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SUMMARY

This work is concerned with the design of a general- 
purpose time-domain interactive communication-system 
simulator ICOSS. Signal processing modules may be 
interconnected in any order, and module control 
parameters, as well as the system control parameters 
can be varied while the simulation is running. Editing 
of the system structure (inserting or deleting modules) 
can be done on-line.

The ultimate objective is to set-up a communication system 
simulation working on an on-line basis, with an inter­
active capability providing the engineer in a research 
environment with a bench tool, which complements the 
hardware apparatus.

Once the prototype of ICOSS was developed, an investiga­
tion was made into one of the main areas of further 
development, namely, processing speed, in which a dedi­
cated processor containing a signal processing module, 
comprising of microprocessor controlled unit, is coupled 
with the main computer, where ICOSSjresides .

The simulator novelty in engineering and research was 
tested, by using problems involving feedback links, 
namely, interference in a phase-lock loop and perform­
ance of fast acquisition phase-lock loop. These 
provided confirmation and deeper understanding of experi­
mental work as well as proving that ICOSS was working

(ii)



correctly.

To implement the full system requires computing power 
and equipment which was unavailable. Therefore, only 
the prototype version was implemented.

(iii)
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CHAPTER 1

INTRODUCTION

1.1 COMMUNICATION SYSTEMS

1.1.1 Definition and Characteristic

Communication system design involves a complex interplay 
between the hazardous transmission environment and the 
skilful use of modulation techniques and electronic hard­
ware. Many associated problems have successfully been 
solved by the traditional methods of experience and 
intuitive understanding, but it has always been clear that 
better judgements could be made and more realistic pre­
dictions of performance constructed if readily usable 
analytical techniques were available to the communication 
system designer. General analytical solutions are only 
available for the simplest of cases however, because of 
the general difficulties of the communication environment. 
Communication theory relates signalling speed, bandwidth 
and noise, which assumes well-behaved but non-realisable 
channel frequency characteristics; and the extension of 
these principles to real life is left to intuition. Non­
linear circuit elements such as blankers and chippers, 
leave a certain amount of vagueness in receiver calculations, 
particularly when allied with a variety of modulation 
styles. Communication filters are generally of high order,



typically fifth or greater, which, if several are included 
in one analysis, lead to complicated equations. Filter 
characteristics are consequently chosen for the convenience 
of their analytical description, rather than their suita­
bility for the job in hand, and although optimum filters 
are capable of being designed for specific applications, 
it is difficult to predict how the filter will behave 
when conditions have altered from those assumed for the 
optimisation.

1.1.2 Areas of problems in communication systems^

The areas of problems in communication systems are wide 
and ever increasing, but for the present discussion 
purposes, the following main areas of problems are defined 
as the major communication problems.

(a) Stochastic: long averaging times, or large ensembles 
involved, eg phase jitter and digit synchronisation 
studies, frequency stability studies.

(b) Signal analysis problems: long averaging times, long 
records, eg probability distribution generation, 
correlation function estimation, power and energy 
density spectra: P(f) and E(f) etc, for real signals, 
eg speech.

(c) Interactive or real time problems: long data record 
involved, eg optimisation studies, of filter band­
width .

(d) Deterministic problems: short computation times



involved, eg transient studies such as "speed of 
lock" of a phase-lock receiver, distortion tests

1.2 SIMULATION

1.2.1 System Studies

Analytical expertise in communication systems is both 
desirable and difficult to acquire. The alternative to 
exact analysis is to assemble the proposed system and 
investigate its behaviour experimentally; such investi­
gations have been carried out since the science of 
electronics began. While providing some of the answers, 
this approach is expensive and also leaves many unsatisfied 
queries. What is really happening inside that mixer circuit? 
How would the system behave with slightly different filters? 
How sensitive is the system to circuit parameter changes? 
Computer simulation of communication may be the solution 
to these queries. But before introducing that, a brief 
introduction to the system simulation in general.

1 21.2.2 System Simulation

The need for the simulation of a system may arise in 
several ways. An analyticalsolution or approximation solu­
tion to a problem may have been found and some form of 
corroboration be required. In some cases this is most 
easily obtained from a hardware model, but with more 
complex systems, computer simulation may be a more attractive



proposition from the points of view of time, accuracy 
and economy. In computer simulation parameters can be 
modified, variables monitored, curve fitting and regression 
analysis performed, and statistics of the system perform­
ance obtained.

A simulation may range from a pure numerical calculation 
from analytical results, to partial simulation where 
some parts of the system are modelled analytically and the 
rest simulated, to a full simulation in which every ele­
ment in the system is modelled and simulated. In the 
interests of efficiency it is usually desirable to 
describe as many parts of the system as possible by 
analytical expressions.

A simulation may be run serially in time, where the 
response at each instant of time is computed recursively 
from the state of the system and the inputs at that time. 
Alternatively, it may be possible to compute the overall 
time response in parallel, usually by transform techniques. 
The parallel simulation can be faster, but is difficult to 
implement if there are feedback paths in the system and 
may require a large amount of storage to simultaneously 
store the values of variables at every instant of time.

The use of digital computers for the simulation of analogue 
system is a wide field, and over recent years a large amount 
of literature has been published. The literature concerning 
simulation systems tends to fall into several main areas^ :



(*) Discrete simulation: concerning discrete change 
simulation; eg queueing problem.

(*) Simulation designed around a particular 
problem: eg FFT package.

(*) Continuous (analogue) simulation methods:
the importance of these methods is in their 
historical development, their organisation and 
the structure of their basic elements.

(*) Existing methods for the simulation of
communication system: these are standard 
packages, see later.

1,2.3 Communication system simulation

Simulation of communication system modules can take place 
either in terms of frequency or time domain. The 
difference between the two lies in the manner in which 
filters are described. A frequency-domain simulator 
specifies filters in terms of their frequency response, 
thus enabling ideal filters to be included. In a time- 
domain simulation, filters would be described through 
difference equations operating on a succession of signal 
time-samples. Both techniques suffer from the usual 
troubles introduced by signal sampling, limited frequency 
range and aliasing, but their time domain performance 
differs widely. The input to each transformation in the 
frequency-domain simulation is N time samples and the 
corresponding frequency scale has only N discrete points. 
The time scale is unlimited in the case of the time-domain



simulation, and the frequency scale is continuous up to 
the sampling frequency.

Communication system simulation can be classified into two 
types :

(a) Special-purpose, in which the simulation is specific 
to a particular problem: most simulation for 
laboratory and research work falls within this type. 
The engineer, who will write the special-purpose 
simulation, must be a skilled programmer and 
sufficiently familiar with the mechanics of simula­
tion to describe adequately his problem in terms 
which allow accurate simulation.

(b) General-purpose: digital simulation allows a general 
approach to be made, where the programming effort
is applied initially to construct in software a set 
of processing modules and some kind of data structure, 
which allows them to be strung together and signals 
and effective measuring instruments applied. Some 
familiarity with the basic concepts of programming 
will inevitably be required (although the tendency 
is to minimise them as much as possible), and also an 
understanding of the principles of the particular 
simulator. This type of simulation, the general 
purpose, will be adopted thereafter.

To simulate a given communication system, the block 
diagram of the system is constructed using processing



modules (eg amplifiers, filters etc , ie having different 
fundamental functions); and then a certain form of 
connection of the blocks in the diagram is written in 
terms of the functions of the blocks and certain para­
meters. If the block diagram and the expression of 
these connections are fed as the source program into the 
simulation, then the complier in the simulation system 
generates the program written in the computer language, 
say Fortran IV, for the simulation of the given system.
1.3 THESIS
1.3.1 Designing a new simulator, ICOSS

There are a large number of communication system simulation 
packages based on one technique or the other to perform a 
particular task or tackle one or more areas of communica­
tion system problems. A large number of papers and litera­
ture cover this subject as will be shown in the next 
chapter. However, communication system simulation does 
not stop at any particular boundary, but it progresses 
and becomes more and more ambitious. With the intro­
duction of fast microprocessor and minicomputer systems, 
a new approach to communication system simulation is 
therefore needed in order to achieve the most ambitious 
requirements. A time domain simulator: the Interactive 
Communication System Simulator (ICOSS) is to be designed 
with this background in mind. Its main objectives are: 

being able to change the simulated model control para­
meters while in the running mode, being able to edit its 
module structure (block diagram), be portable, and operate



interactively for real-time simulation. Also to provide 
the communication engineer with a bench tool which will 
prove vital in research and development laboratories.

In the pursuit of designing a nev7 communication system 
simulator, the following procedure is followed in this 
thesis. A survey of communication system simulators is 
made in order to present the current state of the subject. 
They are then classified into a number of areas according 
to their principle of operation, type of problem they are 
capable of solving, and system set-up (ie computer capa­
bility and supporting equipment available). A summary of 
the objectives in the design of the new simulator are 
formulated, which must satisfy the ambitious requirements 
of a typical user as much as possible. A number of options 
are available to implement those objectives: choice of 
programming language, generality of application, domain 
(frequency or time) etc. Finally, once the new simulator 
is implemented, its credibility is examined by testing its 
functions in solving the type of problems it is designed 
for.

1.3.2 Outlook and modifications

The intention of this work is not only to design and imple­
ment a new digital communication system simulator of 
unique characteristics, but to lay the foundation for simu­
lation system with wider applications as outlined earlier. 
However, the inherent problem of real time simulation in



which fast processing is essential, can be overcome by 
either large or fast computer system, or alternatively 
processing parts of the simulation by fast dedicated 
processing working in conjunction with the mini or medium 
size computer. Although the objectives of the prototype 
version of ICOSS are achieved, the overall and final 
version of ICOSS system, running in real-time were not 
fully implemented, because of either the limitation of 
time or facilities. Therefore, there is still further 
work to be done, which will be outlined in Chapter 6,

1.3.3 Application

The credibility of any new simulator is measured by its 
fulfillment of the objectives laid in the design, as well 
as its power in solving the type of problems it is 
designed for. Since one of the main features of time- 
domain simulators is the ability to simulate communica­
tion systems containing feedback links, phase-lock loop 
performance and the problems associated with it are an 
ideal testing case, which will be fully utilised.
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CHAPTER 2

SIMULATION TECHNIQUES AND SIMULATORS

2.1 INTRODUCTION

2.1.1 Historical Background

Simulation is the building of a model of a device or 
(38)system . Models are useful in that they provide a 

means of testing ideas and designs without the complica­
tion or expense of building a prototype system; and 
modelling is widely accepted in engineering. In some 
fields the models are physical devices, such as small 
scale versions of the actual system. When a system can 
be defined mathematically, modelling can proceed from a 
conceptual view point and the model need not be practi­
cally realisable. Such is the type of simulation that 
can be used for communication or signal processing systems

Computer simulation of systems in general is a wide 
subject, each case influenced by the limits of computer 
capability and particular problem at hand, and there are 
numerous articles and books on the subject .
Limiting the discussion to communication (or signal 
processing) system simulations, there are a number of 
approaches, depending on:

* Refs 9-12, 15,16,21,24-26,29,30,35,38,40,41,48
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(*) The simulated system itself and the degree of
accuracy required of the simulator, as well as 
the degree of similarity with the actual system.

(*) The computer at hand and its capabilities
(memory size, execution time etc).

(*) The degree of generality required by the
simulator, ie will the simulator be used in a 
different environment or will it only be used 
for one particular problem.

(*) Continuous time or discrete time systems.

Historically, signal processing system (SPS) simulations
3 8started with analogue computers , in which the system 

is modelled by differential equations, in which integrators, 
adders etc make up the system, and the problems can be 
solved quite easily many times over, using simple config­
urations . There are big advantages in analogue computer 
simulations, mainly:

(*) Fast speed of action, since there is only hard­
ware involved, and the results are obtained 
immediately.

(*) Simple technique in solving certain difficult
problems.

(*) Easily used by engineers.

However, there are disadvantages as well, mainly:

(*) Difficult to set up for large problems.
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(*) Variables must be scaled.
(*) Non-linear operations: such as multipliers, 

function generators are possible but have 
limited dynamic range.

(*) Only continuous time system, whose theoretical 
analysis is based on the solution of differen­
tial equations, can be simulated by this 
method; ie discrete time systems cannot be 
simulated.

(*) Limited in order of system, by number of 
integrators.

With progress toward developing digital computers, the 
analogue computers started to lose their predominance 
in the field of SPS simulation. Although the digital 
computer is flexible and capable of being programmed for 
many problems, such as solving discrete-time systems, 
whose analysis is based on difference equations (see 
later), yet the execution time is increased considerably 
as compared with analogue computer simulation , vis 
100:1 ratio.

In order to overcome the time limit, hybrid computers were 
introduced in to combine the two types (analogue/digital) 
and obtain the advantages of both. With the simulation 
techniques of communication systems becoming more and 
more ambitious, the hybrid computers have been replaced 
by "Giant" computers , but the latter solution has 
proved to be rather expensive for the vast majority of
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application^.^ The ultimate solution, with real-time on­
line system simulations in mind, is to combine a digital 
computer of a medium size, with mini-computer network 
with storage and interfacing operated separately. In the 
coming sections a development to that end is described.

2.1.2 Simulation Techniques

In order to simulate a system, one must have a clear 
understanding of the overall content of the communication 
system itself, as well as what is required from the simu­
lation. In signal processing system simulation, the 
system can be looked at as a group of sections and sub­
sections interlinked together. These can be summarised 
briefly as follows, for the example system shown in 
Fig 2.1.1:

(a) Signal processing modules (M): eg signal generators, 
filters etc.
To simulate those modules, the following parameters 
have to be determined.
(i) Module internal and external coefficients, 

ie local and global (see Chapter 3).
(ii) Inputs/outputs node relationship of the 

module.
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(b) The state variable of the system. ,
(c) The running mode (procedure).
(d) Output signal measurements and evaluations.

The common denominator in practically all simulators is 
to present the signal processing system as near to the 
physical system as possible, and then utilising it in 
situation which would be impractical or difficult in the 
real system. The emphasis, therefore, is how simple the 
simulator appears to the user, in terms of familiarity to 
him as a bench tool, rather than learning how the simula­
tor has been constructed. This is in contrast to the 
earlier work of signal processing system simulation

The simulation of the above signal processing system 
can take any of the following forms depending on the 
application and tests required; these are summarised as:

1. Frequency domain based simulation.
2. Time domain based simulation.
3. On-line operation.
4. Off-line operation.

Looking through the development of signal processing
( * )system simulators , which are mainly based on block 

diagram simulation (see below), one can see clearly the 
trend moving from being heavily dependent on programming 
technique, with specialist approach on the off-line basis, 
to that which is closer to the real physical situation,

* Refs 11,16,21,26,29,30,35,41,46
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the on-line working basis; especially with the introduc­
tion of high speed computers.

2.1.3 The Block Diagram Technique

There are numerous simulators basing their analysis on the 
so-called block diagram technique(*). It is so called 
because the simulation is based on the ordinary block 
diagram representation of a system. For this reason, 
this technique is most suited to the simulation of 
communication systems, and shall be adopted for the 
present work. The main feature of this technique and 
method of implementation is briefly introduced at this 
stage, and a more rigorous examination will be given in 
later sections. The communication system is completely 
defined as cascaded blocks or units representing the 
signal processing modules (MO, Ml, etc Fig 2.1.1), with 
the necessary interconnections for the feedback or cross­
over paths. Hence when simulating such a simple system, 
the following items have to be treated:
(a) The signal processing modules MO, Ml etc: The transfer 

function of each module must be clearly defined, and
a subroutine is created in the usual way.

(b) The Local control parameters of those modules, such 
as the cut-off frequency of a digital filter, or 
the gain of an amplifier etc.

(c) Input/output nodes of each module (multiple levels).
(d) The inter-link between the modules (input/output

( + )nodes connections), which may take number of forms

* Refs 10,11,16,21,25,26,35,46 
+ Refs 11,16,35,41
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They have to be uniquely defined; but once adopted 
they have to be precisely followed.

(e) The "global" control parameters, ie the parameters 
which control more than one module, such as a 
sampling frequency of a digital communication 
simulation.

(f) The type of output device which evaluates the signal 
at any node within the system, such as the measure­
ment of a mean value of a signal etc.

There are three distinct stages which constitute the 
simulating procedure of this block diagram technique, 
they are:

1. The construction stage: in which the communication
system is defined and its parameters are supplied to the
simulator. This is implemented in various ways depending
on the designer(*). However, it should be implemented In
as simple a way as possible for the reason is that the
user may have limited or no programming knowledge or

15,35experience at all • . Appendix A shows some samples of 
implementation of a number of important simulators.
During this stage also a number of tables, strings and 
stacks are generated in order to set the simulator for 
the following stage.

2. The running stage: in which the incoming signal is 
processed through the system in orderly manner. This 
requires efficient storage arrangement of various parameters

* Refs 11,16,35
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needed for signal processing as well as searching pro­
cedure with minimum elapsed time.

3. The output stage: in which the output signal at any 
node of interest is examined in order to evaluate the 
behaviour of the simulated communication system.

2.1.4 In this Chapter

The signal processing system techniques are discussed in 
more detail and presented as the subject developed his­
torically. The limitation and misgiving of the various 
techniques mentioned will be discussed, giving the lead 
to a new approach, which will be called ICOSS, the 
Intensive Communication System Simulator. The latter 
will be introduced only briefly, since it will be fully 
described in Chapter 3.

2.2 IMPLEMENTATION: USER SIDE:

One of the big problems in communication system simulations 
is how to present the simulated system in simple terms 
recognisable by a user with limited or no programming 
experience. Various approaches were made to overcome 
this problem, which can be found in literature(*). These 
can be grouped according to application, machines and 
period of implementations. However there are two main 
ways of presenting the simulated communication system to

* Refs 11,16,21,26,35,46
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the signal processing simulators; they are:

(a) The block diagram method : which is commonly used 
and most suited for digital computer simulators.

(b) The differential equations method: which is imple­
mented for analogue (operational)computer 
oriented simulators. ____ _

In the following, a brief description of both methods and 
their limitations as implemented by well-known simulators 
is given, and the ideal solution is forecast. Typical 
examples are presented in Appendix A.

2.2.1 Typical communication system

The object is to translate the representation of the 
typical communication system shown in Fig 2.2.1 to a set 
of computer instructions. The translation depends 
mainly on the type of simulation and computer in use. The 
discussion will be restricted to two types only, the 
analogue computer, and the digital computer, since any 
other type will be the combination of the two.
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The digital-microcomputer network will be mentioned in 
later chapters.

(a) The analogue computer oriented simulators: The 
differential equation method.
The procedure is summarised as follows:

(i) The complete system is defined as a set of
differential equations, and their elements
(integrators, delay, adders etc), ie the
conversion is from block diagram of the 
system to differential equations.

(ii) The simulation is implemented by an orderly
connection of these elements.

Generally, a patching panel is needed for the 
analogue computer, which can be programmed in the 
case of hybrid computer.

(b) The digital computers oriented simulators: The 
block diagram method.
Historically BLODI^^ was one of the early simulators 
in which BLODI program accepts input program written 
in BLODI language. The latter corresponds closely 
to an engineer's block diagram of a circuit. The 
input code consists essentially of designating the 
connectivity of a number of boxes drawn from an 
alphabet of about 30 types.
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The object program produced by BLODI consists of 3 parts

(i) the prefix which sets up the logic for the 
main loop

(ii) the main loop, which is executed once for 
each sample processed

(iii) the suffix, which causes the main loop to be 
repeated the proper number of times, empties 
output buffers, fills input buffers etc.

Example: for system shown in Figure 2.2.2

line 1 : SUM ADR BUFF
line 2 : BUFF FLT a^,a^... parameters of

filters, DELAY
line 3 : DELAY DEL ___
etc

21In later years the BLODI was modified to become BLODIB. 
The language of the latter is designed for programming 
sample-data system which may be represented either in 
block diagram form OR in the mathematical representation



21

of the Z-transform calculus. Therefore, although it is 
basically for sample-data system, it may be used for 
sample-data approximation to continuous (analogue) 
systems. The procedure in simulating a system is 
summarised as follows:

(i) the determination of an appropriate discrete 
representation for the system to be studied

(ii) the preparation and compilation of a BLODIB
computer program which causes the computer to 
perform the same operations as would be 
performed by the actual system

(iii) the digitalisation of a real speech signal for 
processing by the computer.

There are 3 ways of representing the system

(i) by MACROS or SUPER: defines new type of block 
(for basic type available)

(ii) by SSUBR: which allows block of BLODIB coding 
to be used as an external "module" to a main 
BLODIB. But SSUBR are coded and compiled 
separately; then loaded for use by the main 
program.

(iii) by SUBR, which permits coding an entire simu­
lation so that it can be controlled by a main 
or "executive" program.



Example:

inputs Control Parameters
ADB MACRO 11,12,13,14 Al,A0,Bl,B2
IN MIP 1,DEF

END

Another type of presentation was made by another group
11of simulators, and WASP is a typical example. In 

this a fixed structure is established for the analysis 
of waveforms and spectra in the communication systems 
and then building on this framework a library of 
electronic or electromechanical modules of the type 
needed for the specific application. The procedure for 
WASP simulation is as follows:

(i) Draw communication system as block diagram
(each block must be one of the library modules)

(ii) Number each node and decide on the node for the 
output device connection

(iii) Input data
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Finally, yet another approach which is relevant to this 
discussion, is the one made by SYSTID . The latter is 
a time domain simulator which relies on cards for the 
data input and each group of cards represents a communica­
tion system. Its language processor translates the simple 
English language user command supplied on cards, and links 
element descriptions and topology into the Fortran code 
necessary to establish a digital filter equivalent of each 
link. The data structure of this system is as shown in 
Fig 2.2.3.

Example : A model which squares a signal

MODE 1 0 Example
INPUT 0 ^ * 0 0  OUTPUT
INPUT 0 SIN (0) 0 NODE 1
END 0
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2.2.2 Limitations

There are many ways of simulating communication systems 
other than the ones mentioned above, but they all have 
some limitation. Some of these limitations are summarised 
below:

(i) Batch operated rather than interactive, so that 
data representing the communication system block 
diagram is supplied to the computer separately 
for each run.

(ii) Modification of system structure once supplied 
to the simulator is difficult to achieve

(iii) Variation of signal processing modules parameters
is not direct, if at all

(iv) The simulated system is not clearly related to the
original communication system block diagram. Hence
the user is not able to look upon the simulator as
another bench tool identical to the simulated
communication system.

2.2.3 Projection

In order to achieve as near an ideal solution of this 
problem as possible, the following must be fulfilled:

(i) Overcome the limitation of (2.2.2) above
(ii) Establish a peripheral device on which the

simulated communication system is drawn on it 
directly, and the user could modify the system
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readily ontheperipheral device. This will 
eliminate completely the difficulty of trans­
forming the electrical block diagram onto the 
set rules of the simulator.

It is hoped that ICOSS will fulfil these conditions when 
it is finally completed.

2.3 IMPLEMENTATION: COMPUTER SIDE

In the design of an efficient general purpose signal 
processing simulator, the designer has to aim for the 
following essential targets:

(*) Efficient utilisation of computer memory, 
speed of execution (cycle time), and 
computer facilities.

