour thinning - user-specified interval.

* Hachures.

* 'High' and 'Low* symbols, and/or values at stationary points may

be plotted.
- 270 -

NON-GRAPHICAL FEATURES

* Volumetric calculations - but in a separate package,

SPECIALISED FEATURES

* Faulting capability; the package 'routinely copes' with over

2,000 fault segments. Contours are plotted right up to the

fault traces. Once again, a separate package is required for

this.

USER INTERFACE

Not known, but ISM (interactive front end) available.

COMMENTS

Expensive (see above).

(9) MCS (Mapping-Contouring system)

Scientific Computer Applications, Inc

Tulsa, Oklahoma

TYPE OF PACKAGE

Offers interpolation, contouring and perspective block diagrams,

INTERPOLATION METHOD USED

Similar to the methods employed by GPCP-II and Surface II

Graphics.

- 271 -

CONTOURING ALGORITHM PROVIDED

Two alternative means of contouring from random data are provided:

(i) The user may interpolate to a rectangular grid and then use a

piecewise linear contouring algorithm. Or (ii), if it is sufficient

to plot only within the convex hull of the data sites contouring may

be carried out directly:- first the data sites are triangulated so

the resulting triangles are 'as nearly equilateral as possible' (this

presumably is the Delaunay triangulation: see Green and Sibson (1979));

a subgrid is then formed across each triangle by the construction of

equidistant sets of lines parallel with the triangle's sides; values

at subgrid vertices are calculated using 'hyperbolic type functions' -

on average depending on the values and gradient estimates at six

neighbouring points; and finally contours are traced across subgrids

by inverse linear interpolation.

LABELLING POLICY

Labels follow contour orientation, but example plots highlight a

tendency of the algorithm to place labels in close pairs separated by

relatively large distances.

OTHER GRAPHICAL FEATURES

* Hachures.

NON-GRAPHICAL FEATURES

* Volumetric calculations - using the triangular piecewise linear

approximation.

* Least squares trend and residual analysis.

- 272 -

SPECIALISED FEATURES

* Faulting.

* 'Multi Surface C o n t o u r i n g ' i n examples in which geological

formations of fairly constant thickness have folded, informa

tion on the depth of one formation is used to help to determine

the depth or thickness of another formation, using interpolation

and extrapolation.

COMMENTS

Contouring algorithm (i) can produce very angular contours in

areas where data is sparse. Contouring algorithm (ii) is similar to

the one used by GPCP-II, but subgrids over triangles rather than

rectangles.

7.4 Packages written for single organisations

ECMWF Contouring Package The SCD Graphics Utilities

SRC Rutherford Laboratories contouring package

The packages examined in this section represent a small selection

of contouring packages written by organisations wholly or primarily

for internal use. The possible reasons why an organisation might

decide to 'go it alone' in this way rather than purchase a contouring

package are numerous:- a package might be written internally for

financial reasons; to incorporate specialised facilities not available

in a single existing package; to obtain as high as possible a degree

of optimisation on the installation's hardware; to integrate the

contouring process into an existing graphics framework; or for a

combination of these reasons and others. The packages which we

- 273 -

describe are used by the meteorological community on both sides of the

Atlantic, and by U.K. Government Research Laboratories.

(10) ECMWF Contouring Package

European Centre for Medium-Range Weather Forecasts

(Petersen, 1980)

TYPE OF PACKAGE

Contouring from values on a rectangular grid, plus plotting of

map projections and various specialised meteorological indicators.

CONTOURING ALGORITHM USED

A simple piecewise linear method, as described by Dayhoff (1963).

Grid cells are divided into four triangles prior to the piecewise

linear fit. Contours may optionally be smoothed by the fitting of

parametric cubic functions. A more primitive piecewise linear

algorithm, which contours cells systematically with no linking, is

also provided.

LABELLING POLICY

Labels follow contour orientation - apparently with no effort to

avoid labelling in areas of high curvature or high contour density.

The user controls the number of decimal places (or this may be

selected automatically) and character thickness.

OTHER GRAPHICAL FEATURES

* Contour suppression - where surface heights lie outside a user-

specified range.

* ’Composite’ linestyles - the user may specify one linestyle below/

above/at a particular level and another at remaining levels.

- 274 -

NON-GRAPHICAL FEATURES

* Contour levels may be chosen by the user or automatically - but

always at regular intervals.

SPECIALISED FEATURES

* The ability to superimpose a variety of coastline projections

onto contour maps.

* Suppression of contouring to an octagonal area as a rough approxima

tion to a circle.

* Plotting of 'highs’ and ’lows’ (local maxima and minima

respectively) - either using symbols or by plotting actual

heights, or both.

* Plotting of various other meteorological indicators.

USER INTERFACE

Default values are set for most parameters, which may be changed

by simple subroutine calls. A relatively simple sequence of subroutine

calls is required to produce a complete contour plot.

COMMENTS

All plots at this installation are produced on a raster device

(electrostatic plotter) following vector to raster conversion. The

package is a fairly undistinguished one, and is being replaced by

CONICON and a fast low quality package still to be selected at the

time of writing.

- 275 -

(11) The SCD Graphics Utilities

National Center for Atmospheric Research, Boulder, Colorado

(McArthur (1981))

TYPE OF PACKAGE

A general graphics package which includes interpolation and

contouring capabilities.

INTERPOLATION METHOD PROVIDED

The C ̂ surface algorithm of Lawson (1977), as refined by

Akima (1978).

CONTOURING ALGORITHM USED

The simplest piecewise linear method, with no internal sub

division of grid cells. Contour smoothing is available using the

method of splines under tension. The user has control over the

tension factor which determines the smoothness of the curves.

LABELLING POLICY

Labels follow contour orientation, and their size and format are

under user control. The most sophisticated routine protects a

rectangular area round each label from being touched by all contours.

OTHER GRAPHICAL FEATURES

* Contour suppression - no contouring when grid values lie outside

a specified range.

NON-GRAPHICAL FEATURES

* The user has full control over the contour levels which are

plotted.

- 276 -

SPECIALISED FEATURES

* Plotting of ’highs' and 'lows’, both by symbols and values. The

user controls the size of the labels.

* Plotting of other meteorological indicators and coastline

projections.

USER INTERFACE

A complete contour plot can be produced by a single subroutine

call. Other subroutine calls may be executed prior to contouring to

change default parameter values.

COMMENTS

A fairly uninteresting package with a poor contouring algorithm.

(12) SRC Rutherford Laboratories Atlas Computing Division

Contouring Package (Sutcliffe (1976))

TYPE OF PACKAGE

Contouring only, from values on a rectangular grid. The grid may

be irregular and/or skewed.

CONTOURING ALGOEITH>S USED

A choice of two piecewise linear algorithms is provided, both

due to Heap (1974). The first carries out no internal cell subdivision,

while the second divides grid cells into four triangles in the usual

way. No means of contour smoothing is provided.

- 277 -

LABELLING POLICY

Labelling is by upright integer value only, with a key provided

for interpretation. Gaps are not left in contours where labels occur.

The user controls the frequency of labels on contours (in terms of

the number of steps between labels), but each section of contour must

have at least one label. The user may alter the character sizes used

for labelling and in the key table independently.

OTHER GRAPHICAL FEATURES

* Contouring may be suppressed outside a polygon whose sides must

comprise diagonals or edges of grid squares. This feature is

available for square grids only.

NON GRAPHICAL FEATURES

* The user has full control over the contour levels which are

plotted - or they may be set automatically.

SPECIALISED FEATURES

None.

USER INTERFACE

Default values of parameters are set to minimise the length of

argument lists and a single subroutine call is sufficient to create

a complete contour map. Extra subroutine calls are required to change

parameter values.

COMMENTS

A very primitive package, similar to the contouring facility in

the NAG Graphical Supplement, but even less sophisticated.

- 278 -

7,5 Packages which specialise in a subset of the contouring process

DI3SPLA Mapez

In this final section we consider a pair of packages which have

little in common besides the fact that each specialises in a subset of

the contouring process - the DISSPLA package is primarily intended for

displaying in an attractive way the contours produced by an arbitrary

contouring algorithm, while ZMAP provides an interactive user inter

face for use on top of a relatively sophisticated contouring package.

Assessment of the ZMAP package has been performed on the basis of

sales literature alone.

(13) DISSPLA
ISSCO Corp, San Diego, CA

TYPE OF PACKAGE

A general graphics package offering a wide range of facilities

including contouring.

CONTOURING ALGORITHM USED

The package provides a simple piecewise linear algorithm for

contouring from a rectangular grid of values, but is primarily intended

for the presentation of contours produced by other packages.

LABELLING POLICY

By storing all the 'contours' simultaneously in labelled Common,

the package ensures that pairs of labels can never overlap and that

contours respect the positions of all labels. Labels follow contour

orientation and the user controls minimum inter-label distances and

the degree of curvature which is tolerated where labels occur.

- 279 -

OTHER GRAPHICAL FEATURES

* Thinning - the user specifies the minimum distance allowed between

adjacent contours, and priority levels for contours which enable

the package to determine which contours should be omitted where

thinning occurs.

USER INTERFACE

In the form of Fortran subroutine calls, with no default values

set. Can be relatively complicated if a wide variety of linestyles is

used, as a single call is required to establish each style in the cycle,

COMMENTS

Results are of a high quality, but only at the cost of severe

penalties in terms of both CPU and memory usage. Such penalties are

however probably unavoidable if attractive results are to be derived

from input data of this nature, since knowledge of the surface being

contoured, which could have aided both thinning and label positioning,

has been discarded,

A further but relatively trivial defect in the package is that

labelling and linestyle definition are not controlled independently.

(14) Mapez; Interactive contour plotting Interface

Zycor Inc, Austin, Texas

TYPE OF PACKAGE

An interactive front end for the CPS-1 package (see section

7.3).

— 280 —

USER INTERFACE

The package provides, it is claimed, a ’user friendly’ interactive

interface which simplifies use of the CPS-1 package. As we saw in

section 7.4, the latter package offers a wide range of facilities

which the inexperienced user might require a considerable amount of

time to master. It is therefore conceivable that in a commercial

environment the savings in training time derived from the acquisition

of a package such as MAPEZ might justify its purchase.

The manufacturers claim that the package eliminates errors and

reduces the time needed to set up a new CPS-1 run. It is structured to

be suitable for use by experienced and inexperienced users alike:- a

limited explanation is provided at points requiring a response, which

may be supplemented by using a 'HELP' command. It is also possible

to program the package so that the simple user is exposed only to a

subset of the logical decision points.

COMMENTS

Marketed by the distributors of the ZMAP package (see Section 7.4);

not by the distributors of CPS-1!

— 281 —

CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The review of existing contouring methods which opened this thesis

was presented primarily with the intention of highlighting the defects of

these methods, and of persuading the reader of the need for a new con

touring technique capable of combining convincing and accurate represent

ation of contours with low execution costs. The subsequent investigations

and development of the seamed quadratic method have convinced the author

that such a method has indeed been discovered; moreover mathematical

understanding of the method now stands at a level which is unrivalled by

most of its competitors.

A clear indication of the quality of the method was given as early

as in Chapter 2 (Figure 2.4), where a single seamed quadratic element was

demonstrated to be capable of representing a relatively complex surface

with contours of perfect visual smoothness. However the broad range of

examples presented in Chapter 4, which include comparisons with other

contouring methods, provides a much more powerful argument which, it is

hoped, should prove sufficient to convince the most sceptical of readers.

