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Everything has been thought of before,
but the problem is to think of it again.

- Johann W. von Goethe 

(1742-1839)



Ill

SUMMARY

1. The present study was concerned with the effects on the 

cardiovascular system of centrally injected 3-blockers. Several 

lines of approach were used.

2. Intracerebroventricular (icv) injections of dl-propranolol 

lowered blood pressure and heart rate in halothane (H)-anaesthetised 

rats, whereas similar injections in thiobutobarbitone (T)- 

anaesthetised rats only lowered heart rate. The hypotensive effect 

icv dl-propranolol in H-anaesthetised rats is discussed in terms

of a systemic action of the drug following leakage from CSF to 

the circulation.

3. In H-anaesthetised rats intrahippocampal (i.h.) injections of 

1-propranolol (but not d-propranolol) produced dose-related falls 

in blood pressure and heart rate which were of greater magnitude 

than those seen after intravenous injection of similar doses.

I.h. injection of atenolol and timolol failed to affect blood 

pressure and heart rate. The hypotensive action of 1-propranolol 

in the hippocampus appeared to be unrelated to 3-blockade or 

membrane stabilising activity.

4. In T-anaesthetised rats icv pretreatment with 3-blockers 

unmasked a pressor response to icv adrenaline. Icv adrenaline 

alone produced no significant changes in blood pressure. The order

of potency of the 3-blockers was ICI 118551 > dl-propranolol > atenolol, 

suggesting that central 3 2 -blockade was necessary for the effect
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to be expressed. d-Propranolol was ineffective in this respect. 

Various pharmacological manipulations suggested that the pressor 

response to adrenaline following icv injection of 3-blockers was 

due to a central action of the drug, although this was not 

proved conclusively.

5. In T-anaesthetised rats icv 3-blockers generally failed to 

modify the pressor responses evoked by electrical stimulation in 

the anterior hypothalamus, posterior hypothalamus, amygdala and 

median raphe nucleus.

6. Third ventricle infusions of propranolol in the chloralose 

anaesthetised cat modified the pressor responses produced by 

electrical stimulation in the ansa lenticularis. The return of 

blood pressure to pre-stimulation levels following cessation of 

stimulation was delayed by centrally, but not intravenously, 

injected propranolol. This effect appeared to be related to the 

membrane stabilising properties of the 3-blocker.
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INTRODUCTION 

Chapter 1



1.1 B-adrenoceptor blockers - an historical note

B-adrenoceptor blocking drugs or, more commonly, B-blockers 

have been used for many years in the clinical management of essential 

or primary hypertension. The first B-blocker, dichloroisoprenaline, 

was synthesised in 1958 during the search for a long-acting broncho- 

dilator. However, in addition to having marked intrinsic sympatho

mimetic (partial agonist) activity, dichloroisoprenaline was also 

found to block the inhibitory effects of adrenaline and isoprenaline 

in a variety of preparations (Powell & Slater, 1958). Shortly 

afterwards pronethalol was synthesised and was demonstrated to suppress 

the effects of sympathomimetic amines and synpathetic nerve stimulation 

on the heart, but with less potent partial agonist effects (Black & 

Stephenson, 1952)o Unfortunately, pronethalol possessed carcinogenic 

activity in mice. The next B-blocker to be developed was propranolol 

which, as well as being more active than pronethalol, did not display 

carcinogenic activity (Black, Duncan & Shanks, 1965).

One of the first reports on the blood pressure lowering action 

of propranolol in man was that of Prichard & Gillam (1964) . These 

findings were to be amply confirmed during the next few years. By the 

early 1970s propranolol was firmly established as an antihypertensive 

drug and there are currently more than eleven B-blockers listed in the 

British National Formulary, although the number of compounds of known 

B-blocking capability is, of course, much higher.

1.2 Characteristics of primary hypertension

Although a detailed discussion of the haemodynamic alterations 

which accompany primary hypertension is not pertinent to this thesis, 

a knowledge of the major changes is relevant to the understanding of



how 3-blockers may lower blood pressure (Sections 1.3-1.5).

Primary hypertension refers to the disease state in which the 

blood pressure is elevated through no apparent reason (Cf. phaeochromo- 

cytoma, aortic coarctation and various forms of kidney disease). In its 

early phase in man the disease is characterised by an intermittently 

elevated cardiac output with little change in total peripheral 

resistance (so-called labile, or borderline hypertension). As the 

hypertension develops peripheral resistance progressively increases 

while cardiac output usually remains normal.

For a thorough review of the haemodynamic findings in hypertension 

the reader is directed to Frohlich (1977) .

1.3 Haemodynamic profile of 3-blocker-induced hypotension

The most obvious reaction to intravenously injected propranolol 

in man and animals is the fall in heart rate due to competitive 

blockade of cardiac 3i-adrenoceptorSo The extent of the reduction is 

variable, depending as it does on the level of sympathetic activity at 

the time of the injection* A fall in cardiac output parallels the 

decrease in heart rate. In hypertensive man (Tarazi & Dustan, 1972) 

and conscious animals (for example, spontaneously hypertensive rats - 

Smits et al, 1979) the reduction in cardiac output is met by an initial 

reflex increase in total peripheral resistance (TPR), with the nett 

result that no change in blood pressure is observed. However, after 

3-12 hours in man (Galloway et al, 1976; Fitzgerald et al, 1979) the 

initially raised TPR begins to decline while cardiac output remains 

depressed, with the consequence that blood pressure falls. A similar 

sequence of events has been observed in the spontaneously hypertensive



rat (Smits et al, 1979), although it has generally been proved 

difficult to demonstrate the antihypertensive effect of 3-blockers in 

many animal species.

The cause(s) of the initial elevation of TPR and its subsequent 

reduction are the source of much controversy. The adrenal cortex has 

been implicated by Nijkamp et al (1979) for the failure to demonstrate 

the hypotensive effect of propranolol in conscious spontaneously 

hypertensive rats. The latter group did not observe a fall in blood 

pressure after subcutaneous propranolol in either intact or adrenal 

demedullated animals. However, propranolol elicited a hypotension 

after bilateral adrenalectomy, an effect which was abolished by 

concurrent treatment with corticosterone. Alternatively, Sugawara et 

al (1980), using conscious normotensive rats, concluded that adrenal 

medullary catecholamine secretion was the cause of the masking of the 

hypotensive response to pindolol and propranolol. It seems likely 

that the initial elevation of TPR is due to a variety of factors 

(including adrenal catecholamines, adrenal steroids and enhanced 

activity of the sympathetic innervation to the vasculature) and 

probably represents a homeostatic reflex to counteract the initial 

cardiovascular effects of cardiac 3-blockade.

It has been shown in man that the secondary fall in TPR is 

necessary for the expression of the hypotensive response to propranolol, 

since it is not observed in the proportion of hypertensive patients 

who do not respond to 3-blocker therapy (Tarazi & Dustan, 1972).

The various mechanisms which have been postulated to account for this 

fall are discussed in the following Section (1*4)*



1.4 Potential mechanisms of 3-blocker-induced hypotension

Despite much investigation into how 3-blockers lower blood 

pressure none of the proposed mechanisms of action, of which 7 are 

discussed in the present Section, is entirely satisfactory* Although 

the 3-blocking drugs as a group display considerable differences in 

their properties (e.g., 3i-adrenoceptor selectivity, membrane 

stabilising activity and partial agonist activity), it is generally 

accepted that the prerequisite for antihypertensive activity is 

blockade of 3-adrenoceptors, since all 3-blockers lower blood pressure 

in man.

Reduction of cardiac output

In man cardiac output is lowered immediately by intravenous 

propranolol (Ulrych et al, 1968) while blood pressure remains unchanged* 

Decreased cardiac output is also associated with chronic 3-blocker 

therapy and occurs some time before any lowering of blood pressure is 

seen (Tarazi & Dustan, 1972)* That the decreased cardiac output is 

unlikely to represent the prime mechanism of action of 3-blockers is 

suggested by the following observations: firstly, Tarazi & Dustan (1972) 

showed that patients who did not respond to 3-blockade by a lowering of 

blood pressure still experienced significant decreases in cardiac 

output of similar magnitude to those seen in the responders and, 

secondly, 3-blockers which possess partial agonist activity (such as 

practolol and pindolol) are effective antihypertensives but only lower 

cardiac output to a limited extent* It is likely that chronic cardiac 

3-blockade may reduce the elevations in cardiac output resulting from 

raised sympathetic activity associated with, say, emotional stress, but 

whether this is of any consequence in the antihypertensive action of



3-blockers remains to be investigated.

Inhibition of renin secretion

The proteolytic enzyme renin is secreted by the kidney in response 

to at least 3 separate stimuli - decreased intra-arteriolar pressure at 

the level of the juxtaglomerular apparatus, a reduced concentration of 

Na^ in the macula densa segment of the distal tubule, and sympathetic 

stimulation. The latter is mediated both by way of increased 

circulating catecholamines and by way of the renal sympathetic nerves 

(Aoi et al, 1976). The effects of sympathetic stimulation on renin 

secretion appear to be mediated by intrarenal 3-adrenoceptors, since 

catecholamine- and renal nerve stimulation-induced renin release can 

be blocked by propranolol (Taher et al, 1976). In vitro studies using 

kidney slices and renal cell suspensions have demonstrated that 

catecholamine-induced renin release is blocked by 1-propranolol, but 

is unaffected by d-propranolol (Weinberger et al, 1975)*

Following its release into the blood renin acts on the a.2 

globulin fraction of the plasma proteins to produce the physiologically 

inactive angiotensin I. This in turn is converted to the active 

angiotensin II by an enzyme found mostly in the lungs. Angiotensin II 

is the most potent naturally occurring vasoconstrictor known, producing 

vasoconstriction and a rise in systolic and diastolic blood pressure.

A number of clinical investigators have failed to observe a 

correlation between plasma renin activity and the hypotensive effects 

of propranolol (Morgan et al, 1975; Amery et al, 1976). Furthermore, 

it has been shown that higher doses of propranolol than are needed to 

reduce plasma renin activity are required to produce an antihypertensive 

response (Michelakis & McAllister, 1972). 3-blockers with partial



agonist activity (e.g., pindolol) may even elevate plasma renin 

(Stokes et al, 1975) ,

Therefore, while inhibition of renin secretion may be an 

in\portant mode of action of 3-blockers in the small proportion of 

hypertensives characterised by a high plasma renin activity, it seems 

unlikely that this represents the primary mechanism in the majority 

of cases.

Presynaptic inhibition of sympathetic transmission

Evidence has accumulated for the existence of presynaptic 

3-adrenoceptors the stimulation of which by neuronally released 

noradrenaline facilitates the release of further transmitter. These 

receptors have been demonstrated in isolated, sympathetically 

innervated guinea-pig atria (Adler-Gras chin sky & Langer, 1975) and 

isolated human omental arteries and veins (StjSrne & Brundin, 1976). 

The latter authors concluded that these receptors were of the 

32-subtype*

It is possible, therefore, that 3-blockers may lead to a reduced 

availability of noradrenaline in the synaptic cleft in vivo, partly as 

a result of blockade of facilitatory presynaptic 3-adrenoceptors and 

partly as a result of unopposed feedback inhibition of transmitter 

release by the well-documented presynaptic a-adrenoceptors (Langer, 

1977). While the idea seems attractive it remains to be seen whether 

these receptors serve a physiological function or are merely an 

experimental oddity. Furthermore, if the receptors are of the 

32-subtype then 3i-selective blockers (which are effective antihyper

tensives) would exert minimal blockade.



Reduced enzymatic activity in sympathetic ganglia

Raine & Chubb (1977) demonstrated in rabbits the effect of chronic 

subcutaneous dosing with dl-propranolol (8 mg/kg/day) on the levels of 

the noradrenaline-synthesising enzymes tyrosine hydroxylase and 

dopamine 3-hydroxylase in the superior cervical ganglion. After 6-24 

days treatment the activities of both these enzymes were reduced, the 

d-isomer of propranolol being ineffective. Equipotent doses of 

metoprolol, acebutolol and practolol also reduced enzyme activities.

It is likely, therefore, that noradrenaline available for neurotrans

mission is also reduced since'tyrosine hydroxylase is the rate-limiting 

enzyme in its synthesis.

The crucial question here is whether the decreases in the enzyme 

activities reflect an action on the ganglion directly or whether they 

are mediated by a reduction in sympathetic outflow from the central 

nervous system, perhaps subsequent to blockade of central 3-adreno

ceptors. In this respect it is interesting to note that denervation 

of the ganglia for 12 days produced similar falls in enzyme activities 

(Raine & Chubb, 1977)* The cardioselective 3-blockers metoprolol, 

acebutolol and practolol are known only to enter the central nervous 

system poorly (see Section 1.5) but were nearly as effective as 

propranolol in the above study. However, after chronic (12 days) 

dosing it is possible that these 3-blockers may have achieved the 

required steady-state concentration in the brain. The mechanism of a 

possible direct effect of the 3-blockers on the ganglion is unknown 

but may be related to blockade of presynaptic 3-adrenoceptors (see 

above)* Finally, it is possible that the 3-blockers may reduce 

autonomic afferent traffic by an action in the periphery. In turn, 

this may lead to a decrease in efferent sympathetic activity and so 

account for the enzyme changes seen in the ganglia.



Restoration of vascular relaxation sensitivity

Following the observations that vascular 3-adrenoceptor 

sensitivity seems to be impaired in hypertension (Triner et al, 1975;

Cohen & Berkowitz, 1976), Amer (1975) suggested that 3-blockers may 

act by reversing this desensitisation. The decreased 3-adrenoceptor 

sensitivity may arise from continual interaction with the receptors 

by endogenous agonists, since a reduced 3-adrenoceptor sensitivity 

has been observed in the heart and vessels of acute, neurogenically 

hypertensive rats (Amer et al, 1975) in which sympathetic tone is 

inappropriately high.

Vascular smooth muscle is responsive to a variety of vasodilatory 

agents including 3-adrenoceptor agonists, histamine, PGE2 , 5-hydroxy- 

tryptamine and adenosine, and in each case the response is mediated by 

cyclic AMP (Amer, 1977)* It is also known that when a cyclic AMP- 

mediated response is maximally stimulated by one agonist (e.g., adrenaline) 

no additional effect is seen with a second agonist (e.g., histamine) 

(Robison et al, 1971) . Amer (1977) postulated that if the source of 

relaxation subsensitivity lay in a reduced responsiveness of a proposed 

membrane-bound coupler common to all the vasodilator agonists then 

removal of the continual stimulus causing the subsensitivity 

(e.g., circulating adrenaline) would re-establish the vascular 

relaxation sensitivity to other circulating vasodilators.

The above theory is no less plausible than any of the others 

advanced in this and the next Section and merits further investigation.

An effect on baroreceptor reflex sensitivity

It has been suggested that propranolol increases baroreceptor 

reflex sensitivity both in normotensive (Pickering et al, 1972) and
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hypertensive (Takeshita et al, 1978) subjects, such that pressor 

responses would be buffered at lower pressures. However, Simon et al 

(1977) and Krediet & Dunning (1979) failed to confirm these results 

in hypertensive patients. In conscious spontaneously hypertensive 

and normotensive rats Smits et al (1980) failed to observe an effect 

of acute intravenous administration of propranolol (5 mg/kg) on 

baroreceptor reflex sensitivity. Watson et al (1979) found a 

significantly increased baroreflex sensitivity in hypertensive 

patients (<40 years old) following chronic 3-blocker therapy but not 

after acute treatment. Furthermore, they could not correlate the 

falls in blood pressure after chronic treatment with the alterations 

in baroreceptor reflex sensitivity*

Clearly, data on this matter are conflicting and further 

experimentation is required to clarify the issue. It will also be 

important to discriminate between an action at the level of the 

baroreceptors and an action on the baroreflex integrative mechanisms 

in the central nervous system*

A central nervous system effect

The present study was undertaken to investigate possible 

central effects of 3-blockers on blood pressure and, because of the 

fundamental relevance of this issue, the question of an action 

within the central nervous system will be considered separately in 

the following Section (1.5).
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1.5 The hypotensive action of g-blockers - an effect within the CNS ?

The failure of investigators to confirm a primary peripheral site 

of action of 3-adrenoceptor blocking drugs in lowering blood pressure 

has led to studies of a possible central nervous system (CNS) involvement, 

Various hypotheses have been put forward to explain how this may be 

achieved - for example, an attenuation of sympathetic drive to the 

vasculature, a potentiation of parasympathetic outflow, a hormonal 

effect (for example, on vasopressin-elaborating neurones in the 

hypothalamus) or an enhancement of cardiovascular 'buffer’ reflexes.

In this Section I wish to discuss firstly, the entry of 3-blockers 

into the brain and secondly, the evidence for and against an action of 

these drugs within the CNS * The central effects on blood pressure of 

the 3-a.drenergic agonist, isoprenaline, are covered in the following 

Section (1*6)*

Brain penetration of 3-blockers

Before entertaining the idea of a central hypotensive action of 

3-blockers it is crucial to establish that these drugs actually enter 

the brain under normal physiological conditions.

It has long been known that a number of substances which are 

found in the blood do not appear in the cerebrospinal fluid (CSF) .

To explain this phenomenon it has been necessary to postulate a 

barrier to these materials interposed between the blood and the CNS - 

the so-called blood-brain barrier (for reviews see: Oldendorf, 1974; 

Bradbury, 1979). Briefly, the barrier restricts the passage of ions 

and the protein-bound fraction of a compound from gaining access to the 

CNS. The rate of entry of 3-blockers, for example, would therefore



12

depend most closely on the lipid solubility of the non-protein-bound 

unionised fraction of the substance. In other words, the 3 factors 

governing the extent and rate of penetration of a drug into the CNS 

are lipid solubility, degree of protein binding, and the drug's pK^.

A variety of 3-blockers have been demonstrated to enter the CNS 

of animals and man to greater or lesser extents. For example, 

following intravenous injection of radiolabelled propranolol, oxprenolol, 

practolol and atenolol in rats. Day et al (1977) found brain:blood 

ratios of these compounds of 8,37, 3.26, 0,18 and 0.054, respectively. 

These data are consistent with the degrees of lipophilicity of the 

drugs (Wiethold et al, 1973). Bianchetti et al (1980) found that 

after intravenous injection in rats propranolol was rapidly distributed 

to various brain areas* Interestingly, the distribution profile 

closely followed the level of vascularisation of the brain, cortex 

containing the greatest amounts after 30 minutes, followed by hippocampus, 

amygdala, hypothalamus and medulla. The latter observation may indicate 

that some of the drug may have been present in blood trapped in the 

brain tissue and would not reflect specific uptake into these brain 

areas. Further experiments in which the brains are flushed with saline 

prior to assay would be required to establish the contribution of drug 

in entrapped blood.

In rats, Garvey & Ram (1975a) demonstrated the appearance of 

both propranolol and pindolol in the limbic system after 14 days oral 

or subcutaneous administration. Their finding that propranolol was 

concentrated in the hippocampus while pindolol was concentrated in the 

septum may reflect the different physicochemical characteristics of the 

drugs as well as differences in vascularisation of the brain areas*

Here again, the brain was not cleared of blood prior to assay*
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Evidence for the CNS penetration of 3-blockers in man is two-fold. 

Firstly, Taylor et al (1981) found that after oral dosing of propranolol, 

pindolol and atenolol, all 3 compounds appeared in lumbar CSF.

Similarly, Cruickshank et al (1980) noted the presence of propranolol, 

metoprolol and atenolol in brain and lumbar CSF of neurosurgical 

patients following oral administration for 3-22 days. Secondly, the 

incidence, albeit low, of CNS-related side-effects reported in patients 

on 3-blocker therapy. These include depression, hallucinations, 

confusion and vivid dreams.

Thus, there is good evidence that 3-blocking drugs are able to 

gain access to the brain. Once in the CNS these drugs probably interact 

with 3-adrenoceptors. The major question, however, is whether blockade 

of these central adrenoceptors is responsible, at least in part, for 

the observed hypotensive action of the 3-blocking drugs.

3-blockade, hypotensive activity and the CNS

Many mechanisms have been proposed to explain the antihypertensive 

action of the 3-blocking drugs, and the most popular of these have been 

discussed in Section 1.4. In the present Section I will discuss the 

evidence for a site of action of these compounds within the CNS.

The stimulus to the search for a CNS site of action of 3-blockers 

was provided by the observation of the centrally-mediated hypotensive 

activity of clonidine (Boissier et al, 1968), the rationale being that 

if central a-adrenoceptor stimulation can lower blood pressure then 

perhaps central 3-adrenoceptor blockade would result in unopposed 

a-adrenoceptor-mediated effects. This schema is clearly an over

simplification, but at least it provides a conceptual framework upon 

which experiments may be based.
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For ease of discussion I will consider separately the evidence 

for a central hypotensive action of 3-blockers in dog, cat, rabbit 

and rat, respectively.

Dog

In 1971 Stern et al, using anaesthetised dogs, reported that 

dl-propranolol produced a lowering of blood pressure following intra- 

vertebral artery injection and they concluded that the hypotension was 

due to an action of the propranolol in the CNS. Similarly, Srivastava 

et al (1973) obtained prolonged depressor and bradycardic responses 

after injection of dl-propranolol into the lateral cerebral ventricle 

(icv) of anaesthetised dogs. However, the latter workers also noted 

an initial short-lived pressor response with associated tachycardia 

which they attributed to a centrally-mediated release of adrenal 

catecholamines, since both spinal transection at C2 or adrenalectomy 

abolished these responseso Spinal transection also abolished the 

prolonged depressor and bradycardic responses. The latter observation 

does not provide conclusive evidence for a central action of propranolol 

since one would expect the animals to be in a state of spinal shock 

(see Liddell, 1934), a condition partly characterised by a drop in 

blood pressure and heart rate. If, as demonstrated by Anderson et al 

(1977) in rabbits, the propranolol was leaking out of the CNS and 

exerting its hypotensive effects by an action directly on the heart, 

then one might expect a minimal effect in the spinalectomised animals 

since cardiac sympathetic tone would be abolished.