(*) Efficient programming without ambiguity and 
with minimum redundancy of occupied memory.

(*) Program the simulator to make it portable.
(*) Program routines to represent a complete set 

of general SPS modules.

Thence, in the design of SPS simulator on a digital 
computer, the following detailed points must be carefully 
considered:

1. Structured programming: in which the various sub-
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routines which make up the simulator are inter­
connected without nesting and the overall program 
of the simulator can be modified by adding or 
taking away subroutines with minimum complication.

2. The use of simulation languages: presenting a
simulator to a user in a language easy to understand, 
means creating a new computer "language". Since 
there exist nowadays communication system simulation 
language such as WASP^^ and CSSL^ , then it will be 
beneficial to utilise such languages, if they are 
general enough.

3. The choice of a program language: since there are
a number of computer languages such as Fortran, Algol, 
etc, then the choice must be made for a suitable 
language, eg for engineering application Fortran IV 
is most suitable and provides portability. It might 
be desirable to use assembler language or machine 
code in some part of the simulator program, in which 
time is of prime importance (see Chapter 5).

4. Signal processing modules transfer functions: must 
represent a fundamental set, enabling all common 
communication systems to be simulated.

5. Output devices can take many forms :one form is to have 
a real hardware peripheral or oscilloscope in the 
case of real-time operation. Or the output device 
can be simulated, which is the case in the majority 
of situations; eg RMS meter etc.

6. Library construction: for signal processing modules,
data base (parameters, state variables, pointers etc).
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Efficient arrangement is of vital importance in order 
to utilise the limited computer memory economically.
In the course of running the simulator, there will 
be samples, pointers, state variables, links etc 
which have to be stored in stacks and there will be 
a relationship between the contents of one stack 
with another, which will be consulted during the 
process of execution. Therefore an efficient method 
in either space, or speed, ie access time depending 
on the simulation whether real time, stochastic or 
off-line simulation, must be devised.

7. Search procedure of tables (library): Serial or
39Hash techniques depending on the situation, has to 

be efficient, since choosing the right technique means 
minimising the execution time, which is of vital 
importance in the on-line and stochastic simulation, 
in which large averaging times or large ensembles 
are involved such as fading problems (error rates 
studies) multi-channel interference problems (see 
later) .

8. Storage of samples : at some stage within the execu­
tion, it will be found necessary to store block of 
samples of the signal at any node of the system so 
as to process it further at a later time, internally 
or externally.

9. Memory allocations(real and image): it is always 
beneficial to plan and utilise computer memory 
capacity according to the simulator need (program, 
tables etc).
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10. Efficient processing (arithmetic and logic): one of
the chief functions of a digital computer is to per­
form arithmetic operation upon numbers and series of 
numbers can represent the instantaneous amplitude of 
a signal. Therefore, if the correct arithmetic op­
erations are used, sequences of numbers could be con­
verted into other sequences, in such a way that the 
overall operation models some element in a communica­
tions systems. Such is the basis of simulation by

3 8digital computer . Therefore, the computer arith­
metic capability is an important factor when consi­
dering the design of a simulator. This is more 
apparent for the on-line real time simulation case 
where the time saving is of vital importance, eg 

If one instruction takes 1 m second then 
for 1000 instructions would take 1 second,
giving a- sampling frequency = IHz which is
highly unacceptable.

It is preferred to have a high speed arithmetic unit 
in conjunction with computer system to solve this 
problem.

11. Multiprocessing attempts: Since communication simu­
lation sometimes involves multiple processing and 
since time saving is an important factor in simulation 
then it is desirable to multiprocessing simulation 
but with additional problems in organisation. This 
can be achieved by software or hardware or both.
The latter point will be elaborated in later Chapters.

12. Cross-reference of samples (nodes): as signal samples 
are flowing within the simulator passing through



30

multiple input/output nodes, it is essential that at 
multiple inputs, each sample has the same time 
registration. Otherwise the simulation is invalid. 
Special care must be taken regarding this problem.

14. Real-time simulation: this type of simulation has
a number of criteria, namely:

(a) Real-time clock: this is preferably an external
clock, which can be varied depending on the
sampling frequency. Its accuracy therefore has
a major factor on the running of the simulation.

(b) Analogue/Digital and Digital/Analogue converters 
the number of levels and digits in either direc­
tion, ie quantisation error, will influence the 
accuracy of the simulation. Therefore, it must
be taken into account and made as small as
possible. Wide dynamic lange logarithmic- 
converters may be needed.

15. Continuous signal as represented by a digital system: 
the correspondence between the digital model and the 
continuous system depends on:

(a) Satisfying the sampling theorem
(b) Correctly relating the z-transform of digital 

filter structures to the frequency response 
of the continuous prototype.
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2.4 FREQUENCY DOMAIN SIMULATION

2.4.1 Introduction

Ever since the development of computer procedure for
performing the Fast Fourier Transform (FFT), the
communication engineer has been provided with a simple
method of achieving frequency domain processing (wave
filtering) without the need to acquire skills in the

9technique of digital filtering . Most communication
simulators today are based on this type of domain and

(*)are well covered by the literature

2.4.2 Principle of Operation

This type of simulation is based on processing a block 
of signal samples at a time. When filtering is required, 
these samples will be transformed to the frequency 
domain by applying the Discrete Fourier Transform (DFT) 
to this block of samples, then transforming to time 
domain by applying Inverse Discrete Fourier Transform (IDFT) 
for further non-linear processing. The number of samples 
in a block must be large enough to give a good resolution. 
However if there is a very long signal record to be pro- 
cessed,the n successive sets of blocks are processed inde­
pendently, and the processed blocks are joined up together 
so as to produce the continuation of signal record as 
before. However, this joining up process is complicated
by the fact that this filtering performs a circular con-

4 9volution instead of an aperiodic one , so that a

* Refs 11,35,41



32

certain proportion of each segment must be discarded.

2.4.3 Execution procedure

(a) Obtain the filter response from either a pole-zero 
description, or a numerical description of a 
measured response curve.

(b) Take N points of input signals.
(c) Transform into the frequency domain using DFT.
(d) Multiply each sample (point) by the corresponding 

filter response.
(e) Transform resulting spectrum back to time domain 

using IDFT for further processing.

2.4.4 System Analysis

A prototype system containing the basic elements of a 
communication system, ie a filter, nonlinear module and a 
linear module. Fig 2.4.4(a), has a corresponding structure 
for frequency domain simulation, as shown in Fig 2.4.4(b). 
The signal analysis (signal calculations at nodes con­
cerned), for an input signal X(t) having a bandwidth w Hz 
is as follows:

* At node (1): analogue to digital conversion

tx(t) = Z x(nT) sine (— - n) (1)

where T = the sampling frequency.
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There is a major restriction which must be observed:

T << ^  where B is the highest frequency component of
the input signal (= w in this case). This is

g
the limitation imposed by the sampling theorem , 
so that folding back into the fundamental band, 
thus disturbing the representation, does not 
take place, also to overcome aliasing (or over­
lap or high frequency impersonation ̂  ).

* At node (2): Conversion to frequency domain

The conversion is performed using discrete fourier transform 
(DFT):

N-1
X(K6) = i S x(nT) exp - j 

n=0

K = 0,1,2,----,N-1

* At node (3): Filtering action

The filter coefficients are either stored (storing N points), 
or generated (N points), using the zeros and poles of the 
filter. The output signal Y(K6) is determined by multi­
plying signal component by the filter spectrum

Y(KÔ) = H(K6) . X(K0)
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* At node (4): Conversion back to time domain

The conversion is performed using the inverse discrete 
fourier transform (IDFT)

N-1 r, „
y, (nT) = Z Y(K6) exp j — ^ —  

K=0

n = 0,1,2,....,N-1

* At node (5); Time-invariant non-linear module

y^ (nT) = g(y^(n^T))

* At node (6): Time-invariant linear module

y^ (nT) = z(nT),y2 (nT)

This is a simple multiplication.

2.4.5 Characteristics

(a) Systems with feedback links cannot be handled since
data is processed by the FFT in segments.

(b) Slow, hence it cannot be used for stochastic simula­
tion, unless hardware FFT machine is employed.

(c) Resolution is limited by fixed number of points
(samples).

(d) Easier to handle complex signals than time domain
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based simulators.
(e) Any type of computer can be utilised, but as an 

off-line oriented simulator.

2.4.6 Utilisation

Wide range of problems are being solved using this
technique and could be found in literature, and some

11 41languages have been developed such as WASP , MODSIM
and SIGSIM^^

2.4.7 Scaling

For time scale of signal block consisting of N samples 
at spacing of T seconds, and frequency scale of signal 
block consisting of N samples at spacing of 6 frequency, 
then NT5 = 1
Thus, for a given number of points T « y (reciprocal 
relationship).
But frequency scale is limited to ~ the sampling frequency 

’■..X ■ è  ■ ¥

2.5 TIME DOMAIN SIMULATION

2.5.1 Basic principles and execution procedure

The conversion from time to frequency domain for the 
purpose of filtering signal samples becomes unnecessary
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in time domain simulation, because the filter itself is
simulated. This is done by correctly relating the z-
transform of digital filter structure to the frequency

9response of the continuous prototype , and using the
difference equation version of the filter response.
However, digital filter cannot model the corresponding
analogue filter in both impulse and frequency response,
but it is possible to make the correspondence close with

49careful design . There is no limitation to the 
number of points and for this reason it is suitable for 
on-line real-time working simulation. It is possible 
to simulate systems with feedback links. However, state 
variables of the system have to be clearly defined.

2.5.2 System state variables

The state variables of a discrete-time system are the
minimum set of variables which define the overall state
of any system (linear or non-linear) at instant of 

9time . They are useful for the following reasons:

(*) It may be necessary to examine the behaviour 
of all relevant signals in a system.

(*) The need for a more general system description 
to treat multiple inputs and outputs .

(*) The need for a more compact system description 
in the study of complex systems.

(*) Often in the study of systems, only a general 
(qualitative) description of system behaviour 
is required.
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The general mathematical formulation of the state 
variables concept is as follows : -

Assume a system, whose outputs represented by (y) and 
inputs by u, is defined by

y(k) + b^ y(k-l) + ... 4- b^ y(k-n) = a^ u(k) (1)
for K ^ 0

Defining the state variables as: x^(K) , i = 1,2,...,n
thus: x^(k) = y(k-n)

Xgfk) = y(k-n+l)

Hence by substitution;
Xn(k) = y(k-l) 
x^ (k+1) = x^(k) 
x^(k+1) = x^(k)

X  , (k+1) = X  (k) n— 1 n
and x^(k) = y(k) = a^ u(k) - b x (k) ... -bqx (k)n o n i i n

This equation is represented by block diagram shown in 
Fig 2.5.1.
Hence, using vectors [x(k+l)] = [^][x(k)] + [b] . u(k) (2)
where:

[x(k)] =

(k) 0  1 0  . . . .  0 0

x^ (k) 0  0  1 . . . .  0 0

• , [a] = , [b] = •
0  0  0  . . . .  1

X  (k) —b —b .  —b. an n n-1 1 o



NOTE

A system is linear if and only if superposition and 
homogeneity hold^^: ie

a x^(t) + 3 X2 (t) a y^(t) + 3 Y2 "̂̂^

In general for y{t) = HQx(t) ] , 
a system is linear if and only if H is a linear 
transformation: ie

H[a x^(t) + 3 X2 (t)] = a H[x^(t^+ 3 K.[x2 (t)]
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The output in terms of state variables:

y(k) = [c] . [x(k)] + [d] u(k) (3)

where [c] = . . . .  -bj and [d] = a_

Rewriting in state variable representation:

The general equations for linear and non-linear systems

[x (k+1)] = [a] . [x (k )] + [h]. u (k )
y(k) = [C] . [x(k)] + [d], u(k)

The above formulations can be utilised in the simulation 
of digital filters, eg a second-order Butterworth low- 
pass digital filter with a cut-off frequency = 0.3249 
rad/sec, has a transfer function given by ^ :

H(z"^) = 0.0676 {  + z
1 - 1.142 z"^ + 0.412 z~2

Applying difference equation method

y(k) = x(k) + 2 x(k-l) + x(k-2) + 1.142 y(k-l) - 0.412 y(k-2)

This is represented by a block diagram. Fig 2.5.2.

Using the above formulation for state variables:
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^1 (k) = y (k-■2)

^2 (k) = y (k-■1)
0̂ 1 (k) =  X (k-■2)

^2 (k) =  X (k-•1)

) for section (a) of Fig 2.5.2

) for section (b) of Fig 2.5.2 
)

Using equation (1), for section (a) of the filter; 
the state variables

[v(k+D] = [a] . [v(k)] + [b] . u(k)

(k) 0 1
where [v(k)] =

^2  ̂ [A] = 1.142 -0.412

state variables [w] [b]

Using equation (3), the output y(k) in term of state 
variables for section (a) of the filter is:

y(k) = [c] [v(k)] + [d] . u(k)

where [c] = ri.l42 -0 .412] , [d] = I

Repeating calculations for section (b) of the filter and 
by inspection:

State variables:

[w(k+1)] = [a] [w(k)] + [b] , x(k)

[w (k)) =
w. (k) 0 0 11 [a] = / [B] =w^ (k) 0 1 0
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The output in terms of state variables: 

u(k) = [c] , [w(k)] + [d] . x(k)

[c] = [2 l] , [d] = 1

Solution of the general equations (1) and (2)

If the vector x(k^) for some k^ is known, then x(k) 
can be computed, and hence the output y (k), for any k > k^ 
in terms of the input sequence u(k^), u (k^+1),...,u(k). 
Thus the vector x satisfies the definition for the state 
of a system. This n-dimensional vector is equivalent to 
the (n) initial conditions needed to solve the difference 
equation (1) in terms of input u. Accordingly the 
following definitions are obtained:

X state vector of the system

A state or system matrix: nxn matrix which
relate the state at index k+1 to the state at k

Therefore there are two areas to consider when applying 
the above formulations to the problems of time domain, 
communication system simulation:

(i) Modules containing delay elements, such as 
filters, differentiators etc.

(ii) The multiple input/output modules, with 
feedback links,
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These two items will be discussed in detail in Chapter 3, 
as part of the construction and running procedures of 
a simulated communication system, in the newly designed 
simulator ICOSS.

2.5.3 Characteristics

1. More suitable for stochastic simulation than frequency 
domain simulation.

2. On-line real time working is possible.
3. Settling time is long, unless time scaling is 

introduced, see later.
4. Non-linear system elements response are treated in 

an accurate straightforward way.

2.5.4 General comments

Time domain simulation was classically applied to analogue 
computations for control systems. With the introduction 
of fast digital computers economic considerations favour 
the digital computer simulation opposed to analogue 
simulation . Comparison between analogue and digital 
computers is as follows:

Analogue computers

(a) Significant set-up and check-out time for initialisation.
(b) Additional time for modification of original situation.
(c) Extremely low unit run cost, even for wide bandwidth 

systems.
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(d) Degradation of electronic elements may create 

large solution errors.

Digital computers

(a) Assuming program developed and debugged, then
(i) Minimum set-up time and very limited

initial checking.
(ii) Negligible additional time for parameters 

and topological variations.
(b) High hourly cost.

2.5.5 Execution Time

Assuming a digital filter made up of n second order
segments. Fig 2.5.3, in which the transfer function

20of one segment h^ is given by

-1 -2 1 + a. Z - ^ + b .  Z
— ^- Z 2  l + c .  Z + d .  Z 1 1

giving a difference equation

y^(k) = x^(k) + a^ x^(k-l) + b^ x^(k-2) - c^ y^(k-l) - d^ y^(k-2)

^out ^o ^n
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Defining an operation as one multiply/add action, then 
there are 4 operations (second order segment,) . For n 
segments filter the total number of operations = 4«n+l 
(the 1 for the constant a^ of the final result). 
However, additional time is required for the state 
variable manipulations as mentioned earlier (2.5.2).

2.6 R.F. SIGNAL SIMULATION

In the digital simulation of continuous RF signals, the
problem is in having a modulating signal as a small ratio
to the carrier. The carrier which contains no useful
information will predominate the sampling rate at the

49expense of the useful modulating signal. One method of 
simulating RF signal is by decomposing the RF signal to:

(a) Useful modulating signal at baseband: m(t).
(b) Carrier.

For RF signal: x^^t) = m(t) cos w^/t) (1)

Therefore the simulation will concentrate only on m(t), 
and the sampling frequency will be as ratio to the
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carrier frequency.

For various types of modulations,the modulating signal 
is given by

(i) DSBSC m(t) = x(t) )
) (2 )

(ii) DSB-AM m(t) = 1 + a x(t) )
(iii) Phase modulation m(t) = 1 exp jx(t)
(iv) Frequency modulation m(t) = 1 exp j { J x(t) dt})

)
(v) SSB m(t) = x(t) + jx(t) )

where x is the Hilbert transform of x(t).

Equations (2) can be rewritten as 2 conjugate parts:

x^(t) = -J {m(t) exp jw^t + m (t) exp(-jw^t) (3)

Equation (3) is used when the negative and positive 
frequency regions, resulting from the presence of small 
angle modulation, is to be included in the simulation.
If this angle modulation is discarded, then only ampli­
tude is modulated and the resulting spectrum is symmetri­
cal about the centre and equations (2) are used.

In some frequency domain simulations , the spectrum of 
RF signals are deduced from the series expansion:

a N
S (t) = -IT COS Ü) t + I {a, cos (to +k(o ) t + b, sin(w tkw )t} 2 c k~0 C O  K C O

c
+ -Tr- COS w t2 c
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N
+ Z {c, cos(o) -kw ) t + d, sin(o) -kw )t} k=0 k c o k c o

where angular carrier frequency
^k'^k coefficients of the k^^ upper sideband 
Cĵ ,dĵ  " " " " lower sideband

2.7 OFF-LINE WORKING

2.7.1 Principle of Operation

The idea behind the off-line operation is to run the 
simulation independently of time. Both frequency domain 
simulation and time domain simulation can be performed 
in this way, but with every module of the system simulated 
or made independent of time. The latter point especially 
applied to a real signal stored on a magnetic tape or 
disc and run in scale time.

2.7.2 Characteristics

(a) All computers of any size or type can be utilised, 
regardless to speed or language. The only limitation 
is the size of the computer memory.

(b) Both frequency and time domain simulation can be 
performed.

(c) Simulation strategy easily implemented.
(d) The real signal must be simulated unless specially 

treated as explained earlier.
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2.8 ON-LINE WORKING

2.8.1 Principle of Operation

The analogue input signal is converted to a digital 
signal by the A/D converter. Fig 2.8.1, ready for 
processing by the time domain simulator. The 
resulting digital signal is converted back to analogue 
signal by the D/A converter, whereas the digital signal 
could be obtained directly from the simulator if so 
desired. However, the seemingly easy procedure has a 
number of limitations and problems which must be carefully 
treated for good simulation. These are summarised as 
follows :

(a) The time allowed for processing an incoming signal 
sample by the simulator is the sampling time T^ 
seconds where T^ = l/f^, f^ being the sampling 
period.

gFrom the definition of sampling theorem , the 
sampling frequency must not be less than 2 x highest 
frequency component of the incoming analogue signal.

(b) The limitation introduced in (a) for the processing 
time means that only computers with fast computa­
tional capability will be suitable for this type
of simulation, unless a different computer strategy 
is adopted.

(c) A computer system with high speed arithmetic unit, 
together with minicomputer or microprocessor
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controlled peripherals will overcome the time 
limitation economically, as will be discussed in 
a later chapter.

(d) Scaling already mentioned earlier, is essential 
and on-line simulation is only possible at base­
band.

(e) The accuracy in the analysis depends, amongst 
other things, on the word length (number of bits) 
of the incoming signal samples produced by the A/D 
converter. Therefore there is inherent error due 
to the conversion action, and an acceptable error 
is allowed and taken into consideration in the 
simulation process.

2.8.2 Characteristics

(a) Output signal may be seen on an oscilloscope 
directly during the running mode.

(b) Other real-time systems can be used in conjunction 
with the original system, eg

(c) Off-line working is possible.
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2.9 LIMITATIONS AND OBJECTIVES

Having presented the general layout and various aspects 
of communication system simulation, it will be beneficial 
to list the limitations in the subject in order to 
present the objectives in the design of a signal pro­
cessing system simulator.

2.9.1 Limitations

These can be divided into 2 groups as follows:

(a) Simulation facilities:
(i) Real-time operations are limited to a few

(* )simulators in environments having fairly 
large and expensive computers.

(ii) Stochastic simulations are not readily 
available.

(iii) Each simulator has its own simulation 
language.

(iv) The construction stage of the simulation
involves procedures which must be made familiar 
to the user before a simulation is attempted.

(v) A pre-constructed system cannot readily be 
loaded into the simulator.

(vi) Running mode facilities are limited to the
execution of a predetermined set of measure­
ments . No change of control parameters of 
the simulated system are possible.

Refs 14,15,47
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(vii) No editing is possible, ie adding or deleting 
modules to or from an already existing system, 
as well as adding or deleting display routines 
(RMS, Mean value etc) during the running mode, 

(viii) Running large simulations or multiple-run
applications are limited by computer power.

(x) Portability of simulators is limited, ie it is 
difficult to use a simulator on more than one 
computer system.

(b) Computer power or system available: this limits
the type of simulation problems which could 
economically be solved, such as:
(i) Real-time or stochastic simulation. Fast

processing is necessary, hence a hybrid computer 
or multiprocessing computer system is needed,

(ii) Most communication simulations can be per­
formed off-line in relatively slow machines, 
hence digital computer (serial processing) can 
be used.

2.9.2 Objectives

When designing a new communication system simulator, the
following objectives must be met:

(a) Utilise all the points mentioned in (2.2) and (2.3) 
earlier.

(b) Transform the simulator into another research bench
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tool, in which the user through the computer console 
can perform the following:
(i) During the construction mode:
* Loading the system block diagram interactively 

into the simulator, with the simulator taking 
the load and the user responding. The target 
is to have a peripheral unit on which the 
user draws the system block diagram directly, 
hence reducing the simulation language problem.

* The user should be able to add or delete modules
to the already loaded block diagram without 
starting the simulation again. This facility 
will make the simulator similar to the 
equivalent "hardware” circuit, where the hard­
ware modules are added or removed readily.

* The user should be able to load a preconstructed
block diagram stored on a disc or tape to an 
already constructed block diagram in the simula­
tor, and by some minor editing the final block 
diagram is produced. This facility will save 
valuable computer time and eliminate construc­
tion errors.

(ii) During running mode:
* In the same style, ie making the simulation as

near to the actual physical situation as possi­
ble, the user should be able to change 
parameters of modules while the system is in 
the RUN mode, ie during signal processing. The 
new parameter value could be supplied through.
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eg a buffer, and the parameter modification 
is performed during the signal processing 
cycle. This has the advantage of testing the 
behaviour of the simulated system by varying 
its module control parameters without pre-set 
changes.

