

University of Bath

PHD

Interactive communication system simulator ICOSS.

Abdul-Wahab, A. S. M. S.

Award date:
1979

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Sep. 2021

https://researchportal.bath.ac.uk/en/studentthesis/interactive-communication-system-simulator-icoss(a4b2d6c0-c15a-4e2e-8fe1-2df444f70d0c).html

INTERACTIVE COMMUNICATION SYSTEM SIMULATOR ICOSS

submitted by A S M S ABDUL-WAHAB
for the degree of PhD
of the University of Bath
1979

60 7819676 5
TELEPEN

llllillill
COPYRIGHT

Attention is drawn to the fact that copyright of this
thesis rests with its author. This copy of the thesis
has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis
and no information derived from it may be published
without the prior written consent of the author.

tkexo-i he /naJ<F •n^euUUé a n n jïo d ù y i tU lU o ^ da U
00^ be cr Is.it

Ccnsvdtcdicn. .
A.s .m .s ,

ProQuest Number: U442859

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U442859

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

SUMMARY

This work is concerned with the design of a general-
purpose time-domain interactive communication-system
simulator ICOSS. Signal processing modules may be
interconnected in any order, and module control
parameters, as well as the system control parameters
can be varied while the simulation is running. Editing
of the system structure (inserting or deleting modules)
can be done on-line.

The ultimate objective is to set-up a communication system
simulation working on an on-line basis, with an inter­
active capability providing the engineer in a research
environment with a bench tool, which complements the
hardware apparatus.

Once the prototype of ICOSS was developed, an investiga­
tion was made into one of the main areas of further
development, namely, processing speed, in which a dedi­
cated processor containing a signal processing module,
comprising of microprocessor controlled unit, is coupled
with the main computer, where ICOSSjresides .

The simulator novelty in engineering and research was
tested, by using problems involving feedback links,
namely, interference in a phase-lock loop and perform­
ance of fast acquisition phase-lock loop. These
provided confirmation and deeper understanding of experi­
mental work as well as proving that ICOSS was working

(ii)

correctly.

To implement the full system requires computing power
and equipment which was unavailable. Therefore, only
the prototype version was implemented.

(iii)

CONTENTS

TITLE PAGE (i)
SUMMARY (ii)
CONTENTS (iv)

CHAPTER ONE ; INTRODUCTION

1.1 Communication Systems 1
1.1.1 Definition and Characteristic 1
1.1.2 Areas of problems in communication

systems 2
1.2 Simulation ‘ 3

1.2.1 System studies 3
1.2.2 System simulation 3
1.2.3 Communication system simulation 5

1.3 Thesis 7
1.3.1 Designing a new simulator, ICOSS 7
1.3.2 Outlook and modifications 8
1.3.3 Application 9

CHAPTER TWO; SIMULATION TECHNIQUES AND SIMULATORS

2.1 Introduction 10
2.1.1 Historical background 10
2.1.2 Simulation techniques 13
2.1.3 The block diagram technique 15
2.1.4 In this chapter 17

2.2 Implementation :user side 17
2.2.1 Typical communication system 18
2.2.2 Limitations 25
2.2.3 Projection 25

2.3 Implementation : computer side 2 6
2.4 Frequency domain simulation 31

2.4.1 Introduction 31
2.4.2 Principle of operation 31
2.4.3 Execution procedure 32

(iv)

2.5

2.8

2.9

2.4.4 System analysis
2.4.5 Characteristics
2.4.6 Utilisation
2.4.7 Scaling
Time domain simulation
2.5.1 Basic principles and execution

procedure
5.2
5.3
5.4
5.5

System state variables
Characteristics
General comments
Execution time

R.F. signal simulation
Off-line working
2.7.1 Principle of operation
2.7.2 Characteristics
On-line working
2.8.1 Principle of operation
2.8.2 Characteristics
Limitations and objectives
2.9.1 Limitations
2.9.2 Objectives

2.10 ICOSS
2.11 Summary
Figures relating to Chapter 2

32
34
35
35
35

35
36
41
41
42
43
45
45
45
46
46
47
48
48
48
52
53

54-58

CHAPTER THREE: INTERACTIVE COMMUNICATION SYSTEM
SIMULATOR ICOSS 59

3.1 Introduction
3.2 Program structure
3.3 Time allocations
3.4 Flow-chart
3.5 Complementary items

3.5.1 The signal processing modules input-
output node arrangements
3. 5.1.1 General notes
3.5.1.2 Node numbering
3.5.1.3 Signal value storage
3.5.1.4 Example

59
62
65
68

68

68
68
69
70
70

(v)

3.5.1.5 Implementation 70
3.5.2 The control parameters CPs and GCPs 71

3.5.2.1 Definitions, characteristics
and general points 71

3.5.2.2 Procedure 7 3
3.5.2.3 Storage arrangements 74

3.5.3 The system matrix SM 75
3.5.4 Loop directives 7 6

3.5.4.1 General notes 7 6
3.5.4.2 System state 77
3.5.4.3 Loop directive - implementation 7 8

3.6 The Loop group of interrupts LOOP 80
3.7 The Teletype group of interrupts TTYFG 81

3.7.1 Construction CONS 82
3.7.2 Editing EDIT 83
3.7.3 Changing control parameters (Local) CHCP 86
3.7.4 Changing global control parameters CHGC 86
3.7.5 Running an already established system

ENTR 87
3.7.6 Stopping (pausing) a running system STOP 88
3.7.7 Block diagram display CMST 89
3.7.8 Graph plotting management routine PLTM 8 9
3.7.9 Graph plotting routine PLTG 89
3.7.10 Initialisation routine interrupt INXM 90

3.8 The Flag group of interrupts 90
3.9 Developments and further work 91
Figures relating to Chapter 3 94-117

CHAPTER FOUR: MICROPROCESSOR APPLICATION; BANK
OF DIGITAL FILTERS (BOF) 118

4.1' Introduction 118
4.2 Microprocessor systems 120

4.2.1 Introduction 120
4.2.2 Microprocessor architecture 121
4.2.3 Read only memory ROM 12 4
4.2.4 Random access memory RAM 12 5

4.3 Configuration 129
4.3.1 Multiprocessing systems 130

(vi)

4.3.2 Master-slave processors 133
4.3.3 Signal processing module 134

4.4 Designing a slave processor for the BOF module 135
4.4.1 General 135
4.4.2 Theory • 136
4.4.3 BOF module design requirements 137
4.4.4 Module structure (hardware) 138

4.5 Software development of BOF module 139
4.5.1 Program formulation 139
4.5.2 Implementation 142
4.5.3 BOF program 143

4.5.3.1 Interfacing 143
4.5.3.2 Memory map 144
4.5.3.3 Construction code CONS 146
4.5.3.4 The run mode (RUN) 147

4.6
4.6.1 The Host machine: the Digital

Equipment PDP8/e 147
4.6.2 4.6.2.1 Main program: ICOSS 149

4.6.2.2 Teletype group of
interrupts: TTYFG 149

4.6.2.3 Construction mode ' 150
4.6.2.4 Running mode 151

4.6.3 The Host computer interprocessor buffer 152
4.7 Running of final system 154
Figure's relating to Chapter 4 156-170

CHAPTER FIVE: APPLICATION PROBLEMS 171

5.1 Introduction 171
5.2 Simple PLL .. 172

5.2.1 Introduction 172
5.2.2 PLL parameters . 173
5.2.3 Direct approach 174
5.2.4 Complex-signal approach j.77
5.2.5 Comment 1

5.3 Interferences in phase-lock loops, stochastic
simulation .1
5.3.1 Stochastic simulation

(vii)

5.3.2 The problem of interferences in PLL 183
5.3.3 Problem formulation 184
5.3.4 Results and comment 186

5.4 Fast acquisition PLL 188
5.4.1 Description 188
5.4.2 Parameters 189
5.4.3 Method and measurements 191
5.4.4 Observations 191

Figures relating to Chapter 5 192-207
CHAPTER SIX: DISCUSSION 208

6.1 Discussion of communication system simulation
in general 208

6.2 Discussion of ICOSS 210
6.3 Discussion of application problems 221
6.4 Future work 224
6.5 Conclusion 232
Figures relating to Chapter 6 234

235ACKNOWLEDGEMENTS
2 36REFERENCES

APPENDICES

A. Comparison table between six important general-
purposo simulators. 243

B. The modules of the Loop group of interrupts
as implemented by the prototype ICOSS. 246

C. Output display routines of the flag group as
implemented by the prototype ICOSS. " 251

D. Subroutines and their description of the
prototype ICOSS. 255

E. Tables, stacks, arrays and matrices. 260
F . Logarithmic arithmetic unit. 264
G. Procedure for adding a new LOOP/TTYFG/FLAG

interrupt. 270
H. Phase-lock loop. '̂ 76
I. Computer run times 282

(viii)

CHAPTER 1

INTRODUCTION

1.1 COMMUNICATION SYSTEMS

1.1.1 Definition and Characteristic

Communication system design involves a complex interplay
between the hazardous transmission environment and the
skilful use of modulation techniques and electronic hard­
ware. Many associated problems have successfully been
solved by the traditional methods of experience and
intuitive understanding, but it has always been clear that
better judgements could be made and more realistic pre­
dictions of performance constructed if readily usable
analytical techniques were available to the communication
system designer. General analytical solutions are only
available for the simplest of cases however, because of
the general difficulties of the communication environment.
Communication theory relates signalling speed, bandwidth
and noise, which assumes well-behaved but non-realisable
channel frequency characteristics; and the extension of
these principles to real life is left to intuition. Non­
linear circuit elements such as blankers and chippers,
leave a certain amount of vagueness in receiver calculations,
particularly when allied with a variety of modulation
styles. Communication filters are generally of high order,

typically fifth or greater, which, if several are included
in one analysis, lead to complicated equations. Filter
characteristics are consequently chosen for the convenience
of their analytical description, rather than their suita­
bility for the job in hand, and although optimum filters
are capable of being designed for specific applications,
it is difficult to predict how the filter will behave
when conditions have altered from those assumed for the
optimisation.

1.1.2 Areas of problems in communication systems^

The areas of problems in communication systems are wide
and ever increasing, but for the present discussion
purposes, the following main areas of problems are defined
as the major communication problems.

(a) Stochastic: long averaging times, or large ensembles
involved, eg phase jitter and digit synchronisation
studies, frequency stability studies.

(b) Signal analysis problems: long averaging times, long
records, eg probability distribution generation,
correlation function estimation, power and energy
density spectra: P(f) and E(f) etc, for real signals,
eg speech.

(c) Interactive or real time problems: long data record
involved, eg optimisation studies, of filter band­
width .

(d) Deterministic problems: short computation times

involved, eg transient studies such as "speed of
lock" of a phase-lock receiver, distortion tests

1.2 SIMULATION

1.2.1 System Studies

Analytical expertise in communication systems is both
desirable and difficult to acquire. The alternative to
exact analysis is to assemble the proposed system and
investigate its behaviour experimentally; such investi­
gations have been carried out since the science of
electronics began. While providing some of the answers,
this approach is expensive and also leaves many unsatisfied
queries. What is really happening inside that mixer circuit?
How would the system behave with slightly different filters?
How sensitive is the system to circuit parameter changes?
Computer simulation of communication may be the solution
to these queries. But before introducing that, a brief
introduction to the system simulation in general.

1 21.2.2 System Simulation

The need for the simulation of a system may arise in
several ways. An analyticalsolution or approximation solu­
tion to a problem may have been found and some form of
corroboration be required. In some cases this is most
easily obtained from a hardware model, but with more
complex systems, computer simulation may be a more attractive

proposition from the points of view of time, accuracy
and economy. In computer simulation parameters can be
modified, variables monitored, curve fitting and regression
analysis performed, and statistics of the system perform­
ance obtained.

A simulation may range from a pure numerical calculation
from analytical results, to partial simulation where
some parts of the system are modelled analytically and the
rest simulated, to a full simulation in which every ele­
ment in the system is modelled and simulated. In the
interests of efficiency it is usually desirable to
describe as many parts of the system as possible by
analytical expressions.

A simulation may be run serially in time, where the
response at each instant of time is computed recursively
from the state of the system and the inputs at that time.
Alternatively, it may be possible to compute the overall
time response in parallel, usually by transform techniques.
The parallel simulation can be faster, but is difficult to
implement if there are feedback paths in the system and
may require a large amount of storage to simultaneously
store the values of variables at every instant of time.

The use of digital computers for the simulation of analogue
system is a wide field, and over recent years a large amount
of literature has been published. The literature concerning
simulation systems tends to fall into several main areas^ :

(*) Discrete simulation: concerning discrete change
simulation; eg queueing problem.

(*) Simulation designed around a particular
problem: eg FFT package.

(*) Continuous (analogue) simulation methods:
the importance of these methods is in their
historical development, their organisation and
the structure of their basic elements.

(*) Existing methods for the simulation of
communication system: these are standard
packages, see later.

1,2.3 Communication system simulation

Simulation of communication system modules can take place
either in terms of frequency or time domain. The
difference between the two lies in the manner in which
filters are described. A frequency-domain simulator
specifies filters in terms of their frequency response,
thus enabling ideal filters to be included. In a time-
domain simulation, filters would be described through
difference equations operating on a succession of signal
time-samples. Both techniques suffer from the usual
troubles introduced by signal sampling, limited frequency
range and aliasing, but their time domain performance
differs widely. The input to each transformation in the
frequency-domain simulation is N time samples and the
corresponding frequency scale has only N discrete points.
The time scale is unlimited in the case of the time-domain

simulation, and the frequency scale is continuous up to
the sampling frequency.

Communication system simulation can be classified into two
types :

(a) Special-purpose, in which the simulation is specific
to a particular problem: most simulation for
laboratory and research work falls within this type.
The engineer, who will write the special-purpose
simulation, must be a skilled programmer and
sufficiently familiar with the mechanics of simula­
tion to describe adequately his problem in terms
which allow accurate simulation.

(b) General-purpose: digital simulation allows a general
approach to be made, where the programming effort
is applied initially to construct in software a set
of processing modules and some kind of data structure,
which allows them to be strung together and signals
and effective measuring instruments applied. Some
familiarity with the basic concepts of programming
will inevitably be required (although the tendency
is to minimise them as much as possible), and also an
understanding of the principles of the particular
simulator. This type of simulation, the general
purpose, will be adopted thereafter.

To simulate a given communication system, the block
diagram of the system is constructed using processing

modules (eg amplifiers, filters etc , ie having different
fundamental functions); and then a certain form of
connection of the blocks in the diagram is written in
terms of the functions of the blocks and certain para­
meters. If the block diagram and the expression of
these connections are fed as the source program into the
simulation, then the complier in the simulation system
generates the program written in the computer language,
say Fortran IV, for the simulation of the given system.
1.3 THESIS
1.3.1 Designing a new simulator, ICOSS

There are a large number of communication system simulation
packages based on one technique or the other to perform a
particular task or tackle one or more areas of communica­
tion system problems. A large number of papers and litera­
ture cover this subject as will be shown in the next
chapter. However, communication system simulation does
not stop at any particular boundary, but it progresses
and becomes more and more ambitious. With the intro­
duction of fast microprocessor and minicomputer systems,
a new approach to communication system simulation is
therefore needed in order to achieve the most ambitious
requirements. A time domain simulator: the Interactive
Communication System Simulator (ICOSS) is to be designed
with this background in mind. Its main objectives are:

being able to change the simulated model control para­
meters while in the running mode, being able to edit its
module structure (block diagram), be portable, and operate

interactively for real-time simulation. Also to provide
the communication engineer with a bench tool which will
prove vital in research and development laboratories.

In the pursuit of designing a nev7 communication system
simulator, the following procedure is followed in this
thesis. A survey of communication system simulators is
made in order to present the current state of the subject.
They are then classified into a number of areas according
to their principle of operation, type of problem they are
capable of solving, and system set-up (ie computer capa­
bility and supporting equipment available). A summary of
the objectives in the design of the new simulator are
formulated, which must satisfy the ambitious requirements
of a typical user as much as possible. A number of options
are available to implement those objectives: choice of
programming language, generality of application, domain
(frequency or time) etc. Finally, once the new simulator
is implemented, its credibility is examined by testing its
functions in solving the type of problems it is designed
for.

1.3.2 Outlook and modifications

The intention of this work is not only to design and imple­
ment a new digital communication system simulator of
unique characteristics, but to lay the foundation for simu­
lation system with wider applications as outlined earlier.
However, the inherent problem of real time simulation in

which fast processing is essential, can be overcome by
either large or fast computer system, or alternatively
processing parts of the simulation by fast dedicated
processing working in conjunction with the mini or medium
size computer. Although the objectives of the prototype
version of ICOSS are achieved, the overall and final
version of ICOSS system, running in real-time were not
fully implemented, because of either the limitation of
time or facilities. Therefore, there is still further
work to be done, which will be outlined in Chapter 6,

1.3.3 Application

The credibility of any new simulator is measured by its
fulfillment of the objectives laid in the design, as well
as its power in solving the type of problems it is
designed for. Since one of the main features of time-
domain simulators is the ability to simulate communica­
tion systems containing feedback links, phase-lock loop
performance and the problems associated with it are an
ideal testing case, which will be fully utilised.

10

CHAPTER 2

SIMULATION TECHNIQUES AND SIMULATORS

2.1 INTRODUCTION

2.1.1 Historical Background

Simulation is the building of a model of a device or
(38)system . Models are useful in that they provide a

means of testing ideas and designs without the complica­
tion or expense of building a prototype system; and
modelling is widely accepted in engineering. In some
fields the models are physical devices, such as small
scale versions of the actual system. When a system can
be defined mathematically, modelling can proceed from a
conceptual view point and the model need not be practi­
cally realisable. Such is the type of simulation that
can be used for communication or signal processing systems

Computer simulation of systems in general is a wide
subject, each case influenced by the limits of computer
capability and particular problem at hand, and there are
numerous articles and books on the subject .
Limiting the discussion to communication (or signal
processing) system simulations, there are a number of
approaches, depending on:

* Refs 9-12, 15,16,21,24-26,29,30,35,38,40,41,48

11

(*) The simulated system itself and the degree of
accuracy required of the simulator, as well as
the degree of similarity with the actual system.

(*) The computer at hand and its capabilities
(memory size, execution time etc).

(*) The degree of generality required by the
simulator, ie will the simulator be used in a
different environment or will it only be used
for one particular problem.

(*) Continuous time or discrete time systems.

Historically, signal processing system (SPS) simulations
3 8started with analogue computers , in which the system

is modelled by differential equations, in which integrators,
adders etc make up the system, and the problems can be
solved quite easily many times over, using simple config­
urations . There are big advantages in analogue computer
simulations, mainly:

(*) Fast speed of action, since there is only hard­
ware involved, and the results are obtained
immediately.

(*) Simple technique in solving certain difficult
problems.

(*) Easily used by engineers.

However, there are disadvantages as well, mainly:

(*) Difficult to set up for large problems.

12

(*) Variables must be scaled.
(*) Non-linear operations: such as multipliers,

function generators are possible but have
limited dynamic range.

(*) Only continuous time system, whose theoretical
analysis is based on the solution of differen­
tial equations, can be simulated by this
method; ie discrete time systems cannot be
simulated.

(*) Limited in order of system, by number of
integrators.

With progress toward developing digital computers, the
analogue computers started to lose their predominance
in the field of SPS simulation. Although the digital
computer is flexible and capable of being programmed for
many problems, such as solving discrete-time systems,
whose analysis is based on difference equations (see
later), yet the execution time is increased considerably
as compared with analogue computer simulation , vis
100:1 ratio.

In order to overcome the time limit, hybrid computers were
introduced in to combine the two types (analogue/digital)
and obtain the advantages of both. With the simulation
techniques of communication systems becoming more and
more ambitious, the hybrid computers have been replaced
by "Giant" computers , but the latter solution has
proved to be rather expensive for the vast majority of

13

application^.^ The ultimate solution, with real-time on­
line system simulations in mind, is to combine a digital
computer of a medium size, with mini-computer network
with storage and interfacing operated separately. In the
coming sections a development to that end is described.

2.1.2 Simulation Techniques

In order to simulate a system, one must have a clear
understanding of the overall content of the communication
system itself, as well as what is required from the simu­
lation. In signal processing system simulation, the
system can be looked at as a group of sections and sub­
sections interlinked together. These can be summarised
briefly as follows, for the example system shown in
Fig 2.1.1:

(a) Signal processing modules (M): eg signal generators,
filters etc.
To simulate those modules, the following parameters
have to be determined.
(i) Module internal and external coefficients,

ie local and global (see Chapter 3).
(ii) Inputs/outputs node relationship of the

module.

14

(b) The state variable of the system. ,
(c) The running mode (procedure).
(d) Output signal measurements and evaluations.

The common denominator in practically all simulators is
to present the signal processing system as near to the
physical system as possible, and then utilising it in
situation which would be impractical or difficult in the
real system. The emphasis, therefore, is how simple the
simulator appears to the user, in terms of familiarity to
him as a bench tool, rather than learning how the simula­
tor has been constructed. This is in contrast to the
earlier work of signal processing system simulation

The simulation of the above signal processing system
can take any of the following forms depending on the
application and tests required; these are summarised as:

1. Frequency domain based simulation.
2. Time domain based simulation.
3. On-line operation.
4. Off-line operation.

Looking through the development of signal processing
(*)system simulators , which are mainly based on block

diagram simulation (see below), one can see clearly the
trend moving from being heavily dependent on programming
technique, with specialist approach on the off-line basis,
to that which is closer to the real physical situation,

* Refs 11,16,21,26,29,30,35,41,46

15

the on-line working basis; especially with the introduc­
tion of high speed computers.

2.1.3 The Block Diagram Technique

There are numerous simulators basing their analysis on the
so-called block diagram technique(*). It is so called
because the simulation is based on the ordinary block
diagram representation of a system. For this reason,
this technique is most suited to the simulation of
communication systems, and shall be adopted for the
present work. The main feature of this technique and
method of implementation is briefly introduced at this
stage, and a more rigorous examination will be given in
later sections. The communication system is completely
defined as cascaded blocks or units representing the
signal processing modules (MO, Ml, etc Fig 2.1.1), with
the necessary interconnections for the feedback or cross­
over paths. Hence when simulating such a simple system,
the following items have to be treated:
(a) The signal processing modules MO, Ml etc: The transfer

function of each module must be clearly defined, and
a subroutine is created in the usual way.

(b) The Local control parameters of those modules, such
as the cut-off frequency of a digital filter, or
the gain of an amplifier etc.

(c) Input/output nodes of each module (multiple levels).
(d) The inter-link between the modules (input/output

(+)nodes connections), which may take number of forms

* Refs 10,11,16,21,25,26,35,46
+ Refs 11,16,35,41

16

They have to be uniquely defined; but once adopted
they have to be precisely followed.

(e) The "global" control parameters, ie the parameters
which control more than one module, such as a
sampling frequency of a digital communication
simulation.

(f) The type of output device which evaluates the signal
at any node within the system, such as the measure­
ment of a mean value of a signal etc.

There are three distinct stages which constitute the
simulating procedure of this block diagram technique,
they are:

1. The construction stage: in which the communication
system is defined and its parameters are supplied to the
simulator. This is implemented in various ways depending
on the designer(*). However, it should be implemented In
as simple a way as possible for the reason is that the
user may have limited or no programming knowledge or

15,35experience at all • . Appendix A shows some samples of
implementation of a number of important simulators.
During this stage also a number of tables, strings and
stacks are generated in order to set the simulator for
the following stage.

2. The running stage: in which the incoming signal is
processed through the system in orderly manner. This
requires efficient storage arrangement of various parameters

* Refs 11,16,35

17

needed for signal processing as well as searching pro­
cedure with minimum elapsed time.

3. The output stage: in which the output signal at any
node of interest is examined in order to evaluate the
behaviour of the simulated communication system.

2.1.4 In this Chapter

The signal processing system techniques are discussed in
more detail and presented as the subject developed his­
torically. The limitation and misgiving of the various
techniques mentioned will be discussed, giving the lead
to a new approach, which will be called ICOSS, the
Intensive Communication System Simulator. The latter
will be introduced only briefly, since it will be fully
described in Chapter 3.

2.2 IMPLEMENTATION: USER SIDE:

One of the big problems in communication system simulations
is how to present the simulated system in simple terms
recognisable by a user with limited or no programming
experience. Various approaches were made to overcome
this problem, which can be found in literature(*). These
can be grouped according to application, machines and
period of implementations. However there are two main
ways of presenting the simulated communication system to

* Refs 11,16,21,26,35,46

18

the signal processing simulators; they are:

(a) The block diagram method : which is commonly used
and most suited for digital computer simulators.

(b) The differential equations method: which is imple­
mented for analogue (operational)computer
oriented simulators. ____ _

In the following, a brief description of both methods and
their limitations as implemented by well-known simulators
is given, and the ideal solution is forecast. Typical
examples are presented in Appendix A.

2.2.1 Typical communication system

The object is to translate the representation of the
typical communication system shown in Fig 2.2.1 to a set
of computer instructions. The translation depends
mainly on the type of simulation and computer in use. The
discussion will be restricted to two types only, the
analogue computer, and the digital computer, since any
other type will be the combination of the two.

19

The digital-microcomputer network will be mentioned in
later chapters.

(a) The analogue computer oriented simulators: The
differential equation method.
The procedure is summarised as follows:

(i) The complete system is defined as a set of
differential equations, and their elements
(integrators, delay, adders etc), ie the
conversion is from block diagram of the
system to differential equations.

(ii) The simulation is implemented by an orderly
connection of these elements.

Generally, a patching panel is needed for the
analogue computer, which can be programmed in the
case of hybrid computer.

(b) The digital computers oriented simulators: The
block diagram method.
Historically BLODI^^ was one of the early simulators
in which BLODI program accepts input program written
in BLODI language. The latter corresponds closely
to an engineer's block diagram of a circuit. The
input code consists essentially of designating the
connectivity of a number of boxes drawn from an
alphabet of about 30 types.

20

The object program produced by BLODI consists of 3 parts

(i) the prefix which sets up the logic for the
main loop

(ii) the main loop, which is executed once for
each sample processed

(iii) the suffix, which causes the main loop to be
repeated the proper number of times, empties
output buffers, fills input buffers etc.

Example: for system shown in Figure 2.2.2

line 1 : SUM ADR BUFF
line 2 : BUFF FLT a^,a^... parameters of

filters, DELAY
line 3 : DELAY DEL ___
etc

21In later years the BLODI was modified to become BLODIB.
The language of the latter is designed for programming
sample-data system which may be represented either in
block diagram form OR in the mathematical representation

21

of the Z-transform calculus. Therefore, although it is
basically for sample-data system, it may be used for
sample-data approximation to continuous (analogue)
systems. The procedure in simulating a system is
summarised as follows:

(i) the determination of an appropriate discrete
representation for the system to be studied

(ii) the preparation and compilation of a BLODIB
computer program which causes the computer to
perform the same operations as would be
performed by the actual system

(iii) the digitalisation of a real speech signal for
processing by the computer.

There are 3 ways of representing the system

(i) by MACROS or SUPER: defines new type of block
(for basic type available)

(ii) by SSUBR: which allows block of BLODIB coding
to be used as an external "module" to a main
BLODIB. But SSUBR are coded and compiled
separately; then loaded for use by the main
program.

(iii) by SUBR, which permits coding an entire simu­
lation so that it can be controlled by a main
or "executive" program.

Example:

inputs Control Parameters
ADB MACRO 11,12,13,14 Al,A0,Bl,B2
IN MIP 1,DEF

END

Another type of presentation was made by another group
11of simulators, and WASP is a typical example. In

this a fixed structure is established for the analysis
of waveforms and spectra in the communication systems
and then building on this framework a library of
electronic or electromechanical modules of the type
needed for the specific application. The procedure for
WASP simulation is as follows:

(i) Draw communication system as block diagram
(each block must be one of the library modules)

(ii) Number each node and decide on the node for the
output device connection

(iii) Input data

23

X
u
03
g
03
U

U
0

4-»
C
03

O
U

\

>1
u
03
P
rQ
•H
1— 1 1 1

G 1 1
•H 1 j

Ü3
U
03 ». M
Q) CN c 03
Pu -P 1
P4 03 03 03
03 p—1 t-4 g 1

:3 03
4-1 T3 U r
•H 0 0 03

g g (Il 1
W
03

03
g ».
03
P

03
iH 1
0 1— 4 r— 1 CN
TJ 1
0 03 03 03
g 1-4 1 1— 4 r—1

p 3̂
1 'd

0 0 0
g 1

1

g g

G
Q)

r—I

TJOe

T 3 w
• H 03 4-»

P 1—4
4-) • H P
d d CD
a c 03

4-) 03 P
d P
0 P

T 5 03 0
03 03 U
en 4-J • H X 03
0 œ > a i“H
Xi 03 03 03

- P d p 03
c t > U

», 03 4-> • H
u X d c r H
03 P u 0 CL
Xi 0 4 J
g 4 J d 0) 03
3 0 r—1
a d 4 J 0-4

03 • H • H
03 P 0 -P — '

r 4 • H
d 03 • #

T5 - c r a 03
0 03 > i 1—4

g P 4-) ■P
• H

X >H £h

\

(U1—4■P
• H

eur-4ae03XM

rg X

24

Finally, yet another approach which is relevant to this
discussion, is the one made by SYSTID . The latter is
a time domain simulator which relies on cards for the
data input and each group of cards represents a communica­
tion system. Its language processor translates the simple
English language user command supplied on cards, and links
element descriptions and topology into the Fortran code
necessary to establish a digital filter equivalent of each
link. The data structure of this system is as shown in
Fig 2.2.3.

Example : A model which squares a signal

MODE 1 0 Example
INPUT 0 ^ * 0 0 OUTPUT
INPUT 0 SIN (0) 0 NODE 1
END 0

25

2.2.2 Limitations

There are many ways of simulating communication systems
other than the ones mentioned above, but they all have
some limitation. Some of these limitations are summarised
below:

(i) Batch operated rather than interactive, so that
data representing the communication system block
diagram is supplied to the computer separately
for each run.

(ii) Modification of system structure once supplied
to the simulator is difficult to achieve

(iii) Variation of signal processing modules parameters
is not direct, if at all

(iv) The simulated system is not clearly related to the
original communication system block diagram. Hence
the user is not able to look upon the simulator as
another bench tool identical to the simulated
communication system.

2.2.3 Projection

In order to achieve as near an ideal solution of this
problem as possible, the following must be fulfilled:

(i) Overcome the limitation of (2.2.2) above
(ii) Establish a peripheral device on which the

simulated communication system is drawn on it
directly, and the user could modify the system

26

readily ontheperipheral device. This will
eliminate completely the difficulty of trans­
forming the electrical block diagram onto the
set rules of the simulator.

It is hoped that ICOSS will fulfil these conditions when
it is finally completed.

2.3 IMPLEMENTATION: COMPUTER SIDE

In the design of an efficient general purpose signal
processing simulator, the designer has to aim for the
following essential targets:

(*) Efficient utilisation of computer memory,
speed of execution (cycle time), and
computer facilities.