In anaesthetised dogs Privitera et al (1979) demonstrated dose- 

dependent decreases in plasma renin activity and blood pressure after 

intracisternally injected dl-propranolol, an effect not mimicked by 

intravenous injection of identical doses. Moreover, acute renal
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denervation abolished the renin-suppressing action of intracisternal 

propranolol, an effect one would not expect if it were due to a direct 

action of propranolol on the kidney following leakage from the CSF 

into the systemic circulation. However, both d- and 1-propranolol 

injected intracisternally significantly lowered plasma renin activity 

and arterial pressure to a similar degree. Since both isomers possess 

equivalent local anaesthetic potencies while the d-isomer has about 

1/lOOth the 3-blocking potency of the 1-isomer (Barrett & Cullum, 1958), 

the responses do not appear to be mediated by central 3-blockade.

Montastruc & Montastruc (1980) investigated the central effects of 

propranolol on blood pressure in anaesthetised dogs which had been made 

hypertensive by sectioning of the sino-aortic buffer nerves. In this 

model they found that intracisternally injected propranolol decreased 

both the rise in blood pressure and the tachycardia induced by 

deafferentation, but that this protective effect was abolished by 

pretreatment with intracisternal 6-hydroxydopamine, a neurotoxin which 

produces selective destruction of adrenergic nerve terminals. However, 

this group only used one dose of dl-propranolol and failed to 

investigate the effects of the d- and 1-isomers so that meaningful 

conclusions are difficult to draw.

An interesting observation was sketchily reported by Bogaert & 

Schepper (1979) in anaesthetised 'debuffered' dogs. In such animals 

electrical stimulation of the paraventricular nucleus of the hypothalamus 

led to a hypotension and bradycardia which was enhanced by prior 

injection of propranolol into this area. Again, whether this effect 

was due to 3-blockade or to some ancillary property of propranolol 

was not investigated.
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Cat

In anaesthetised cats icv dl-propranolol produced a hypotension 

and bradycardia (Kelliher & Buckley, 1970), However, d-propranolol 

elicited a similar response and so it is unlikely that the response to 

the racemate was due to 3-adrenoceptor blockade.

Using anaesthetised cats. Share (1973) investigated the effects 

of icv dl-propranolol and sotalol (MJ 1999) on directly (electrical of 

the dorsal medullary reticular formation) and reflexly (bilateral 

electrical stimulation of the cut central ends of the ulnar nerves) 

induced pressor and tachycardie responses. While having no effect on 

the pressor responses, the 3-blockers significantly inhibited the rise 

in heart rate following both types of stimulation. The effect was 

apparently not mediated by blockade of cardiac 3-adrenoceptors by 

’leaked' 3-blocker since the tachycardie response to intravenous 

adrenaline was not affected, Sotalol, unlike propranolol, does not 

have significant membrane stabilising activity and it is therefore 

possible that central 3-blockade was responsible for the observed 

effects.

Day & Roach (1974b), using conscious cats, investigated the 

effects on the cardiovascular system of a selection of centrally 

injected 3-blocking agents. Practolol, dl-propranolol, 1-propranolol 

(but not d-propranolol), dl-alprenolol (but not d-alprenolol), pindolol, 

sotalol, ICI 66082 (atenolol) and oxprenolol all produced sustained 

falls in blood pressure and heart rate following icv injection.

A short-lived pressor response and tachycardia preceded the falls 

except following ICI 66082 and this was attributed to a membrane 

stabilising action since d-propranolol, d-alprenolol, procaine and 

lignocaine all evoked the initial increases but failed to elicit the



17

subsequent depressor responses and bradycardia. That the depressor and 

bradycardic responses were not mediated by an action of the 3-blockers 

in the periphery following leakage from the CSF was suggested by the 

lack of alteration of the responses to intravenous isoprenaline in 

these animals,

Offerhaus & Van Zwieten (1974) compared the effects of the 

isomers of propranolol and alprenolol following injection into either 

a vertebral artery or peripheral vein of the anaesthetised cat. They 

found that dl- and d-propranolol could produce hypotensive responses 

of similar magnitude irrespective of the route of administration.

On the other hand, 1-, dl- and d-alprenolol always produced a 

significantly larger hypotension upon intravertebral artery injection. 

The conclusions were firstly, that the response to alprenolol had a 

marked central component whereas that to propranolol had not and 

secondly, that the blood pressure lowering action of 3-blockers in 

cats was probably independent of 3-blockade, since the d-isomers of 

both drugs were active hypotensives.

Garvey & Ram (1975b) investigated the effects on blood pressure 

and heart rate of intrahippocampal injections of propranolol in the 

anaesthetised cat. Propranolol administered in this way elicited 

dose-dependent reductions of blood pressure and heart rate. The 

ganglion blocker, hexaméthonium, abolished these changes, but this may 

be explained by the lower initial values of blood pressure and heart 

rate. These investigators failed to observe any significant changes 

in blood pressure and heart rate following icv injections of 

dl-propranolol in these animals,

Kievans et al (1976), using anaesthetised cats, compared the 

effects of icv and intravenous injections of dl-sotalol, dl-pindolol,
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dl- and d-propranolol on the blood pressure and renal synpathetic 

nerve discharge (reflexly evoked by electrical stimulation of the 

cut central end of the sciatic nerve), They found that dl-pindolol, 

dl- and d-propranolol, but not dl-sotalol, reduced both blood pressure 

and renal nerve evoked potentials following either icv or intravenous 

injection, but that the reductions were much greater after the central 

injections. The characteristic common to the 3 active compounds is 

membrane stabilising activity and it would therefore appear that 

although an action on central 'sympathetic structures' was demonstrated, 

it was independent of 3-adrenoceptor blockade.

Sharma et al (1979) have studied the effects of microionophoretic- 

ally applied 3-blockers on the firing rates of medullary cardiovascular 

neurones in anaesthetised mid-collicular decerebrate cats. The neurones 

were identified by their firing rate responses to intravenous 

noradrenaline, a decreased rate of excitatory neurones and an enhanced 

firing rate of inhibitory neurones, A non-cardiovascular neurone was 

identified if its firing rate remained unchanged during the pressor 

response to noradrenaline. They found that ionophoretically applied 

dl-propranolol and dl-sotalol reduced the spontaneous firing rates of 

excitatory cardiovascular neurones but had no effects on the firing 

rates of inhibitory and non-cardiovascular neurones. They concluded 

that: "While these results cannot exclude the possibility of a 

peripheral influence in 3-adrenergic blocker-induced hypotension, it 

is concluded that the major hypotensive effect is a result of their 

action on 3-adrenergic receptors of bulbar cardiovascular neurones." 

Clearly, these conclusions are untenable for 2 major reasons - 

firstly, the identification of 3-adrenoceptors responsive to 

ionophoresed 3-blockers on central neurones in a small region of the 

medulla does not necessarily imply a hypotensive role for them and
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secondly, the conclusions exclude the potential contribution of 

cardiovascular neurones elsewhere in the medulla and in other regions 

of the CNS (for example, spinal cord and hypothalamus). However, 

further studies of this type may lead to a better understanding of the 

functions of g-adrenoceptors on central cardiovascular neurones,

Philippu & Kittel (1977) and Philippu & Stroehl (1978), using 

anaesthetised cats, analysed the effects of g-blockers superfused 

through the posterior hypothalamus by means of a push-pull cannula 

(electrically insulated except for the tip) on the pressor response 

and tachycardia produced by electrical stimulation through the tip of 

the cannula. They found that atenolol, practolol and metoprolol 

(3l-selective), propranolol and sotalol (non-selective), and 

butoxamine (3 2~selective) caused a dose-dependent inhibition of the 

pressor and tachycardie responses. Both d-propranolol and an 

equipotent local anaesthetic concentration of procaine were ineffective 

in this respect. Conversely, hypothalamic superfusion with 

isoprenaline produced a dose-dependent enhancement of the pressor 

responses to electrical stimulation. Thus, both gj- and 

g2-adrenoceptors were implicated in these studies and suggests a 

possible hypothalamic target for the hypotensive action of g-blockers.

Rabbit

In conscious rabbits Reid et al (1974) provided evidence of a 

central antihypertensive effect of propranolol. Icv injections of 

1- and dl-propranolol (500 yg) produced an initial rise in blood 

pressure followed by a prolonged fall, the hypotensive response to 

the 1-isomer being greater. Central administration of an identical 

dose of d-propranolol only produced the initial pressor response, 

as did icv procaine. Since the intravenous injection of



20

l-^propranolol (500 yg) did not affect blood pressure, the authors 

concluded that propranolol can lower blood pressure by an action 

within the CNS.

Anderson et al (1977) obtained a similar pattern of response 

following icv injection of dl-propranolol (500 yg) in the conscious 

rabbit. However, in contrast to Reid et al (1974), the same dose 

injected intravenously elicited a hypotension which was greater than 

that after icv injection. This group also demonstrated rapid leakage 

of propranolol from the CSF into the bloodstream, an icv injected dose 

achieving a plasma concentration after 10 minutes of 80% of the level 

reached after giving the same dose intravenously. Also, after icv 

injection there was significant blockade of cardiac g-adrenoceptors 

for at least 2 hours, as determined from the degree of attenuation of 

isoprenaline-induced tachycardia. This investigation does not exclude 

a central hypotensive action of propranolol but demonstrates one of 

the major problems associated with icv injection - namely, attempting 

to discriminate central from systemic actions, especially where one 

action does not greatly predominate over the other. The reader 

interested in the mechanisms by which substances may leave the CSF 

and enter the bloodstream should consult Rothman et al (1961) and 

Schanker (1962).

Lewis & Haeusler (1975) investigated the effects of intravenous 

propranolol on splanchnic nerve discharge and blood pressure in the 

conscious rabbit. Both these parameters were reduced by dl- but not 

by d-propranolol. Moreover, the reductions paralleled one another 

in time course. The authors concluded that the reduction of 

sympathetic activity was mediated by blockade of central g-adrenoceptors, 

since the splanchnic is a preganglionic nerve. However, some criticism
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has been levelled at this conclusion as it is possible that the 

propranolol was acting peripherally on the afferent limb of this 

autonomic response to modify input to the CNS. Some evidence for 

such an effect in anaesthetised cats has been provided by Scott (1981), 

who investigated the effect of intravenous atenolol on efferent 

discharges in the lumbar trunk and renal nerves. After atenolol, 

blood pressure, heart rate and sympathetic efferent activity were all 

significantly reduced. Scott concluded that the atenolol had effected 

this response by an action outside the CNS, since atenolol has a low 

lipid solubility and therefore is not likely to cross the blood-brain 

barrier to any great extent (Barrett, 1977). Unfortunately, the 

measurements in these experiments were made from nerves containing 

both pre- and postganglionic fibres and it is therefore impossible to 

rule out an action of the atenolol at the ganglionic level. It would 

be useful if these experiments were to be repeated in conscious 

rabbits under similar conditions to those used by Lewis & Haeusler (1975) 

It is interesting to note that Lewis (1976) obtained a decrease in 

blood pressure but an increase in sympathetic efferent activity 

following intravenous injection of another g-blocker having a low lipid 

solubility, practolol, in the conscious rabbit.

In conscious rabbits Korner et al (1980) showed that high plasma 

concentrations of propranolol lowered the threshold pressure for 

inhibiting renal sympathetic nerve activity. (Arterial pressure was 

manipulated by means of balloons placed around the aorta and inferior 

vena cava and the effect of different levels of pressure on renal 

sympathetic nerve activity was studied. With mean arterial pressure 

as abscissa and nerve activity as ordinate the resulting curve has a 

negatively-sloped sigmoidal shape. This curve was shifted to the left 

by propranolol such that at any given pressure the renal nerve activity
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was less than that before the drug). Similar plasma concentrations of 

propranolol had little effect on aortic nerve baroreceptor activity. 

Thus, the authors concluded that the propranolol was acting centrally 

to -reset' the renal sympathetic baroreflex, A similar 'resetting' 

of baroreflex properties has been demonstrated with the centrally-acting 

antihypertensive, clonidine (Dorward & Komer, 1978).

Rat

Lavy & Stern (1970), using anaesthetised rats, reported that the 

direct application of propranolol (1000 yg) in powdered form into 

various CNS structures elicited a decrease in heart rate and that this 

effect was most powerfully evoked from the anterior hypothalamus and 

reticular formation. However, this group made no attempt to evaluate 

the extent of drug leakage into the systemic circulation and 

consequently, no firm conclusions may be reached.

Intracisternally administered propranolol produced dose-related 

decreases in heart rate in anaesthetised rats (Ito & Schanberg, 1974).

At lower doses intracisternal propranolol produced a pressor response 

but this was converted to a depressor response at larger doses. The 

pressor response was antagonised by subsequent intracisternal injection 

of isoprenaline but potentiated by similarly administered noradrenaline. 

Isoprenaline alone caused a decrease in blood pressure while 

noradrenaline produced a transient increase. Whether these findings 

demonstrate a pharmacological interaction of the drugs at central 

adrenoceptors remains unknown. Moreover, neither the effects of 

d-propranolol nor the contribution of 'leaked' propranolol to the 

responses were investigated.

Sweet & Wenger (1976) studied the effects of centrally injected
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propranolol in t±ie conscious spontaneously hypertensive rat. Both 

dl- and d-propranolol (100 yg) injected icv produced a transient 

increase in arterial pressure which was followed by a significant 

lowering of blood pressure at 24 hours. Neither systemically injected 

propranolol nor icv injected procaine (100 yg) mimicked these responses. 

Before assuming, as the authors did, that the hypotension produced by 

icv propranolol was independent of g-blockade and membrane stabilising 

activity, it is important to realise that procaine is some 3-times less 

potent than propranolol as a local anaesthetic, at least in the isolated 

frog nerve preparation (Barrett & Cullum, 1968). Indeed, Sweet & Wenger 

did note a decrease in arterial pressure after icv procaine but this 

did not achieve statistical significance. If the centrally-mediated 

hypotension produced by dl- and d-propranolol was dependent on 

membrane stabilising activity, then this result would be in line with 

that of Kelliher & Buckley (1970) in the anaesthetised cat.

Kleinrok & Ksiazek (1977) investigated the effects of a variety 

of centrally injected 3-blocking agents on the hypertension produced 

by icv noradrenaline in the anaesthetised rat. Pretreatment with 

propranolol, alprenolol, sotalol and practolol abolished the 

noradrenaline-induced pressor response. Since both practolol and 

sotalol lack membrane stabilising activity it is possible that 

blockade of central g-adrenoceptors was responsible for the effect.

The g-blockers themselves did not affect blood pressure. Leakage of 

the g-blockers and noradrenaline into the systemic circulation was not 

examined in this study.

Ram et al (1977) implicated the hippocampus in the hypotensive 

response to orally administered propranolol in conscious rats. Chronic 

oral administration of propranolol to intact rats produced a significant
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decrease in systolic blood pressure. However, in hippocampal-lesioned 

animals similar treatment produced significant elevations of blood 

pressure. It is not clear from the paper exactly how much of the 

hippocampus was ablated, but caution should be exercised in the 

interpretation of results from e3g>eriments where gross damage is 

inflicted in the CNS, especially in a structure such as the hippocampus, 

which is known to have important behavioural and endocrine functions.

Wepierre et al (1978), using anaesthetised rats, examined the 

blood pressure responses to icv pindolol, propranolol, practolol, INPEA 

and alprenolol. All the drugs except INPEA produced dose-related falls 

in blood pressure. That this effect was centrally-mediated was 

suggested by the relatively weak hypotensive action of these g-blockers 

following intravenous injection. The effectiveness of practolol 

suggests that the responses were not due to the membrane stabilising 

actions of the other drugs.

In a later study by the same group (Cohen et al, 1979), d- and 

1-propranolol and pindolol were shown to exert hypotensive actions 

following icv injection in anaesthetised rats. However, d-propranolol 

was less active than the other 2 compounds.

Lack of a central hypotensive action of propranolol in the 

conscious spontaneously hypertensive rat was reported by Smits et al 

(1980a). The latter group established that after icv infusion of 

propranolol for 5 days (by means of osmotic minipumps), brain 

concentrations reached values that were approximately lOO-fqld higher 

than those achieved after subcutaneous infusion of equal doses. Since 

upon icv infusion the dose of propranolol needed for a blood pressure 

lowering effect was the same as that needed for a subcutaneous 

infusion, the authors reasoned that the antihypertensive effect of
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propranolol was not caused by an action of the drug within the CNS.

Recently, Allott et al (1982) investigated in anaesthetised rats 

the effects of g-blockers (injected through a stainless steel cannula 

electrically insulated except for the tip) on the pressor response to 

electrical stimulation of an area immediately dorsal to the posterior 

hypothalamus. They found that 1-, dl- and d-propranolol inhibited the 

pressor responses but that the gi-selective blocker, atenolol, did not. 

The 1-isomer was more active than the racemate but only about 4-times 

more potent than the d-isomer. These results therefore suggest a 

contribution of both g2-blockade and membrane stabilising activity to 

the inhibition of the responses, since d-propranolol has about 1/lOOth 

the g-blocking potency of the 1-isomer (Barrett & Cullum, 1968).

Conclusion

It is apparent from the foregoing that the general findings 

after central injection of g-blockers are hypotension and bradycardia, 

although whether the effects are due to blockade at the g-adrenoceptor 

or to a non-specific membrane stabilising action of the drugs is not 

entirely clear. To confound the issue further, leakage of drug from 

CSF to the systemic circulation is a constant problem and not all 

investigators have designed experiments in which peripheral effects 

may be distinguished from central effects. It is also evident that the 

cardiovascular effects of centrally administered g-blockers are weak 

compared to those of, say, the powerful centrally acting antihypertensive 

a-adrenergic agonist, clonidine (Kobinger, 1978).

The variability in results between groups is sometimes puzzling, 

although generally this may be explained by the use of conscious or 

anaesthetised animals, choice of anaesthetic, route of administration
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(for example, intracisternal, icv, third ventricle) and even the 

location of an injection within a single ventricle. Moreover, there 

are no a priori grounds for assuming that the populations of 

g-adrenoceptors in the various parts of the CNS are functionally 

homogeneous. That is, g-adrenoceptors in, say, the hypothalamus 

may mediate antagonistic effects on the cardiovascular system to 

g-adrenoceptors in the brain stem. Whether a particular response to 

centrally injected g-blockers is seen may thus depend on the relative 

activities of such functionally opposing neuronal pools which, in turn, 

may be dependent on the type of anaesthetic used or, in the case of 

unanaesthetised animals, on the level of arousal (vide infra).

General anaesthetics obviously depress 'higher* brain function more 

than the 'lower' brain vegetative functions. It is possible, therefore, 

to attribute an exaggerated importance to such 'lower' brain sites.

The use of the term 'conscious' to describe an animait condition 

is misleading and should be replaced by the term 'unanaesthetised'.

The reason for this is that the injection of substances into the 

brain and CSF of such animals may lead to changes in arousal state 

ranging from overt sedation to hyperexcitability, such that changes 

in cardiovascular parameters may be secondary to the behavioural 

alteration and not as a direct result of an interaction of the drug 

with the 'cardiovascular' receptor. Rarely does one find even 

cursory mention of the animal's state of arousal in reports where 

drugs have been injected into the CSF of unanaesthetised animals.

The weak central action of g-blockers on the cardiovascular 

system together with their more obvious (and perhaps synergistic) 

systemic effects, underline the need for rigorous control of 

experimental design and the measurement of as many parameters of
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cardiovascular function as is technically feasible. This is 

exemplified by Korner et al (1980) who observed a reduction of 

blood pressure but no change in renal sympathetic nerve activity 

following intravenous infusion of propranolol in unanaesthetised 

rabbits. Renal baroreflex curves, however, were dramatically shifted 

in the absence of any significant change in baroreceptor activity 

(see earlier).

The central effects of a- and g-adrenergic agonists and 

antagonists on the cardiovascular system have been reviewed by 

Philippu (1980).

A detailed discussion of the anatomical and physiological 

organisation of central cardiovascular control is not within the 

scope of this thesis. However, there are several excellent reviews 

on these topics to which the interested reader is directed:

Hilton (1975), Calaresu et al (1975), Antonaccio (1977), Loewy & 

McKellar (1980) and Dampney (1981).

1.6 Cardiovascular effects of centrally injected isoprenaline

Studies of the cardiovascular effects of centrally injected 

isoprenaline have led to more variable results than those in which 

g-blockers have been used (Section 1.5).

In anaesthetised cats Gagnon & Melville (1967) obtained a fall 

in blood pressure and a tachycardia following icv injection of 

isoprenaline, effects which were abolished by spinal cord transection 

at C 20 Similar results were obtained by Toda et al (1969) in 

anaesthetised rabbits, Bhargava et al (1972) obtained a hypotension 

and tachycardia following icv injection of isoprenaline in
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anaesthetised dogs. This response was blocked by the prior icv 

injection of either propranolol or N-isopropyl-p-nitrophenylethanol- 

amine (INPEA). These authors therefore concluded that central 

g-adrenoceptors were mediators of tachycardia and hypotension.

Conway & Lang (1974) obtained similar results after icv injection of 

isoprenaline in unanaesthetised dogs. However, in the latter study 

the responses were potentiated by ganglion blockade suggesting that 

they were probably mediated via 'leaked' isoprenaline.

In anaesthetised cats and dogs Schmitt & Fenard (1971) obtained a 

hypotension and, in contrast to the above reports, a decrease in 

heart rate.

Both pressor and depressor responses to icv isoprenaline have 

been observed in anaesthetised dogs (R.H.Poyser, personal communication 

cited in Day & Roach, 1974c).

Day & Roach (1973) obtained pressor and tachycardie responses 

following icv injection of isoprenaline in unanaesthetised cats.

That these effects were of central origin and mediated by the 

sympathetic nervous system was demonstrated by their abolition 

following either ganglion blockade or adrenergic neurone blockade. 

Furthermore, the responses to icv isoprenaline were abolished by 

prior icv injection of propranolol while the peripheral responses to 

intravenous isoprenaline remained unaffected, indicating that the 

propranolol had not leaked out of the CNS. Similar doses of icv 

propranolol alone elicited falls in both blood pressure and heart rate.

The above results were largely verified by a later, more 

extensive investigation also in unanaesthetised cats (Day & Roach, 

1974a). In this study icv isoprenaline always produced a tachycardia
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but had variable effects on blood pressure, although in the majority 

of animals (12/20) a dose-dependent increase in blood pressure was 

seen. Nevertheless, the responses to centrally injected isoprenaline 

were always abolished by prior icv injection of either dl-propranolol 

or dl-alprenololo Confirmation of the central mediation of the 

responses was by similar means to that described by Day & Roach (1973). 