At no point, however, have we claimed that the method is in any way

optimal (except perhaps within the category of methods based on rectangular

seamed quadratic finite elements), and a few problems involved in using

the seamed quadratic element have emerged which should be recognised:

firstly, like all contouring methods, it will produce anomalous results

when the Implicit Function Theorem breaks down or comes close to breakdown;

it has also (see Section 4.3) been shown to produce spurious peaks in areas

where the slope of a surface decreases exceedingly rapidly; and finally,

when combined with any interpolation method, it will not in general produce

- 282 -

a surface which respects exactly the original data values. However the

first two of these defects will not affect the vast majority of examples,

and we have suggested (Section 6.5) a means of minimising the effects of

the third (though we have not had time to put this into practice) .

In Chapter 3 we explained how the seamed quadratic contouring method

was implemented as the CONICON package and developed to a high degree (the

amount of work involved in this development being considerably under

represented by the length of the chapter). It is believed that, as a

result of these efforts, the features of the package (crosshatching

especially) compare favourably with those of most packages examined in

Chapter 7, but that there is still much potential for improvement to be

made. If the piecewise quadratic contouring method introduced in this

thesis is not to be overlooked for a number of years to come, it is

particularly important that the reliability, ease of use, efficiency and

range of features of the CONICON package are all developed to as high a

level as possible.

Clearly it is highly desirable that those improvements made to the

ECMWF version of the package should become standard. After this, perhaps

the most pressing need is that the package should become more 'user

friendly', but several other areas with much potential for improvement

exist: the contour suppression feature might be extended to incorporate

contouring within an arbitrary polygon, and thinning, hachures and cross

sectional views might also usefully be included.

In the area of efficiency a number of aspects of the package could be

improved considerably. For example, crosshatching algorithm A is a prime

contender for savings: we know that, in the largest examples, where

limitations on the availability of memory can become a problem, a contour

across a triangle is typically represented by a single straight line

segment; the amount of memory used by this algorithm could therefore be cut

- 283 -

dramatically by storing contour 'vertices' themselves rather than the

twelve reals per triangle which currently need to be stored. As a by

product of this the calculation of intersections between contours and

hatching lines would be simplified, improving both CPU usage and numerical

stability. A further possibility for memory savings relates to the arrays

XY and CONT (see Chapter 3 for details): it might be possible (probably

at the cost of slightly increased CPU usage) to dispense with the latter

array, which merely duplicates (though in a more convenient order) informa

tion held in the former. A number of more minor possibilities for program

optimisation also exist. Such reductions in memory usage would probably

be a prerequisite for large-scale use of the package on mini-computers,

where an increasingly large amount of graphical work is carried out.

The error analysis reported in Chapter 5 has provided us with a

relatively high degree of understanding of the seamed quadratic method,

which compares favourably with the general lack of mathematical knowledge

of rival contouring methods. The results obtained should prove useful

both in the design and analysis of piecewise quadratic contour maps. For

the purposes of comparison it would be beneficial to carry out similar

error analyses on other seamed quadratic elements, and to examine piece-

wise linear approximation and the piecewise cubic element introduced in

Chapter 2 in a similar manner.

The investigations conducted in Chapter 6 of locally adaptive

contouring methods based on the use of the seamed quadratic element have

probably raised more questions than they have answered. The need to

improve the computational implementation of grid construction is probably

of little urgency, for although we have presented only a first attempt

at a solution this involves use of an insignificant amount of resources

compared with those needed by the contouring part of the process.

However much work is still needed to investigate the many possible

- 284 -

splitting criteria, a number of which were suggested in the discussion which

forms the final part of the chapter. We must conclude that at present local

subdivision using the splitting rules devised and tested by the author is

not practicable, given the difficulties of choosing parameter values

'blindly'; however if some automatic or semi-automatic means of selection

could be devised these techniques might prove very useful - in one particular

example in our investigations (see Figures 6.14 and 6.15) the splitting rule

appears ideal. However a number of possible splitting criteria remain

completely untried, and investigation of their capabilities should be an

interesting - and possibly rewarding - venture.

The third derivative estimate (based on vertex values and gradients)

derived in Chapter 6, although arguably defective in the context of adaptive

local cell subdivision, might well be of more use in the design of regular

grids, though we have not investigated this: the poor accuracy of the

estimate is unlikely to be a serious problem in this context, and of course

its other known defect - that it apparently does not guarantee termination

of the splitting process - is not applicable here.

Our final chapter, which compares 14 existing contouring packages, is

unavoidably such a superficial investigation that it is really only possible

to draw tentative conclusions about the relative merits of each package.

A detailed investigation of the packages, comparing the performance of each

one on a number of standard data sets, would probably involve a complete

Ph.D. project in itself. I^ether it would be worthy of such a project is

arguable:- certainly the results of such a comparison would be of consider

able interest to potential users, but the apparent similarity of contouring

algorithms incorporated in these packages indicates that an investigation of

this nature would probably be of little interest from a scientific point of

view.

- 235 -

We end then with the conclusion that the seamed quadratic method

represents a significant advance in the field of automatic contouring which

has great potential value. However, if this potential is to be realised

and the method widely used then it is extremely important that the CONICON

package should present the method in the best possible light. Improvement

of CONICON is therefore one of two major areas for further work which we

have identified; the other is further investigation of the highly promis

ing area of locally adaptive contouring.

— 286 —

REFERENCES

AKIMA, H (1978). A method of hivariate interpolation and smooth surface

fitting for irregularly distributed data points. ACM Trans. on

Math, Software, 4, pp.148-159.

APOSTOL, T.M. (1957). A m o d e m approach to advanced calculus, Addison-

Wesley, Reading, Mass. - Palo Alto - London.

BATCHA, J.P. and REESE, J.R. (1964). Surface determination and automatic

contouring for mineral exploration, extraction and processing.

Colorado School of Mines Quarterly, 59, pp. I— 14.

BRENT, R.P. (1974). Algorithm 488. Communications of the ACM, 17,

pp.704-706.

RUTLAND, J. (1980). A method of interpolating reasonably-shaped curves

through any data. Proceedings of Computer Graphics 80^ pp.409-422.

Online publications.

CALCOMP APPLICATIONS SOFTWARE (1972). GPCP-II: A General Purpose

Contouring Progam, User's Manual, Calcomp, Anaheim, California.

CALCOMP APPLICATIONS SOFTWARE (1974). Supplement to GPCP-II: A General

Purpose Contouring Program, User's Manual, Calcomp, Anaheim,

California.

CLOUGH, R.W. and TOCHER, J.L. (1965). Finite element stiffness matrices

for analysis of plates in bending. Proc, Conference on Matrix Methods

in Structural Mechanics, Wright-Patterson A,F,B,, Ohio, 1965,

COMPUTER AIDED DESIGN CENTRE. Ginosurf User Manual, Issue 1, CADC,

Cambridge.

COTTAFAVA, G. and LE MOLl, G. (1969). Automatic Contour Map. Communications

of the ACM, 12, pp.386-391.

CRANE, C.M. (1972). Contour plotting for functions specified at nodal points

of an irregular mesh based on an arbitrary two parameter co-ordinate

system. The Computer Journal, 15, pp.382-384.

— 287 —

DAYHOFF, M.O. (1963). A Contour-Map program for X-Ray Crystallography.

Communications of the ACM, 6 , pp.620-622.

DELFINER, P. and DELHOMME, J.P. (1975). Optimum interpolation by Kriging.

In 'Display and Analysis of Spatial Data', pp.96-114, Wiley.

FALCONER, K.J. (1971). A general purpose algorithm for contouring over

scattered data points. NPL Report NAC 6.

FITCH, J.P. (1982). CAMAL User's Guide (2nd Edition), University of

Cambridge Computer Laboratory.

GREEN, P.J. and SIBSON, R. (1978). Computing Dirichlet tessellations in

the plane. The Computer Journal, 21, pp.168-173.

HEAP, B.R. (1974). Two Fortran contouring routines. NPL Report NAC 47,

HEAP, B.R. and PINK, M.G. (1969). Three contouring algorithms. NPL Report

DNAM 81.

HUNTER, G.M. and STEIGLITZ, K. (1979). Operations on Images using Quad

Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-1 (No.2), pp.145-153.

ISSCO GRAPHICS (1982). DISSPLA User's Manual, ISSCO Corp, San Diego,

California.

KLINGER, A. and DYER, C.R. (1976). Experiments on picture representation

using regular decomposition. Computer Graphics and Image Processing,

5, pp.68-105.

LAWSON, C.L. (1977). Software for C^ Surface Interpolation. In Mathematical

Software III, pp.161-194. Academic Press.

LODWICK, G.D. and WHITTLE, J. (1970). A technique for automatic contouring

field survey data. Australian Computer Journal, 2, pp.104-109.

MCARTHUR, G.R. (1981). The SCD Graphics Utilities. NCAR Technical Note

NCAR-TN/166+IA, NCAR, Boulder, Colorado.

MCCONALOGUE, D.J. (1970). A quasi-intrinsic scheme for passing a smooth

curve through a discrete set of points. The Computer Journal, 13,

pp.392-396.

- 288 -

MCCONALOGUE, D.J. (1971). An automatic French-curve procedure for use

with an incremental plotter. The Computer Journal, 14, pp.207-209.

MARLOW, S. and POWELL, M.J.D. (1976). A Fortran subroutine for plotting

the part of a conic that is inside a given triangle. UKAEA Harwell

Paper AERE-8336, HMSO London.

MILNE, W.P. (1924). Homogeneous coordinates. Edward Arnold and Co.

(London).

NUMERICAL ALGORITHMS GROUP (1981). NAG Graphical Supplement Mark 1.

NUMERICAL ALGORITHMS GROUP (1982). Routine G05DDA/F. NAG Fortran Library

Manual Mark 9, Volume 6.

PERCELL, P. (1976). On cubic and quartic Clough-Tocher finite elements.

SIAM Journal of Numerical Analysis, 13, pp.100-103.

PETERSON, A. (1980). Contouring Package User's Guide (Revision 2).

ECMWF Computer Bulletin B5,2/3(2).

PHILLIPS, E.G. (1962). A course of analysis (2nd. edition), Cambridge

University Press.

POWELL, M.J.D. (1974). Piecewise quadratic surface fitting for contour

plotting. In 'Software for Numerical Mathematics' (D.J. Evans ed.).

Ch.14, pp.253-271, Academic Press.

POWELL, M.J.D. and SABIN, M.A. (1977). Piecewise quadratic approximation

on triangles. ACM Transactions on Mathematical Software, 3,

pp.316-325.

RITCHIE, S. (1978). Representation of surfaces by finite elements, M.Sc.

Thesis, University of Calgary.

ROBINSON, E.L. and SCARTON, H.A. (1972) "CONTOR - FORTRAN subroutine to

plot smooth contours of a single valued 3-D surface". J. Comput. Ph.,

10, p.242.

ROTHWELL, M.A. (1971). A computer program for the construction of pole

figures. J. Appl. Cryst., 4, p.494.

- 289 -

SABIN; M.A. (1980). Contouring - A review of methods for scattered data.

