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SUMMARY

This thesis has three sections. Section one contains two 

chapters, the first describing those techniques used later, 

principally multidimensional scaling, procrustes fitting and cluster 

analysis. Least squares scaling, preprocessing the dissimilarity 

matrix and clustering by maximum likelihood partition are less known. 

The second chapter reviews simulation studies previously published 

in multidimensional scaling literature.

Section two contains one chapter detailing four simulation 

studies in multidimensional scaling. The first considers the 

robustness of classical scaling in the presence of error in the 

dissimilarity matrix. Four probabilistic models generating euclidean- 

distance-like dissimilarity functions are proposed, which reflect 

some of the ways dissimilarities actually arise, and allow dependence 

between dissimilarities to be studied. Next we compare how well 

various scaling methods reconstruct specific configurations, given 

the same dissimilarity matrix. Properties of preprocessing the 

matrix and least squares scaling are demonstrated. Thirdly we 

describe a study, designed to measure the redundancy in a 

dissimilarity matrix, which justifies subsequent use of scaling 

with missing data. Finally we determine the robustness of 

approximations to procrustes statistics obtained from perturbational 

analysis of classical scaling by Sibson (1979) .

Section three contains four applications chapters. Firstly 

multidimensional scaling is applied to data concerning the voting 

behaviour of M.P.s in 1861. This large data set requires special 

handling, some dissimilarity values being best treated as unknown.

The results identify both unusual and regular voting behaviour.
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The second application is in ethnology. Dissimilarity values 

derived from phonetic differences between languages are used to 

derive their genetic origin. The techniques, especially clustering 

by maximum likelihood partition, reproduce known relationships 

satisfactorily and suggest others. The third example uses 

morphological and meristic parameters to generate dissimilarities 

between specimens of the fish species Cot'isa, Here the aim is 

taxonomic. Finally we consider dietary changes across Britain 

through time to identify regional and temporal differences.

Reference

SIBSON, R. (1979). Studies in the robustness of multidimensional 
scaling: perturbational analysis of classical scaling.
Journal of the Royal Statistical Society, Series B 
(Methodological), 41, pp. 217-229.
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1.1 Introduction

The aim of this chapter is to specify systematically the range 

of techniques used in the subsequent simulation studies and 

applications reported in this thesis, in order that a notation may 

be established, that appropriate recognition be given to former 

work and that following chapters may refer to a unified treatment of 

these topics. The last two sections of the chapter refer to 

theoretical results which are examined in this thesis to determine 

their usefulness in practice. We also give a simple demonstration 

of the scaling techniques as they are applied to reconstructing the 

position of 48 British towns from their distances apart by road.
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1.2 Procrustes Analysis

The technique of procrustes analysis is well established and 

there are many references in the literature, principal ones being 

Hosier (1939), Green (1952), Ahmavaara (1957), Hurley and 

Cattell (1962), Cliff (1966), SchOnemann (1966, 1968),

Gruvaeus (1970), Schonemann and Carroll (1970), Gower (1971^ 1975), 

Krzanowski (1971), Kristof and Wingersky (1971) and Sibson (1978). 

Its early applications were in factor analysis, but recently its 

relevance to multidimensional scaling has been recognised.

The problem that it deals with is conceptually very 

straightforward. Given two configurations of points in a space of 

K dimensions, with a preassigned correspondence between the points 

of the two configurations, how similar are the configurations? To 

answer this question we match the configurations under a specified 

group of transformations, the group being chosen to be appropriate 

in the context of the analysis at hand. Some possible groups are 

the Euclidean group E(K), the similarity group S(K), the affine 

group A(K) and the special Euclidean group SE(K). Their properties 

may be summarised as follows:

SE (K) E(K) S(K) A(K)

Translation / / / /

Rotation / / / /

Reflection X / / /

Dilatation X X / /

Shear X X X /

We only consider the groups E(K) and S(K). The matching 

process is procrustes analysis, the residual sum of squared
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distances between points, which is minimised, is the procrustes 

statistic.

A K-dimensional configuration of N points is represented by a 

K X N matrix Y, where the ordering of the columns labels the points. 