(*) Efficient programming without ambiguity and
with minimum redundancy of occupied memory.

(*) Program the simulator to make it portable.
(*) Program routines to represent a complete set

of general SPS modules.

Thence, in the design of SPS simulator on a digital
computer, the following detailed points must be carefully
considered:

1. Structured programming: in which the various sub-

27

routines which make up the simulator are inter­
connected without nesting and the overall program
of the simulator can be modified by adding or
taking away subroutines with minimum complication.

2. The use of simulation languages: presenting a
simulator to a user in a language easy to understand,
means creating a new computer "language". Since
there exist nowadays communication system simulation
language such as WASP^^ and CSSL^ , then it will be
beneficial to utilise such languages, if they are
general enough.

3. The choice of a program language: since there are
a number of computer languages such as Fortran, Algol,
etc, then the choice must be made for a suitable
language, eg for engineering application Fortran IV
is most suitable and provides portability. It might
be desirable to use assembler language or machine
code in some part of the simulator program, in which
time is of prime importance (see Chapter 5).

4. Signal processing modules transfer functions: must
represent a fundamental set, enabling all common
communication systems to be simulated.

5. Output devices can take many forms :one form is to have
a real hardware peripheral or oscilloscope in the
case of real-time operation. Or the output device
can be simulated, which is the case in the majority
of situations; eg RMS meter etc.

6. Library construction: for signal processing modules,
data base (parameters, state variables, pointers etc).

28

Efficient arrangement is of vital importance in order
to utilise the limited computer memory economically.
In the course of running the simulator, there will
be samples, pointers, state variables, links etc
which have to be stored in stacks and there will be
a relationship between the contents of one stack
with another, which will be consulted during the
process of execution. Therefore an efficient method
in either space, or speed, ie access time depending
on the simulation whether real time, stochastic or
off-line simulation, must be devised.

7. Search procedure of tables (library): Serial or
39Hash techniques depending on the situation, has to

be efficient, since choosing the right technique means
minimising the execution time, which is of vital
importance in the on-line and stochastic simulation,
in which large averaging times or large ensembles
are involved such as fading problems (error rates
studies) multi-channel interference problems (see
later) .

8. Storage of samples : at some stage within the execu­
tion, it will be found necessary to store block of
samples of the signal at any node of the system so
as to process it further at a later time, internally
or externally.

9. Memory allocations(real and image): it is always
beneficial to plan and utilise computer memory
capacity according to the simulator need (program,
tables etc).

29

10. Efficient processing (arithmetic and logic): one of
the chief functions of a digital computer is to per­
form arithmetic operation upon numbers and series of
numbers can represent the instantaneous amplitude of
a signal. Therefore, if the correct arithmetic op­
erations are used, sequences of numbers could be con­
verted into other sequences, in such a way that the
overall operation models some element in a communica­
tions systems. Such is the basis of simulation by

3 8digital computer . Therefore, the computer arith­
metic capability is an important factor when consi­
dering the design of a simulator. This is more
apparent for the on-line real time simulation case
where the time saving is of vital importance, eg

If one instruction takes 1 m second then
for 1000 instructions would take 1 second,
giving a- sampling frequency = IHz which is
highly unacceptable.

It is preferred to have a high speed arithmetic unit
in conjunction with computer system to solve this
problem.

11. Multiprocessing attempts: Since communication simu­
lation sometimes involves multiple processing and
since time saving is an important factor in simulation
then it is desirable to multiprocessing simulation
but with additional problems in organisation. This
can be achieved by software or hardware or both.
The latter point will be elaborated in later Chapters.

12. Cross-reference of samples (nodes): as signal samples
are flowing within the simulator passing through

30

multiple input/output nodes, it is essential that at
multiple inputs, each sample has the same time
registration. Otherwise the simulation is invalid.
Special care must be taken regarding this problem.

14. Real-time simulation: this type of simulation has
a number of criteria, namely:

(a) Real-time clock: this is preferably an external
clock, which can be varied depending on the
sampling frequency. Its accuracy therefore has
a major factor on the running of the simulation.

(b) Analogue/Digital and Digital/Analogue converters
the number of levels and digits in either direc­
tion, ie quantisation error, will influence the
accuracy of the simulation. Therefore, it must
be taken into account and made as small as
possible. Wide dynamic lange logarithmic-
converters may be needed.

15. Continuous signal as represented by a digital system:
the correspondence between the digital model and the
continuous system depends on:

(a) Satisfying the sampling theorem
(b) Correctly relating the z-transform of digital

filter structures to the frequency response
of the continuous prototype.

31

2.4 FREQUENCY DOMAIN SIMULATION

2.4.1 Introduction

Ever since the development of computer procedure for
performing the Fast Fourier Transform (FFT), the
communication engineer has been provided with a simple
method of achieving frequency domain processing (wave
filtering) without the need to acquire skills in the

9technique of digital filtering . Most communication
simulators today are based on this type of domain and

(*)are well covered by the literature

2.4.2 Principle of Operation

This type of simulation is based on processing a block
of signal samples at a time. When filtering is required,
these samples will be transformed to the frequency
domain by applying the Discrete Fourier Transform (DFT)
to this block of samples, then transforming to time
domain by applying Inverse Discrete Fourier Transform (IDFT)
for further non-linear processing. The number of samples
in a block must be large enough to give a good resolution.
However if there is a very long signal record to be pro-
cessed,the n successive sets of blocks are processed inde­
pendently, and the processed blocks are joined up together
so as to produce the continuation of signal record as
before. However, this joining up process is complicated
by the fact that this filtering performs a circular con-

4 9volution instead of an aperiodic one , so that a

* Refs 11,35,41

32

certain proportion of each segment must be discarded.

2.4.3 Execution procedure

(a) Obtain the filter response from either a pole-zero
description, or a numerical description of a
measured response curve.

(b) Take N points of input signals.
(c) Transform into the frequency domain using DFT.
(d) Multiply each sample (point) by the corresponding

filter response.
(e) Transform resulting spectrum back to time domain

using IDFT for further processing.

2.4.4 System Analysis

A prototype system containing the basic elements of a
communication system, ie a filter, nonlinear module and a
linear module. Fig 2.4.4(a), has a corresponding structure
for frequency domain simulation, as shown in Fig 2.4.4(b).
The signal analysis (signal calculations at nodes con­
cerned), for an input signal X(t) having a bandwidth w Hz
is as follows:

* At node (1): analogue to digital conversion

tx(t) = Z x(nT) sine (— - n) (1)

where T = the sampling frequency.

33

There is a major restriction which must be observed:

T << ^ where B is the highest frequency component of
the input signal (= w in this case). This is

g
the limitation imposed by the sampling theorem ,
so that folding back into the fundamental band,
thus disturbing the representation, does not
take place, also to overcome aliasing (or over­
lap or high frequency impersonation ̂).

* At node (2): Conversion to frequency domain

The conversion is performed using discrete fourier transform
(DFT):

N-1
X(K6) = i S x(nT) exp - j

n=0

K = 0,1,2,----,N-1

* At node (3): Filtering action

The filter coefficients are either stored (storing N points),
or generated (N points), using the zeros and poles of the
filter. The output signal Y(K6) is determined by multi­
plying signal component by the filter spectrum

Y(KÔ) = H(K6) . X(K0)

34

* At node (4): Conversion back to time domain

The conversion is performed using the inverse discrete
fourier transform (IDFT)

N-1 r, „
y, (nT) = Z Y(K6) exp j — ^ —

K=0

n = 0,1,2,....,N-1

* At node (5); Time-invariant non-linear module

y^ (nT) = g(y^(n^T))

* At node (6): Time-invariant linear module

y^ (nT) = z(nT),y2 (nT)

This is a simple multiplication.

2.4.5 Characteristics

(a) Systems with feedback links cannot be handled since
data is processed by the FFT in segments.

(b) Slow, hence it cannot be used for stochastic simula­
tion, unless hardware FFT machine is employed.

(c) Resolution is limited by fixed number of points
(samples).

(d) Easier to handle complex signals than time domain

35

based simulators.
(e) Any type of computer can be utilised, but as an

off-line oriented simulator.

2.4.6 Utilisation

Wide range of problems are being solved using this
technique and could be found in literature, and some

11 41languages have been developed such as WASP , MODSIM
and SIGSIM^^

2.4.7 Scaling

For time scale of signal block consisting of N samples
at spacing of T seconds, and frequency scale of signal
block consisting of N samples at spacing of 6 frequency,
then NT5 = 1
Thus, for a given number of points T « y (reciprocal
relationship).
But frequency scale is limited to ~ the sampling frequency

’■..X ■ è ■ ¥

2.5 TIME DOMAIN SIMULATION

2.5.1 Basic principles and execution procedure

The conversion from time to frequency domain for the
purpose of filtering signal samples becomes unnecessary

36

in time domain simulation, because the filter itself is
simulated. This is done by correctly relating the z-
transform of digital filter structure to the frequency

9response of the continuous prototype , and using the
difference equation version of the filter response.
However, digital filter cannot model the corresponding
analogue filter in both impulse and frequency response,
but it is possible to make the correspondence close with

49careful design . There is no limitation to the
number of points and for this reason it is suitable for
on-line real-time working simulation. It is possible
to simulate systems with feedback links. However, state
variables of the system have to be clearly defined.

2.5.2 System state variables

The state variables of a discrete-time system are the
minimum set of variables which define the overall state
of any system (linear or non-linear) at instant of

9time . They are useful for the following reasons:

(*) It may be necessary to examine the behaviour
of all relevant signals in a system.

(*) The need for a more general system description
to treat multiple inputs and outputs .

(*) The need for a more compact system description
in the study of complex systems.

(*) Often in the study of systems, only a general
(qualitative) description of system behaviour
is required.

37

The general mathematical formulation of the state
variables concept is as follows : -

Assume a system, whose outputs represented by (y) and
inputs by u, is defined by

y(k) + b^ y(k-l) + ... 4- b^ y(k-n) = a^ u(k) (1)
for K ^ 0

Defining the state variables as: x^(K) , i = 1,2,...,n
thus: x^(k) = y(k-n)

Xgfk) = y(k-n+l)

Hence by substitution;
Xn(k) = y(k-l)
x^ (k+1) = x^(k)
x^(k+1) = x^(k)

X , (k+1) = X (k) n— 1 n
and x^(k) = y(k) = a^ u(k) - b x (k) ... -bqx (k)n o n i i n

This equation is represented by block diagram shown in
Fig 2.5.1.
Hence, using vectors [x(k+l)] = [^][x(k)] + [b] . u(k) (2)
where:

[x(k)] =

(k) 0 1 0 0 0

x^ (k) 0 0 1 0 0

• , [a] = , [b] = •
0 0 0 1

X (k) —b —b . —b. an n n-1 1 o

NOTE

A system is linear if and only if superposition and
homogeneity hold^^: ie

a x^(t) + 3 X2 (t) a y^(t) + 3 Y2 "̂̂^

In general for y{t) = HQx(t)] ,
a system is linear if and only if H is a linear
transformation: ie

H[a x^(t) + 3 X2 (t)] = a H[x^(t^+ 3 K.[x2 (t)]

38

The output in terms of state variables:

y(k) = [c] . [x(k)] + [d] u(k) (3)

where [c] = -bj and [d] = a_

Rewriting in state variable representation:

The general equations for linear and non-linear systems

[x (k+1)] = [a] . [x (k)] + [h]. u (k)
y(k) = [C] . [x(k)] + [d], u(k)

The above formulations can be utilised in the simulation
of digital filters, eg a second-order Butterworth low-
pass digital filter with a cut-off frequency = 0.3249
rad/sec, has a transfer function given by ^ :

H(z"^) = 0.0676 { + z
1 - 1.142 z"^ + 0.412 z~2

Applying difference equation method

y(k) = x(k) + 2 x(k-l) + x(k-2) + 1.142 y(k-l) - 0.412 y(k-2)

This is represented by a block diagram. Fig 2.5.2.

Using the above formulation for state variables:

39

^1 (k) = y (k-■2)

^2 (k) = y (k-■1)
0̂ 1 (k) = X (k-■2)

^2 (k) = X (k-•1)

) for section (a) of Fig 2.5.2

) for section (b) of Fig 2.5.2
)

Using equation (1), for section (a) of the filter;
the state variables

[v(k+D] = [a] . [v(k)] + [b] . u(k)

(k) 0 1
where [v(k)] =

^2 ̂ [A] = 1.142 -0.412

state variables [w] [b]

Using equation (3), the output y(k) in term of state
variables for section (a) of the filter is:

y(k) = [c] [v(k)] + [d] . u(k)

where [c] = ri.l42 -0 .412] , [d] = I

Repeating calculations for section (b) of the filter and
by inspection:

State variables:

[w(k+1)] = [a] [w(k)] + [b] , x(k)

[w (k)) =
w. (k) 0 0 11 [a] = / [B] =w^ (k) 0 1 0

40

The output in terms of state variables:

u(k) = [c] , [w(k)] + [d] . x(k)

[c] = [2 l] , [d] = 1

Solution of the general equations (1) and (2)

If the vector x(k^) for some k^ is known, then x(k)
can be computed, and hence the output y (k), for any k > k^
in terms of the input sequence u(k^), u (k^+1),...,u(k).
Thus the vector x satisfies the definition for the state
of a system. This n-dimensional vector is equivalent to
the (n) initial conditions needed to solve the difference
equation (1) in terms of input u. Accordingly the
following definitions are obtained:

X state vector of the system

A state or system matrix: nxn matrix which
relate the state at index k+1 to the state at k

Therefore there are two areas to consider when applying
the above formulations to the problems of time domain,
communication system simulation:

(i) Modules containing delay elements, such as
filters, differentiators etc.

(ii) The multiple input/output modules, with
feedback links,

41

These two items will be discussed in detail in Chapter 3,
as part of the construction and running procedures of
a simulated communication system, in the newly designed
simulator ICOSS.

2.5.3 Characteristics

1. More suitable for stochastic simulation than frequency
domain simulation.

2. On-line real time working is possible.
3. Settling time is long, unless time scaling is

introduced, see later.
4. Non-linear system elements response are treated in

an accurate straightforward way.

2.5.4 General comments

Time domain simulation was classically applied to analogue
computations for control systems. With the introduction
of fast digital computers economic considerations favour
the digital computer simulation opposed to analogue
simulation . Comparison between analogue and digital
computers is as follows:

Analogue computers

(a) Significant set-up and check-out time for initialisation.
(b) Additional time for modification of original situation.
(c) Extremely low unit run cost, even for wide bandwidth

systems.

I
(d) Degradation of electronic elements may create

large solution errors.

Digital computers

(a) Assuming program developed and debugged, then
(i) Minimum set-up time and very limited

initial checking.
(ii) Negligible additional time for parameters

and topological variations.
(b) High hourly cost.

2.5.5 Execution Time

Assuming a digital filter made up of n second order
segments. Fig 2.5.3, in which the transfer function

20of one segment h^ is given by

-1 -2 1 + a. Z - ^ + b . Z
— ^- Z 2 l + c . Z + d . Z 1 1

giving a difference equation

y^(k) = x^(k) + a^ x^(k-l) + b^ x^(k-2) - c^ y^(k-l) - d^ y^(k-2)

^out ^o ^n

43

Defining an operation as one multiply/add action, then
there are 4 operations (second order segment,) . For n
segments filter the total number of operations = 4«n+l
(the 1 for the constant a^ of the final result).
However, additional time is required for the state
variable manipulations as mentioned earlier (2.5.2).

2.6 R.F. SIGNAL SIMULATION

In the digital simulation of continuous RF signals, the
problem is in having a modulating signal as a small ratio
to the carrier. The carrier which contains no useful
information will predominate the sampling rate at the

49expense of the useful modulating signal. One method of
simulating RF signal is by decomposing the RF signal to:

(a) Useful modulating signal at baseband: m(t).
(b) Carrier.

For RF signal: x^^t) = m(t) cos w^/t) (1)

Therefore the simulation will concentrate only on m(t),
and the sampling frequency will be as ratio to the

44

carrier frequency.

For various types of modulations,the modulating signal
is given by

(i) DSBSC m(t) = x(t))
) (2)

(ii) DSB-AM m(t) = 1 + a x(t))
(iii) Phase modulation m(t) = 1 exp jx(t)
(iv) Frequency modulation m(t) = 1 exp j { J x(t) dt})

)
(v) SSB m(t) = x(t) + jx(t))

where x is the Hilbert transform of x(t).

Equations (2) can be rewritten as 2 conjugate parts:

x^(t) = -J {m(t) exp jw^t + m (t) exp(-jw^t) (3)

Equation (3) is used when the negative and positive
frequency regions, resulting from the presence of small
angle modulation, is to be included in the simulation.
If this angle modulation is discarded, then only ampli­
tude is modulated and the resulting spectrum is symmetri­
cal about the centre and equations (2) are used.

In some frequency domain simulations , the spectrum of
RF signals are deduced from the series expansion:

a N
S (t) = -IT COS Ü) t + I {a, cos (to +k(o) t + b, sin(w tkw)t} 2 c k~0 C O K C O

c
+ -Tr- COS w t2 c

45

N
+ Z {c, cos(o) -kw) t + d, sin(o) -kw)t} k=0 k c o k c o

where angular carrier frequency
^k'^k coefficients of the k^^ upper sideband
Cĵ ,dĵ " " " " lower sideband

2.7 OFF-LINE WORKING

2.7.1 Principle of Operation

The idea behind the off-line operation is to run the
simulation independently of time. Both frequency domain
simulation and time domain simulation can be performed
in this way, but with every module of the system simulated
or made independent of time. The latter point especially
applied to a real signal stored on a magnetic tape or
disc and run in scale time.

2.7.2 Characteristics

(a) All computers of any size or type can be utilised,
regardless to speed or language. The only limitation
is the size of the computer memory.

(b) Both frequency and time domain simulation can be
performed.

(c) Simulation strategy easily implemented.
(d) The real signal must be simulated unless specially

treated as explained earlier.

46

2.8 ON-LINE WORKING

2.8.1 Principle of Operation

The analogue input signal is converted to a digital
signal by the A/D converter. Fig 2.8.1, ready for
processing by the time domain simulator. The
resulting digital signal is converted back to analogue
signal by the D/A converter, whereas the digital signal
could be obtained directly from the simulator if so
desired. However, the seemingly easy procedure has a
number of limitations and problems which must be carefully
treated for good simulation. These are summarised as
follows :

(a) The time allowed for processing an incoming signal
sample by the simulator is the sampling time T^
seconds where T^ = l/f^, f^ being the sampling
period.

gFrom the definition of sampling theorem , the
sampling frequency must not be less than 2 x highest
frequency component of the incoming analogue signal.

(b) The limitation introduced in (a) for the processing
time means that only computers with fast computa­
tional capability will be suitable for this type
of simulation, unless a different computer strategy
is adopted.

(c) A computer system with high speed arithmetic unit,
together with minicomputer or microprocessor

47

controlled peripherals will overcome the time
limitation economically, as will be discussed in
a later chapter.

(d) Scaling already mentioned earlier, is essential
and on-line simulation is only possible at base­
band.

(e) The accuracy in the analysis depends, amongst
other things, on the word length (number of bits)
of the incoming signal samples produced by the A/D
converter. Therefore there is inherent error due
to the conversion action, and an acceptable error
is allowed and taken into consideration in the
simulation process.

2.8.2 Characteristics

(a) Output signal may be seen on an oscilloscope
directly during the running mode.

(b) Other real-time systems can be used in conjunction
with the original system, eg

(c) Off-line working is possible.

48

2.9 LIMITATIONS AND OBJECTIVES

Having presented the general layout and various aspects
of communication system simulation, it will be beneficial
to list the limitations in the subject in order to
present the objectives in the design of a signal pro­
cessing system simulator.

2.9.1 Limitations

These can be divided into 2 groups as follows:

(a) Simulation facilities:
(i) Real-time operations are limited to a few

(*)simulators in environments having fairly
large and expensive computers.

(ii) Stochastic simulations are not readily
available.

(iii) Each simulator has its own simulation
language.

(iv) The construction stage of the simulation
involves procedures which must be made familiar
to the user before a simulation is attempted.

(v) A pre-constructed system cannot readily be
loaded into the simulator.

(vi) Running mode facilities are limited to the
execution of a predetermined set of measure­
ments . No change of control parameters of
the simulated system are possible.

Refs 14,15,47

49

(vii) No editing is possible, ie adding or deleting
modules to or from an already existing system,
as well as adding or deleting display routines
(RMS, Mean value etc) during the running mode,

(viii) Running large simulations or multiple-run
applications are limited by computer power.

(x) Portability of simulators is limited, ie it is
difficult to use a simulator on more than one
computer system.

(b) Computer power or system available: this limits
the type of simulation problems which could
economically be solved, such as:
(i) Real-time or stochastic simulation. Fast

processing is necessary, hence a hybrid computer
or multiprocessing computer system is needed,

(ii) Most communication simulations can be per­
formed off-line in relatively slow machines,
hence digital computer (serial processing) can
be used.

2.9.2 Objectives

When designing a new communication system simulator, the
following objectives must be met:

(a) Utilise all the points mentioned in (2.2) and (2.3)
earlier.

(b) Transform the simulator into another research bench

50

tool, in which the user through the computer console
can perform the following:
(i) During the construction mode:
* Loading the system block diagram interactively

into the simulator, with the simulator taking
the load and the user responding. The target
is to have a peripheral unit on which the
user draws the system block diagram directly,
hence reducing the simulation language problem.

* The user should be able to add or delete modules
to the already loaded block diagram without
starting the simulation again. This facility
will make the simulator similar to the
equivalent "hardware” circuit, where the hard­
ware modules are added or removed readily.

* The user should be able to load a preconstructed
block diagram stored on a disc or tape to an
already constructed block diagram in the simula­
tor, and by some minor editing the final block
diagram is produced. This facility will save
valuable computer time and eliminate construc­
tion errors.

(ii) During running mode:
* In the same style, ie making the simulation as

near to the actual physical situation as possi­
ble, the user should be able to change
parameters of modules while the system is in
the RUN mode, ie during signal processing. The
new parameter value could be supplied through.

51

eg a buffer, and the parameter modification
is performed during the signal processing
cycle. This has the advantage of testing the
behaviour of the simulated system by varying
its module control parameters without pre-set
changes.

* The user should be able to vary the global con­
trol parameters, ie a parameter which is used
by more than one module such as sampling
frequency, while the signal is processed.
Again the system behaviour is tested readily.

* Display routine (RMS, FFT, etc) calculations
should be made during the running mode, ie
concurrently with the signal processing, and
the result displayed at any instant of time
the user wishes. The combination of this
point together with the other two points make
possible the behaviour of a system which is
completely under the user control as well as
being near to physical reality.

(c) On-line real time/off-line working must be possible
in a practical and economical way.

(d) Capable of handling stochastic simulation.
(e) Designed on a modular form, in which routines are

added or removed, or processed by another processing
unit (minicomputer chip)with minimum difficulty.

(f) The simulator package to be made portable.
(g) The simulation language is made as general and easy

to understand as possible.

52

2.10 ICOSS

The objectives outlined in (2,9.2) for the design of
a communication system simulator were used as a guide
for the implementation of a new signal processing system
simulator to be called ICOSS: "Interactive communication
System Simulator", whose principle of operation is based
on having complex interrupts controlled by the sampling
rate. Each interrupt represents a function within the
simulator, eg signal processing, construction, etc. The
main features of ICOSS are summarised as follows:

(a) It is time domain based simulator oriented mainly
on real-time on-line simulation, but off-line
simulations are possible. Systems with feedback
links can be simulated. However, the real time
on-line process can be scaled (simulated) in
order to operate ICOSS, off-line, for the same
purpose. It is therefore possible to test ICOSS
operation without the necessary equipments for
actual real-time on-line operation.

(b) It makes use of all the points mentioned in sections
(2.2) and (2.3).

(c) The objectives a-d, g of (2.9.2) are implemented
and arrangements are made for the implementation
of e and f .

(d) It can make use of microprocessor controlled
modules in which some parts of the simulator, eg
filter or display routines, or any other interrupt

53

of the simulator system, are brought outside the
main computer and operated on in parallel, reducing
execution time.

In Chapter 3, the complete design will be fully explained.

2.11 SUMMARY

In this chapter a survey was made in the use and design
of signal processing system (SPS) simulations. The main
theme was to present the various aspects of SPS simula­
tion. Those aspects included: the listing and description
of the requirements of both user-side and computer-side
for the design of a new SPS simulator, the limitation of
existing SPS simulations, and the main objectives which
have to be met for the design of a new simulator. Those
discussions were made in order also to state precisely
what would be required for the design of a new time
domain real (scaled) time oriented simulator, called
ICOSS. The main features of ICOSS were listed, and in
the following chapter 3 this new approach to SPS simula­
tion and the complete description of it will be made.

54

M s

M3M2M1

Rq. 211 Simple 5P Stjst'gm

CPU
CP12

CPlmi

M 2

CP21
CP22

II

GPzmz

/v\n

Where : M .‘ Signal Processing Modules.
CP : Module Conrnol Paramet’er

Addihonoi Fqchors :
^ Measuremenh Poramelur (or Graphicol Ou^pu)̂.
* Global Conhrol Parameher

Fig.ZZI Typical Communicahon Sust^em

55

Ffg.ZZZ Simple System ĵ or B L 06 I SimuloMon

#

/ Le;ff Expression Right" Node Top Field

Node Field Field A % ialiary

Field (Achon) (Ouhpuh) Output" (o r)

(Input") Inpuf ID Hie Unih

Fig. 223 SMStid Dofo Shruchurc

56

X(t)o H(f) 9(y) j (t)

(Û)

X (k) O——o
X(KS)

O —0 ©
Y(ttS) y,(nT){ 1 yjOin

©

DFT aOFT
(b)

Fia. 2.44 Proto^Mpe Syshcm Conhammo Basic El&mant's
Com m unicqhon Suafam.

57

© ©
Unih 1 Unih

Deloq y(K-Z)
J Unit-

~~i Dcloij y(K-n)

- ^ y (K)

Rq. 2 51 Block Dioqram Rcorcscnhah’cti of a Oiscrcfc TimiSqsfcm-"-y— ' J' '

I Q

Shahs, Variables (W)

Co)

•4U 1-H2

Shaft Variables (v)

Fig 252 Block Diagram Rcprtscnfafion o f fh t Difference Enuafion

o f Q Stcond Order BufrcrworHi Low-Pass Diaifal F ilfe r.

58

Fig. 253 A Digital FMF&r o f n Sccond-ordar Sc.Qweni's

0 /P

Sof h Ware

OscilloscopeProcess

RC

Fig. 281 On Lire Working Susi~em.

59

CHAPTER 3

INTERACTIVE COMMUNICATION SYSTEM SIMULATOR ICOSS

3.1 INTRODUCTION

In the previous chapter, the general layout and various
aspects of communication system simulation were given.
Also the limitations in the subject of simulation, as
well as the objectives in the design of a communication
system simulator were given. These objectives and other
relevant points already mentioned have been utilised in
the design of the new simulator ICOSS, whose main features
are summarised again as follows:

(*) Time domain real (or scaled) time on-line/
off-line operated system capable of handling
stochastic simulation.

(*) Time independent mode of ICOSS: includes
interactive block diagram construction,
system editing (adding or deleting modules),
etc.

(*) Time dependent mode of ICOSS: includes change
of module parameters, output routine calculations
etc.

(*) Software transportable where possible.
(*) Hardware microprocessor controlled units may

replace part of ICOSS in order to improve the

60

time dependent operation, leading to faster
execution time and better on-line operation.

ICOSS is basically a multiprocess software package, designed
for signal processing in real (or scaled) time. The multi­
processing operation is a combination of complex interrupts
within the system, controlled by a real-time clock
(sampling rate), as well as the priority of the interrupts.
The ICOSS system does not only treat the signal processing
problem interactively, it also provides the user, who
requires limited or no computer programming knowledge, with
the ability to access the system interactively and set up
his communication system by means of a high level language
on the terminal. The language chosen is Fortran IV for
reasons of familiarity and usefulness in engineering and
scientific applications, as well as its universality.

The ICOSS structure is made up of three groups of interrupts.
Fig 3.1.1, namely:

(a) The Teletype group of interrupts: for the time
independent actions such as block diagram construc­
tions, editing etc.

(b) The Loop group of interrupts: for the time dependent
actions in which signal processing takes place.

(c) The Flag groip of interrupts: again for the time
dependent actions in which output routine calculation
(RMS, MEAN,FFT, etc) takes place.

The computer terminal allows the user to input lines of

61

data and use these lines for correction (editing) and
changes. The system is made to generate enough messages
to direct the user when constructing his system, and
hence minimise errors. Once the system is set and becomes
ready to run, a number of commands are made available in
order to control the running of the system. New control
parameters can be entered through a buffer on the terminal,
and then during the running cycle the change takes place
of the particular signal processing module's control
parameter, without interfering with the actual running of
the system itself, as shown in Fig 3.1.2. The user can
then observe the effect of the changes at any node within
the system (the system state can be accessed at any time).
Adding a signal processing module or deleting one can
also be done after changing to pausing mode, as another
teletype interrupt. However, the output routines (RMS,
MEAN, etc) are performed as priority interrupts within the
running mode of the system, each routine representing an
interrupt in its own and any result can be accessed at
once (after becoming ready), by forcing a teletype
interrupt command. The complexity of the problem and the
diverse requirements that are expected from it, raise a
number of points and problems in the design of ICOSS;

(a) Structured programming has to be adopted
(b) The various parameters and links (pointers) have

to be stored and accessed efficiently.
(c) The storage of signal values and their subsequent

manipulation has to be performed independently of
various interrupts.

62

(d) The system state variables have to be handled carefully
for the overall system in order to maintain the
correct signal relationships at various nodes,
especially for feedback paths.

(e) The various signal processing modules have to
execute at high speed.

The points raised in 2.2 and 2.3 as well as 2.9.2 of the
last chapter were carefully utilised.

Development of ICOSS structure contained a library of
modules sufficient for phase lock loop (PLL) type of
problems. The reasons for this choice are the facts
that it contains a feedback link, basic signal processing
modules, and because the application problems which will
be discussed in Chapter 5 , are based on phase lock loop.

3.2 PROGRAM STRUCTURE

The complexity in the design of ICOSS makes the adoption
of structured programming^^ absolutely necessary,
avoiding any "nesting" in the program. The software
module within ICOSS has to be easily defineable and
replaceable, ie ICOSS structure is based on a modular
form system, each separate function of ICOSS is represented
by a distinct software module. Each software module has
only one entry point and one exit point and control is
transferred from one software module to the next without
any ambiguity. Program debugging, addition or deletion

63

of a subroutine within ICOSS can be performed with notice­
able ease; see appendix 6. , However, adopting this
technique requires careful distinction between the program
branches, and accurate classification of subroutines, thus
increasing the time spent in building up the system
initially.