That the inhibition of the pressor response to icv isoprenaline by 

propranolol was mediated by blockade of central g-adrenoceptors was 

suggested by the lack of effect of d-propranolol.

In unanaesthetised rabbits Day and Roach (1974c) obtained small 

increases in blood pressure and tachycardia after icv isoprenaline.

In contrast, Dollery et al (1973), who also used unanaesthetised 

rabbits, obtained a hypotension following icv isoprenaline. In the 

latter study no mention was made of concurrent changes in heart rate.

It is difficult to reconcile the variability in results from 

investigations where isoprenaline has been centrally injected with 

the more uniform effects obtained with centrally injected g-blockers 

(Section 1,5). Part of this variability will undoubtedly be due to 

the systemic effects of 'leaked' isoprenaline, and the final cardio

vascular response may reflect a balance between central and peripheral 

actions. Even so, the observation in the unanaesthetised cat of both 

pressor and depressor responses to icv isoprenaline (Day & Roach,

1974a) serves to illustrate both the complex nature of central 

cardiovascular control and possibly also between-animal differences 

in the distribution of drug following icv injection. Also, it is 

apparent from microelectrophoretic studies that isoprenaline is 

able to stimulate both q- and g-adrenoceptors in the brain 

(Szabadi, 1979),
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1.7 g-adrenoceptors in the CNS

In this Section I shall discuss the evidence for the presence 

of g-adrenoceptors in the CNS and consider the potential endogenous 

agonists which may interact with them.

Kakiuchi & Rail (1968) were the first to demonstrate 

biochemically the presence of g-adrenoceptors in the brain. They 

showed that an adenylate cyclase from rabbit cerebellum produced an 

increase in cyclic AMP when stimulated by isoprenaline. This effect 

was blocked by dichloroisoprenaline, a phenomenon not observed with 

a-adrenoceptors in the CNS which appear also to respond to 

stimulation by an increase in cyclic AMP (Chasin et al, 1971).

The later introduction of high-affinity radiolabelled ligands 

has led to more quantitative determinations of central g-adrenoceptors, 

For example, Bylund & Snyder (1976), using membrane preparations 

from rat and monkey brain, investigated the ability of g-adrenergic 

agonists to displace (^H)-dihydroalprenolol. The order of potency of 

the agonists was isoprenaline > adrenaline - noradrenaline, thus 

satisfying the criteria for g-adrenoceptors. These authors also 

investigated the regional distribution of (^H)-dihydroalprenolol 

binding in the rat and monkey brain. In both species binding was 

higher in the cerebral cortex and limbic system than in the 

hypothalamus, pons and medulla.

The technique of microelectrophoresis has enabled the 

pharmacological characterisation of g-adrenoceptors in various parts 

of the CNS, mainly in the rat (for review see Szabadi, 1979),

Usually, noradrenaline is ionophoresed onto central neurones and the 

effect of g-blockers on either firing rate (extracellular recording)
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or graded membrane response (intracellular) to the noradrenaline is 

investigated. In this way g-adrenoceptors have been identified on 

neurones in the brain stem, cerebellum, hypothalamus, limbic system, 

corpus striatum and cortex.

Although the above techniques have provided firm evidence for 

the presence of g-adrenoceptors in the brain, none of them casts 

light on their function, if any, in the central regulation of blood 

pressure.

Of the putative transmitters in the brain the most likely 

candidates for agonists at the g-adrenoceptor are noradrenaline and 

adrenaline, the distributions of which have been mapped by means of 

fluorescence histochemical and immunohistochemical methods 

(Ungerstedt, 1971; Hdkfelt et al, 1973, 1974 - respectively). It seems 

unlikely that dopamine is an endogenous agonist at the g-adrenoceptor 

since Bylund & Snyder (1976) showed it to be at least 100-fold less 

potent than noradrenaline and adrenaline at inhibition of 

(^H)-dihydroalprenolol binding in mammalian brain membrane 

preparations. A comprehensive review of the anatomy and physiology 

of central noradrenaline and adrenaline systems may be found in 

Moore & Bloom (1979).

While g-blocking drugs may be expected to interact with brain 

g-adrenoceptors, the possibility of an interaction of these compounds 

with central 5-hydroxytryptamine (5-HT) receptors has been suggested 

by Middlemiss et al (1977), who investigated the inhibition of 

(^H)-5-HT binding by a number of g-blockers in crude synaptic 

membranes of rat brain. In this respect, 1-propranolol was more 

effective than the 5-HT antagonist, methysergide. Racemates of 

propranolol, alprenolol, oxprenolol and pindolol were also effective.
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Least potent were d-propranolol, dl-practolol and dl-atenolol.

Recently, however, Blackburn & Heapy (1982) failed to obtain an 

inhibition by propranolol of 5-HT-induced rat body shake behaviour. 

Furthermore, microelectrophoretic (Bradley & Gladman, 1981) and 

neurophysiological (Cox et al, 1981) studies have failed to support 

the suggestion that propranolol is a postsynaptic 5-HT antagonist.

1.8 Cardiovascular effects of centrally injected a-adrenergic

agonists and adrenaline

Following icv injection of noradrenaline in anaesthetised dogs, 

McCubbin et al (1960) obtained a bradycardia and hypotension.

Bimilarly, Nashold et al (1962) and Share & Melville (1963) obtained 

hypotension and bradycardia after icv injections of noradrenaline in 

anaesthetised cats. Day & Roach (1974a) reported falls in blood 

pressure and heart rate after icv injections of a-methylnoradrenaline, 

clonidine and noradrenaline in unanaesthetised cats. The effects 

were abolished by pretreatment with icv phentolcimine.

In anaesthetised rats the injection of noradrenaline into specific 

areas in the anterior hypothalamus and brain stem produced hypotension 

and bradycardia (Struyker Boudier et al, 1975), the greatest brain 

stem responses being evoked by injections into the nucleus tractus 

solitarii. Similar responses were obtained by De Jong et al (1975) 

following nucleus tractus solitarii injections of noradrenaline in 

anaesthetised rats. In the latter report prior injection of 

phentolamine into the nucleus prevented the hypotension and bradycardia 

produced by the subsequent injection of noradrenaline.

However, that the sole effect of centrally injected 

noradrenaline is not cardiovascular depression is suggested by the
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following reports. Third ventricular infusions of noradrenaline 

have been shown to evoke pressor responses in unanaesthetised 

monkeys (Forsyth & Pesout, 1978), Furthermore, pretreatment with 

icv 6-hydroxydopamine, a chemical causing selective degeneration of 

catecholamine neurones (Jonsson et al, 1975), as well as exerting a 

hypotension and bradycardia by itself, also blocked the pressor 

responses to subsequent third ventricular injections of 

noradrenaline. Systemic responses to intravenous noradrenaline were 

not modified (Forsyth & Pesout, 1978).

Day et al (1980) obtained differential effects of noradrenaline 

depending on whether the amine was injected into the lateral cerebral 

ventricle or the third ventricle of the unanaesthetised cat. Thus, 

a low dose of noradrenaline injected into the third ventricle 

produced a marked pressor response, whereas the same dose injected 

icv had no effect. However, a higher dose of noradrenaline injected 

icv evoked a long-lasting hypotension.

In anaesthetised rats, Kleinrok & Ksiazek (1977) obtained only 

pressor responses to icv noradrenaline.

The first report of a central cardiovascular effect of 

adrenaline was probably that of Heller (1933) who obtained marked 

falls in blood pressure and heart rate following intracisternal 

injection in anaesthetised cats. More recently, Borkowski & Clough 

(1981), using unanaesthetised dogs, demonstrated a hypotension and 

bradycardia after icv injection of adrenaline. These responses 

were not modified by icv pretreatment with the a-adrenergic 

antagonists, phentolamine and yohimbine, but were inhibited by icv 

pretreatment with propranolol, atenolol and metoprolol. However,
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the effects of the g-blockers themselyes on blood pressure and 

heart rate were not reported, thus making it difficult to draw firm 

conclusions.

In unanaesthetised cats icv adrenaline produced variable 

effects on blood pressure and heart rate (Day & Roach, 1974a). 

However, in cats which had been pre treated with icv propranolol, 

adrenaline produced only a hypotension and bradycardia. After 

pretreatment with icv phentolamine, adrenaline produced dose-related 

increases in blood pressure and heart rate.

In anaesthetised rats, intracisternal injections of adrenaline 

elicited an initial pressor response followed by a hypotension 

(Ozawa & Uematsu, 1975). Struyker Boudier & Bekers (1975) obtained 

decreases in blood pressure and heart rate after injections of 

adrenaline into the anterior hypothalamus of anaesthetised rats.

The hypotension was preceded by a small, but significant, increase 

in blood pressure but this was attributed to a peripheral action 

of the amine since intravenous adrenaline produced only a pressor 

response.

lev adrenaline produced hypotension and bradycardia in 

anaesthetised rats (Borkowski & Finch, 1979) and in anaesthetised 

(Borkowski & Finch, 1978) and unanaesthetised (Borkowski & Finch, 

1977, 1978) spontaneously hypertensive rats. In these experiments 

pretreatment with icv g-blockers antagonised the cardiovascular 

depression produced by icv adrenaline, whereas icv pretreatment 

with a-adrenergic antagonists was ineffective.

Thus, the general cardiovascular effects of centrally 

administered adrenaline appear to be hypotension and bradycardia.
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at least in the rat and dog. Moreover, the ability of g-, but not 

g-blockers to antagonise these responses suggests a hypotensive 

and bradycardic function of central g-adrenoceptors in these animals.

1.9 Aims of the present study

The present study was designed to investigate further the 

possible role of brain g-adrenoceptors in the central regulation of 

blood pressure. The problem was tackled at 3 levels:

1. The effects on the cardiovascular system of g-blockers injected

into the cerebral ventricle and into the brain substance of 

the rat;

2. The effect of centrally injected g-blockers on the cardiovascular

responses to icv a- and g-adrenergic agonists in the rat;

3. The effect of centrally injected g-blockers on the cardiovascular

responses to electrical stimulation in various areas of the rat 

and cat brain.

The first approach is that most commonly encountered in studies 

of this nature (see Section 1.5). However, its major limitation lies 

in the assumption that there is g-adrenoceptor-mediated activity 

during the course of the experiment and that this activity has a rôle 

in the maintenance of resting blood pressure and heart rate. The 

second and third approaches were designed to help circumvent this 

limitation.



36

MATERIALS AND METHODS 

Chapter 2
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2.1.1 General considerations

Each of the Sections in this Chapter has been allocated a 

3 figure number. The first number refers to the Chapter while the 

second number denotes a major sub-division within the Chapter,

The final number denotes a division within a sub-division. Thus, 

Sections 2.2.1 to 2.2.4, for exanple, are linked by virtue of the 

similar techniques and protocols described within them. In this 

first Section I shall discuss the stereotaxic technique, which has 

been used in most of the experiments, and the histological methods 

used to verify cannula and electrode placements in the animals' brains.

2.1.2 The stereotaxic technique

For the following discussion the reader should refer to Figure 1, 

The stereotaxic instrument consists of a rigid metal frame on which is 

mounted a carrier whose travel may be finely controlled in 3 planes.

A cannula or electrode is clamped firmly onto the carrier and its tip 

located at the mid-point of the ear bars, the tips of which have been 

previously separated by 1mm. The cannula or electrode tip is now at 

stereotaxic zero and the following coordinates are recorded:

AP (anterior-posterior plane)

L (lateral plane)

H (horizontal plane)

Each stereotaxic atlas has an arbitrary horizontal zero plane which 

differs from the horizontal (H) plane determined above. In the instance 

of the rat brain atlas of Kônig & Klippel (1963) the horizontal zero 

plane lies 4,9mm above the interaural line when the upper incisor bar 

is 2.4mm below the interaural line (see below). (The interaural line 

is an imaginary line passing through the centre of the two ear bars).
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For the cat brain atlas of Snider & Niemer (1961) the horizontal 

plane lies lOmjn above the interaural line.

Three coordinates are taken from the stereotaxic atlas and 

these describe the position of most areas of the brain relative to 

instrument zero. (Instrument zero uses the AP and L coordinates 

obtained by the method described on the previous page, and the 

modified H coordinate). The final position of the cannula or 

electrode tip is then determined as follows:

atlas coordinate ± instrument zero coordinate =  final instrument coordinate

In the case of the rat, the animal is mounted in the instrument 

by manoeuvring the head of the animal so that the ear bars lie in the 

external auditory meatus of each ear. The head is then centralised 

within the freane by reference to the calibrations on the ear bars.

The upper teeth are hooked over the incisor bar and the nose clamp 

gently tightened. The incisor has a vertical adjustment and its 

final position depends on the stereotaxic atlas being used. For the 

atlas of Kdnig & Klippel (1963) the incisor bar is set 2.4mm below 

the interaural line.

The cat stereotaxic instrument is equipped with a head-holder 

that has two eye bars (which are rested on the infra-orbital ridges) 

and two teeth bars (which are set firmly against the canine teeth).

Unlike the rat instrument the cat frame allows only horizontal 

positioning of the animal's head.

A more detailed discussion of the stereotaxic technique may be 

found in Pellegrino & Cushman (1971),
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2.le 3 Histological techniques

Although the stereota.xic technique allows highly accurate and 

reproducible electrode and cannula placements, the inevitable 

variation between animals requires that placements are verified 

following experimentation.

For the verification of icv injections in rats, 10 yJl of a 

1% w/v aqueous solution of Evans Blue dye were injected at the end of 

every fifth experiment. The ventricle is a relatively large target 

and verification in every animal was considered unnecessary.

A lethal dose of anaesthetic (either pentobarbitone or thiobutobarbitone) 

was injected intravenously and the animal removed from the stereotaxic 

instrument. The chest was opened and a 19 gauge hypodermic needle 

inserted and clamped into the left ventricle. The right ventricle 

was cut to allow blood to leave the cardiovascular system.

Twenty ml of a 0.9% w/v NaCl solution was injected into the left 

ventricle followed by 40 ml of 10% formol saline (9 g NaCl + 100 ml of 

40% formaldehyde, made up to 1 litre with distilled water)« The latter 

procedure enabled in vivo fixation of the brain. The brain was 

removed from the skull and verification of successful icv injection 

performed by gross dissection.

Intrahippocampal injections were verified by a similar 

procedure to that described above, except that only 0.4 yJl of dye 

was injected and the brain kept for at least 4 days in 10% formol 

saline after removal from the skull. Verifications were performed 

in every other animal. Sections of 70 \m thickness were cut on a 

freezing microtome from a block of brain containing the injection 

site. Sections were examined under low-power microscopy and
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compared with the appropriate coronal section in the stereotaxic 

atlas. An example of a section is shown in Figure 5.

Verification of electrode placements in rats is discussed in 

Section 2,4,4o

In cats, verification of ansa lenticularis electrode placement 

was achieved at the end of the experiment by passing anodal dc current 

(1 mA, 40 seconds) through the stimulating electrode. The resulting 

lesion was visualised by gross dissection following removal of the 

brain and fixation in 10% formol saline. Third ventricle injections 

were verified at the same time following the infusion of 500 y& of a 

1% w/v aqueous solution of Evans Blue dye at the end of each experiment.

2.2.1 Central injection of g-blockers in halothane anaesthetised rats

During the early stages of this study rats were anaesthetised 

with the gaseous anaesthetic, halothane (Fluothane, ICI pic).

Male Wistar rats (University of Bath strain), weighing 140 - 170 g, 

were placed in a perspex chamber through which was blown a mixture of 

5% halothane in oxygen. The concentration of halothane in the inspired 

gas was regulated by means of a Fluotec III vapouriser (Cyprane Ltd) 

incorporated in a Boyles anaesthetic apparatus. Gas flow was always 

maintained at 1 litre/minute. When unconscious, the rats were 

removed from the chamber and placed on a heated operating table. 

Thereafter, open circuit anaesthesia was maintained by blowing a 

mixture of 1% halothane in oxygen over the animal's nose by way of 

a mask fashioned from a 5 ml plastic syringe. Depth of anaesthesia 

was adjusted by varying the concentration of halothane in the inspired 

gas, the range being from about l%-2%.
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The left carotid artery was catheterised with a polyethylene 

tube (ref; 200/300/030, Portex Ltd) connected to a physiological 

pressure transducer (Type 4-442, Bell & Howell Ltd), the whole unit 

being filled with heparinised saline (200 Units heparin/ml 0.9% w/v 

NaCl). The transducer was coupled to a blood pressure pre-amplifier 

(Devices 3552), the output of which was fed to a 2-channel pen 

recorder (Devices MX2) and to a heart rate conditioning unit (Devices 

4521) which derived heart rate from the blood pressure pulse. The 

heart rate was displayed on the second channel of the pen recorder.

The left jugular vein was catheterised with a saline-filled 

polyethylene tube (ref: 200/300/020, Portex Ltd) to enable the 

intravenous injection of drugs.

After insertion of arterial and venous catheters the rat was 

positioned in a small animal stereotaxic instrument (DKI 900, David 

Kopf Instruments) on which a feedback-controlled heating blanket had 

been placed (C.F.Palmer Ltd). Feedback was provided by a probe 

located in the rat's rectum, body temperature being maintained at 37 '̂ C. 

The anaesthetic mask was replaced over the animal's nose and its 

blood pressure allowed to stabilise before any further surgery.

The animal's skull was exposed by a dorsal midline incision 

extending about 15 mm back from the eyes. Underlying tissue adhering 

to the skull was scraped away.

2.2.2 intracerebroventricular (icv) injection of propranolol

The injection unit of the stereotaxic instrument carried a 

30 gauge stainless steel cannula to which was attached about 20 cm 

of polyethylene tubing. The tip of the cannula was manoeuvred to a

o.
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position on the skull directly over the area to be injected and a 

hole was drilled in the bone by means of a dental burr. The tough 

dura mater underlying the burr hole was scraped away with the 

blunted tip of a 23 gauge syringe needle to allow unrestricted entry 

of the cannula into the brain substance. The following coordinates 

were used to locate the tip of the cannula into the left lateral 

cerebral ventricle; A +3.29, L +4.4, H -0.4 mm (KSnig & Klippel, 1963).

The polyethylene tubing and cannula were loaded with a 10 mg/ml 

solution of propranolol hydrochloride in saline. A 10 yi microsyringe 

(Hamilton) was filled with 70% alcohol and the syringe attached to 

the polyethylene tubing. The cannula was lowered to the injection 

site and blood pressure and heart rate allowed to stabilise before 

commencing the injection.

The propranolol solution was injected at a rate of 1 yi/minute 

until a total volume of 10 y£ had been administered. A total dose of 

loo  yg of propranolol HCl was therefore contained in the injectate

Blood pressure and heart rate were monitored for a period of 

30 minutes following the injection.

The region of brain in which the propranolol was injected is 

shown diagrammatically in Figure 2.

Leakage of propranolol from the ventricular CSF to the systemic 

circulation was investigated in a separate series of experiments by 

comparing the heart rate response to intravenous isoprenaline (0.1 yg) 

5 minutes before and 15 minutes after the start of the icv propranolol 

injection.
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2.2.3 Intrahippocampal injection of g-blockers

For the unilateral administration of drugs into the hippocampus 

a similar procedure to that described in Section 2.2.1 was carried 

out. However, the dose of drug was contained in 0.4 yi of saline 

and a 1 yi microsyringe (Hamilton) was used to inject the solution 

at a rate of 0.1 y /minute. The following coordinates were used to 

locate the tip of the cannula in the subiculum of the dorsal 

hippocampus; A +1.27, L +3.1, H +1.4 mm (KSnig & Klippel, 1963).

Figure 3 shows diagrammatically the region of brain in which the 

drugs were injected.

2.2.4 Anatomical localisation of the responses to intrahippocampal 

injection of g-blocker

To investigate whether the responses to the above injections 

were specific to the dorsal hippocanpus, injections were made in 

5 brain regions at small distances away from the original site.

The coordinates of these areas relative to the dorsal hippocampal 

injection site are given in Figure 4.

2.3.1 Icv injection of drugs in thiobutobarbitone anaesthetised rats

Male Wistar rats (Alderley Park SPF strain), weighing 200-300 g, 

were anaesthetised with thiobutobarbitone sodium (Inactin, BYK;

150 mg/kg i.p.). Thereafter, surgical preparation was similar to 

that described in Section 2.2.1. Further anaesthetic was administered 

as and when necessary via the intravenous catheter, although the 

initial dose was usually sufficient for the duration of the 

experiment (about 1 hour). For most of these series of experiments
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an Elcomatic EM751 transducer was used to record blood pressure 

and this was coupled to a Devices 3552 pre-aqplifier located in a 

Devices Ml9 recorder. Heart rate was derived from the blood pressure 

pulse using a cardiotachometer manufactured by ICI.

The following coordinates were used to locate the injection 

cannula in the left lateral cerebral ventricle; A +3.29, L +4.4, H -0.4 

mm (KSnig & Klippel, 1963).

All drugs for central injection were dissolved in an artificial 

CSF of the following composition (mM); NaCl 127.65, KCl 2.55, 

CaCl2 .2H 2 0 1.26, MgCl2 .6H 2 0 0.93, NaHCOg 23.7, NaH2POi+ 1.51, 

glucose 3.38. This recipe is a modification of that used by Merlis 

(1940).

2.3o2 Effect of icv g-blocker pretreatment on the response to

icv adrenergic agonists

Drugs were injected according to the following schedule;

3-blocker icv
adrenergic 
agonist icv

time (mins)
t

-15
t

-10
t +
O 2.5

The dose of 3-blocker was contained in 10 \ i l artificial CSF and 

injected at a rate of 2 y /minute. The dose of adrenergic agonist 

was contained in 5 y& artificial CSF and also injected at 2 y£/minute. 

At -5 minutes the cannula with attached tubing was removed from the 

animal, flushed with distilled water and loaded with the appropriate 

solution of adrenergic agonist before being relocated in the ventricle.
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The following 3-blockers were used: 1-, dl- and d-propranolol, 

atenolol and ICI 118551, Adrenergic agonists used were adrenaline, 

noradrenaline and phenylephrine.

2e3o3 Effect of icv 3-blocker pretreatment on the response to icv 

adrenergic agonist - consequence of prior icv injection 

of phentolamine

For this series of experiments the a-blocker, phentolamine, 

was injected icv before repeating the injection schedule described 

in Section 2.3.2:

phentolamine icv 3-blocker icv
adrenergic 
agonist icv

t t 
-25 -22.5 -15

t
-10

t +
O 2.5

time (mins)

The dose of phentolamine was contained in 5 y£ artificial CSF 

and was injected over a period of 2.5 minutes.