In 'Mathematical Methods in Computer Graphics and Design' (ed. K.W.

Brodlie) Ch. 3, pp.63-85. Academic Press.

SAMPSON, R.J. (1975, revised 1978). Surface II Graphics System, Kansas

Geological Survey.

SCHAGEN, I.P. (1979). Interpolation in two dimensions - a new technique.

J. Inst. Maths Applies 23, pp.53-59.

SCHAGEN, I.P. (1982). Automatic Contouring from Scattered Data Points.

The Computer Journal, 25, pp.7-11.

SHELL, D.L. (1959). A high-speed sorting procedure. Communications of

the ACM, 2, pp.30-31.

SHVIDLER, M.I. (1964). Filtration flows in Heterogeneous Media.

Consultants Bureau, New York (translated from Russian).

SIBSON, R. (1980). Tile 4 User's Guide. University of Bath.

SIBSON, R. (1982). A brief description of natural neighbour interpolation.

In 'Interpreting Multivariate Data', (ed. V. Barnett) Ch.2, pp.21-36.

Wiley, London.

SIBSON, R. and THOMSON, G.D. (1981). A seamed quadratic element for

contouring. The Computer Journal, 24, pp.378-382.

SILVERMAN, B.W. (1982), Density Estimation for Univariate and Bivariate

Data. In 'Interpreting Multivariate data' (ed. V. Barnett). Ch.3,

pp.37-53. TJiley, London.

SUTCLIFFE, D.C. (1976). Contouring. Graphics User Note 1. SRC Rutherford

Laboratory, Atlas Computing Division.

SUTCLIFFE, D.C. (1980). Contouring over rectangular and skewed rectangular

grids - an introduction. In 'Mathematical Methods in Computer Graphics

and design' (ed. K.W. Brodlie). Ch.2, pp.39-62. Academic Press.

WAHBA, G. (1979). How to smooth curves and surfaces with splines and

cross-validation. University of Wisconsin Department of Statistics

Technical Report no.555.

— 290 —

WAHBA, G. and WOLD, S. (1975). A completely automatic French curve:

fitting spline functions by cross-validation. Communications in

Statistics, 4, pp.1-7.

WARNOCK, J.E. (1969). A hidden-surface algorithm for computer generated

pictures. University of Utah Computer Science Department Report

TR4-15.

WOODWARK, J.R. (1982). The explicit quad tree as a structure for

computer graphics. The Computer Journal, 25, pp.235-238.

ZACHRISEN, M. (1979). 'Surrender* - A subroutine package for rendering

bivariate surfaces. Runit (Computing Centre at the University of

Trondheim) report STF14 A79020.

- 291 -

APPENDIX A

CONICON DOCUMENTATION

* * * *
* * * *
* * *
* * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* *
* *

* * * *
* * *

* *
* *

* A
* *

★ *
* * * * * * *

CMiiiriir. ? I'.liTLJ: - 1

COIjlCdN 2 USLR'S GUIDE

cONI cur; 2 GuiUE - 2

ruPTKAN CUNICUN 2 CIŒA7LD 1 AUGUST 1982

A PACK ACC rUR Ti:C PROpUCTIUr : UF HI GH QUAL I T Y
C ü i a U U F PLÜTS

iiriyinators:

Professor R . 3 i C s o n &
School of Mathematics
Ut'iiversity of Bath
Claverton L'own
BATfl, Avon
CUGLAf.'C B, 7AY

I'l r C.L. T fi cm s on

Telephone Bath
Telex 440Q97

C0225) 61244

CnPYRIRt’T (C) 1982 UNIVERSITY OF LATH

This library was pre pared as Part of the work of an
SS RC - sup por te d project '’Development of Statistical Methoas for
Analysing Spatial Data" directed at the University of bath by
Professor R, Siljson in the period 1977-82.

CONÎCÜN 2 G U I D E - 3

K J t r O C ' U C T l U r j

The purpose of the CnulCÜN package is to provi de a range of
sophisticated h i g h - g u a 1 i t y contour plotting facilities for use in
conjunction with a vector graphics device. The em phasis is on
the quality ana accuracy of the maps produced by the package, but
the techniques used to achieve this r>rove to be efficient in
t e ri.,s of the computational load they impose.

The Package is written in a subset of ISO FORTRAN contained
within F U R T R A N 7 7 , and no difficulty should be ex pe r i e nc e d in
running it under any norma! FORTRAN system. However, memory
rcTuirements may limit its useability on very small computers.
All arithmetic carried out within the package is single
precision, and reliable results should be ob ta inable in 32-bit
a r i t hmet i c or better.

The Package consists of FORTRAN subprograms; the user normally
criooses one of a small number of master routines to produce the
desired contour maP and may also wish to call various utility
routines to assist in Setting up data for the master routine.
Each such routine has to be provided by the user with height and
gradient information, at a grid of points on the surface to be
contoured, together with control information to define the map
that is required, and uninitial is ed workspace. The map is
co nstructed by calls to graphics primitives (eg "draw a line to
(X , y)") which are themselves expressed as FURTRAN subprograms; it
is the responsibility of the installer of the package to provide
i h,o 1 ement at i or^s of these primitives, which are defined in detail
below, to link CONIbON to a graphics driver.

MAT HEMATICAL bACKGPGUND

It is possible to use the CON ICON package without reading this
Section, but users who intend to produce contour plots at all
regularly are strongly recommended to do so in order to
u n u e r s t a n d properly the nontrivial nature of the contouring
process.

S u b o 5e (x,y) are cartesian coordinates giving pos it ion in the
plane (eastings and northings i r, conventional cartography), and f
is some real function of position; for example, f(x,y) might be
topographical height, ground level atmospheric pressure, optical
density on u photoaraphic plate, and so on, measured at the point
(x,y). Fix a value h , and consider all those points in the plane

C U N J C U N 2 G U I D E - 4

such that ■f(x,y) = h . This is the contour at level h. It may be
an empty set (if ft is not a value taken by f), and even if
nonempty, it may in general be in a mathematical sense a very
unoleoSant set. Usually, however, it consists of a number of
smoothly curved lines, the contour lines or isolines at level h .
It is these lines that con touring packages attempt to araw on a
graphics device. Üne of the reasons why c on tou ri ng is a
difficult task c o D D u t a t i o n a 11 y is that this familiar "nice" case
«-iePends on a number of mathematical conditions holding. Shorn of
various technical caveats, the main condition is that a
wel l-d ef in ed contour line through the point (x,y) exists if f has
nonzero gradient at (x,y), and the contour line is then
diff ere nt ia ble to the extent that f is at and near (x,y). Those
wishing to understand the full details should read a textbook on
the analysis of functions of several real variables, and refer in
Particular to the section dealing with the Implicit Function
Theorem. In practice, the contours of a function that is not
continuous will tfiem Selves display discontinuities, as, for
ex atop le, at a cliff-edge; and if the function is not
uifferentiable, the contours may have "corners", as, for example,
at the bottom of a V-shaped valley. If the function is
continuously differentiable (is of class Cl), then so will the
contours be. A continuously diffe ren ti ab le curve is visually
smooth: the eye is very good at detecting o i s c o n t i n u i t i es of
Value and of gradient, but very bad at detecting discontinuities
of.curv atu re and higher derivatives. Most con touring packages,
CJNICGN included, are designed to draw the contours of
con tinuously differentiable functions. Even in this case, good
behaviour of the contour lines depends on non-zero -n ess of the
gradient of f . The most familiar example of the breakdown of
this condition is at a saddlepoint, where the contour at exactly
the level of the saddlepoint looks locally like two straight
lines crossing, Behaviour worse than this can happen only at a
point where higher derivatives vanish as well as the gradient,
and it is only under these cir cumstances that a contour line can
touch, rather than cross, itself. Contour lines associated with
different levels can never, for obvious reasons, touch or cross
one anct her .

Even when the function f has a known and explicit mathematical
form, it is seldom possible to solve explicitly the equation
f(x,y) = h which determines the contours. Thus conto uri ng has to
be an indirect process in practice. Gome con touring techniques
attempt to approximate the contours of the function f as it
stands. This approach leads to serious difficulties over
ge ner at in g eaCh contour once and once only, and moreover the
ap proximation procedure requires "random access" to values of f
at all points in the plane, which in many cases makes it so
costly to carry out computa ti ona lly that a low standard of
accuracy has to be accepted, often leading to contours which even
for smooth functions display unacceptable, unlikely, or
ii..possible features such as visible sharp bends, cusps,
self-contacts, or even crossing of contours at different levels.

CUN I CON 2 G U I D E - 5

The alternative approach is to approximate f by a function g
whose mathematical form is such as to allow the explicit solution
of the equation y(x,y) z h , and then to draw the contours of g,
^ecause these have an explicit form, they con be drawn to the
limits of resolution of the graphics device, or of the eye if
that is coarser; their accuracy depends on how good an
approximation y is to f, Since that approx im ati on is made
once-for-dll, the evaluations of f are pr e de ter mi ne d in number
and position - usually they lie on a square grid whose fineness
is the control over ap proximation accuracy. This latter approach
is the one used in C O N I C O N . It has one inherent disadvantage,
whn'ch is as follows. Quite often the function f is itself
con str uc te d by interpolation by some method between values
observed at an irregular scatter of positions. Note,
incidentally, that any such interpolation procedure is quite
distinct fror.i the process of co nst ruc ti ng contours, and methods
which attempt to conflate the two procedures should be viewed
with suspicion, When f is such an interpolant, it will generally
be the case that y cannot coincide with f at all the points where
observations have been taken, and if a contour level falls
between the value of y and the observed value at such a point,
then the contour will pass on the wrong side of the point. In
practice this seldom happens, and when it does so the vertical
error is sm^ll and hence the horizontal error usually is too. If
it is fouiid to be unacceptable, then for a given set of contour
levels it Con be avoided by improving the accuracy with which q
approximates f, at a cost in computational load.

The difficulty in i m p 1ement i ny the app ro xi mat in y -f u n ct io n
approach to contouring has historically been that of choosing a
suitable class of functions G from which y is to be selected.
The requirements are that G must contain enough functions to
allow good approximation to f; that the functions in G should
allow explicit solution of the contour equation g(x,y) z h ; and
that the functions in G should be smooth enough to have smooth
contour lines, which means in practice that they must be
continuously differentiable. The technique used in many packages
is to evaluate f on a (usually square) grid of points, and then
construct g across each cell of the grid, for example as a
t il inear function matching the values of f at the four corners of
the cell. Although such functions are continuously
d i f f e r e n t i a b 1e within each cell, they are only continuous across
cell boundaries and do not have continuous der ivative there, so
their contours consist of sections of smooth curve with sharp
bends, leading to maps of unacceptable quality, Most of the
other approximant functions which have been pro posed display
similar defects.