* The user should be able to vary the global con­
trol parameters, ie a parameter which is used 
by more than one module such as sampling 
frequency, while the signal is processed.
Again the system behaviour is tested readily.

* Display routine (RMS, FFT, etc) calculations 
should be made during the running mode, ie 
concurrently with the signal processing, and 
the result displayed at any instant of time 
the user wishes. The combination of this 
point together with the other two points make 
possible the behaviour of a system which is 
completely under the user control as well as 
being near to physical reality.

(c) On-line real time/off-line working must be possible 
in a practical and economical way.

(d) Capable of handling stochastic simulation.
(e) Designed on a modular form, in which routines are 

added or removed, or processed by another processing 
unit (minicomputer chip)with minimum difficulty.

(f) The simulator package to be made portable.
(g) The simulation language is made as general and easy 

to understand as possible.
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2.10 ICOSS

The objectives outlined in (2,9.2) for the design of 
a communication system simulator were used as a guide 
for the implementation of a new signal processing system 
simulator to be called ICOSS: "Interactive communication 
System Simulator", whose principle of operation is based 
on having complex interrupts controlled by the sampling 
rate. Each interrupt represents a function within the 
simulator, eg signal processing, construction, etc. The 
main features of ICOSS are summarised as follows:

(a) It is time domain based simulator oriented mainly 
on real-time on-line simulation, but off-line 
simulations are possible. Systems with feedback 
links can be simulated. However, the real time 
on-line process can be scaled (simulated) in 
order to operate ICOSS, off-line, for the same 
purpose. It is therefore possible to test ICOSS 
operation without the necessary equipments for 
actual real-time on-line operation.

(b) It makes use of all the points mentioned in sections 
(2.2) and (2.3).

(c) The objectives a-d, g of (2.9.2) are implemented 
and arrangements are made for the implementation 
of e and f .

(d) It can make use of microprocessor controlled 
modules in which some parts of the simulator, eg 
filter or display routines, or any other interrupt
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of the simulator system, are brought outside the 
main computer and operated on in parallel, reducing 
execution time.

In Chapter 3, the complete design will be fully explained.

2.11 SUMMARY

In this chapter a survey was made in the use and design 
of signal processing system (SPS) simulations. The main 
theme was to present the various aspects of SPS simula­
tion. Those aspects included: the listing and description 
of the requirements of both user-side and computer-side 
for the design of a new SPS simulator, the limitation of 
existing SPS simulations, and the main objectives which 
have to be met for the design of a new simulator. Those 
discussions were made in order also to state precisely 
what would be required for the design of a new time 
domain real (scaled) time oriented simulator, called 
ICOSS. The main features of ICOSS were listed, and in 
the following chapter 3 this new approach to SPS simula­
tion and the complete description of it will be made.



54

M s

M3M2M1

Rq. 211 Simple 5P Stjst'gm

CPU
CP12

CPlmi

M 2

CP21
CP22

II

GPzmz

/v\n

Where : M .‘ Signal Processing Modules.
CP : Module Conrnol Paramet’er

Addihonoi Fqchors :
^ Measuremenh Poramelur (or Graphicol Ou^pu )̂. 
*  Global Conhrol Parameher

Fig.ZZI Typical Communicahon Sust^em



55

Ffg.ZZZ Simple System ĵ or B L 06 I SimuloMon
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CHAPTER 3

INTERACTIVE COMMUNICATION SYSTEM SIMULATOR ICOSS

3.1 INTRODUCTION

In the previous chapter, the general layout and various 
aspects of communication system simulation were given.
Also the limitations in the subject of simulation, as 
well as the objectives in the design of a communication 
system simulator were given. These objectives and other 
relevant points already mentioned have been utilised in 
the design of the new simulator ICOSS, whose main features 
are summarised again as follows:

(*) Time domain real (or scaled) time on-line/
off-line operated system capable of handling 
stochastic simulation.

(*) Time independent mode of ICOSS: includes 
interactive block diagram construction, 
system editing (adding or deleting modules), 
etc.

(*) Time dependent mode of ICOSS: includes change
of module parameters, output routine calculations 
etc.

(*) Software transportable where possible.
(*) Hardware microprocessor controlled units may 

replace part of ICOSS in order to improve the
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time dependent operation, leading to faster 
execution time and better on-line operation.

ICOSS is basically a multiprocess software package, designed 
for signal processing in real (or scaled) time. The multi­
processing operation is a combination of complex interrupts 
within the system, controlled by a real-time clock 
(sampling rate), as well as the priority of the interrupts. 
The ICOSS system does not only treat the signal processing 
problem interactively, it also provides the user, who 
requires limited or no computer programming knowledge, with 
the ability to access the system interactively and set up 
his communication system by means of a high level language 
on the terminal. The language chosen is Fortran IV for 
reasons of familiarity and usefulness in engineering and 
scientific applications, as well as its universality.

The ICOSS structure is made up of three groups of interrupts. 
Fig 3.1.1, namely:

(a) The Teletype group of interrupts: for the time 
independent actions such as block diagram construc­
tions, editing etc.

(b) The Loop group of interrupts: for the time dependent 
actions in which signal processing takes place.

(c) The Flag groip of interrupts: again for the time 
dependent actions in which output routine calculation 
(RMS, MEAN,FFT, etc) takes place.

The computer terminal allows the user to input lines of
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data and use these lines for correction (editing) and 
changes. The system is made to generate enough messages 
to direct the user when constructing his system, and 
hence minimise errors. Once the system is set and becomes 
ready to run, a number of commands are made available in 
order to control the running of the system. New control 
parameters can be entered through a buffer on the terminal, 
and then during the running cycle the change takes place 
of the particular signal processing module's control 
parameter, without interfering with the actual running of 
the system itself, as shown in Fig 3.1.2. The user can 
then observe the effect of the changes at any node within 
the system (the system state can be accessed at any time). 
Adding a signal processing module or deleting one can 
also be done after changing to pausing mode, as another 
teletype interrupt. However, the output routines (RMS, 
MEAN, etc) are performed as priority interrupts within the 
running mode of the system, each routine representing an 
interrupt in its own and any result can be accessed at 
once (after becoming ready), by forcing a teletype 
interrupt command. The complexity of the problem and the 
diverse requirements that are expected from it, raise a 
number of points and problems in the design of ICOSS;

(a) Structured programming has to be adopted
(b) The various parameters and links (pointers) have

to be stored and accessed efficiently.
(c) The storage of signal values and their subsequent

manipulation has to be performed independently of
various interrupts.
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(d) The system state variables have to be handled carefully 
for the overall system in order to maintain the 
correct signal relationships at various nodes, 
especially for feedback paths.

(e) The various signal processing modules have to 
execute at high speed.

The points raised in 2.2 and 2.3 as well as 2.9.2 of the 
last chapter were carefully utilised.

Development of ICOSS structure contained a library of 
modules sufficient for phase lock loop (PLL) type of 
problems. The reasons for this choice are the facts 
that it contains a feedback link, basic signal processing 
modules, and because the application problems which will 
be discussed in Chapter 5 , are based on phase lock loop.

3.2 PROGRAM STRUCTURE

The complexity in the design of ICOSS makes the adoption 
of structured programming^^ absolutely necessary, 
avoiding any "nesting" in the program. The software 
module within ICOSS has to be easily defineable and 
replaceable, ie ICOSS structure is based on a modular 
form system, each separate function of ICOSS is represented 
by a distinct software module. Each software module has 
only one entry point and one exit point and control is 
transferred from one software module to the next without 
any ambiguity. Program debugging, addition or deletion



63

of a subroutine within ICOSS can be performed with notice­
able ease; see appendix 6. , However, adopting this
technique requires careful distinction between the program 
branches, and accurate classification of subroutines, thus
increasing the time spent in building up the system
initially.

The basic structure of ICOSS consists of three groups of 
complex interrupts, as has been mentioned earlier. These 
interrupts are divided into two categories:

(a) Time dependent interrupts.
(b) Time independent interrupts.

This division, which is more clearly defined in Fig 3.2.1, is 
due to the type of operation each individual interrupt has 
to perform, and the way ICOSS operates in general. The 
principle of ICOSS operation is as follows:

(i) With a (RUN) command from the teletype, the
time dependent operations will be initiated by
triggering the "real" time clock. During the 
clocking period T^^,

where T„^ = 3^  and f > sampling frequency,
CL

(Fig 3.2.2), 
time dependent interrupts start to execute 
according to their order of priority, with the 
LOOP group of interrupts having the highest 
priority, and always in a ready situation as
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soon as the system block diagram has been 
correctly constructed.

(ii) The time allocation within T^^ is so arranged 
that all the interrupts are catered for,
(see Section 3.3).

(iii) A teletype command for a teletype group of
interrupts will pause the system, and the time 
independent operation will override it.

The system software structure which is constructed in 
software blocks as mentioned earlier, are arranged so 
that the program execution is performed in a closed loop 
fashion. Fig 3.2.3, in which the controlling program (ICOSSl) 
rotates round a loop in the RUN mode of the system as follows

LOOP TTYFG FLAG ^ LOOP etc

The highest priority group will interrupt this rotation, 
and the highest priority interrupt within the group is 
indicated by a vector. If time allows, the next level of 
priority interrupt is captured as soon as the first 
priority is serviced, and so on. The priority decisions 
are predetermined with regard to most interrupts, but 
some of the output routines (RMS, MEAN, etc) of the FLAG 
group of interrupts can be adjusted and made to give the 
facility to the user, ie the user labels the various flag 
interrupts himself.

The various operations mentioned above will be fully des­
cribed during the course of discussion.



65

3.3 TIME ALLOCATIONS

The time allocation problem is mainly concerned with the 
time-dependent operations of ICOSS. Therefore, the time- 
independent operations of ICOSS may be allowed as much 
time as necessary for their operations, but remembering 
that when the time-independent interrupts are in action, 
they are in fact using valuable computer time, and must 
be minimised as much as possible.

Looking closely into the time allocation within ICOSS 
operations, ie during the sampling period T^ (Fig 3.3.1.), 
there are two regions within this period:

(*) At : which is devoted to the execution of theLi
LOOP group of interrupts 

(*) Ag : which is devoted to other time-dependent 
interrupts execution.

These two are related to the sampling period by:

Ts = + Tq (1)

But Tg is related to the highest components of the input
g

signal by the relations

where f^^^ : highest frequency component of the input 
"analogue" signal to the analogue/digital 
converter - Fig 3.3.2
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Therefore, must be made as small as possible, for 
higher input signal frequency. But there are restrictions 
as will be shown below:

(a) The LOOP time T

The LOOP interrupt execution time T , will have a fixed 
period within a run, depending on the size of the simulated 
communication system at hand, and the time it takes to 
execute a signal sample within the LOOP. It is obvious 
that in the absence of other time-dependent interrupts, T^ 
will become equal to Tg, and this is the limiting time 
(minimum) within the system.

Limiting time: T^ = Tg (3

(b) The other time-dependent interrupts time T^j

The time needed for the execution of other interrupts, 
including interrupts manipulations, is variable and com­
pletely dependent on the problem at hand. The starting 
of this period (T^) is triggered at the end of the LOOP 
interrupts execution time (T̂ )̂ and ended by the clock 
trigger.

Since those interrupts occur randomly, and may take any 
number at any one time, and each may take unknown length 
of time, then it is decided to spread it over a length of 
time, such as:
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m
T = Z E T (4)

i=l 1 ^

where m : number of interrupts waiting execution at one 
time.

n^: number of time segments needed for one interrupt.

As mentioned above Tg has to be made as small as possible 
But is fixed for any particular problem. Therefore, 
the only variable is T and must be optimised.r

To optimise T^, the following constraints have to be 
considered:

(i) must be utilised as much as possible
(Fig 3.3.3).

(ii) n^ must be made as small as possible, ie
interrupts must be processed in as short a 
time as possible.

(iii) Tg T^

Therefore a compromise solution must be reached. However, 
since this problem is unique and its solution depends 
entirely on the user, ie the user only can decide between 
obtaining quick result vs low sampling rate and vice- 
versa. Since Tg is variable and can be adjusted by the 
real-time clock - an external device for real-time opera­
tion, and which is under the user’s command, then it is 
left for the user to decide on the sampling rate in order 
to achieve the best solution.
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3.4 FLOW-CHART

The previous sections have indicated the pattern by which 
ICOSS would be implemented. Figure 3.4.1 shows the overall 
flow-chart of the system. The interaction between the 
groups of interrupts within the system is outlined in a 
simple form.

3.5 COMPLEMENTARY ITEMS

Before discussing the ICOSS operations in detail, there 
are a number of complementary items essential to these 
operations and it will make discussion simpler and clearer 
if they are explained first.

3.5.1 The signal processing modules input-output node
arrangements

3.5.1.1 General notes

(*) Only those modules which have special mathe­
matical transfer functions are included in the 
discussions, they do not include the output 
display routines, eg RMS, MEAN values etc not 
the auxiliary modules, eg branching.
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(*) Signal processing modules may have unlimited 
numbers of inputs and outputs.

(*) The modules node numbering is performed auto­
matically by the simulator, and presented to the 
user so that it can be referred to at a later 
stage.

(*) Any loose node must be short circuited.
(*) Signal value at each node within the system is 

stored temporarily (ie kept for one sampling 
period) and can be accessed by the user.

(*) In the simulated system construction mode,
consecutive signal processing modules are auto­
matically joined together with one signal link, 
unless otherwise specified.

3.5.1.2 Node numbering

A signal processing module (k) within a communication sys­
tem, with multiple input nodes and multiple output nodes.
Fig 3.5.1, has its nodes numbered as follows:

”ik = ^o(k-l) + ^o(k-l) - 1 input nodes

N^^ = N^^ + A f o r  output nodes

where is the number of (multiple) inputs to
module k

A^^ is the number of (multiple) outputs from 
module k.
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3.5.1.3 Signal value storage

The signal at each individual node is stored temporarily 
(one pass - within a sampling period), in a special stack 
(X), Fig 3.5.2. This double array stack stores the signal 
value together with the node condition, at any particular 
node. The condition is used for the system state purposes 
as will be described later (3.5.4). It is clear that the 
signal at any node within the system can easily be accessed 
at any time by simply indicating the node number. There­
fore, during the RUN mode the signals are accessed using
the node numbers as pointers, and modified as they are
processed during the sampling period.

3.5.1.4 Example

To demonstrate the above terminology, consider the hypothe­
tical communication system shown in Fig 3.5.3. The simula­
tor automatically assigns node numbers in sequence, with
the aid of A. and A of each module, which are oarameters 1 o
characteristic of the modules themselves.

3.5.1.5 Implementation

(*) A^ and A^ are fixed for the particular signal 
processing module and permanently stored in 
(SPMNOD); they will be used only during the 
construction stage, when determining N^^ and N^^ 

(*) Once the inputs/outputs of a signal processing
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module within a communication system are deter­
mined, the pointers and are stored in
their position in a special stack to be called 
the system matrix (SM) as will be explained 
later (3.5.3).

3.5.2 The control parameters CPs and GCPs

3.5.2.1 Definitions, characteristics and general points

(a) There are two types of control parameters:

(i) The global control parameters GCPs:These are the
parameters which are shared by more than one signal
processing module, and their values are substituted 
automatically when they are needed. Eg sampling 
frequency f^, as used by oscillators, filters etc.

(ii) Local control parameters LCPs: These are exclusive
to their signal processing modules. They have to 
be supplied by the user when constructing the 
system. It is clear, that changing a LCP will have 
an effect only on the signal processing module 
concerned.
Example: A simple phase lock loop

(*) Block Diagram: as shown in Fig 3.5.4 
(*) Signal processing modules and their control 

parameters
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Module Local Control Parameters QCP

1 SIGN FI, Al, Bl, G1 FS
2 PHSD AAl
3 FILT FC FS
4 GAIN AA2
5 VCO FO, F INC
6 SIGN F2, A2, B2, G2 FS

{*) The above notations will be elaborated in later 
discussions.

(b) Most control parameters are used as supplied by the 
user, but some have to be modified in "secondary" 
control parameters. Therefore, the classes of LCPs 
are:

(i) Primary control parameters
(ii) Secondary control parameters

(c) Cases will arise where some secondary control para­
meters will be generated internally and will be used 
by the simulator only, as will be indicated later.

(d) The simulation will be using the secondary control 
parameters, whereas the user will specify the more 
familiar value of control parameter, ie the primary 
control parameter. Eg low pass filter has a primary 
control parameter f^ (cut off frequency), but this is 
converted to the secondary control parameters
(A = j-— , ) ^ -To-0 (see later) J To retrieve the
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primary control parameters, the backward conversion: 
f^ = (-~) tan  ̂ is made, where is the
sampling frequency. It should be possible therefore 
for the simulator and the user to access both para­
meters without complication or difficulty.

(e) One of the main features of ICOSS, is the ability to 
interrupt the running action, and change LCPs and 
GCPs interactively. This will prove extremely 
useful in the running of the system and its beha­
viour when changing certain parameters.

3.5.2.2 Procedure for control parameters management

(*) User supply GCPs 
(*) Simulator performs:

(+) Store GCPs
(+) Utilise GCPs in the appropriate modules 

(*) Simulator specifies number of control parameters 
(CPs) of a particular module 

(*) User supplies Control Parameters 
(*) Simulator performs:

(+) Check for secondary CPs and if necessary 
converts primary to secondary 

(+) Stores CPs (secondary)
(+) Relates position of CPs in their stack,

with the rest of the communication system 
structure for later signal processing 

(*) Provision is made for accessing both primary 
and secondary CPs.
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3.5.2.3 Storage arrangements

(a) Fixed data: Two types of fixed data are permanently 
stored; these are:

(i) The number of local control parameters related 
to the particular signal processor module

(ii) The signal processor module number, whose
control parameters require conversion to secon­
dary parameters.

These arrangements have to be decided upon carefully 
when building up ICOSS library of modules, making 
sure that the parameters are enough for efficient and 
flexible operation as well- as removing all unnecessary 
calculations at the execution stage. By employing the 
conversion technique, the execution time of the loop 
is minimised which in turn gives more time for the 
other interrupts of the system.

(b) Variable data: These have been divided into two areas

(i) The local control parameters actually used by the 
signal processing modules, ie for the modules 
where conversion to secondary parameters are 
required, only the secondary parameters are 
stored.

(ii) The global control parameters.
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The separation was necessary in order to make the 
process in changing either parameter, if so required, 
simple to achieve.

3.5.3 The System Matrix SM

The simulated communication system structure as defined by 
the user, cannot be used directly by the simulator and 
therefore it must be transformed to a "working structure". 
This working structure is a 1:1 transformation, and the 
first step towards the actual signal processing procedure. 
The process of signal processing is further controlled by 
the system state constraints as will be explained later 
(3.5.4). A matrix, to be called system matrix SM, is used 
to represent the working structure of simulated communica­
tion system. It is a 7xN matrix, where N is the number of 
modules in the simulated communication system. Fig (3.5.5) 
Each row of the matrix represents a module (R^, i = 1,..N) 
The numbering (l^N) is as specified by the user. The 
content of each cell in the columns of the matrix 
(C^, k = 1,..7) is in fact a pointer devoted to a special 
job within the module,(Fig 3.6.3). Therefore these sets 
of pointers in each row describe completely the function 
of the particular module. Choosing pointer rather than 
storing actual values of module parameters, is due to the 
fact that the simulator has to deal with a communication 
system which may be varied in number of modules, or in 
control parameters of modules, while the system still 
running, as mentioned earlier. Also the complication of
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the inter-relationship of various stacks, tables and links 
involved within the system makes it impossible not to induce 
errors during signal processing. A typical example which 
shows the complication involved is shown in Fig 3.6.3.

To summarise the various actions of the contents of each 
cell in the system matrix, the table shown in Fig 3.5.6 
shows the three groups of modules which are used for the 
present work, namely: the signal processing modules, the 
output display routines and the auxiliary modules. Any 
function needed for the communication system must fall 
under one of these groups.

3.5.4 Loop directives

3.5.4.1 General notes

The building up of the system matrix SM for a communication 
system was sequenced according to the block diagram as 
defined by the user. But when processing a signal in a 
system which contains feedback links, the later structuring 
of SM will induce errors in the process if used without modi­
fications, due to the possibility of not having the correct 
signal relationship in the multiple input modules. In 
order to have the right relationships of input signals into 
the multiple input modules, the SM must be restructured in 
such a way that the sequence of signal processing within 
the modules does not induce errors and must follow the 
system state constraints. Therefore there are two cases 
to consider:
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(a) The maintenance of the original SM in order to 
present to the user the original structure which 
can be edited or varied as before in its familiar 
form.

(b) The internal restructuring of the SM in order to 
comply with the system state constraints.

These two conflicting requirements for SM are overcome 
by the introduction of the so-called "loop directives".
But before discussing the mechanism of loop directives a 
brief look at the system state is necessary.

3.5.4.2 System state

Consider the simple system with a single feedback link 
shown in Fig 3.5.7. If it is assumed that all delays 
within the system are confined in the signal processing 
modules themselves, ie and P^, then the time relation­
ships will be as shown in the Figure:

y(k) = u(k) + x(k) for k = 1,2,...=

Therefore during the signal processing there are two types 
of modules to consider:

(a) single input type modules, which have to be processed 
first, but with condition that states modules having 
higher priority.

(b) Multiple input type modules, in which all input signals
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have to be ready, ie all with present state situation, 
before output is produced,

3.5.4.3 Loop directive - implementation

(a) Method:

(i) System matrix SM remains unchanged
(ii) An array to be called the loop directive array 

(LDR) is constructed by storing the sequence of 
module processing of the simulated communication 
system. This is deduced in the following way:

(*) Assign (1.0) for condition ready present 
state to the nodes (inputs or outputs) of 
all the state modules, such as filters, 
differentiators etc, or to any other node 
which the user recognises as independent in 
its function.

(*) Scan SM from top to bottom and test for the 
condition of signal values at the module 
inputs, thus if
x(I^,2) = 0.0 means module is not ready for

processing yet, proceed to 
next line of SM 

x(I^,2) = 1.0 check next input of module
(if any), if all input node 
conditions equal one, then 
module is ready for inclusion
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in the signal processing.
Proceed to perform:

X(I ,2) = 1,0 where I is number of all o o
outputs of the module (I). 
Store the module number in 
LDR and increase by one.

Then proceed to the next line of SM .
(*) Repeat until all modules are included.
(*) Once LDR is constructed, the signal value 

conditions are returned to "not ready" 
state, except for the independent modules 
and user's special nodes as defined above.

(iii) Every time editing to the simulated communication 
system is made, then LDR is reconstructed as in
(ii) .