Leakage of phentolamine from ventricular CSF to the systemic 

circulation was investigated in a separate series of experiments by 

comparing the diastolic pressor responses to increasing doses of 

intravenously injected phenylephrine before and 25 minutes after the 

central injection of phentolamine.

2.4.1 Effect of icv 3-blockers on the cardiovascular responses to 

monopolar electrical stimulation in various brain areas in 

thiobutobarbitone anaesthetised rats

Animals were prepared as described in Section 2.3.1. Electrodes
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for electrical stimulation were made by Mr.P.W.Marshall of ICI pic. 

However, a description of their preparation is pertinent to this 

Section.

Precut lengths (about 7.5 cm) of stainless steel wire 

(catonoo SS20-3, Clark Electromedical Instruments) were electrolytically 

sharpened in a mixture containing 34 ml H 2SO4 and 42 ml phosphoric 

acid, made up to 100 ml with distilled water. A number of the wires 

were placed in a holder and attached to the slowly revolving drive 

shaft of a horizontally positioned kymograph. The wires were 

immersed in the electrolyte to a depth of 1 - 2 cm and electrolysis 

initiated by applying a dc potential of 6 Volts across the wires 

(anode) and a carbon rod dipped in the electrolyte (cathode).

When sharpened, the electrodes were immersed successively in 

10% HCl, distilled water, absolute alcohol, acetone, and xylene, in 

which they were stored until insulated. To insulate, the electrodes 

were dipped in epoxy resin (EPR-4, Clark Electromedical Instruments) 

to a depth of about 3 cm and then slowly and evenly withdrawn by an 

electrically driven motor. They were then baked for 30 minutes in 

an oven at a temperature of about 150 °C.

To check the uninsulated tip length each electrode was placed 

in saline and viewed under a microscope with calibrated eyepiece.

A 6 Volt dc potential applied across the electrode (cathode) and the 

saline (anode) caused bubbles to appear along the uninsulated 

surface of the electrode tip. Electrodes with tip lengths of 

10-'40 ym were used in subsequent experiments. Electrodes were 

bubble-tested before each experiment.

Electrodes were mounted in an electrode carrier on the
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stereotaxic instrument. A typical set-up is shown in Figure 6 , 

with an electrode and injection cannula in position in the rat's 

brain.

2.4.2 Electrical stimulation

Negative-going square wave pulses were delivered to the 

electrode from either a Grass S48 or Farnell stimulator. Constant 

current stimulation was ensured by the interposition of a constant 

current device between stimulator and electrode. One of 3 types of 

devices was used: a Grass Instruments CCU lA, a unit made by ICI pic, 

or a unit made by the author (Sheridan, 1982). The indifferent 

anodal electrode was attached via an alligator clip to the 

subcutaneous tissue exposed by the scalp incision. Electrical 

stimulation was effected by positioning of the electrode tip in the 

desired brain region and stimulating at 20-100 Hz, 200-300 yA, the 

final frequency range and current depending on the magnitude of the 

pressor responses obtained at each site. Pulse width was kept at 

2 msec and train duration was 5 seconds.

The following brain regions were electrically stimulated 

(coordinates according to KSnig & Klippel, 1963):

anterior hypothalamic nucleus A +6.28 L 0.6 H —2.5 mm

posterior hypothalamus A +3.50 L 1.0 H -2.5 mm

central amygdaloid nucleus A +5.66 L 3.5 H -2.5 mm

median raphe nucleus A +0.35 L 0 H -2.5 mm
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2.4.3 Protocol for electrical stimulation experiments

The injection cannula was filled with the appropriate drug 

solution and located in the lateral cerebral ventricle as described 

in Section 2.2,2. The electrode was positioned in one of the 4 

regions described above (Section 2.4,2). Test stimulations (60 Hz,

200 yA, 2 msec pulse width, 5 second train duration) were made at 

various horizontal (H) coordinates near to those given in Section

2.4.2 until a position was found where the blood pressure response 

was maximal. A frequency-response analysis was then made using 

stimulation frequencies within the range 20-100 Hz. 3-blocker 

(dissolved in 10 y£ artificial CSF) was then injected icv at a rate 

of 2 y£/minute and the frequency-response curve repeated 1 0 minutes 

after the injection.

2.4.4 Verification of stimulation site

At the end of each experiment anodal dc current (0.5 mA,

2o seconds) was passed through the stimulating electrode to deposit 

iron ions in the brain tissue surrounding the electrode tip.

Ten y£ of a 1% w/v aqueous solution of Evans Blue dye was injected 

through the icv injection cannula. Following cardiac perfusion with 

saline and formalin and fixation of the brain (see Section 2.1.3), 

the site of stimulation was visualised by immersion of a block of 

brain containing the stimulated area in a saturated solution of 

potassium ferrocyanide. Iron(III) ions in the tissue react with 

the ferrocyanide to yield a blue-coloured complex. Histological 

preparation of tissues was then as described previously (Section 2.1.3)
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2.5.1 Preparation of anaesthetised cats for third ventricle 

infusion and electrical stimulation

Male cats (Alderley Park SPF), weighing 1.9-3.5 kg, were 

anaesthetised with a-chloralose (80 mg/kg i.p.). The trachea was 

cannulated and the animal artificially respired ('Ideal' respiration 

pump, C.F.Palmer - 12 ml air/kg/stroke, 20 strokes/minute).

A femoral artery and vein were catheterised for the measurement of 

blood pressure and intravenous injection of drug, respectively.

The animal was positioned in a stereotaxic instrument (DKI 1204,

David Kopf Instruments). A 4-5 cm dorsal midline incision was made 

on the animals head and the underlying tissue cleared to reveal the 

skull bone. Electrocautery was used throughout to minimise bleeding.

Two burr holes, each about 5 mm diameter, were drilled into 

the skull at positions vertically above the ansa lenticularis and the 

third ventricle. The tough dura mater was scraped away to 

facilitate unrestricted entry of the cannula and electrode into the 

brain substance. The bone of the skull is highly vascularised and 

bleeding was a continual problem. However, this was effectively 

controlled by the application of a haemostatic gauze ('Surgicel', 

Ethicon) to the area of bleeding.

The stereotaxic instrument bore two carriers - one held a 

23 gauge stainless steel cannula for the infusion of drug while the 

other held a stainless steel electrode of the type described in 

Section 2.4.1. The following coordinates from the stereotaxic 

atlas of Snider & Niemer (1961) were used;

ansa lenticularis A +10 L -6,5 H -2.5 mm
third ventricle A +10 L +1.0 H +6.5 mm
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A coronal section of the cat brain at the A +10 mm coordinate is 

shown in Figure 42.

End expiratory pCD2 was monitored throughout the experiment 

by means of a Beckman LB-2 Medical Gas Analyser, The stroke of 

the respiration pump was adjusted to maintain the pC0 2  within the 

range 26-31 mmHg. Blood gas analysis was performed every 60 minutes 

on a 1 ml sample of femoral artery blood (Corning 175 automatic 

pH/blood gas system). Acidosis was corrected by intravenous 

injection of the appropriate volume of an 8,4% w/v solution of 

sodium bicarbonate. Body temperature was maintained at 37 °C by 

means of radiant heat.

2.5.2 Monopolar electrical stimulation in the ansa lenticularis

The electrode was lowered to instrument zero (Section 2.1.2) 

and test stimulations (60 Hz, 200 pA, 2 msec pulse width, 5 second 

train duration) were made at successively more ventral positions of 

the electrode tip, the electrode being moved downwards in steps of 

0.3 mm. Ansa lenticularis stimulation yielded characteristic 

cardiovascular and somatic responses including an increase in blood 

pressure and tachycardia, pupillary dilatation and retraction of the 

nictitating membranes.

Negative-going square wave pulses were delivered to the 

stimulating electrode via a constant current device, the indifferent 

(anodal) electrode being attached to the subcutaneous tissue exposed 

by the scalp incision.
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2.5.3 Third ventricle infusion of drugs

A syringe was filled with the appropriate drug solution, 

placed in the holder of an infusion punç» (Harvard Apparatus), and 

attached to the injection cannula via a length of polyethylene 

tubing. The pump delivered drug solution at a rate of 0.08 ml/minute, 

The tubing and cannula were allowed to fill with drug solution and 

the pump switched off. The infusion cannula was lowered into the 

third ventricle (2.5.1).

dl-Propranolol hydrochloride and procaine hydrochloride were 

dissolved in artificial CSF (2.3.1) to give final concentrations 

of 0.5 and 2.4 mg/ml, respectively.

2.5.4 The effect of drugs on the cardiovascular responses to

ansa lenticularis stimulation

Control blood pressure and heart rate responses to stimulation 

in the ansa lenticularis were obtained (60 Hz, 200 yA, 2 msec pulse 

width, 5 second train duration). Drug was then either injected 

intravenously or infused into the third ventricle. Propranolol 

was administered to give final total doses of 30, 100, 300 and 

500 yg/kg. The cardiovascular response to ansa lenticularis 

stimulation was recorded 5 minutes after the administration of 

each dose.

In one animal procaine hydrochloride (400 yg) was infused 

into the third ventricle and its effect on the response to ansa 

lenticularis stimulation recorded.

Verification of the location of the cannula in the third 

ventricle was performed by infusing 500 y£ of a 1 % w/v aqueous
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solution of Evans Blue dye, followed by post mortem gross dissection 

of the brain (see Section 2.1,3). Verification of electrode 

placement in the ansa lenticularis was as described in Section 2.1.3

2.6ol Drugs and general chemicals 

t  phentolamine mesylate 

t  1 -noradrenaline bitartrate 

t adrenaline hydrogen tartrate 

t phenylephrine hydrochloride 

t isoprenaline sulphate 

t procaine hydrochloride

1 -, dl-,d-propranolol hydrochloride 

atenolol 

t t  ICI 118551 hydrochloride 

timolol maleate 

hexaméthonium bromide 

halothane ('Fluothane') 

thiobutobarbitone Na ('Inactin') 

t t t  arginine vasopressin antagonist 

tttt a-chloralose

heparin ('Pularin' 25000 U/ml) 

formalin

polyethylene glycol 400 

Evans Blue

potassium ferrocyanide

CIBA

Sigma

BDH

Sigma

BDH

Sigma

ICI

ICI

ICI

Merck Sharp & Dohme

Koch-Light

ICI

BYK

Aldrich

Duncan Flockhart

BDH

BDH

Sigma

May & Baker

t  Prepared immediately before use. 

t t  ICI 118551 =  erythro-DL-(7-methylindan-4-yloxy)-3-isopropyl-
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aminobutan-2-olo ICI 118551 is a highly 3 2”Selective 

blocking agent (Bilski et al, 1980; O'Donnell & Wanstall, 1980). 

At the concentrations used in the present study the ICI 118551 

was not readily soluble in artificial CSF. Consequently, the 

compound was dissolved in l/5th the final volume of warmed 

polyethylene glycol 400. The solution was then made up to 

final volume with artificial CSF. The solvent had no effect 

on the control cardiovascular response to icv adrenaline.

t t t  arginine vasopressin antagonist =  d(CH2 )sTyr(Me)arginine 

vasopressin. The compound is an inhibitor of the pressor 

actions of arginine vasopressin (Kruszynski et al, 1980) and 

was a gift frcm Professor M.Manning, Department of Biochemistry, 

Medical College of Ohio, Toledo, Ohio 43699.

t t t t  a-chloralose was made up to give a 5% w/v solution -

1 g a-chloralose was dissolved in 1 0 ml warmed polyethylene 

glycol 400. The solution was made up to a final volume 

of 20 ml with saline. The anaesthetic was used while 

still warm.

2.6.2 Doses of drugs

Doses of drugs given in the text (with the exception of bases) 

are expressed in terms of the salt.

2.7.1 Data analysis

The blood pressure pulse does not take the form of a sine
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wave and, consequently, mean arterial pressure cannot be derived 

by arithmetic averaging of the systolic and diastolic blood pressure 

values. A routinely used approximation of the mean arterial pressure 

(MAP) was therefore used in the present study:

m a p =  systolic blood pressure - diastolic blood pressure diastolic' BP
3

Data were analysed for statistical significance with 

Student's t test for paired or unpaired comparisons, depending on 

the experimental design.
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RESULTS 

Chapter 3
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3.1 General considerations

Throughout this Chapter doses of drugs (except bases) are 

expressed in terms of the salt. Group data are expressed as means ± 

standard errors of the means. The following ad)breviations are used: 

MAP - meain arterial pressure, SBP - systolic blood pressure, 

bpm - beats per minute. For ease of cross-reference, the appropriate 

Section in the Materials and Methods Chapter has been indicated 

in parenthesis at the end of most of the headings in this Chapter.

3.2 Resting blood pressure and, heart rates of anaesthetised 

rats (2.2.1 and 2.3.1)

The resting blood pressures of the halothane anaesthetised 

rats (81 ± 1 mmHg; n = 113) were lower than those of the 

thiobutobarbitone anaesthetised rats (117 ± 1 . 5  mmHg; n = 200). 

Similarly, heart rates of the former group (370 ± 4 bpm; n = 91) 

were lower theui those of the latter group (421 ± 4 bpm; n = 154),

3.3 Intracerebroventricular (icv) injection of g-blockers (2.2.2)

In halotheme anaesthetised animals icv dl-propranolol (100 yg) 

produced a significant (P < 0.01) decrease in MAP, the response 

being fully developed 5 minutes after completion of the injection, 

by which time MAP had fallen by 12 ± 2.9 mmHg (Figures 7 amd 8 ).

In thiobutobarbitone anaesthetised rats icv injection of 

dl-propranolol, atenolol and ICI 118551 (100 yg) failed to lower 

blood pressure (Figure 9). In fact, the two lower doses of
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dl-propranolol (10 and 30 yg) produced small but significant (P < 0.05) 

elevations in MAP which lasted for at least 10 minutes after 

completion of the injection (Figure 9). Icv injections of vehicle 

(artificial CSF), dl-propranolol (100 yg), d-propranolol (30 yg), 

atenolol (100 yg) and the 3 2”selective blocker, ICI 118551 (100 yg) , 

did not significantly alter blood pressure (Figure 9).

dl-Propranolol (100 yg) significantly (P < 0.05) lowered 

heart rate by 59 ± 21 bpm following icv injection in halothane 

anaesthetised rats (Figures 7 and 8 ). The time course of the fall 

in blood pressure paralleled that of the fall in heart rate in 

these animals.

In thiobutobarbitone anaesthetised rats icv dl-propranolol 

(10, 30 and 100 yg) produced significant (P < 0.01) dose-related 

reductions in heart rate (22 ± 5, 53 ± 6 , 57 ± 9 bpm, respectively; 

Figure 10). Significant (P < 0.01) reductions in heart rate 

(66 ± 1 0 bpm) were also seen after icv injection of 1 0 0 yg atenolol 

(Figure 10). Vehicle, d-propranolol (30 yg) and ICI 118551 (100 yg) 

failed to affect heart rate significantly (Figure 10).

3.4 Leakage of dl-propranolol from CSF (2.2.2)

In halothane anaesthetised animals the possible leakage of 

icv injected dl-propranolol from the CSF to the systemic circulation 

was investigated by comparing the tachycardie responses to 

intravenous isoprenaline (0 . 1  yg) before and after icv injection of 

100 yg dl-propranolol (Figure llB). Five minutes after the icv 

injection the tachycardia was reduced to 15.3 ± 5 % of its control 

level.
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In a separate series of experiments the inhibition of 

isoprenaline-induced tachycardia by intravenous injections of 

dl-propranolol (5, 10, 20 and 40 yg) was studied (Figure llA)« 

Comparison of Figures 11A and llB indicated that nearly 40% of the 

centrally injected dose of dl-propranolol had leaked into the 

circulation 5 minutes after the icv injection.

3.5 Intravenous injection of dl-propranolol

Intravenous injection of dl-propranolol (50 yg) produced 

significant (P < 0.05) falls in blood pressure (10 ± 3.2 mmHg) and 

heart rate (47 ± 5 bpm) in halothane anaesthetised rats. These 

responses occurred inmediately following the injection and both 

parameters decreased with a similar time course.

The falls in blood pressure and heart rate produced by 

intravenous propranolol (50 yg) were not statistically different 

from those produced by icv propranolol (100 yg).

3.6 Intrahippocampal injection of propranolol (2.2.3)

Unilateral intrahippocampal injection of 1-propranolol 

(1 and 2 yg) produced significant dose-dependent reductions in 

MAP in halothane anaesthetised rats (Figure 12). At 15 minutes 

after the start of the injection 1-propranolol (1 and 2 yg) produced 

falls in MAP of 4.2 ± 2.9 and 6 . 8  ± 1.6 mmHg, respectively. 

Intrahippocan^al injections of either saline vehicle (0.4 y£) or 

d-propranolol (2 yg) did not significantly affect MAP at this time 

(Figure 12).
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Heart rate was significantly lowered by intrahippocanç>al 

injections of 1 and 2 yg 1-propranolol (18 ± 5 and 31 ± 8 bpm, 

respectively; Figure 13), Saline vehicle (0.4 y£) or d-propranolol 

(2 yg) failed to affect heart rate significantly except at 15 minutes 

after the start of the injection, where saline produced a small, 

but significant (P < 0.05) reduction in heart rate (Figure 13).

3.7 Anatomical localisation of the hippocampal response (2.2.4)

Injections of 1-propranolol (2 yg) were made in 5 brain regions 

at small distances away from the original injection site. The 

coordinates of these areas relative to the dorsal hippocampal 

injection site are given in Figure 4. For these experiments only 

the changes in MAP and heart rate at 15 minutes after the start of 

the icv injections were compared with pretreatment controls 

(that is, AMAPi5 and AHR1 5 , respectively). Results are tabulated 

in Table 1 (overpage).

3.8 Intravenous V. intrahippocampal 1-propranolol

The cardiovascular effects of intrahippocampal and 

intravenously injected 1-propranolol (2 yg) are shown in Figure 14. 

Intrahippocampal injections produced a significant lowering of MAP 

at 5 (5.6 ± 1.2 mmHg), 10 (7.4 ± 0.5 mmHg) and 15 (6 . 8 ± 1.2 mmHg) 

minutes after the injection. Intravenous injection of 1-propranolol 

(2 yg), however, produced a significant lowering of MAP only at 

5 minutes after the injection (5.8 ± 1.5 mmHg).
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Intrahippocampal 1-propranolol (2 yg) produced a significant 

lowering of heart rate at all 3 time points (16 ± 5 ,  25 ± 7 and 

31 ± 8 bpm at 5, 10 and 15 minutes, respectively). Intravenous 

injection of the same dose did not significantly affect heart rate 

(Figure 14).

3.9 Intrahippocampal injection of timolol, atenolol and isoprenaline

(2.2.3)

Intrahippocanpal injection of timolol (2 yg), atenolol (2 yg) 

and isoprenaline (1 and 2 yg) failed to affect MAP significantly, 

although isoprenaline appeared to raise MAP in a dose-related 

fashion (Figure 15).

Heart rates were not significantly altered by any of the above 

injections except isoprenaline (2 yg), which significantly (P < 0.05) 

increased heart rate at 5 minutes after the start of the injection 

(Figure 16).

3 . 1 0  Icv injection of 3-blockers and adrenaline ( 2 . 3 . 2 )

In thiobutobarbitone anaesthetised rats icv injection of 

adrenaline ( 2 o  yg) had no significant effect on MAP (Figures 1 7  and 1 9 )  

However, heart rate was significantly (P < 0.05) lowered by 

2 4  ±  9  bpm (n = 1 2 ) .  The fall in heart rate either began during the 

course of or within 1 minute after the adrenaline injection (for 

example, see Figure 1 7 ) .  The magnitude of the bradycardia was 

unaffected by any of the icv pre treatments described below and 

no further reference to it will be made in this Chapter.
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Following icv pretreatment with dl-propranolol (30 yg), 

icv adrenaline produced a marked pressor response (Figure 18).

The response was dependent on the dose of dl-propranolol within the

range 10-100 yg (Figure 19), (Pressor responses: 10 yg - 21 ± 2.8 mmHg,

30 yg - 32.1 ± 2.6 mmHg, 100 yg - 41.6 ± 3.4 mmHg).

Figure 20 shows the effect of icv pretreatment with dl-propranolol

(100 yg), atenolol (100 yg) and ICI 118551 (100 yg) on the subsequent 

pressor response produced by icv adrenaline (20 yg). Adrenaline 

produced significant increases in MAP following icv pretreatment 

with all 3 3-blockers (Figure 20). No significant change in MAP was 

observed after icv pretreatment with vehicle (10 y£ artificial CSF).

3.11 Icv Vo intravenous atenolol on the response to icv adrenaline

The MAP changes produced by icv adrenaline (20 yg) following 

either icv or intravenous pretreatment with atenolol (100 yg) are 

shown in Figure 21, in which the injection schedules are also 

indicated. After intravenous injection of atenolol, icv adrenaline 

did not produce any change in MAP.

3.12 Further analysis of the responses to icv 3-blockers and 

adrenaline (2.3.2)

The pressor responses to lev adrenaline (20 yg) following 

icv pretreatment with 30 yg of 3-blocker are shown in Figure 22.

At 4 minutes from the start of the adrenaline injection the following 

MAP changes were recorded (see also Figure 22):
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ICI 118551 - 47,3 ± 3.6 mmHg, dl-propranolol - 32.1 ± 2.6 mmHg,

atenolol - 11.1 ± 4.5 mmHg, d-propranolol - 3.9 ± 1 . 8  mmHg.

Only the pressor responses to ICI 118551 and dl-propranolol were 

statistically significant at the 3 blood pressure scinpling times of 

the experiment.

The pressor response to ICI 118551 was significantly (P < 0.01) 

greater than that to dl-propranolol at the 4 minute MAP sampling 

point (Figure 22).

The interrelationship between the dose of ICI 118551 (3, 10 and

30 yg) pretreatment and the pressor response to icv adrenaline

(1.8, 6 and 20 yg) was explored, and the results are shown in Figure 23,

3.13 Intravenous injections of ICI 118551 eind adrenaline

Intravenous adrenaline (0.3 and 1 yg) produced dose-dependent 

increases in MAP which were significantly (P < 0.001) enhanced by the 

prior intravenous injection of 30 yg ICI 118551 (Figure 24). For 

comparison, the pressor response to icv adrenaline (20 yg) after 

pre treatment with icv ICI 118551 (30 yg) has been included in Figure 24,

These doses of intravenous adrenaline only produced tachycardia 

(Cf. Section 3.10).