The main novelty of the CON ICUN Package is its use of a new class
of approximant functions G , constructed from evaluations not only
of f but also of its gradient on a grid (square in CUN ICON 2,
although this is not an inherent limitation). Experience shows
that in many cases it is possible to evaluate the gradient of a

C U N I C U N 2 G U I D E - 6

function at very little additional cost to that involved in
evaluating the function itself. Where this is not possible, the
gradient at each grid point can easily be estimat ed from the
Values there an,d at ne ig hbouring points, and the only cost is one
of accuracy since the use of the true gradient allows a
h i glie r-o rue r fit betweeri g and f. A utility to estimate
gradients from value-only data is provided in CONICUN 2. A value
and gradient is accordingly assumed to be available at each
vertex of each grid cell. The value and gradient information at
t[, e four corners of a cell is sufficient to permit the
construction of a function across that cell which joins on to the
functions in ne ig hbouring cells with continuity of gradient as
well as value. Such a function is called a Cl- con f or m i ng finite
element. Clearly a function co nstructed in this way will have
Smooth Contour lines provided that the function is co nt inuously
differentiable within each cell. Because of the
value-and-gradient matching to f, the Quality of the
approximation is high, and accurate contour maps can be pr oduced
without the need to use a very fine grid.

The finite element that is used has to permit the explicit
solution of the contour equation g (x ,y) = h , and yet has to offer
enough flexibility to match value and gradient at the corners of
a Svjuare. Quadratic functions are functions for which g(x,y) = h
can Le solved; the resultant contours are conic sections.
First-degree ("linear") functions do not offer enough flexibility
- their contours are straight lines - and higher degree functions
do itot in practice permit the solution of q(x,y) = h in any
helpful Parametric form; this also see in s to be true of
non-Polynomial functions. However, quadratics in two variables
are a six-parameter family and cannot be expecteo to match twelve
data Values (Value and two components of gradient at the four
corners of the square cell). It is necessary to break the cell
up into triangular Patches with a separate quadratic on each and
with joins across internal seam lines retaining continuity of the
function and its gradient. The resulting construct is called a
seamed quadratic finite element. In aadition to matching the
data at the corners, it is necessary for the element to satisfy
conditions along its edges which ensure a smooth join to
neighbouring elements. The authors have proposed a novel element
for this purpose, and that is what CObI CON uses. The element is
(ieScribed in the following paper:

vSibson, i\., and Thonison, G,D, "A seamed quadratic element for
contouring"

The Computer Journal 24 (19PI) pp. 378-382.

A detailed account of its properties, incluuinu error bounds, is
given in the following thesis;

Thomson, G,D. "Automatic co ntouring by piecewise quadratic
a L ' P r o X i m a t i o n "

University of Bath PhD Thesis (1982),

CLlNICnr- 2 G U I D E - 7

The S i bson-Th oms on element divides the square (or rectangle) into
sixteen triangles. First the cell is halved horizontally and
Vertically, then each quarter-cell is divided into four by its
diagonals. Although this sounos complicated, it is in fact a
Pa r s i I'ton i ous solution, in that no degrees of freedom remain after
the values and gradients at the grid points have been matched and
the c o n f o r m a b i 1ity conditions along the edges have been
Satisfied. The construction of the contours on such a system is
a co mplicated and numerically quite delicate task, but it is much
more efficient than might at first sight be supposed, mainly
because good approximate bounds are available which greatly
facilitate the location of those cells, and suosequently of those
trianyles, where a contour may lie. The contours themselves
consist of pieces of conic section (ellipse, parabola, hyperbola)
joined continuously d i f f e r e n t i a b 1 y together. These conic
Segments, beiny described parametrically, can be drawn to any
desired degree of accuracy on an actual graphics device.

CCNI CÜN 2 GUI DE - 8

FCATUUE3 ÜF l i l t PACKAGE

(1) Choice of contour hie i Qh t s

The user, if he wishes, may specify all contour heights himself
ano these need not he at regular intervals. However he has the
alternative of allowing the package to choose contour levels for
him. This may he done completely automatically, or the user may
s;>ecify a pair of heights between which all contours should lie.
The user must always specify the number of contours himself. Note
also that in order to keep contour heights at reasonably round
numbers, automatic choice of contour levels will not always
result in the precise number of contours requested being plotted,

(2) Annotation of contours

If he wishes, the user may request the package to label the
contours in his plot, and this will be done with suitabl y- siz eo
gaos being left in the contours where labels occur. If this
feature is used, it is not necessary to label all contours - the
user haS the o|)t i on of labelling every nth contour and leaving
the remainder unlabelled.

(3) Thick-line contours

Thick-line contours are an additional feature. The user exercises
the same degree of control over their positions as he does with
annotated contours.

(4) C. rosshatching

A distinctive feature of the CfjNlCÜN package is the ability to
crosshatch (i.e. "shade in") the area between pairs of contours
(also above or t) e 1 o w specified contours). Styles of
cr oss ha tc hin q vary from the most basic straight-line
crossh atc hi ng to sophisticated styles such as digits from 0 to 9,
h.oneycomb, basketwork and tree styles for cartographic use.

Incorporated in the L ' a c k a q e are two sef>arate and fundamentally
different cross hate King algorithms, neither of which can be
C ons id er ed superior to the other in all circumstances. The user's
pref err ed choice of algorithm will depend upon such factors aS
the numL>er of grid cells in the plot and the partic ula r styles of
cro ssh at ch ing to be used. A discussion on the relative merits of
these algorithms is given below in the section entitled
"Selection of crosshatchina algorithm."

CS) Local suppression of contour plotting.

CUN 1 CLIN always requires the user to specify an M * N grid of
Surface heights and gradients; however the user may instruct the

CON I cor; 2 g u i d e - 9

Package t o suppress plotting within a set of gria squares of his
choice. It is therefore possible to leave "holes" in the plot and
to construct plots with no n-rectangular boundaries.

Ir. 1.1 any cases the user may wish to restrict contour plo tti ng to
the part of the grid lying within a polygonal boundary, and in a
numper of these examples the polygon will be a convex one. A
suoroutine is therefore provided which selects for the user those
cells of the grid which lie within such a region as specified by
the user. A further subroutine may be used to plot the boundary
of the area which will then Pe contoured.

(6) Combinations of features (1) - (5)

The user nay coi.tbine any of the features described in (1) - (5)
simultaneously, with the exception of features (4) and (5) which
cannot be used together in the present implementation. In
particular, if the options of annotation and c ro ss h a t c h i n g are
chosen together, the cross hate In'rig lines will leave enough space
for the labels to be seen clearly.

(7) Plotting the gradient of a function

Besides enabling the user to p-roduce standard contour plots of a
function, CÜÎ.'lCdb also incorporates a facility for the creation
of contour plots of the squared magnitude of the gradient (that
is, the sum of squares of the partial derivatives in x and y
directions) of that function. As with standard CUNI CON plots, the
contours plotted using this facility are not the true (gradient)
contours of the surface, but are the contours (of the gradient)
of the piecewise quadratic approximant function (see Sibson and
Thomson (1981) for details). This feature is includeo in the
package as an aid to the unders ta nd ing of st andard CON I CON
plots:- if it indicates the existence of large areas throughout
which tlie gradient of the function is very small, then the user
should regard contours of the function itself in such areas with
some scepticism. In these areas the Implicit function Theorem,
which is the foundation of contouring, comes close to breaking
down and contours may start to display anomalous behaviour.

Note that gradient contours, unlike other contours p ro duc ed by
C(.d; I C U N , need not be smooth throughout and may have visible
"corners" in some areas. This is because the squared magnitude
of the gradient of the approximant is continuous but need not
have continuous derivatives across seam lines; the "corners" are
not an error.

Features (1), (?), (3) and (5) may all be used in combination
with this facility.

(G) blotting of stationary points

A further useful feature offered by CONICON is its ca pacity for
111 e marking of stationary o i n t s (local m a x i ni a , local m i n i n, a and
Saogle points) of a function. The points plotted are not of
course true stationary points of the function being contoured,

C O M CON 2 GUI DC - 10

hut are stationary y; o i n t s of the piecewise quadratic approximant
function and will usually be a good app roximation to the true
stationary points,

Ti.e locations of stationary poirits of each type may be
indicated by separate symbols selected by the user; for example,
in meteorological a y p 1i c at ions the user may decide to indicate
the presence of local maxima and minima by "H"s and **L"s
respectively, and to suppress labelling of saddle points.

It is anticipated that this feature will normally be used in
conjunction with standard contour plots, but it may also be used
in combination with gradient pilots or indeed independently of any
contour plots. The oc currence of Several stationary points in a
cluster is fairly common, and reflects a suggestion in the
yridded values of the function and its derivatives that some
higher oerivatives may vanish at or near the cluster. Users
should not automatically assume tt»at an error has occurred when
Several stationary f>oints appear together.

C O N I C O N 2 G U I D E - 11

S E L E C T I O N nr C H O S G H A T C H I N G A L G O R I T H M

As has been mentioned above, the C 0 N I C 0 N package allows the user
a choice of two different cr oss hat ch in g algorithms, which we
shall refer to as algorithm A and algorithm b. If the user wishes
to use a 1 yo r i t hi.i A he should call subroutine CONX A 1 or C0NXA2; to
use algorithm B he should call subroutine C O N X O 1 or CONXbZ. In
order to decide w h i c h is the more suitable for his purposes, the
user sliould be aware of the relative nierits of algorithms A and
B, so we give here a brief discussion of this matter.

If algorithm A is used then the user must choose a single style
of hatching to be plotted between each adjacent pair of contours,
plus styles for above and below the highest and lowest contours
respectively (The option of 1eav i ng any of these areas blank is
of course available). The algorithm is only capable of hatching
these areas one at a time, and therefore cannot take aovantage of
situations such as two neighbouring styles of cr os sha t c hi n g being
identical (in which case it would be more efficient to treat the
two areas as a single area and crosshatch them simultaneously).

Algorithm C allows more flexibility. The number of styles of
cr oss hatching chosen is completely independent of the number of
contours plotted (indeed it is not necessary to plot any
contours); and each band of crossh at chi ng is chosen i n o e p e n d e n t 1 y
of contour heights and of the other baruis of cr osshatching. Thus
Superposition of crosshatchings becomes possible. This is
Par ticularly useful if the user wishes the c ro s sh atc hin g to
darken progressively as higher levels of the surface are reached,
and also enables the user to create styles of cr o s sha tch in g not
available when algorithm A is used.

Unf ortunately algorithm B is in general less efficient than
algorithm A, in the sense that if both are given identical tasks
(i.e. tasks which A is capable of carrying out) then al gorithm A
will usually take quite considerably less time in co mpleting the
task than algorithm B. However, in the case mentio ne d above where
the user wishes the intensity of crossh at chi ng to increase
pro gre ss iv ely as the heigfit of the surface increases, algorithm B
is usually considerably faster than algorithm A if the
opportunity of superimpo si ng different bands of c r os sha tc hin g is
taken up. AUTÜXH, a subroutine which automatically sets values
of hatching parameters for algorithm B in such cases, is
doc umented below.

Another important factor which must he taken into conside rat io n
is storage requirements. The use of algorithm B involves little
additional storage space on top of that used to produce the map's
Contours. On the other hano algorithm A requires a number of
extra arrays whose length e e n d s on the number of elements in
the griu aS well as the complexity of the contours being produced
(see notes on CüfiXAl for details). It is possible that for some
Plots on t,onie systems the total storage space required may be
prohib iti ve ly large. In such cases the only alternative is to use
algorithm B.

C Ü N I C O M 2 G U I D E - 12

Finally, if the user wishes to coin bine cr oss ha t ch i n g with
annotation, he should note that algorithm U hatches the plot
after constru ct io n of all contours and is therefore able to leave
a snail rectangular area a round every label unmarked, whereas
algorithm A Calculates and falots each band of c r o s s ha t c hi n g
before the co ns truction of all but one of the contours above the
level of that Land, and cannot predict label po s it ion s on
contours which have not yet been plotted.