(b) Example:

Consider the hypothetical system shown in Fig 3.5.8a.
It is self-evident that there are a number of ways in 
which the signal can be processed, leading to different 
results at the output (o/p). Applying the concept 
described in (a), LDR is constructed in the way 
shown in Fig 3.5.8b, to contain

I 1 2 3 4 5 6 7 8 9  10 11
LDR (I) 1 2 7 8 9  11 3 4  10 5 6
Notice that I = N, the number of modules in the system.
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3.6 THE LOOP GROUP OF INTERRUPTS

The construction of the system matrix SM and loop 
directive LDR in the way explained in the previous 
section, is performed as one of the teletype interrupts as 
will be described later (3.7). But once it is ready then 
simulator becomes set for triggering by the "real time" 
clock (RTC) as mentioned earlier(3.2). With the loop 
group of interrupts having the highest priority, they are 
executed in full. Each line of SM is considered as 
another internal interrupt to be dealt with in a sequence 
defined by the loop directive LDR , as illustrated by 
the state diagram of Fig 3.6.1. Any samples needed for 
output display routines are stored meanwhile in a specially 
allocated storage area (SAMSTO). Once the exact number of 
samples are accumulated for a particular display routine, 
another (5x3) auxiliary matrix to be called the flag matrix 
(FLM) is constructed. Each row of this matrix (FL24) will 
store a number of parameters necessary for the operation of 
the flag interrupt devoted to the execution of the particular 
output display routine as shown in Fig 3.6.2. The content 
of these cells will be erased as soon as the output display 
routine is executed in the flag interrupt as will be ex­
plained later.

It can be seen from Fig 3.6.1,that both auxiliary modules 
and output display routine modules are treated as indepen­
dent interrupts. The first treats the situations such as 
branching and switching etc, and the second treats the 
sampling access and storage of samples etc, for the
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output display routines.

As an illustration to the substitution needed for the 
execution of one loop interrupt representing a signal 
processing module (P^) of a system, is shown in Fig 3.6.3 
with all the stacks, matrices necessary for the operation.
In Appendix E , a brief introduction to the various 
modules, parameters, tables, and stacks connected with the 
loop group of interrupts as used in the present prototype 
of ICOSS.

3.7 THE TELETYPE GROUP OF INTERRUPTS TTYFG

The teletype group of interrupts are mainly concerned with:

(a) Inputting data specifically relating to the construc­
tion of the signal processing system, ie building up 
the data structure of the system (either block by 
block or as a complete list), as well as editing an 
existing data structure.

(b) Varying the system's control parameters (local or 
global).

(c) Controlling the running of the simulation and the 
process in general.

(d) Looking at the output at any stage, graphs prints etc

In the following sub-sections, only those interrupts which 
are included in the TTYFG group of interrupts at the 
present work are discussed. However, additional TTYFG
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interrupts can be made with great ease, see Appendix G.

3.7.1 Construction CONS

The construction mode of TTYFG group of interrupts puts 
the simulator at stand-still, and is actuated by the 
command CONS to the teletype command request. In this 
mode the system matrix SM representing the communication 
system block diagram, as specified in section (3.5), is 
constructed. The END command will terminate the construc­
tion of the system matrix SM, but will set the simulator 
to accept more data in connection with intial conditions 
and levelling. Once these additional data are supplied, 
the simulator starts to construct the loop directive 
array LDR for the system, and at the end of which this 
mode of operation, ie CONS interrupt, comes to an end, and 
ICOSS becomes ready for a new mode of operation. To demon­
strate this mode of operation. Fig 3.7.1 shows a simple 
system together with its interactive dialogue. More 
examples will be shown during the course of discussion.

Subsequent internal actions

The main target is to construct both SM and LDR for the 
system. However the approach may differ depending on the 
three distinctive types of modules already mentioned in 
earlier section (3.5), namely, the signal processing 
modules, the output display routines, and the auxiliary 
modules. With the entry of each module, the simulator
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consults the modules library for its classification, and 
the procedure that follows depends on this classification. 
The intensified flow diagram in Fig 3,7,2 shows the method 
of SM construction for the system.

3.7.2 Editing EDIT

General points:

(*) Editing is only possible for already established 
systems.

(*) Two types of editings are possible; they are
(i) Insertion of new modules

(ii) Deletion of an established module 
(*) LDR is updated at the end of every editing 

session and just before ICOSS becomes ready 
for a new mode of operation.

Insertion:

In order to insert an element in an already established 
system, the system matrix SM has to be modified by 
inserting a line of pointers at the appropriate position, 
having the exact relationship with the existing pointers 
in the matrix, as well as modifying some of the values of 
pointers in the lines preceding and following the inserted 
line. The algorithm used to fulfil the above objective 
can be summarised as follows:
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(i) Check ICOSS modules library for existence (of 
the type) of the new module in ICOSS, and its 
position in the library if it exists. An 
error message is printed on the terminal if 
element does not exist.

(ii) Consult control parameters library (LCPLIB) for 
the number of control parameters required by the 
new module.

(iii) Consult input/output node library (SPMNOD) for 
input/output node relationship of the new 
module.

(iv) Call subroutine (CPMAN) for the manipulation of
the local control parameters, ie if they need 
conversion to secondary control parameters or 
generation of new parameters, as well as storing 
these parameters in the control parameters store 
(LCPSTO) and noting their position in it.

(v) Call subroutine (MODIF) for the re-adjustment of
the node relationship of the system. Since the 
numbering is done in blocks, then the modifica­
tion in multi-input/output modules is performed 
in blocks as well. The introduction of the new 
module will make necessary the modification of 
the preceding and following input/output node 
pointers of most modules of the system.

(vi) Construct the new line in SM in a similar way
to CONS discussed earlier.

(vii) Make a shift in SM at the appropriate position,
enough to insert the new constructed line.
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(viii) Up date the loop directive array LDR

The dialogue for this type of operation is shown in Fig
3.7.3 for a typical example.

Deletion;

Deletion of an existing module is simpler to implement 
than the insertion described above, but not greatly 
different. The line representing the module which is to 
be deleted in the system matrix SM is erased and
modifications to the pointers of the preceding and following
lines are also made. The gap caused by the deletion of the
line in the system matrix SM is then closed. The algorithm
used is summarised as follows:

(i) Define block number to be deleted.
(ii) Call subroutine (MODIF) for updating and

modification of input/output nodes of remaining 
modules.

(iii) Erase the line representing the deleted module 
in SM ie SM(I,n)= 0 for n = 1,2,...7

(iv) Call subroutine (SHIFT) for closing the gap
caused by the deletion of the line.

(v) Update the loop directive array LDR.

A dialogue for this type of operation is shown in Fig 3.7.4 
for a typical example.
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3.7.3 Changing control parameters (.Local) CHCP

During the running of the system, it may be found necessary 
to vary the control parameters of some of the modules in 
order to investigate their effect on the behaviour of the 
system. There are two stages to perform this facility.

Stage one: receiving the new values of the control
parameters and their element number from 
"the buffer" zone.

Stage two: inserting their secondary control parameters
into CP stack in the appropriate locations.

This section is only concerned with stage one; stage two 
will be discussed in the next section (3.8). The 
procedure of implementing this facility is summarised as 
follows :

(a) The user specifies the block number and the new control 
parameters values, and stores them in the buffer zone 
ready for execution.

(b) At the first opportunity the CHCP interrupt takes 
place (CHCP priority is next to loop's interrupt 
priority) and those values are transferred into a 
special storage area (CPISTO), ready for the next stage

3.7.4 Changing global control parameters CHGC

In response to CHGC teletype command the simulator comes
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to a standstill, and the user specifies the global para­
meter number and its new value. The subsequent internal 
actions are as follows:

Search SM for modules whose LCPs required conversion 
from primary to secondary parameters. This is done by 
checking with (SPCSCP) which contains module type numbers 
requiring conversion to secondary parameters. Every module 
in SM involved in conversion process is operated on its 
LCPs in the following way:

(i) Backward conversion to primary LCPs using the 
old GCP.

(ii) Forward conversion to secondary LCPs using the 
new GCP.

(iii) Update LCPs in the (LCPSTO) stack.

A typical dialogue for this interrupt is shown in Fig 3.7.5.

3.7.5 Running an already established system ENTR

The long procedure in constructing a simulated communication 
system,as described in section (3.7.1) earlier, can be 
avoided if the same system is to be run again. The con­
structed system or any other standard system can be stored 
outside the computer memory in a magnetic disc or tape, etc 
and then "entered" into ICOSS in bulk in response to the 
command of ENTR. Any modification to the system is then 
done utilising the EDIT facility of the teletype interrupts.



The data format is similar to that used in CONS interrupt
mentioned earlier. Compare with the MACRO facility which

21is employed in BLODIB , in which one single command 
generates a complete module (s) of the system.

3.7.6 Stopping (pausing) a running system

The command STOP is a teletype interrupt flag which brings 
ICOSS system to a complete halt. The user will then have 
to choose the options:

(i) Access the final results of any output display 
routines, if they are ready.

(ii) Continue running the system.
(iii) Logout.

Once the results, or sample values of the various output 
display routines are accessed and printed out according 
to the user requirement, they will be erased from their 
storage area. In the case of logging out, a flag (ISTOP), 
is generated which signals the system to come to a complete 
stop at the main program. The continue state will only 
make the system wait for the clock for another loop inter­
rupt.

A typical dialogue of this type of interrupt is shown 
in Fig 3.7.6.
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3.7.7 Block diagram display CMST

The final structure of the simulated communication system, 
ie its equivalent block diagram, can be displayed eg 
printed on the teletype terminal, using a teletype inter­
rupt CMST. If specifying some controlling parameters, 
a part or all of the system structure is displayed. Inter­
nally, the pointers in the system matrix SM are substi­
tuted by their absolute values, and printed out in their 
final form.

Some typical response for this type of interrupt is shown 
in Fig 3.7.7.

3.7.8 Graph-plotting management routine PLTM

Presenting a graph plot may take a number of forms 
depending on the problem and the user, as well as the 
graph plotting peripheral in the computer network. In 
response to PLTM command, a pause takes place in the 
simulation and the user under the direction of the 
simulator, gives directions as to the X axis and Y axis 
forms.as well as the number of graphs, number of points/ 
graph etc, as shown in Fig 3.7.8. '

3.7.9 Graph-plotting routine PLTG

In response to a teletype command PLTG, the accummulated 
signal values and the plot control parameters as speci­
fied by the user in PLTM interrupt, are fed into the
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graph plotting peripheral. As soon as the curves are 
plotted, the signal samples are erased from the store 
giving way for new signal samples. This type of plotting 
arrangement, an off-line procedure, is most suitable 
for the present set-up. The on-line graph plotting, ie 
plotting samples as soon as they become available on a 
screen of a VDU, can be implemented readily. This 
point will be elaborated in Chapter 6.

3.7.10 Initialisation routine interrupt INXM

In communication system problems, the situation may arise 
in which it becomes necessary to initialise the system, 
especially when multiple transient responses are needed 
for different signal processing modules control para­
meters. This interrupt will set the system state varia­
bles, the temporary signal sample storage to zeroes.

3.8 THE FLAG GROUP OF INTERRUPTS

In this group of interrupts, the output display routines 
(calculations), as well as the insertion of the new secon­
dary control parameters of signal processing modules in 
their appropriate storage locations, are performed in 
segments as mentioned earlier (3.2). The same principle 
employed with the other groups is applied to this group 
of interrupts, as shown in the state diagram. Fig 3.8.1. 
The flag interrupts are triggered by a global flag (IFLAG), 
generated either by the loop group of interrupts in which
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case it indicates that the right number of points (signal 
samples) has been accummulated in (SAMSTO) ready for exe­
cution by the output display routine concerned, or by the 
TTYFG interrupt CHCP in which case it indicates that a 
change of parameters need to be made in one of the modules 
of the signal processing system. The value of IFLAG indi­
cates the number of interrupts at one time. There are 
four situations to consider.

(i) One flag interrupt for one job.
(ii) More than one interrupt for one type of job.

(iii) A flag interrupt is engaged processing one job.
and another call for a flag interrupt for a
job of lower priority takes place.

(iv) A flag interrupt is engaged processing one job
and another call for a flag interrupt for a job
of higher priority takes place.

The procedure for treating the above situations and flag 
group of interrupts in general, is summarised in Fig 3.8.2 
Further, a brief description of a number of output display 
routines (as flag interruts) is found in Appendix C.

3.9 DEVELOPMENTS AND FURTHER WORK

The structure of the prototype version of ICOSS described 
in the previous sections, shows that there are a number of 
areas which can be further developed, the main ones are:

(i) The expansion (and reduction) of the present 
complement of modules.
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(ii) Improvement in the speed of execution.
(iii) The utilisation of some of the peripheral

equipments.
(iv) The coupling with other simulator systems.

The modular form (structured programming), makes the first 
area of development possible, so that:

(*) Addition of new modules to complete the communi­
cation system (signal processing modules) 
library, is easy to implement.

(*) Replacement of an old module by another more
sophisticated one is possible.

(*) Addition of groups of interrupts is also
possible without disturbing the structure of ICOSS.

The developments regarding the second area can be made in 
many ways. They include either having a giant digital 
computer or network of processors (mini computers) ie 
multiprocessing operation, or both. These ideas will be 
elaborated in the next Chapter (4).

As an example to the further development of ICOSS mentioned 
in the third area, is the block diagram display in which 
a more efficient, storage type video display with a buffer, 
is utilised. The data structure regarding the system 
block diagram is stored locally, and any editing modifica­
tion or display to it will be done there.

Finally, as mentioned earlier, ICOSS is mainly concerned 
with communication systems simulation. Coupling this 
simulator with another simulator concerned with the analysis
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of other topics in telecommunication problems will be a 
great asset to the telecommunication engineer working 
in research and development areas.



94

Inpul"

I C L O C K

I T T Ÿ

y  !— Loop 
A t %
i 1 V TTYF6-{>- FLAG

Ou^puV

Inpuh.Cohlrol 
Edil'ing el'C.

Fig 5 li. IC05S OVERALL WORKING ARRANGEMENT

Inpuh [ f y l

L ± I

New CP
BUFFER

PROCESS

I TTY

Exccurion 
TiViC Loop

Flog InLtrruph 
Chon g c oĵ Po re:  ̂
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(iii) Replace Old CP bij New in CP Sl’acK.

in. 3 12 Chonoe o f  I.CP A 'rrcnoe incnrFig



TT3
î.: . « (0 95

O  a

cr

T)

cn
a g"uo O

CÛ o CL

CLc>%)

Hoyog
b

E
<0
(/)<0
o
oK}
CMfO

•iff

£
i-



96

CLOCK. CLOCK
iI , ;I

/  / /L O O P  /  /  i \ F L A C \ \

”*  ' 'CL ^

Fig.3 22 Clocking P&riod Subdivision ( Allocah'ons)



97

X Ll ûTuŒ: X(JLlM 3S<ÜJco (Zco
zco

o
:E

a.0u

IIE dII

s iS sïs ip lil l
lO CL U'LuO>CL^ÛCÛI-5a}c/)

CÛ O  ûo CÛ o: y

Ci)
im.
yjj
u
d
-Ocn
Ê
dL.

CO
1cl.O

2a
rOOsJ
hO

CT) o
_cV)
8

P
H

CQ>Q.û.

i S f

—  CNJ> >2 2U  u
ta tù

__ oi Ln
03 Oû OQ CÛ CÛ 3  3 3  =) 3  
00 cO CO CO CO

ts ip
ü. û: <  S  o

Hco h
Z M ü  e> O  t— t- ^  ;sOu

Û
lu X x f - z ^ z g^  u  en LU CL M  y

Q .  y>37 O<  O
2 ^

CDÛ_ ü. LD
O > <O h Uu H Ll

co(/)
ooH



98

CLOCK CLOCK CLOCK

To
T"S

Fig 531 : T im e  gLlocafclons

inp u t outputD /Aa / d

CLOCK

PROCESS

EÎ3 352 •• Sqscgrn set,up



CLOCK

99

.1

LOOP INTERRUPT OTHER(S)

A , A î

CLOCK

XL

Fcq.353  • C lo c k in g period gllocgbtons



100

No

Yes

No

No FLAGT T Y F G

Yes

F t j . 341 Basic Sj^sbem FLou/-chart

Trigger clock

Set clock Is

LOOP group 

of interrupts



101

Nix ^ N o k

N o K + A o K ' l

Eig-Akl

Node Number Siq. Value Condition
1 13-45 1 o r 0
Z etc.
3
4
1
1

1 Present S to he 
0  Previous State

Fig 352 X S truc tu re



102

©

Module A i

R q.555 lnou^/Ou^Du^ Node RelaHonshio-Hucofri'ihcnl



103

© © © ©
PHSD GAINSIGN FILT

VCOSIGN

é J  ©

Fig. 5 54- Simola Phase Lock L o o p  PLL

1 2 3 4 5 6 7

Module

©©©®
%

Fig 5 5 5  SA\ o f  P)_L o f  Fi'q. 3 5 4



i3
0)
k
m
o
ïr>
«
u
o
4J
w

>:
û)
■H
Uu
"*U
4->
C
QJ
•G

(C
0)
p
(0
<ü
en
ro
p
O
44
en

P
dt
«P
•H
44

S
-o

(0
dt
p
10
dt

p
0
p
en

p
dt
p
p
p
ë
T3P

10c
en

v4
0) d) CO T3 dt
'O fO dt
0 Vu O 44 dt CO 0c 0 G 10 jG CO G

44 44 dt
4-' U 10 44 P ü P P

3 O) U 3 d) 43 o ?
Dj XI T"l eu o m A •S
4J /O 44 -H P E
3 3 G P 43 co g 3
O C ■H O G 3 •H o C

d)
3

m p-U
9) (0
'ü Vu >
o O 0
G 44 P 3

Vu ro d)
QJ ü 44 %

S XI •H C 2 "g
eu E *0 p g 'c 3 C 0 c 3
M C -H u C

>u
«3

c
0 «vu eu
tH 0 coXu
•H >u T3 o
(0 CU 44 d)
0 u uU 44 C

'  CU' u •Q) P 3 ■H
Vu 0 eu 44

eu 0 ■H 44 3u c 44 P p 0
u 0) eu 0 P

>i
n C enc m en
0 O*rU uu u
44 ■H •o dt t-i
-H dt 4=
CO 0) > c<u 0 Vu p 10 p

■u eu O dt C dt
<0 44 CD •H P *0m 4-1 co CO d) 10 O dtu 0) p c Z cof-U 0 d) < 3
E X3 Z 44 fU en cn
O) W X CO 44 10 m■p •H dt 10 P o dtco tu 44 (4 0 £h p
>1 IC3 c 10 0 en 3w > -H X 1—1 co *0

0

1 dt3 X:c ü p
•H P f-U dt >1

d) 1 (0 43 <0 pc X) dt ü 44 0o E P eu p
•H P p «P co
44 .G CO 0 0 co

m 44 Ip "U o p<N CO >1 E C en dt P
O tu 3 "O c p C dteu IQ E 0 dt 0 3 Utu u eu p eu p
eu X3 eu X •H p p 3 XU •H en 10 «p 3 (0 3 0 -HrU z 0 tr 0 P p

<0
>1 Ep
<0 EC p z dt•H ph X3 < PVu d) 44 •P CD

C (0 eu mU 1—1 p en >10 tu >u c 0 CO•H X) 44 CO •fU X
4 J ■H m 10 eo c dt
■H rU H >1 co 0 Z >1 X:
CO X (0 P p X X p PO en dt (0 p < 10eu cn z eu X5 d) en p p «p

p eu co E eu o CD X3 oeu u cn fU 5 eu o 0 G Pcn o C (0 Cb P  P co
p
dt
p
G
O
ü

co
0) dt
tH e< X:3 o p
T) o
0 «vue oco

dt C
eu ü c Ocn 44 •H p

0) 44 U p
P 44 eu

cr> O dt CO pc H p dt p
-H XI p et
CO >1 Z 3 co
CO b u (0 < •o dt"
0) rU u 0 Qo eu z E0 Z co
tu >u eteu < T3 cn p

U z <0 dtC iH 44 et PE iQ 3 P mP C z eu P3 ' C 3 E-i X u C n- 7 ^ 3 b u

104



105

3̂.
I-------------------1

X(K)

Fig. 5 5 7

©
X1

y

©
X2 I X4 XG

+
X4® ® XII

(a)

lb)

4- X3 V X5 y X7 A X6,
A A r\

Pass1

1 6 I6N X1 y
2 5IGN x z y
3 ADDR X1 + X Z -^ X 3
4 MULT X 3 *X 4 -^ X 5
5 MULT X5^XG -^X7
6 GAIN X 7 -^ X 8 y7 FILT X 8 -^ X 9
8 VCO X9 X10 y
9 SIGN X4 y
10 ADDR X4+X11-^XG y11 BRCH X11-^X10

Fig. 3 5 8 [LD R ] C ohshrucbon

X9 VCO X10 0/p

®

y

yy



106

M ZM l

M 3

M 4
LOOPMAIN

M S

Mom ICOSS LOOP Group o f Inh&rruphs

Sequchcnof Inl'C.rruphs 
M l 
M3 
MS 
M2 
M3 
Ml 
MS
efe.__
Mqin
efc.

F i'q . 5  01 Loop S fa fa  D iagram



107

n 1 2 3 4 5

FLM (I,n) Typ& 
Priori hy

Poin̂ <Lr to 
Lash Stop 
Shoroge 
Space,

Transienh N umber oj
Poihbs

Counh
0

Fig. 3 62 Flûq Mohrix [FLAA] (3x5) Mahnx



108

®  ©  ®  ®  ®  ©  ©  %  CLD«

CrCPl

GCP1

CPI
CPZ
CP3

Fig. 3  6 3  SM Inhg.rnal ReloHonshio & Module Rtprescnlahon



109

Figure 3.7.1a

05? TTY COM? CONS
05? SAMPLING FREQ? 100.0
05? BLOCK 1: SIGN
05? I/P = 1, 0/P = 5, LCP = 4
05? 15.0
05? 1.0
05? 0.0
05? -1.0
05? BLOCK 2: SCOP
05? MEAN
05? 1. NO OF PTS? 2. NODE NO? 3. PRIORITY?
05? BLOCK 3: SCOP
05? TRAN
05? Y
05? I. NO OF PTS? 2. NODE NO? 15 5
05? BLOCK 4? END
05? 1. NODE NO? 2. EXT SIG? 3. IDNT?
05? 1 0.0 1
05? 2 0.0 1
05? 3 0.0 0
05? TTY COM? . . . .

Figure 3.7.1b CONS dialogue for the system (a) above
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05? TTY COM? EDIT
05? TYPE OF EDIT? INERT
05? PREC BLOCK NO? 1
05? TYPE OF NEW ELMNT?
05? I/P = 4, 0/P = 5, :
05?
05?

3.5
TYPE OF NEW ELMNT?

05? TTY COM? . . . .

Figure 3.7.3 Editing; 
existing

05? TTY 1COM? EDIT
05? TYPE OF EDIT? DELT
05? BLOCK NO? 2
05? BLOCK NO? 0
05? TTY COM? . . . .

Figure 3.7.4 Editing; deleting a module in an existing 
block diagram
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05? TTY COM? CHGC
05? 1
05? 150.0
05? TTY COM?

Figure 3.7.5 Dialogue for change of global control 
parameter CHGC

05? TTY COM? STOP
05? IS RESULT REQUIRED? YES
05? TYPE OF SCOP? MEAN
05? MEAN VALUE =
05? CONT OR LOGT? L
05? EDJ 00

If results not available yet, then

05? TTY COM? STOP
05? CONT OR LOGT? C
05? TTY COM?