3.14 Icv injections of phentolamine, ICI 118551 and adrenaline (2.3.3)

The pressor response to icv adrenaline (20 yg) following 

pretreatment with icv ICI 118551 (6 yg) was inhibited in a 

dose-dependent manner by the prior icv injection of phentolamine
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(15 and 50 yg) (Figure 25). The injection schedule is also 

shown in the Figure.

3.15 Intravenous phenylephrine and icv phentolamine

Intravenous phenylephrine (1, 3 and 10 yg) produced 

dose-dependent increases in diastolic blood pressure. Following 

pretreatment with icv phentolamine (50 yg) 25 minutes earlier, 

the pressor responses to intravenous phenylephrine were unaffected 

(Figure 26).

3ol6 Intravenous hexaméthonium and vasopressin antagonist on the

response to lev adrenaline

The pressor response to icv adrenaline (20 yg) following 

pretreatment with icv ICI 118551 (30 yg) was significantly (P < 0.001) 

enhanced by the intravenous injection of 3 mg hexaméthonium.

Intravenous vasopressin antagonist (20 yg) failed to modify the 

adrenaline pressor response (Figure 27).

Resting MAP was considerably lower in the hexaméthonium treated 

animals (74 ± 4 . 7  mmHg compared to 119 ± 3.3 mmHg in the control group).

3.17 lev ICI 118551 on the response to icv noradrenaline and phenylephrine

Icv injections of noradrenaline (20 yg) and phenylephrine 

(20 and 60 yg) produced significant elevations of MAP (34.5 ± 5.6 naoHg,

8 . 8  ± 2.3 mmHg and 14,2 ± 2.7 mmHg, respectively). However, these
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responses were not significantly altered by icv pretreatment with 

30 yg ICI 118551 (Figure 28).

3.18 Electrical stimulation in the rat CNS (2.4.2)

Electrical stimulation in the anterior hypothalamus, posterior 

hypothalamus, amygdala and median raphe nucleus produced frequency- 

dependent increases in systolic blood pressure (Figures 29A, 30A, 31A 

and 32, respectively, and Table 2 (overpage)). Stimulation in the 

posterior hypothalamic site evoked the greatest changes in systolic 

blood pressure (Figure 30A and Table 2). Rats were anaesthetised 

with thiobutobarbitone. Heart rate changes during all these stimulations 

were small and variable.

3.19 Icv 3-blockers on the pressor responses to central stimulation

(2.4.3)

Icv dl-propranolol (50 yg) appeared to enhance the pressor 

responses produced by stimulation in the anterior hypothalamus.

However, statistical significance (P < 0.01) was achieved only at 

the lowest frequency of stimulation (Figure 29B).

Pressor responses to electrical stimulation in the posterior 

hypothalamus were unaffected by the icv injection of 1 0 0 yg 

dl-propranolol (Figure 30B) .

Similarly, icv dl-propranolol (50 yg) failed to modify the 

pressor responses produced by stimulation in the amygdala (Figure 31B) 

or median raphe nucleus (Figure 33).
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Icv atenolol (50 yg) did not affect the pressor responses to 

stimulation in the median raphe nucleus except at the highest 

frequency of stimulation, where the response was significantly 

(P < 0.05) potentiated (Figure 33).

3.20 Electrical stimulation in the cat CNS (2.5.2)

Electrical stimulation in the ansa lenticularis of the 

chloralose anaesthetised cat evoked an increase in blood pressure 

(Figures 34 - top trace and 41A). On cessation of stimulation there 

was an immediate bradycardia of 52 ± 11 bpm (n = 6 ); see Figures 

35 - top trace, 38B and 39B. During this time blood pressure 

returned to pre-stimulation levels (Figures 34 - top trace and 41A). 

Accon^anying these cardiovascular alterations were a number of other 

autonomic changes including bilateral pupillary dilatation and 

retraction of the nictitating membranes during the period of 

stimulation.

3.21 Third ventricle (VIII) infusion of dl-propranolol on the

cardiovascular response to ansa lenticularis stimulation (2.5.4)

The effects of VIII infusion of dl-propranolol (30, 100, 300 

and 500 yg/kg) on the blood pressure changes associated with ansa 

lenticularis stimulation are shown in Figures 34 and 36B. The 

increases in systolic blood pressure appeared to be diminished by 

the dl-propranolol infusions but these did not achieve significance.

The bradycardia accompanying cessation of stimulation was also 

reduced by VIII infusion of dl-propranolol and this was significant
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(P < 0,05) at the 300 yg/kg dose (Figure 38B).

Increasing doses of VIII dl-propranolol appeared to impede the 

return of blood pressure to pre-stimulation levels following 

cessation of stimulation (Figure 34), This was particularly 

noticable at doses of 300 yg/kg and higher. To quantify this effect 

it was decided to compare the systolic blood pressure at 6 0  seconds 

after stimulation with the pre-stimulation systolic blood pressure.

The resulting value was termed ASBPgo. Thus, a ASBPgo of zero inçlied 
that systolic blood pressure had returned to pre-stimulation levels 

by 60 seconds post-stimulation. Positive values of ASBPgo implied a 
delay in the return of the raised systolic blood pressure to 
pre-stimulation levels.

Figure 40A shows the effect of VIII infusions of dl-propranolol 

(30-500 yg/kg) on the ASBP50 . Although none of the values was 

significantly different from control, there appeared to be a steady 

increase in the ASBPeo with increasing doses of dl-propranolol.

In one animal procaine (375 yg) was infused into the third 

ventricle and the responses to ansa lenticularis stimulation 

recorded (Figure 4IB). This treatment abolished the bradycardia 

normally associated with cessation of stimulation and blood pressure 

remained elevated for at least 40 seconds following stimulation.
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3.22 Intravenous dl-propranolol on the responses to ansa lenticularis

stimulation

Intravenous injections of dl-propranolol (30, 100, 300 and 

500 yg/kg) produced significant (P < 0.05) inhibition of the systolic 

pressor response to ansa lenticularis stimulation except at the 

300 yg/kg dose (Figure 37B).

These doses did not significantly affect the bradycardia 

associated with cessation of stimulation, although there was a trend 

towards a reduction in the magnitude of the bradycardia (Figure 39B).

ASBPgo was not significantly changed from pretreatment control 

(Figure 40B).

3.23 Intravenous and VIII dl-propranolol on resting blood pressure 

and heart rate

Intravenous injection and VIII infusion of dl-proprcinolol 

(30, 100, 300 and 500 yg/kg) did not significantly alter resting 

systolic blood pressure although there was a trend towards a 

hypotension in both cases (Figures 36A and 37A).

All doses of intravenous dl-propranolol significantly (P < 0.02) 

lowered heart rate (Figure 39A). Although VIII infusion of 

dl-propranolol appeared to lower resting heart rate, none of the 

points was statistically different from pretreatment control 

(Figure 38A).
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— ix animal stereotaxic instrument, may be found in text (Section 2.1.2).
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AP+2.27

L +5.1

AP -0.1

H -0.6

AP +1.27mm 
L +3.1 mm 

, H +1.4mm/

FIGURE 4 Anatomical localisation of the cardiovascular responses 
to dorsal hippocangal injections. Changes in blood 
pressure and heart rate are given in Table 1. The dorsal 
hippocampal injection site is represented by the coordin
ates in the larger central circle. Anterior-posterior, 
lateral and horizontal changes in the position of the 
injection site are indicated by the coordinates in the 
satellite circles. Coordinates according to KSnig & 
Klippel, 1963. See text Sections 2.2.3 and 2.2.4.
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_

FIGURE 6 The experimental set-up used in the rat brain 
stimulation experiments. The lower left hand 
quadrant shows the constant current device resting 
on the stimulator. The left hand carrier on the 
stereotaxic instrument holds the electrode while 
the other holds the injection cannula (located in 
the lateral cerebral ventricle). The blood 
pressure and heart rate recording apparatus lies 
behind the stereotaxic instrument.
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FIGURE 7 Effect on blood pressure (top) and heart rate of 100 yg 
dl-propranolol icv (injected in 1 0 y£ saline during the 
period indicated by the horizontal bar) in a halo thane 
anaesthetised rat. Heart rates were obtained by manual 
counting of the blood pressure pulses.
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FIGURE 8 (Overpage) Effect on blood pressure and heart rate of
icv vehicle (10 yA saline) and 1 0 0 yg dl-propranolol 
in the halothane anaesthetised rat (mean ± sem).
Saline (S) or propranolol (P) injection was started 
at O minutes and completed by 10 minutes. Figures in 
parentheses indicate the numbers of animals.
Only values at 15 minutes were compared to pretreatment 
controls: * P < 0.05 ** P < 0.01
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FIGURE 8
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FIGURE 9 Effect on mean arterial pressure of thiobutobarbitone 
anaesthetised rats of icv injections of:

A artificial CSF vehicle (10 y&)
B dl-propranolol (10 yg)
C dl-propranolol (30 yg)
D dl-propranolol (100 yg)
E d-propranolol (30 yg)
F atenolol (100 yg)
G ICI 118551 (100 yg)

The change in mean arterial pressure (±sem) from 
pretreatment control value is shown at 15 minutes after 
the start of the injection. Injections lasted 5 minutes. 
Groups consisted of 7 animals except the atenolol (6 ) and 
d-propranolol (5) groups. Significant difference from 
pretreatment control denoted: * P < 0.05
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FIGURE 10 Effect on heart rate of thiobutobarbitone anaesthetised 
rats of icv injections of:

A artificial CSF vehicle (10 ] i l )
B dl-propranolol (10 yg)
C dl-propranolol (30 yg)
D dl-propranolol (100 yg)
E d-propranolol (30 yg)
F atenolol (100 yg)
G ICI 118551 (100 yg)

The change in heart rate (±sem) from pretreatment control 
value is shown at 15 minutes after the start of the 
injection. The injection lasted 5 minutes.
Groups consisted of 7 animals except the atenolol (6 ) 
and d-propranolol (5) groups. Significant difference 
frcan pre treatment control denoted: * P < 0.05 ** p < 0.01
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FIGURE 11 (Overpage)

A Effect of intravenous propranolol on the 
tachycardie response to intravenous 
isoprenaline (0 . 1  yg)

B Tachycardie response to intravenous isoprenaline 
(0 . 1  yg) five minutes after the icv injection of 
100 yg dl-propranolol (equivalent to time 15 minutes 
in Figure 8 ).

Animals were anaesthetised with halothane.
Figures in parentheses indicate the number of animals.
Values expressed as mean ± sem.
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FIGURE 12 Effect of 0.4 y£ saline vehicle (A), 2 yg d-propranolol (B), 
1 yg 1-propranolol (C) and 2 yg 1-propranolol (D) on 
mean arterial pressure following intrahippocampal injection 
in halothane anaesthetised rats. Changes in mean pressure 
(±sem) are shown 5, 10 and 15 minutes after the start of 
the injection. Injections lasted 4 minutes. 5 animals 
in each group. Significant difference from pretreatment 
control denoted: * p < 0.05 ** P < 0.01
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FIGURE 13 Effect of 0.4 y£ saline vehicle (A), 2 yg d-propranolol (B) 
1 yg 1-propranolol (C) and 2 yg 1-propranolol (D) on 
heart rate following intrahippocampal injection in 
halothane anaesthetised rats. Changes in heart rate (±sem) 
are shown 5, 10 and 15 minutes after the start of the 
injection. Injections lasted 4 minutes. 5 animals in 
each group. Significant difference from pretreatment 
control denoted: * P < 0.05
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FIGURE 14 Comparison of effects of intravenous (shaded histobars) 
cind intrahippocampal (open histobars) injections of 
2 yg 1-propranolol on mean arterial pressure and heart 
rate in the halothane anaesthetised rat. Changes in 
both parameters (±sem) are shown 5, 10 and 15 minutes 
after the start of the injection. Central injections 
lasted 4 minutes. 5 animals in each group.
Significant difference from pre treatment control 
denoted: * P < 0.05 ** P < 0.01
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FIGURE 15 Effect on mean arterial pressure of intrahippocanpal 
injection of 2 yg timolol (A), 2 yg atenolol (B),
1 yg isoprenaline (C) and 2 yg isoprenaline (D) in 
the halothane anaesthetised rat. Vehicle =  0.4 y£ 
saline. Changes in mean arterial pressure (±sem) 
are shown 5, 10 and 15 minutes after the start of 
injection. Injections lasted 4 minutes. 5 animals 
in each group. No significant changes were observed 
following any of the treatments.
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FIGURE 16 Effect on heart rate of intrahippocampal injections of
2 yg timolol (A) , 2 yg atenolol (B), 1 yg isoprenaline (C) 
and 2 yg isoprenaline (D) in the halothane anaesthetised 
rat. Vehicle = 0 . 4  y£ saline. Changes in heart rate 
(±sem) are shown 5, 10 and 15 minutes after the start of 
the injection. Injections lasted 4 minutes. 5 animals 
in each group. Significant difference from pre treatment 
control is denoted: * p < 0.05
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FIGURE 17 Effect on heart rate (HR) and blood pressure (BP) 
of a thiobutobarbitone anaesthetised rat of an 
icv injection of adrenaline (20 yg) following 
pretreatment with icv artificial CSF (10 y£). 
Adrenaline (A) injection indicated by 
horizontal bar.
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FIGURE 18 Effect on heart rate (HR) and blood pressure (BP) 
of a thiobutobarbitone anaesthetised rat of an 
lev injection of adrenaline (20 yg) following 
pretreatment with icv dl-propranolol (30 yg). 
Adrenaline (A) injection indicated by 
horizontal bar.
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FIGURE 19 Maximum mean arterial pressure changes evoked by icv 
adrenaline (20 yg) following icv pretreatment with 
vehicle (10 y£artificial CSF) and 10, 30 and 100 yg 
dl-propranolol. Thiobutobarbitone anaesthetised 
rats, 7 animals per group. Significant difference 
from pretreatment control denoted: * p < o.OOl
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FIGURE 20 Time course and magnitude of the mean arterial
pressure changes (±sem) evoked by icv adrenaline 
(20 yg) following icv pretreatment with 
1 0 0 yg atenolol (■), 1 0 0 yg dl-propranolol (•),
100 yg ICI 118551 (□) and vehicle (10 y£ artificial 
CSF, o). Thiobutobarbitone anaesthetised rats,
7 animals per group. Adrenaline injection indicated 
by horizontal bar. Significant difference from 
pretreatment control denoted: * P < 0.02 ** P < 0.01
*** p < 0 . 0 0 1
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FIGURE 21 Time course and magnitude of the mean arterial pressure 
changes (±sem) evoked by icv adrenaline (20 pg) 
following either pre treatment with 1 0 0 yg atenolol icv (■) 
or pretreatment with 1 0 0  yg atenolol i.v.(o).
Injection schedules are indicated. Adrenaline injection 
indicated by horizontal bar. Thiobutobarbitone 
anaesthetised rats, 7 animals per group. Significant 
difference from pretreatment control denoted:
* P < 0.02 ** P < 0.01
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FIGURE 22 Time course and magnitude of the mean arterial pressure 
changes (±sem) evoked by icv adrenaline (20 yg) 
following icv pretreatment with 30 yg ICI 118551 (□) ,
30 yg dl-propranolol (■) , 30 yg atenolol (A),
30 yg d-propranolol (•) and vehicle (10 y2 artificial 
CSF, o), Adrenaline injection indicated by horizontal 
bar, Thiobutobarbitone anaesthetised rats, 6 animals 
per group except the dl- (7) and d-propranolol (5) 
groups. Significant difference from pretreatment 
control denoted: * P < 0,05 ** P < 0,01 *** P < 0,001
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FIGURE 24 A. Change in mean arterial pressure (±sem) evoked by 
intravenous adrenaline (0.3, 1.0 yg) before 
(shaded histobars) and after (open histobars) 
intravenous ICI 118551 (30 yg).

B. Change in mean arterial pressure (±sem) evoked by 
icv adrenaline (20 yg) after icv pretreatment with 
either vehicle (10 y& artificial CSF - shaded 
histobar) or 30 yg ICI 118551 (open histobar).

Thiobutobarbitone anaesthetised rats, 7 animals per 
group. Significant increases in the response to 
adrenaline following ICI 118551 treatment are 
denoted; * P < O.OOl
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FIGURE 25 Effect of icv phentolamine (15, 50 yg) on the maximum 
change in mean arterial pressure (±sem) produced by 
icv adrenaline (6 yg) following pretreatment with 
ICI 118551 (30 yg).
Injection schedule: 0-2.5 min - phentolamine

10-15 min - ICI 118551 
25-27.5 min - adrenaline 

Thiobutobarbitone anaesthetised rats; numbers of 
animals per group indicated by figures in 
parentheses. Significant decrease in the pressor 
response to icv adrenaline denoted: * p < O.OOl
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FIGURE 26 Effect of intravenous phenylephrine (1, 3 and 10 yg) 
on diastolic blood pressure (±sem) before (shaded 
histobars) and 25 minutes after (open histobars) 
icv injection of 50 yg phentolamine (Cf. injection 
schedule outlined in Figure 25).
Thiobutobarbitone anaesthetised rats, 3 animals per 
group. No significant differences detected between 
groups at each dose level.
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FIGURE 27 CONTROL

HEX

VPA

Maximum change in mean arterial pressure (±sem) 
evoked by icv adrenaline (20 yg) following 
pretreatment with icv ICI 118551 (30 yg).

Effect of intravenous hexaméthonium (3 mg) 
on the CONTROL response.

Effect of intravenous vasopressin antagonist 
(20 yg) on the CONTROL response.

Injection schedule; 0 - 5  min 
1 0 min 

15 - 17.5 min

icv ICI 118551 
i.v.HEX or VPA 
icv adrenaline

Mean arterial pressures (±sem) immediately before the 
adrenaline injections are indicated in the histobars. 
Thiobutobarbitone anaesthetised rats; figures in 
parentheses indicate numbers of animals per group. 
Significant difference from control pressor response 
is denoted * p < O.OOl
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FIGURE 28 Maximum changes in mean arterial pressure (±sem) produced
by icv noradrenaline (20 yg) and icv phenylephrine (2 0 , 6 0  yg) 
following icv pretreatment with either vehicle (10 yl 
artificial CSF - shaded histobars) or 30 yg ICI 118551 
(open histobars).
ICI 118551 did not influence the responses to either of 
the agonists.
Thiobutobarbitone anaesthetised rats; figures in 
parentheses indicate numbers of animals in each group.
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FIGURE 29 A, Effect on systolic blood pressure (±sem) of
electrical stimulation in the anterior hypothalamus.

B. Effect on systolic blood pressure (±sem) of
electrical stimulation in the anterior hypothalamus 
before (shaded histobars) and after (open histobars) 
icv injection of dl-propranolol (50 yg)

Thiobutobarbitone anaesthetised rats, 3 animals per 
group.

Significant difference from pretreatment control 
response denoted: * P < O.Ol
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FIGURE 30 A. Effect on systolic blood pressure (±sem) of
electrical stimulation in the posterior hypothalamus,

B. Effect on systolic blood pressure (±sem) of
electrical stimulation in the posterior hypothalamus 
before (shaded histobars) and after (open histobars) 
icv injection of dl-propranolol (100 yg).

Thiobutobarbitone anaesthetised rats, 5 animals per
group.

No statistical differences were detected.
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FIGURE 31 A. Effect on systolic blood pressure (±sem) of 
electrical stimulation in the amygdala,

B. Effect on systolic blood pressure (±sem) of 
electrical stimulation in the amygdala 
before (shaded histobars) and after (open histobars) 
icv injection of dl-propranolol (50 yg)

Thiobutobarbitone anaesthetised rats, 4 animals 
per group.

No statistical differences were detected between 
responses in treated and untreated groups.
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FIGURE 32 Effect on systolic blood pressure (±sem) of electrical 
stimulation in the median raphe nucleus,

Thiobutobarbitone anaesthetised rats, 15 animals 
per determination.
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FIGURE 33 Effect on systolic blood pressure (±sem) of electrical 
stimulation in the median raphe nucleus before (shaded 
histobars) and after (open histobars) icv injection of 
either 50 yg dl-propranolol (A) or 50 yg atenolol (B),

Significant difference from pretreatment control 
denoted: * P < 0.05.

Thiobutobarbitone anaesthetised rats, 5 animals per group,
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FIGURE 34 Top trace shows effect on blood pressure of electrical 

stimulation (60 Hz, 2msec pulse width, 200 yA, 5 second 
train duration) in the ansa lenticularis of a 
chloralose anaesthetised cat. Lower traces show the effect 
of third ventricle infusions of dl-propranolol (30-500 yg/kg) 
on the blood pressure response to stimulation. Bottom 
traces show the response 15 and 30 minutes after the final 
infusion. Horizontal bars indicate stimulation.
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FIGURE 35 Top trace shows effect on heart rate of electrical

stimulation (60 Hz, 2 msec pulse width, 200 yA, 5 second 
train duration) in the ansa lenticularis of a chloralose 
anaesthetised cat. Lower traces show the effect of 
third ventricle infusions of dl-propranolol (30-500 yg/kg) 
on the heart rate response to stimulation. Bottom 2 
traces show the response 15 and 30 minutes after the 
final infusion. Horizontal bars indicate stimulation.
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FIGURE 36 A.

B.

Effect of third ventricle (VIII) infusions of 
dl-propranolol on resting systolic blood pressure (SBP)

Effect of VIII infusions of dl-propranolol on the 
systolic pressor response to electrical stimulation 
in the ansa lenticularis.

Each point represents the mean from 3 chloralose 
anaesthetised cats.
No changes were significant.
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FIGURE 37 A.

B.

Effect of intravenous injection of dl-propranolol 
on resting systolic blood pressure (SBP).

Effect of intravenous dl-propranolol on the systolic 
pressor responses to electrical stimulation in 
ansa lenticularis.

Each point represents the mean from 3 chloralose 
anaesthetised cats. Significant difference from 
pretreatment control denoted: * P < 0.05
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B.

Effect of third ventricle (VIII) infusions of 
dl-propranolol on resting heart rate (HR).