It is hoped that these notes will helfj the user to assess which
of algorithms A and H is better suited to his individual needs.
However, if a large number of plots is to be pro duc ed then he is
recommended to experiment with both before deciding which is to
be ref erred.
Users may wish to know that the efficiency of algorithm A and the
flexibility of algorithm H could in principle be combined, but
this would involve very heavy storage penalties indeed, to the
extent that it has not been considered worthwhile to offer this
option in the package.

e nd I CON 2 C U I D L - 13

G R A P H I C S I N T E R F A C E

Included in the CCil.ICUf-t package are calls to a number of simple
graphics routines, which the user will have to supply to
interface with the graphics system on his computer. These
routines must conform to the following specifications:

n SUuROUTINE PLTürM(Xf1IN,XMAX, YIIIR, YMAX)

This routine should initialise a frame of the Plot and set up a
rectangular plot window, the southwest corner of which is the
point (XMir;,YMIfO and the northeast corner of which is the point
(X Y A X ,Y R A X), The scales should be equal in the x and y
directions. All tl<e pl otting done by the routines describ ed
below will fall within this rectangle.

2) SURPRUTINF PLTMnVCX/Yl

This subroutine should move the plot position invisibly to the
point (X,Y). The first change of plot position after a call made
by the graphics routines to PLTdN will oe by a call to PLTMÜV.

3) GUbPfVJTIHE PLTLir.'(X,Y)

This s u Ij routine should draw a straight line in the current line
style and colour from the last plot position to the point (X,Y),
where the plot position should be left.

T) SUCnuUTI'lE PLTFAT (X, Y,M)

This subroutine should d r «w a (generally thin) rectangle from the
current plot («osition to the point (X,Y) in the current logical
pen colour and leave the current P'lot position at the point
(X,Y). The rectangle should be 2.0*H units thick. The purpose of
this routine is to give the impression of a thick line and it is
therefore acceptable (and perhaps desirable) to plot a straight
line froti! the current plotter position to (X,Y) before plo tting
the rectangle. In this way the pen will be in the correct
position i rrr.ieJi atel y of ter the rectangle has been plotted,

5) SbbRHNT 1:1F PLTF I G (f NUM, X , Y , MFRAC)

CEiMICüN 2 G U I D E - 14

This suI routine should print the floating point number stored in
FrjiR from left to right so that its centre is at the point (X,Y).
The integer f-FF^AC should set the number of digits to appear after
the decimal point of thy number. If NFRAC is zero the decimal
P o i n t should be suppressed. The current plot position on return
froi.. this soF,routine should be the point (X,Y)

6) SUBROUTINE PLTCCG (C H U , CHIl)

This subroutine should return, in user coordinates, the width and
height respectively of the rectangular area in which a single
character is i-lotted by subroutine PLTFIG (including spaces to
the next character on the right and to the next line of
characters above). The current plotter position should be
unchanaed on exit.

7) 3 UhROUTINE PLTPEh(IPEN)

This subroutine should set the logical pen colour to the type
indicated by IPEN and shouKi leave the current plotter po sition
unc r, a n g e o . A value of JF’EU = 0 sFiOuld correspond to solid lines.
A negative value of I ('EN should suppress plotting.

8) SUURUUTIUF PLTGYP.(ISYM)

This routine should set the symbol to be used for marking
stationary point positions when a call to PLTPK is made. The
correspondence between graphical symbols and integer codes is
deteri'iineJ by the user's implementation of this routine, by
convention negative integers should suppress plotting.

9) GUbRUUTINL F‘LTMK(X,Y)

This routine should move the currerit plotter position to the
r^oint (X,Y) invisibly and print a symbol centred there. The
symbol will have been specified by a p.rev i ous call to PLTSYM,

10) SlJEi;nUTI(;E PLTOFF

This subrout i ne should close the plot frame opened by l’LTÜN and
leave the graphics system reaoy for ano t tie r call to PLTON to
create a new frame or for tieinn terminated prior to the GTUP
statement in the user's program.

I. Ob'I CUN 2 G U I D E - 15

SUMMARY U r H I G H L E V E L S U B R O U T I N E S

At oresent C O N I C DÎJ 2 contains eiyht master routines, each of
which is cOL ah 1e of producing a complete contour plot
incorporating a number of the features described earlier. These
routines may be divided into four pairs of routines which are
listed tie low; in each case the first routine of the pair is a
s i m|., 1 e interface routine which carries out the task of opening
and closing of the plot frarie (l-y calling su broutines PLTUN and
PLiriEF), plots the boundary of the grid in a style chosen by the
user, and calls the other routine of the pair. The user should
therefore call one of subrout irtes CDNlCl, COr.'XAl, CONXBl and
Cdf.GRl if he wishes his plot frame to be defined automatically,
and he should call C0RIC2, C0NXA2, CÜRXD? or C0HGR2 if he wishes
to define the f)lot f ra.ie himself. Use of any of the latter four
routines will enaL>le tfne user to over plot two or more contour
Hops easily, or to relate the spatial locations of ph en om e na such
as data sites, geographical features etc. to the variable being
contoured. Subroutines CONIC 1 and C0r;GR2 plot all contours in
the current logical men colour (as defined by the most recent
call to (^LTPEN), and this is unchanged on exit. All other master
routines ylot contours using soliu lines. Besides the differences
outlined above, the s u I, r o u t i ri e s in each pairing carry out
itJ critical tasks. The n a rues of these master routines and the
features which they offer are as follows:-

GQ(JIC1 , C Ü N I C 2 (1), (2), C3)
C Ü' " À A 1 , C U N X A 2 Cl) , (2), (3)
cor.xBi, C Ü N X B 2 Cl), (2), C3)
cur.GRi, C U N G R 2 (1), (2), (3)
Hf the routines which produce standard
Sur face, the first [' a i r i.e. C O N I C 1 and C O M
to use and have the shortest argument
recommended for any
or (7),

P 1 ot whic h .1 o e s not make

contour plots of a
2 are the simplest
lists. Their use is
use of features (4)

Gubroutines Cfjf^XAl, C0RXA2, CCiNXBl and C0NXE2 are intended
p r i ma r i1 y for use when the crosshatc hi ng feature is being used
(alt hou^h they do not enforce its use). As has been discussed
a b o v e , the package incorporates two fundamentally different
cro ssh atching algorithms; the one which we refer to as algorithm
A is used by subroutines CGNXAl and CDNXA2, and the other,
algorithm B , [.y subroutines CDNXBl and C0NXB2, Neither algorithm
Can be considered superior to the other on all occasions; a
discussion of their relative merits was present ed in a previous
sect ion.
ouurout i nes C R N G P 1 and C0RCR2 produce contour plots of the

gradient of the surface. These n,ak s are intended to help the user

C U N I C U N 2 G U I D E - 16

tu identify those contours which are relatively unreliable. The
user is of f e r e '1 exactly the same options with these routines as
he has when using CUR I C 1 or CCNIC2; indeed the argument lists of
CCh'GR 1 ciP.j C ü :1CR2 are identical to those of CUN’ICl and CUN1C2
respectively.
Leslies these eight master routines for contour plotting, a

number of other high level routines are documented below. These
are subroutines GTf'LTl, STPLT2, AUTOXH, GRStT, RKSUB, CONVEX and
BORDER.
CTRLT! a n d STPLT2 are master routines which may be called to

murk the locations of stationary points of the approximant
function; the former routine opens and shuts the plot frame and
will produce a plot frame of exactly the same scale and location
as subroutines COr ; l Cl , C H N X A l , CUNXL 1 and CÜNGR1 produce.
Subroutine STPLT2 leaves the task of opening and closing of the
plot frame to the user.

Subroutine AUTÜXH takes much of the pain out of cr o s sha tc hi ng
in many cases; it may be used to set crossh atc hi ng parameters
(for algorithm f>) automatically in examples where the user wishes
the intensity of hatching to increase pro gr essively as the height
of the surface increases. Full use is made of the opportun it y for
superposition of hatches offered by algorithm B, and results will
normal 1 y be obtained with considerably less expense than
comparai.1 e plots produced using a 1 go r i t hr, A, Subroutine AUTCJXH
may be called prior to calling CHf,XBl or CUNX02 but should not be
u 3 ej in combination with algorithm A .

Subroutine GFSFT should be called prior to calling any of the
rioSter r'«utines if gradient values have to be estimated, unless
the user has opted to omit con touring within some grid cells. In
this case subroutine CRSUG should be used instead.

Subroutine CONVEX automatically selects those cells of the grid
which lie comiplctely within a convex window specified by the user
and flags the rest of the cells as dead. Subroutine BORDER may be
used to plot the l.oundary of the contoured area which results
from calling C U N V E X .

lin 1 ess otherwise stated, variable types can be assumed to follow
the standard convention. i.e. Variables beginn in g with the
letters I, J, K, L, F or R are integer valued; all others are
floating point variables. Single precision is used throughout.

If a variable Oomo is prefixed by a pair of asterisks, this means
that the value(s) of that variable must be set before the routine
is Colled. If a variable name is prefixed by a single asterisk,
then that variable may or may not have to be set before the
routine is called, depending on which options have been chosen?
which is the case should be obvious from reaaing the notes on
that variable.

C E M C O r ' 2 G U I D E - 17

M A S T E R R O U T I N E S

s u b r o u t i n e COOXAl :Z, 7X,ZY,MM,R,r:,2LIM,Gf:iDrCT,NCT, ICT, XYrNXY,
CLNT,F.,KTUP,K3/LK3, II, TTH, ILACf riPR, AV,UV, IV, JV,NC1,XI,NXI,XD, AhC,
TO, i.V, T5,NTR, ALAP, Af.’,rjLAB, I PEN)

A master routine which produces a single contour plot
incorporatino any combination of features (1) - (4),
Cro ssh atching is carried out using algorithm A; if it is not
required, subroutine CDuICl (which has a shorter argument list)
should te used. This subroutine creates a complete plot frame
starting with a call to PLTUN and ending with a call to PLTUFE.
The boundary of the map is plotted in a style selected by the
user anu contours are plotted using solid lines.

Explanation of argurnents:-

Z(fVl/N)
An array of surface heights. Z(l,l) is the height in the SW
corner. The first dimension increases as x increases, and the
second u i men s i on corresponds to the value of y.

** ZX (U!',N)
An nrray of partial derivatives i n the x-directi on.

ZY(Ur‘,N)
An array of partial derivatives in the y-direction.

* nr*
The true first din.ension of the arrays Z , ZX and 7Y, and the
second d i mens i on of the array ZLIU,

The first dimension of the arrays Z, ZX
to be plotted, i.e. The no of columns
therefore be less than or e q u a 1 to MM,

and ZY that is actually
in the grid. M must

N
Up of rows in the grid and the second dimension of Z, ZX and ZY.

CUNI CUN 2 G U I D E - 18

ZLT:.(2,l'M,tO
k. o r k 1n a a r r a y .

GRID
Distance between a pair of adjacent grid points,

* CUr.'CT)
Ir, the usual case (when TCT > 0), CT holds the levels at which
contours are to be plotted. If ICT < 0, CT(l) and CTC2) hold
lower and upper limits respectively between which all contours
will be chosen to lie. If ICT = 0, all values in CT are ignored.