Thus the sum of squared distances between two configurations Y and Z 

is defined by

G(Y,Z) = tr (Y - Z)'^(Y - Z) (1.2.1)

When we allow matching under the Euclidean group E(K) we obtain

Gg(Y,Z) = inf {G(Y,*Z) : *cE(K)} (1.2.2)

as the procrustes statistic. 

Correspondingly

Gg(Y,Z) = inf {G(Y,*Z) : *cS(K)} (1.2.3)

is the procrustes statistic obtained by matching from the 

similarity group S(K).

The algebra associated with matching under E(K) and S(K) is 

most conveniently presented in Sibson (1978), in which the author 

combines accuracy with simplicity, two features that are often 

missing in earlier work. We summarise the results.

Let Yq and Z^ be the configurations Y and Z translated to have 

centroid at origin. Then

Ge (Y.Z) = tr YqYq’' + tr - 2 tr ( Z ^ Y q ^ Z ^ L  ̂ (1-2.4)
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T T i ,T ,tr(Z^YIY z:) % 2Gg(Y,Z) = tr YqYq - 0 O' V  (1.2.5)

This last form allows the construction of a symmetric,

scale-free standardisation of the procrustes statistic by division 
Tby tr YqYq . We thus define

trfZ Y^YYc (Y,Z) = 1 - { ^ ^  0 0 0 0^  ̂ (1.2.6)S
(tr ZgZjXtr YqYJ)

The two steps of matching under translation and dilation are 

computationally straightforward. Matching under orthogonal 

transformation requires an eigenvalue/vector calculation for a symmetric 

matrix, and can be conveniently solved by using the NAG subroutine 

F02ABF.
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1.3 Classical Scaling

Classical scaling is an algebraic technique for 

reconstructing a configuration of points from its interpoint 

distances. The appropriate algebra first appeared in Young and 

Householder (1938), but it was Torgerson (1952, 1958) who developed 

the statistical application. Classical scaling was independently 

derived by Gower (1966) who describes it as principal coordinates 

analysis. A succinct account of the algebra can be found in 

Sibson (1979), which we follow in order to establish a notation and 

terminology.

As in the previous section, a K-dimensional configuration of N 

points is represented by a K x N matrix Y, where the ordering of the 

columns labels the points. A configuration Y has its centroid at 

the origin if and only if Y_l̂  = 0^, where _1̂  is the N-vector of I's 

and 0^ is the K-vector of O's. We define the inner product matrix 

b(Y) = (b^j) as the N x N matrix Y Y. This is the matrix of inner 

products of the coordinate vectors of the points in the configur

ation. b(Y) is symmetric, positive-semidefinite, and has the same 

rank as Y. The centroid at origin condition Yl^ = 0^ is equivalent 

to b(Y)J^ = 0^. We define the squared distance matrix 

e(Y) = (e%j) by

e.. = b.. + b.. - 2b.. (1.3.1)JJ iJ

which is the familiar 'cosine rule'. 

Thus we have defined a progression

Y -> b(Y) e(Y).
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The aim of classical scaling is to invert this procedure, and again 

two simple steps are possible. Firstly, given a matrix E of 

squared euclidean distances, the linear transformation

1 iT T
B = q(E) = }Efl - } (1.3.2)

N N

produces a corresponding inner product matrix which satisfies the

centroid-at-origin condition Bl^ = 0^. Secondly we recover Y from B

as follows. Let e,, ... , e^, e^ . ,..., ^  be an orthonormal basis— 1 —K —K+ i —N
of eigenvectors of B with corresponding eigenvalues

K T
Thus B •

Then Y^ = {A  e^,...,A  e^} defines a configuration Y that agrees 

with all of the squared distances given in E, and is represented 

relative to principal axes.

In an application we derive a symmetric matrix of positive 

distances or dissimilarities for our starting point. From this we 

can obtain the matrix of squared distances, E. q(E) will then be 

symmetric and we can extract its eigenvalues and eigenvectors.

When we desire a K-dimensional solution configuration, we use the 

K largest positive eigenvalues and their associated eigenvectors in 

an attempt to produce a configuration whose squared interpoint 

distance matrix is an approximation to the matrix E. Inevitably 

there will be inaccuracy, the level of which is determined by the 

extent to which there are substantial positive eigenvalues beyond 

the Kth and by the number and size of the negative eigenvalues.