Effect of VIII infusions of dl-propranolol on the 
bradycardia immediately following electrical 
stimulation in the ansa lenticularis.

Each point represents the mean from 3 chloralose 
anaesthetised cats. Significant difference from 
pretreatment control denoted: * P < 0.05
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FIGURE 39 A. Effect of intravenous dl-propranolol on resting 
heart rate (HR).

B. Effect of intravenous dl-propranolol on the 
bradycardia immediately following electrical 
stimulation in the ansa lenticularis.

Each point represents the mean from 3 chloralose 
anaesthetised cats. Significsint difference from 
pretreatment control denoted: * P < 0.02
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FIGURE 40 Effect of either third ventricle infusion (A) or 
intravenous injection (B) of dl-propranolol on 
ASBPso following ansa lenticularis stimulation.

ASBP0 O is defined as the difference between systolic 
blood pressure at 6 0  seconds following stimulation 
and the systolic blood pressure immediately before 
stimulation.

Each point represents the mean from 3 chloralose 
anaesthetised cats. No statistical differences 
from pretreatment controls were detected.
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FIGURE 41 Cardiovascular responses to electrical stimulation 
in the ansa lenticularis.

A. Control

B. One minute after third ventricle infusion of 
375 yg procaine.

Electrical stimulation (60 Hz, 2 msec, 200 yA,
5 second train duration) indicated by horizontal 
bar.
Chloralose anaesthetised cat.
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FIGURE 42 Section of cat brain at anterior coordinate (A +10 mm) 
showing location of the ansa lenticularis and the 
dorsal (X) and ventral patts of the third ventricle.

(From Snider & Niemer, 1951)
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4.1 Resting blood pressure and heart rate of emaesthetised rats

The observation that the blood pressures and heart rates of 

the halothane anaesthetised rats were considerably lower than those 

of the thiobutobarbitone anaesthetised animals is in accord with the 

findings of other workers that halothane induces hypotension (for 

review see Black, 1971). Although no single factor has been 

implicated in the production of this hypotension, the following 

3 principal mechanisms have been proposed: ganglionic blockade

(Raventes, 1956), centrally mediated depression of sympathetic 

drive (Bum, 1957) , and suppression of the peripheral actions of 

noradrenaline (Price & Price, 1966). The depression of cardiac 

output with halothane is no greater than that seen with other 

anaesthetics (Black, 1971), but the cardiovascular consequences of 

such a depression are more fully expressed since they occur in 

association with vasodilatation produced in part by the 3 mechanisms 

outlined above.

4o2 lev injection of g-blockers

lev injection of dl-propranolol (100 pg) produced a significant 

hypotension in halothane anaesthetised rats (Figure 8 ) but no change 

in blood pressure in thiobutobarbitone anaesthetised animals (Figure 9) 

In fact, in the latter animals lower doses of dl-propranolol (10 and 

30 pg) produced small, but significant, elevations of blood pressure, 

an effect not seen with 30 pg d-propranolol (Figure 9). Similarly 

conflicting results have been obtained by other authors. For example, 

Wepierre et al (1978) and Cohen et al (1979), using anaesthetised 

rats, obtained falls in blood pressure after icv injection of 1 0 0  pg
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propranolol (dl- and 1-forms, respectively), whereas Ito & Schanberg 

(1974) obtained pressor responses to lower doses of intracistemally 

injected dl-propranolol (2-40 yg) in anaesthetised rats. Sweet & 

Wenger (1976), using unanaesthetised spontaneously hypertensive rats, 

obtained pressor responses to icv dl-propranolol (10, 50 cuid 100 yg) 

but this was converted to a significant hypotension by 24 hours 

after the injection.

The observation by Ito & Schanberg (1974) that higher doses of 

intracisternal dl-propranolol (1 0 0 - 2 0 0  yg) produced depressor 

responses but that lower doses (2-40 yg) had a pressor action 

compares favourably with the present results in thiobutobarbitone 

anaesthetised animals (Figure 9).

Icv injections of dl-propranolol produced a significant 

bradycardia in both halothane and thiobutobarbitone anaesthetised 

rats (Figures 8 and 10). In the latter group of animals the 

bradycardia was dose-dependent and was not seen with the d-isomer of 

propranolol (Figure 10). The finding of a bradycardia following 

central administration of propranolol is common to all the 

investigations reported above. Thus, regardless of the effects on 

blood pressure of centrally injected propranolol, a decrease in 

heart rate is always obtained. The question remains whether the 

bradycardia is centrally mediated or due to a direct action of the 

drug on cardiac 3-adrenoceptors following leakage from ventricular 

CSF into the systemic circulation.

The leakage of propranolol from CSF to the bloodstream was 

investigated in halothane anaesthetised rats by comparing the 

tachycardie response to intravenous isoprenaline before the icv
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injection of dl-propranolol (1 0 0 yg) and after the injection, at a 

time when the bradycardia was fully developed. By this means it 

was shown that the isoprenaline-induced tachycardia was inhibited 

by about 85%, and that this level of inhibition was consistent 

with the leakage of nearly 40 yg of dl-propranolol into the systemic 

circulation (Section 3.4 and Figure 11). Moreover, intravenous 

injection of dl-propranolol (50 yg) produced similar falls in 

blood pressure and heart rate to those produced by icv dl-propranolol 

(100 yg) in rats anaesthetised with halothane. It would appear, 

therefore, that the effects on blood pressure and heart rate 

produced in halothane anaesthetised rats by the icv injection of 

dl-propranolol may be explained by a solely peripheral action.

That the hypotensive response was only observed in the 

halothane anaesthetised animals might be explained by the following. 

The resting blood pressures and heart rates of halothane 

anaesthetised rats are lower than those of thiobutobarbi tone 

anaesthetised rats (Section 3.2), and the likely reasons for this 

have been outlined in Section 4.1. Propranolol lowered heart rate 

in both groups of animals and it is possible that in the 

thiobutobarbitone anaesthetised rats the fall in heart rate (and 

probably also cardiac output) produced by leaked propranolol was 

met by a reflex increase in total peripheral resistance, with the 

nett result that no change in blood pressure was seen (Cf. in man, 

Tarazi & Dustan, 1972). In halothane anaesthetised rats, however, 

restorative reflexes would be impaired (see Section 4.1) amd blood 

pressure may then fall parri passu with cardiac output.

In support of the above theory was the observation in 

halothane anaesthetised rats that heart rate and blood pressure fell
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with similar time courses following icv and intravenous injection 

of propranolol. Leakage of drugs from the CSF into the systemic 

circulation is by the process of bulk flow (Rothman et al, 1961; 

Schanker, 1962) and it seems likely that drugs with low lipid 

solubility, such as atenolol, will leave the CSF with equal or 

greater facility than those drugs with high lipid solubility, such 

as propranolol (see Section 1.5), Since the brain is composed 

mainly of fatty tissue, highly lipid soluble compounds may be expected 

to be distributed in the CNS to a greater extent than substances of 

low lipid solubility following icv injection, with the consequence 

that more of the low lipid soluble substance will be available to 

leak out. This lies in contrast to the movement of 3-blockers from 

the circulation into the brain (via the blood-brain barrier), when 

the greater the lipid solubility of the drug the more readily it 

enters the brain (Day et al, 1977).

The conç>arable bradycardic actions of icv atenolol and 

dl-propranolol in thiobutobarbi tone anaesthetised rats (Figure 10) 

is further cause to suspect a purely systemic action of the drugs 

since these substances are almost equipotent at in vivo inhibition 

of isoprenaline-induced tachycardia (Phillips, 1980). Furthermore, 

that icv atenolol and not the 3 2“selective blocker, ICI 118551, 

significantly lowered heart rate (Figure 10) might also suggest 

that the bradycardia is produced by a direct action on the heart 

following leakage form the CSF. Although a central bradycardic 

action cannot be excluded, it would seem too coincidental that 

both central 3 %- and peripheral 3 i-blockade are able to produce 

bradycardia. Leakage of atenolol from CSF to the circulation was 

not investigated in the present study.
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In none of the investigations cited earlier (Ito & Schanberg,

1974; Sweet & Wenger, 1976; Wepierre et al, 1978; Cohen et al, 1979) 

was the leakage of centrally injected 3-blocker into the systemic 

circulation investigated by means of determinations of isoprenaline- 

induced tachycardia before and after injection.

The contention by some authors (for example: Day & Roach, 1974b; 

Reid et al, 1974) that the membrane stabilising actions of d-propranolol 

are responsible for an initial pressor response following icv 

injection of this drug was not borne out in the present investigation.

To the author's knowledge no similar experiments where 

3-blockers have been centrally injected have been performed in 

halothane anaesthetised rats.

4.3 Intrahippocampal injection of 3-blockers

Following the suggestion by Garvey & Ram (1975a,b) and 

Ram et al (1977) that the hippocampus is an important central site 

for the hypotensive action of propranolol, it was decided to 

investigate the effects of intrahippocampally injected 3-blockers 

on blood pressure and heart rate in halothane anaesthetised rats.

The hippocampus is a large structure in the rat having a rostro- 

caudal extent of some 5 mm and possessing several cytoarchitectonically 

distinct subdivisions (KSnig & Klippel, 1963). Since there have 

been no reports in rats where similar experiments have been performed, 

the choice of the hippocampal subiculum (Figure 3) as the site of 

drug injection was an empirical one.

Unilateral intrahippocampal injections of 1-propranolol (1 and 2 yg)
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produced significant dose-related reductions in blood pressure and 

heart rate (Figures 12 and 13, respectively). d-Propranolol (2 yg) 

was ineffective in this respect.

That the hypotension was probably centrally mediated was 

suggested by the weaker action of intravenous 1 -propranolol (2 yg) 

on blood pressure (Figure 14). Furthermore, intravenous 

1-propranolol (2 yg) had no significant effect on heart rate (Figure 

14). However, intrahippocampal injections of atenolol (2 yg) and 

timolol (2 yg) did not affect blood pressure (Figure 15) or heart 

rate (Figure 16), even though timolol has been reported to be some 

four-times more potent than propranolol, at least in respect of its 

in vivo inhibition of isoprenaline-induced tachycardia (Phillips, 1980).

Intrahippocanpal injections of isoprenaline (1 and 2 yg) had no 

significant effects on blood pressure, although there appeared to 

be a trend towards a dose-related increase with these doses (Figure 15). 

Small and non-significant increases in heart rate were produced by 

these injections except at one sangling point, where isoprenaline (2 yg) 

evoked a significant tachycardia (Figure 16).

The localisation of the cardiovascular responses to 

intrahippocanpal propranolol was moderately successful (Table 1) , 

significant reductions in blood pressure being obtained after 

injection in the hippocampus but after injections in the superior 

colliculus, cortex, or the commissure of the dorsal fomix.

However, injections at all sites produced reductions in heart rate 

but these achieved significance only in the hippocampus and 

commissure of the dorsal fornix (Table 1).

From the foregoing it would appear that the hypotensive and
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and bradycardic effects of intrahippocampal propranolol are 

unrelated to its 3-blocking or membrane stabilising properties, 

although further work using a larger variety of 3-blockers is 

necessary before any firm conclusions may be drawn.

Although there appeared to be a certain degree of anatomical 

localisation within the hippocampus of the responses to propranolol, 

the effects may still have been the result of leakage of the 

3-blocker into the systemic circulation. The hippocampus is highly 

vascularised (see Section 1.5) and it is conceivable that the highly 

lipid soluble propranolol may have reached the periphery by way of 

hippocampal capillaries. This might explain the lack of effect of 

atenolol and timolol, two substances having much lower lipid 

solubility than propranolol (Barrett, 1977 and Tocco et al, 1980, 

respectively). Although comparison of the cardiovascular responses 

to intravenously and intrahippocarpally injected propranolol 

suggested that there was an additional central hypotensive action of 

the drug, leakage of propranolol into the systemic circulation was 

not excluded by experimentation.

Following injection of propranolol into the carotid artery of 

the anaesthetised cat, Garvey & Ram (1975b) found the highest 

post-mortem concentrations of the drug in the hippocampus. On this 

basis they went on to inject propranolol into the hippocanpus of the 

anaesthetised cat, whereupon they obtained dose-dependent decreases 

in blood pressure and heart rate. Larger doses injected 

intra-arterially (carotid) also significantly lowered blood pressure 

and heart rate but much less effectively. The latter results are 

therefore consistent with those of the present study.
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However, the role of the hippocampus in cardiovascular 

control is much disputed. For example, in the cat and dog, electrical 

stimulation of the fimbria, the main efferent tract from the 

hippocampus, has been recorded to give rise to no detectable 

autonomic changes (Kaada, 1951). Similarly, Kaada et al (1971) 

failed to observe any autonomic changes following electrical 

stimulation of the dorsal or ventral hippocampus in rabbits.

In contrast, Cragg (1958), also using rabbits, reported pressor 

responses upon electrical stimulation in the ventral part of the 

fimbria, but depressor responses in the dorsal part. In mice with 

mainly dorsal hippocampal lesions Ely et al (1977) reported the 

development of high blood pressure, thus inplying an inhibitory 

role of the ablated structure.

Because of the more obvious effects of chemical injection, 

electrical stimulation and lesioning in brain structures 

phylogenetically older than the limbic system (for exanple, brain 

stem and hypothalamus), it is possible to underestimate the 

contribution of limbic areas to cardiovascular control. However, 

the results of the present study, together with those of Garvey &

Ram (1975a,b) and Ram et al (1977), suggest that the hippocampus 

deserves further investigation with respect to the ability of 

injected 3-blockers to modify blood pressure.

4.4 Icv injection of 3-blockers and adrenaline

In thiobutobarbitone anaesthetised rats the icv injection of 

adrenaline produced small and non-significant increases in mean 

arterial pressure (Figures 17, 19 and 20) and a bradycardia
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(Figure 17 and Section 3.10). The finding of a bradycardia is 

consistent with that of Borkowski & Finch (1977, 1978, 1979), who 

injected icv adrenaline in anaesthetised and unanaesthetised rats. 

However, in contrast to the present study, the latter authors reported 

a hypotension following the central injection of adrenaline, an 

effect which began about 1 0 minutes after the injection and was 

fully developed by about 40 minutes (Borkowski & Finch, 1979).

Because of this long time interval before the response was fully 

expressed it is not clear whether it represents an effect of the 

adrenaline or, perhaps, an action of a metabolite of the 

catecholamine. It is difficult to see how a dose of injected 

adrenaline could retain its chemical integrity for such a long time, 

especially in the slightly alkaline and warm environment which the 

CSF provides. (The instability of adrenaline solutions is widely 

recognised and it is common practice to add small quantities of 

ascorbate to the solution to delay oxidation of the amine. This 

protection is all but lost after injection of the adrenaline 

solution into the CSF). In the present experiments the blood 

pressure and heart rate were sampled only during the 6 minute 

period following the start of the adrenaline injection, and no 

hypotension was apparent during that time.

Following icv pretreatment with dl-propranolol, icv adrenaline 

injections produced marked increases in blood pressure (Figures 18, 

19 and 20), and this effect of propranolol was dose-related within 

the range 10-100 yg (Figure 19). The bradycardia caused by the 

adrenaline injections was unaffected by dl-propranolol pretreatment 

and, indeed, by all the pretreatments used in the present 

investigation.
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After icv pretreatments with 100 yg each of the 3i-selective 

blocker, atenolol, and the 3 2 ”selective blocker, ICI 118551 (Bilski 

et al, 1980; O'Donnell & Wanstall, 1980), similar pressor responses 

to icv adrenaline were obtained (Figure 20)«

To investigate the possibility that this unmasking of a

pressor response to icv administered adrenaline was centrally

mediated, the blood pressure response to icv adrenaline following
«

pretreatment with intravenous atenolol (100 yg) was studied.

In this instance, no pressor response to centrally injected 

adrenaline was observed (Figure 21). Atenolol is a poorly lipid 

soluble compound which does not readily enter the central nervous 

system of rats after systemic administration (Day et al, 1977).

The lack of a pressor response to icv adrenaline following 

intravenous atenolol therefore suggests that blockade of central 

3-adrenoceptors is necessary for the pressor response to adrenaline 

to be expressed.

At lower icv doses (30 yg) of dl-propranolol, atenolol and 

ICI 118551, similar pressor responses to icv adrenaline were 

obtained (Figure 22). However, only dl-propranolol and ICI 118551 

produced statistically significant mean arterial pressure changes 

and, of the two, ICI 118551 appeared to be the most potent 

(Figure 22 and Section 3.12). The pressor responses to icv 

adrenaline were subsequently analysed further using a variety of 

doses of ICI 118551 and adrenaline (Figure 23).

That d-propranolol (30 yg) was ineffective (Figure 22) 

suggested that the pressor response to icv adrenaline was not 

dependent on the membrane stabilising properties of either
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propranolol (Barrett & Cullum, 1968) or ICI 118551 (Bilski et al, 1980)

Further evidence that central 3-adrenoceptor blockade was a 

requirement for the unmasking of a pressor response to icv adrenaline 

was provided by the investigations in which both adrenaline and 

ICI 118551 were injected intravenously (Section 3,13). The increases 

in blood pressure produced by intravenous injections of adrenaline 

(0.3 cind 1 yg) were potentiated by intravenous injection of 30 yg 

ICI 118551 (Figure 24). This effect was to be expected since 

blockade of vascular 3 2-adrenoceptors (mediating vasodilatation) 

would allow the mainly a-adrenoceptor-mediated actions of 

adrenaline to be expressed (i.e., vasoconstriction). However, it is 

clear from Figure 24 that the enhancing effect of intravenous 

ICI 118551 on the pressor response to intravenous adrenaline is of 

a much smaller magnitude than that produced by icv injections of 

both these substances.

In rats, Borkowski & Finch (1977, 1978, 1979) obtained an 

inhibition by icv 3-blockers of the hypotension and bradycardia 

produced by the subsequent icv injection of adrenaline. They 

therefore concluded that central 3-adrenoceptors subserved an 

inhibitory r6 le in central cardiovascular regulation. This 

conclusion is consistent with that of the present study. The 

following scheme may be inferred from the present results: 

icv injected adrenaline exerts effects on blood pressure which are 

a result of an interaction of the catecholamine with central a- and 

3-adrenoceptors. Blockade of central 3-adrenoceptors would 

therefore enable the expression of mainly a-adrenoceptor-mediated 

effects, that is, increases in blood pressure.
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Consistent with the above hypothesis was the observation of 

a dose-related inhibition by icv phentolamine of the pressor 

response to icv adrenaline following icv pretreatment with ICI 118551 

(Figure 25). It appears unlikely that this inhibition by phentolamine 

was mediated by peripheral a-adrenoceptor blockade (consequent upon 

leakage of the phentolamine frcan the ventricular CSF) since the 

pressor responses to intravenous phenylephrine were only slightly 

inhibited after the icv injection of 50 yg phentolamine (Section 3.15 

and Figure 26). In contrast, the pressor response to icv adrenaline 

following pretreatment with icv ICI 118551 was almost abolished by 

this dose of icv phentolamine (Figure 25).

The observation that the pressor responses to icv injection of 

either noradrenaline or phenylephrine were unaffected by icv 

pretreatment with ICI 118551 (Section 3.17 and Figure 28) further 

supports the above contentions, assuming that noradrenaline and 

phenylephrine only stimulate a-adrenoceptors in the central nervous 

system.

In anaesthetised rats Kleinrok & Ksiazek (1977) investigated the 

effect of icv 6-blocker pretreatments on the pressor response to icv 

noradrenaline (100 yg). In these experiments the authors obtained 

an inhibition of the noradrenaline-induced pressor response by icv 

pretreatment with propranolol (100 yg), sotalol (100 yg) and 

practolol (20 yg). This inhibition was probably due to an 

interaction of the drugs within the central nervous system, since 

it is difficult to see how such results could be obtained by a 

peripheral action of the drugs following leakage from the CSF 

(unless the pressor responses were brought about by a direct action 

of leaked noradrenaline on the heart).
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The results of the present study agree with those of Kleinrok 

& Ksiazek (1977) in so far as both investigations found pressor 

responses to icv noradrenaline. However, no evidence of an 

inhibition of the noradrenaline pressor response by icv ICI 118551 

was obtained in the present investigation. The apparently greater 

potency of practolol at inhibiting the noradrenaline-induced pressor 

responses obtained by Kleinrok & Ksiazek (1977) might suggest that 

central 3 i-blockade is necessary for expression of the effect. 

However, this possibility was not investigated in the present report.

If the pressor response to icv adrenaline following central 

3-blocker pretreatment was of central origin, then one might 

expect the effect to be mediated by the sympathetic nervous system. 

However, intravenous hexaméthonium only potentiated these responses 

(Figure 27).

The potentiation of the effects of pressor agents in 

ganglion-blocked animals is a common finding and is probably due 

to a combination of the lower initial blood pressure and the 

compromisation of cardiovascular reflexes which might otherwise 

tend to limit such excursions of the blood pressure. However, 

these experiments indicated that the pressor response to icv 

adrenaline following ICI 118551 pretreatment was likely not to have 

been effected by way of the sympathetic nervous system.

The possibility existed that the pressor response to icv 

adrenaline following central 3-blockade was mediated by an agent 

released from the brain into the circulation. Of the possible 

candidates, vasopressin from the neurohypophysis seemed the most 

likely, since a-adrenergic mediation and 3-adrenergic inhibition
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of vasopressin release has been demonstrated in rats (Urano & 

Kobayashi, 1978). However, intravenous injections of an inhibitor 

of the pressor actions of vasopressin (Kruszynski et al, 1980) 

failed to modify the pressor responses to icv adrenaline (Figure 27).

The origin of the pressor response to icv adrenaline following 

icv pretreatment with 3-blockers therefore remains obscure, and the 

possibility that the effect is mediated, at least in part, by a 

peripheral action of the drugs cannot be totally excluded.

4.5 Icv 3-blockers and electrical stimulation in the rat CNS

Unilateral monopolar electrical stimulation in the anterior 

hypothalamus, posterior hypothalamus, amygdala and median raphe 

nucleus of the thiobutobarbi tone anaesthetised rat produced 

frequency-dependent increases in blood pressure (Figures 29a , 30A,

31A and 32, respectively, and Table 2) and variable effects on 

heart rate.