N.B. If cro ss hatching is required and contour levels are se le c
ted by the user, values in CT must be in strictly ascending
orner.

** fCT
li-.e no of contours required and the length of CT.

ICT
T nd i c a t e s whether the user wishes contour levels to be chosen
automatically or L.y himself.

ICT = 0 => completely aut o,.iat i c choice of contour levels. (The
user must of course always specify the number of contours
r e q u i r e d).

ICT < 0 => seiii i-au t oma t i c choice of contour levels:- the user
is required only to specify a pair of values (CT(1) and CTC2))
l>etween which all DCT contours will be chosen, at regular
interval s.

ICT > 0 => user specifies all contour levels h i m s e 1f .

XY(2,NXY)
o r k i n g array.

** NX Y
This variable corresponds to the length of the second dimension
of working arrays X Y and CDN'T. The required value of NX Y is
hiuhly data-dependent, but MAX 0(bhO,5O*M,5O*N) should be
sufficient in most Cases. If the selected value of N X Y turns out
to be too small, the r»rogram will terminate at STOP 621 and will
haVe to be re-run using a higher value of NXY,

CCNT(2,RXY)

C O N I c Of i ? G UID E - 19

forking array.

K (3 , K T n P)
Forking array.

** KTOP
This variable cor responds to the length of the second dimension
of the working array K. Like RXY it is data-deoendent and should
be set to approximately four fifths the value of NXY, If it is
not large cnougfi, the Program will terminate at STOP 620,

K3(i,'K3)
harking array.

★ ★ fiK3
This variable corresponds to the length of the working array NK3.
It is d a t a - J e p e n d e n t • A value of 100 should normally be large
enough, but if the feature of local suppression of contour
plotting is used then the user should double this fioure. If NK3
turns out not to he large enough then the program will terminate
at uTCP 62?.

** II
Specifies

(a) wfi ether
(b) w r» e t h c r
requ i r e J .

or not thick line contours are required.
or not annotation (giving contour heights) is

(c) whether or not cr osshatching is required.

To find the a(ip rop r i a t e value of II, t>ecgin with
Add 1 if thick line contours are required.
Add ? if annotation is required.
Add 4 if cr uSshatching is required.

II = 0

* III:
Specifies positions of thick-line contours (if requested). If the
user requires the ith contour to be the first one drawn with a
thick line and j thin line contours between each pair of
thick-line contours, ITM should be set equal to 10*i + j. ITM is
ignored if thick line contours have not been
otherwise it is essential that i > 0 and j < 10.

requested

* I LAB
Specifies which
exactly the same

contours (if any) are
way as ITM is chosen.

to be annotated. Choose in

CÜNlCOrj 2 G U I D E - 20

* Î . F R
Specifies the number of decimal places to be included in each
contour height label. If fJ'R > 4 or NFR < 0, a sensible choice
will be made aut om atically for each label, KFR = 0 suppresses the
decimal point. This variable is redundant if annotation is not
requested.

* Avcr.ci)
A vector specifying the angle from horizontal (in radians) at
which each band of cro ssh a tc h i ng is to be drawn. Users should
note that values in this array will be slightly pe r tu rbe d by
CUNIcut: to avoid numerical difficulties occuring when hatch lines
are (almost) parallel with the seat,, lines of the piecewise
quadratic. CQMICMN expects the values in AV to be reasonably
simple submultiples of pi.

★ UV(NCl)
A vector specifying the scale (pleasured in the same units as the
X and y coordinates) of each level of crosshatchina. The value
selected correSpor,ds to the Perpendi cul ar distance I, et ween a pair
of adjacent lines when style 1 is used. Some ex p e ri me nt ati on may
be necessary L>efore suitable values are discovered, but a
reasonalde initial estimate would be to choose values in this
vector to le of t[>e order of one fiftieth of the length of an
edge of the plot.

* IV(MCI)
A Vector holding code values for styles of cr os sha tch in g used
between each pair of contours. I V (1) holds the code number of the
style of hatching to pe used below the level of CT(1); IV(2)
huljs the code number for the style to be used between CT(1) and
C l (2); and so on. IV is ignored if cro ssh atching has not been
requested. N.B. In a nap with NCT contours, NCI+1 (= MCI)
styles of cr osshatching are required. T^e code values are as
foi 1o w s :-

(1) 3 i m p 1e hatch
(2) Square crosshatch
(3) Meet a n g u 1 a r crosshatch
(4) Long rectarigular cross hatch
(5) Very long rectangular crosshatch
(6) Stepped rectangular crosshatch
C7) GtePj-ed long rectangular crosshatch
(8) Gtepb-ed very long rectangular crosshatch
(9) bonded crcsshatch
(10) Divided sgUure crosshatch
(11) be r r i I iqboric crosshatch
(12) Long herringbone crosshatch
(13) Square boxes
(14) i''ectancîular boxes

C U M 1 CUM 2 G U I D E - 21

(15) 8 1 e f ' s
(16) Square waves in phase
(17) Square waves out of phase
(18) Square labels
(19) Ladders
(20) Digit 0
(21) Digit 1
(22) Digit 2
(25) Digit 3
(24) Digit 4
(25) Digit 5
(26) Digit 6
(27) Digit 7
(28) Digit 8
(29) Digit 9
(30) Dianorio crosshatch
(31) Triangular crosshatch
(32) Triangle a n J I, e x a g 0 n crosshatch
(33) Honeycomb
(34) Diamond boxes
(35) T r i a n g u 1 ar boxes
(36) hexagonal boxes
(37) Triangular labels
(38) Indentures
(30) Six stars
(40) Plus signs
(41) F u 1 t i 1 1 c a t i o n signs
(42) Fight stars
(43) Square crosshatch with one di agonal
(44) Square crosshatch with two diagonals
(45) S u a r e croSshatch wit I. alternate diagonals
(46) Interwoven crosshatch
(47) basketwork
(46) C o n i f e r s
(49) Deciduous forest
(50) Mixed forest
(51) U r c 11 a r d

> 51 or < 1 no cr oss hatching

* JV(fJCl)
A vector specifying the logical pen colour to
level of crosshatching.

be used at each

!:ci
NCI = NCT+1, an:J is the length of vectors AV, U V , IV J V .

XI
'• i Ü r k i n Q array of uimens ion (5,MX I)

COMI CUN 2 G U I D E -

Corresponds
X I , which is
not required
1G + MAXO(M, fO
the Value of
large enough

to the length of the second dimension of the array
used in crosshatching. Therefore if c r os sha tc hin g is
.NX I should bo set eaual to 1, Otherwise a value of
will u s u u 11 y be sufficient, NX I must never exceed

t,TR (q,v,). If, on the other hand, it is not Set
the program will terr.iinate at STOP 625.

XL, ABC
r’urking arrays, each of dimension (2,6,NTR)

TO
’.'or king array of dimension (2,2,fiTR)

LV, TS
working vectors of length NTR

reQu i red for
crosshatch ing

★ * r.Tf
The length of a number of w o r k i n g arrays
crosshatching purposes. F'TK should be set to 1 if
is not reguireJ, otherwise a value of MAX0(30,3*M*N/2) would be a
reasonoi, 1e initial estimate. If this is not sufficiently large
the program will terminate at STOP 623. The value of NTR should
be kept as low as possible since 30*NTR storage locations are
reserved. On some systems it may not be possible to set NTR to a
sufficiently large value to Cope with large maps.

ALAB(5,NLAb)
. 1 u r k i n g array

A[. (3,MLAR)
».orki ng array

rx: NLAb
This variable corresponds to the length of the second dimensions
of the arrays ALAD and AN. These arrays are only used when both
cro ssh atching ano annotation have been specified (i.e. 1 1 = 6 or
7), Thus if II < 6, NLAP should be set to 1, Otherwise NLAB must
be at least as great as the total number of contour labels which
will occur in the plot. A value of 5* NCT will usually be
sufficient ;- if it is not the program will terminate at STOP
624 .

C N N] C O N 2 G U i n C - 23

** iPE
The logical pen colour used in plotting the boundary of the grid.
The styles available will be implementation dependent. As usual,
a negative value suppresses clotting.

CUMI CUN 2 G U I D E - 24

GLiB.RUUTIhL CONX A 2 C Z , Z X , Z Y , M H , ; 1, ,N, Z L 1M , GR I D , C T , NC T , 1C T , X Y , NX Y ,
C'j:i T , K., R TüP , K 3 , r.’K 3 , 11 , 1 T H , IL AL,, r;n<, A V , U V , 1 V , J V , NC 1, X I , NX I , XD , ABC ,
TüfLV,T3,N T R , A L A B ,AN,NLAB,X3W,YSw)

A II aster routine which produces a single
incorporating any co mbination of features
Crosshatching is carried out using algorithm A; i
required, sut-routine CONIC2 (which has a shorter
should be used. The user is expected to scale the
(i.e. he must call PLTON and P L T G F D and plotting
the grid is also left to the user. Contours are
solid lines.
Those arguments which appear in the argument list

the sane meariing here. The two arguments not de f i
are as follows:-

contour plot
(1) - (4).

f it is not
argument list)
plot hi m s e 1 f

of the edge of
plotted using

of CÜNXA1 have
ned previ ous ly

★ * x s ;;,Y5’m
C a r t e s i a n c o o r d i n a t e s of the most
grid. i.e. the poirit at w hi c h
gradients Z(l,l), 2 X (1 , 1) , ZY(1,1).
a s s u m e Cl to oe a l i g n e d P a r a l l e l wit h

south-westerly node of the
the surface has height and
The nodes of the grid are
the coordinate axes.

S ' J U r n u T I N L C O R X B l (Z , 7 X , Z Y , M f ' , r ‘. , r : , Z L I M , G R I [' , C T , M C T , I C T , XY, NXY,
C OrJT , f . , K T ÜP , K 3 , NK 3 , II , IT H , I L Ab , f , F R , XH , A V , (J V , U V , I V , J V , NH , X I , NX I ,
/•L A 5 , A h ' , N L A B , IH[r.')

A n aster routine which produces a single contour plot
incorporating any combination of features (1) - (4).
C r o s s h a t c h i n g is carried out using algorithm R ; it is not
obligatory, but if it is not required, subroutine CONlCl (which
haS a shorter argument list) shoulo L,e used. This subroutine
creates a complete plot frarie starting with a call to PLTUN and
ending with a C a l l to PLTUCF. The boundary of the map is plotted
in a line style selected by the user, and contours are plott ed
with solid lines.

All those arguments whic 11 af.pear in the argument list of
subroutine CUNXAl liave the same meaning here, with the following
except ions:-

** AV,UV,IV,JV
These arrays are now each of length (at least)
r.Cl is not an argument of this su L, routine.

Nil (see below);

Those arguments which do not appear in the argument list of

CUM I cor: 2 G U I D E - 25

suoroutine CHRXAl have the following meanings:-

** XH(2,Ni:)
An jrray holding the contour levels which define the po s iti ons of
the Nil bands of crosshatching. The area covered by each band of
crosshatching is de fined by u pair of contour levels, say Cl and
C 2 (where Cl < C2). To set this as the Jth band of cro ssh a t ch i n g
the user must set X b (1,J) = Cl and XH(2,J) = C 2. If it is desired
to crosshatch the whole area below a certain level, say C, with
the Jth band, then XH(2,J) should be set equal to C, and Xh(l,J)
should be set to a level lielow the minimum value of the surface
(o Value below -l.OL+25 will give maximum efficiency).
Similarly, to hatch the area above level C with the Jth band of
hatching, the user should set XII(1,J) equal to C and XH(2,J) to a
value higher than the maximum height of the surface, and
preferably greater than l.OC+25.