Often we shall refer to the eigenvalue spectrum. Problems of 

determining the appropriate dimensionality in a particular applica

tion are discussed in Section 1.12.
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An extension of ordinary classical scaling has been introduced 

by Critchley (1978, 1980). Rather than using just the dissimilarities 

themselves to derive the squared distance matrix E , he extends 

this step by allowing a monotonie increasing function of the 

dissimilarities with a variable parameter. The selection of a final 

configuration then requires optimisation over the range of 

parameter values. We do not pursue this approach.
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1.4 Ordinal Scaling

Ordinal scaling is the name we give to the method of non

metric multidimensional scaling described by Kruskal (1964 a, b) . 

Classical scaling depends upon the assumption that observed 

dissimilarities between pairs of objects are Euclidean, or at least 

nearly-Euclidean. Only then can we hope to derive a configuration 

of points that will successfully approximate the dissimilarity 

matrix. This is a point that we consider in greater depth in 

Chapter 3. However it is clear that this assumption is far too 

restrictive for many sets of data. Shepard (1962 a, b) suggested 

that the minimum sensible assumption that we should make of our data 

was that the ordinal properties of the dissimilarities alone, and 

not their algebraic values, should be considered significant in any 

method constructed for their analysis. This idea is of course 

equivalent to the assumption that the given data represent some 

arbitrary order-preserving transformation of a set of true 

Euclidean distances. For realism it is necessary to include the 

possibility of error added to the monotone transformation so that we 

must seek a monotone function best fitting the data in some sense. 

That this has been done is a tribute to the work of Kruskal, who 

recognised that a bridge between monotonie functions, defined on 

ordered pairs of points, and interpoint distances could be found by 

using the efficient techniques of least squares monotone regression. 

An example of a graph showing dissimilarities between objects 

plotted against their interpoint distances in a configuration is 

given in Fig. 1.4.1. The dissimilarity function takes integral 

values in the range 0 to 30 inclusive, and the greatest interpoint 

distance is just under 2.0. Kruskal showed how to relate such a set 

of distances and the ordering imposed upon the dissimilarity values.
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FIG. 1.4.1 A Plot of Dissimilarity Values Against Configuration 
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We now describe his solution to the problem and simultaneously 

develop our own terminology.

Let there be N objects and let us seek a configuration lying 

in K dimensions. Let the dissimilarity matrix A - he known

so that we can order the dissimilarity values as 

5. • 2̂(5. . ^... 0̂. .
^1^1 ^2^2 V m  

2where M = N is the total number of elements in A. Let our current 

configuration be Y = »... , so that we can derive the

interpoint distance matrix D = (d^^) as

= ( z (1.4.2)
J k=l

Then we can define the least squares monotone regression 

D = ) of D on A to be the matrix with the properties that

(i) \ i  l3i,j,k,l(N

N N 2
(ii) E E (d.. - d ..) is a minimum, where Y is fixed, 

i=l j=l

but D varies.

We may now define

N N ^
S*(Y) = E E (d.. - d . (1.4.3)

i=l j=l

N N
T*(Y) = E E d./  (1.4.4)

i=l j=l

and S(Y) = ,/S*(Y)\ (1.4.5)
\T*(Y)/
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Then S(Y) can be used as a measure of departure from a perfect fit 

to the monotonicity hypothesis and is called the stress of the 

configuration. An optimal configuration minimises S(Y). The stress 

function is invariant under transformations to the configuration by 

elements of the similarity group.

Elegant and efficient algorithms are available for the least 

squares monotone regression, and the other computational problem, 

namely how to minimise stress, is made practicable by the existence 

of a continuous first derivative of the step function. Thus the 

method of steepest descent may be used, although the selection of 

step size for successive iterations requires considerable attention 

to make the method efficient, and Kruskal's original recommendations 

are far from obvious since they are based upon considerable empirical 

experience. McGinley (1977) has explored other minimisation algorithms 

but none seem better than steepest descent. Thus an iterative 

procedure may be established. We generate an initial configuration 

and then successively compute D, D, S and the derivatives of S 

with respect to the NK coordinate values, until some convergence 

criterion is satisfied.