The basic structure of ICOSS consists of three groups of
complex interrupts, as has been mentioned earlier. These
interrupts are divided into two categories:

(a) Time dependent interrupts.
(b) Time independent interrupts.

This division, which is more clearly defined in Fig 3.2.1, is
due to the type of operation each individual interrupt has
to perform, and the way ICOSS operates in general. The
principle of ICOSS operation is as follows:

(i) With a (RUN) command from the teletype, the
time dependent operations will be initiated by
triggering the "real" time clock. During the
clocking period T^^,

where T„^ = 3^ and f > sampling frequency,
CL

(Fig 3.2.2),
time dependent interrupts start to execute
according to their order of priority, with the
LOOP group of interrupts having the highest
priority, and always in a ready situation as

64

soon as the system block diagram has been
correctly constructed.

(ii) The time allocation within T^^ is so arranged
that all the interrupts are catered for,
(see Section 3.3).

(iii) A teletype command for a teletype group of
interrupts will pause the system, and the time
independent operation will override it.

The system software structure which is constructed in
software blocks as mentioned earlier, are arranged so
that the program execution is performed in a closed loop
fashion. Fig 3.2.3, in which the controlling program (ICOSSl)
rotates round a loop in the RUN mode of the system as follows

LOOP TTYFG FLAG ^ LOOP etc

The highest priority group will interrupt this rotation,
and the highest priority interrupt within the group is
indicated by a vector. If time allows, the next level of
priority interrupt is captured as soon as the first
priority is serviced, and so on. The priority decisions
are predetermined with regard to most interrupts, but
some of the output routines (RMS, MEAN, etc) of the FLAG
group of interrupts can be adjusted and made to give the
facility to the user, ie the user labels the various flag
interrupts himself.

The various operations mentioned above will be fully des­
cribed during the course of discussion.

65

3.3 TIME ALLOCATIONS

The time allocation problem is mainly concerned with the
time-dependent operations of ICOSS. Therefore, the time-
independent operations of ICOSS may be allowed as much
time as necessary for their operations, but remembering
that when the time-independent interrupts are in action,
they are in fact using valuable computer time, and must
be minimised as much as possible.

Looking closely into the time allocation within ICOSS
operations, ie during the sampling period T^ (Fig 3.3.1.),
there are two regions within this period:

(*) At : which is devoted to the execution of theLi
LOOP group of interrupts

(*) Ag : which is devoted to other time-dependent
interrupts execution.

These two are related to the sampling period by:

Ts = + Tq (1)

But Tg is related to the highest components of the input
g

signal by the relations

where f^^^ : highest frequency component of the input
"analogue" signal to the analogue/digital
converter - Fig 3.3.2

66

Therefore, must be made as small as possible, for
higher input signal frequency. But there are restrictions
as will be shown below:

(a) The LOOP time T

The LOOP interrupt execution time T , will have a fixed
period within a run, depending on the size of the simulated
communication system at hand, and the time it takes to
execute a signal sample within the LOOP. It is obvious
that in the absence of other time-dependent interrupts, T^
will become equal to Tg, and this is the limiting time
(minimum) within the system.

Limiting time: T^ = Tg (3

(b) The other time-dependent interrupts time T^j

The time needed for the execution of other interrupts,
including interrupts manipulations, is variable and com­
pletely dependent on the problem at hand. The starting
of this period (T^) is triggered at the end of the LOOP
interrupts execution time (T̂)̂ and ended by the clock
trigger.

Since those interrupts occur randomly, and may take any
number at any one time, and each may take unknown length
of time, then it is decided to spread it over a length of
time, such as:

67

m
T = Z E T (4)

i=l 1 ^

where m : number of interrupts waiting execution at one
time.

n^: number of time segments needed for one interrupt.

As mentioned above Tg has to be made as small as possible
But is fixed for any particular problem. Therefore,
the only variable is T and must be optimised.r

To optimise T^, the following constraints have to be
considered:

(i) must be utilised as much as possible
(Fig 3.3.3).

(ii) n^ must be made as small as possible, ie
interrupts must be processed in as short a
time as possible.

(iii) Tg T^

Therefore a compromise solution must be reached. However,
since this problem is unique and its solution depends
entirely on the user, ie the user only can decide between
obtaining quick result vs low sampling rate and vice-
versa. Since Tg is variable and can be adjusted by the
real-time clock - an external device for real-time opera­
tion, and which is under the user’s command, then it is
left for the user to decide on the sampling rate in order
to achieve the best solution.

68

3.4 FLOW-CHART

The previous sections have indicated the pattern by which
ICOSS would be implemented. Figure 3.4.1 shows the overall
flow-chart of the system. The interaction between the
groups of interrupts within the system is outlined in a
simple form.

3.5 COMPLEMENTARY ITEMS

Before discussing the ICOSS operations in detail, there
are a number of complementary items essential to these
operations and it will make discussion simpler and clearer
if they are explained first.

3.5.1 The signal processing modules input-output node
arrangements

3.5.1.1 General notes

(*) Only those modules which have special mathe­
matical transfer functions are included in the
discussions, they do not include the output
display routines, eg RMS, MEAN values etc not
the auxiliary modules, eg branching.

69

(*) Signal processing modules may have unlimited
numbers of inputs and outputs.

(*) The modules node numbering is performed auto­
matically by the simulator, and presented to the
user so that it can be referred to at a later
stage.

(*) Any loose node must be short circuited.
(*) Signal value at each node within the system is

stored temporarily (ie kept for one sampling
period) and can be accessed by the user.

(*) In the simulated system construction mode,
consecutive signal processing modules are auto­
matically joined together with one signal link,
unless otherwise specified.

3.5.1.2 Node numbering

A signal processing module (k) within a communication sys­
tem, with multiple input nodes and multiple output nodes.
Fig 3.5.1, has its nodes numbered as follows:

”ik = ^o(k-l) + ^o(k-l) - 1 input nodes

N^^ = N^^ + A f o r output nodes

where is the number of (multiple) inputs to
module k

A^^ is the number of (multiple) outputs from
module k.

70

3.5.1.3 Signal value storage

The signal at each individual node is stored temporarily
(one pass - within a sampling period), in a special stack
(X), Fig 3.5.2. This double array stack stores the signal
value together with the node condition, at any particular
node. The condition is used for the system state purposes
as will be described later (3.5.4). It is clear that the
signal at any node within the system can easily be accessed
at any time by simply indicating the node number. There­
fore, during the RUN mode the signals are accessed using
the node numbers as pointers, and modified as they are
processed during the sampling period.

3.5.1.4 Example

To demonstrate the above terminology, consider the hypothe­
tical communication system shown in Fig 3.5.3. The simula­
tor automatically assigns node numbers in sequence, with
the aid of A. and A of each module, which are oarameters 1 o
characteristic of the modules themselves.

3.5.1.5 Implementation

(*) A^ and A^ are fixed for the particular signal
processing module and permanently stored in
(SPMNOD); they will be used only during the
construction stage, when determining N^^ and N^^

(*) Once the inputs/outputs of a signal processing

71

module within a communication system are deter­
mined, the pointers and are stored in
their position in a special stack to be called
the system matrix (SM) as will be explained
later (3.5.3).

3.5.2 The control parameters CPs and GCPs

3.5.2.1 Definitions, characteristics and general points

(a) There are two types of control parameters:

(i) The global control parameters GCPs:These are the
parameters which are shared by more than one signal
processing module, and their values are substituted
automatically when they are needed. Eg sampling
frequency f^, as used by oscillators, filters etc.

(ii) Local control parameters LCPs: These are exclusive
to their signal processing modules. They have to
be supplied by the user when constructing the
system. It is clear, that changing a LCP will have
an effect only on the signal processing module
concerned.
Example: A simple phase lock loop

(*) Block Diagram: as shown in Fig 3.5.4
(*) Signal processing modules and their control

parameters

72
Module Local Control Parameters QCP

1 SIGN FI, Al, Bl, G1 FS
2 PHSD AAl
3 FILT FC FS
4 GAIN AA2
5 VCO FO, F INC
6 SIGN F2, A2, B2, G2 FS

{*) The above notations will be elaborated in later
discussions.

(b) Most control parameters are used as supplied by the
user, but some have to be modified in "secondary"
control parameters. Therefore, the classes of LCPs
are:

(i) Primary control parameters
(ii) Secondary control parameters

(c) Cases will arise where some secondary control para­
meters will be generated internally and will be used
by the simulator only, as will be indicated later.

(d) The simulation will be using the secondary control
parameters, whereas the user will specify the more
familiar value of control parameter, ie the primary
control parameter. Eg low pass filter has a primary
control parameter f^ (cut off frequency), but this is
converted to the secondary control parameters
(A = j-— ,) ^ -To-0 (see later) J To retrieve the

73

primary control parameters, the backward conversion:
f^ = (-~) tan ̂ is made, where is the
sampling frequency. It should be possible therefore
for the simulator and the user to access both para­
meters without complication or difficulty.

(e) One of the main features of ICOSS, is the ability to
interrupt the running action, and change LCPs and
GCPs interactively. This will prove extremely
useful in the running of the system and its beha­
viour when changing certain parameters.

3.5.2.2 Procedure for control parameters management

(*) User supply GCPs
(*) Simulator performs:

(+) Store GCPs
(+) Utilise GCPs in the appropriate modules

(*) Simulator specifies number of control parameters
(CPs) of a particular module

(*) User supplies Control Parameters
(*) Simulator performs:

(+) Check for secondary CPs and if necessary
converts primary to secondary

(+) Stores CPs (secondary)
(+) Relates position of CPs in their stack,

with the rest of the communication system
structure for later signal processing

(*) Provision is made for accessing both primary
and secondary CPs.

74

3.5.2.3 Storage arrangements

(a) Fixed data: Two types of fixed data are permanently
stored; these are:

(i) The number of local control parameters related
to the particular signal processor module

(ii) The signal processor module number, whose
control parameters require conversion to secon­
dary parameters.

These arrangements have to be decided upon carefully
when building up ICOSS library of modules, making
sure that the parameters are enough for efficient and
flexible operation as well- as removing all unnecessary
calculations at the execution stage. By employing the
conversion technique, the execution time of the loop
is minimised which in turn gives more time for the
other interrupts of the system.

(b) Variable data: These have been divided into two areas

(i) The local control parameters actually used by the
signal processing modules, ie for the modules
where conversion to secondary parameters are
required, only the secondary parameters are
stored.

(ii) The global control parameters.

75

The separation was necessary in order to make the
process in changing either parameter, if so required,
simple to achieve.

3.5.3 The System Matrix SM

The simulated communication system structure as defined by
the user, cannot be used directly by the simulator and
therefore it must be transformed to a "working structure".
This working structure is a 1:1 transformation, and the
first step towards the actual signal processing procedure.
The process of signal processing is further controlled by
the system state constraints as will be explained later
(3.5.4). A matrix, to be called system matrix SM, is used
to represent the working structure of simulated communica­
tion system. It is a 7xN matrix, where N is the number of
modules in the simulated communication system. Fig (3.5.5)
Each row of the matrix represents a module (R^, i = 1,..N)
The numbering (l^N) is as specified by the user. The
content of each cell in the columns of the matrix
(C^, k = 1,..7) is in fact a pointer devoted to a special
job within the module,(Fig 3.6.3). Therefore these sets
of pointers in each row describe completely the function
of the particular module. Choosing pointer rather than
storing actual values of module parameters, is due to the
fact that the simulator has to deal with a communication
system which may be varied in number of modules, or in
control parameters of modules, while the system still
running, as mentioned earlier. Also the complication of

76

the inter-relationship of various stacks, tables and links
involved within the system makes it impossible not to induce
errors during signal processing. A typical example which
shows the complication involved is shown in Fig 3.6.3.

To summarise the various actions of the contents of each
cell in the system matrix, the table shown in Fig 3.5.6
shows the three groups of modules which are used for the
present work, namely: the signal processing modules, the
output display routines and the auxiliary modules. Any
function needed for the communication system must fall
under one of these groups.

3.5.4 Loop directives

3.5.4.1 General notes

The building up of the system matrix SM for a communication
system was sequenced according to the block diagram as
defined by the user. But when processing a signal in a
system which contains feedback links, the later structuring
of SM will induce errors in the process if used without modi­
fications, due to the possibility of not having the correct
signal relationship in the multiple input modules. In
order to have the right relationships of input signals into
the multiple input modules, the SM must be restructured in
such a way that the sequence of signal processing within
the modules does not induce errors and must follow the
system state constraints. Therefore there are two cases
to consider:

77

(a) The maintenance of the original SM in order to
present to the user the original structure which
can be edited or varied as before in its familiar
form.

(b) The internal restructuring of the SM in order to
comply with the system state constraints.

These two conflicting requirements for SM are overcome
by the introduction of the so-called "loop directives".
But before discussing the mechanism of loop directives a
brief look at the system state is necessary.

3.5.4.2 System state

Consider the simple system with a single feedback link
shown in Fig 3.5.7. If it is assumed that all delays
within the system are confined in the signal processing
modules themselves, ie and P^, then the time relation­
ships will be as shown in the Figure:

y(k) = u(k) + x(k) for k = 1,2,...=

Therefore during the signal processing there are two types
of modules to consider:

(a) single input type modules, which have to be processed
first, but with condition that states modules having
higher priority.

(b) Multiple input type modules, in which all input signals

78

have to be ready, ie all with present state situation,
before output is produced,

3.5.4.3 Loop directive - implementation

(a) Method:

(i) System matrix SM remains unchanged
(ii) An array to be called the loop directive array

(LDR) is constructed by storing the sequence of
module processing of the simulated communication
system. This is deduced in the following way:

(*) Assign (1.0) for condition ready present
state to the nodes (inputs or outputs) of
all the state modules, such as filters,
differentiators etc, or to any other node
which the user recognises as independent in
its function.

(*) Scan SM from top to bottom and test for the
condition of signal values at the module
inputs, thus if
x(I^,2) = 0.0 means module is not ready for

processing yet, proceed to
next line of SM

x(I^,2) = 1.0 check next input of module
(if any), if all input node
conditions equal one, then
module is ready for inclusion

79

in the signal processing.
Proceed to perform:

X(I ,2) = 1,0 where I is number of all o o
outputs of the module (I).
Store the module number in
LDR and increase by one.

Then proceed to the next line of SM .
(*) Repeat until all modules are included.
(*) Once LDR is constructed, the signal value

conditions are returned to "not ready"
state, except for the independent modules
and user's special nodes as defined above.

(iii) Every time editing to the simulated communication
system is made, then LDR is reconstructed as in
(ii) .

(b) Example:

Consider the hypothetical system shown in Fig 3.5.8a.
It is self-evident that there are a number of ways in
which the signal can be processed, leading to different
results at the output (o/p). Applying the concept
described in (a), LDR is constructed in the way
shown in Fig 3.5.8b, to contain

I 1 2 3 4 5 6 7 8 9 10 11
LDR (I) 1 2 7 8 9 11 3 4 10 5 6
Notice that I = N, the number of modules in the system.

80

3.6 THE LOOP GROUP OF INTERRUPTS

The construction of the system matrix SM and loop
directive LDR in the way explained in the previous
section, is performed as one of the teletype interrupts as
will be described later (3.7). But once it is ready then
simulator becomes set for triggering by the "real time"
clock (RTC) as mentioned earlier(3.2). With the loop
group of interrupts having the highest priority, they are
executed in full. Each line of SM is considered as
another internal interrupt to be dealt with in a sequence
defined by the loop directive LDR , as illustrated by
the state diagram of Fig 3.6.1. Any samples needed for
output display routines are stored meanwhile in a specially
allocated storage area (SAMSTO). Once the exact number of
samples are accumulated for a particular display routine,
another (5x3) auxiliary matrix to be called the flag matrix
(FLM) is constructed. Each row of this matrix (FL24) will
store a number of parameters necessary for the operation of
the flag interrupt devoted to the execution of the particular
output display routine as shown in Fig 3.6.2. The content
of these cells will be erased as soon as the output display
routine is executed in the flag interrupt as will be ex­
plained later.

It can be seen from Fig 3.6.1,that both auxiliary modules
and output display routine modules are treated as indepen­
dent interrupts. The first treats the situations such as
branching and switching etc, and the second treats the
sampling access and storage of samples etc, for the

81

output display routines.

As an illustration to the substitution needed for the
execution of one loop interrupt representing a signal
processing module (P^) of a system, is shown in Fig 3.6.3
with all the stacks, matrices necessary for the operation.
In Appendix E , a brief introduction to the various
modules, parameters, tables, and stacks connected with the
loop group of interrupts as used in the present prototype
of ICOSS.

3.7 THE TELETYPE GROUP OF INTERRUPTS TTYFG

The teletype group of interrupts are mainly concerned with:

(a) Inputting data specifically relating to the construc­
tion of the signal processing system, ie building up
the data structure of the system (either block by
block or as a complete list), as well as editing an
existing data structure.

(b) Varying the system's control parameters (local or
global).

(c) Controlling the running of the simulation and the
process in general.

(d) Looking at the output at any stage, graphs prints etc

In the following sub-sections, only those interrupts which
are included in the TTYFG group of interrupts at the
present work are discussed. However, additional TTYFG

82

interrupts can be made with great ease, see Appendix G.

3.7.1 Construction CONS

The construction mode of TTYFG group of interrupts puts
the simulator at stand-still, and is actuated by the
command CONS to the teletype command request. In this
mode the system matrix SM representing the communication
system block diagram, as specified in section (3.5), is
constructed. The END command will terminate the construc­
tion of the system matrix SM, but will set the simulator
to accept more data in connection with intial conditions
and levelling. Once these additional data are supplied,
the simulator starts to construct the loop directive
array LDR for the system, and at the end of which this
mode of operation, ie CONS interrupt, comes to an end, and
ICOSS becomes ready for a new mode of operation. To demon­
strate this mode of operation. Fig 3.7.1 shows a simple
system together with its interactive dialogue. More
examples will be shown during the course of discussion.

Subsequent internal actions

The main target is to construct both SM and LDR for the
system. However the approach may differ depending on the
three distinctive types of modules already mentioned in
earlier section (3.5), namely, the signal processing
modules, the output display routines, and the auxiliary
modules. With the entry of each module, the simulator

83

consults the modules library for its classification, and
the procedure that follows depends on this classification.
The intensified flow diagram in Fig 3,7,2 shows the method
of SM construction for the system.

3.7.2 Editing EDIT

General points:

(*) Editing is only possible for already established
systems.

(*) Two types of editings are possible; they are
(i) Insertion of new modules

(ii) Deletion of an established module
(*) LDR is updated at the end of every editing

session and just before ICOSS becomes ready
for a new mode of operation.

Insertion:

In order to insert an element in an already established
system, the system matrix SM has to be modified by
inserting a line of pointers at the appropriate position,
having the exact relationship with the existing pointers
in the matrix, as well as modifying some of the values of
pointers in the lines preceding and following the inserted
line. The algorithm used to fulfil the above objective
can be summarised as follows:

84

(i) Check ICOSS modules library for existence (of
the type) of the new module in ICOSS, and its
position in the library if it exists. An
error message is printed on the terminal if
element does not exist.

(ii) Consult control parameters library (LCPLIB) for
the number of control parameters required by the
new module.

(iii) Consult input/output node library (SPMNOD) for
input/output node relationship of the new
module.

(iv) Call subroutine (CPMAN) for the manipulation of
the local control parameters, ie if they need
conversion to secondary control parameters or
generation of new parameters, as well as storing
these parameters in the control parameters store
(LCPSTO) and noting their position in it.

(v) Call subroutine (MODIF) for the re-adjustment of
the node relationship of the system. Since the
numbering is done in blocks, then the modifica­
tion in multi-input/output modules is performed
in blocks as well. The introduction of the new
module will make necessary the modification of
the preceding and following input/output node
pointers of most modules of the system.

(vi) Construct the new line in SM in a similar way
to CONS discussed earlier.

(vii) Make a shift in SM at the appropriate position,
enough to insert the new constructed line.

85

(viii) Up date the loop directive array LDR

The dialogue for this type of operation is shown in Fig
3.7.3 for a typical example.

Deletion;

Deletion of an existing module is simpler to implement
than the insertion described above, but not greatly
different. The line representing the module which is to
be deleted in the system matrix SM is erased and
modifications to the pointers of the preceding and following
lines are also made. The gap caused by the deletion of the
line in the system matrix SM is then closed. The algorithm
used is summarised as follows:

(i) Define block number to be deleted.
(ii) Call subroutine (MODIF) for updating and

modification of input/output nodes of remaining
modules.

(iii) Erase the line representing the deleted module
in SM ie SM(I,n)= 0 for n = 1,2,...7

(iv) Call subroutine (SHIFT) for closing the gap
caused by the deletion of the line.

(v) Update the loop directive array LDR.

A dialogue for this type of operation is shown in Fig 3.7.4
for a typical example.

86

3.7.3 Changing control parameters (.Local) CHCP

During the running of the system, it may be found necessary
to vary the control parameters of some of the modules in
order to investigate their effect on the behaviour of the
system. There are two stages to perform this facility.

Stage one: receiving the new values of the control
parameters and their element number from
"the buffer" zone.

Stage two: inserting their secondary control parameters
into CP stack in the appropriate locations.

This section is only concerned with stage one; stage two
will be discussed in the next section (3.8). The
procedure of implementing this facility is summarised as
follows :

(a) The user specifies the block number and the new control
parameters values, and stores them in the buffer zone
ready for execution.

(b) At the first opportunity the CHCP interrupt takes
place (CHCP priority is next to loop's interrupt
priority) and those values are transferred into a
special storage area (CPISTO), ready for the next stage

3.7.4 Changing global control parameters CHGC

In response to CHGC teletype command the simulator comes

87

to a standstill, and the user specifies the global para­
meter number and its new value. The subsequent internal
actions are as follows:

Search SM for modules whose LCPs required conversion
from primary to secondary parameters. This is done by
checking with (SPCSCP) which contains module type numbers
requiring conversion to secondary parameters. Every module
in SM involved in conversion process is operated on its
LCPs in the following way:

(i) Backward conversion to primary LCPs using the
old GCP.

(ii) Forward conversion to secondary LCPs using the
new GCP.

(iii) Update LCPs in the (LCPSTO) stack.

A typical dialogue for this interrupt is shown in Fig 3.7.5.

3.7.5 Running an already established system ENTR

The long procedure in constructing a simulated communication
system,as described in section (3.7.1) earlier, can be
avoided if the same system is to be run again. The con­
structed system or any other standard system can be stored
outside the computer memory in a magnetic disc or tape, etc
and then "entered" into ICOSS in bulk in response to the
command of ENTR. Any modification to the system is then
done utilising the EDIT facility of the teletype interrupts.

The data format is similar to that used in CONS interrupt
mentioned earlier. Compare with the MACRO facility which

21is employed in BLODIB , in which one single command
generates a complete module (s) of the system.

3.7.6 Stopping (pausing) a running system

The command STOP is a teletype interrupt flag which brings
ICOSS system to a complete halt. The user will then have
to choose the options:

(i) Access the final results of any output display
routines, if they are ready.

(ii) Continue running the system.
(iii) Logout.

Once the results, or sample values of the various output
display routines are accessed and printed out according
to the user requirement, they will be erased from their
storage area. In the case of logging out, a flag (ISTOP),
is generated which signals the system to come to a complete
stop at the main program. The continue state will only
make the system wait for the clock for another loop inter­
rupt.

A typical dialogue of this type of interrupt is shown
in Fig 3.7.6.

89

3.7.7 Block diagram display CMST

The final structure of the simulated communication system,
ie its equivalent block diagram, can be displayed eg
printed on the teletype terminal, using a teletype inter­
rupt CMST. If specifying some controlling parameters,
a part or all of the system structure is displayed. Inter­
nally, the pointers in the system matrix SM are substi­
tuted by their absolute values, and printed out in their
final form.

Some typical response for this type of interrupt is shown
in Fig 3.7.7.

3.7.8 Graph-plotting management routine PLTM

Presenting a graph plot may take a number of forms
depending on the problem and the user, as well as the
graph plotting peripheral in the computer network. In
response to PLTM command, a pause takes place in the
simulation and the user under the direction of the
simulator, gives directions as to the X axis and Y axis
forms.as well as the number of graphs, number of points/
graph etc, as shown in Fig 3.7.8. '

3.7.9 Graph-plotting routine PLTG

In response to a teletype command PLTG, the accummulated
signal values and the plot control parameters as speci­
fied by the user in PLTM interrupt, are fed into the

90

graph plotting peripheral. As soon as the curves are
plotted, the signal samples are erased from the store
giving way for new signal samples. This type of plotting
arrangement, an off-line procedure, is most suitable
for the present set-up. The on-line graph plotting, ie
plotting samples as soon as they become available on a
screen of a VDU, can be implemented readily. This
point will be elaborated in Chapter 6.

3.7.10 Initialisation routine interrupt INXM

In communication system problems, the situation may arise
in which it becomes necessary to initialise the system,
especially when multiple transient responses are needed
for different signal processing modules control para­
meters. This interrupt will set the system state varia­
bles, the temporary signal sample storage to zeroes.

3.8 THE FLAG GROUP OF INTERRUPTS

In this group of interrupts, the output display routines
(calculations), as well as the insertion of the new secon­
dary control parameters of signal processing modules in
their appropriate storage locations, are performed in
segments as mentioned earlier (3.2). The same principle
employed with the other groups is applied to this group
of interrupts, as shown in the state diagram. Fig 3.8.1.
The flag interrupts are triggered by a global flag (IFLAG),
generated either by the loop group of interrupts in which

91

case it indicates that the right number of points (signal
samples) has been accummulated in (SAMSTO) ready for exe­
cution by the output display routine concerned, or by the
TTYFG interrupt CHCP in which case it indicates that a
change of parameters need to be made in one of the modules
of the signal processing system. The value of IFLAG indi­
cates the number of interrupts at one time. There are
four situations to consider.

(i) One flag interrupt for one job.
(ii) More than one interrupt for one type of job.

(iii) A flag interrupt is engaged processing one job.
and another call for a flag interrupt for a
job of lower priority takes place.

(iv) A flag interrupt is engaged processing one job
and another call for a flag interrupt for a job
of higher priority takes place.

The procedure for treating the above situations and flag
group of interrupts in general, is summarised in Fig 3.8.2
Further, a brief description of a number of output display
routines (as flag interruts) is found in Appendix C.

3.9 DEVELOPMENTS AND FURTHER WORK

The structure of the prototype version of ICOSS described
in the previous sections, shows that there are a number of
areas which can be further developed, the main ones are:

(i) The expansion (and reduction) of the present
complement of modules.

92

(ii) Improvement in the speed of execution.
(iii) The utilisation of some of the peripheral

equipments.
(iv) The coupling with other simulator systems.

The modular form (structured programming), makes the first
area of development possible, so that:

(*) Addition of new modules to complete the communi­
cation system (signal processing modules)
library, is easy to implement.

(*) Replacement of an old module by another more
sophisticated one is possible.

(*) Addition of groups of interrupts is also
possible without disturbing the structure of ICOSS.

The developments regarding the second area can be made in
many ways. They include either having a giant digital
computer or network of processors (mini computers) ie
multiprocessing operation, or both. These ideas will be
elaborated in the next Chapter (4).

As an example to the further development of ICOSS mentioned
in the third area, is the block diagram display in which
a more efficient, storage type video display with a buffer,
is utilised. The data structure regarding the system
block diagram is stored locally, and any editing modifica­
tion or display to it will be done there.

Finally, as mentioned earlier, ICOSS is mainly concerned
with communication systems simulation. Coupling this
simulator with another simulator concerned with the analysis

93

of other topics in telecommunication problems will be a
great asset to the telecommunication engineer working
in research and development areas.

94

Inpul"

I C L O C K

I T T Ÿ

y !— Loop
A t %
i 1 V TTYF6-{>- FLAG

Ou^puV

Inpuh.Cohlrol
Edil'ing el'C.

Fig 5 li. IC05S OVERALL WORKING ARRANGEMENT

Inpuh [f y l

L ± I

New CP
BUFFER

PROCESS

I TTY

Exccurion
TiViC Loop

Flog InLtrruph
Chon g c oĵ Po re: ̂

MEAN, ere"
rn*_l>w

t> Ouhpuh

Commond
CP; Conrro! Poromerer
nl : signal Processing Module n1. CP srock

Procedure
(i) Inpur New CP or Buffer
(ii) inferrupr During Flag InrerruptSpace iĵ P ricrilg Allows.
(iii) Replace Old CP bij New in CP Sl’acK.

in. 3 12 Chonoe o f I.CP A 'rrcnoe incnrFig

TT3
î.: . « (0 95

O a

cr

T)

cn
a g"uo O

CÛ o CL

CLc>%)

Hoyog
b

E
<0
(/)<0
o
oK}
CMfO

•iff

£
i-

96

CLOCK. CLOCK
iI , ;I

/ / /L O O P / / i \ F L A C \ \

”* ' 'CL ^

Fig.3 22 Clocking P&riod Subdivision (Allocah'ons)

97

X Ll ûTuŒ: X(JLlM 3S<ÜJco (Zco
zco

o
:E

a.0u

IIE dII

s iS sïs ip lil l
lO CL U'LuO>CL^ÛCÛI-5a}c/)

CÛ O ûo CÛ o: y

Ci)
im.
yjj
u
d
-Ocn
Ê
dL.