Pressor responses to electrical stimulation in these areas 

have been obtained by other authors in a variety of species - 

anterior hypothalamus (Cragg, 1958; Evans & Williamson, 1981), 

posterior hypothalamus (Karplus & Kreidl, 1909; Folkow & Rubinstein, 

1966), amygdala (Torii & Kawamura, I960; Heinemann et al, 1973), 

median raphe nucleus (Smits et al, 1978; Kuhn et al, 1980).

The pressor responses to electrical stimulation in the 

posterior hypothalamus (Figure 30B), amygdala (Figure 3IB) and 

median raphe nucleus (Figure 33A) were unaffected by icv injection 

of dl-propranolol (100, 50 and 50 yg, respectively). In the anterior
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hypothalamus pressor responses to electrical stimulation were 

enhanced by icv dl-propranolol (50 yg), but only at the lowest 

frequency of stimulation did this achieve statistical significance 

(Figure 29B). Icv atenolol (50 yg) potentiated the pressor 

responses to electrical stimulation in the median raphe nucleus 

but this was significant only at the highest frequency of 

stimulation (Figure 33B).

It is possible that the weak and inconsistent effects produced 

by central 3-blocker injection on the responses to electrical 

stimulation in these 4 brain regions reflect the minor rôle of 

brain 3-adrenoceptors in the mediation of the responses, assuming, 

of course, that 3-adrenoceptors do in fact lie in the pressor 

effector pathways from these brain sites. On the other hand, the 

possibility that 3-blockers injected icv do not reach a potential 

site of action cannot be excluded.

It is difficult to discuss these results in the light of 

other people's findings since, to the author's knowledge, no 

similar experiments have hitherto been performed.

In anaesthetised rats Allott et al (1982) investigated the 

effects of propranolol and atenolol on the pressor responses 

evoked by electrical stimulation (through the tip of an injection 

cannula) in an area immediately above the posterior hypothalamus.

The 3-blockers were injected through the cannula into the area of 

stimulation. The pressor responses were inhibited by 1-, dl- and 

d-propranolol but not by the 3 i-selective blocker, atenolol.

The 1-isomer of propranolol was some 4-times more potent than 

the d-isomer. Thus, both 3 2-blockade and membrane stabilising
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activity may account for the si:^pression of the pressor responses, 

since d-propranolol has about 1 /1 0 0 th the 3-blocking potency of the

1-isomer (Barrett & Cullum, 1968).

The above type of experiment using focal stimulation and 

injection is probably more sensitive than the type used in the 

current stuc^, although the present study does allow for a potential 

interaction of the 3-blocker at various loci along the pressor 

effector pathway originating from the stimulated region, assuming 

that such a pathway is a multi-synaptic one. Moreover, the present 

design may have greater utility in the screening of potential 

centrally-acting antihypertensives since, in the therapeutic sense, 

the drug will have access to most of the brain (assuming that it can 

enter the central nervous system in the first instance).

Philippu & Kittel (1977) and Philippu & Stroehl (1978) used 

a similar technique to that used by Allott et al (1982) but in 

the anaesthetised cat. In this way they demonstrated the 

inhibition of the pressor responses to electrical stimulation in 

the posterior hypothalamus by atenolol, practolol, metoprolol, 

propranolol, sotalol and butoxamine. Membrane stabilising activity 

was not important in this inhibition since d-propranolol and 

procaine were ineffective in this respect.

The dependence of the response evoked by electrical stimulation 

in the median raphe nucleus on brain 5-hydroxytryptamine has been 

previously demonstrated (Smits et al, 1978), and the present findings 

may lend further weight to the evidence against an in vivo 

interaction of 3-blockers with the 5-HT receptor (see for example, 

Blackburn & Heapy, 1982).
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4.6 Icv 3-blockers and electrical stimulation in the cat CNS

It has been known for some time that electrical stimulation 

in certain areas of the posterior hypothalamus of unanaesthetised 

cats leads to a behavioural response which has been termed the 

defence reaction (Hess & Brügger, 1943) . Abrahams et al (1960) 

showed that electrical stimulation of these areas in anaesthetised 

cats led to a pattern of autonomic changes which included 

vasodilatation in skeletal muscle (mediated by cholinergic 

sympathetic fibres), elevations of blood pressure, tachycardia, 

pupillary dilatation and retraction of the nictitating membrane. 

Hilton & Zbrozyna (1963) later showed that the defence reaction 

(including all its autonomic and somatic events) could be elicited 

by electrical stimulation in "any part of the connecting band, 

which extends as a thin sheet between the amygdala emd the whole 

length of the hypothalamus". Although not referred to in the 

report by its anatomical name, the points in the connecting band 

from where stimulation produced the defence reaction undoubtedly 

lie along the ansa lenticularis. All the above mentioned 

autonomic events have subsequently been observed by P.W.Marshall 

(personal communication) following stimulation in the ansa 

lenticularis in althesin anaesthetised cats.

In the chloralose anaesthetised cats used in the present study, 

stimulation in the ansa lenticularis led to an increase in blood 

pressure (Figure 34) and a small tachycardia (Figure 35). When 

stimulation was stopped there was an abrupt bradycardia (Figure 35) 

and a gradual return of blood pressure to pre-stimulation levels 

(Figure 34). The combined changes in blood pressure and heart rate 

are best demonstrated in Figure 41A. Pupillary dilatation and
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retraction of the nictitating membrane accompanied these 

stimulations.

Third ventricle infusions of dl-propranolol produced small 

but non-significant reductions in the pressor response to ansa.....pto
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lenticularis stimulation (Figure 36B), whereas intravenous 

dl-propranolol significantly reduced these responses (Figure 37B)•

In contrast, third ventricle infusions of dl-propranolol attenuated 

the 'off-bradycardia' associated with cessation of stimulation 

(Figure 38B), an effect which was not seen with intravenous 

dl-propranolol (Figure 39B).

The return of blood pressure to pre-stimulation levels was 

not affected by intravenous dl-propranolol but was markedly delayed 

after third ventricle infusions of the 3-blocker (Figure 40 and 

Section 3.21). This effect is also shown in the traces from one 

animal in Figure 34. The 'off-bradycardia' was also diminished by 

third ventricle dl-propranolol infusions and at one point was 

abolished (Figure 35). Intravenous dl-propranolol did not affect 

the magnitude of the 'off-bradycardia' as markedly as did third 

ventricle infusions of the drug (Figure 39b ).

In one animal the effect of third ventricle infusion of procaine 

on the cardiovascular changes associated with ansa lenticularis 

stimulation was examined. In this instance, both blood pressure 

and heart rate remained elevated following cessation of stimulation 

(Figure 41 and Section 3.21).

It would therefore appear from the foregoing that the 

differential effects of centrally and systemically administered 

dl-propranolol on the cardiovascular changes accompanying stimulation 

in the ansa lenticularis may be explained solely by the membrane 

stabilising properties of the drug. Confirmation of this would 

require third ventricle infusions of d-propranolol, although this 

was not attempted in the present study.
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The effects of lateral ventricle infusions of procaine in 

chloralose anaesthetised dogs have been described by Haranath et al 

(1965)o These authors found that procaine induced a rise in blood 

pressure of about 7Q mmHgo That the response took about 3 minutes to 

begin suggests that the site of action of the local anaesthetic was 

some distance away from the injection site.

The results from the present study may indicate an action of 

third ventricle infusions of dl-propranolol and procaine on a 

central component of the baroreflex arc for the following reasons. 

During stimulation there appears to be an inhibition of the 

baroreceptor reflex since heart rate does not reflexly fall during 

stimulation. However, immediately after stimulation heart rate 

drops profoundly, presumably as a result of the raised blood pressure. 

The qualitative similarity between the effects of the dl-propranolol 

and procaine may imply a similar site of action.

Both central and systemic injections of dl-propranolol 

reduced resting blood pressure and heart rate in these animals 

(Figures 36A, 37A, 38A and 39A).

The results discussed in this section were derived from a 

total of 7 animals and the conclusions to be drawn from such a low 

number of experiments are necessarily few. Even so, every effort 

was made to ensure that the animals remained in a good physiological 

condition throughout the experiment (with particular attention to 

acid-base balance).

4 , 7  General conclusions

In none of the experiments performed during the course of this
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study was the view upheld that central 3-blockade can lower 

blood pressure and heart rate. In fact, the converse appeared to 

be true, at least in the experiments where 3-blockade unmasked 

a pressor response to centrally injected adrenaline.

It is apparent from electrophysiological studies that central 

a- and 3-adrenoceptors differ from their peripheral counterparts 

in a number of respects. For example, in the central nervous 

system isoprenaline can stimulate both a- and 3-adrenoceptors 

(Szabadi, 1979) and that central 3-adrenoceptors are capable of 

being stimulated by both noradrenaline and adrenaline (see Section 1.7) 

Furthermore, central a-adrenoceptors are stimulated by noradrenaline 

(Szabadi, 1979) and probably also adrenaline. In some areas of the 

central nervous system neuronal responses to noradrenaline and 

isoprenaline can be blocked by both a- and 3-adrenoceptor blocking 

agents (Szabadi, 1979). Thus, the effects of conventional a- and 

3-blocking compounds injected into the central nervous system 

should be considered with caution, and care taken not to assume 

that central administration of say, a 3-blocking drug, will lead 

solely to blockade of 3-adrenoceptors.

Possible future lines of research in this field will now be 

considered. Lebel & Weeks (1982) demonstrated the potentiation of 

the carotid occlusion pressor response by central a2-adrenoceptor 

blockade in dogs. Similar experiments with 3-adrenoceptor blocking 

agents may yield useful information as to their possible central 

actions on the cardiovascular system. More extensive work similar 

to that of Allott et al (1982 - see Section 4.5) may give valuable 

information concerning the effects of 3-blocking drugs on electrically 

evoked pressor and depressor responses in various brain areas.
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In cats, Brazenor & Bentley (1981) investigated the effects 

of centrally administered a-adrenoceptor agonists on the pressor 

responses reflexly produced by stimulation of the cut central ends 

of the brachial nerves. Adrenaline and phenylephrine reduced the 

size of the pressor responses. Centrally injected 3-blockers may 

also influence this response.

Clearly, there is much scope for future investigation and 

there remains good reason to believe that brain 3-adrenoceptors 

may play a rôle, albeit minor compared to central a-adrenoceptors, 

in the central regulation of the cardiovascular system.

4.8 Addendum; Conscious v. anaesthetised preparations

Throughout the present study only anaesthetised preparations 

were used, although an aborted attempt was made to investigate 

the effects of intrahippocampally injected propranolol in two 

unanaesthetised dogs equipped with chronic indwelling intracranial 

cannulae. However, in both animals, as soon as the injections 

were begun the animals became restless and even diverted their 

gaze upwards as if aware that the injection was being made.

In consequence, the blood pressure traces contained too much 

noise (produced by movement of the animal) and the attempt was 

abandoned. It is arguable that the animals could have been 

trained to accept the injections but this was not possible given 

the relatively short time available. Nevertheless, the physical 

presence of the injectate in the brain of the animal and/or a 

pharmacological action of the 3-blocker were having noticable 

effects on the animal’s behaviour.
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The use of conscious animals in experiments where drugs 

are injected centrally has already been preliminarily discussed 

in the Introduction (Section 1.5), where it was mentioned that 

some substances may produce changes in the state of arousal of 

the animal.

An example of a centrally acting hypotensive drug which can 

produce sedation after central injection is clonidine. In rats.

Drew et al (1979) demonstrated the sedative effects of clonidine 

following both icv and parenteral injections in rats. The latter 

group also demonstrated sedative actions of xylazine, naphazoline 

and methoxamine following similar injections. In their 

introduction to the report the authors state : "It was further 

considered that the sedation could be secondary to a hypothermic 

action of the drugs and so their effects on core temperature 

were also recorded. In case the sedation was secondary to a fall 

in blood pressure the effects of hydrallazine, a potent, 

peripherally-acting hypotensive agent, were also determined in 

both sedation tests" (Drew et al 1979). In the event, neither 

of these effects was shown to influence the sedation, although 

the caution expressed by the authors illustrates the kind of 

problems associated with multiple actions of drugs.

At the other end of the arousal spectrum piperoxan, a drug 

which can reduce the sedative and blood pressure lowering actions 

of clonidine (Schmitt et al, 1971; Delbarre & Schmitt, 1973), 

also produced significant increases in wakefulness in rats (Fuxe et al, 

1974).

In the case of clonidine the sedative and hypotensive effects
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appear to be mediated by pharmacologically distinct populations 

of receptors (Drew et al, 1979; Clough & Hatton, 1981).

Nevertheless, a dose of clonidine injected centrally will be 

expected to interact with both of these populations.

In man, sleep is associated with a lower blood pressure 

than that seen during waking (Floras et al, 1978; Mann et al, 1979), 

the sleep blood pressure being about 20 mmHg lower. It seems 

likely that the reduced blood pressure seen during sleep is part 

of the generalised switching-off of brain stem activating 

mechanisms and that neither precedes the other in cause-and-effect 

terms.

Thus, problems may arise in experiments in un anaesthetised 

animals if a centrally administered compound has effects on 

arousal and/or cardiovascular mechanisms in the brain. A drug 

having an action predominantly on arousal may have secondary 

effects on blood pressure which might be misconstrued as a 

primary action on central cardiovascular regulation.

To illustrate the problem further the following analogy is 

proposed. Suppose a new drug, X, is given to 2 investigators to 

analyse its biological actions. Investigator *A' is interested 

in the neuropharmacology of arousal whereas investigator *B* is 

interested in the pharmacology of the central regulation of 

blood pressure. Both use ’conscious* preparations. Subsequently, 

’A ’ will report the actions of the centrally injected drug on 

arousal and ’B ’ will report its effects on blood pressure.

It is unlikely that ’B ’ will mention any changes in the arousal 

state of the animal and it is almost certain that ’A' will not
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have even measured blood pressure. If we are now told that the 

’new' drug was in fact pentobarbitone the problem becomes clear: 

how we view a drug's actions depends on the investigator’s 

viewpoint. Thus, any change in blood pressure seen after icv 

pentobarbitone may have been the result of incipient general 

anaesthesia.

Although general anaesthesia may alleviate the difficulties 

associated with alterations in arousal consequent upon central 

injection of drugs, it introduces a new set of problems.

The following is taken from the review of Calaresu et al (1975): 

"Anaesthetics are commonly used in e3q>erimental studies, although 

it is frequently assumed that data obtained from awake animals 

are a better indication of the normal operation of the central 

regulation of the cardiovascular system. It has been suggested 

that experiments in anaesthetised animals are 'probably distorted 

by absence or distortion of nervous compensating mechanisms 

presumably active in conscious animals’ (UvnSs, 1960). There is 

also a different sensitivity of different parts of the neuraxis 

to anaesthetic agents which complicates the interpretation of 

experimental results. The most widely recognized differential 

effect of anaesthetics is their greater suppression of cortical 

and diencephalic function than of medullary function; this could 

result in a systematic bias towards assigning to the medulla 

an exaggerated role in the regulation of the cardiovascular system."

The effects of different general emaesthetics on the 

electrophysiology of central neurones has been reviewed by 

Szabasi (1979). For example, chloralose markedly reduces the 

sensitivity of cortical neurones to acetylcholine and excitant
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amino acids, whereas urethane, nitrous oxide, trichloroethylene 

and halothane have little effect. Also, excitatory responses to 

noradrenaline in the cortex are rarely observed in preparations 

anaesthetised with barbiturates and urethane, but are commonly 

seen in preparations anaesthetised with halothane (Szabadi, 1979).

A study of the cardiorespiratory changes during electrical 

stimulation of the septum in the rat under chloralose or urethane 

anaesthesia revealed that blood pressure was changed in opposite 

directions under the 2 anaesthetics (Calaresu & Mogenson, 1972).

Day et al (1980) obtained greater pressor responses to 

third ventricle infusions of noradrenaline in unanaesthetised cats 

than in chloralose anaesthetised animals.

Although Haranath et al (1965) obtained pressor responses 

to icv injections of procaine in unanaesthetised and chloralose 

anaesthetised dogs, only a gradual fall in blood pressure was 

seen in pentobarbitone anaesthetised animals.

There is no ideal anaesthetic but perhaps one of the better 

ones is althesin ('Saffan', Glaxo). This drug is infused 

continuously into a peripheral vein and depth of anaesthesia can 

be regulated moment-to-moment by varying the rate of infusion.

In this way it is possible to maintain the lightest level of 

anaesthesia consistent with unconsciousness and the requirements 

of law. Such fine control of depth of anaesthesia is impossible 

with chloralose, pentobarbitone and thiobutobarbitone, for example.

The value of the anaesthetised preparation rests in the 

ability of the investigator to measure many variables under
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carefully controlled experimental conditions that are not often 

possible in the unanaesthetised animal. Blood pressure and 

heart rate are at their most stable under anaesthesia and this 

allows the measurement of small changes in both parameters which 

might otherwise be obscured by noise caused by, say, movement 

of the animal.

The question remains whether a change that is observed under 

anaesthesia will also be observed in the unanaesthetised preparation,
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Blood pressure — the heart of the matter
Diseases o f  th e  h e a r t  and c ircu la t ion  a re  m ajor  ki llers in affluent soc ie ty .  O n e  m y s te r io u s  c o m p la in t  

is kn o w n  as essentia l  h y p e r te n s io n — high blood  p re ssu re  w ith  no obvious  cause

Our understanding of the way 
blood circulates has advanced enor
mously since William Harvey made 
his pioneering observations some 
350 years ago But there are 

aspects of the cardiovascular system that puzzle us still.
Essential hypertension, in which blood pressure is raised 
for no obvious reason, is one such puzzle. In this article I 
want to look at blood pressure in some detail If we know 
how the body controls blood pressure we can understand 
how it becomes elevated and how to control that elevation.
When a person is at rest his heart beats rou^ly 70 times 

each minute. In doing so it provides the driving force that 
propels blood around two linked circuits the pulmonary 
circulation, which sends spent blood to the lungs where it 
absorbs oxygen; and the systemic circulation, which 
ensures that oxygenated blood gets to all parts of the body.
The heart is a double pump at the centre of the two 

circuits (Figure I). Each time the heart contracts (called 
systole), the left ventricle pumps about 75 millilitres of 
oxygen-saturated blood into the aorta, the first and 
largest artery in the systemic circulation The maximum 
pressure that is reached in the aorta, known as the systolic 
blood pressure (Figure 2), will depend on the amount of 
blood ejected, the rate at which it is ejected, and the 
“stretchability” (compliance) of the muscular wall of the 
aorta A large volume of blood ejected quickly into a rigid 
aorta will produce a higher maximum systolic pressure 
than a smaller amount of blood pumped more slowly into 
a compliant aorta
After each contraction the heart relaxes. This is called 

diastole. During this time the left atrium, whidi receives 
oxygenated blood from the lungs, empties into the left 
ventricle. The valve between the aorta and the ventricle 
shuts and the pressure in the aorta falls The rate at which 
the pressure falls depends on the systolic pressure and 
on the resistance to flow of the smaller vessels downstream.
Pressure in the aorta keeps dropping until the next con
traction, when a fresh volume of blood is pumped into the 
vessels. The minimum pressure, just before a contraction, 
is called the diastolic blood pressure (Figure 2).
Doctors normally measure both systolic and diastolic 

pressures, and refer to blood pressure by the two figures 
Thus a blood pressure of 120/80 represents a maximum 
(systolic) pressure of 120 m m  of mercury and a minimum 
( diastolic ) pressure of 80 m m  of mercury.
The pressure in the blood vessels falls continuously from 

the aorta to the end of the systemic circulation in the 
right atrium If it did not, blood would not flow around the 
body. But the pressure drop is not linear along the cir
culation path; the greatest drop occurs in the smallest 
arteries, the arterioles, just upstream of the capillaries.
Because the precapillary arterioles are small, they offer 
a great resistance to flow through them, but relatively 
small changes in the diameter of the arterioles can 
dramatically alter the rate of flow For these reasons the 
arterioles and other so-called precapillary resistance vessels 
are ideal places at which to regulate arterial blood pres
sure Not surprisingly then, this is their major function.
The precapillary resistance vessels receive nerves from 

the sympathetic division of the autonomic nervous system.
(The autonomic nervous system regulates bodily functions 
over which most people have little voluntary control. It 
is divided into the sympathetic and parasympathetic sys
tems, and these normally act in opposition. For example.

activity in the sympathetic nerves causes the heart to beat 
faster, while the. parasympathetic nerves cause it to slow 
down.) When the nerves to the blood vessels “fire”, the 
muscles in the arteriole walls contract. This reduces the 
diameter of the vessel and so increases its resistance to 
blood flow. H the precapillary resistance vessels contract 
there is an increase in total peripheral resistance, which 
means that a higher arterial blood pressure is needed to 
move an amount of blood through the system at a par
ticular speed.
After this gallop around the drcnilatory system we can 

pause to consider just what might cause high blood pres 
sure. We know that the speed at which the pressure falls 
from systolic maximum depends partly on the total peri
pheral resistance to flow When this resistance is high the 
pressure falls slowly and the diastolic iK-essure is corre
spondingly higher. Sustained diastolic hypertension (raised 
minimum blood pressure) is a common symptwn of a 
variety of diseases, for example kidney disease, but in 
over 95 per cent of people the cause for elevated dktstolir 
pressure remains unknown. It is this condition that goes 
by the name of primary, or essential, hypertension.
One thing consistent to all oases of essential hj’per-
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Figure 2 Pressure in the matn arteries rises and falls as the 
heart contracts and relaxes
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Figure J  Frequency curve for dvastoLic blood pressure in the 
population reveals the limits doctors comrnonly use to make 
their diagjwses

tension is that resistance vessels all over the body are 
more constricted than they are in a normal person. The 
cause of this generalised constriction is not known, but 
one general hypothesis is that some people have a genetic 
predisposition to over-react to the chemicals that constrict 
the blood vessels In these people the peripheral resistance 
vessels might, because of their reactivity and prolonged 
exposure to constricting influences, undergo some perma
nent change that results in them presenting a higher than 
normal total peripheral resistance.
Blood pressure must stay within certain limits for 

molecular exchange between cells and blood to take place in 
the capillaries. Without knowing why this is so, we do know 
from life assurance statistics that life expectancy varies 
inversely with blood pressure; the higher your blood pres
sure the sooner you are likely to die.
One consequence of a raised total peripheral resistance 

is that the heart must work harder to maintain a 
normal flow of blood through the tissues. The heart is a 
musde, and when muscles are forced to work they grow. 
Bigger muscles need more oxygen, as do muscles that are 
working hard So any interruption to the supply of blood 
to the heart itself— the so-called coronary blood supply—  
will be much more serious in the overgrown overworked 
heart of a hyT>ertensive than in the smaller heart a 
normal person. It is for this reason that one of the major 
problems of uncontrolled high blood pressure is the death 
of a block of heart muscle as a result of the blood supply 
being blocked (myocardial infarction}. Other problems in
clude stroke and kidney damage It is because of these 
complications that high blood pressure must be lowered.