OV(Nh)
A vector of values (measured in the same units as the x and y
coordinotes) specifying the offset of an arbitrary line in the
raster from the origin (the bottoi.i left hand corner of the plot
if scaliny is carried out automatically). Each value in this
vector is ignored unless the co rre sponding value in the array IV
is 1, indicating that the simple hatch style has been selected.
Control of this variable is useful in examples where the user
wishes to create the effect of pr ogressive da r ken ing of the
Surface as its height increases, by superposition of bands of
style l; in such examples the user can increase the density of
the hatching bands in a regular manner in much smaller steps than
would otherwise be possible.

** III!
T ne nur.ber of bands of cr oss hatching to be plotted, and the
1 e n g 111 of the arrays AV, LtV, IV, J V ana the second dimensi on of
the array XII.

3UBI-:0UT I M[CObX 52 (2 , Z X , Z Y , M M , n , N , Z L I M , Gia I;, C T , NC T , IC T , X Y , NX Y ,
CLINT, K, KTOP, K 3, NK 3, II, ITH, IL A b , NF R , X H , A V , OV , U V , I V , J V , NH , XI , NX I ,
ALAb, AN, NLAb, XS;;,YSb')

A master routine which produces a single contour plot
incorporating any com bination of features (1) - (4).
Crosshatching is carried out using algorithm B; if it is not
requireu, it is recommended that suL>routine CUNIC2 (which has a
shorter orgumerit list) is used instead. The user is ex pected to
scale the plot himself (i.e. he must call PLTQN and P L T O F F) and

CfîNICOM 2 G U I D E - 26

plott ing of the boundary of the plot is also left to the user.
Contours are [.> lotte «.i using solid lines.
Those arguments which appear in CUUXBl's argument list have the

Same meaning here, and arguments XSI», YCW are also as defined
previously.

s u b r o u t i n e COI.'ICl (Z,ZX,ZY,Mn,l',,r\ZLIM,GRID,CT,NCT, ICT, XYfNXY,
CGNT,K,KTUP,K3,riK3,II, ITH, lLAB,fJFfw I PEN)

A master routine allowing all the options available in subroutine
C UdX A 1 and CCiNXRl with the exception of crosshatching. The
feature of local contour suppression is also available. If
cross hat ch in g is not requireo this routine should be used in
preference to CONXAl or CHNXDl, as its argument list is
considerably shorter. This suoroutine creates a complete plot
frame starting with a call to PLTüf; and ending with a call to
PLTnrr. The boundary of the grid (which may or may not be the
boutidary of the co ntoured area) is plotted in a line style
selected by the user and contours are plotted using solid lines.

All a ryuhient s also appear in the argument list of CONXAl and are
ne&cribed in the do cumentation for COfiXA) above; however the
following variables are defined differently in this routine:-

^ ZLIM(2,MN,N)
k,hen II > 3, this array indicates which cells of the grid should
be contoured and which ones sf.ould not. The values ZLIM(1,I,J)
and ZLIfUZ,I,J) refer to the grid cell with surface height Z(1,J)
i n its 51.' corner. If the user wishes to contour within this cell
he should set ZLIU(1,I,J) less than or equal to Z 1.1 f 1 (2 , I , J)
(values of 0.0 in each will do). Otherwise, if he wishes to
suppress contour plotting within the area of this cell, he should
Set ZL1N(1,I,J) ureater than Zb I 0 (2 , I,J). Note that it is not
necessary to set values in this array for I > M - 1 and J > N-1,
since we are dealing with an (w-i) * (N-1) grid of cells.
when II < 4 (i.e. the complete grid is to be contoured) values

in this array need not be set by the user.
N o te that s u b r o u t i n e CONVEX (see b elo w) sets t h e s e v a l u e s

a u t o m a t i c a l l y in a co ri mon s y» e c i a 1 case.

* CT(NCT)
V u 1ues in this array are no longer required to be ordered.

* * II
Ihis variable should be chosen in the following way;-

CUNI C ON 2 G U I D E - 27

B eg in with II = 0,
AJd 1 if t h i c k - l i n e c o n t o u r s are r e q u i r e d .
Add à if annotation is required.
Add 5 if con touring is to be restricted to a subset of the
grid cells.

I NE CON I c 2 (Z , ZX , Z Y , nn f r:, N , Z L I N , G R I D , C T , NC T , IC T , X Y r NX Y ,
CüivT,K,l;TüP,K3,NK3, II, ITH, ILAL;,rjFR,XSl.', YSR)

A master routine which carries out the same tasks as C O N ICI, with
the exception that the user is expected to scale the plot himself
(i.e. he must call PLTON and PLTOFE) and plotting of the edge of
the grid or the boundary of the contour ed area is also left to
the user. Contours are plotted ifi the current logical pen colour
(rfS specified I)y the most recent call to PLTPEN), which remains
unaltered on exit.
Those arguments which also appear in the argument list of

subroutine CGNICl have the same mean i no here, and the other two
arguments (XSh' and YSli) are as defined above.

5!)!5f.nUT I r.'E C U N G R 1 C Z , Z X , Z Y , M ! , N , f;, Z L I M , G R n. , C T , N C T , I C T , X Y , N X Y ,
COhl , l ; , K T U P , K 3 , N K 3 , I I , I T H , I LAG , N F C , I P E N)

A master routine which produces a complete contour plot of the
gradient of a surface. Features (1), (2), (3) and (5) are also
available. This subroutine creates a complete plot frame starting
with a call to PLTON and ending with a call to PLTOFF. The
boundary of the grid is plotted i n a style selected by the user
and contours are plotted using solid lines.
The argument list of this routine duplicates that of CUNICl, All

arguments h^ve the same meaning as th.eir counterparts in that
routine.

SUBRODTINE CONGCZ (Z , ZX , Z Y , Mt*, f1, N , ZE IM, G R I D , C T , NC T , I CT , X Y , NX Y ,
corn ,J.,f TUP,K3, ;.K3, I I , ITH, ILAB, Nn:,XSN, YSN)

A master routine which produces a complete contour plot, of the
gradient of the surface. Features (1), (2), (3) and (5) are also
available. The user is expected to scale the plot himself (i.e.

C C r n C O N 2 G U I D E - 28

he must call PLTClfj and P L 1 1 i F F) and plot ti ng of the boundary of
the contoured area is also left to the user. Contours are plotted
i n the current logical pen colour (as specified by the most
recent call to PLTFTN), which remains unaltered on exit.
The argument list of this routine duplicates that of C0NIC2 and

all arguments have the same meaning here.

CUN I cor' 2 G U I D E - 29

n i H E R s u n n n u T i N L S

SUBCirjTinL 3TPLT1 (Z , ZX , ZY , Kf Î, f !, f;, ZL IM, G R 1D , I S Y M)

A master routine which calculates and plots sta ti on ary points
(local f.iaxif.ia, local minima and saddle points) of the approximant
function (NUT tfie true function being contoured).
This routine carries out the tasks of opening and clo sin g of the

plot frame in such a way as to be compatible with subroutines
CLINIC 1, CUNXAl, CONXGl and C O N G R l , but unlike these routines it
does not piot the boundary of the grid.
All arguments which appear in the argument list of CQNICl have

the Some meaning here, with the following exception:-

Zl.IN(2,K!i,[:)
If the user w i s L# e s to suppress the plotting of sta tionary values
withiri some cells of the grid then this array indicates which
cells of the grid should be ignored.
Values should be set in the s a e manner as they are set to
suppress contouring within grid cells, i.e. if the user wishes to
suppress plotting of stationary values within the (I,J)th cell
(the cell with height Z(I,J) in its corner) he should set
ZLJf‘(l,I,J) greater than ZLIfl(2,I,J). Otherwise, if the user
requires stationary po i nt s within the (I,J)th cell to be
Colculated he should set ZLIM(1,I,J) no greater than Z L I M (2,I ,J) .
If the user's call to STPLTl was preceded by a call to any of

CGNlCDij'S master contour plotting routines and the user has not
altered values in ZLI*1 tf.en pl otting of stationary points will
take place within all those cells of the grid which have been
contoured, and no o t e r s .

The extra argument is:-

ISYM(3)
A vector specifying the symbols used for plott ing of local
minima. Saddle points and local maxima respectively. If a value
in this array is negative then plotting is suppressed for the

stationary point. Symbols available willcorresponding type of ___________ , , _ .
Vary according to t, t.e implementation

5IJbf:nuTldE 3TrLT2(7,7X,ZY ,M U,M ,N, ZL ir , GRID, XSh, YS'd, ISYM)

C U M CON 2 G U I D E - 30

A master routine which calculates and plots stationary points
(local maxima, local m i n i ma and saddle points) of the approximant
function (NUT the true function being contoured).
The user is expected to scale the plot himself (i.e. he must

call PLTUN and PLTOFF) and plotting of the boundary of the grid
is also left to the user.
All argunierits which appear in the argument list of STPLTl have

tiie sane meaning here. The other arguments (X3W and YSh) are as
defined above.

SUbRUliTldE AUTOXH (M,f^, GRID, CT, MCI, XH, A V , O V , U V , IV , JV , NX , NH)

Sets values of cr o s sha tch in g parameters Xhi, A V , O V , U V , IV, JV
and l,H (for use by alyorithn, (.) automatically in examples where
t il e user wishes the intensity of hatching to increase
prog res si ve ly as the iieigi.t of the surface increases. Full use is
made of the opportunity for superposition of hatches offered by
algorithm G , and results will normally be achieved with
considerably less expense than comj.arable plots produced using
algorithm A. This routine should Le used prior to calling either
CUNXd i or CUNXBc, l,ut siiould not be used in conjunction with
hatching algorithm A. The routine will produce a maximum number
of twelve bands of crossh atc hi ng (including the area below the
Lot tom contour which will not be hatched); if the number of
contour levels f«iCT implies a larger number than this (i.e. NCT >
10) then some contiguous areas will be hatched in the same style.
Un return from this routine the first RM values in the array IV
will L,e set to 1, with the exception of IV(1) which will be zero.
T ho first fhl values in JV will all be zero.

As the nuhiber of bands of hatching |.h is unknown at the outset,
a separate variable I»X is used for dimensioning the arrays whose
values are set by this routine; thus XH is an array of dimension
(2,tjX) and A V , UV, UV, IV, and JV are all vectors of length NX.
The Variables CT and .NCT have the same meaning as previously;
values in CT must be in ascending order and must have been set by
tf.e user. This routine should NUT therefore be used if the user
has opted for automatic selection of contour levels (i.e. if ICT
is non zero). NX must always be at least twelve, or a hard error
will occur. As long as MX satisfies this requirement the value of
Mfl which is returned will be less than or equal to 12, and no
dimensioning problems will occur when CUNXi) 1 or C0NXB2 are called
w i t NM and not MX as an argument.