CO
1cl.O

2a
rOOsJ
hO

CT) o
_cV)
8

P
H

CQ>Q.û.

i S f

— CNJ> >2 2U u
ta tù

__ oi Ln
03 Oû OQ CÛ CÛ 3 3 3 =) 3
00 cO CO CO CO

ts ip
ü. û: < S o

Hco h
Z M ü e> O t— t- ^ ;sOu

Û
lu X x f - z ^ z g^ u en LU CL M y

Q . y>37 O< O
2 ^

CDÛ_ ü. LD
O > <O h Uu H Ll

co(/)
ooH

98

CLOCK CLOCK CLOCK

To
T"S

Fig 531 : T im e gLlocafclons

inp u t outputD /Aa / d

CLOCK

PROCESS

EÎ3 352 •• Sqscgrn set,up

CLOCK

99

.1

LOOP INTERRUPT OTHER(S)

A , A î

CLOCK

XL

Fcq.353 • C lo c k in g period gllocgbtons

100

No

Yes

No

No FLAGT T Y F G

Yes

F t j . 341 Basic Sj^sbem FLou/-chart

Trigger clock

Set clock Is

LOOP group

of interrupts

101

Nix ^ N o k

N o K + A o K ' l

Eig-Akl

Node Number Siq. Value Condition
1 13-45 1 o r 0
Z etc.
3
4
1
1

1 Present S to he
0 Previous State

Fig 352 X S truc tu re

102

©

Module A i

R q.555 lnou^/Ou^Du^ Node RelaHonshio-Hucofri'ihcnl

103

© © © ©
PHSD GAINSIGN FILT

VCOSIGN

é J ©

Fig. 5 54- Simola Phase Lock L o o p PLL

1 2 3 4 5 6 7

Module

©©©®
%

Fig 5 5 5 SA\ o f P)_L o f Fi'q. 3 5 4

i3
0)
k
m
o
ïr>
«
u
o
4J
w

>:
û)
■H
Uu
"*U
4->
C
QJ
•G

(C
0)
p
(0
<ü
en
ro
p
O
44
en

P
dt
«P
•H
44

S
-o

(0
dt
p
10
dt

p
0
p
en

p
dt
p
p
p
ë
T3P

10c
en

v4
0) d) CO T3 dt
'O fO dt
0 Vu O 44 dt CO 0c 0 G 10 jG CO G

44 44 dt
4-' U 10 44 P ü P P

3 O) U 3 d) 43 o ?
Dj XI T"l eu o m A •S
4J /O 44 -H P E
3 3 G P 43 co g 3
O C ■H O G 3 •H o C

d)
3

m p-U
9) (0
'ü Vu >
o O 0
G 44 P 3

Vu ro d)
QJ ü 44 %

S XI •H C 2 "g
eu E *0 p g 'c 3 C 0 c 3
M C -H u C

>u
«3

c
0 «vu eu
tH 0 coXu
•H >u T3 o
(0 CU 44 d)
0 u uU 44 C

' CU' u •Q) P 3 ■H
Vu 0 eu 44

eu 0 ■H 44 3u c 44 P p 0
u 0) eu 0 P

>i
n C enc m en
0 O*rU uu u
44 ■H •o dt t-i
-H dt 4=
CO 0) > c<u 0 Vu p 10 p

■u eu O dt C dt
<0 44 CD •H P *0m 4-1 co CO d) 10 O dtu 0) p c Z cof-U 0 d) < 3
E X3 Z 44 fU en cn
O) W X CO 44 10 m■p •H dt 10 P o dtco tu 44 (4 0 £h p
>1 IC3 c 10 0 en 3w > -H X 1—1 co *0

0

1 dt3 X:c ü p
•H P f-U dt >1

d) 1 (0 43 <0 pc X) dt ü 44 0o E P eu p
•H P p «P co
44 .G CO 0 0 co

m 44 Ip "U o p<N CO >1 E C en dt P
O tu 3 "O c p C dteu IQ E 0 dt 0 3 Utu u eu p eu p
eu X3 eu X •H p p 3 XU •H en 10 «p 3 (0 3 0 -HrU z 0 tr 0 P p

<0
>1 Ep
<0 EC p z dt•H ph X3 < PVu d) 44 •P CD

C (0 eu mU 1—1 p en >10 tu >u c 0 CO•H X) 44 CO •fU X
4 J ■H m 10 eo c dt
■H rU H >1 co 0 Z >1 X:
CO X (0 P p X X p PO en dt (0 p < 10eu cn z eu X5 d) en p p «p

p eu co E eu o CD X3 oeu u cn fU 5 eu o 0 G Pcn o C (0 Cb P P co
p
dt
p
G
O
ü

co
0) dt
tH e< X:3 o p
T) o
0 «vue oco

dt C
eu ü c Ocn 44 •H p

0) 44 U p
P 44 eu

cr> O dt CO pc H p dt p
-H XI p et
CO >1 Z 3 co
CO b u (0 < •o dt"
0) rU u 0 Qo eu z E0 Z co
tu >u eteu < T3 cn p

U z <0 dtC iH 44 et PE iQ 3 P mP C z eu P3 ' C 3 E-i X u C n- 7 ^ 3 b u

104

105

3̂.
I-------------------1

X(K)

Fig. 5 5 7

©
X1

y

©
X2 I X4 XG

+
X4® ® XII

(a)

lb)

4- X3 V X5 y X7 A X6,
A A r\

Pass1

1 6 I6N X1 y
2 5IGN x z y
3 ADDR X1 + X Z -^ X 3
4 MULT X 3 *X 4 -^ X 5
5 MULT X5^XG -^X7
6 GAIN X 7 -^ X 8 y7 FILT X 8 -^ X 9
8 VCO X9 X10 y
9 SIGN X4 y
10 ADDR X4+X11-^XG y11 BRCH X11-^X10

Fig. 3 5 8 [LD R] C ohshrucbon

X9 VCO X10 0/p

®

y

yy

106

M ZM l

M 3

M 4
LOOPMAIN

M S

Mom ICOSS LOOP Group o f Inh&rruphs

Sequchcnof Inl'C.rruphs
M l
M3
MS
M2
M3
Ml
MS
efe.__
Mqin
efc.

F i'q . 5 01 Loop S fa fa D iagram

107

n 1 2 3 4 5

FLM (I,n) Typ&
Priori hy

Poin̂ <Lr to
Lash Stop
Shoroge
Space,

Transienh N umber oj
Poihbs

Counh
0

Fig. 3 62 Flûq Mohrix [FLAA] (3x5) Mahnx

108

® © ® ® ® © © % CLD«

CrCPl

GCP1

CPI
CPZ
CP3

Fig. 3 6 3 SM Inhg.rnal ReloHonshio & Module Rtprescnlahon

109

Figure 3.7.1a

05? TTY COM? CONS
05? SAMPLING FREQ? 100.0
05? BLOCK 1: SIGN
05? I/P = 1, 0/P = 5, LCP = 4
05? 15.0
05? 1.0
05? 0.0
05? -1.0
05? BLOCK 2: SCOP
05? MEAN
05? 1. NO OF PTS? 2. NODE NO? 3. PRIORITY?
05? BLOCK 3: SCOP
05? TRAN
05? Y
05? I. NO OF PTS? 2. NODE NO? 15 5
05? BLOCK 4? END
05? 1. NODE NO? 2. EXT SIG? 3. IDNT?
05? 1 0.0 1
05? 2 0.0 1
05? 3 0.0 0
05? TTY COM?

Figure 3.7.1b CONS dialogue for the system (a) above

GHD
110

Center
SPM mnemov

SPMLlB

pKSCntN^

search
ODRLiS

prescn̂ yWo

search

pfEsen£\K&

oaxcLlafy

c a ll: sub. BCokst
to r SPM :
Call Sub.CPMftM
for cPmanaqe.
m e n t...
ColLisubsfoKiST
for Scope ..
Call ;Sut>. M06RCH
for CLuxi H o y ..

SM
const rue tcor\

END X Yes

output
error

(Return

372.. F Low. chart fo r SM construction

Ill

05? TTY COM? EDIT
05? TYPE OF EDIT? INERT
05? PREC BLOCK NO? 1
05? TYPE OF NEW ELMNT?
05? I/P = 4, 0/P = 5, :
05?
05?

3.5
TYPE OF NEW ELMNT?

05? TTY COM?

Figure 3.7.3 Editing;
existing

05? TTY 1COM? EDIT
05? TYPE OF EDIT? DELT
05? BLOCK NO? 2
05? BLOCK NO? 0
05? TTY COM?

Figure 3.7.4 Editing; deleting a module in an existing
block diagram

112

05? TTY COM? CHGC
05? 1
05? 150.0
05? TTY COM?

Figure 3.7.5 Dialogue for change of global control
parameter CHGC

05? TTY COM? STOP
05? IS RESULT REQUIRED? YES
05? TYPE OF SCOP? MEAN
05? MEAN VALUE =
05? CONT OR LOGT? L
05? EDJ 00

If results not available yet, then

05? TTY COM? STOP
05? CONT OR LOGT? C
05? TTY COM?

Figure 3.7.6 Stopping (pausing) the running system;-
getting results and/or logging out.

113

Co)

A = 10

CP, = 0 , 5

TRAW

£.Pz = I
CPZ - o
C P4- = O fs = too

In response to:
CMST

1 1
The teletype will print

BLOCK NUMBER: 1
SIGNAL PROCESSING MODULE: SIGN
INPUT NODE:

1
2
3

OUTPUT NODE;

LCP

4
5

10.0
1.0
0.0
0.0

BLOCK NUMBER:
SIGNAL PROCESSING MODULE: FILT
INPUT NODE:

OUTPUT NODE

LCP:

5

6

0.5
BLOCK NUMBER: 3
SIGNAL PROCESSING MODULE:

. NUMBER OF POINTS = 500
TRAN
NODE NUMBER = 6

GCP:
100.0

Fig 3.7.7 CMST command and response

114

(i) For indirect x axis
05? TTY COM? PLTM
05? NO OF XAXIS POINTS: 100
05? DIRECT OR INDIRECT: 0
05? 1. STARTING PTS,2. STEP: 1.0 1.0
05? 1. NO OF PTS/GRAPH, 2. NO OF GRAPHS: 100 5
05? TTY COM?

(ii) For direct axis
05? TTY COM? PLTM
05? NO OF XAXIS POINTS: 100
05? DIRECT OR INDIRECT: 1
05? 1.0

' 05? 2.0

05? 100.0
05? 1. NO OF PTS/GRAPH, 2. NO OF GRAPHS: 100 5
05? TTY COM?.

Figure 3.7.8:PLTM Dialogue

115

EDITCONS

CHCP

CHGC
ICOSS

ENTR

INXM

STOP
GRAPHS

TTYFG group ojf inhcrrupï's

Fig. 5 7 9 Shghe Diogrom o^ TTYFG Group o f Inhcrrup^s

116

FFT
RMS

AMPL 1F3
Flog

. I . ICOSS,

MEAN

CHCPFL

F5
Flog group ml"crrupt"SRc-sf- of ICOSS

Fiq .381 SraFg. P iaQrom o f Flag G roup o f ln t'e rrup l'&

117

I FLAG

YesIFAG=LFLA(%

No

Search -|0r hiqhc^h priori^

Yes

No

Proceed to pa rhcu lo r iht'ernol
Flag mt’crrupP ,
R A \ S, A \ E A N , C hi C P F L . e 1-c.

LFLAG=IFLAG

Sove old Conhrols

E va lu a te new ConCrolS
F L A \(I1 ,Z):P o in te r to b e s t

S to rage .
K3 = F L M C I1 ,5):T ijp e 0/ output.
KA - FLAA(I1,4) : Number o f point.
K5= FLA\ (11.5): Count,

Bock to ICOSS

Fig. 5 A 2 F low C h a rt fo r the Flog Group
o f In te r ru p ts

118

CHAPTER 4

MICROPROCESSOR APPLICATION: BANK OF DIGITAL FILTERS (EOF)

4.1 INTRODUCTION

Having presented ICOSS and the areas for further develop­
ments, the present Chapter is devoted to one area only,
namely the improvement in the speed of execution. The
reason for this choice is to direct the process of dis­
cussion toward the original target, which is real-time
time-domain simulation, in which speed of execution is an
inherent problem. There are two ways of speeding up the
execution.

The first, is having a large (Giant) computer with right
execution speed, which may prove to be expensive and im­
practical, in the University research environment. The
second technique, is having multiprocessing system in which
certain parts of ICOSS process is extracted out of the main
(Host) computer memory, and operated on by another, high
speed "Slave" processor, concurrently. In this chapter,
the latter technique is examined, by testing a time depen­
dent section of ICOSS working in conjunction with the main
simulation. There are a number of candidates (sections)
which can be chosen from, for this purpose. The main ones
are:

(a) any of the FLAG group of interrupts (FFT, MEAN,etc).

119

(b) The LOOP interrupt (the string itself),
(c) Any of the signal processing modules.

However, the section of ICOSS chosen for this purpose, is
a signal processing module, for the following reasons:

(a) The^ desirability of having a flexible signal pro­
cessing module, in its function, structure, programming,
and its addition to ICOSS memory, with maximum ease.

(b) Building a signal processing module on a single board,
separately, will enable the user to program and
reprogram the module completely independently from the
main (Host) computer.

(c) The ICOSS library will act as a shelf where the signal
processing modules (semihardware) are added to or
taken from the library depending only on the application
and requirement.

The signal processing module implemented, simulates a Bank
of digital Filters (BOF) - of any type, Chebychev, Butter-
worth etc. But number of filters simulated at any one time
within a system is limited to two , and the order of any
of those filters must not be higher than four. Each
filter is made up of number of second order sections whose
coefficients, although stored within the module itself,
are provided by the Host computer during the construction
mode.

Since the main source of error, when treating signal pro-

120

cessing of high resolutions, is the arithmetic and rounding
off errors during the simulation, the choice of "word
length" for the signal value, as well as the method adopted
in the arithmetic calculations (linear or logarithmic) are
of vital importance.

Since the Motorola MP6800 Kit (which comprises a micro­
processor ROM and RAM) is available at the place of
research, it was used to investigate the design of BOF
system.

4.2 MICROPROCESSOR SYSTEMS

4.2.1 Introduction

Microprocessor based systems have been developed in recent
years, as a natural progress of semi-conductor technology.
These systems are developed in order to satisfy ever in­
creasing and challenging requirements of the user. In this
section, concentration will be made, not on the micro­
processor technology of today as such, but on the services
that it provides in order to reach the final design re­
quirements of ICOSS.

A microprocessor system is basically made of a microprocessor
element, read only memory, random access memory and a data
interface. Each part of this system will be introduced and
suggestions are made to the type of microprocessor arrange­
ments which can be utilised in ICOSS system.

121

4.2.2 Microprocessor Architecture

Since microprocessors are the "heart" of computers, then
43a typical computer structure must be introduced before

describing the general form of a microprocessor archi­
tecture. Fig 4.2.1 shows a typical computer in its most
simplified form; whereas Fig 4.2.2 shows the basic struc­
ture of a microcomputer which is related to microprocessors
in a more obvious way. It is clear from Fig 4.2.2 that
there are six basic parts to make a microcomputer. They
are:

(a) Clock
(b) CPU
(c) 0/P ports
(d) I/P ports
(e) ROM
(f) RAM

The term microprocessor is sometimes used in a general way
to mean this microcomputer structure, in contrast to the
transducers, actuators, displays and other things which
are needed to meet the requirements of the instrument. More
typically, the microprocessor is used to designate the
large-scale integration (LSI) chip, or integrated circuit,
which includes the CPU.

Sometimes (particularly among the early microprocessors to
appear on the market) some standard integrated circuits
arrangement the microprocessor chip in order to construct

122

a fully functioning CPU which c^n communicate with, and
control, input ports,, output ports, RAM and ROM, On the
other hand, some microprocessor chips include not only a
self-contained CPU but also one or more of the parts of
the microcomputer such as the clock or input/output ports,

4Historically, Wilkes (in 1950), suggested that configura­
tion shown in Fig 4.2.3, as the microprocessor. However,
that final and most general universal form of micro­
processor, is the one shown in Fig 4.2.4, whose internal

43structure

(a) General purpose registers: accumulator
(b) Arithmetic logic unit (ALU)
(c) Memory address register
(d) Program counter (PC)
(e) Instruction register
(f) Instruction Execution control logic

This is only the basic structure, and the actual set up
43varies from one manufacturer to another . The basic

difference is the size of word they are capable of
handling, and cycle time. Obviously, the longer the word
length (number of bits) and the shorter the cycle time,
the better. As examples:

Word Length Cycle time
Motorola MP 6800 8 bits 1 us/instruction (minimum)
Plessey MIPROC 16 16 bits 350 ns/instruction

123

Microprocessor Operation

A microprocessor incorporates the various functional units
above in order to supervise and manage the operations of
a system. Besides the control circuitry, the microprocessor
has the ALU and the other registers which provide a temp-

37orary storage . The accumulator constitutes the one
essential general-purpose register. It can serve both
as the source and as the destination register for operations
involving some other registers, the ALU, or memory. Other
general purpose registers often included in a microprocessor
can be used to store operands or,intermediate data, thereby

2
lessening the possibility of accumulator bottlenecks
Additional registers have dedicated uses. The PC, for
example, keeps track of program instructions by maintaining
the address of the next instruction in memory. The fetch
instruction (top code) goes to another dedicated register,
the instruction register, and is decoded by internal logics.

The microprocessor tackles each instruction in sequence.
It proceeds from numerically lower memory addresses that
give the instructions to be executed early, to higher
addresses that give later instructions. However, the
sequential order can be broken by "jump" instruction, which
directs the microprocessor to a different part of the pro­
gram. The order is broken by a "call" instruction that
gives rise to the execution of a subroutine. Prior to its
handling of a subroutine, a microprocessor makes use of a
storage area, the stack, which may be either on the chip

124

(a hardware stack) or in memory (a software or pointer
stack), The stack is used to save vital microprocessor
information, such as the address in the program counter,
while the subroutine is being executed. The information
saved can then be used to resume operation of the main
program once the subroutine has been executed. Stack is
also used to reset subroutines, the extent of this capa­
bility is limited by the depth of the stack and its
ability to store return addresses following each sub­
routine.

4.2.3 Read Only Memory ROM

Read only memory (fixed memory) is any type of memory that
cannot be readily rewritten and ROM requires a marking
operation during production to permanently record program
or data pattern in it. The information is stored on a
permanent basis and used repetitively. Such storage is
useful for programs or tables of data that remain fixed
and is usually randomly accessible. However programs can
be rewritten, with some complication, on some types of read
only memories outside the manufacturing environment.

Classifying ROMs, there are three general classes (types):

(a) Masked ROM: in which the memory contents (bit pattern)
is produced during actual fabrication of the chip
by the manufacturer by means of a masking operation.

(b) Field programmable ROM (fusible link): The memory

125

contents are programmed by the user with a special
PROM programmer as part of the process of fabricating
an instrument.

(c) EPROM - floating gate - (erasable programmable read
only memory): The memory contents are programmed by
the user but can be subsequently erased. This permits
a unit to be reprogrammed, should changes be desired
in the original programming. In contrast ROMs do not
permit changes at all, and PROMs only permit
previously unprogrammed bits to be programmed at a
later date.

Any one of the above three ROMs will provide efficient
37system operation . Since the purpose of making use of

a microprocessor controlled system in ICOSS, is to have
flexible system in which the signal processing module is
separately programmed, the module may contain any type of
process according to the situation and modification to it
may be required at later application. Therefore EPROM is
the overwhelming choice for the signal processing program
of the module. However PROM may find some usefulness in
some parts of ICOSS operation, in the control side of the
complex interrupt system within ICOSS.

4.2.4 RAM

The term RAM (random access memory) is given to LSI type
chip which data associated with Up operation is stored and
later accessed. For this reason a more appropriate désigna-

126

tion is soruetiines used to indicate RAM, is s. read-write
memory, indicating the ability first to write data into
it and then later to read data out.

A. The Basic RAM^^

Every RAM has input address lines, data input lines,
control inputs and data output lines. A memory plane
contains memory cells which stores the data bits. An input-
address decoder directs a read or write request to the
desired memory location.

To write into the RAZ4, the data is placed on the data-
input lines. Then the address of the desired memory loca­
tion is placed on the input address lines. Finally, the
write-control line is brought to the appropriate voltage
level.

To read data from the RAM, the address of the desired
memory location is placed on the input address lines,
the read-control line is brought to the appropriate
voltage level, and the data are read on the RAM output data
lines. Fig 4.2.5 shows the basic structure of the basic
RAM.

B. RAM structure

The typical structure for the RAM used in conjunction with
microcomputers is that shown in Fig 4.2.6, with WRITE,
ENABLE OUTPUT, and one or more chip Enable control inputs.

127

It may have more than 8 address lines, for larger capacity
of RAM within one chip. It may have a word length of
only one bit or of 4 bits, requiring the interconnection
of several chips to obtain the desired word size, as in
Fig 4.2.7. Also it may have data output lines which are
distinct from the data input lines. For use with a data
bus, corresponding input and output lines need only be
tied together.

C. Types of RAM

(a) Static RAM: The term static RAM means that they will
retain their data reliability (as long as power is
maintained) regardless of whether any of the inputs
change.

(b) Dynamic RAM: This type places specific requirements
upon how often data must be accessed if it is to be
retained. For example, Intel 2107 (4096x1) dynamic
RAM requires a "READ" cycle to be performed on each
of the 64 possible combinations of six address lines
once every 2 ms. However, these 64 read cycles can be
performed with the output actually disabled. Conse­
quently, the refreshing of all dynamic RAD/I chips can
be undertaken with a data selector which switches
these six address lines from the address bus to the
output of a 6 bit binary counter whenever there is an
operation not involving RAM. Then a special refresh
input is stored. The 6 bit counter can be counted
with the trailing edge of the strobe pulse.

128

(c) Static/dynamic combined: Combining static and
dynamic memory techniques, the chip achieves a
maximum access time say (200 ns - typically 150 ns -
for the MK 4104); and maximum cycle time of 260 ns
for the same chip^Z , Yet it dissipates typically
only 80 mw of active power at 4 MHz and very low
8 mw in standby. An additional low-power mode of
1.0 mw is available for battery back-up operation,
achieved simply by lowering the power supply voltage
from 5 volts to 2-3 volts.

D. Application RAM

The RAM actually used in the project is the 128x8 bit
static random access memory (MCM 6810). It is a byte
organised memory designed to use in bus-organised systems.
It is fabricated with N-channel silicon-gate technology.
The RAM operates from a single power supply, has compati­
bility with TTL and DTL, and needs no clocks or refreshing
because of static operation.

The memory is compatible with the M6800 microcomputer
family, providing random storage in 128 byte increments.
Memory expansion is provided through multiple chip select
inputs. Some of the important features of the RAM are:

(a) Organised as 128 bytes of 8 bits
(b) Static operation
(c) Bi-directional, 3-state data Input/Output

129

(d) Six chip select inputs (4 active low, 2 active high)
(e) Single 5 volts power supply
(f) TTL/DTL compatible
(g) Maximum access time 1.0 us for MCM 6 810L.

575 ns for MCM 6810L-1.

4.3 CONFIGURATION

One of the limitations self-imposed on On-line simulation
is the computer processing power. The tendency in
improving the processing power is to enlarge the computer
at hand with much increased expense. In fact a new genera­
tion of large general purpose computers, sometimes termed
super-computers, have recently been introduced, providing
speed sufficient for even the most ambitious simulations,

42however at very high cost . Therefore, the overall cost
and size of a general purpose computer has limitations as
well.

In order to improve the processing power, and remembering
that a main computer operates sequentially, either of the
following approaches can be made:

(i) Parallel processing (genuine), in which results
of operations may come out simultaneously. The
difficulty with this mode of operation is a
management problem, ie synchronising the result
together, hence increased programming complexity,

(ii) Sequential processing, but putting out tasks
to special-purpose hardware which executes

130

processes very quickly. Programming this type
of computer configuration is easier. Therefore,
this method will be adopted in the present work
for ICOSS development, in which some of the
processes, eg a signal processing module of
the loop group of interrupts, is taken out of
the main computer and processed by another,
small inexpensive fast processor.

In this section the concept of "multiprocessing" is
introduced and the final set-up, "the master-slave",
configuration employed for ICOSS development is described.

(*)4.3.1 Multiprocessing systems

A multiprocessing system uses more than one central
processing unit in the system configuration. There are
many reasons for multiprocessor systems:

(a) Greater system efficiency and use of system resources
(b) Increase in system capabilities in responding to real

time situations.
(c) Fault tolerance: the greater ability to deal with

system malfunctions.

There are a number of different ways to classify multi­
processor systems, based on the following characteristics:

(a) The type of processors

* Refs 13,37,42,45

131

(b) The interconnections between processors.
(c) The relationship of the processors to memory and

I/O units.
(d) Operating software for the processors and the

systems.

On the basis of these characteristics, one can refer to
certain processors as being "array" processors, "pipeline"
processors, "ring" processors, "parallel" processors, or
"reconfigurable" processors. One can also describe the
system structure as being "tightly coupled" or "loosely
coupled".

Although microprocessors may be utilised for various
functions in a multiprocessor computer system, the most
interesting concept is a multiprocessor system constructed
of a plurality of microprocessors. The particular type
of multiprocessor architecture that is particularly
worth considering is a reconfigurable architecture using
microprocessors.

Reconfigurable microprocessor architecture: a multiprocessor
computer system in its most basic form consists of a
determined configuration. At certain times it may be
desirable to change this configuration based on a particu­
lar internal or external event. A computer system which
possesses the hardware or software capabilities to imple­
ment such configuration is called a reconfigurable
architecture. One of the main applications of this type of
computer system is the interactive multiprocessor system.

132

In this system, simultaneous processing by a relatively
large number of discrete users running jobs with differ­
ent characteristics, take place. To increase throughput,
a reconfigurable system operates by allocating an optimum
number of processor memories and I/O units to each res­
pective user. In this sense the system reconfigures
itself by partitioning the system into independently opera­
ting units, either on a space-division or time-division
multiplex basis.

Microprocessors may be utilised to implement computer
systems based on such reconfigurable architecture. The
basic system can be implemented by means of a multi­
processor array, together with supervisory and data
transfer function controlled by other processors. The
arrangement between these processors determines the types
of multiprocessor systems implemented. There are several
basic types of multiprocessor configurations which may
implement a reconfigurable system. The type which will be

1 ^7adopted for ICOSS development is called Hierarchial system
This system is based on one "master" processor and two or
more "slave" processors in a hierarchial relationship.
The master processor controls or supervises the operation
of the "slave" processors in either a "tightly" or "loosely"
coupled manner as shown in Fig 4.3.1. A further descrip­
tion will be made on this system in subsection 4.3.2.

There are other types of configurations, namely:

(i) Parallel

133

(ii) Ring
(iii) Switched
(iv) Pipelined

(*)which can be found in the literature

4.3.2 Master-slave processors

The hierarchial type configuration mentioned earlier is
an alternative approach to the attainment of very high­
speed real time capability, in which moderately sized gen­
eral purpose digital computer and a special purpose digital
processor are interconnected as shown in Fig 4.3.2. The
host computer which acts primarily as a buffer to the
communication lines and I/O equipments can be a large mini­
computer eg PDP 11/70. The "peripheral processor" is a
digital computer employing a high degree of pipelining
and parallelism. Because it is designed solely to facili­
tate high speed arithmetic computation, it is capable of
providing computing speed considerably superior to those
of large general purpose computers at a very moderate
cost (comparison: $8,000,000 old technique, $300,000 new

4 2technique).

In the present work, the general-purpose computer at hand
is the Digital Equipment PDP8/e, which will contain the
main body of ICOSS (see later); while the slave processor
is a microprocessor controlled signal processing module.

* Refs 13,37,42,45

134

4.3.3 Signal Processing Module

The slave processor of the hierarchial system adopted for
ICOSS development is made of :

(i) Microprocessor element
(ii) Random access memory RAM

(iii) Read only memory ROM*
(iv) Arithmetic unit AU

The internal connection of these elements and the processor
external connection is shown in Fig 4.3.3. The signal
processing module chosen out of the present ICOSS library
for the slave processor is a "bank of digital filters - BOF"
BOF subroutine will be stored in RAM but eventually the
final module program will be stored in ROM, whereas the
various signal values, state variables and control varia­
bles will still be stored in RAM. The arithmetic unit,
which performs the logarithmic number manipulation is
coupled within the processor. The suggested type of this
unit, is a modified logarithmic arithmetic unit, see
Appendix F for detail.

There are a number of advantages in choosing signal pro­
cessing module for slave processor, mainly:

* To be more precise - EPROM - erasable programmable
read only memory should be used

135

(a) The obvious increase in computer processor power,
hence better on-line simulation.

(b) The basic signal processing modules are separated
from the main ICOSS body. This means that the
ICOSS library will act as a "shelf" for the various
signal processing modules, and each new module is
prepared (designed, programmed etc) independently
outside ICOSS. However in the signal processing
library of the prototype ICOSS discussed earlier,
the modules identification procedure has to be
modified, for true interchangeability. The changes
in the main ICOSS will be on interfacing and identi­
fication, which can be made minimal.

There remain a number of supplementary devices which have
to be treated, for the final system design, in order to
make the operation more compact, such as the power supply,
interfacing, console control etc, see Fig 4.3.4.

Another improvement, which can be made is to make the slave
processor as a single chip, coupled to the main computer
via an easy interconnector (interface).

4.4 DESIGNING A SLAVE PROCESSOR FOR THE BOF MODULE

4.4.1 General

A slave processor is to be designed which simulates a
bank of digital filters (BOF), having the following

136

characteristics and considerations:

(a) The maximum number of filters at any one time must
not be more than two. This limitation is for the
present set-up, since the number of filters is
limited by the size of memory (RAM) available in
the slave processor.

(b) The highest order of any one filter must be defined
in advance, depending again on the memory (RAM)
available; and it was decided that the highest
order of any one filter for the present set-up is
to be four.

(c) Wide dynamic range, in which case logarithmic
numbers for signal value representation is used.

This section is mainly concerned with the theoretical
background and the hardware requirements ; whereas in the
following section, a more specific development of the BOF
module will be made.

4.4.2 Theory

A digital filter can be represented,in time domain, as
cascaded second order segments ̂ , as shown in Fig 4.4.1.
Assuming that the input signal is x(t) in time domain,
and x(n) in sampled form, and the output signal is y(t)
in time domain, and y(n) in sampled form, the filter
transfer function

137

i=k
H = a TT hi where hi is the second order

i=l segments
and k is the number of

those segments in the
filter

■i - 1 - 21 + z + z

where a^^, ^2i' ^li ^2i the segment's coefficients.

Representing the filter transfer function as difference
equations :

y . (n) = X. (n) + a, .x (n-1) + a_ .x (n-2) - b, .y . (n-1)
^ J L ^ Am ^ ^ J L ^

- bgj^y. (n-2)

for i = 1,2,...k

Thence the final output y = a^ y^(n).

4.4.3 BOF module design requirements

In order to build any signal processing module using a
microprocessor control unit incorporated with a host
computer, the following requirements must be met:

(a) A program for the signal processing module: this is
a machine coded program stored in ROM. .

138

(b) Storage area: enough memory space (RAM), must be
provided for the storage of:

(i) control parameters of the signal processing
module

(ii) state variables
(iii) other supplementary parameters
(iv) the program (a) above, in the case of the

prototype only. In the final design, the
latter is stored in EPROM.

(c) Interfacing arrangements with the host computer.

4.4.4 Module Structure (hardware)

The basic structure of the "slave" processor is shown
in Fig 4.4.2. The figure shows a prototype model, con­
taining the following units:

(a) RAM: random access memory, which contains

(i) the signal processing module program
(ii) module control parameters

(iii) module state variables
(iv) supporting parameters, etc; as will be explained

in the next section (4.5).

139

34(b) MP: microprocessor, the Motorola MP6800

(c) AU: arithmetic unit; the modified logarithmic
arithmetic unit; see Appendix F.

(d) PIA: peripheral interfacing adaptor. This is a
parallel lines, for data and control. It is
mainly used for the intercommunication of data
between the "slave" processor and the host computer.
For the present work, it is 8 bi-directional lines,
which can be programmed, controlled and treated as
simple memory locations.

(e) ACIA: asynchronous interface adaptor. This is a
serial data line, used mainly for the control and
data transfer of teletype or console.

(f) TTY: teletype.
(g) ROM: read only memory: contains the Microprocessor

supporting software
(h) Power Supply: ±12 volts, + 5 volts, and earth.

All data and control voltages are TTL compatible.