How high is high?
It is all very well to say that we should treat high blood 

pressure, but first we must decide what level constitutes 
“high". Blood pressure varies from person to person, so 
that for the population as a whole there is a distribution 
of blood pressures. We can therefore adopt a statistical 
approach. If someone’s blood pressure lies outside certain 
arbitrary limits we can define it as too high, and act accord
ingly. In Figure 3 you can see a distribution curve for blood 
pressure in a hypothetical population. Eighty per cent of 
all observations are said to be normal; 15 per cent are 
then “borderline” and 5 per cent are either hypo- or hyper
tensive. Of course you need different curves for different 
populations— defined according to age, sex, and so on— but 
with such a family of curves it is possible to get a rough 
guide to the abnormality of an individual’s blood pressure. 
The doctor must, however, also be prepared to temper his
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Figure 4 The chain of command 
that controls blood pressure has 
many links, each of which is 
potentially a site for control

statistical observations with knowledge of the patient
Doctors normally speak of three increasingly dangerous 

classes of hypertension; mild, moderate, and severe In mild 
hypertension there is no clinically detectable impairment 
of either the heart or the kidneys; blood pressure is higher 
than normal, but otherwise nothing seems to be wrong. 
Increasingly high blood pressures bring increased com
plications. In moderate hypertension the kidneys are not 
doing their job well and the heart is having to work harder 
in the face of increased total peripheral resistance. Finally, 
in severe hypertension, the heart is very enlarged, the 
kidneys have deteriorated further, and total peripheral 
resistance is even higher.
The prime purpose of drug treatment to combat hyper

tension is to bring the blood pressure down to more normal 
values. The idea is to lower the total peripheral resistance, 
which should take the load off the heart and improve blood 
flow through the kidneys.
The first weapon in the anti-hypertensive arsenal is 

usually a drug that increases the production of urine, this 
also eliminates sodium from the body and lowers blood 
pressure, though exactly how is unclear. If this doesn’t 
work, more powerful weapons are available. These drugs 
act at a variety of different sites in the body; they may 
act directly, to relax the muscles in the resistance vessels; 
they may affect the transmission of impulses down the 
sympathetic nerves to the vessels; they may inhibit the 
sympathetic nerve ganglia; or they may act in the brain 
to reduce sympathetic activity centrally. All these actions 
will bring down blood pressure by opening out the 
arterioles, thereby lowering total peripheral resistance 
(Figure 4).
There remains the problem of whether it is actually 

worth treating the patient who suffers only mild hyper
tension Every available anti-hypertensive drug has some 
side-effects, and the doctor has to balance the risks and 
benefits of drug treatment against the risk of untreated 
hypertension, albeit mild hypertension. At present we just 
don’t have all the information we need to perform this 
balancing act. There is a distinct shortage of evidence 
from long-term drug trials in mild hypertension, so that 
doctors are more or less on their own in deciding whether 
to put someone whose dith blood pressure is mild, rather 
than severe, onto anti-hypertensive drugs.
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Side-efiects pose one set of problems. Another arises 
because patients won’t take their drugs. The trouble is that 
the milder forms of hypertension are notoriously asympto
matic, they cause the patient very little, if any, discomfort 
so there is a great temptation to stop taking the prescribed 
medication. And if the patient does stop taking the tablets 
he is unlikely to fe e l any worse Indeed, because of side- 
effects, the patient may actually feel better when he stops 
taking the drugs. Doctors can not do very much about this 
They have to make sure that they get the maximum lower
ing of blood pressure with minimum side-effects, and stress 
to the patient the importance of continuing therapy.
An astonishing number of studies have tried to discover 

just what causes some people to develop essential hyper
tension. Studies of hypertensive families confirm that there 
may well be a strong hereditary component to the disease, 
but the actual mode of inheritance remains, to put it kindly, 
obscure. A multitude of factors play a part in the develop
ment of the disease, and as far as genetics is concerned 
perhaps all we can safely say is that if both parents are 
hypertensive there is significantly greater risk that their 
children will eventually also develop high blood pressure.

Predisposing factors
Other predisposing factors are more obvious. Doctors 

have long known that obese people tend to have high blood 
pressure, just as hypertensives tend to be overweight. 
What isn’t clear is whether the increased body fat itself 
causes hypertension or whether there is some other factor 
that relates to both obesity and blood pressure.
Salt has been implicated in hypertension, and one of the 

first effective ways to lower blood pressure was to restrict 
the amount of salt a patient ate. The problem here is 
that a salt-free diet is unutterably boring, and requires 
enormous will-power from the patient.
Smoking, too, is a definite danger in all things to do 

with the heart and circulation Hypertensives should not 
smoke because nicotine mimics the action of the sympa
thetic nerves, constricting the arterioles and thereby 
raising the total peripheral resistance.
Obesity, salt and tobacco all play their part in high blood 

pressure, as do a number of other factors. There is some 
evidence that a certain type of person tends to become 
hypertensive. These are people who respond to stress to 
a greater degree than normal. There is no doubt that 
stress activates the sympathetic nervous system, and if this 
activation is prolonged it could lead to more or less per
manent changes in the cardiovascular system. As an 
example, let me mention the body’s own pressure recep
tors. These “baroreceptors” are found in the aorta and in 
the main artery leading to the brain. They respond to 
changes in blood pressure, and send information to the 
centres in the brain that control blood pressure to adjust 
the pressure back to normal, just one of many negative 
feedback systems common in physiology. It is possible 
that prolonged stress eventually causes the baroreceptors 
to become reset to a lower sensitivity level, so that a 
greater change in blood pressure must take place before 
the reflex feedback system swings into operaticm.
Whatever the causes of essential hypertension, its 

prevalence in affluent societies means that the market for 
anti-hypertensive drugs is enormous. The pharmaceutical 
companies are in intense competition to develop safer, 
more effective drugs, and they pour a huge amount of 
money into research. Currently there is a lot of interest 
in drugs that lower blood pressure by acting on selected 
sites in the brain, and this looks to be a very promising 
area. There is even a strain of genetically hypertensive 
rats that makes testing new compounds a little easier. In 
aLl, it seems that though we still don’t really understand 
essential hypertension, the outlook for the hypertensive 
patient can only improve. □
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Table 1 The interaction of clonidine with yohimbine and its diastereoisomers in the conscious SHR

M ax % A from resting levels
D ose given Lc.v. B .P .±  s.e.mean H .R . ± s.e .m ean n

Clonidine (1 pg) -14.2 ±5.2 -8.2±4.1 6
“ |4!;g-ehic,e -20.4±5.1 -14.5 ±3.3 6

-33.7 + 4.2 -23.7±4.2 6
Clonidine (8 pg) -40.0 ±1.9 -35.4±3.3 6
Clonidine (4 pg)
+ corynanthine (25 pg) -30.1 ±4.1 -23.2±4.1 6
corynanthine (50 pg) -23.2 ±2.8 -19.2±4.3 6
corynanthine HOC fig) -14.8±1.8" -7.8 ±6.7 6

-F yohimbine (25 pg) -21.2±2.r -14.5 ±2.4 6
yohimbine (50 pg) -17.5 ±4.3* -9.1 ±4.2* 6
yohimbine Ù  00 fig) -7.8±1.8" -3.8±1.9" 6

+ rauwolscine (25 pg) -15.4±1.6" -11.7±2.7* 6
rauwolscine (50 pg) -6.3±2.0" -4.4±3.2" 6
rauwolscine Ù  00 fig) -2.6±3.8" . +3.6±4.1" 6

'Significantly different from controls f <0.05, unpaired students r-test.
"Significantly different from controls f <  0.01, unpaired students r-test.
Resting M.A.P. and H R. = 168.9 ± 10.3 mmHg and 379.3 ±16.3 beats/min respectively (Mean ± s.e.mean, 
n=15).

P.J.B. is supported by a S.R.C. CASE award with Pfizer Ltd.
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The effect of ̂-blockade on the cardiovascular responses to centrally-administered adrenaline in the rat
D.P. CLOUGH*, A.J. DRAPER,
P H. REDFERN & R.D. SHERIDAN
Pharm acology Group, School o f  Pharm acy and Pharm a
cology, University o f  Bath, Claverton D own, Bath B A 2  7A  Y  
an d  * Bioscience D epartm ent II, Im perial Chem ical Indus
tries L td, Pharm aceuticals D ivision, A lderley Park, M accles
field , Cheshire

Although a considerable body of circumstantial evi
dence points to a central component in the anti
hypertensive action of ̂ -blocking drugs, the results of 
experiments designed to test this hypothesis are 
equivocal. For example, intracerebroventricular 
(i.c.v.) injection of propranolol in the rat was re
ported by Wepierre, Lindenbaum, Porquet & Cohen 
(1978) to cause a fall in blood pressure, whereas 
Sweet, Scriabine, Wenger, Ludden & Stone (1976) 
reported a transient rise. Similar experiments with 
other species have yielded equally ambivalent re
sults. In an attempt to delineate further the central
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actions of ^-blocking drugs on the cardiovascular 
system, we have used i.c.v. adrenaline as an agonist 
capable of stimulating both a and P receptors, and 
possibly even specific adr'enaline-receptors, and have 
investigated the ability of centrally-administered P- 
blocking drugs to modify the cardiovascular re
sponses to i.c.v. adrenaline.

Male Wistar rats (Alderley Park strain) weighing 
220-270g were anaesthetized with thiobutobar- 
bitone sodium (‘Inactin’, BYK Ltd) i.p. at a dose of 
100 mg/kg. Blood pressure was recorded from a 
carotid artery and heart rate was derived from the 
blood pressure pulse. All drugs were injected 
through a 30 gauge stainless steel cannula inserted by 
means of a David Kopf stereotaxic instrument into 
the left lateral cerebral ventricle (co-ordinates A 
3.29, L 4.4 , H-O. 4mm; Kônig & Klippel, 1963). 
Adrenaline hydrogen tartrate (BDH), freshly dissol
ved in artificial CSF at a concentration of 4 mg/ml, 
was injected at a rate of 2 pl/min. The total dose of 
20 pg was thus contained in 5 pi. The P-blockers 
(±-propranolol HCl, ±-atenolol; I.C.l. Ltd), or + -  
propranolol HCl (I.C.L Ltd) were administered by 
the same route in a volume of 10 pi, the injections 
beginning 15 min and ending 10 min before the 
adrenaline injection.

Administered in this way 20 pg adrenaline alone 
was without effect on mean arterial pressure (MAP) 
but reduced heart rate by some 2 0 -3 0  beats per min. 
When preceded by 30 pg ±-propranolol, however, 
the same dose of adrenaline produced a sustained rise 
in MAP of 32 ± 3  mmHg (n =  7). This pressor re
sponse was dependent on the dose of propranolol 
within the range 10-100  pg; these doses of prop
ranolol did not themselves alter MAP. A similar 
dose-relationship was observed with atenolol pre
treatment; after atenolol (100 pg), adrenaline 
(20 pg) increased MAP by 45 ±  8 mmHg (n = 7), an 
effect comparable in magnitude to that seen after the 
same dose of propranolol, though of shorter dura
tion.

That the ability of propranolol to unmask the 
pressor response to adrenaline was dependent on 
blockade of f-receptors was shown by the lack of

response to adrenaline following 30 pg d- 
propranolol.

TTiat the effect of the p-blockers is mediated cen
trally was shown by comparing the effect of atenolol, 
which does not readily cross the blood-brain barrier 
(Day, Hemsworth & Street, 1977), administered in
travenously and i.c.v.; centrally injected adrenaline 
produced no pressor response after atenolol (100 pg 
i .v ).

Assuming, therefore, a central locus of action for 
both adrenaline and the ^-blocking drugs, these re
sults suggest that adrenaline may exert both an in
hibitory and an excitatory action on MAP. The in
hibitory effect appears to be mediated via an action 
on ^-receptors and when this effect is prevented by 
central ^-receptor blockade, the pressor response is 
revealed. The identity and location of the receptors 
responsible for this pressor response are currently 
being investigated.

Support from S.R.C. and I.C.l. Ltd, in the form of a CASE 
studentship to R.D. Sheridan, is gratefully acknowledged.
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Decreases in a adrenoceptor number which may be 
related to altered in vivo responses have been ob
served under a variety of conditions (Williams & 
Lefkowitz, 1977; 1979; Elliot, Peters & Grahame- 
Smith, 1980).

We have compared the changes observed in vitroin 
radioligand binding and in vivo in responses to a 
adrenoceptor agonists in male White New Zealand
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THE EFFECTS OF CENTRALLY-ADMINISTERED ADRENALINE ON RAT BLOOD PRESSURE 
- MODIFICATION BY SELECTIVE B-ADRENORECEPTOR BLOCKADE
D.P. Clough*, A.J. Draper, P.H. Redfern, R.D. Sheridan. Pharmacology Group,
School of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, and 
*Bioscience Department II, I.C.l. Ltd., Pharmaceuticals Division, Alderley Park, 
Cheshire.
Drugs like propranolol, whose major pharmacological property is a competitive 
blockade of g-adrenoreceptors, play an important part in the management of essen
tial hypertension, although the precise mechanism, or mechanisms by which they 
lower blood pressure remains obscure. In the course of investigating the pos
sibility of a centrally-mediated component in the antihypertensive process, we 
have recently shown (Clough et al 1981) that when introduced into the lateral 
cerebral ventricles (i.c.v.) of the anaesthetised rat, doses of adrenaline that 
are ineffective alone produce a marked pressor response in the presence of central 
3-receptor blockade. These results suggest that adrenaline exerts within the 
brain both an excitatory and an inhibitory effect on blood pressure, and that the 
inhibitory effect is mediated via 3-receptors; the experiments reported here 
explore further the central interaction between 3-receptor blocking drugs and 
adrenaline.
Male Wistar rats (Alderley Park strain) weighing 220-270g were anaesthetised with 
thiobutobarbitone sodium ('Inactin', BYK Ltd.) 150mg kg~i i.p. Blood pressure 
was recorded from a carotid artery and heart rate was derived from the blood 
pressure pulse. All drugs were injected through a 30 gauge stainless steel 
cannula inserted by means of a David Kopf stereotoxic instrument into the left 
lateral cerebral ventricle (co-ordinates A3.29, L4.4, H-O.4mm, Konig & Klippel); 
they were dissolved in artificial C.S.F. and injected at a rate of 2)jl min"^ in 
volumes not exceeding lOyl. Figure 1 illustrates the effect on mean arterial pres
sure (MAP) of 20yg adrenaline i.c.v., alone and 10 minutes after the i.c.v. injec
tion of propranolol, atenolol and ICI 118551, 30yg. Propranolol is considered to 
be equipotent on 3]_ and 32 receptors, while atenolol has some selectivity for 3i 
receptors (Ablad et al 1973). On the other hand ICI 118551 has a selective 
action on 32 receptors (O'Donnell & Wanstall 1980). These results therefore

suggest that the central inhibitory 
effect of adrenaline on cardiovascu
lar responses may be mediated by 
adrenoreceptors of the 32 type.

Figure 1.

Effect of 20yg i.c.v. adrenaline on 
blood pressure. Pretreatment with 
artificial CSF - A  (n=7);
30yg ICI 118551 HCl,- D (n=6); 
30yg propranolol HCl - ■ (n=7);
30yg atenolol - # (n=6)
Means ± SEM. Horizontal bar = adren
aline injection.
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Ablad, B. et al (1973) Life Sci 12 : 107-119.
Clough, D.P. et al (1981) Br. J. Pharmac., in press.
O'Donnell, S.R. & Wanstall, J.C. (1980) Life Sci 27: 671-677.
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EFFECTS OF CENTRALLY INJECTED 6-BLOCKERS ON THE PRESSOR RESPONSES TO ELECTRICAL STIMULATION IN THE POSTERIOR HYPOTHALAMUS AND MEDIAL RAPHE NUCLEUS OF THE ANAESTHETISED RAT
D.P. Clough*, A.J. Draper, P.H. Redfern, R.D. Sheridan, Pharmacology Group,
School of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, and 
*Bioscience Department II, ICI Ltd., Pharmaceuticals,Divn., Alderley Park, 
Cheshire.
Although g-blockers have been used for many years to control high blood pressure, 
their mechanism of action remains unknown. One possibility is that at least part
of their antihypertensive activity is mediated via the central nervous system.
For example, Lewis & Haeusler (1975), using conscious rabbits, observed a decrease 
in preganglionic sympathetic nerve activity and blood pressure following intra
venous propranolol. However, in the rat, experiments in which 3-blockers have 
been injected into the cerebral ventricles (i.c.v.) have yielded conflicting 
results with respect to blood pressure modulation. It has long been recognised 
that the hypothalamus is intimately involved in the autonomic control of the cir
culation and that electrical stimulation in the posterior hypothalamus (PH) can 
evoke elevations of blOod pressure (Folkow & Rubinstein 1966). More recently, 
Smits et al (1978), using anaesthetised rats, obtained pressor responses follow: g 
stimulation in the medial raphe nucleus (MRN). In the present investigation we
have looked at the effects of i.c.v. 3-blockers on the pressor responses produced
by electrical stimulation in these two brain areas.
Male Wistar rats (Alderley Park strain) weighing 220-270g were prepared as descr
ibed previously (Clough et al 1981). Monopolar electrodes fashioned from elect- 
rolytically sharpened and insulated stainless steel wire, had exposed tip lengths 
of 20-40ym. Negative-going square-wave pulses, delivered via a constant current 
device, were applied to the stLuulating electrode, the indifferent electrode being
secured to the subcutaneous tissue exposed by the scalp incision. Stimulus para
meters were-pulse width 2msec; current 200yA; train duration 5 seconds; frequency 
20-80HZ. Coordinates of the PH and MRN were A3.5, Ll.O, H-2.5mm and AO.35, LG,
H-2.5mm, respectively (Konig & Klippel). Stimulation at both sites induced frequ
ency-dependent increases in systolic blood pressure - Table 1.
Table 1. Pressor responses to electrical stimulation (mean ± SEM).

SYSTOLIC PRESSOR RESPONSE (mmHg)

Frequency (Hz)
AREA 20 40 60 80

Posterior hypothalamus 3 ± 1 34 ± 4  66 ± 5  —  (n = 5)
Medial raphe nucleus —  16 ± 2 42 ± 2 57 ± 4 (n = 15)

Propranolol HCl, lOOyg i.c.v., failed to affect the pressor responses to PH stim
ulation, while 50yg failed to modify the responses to MRN stimulation. Atenolol,
50yg i.c.v., did not alter the responses to MRN stimulation except at the highest
frequency (80Hz), where the response was significantly increased (paired t-test; 
P<0.05). These results suggest that any 3-receptor capable of modifying pressor 
responses evoked in this way are not accessible to drugs injected i.c.v.
The support of ICI Ltd., and S.R.C in the form of a CASE studentship to RDS is 
gratefully acknowledged.
Clough, D.P. et al (1981) Br. J. Pharmac. In press.
Folkow, B. & Rubinstein, E.H. (1966) Acta physiol, scand. 68; 48-57.
Lewis, P.J. & Haeusler, G. (1975) Nature 256 : 440.
Smits, J.F.M. et al (1978) Life Sci. 23: 173-178.
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A RELATIVELY INEXPENSIVE COMBINED STIMULUS ISOLATION/CONSTANT CURRENT DEVICE
R.D.Sheridan (Introduced by P.H.Redfern), Pharmacology Group, School of Pharmacy 
and Pharmacology, University of Bath, Claverton Down, BA.TH BA.2 7AY.
The circuit described enables the construction of a combined stimulus isolation 
(SI) / constant current (CC) device at a small fraction of the cost of comparable
commercial units. The complete circuit is shown in Figure 1 and the components in
Table 1. SI is achieved by ICI, wherein the stimulus pulse is converted to light.
R1 serves to limit the current through ICI and is based on a 9 Volt input from a
dry cell battery. The isolated side of ICI is connected as a photodiode and light
falling on this causes a potential difference (pd) of about 1.2 Volts to appear 
across RVl. The whole or part of this pd is tapped at pin 3 of IC2, which is a 
general purpose operational amplifier connected as a voltage follower. Its purpose 
is to bias TRl variably, and to maintain a pd across R2 equal to that seen at pin 
3 of IC2. If this pd is 0.6 Volt, for example, and R2 is 1.2 k ohm, then a current 
of O.5 mA will flow through R2. If a voltage. Vs, is now applied to the collector
of TRl, then a current will start to flow through TRl and R2 towards the 0 Volt
line. In so doing, however, the pd across R2 is raised from its initial value (set 
by RVl) and this in turn causes the output of IC2 to fall. Thus, the base bias of 
TRl is reduced and current flow through the transistor is decreased until the pd 
across R2 is returned to that value seen by pin 3 of IC2. At this point the current 
in the collector circuit of TRl is the same as that in R2. This holds true for in
creasing values of resistance in the collector circuit provided that Vs is suff
iciently high. In practice we have found 60 Volts to be suitable for our purposes.
To set up, set the stimulator voltage dial to 10 Volts and, with PBl closed and
RVl wiper set to maximum tapped voltage, increase the stimulator outpqt until a 
current of 1 mA is seen by a milliammeter placed in series between Vs and the TRl 
collector. This stimulator voltage is utilised throughout subsequent use of the 
SI/CC unit. Currents greater than 1 mA may be obtained by reducing the value of R2. 
Stimulating current is adjusted by means of RVl.
Figure 1. SI/CC unit circuit. IC pin numbers are shown Table 1. Components

0V< W / W V
PB1

IC2

+ W--
OV-------

- W — —^
NfC WC

ICI N/C - NOT CONNECTED

R1 400 ohm 
R2 1 - 1.5k ohm 
RVl Linear 50 k ohm 
TRl BFX 85 
ICI OPTO-ISOLATOR *
IC2 pA 741

* This component (order 
code WL35Q) available 
from Maplin Electronic 
Supplies, London,England. 
(Tel: 01 - 748 0926).