Figure 3.7.6 Stopping (pausing) the running system;- 
getting results and/or logging out.
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Co)

A = 10

CP, = 0 , 5

TRAW

£.Pz = I 
CPZ - o 
C P4- = O fs = too

In response to:
CMST

1 1 
The teletype will print

BLOCK NUMBER: 1
SIGNAL PROCESSING MODULE: SIGN
INPUT NODE:

1
2
3

OUTPUT NODE;

LCP

4
5

10.0
1.0
0.0
0.0

BLOCK NUMBER:
SIGNAL PROCESSING MODULE: FILT
INPUT NODE: 

OUTPUT NODE 

LCP:

5

6

0.5
BLOCK NUMBER: 3
SIGNAL PROCESSING MODULE: 

. NUMBER OF POINTS = 500
TRAN
NODE NUMBER = 6

GCP:
100.0

Fig 3.7.7 CMST command and response
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(i) For indirect x axis 
05? TTY COM? PLTM 
05? NO OF XAXIS POINTS: 100 
05? DIRECT OR INDIRECT: 0 
05? 1. STARTING PTS,2. STEP: 1.0 1.0 
05? 1. NO OF PTS/GRAPH, 2. NO OF GRAPHS: 100 5
05? TTY COM?

(ii) For direct axis
05? TTY COM? PLTM 
05? NO OF XAXIS POINTS: 100 
05? DIRECT OR INDIRECT: 1 
05? 1.0

' 05? 2.0

05? 100.0
05? 1. NO OF PTS/GRAPH, 2. NO OF GRAPHS: 100 5
05? TTY COM?.

Figure 3.7.8:PLTM Dialogue
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CHAPTER 4

MICROPROCESSOR APPLICATION: BANK OF DIGITAL FILTERS (EOF)

4.1 INTRODUCTION

Having presented ICOSS and the areas for further develop­
ments, the present Chapter is devoted to one area only, 
namely the improvement in the speed of execution. The 
reason for this choice is to direct the process of dis­
cussion toward the original target, which is real-time 
time-domain simulation, in which speed of execution is an 
inherent problem. There are two ways of speeding up the 
execution.

The first, is having a large (Giant) computer with right 
execution speed, which may prove to be expensive and im­
practical, in the University research environment. The 
second technique, is having multiprocessing system in which 
certain parts of ICOSS process is extracted out of the main 
(Host) computer memory, and operated on by another, high 
speed "Slave" processor, concurrently. In this chapter, 
the latter technique is examined, by testing a time depen­
dent section of ICOSS working in conjunction with the main 
simulation. There are a number of candidates (sections) 
which can be chosen from, for this purpose. The main ones 
are:

(a) any of the FLAG group of interrupts (FFT, MEAN,etc).
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(b) The LOOP interrupt (the string itself),
(c) Any of the signal processing modules.

However, the section of ICOSS chosen for this purpose, is 
a signal processing module, for the following reasons:

(a) The^ desirability of having a flexible signal pro­
cessing module, in its function, structure, programming, 
and its addition to ICOSS memory, with maximum ease.

(b) Building a signal processing module on a single board, 
separately, will enable the user to program and 
reprogram the module completely independently from the 
main (Host) computer.

(c) The ICOSS library will act as a shelf where the signal 
processing modules (semihardware) are added to or 
taken from the library depending only on the application 
and requirement.

The signal processing module implemented, simulates a Bank 
of digital Filters (BOF) - of any type, Chebychev, Butter- 
worth etc. But number of filters simulated at any one time 
within a system is limited to two , and the order of any 
of those filters must not be higher than four. Each 
filter is made up of number of second order sections whose 
coefficients, although stored within the module itself, 
are provided by the Host computer during the construction 
mode.

Since the main source of error, when treating signal pro-
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cessing of high resolutions, is the arithmetic and rounding 
off errors during the simulation, the choice of "word 
length" for the signal value, as well as the method adopted 
in the arithmetic calculations (linear or logarithmic) are 
of vital importance.

Since the Motorola MP6800 Kit (which comprises a micro­
processor ROM and RAM) is available at the place of 
research, it was used to investigate the design of BOF 
system.

4.2 MICROPROCESSOR SYSTEMS

4.2.1 Introduction

Microprocessor based systems have been developed in recent 
years, as a natural progress of semi-conductor technology. 
These systems are developed in order to satisfy ever in­
creasing and challenging requirements of the user. In this 
section, concentration will be made, not on the micro­
processor technology of today as such, but on the services 
that it provides in order to reach the final design re­
quirements of ICOSS.

A microprocessor system is basically made of a microprocessor 
element, read only memory, random access memory and a data 
interface. Each part of this system will be introduced and 
suggestions are made to the type of microprocessor arrange­
ments which can be utilised in ICOSS system.
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4.2.2 Microprocessor Architecture

Since microprocessors are the "heart" of computers, then
43a typical computer structure must be introduced before 

describing the general form of a microprocessor archi­
tecture. Fig 4.2.1 shows a typical computer in its most 
simplified form; whereas Fig 4.2.2 shows the basic struc­
ture of a microcomputer which is related to microprocessors
in a more obvious way. It is clear from Fig 4.2.2 that
there are six basic parts to make a microcomputer. They 
are:

(a) Clock
(b) CPU
(c) 0/P ports
(d) I/P ports
(e) ROM 
(f ) RAM

The term microprocessor is sometimes used in a general way 
to mean this microcomputer structure, in contrast to the 
transducers, actuators, displays and other things which 
are needed to meet the requirements of the instrument. More 
typically, the microprocessor is used to designate the 
large-scale integration (LSI) chip, or integrated circuit, 
which includes the CPU.

Sometimes (particularly among the early microprocessors to 
appear on the market) some standard integrated circuits 
arrangement the microprocessor chip in order to construct
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a fully functioning CPU which c^n communicate with, and 
control, input ports,, output ports, RAM and ROM, On the 
other hand, some microprocessor chips include not only a 
self-contained CPU but also one or more of the parts of 
the microcomputer such as the clock or input/output ports,

4Historically, Wilkes (in 1950), suggested that configura­
tion shown in Fig 4.2.3, as the microprocessor. However, 
that final and most general universal form of micro­
processor, is the one shown in Fig 4.2.4, whose internal 

43structure

(a) General purpose registers: accumulator
(b) Arithmetic logic unit (ALU)
(c) Memory address register
(d) Program counter (PC)
(e) Instruction register
(f) Instruction Execution control logic

This is only the basic structure, and the actual set up
43varies from one manufacturer to another . The basic 

difference is the size of word they are capable of 
handling, and cycle time. Obviously, the longer the word 
length (number of bits) and the shorter the cycle time, 
the better. As examples:

Word Length Cycle time
Motorola MP 6800 8 bits 1 us/instruction (minimum)
Plessey MIPROC 16 16 bits 350 ns/instruction
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Microprocessor Operation

A microprocessor incorporates the various functional units
above in order to supervise and manage the operations of
a system. Besides the control circuitry, the microprocessor
has the ALU and the other registers which provide a temp- 

37orary storage . The accumulator constitutes the one
essential general-purpose register. It can serve both
as the source and as the destination register for operations
involving some other registers, the ALU, or memory. Other
general purpose registers often included in a microprocessor
can be used to store operands or,intermediate data, thereby

2
lessening the possibility of accumulator bottlenecks 
Additional registers have dedicated uses. The PC, for 
example, keeps track of program instructions by maintaining 
the address of the next instruction in memory. The fetch 
instruction (top code) goes to another dedicated register, 
the instruction register, and is decoded by internal logics.

The microprocessor tackles each instruction in sequence.
It proceeds from numerically lower memory addresses that 
give the instructions to be executed early, to higher 
addresses that give later instructions. However, the 
sequential order can be broken by "jump" instruction, which 
directs the microprocessor to a different part of the pro­
gram. The order is broken by a "call" instruction that 
gives rise to the execution of a subroutine. Prior to its 
handling of a subroutine, a microprocessor makes use of a 
storage area, the stack, which may be either on the chip
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(a hardware stack) or in memory (a software or pointer 
stack), The stack is used to save vital microprocessor 
information, such as the address in the program counter, 
while the subroutine is being executed. The information 
saved can then be used to resume operation of the main 
program once the subroutine has been executed. Stack is 
also used to reset subroutines, the extent of this capa­
bility is limited by the depth of the stack and its 
ability to store return addresses following each sub­
routine.

4.2.3 Read Only Memory ROM

Read only memory (fixed memory) is any type of memory that 
cannot be readily rewritten and ROM requires a marking 
operation during production to permanently record program 
or data pattern in it. The information is stored on a 
permanent basis and used repetitively. Such storage is 
useful for programs or tables of data that remain fixed 
and is usually randomly accessible. However programs can 
be rewritten, with some complication, on some types of read 
only memories outside the manufacturing environment.

Classifying ROMs, there are three general classes (types):

(a) Masked ROM: in which the memory contents (bit pattern) 
is produced during actual fabrication of the chip
by the manufacturer by means of a masking operation.

(b) Field programmable ROM (fusible link): The memory
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contents are programmed by the user with a special 
PROM programmer as part of the process of fabricating 
an instrument.

(c) EPROM - floating gate - (erasable programmable read 
only memory): The memory contents are programmed by
the user but can be subsequently erased. This permits 
a unit to be reprogrammed, should changes be desired 
in the original programming. In contrast ROMs do not 
permit changes at all, and PROMs only permit 
previously unprogrammed bits to be programmed at a 
later date.

Any one of the above three ROMs will provide efficient
37system operation . Since the purpose of making use of 

a microprocessor controlled system in ICOSS, is to have 
flexible system in which the signal processing module is 
separately programmed, the module may contain any type of 
process according to the situation and modification to it 
may be required at later application. Therefore EPROM is 
the overwhelming choice for the signal processing program 
of the module. However PROM may find some usefulness in 
some parts of ICOSS operation, in the control side of the 
complex interrupt system within ICOSS.

4.2.4 RAM

The term RAM (random access memory) is given to LSI type 
chip which data associated with Up operation is stored and 
later accessed. For this reason a more appropriate désigna-
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tion is soruetiines used to indicate RAM, is s. read-write 
memory, indicating the ability first to write data into 
it and then later to read data out.

A. The Basic RAM^^

Every RAM has input address lines, data input lines, 
control inputs and data output lines. A memory plane 
contains memory cells which stores the data bits. An input- 
address decoder directs a read or write request to the 
desired memory location.

To write into the RAZ4, the data is placed on the data- 
input lines. Then the address of the desired memory loca­
tion is placed on the input address lines. Finally, the 
write-control line is brought to the appropriate voltage 
level.

To read data from the RAM, the address of the desired 
memory location is placed on the input address lines, 
the read-control line is brought to the appropriate 
voltage level, and the data are read on the RAM output data 
lines. Fig 4.2.5 shows the basic structure of the basic 
RAM.

B. RAM structure

The typical structure for the RAM used in conjunction with 
microcomputers is that shown in Fig 4.2.6, with WRITE, 
ENABLE OUTPUT, and one or more chip Enable control inputs.
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It may have more than 8 address lines, for larger capacity 
of RAM within one chip. It may have a word length of 
only one bit or of 4 bits, requiring the interconnection 
of several chips to obtain the desired word size, as in 
Fig 4.2.7. Also it may have data output lines which are 
distinct from the data input lines. For use with a data 
bus, corresponding input and output lines need only be 
tied together.

C. Types of RAM

(a) Static RAM: The term static RAM means that they will 
retain their data reliability (as long as power is 
maintained) regardless of whether any of the inputs 
change.

(b) Dynamic RAM: This type places specific requirements 
upon how often data must be accessed if it is to be 
retained. For example, Intel 2107 (4096x1) dynamic 
RAM requires a "READ" cycle to be performed on each 
of the 64 possible combinations of six address lines 
once every 2 ms. However, these 64 read cycles can be 
performed with the output actually disabled. Conse­
quently, the refreshing of all dynamic RAD/I chips can 
be undertaken with a data selector which switches 
these six address lines from the address bus to the 
output of a 6 bit binary counter whenever there is an 
operation not involving RAM. Then a special refresh 
input is stored. The 6 bit counter can be counted 
with the trailing edge of the strobe pulse.
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(c) Static/dynamic combined: Combining static and
dynamic memory techniques, the chip achieves a 
maximum access time say (200 ns - typically 150 ns - 
for the MK 4104); and maximum cycle time of 260 ns 
for the same chip^Z , Yet it dissipates typically 
only 80 mw of active power at 4 MHz and very low 
8 mw in standby. An additional low-power mode of 
1.0 mw is available for battery back-up operation, 
achieved simply by lowering the power supply voltage 
from 5 volts to 2-3 volts.

D. Application RAM

The RAM actually used in the project is the 128x8 bit 
static random access memory (MCM 6810). It is a byte 
organised memory designed to use in bus-organised systems. 
It is fabricated with N-channel silicon-gate technology. 
The RAM operates from a single power supply, has compati­
bility with TTL and DTL, and needs no clocks or refreshing 
because of static operation.

The memory is compatible with the M6800 microcomputer 
family, providing random storage in 128 byte increments. 
Memory expansion is provided through multiple chip select 
inputs. Some of the important features of the RAM are:

(a) Organised as 128 bytes of 8 bits
(b) Static operation
(c) Bi-directional, 3-state data Input/Output
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(d) Six chip select inputs (4 active low, 2 active high)
(e) Single 5 volts power supply
(f) TTL/DTL compatible
(g) Maximum access time 1.0 us for MCM 6 810L.

575 ns for MCM 6810L-1.

4.3 CONFIGURATION

One of the limitations self-imposed on On-line simulation 
is the computer processing power. The tendency in 
improving the processing power is to enlarge the computer 
at hand with much increased expense. In fact a new genera­
tion of large general purpose computers, sometimes termed 
super-computers, have recently been introduced, providing
speed sufficient for even the most ambitious simulations,

42however at very high cost . Therefore, the overall cost 
and size of a general purpose computer has limitations as 
well.

In order to improve the processing power, and remembering 
that a main computer operates sequentially, either of the 
following approaches can be made:

(i) Parallel processing (genuine), in which results 
of operations may come out simultaneously. The 
difficulty with this mode of operation is a 
management problem, ie synchronising the result 
together, hence increased programming complexity,

(ii) Sequential processing, but putting out tasks 
to special-purpose hardware which executes
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processes very quickly. Programming this type 
of computer configuration is easier. Therefore, 
this method will be adopted in the present work 
for ICOSS development, in which some of the 
processes, eg a signal processing module of 
the loop group of interrupts, is taken out of 
the main computer and processed by another, 
small inexpensive fast processor.

In this section the concept of "multiprocessing" is 
introduced and the final set-up, "the master-slave", 
configuration employed for ICOSS development is described.

(*)4.3.1 Multiprocessing systems

A multiprocessing system uses more than one central 
processing unit in the system configuration. There are 
many reasons for multiprocessor systems:

(a) Greater system efficiency and use of system resources
(b) Increase in system capabilities in responding to real 

time situations.
(c) Fault tolerance: the greater ability to deal with 

system malfunctions.

There are a number of different ways to classify multi­
processor systems, based on the following characteristics:

(a) The type of processors

* Refs 13,37,42,45



131

(b) The interconnections between processors.
(c) The relationship of the processors to memory and 

I/O units.
(d) Operating software for the processors and the 

systems.

On the basis of these characteristics, one can refer to 
certain processors as being "array" processors, "pipeline" 
processors, "ring" processors, "parallel" processors, or 
"reconfigurable" processors. One can also describe the 
system structure as being "tightly coupled" or "loosely 
coupled".

Although microprocessors may be utilised for various 
functions in a multiprocessor computer system, the most 
interesting concept is a multiprocessor system constructed 
of a plurality of microprocessors. The particular type 
of multiprocessor architecture that is particularly 
worth considering is a reconfigurable architecture using 
microprocessors.

Reconfigurable microprocessor architecture: a multiprocessor 
computer system in its most basic form consists of a 
determined configuration. At certain times it may be 
desirable to change this configuration based on a particu­
lar internal or external event. A computer system which 
possesses the hardware or software capabilities to imple­
ment such configuration is called a reconfigurable 
architecture. One of the main applications of this type of 
computer system is the interactive multiprocessor system.
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In this system, simultaneous processing by a relatively 
large number of discrete users running jobs with differ­
ent characteristics, take place. To increase throughput, 
a reconfigurable system operates by allocating an optimum 
number of processor memories and I/O units to each res­
pective user. In this sense the system reconfigures 
itself by partitioning the system into independently opera­
ting units, either on a space-division or time-division 
multiplex basis.

Microprocessors may be utilised to implement computer 
systems based on such reconfigurable architecture. The 
basic system can be implemented by means of a multi­
processor array, together with supervisory and data 
transfer function controlled by other processors. The 
arrangement between these processors determines the types 
of multiprocessor systems implemented. There are several 
basic types of multiprocessor configurations which may 
implement a reconfigurable system. The type which will be

1 ^7adopted for ICOSS development is called Hierarchial system 
This system is based on one "master" processor and two or 
more "slave" processors in a hierarchial relationship.
The master processor controls or supervises the operation 
of the "slave" processors in either a "tightly" or "loosely" 
coupled manner as shown in Fig 4.3.1. A further descrip­
tion will be made on this system in subsection 4.3.2.

There are other types of configurations, namely:

(i) Parallel
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(ii) Ring
(iii) Switched 
(iv) Pipelined

(*)which can be found in the literature

4.3.2 Master-slave processors

The hierarchial type configuration mentioned earlier is 
an alternative approach to the attainment of very high­
speed real time capability, in which moderately sized gen­
eral purpose digital computer and a special purpose digital 
processor are interconnected as shown in Fig 4.3.2. The 
host computer which acts primarily as a buffer to the 
communication lines and I/O equipments can be a large mini­
computer eg PDP 11/70. The "peripheral processor" is a 
digital computer employing a high degree of pipelining 
and parallelism. Because it is designed solely to facili­
tate high speed arithmetic computation, it is capable of 
providing computing speed considerably superior to those 
of large general purpose computers at a very moderate
cost (comparison: $8,000,000 old technique, $300,000 new 

4 2technique).

In the present work, the general-purpose computer at hand 
is the Digital Equipment PDP8/e, which will contain the 
main body of ICOSS (see later); while the slave processor 
is a microprocessor controlled signal processing module.

* Refs 13,37,42,45
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4.3.3 Signal Processing Module

The slave processor of the hierarchial system adopted for 
ICOSS development is made of :

(i) Microprocessor element
(ii) Random access memory RAM

(iii) Read only memory ROM*
(iv) Arithmetic unit AU

The internal connection of these elements and the processor 
external connection is shown in Fig 4.3.3. The signal 
processing module chosen out of the present ICOSS library 
for the slave processor is a "bank of digital filters - BOF" 
BOF subroutine will be stored in RAM but eventually the 
final module program will be stored in ROM, whereas the 
various signal values, state variables and control varia­
bles will still be stored in RAM. The arithmetic unit, 
which performs the logarithmic number manipulation is 
coupled within the processor. The suggested type of this 
unit, is a modified logarithmic arithmetic unit, see 
Appendix F for detail.

There are a number of advantages in choosing signal pro­
cessing module for slave processor, mainly:

* To be more precise - EPROM - erasable programmable 
read only memory should be used
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(a) The obvious increase in computer processor power, 
hence better on-line simulation.

(b) The basic signal processing modules are separated 
from the main ICOSS body. This means that the 
ICOSS library will act as a "shelf" for the various 
signal processing modules, and each new module is 
prepared (designed, programmed etc) independently 
outside ICOSS. However in the signal processing 
library of the prototype ICOSS discussed earlier, 
the modules identification procedure has to be 
modified, for true interchangeability. The changes 
in the main ICOSS will be on interfacing and identi­
fication, which can be made minimal.

There remain a number of supplementary devices which have 
to be treated, for the final system design, in order to 
make the operation more compact, such as the power supply, 
interfacing, console control etc, see Fig 4.3.4.

Another improvement, which can be made is to make the slave 
processor as a single chip, coupled to the main computer 
via an easy interconnector (interface).

4.4 DESIGNING A SLAVE PROCESSOR FOR THE BOF MODULE

4.4.1 General

A slave processor is to be designed which simulates a 
bank of digital filters (BOF), having the following
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characteristics and considerations:

(a) The maximum number of filters at any one time must 
not be more than two. This limitation is for the 
present set-up, since the number of filters is 
limited by the size of memory (RAM) available in 
the slave processor.

(b) The highest order of any one filter must be defined 
in advance, depending again on the memory (RAM) 
available; and it was decided that the highest 
order of any one filter for the present set-up is 
to be four.

(c) Wide dynamic range, in which case logarithmic 
numbers for signal value representation is used.

This section is mainly concerned with the theoretical 
background and the hardware requirements ; whereas in the 
following section, a more specific development of the BOF 
module will be made.

4.4.2 Theory

A digital filter can be represented,in time domain, as 
cascaded second order segments  ̂ , as shown in Fig 4.4.1.
Assuming that the input signal is x(t) in time domain, 
and x(n) in sampled form, and the output signal is y(t) 
in time domain, and y(n) in sampled form, the filter 
transfer function
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i=k
H = a TT hi where hi is the second order

i=l segments
and k is the number of

those segments in the 
filter

■i - 1  - 21 + z + z

where a^^, ^2i' ^li ^2i the segment's coefficients.

Representing the filter transfer function as difference 
equations :

y . (n) = X. (n) + a, .x (n-1) + a_ .x (n-2) - b, .y . (n-1)
^  J L  ^  Am ^  ^  J L  ^

- bgj^y. (n-2)

for i = 1,2,...k

Thence the final output y = a^ y^(n).

4.4.3 BOF module design requirements

In order to build any signal processing module using a 
microprocessor control unit incorporated with a host 
computer, the following requirements must be met:

(a) A program for the signal processing module: this is 
a machine coded program stored in ROM. .
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(b) Storage area: enough memory space (RAM), must be 
provided for the storage of:

(i) control parameters of the signal processing 
module

(ii) state variables
(iii) other supplementary parameters
(iv) the program (a) above, in the case of the 

prototype only. In the final design, the 
latter is stored in EPROM.

(c) Interfacing arrangements with the host computer.

4.4.4 Module Structure (hardware)

The basic structure of the "slave" processor is shown 
in Fig 4.4.2. The figure shows a prototype model, con­
taining the following units:

(a) RAM: random access memory, which contains

(i) the signal processing module program
(ii) module control parameters

(iii) module state variables
(iv) supporting parameters, etc; as will be explained 

in the next section (4.5).
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34(b) MP: microprocessor, the Motorola MP6800

(c) AU: arithmetic unit; the modified logarithmic 
arithmetic unit; see Appendix F.

(d) PIA: peripheral interfacing adaptor. This is a 
parallel lines, for data and control. It is 
mainly used for the intercommunication of data 
between the "slave" processor and the host computer. 
For the present work, it is 8 bi-directional lines, 
which can be programmed, controlled and treated as 
simple memory locations.