4.5 SOFTWARE DEVELOPMENT OF BOF MODULE

4.5.1 Program Formulation

Following the digital filter formulations developed in
4.4.2 earlier, and assuming that a fast arithmetic unit,
similar to that suggested in Appendix F is used, and
whose function is limited to:

140

a = b • c + d (1)

Also considering one second order segment of the filter,
whose difference equation is:

y^(n) = x^(n) + a^^x^ (n-1)-i-a^^x^ (n-2)+bj^^y^ (n-1) tb^ ̂_ŷ (n-2)
(2)

This equation (2) can be split into four smaller equations
in the form of equation (1), as follows:

"̂ li = x^(n) + aii% i (n-1)

^2i ^li + ^21^1 (n-2)

^31 = ” 2i + ^11?! (n-1)

^4i ''31 + ^21^1 (n-2)

(3)

With the necessary reshuffling of the segments state
variables as indicated earlier, this can be repeated
(k) times for k segment filter, and the final output is
obtained as:

w = (4)

Hence with the use of the arithmetic unit (AU) and simple
access and reshuffle procedures, the process becomes simply
a matter of repetition, reshuffling of numbers in the
state variables stack, and temporary storage for the AU
function, as illustrated in Fig 4.5.1.

141

Execution time determination

In order to determine the time taken for one signal
sample being processed by a filter having k second order
segments, there are three periods to consider:

(i) The AU instruction time:

Assume is the AU instruction time.
There are four basic AU instructions/segment.
If equation (4) is rewritten as:

and (5) is considered as one AU instruction,
then:
The total AU instructions needed for the filter
4k+l
The total AU time needed for the filter:
(4k+l) Tau-

(ii) The state variables shuffling time:

Assume T^^ is the shuffling time/instruction
There are 4 x T^^/segment
.*. The total shuffling time needed for the
filter = 4k T , , sh

(iii) Control parameters access time:

Assume T^ is the access time/parameter

142

There are 4 x T^/segment
.*. The total control parameter access time
= 4 X k T .a

.'. The total time needed (execution time) =
4(Tg^+T^)k + (4k+l) T^y

However, this is the minimum time needed and some more
time needed for the microprocessor management.

4.5.2 Implementation

Microprocessor controlled module is a low level device,
ie accepts machine code programs only. The user, who
usually writes his program in a higher level language,
such as assembly language, has to compile and assemble
his program in order to produce the desired machine code
program. An Excorcisor is used for this purpose, which
has a system supporting software, the Editor and the
Assembler.

The procedure to produce the machine coded program for
the microprocessor controlled module is therefore as
follows :

(a) Formulate the module program, in the way explained
in subsection 4.5.1.

(b) Draw flow chart.
(c) Write the program in assembly language.
(d) Run through the Editor and Assembler,

143

(e) the final product is the machine code program.

4.5.3 EOF Program

There are two distinct functions in EOF module, which
the program must perform:

(i) Housekeeping: The filter control parameters
(secondary) as supplied by ICOSS, are stored
in their allocated area in. RAM, with the
necessary identifiers for the relevant filter.
Also allocations to the state variables of the
filter are made, and the relevant pointers are
recorded,

(ii) Signal Processing: This is the filter action
to the input signal.

However, there is another fixed procedure in EOF program
devoted to the interfacing problem and transmitting and
receiving data to and from the main (host) computer, res­
pectively .

In the following sub-sections detailed descriptions are
made to each function of EOF program.

4.5.3.1 Interfacing

In the MP6 800 microprocessor there are two sets of data
and control lines (registers). Fig 4.5.2: set A and set E,

144

Each having 8 parallel bi-directional lines and number
of control lines, which are programmable by treating each
set as a memory location. In the present EOF case, set A
was assigned to Receive from host computer side, and set E
was assigned to Transmit to host computer side, of the
microprocessor. Each side has:

(a) 8 lines (registers) - bi-directional
(b) Cxi register for flagging-data ready
(c) Cx2 register for acknowledgement of job done

where x is either side A or side E.

In programming the interface, the following procedure is
followed:

(a) Clear registers
(b) Open interrupt
(c) Check flag register for any changes in Cxi registers
(d) Transfer data
(e) Send acknowledgement flag via Cx2 registers

I All voltages are TTL compatible which matches with the
host computer voltage. Fig 4.5.3.

4.5.3.2 Memory Map

One of the main limitations imposed on the design of a
microprocessor software is the availability of memory
space in RAM. The first step, therefore, is to divide the

145

memory locations available into dedicated sections, pro­
ducing the microprocessor memory map. In the present work
for designing EOF program, the memory is divided into the
following sections. Fig 4.5.3. :

(i) PIA locations; These are fixed by the present
hardware, and used in conjunction with the
interfacing and transmitting and receiving of
data. In the case of the Motorola MP6800
microprocessor, there are four bytes addressed
by: $8008 - $800E (where $ indicates Hexadecimal)

(ii) Internal parameters: ($0000 - $0009)
All the parameters necessary for the subsequent
operation of the module, such as counters,
filter number, temporary storage of input and
output signal.

(iii) Module control parameters: ($0010 - $0022)
The control parameters are supplied from the
host computer in their final form and stored
at their appropriate positions. There are 18
locations reserved, for two 4th order filters.
Remembering that each filter has 9 control
parameters; see subsection 4.4.2.

(iv) State variables: ($0023 - $0032)
The locations for the state variables are
reserved, and initialised to zero. Sixteen
locations are reserved for the present case of
two filters of 4th order; see subsection 4.4.2.

146

(v) Initialisation ($0035 - $0044)
The portion of the program concerned with the
system and interfacing initialisations is
stored in this area.

(vi) Program: ($0045 - $00F4)
The filter function part of the program is
stored in this pre-reserved area.

(vii) Subroutines ($00F6 - $012D)
Similar to (vi), an area of the memory is
reserved for the existing subroutine of module.
In the present situation, there are two sub­
routines, one for receiving data from the host
computer, and the other for transmitting data
to it.

4.5.3.3 Construction mode (CONS)

In this mode of operation, all the "house-keeping" of the
EOF module takes place. These include:

(i) The filter identification: this is assigned by
the module and recorded by ICOSS in the host
computer.

(ii) The storing of the filter control parameters
in module.

(iii) The initialisation of the state variables
locations of the filter, ie storing zeros in
them.

147

The process is triggered by a mode identifier from ICOSS,
and the operation takes place as shown in the flow-chart
in Fig 4.5.5.

4.5.3.4 The Run mode (RUN)

The filter action is actuated by the RUN instruction,
which includes: mode identifier, filter number and the
signal value; and then the input signal is processed by
the appropriate filter, in the way shown by the flow­
chart, Fig 4.5.6.

Since the arithmetic unit (AU), mentioned earlier, was not
available, the investigation was mainly concerned with the
module organisation, not the arithmetic one. The AU action
was performed internally. (However, if the AU is inter­
connected, then it can behave as another assembly instruc­
tion, reducing the filter action time considerably).

4.6.1 THE HOST MACHINE: THE DIGITAL EQUIPMENT PDP8/e *

The PDP8/e is specially designed as a general purpose
computer. It is designed to meet the needs of the average
user, yet it is capable of modular expansion to accommo­
date most of the user requirements.

The PDP8/e basic processor is a single address, fixed word
length, parallel transfer computer using 12 bit, twos
complement arithmetic. The cycle time of the random access

148

memory is 1.2ys for fetch and defer cycles without auto­
indexing and 1.4ys for all other cycles. Standard features
include indirect addressing and facilities for instruction
and skipping and program interrupts as a function of
input/output device conditions.

Five 12 bit registers are used to control computer opera­
tions, address memory, perform arithmetic or logical opera­
tions and store data. A programmer's console provides
switches and indicators that permit convenient monitoring
and modification of machine states and major registers.

The 1.2/1.4 ys cycle time of the PDP8/e provides a compu­
tation rate of 385,000 additions per second. Each addi­
tion requires 2.6ys (with the addend in the accumulator),
while subtraction requires 5.0ys (with the subtrahend in
the accumulator). Multiplication is performed in 256.5ys
or less by a subroutine that operates on two-signal, 12 bit
number to produce a 2 4 bit product, leaving the 12 most
significant bits in the accumulator. Division of the two
signed, 12 bit numbers is performed in 342.4ys or less by
a subroutine that produces a 12-bit quotient in the
accumulator and a 12 bit remainder in memory. Similar
signed multiplications and division operations are per­
formed in approximately 40ys utilising the operational
KE8-E Extended Arithmetic Element. Fig 4.6.1 shows a
block diagram of the basic PDP8/e that illustrates the

* Digital Equipment: PDP8/e, PDP8/m and PDP8/f small com­
puter handbook. Pub by PDP8/ handbook series 19 73.

149

signal paths between the central processor, the memory
system and the OMNIBUS. (In PDP8/e a bus is defined as
a group of 12 signal lines carrying related information,
such as the 12 bits of an instruction or data word. The
OMNIBUS may be considered as a wide bus containing
several buses, along with many other signal lines). Signals
that do not pass through the OMNIBUS are routed between
adjacent modules by means of Edge connectors.

4.6.2.1 Main program: ICOSS

This program controls the overall operation of the multi­
processing system. Only two main interrupt systems are
included in this modified version of ICOSS*. They are:

(a) the teletype group of interrupts
(b) the loop group of interrupts.

The program structure is shown in Fig 4.6.2

4.6.2.2 Teletype group of interrupts: TTYFG

The time independent interrupts which are grouped as
"teletype" group of interrupts, are advocated for the
construction of the simulated signal processing system, as

* See Chapter 3 for description of ICOSS

150

well as the "house-keeping" and control parameters manage­
ment of the "slave" processor. The teletype commands
employed for this group of interrupts are:

(a) CONS: for system construction.
(b) RUN: for running the signal processing.
(c) STOP: for logging out of the system simulation.

4.6.2.3 Construction Mode

The simulated signal processing systems construction is
{*)executed in the usual way , but with the additional

problem of the parameters manipulations of the "slave"
processor. Subroutine CPMAN is modified to include the
later problem (see later).

There are only two basic modules included in the modified
ICOSS library. The first is the signal generator (sinewave)
and the second is the filter module. The reason for
simulating the signal generator is because the real time
operation is neither required, nor possible for this
exercise.

Since the actual simulation will be off-line, then the
scope action will be simulated as well. This requires a
storage area for the accummulation of the output signal
samples. The process is executed, as part of the tele­
type interrupts system similar to the original procedure
of ICOSS.

* See Chapter 3

151

Control parameter manipulation: CPMAN

This is a two fold operation: the first is the usual con­
trol parameter manipulation which was discussed in
Chapter 3. The second is the transfer of parameters to
the "slave" processor in the case of the filter module.
This means that the filter parameters will be processed
by the host computer (accepting primary parameters from
the user and calculating the final-secondary-parameters)
which will then be stored in the main ICOSS body in the
Host computer, as well as storing it in the "slave"
processor as part of the filter module.

Subroutines

CONST
BCONST
CPMAN
SCONST
SIGN
FILT
STORE
LOOP

Overall controller for the construction mode.
Basic element construction tool.
Control parameters manipulation.
Scope action manipulation.
Signal generator module (sine wave).
Filter module - as second order segments.
Store for further scope action manipulation.
The running mode controller.

4.6.2.4 Running Mode

The final signal processing of the simulated system is
executed as a loop interrupt of ICOSS in the usual way.
However, in the case of the filtering action in the loop.

152

the signal is transmitted to the "Slave" processor, via the
Host computer buffer, to be processed by the filter module
of the "Slave" processor. While the signal is being
processed, the simulator ICOSS keeps hunting for the out­
put signal of "Slave" processor (the filter module). The
waiting period is decided by two factors:

(a) The filter action execution time.
(b) Data transfer rate of the Host computer buffer.

4.6.3 The Host Computer interprocessor Buffer *

This interface allows the transfer of 12 bit digital data

to or from the PDP8/e computer and provides signal lines
for hand-shaking sequences between the processor and an
external device (the microprocessor controlled unit).

The interface comprises a 12 bit Transmit Buffer and a 12
bit Receive Buffer, each with associated Flag input and
pulse output signal lines. When the processor transfers
data to the transmit Buffer or data from the Receive
Buffer a 100 nsec pulse appears on the associated Pulse
Line which may be used to indicate to an external device
that data is ready to be transmitted or that data has been
received. Each buffer has an associated device flag which
is cleared by the processor lOT instructions. The flags
may each be set to (1) by pulses from an external device

* Refr PDP8/e peripheral data sheet.
DB8 - E interprocessor Buffer.

153

indicating that data has been transmitted or that data is
ready to be received. When enabled under software control
either flag may cause an interrupt when set to (1).

Technical specification

Maximum transfer rate

Data output

Rise and fall times
Data inputs

Data level

One 12 bit word at approximately
5 kHz.
8 itiA (5TTL loads) and still
maintain standard TTL noise
immunity. Series terminated
with 100 ohms.
Less than 50 nsec without cable.
One unit load (1.6mA) each and
clamped to -0.6 volts.
True at 3.0 volts.
False at 0 volts.

154

4.7 RUNNING OF FINAL SYSTEM

(a) General layout ,

Having prepared both programs, ICOSS for the Host
machine, and BOF for the microprocessor unit, the
combined system may now be run. The final system
configuration is shown in Fig 4.7.1; it must be
noted that the address lines (16 bits) and the
control lines are omitted from the Figure. A
detailed block diagram of the microprocessor unit
is shown in Fig 4.5.2. Utilising the facility
provided in the microprocessor itself, section A
of the bi-directional data line (8 bits) of PIA is
used for Transmit of data from microprocessor unit
to the Host computer buffer and Section B of PIA
for the Receive of data from the Host computer buffer.

(b) Attempted runs

In attempting to run the combined system, there were
two major obstacles:

(a) the arithmetic unit was not available.
(b) the transmit/receive rate of the PDP8/e buffer

was very low, 5 KHz as mentioned earlier.

Since the BOF operation in the microprocessor unit
is a signal processing function and has no bearing

155

on the multiprocessing action of the combined
system, it was decided therefore to test only
the interaction between the two systems; by
circulating a number between them, which was
performed accurately. However the following
points are raised;

(i) The microprocessor data lines and the
memory locations related must be increased
to an appropriate number and compatible with
the Host computer buffer. In the present
case, the Host computer has 12 data lines,
whereas the microprocessor unit has 8 data
lines.

(ii) The transfer speed of the Host computer
buffer must increase considerably in order
to make the process advantageous.

(iii) The microprocessor speed can be increased
as well, allowing more segments of digital
filter in BOF'.

* A microprocessor unit the MIPROC 16 say, which has
16 data lines and 350 ns/instructions, will produce
better results.

156

Dû^a

I /O ,

Fi'q. 421 Tupical Covnpuher ConfiquroMon

O /P n2

RAM 1

I / P n

Clock

ROM 1

ROM n

CPU

% .422 Av\icroco^r,nuhcT St'ructur^

O/P

Add one
ho

Address
Couhhcr

Address
Counhcr

— 2

d
Conhrol Nexh 0►n Jump
Pahhcrn Shorh PU Condihoh

Address s
n
f
i

n — '9^

o
n
a

i

C tiÆ
CLk

-<n K t . - ,

Fig.425 WHkes M icroprocessor

157

Ariltimchc Loqic Unih ALU

/Wemory Address Reqisher A\AR.

General Purpose Reals hers

nshrucnon t^ccurion
Con'rrol Loqic

Program Counhcr PC.

nshruchion Rer^ishcr IR .

Fiq.424 In hern g I Shruchurc o f g AAicroprocessor

158

Address
Lines

A A
Read Wrihe

A A
Data in

Data Ou^

Conlroi lnpu^s

Ffg .425 Basic S truchureo jB asic RAW

Ê Ô - ! - [> »
WRITE— i — N o -

RAM
CHIPWRITE

I Address

Doha ouh <

Doha ih

Buffer

159

CE .
CE .

W ^ -
£0 -
A,7.

Ko-

D?
06
05
04
03
Da
D|
Do

A 5-A 7 Eo WRITE CE CE

^ jo fM ^ (25Gx4)^ o oH H H" H

F ig .4 27

A o " - A ? EoW C lTECEC E

«çj* K) (256x4)o o o o
M H h T H ___

Processor

Mûshcr Processori

Sensors

Fiq.4 31 Hierarchical 5 us km

HosV Com pu hcr

Parai Id
In hcr face

160

L

1

M icroprocessor R O M

F(g. 4 3 3 Microoroccssor ConlTolled Sushcm

J

Termmol I/o

Hosh Comput"cr
(General Purpose)

—I I___ Peripheral Processor
(Special Purpose)

Fig . 4 5 5 Mochcr / 5 !q v c S u s h c m ,

161

Fig. 4 4 * A D igital Fi I hcr o f n Second-order Segmente

152
r 1

5copa

j j O.CPowdr

[+5V +12V-12V 0V(E)|L— I

r

D /A

1
1
1

-
< >

1 \ } \ 7

ROM RAM

1
1
1

M P6800 Slave.

A C IA
HOST

(PDP/Ô)

L.A.U.

CONSOII

Fig. A4 Z

163

X in') I

1

x(n-0

x(n-2)

yCn-2)

y (n-0

y(nl — xCn)

x(n-0

x(n-i)

y(r\-2)

y(n-0

3<n)

u>(ni y(M')

Xj (n-0 %;(n-0

X%(n-2) Xz(n-2l

y^(n-2) S j C''-’’)

y.(n-0 a ,(n -0 y^Cn-i)

I St sej. 2nd S€3-

S ta te variables

3rd seg

ttii aav 0.S1

û|2 a 22 as2

bn bî» b3\

t>i2. bzi bs2.

C o n tro l o a r a r n e t e r s

F ig .4-51, Access and shu-ffling procedure.

164

IR Q A

00
DATA
BUS
BÜFFf/î

D7 IE

CONTROL 1
r R6G. A n I

IK F R . S TAT 1/5
Control A

C^\
C^2

BUS
INPUT
REG.

cso
cs«CstBSÛ
RSI
R/W

En*We5

CHIP
SELECT
«tk R /W

Control

IRQ 6

OUTPUT BUS

O u t p u t

RSG. A

$(Û
g
3

f=t>
Output
RSC. 6

DATA
IXRgCTlON
RCG. A

- 5
Control
%G. B

s z

PrRiP«fRAL
INTERFACE

A

PAO

PERIPHERAL
INTERFACE

B

P a 7

PBO

PB 7

T>ATA
Direction
REG. B

inter, status
Control 8

C8l
•C&2

B s •4 5 2 . P IA Rgj lsfcer 5 tru c ta rg

165

Kl $0001

50002

K3 i0003

I /P $0004

O/P $0005

K2 $0006

Zo $0007

X $000 8

N 1 S0009

Expansion

InfcernaC
parameters

$00 oo
$00 09

Moduêe control

Parameters CRs

$00 10
$002.2

MootuL̂ e State
Variables KN/\

$00 25
$00 52

In ltla tlsa tlo n $Oo 55
$00 44

Program $00 45
$00 F4

Sabrou-tlnes $0045
$OOF4

— — — — — — —

P IA $8004
$800B

F y . 4 5 5 . Memory M a p

166

Gî^l)
Initiate
KI = o %o=0
K2=0 I/P=0
K3=0 O/PrO
DC =0

Subroutine PIAI
In itia te pifl gk

POLLING O/P ERROR MESS-

CALL P I A

RUN MODE

Ï(RETÜRHCONS

Ki,jc,etc

Fig. 454 : CONS Mode

157

^ Sfcarb

Tnpiib:
3C/ Nf

Store;
, Zo-PC

Fetch:Zo)CLCKi%X^CkO

Yes
State Variable
M a n i p a l a t l o n

Yes
y = CLo "Z,

Return

160

bJ
_J<

DATA
DATA

CONTROL CONTROL

STATUS LU

DATA

ICHCL

CONlTROL
D A T A
CONTROL

CO
DATA

CONTRW.
O
U i

TIM INGPOWER

CONTROLPOWER
in

lU /j

i |

LU

IICO

Ul

11

 UT

O to

^ u-i

III

El
y 1

* o
o

o
o
ÛÛ
ECD
to

O
CO
d
00
UJ

CO
CL
a-

U)

g

169

■§

h
(/)

S
OT'
2
û.
N
Ü)

i£

SEQUENCER

C ontro l
Lines BUFFER

A 0 - A 9

A14-A15

A0~A£>

A0-AG

B.3 Æ I

170

>

RAM 1
A14-A15

RAM 2
A14-A15

Dû^a Lines
S bit’s

*-Not’ Presen

17:

CHAPTER 5

APPLICATION PROBLEMS

5.1 INTRODUCTION

Discussion in developing the new communication system
simulator (ICOSS) so far, has covered ICOSS structure
and function, and the future feasibility and developments,
(Chapters 3 and 4 respectively). The third and final
aspect of developing a simulator is its novelty in
engineering and research work, to be discussed in this
Chapter.

Two investigation problems were chosen to test ICOSS^
behaviour in a communication engineering application;
they are

(a) Interferences in phase-locked loop
(b) Fast acquisition phase-lock loop (PLL)

The reasons for choosing those application problems are:

(i) Both contain feedback loops, which ICOSS
supposedly is capable of handling.

(ii) The performance of both systems is difficult
to assess theoretically.

17;

(iii) Both problems have been investigated experi­
mentally. The first by A Blanchard^ and the

36second by J P McGeehan at Bath University.
The comparison of results will make a good
indication of ICOSS usefulness.

As a complementary introduction to those problems, the
analysis, characteristics and behaviour of a simple PLL
is made, as well as outlining the capability of ICOSS
approach in determining these parameters compared with
other conventional methods.

5.2 SIMPLE PLL

5.2.1 Introduction

A simple second order, analogue phase-lock loop (PLL),
Fig 5.2.1a,is to be designed and simulated, and whose
basic theory and analysis is found in Appendix H. Two
approaches are made in the simulation of this PLL using
ICOSS, namely:

(a) The direct approach: in which the actual signal
as function of time is used in the analysis.

(b) The complex signal approach: in which the real-
imaginary components of the signal are considered
in the analysis.

The direct apprach is also attempted using a dedicated

173

simulation package for simple PLL. The comparison between
the three approaches is based on:

(i) number of computer runs needed to achieve
result.

(ii) User ease.

5.2.2 PLL parameters

With reference to the PLL theory as outlined in Appendix
H, the following are the parameters of the PLL used in
the tests:

* Phase sensitive detector PHSD parameter:
= 0.274

* Voltage control oscillator VCO:
+ parameter: = 0.029 Hz/volt
+ free running frequency: f^ = 10 Hz

* Gain amplifier (GAIN):
A = 1200, 1500, 2000

* Filter:
Cut-off frequency f^ = 0.1, 0.2, 0.3 Hz

* Calculated d.c. gain of PL:
K: 59.9, 74.88, 99.87

174

5.2.3. Direct Approach

(a) PLL special purpose package SPP

The tests carried out using a specially written program for
a phase-lock loop, were to determine the lock ranges of the
PLL whose parameters outlined in 5.2.2, for the conditions
mentioned above. For each set of conditions two tests were
carried out, one for determining the upper limit of the
locking range, ie F4, Fig H3, and the other for the lower
limit, FI. In either case the input frequency was increased
in steps of 1 Hz, and the VCO frequency was tested for lock,
until the PLL becomes out of lock. In all a total of 18
runs were needed. The results obtained. as compared with
the expected values are :

A (Hji L measured L calculated (Hj)

1200 0.1 19 12
ri 0.2 21 12
vr 0.3 18 12

1500 0.1 24 23.84
II 0.2 23 23.84
ir 0. 3 22 23.84

2000 0.1 31 31.8
II 0.2 28 31.8
II 0. 3 27 31.8

The discrepancy may be due to the number of reasons,
see later, section 5.2.5.

175

(b) ICOSS simulation

(i) Block diagram and ICOSS dialogue are shown
in Fig 5.2.1 a,b.

(ii) The locking range of the PLL was determined
for the following conditions and sets:

* Input signal frequency (f^) was increased
from 0 40 Hz at 2 Hz steps.

* Cut-off frequency of the simple first-
order low-pass filter and the gain were
varied producing 9 sets of curves.

A = 1200, 1500, 2000
f^ = 0.1 , 0.2 , 0.3 Hz

as before.

(iii) Procedure of (ii) was repeated with input
signal frequency decreasing from 40 ^ 0 Hz
at 2 Hz steps, producing 9 curves.

(iv) Method employed:
* Select a fixed input frequency f^.
* Drive PLL until lock is achieved, if f^

within the range of PLL.

175

Measure mean locking frequency and
store value in YAXIS(I). This is
simply done by using the EDIT interrupt
of TTYFG group, and the MEAN interrupt
of the FLAG group.
Increase f^ using the CHCP (change
of parameter) interrupt of the
TTYFG group, and repeat.
Plot the curves using the PLTG
interrupt of the TTYFG group.
One run only was enough for the above
test, including the graph plotting
curves.
The curves obtained are shown in Fig
5.2.3.

177

5.2.4 Complex-signal approach

(a) Theory

(i) Basic Operation Analysis (Fig 5.2.4a)

the input signal: x(t) = m(t) cos (u)̂ t+cj) (t))
ie general modulated signal

y(t) = cos ((tü̂ +ôoo) t)
ie frequency offset, constant amplitude signal

thence: z(t) = m(t) cos (cD̂ t+(j) (t)) cos ((œ̂ +6o)) t)

= m(t) i { cos |̂ (2tü̂ +6o)) t + cf) (t)j

+ cos -̂6o)t+(}) (t)J }

w(t) = cos 1̂ (j) (t)-6ü)tJ :
assuming ideal filter '

w'(t) = a(t) cos 6 (t) in general
assuming non-ideal filter.

(ii) The model:

1. Phase sensitive detector PSD (Fig 5.2.4b)

x(t), y(t) are r.f. modulated signals

178

cü' (t) is a real, base-band signal
z '(t) is z(t) filtered by ideal Lpf so as

to exclude the 2w^ component

or z ' (t) = cos ^$(t)-6wtj

E m(t).{exp j |^(t)-5wtj + exp-j ^^(t)-ôwtj

Now complex models of x(t) and y(t) are:

x^(t) = m(t) exp j 0(t)
y^(t) = 1 exp j ôo)t

thence = x^(t) . y*(t)
u/(t) = z^(t)* h(t) in usual way.

where h(t) is the filter impulse response

2. Voltage controlled oscillator VCO

6w = I 0) ' (t)c

(iii) Simulation elements

1. Multiplier; (Fig 5.2.4c), which includes ideal
Lpf to exclude 2w^ components

z ' = x.y*

Taking real and imaginary components:

179

^R + Xj y

?R - y
but 4 is not

R R JR I
z.

is a real baseband signal.

2. Filter

= z^* h(t)
but (jüj. is not relevant.

3. VCO

ÔCÜ - kw^
= cos 5wt
= sin 6(jot

iv) Loop simulation

The final block diagram representation for
this simple phase loop is shown in Fig 5.2.4d

180

(b) The block diagram as used in ICOSS and its
equivalent listing are shown in Fig 5.2.5.

(c) Measurements and tests

The effect of varying sampling frequency on
acquisition time of PLL under test.

(d) Method and results

* The transient responses of the locking frequency
of PLL are obtained using two interrupts:
TRAN of the FLAG group and TRAN of the STOP
interrupt of the TTYFG group, as shown in Fig
5.2.5, for number of sampling frequencies, (f^).
The fg variation was carried out using the
change of global parameter (CHGC) interrupt of
the TTYFG.

* The values of f^ were chosen to be multiples of
the input signal frequency which was chosen to
be 8 Hz.

* Numerical values were obtained this time for the
response and a closer look to the actual values
was made.

* The acquisition times (measured over 1% of the
locking frequency) were determined as follows:

Sampling frequency (f^) Hz 8 16 24 48
Time in sec No 1.75 1.83 1.88

lock

181

5.2.5 Comment

(a) Locking range of the PLL under test: the reason for
the discrepancy between the calculated and the
measured locking range of the PLL is due to the fact
that the locking range is not symmetrical about the
free-running frequency of the VCO, as clearly shown
in Fig 5.2.3. This means that the simple equation of
Appendix H for lock range does not hold; however ICOSS
is capable of analysing completely this type of problem.

(b) The effect of varying f^:
* Increasing sampling frequency will give better defi­

nition of the signals at the expense of computing time.
* Complex-signal approach is related to the modulating

signal frequency and therefore requires lower sampling
frequency (f^) than the direct approach which is
carrier frequency dependent, eg for the previous work,
fg was 96 Hz for the direct approach, and 24 Hz for
the complex-signal approach, for the range of fre­
quencies mentioned, which were centred about 10 Hz
(the VCO free running frequency).

(c) Plots: with the ability to store sample values and mani­
pulate them, it is possible to plot any response vs any
parameter variations. This was demonstrated in Fig
5.2.3 where a number of curves are plotted for different
sets of parameters, all on one graph, within one run. This is
a feature of ICOSS which provides better understanding
of system behaviour.

(d) Runs: there is a marked reduction in number of runs using
ICOSS, as compared with the SPP, vis, 18:2, hence reduc­
tion in computer time.

182

5.3 INTERFERENCES IN PHASE-LOCK LOOPS; STOCHASTIC
SIMULATION

495.3.1 Stochastic Simulation

Even in apparently deterministic and well-behaved situa­
tions, some averaging must take place. There are two
ways of treating this type of problem:

(a) Systematic variation of parameters: for example,
a problem with two parameters; the first parameter
having six values and the second, five, 30 simulation
runs are required in order to examine the full effect
of those two parameters on the system under test.
Yet averaging process has to be carried out to arrive
at the final result. In practice, it is possible to
reduce drastically the number of runs by examining
the sensitivity of the final result to individual
parameter , Notice that in a practical test the
relative phases of the signals are continually moving,
so that an indicating instrument takes automatic
averaging.

22
(b) Monte-Carlo technique : where the parameters are

varied by choosing random values, according to
certain statistical criteria. That means simulation
must record the results of a number of observations,
considering the sequence in which they occur and not
the values assumed by the variable . This technique

183

usually requires a large number of estimates to
ensure adequate convergence.

5.3.2 The problem of intereferences in PLL

As an application to this type of problem, tone inter­
ferences in PLL which may be encountered in PLL receivers,
is chosen. The reasons for this choice are:

* Co-channel interference is common occurrence.
* The theoretical analysis is complicated and the

simulation approach is ideal for this type of
problem.

* The effect of an interfering, sinusoidal signal
on another PLL situation has already been
investigated theoretically, and practically by
A Blanchard as mentioned earlier, and a compari­
son between the two approaches can be made.

There are two cases to consider:

(a) Influence of an unwanted signal on PLL initially in
lock: in this case the loop initially is in lock
with the wanted signal f^ and then the unwanted
signal f^ is applied, and the PLL behaviour is
investigated.

(b) Influence of an unwanted signal on PLL initially
out of lock: the two signals are simultaneously

184

applied to the PLL input, and the acquisition
behaviour, etc is then investigated.