Many refinements may be made. Often there will only be 

dissimilarity values in the subtriangle of the matrix, which is 

assumed to be symmetric with zeros on the diagonal. In this case 

we take M = ^N(N - 1) and the various ranges of summation may be 

modified accordingly. Likewise modifications may be introduced to 

allow for missing values, and even more generally weights may be 

assigned to the elements of the dissimilarity matrix. The ordinary 

least squares monotone regression programs may easily be amended to 

deal with weighting.

Many different metrics are available for use in the calculation
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of the interpoint distances, apart from the usual Euclidean distance. 

For example, much has been made of the use of the family of 

Minkowski metrics.

Our present definition of the least squares monotone regression 

is based on a complete, global ordering of the dissimilarity values, 

and is such that discrepancies between regression values corresponding 

to equal dissimilarity values are ignored. Two straightforward 

adjustments permit refinements to these formulations. Firstly we may 

treat merely local orderings of the dissimilarity values, making 

comparisons only for those dissimilarity values which are derived from 

pairs of objects with at least one object in common. Thus they must 

have a common endpoint. Secondly we may adopt what is referred to 

as the 'secondary treatment of tied values' which imposes an extra 

condition on the definition of the least squares monotone regression, 

namely

(iii) = 5^^ => d^j = d^^ Ui,j,k,l^N

Several normalisation factors other than T*(Y) have been 

tried in the definition of the stress function.

The steepest descent technique is prone to converge to what 

are merely local optima of the stress function. We shall investigate 

this in Chapter 3 and show that a sensible choice of initial 

configuration is most important. It is common to seek the optimal 

solution by using several randomly generated initial configurations, 

and by using the configuration obtained by classical scaling, 

possibly after the dissimilarity values have been transformed under 

some distributional assumption, as explained in Section 1.7. An 

alternative method is to use the principal axis solution projected
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down from higher dimensional ordinal scaling solutions.

There are certain usages common to the rest of this thesis. 

Throughout, we use the primary treatment of ties in which ties are 

an expression of ignorance and can be broken without charge. We 

use the global ordering of dissimilarity values, and we use the 

original normalisation of stress by T*(Y). We are very wary of 

the use of non-Euclidean distance measures, for a point in a 

non-Euclidean space has the extra structure related to its position 

relative to the coordinate axes. Shepard (1974) makes this point 

well, and we take his warning and use only Euclidean distance. 

Reported stress values have been obtained by using the variety of 

available initial configuration techniques, so that we are confident 

that local minima do not vitiate our study.
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1.5 Least Squares Scaling

Least squares scaling is a method that is not commonly used 

for scaling dissimilarity data. Certainly there are few references 

in the multidimensional scaling literature. This is perhaps 

surprising, because the method has some intuitive appeal and 

simplicity. The aim is to find a K x N configuration matrix, Y, 

which minimises

N N .
E E w..(d.. - 6..) (1.5.1)

i=i j=i

where D = (d^^) is the achieved inter-point distance matrix of Y

A = (6bj) is the known dissimilarity matrix

and W = (w^j) is a constant matrix of weights.

We may relate this to a specific statistical model; if the errors by

which the 6.. differ from the d.. are N(0,l/w..) and independent, ij iJ iJ
then we are carrying out maximum likelihood estimation.

The method has a mixture of the properties of ordinal and

classical scaling. It is similar to ordinal scaling in that the

user has to define the dimensionality of his solution configuration, 

in that an initial configuration must be provided, often from 

classical scaling, and in that there is the need to minimise an 

objective function by an iterative procedure. The similarity with 

classical scaling lies in the significance attached to the actual 

dissimilarity values. The optimisation problem appears to be 

considerably better behaved than that arising from ordinal scaling. 

The Fletcher-Reeves algorithm for function minimisation by conjugate 

gradients seems to handle it most successfully.