(e) ACIA: asynchronous interface adaptor. This is a 
serial data line, used mainly for the control and 
data transfer of teletype or console.

(f) TTY: teletype.
(g) ROM: read only memory: contains the Microprocessor 

supporting software
(h) Power Supply: ±12 volts, + 5 volts, and earth.

All data and control voltages are TTL compatible.

4.5 SOFTWARE DEVELOPMENT OF BOF MODULE

4.5.1 Program Formulation

Following the digital filter formulations developed in
4.4.2 earlier, and assuming that a fast arithmetic unit, 
similar to that suggested in Appendix F is used, and 
whose function is limited to:
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a = b • c + d (1)

Also considering one second order segment of the filter, 
whose difference equation is:

y^(n) = x^(n) + a^^x^ (n-1)-i-a^^x^ (n-2 )+bj^^y^ (n-1) tb^ ̂_ŷ  (n-2)
(2 )

This equation (2) can be split into four smaller equations 
in the form of equation (1), as follows:

"̂ li = x^(n) + aii% i (n-1)

^2i ^li + ^21^1 (n-2)

^31 = ” 2i + ^11?! (n-1)

^4i ''31 + ^21^1 (n-2)

(3)

With the necessary reshuffling of the segments state 
variables as indicated earlier, this can be repeated 
(k) times for k segment filter, and the final output is 
obtained as:

w  = (4)

Hence with the use of the arithmetic unit (AU) and simple 
access and reshuffle procedures, the process becomes simply 
a matter of repetition, reshuffling of numbers in the 
state variables stack, and temporary storage for the AU 
function, as illustrated in Fig 4.5.1.
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Execution time determination

In order to determine the time taken for one signal 
sample being processed by a filter having k second order 
segments, there are three periods to consider:

(i) The AU instruction time:

Assume is the AU instruction time.
There are four basic AU instructions/segment.
If equation (4) is rewritten as:

and (5) is considered as one AU instruction, 
then:
The total AU instructions needed for the filter 
4k+l
The total AU time needed for the filter:
(4k+l) Tau-

(ii) The state variables shuffling time:

Assume T^^ is the shuffling time/instruction 
There are 4 x T^^/segment
.*. The total shuffling time needed for the
filter = 4k T , , sh

(iii) Control parameters access time:

Assume T^ is the access time/parameter
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There are 4 x T^/segment
.*. The total control parameter access time
= 4 X  k T .a

.'. The total time needed (execution time) = 
4(Tg^+T^)k + (4k+l) T^y

However, this is the minimum time needed and some more 
time needed for the microprocessor management.

4.5.2 Implementation

Microprocessor controlled module is a low level device, 
ie accepts machine code programs only. The user, who 
usually writes his program in a higher level language, 
such as assembly language, has to compile and assemble 
his program in order to produce the desired machine code 
program. An Excorcisor is used for this purpose, which 
has a system supporting software, the Editor and the 
Assembler.

The procedure to produce the machine coded program for 
the microprocessor controlled module is therefore as 
follows :

(a) Formulate the module program, in the way explained 
in subsection 4.5.1.

(b) Draw flow chart.
(c) Write the program in assembly language.
(d) Run through the Editor and Assembler,
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(e) the final product is the machine code program.

4.5.3 EOF Program

There are two distinct functions in EOF module, which 
the program must perform:

(i) Housekeeping: The filter control parameters
(secondary) as supplied by ICOSS, are stored 
in their allocated area in. RAM, with the 
necessary identifiers for the relevant filter. 
Also allocations to the state variables of the
filter are made, and the relevant pointers are
recorded,

(ii) Signal Processing: This is the filter action
to the input signal.

However, there is another fixed procedure in EOF program 
devoted to the interfacing problem and transmitting and
receiving data to and from the main (host) computer, res­
pectively .

In the following sub-sections detailed descriptions are 
made to each function of EOF program.

4.5.3.1 Interfacing

In the MP6 800 microprocessor there are two sets of data 
and control lines (registers). Fig 4.5.2: set A and set E,
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Each having 8 parallel bi-directional lines and number 
of control lines, which are programmable by treating each 
set as a memory location. In the present EOF case, set A 
was assigned to Receive from host computer side, and set E 
was assigned to Transmit to host computer side, of the 
microprocessor. Each side has:

(a) 8 lines (registers) - bi-directional
(b) Cxi register for flagging-data ready
(c) Cx2 register for acknowledgement of job done 

where x is either side A or side E.

In programming the interface, the following procedure is 
followed:

(a) Clear registers
(b) Open interrupt
(c) Check flag register for any changes in Cxi registers
(d) Transfer data
(e) Send acknowledgement flag via Cx2 registers

I All voltages are TTL compatible which matches with the
host computer voltage. Fig 4.5.3.

4.5.3.2 Memory Map

One of the main limitations imposed on the design of a 
microprocessor software is the availability of memory 
space in RAM. The first step, therefore, is to divide the
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memory locations available into dedicated sections, pro­
ducing the microprocessor memory map. In the present work 
for designing EOF program, the memory is divided into the 
following sections. Fig 4.5.3. :

(i) PIA locations; These are fixed by the present 
hardware, and used in conjunction with the 
interfacing and transmitting and receiving of 
data. In the case of the Motorola MP6800 
microprocessor, there are four bytes addressed 
by: $8008 - $800E (where $ indicates Hexadecimal)

(ii) Internal parameters: ($0000 - $0009)
All the parameters necessary for the subsequent 
operation of the module, such as counters, 
filter number, temporary storage of input and 
output signal.

(iii) Module control parameters: ($0010 - $0022)
The control parameters are supplied from the 
host computer in their final form and stored 
at their appropriate positions. There are 18 
locations reserved, for two 4th order filters. 
Remembering that each filter has 9 control 
parameters; see subsection 4.4.2.

(iv) State variables: ($0023 - $0032)
The locations for the state variables are 
reserved, and initialised to zero. Sixteen 
locations are reserved for the present case of 
two filters of 4th order; see subsection 4.4.2.
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(v) Initialisation ($0035 - $0044)
The portion of the program concerned with the 
system and interfacing initialisations is 
stored in this area.

(vi) Program: ($0045 - $00F4)
The filter function part of the program is 
stored in this pre-reserved area.

(vii) Subroutines ($00F6 - $012D)
Similar to (vi), an area of the memory is 
reserved for the existing subroutine of module. 
In the present situation, there are two sub­
routines, one for receiving data from the host 
computer, and the other for transmitting data 
to it.

4.5.3.3 Construction mode (CONS)

In this mode of operation, all the "house-keeping" of the 
EOF module takes place. These include:

(i) The filter identification: this is assigned by 
the module and recorded by ICOSS in the host 
computer.

(ii) The storing of the filter control parameters 
in module.

(iii) The initialisation of the state variables
locations of the filter, ie storing zeros in 
them.
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The process is triggered by a mode identifier from ICOSS, 
and the operation takes place as shown in the flow-chart 
in Fig 4.5.5.

4.5.3.4 The Run mode (RUN)

The filter action is actuated by the RUN instruction, 
which includes: mode identifier, filter number and the 
signal value; and then the input signal is processed by 
the appropriate filter, in the way shown by the flow­
chart, Fig 4.5.6.

Since the arithmetic unit (AU), mentioned earlier, was not 
available, the investigation was mainly concerned with the 
module organisation, not the arithmetic one. The AU action 
was performed internally. (However, if the AU is inter­
connected, then it can behave as another assembly instruc­
tion, reducing the filter action time considerably).

4.6.1 THE HOST MACHINE: THE DIGITAL EQUIPMENT PDP8/e *

The PDP8/e is specially designed as a general purpose 
computer. It is designed to meet the needs of the average 
user, yet it is capable of modular expansion to accommo­
date most of the user requirements.

The PDP8/e basic processor is a single address, fixed word 
length, parallel transfer computer using 12 bit, twos 
complement arithmetic. The cycle time of the random access
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memory is 1.2ys for fetch and defer cycles without auto­
indexing and 1.4ys for all other cycles. Standard features 
include indirect addressing and facilities for instruction 
and skipping and program interrupts as a function of 
input/output device conditions.

Five 12 bit registers are used to control computer opera­
tions, address memory, perform arithmetic or logical opera­
tions and store data. A programmer's console provides 
switches and indicators that permit convenient monitoring 
and modification of machine states and major registers.

The 1.2/1.4 ys cycle time of the PDP8/e provides a compu­
tation rate of 385,000 additions per second. Each addi­
tion requires 2.6ys (with the addend in the accumulator), 
while subtraction requires 5.0ys (with the subtrahend in 
the accumulator). Multiplication is performed in 256.5ys 
or less by a subroutine that operates on two-signal, 12 bit 
number to produce a 2 4 bit product, leaving the 12 most 
significant bits in the accumulator. Division of the two 
signed, 12 bit numbers is performed in 342.4ys or less by 
a subroutine that produces a 12-bit quotient in the 
accumulator and a 12 bit remainder in memory. Similar 
signed multiplications and division operations are per­
formed in approximately 40ys utilising the operational 
KE8-E Extended Arithmetic Element. Fig 4.6.1 shows a 
block diagram of the basic PDP8/e that illustrates the

* Digital Equipment: PDP8/e, PDP8/m and PDP8/f small com­
puter handbook. Pub by PDP8/ handbook series 19 73.
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signal paths between the central processor, the memory 
system and the OMNIBUS. (In PDP8/e a bus is defined as 
a group of 12 signal lines carrying related information, 
such as the 12 bits of an instruction or data word. The
OMNIBUS may be considered as a wide bus containing
several buses, along with many other signal lines). Signals
that do not pass through the OMNIBUS are routed between 
adjacent modules by means of Edge connectors.

4.6.2.1 Main program: ICOSS

This program controls the overall operation of the multi­
processing system. Only two main interrupt systems are 
included in this modified version of ICOSS*. They are:

(a) the teletype group of interrupts
(b) the loop group of interrupts.

The program structure is shown in Fig 4.6.2

4.6.2.2 Teletype group of interrupts: TTYFG

The time independent interrupts which are grouped as 
"teletype" group of interrupts, are advocated for the 
construction of the simulated signal processing system, as

* See Chapter 3 for description of ICOSS
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well as the "house-keeping" and control parameters manage­
ment of the "slave" processor. The teletype commands 
employed for this group of interrupts are:

(a) CONS: for system construction.
(b) RUN: for running the signal processing.
(c) STOP: for logging out of the system simulation.

4.6.2.3 Construction Mode

The simulated signal processing systems construction is
{*)executed in the usual way , but with the additional 

problem of the parameters manipulations of the "slave" 
processor. Subroutine CPMAN is modified to include the 
later problem (see later).

There are only two basic modules included in the modified 
ICOSS library. The first is the signal generator (sinewave) 
and the second is the filter module. The reason for 
simulating the signal generator is because the real time 
operation is neither required, nor possible for this 
exercise.

Since the actual simulation will be off-line, then the 
scope action will be simulated as well. This requires a 
storage area for the accummulation of the output signal 
samples. The process is executed, as part of the tele­
type interrupts system similar to the original procedure 
of ICOSS.

* See Chapter 3
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Control parameter manipulation: CPMAN

This is a two fold operation: the first is the usual con­
trol parameter manipulation which was discussed in 
Chapter 3. The second is the transfer of parameters to 
the "slave" processor in the case of the filter module. 
This means that the filter parameters will be processed 
by the host computer (accepting primary parameters from 
the user and calculating the final-secondary-parameters) 
which will then be stored in the main ICOSS body in the 
Host computer, as well as storing it in the "slave" 
processor as part of the filter module.

Subroutines

CONST
BCONST
CPMAN
SCONST
SIGN
FILT
STORE
LOOP

Overall controller for the construction mode. 
Basic element construction tool.
Control parameters manipulation.
Scope action manipulation.
Signal generator module (sine wave).
Filter module - as second order segments. 
Store for further scope action manipulation. 
The running mode controller.

4.6.2.4 Running Mode

The final signal processing of the simulated system is 
executed as a loop interrupt of ICOSS in the usual way. 
However, in the case of the filtering action in the loop.
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the signal is transmitted to the "Slave" processor, via the 
Host computer buffer, to be processed by the filter module 
of the "Slave" processor. While the signal is being 
processed, the simulator ICOSS keeps hunting for the out­
put signal of "Slave" processor (the filter module). The 
waiting period is decided by two factors:

(a) The filter action execution time.
(b) Data transfer rate of the Host computer buffer.

4.6.3 The Host Computer interprocessor Buffer *

This interface allows the transfer of 12 bit digital data 

to or from the PDP8/e computer and provides signal lines 
for hand-shaking sequences between the processor and an 
external device (the microprocessor controlled unit).

The interface comprises a 12 bit Transmit Buffer and a 12 
bit Receive Buffer, each with associated Flag input and 
pulse output signal lines. When the processor transfers 
data to the transmit Buffer or data from the Receive 
Buffer a 100 nsec pulse appears on the associated Pulse 
Line which may be used to indicate to an external device 
that data is ready to be transmitted or that data has been 
received. Each buffer has an associated device flag which 
is cleared by the processor lOT instructions. The flags 
may each be set to (1) by pulses from an external device

* Refr PDP8/e peripheral data sheet.
DB8 - E interprocessor Buffer.
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indicating that data has been transmitted or that data is 
ready to be received. When enabled under software control 
either flag may cause an interrupt when set to (1).

Technical specification

Maximum transfer rate

Data output

Rise and fall times 
Data inputs

Data level

One 12 bit word at approximately 
5 kHz.
8 itiA (5TTL loads) and still 
maintain standard TTL noise 
immunity. Series terminated 
with 100 ohms.
Less than 50 nsec without cable. 
One unit load (1.6mA) each and 
clamped to -0.6 volts.
True at 3.0 volts.
False at 0 volts.
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4.7 RUNNING OF FINAL SYSTEM

(a) General layout ,

Having prepared both programs, ICOSS for the Host 
machine, and BOF for the microprocessor unit, the 
combined system may now be run. The final system 
configuration is shown in Fig 4.7.1; it must be 
noted that the address lines (16 bits) and the 
control lines are omitted from the Figure. A 
detailed block diagram of the microprocessor unit 
is shown in Fig 4.5.2. Utilising the facility 
provided in the microprocessor itself, section A 
of the bi-directional data line (8 bits) of PIA is 
used for Transmit of data from microprocessor unit 
to the Host computer buffer and Section B of PIA 
for the Receive of data from the Host computer buffer.

(b) Attempted runs

In attempting to run the combined system, there were 
two major obstacles:

(a) the arithmetic unit was not available.
(b) the transmit/receive rate of the PDP8/e buffer 

was very low, 5 KHz as mentioned earlier.

Since the BOF operation in the microprocessor unit 
is a signal processing function and has no bearing



155

on the multiprocessing action of the combined 
system, it was decided therefore to test only 
the interaction between the two systems; by 
circulating a number between them, which was 
performed accurately. However the following 
points are raised;

(i) The microprocessor data lines and the
memory locations related must be increased 
to an appropriate number and compatible with 
the Host computer buffer. In the present 
case, the Host computer has 12 data lines, 
whereas the microprocessor unit has 8 data 
lines.

(ii) The transfer speed of the Host computer
buffer must increase considerably in order 
to make the process advantageous.

(iii) The microprocessor speed can be increased 
as well, allowing more segments of digital 
filter in BOF'.

* A microprocessor unit the MIPROC 16 say, which has 
16 data lines and 350 ns/instructions, will produce 
better results.
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CHAPTER 5

APPLICATION PROBLEMS

5.1 INTRODUCTION

Discussion in developing the new communication system 
simulator (ICOSS) so far, has covered ICOSS structure 
and function, and the future feasibility and developments, 
(Chapters 3 and 4 respectively). The third and final 
aspect of developing a simulator is its novelty in 
engineering and research work, to be discussed in this 
Chapter.

Two investigation problems were chosen to test ICOSS^ 
behaviour in a communication engineering application; 
they are

(a) Interferences in phase-locked loop
(b) Fast acquisition phase-lock loop (PLL)

The reasons for choosing those application problems are:

(i) Both contain feedback loops, which ICOSS 
supposedly is capable of handling.

(ii) The performance of both systems is difficult 
to assess theoretically.
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(iii) Both problems have been investigated experi­
mentally. The first by A Blanchard^ and the

36second by J P McGeehan at Bath University. 
The comparison of results will make a good 
indication of ICOSS usefulness.

As a complementary introduction to those problems, the 
analysis, characteristics and behaviour of a simple PLL 
is made, as well as outlining the capability of ICOSS 
approach in determining these parameters compared with 
other conventional methods.

5.2 SIMPLE PLL

5.2.1 Introduction

A simple second order, analogue phase-lock loop (PLL), 
Fig 5.2.1a,is to be designed and simulated, and whose 
basic theory and analysis is found in Appendix H. Two 
approaches are made in the simulation of this PLL using 
ICOSS, namely:

(a) The direct approach: in which the actual signal 
as function of time is used in the analysis.

(b) The complex signal approach: in which the real- 
imaginary components of the signal are considered 
in the analysis.

The direct apprach is also attempted using a dedicated
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simulation package for simple PLL. The comparison between 
the three approaches is based on:

(i) number of computer runs needed to achieve 
result.

(ii) User ease.

5.2.2 PLL parameters

With reference to the PLL theory as outlined in Appendix 
H, the following are the parameters of the PLL used in 
the tests:

* Phase sensitive detector PHSD parameter:
= 0.274

* Voltage control oscillator VCO:
+ parameter: = 0.029 Hz/volt
+ free running frequency: f^ = 10 Hz

* Gain amplifier (GAIN):
A = 1200, 1500, 2000

* Filter:
Cut-off frequency f^ = 0.1, 0.2, 0.3 Hz

* Calculated d.c. gain of PL:
K: 59.9, 74.88, 99.87



174

5.2.3. Direct Approach

(a) PLL special purpose package SPP

The tests carried out using a specially written program for 
a phase-lock loop, were to determine the lock ranges of the 
PLL whose parameters outlined in 5.2.2, for the conditions 
mentioned above. For each set of conditions two tests were 
carried out, one for determining the upper limit of the 
locking range, ie F4, Fig H3, and the other for the lower 
limit, FI. In either case the input frequency was increased 
in steps of 1 Hz, and the VCO frequency was tested for lock, 
until the PLL becomes out of lock. In all a total of 18
runs were needed. The results obtained. as compared with
the expected values are :

A (Hji L measured L calculated (Hj)

1200 0.1 19 12
ri 0.2 21 12
vr 0.3 18 12

1500 0.1 24 23.84
II 0.2 23 23.84
ir 0. 3 22 23.84

2000 0.1 31 31.8
II 0.2 28 31.8
II 0. 3 27 31.8

The discrepancy may be due to the number of reasons,
see later, section 5.2.5.
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(b) ICOSS simulation

(i) Block diagram and ICOSS dialogue are shown 
in Fig 5.2.1 a,b.

(ii) The locking range of the PLL was determined 
for the following conditions and sets:

* Input signal frequency (f^) was increased 
from 0 40 Hz at 2 Hz steps.

* Cut-off frequency of the simple first- 
order low-pass filter and the gain were 
varied producing 9 sets of curves.

A = 1200, 1500, 2000
f^ = 0.1 , 0.2 , 0.3 Hz

as before.

(iii) Procedure of (ii) was repeated with input 
signal frequency decreasing from 40 ^ 0 Hz 
at 2 Hz steps, producing 9 curves.

(iv) Method employed:
* Select a fixed input frequency f^.
* Drive PLL until lock is achieved, if f^ 

within the range of PLL.
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Measure mean locking frequency and 
store value in YAXIS(I). This is 
simply done by using the EDIT interrupt 
of TTYFG group, and the MEAN interrupt 
of the FLAG group.
Increase f^ using the CHCP (change 
of parameter) interrupt of the 
TTYFG group, and repeat.
Plot the curves using the PLTG 
interrupt of the TTYFG group.
One run only was enough for the above 
test, including the graph plotting 
curves.
The curves obtained are shown in Fig
5.2.3.
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5.2.4 Complex-signal approach

(a) Theory

(i) Basic Operation Analysis (Fig 5.2.4a)

the input signal: x(t) = m(t) cos (u)̂ t+cj) (t) ) 
ie general modulated signal

y(t) = cos ( (tü̂ +ôoo) t) 
ie frequency offset, constant amplitude signal

thence: z(t) = m(t) cos (cD̂ t+(j) (t) ) cos ( (œ̂ +6o)) t)

= m(t) i { cos |̂ (2tü̂ +6o)) t + cf) (t)j 

+ cos -̂6o)t+(}) (t)J }

w(t) = cos 1̂ (j) (t)-6ü)tJ :
assuming ideal filter '

w'(t) = a(t) cos 6 (t) in general 
assuming non-ideal filter.

(ii) The model:

1. Phase sensitive detector PSD (Fig 5.2.4b)

x(t), y(t) are r.f. modulated signals
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cü' (t) is a real, base-band signal 
z '(t) is z(t) filtered by ideal Lpf so as 

to exclude the 2w^ component

or z ' (t) = cos ^$(t)-6wtj

E m(t).{exp j |^(t)-5wtj + exp-j ^^(t)-ôwtj

Now complex models of x(t) and y(t) are:

x^(t) = m(t) exp j 0(t)
y^(t) = 1 exp j ôo)t

thence = x^(t) . y*(t)
u/(t) = z^(t)* h(t) in usual way.

where h(t) is the filter impulse response

2. Voltage controlled oscillator VCO

6w = I 0) ' (t)c

(iii) Simulation elements

1. Multiplier; (Fig 5.2.4c), which includes ideal 
Lpf to exclude 2w^ components

z ' = x.y*

Taking real and imaginary components:
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^R + Xj y

?R - y
but 4 is not

R R JR I
z.

is a real baseband signal.

2. Filter

= z^* h(t)
but (jüj. is not relevant.

3. VCO

ÔCÜ - kw^
= cos 5wt 
= sin 6(jot

iv) Loop simulation

The final block diagram representation for 
this simple phase loop is shown in Fig 5.2.4d
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(b) The block diagram as used in ICOSS and its 
equivalent listing are shown in Fig 5.2.5.

(c) Measurements and tests

The effect of varying sampling frequency on 
acquisition time of PLL under test.

(d) Method and results

* The transient responses of the locking frequency 
of PLL are obtained using two interrupts:
TRAN of the FLAG group and TRAN of the STOP 
interrupt of the TTYFG group, as shown in Fig 
5.2.5, for number of sampling frequencies, (f^). 
The fg variation was carried out using the 
change of global parameter (CHGC) interrupt of 
the TTYFG.

* The values of f^ were chosen to be multiples of 
the input signal frequency which was chosen to 
be 8 Hz.

* Numerical values were obtained this time for the 
response and a closer look to the actual values 
was made.