These two cases were investigated by Blanchard experi­
mentally, and number of graphs are obtained. The attempts
are now made to confirm these results using ICOSS and
simulation approach.

5.3.3 Problem formulation

(a) General

* Block diagram and its equivalent ICOSS listing
are shown in Fig 5.3.1. a,b.

* The PLL used for these tests is the same as the
one already used in Section 5.2.

* The simple PLL structure, its parameters, and
theoretical formulations are discussed in Appendix
H, whereas the theory of the interferences in PLL
is fully described in Blanchard paper^.

* The input signals under tests are of the form:
wanted signal y^ = A^ cos (w^t + B^)

unwanted signal y = A cos (w t + B,) ̂ ^u u u u
For f. = 8 Hz fixed 1

f : varied from 5 Hz ^ 15 Hz u
A^ = 1.0 fixed
A^ : 0.3, 1.0, 2.0

giving rise to

: - 10 dB, 0 dB, + 6 dB.u

185

(b) Measurements

(i) For unwanted signal = 11.0 Hz, and
amplitude = 0.1, set of waveforms are
to be obtained for the nodes within the
block diagram, which will show the varia­
tion of signal at each node, for the case
PLL initially out of lock (5.3.2b).

(ii) Parameter variations: for the case of
PLL initially out of lock, unwanted signal
= 10 Hz and amplitude: 0.1, 0.3, 0.6, 0.8,
the locking frequency responses and the RMS
values variation vs amplitude, for the
steady state situations are to be deter­
mined.

(iii) Confirmation of the Blanchard formulation,
by plotting points on the curves which
he formulated theoretically, and
approved experimentally. With use of
the EDIT interrupt of TTYFG group, the
test for (5.3.2a) can easily be carried
out, ie running PLL until lock is achieved
on the wanted signal channel and then
edit the system structure to add the
unwanted signal, preserving the system
state, and continue with the test.

185

5.3.4 Results and Comments

(i) Signal Flow

The pictorial representation of the signals (wanted
and unwanted) as accessed at the inner nodes of
the block diagram for f = 1 1.0 Hz, A = 1 . 0 and ̂ u u
f^ = 8.0 Hz, A^.= 1.0, are plotted on one graph.
Fig 5.3.2. It can be deduced from the test and the
graphs :

* The ease with which many signal responses are
obtained (ICOSS feature), within one run.

* The influence of small interfering tone is
clearly shown in the behaviour of PLL.

* The FM effect on the VCO.

(ii) Parameter variations

Two graphs are plotted, Fig 5.3.3.

(1) The VCO frequency response
(2) The RMS of the steady state locking frequency

ripple vs amplitude variation.

It can be seen from the second graph that a derived
variable can be plotted with the same ease as
plotting the response of the first graph. This is
another feature of ICOSS.

187

(iii) Blanchards Results

To show the actual variations and actions within
PLL for the conditions under tests as mentioned
earlier, the locking frequency response of case (a)
subsection 5.3.2, for the situation when PLL locking
on the unwanted signal, and then the unwanted
signal is injected, and the transient response
resulted. Fig 5.3.4.

The parameters for Blanchard curves, ie m = (^)

and) are determined from these graphs and

then plotted on those curves which Blanchard
formulated theoretically and approved experimen­
tally. These curves. Fig 5.3.5, have been
approved using this method. However, more runs
need to be made, in order to confirm all the
results Blanchard formulated.

188

5.4 FAST ACQUISITION PLL

5.4.1 Description

The considered technique has been proved to give both
improved acquisition and tracking performance for second
order PLL used in narrow-band communication systems. The
new technique is such that:

* it could be easily applied to all second-order
phase-lock loops.

* it would not be necessary to redesign the loop
filter (active or passive).

* the loop gain must remain unaltered at the
design value.

* on attaining phase-lock the loop must revert to
its conventional form.

The technique is based upon a consideration of the non­
linear loop equation describing the pull-in behaviour of

36a second-order phase-locked loop shown in Fig 5.4.1:

6 (t) + 2n 03 cos 6 (t) 6 (t) + 03̂ sin 0 (t) = 0 e n e e n e

where sin 6^ is the error signal from p.s.d.l,
n is the loop damping factor

and 03̂ is the natural frequency of the loop.

By expressing the solutions to this equation in the form

189

36of phase-plane plots a relationship can be established
between the instantaneous frequency error, 0^, and cos 0^,
a signal which is readily available in most second-order
loops. If the error signal from p.s.d.l is differentiated
by a simple RC network the signal from p.s.d.2 can be
used to pass only those half-cycles driving the VCO towards
synchronisation. À schematic diagram of this techniques is
shown in Fig 5.4.2. It will be observed that the cos 0e
electronic switch, SI, is used to pass the appropriate
half-periods into a suitable summing amplifier configura­
tion. By adjusting the gain of the differential path the
smoothed voltage leaving the loop low pass filter is
such that the input and VCO frequencies are automatically
synchronised. At this point the differential error signal
leaving the RC network is small and the error signal from
p.s.d.l (which is now large) drives the loop into phase
synchronisation. Once in lock the cos 0^ switch, SI,
remains open and the loop reverts to its normal form.

5.4.2. Parameters

With reference to the circuit diagram shown in Fig 5.4.1:

(a) The actual hardware parameters:

These are the actual values used in the original
circuit:

* VCO = 5.7 5 X 10^ radians/sec/volt

190

f = 200 KHz o
★ PHSD = 0,065 volts/radian

* Filter = 430
R^ = 1500

= 0.47 yF

* Differentiator
= 0.1 yF

R^ = 20 KO

PL Loop • z = 0.707
3ü3̂ = 2it X 10 rad/sec

(b) Parameter used in ICOSS model

With the use of the formulation deduced in Appendix H,
the parameters for the PLL model as formulated by
ICOSS, Fig 5.4.2 are:

VCO K = 91.5141 KHz/volt
f = 200 KHz o

PHSD K. = 1.0d
LPass filter f^ = 1.414 KHzc
This is the same first order Butterworth type
low pass filter already used earlier
GAIN A = 0.1189
inter d.c. gain (loss)

191

5.4.3 Method and Measurements

(a) The method adopted is the complex signal technique,
producing the block diagram shown in Fig 5.4.3, with
the ICOSS listing in Fig 5.4.4. The differentiator
is a 2 sections type, for the same performance.
Appendix B.

(b) The measurements were:

(i) Comparison of acquisition time with and without
the technique.

(ii) The effect of varying the technique phase
shift for 0°, 60*̂ and 90^ on the performance
of the loop.

5.4.4 Observations

(a) 90° phase-shift case (Fig 5.4.5)

Observation

* Input on VCO centre frequency (200 kHz): new
technique produces no difference in acquisition
time.

* Input off centre frequency: lock to one side.
* Capture range ± 5 Hz, so:

at 194 kHz - no lock
at 195 kHz - just locks

192

Comment

With the limited test carried out, the PLL transient
responses seem to tie-up with the experimental

53results for the cases with/without the technique
The Fig 5.4.6 shows that the fast acquisition
technique clearly improves acquisition time.

(b) Varying phase shift (Fig 5.4.6)

Observation

* At the edge of normal capture range - very
little difference from above.

* Outside the capture range, ie at 194,, 193 KhZ,
the new technique appears to extend the
capture range.

Comment

Varying the phase shift, seems initially to have
some effect on the capture range, probably due to
cycle slipping. This result was not anticipated
from previous experimental studies and requires

53more thorough investigation

193

lO
SCOP% VCO

ENTR
100*0
SIGN
5.0
1.0
0.0

-r.o
PÜSD
0 5
GAiH
1500.0
FILT
0.1
VCO
100
0 0 2 5
SIGN
0*0
I O
0.0
-1.0
BRCrt
I
13
7
SCOP
TRAN
Y
5 0 0 13
END
1 0.0
2 0.0
3 0*0
14 0.0
15 O O
Run

0

<s>

ffi

©

@

Ftq-521 PLL BLOCK DIAGRAM
St ICOSS LISTIUG

Cb)

194

I <
i/

/

J

o
o
o
!:o<- Ai

1 1
 ̂ - V)i

OCO
c
o
Cl.
CO
c
c/)|
cO
"C
o

_J
__J
CL.

cr

U
CCO
CO

O-oC

CO:NO
LO

lEF

(L
O
c
iX

c_
O

£2

c
ou> 9:n

-r; ^

II:
.331

II O)

195

* 10

fuocK 3̂- 3 5

F lo c k H%.

3 0

L' -. >..

1̂00

2.000.3

-11̂ 00; 0-Î- /
 ̂j ;
/ /
l \

i ' 1
1 1
/ i

i

1

». ID

2 • 0 f—

i
I • 8 p-

I • 6 I—i
1-4^ 1ÎOO

I VI . 2 f--
i

I -0 '

I0-S p
0.6 L-

0 -4 h\>
0.2 L

0.0 '—

15000.3 zooo
0.2

IZ O O

0 . 3

15)0
o\

noo
0.1

/’ I

,400 8 .%

/

iOOO
O .,

ii

i I

V-*.

2ao00.3

I !

I n p u i f rcĉ u enct
- f l tncreasLnq

O 3 9

J X "IXiG
3 •> :o'

Hi

fL decrecLclnQ
39 O Hx

H:

FLj. 5 2 3 . SimpLe PLL . Locking rgr^e response

195

psd FILT

. VCO

(a)

(W

Cc)

U) R

(sL)

Fig 524 . Complex s ignai, ctpproach

197

r\j

scop

vco

Slock d ia g ram

ENTR
24.0
SIGN
8-0
I .0

0,0
BRCH
1
A
G
BRCW
2
19 tS
? 8
PHSD
OS
BRCH
I
9
It
ADDR
GAIN
1500.0

FILl
O.l
VCO
too
0 029
SIGN
0‘0
1-0
0*0
G O
SCOP
TRAN
X"
soo vs
ENO

1 0.00,0 I
2 0.0 I
3 0.0 I
16 0.0 I
17 0.0 O
RUN

ICOSS LISTING

R g.525 Simple PLL. complex signal
appœcLch

198

5

4r ^

?

%
iZ

. 6 ^ 7
' A

IS
JO'

14

20 -> JO
- j / 4 \ 9 < 4 . IS 8

21 - * r>J I — /V
T i k l V C O

2 2 -» 23 17 14

s c o p

ENTR

100.0

SIGN
& .0

lo
0.0
0.0

BRCH

I

2 4
G
ADbR
BRCH

I
(9
9

PHSD
05
GAIN

ISOO.O
riLI
O .l

VCO
10*0

0 . 0 2 9

SXGN
0-0
10

O O

0.0

NSTR
SIGN
v\.o

O. I
0.0
0.0

Block diagram

SCoP

TRAN
Goo
Goo i5
END
t 0-0
2
s

10
/4
17

20
2(
20
RofJ

0.0
0.0

0.0
0.0
0.O
0-0
0.0
0.0
o o

ICOSS U slinp

F ig . 531. In trrfc rg n cg in P L L ,
XC055 Slock d iagram and List ing

QQ

•Jrj

1 1
o n

\

1/

k

I I
1 -

X ce —

V)
c/>
CoQL
05(ÙL
COQ)

- o
O
c

CL
c

OcCi5

i-
-u>
C

CO
NO
L O

i i ï

0/4J ac." O•vJ> 331

QJ 31
IT oC ̂ 1#: _Uc

c3

.231
— I<3C.51cn X00

! , V i
200

r
LOCK

V •A/A/? Ai co.%

Ai-0'6

'\Â /\/'\Ay\/\/\/\/\/\/\/\y\/\/\/\/\/\/\y\Ay\6 At = 0.3

'V
I_____ I

0 'j or 0 4 n e 1 -.0 I -J 1 -n 1-6
Time

A% = oJ
A X AXIS
r A 10̂ 2ÔC

AX 13 RMS

n ■ 3

4-0

r n

1 ■ 0

1 ■ 0

r 0 .3 • n -1 ■ 0 A r, _ 7-0
ny 1

0 10 Az

.5 3 3 Interference, in P L L
(i) Floc vs. Timg o'O f̂ MS vs. f\z

201

a:
y
o0

Lu

Ll

(

>

>

c-
co

■s•c_2E8

■T

"È
§
2Cd

O
5.u
h-

! C-
1 r.

S
c

O

uO

~5• _)
4_)

5
—jü_t
V)c
E.vT.Wi-
du
’ûL
31
h*
4-M
in

à

43
202

-, : i i ?

f

o

vl4̂
“ûJ

d_jC
oCd
Cû

a
.£
%
uC%*k
(Zww.wc

NOlo
ixî

X\S

«9

8dV

203

A,$IN6e

I coherent
! detector

p.sd.i

90

V.CO.

Input

Rc|. 541 : Basic phase-Locked Loop uoibh
coherent detector

r - c ^d(ff. nctKOf

so' phase
ch'iffc

p.sAz. wave shap­
ing ci/cuifc

Si

AzCOS %

p.S.d. I A, SIN Gg s u m m i n g Low- possj
(impüfier •PiLfcer

V C .O

Fig. 542. Schematic ctcĉ ram of modiited

phase-Locked loop

switch Si open for cosBpyo

204

I» m
et

to

N»
w

N tn

u»-
N

ftc*

o

I
5?

u_o
3

CL
c
•9UJ*sJ

ud
(/)
if

^1
in

à

m i ' i ’ I D » >n

11 i m l i n i n

1.1 i n 11 l ' t n

i n i u i I 1 (j n

M ' i ' i n I : ' o o

I 11 H) (11 m n

H ' I l i M I . ' , n n

i i ') () i i I • i i i i)

1 irto
i r i n n I / O U

" n o n I i . / i oII' Il II I I '."10
n n n n r o n o

M o o o r ’ i o o

M o n n r r ' n n

< 1 0 0 0 0 : 1 0 0

o n u o O ' i O O
o n o n o - j o n

ooitoo/nn
I 1O O 0 0 von
f i i i o o r i o n

X i ' t O O n o o

o M o o . ' i o n n

0000:11 on
1 0 0 0 : 1 0 0 0

' ton o 1:100
oiioo;t/''io
' l O O O O b O O

O ï l i l t K O M I O

0 0 0 0 3 7 0 0

O ' i O O . U O O

0 0 0 0 3 9 0 0

(1000 /wioo
0 0 0 0 / 1 1 0 0
O O O O / i P O O

O O O O <3.300

n o o n / i / , o o

0 0 (1 0 / 0) 0 0
O O O O / n O O

O O O O / i 7 0 0

oOOO-uf-OO
O O O O /i9on
O O O n b O O Q
0 O O 0 5 I 0 0

O O O O b?on
3 O 0 0 3 2 0 0

' . . o 0 0 5 ^ 0 0

J Û O O b a O O

3:00 5600
:::oo7oo
3000 3POO
O O O O 3900
O O O O t O 00
: : : o c i c Q

0 0 : 0 6 2 0 0
0 0 6 3 0 0

:o:3 6*00
:ooo 6300
: 0 ') o 6 6 0 0
OO'OG 6 7 ' 3 0

O O Q O t P O O
0 0 0 0 6 900
O O O O ' O O O
0 0 3 0 7 1 0 0
3000 7200
OOOO 7 300
0000 7600
7000 7 300
00 00 7 600
0 3 0 0 7 70300007 900
30:3 7900
0 000 9000
7000 PI 00
0 0 3 0 9 2 0 0
;nc0f 300
0000 9400 7i7C:P30 3
7 0 0 0 9 6 0 0

7303 F 700
0 3 0 JPF03
70:3 F 900
3 0 : 3 9 3 3 3
70 73 s 130
7 0 7 0 = 2 0 0
O O O O 9 300
3 0C0 9/.30
7030 9503
000: = 63 3
30 0 0 = 7 0 3
0.7 7 7 9F0'1 J73399IJÜ
7.7010000
7:310 130
3'7 0 13 200
30 7 1033 7
on 7 I 0 vOO
0 0 ^ 1 3 >30
330 1.0 r 7 0
1 l 7 1 0 73 ,7
7-.1.113F3 1
7 ,n 1 7^33
3Ô1... 1 1 0 7 ,

I- ,1 I I.
; o n n n n . o

■ 1 1 nI '/s / in o .11
I .n
o .11

- | . ofit' 01'
1

MI/CH
?

l ' H F I J

OKCF-

Ol'Ot.
MKl.H
1

AUIJW
(lA IN

21
7

1 .0

20

I I

I 2

?(■
I 3

l ' i . r . p 6 . (. iDiisoifÎAI g f'if /a ta f

C Loc i ' - Two I

FlocW TSiff : L./dncliin^

Pinrt Tr-or pk«cf. Sf»(i F-* P/lof

E L o c k r m e ; W r a r x k i n a

205

F I L l
0.11 f >'.7| 07f

1 /Il 4 .0

v C n200000.0 •M jl 4.0
5 I Cmm

0.0
I .0
0 .0

- I .0
OR C H

1

9 h £ h

5 9 C H
1

Ï R C H
2

F > H S ü

= .9Ch
1

A O u R

1

. m S I R

•3 : r .=

RLocV Fjiîlit : kicAïfk,

Block Nine ; aJJrt Block Tfo
S l o c k 6 I f i f o .

S l o c k T w / I v f : (t f r t b t J

g l o c k T U / k f f n ; c r iC i i i a t f f f

Slock Voutteeo : k-Kncîn»

20
22

- 9 0 . J

2 3
2 5 ^

26

1 . 0

Of.

3 0

3 1
3 5

5

2 7

Slack Pi-ftee/i ; .̂sncie -
ÔlOC< G 1 4 . 6 ^ 4 : i / U o i c k i n d

____________________ . Se/F/itSin : bfamcki4̂

___ Black ziaXtffi ; pkcsy . w«f
__________3la.C<__ NJt4« brSkficAin^

Black xàder.SloiK Twffity o,if 1_b«t-C.k>*'J

P S . 544 . Fast dĉ uisifcio
P L L - XCOSS Li’stL̂ x:

3.9999994=
-7 . P6F1 7F06
- 0 . 1 0 7 7 9 1 6 5
-3 ..'•7 602373

1 . 0

itlft
.S lo c k tn/a; Ji-^-|e6enK'acta/

0 . 3 2 c 7 2 ? 3 f
-3 . 4/1] P32}2
3 . 33 69 40 P 5

- 7 .ci 312 7 of
0 . 3 6 F 0 4 0 1 1

Sv C H -ionoi
HRCh
1

N.r fp
A u O R
i 0 J.=r .41 \
Y

L.xU

1 7
3P

bOO

1
2
31 P

I 3
3f

Slack Twenty t~eni\A.tot

Slock Twenta ■Çou.t •- S/i/ltclki/itf
Block Twfntu -flift i ijrtdncKina

ken ikatk
Slack T-c'4Î4 iT*. • o-dJrt
Slock. Twf/ru

39

0.3
0 .0 : .i)
0,0
0.3 I

3 7 -Jl'i'lCi.O IV =.''30 ''' . 7
I = 7 . '

206

Ftq. 545. Fast acj grjib'
PLL wlfch/ujithoLLt

w ith

\
\

\

t: 'V \ : . J L

■ ' \\
W

\ /
/ 7 K \

195 KM3

\7/ //
V I t

/ \

- % J L U L J V•j 2 : / 2 s\ 3-
I \

•1 i 5 0 :C

194 KH3

r;i

' ! , } l i

191 KH3
 ̂ r r A ̂ A A A A A A

m à m È à m â ...

i '
t- 1: " ! i ; ! l; !i. i: 1 l'i

; . f i f
■ '■ • 1 " :!l

' i
M \ i ■ i. i 'i H ,
: * j 1 - M 'r - '
j i ! i'

! ■

207

& 3 . 546. Fasc acq ûlsiti
PLL , phase s ni f t je s por

60® ----------

208

CHAPTER 6

DISCUSSION

6.1 DISCUSSION OF COMMUNICATION SYSTEM SIMULATION IN
GENERAL

Before discussing ICOSS system and its applications in
detail, a summary of the features of communication system
simulations and their advantages will tie up with the
discussion to follow. There are two main areas where
communication system simulation provides a valuable aid:

(i) In research: the main advantages in simulation
35techniques are :

(*) Simulation is excellent for quick assess­
ment of a new proposal, and very good
for obtaining a feel for the first order
effects of various parameters, some of
which may remain implicit in the actual
hardware.

(*) Carefully used, communication system simu­
lation can place proposals in ranking order
of feasibility, and thus avoid unprofitable
proposals. A simulation study may not
necessarily indicate what is to be built in
hardware, but it can usually eliminate those

209

concepts which should not be attempted.
(*) The discipline of modelling increases the

understanding of the real system.
(*) Optimum parameters of a system may be

obtained, by multiple runs.

35
(ii) In teaching: students can be left to experiment

with systems of their devising, without being
hampered by the lack of suitable hardware, and
quickly come to appreciate the basic limitation
imposed by bandwidth restraints, group delay
distortion, spectral manipulation etc. Of course,
unless this is backed up by routine experiment
work, the student may cling to the idea that
ideal systems components are both possible and
desirable. Simulation must always be kept in
close relationship to reality.

In the absence of a general-purpose communication system
simulator, the researcher or the student, will tend to
simulate a special-purpose simulation package for the
particular problem at hand. Their attempts will mean,
inevitably, spending some time for studying computer
programming, some computer science and computer runs to
establish that this simulator is giving the correct
results. This also means, and more so in research, an
appreciable percentage of the overall time spent by a
researcher* could be saved if an already established general
purpose simulator with a known efficiency is available.

210

6.2 DISCUSSION OF ICOSS

(a) ICOSS main features

In the pursuit of a general-purpose communication system
simulation, the ICOSS was designed and implemented. It
was a time-domain based, and on-line oriented simulator
with interactive facility, which has number of important
features. These features are discussed first:

(*) Simulate any signal processing system due to
its unlimited flexibility in the signal
processing modules, see below.

(*) The user is capable of changing parameters of
individual signal processing (SP) modules or
the overall system control parameter (GCP) while
the system is still running, through a buffer,
which makes the simulation as close to the real
system as possible. This avoids the troublesome
procedure of (stopping a run-initialise system-
change parameters - rerunning) approach of
other communication system simulators. The
alternative approach of other simulators has
the following apparent faults:

(i) Repetition of runs means great increase
in computer time and programming
inconvenience.

Ill

(ii) The transient and system response
during a change of control parameter
of a module.will be lost.

(iii) The true resemblance of actual
running of a system is also lost.

(*) Editing: the editing capability of ICOSS is
another facility for the simulation of communi­
cation system in a practical way. The insertion
or deletion of a module will:

(i) Give a realistic assessment of the
behaviour of the tested system.

(ii) Avoid the problem of other simulator
procedures in (stopping a run-editing-
rerun) , which involves the disadvantages
mentioned above.

(*) Interactive action: The interactive action of
ICOSS provides the user with the following:

(i) With the interactive dialogue, the
construction of the simulated model
becomes an easy task.

(ii) Accidental errors are greatly avoided,
and automatically deducted.

(iii) The simulator becomes under the
user's complete control.

212

(*) ICOSS allows the user to write the block
diagram statements of the model in any order,
or with the minimum constraints. With the
internal structuring facility of the block
diagram, the signal flows and is processed
in the correct way, according to the system
state analysis. This avoids a major source of
error which the user may unintentionally make
in the block diagram statement sequence,
especially for those systems having feedback
links.

(*) Portability: ICOSS is written in Fortran IV, a
language widely used in engineering and
scientific applications. Therefore it can be
loaded onto most (if not all) computer systems.
In fact, ICOSS was loaded and tested in 3
different computer situations:

(i) The Digital Equipment PDP8/e mini­
computer: because of the limitation in
size of computer memory, only a
modified version of ICOSS was loaded.
Also because of the limitation in
speed of the computer interfacing
(55 KHz) and computer speed, only the
multiprocessing activity of ICOSS with
a microprocessor sub-system was inves­
tigated, see Chapter 4.

(ii) The* ICL 4-50: the interactive facility

213

of ICOSS was fully tested.
(iii) The'* ICL 2 980; the overall operation

and function of ICOSS were investi­
gated on patch basis.

(*) Software multiprocessing: It is feasible to
couple ICOSS to another simulator using a
fourth group of interrupts. With a teletype
command, ICOSS can be halted and the guest
simulator operated until the required signal
values are accummulated. ICOSS could then be
resumed to process with the new set of signal
values just obtained. As an example, an RF
transmitter could be simulated using the
original ICOSS, and RF transmission using a
guest simulator. This provides a wider scope
of application, but will need further investi­
gation .

(*) On-line operation: The full benefit of ICOSS
is the real on-line operation. Unfortunately
the necessary computing power and processing
equipment are rarely available. For this
reason, the investigation of ICOSS features were
made on off-line operation, with the interactive
dialogue stored on a data file. Although this
method was simple, the quick response which an
on-line system would give, and which ICOSS is
designed for, were not achieved.

214

(b) Discussion of ICOSS internal structure
(with reference to Chapter 3)

(*) Signal processing module treatment:

(i) The simulator investigation was mainly
concerned with the simulator structure
rather than the modules detailed function.
However, the principles adopted, ie with
unlimited number of inputs, outputs, local
control parameters or state variables,
it should be possible to simulate any
signal processing module.

(ii) In the final form of ICOSS, an SP module
library will be established. It will be
possible then to simulate most types of
communication system. However if there is
a system using a very special and rare type
of SP module, a situation will arise in
which a compromise must be reached:

1. Either write this unique and special
purpose module, and keep it permanently
in ICOSS. This is a very inconvenient
and uneconomical situation, since it
means occupying a space in ICOSS which
will rarely be utilised. However, the
module may be deleted as soon as it is
not needed, utilising the dummy module

!15

approach, see Appendix (G). The
process of adding and deleting a
module involves compilation and compo­
sition of ICOSS, which must be avoided
as much as possibl-^. Alternatively,
a transient file for the version of
ICOSS which includes the new module is
generated, run for the particular simu­
lation, and then deleted; leaving the
original version of ICOSS untouched.

2. Or supplying the function as data, in
similar way as supplying the control
parameters, to a special purpose
dummy module. Further investigation
is required for the implementation of
this approach.

(iii) Dummy modules: These can be utilised more
extensively for the expansion of ICOSS.

(*) Standard Unit (SU): In communication system
problems, there is often a standard unit SU,
say a receiver, which is made of a number of
basic SP modules. The SU may be a sub-system
in a bigger system in which SU internal function
does not need to be observed. The running pro­
cedure described in (3.6) involves a number of
substitutions and directives. This means that
for multiple runs, an appreciable time could be

215

saved if some reduction of these substitutions
for the SU could be devised. However, there are
a number of points which must be remembered:

(i) The state variables calculation and
signal flow has still need to be
performed with the SU.

(ii) Only CPs calls need further investi­
gation .

(*) SU further: The facility provided by the teletype
interrupt ENTR, see Chapter 3, can be further
developed. Instead of inputting complete model
block diagram only, as the case at the moment,
it can be made to accept SU models as well. This
additional facility will require SU library, some
delimiter, and the utilisation of the EDIT
facility, as shown in Fig 6.4.1.

(*) I/O peripherals:

(i) Graph plotting arrangement: A main
feature of ICOSS structure is its
modularity. Each module can be
replaced or modified semi-independently
In the case of the plotting routine,
which represents a teletype interrupt
PLTG, the procedure for employing
alternative types of plotting devices
is a simple one. The data for Y, X etc

217

are supplied automatically to PLTG in
either accummulated form or directly.
The plotting management interrupt PLTM
can be used if other requirements are
needed by the new plotting device.
Of course, the ultimate aim is to have
PLTG interrupt constructed as a slave
(peripheral) processor, similar to EOF
processor described in Chapter 4. The
plotting procedure is then carried
out outside ICOSS semi-independently.
Another advantage with this method is
that the processor will have its own
storage, which enables the user to
arrange the graph display independently
of time. This arrangement needs full
investigation.

(ii) Input buffer unit: Inputting data
related to change of parameters require
a special buffer unit, in which the new
CPs, as supplied by the user, wait for
the interrupt to take place and are
automatically submitted into ICOSS.
During the course of this work, the
buffer action was simulated. Therefore,
this facility should be added and
overall operation investigated.

(*) Loading ICOSS on computers: The flexibility in
ICOSS makes the simulator completely portable.

When loading ICOSS on a new computer, the
minimum sub-set of programs, ie ICOSS, TTYFG,
LOOP and FLAG, see Appendix (D) , are loaded first.
Then, there are no limits on the number of
interrupts one requires; the only limitation
imposed is the size of the recipient computer
memory. Of course interrupts of the various
groups are added according to their order of
importance, which means that some of the
facilities may either be increased or decreased.
However, some programming techniques can be
utilised, such as overlaying and segmentations.
Inspecting ICOSS structure. Fig 3.2.3 , the
program execution is performed as lines of sub­
routines, and only 10% of those subroutines
operate at once, ie need loading. This fact,
which was utilised in the running of the present
version of ICOSS, can be employed in other
computer systems.

(*) Hardware multiprocessing: The capability of
software multiprocessing can be further developed,
by real hardware multiprocessing. In this, two
mini-computers are used: one holding ICOSS and
the other holding the new simulator, and working
in a similar way as EOF, Chapter 4. The exception
is that in the latter case the separated interrupt
was within a group of other interrupts, whereas
in the new concept, a whole group of interrupts
are contained within ICOSS. Further, it is

219

feasible that any group of interrupts of ICOSS,
say TTYFG, may be separated from the rest of
ICOSS and loaded onto another mini-computer or a
dedicated processor, and allowing the system to
run in parallel. The advantages of this technique
are :

(i) Faster execution time, which is
important for real-time operation.

(ii) Save on memory locations.
(iii) Additional facilities can be loaded.
(iv) The fixed procedures are loaded on

dedicated processor.
(v) Increased improvement in the computer

utilisation.

However, the programming of multiprocessing inter­
facing and timing control (on the system opera­
tion) needs great care. This approach needs
further investigation, if the necessary equipment
are available.

(*) Segmentation technique: The time sharing
arrangement of ICOSS, Section 3.3, made possible
time-independent operation to be processed along­
side the time-dependent operation of ICOSS. This
involves slicing the time-independent operation
into segments on well defined boundaries within
,it, and making the function of each segment an
independent interrupt, to be called as many times

220

as needed by the FLAG group of interrupts, until
the various controlling factors become ready
for the action of the next interrupts, and so
on. The time allowed for each interrupt is
small, and hence the division of the segments
must be made accordingly. This technique was
proved successful in the FFT operation as
explained in Appendix (B).

(*) FFT: The importance of the frequency response
of a system is well known in communication system
analysis. The segmentation technique above,
provided the means of obtaining a quick frequency
response using the FFT at any moment of time
during the running of ICOSS (which is a time
domain simulator). The importance of this
technique lies in the fact that: a system could
be modified, ie change some of its parameters
or delete or add some modules, and have its
frequency response examined for each set of
parameters and modules, all in one run.

The alternative approach, in which a fixed
number of signal points are taken out from the
simulator to be processed by another dedicated
simulator for FFT, is extremely cumbersome, and
does not assist the user easily, as well as not
coming as near to the real situation in the
practical system. Also the points raised in (a)
'above, for the change of parameters will apply
to this situation too.