If the scale of hatches produced Ijy this routine turns out to
L-e unsuitable for the particular graphics device t>eing used then
the user shoulo s i m p 1 y rescale all values in UV and UV after a
cull to tf.is routine L)y multiplying by the same constant.

CGUI COM ? G U I D E - 31

SU.irULJ T I NT G R S E T (Z , Z X , Z Y , M M , M , N , G R I D , J J)

This subroutine can be used to estimate gradient values
Surface heights stored in the array 7. It should only be
before contouring over a complete rectangular grid, or in other
cases wtiere every value in the array Z is the true surface height

the appropriate location (Subroutine GRSUD should be used for
all other cases). Estim ati on is done by
a point and its two nearest neighbours in
All parameters except JJ occur

at
gradient es t i mat i on in
fitting a Parabola over
the relevant direction.

given
c a 1 led

and have the same meaning here. JJ has the following
in CONXAl

mean i n g ;-

** j J
In the usual case JJ should be set to 0. However
can be considered to be a surface over a cylinder,
be set to 1 or 2 : 1 if the two vertical edges of
identical and 2 if the two horizontal edges are
the surface Can be con sidered to l-e a surface over
that both t h, e vertical edges are identical and
edges are identical, JJ should be set equal to 3.

if the surface
then JJ should
the grid are
identical. If
a torus, so

the horizontal

S'Ji'Id.KlTlME G R G U C (Z , Z X , Z Y , M P , M , N , 2 L 1 1 , G P I D)

values given
only be used in

conto uri ng

This s ub rout i ne can be used to estimate gradient
Surface heights stored i r. the array Z. It should
examples in which the user has opted to suppress
within some cells of the grid, a n,) he has therefore set values in
the array ZLIH to indicate which cells are to be contoured. These
values may have been set by suh, rout i ne CONVEX (see below) or
directly by the user.

As in GKSET, estimation is done by fitting a parabola over a
Point and its two nearest neighbours in the relevant direction;
however this is subject to the co ndition that gradient estimates
must only be l.ased or. surface heights which lie within (or on the
boundary of) the contoured area, and therefore it is sometimes
only possible to estimate gradients by fitting
t h rough a point and tl»e nearest neighl.our
contoured area.

a straight line
lying within the

The argument ZLIh: has tl.e same meaning here as it has when it
occurs as an argument of CDN1C2 (with II > 3). All other
a ryunien t s have L>een de f i ned unin^uely above.

CüHICGf; 2 G U I D E - 32

BUBlMjtiT IME CUNVEXC7LIM,tlM,M,N,Gnii:>,XSU, Y S W r C N, JCNS)

Identifies those grid cells which lie entirely within a
user-JefineJ convex window and flags all other cells as dead by
making appropriate entries in the array ZLlil, An M ★ N grid of
Values and gradients is defined, with the addition of a pair of
coordinates to fix its location. The nodes of the grid are
assumed to be aligned Parallel with the coordinate axes. A number
of straight line constraints are oefineo in addition to this
grid, i ri order to specify the window, and those cells of the grid
d-.ich foil to Satisfy any of the constraints are flagged as dead.w

Arguments which, require explanation are as follows;-

Z L H U 2 , M M , r O
Un S e t on entry. On return this is in the correct form required as
input data for C0fJTC2.

Cfv(3,JCNS)
An c.rray of constraints which specify the window within which we
wish to contour the surface. Each constraint has the form

a*x + b^*y "t- c < 0

a 11 c
to a ,

o set this as the Jth constraint the user must set CN(1,J)
Cu(2,J) to b, and CfU3,J) to c.

** JCNS
The nuriiber of constraints and also the second dimension of CM.

SUBROUTINE CORDER(ZLin,UM, M,N ,C RT D,X SU, YS U ,IP EN)

Traces round the boundary of the area which subroutine C014VEX has
S p e c i f i e d for contouring. Subroutine COIvDEP must only be called
after a call to CQfJVE'X.

Arguments have the same meariing as previously. There is one
argument which has not been defined el sewhere

IPEh
Ih^ logical pen colour used in lottirig. IPCN = 0 corresponds to
soli a lines. Uther styles may be available, de p en din g on the
i nn 1 en.ei, t a t i on .

C UM I C U N ? G U I D E - 33

APPENDIX B

INTEGRAL EVALUATIONS

In Chapter 2 we presented an expression (2,17) for the integral of

the seamed quadratic element as a linear combination of the values and

gradients at its vertices, and discovered that the piecewise cubic element

introduced in the same chapter has an identical expression as its integral

In addition to this, and as a preliminary to the execution of some

work which had to be abandoned for reasons of limited time, we have also

evaluated the integral of the square of both piecewise quadratic and

piecewise cubic elements over their extents. Although we have not

actually put these results to any practical use they may be of potential

value to readers wishing to carry out further investigation of either of

these elements, and we therefore present these results in this Appendix.

We begin though, by giving expressions for the integrated squares

and cross-product of the one-dimensional analogues of our elements.

Referring to the one-dimensional piecewise quadratic element as f^(x)

and the cubic element as f^(x), we find

fq^(x) dx = I 3 (26 + 18 + 26 z/) + ^ (44 z^g^ - 26
3

+ 26 - 44 Zĵ ĝ) + ^ (8 gĵ ̂- 12 g^gg + 8 g^N (B. I)

dx = (23 z^2 + 14 ẑ Zĵ + 23 z^N + ^ (27 z^g^ - 13 z^g^

3
+ 13 z^g^ - 27 z^gg) + ^ (5 - 6 g^gR + 5 Sr)̂ (B-2)

- El -

2
/ £ (x) f̂ (x) dx = ^ (181 + 118 + 181 Zg2) + (13 - 7 z^g^

-h ^

 ̂ ^R%^ 24Ô ®L^R ̂ (B.3)

It follows that the integrated squared difference between the surfaces

is simply;

^ dx = ^ (Zj_ - Zĵ + h (gj_ + g^)}^ (B.4)
-h

The expression in curly brackets is of course the difference between

tangents constructed at the endpoints of the element, evaluated at its

midpoint; we know that this is zero when the true underlying function is

quadratic.

We move on now to look at the two dimensional elements, f^(x, y) and

f^(x, y). Unfortunately we have not had time to evaluate the integral of

their cross-product and consequently the integrated squared difference

between the two approximant surfaces. Particularly in view of the result

(B.4) above this would appear to be a worthwhile task.

;) f '(X. y) = ^ (z\„ + Z%^ + z \ ^ + hk
y=-k x=-h ^

30 ^^SW ^SE ^SW ^NW ^SE ^NE ^NW ^NE^

 ̂ÏÔ ^̂ SW N̂E ŜE N̂Ŵ

^ 481 (ZoTT s_„ + Z-̂ ^̂ s.̂ . - z-q„ s_) h ^1440 ̂ SW SW SE SE NW NW NE NE

243 2
1440 ^"^SW ^SE ^SE ®SW ” ^NW ®NE ^NE ®NW^ ^ ^

— B2 —

1440 ®NW ” ^SE ®NE ^NW ®SW ^NE ®SE^ ^ ^

1440 ̂ ^SW ̂ NE ^SE ®NW ^NW ®SE ^NE ®SW^ ^ ^

1440 ^^SW ^SW ^SE ^SE ^NW ^NW ^NE ^NE^

1440 ̂ ^SW ^NW ^SE ^NE ^NW ^SW ^NE ^SE^

1440 ^^SW ^SE ^SE ^SW ^NW ^NE " ^NE ^NW^

69 2
■*■ T44ÏÏ ^"^SW ^NE " ^SE ^NW ^NW ^SE ^NE *̂ SŴ

960 “̂®SW ®SE “ ®NW ®NE^ ^ ^

960 ^®SW ®NW ®SE ®NE^ ^ ^

960 ̂ ®SW ®NE ” ®SE ®NW^ ^ ^

S9 7 9 9 9 9
96Ô ̂̂ SW ̂SE ̂NW ̂NE^

+ ■ ̂1 “̂t t “ t t ̂lilĉ960 ̂ SW ^NW SE ^NE^

 ̂960 ^^SW ^SE ^NW ^NE^

960 ”̂^SW ^NE “ ^SE ^NW^

137 2 2
7440 ^®SW ^SW " ^SE ^SE " ®NW ^NW ^NE ^NE^ ^ ^

— B3 —

75
(®CT.T ” ®OTT ^MT.T ^ ^ CTT ^OT.T ^ X̂TT.T ^CT.T ®\TT.T1440 ̂ SW SE SW NW SE NE SE SW NW SW NW NE

2, 2
®NE ^NW ^NE ^SE^ ^ ^

1440 ̂ ®SW ^NE ®SE ^NW '*' ®NW ^SE ” ®NE ^SW^ ^ ^
(B.5)

k h ^2, . . ̂ 1 5 5 , 2 ^ 2 ^ 2 ^ 2 . , q; ; (X, y) dx dy = ^ (z + z gg + z ^ + z hk
y=-k x=-h

280 (^SW ^SE ^SW ^NW ^SE ^NE ^NW ^NE^

280 (^SW ^NE ^SE ^NW^

840 (^SW ®SW ^SE ®SE ^NW ®NW ” ^NE ®NE^ ^ ^

155 2
84ÏÏ ”̂^SW ®SE ^SE ®SW " ^NW ®NE ^NE ®NW^ ^ ^

840 ^^SW ®NW ^SE ®NE '*' ^NW ®SW ” ^NE ®SE^ ^ ^

840 “̂^SW ®NE '*' ^SE ®NW ^NW ®SE ^ ^NE ®SW^ ^ ^

840 ^^SW ^SW ^SE ^SE ^NW ^NW “ ^NE ^NE^

155 2
840 ^"^SW ^NW " ^SE ^NE '*’ ^NW ^SW ^NE ^SE^

840 ^^SW ^SE ^SE ^SW ^NW ^NE ” ^NE ^NW^

840 ”̂^SW ^NE ” ^SE S w ^NW ^SE ^NE ^SW^

- B4 -

287 , 2 2 ^ 2 ^ 2 . , 3,
5040 SW ® SE ® NW ̂NE^

5040 ̂ ®SW ®SE ®NW ®NE^ ^ ^

 ̂5040 ^®SW ®NW '*' ^SE ®NE^ ^ ^

^ 142 , X ,3,
5040 ̂ ®SW ®NE ” ®SE ®NW^

+ # & ('%w + ^'sE + ̂m + ^̂ NE)

5040 ̂ ^SW S w " ^SE ^NE^

5040 ^^SW ^SE ^NW ^NE^

5040 ̂ ^SW S jE ” ^SE ^NW^

630 ^®SW ^SW ” ®SE ^SE ®NW ^NW ®NE ^NE^ ^ ^

33
■" 63Ô (^sw ^SE " ®sw "" ®se n̂ e ’ ®ss ^sw ®n w ^sw ■ ®NW ^NE

®NE ^NW " ®NE ^SE^ ^ ^

63Ô ^"®SW ^NE ®SE ^NW N̂IV ^SE " ®NE ^SW^ ^ ^

The inelegant nature of these results is perhaps a little disappoint

ing, but it is easy to verify that they are correct when the function

being approximated is itself quadratic. If the analogy with the one

dimensional elements still holds, then the expression for integrated

squared difference should be very much simpler.

— B5 —