* The acquisition times (measured over 1% of the 
locking frequency) were determined as follows:

Sampling frequency (f^) Hz 8 16 24 48
Time in sec No 1.75 1.83 1.88

lock
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5.2.5 Comment

(a) Locking range of the PLL under test: the reason for 
the discrepancy between the calculated and the 
measured locking range of the PLL is due to the fact 
that the locking range is not symmetrical about the 
free-running frequency of the VCO, as clearly shown 
in Fig 5.2.3. This means that the simple equation of 
Appendix H for lock range does not hold; however ICOSS 
is capable of analysing completely this type of problem.

(b) The effect of varying f^:
* Increasing sampling frequency will give better defi­

nition of the signals at the expense of computing time.
* Complex-signal approach is related to the modulating 

signal frequency and therefore requires lower sampling 
frequency (f^) than the direct approach which is 
carrier frequency dependent, eg for the previous work, 
fg was 96 Hz for the direct approach, and 24 Hz for 
the complex-signal approach, for the range of fre­
quencies mentioned, which were centred about 10 Hz 
(the VCO free running frequency).

(c) Plots: with the ability to store sample values and mani­
pulate them, it is possible to plot any response vs any
parameter variations. This was demonstrated in Fig
5.2.3 where a number of curves are plotted for different 
sets of parameters, all on one graph, within one run. This is 
a feature of ICOSS which provides better understanding
of system behaviour.

(d) Runs: there is a marked reduction in number of runs using
ICOSS, as compared with the SPP, vis, 18:2, hence reduc­
tion in computer time.
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5.3 INTERFERENCES IN PHASE-LOCK LOOPS; STOCHASTIC 
SIMULATION

495.3.1 Stochastic Simulation

Even in apparently deterministic and well-behaved situa­
tions, some averaging must take place. There are two 
ways of treating this type of problem:

(a) Systematic variation of parameters: for example, 
a problem with two parameters; the first parameter 
having six values and the second, five, 30 simulation 
runs are required in order to examine the full effect 
of those two parameters on the system under test.
Yet averaging process has to be carried out to arrive 
at the final result. In practice, it is possible to 
reduce drastically the number of runs by examining 
the sensitivity of the final result to individual 
parameter , Notice that in a practical test the 
relative phases of the signals are continually moving, 
so that an indicating instrument takes automatic 
averaging.

22
(b) Monte-Carlo technique : where the parameters are

varied by choosing random values, according to 
certain statistical criteria. That means simulation 
must record the results of a number of observations, 
considering the sequence in which they occur and not 
the values assumed by the variable . This technique



183

usually requires a large number of estimates to 
ensure adequate convergence.

5.3.2 The problem of intereferences in PLL

As an application to this type of problem, tone inter­
ferences in PLL which may be encountered in PLL receivers, 
is chosen. The reasons for this choice are:

* Co-channel interference is common occurrence.
* The theoretical analysis is complicated and the 

simulation approach is ideal for this type of 
problem.

* The effect of an interfering, sinusoidal signal 
on another PLL situation has already been 
investigated theoretically, and practically by
A Blanchard as mentioned earlier, and a compari­
son between the two approaches can be made.

There are two cases to consider:

(a) Influence of an unwanted signal on PLL initially in 
lock: in this case the loop initially is in lock 
with the wanted signal f^ and then the unwanted 
signal f^ is applied, and the PLL behaviour is 
investigated.

(b) Influence of an unwanted signal on PLL initially 
out of lock: the two signals are simultaneously
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applied to the PLL input, and the acquisition 
behaviour, etc is then investigated.

These two cases were investigated by Blanchard experi­
mentally, and number of graphs are obtained. The attempts 
are now made to confirm these results using ICOSS and 
simulation approach.

5.3.3 Problem formulation

(a) General

* Block diagram and its equivalent ICOSS listing 
are shown in Fig 5.3.1. a,b.

* The PLL used for these tests is the same as the
one already used in Section 5.2.

* The simple PLL structure, its parameters, and 
theoretical formulations are discussed in Appendix 
H, whereas the theory of the interferences in PLL 
is fully described in Blanchard paper^.

* The input signals under tests are of the form:
wanted signal y^ = A^ cos (w^t + B^)

unwanted signal y = A cos (w t + B, ) ̂ ^u u u u
For f. = 8 Hz fixed 1

f : varied from 5 Hz ^ 15 Hz u
A^ = 1.0 fixed 
A^ : 0.3, 1.0, 2.0 

giving rise to

: - 10 dB, 0 dB, + 6 dB.u
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(b) Measurements

(i) For unwanted signal = 11.0 Hz, and
amplitude = 0.1, set of waveforms are 
to be obtained for the nodes within the 
block diagram, which will show the varia­
tion of signal at each node, for the case 
PLL initially out of lock (5.3.2b).

(ii) Parameter variations: for the case of
PLL initially out of lock, unwanted signal 
= 10 Hz and amplitude: 0.1, 0.3, 0.6, 0.8, 
the locking frequency responses and the RMS 
values variation vs amplitude, for the 
steady state situations are to be deter­
mined.

(iii) Confirmation of the Blanchard formulation, 
by plotting points on the curves which 
he formulated theoretically, and 
approved experimentally. With use of 
the EDIT interrupt of TTYFG group, the 
test for (5.3.2a) can easily be carried 
out, ie running PLL until lock is achieved 
on the wanted signal channel and then 
edit the system structure to add the 
unwanted signal, preserving the system 
state, and continue with the test.
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5.3.4 Results and Comments

(i) Signal Flow

The pictorial representation of the signals (wanted
and unwanted) as accessed at the inner nodes of
the block diagram for f = 1 1.0 Hz, A = 1 . 0  and  ̂ u u
f^ = 8.0 Hz, A^.= 1.0, are plotted on one graph.
Fig 5.3.2. It can be deduced from the test and the 
graphs :

* The ease with which many signal responses are
obtained (ICOSS feature), within one run.

* The influence of small interfering tone is
clearly shown in the behaviour of PLL.

* The FM effect on the VCO.

(ii) Parameter variations 

Two graphs are plotted, Fig 5.3.3.

(1) The VCO frequency response
(2) The RMS of the steady state locking frequency 

ripple vs amplitude variation.

It can be seen from the second graph that a derived 
variable can be plotted with the same ease as 
plotting the response of the first graph. This is 
another feature of ICOSS.
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(iii) Blanchards Results

To show the actual variations and actions within 
PLL for the conditions under tests as mentioned 
earlier, the locking frequency response of case (a) 
subsection 5.3.2, for the situation when PLL locking 
on the unwanted signal, and then the unwanted 
signal is injected, and the transient response 
resulted. Fig 5.3.4.

The parameters for Blanchard curves, ie m = (^)

and ) are determined from these graphs and

then plotted on those curves which Blanchard 
formulated theoretically and approved experimen­
tally. These curves. Fig 5.3.5, have been 
approved using this method. However, more runs 
need to be made, in order to confirm all the 
results Blanchard formulated.



188

5.4 FAST ACQUISITION PLL 

5.4.1 Description

The considered technique has been proved to give both 
improved acquisition and tracking performance for second 
order PLL used in narrow-band communication systems. The 
new technique is such that:

* it could be easily applied to all second-order 
phase-lock loops.

* it would not be necessary to redesign the loop 
filter (active or passive).

* the loop gain must remain unaltered at the 
design value.

* on attaining phase-lock the loop must revert to 
its conventional form.

The technique is based upon a consideration of the non­
linear loop equation describing the pull-in behaviour of

36a second-order phase-locked loop shown in Fig 5.4.1:

6 (t) + 2n 03 cos 6 (t) 6 (t) + 03̂ sin 0 (t) = 0 e n e e  n e

where sin 6^ is the error signal from p.s.d.l,
n is the loop damping factor

and 03̂  is the natural frequency of the loop.

By expressing the solutions to this equation in the form



189

36of phase-plane plots a relationship can be established 
between the instantaneous frequency error, 0^, and cos 0^, 
a signal which is readily available in most second-order 
loops. If the error signal from p.s.d.l is differentiated 
by a simple RC network the signal from p.s.d.2 can be 
used to pass only those half-cycles driving the VCO towards 
synchronisation. À schematic diagram of this techniques is 
shown in Fig 5.4.2. It will be observed that the cos 0e
electronic switch, SI, is used to pass the appropriate 
half-periods into a suitable summing amplifier configura­
tion. By adjusting the gain of the differential path the 
smoothed voltage leaving the loop low pass filter is 
such that the input and VCO frequencies are automatically 
synchronised. At this point the differential error signal 
leaving the RC network is small and the error signal from 
p.s.d.l (which is now large) drives the loop into phase 
synchronisation. Once in lock the cos 0^ switch, SI, 
remains open and the loop reverts to its normal form.

5.4.2. Parameters

With reference to the circuit diagram shown in Fig 5.4.1:

(a) The actual hardware parameters:

These are the actual values used in the original 
circuit:

* VCO = 5.7 5 X 10^ radians/sec/volt
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f = 200 KHz o
★ PHSD = 0,065 volts/radian

* Filter = 430
R^ = 1500

= 0.47 yF

* Differentiator
= 0.1 yF 

R^ = 20 KO

PL Loop • z = 0.707
3ü3̂  = 2it X 10 rad/sec

(b) Parameter used in ICOSS model

With the use of the formulation deduced in Appendix H, 
the parameters for the PLL model as formulated by 
ICOSS, Fig 5.4.2 are:

VCO K = 91.5141 KHz/volt
f = 200 KHz o

PHSD K. = 1.0d
LPass filter f^ = 1.414 KHzc
This is the same first order Butterworth type 
low pass filter already used earlier 
GAIN A = 0.1189
inter d.c. gain (loss)
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5.4.3 Method and Measurements

(a) The method adopted is the complex signal technique, 
producing the block diagram shown in Fig 5.4.3, with 
the ICOSS listing in Fig 5.4.4. The differentiator 
is a 2 sections type, for the same performance. 
Appendix B.

(b) The measurements were:

(i) Comparison of acquisition time with and without 
the technique.

(ii) The effect of varying the technique phase
shift for 0°, 60*̂  and 90^ on the performance 
of the loop.

5.4.4 Observations

(a) 90° phase-shift case (Fig 5.4.5)

Observation

* Input on VCO centre frequency (200 kHz): new 
technique produces no difference in acquisition 
time.

* Input off centre frequency: lock to one side.
* Capture range ± 5 Hz, so:

at 194 kHz - no lock
at 195 kHz - just locks
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Comment

With the limited test carried out, the PLL transient 
responses seem to tie-up with the experimental

53results for the cases with/without the technique 
The Fig 5.4.6 shows that the fast acquisition 
technique clearly improves acquisition time.

(b) Varying phase shift (Fig 5.4.6)

Observation

* At the edge of normal capture range - very 
little difference from above.

* Outside the capture range, ie at 194,, 193 KhZ, 
the new technique appears to extend the 
capture range.

Comment

Varying the phase shift, seems initially to have
some effect on the capture range, probably due to
cycle slipping. This result was not anticipated
from previous experimental studies and requires

53more thorough investigation



193

lO
SCOP% VCO

ENTR
100*0
SIGN
5.0
1.0 
0.0 

-r.o
PÜSD
0 5
GAiH
1500.0
FILT
0.1
VCO
100
0 0 2 5
SIGN 
0*0 
I O 
0.0 
-1.0
BRCrt
I
13
7
SCOP
TRAN
Y
5 0 0  13
END
1 0.0
2 0.0 
3 0*0
14 0.0
15 O O  
Run

0

<s>

ffi

©

@

Ftq-521 PLL BLOCK DIAGRAM
St ICOSS LISTIUG

Cb)



194

I <
i/

/

J

o
o
o
!:o<- Ai

1 1  
 ̂ - V)i

OCO
c
o
Cl.
CO
c
c/)|
cO
"C
o

_J
__J
CL.

cr

U
CCO
CO

O-oC

CO:NO
LO

lEF

(L
O
c
iX

c_
O

£2

c
ou> 9:n

-r; ^

II:
.331

II O)



195

* 10

fuocK 3̂- 3 5

F lo c k  H%.

3 0

L' -. >..

1̂00

2.000.3

-11̂ 00; 0-Î- /
 ̂j ;
/ /
l \

i ' 1
1 1 
/ i

i

1

». ID

2  • 0  f—

i
I • 8 p-

I • 6 I—i
1-4^ 1ÎOO

I VI . 2 f--
i

I -0 '

I0-S p
0.6 L-

0 -4  h\>
0.2 L

0.0  '—

15000.3 zooo
0.2

IZ O O

0 . 3

15)0
o\

noo
0.1

/’ I

,400 8 .%

/

iOOO 
O .,

ii

i  I

V-*.

2ao00.3

I !

I n  p u i f  rcĉ u enct 
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CHAPTER 6

DISCUSSION

6.1 DISCUSSION OF COMMUNICATION SYSTEM SIMULATION IN
GENERAL

Before discussing ICOSS system and its applications in 
detail, a summary of the features of communication system 
simulations and their advantages will tie up with the 
discussion to follow. There are two main areas where 
communication system simulation provides a valuable aid:

(i) In research: the main advantages in simulation
35techniques are :

(*) Simulation is excellent for quick assess­
ment of a new proposal, and very good
for obtaining a feel for the first order 
effects of various parameters, some of 
which may remain implicit in the actual 
hardware.

(*) Carefully used, communication system simu­
lation can place proposals in ranking order 
of feasibility, and thus avoid unprofitable 
proposals. A simulation study may not 
necessarily indicate what is to be built in 
hardware, but it can usually eliminate those
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concepts which should not be attempted.
(*) The discipline of modelling increases the 

understanding of the real system.
(*) Optimum parameters of a system may be 

obtained, by multiple runs.

35
(ii) In teaching: students can be left to experiment 

with systems of their devising, without being 
hampered by the lack of suitable hardware, and 
quickly come to appreciate the basic limitation 
imposed by bandwidth restraints, group delay 
distortion, spectral manipulation etc. Of course, 
unless this is backed up by routine experiment 
work, the student may cling to the idea that 
ideal systems components are both possible and 
desirable. Simulation must always be kept in 
close relationship to reality.

In the absence of a general-purpose communication system 
simulator, the researcher or the student, will tend to 
simulate a special-purpose simulation package for the 
particular problem at hand. Their attempts will mean, 
inevitably, spending some time for studying computer 
programming, some computer science and computer runs to 
establish that this simulator is giving the correct 
results. This also means, and more so in research, an 
appreciable percentage of the overall time spent by a 
researcher* could be saved if an already established general 
purpose simulator with a known efficiency is available.
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6.2 DISCUSSION OF ICOSS

(a) ICOSS main features

In the pursuit of a general-purpose communication system 
simulation, the ICOSS was designed and implemented. It 
was a time-domain based, and on-line oriented simulator 
with interactive facility, which has number of important 
features. These features are discussed first:

(*) Simulate any signal processing system due to
its unlimited flexibility in the signal 
processing modules, see below.

(*) The user is capable of changing parameters of 
individual signal processing (SP) modules or 
the overall system control parameter (GCP) while 
the system is still running, through a buffer, 
which makes the simulation as close to the real 
system as possible. This avoids the troublesome 
procedure of (stopping a run-initialise system- 
change parameters - rerunning) approach of
other communication system simulators. The
alternative approach of other simulators has 
the following apparent faults:

(i) Repetition of runs means great increase 
in computer time and programming 
inconvenience.
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(ii) The transient and system response
during a change of control parameter 
of a module.will be lost.

(iii) The true resemblance of actual
running of a system is also lost.

(*) Editing: the editing capability of ICOSS is
another facility for the simulation of communi­
cation system in a practical way. The insertion 
or deletion of a module will:

(i) Give a realistic assessment of the 
behaviour of the tested system.

(ii) Avoid the problem of other simulator
procedures in (stopping a run-editing- 
rerun) , which involves the disadvantages 
mentioned above.

(*) Interactive action: The interactive action of
ICOSS provides the user with the following:

(i) With the interactive dialogue, the 
construction of the simulated model 
becomes an easy task.

(ii) Accidental errors are greatly avoided, 
and automatically deducted.

(iii) The simulator becomes under the 
user's complete control.
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(*) ICOSS allows the user to write the block
diagram statements of the model in any order,
or with the minimum constraints. With the 
internal structuring facility of the block 
diagram, the signal flows and is processed 
in the correct way, according to the system 
state analysis. This avoids a major source of 
error which the user may unintentionally make 
in the block diagram statement sequence, 
especially for those systems having feedback 
links.

(*) Portability: ICOSS is written in Fortran IV, a
language widely used in engineering and
scientific applications. Therefore it can be 
loaded onto most (if not all) computer systems. 
In fact, ICOSS was loaded and tested in 3 
different computer situations:

(i) The Digital Equipment PDP8/e mini­
computer: because of the limitation in 
size of computer memory, only a 
modified version of ICOSS was loaded. 
Also because of the limitation in 
speed of the computer interfacing 
(55 KHz) and computer speed, only the 
multiprocessing activity of ICOSS with 
a microprocessor sub-system was inves­
tigated, see Chapter 4.

(ii) The* ICL 4-50: the interactive facility
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of ICOSS was fully tested.
(iii) The'* ICL 2 980; the overall operation 

and function of ICOSS were investi­
gated on patch basis.

(*) Software multiprocessing: It is feasible to 
couple ICOSS to another simulator using a 
fourth group of interrupts. With a teletype 
command, ICOSS can be halted and the guest 
simulator operated until the required signal 
values are accummulated. ICOSS could then be 
resumed to process with the new set of signal 
values just obtained. As an example, an RF 
transmitter could be simulated using the 
original ICOSS, and RF transmission using a 
guest simulator. This provides a wider scope 
of application, but will need further investi­
gation .

(*) On-line operation: The full benefit of ICOSS
is the real on-line operation. Unfortunately 
the necessary computing power and processing 
equipment are rarely available. For this 
reason, the investigation of ICOSS features were 
made on off-line operation, with the interactive 
dialogue stored on a data file. Although this 
method was simple, the quick response which an 
on-line system would give, and which ICOSS is 
designed for, were not achieved.
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(b) Discussion of ICOSS internal structure 
(with reference to Chapter 3)

(*) Signal processing module treatment:

(i) The simulator investigation was mainly 
concerned with the simulator structure 
rather than the modules detailed function. 
However, the principles adopted, ie with 
unlimited number of inputs, outputs, local 
control parameters or state variables, 
it should be possible to simulate any 
signal processing module.

(ii) In the final form of ICOSS, an SP module 
library will be established. It will be 
possible then to simulate most types of 
communication system. However if there is 
a system using a very special and rare type 
of SP module, a situation will arise in 
which a compromise must be reached:

1. Either write this unique and special
purpose module, and keep it permanently 
in ICOSS. This is a very inconvenient 
and uneconomical situation, since it 
means occupying a space in ICOSS which 
will rarely be utilised. However, the 
module may be deleted as soon as it is 
not needed, utilising the dummy module
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approach, see Appendix (G). The 
process of adding and deleting a 
module involves compilation and compo­
sition of ICOSS, which must be avoided 
as much as possibl-^. Alternatively, 
a transient file for the version of 
ICOSS which includes the new module is 
generated, run for the particular simu­
lation, and then deleted; leaving the 
original version of ICOSS untouched.

2. Or supplying the function as data, in 
similar way as supplying the control 
parameters, to a special purpose 
dummy module. Further investigation 
is required for the implementation of 
this approach.

(iii) Dummy modules: These can be utilised more
extensively for the expansion of ICOSS.

(*) Standard Unit (SU): In communication system
problems, there is often a standard unit SU, 
say a receiver, which is made of a number of 
basic SP modules. The SU may be a sub-system 
in a bigger system in which SU internal function 
does not need to be observed. The running pro­
cedure described in (3.6) involves a number of 
substitutions and directives. This means that 
for multiple runs, an appreciable time could be
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saved if some reduction of these substitutions 
for the SU could be devised. However, there are 
a number of points which must be remembered:

(i) The state variables calculation and 
signal flow has still need to be 
performed with the SU.

(ii) Only CPs calls need further investi­
gation .

(*) SU further: The facility provided by the teletype
interrupt ENTR, see Chapter 3, can be further 
developed. Instead of inputting complete model 
block diagram only, as the case at the moment, 
it can be made to accept SU models as well. This 
additional facility will require SU library, some 
delimiter, and the utilisation of the EDIT 
facility, as shown in Fig 6.4.1.

(*) I/O peripherals:

(i) Graph plotting arrangement: A main
feature of ICOSS structure is its 
modularity. Each module can be 
replaced or modified semi-independently 
In the case of the plotting routine, 
which represents a teletype interrupt 
PLTG, the procedure for employing 
alternative types of plotting devices 
is a simple one. The data for Y, X etc
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are supplied automatically to PLTG in 
either accummulated form or directly.
The plotting management interrupt PLTM 
can be used if other requirements are 
needed by the new plotting device.
Of course, the ultimate aim is to have 
PLTG interrupt constructed as a slave 
(peripheral) processor, similar to EOF 
processor described in Chapter 4. The 
plotting procedure is then carried 
out outside ICOSS semi-independently. 
Another advantage with this method is 
that the processor will have its own 
storage, which enables the user to 
arrange the graph display independently 
of time. This arrangement needs full 
investigation.

(ii) Input buffer unit: Inputting data
related to change of parameters require 
a special buffer unit, in which the new 
CPs, as supplied by the user, wait for 
the interrupt to take place and are 
automatically submitted into ICOSS. 
During the course of this work, the 
buffer action was simulated. Therefore, 
this facility should be added and 
overall operation investigated.

(*) Loading ICOSS on computers: The flexibility in
ICOSS makes the simulator completely portable.



When loading ICOSS on a new computer, the 
minimum sub-set of programs, ie ICOSS, TTYFG,
LOOP and FLAG, see Appendix (D) , are loaded first. 
Then, there are no limits on the number of 
interrupts one requires; the only limitation 
imposed is the size of the recipient computer 
memory. Of course interrupts of the various 
groups are added according to their order of 
importance, which means that some of the 
facilities may either be increased or decreased. 
However, some programming techniques can be 
utilised, such as overlaying and segmentations. 
Inspecting ICOSS structure. Fig 3.2.3 , the
program execution is performed as lines of sub­
routines, and only 10% of those subroutines 
operate at once, ie need loading. This fact, 
which was utilised in the running of the present 
version of ICOSS, can be employed in other 
computer systems.

(*) Hardware multiprocessing: The capability of
software multiprocessing can be further developed, 
by real hardware multiprocessing. In this, two 
mini-computers are used: one holding ICOSS and 
the other holding the new simulator, and working 
in a similar way as EOF, Chapter 4. The exception 
is that in the latter case the separated interrupt 
was within a group of other interrupts, whereas 
in the new concept, a whole group of interrupts 
are contained within ICOSS. Further, it is
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feasible that any group of interrupts of ICOSS, 
say TTYFG, may be separated from the rest of 
ICOSS and loaded onto another mini-computer or a 
dedicated processor, and allowing the system to 
run in parallel. The advantages of this technique 
are :

(i) Faster execution time, which is
important for real-time operation.

(ii) Save on memory locations.
(iii) Additional facilities can be loaded.
(iv) The fixed procedures are loaded on 

dedicated processor.
(v) Increased improvement in the computer 

utilisation.