221

6.3 DISCUSSION OF APPLICATION PROBLEMS

In testing the validity of ICOSS in simulating
practical problems, there are four areas of discussion
covering the design targets:

(a) Comparison between ICOSS vs special-purpose
package (SPP):

* Convenience: the gap in convenience between
the two is enormous in favour of ICOSS,
but the outstanding feature the flexibi­
lity of ICOSS by which the module structure
can be constructed. Even the fixed
structure of SPP for the phase-lock loop
(PLL) which supposedly easier to run is
overcome by the use of ENTR interrupt
in ICOSS which meant testing a fixed
system structure again and again without
the need for constructing it for every run.

* Difficult tasks: the control parameters
(local and global) variation capability
as well as editing facility provided the
means of tackling difficult tasks.

* Time reduction: the ability to modify the
system and change its parameter meant a
vast reduction in the number of runs
required. In fact with one run only any

222

test can be performed on the system as
opposed to the multiple runs situation
of the SPP. This in turn means reduction
in computing time.

* Transients: during changes in system
parameters, the transient effect is
preserved in the ICOSS situation, and
provided valuable understanding to the
system behaviour.

(b) Comparison between ICOSS, Direct/Complex
signal approaches:

* Application: although both techniques
produce similar results, as expected,
the complex technique may find useful
application for the system which requires
phase-shifting, say, as the case for the
fast acquisition PLL problem.

* The complex signal approach eases the
problem of high sampling frequency for
slow variation of amplitude and phase in
a high frequency carrier system.

* The direct approach however provides
better understanding of signal processing
in time domain.

223
(c) Interference in PLL:

The tests for this type of problem showed:

* Parameter variations, and their effect on
the system response (transient and steady)
are easy to achieve.

* Multiple plots at any node or instant of
time can be achieved within one run.

* Derived variables can be plotted relative
to any other variable.

(d) Fast acquistion PLL:

* Achievement: the behaviour of single loop
PLL is difficult to analyse by its own,
especially the transient response, but with
additional loops as in this case, the
understanding of behaviour at different
nodes of the loop is even more difficult.
However, with the capability of accessing
any node, this understanding becomes easy
to achieve.

•224

6.4 FUTURE WORK

The prototype structure of ICOSS so far discussed, together
with complementary investigations of EOF etc, lay the
foundation to the establishment of the full system. There
are five main areas of development required in that
direction :

(*) The expansion, and completion of the present
ICOSS library etc.

(*) Improvement in the speed of execution, for
real-time operation.

(*) The utilisation of some of the peripheral
equipment.

(*) The coupling with other simulator systems.
(*) Further development toward full stochastic

simulation.

These developments can be divided into 2 groups according
to the facilities available:

(a) Immediate: With the existing computer and equipment
facilities available in the University laboratory:

(*) Write up ICOSS in its final form:

(i) Extend the signal processing (SP) module
library, with each made as general and to
include as many functions as possible

225

within one fundamental operation. This can
be made in similar line to the FILT module,
as described earlier - Appendix B , which
was a general-purpose module containing
most of the important types of digital
filter, eg BPass, LP, HP, BStop, Chebychev,
Butterworth, for unlimited order. As a
suggestion, the following SP modules should
be added:

1. Signal generation: saw-tooth, square
(rectangular) wave, pseudo-random etc.

2. Demodulators: envelope, amplitude,
frequency, phase.

3. Filtering: non-recursive, linear phase,
arbitrary specification.

4. Non-linear functions: clippers, power
series.

Also, in order not to confuse the users of
ICOSS in adopting misleading mnemonics,
the existing and new SP modules should be
grouped as follows:

1. Signal generation: sine-wave, saw-tooth,
square (rectangular) wave, pseudo­
random etc.

2. Modulators: amplitude, frequency, phase.
3. Demodulators: amplitude, frequency, phase

226

4. Filtering: non-recursive, linear phase,
arbitrary specification.

5. Differentiators: integrators.
6. Non-linear functions: eg clippers,

power series.

The modules are for the deterministic type
of system; more modules are to be added
for the stochastic simulation purposes, as
outlined below.

(ii) Modify the interrupt ENTR and construct
SU library in the way explained earlier.
Section (6.2b) and indicated by the flow
chart of Fig 6.4.1.

(*) Up-date the dummy module concept:

(i) The general-purpose dummy module:
Leading from section (6.2b) with regard
to special SP module, it is feasible that
set of equations to include addition,
multiplication, of variable and a simple
zero-pole module, etc are constructed in
this special dummy module. These sets of
equations can be controlled by set of
parameters which the user can supply in
order to control the flow of calculation

227

for the input signal. The idea of this
method is that any special (rare) function
which is not in the SP library can be con­
structed temporarily and used by supply
extra set of parameters. This is only a
first hand suggestion, which must be
updated with tests and application.

(ii) Rename the module mnemonic (of the sub­
routines in the LOOP group) and replace
with SUBI, SUB2,...,SUBN. The particular
SP module function will then be identified
by the mnemonic/module number conversion
table which must be constructed.

(iii) In up-dating the dummy module concepts,
special care must be taken with the controls
of the LOOP program.

(*) Investigation into the following:

(i) Coupling with other simulator system, ie
software multiprocessing, eq QUASIM (quasi-
synchronous simulator) currently being

19developed at Bath University

(ii) The standard unit (SU) concept: the
alternative approach to ENTR mentioned
above. The investigation must include
the possibility of reducing the inter­
links between the internal modules and the

228

possibility of control parameters (CPs)
reduction. A receiver module will be a
good testing model.

(*) Stochastic Simulation: Further developments
are needed for this type of simulation. They
include:

(i) Additional SP modules to be included in
the SP library, eg

1. Noise generation (stochastic)
2. Random signal generation
3. Rayleigh fading

(ii) Additional measuring devices (output
display routines) eg

1. Averages
2. Variance
3. Correlator

(*) Dialogue: The present form of interactive
dialogue of the teletype interrupts has been
tested only by the author. The experience of
other users of ICOSS will provide a source of
improvement to the dialogue.

229

(b) Future: Given the supporting equipment, such as a
microprocessor chip, arithmetic unit (AU), interfacing
etc, and an appropriate computer power:

(*) The first and most important objective is to
develop ICOSS system with its full real-time
on-line operation. This will require a solution
to the problem of speed of program execution.
The method outlined in Chapter 4 must be fully
utilised. However, the system must be built
up in stages, and the following suggested pro­
cedure followed:

(i) Load the modified version of ICOSS into a
minicomputer, say the Digital Equipment
PDP8/e or PDPll. This version of ICOSS will
include the minimum subset of subroutines
as outlined earlier. Section 6.2.

(ii) Build-up the master/slave system with the
BOF module in its final form, see below.

(iii) The BOF interfacing must be treated so that
the data transfer rate is higher than the
slave module processing speed.

(iv) Trials with this configuration will show
the region which most needs improvement,
and more modules may be taken out of the
host computer and stored in a slave pro­
cessor as in BOF above.

(v) Utilise the time-scaled signals, ie

230

record signal on a disc or tape, say speech,
and play at slower speed.

(*) BOF: This module can be speeded up greatly by
using higher speed microprocessor chip, coupled
with the arithmetic unit as suggested in Chapter
4, Therefore number of alternative trials must
be made to achieve an efficient bank of filter
processor. These alternatives include 16 or 32
bit words, for higher dynamic range. Finally,
an investigation must be made to have a single
chip containing this facility.

(*) SP programmable board: Leading further from
above, it will be extremely beneficial if a
programmable microprocessor controlled unit
could be constructed so that SP functions are
programmed directly. With the aid of the dummy
module concept, any number of additional SP
modules could be added to the system with the
minimum interference in the main body of ICOSS.

(*) Establish the peripheral equipment for:

(i) input buffer: where the new control para­
meters are placed waiting for the appro­
priate space of time to be inserted into
the system, as explained earlier.

(ii) I/O display for:

1. Graph plotting and display, as has

231

been explained in Section 6.2.
2. Block diagram construction and display

(*) Having hardware multiprocessing with one group
of interrupts or more, say the TTYFG, on
separate processor (mini-computer). This means
that the function of ICOSS will simply be a
controlling program for a number of dedicated
processors, each having special function (or
group of interrupts as defined in Chapter 3).

(*) Finally: the ultimate aim is to have ICOSS side
by side to the hardware apparatus of the
communication engineer in the research and
development laboratory, complementary to each
other in the investigation of new ideas and
practical problems in communication engineering
Therefore, the size of the equipment holding
ICOSS is important, and the above suggestion
will make this a reasonable size (small).

232

6.5 CONCLUSION

A time-domain interactive coinmunication-system simulator
(ICOSS) was designed, and put into test. The main
objectives for this simulator were achieved, that is

* being able to change the simulated model
control parameters while in the running mode.

* being able to edit its module structure (block
diagram).

* be portable, and
* operate interactively for real-time simulation.

Unfortunately, due to lack of some equipment and
computer power, it was not possible to demonstrate the
full features of ICOSS. However, an investigation was
made towards a possible solution to the inherent problem
of on-line simulation, ie the need for fast processing
and high sampling frequency. A dedicated (slave)
processor containing a signal processing module, the
bank of digital filters, and working in parallel with a
host computer where ICOSS resides was studied. With
further developments, and with the introduction of some
fast and dedicated processors, the demands for making the
communication system simulation as another bench tool for
research and development to complement the hardware
apparatus, could be met by ICOSS. However, there is still
more work needed to be done to fully develop the system,
so that further problems other than the deterministic

233

type, which was discussed in the previous section, ie
stochastic simulation, may be solved in order to assess
the full impact of this simulator.

234

NoENTf? T T Y F G Lnterrupfcs

Yes

Does
SU Cl)
.Exist

NoYes

CatL:
Sobroati’ne ED(T

CatL:
Sabroatirve CONST

R j.641 : Sll ccL̂l using ENTR cnterrapb

235

ACKNOWLEDGEMENTS

The author wishes to acknowledge the following, who
have enabled this work to be completed:

(i) Professor W Gosling, Head of School of
Electrical Engineering at the University of
Bath for the facilities provided.

(ii) Mr J D Martin, for his great help, advice,
understanding and patience when acting as
project supervisor.

(iii) The Iraqi Government for their financial
support.

(iv) Dr J P McGeehan for helpful discussions.
(v) My family for their support.

(vi) Mr M Al-Douboni for his assistance.
(vii) Mrs F Williams for her assistance and hard

work in producing this thesis.

236

REFERENCES

1. Ackroyd M H: 'Digital Filters', Butterworths, 1973.

2. Altman L: 'Microprocessors', Electronic Book Series,
McGraw-Hill, 1975.

3. Andrews M: 'Minicomputer CSSL simulation of PLL',
IEEE Region Six Conf on Minicomputers and their
applications, pp 21-24, May 1973.

4. Aspinall D and Dagless E L: 'Introduction to micro­
processors', Pitman, 1977.

5. Beauchamp K G: 'Signal processing - using analog and
digital technique', Unwin Ltd, 1973.

6. Bergland G D: 'A guided tour of the Fast Fourier
Transform', IEEE spectrum, Vol 5, pp 41-52, July 1969.

7. Blanchard A: 'Interferences in phase-locked loops',
IEEE Trans on Aerospace and Electronic Systems,
Vol AES-10, No 5, pp 686-697, Sept 1974.

8. Bogner R E and Constantinides A G: 'Introduction to
digital filtering', J Wiley, 1975.

9. CoatesR : 'Approaches to the simulation of communica­
tion systems', Proc 8th AICA Congress on Simulation
Systems, pp 233-242, 1976.

10. Coates R and Kwok K Y: 'Communication system evalua­
tion program COSEP', Colloquium on computer simulation
of communication systems, lEE Electronics Division,
pp 3/1-3/3, 12 May 1975.

237

11. Cullyer W J: 'Application of Fourier techniques
to computer-aided design of electronic systems',
Proc lEE, Vol 118, No 3/4, pp 437-448, March/April 1971,

12. Davis B R, Beare C T, Coutts R P and Le N H: 'Computer
simulation of communication systems'. Electrical
Engineering Department, University of Adelaide, South
Australia, Report No 2-75, 1975.

13. Enslow Jr P H: 'Microprocessor organisation - a
survey'. Computing surveys, Vol 9, No 1, pp 103-129,
March 19 77.

14. Epstein P L: 'Small master station with video
display implemented with multiple microprocessors',
Conf proceeding. Remote Supervisory and Control 77,
Remscon, pp 67-79, 27-29 April 1977.

15. Flake P L, Musgrave, G and White I J: 'A digital
systems simulator: HILO', Digital Processes, 1,
pp 39-53, 1975.

16. Freeman E and Fashano M: 'System time-domain simula­
tion program', NASA report No R71-014, Feb 1971.

17. Gabel R A and Roberts R A: 'Signal and linear
systems', J Wiley, 1973.

18. Gardner F M: 'Phase lock techniques', J Wiley, 1967.

19. Gladstone K J and McGeehan J P : 'A computer simulation
of the sideband diversity scheme for mobile radio',
to be read at 1ERE Conference, International Conference

239

on computer aided design and manufacture of electronic
components, The University of Sussex, 3-5 July 1979.

20. Gold B and Rader C M: 'Digital processing of signals',
McGraw-Hill, 1969.

21. Golden R M: 'Block diagram compiler B ', Bell STJ,
XLV, 3, pp 345-358, March 1966.

22. Gordon G: 'System Simulation', Prentice-Hall, 1969.

23. Holding D J, Jacovides D and Mamdani E H: 'On the
use of conventional computers to provide parallel
execution of simulated software', Proc 8th Congress
on Simulation Systems, pp 523-526, 1976.

24. Kadokawa Y et al: 'Computer simulation of the
constant net loss single sideband system for the land
mobile communications CNL-SSB simulation'. Review of
Radio res labs (Japan), Vol 19, No 101, March 1973.

25. Karafin B J: 'The new block'diagram compiler for
simulation of sampled-data systems', AFIPS Conf Proc
27; part 1, Fall joint computer conference spartan
books, Washington DC, pp 55-61, 1965.

26. Kelly Jr J L, Lochbaum C and Vyssotsky V A; 'Block
diagram compiler'. Bell STJ, 40, pp 669-676, May 1961.

27. Kingsbury K G and Kelly L C: 'A digital filter bank
of real-time speech analysis and synthesis using
logarithmic quantised signals', Conf on Digital

239

Processing of signals in communication, 1ERE Conf
Proc, No 37, pp 81-96, Sept 1977.

28. Kingsbury K G and Rayner P J W: 'Logarithmic
arithmetic for digital filters', Proc of symposium
on digital filtering'. Imperial College, London,
Sept 1971.

29. Lockhart G B and Cheetham B M G: 'Minicomputer
simulator for digital communication systems'.
Colloquium on computer simulation of communication
systems, lEE Electric division, pp 5/1-5/2, 12 May 1975.

30. Lockhart G B, Cheetham B M G and Mansson B M: 'A
real-time simulator for digital signal processing',
Loughborough Conference on digital processing of
signals in communications. Sept 1972.

31. Manasswitsch V: 'Frequency synthesisers theory and
design', J Wiley, 1976.

32. Manufacturer Manual: 'Programmable read-only memories',
Fairchild Semiconductors, July 1977.

33. Manufacturer Manual: 'M6800 microprocessor programming
manual', Motorola Co, 1975.

34. Manufacturer Manual: 'M6800 microprocessor application
manual'. Motorola Co, 1975.

35. Martin J D: 'Sigsim: a general-purpose signal-processing
simulation program'. School of Electrical Engineering,
University of Bath Publication, March 1975,

240

36. McGeehan J P: 'A new technique for improving the
acquisition performance of second-order phase-locked
loops'. Electronic Letters, Vol 14, No 2, pp 42-43,
19 January 1978.

37. McGlynn D R; 'Microprocessor: technology, architecture
and applications', J Wiley, 1976.

38. Metcalfe J : 'An investigation into the use of digital
filtering methods applied to the simulation of con­
tinuous communication'systems', PhD Thesis, University
of Bath, 1976.

39. Morris R: 'Scatter storage technique', CACM,
Vol 11, No 1, pp 38-44, Jan 1968.

40. Morrow R J and Warren C S : 'The application of hybrid
computers to the design of digital communication
systems', Conf on Digital Processing of signals in
communication, 1ERE, Proc No 23, April 1972.

41. Musson J T B and West B G: '' Program for the simu­
lation of modulated communication systems - MODSIM',
Marconi Survey Series, MSS 75/8, April 1975.

42. NASA Report: 'Computer for real-time flight simula­
tion', No CR2885, pp 4.1-4.10, Nov 1977.

43. Peatman J B: 'Microcomputer based design', McGraw-
Hill, 1977.

44. Rabiner L R and Steiglitz K: 'The design of wide­
band recursive and non-recursive digital differentia-

241

tors', IEEE Trans audio electroacoustic, Vol AU-18,
pp 204-209, June 1970.

45. Ramamoorthy C V and Li H F : 'Pipeline architecture'.
Computing Surveys, Vol 9, No 1, pp 61-102, March 1977.

46. Sakai T and Numi Y: 'Programming system for Block
diagram simulation and its application'. Electronic
and communication in Japan, Vol 51-C, No 9, pp 133-142,
1968.

47. Seynaeve R, Hug E and Vettori G: 'Interactive time
series analysis'. Signal Processing - Proc of NATO,
advanced study institute on signal processing, pp
183-203, 1973.

48. Skwirzynski J K: 'Simulation techniques for the
study of modulated communications channels', Proc
lEE, Int Symp on Circuits and Systems, San Francisco,
pp 22-25, April 1974.

49. Smith D G and Martin J D: 'Digital simulation survey'.
School of Electrical Engineering, University of Bath,
Internal University Publication, January 1978.

50. Ulrickson R: 'Software modules are the building
blocks'. Electronic Design, No 3, pp 62-66, 1 Feb 1977.

51. Viterbi A J: 'Principles of coherent communication',
McGraw-Hill, 1966.

52. Voelcker H: 'FFT program'. Private Communication,
University of Rochester, New York State.

242

53. McGeehan J P: Private Communication, School of
Electrical Engineering, Bath University 1979.

243

APPENDIX A

The following table contains the main features and
characteristics of a number of important communication
system simulators (three time-domain, and two frequency-
domain). However there are many other communication
system simulators, which can be found in literature as
mentioned in Chapter 2.

: -i

I
% .3I . !j!l

3saÊi|alll!i;ü

I

i
in

Hill
{I
li? ?
I!

lif I£ 0
M müiiii

iiliilii

i n i !

I
u i i '

I H l

Hill

iji

i!
!i!

n i
HI
I I I ,
;î3i

!l!i
2131

I!iiill
II
icjiilliIn

li!!}#
i! il

i f i JJ i

I

1

24:

To generate a 1 kHz square wave, magnitude ±0.5; then
NT - 1 ms and T = 3.91 yS for N = 256,

The fundamental has a magnitude of 2/tt at frequency 1 kHz
Represent this by components of magnitude 1/tt at
frequencies ± 1 kHz. Hence to generate and observe the
waveform:

COMMENT FOURIER SERIES TEST
TIME
3.91 E - 6
POINTS
256
SOURCE DATA
8 -2 Generates seven harmonics
1 0.3183 90.0 Note conjugate symmetry about

zero frequency, giving real
-1 0.3183 90.0 resultant.
3 0.1061 90.0

-3 0.1061 90.0
5 0.0637 90.0

-5 0.0637 90.0
7 0.0455 90.0 •

-7 0.0455 90.0
SCOPE
LP
1 1
END
END

Displays time waveform of
one period on line-printer graph

Fig A.1 Example for SIGSIM

P-.u
o

i H P4 T d
q

fd 0 Id rH
(3 44 1
V4 q0) U o
•H CD ‘H II
q +J ■M
• H CD Id h n

S • H q
(d +J • H

j- q • H H
P 4 fd q • H
o A • H +4

C D VC in
II 11 441— 1 CM CD
P 4 pL, q
o O

<D
> > CD
)4 fO
fd
- d > >
q 4̂
o O
Ü CD
CD 43
(/] H

CO

246

&
1-3

44 • <

II II

Ph

CM i HPQ <

II II

C O ' j -
p 4 A pu,
o O O

<
II

44
II

4-»
CD
CO q

r H 44 C M • H
< 8 < fd

w
II II

r H O C M Ü
Pu, Pu,
O • d O d

I
a

I m r.C4--< CÛ

t t vB
43
VI z

£ H

S«0

0)
T)

8

CN
¥
H
m

+
CM

¥r4
44
t=
C M

I
CO

C M

?
II

X

g
M
C O

8
+J

S
gbO

I—ICÜ
C O

II
CMX

i nX
C OX
<
II•HX

g
' H f—I
. &

s
a

COX
a
<
II
CMX

<u

. H
-H
■ H
CO

g
CO

(D
CO

ê
A

8
8
Q)

- d

rr|X
I—I
<
II
CMX

%
M<C9

8
• H
Mh
• H

8 ,

.3
a

44
\

C44
t=

g
+J

<

rH
J

tn

< <
4- I

rH i—l
II

CD
II

VC

CM

g
ÎrH
s
CD+•

CD
II
C MX

a
II
C M

g
X
IIiH
g

8
5P4

g
8

CO(0rd
(U

I
+J (0 I—I

CM

ÏrH
<II
CMX

8>

r-4
O
U

§
Ü
(U

S'
Ü
o>

rt

CO

CM

COX
CM C MXCO

M
CO

C M

n
00 <D

•z
u .

247

248

(*) Filter:

(a) This is a digital filter of any order (n), any type
(Butterworth, Chebyshev), and any condition (high pass HP,
low pass LP, bandpass BP, and band stop BS). The design
procedure executed internally, utilises number of primary
parameters supplied by the user to derive the coefficients
of second order segments of a low pass filter, of the form

-1 -2i=n 1 + a . ^ z + a._ z
H(Z) = A TK -----

°i=l 1 + b,^ z + bi2 z

For the other filter conditions, ie HP, BP and BS, a
frequency shifting procedure^ is applied and the second
order coefficients are modified accordingly.

The primary control parameteis as supplied by the user are:

CPI = filter order (n)
CP2 = cut-off frequency (f̂)
CP3 = condition: 1 = BPASS, 2 = BSTOP, 3 = HPASS,

and 4 = LPASS
CP4 = type: Butterworth, or Chebyshev (1 = Chebyshev,

2 = Butterworth)
CP5 = Centre frequency
CP6 = Delta for Chebyshev filter only

It should be noticed that the number of secondary control
parameters is never equal to the number of primary control
parameters, they may be less for second order filter but

249

always more.

Also a global control parameter (the sampling frequency f^)
is automatically utilised in the calculations.

(+) Differentiator

A wide band differentiator, as derived by Rabiner and
44Steiglitz is adopted, which is made up of a series

of second order segments, and having a transfer function

i=n (1-z ̂ a . ^) (l “ Z ̂ a . _)
H(z) = A T,--- n — ------ J-]- ^ -

i=l (1-z b^^) (z-z b^g)

where n is the number of segments in the differentiator
(or the order of it).

The characteristic of the differentiator depends on the
order of the differentiator (n), and hence its choice
dependent on the application.

In the present work only one segment is simulated, and if
a higher order differentiator is required then the segments
making up the differentiator will be treated separately,
having in mind only one of these segments is supplied with
the value of A, and the rest of the segments are supplied
with 1.0 for their A's. Therefore, the primary control
parameters for one segment are:

CPI ‘ = A
CP2 =

250

CP 3 ^12
CP 4

CP5
" ^12

251

0
M
1Pu

O
§■0
ut7>
tn(dH

1
0

0 m
+»
§wd)
uA
0)434J
(3‘H
Q)4J
§1

1-4

I
(A(0

P3.
§
Ws•H■p0Op
&I—Ieu(A■HT3
-P
â
0O
(U43E4

g»Hfd>
T50)44idrH0üH(dü
(D434J
(d

13 0 H uü 44 -H fi 0 •H-H fi fi •H 13 -—'
d) 0 -H 44 13rH 0 rl fi eutn -P fi W 0 •H 0fi fi X rH H p•H 0 EH 0 X fi 0 tnCA E4 »0 Eh > < 0 0t-1 X ü 0fd 5 0 0 *o 44W 4-> 43 0 44 fi - fiCA W fi 44 44 fi •iH 0 0fd P3 •H 0 •H
Tf — P fi P4 rH 004 •H O fi tj W 0 00) fi EH ü 0 0 44 445h -H 0 U] rH u ü fi 440 13 0 0 0 •rl 04-> 0 44 ü 44 13 P iHCA fi rH 0 44 0 ü eu eurH rH rH eu 0 •H0 0 •H 0 fi 13 0 13 0 p43 > n3 u 44 13 13 0

44 •rH0 •H ■ rrHS

H

O44 Sfi Xeu44 ofi 2o X

fiX+
*
H" fi(Nfi Xo +•rH rH44 Xü 1fi Ofi M sk X

Or400 1304 13>1 0 \Eh 0 0en

%P3 Eh <0 fX4 HO Pm S

252

§
•H
+>

IO
U0 *w
-pr43
1
X

-H•rl
•H

•H
• r l

g•rl
+)•rl

§ü
uoM-4

3to0)
A

H
X

G)4J3VI

04 04

k
Pu
Q)
EH

-P(d

(D*30 3
0)x;+)
1Pm
0(/}m0
uü0
0P0

04->

O
A

W0
3rHnJ>
0ctJ'•H0
U-lo

p0A

ü•H
Ir4

0•3O3
»3
0

0
-P3•H
O
çu
ipo
p0

0
.34->

g

0
»3
I
0a
04J
0•H
4J

1
a000
g
EHP4P4
0
5

Xi
0•H
1

en P
0 T>

0 g
3
•H 0

0 P 0 •3 31—1 p P 0 3
0 0 0 0 0 0
3 Û4 .ü 04 3
en • 0 0 P
•H 0 P en P 3
0 f3 •• Q* 3 CL 3
0 0 >1 3 P «. P

3 0 P rH 03 0
0 P CL 03 U P
0 4J 0 § O 3 3
f : 0 en P U 0 0
EH f: « 3 0 H g

V» •H •H >1 en
> 0 0 H 0• ■p 0 3» 3 3 3 0

0 0 rH 0 P P Q
3̂ iH rH 0
0 g 0 • (p 3 K
g 0 tp 0 •H P P

-P 3 3 0 3 0
0 0 0 0 P P P 0
-H >1 X! •H 0 •H rH 0

0 P P Ü P 0̂ 3
4J P 3 0 0 P
0 0 3 0 'H V 0 0
0 .3 ■P A - 0 ■S_> P
3 v> 3 O
er 0 m 0 O m p P
0 m 3 P H « A
p o 0 0 0 rH ro 3 3

*3 p P 0 w P 0EH 0 3 0 P P
k 0 0 •H OU 0 3 0 0
k 3 •H

»3
0 g 0 P 0

O 0 •H «rl .3 CL
0 A 0 0 P P P 0
Xi 0 •H P 0 ü P
■P 0 3 3 0 0 en

P Eh 0 0 3 0 0 0
3 g 0 P 3 p P
0 3 & 3 p

•H t 0 T3 3 0 0
15 0 0 0 0 •H p P

6 0 P % 0 3
P 0 iH 0 0 *3 3 3 EH
0 H3 U 0 0 3 •H 3
0 >1 P 0 0 P
3 0 ü P g «

g «P 04 K 0 P 0
0 •H in 0 P ►3 0 P

4J O •H Oi P 3
-P 0 3 0 3 0

0 p 0> 3 P g U P
>1 f : 0 0 0 P •H P P
Xi +j 3 •H 0 P P 0
TJ g ü P P P >

-p 3 0 P 3 0 0 0
0 3 3 A 0 rl 3 CL

0 A P P1—1 0 0 g en 0 0
A 0 0 TJ 0 3 3 p
A P p P 0 I—1 P P 0
3 Qa 0 \J\ P «p
0 0 > 0 0 *3 0 0

P 0 p ü 0 0 P g0 A -H 3 3 3 P
P Xi EH P •H ü P
0 ü k EH 0 P 0'H h pL, 13 en P X 0

r3 k 3 3 0 3
Q 0 3 •H 0 P

3 0 ü P >1
P 3 0 3 0 0 3

P 0 EH W Q 0 g 0
0 0 >1
Xi 3

rp 3
0 3 0 3 ü

3 > 0 —

253

0
rH 0
3 P 3
0 0 P
p >
•H 0 en
3 0 0
en k. g

U1 3 ■H
P cm 0 P
en o 0
0 u en 0
g H

en en
w 3 0 0
•H •H

P <k
3 0 p Eh
U U 0 fP« •H •H 3 [p

3 3 0
0 3 0 g
P U P
3 k. 0 0
U Eh en P P en
0 k P P P
X k •H en 0 0
0 0 Ou CLP P g 0
>1 0 0 0 0 CL
rH p U P
0 3 3
P 0 3 en P 3
0 •H 0 3 0 • 0
rH P en •H 3 P
CL 3 0 en P U en
g U 0 en 0
0 0 p 0 en 0
U X CL u 3 •H 0

0 0 P tP 3
W 0 P
-H 0 g CL 3 3 P> •H 0 ■H X
P •H P P P 0
C P CL 0 0 3 P
0 U 3 P

0 0 en 3 0 en
P 3 •H g 3 3

0 0 P en g en • 0
W P 3 >1 P

3 en 3 u en P 0
w ■H •H U ü •H 3 g•H •H 0 0 p

3 0 en 3 P 3
P P •H 0 P 3

3 p 0 3P 0 Eh 3 0 3 0 •H■H en ■H U A
P •H en 1 >1 3
C P « 3 0 • 3 P . 3
3 3 ü P p 0 3

en 0 0 CL CL p 3 0
en 0 •H 0 g 3 p •H P
3 > P P 0 P
0 •H 0 CL en P en 3 0•H en P Çh 0 - 0 3
P 3 0 p P 0 >
0 0 g 0 3 P •H 3
CL > •H 0 •H 3 en 0

0 en > p 3 U
en 3 •H 0 >H 0 en
3 0 0 P 3 Eh U •H en
■H g 0 g Eh 0 ■H

3 •H 3 3 P P 3
U 0 p P 3 P CL P P
0 3 0 3 3
rH P p P P 0 Eh enu 0 0 P ü 3 (P 0 >1

g 0 0 0 3 [p P p
P P 0 0

0 0 P CL 0 0 0
3 0 3 0 0 3 3 3EH P P U 3 EH Eh EH

•H■H

254

F F T

Ho

Out pat V FFT

Fig .C l. F F T Fbu)-charfc

ini tta-Use
SUB2.

Call SUBS

Call SUB4

Coll SUB2.

Reset controls :
Kiso, Interriipl-»c>

XH

I
â

I

:
■ri

O

W
g
in

a
rô
•H
Pm

en
enouH
0)A
o4JO)4A
4JC0)MO
A
(D
S
> iA
T>d)W0
CA0O
•H
-POj•HPü(Ad)'Ü
P-H

-P
'Ü
§
(Ad)0
-rH
-P0OP
•B
en

CQd)0•H
-P0O
U
0
ta
CA0O•HP0>
d)
Xi■p
tpo
d)p0
-Pü0
P
■P(A

p4 •H
X (A 0 O r4 4J 0
I—I 0
P

C M

-HCM

•H

•H

.-P

-H
I—I

-rH
r4

I—I

•H i-H

-H

I—I

r— I •H-H

fO voir>

-rH

255

256

Q)rH0
i
S’•H
€4J•H

U
o1»-H
-P
§
S3M-»(p•H
Q

00 a\ PI PI

en O
0 4i
M
«P B

0
0 0 4J
Xi 0 0
■P -H >1

0
<P 0
O O *d

P 0
0 B -P
ü 0 -P 0
•H Tp CL rH
> 0 0 0
P >1 P B
0 0 P •P
0 0 0

nd +»
P 0 0 . 0
Ô g •P •H e
(p 0 0 MH 0

4-> 1—1 tP 0 +>
0 0 0 0 0
0 >1 B - •H g >i
■H 0 -H 4J 0
-P 0 4J P
0 0 tP *d
0 0 0 04 0 0
P +J XI +» •H +j

0 . ■P 0 0 «d 0
0 P rH 0 0 fH

0 0 »P 0 0
0 fH Ê 0 0 o B
P rH 'H 0) -P 0 *H
0 0 0 0 tP rH rH 0 0
4J 0 p p 0 0 JQ P
0 tP -p 0 0 +> 0 0 0

0 0 Xi ■P 0 0 X 4J
•0 +» 0 4-» ü p 0 4J 0
0 0 ü 0 1 -P g
0 m P 'd O CH 0 tP

m P 0 0 -P 0 0 04 0 P G
0 0 0 ■P 0 H 0 P 0 0 •H
0̂ -P -P çu 0 0 -P P 0 CL X»
0 0 0 0 0 Ë ü V 0 P O XI
0 0 ■rH P •H 0 0 tP 0 0 •H iH 0

Ui B P 4-> P fH 0 0 4J 4J 0 fH
0 0 0 ■P 0 ü tn -H ü 0 0 p eu

0 tJ> 0 -P 0 0 0 •*rH X» X> 0
-p p 0 0 P •H 0 0 >1 0 0 0 o

t7> 0 0 •H 4-> "d P 0 T) O 0 0 X •H
en 0 0 -P 0 0 04 0 0 d CL X»
0 03 B A (p 0 X 4J 0 S 0 0 0
•H 01 0 0 0 u 0 P P iH. P 0
0 0 1 0 p ü 0 -P fH Eh CL 0 en •H.

•H 0 p eu rH 0 0 X iH
0 Xi P 0 0 0 P X) P 0 0 B 0 CH 0

•o O 0 iH -p 0 0 0 0 X 0 fH 0 •H
0 4-) 0 0 p P 0 Ûl tn 0 4J p tn XI•» (d *P > ■H tp tP xî 0 tp X •H

ÎT» u •H 0 4-> *P *rH tP 0 0 CH G 0
0 A x; rH IP 0 •H 0 tP 0 ‘H •H 0 0 •H
•H 0 0 0 Çk 'd tP tn •H > »d B
J0 0) 0 >1 0 0 0 >1 0 0 g
ü rH 0 tr> A -p •H tn rH rH en tP tP 0
0 A 0 -H 0 0 ü -P 0 CL en ü 0 0 XI
fO 0 0 0 rH 0 •H 0 0 eu O 0 0 0 0
U o X ! P 0 rH 'd Xi Xi 0 U iH X 0
CQ Q 04 < tn H m M U Eh en H m u s en

II II II II II II II II II II II II II II

O 1—1 CN m1—1 ■H I—1 1—) O rH CM fO in CD 00 cr
P I P) PJ P I H E4 EH EH EH EH EH EH EH EH

I 05 W g m S ük EHen Eh 04 04 05 gen 04u s sU H en O >H % H U O EH S ü EH XH 05 O Î0 EH EH O Q m EH 3 O w X %P m I-] 04 en EH u W o en H u u 04 H

257

(04J
ÇU
S
%
•H

S'rH«W
CO0O-rH
Ufd>
(U
5
«wO

P 4J0 0rH 0rH g
0 0p-p 0
c 00 0ü e
0•p 0A 00P 0P 00 •H-P 4J
C 0•H rH

0
Çu0 •H0

Q* 00 eOP 0tP Xi
4J

U'0 P
1—1 O
P̂ Pw
II II

O 1-̂
Ph P4

U0
oü00
ü*0M
0-Pp40U
U0
-P
5
0rHP4
0
g

Oî

Om0
S

S!•H
0OPu
4J00k

EHPh
PO4H
g•H
-PPOP
>1P0•HïH-H
g
<
II

P4 CO in VDk k Pu r~-Pm 00IH

g
0
•P
0
>1
0

d»
0•H
-P

S 0rH -H
0 X >10 iH 0 iH

0 0
0 O 0 0
0 0

0 rH 0 00 >1 0 0 0
0 *0 rH 0 -p rH-p 0 0 ■H 0 0.0 g O 4J •H

0 0Td tn 0 O g
0 0 0 P 00 ■H rH 0 tn
Ü .0 0 >1 •H 0
0 0 d̂ 0 -P -H
0 0 o *H 0 0

ü g O a O 0
1 0 0 P 0

P tn -H ü
0 A 0 "d tn 0
P •H 0 P
0 rH X 4J -H eu
-P 0 D 0 1—1
0 0 0 Q a r4 1—l

0 g tn 0 ■P 0 0
0 0 -H P 0 P 0
'H 0 P 0 Xi 0 -P tn
-P 0 0 0 -H
0 rH (h • • «# «■ 0 0
0 0 0 ü
■H > rH O «•
e 0 ■H 0 0p 0 P -P 0 0
0 0 4J ü iH rH
-p 0 0 0 z z 0 0
0 0 g 0 P *d 'd
*0 0 U -P 0 0

t-1 0 0 g g
0 0 X iH 0
0 > H-> 0 0
P U ü 0 0
0 0 44 0 0 0
0 u O rH g
cr* 0 0 44 44
0 +) 0 44 P 0 O

•H 0 Ô tn z
0 H 'H 0 0 0
0 fl. 4J tn H 0 0
0 g 0 0 'd -H •H
g (3 1—1 -H +) -p0 tn X P p
■p 0 ü 0 ü 0 0
0 0 I—1 0 0 s 0 0
0 0 0 X rH 0 0

s U U P5 H H
Il II II II II II II II II

o rH fN(Ti iH 1—1 rH O 1—1 CN m H
Pm Pt4 Ph Pw w Ul Ui Ui CO

i PhÎ3S
COHc; 1-1 CN ro mo EH CQ m m « mp< p4 D p D o D04 Ph CO CO CO CO CO

W

PI E4 m E4 H
P4 CO CJ CO EH CO

PI z 04 % pî 13 0Î SP4 < o o pq O CO oH œ U O CJ g uS u m S CO H pq

258

•H

CN

rH
rH

rH
MH

rH
•H

•rH

H

•H
MH

rH
r—I

rH m
fH

•H

•H •H

rH

rH
■iHm•H

•rl 1—I
I—1

I—I
•H

n in voCN
rHm vo o>

CN

•ri

-P

•ri•H
f—I

I—I

•ri

M-l

•HI—1

00
I—I CN

'N’
CNCN

CN

259

260

tn
d

CO •p
CO >i 13
<D 1 P d
rH ü • 0 0 0 1

d p P A •P rd
ü tn 13 d CO rd 0 0 d
•H d 0 d d •P 0 rd 0

p P 0 0 rH p 0 P
Ê G P p A 1
E P fd P 0 0 •P MH

to (d d •p P ü rd 0 >1
d p . 0 0 d 0 0 p
o ü E P p 0 d 0 0
-H 0 •P (d p 0 rd 0 0 d
+» P MH w 0 E P p 13 0

■ A A •H 13 0 p O p
•iH d 0 p >1 0 d >
U en tn rd 0 0 rd p 0
ü Q) •rH p 0 A 0 p p
CO « P 13 p d A
0) fd d P 0 A
13 G rd 13 O p p p P

d 0 P p d d •P
U p fd P 6 P d A 0 0
-H d ' d tn P P
Q) rd d rd o 0 d MH 0

•H P >1 ü p 0 0 13
■P ' 0 P \

13 P d 0 1—1 0 p p d
13 Q) rH fd P 0 p d 0 •p
d O d rd ü 0 A rd
(d d w tn •P 0 d 13

13 0 d P p rd p 0
CO Q) p •H ü d rd
0) P tn 0 0 •p 0 •p
ü P P 0 0 rd 0 o p
44 (D 0 fd P p P p ü
P rd d rH rr d d 0
P d 13 0 13 0 0
(d d rH 0 o 0 P 0 0 13
G fd rH G G 0 G 13

ü -H en P 0 0
13 d tn tn 0 tn d 0
d en fd d d E d

CQ fd m M 0 •P P 0 P p
0) rH 0 G 0 0 P 0 d •
O CO rd rH 0 0 0 0 A X en
•H >i fd rd 0 0 0 A 0 d P •
U (d P rH d ü ü ü •p P tn
-P p P rd 0 0 • 0 MH 0 P •
d p 0) 0 •p p >1 p 0 P MH « 0 m
G (d CO P P p A P A « A 0 G

0) 0 A 0 P 0 d
». rd 0 p P p P 0 0 P p 0 E 0

C CO P p d p 0 ü 0 rH 0 0 P 0 P
<0 X 0 0 u d 0 d E d d d P P

ü «4H rd 0 tn p tn d D tn E 13 0 ü
CO fd 0 g tn 0 P •p •p 5 0 P 3 0 >1 0
> P d Q c/3 13 CO G CO d G CO 0
fO CO P d •H
u Q) P
M % .d 0 0
(d CO G rd d

(D d p •p
w M d E d

CO. A d •P o
fd 0 •H 1—1 p

ü P rd 0 0 CN
<d Eh d d en m
4J d) 0 0 0 en O
CO rd •H ü G m

P • p d P
<k C/3 ü •p Q

CO (!) C/3 0 (0
QJ p O 13
iH fd. o 0 ». 0
A H P 0 P
tO tn N 0
E-i d >1 0 •P 0 P P P P

-H rd rd A ü 0 0 0
P >1 0 tn tn tn

o 13 >1 EH P 0 0 0
rH 0 13 P 0 P P P
rH w d 0 rd d d d

M o d id G U H H H
p 0

d *. G
X (D 0 0 ü
H rd 0 1—1 d P m CQ Q
P EH rd rd p d H H O

•H o d ►d
H 0 X d G s U
A /—S > 0 0 0 A A A S
A fd fd 1—1 •p CO CO CO CO
< rd m P

1 0 >10 X 13p p 01 0 i d 00 A 0 d p P •P P •H 00 P 0 X • o 13 P
• A O A p 0 A>1 p •H 13 p P dP P p P 0 • 0 p0 0 d O •H E 0 P pP P 0 P 0 p 0 tn d 0I ü P ü P 13 0 P 0 E p0 d d O A 0 P 3 dJ P o p o d >4 0 ü p

' *iH ü 0 ü tn 0 ü• 13 ü X d 0 0 MH •
i MH O rH ü •H 0 p 0 Xi >1 0 p td 0 P X 0 pp ü X 0 A p 0 p A po P d ' 0 o § d 0 d pP • 0 0 X 1—1 p p o 0 0ü •H p tn 0 0 o -r— p G0 >1 ». 0 0 0 tnP P • EH P p • p • p 0 0 tn P PP O H 0 o p O p 0 d > 0 d tn d13 P Q > A A d o p P p 0 0—- ü W ' d 0 0 0 0 tn p 0 0 p G0 0 • 0 X 0 rX •rL p ü A p 0>1 P ». ü 0 d d 0 o 0 G tnP P 03 p p 0 p 0 p • p 0 0 00 13 S 0 0 0 P 0 p 13 0 p P 0 X dP — O p p > 0 > 0 0 >1 tn 13 p 0 P 0XI O p 0 0 1—1 0 d GP >1 d E 1—1 G p G 0 p P A 0 p drH P tn 0 0 0 0 0 0 p O O tn • 0 P 00 0 0 P d P d p O 0 p O 0 P > P0 P 13 p 0 P 0 M 0 O P 0 . P P A tn Ad X) d A ü >1 u >1 P O O d P d dp p 0 X 0 0 0 0 A A 1—1 0 P p 0 p pp p E ü >1 G 0 X 0 p d 0 pd E p P 0 0 0 0 0 0 ü P 0 tn 0 0o 0 O X 0 X X X X X P O >1 p P 0 pp 0 ü D p p p p P -— 1—1 tn P d 0 ü dP d d 0 'P O p>1 d 0 0 o 0 d 0 d 0 P 0 p P 0 p0 13 P p ü p p p •H P A p d 0 0 p A p1-1 Q A 0 0 0 0 0 0 X p A A 0 oa A G d X 0 X 13 X 13 X rX 0 0 G >1 X P0 0 p 0 0 •H P 0 P 0 A•H P >, p 3 o 0 0 0 P d P 0 X dp 13 P 0 d p K d •» d w -H 0 o rH P 0A 0 p 0 0 0 > ü PU 0 0 P p•H P P d 0 0 P 0 p 0 P G u P P d tnu d 1—1 p p p 0 p 0 p O 0 0 >1 X O pu A P d 0 p 0 p 0 p p P 0 PU p tn0 P X >H u p 0 P 0 p 0 0 0 P u 0 p 00 d d Eh 0 0 0 0 >i P P 0 X 0 1—1

Q O < Eh S G < G '< G < 0 03 C 13 u < p A

d0p o0 CN o inG (o 1—1 (N o CM ». CN o o0 P o O ro ro roG p o m•P 1—1 P
Q

0 0 0P P P0 0 00 P P P P P PA ü ü ü 0 0 0>1 0 0 0 tn tn tnEH P P P 0 1—1 1—1 p 1—1 0 P 1—1 00 0 0 P 0 0 0 0 p 0 0 Pd X! XJ d 0 0 0 0 d 0 0 d.u U u H Pi Pi Pi Pi H Pi Pi H

üPd m pq s Z: PUo H H o o uG a P o o X 030 Pi S ÏH Q PU « 2 op Eh o eu o s û Eh Eho S EH S u ü X X 03 03 A

261

■'H

r4 -H

r4
-H

I—I
CM

r—I

1—4

•H -H

-H

rHm LO CM
in ro CO CM

I—I iHI—1

262

4J
Ü
Q)+JCO
ü
+>

gW
Q)
UA
Q)f:EH

Q)
UnJ
(0
Q)
rH

4J
M-i
O
4J
g
-P
O
ü

a
•H
I

-p
rH
•H
0
A

•P
g
g
g(U
0)

-p

w
œ
Ou
H

tw0
c
0
•H
01
u
Q)
>
(U

a4J
O
+>
O
p

4J
CQ)
0)Q)
U
P4
O

Xi
■p
uo
k

263

2X3H
oEH

rH
2k Eh k.

H X\ rH
Q CM
K k. rH
ffi UU U k.

m rH
w u
k. k, rH
Pi Eh
Q CO k.
Q 2 rH
< U

k. rH
E-t Pis Eh «k
H <3 Z (Nk Pi HEh k.

CN
O » SU CM D k.
> U Pi LD rH

Xk, u k. k. k,
S CM 1-4 CNH Pi k O
< Eh s Eh k. k.
O CO < CO O CN

S H■» S k. k. k
1—1 CM m rH

Q k. UH S X X k. <k
k H

s
u CN rH

*. k.
Q CM Eh rH rH
CO O w Hffi u cc Q w k
P4 CO § H 1— 1 rH

k. k.S ffi k. CO rHO u Eh 2H Pi k o •k k
CO C3 h U ro

,,m P3 OQ 2 CQ ÛH H H O H OP? u a §s S Pi >H u 2Oi X Q Eh CM CMCO < o Eh CO CO

264

APPENDIX F

LOGARITHMIC ARITHMETIC UNIT - MODIFIED

28
Fl Comparison between linear and logarithmic numbers

Consider a signal value in digital filters being represented
by a word having 16 bits. Fig Fl. Assuming the word has
one sign bit, five characteristic bits, and ten mantissa
bits, then

The dynamic range is: 2^^ = 192.66^^ - 193 dB
* Since the smallest difference between two logs is

-102 = 1/102 4, then each signal could be stored
to an accuracy of - 1 = 0.071 %.

The absence of an extra zero in log encoding will seldom
be important because of the large dynamic range; and, if
necessary, a small amount of extra logic can be included
in the arithmetic unit of the filter so as to treat the
smallest encodable signal as if it were zero. Alternatively,
the characteristic bits are reduced to four and remaining
fifth bit is allocated for the exact zero. This will
reduce the dynamic range to: 2^^ = 96.23^^ = 100 dB.

Comparing a 16 bit logarithmic system with 0.071% accuracy,
with a conventional 16-bit floating-point system with 0.05
to 0.1% accuracy, the log system has 36 dB greater dynamic
range, coupled with the fact that the accuracy of the

265

floating-point system becomes progrssively worse over the
lower 60 dB of its dynamic range.

Further consider having 11 bits word, with: one sign bit,
five characteristic bits and five mantissa bits, then the
dynamic range will still be 193 dB, but the accuracy will
be reduced to 2^^^^ - 1 = 2.19%.

Summing up:

(i) Advantages of logarithmic system over linear system:

* Greater dynamic range
* Multiplication of two numbers is easy (adding

two logs)

(ii) Disadvantage

* Summation (or subtraction) Is a complex
operation; but can be simplified by approxi­
mation method.

27F2 Logarithmic Arithmetic Unit LAU

The purpose of LAU as proposed by Kingsbury and Kelly
is to calculate R = A.K + B, where all of these numbers
are encoded logarithmically to base 2. The LAU calcula­
tion is centered on:

log^ |r | = logg IA.K + B

256

and sign (R) = sign (A.K. + B)

The inputs to LAU are therefore:

a = log 2 1 A| , sign (A)
b = log2 |B| , sign (B)
k = 1092 1 K| , sign (K)

and the outputs from LAU are:

r = logg I R| r sign (R)

as shown in Fig F2, and the detailed LAU diagram for 11 bit
word is shown in Fig F3.

Note that each arithmetic operation amounts to single
programming instruction.

F3 Bank of digital filters (EOF) requirements

The proposed EOF as described in Chapter 4, was based upon
cascaded second order segments whose arithmetic operation
on signals is of the form: a = b.c + d. Therefore the
logarithmic arithmetic unit LAU is most suitable for this
type of arrangement. However, a number of problems have
to be resolved:

(a) The LAU as it stands is a 11 bits word unit, which
may be satisfactory for the intended speech analysis;

267

however the word length may need to be increased
to 16 bits say for higher accuracy as mentioned
earlier.

(b) The input/ output numbers of LAU are logarithmic
numbers which must be encoded and decoded in a "buffer"
zone between the microprocessor unit and the LAU,
which amounts to a subset of the floating point in
a representation in the host computer.

(c) The LAU operation must be adapted to the EOF micro­
processor unit, in which

(i) each arithmetic operation is considered as
a programming instruction

(ii) the interfacing problem between the two
units is solved.

268

0 1 2 5 4 6 6 7 8 9 10 11 12 13 14 15

%
f Chûraĉ (̂ rl5Mc

Sigh

& 8 Æ 1 .

M o n h S50

Q

K A Ub

K

Sign (A) Sign(6)Sign(K)

B3_E_2

259

SIGN 00 sigw Ck) s ĝnCs)

ADD

SfGNCAO^ SIGNES)

(X/

+/-

LOG; (1 + 2-*̂ ' *)
ROM

5(2 X e &(TS

GATE OUTPUT
TO ZERO

r X

R q. TS. Loj art^hmtc a t i th m e t ic unit.. 27

270

-P0C
w
u
Q)-PÜIt

-PaItP
0)-p
c•H

1k\Ok>HEhEh\
oo
3
Q)C
ft
C•HT373ft
POMh
Q)P
730U0PPU
0
XH
Û
1PU
PU<

wfi
o•H4JftPft
&P
PU

O

p 00 eu XioU o 0
Xi 4-1ü-H 0 0P >0 4J 0e 430 MHü 0 00 00 Geu g •Hr—1 0 4J0 0 G0en c P• •H 43•H c G0 0 73 0-H 0+J P 0w. u -H P-p c 0eu p er g0 UU 0p p 0p 4J0 eu 0 4JU-) 0 pst p 0-H p0 0 0UJ p 00 0 0 r4C •H ■p G0 730 0 g 0'H 0 g+J £ P+J 0 enP eu G0 0 •HM-l g r—1 0p 0 0ü 0 p 0-H uu ■p U

C p c 00 0 0 p
B eu ü eu00 £ >1 1—1
g u p 0•H 0 G0 73 en • •
UJ G ■H 00 0 0 3•H 0 U 0P c 0 U 1—4eu •H 0 ■H 1—10 • 4-> 0 0p p eî MH 0 44eu 0 0 £eu 0 p 00 M-l Xi 0 0

0 0 0
c 0 0 4J *.0 G U eu 73•P 0 G 00 0 P P0 0 0 jG P 00 0 4J -p 0 eu0 ü •H 44 0X P G G pu 0 H -H eu
* "K *

>1ft

ft
w
0
0

C•H

Z:uk
0c-H-PnOP
w
0-p-HP
73C0
(3O•HWP0>dou
73p0
0
4H
0
-P
0-P0iH0
1
ok

0

2
U
PQ

0P3•H-P0OP
w
0-p-HP
73
§
§•HWP0
ê0 u
T5P0
1U0
0
+J
0-P0

OPu

g•H■P04J
g
i

pH

t
<N
d

wwouH

P
0peu
enC•H
OP+Jc0ü
c•H0e
cH

0

-P
pp0-P
C■H
m0
00
eu>14J
1-40
POU-l

gf-40
0 I—I
04J
0Æ4J
C•H
730A•HPüW0
Ti
m0
073
e
0XI
o-p
w0ijiC0ÆU

271

>143 m 73G G G0 '— 0•H CQ0 H ■PG 00 ÇX
g Q U in•H O •H N73 G 20 PQ
0 • • g H 00 P 0 PI 00 0 G PC 00 44 g Q 0
U O PU 0 73 üG G 73 44 GO H 0 < 0 H

<
x\k * •K 4c

0G0 44
►>1 0
43 73G G0 CM 0•H £0 44
G ï 00 O 1-4
g U U r4•H >H -H N73 Eh G 2Eh 00 g 00 0 00 G S 00 g O 0
U u PU P 73 UO G 0 73 EH Gk H 44 < Eh H

EhEh ■K 4C 4t

iH • 1 GG 44 G •H• * — 73 0 0P Q PQ 0 •H P 44
0 O H P 73 44 0 044 2 Pî •H ,G 0 0S S G 0 1-4 G 730 Oi PU ÎT 0 GG œ Ü3 0 44 P 0 00 P 0 4344 0 44 44>1 0 0 ' k 73 043 r4 0 0 0 >1 •

G 73 1-4 G rQ *. 0G '—' G 0 G G G0 CQ 0 PU 73 44 73 0 0•H H U 0 G 0 •H0 PI 44 PI g eu 44 44 >1G eu 0 44 0 0 430 U 44 PU G ü 1-4
g U 0 C/3 0 0 G r4'H -H \ 1—1 g co73 /"—s. G P 15 r-4 P 2rH 0 0 0 44 0 00 G g 43 G G 44 00 '—' 0 g eu 0 0(U 0 PQ G G 0 G 0 0 Q 0O 0 H g G jG •H rH O 0O p PI 44 eu G 2 PPI u S 73 73 73 ■H 73 S UG Oi 73 73 >1 PU 73 43 0 PU GH C/3 < < 43 U < 0 g c/3 H

* * 4c 4c 4c

272

0
U
Q)-P0
§
U0eu
o
u-pGOU
&073GOU00
0■P

44
U
u044G
•H

PUO
3

PU

8PI
0G

•H44G0
U
i0
G
H

tS32

(N

OH
ou

§DW
P3PI
g

CM

g
OO

0GO
•H0P0>
§U
7300G
41U
•H43
00

rH

5og
04344
POPu

1-4WO
PU
H

N

IUPu
G
H

CM

OEh
OO

POk N2 •H
■H

273

wOG,H

N2

Ih
P I
P I

g

N2

OEh
OO

PC
IOu
CQ

GH

(N

g
Oo

IPQ
P I

g

N2

O
EH

OO

21^

-P

PP0
-PG
Oh
KEh
POk

Ok
gEH
0G
•H44GOP
0
GH

N2

(N

O
Eh

OO

gEh
E h

tG
0

IS32

O
E h

OO

44
&PP044G

•H

O
3Pm
POPu

73

COW
§PU
0G

•H44GO
p

0
GH

mCsl2

(N

g
Oü

275

UGO420

IPu
PIPI
g

inN2

OEh
OU

044G0
Ou
n
6

44O
0 Gg 00 ■H0 4400 rH> œ0 G0 0p

r4 44
r4
•H 043

44

0 G
44 •HeuG GP 0P X0 0
44 44G
•H 042
>1g 44g 03 G73 g

44 00 p00 u0G 4400 043 P
44 en

44 P .
0 0 043 > 0
44 0 rH5 G0 0 73G 53 00 g
•H0 « 1-4
0 44 0G eu G
U G 440 P ü

•H P 073 0
44 00 G 44> •H G0 •H42 C/20 C/2 0O 440 u eu43 H G

44 p3 pg 0 00 G 44P G
44 0 •H

P en >10 G g0 •H
rH 73 0u 73 7300 0
-H G 00 0
44 43 43
H 3 44

275

APPENDIX H

Phase-lock loop

1 Basic Structure 18,31

The basic components of a phase-lock loop, shown
schematically in Fig H.i, are the voltage controlled
oscillator (VCO), and phase detector (PHSD), usually with
a low pass filter. However, the attentuator is included
in order to control the d.c. gain of the loop. The
system works as follows: in the PHSD the phases of the
input signal and of the VCO are compared, the output
voltage of the PHSD passes through the loop filter (F),
where eventually only the h.f. components are suppressed,
to the control element of the VCO, and change its
frequency, in such a way that the phase difference between
the input signal and the local oscillator is reduced.
When the loop is locked the average output frequency of
the VCO is exactly equal to the average frequency of the
input signal, ie for such output cycle there is one and
only one cycle at the oscillator input.

2. Basic Equations

Input signal
VCO signal
PHSD output

V
V

= sin
= Sin 0o
= (8^-8^) the steady state

situation, where
= the phase detector constant

(volts/radians)

277

Filter equation = F(s)

For a first order digital filter, having frequency cut-
,w) ̂ , the off (f) and an equivalent!analogue cut-off frequency (angular I a c I

transfer function, using the digital filtering concept
is

z (1+1/u)) + (1 - 1 / go)a a

Giving a difference equation:

y. = G X, + G - H y._i

where G = > f
n _ . : where A = tan(2n ■—)

^ " 1 + A) ®

dfiThe VCO operation = go + K V ̂ dt c o c

where gô is the free running frequency of the VCO
is the VCO constant (radian/sec/volt)

Then the following parameters and properties can be
deduced.

The filter transfer function:

H(^) = KF(S)s + K F(s)
-1where K = loop d.c. gain in sec , or Hz =

278

The natural frequency of the loop:

/ r/ K
OJ = V —n T

The damping ratio of the loop:

n

where x is the LPF time constant

183. The PLL constants and loop parameters

The PLL constants and parameters which are considered in
this discussion, are those which have an important role
in the behaviour of the PLL operation. They are the
PHSD constant K^, the VCO constant K^, loop d.c., d.c.
gain, loop BW, damping ratio, and the natural frequency.

3.1 Determination of the Phase sensitive detector
constant

If 2 sinusoidal signals of the same frequencies but
differing phases are applied to the phase detector, then
the output will contain a d.c. gain component, given by
the following relationship:

where e^(t) = A^ cos (cô t+ê !

!79

e: (t) = cos (w t + e)o o c o
and K is the gain (loss) of the phase detector,

A . A
Let (8^-Gg) = 8, then = K —^ - cos (8).

The phase detector constant is defined as

for 8 = Y

A , A A . A
= -K sin (|) = K -4-2

If the frequency of on lock input to the phase detector is
changed, then the low frequency component of the output is
given by:

A. A
e^(t) = K ° cos ((w.-w)t + (8.-8))Q Z 1 O 1 O

It can be seen that the amplitude of this component is
equal to the phase detector constant K^.

3.2 Determination of the VCO constant Ko

The VCO constant is determined, by plotting "the output
voltage" vs applied voltage (d.c.) and taking the slope
of the curve at the required centre frequency, as shown
in Fig H.2.

280

3.3 PLL range of operations

(a) Lock range (or tracking range)

The frequency range over which phase lock is maintained

where K = A = d.c. loop gain
where A = the gain (loss) of the

attentuator.

(b) Capture range (or acquisition range)

The difference between the maximum and minimum frequencies
at which the loop just comes into lock

F = - / -ca IT T

F_ and F are related as shown in FigH.3. L ca

Fill-
281

Vc
VCOPHSD -»-®o

Fig.HI. PLL Basic ôtrucFurg,

VEO frcq,= f
; I

Fig HZ D<Lh2ryninahion o f K q

f l f z fo f 5 f4

Fig K5 . Lock & CQpl"urc R a n g e - RelCMonôhio

282

APPENDIX I

COMPUTER RUN TIMES

During the process of testing the simulator, some measure­
ments were made for the computer run times of some of the
problems already mentioned, which may be found useful for
future work.
1.1 On-line operation, using PDP8
For a system configuration shown in Fig (2.8.1), with the
signal processing module being a second order low pass
digital filter Chebychev type, the maximum sampling frequency
achieved was 15Hz. Due to the slow execution of arithmetic
functions (multiplications etc) in Fortran II, which may be
improved using a floating point processor.
1.2 Off-line operation using large size computer ICL 2980
(a) For the co-channel interference problem: Section 5.3.

In a test to obtain the graph of Fig 5.3.2, the
total run time was 29.5 seconds. The run involves
5 graphs, each with 500 points. The time is
sub-divided as follows:
(*) 10 seconds for managements (TTYFG operations)

eg System construction, change of parameters etc.
(*) 19.5/2 500 = 7.8 msec, the time taken for one

sample to be processed.
Therefore for real time situation using this type
of computer,the maximum clocking frequency is 128.2
Hz, for this problem.

(b) Fast acquisition problem: section 5.4.
In a test to obtain the graph of Fig 5.4.5, the

283

total run time was 35 sec. The run involves 2 graphs,
each with 500 points. The time is subdivided as
follows:
(*) 10 sec for managements (TTYFG operations)
(*) 25/1000 = 25 msec, the time taken for one

sample to be processed.
Therefore for real-time on-line situation using the
2980 computer, the maximum clocking frequency = 40 Hz.