However, the programming of multiprocessing inter­
facing and timing control (on the system opera­
tion) needs great care. This approach needs 
further investigation, if the necessary equipment 
are available.

(*) Segmentation technique: The time sharing
arrangement of ICOSS, Section 3.3, made possible 
time-independent operation to be processed along­
side the time-dependent operation of ICOSS. This 
involves slicing the time-independent operation 
into segments on well defined boundaries within 
,it, and making the function of each segment an 
independent interrupt, to be called as many times
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as needed by the FLAG group of interrupts, until 
the various controlling factors become ready 
for the action of the next interrupts, and so 
on. The time allowed for each interrupt is 
small, and hence the division of the segments 
must be made accordingly. This technique was 
proved successful in the FFT operation as 
explained in Appendix (B).

(*) FFT: The importance of the frequency response
of a system is well known in communication system 
analysis. The segmentation technique above, 
provided the means of obtaining a quick frequency 
response using the FFT at any moment of time 
during the running of ICOSS (which is a time 
domain simulator). The importance of this 
technique lies in the fact that: a system could 
be modified, ie change some of its parameters 
or delete or add some modules, and have its 
frequency response examined for each set of 
parameters and modules, all in one run.

The alternative approach, in which a fixed 
number of signal points are taken out from the 
simulator to be processed by another dedicated 
simulator for FFT, is extremely cumbersome, and 
does not assist the user easily, as well as not 
coming as near to the real situation in the 
practical system. Also the points raised in (a) 
'above, for the change of parameters will apply 
to this situation too.
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6.3 DISCUSSION OF APPLICATION PROBLEMS

In testing the validity of ICOSS in simulating 
practical problems, there are four areas of discussion 
covering the design targets:

(a) Comparison between ICOSS vs special-purpose 
package (SPP):

* Convenience: the gap in convenience between 
the two is enormous in favour of ICOSS, 
but the outstanding feature the flexibi­
lity of ICOSS by which the module structure 
can be constructed. Even the fixed 
structure of SPP for the phase-lock loop 
(PLL) which supposedly easier to run is 
overcome by the use of ENTR interrupt
in ICOSS which meant testing a fixed 
system structure again and again without 
the need for constructing it for every run.

* Difficult tasks: the control parameters 
(local and global) variation capability 
as well as editing facility provided the 
means of tackling difficult tasks.

* Time reduction: the ability to modify the 
system and change its parameter meant a 
vast reduction in the number of runs 
required. In fact with one run only any
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test can be performed on the system as 
opposed to the multiple runs situation 
of the SPP. This in turn means reduction 
in computing time.

* Transients: during changes in system 
parameters, the transient effect is 
preserved in the ICOSS situation, and 
provided valuable understanding to the 
system behaviour.

(b) Comparison between ICOSS, Direct/Complex 
signal approaches:

* Application: although both techniques 
produce similar results, as expected, 
the complex technique may find useful 
application for the system which requires 
phase-shifting, say, as the case for the 
fast acquisition PLL problem.

* The complex signal approach eases the 
problem of high sampling frequency for 
slow variation of amplitude and phase in 
a high frequency carrier system.

* The direct approach however provides 
better understanding of signal processing 
in time domain.
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(c) Interference in PLL:

The tests for this type of problem showed:

* Parameter variations, and their effect on 
the system response (transient and steady) 
are easy to achieve.

* Multiple plots at any node or instant of 
time can be achieved within one run.

* Derived variables can be plotted relative 
to any other variable.

(d) Fast acquistion PLL:

* Achievement: the behaviour of single loop 
PLL is difficult to analyse by its own, 
especially the transient response, but with 
additional loops as in this case, the 
understanding of behaviour at different 
nodes of the loop is even more difficult.
However, with the capability of accessing 
any node, this understanding becomes easy 
to achieve.
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6.4 FUTURE WORK

The prototype structure of ICOSS so far discussed, together 
with complementary investigations of EOF etc, lay the 
foundation to the establishment of the full system. There 
are five main areas of development required in that 
direction :

(*) The expansion, and completion of the present 
ICOSS library etc.

(*) Improvement in the speed of execution, for 
real-time operation.

(*) The utilisation of some of the peripheral 
equipment.

(*) The coupling with other simulator systems.
(*) Further development toward full stochastic 

simulation.

These developments can be divided into 2 groups according 
to the facilities available:

(a) Immediate: With the existing computer and equipment
facilities available in the University laboratory:

(*) Write up ICOSS in its final form:

(i) Extend the signal processing (SP) module 
library, with each made as general and to 
include as many functions as possible
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within one fundamental operation. This can 
be made in similar line to the FILT module, 
as described earlier - Appendix B , which 
was a general-purpose module containing 
most of the important types of digital 
filter, eg BPass, LP, HP, BStop, Chebychev, 
Butterworth, for unlimited order. As a 
suggestion, the following SP modules should 
be added:

1. Signal generation: saw-tooth, square 
(rectangular) wave, pseudo-random etc.

2. Demodulators: envelope, amplitude, 
frequency, phase.

3. Filtering: non-recursive, linear phase, 
arbitrary specification.

4. Non-linear functions: clippers, power 
series.

Also, in order not to confuse the users of 
ICOSS in adopting misleading mnemonics, 
the existing and new SP modules should be 
grouped as follows:

1. Signal generation: sine-wave, saw-tooth, 
square (rectangular) wave, pseudo­
random etc.

2. Modulators: amplitude, frequency, phase.
3. Demodulators: amplitude, frequency, phase
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4. Filtering: non-recursive, linear phase, 
arbitrary specification.

5. Differentiators: integrators.
6. Non-linear functions: eg clippers, 

power series.

The modules are for the deterministic type 
of system; more modules are to be added 
for the stochastic simulation purposes, as 
outlined below.

(ii) Modify the interrupt ENTR and construct 
SU library in the way explained earlier. 
Section (6.2b) and indicated by the flow 
chart of Fig 6.4.1.

(*) Up-date the dummy module concept:

(i) The general-purpose dummy module:
Leading from section (6.2b) with regard 
to special SP module, it is feasible that 
set of equations to include addition, 
multiplication, of variable and a simple 
zero-pole module, etc are constructed in 
this special dummy module. These sets of 
equations can be controlled by set of 
parameters which the user can supply in 
order to control the flow of calculation
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for the input signal. The idea of this 
method is that any special (rare) function 
which is not in the SP library can be con­
structed temporarily and used by supply 
extra set of parameters. This is only a 
first hand suggestion, which must be 
updated with tests and application.

(ii) Rename the module mnemonic (of the sub­
routines in the LOOP group) and replace 
with SUBI, SUB2,...,SUBN. The particular 
SP module function will then be identified 
by the mnemonic/module number conversion 
table which must be constructed.

(iii) In up-dating the dummy module concepts,
special care must be taken with the controls 
of the LOOP program.

(*) Investigation into the following:

(i) Coupling with other simulator system, ie
software multiprocessing, eq QUASIM (quasi-
synchronous simulator) currently being

19developed at Bath University

(ii) The standard unit (SU) concept: the
alternative approach to ENTR mentioned 
above. The investigation must include 
the possibility of reducing the inter­
links between the internal modules and the
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possibility of control parameters (CPs) 
reduction. A receiver module will be a 
good testing model.

(*) Stochastic Simulation: Further developments
are needed for this type of simulation. They 
include:

(i) Additional SP modules to be included in 
the SP library, eg

1. Noise generation (stochastic)
2. Random signal generation
3. Rayleigh fading

(ii) Additional measuring devices (output 
display routines) eg

1. Averages
2. Variance
3. Correlator

(*) Dialogue: The present form of interactive
dialogue of the teletype interrupts has been 
tested only by the author. The experience of 
other users of ICOSS will provide a source of 
improvement to the dialogue.
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(b) Future: Given the supporting equipment, such as a
microprocessor chip, arithmetic unit (AU), interfacing 
etc, and an appropriate computer power:

(*) The first and most important objective is to 
develop ICOSS system with its full real-time 
on-line operation. This will require a solution 
to the problem of speed of program execution.
The method outlined in Chapter 4 must be fully 
utilised. However, the system must be built 
up in stages, and the following suggested pro­
cedure followed:

(i) Load the modified version of ICOSS into a
minicomputer, say the Digital Equipment 
PDP8/e or PDPll. This version of ICOSS will 
include the minimum subset of subroutines 
as outlined earlier. Section 6.2.

(ii) Build-up the master/slave system with the
BOF module in its final form, see below.

(iii) The BOF interfacing must be treated so that 
the data transfer rate is higher than the 
slave module processing speed.

(iv) Trials with this configuration will show
the region which most needs improvement, 
and more modules may be taken out of the 
host computer and stored in a slave pro­
cessor as in BOF above.

(v) Utilise the time-scaled signals, ie



230

record signal on a disc or tape, say speech, 
and play at slower speed.

(*) BOF: This module can be speeded up greatly by
using higher speed microprocessor chip, coupled 
with the arithmetic unit as suggested in Chapter 
4, Therefore number of alternative trials must 
be made to achieve an efficient bank of filter 
processor. These alternatives include 16 or 32 
bit words, for higher dynamic range. Finally, 
an investigation must be made to have a single 
chip containing this facility.

(*) SP programmable board: Leading further from
above, it will be extremely beneficial if a 
programmable microprocessor controlled unit 
could be constructed so that SP functions are 
programmed directly. With the aid of the dummy 
module concept, any number of additional SP 
modules could be added to the system with the 
minimum interference in the main body of ICOSS.

(*) Establish the peripheral equipment for:

(i) input buffer: where the new control para­
meters are placed waiting for the appro­
priate space of time to be inserted into 
the system, as explained earlier.

(ii) I/O display for:

1. Graph plotting and display, as has
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been explained in Section 6.2.
2. Block diagram construction and display

(*) Having hardware multiprocessing with one group 
of interrupts or more, say the TTYFG, on 
separate processor (mini-computer). This means 
that the function of ICOSS will simply be a 
controlling program for a number of dedicated 
processors, each having special function (or 
group of interrupts as defined in Chapter 3).

(*) Finally: the ultimate aim is to have ICOSS side 
by side to the hardware apparatus of the 
communication engineer in the research and 
development laboratory, complementary to each 
other in the investigation of new ideas and 
practical problems in communication engineering 
Therefore, the size of the equipment holding 
ICOSS is important, and the above suggestion 
will make this a reasonable size (small).
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6.5 CONCLUSION

A time-domain interactive coinmunication-system simulator 
(ICOSS) was designed, and put into test. The main 
objectives for this simulator were achieved, that is

* being able to change the simulated model 
control parameters while in the running mode.

* being able to edit its module structure (block 
diagram).

* be portable, and
* operate interactively for real-time simulation.

Unfortunately, due to lack of some equipment and 
computer power, it was not possible to demonstrate the 
full features of ICOSS. However, an investigation was 
made towards a possible solution to the inherent problem 
of on-line simulation, ie the need for fast processing 
and high sampling frequency. A dedicated (slave) 
processor containing a signal processing module, the 
bank of digital filters, and working in parallel with a 
host computer where ICOSS resides was studied. With 
further developments, and with the introduction of some 
fast and dedicated processors, the demands for making the 
communication system simulation as another bench tool for 
research and development to complement the hardware 
apparatus, could be met by ICOSS. However, there is still 
more work needed to be done to fully develop the system, 
so that further problems other than the deterministic
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type, which was discussed in the previous section, ie 
stochastic simulation, may be solved in order to assess 
the full impact of this simulator.
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APPENDIX A

The following table contains the main features and 
characteristics of a number of important communication 
system simulators (three time-domain, and two frequency- 
domain). However there are many other communication 
system simulators, which can be found in literature as 
mentioned in Chapter 2.
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To generate a 1 kHz square wave, magnitude ±0.5; then 
NT - 1 ms and T = 3.91 yS for N = 256,

The fundamental has a magnitude of 2/tt at frequency 1 kHz 
Represent this by components of magnitude 1/tt at 
frequencies ± 1 kHz. Hence to generate and observe the 
waveform:

COMMENT FOURIER SERIES TEST 
TIME
3.91 E - 6
POINTS
256
SOURCE DATA
8 -2 Generates seven harmonics
1 0.3183 90.0 Note conjugate symmetry about

zero frequency, giving real
-1 0.3183 90.0 resultant.
3 0.1061 90.0

-3 0.1061 90.0
5 0.0637 90.0

-5 0.0637 90.0
7 0.0455 90.0 •

-7 0.0455 90.0
SCOPE 
LP 
1 1 
END 
END

Displays time waveform of
one period on line-printer graph

Fig A.1 Example for SIGSIM
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(*) Filter:

(a) This is a digital filter of any order (n), any type 
(Butterworth, Chebyshev), and any condition (high pass HP,
low pass LP, bandpass BP, and band stop BS). The design
procedure executed internally, utilises number of primary 
parameters supplied by the user to derive the coefficients 
of second order segments of a low pass filter, of the form

-1 -2i=n 1 + a . ^  z + a._ z
H(Z) = A TK -----

°i=l 1 + b,^ z + bi2 z

For the other filter conditions, ie HP, BP and BS, a 
frequency shifting procedure^ is applied and the second 
order coefficients are modified accordingly.

The primary control parameteis as supplied by the user are:

CPI = filter order (n)
CP2 = cut-off frequency (f̂ )
CP3 = condition: 1 = BPASS, 2 = BSTOP, 3 = HPASS,

and 4 = LPASS
CP4 = type: Butterworth, or Chebyshev (1 = Chebyshev, 

2 = Butterworth)
CP5 = Centre frequency
CP6 = Delta for Chebyshev filter only

It should be noticed that the number of secondary control 
parameters is never equal to the number of primary control 
parameters, they may be less for second order filter but
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always more.

Also a global control parameter (the sampling frequency f^) 
is automatically utilised in the calculations.

(+) Differentiator

A wide band differentiator, as derived by Rabiner and 
44Steiglitz is adopted, which is made up of a series

of second order segments, and having a transfer function

i=n (1-z  ̂ a . ^ ) ( l “ Z  ̂ a . _ )
H(z) = A T,--- n  — ------ J-]-  ^ -

i=l (1-z b^^) (z-z b^g)

where n is the number of segments in the differentiator 
(or the order of it).

The characteristic of the differentiator depends on the 
order of the differentiator (n), and hence its choice 
dependent on the application.

In the present work only one segment is simulated, and if 
a higher order differentiator is required then the segments 
making up the differentiator will be treated separately, 
having in mind only one of these segments is supplied with 
the value of A, and the rest of the segments are supplied 
with 1.0 for their A's. Therefore, the primary control 
parameters for one segment are:

CPI ‘ = A 
CP2 =
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CP 3 ^12
CP 4

CP5
"  ^12
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APPENDIX F

LOGARITHMIC ARITHMETIC UNIT - MODIFIED

28
Fl Comparison between linear and logarithmic numbers

Consider a signal value in digital filters being represented 
by a word having 16 bits. Fig Fl. Assuming the word has 
one sign bit, five characteristic bits, and ten mantissa 
bits, then

The dynamic range is: 2^^ = 192.66^^ - 193 dB
* Since the smallest difference between two logs is 

-102 = 1/102 4, then each signal could be stored
to an accuracy of - 1 = 0.071 %.

The absence of an extra zero in log encoding will seldom 
be important because of the large dynamic range; and, if 
necessary, a small amount of extra logic can be included 
in the arithmetic unit of the filter so as to treat the 
smallest encodable signal as if it were zero. Alternatively, 
the characteristic bits are reduced to four and remaining 
fifth bit is allocated for the exact zero. This will 
reduce the dynamic range to: 2^^ = 96.23^^ = 100 dB.

Comparing a 16 bit logarithmic system with 0.071% accuracy, 
with a conventional 16-bit floating-point system with 0.05 
to 0.1% accuracy, the log system has 36 dB greater dynamic 
range, coupled with the fact that the accuracy of the
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floating-point system becomes progrssively worse over the 
lower 60 dB of its dynamic range.

Further consider having 11 bits word, with: one sign bit, 
five characteristic bits and five mantissa bits, then the 
dynamic range will still be 193 dB, but the accuracy will 
be reduced to 2^^^^ - 1 = 2.19%.

Summing up:

(i) Advantages of logarithmic system over linear system:

* Greater dynamic range
* Multiplication of two numbers is easy (adding 

two logs)

(ii) Disadvantage

* Summation (or subtraction) Is a complex 
operation; but can be simplified by approxi­
mation method.

27F2 Logarithmic Arithmetic Unit LAU

The purpose of LAU as proposed by Kingsbury and Kelly 
is to calculate R = A.K + B, where all of these numbers 
are encoded logarithmically to base 2. The LAU calcula­
tion is centered on:

log^ |r | = logg IA.K + B
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and sign (R) = sign (A.K. + B)

The inputs to LAU are therefore:

a = log 2 1 A| , sign (A)
b = log2 |B| , sign (B)
k = 1092 1 K| , sign (K)

and the outputs from LAU are:

r = logg I R| r sign (R)

as shown in Fig F2, and the detailed LAU diagram for 11 bit 
word is shown in Fig F3.

Note that each arithmetic operation amounts to single 
programming instruction.

F3 Bank of digital filters (EOF) requirements

The proposed EOF as described in Chapter 4, was based upon 
cascaded second order segments whose arithmetic operation 
on signals is of the form: a = b.c + d. Therefore the 
logarithmic arithmetic unit LAU is most suitable for this 
type of arrangement. However, a number of problems have 
to be resolved:

(a) The LAU as it stands is a 11 bits word unit, which
may be satisfactory for the intended speech analysis;
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however the word length may need to be increased 
to 16 bits say for higher accuracy as mentioned 
earlier.

(b) The input/ output numbers of LAU are logarithmic 
numbers which must be encoded and decoded in a "buffer" 
zone between the microprocessor unit and the LAU, 
which amounts to a subset of the floating point in
a representation in the host computer.

(c) The LAU operation must be adapted to the EOF micro­
processor unit, in which

(i) each arithmetic operation is considered as 
a programming instruction

(ii) the interfacing problem between the two 
units is solved.
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APPENDIX H

Phase-lock loop

1 Basic Structure 18,31

The basic components of a phase-lock loop, shown 
schematically in Fig H.i, are the voltage controlled 
oscillator (VCO), and phase detector (PHSD), usually with 
a low pass filter. However, the attentuator is included 
in order to control the d.c. gain of the loop. The 
system works as follows: in the PHSD the phases of the 
input signal and of the VCO are compared, the output 
voltage of the PHSD passes through the loop filter (F), 
where eventually only the h.f. components are suppressed, 
to the control element of the VCO, and change its 
frequency, in such a way that the phase difference between 
the input signal and the local oscillator is reduced.
When the loop is locked the average output frequency of 
the VCO is exactly equal to the average frequency of the 
input signal, ie for such output cycle there is one and 
only one cycle at the oscillator input.

2. Basic Equations

Input signal 
VCO signal 
PHSD output

V
V

= sin 
= Sin 0o
= (8^-8^) the steady state

situation, where
= the phase detector constant 

(volts/radians)
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Filter equation = F(s)

For a first order digital filter, having frequency cut-
,w ) ̂ , the off (f ) and an equivalent!analogue cut-off frequency (angular I a c I

transfer function, using the digital filtering concept 
is

z (1+1/u) ) + ( 1 - 1 / go )a a

Giving a difference equation:

y. = G X, + G - H y._i

where G = > f
n _ . : where A = tan(2n ■— )

^ " 1 + A ) ®

dfiThe VCO operation = go + K V ̂ dt c o c

where gô  is the free running frequency of the VCO 
is the VCO constant (radian/sec/volt)

Then the following parameters and properties can be 
deduced.

The filter transfer function:

H(^) = KF(S)s + K F(s)
-1where K = loop d.c. gain in sec , or Hz =
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The natural frequency of the loop:

/ r/ K
OJ =  V —n T

The damping ratio of the loop:

n

where x is the LPF time constant

183. The PLL constants and loop parameters

The PLL constants and parameters which are considered in 
this discussion, are those which have an important role 
in the behaviour of the PLL operation. They are the 
PHSD constant K^, the VCO constant K^, loop d.c., d.c. 
gain, loop BW, damping ratio, and the natural frequency.

3.1 Determination of the Phase sensitive detector 
constant

If 2 sinusoidal signals of the same frequencies but 
differing phases are applied to the phase detector, then 
the output will contain a d.c. gain component, given by 
the following relationship:

where e^(t) = A^ cos (cô t+ê !
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e: (t) = cos (w t + e  )o o c o
and K is the gain (loss) of the phase detector,

A . A
Let (8^-Gg) = 8, then = K —^  - cos (8).

The phase detector constant is defined as

for 8 = Y

A , A A . A
= -K sin (|) = K -4-2

If the frequency of on lock input to the phase detector is 
changed, then the low frequency component of the output is 
given by:

A. A
e^(t) = K ° cos ((w.-w )t + (8.-8 ))Q Z 1 O 1 O

It can be seen that the amplitude of this component is 
equal to the phase detector constant K^.

3.2 Determination of the VCO constant Ko

The VCO constant is determined, by plotting "the output 
voltage" vs applied voltage (d.c.) and taking the slope 
of the curve at the required centre frequency, as shown 
in Fig H.2.
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3.3 PLL range of operations

(a) Lock range (or tracking range)

The frequency range over which phase lock is maintained

where K = A = d.c. loop gain
where A = the gain (loss) of the 

attentuator.

(b) Capture range (or acquisition range)

The difference between the maximum and minimum frequencies 
at which the loop just comes into lock

F = - / -ca IT T

F_ and F are related as shown in FigH.3. L ca
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APPENDIX I

COMPUTER RUN TIMES

During the process of testing the simulator, some measure­
ments were made for the computer run times of some of the 
problems already mentioned, which may be found useful for 
future work.
1.1 On-line operation, using PDP8
For a system configuration shown in Fig (2.8.1), with the 
signal processing module being a second order low pass 
digital filter Chebychev type, the maximum sampling frequency 
achieved was 15Hz. Due to the slow execution of arithmetic 
functions (multiplications etc) in Fortran II, which may be 
improved using a floating point processor.
1.2 Off-line operation using large size computer ICL 2980
(a) For the co-channel interference problem: Section 5.3.

In a test to obtain the graph of Fig 5.3.2, the 
total run time was 29.5 seconds. The run involves
5 graphs, each with 500 points. The time is 
sub-divided as follows:
(*) 10 seconds for managements (TTYFG operations)

eg System construction, change of parameters etc.
(*) 19.5/2 500 = 7.8 msec, the time taken for one

sample to be processed.
Therefore for real time situation using this type 
of computer,the maximum clocking frequency is 128.2 
Hz, for this problem.

(b) Fast acquisition problem: section 5.4.
In a test to obtain the graph of Fig 5.4.5, the
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total run time was 35 sec. The run involves 2 graphs, 
each with 500 points. The time is subdivided as 
follows:
(*) 10 sec for managements (TTYFG operations)
(*) 25/1000 = 25 msec, the time taken for one 

sample to be processed.
Therefore for real-time on-line situation using the 
2980 computer, the maximum clocking frequency = 40 Hz.