We have discovered five references to least squares scaling.
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In a paper written to examine the appropriateness of the ’minimum

sensible assumption’ of Shepard, namely that only ordinal properties

of dissimilarities should be considered, Spaeth and Guthery (1969)

claim to discover theoretical and practical shortcomings in the

assumption, which lead them to mention the least squares criterion

as a possible alternative. However there is no indication that they

have considered any actual method based upon it. Sammon (1969)

implemented the special case of least squares scaling in which the

weights are given by the inverses of the corresponding dissimilarity

values, that is w . . = 1/6.., a method that he called non-linear ij ij
mapping. Anderson (1971) also considers the idea, but gives no 

indication of having implemented a practical method. Chang and 

Lee (1973) adapt the steepest descent algorithm used by Sammon to 

operate only on pairs of objects at a time. Bloxom (1978) discusses 

a related but more complicated least squares method requiring a 

special computational algorithm.

Least squares scaling is particularly well suited to the 

minority of applications in which it is appropriate to assume that the 

observed dissimilarities differ from the true interpoint distances by 

errors that are independent. Such cases do arise, for example, in 

photogrammetry and surveying. However we shall demonstrate that the 

method can also be effective in more general applications.
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1.6 Example

A readily available dissimilarity matrix may be found in the 

pages of the yearly A.A. Handbook, where road distances between all 

pairs of 48 British towns are presented in a triangular array corres

ponding to the subdiagonal of the matrix. These road distances are 

approximations to the true distances between the towns measured "as 

the crow flies", but there will be an error term added to each true 

distance whose magnitude will depend upon how direct the route may be, 

and upon the true distance. The true configuration of the towns is 

readily available from maps, and may be digitised very accurately so 

that we can use procrustes analysis to compare the true configuration 

with the configurations generated by classical scaling, ordinal scaling 

and least squares scaling. Thus we have a simple example of all the 

techniques that have been introduced so far.

(a) Classical Scaling

We would expect the two-dimensional solution configuration to be 

quite accurate because the dissimilarities are close to linearly 

related with the distance in the configuration. This is indeed the 

case. The eigenvalue spectrum is given in Table 1.6.1. The percentage 

of the sum of the nine most positive eigenvalues attributable to each 

of those eigenvalues individually may be seen to be:

74, 13, 4, 3, 2, 1, 1, 1, 1.

If we did not know that the underlying configuration was two- 

dimensional we would suspect either a one- or a two-dimensional solution. 

The third eigenvalue is not much greater than that of the remainder 

and is not much greater than the magnitude of the most negative eigen

value, indicating that it contains noise. Also the trace criterion 

(see Section 1.12) would suggest that no more than three dimensions are 

appropriate, the third being debatable. Those towns which have large
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EIGENVALUE EIGENVALUE SUM OF VALS,
m .

1 1.278E+06 1.278E+06
2 2.207E+05 1.499E+06
3 7.594E+04 1.574E+06
4 5.569E+04 1.630E+06
5 3.061E+04 1.661E+06
6 2.547E+04 1.686E+06
7 1.483E+04 1.701E+06
8 1.002E+04 1.711E+06
9 9.033E+03 1.720E+06
10 6.054E+03 1.726E+06
11 4.678E+03 1.731E+06
12 3.216E+03 1.734E+06
13 2.186E+03 1.736E+06
14 1.878E+03 1.738E+06
15 1.561E+03 1.740E+06
16 1.229E+03 1.741E+06
17 1.197E+03 1.742E+06
18 1.044E+03 1.743E+06
19 7.666E+02 1.744E+06
20 5.405E+02 1.744E+06
21 4.985E+02 1.745E+06
22 3.196E+02 1.745E+06
23 2.940E+02 1.746E+06
24 2.067E+02 1.746E+06
25 1.869E+02 1.746E+06
26 6.534E+01 1.746E+06
27 1.270E-10 1.746E+06
28 -5.901E+01 1.746E+06
29 -9.729E+01 1.746E+06
30 -2.250E+02 1.746E+06
31 -3.472E+02 1.745E+06
32 -4.283E+02 1.745E+06
33 -5.493E+02 1.744E+06
34 -7.640E+02 1.744E+06
35 -8.384E+02 1.743E+06
36 -9.998E+02 1.742E+06
37 -1.276E+03 1.740E+06
38 -1.693E+03 1.739E+06
39 -2.101E+03 1.737E+06
40 -2.616E+03 1.734E+06
41 -2.980E+03 1.731E+06
42 -3.483E+03 1.728E+06
43 -3.892E+03 1.724E+06
44 -5.430E+03 1.718E+06
45 -7.782E+03 1.710E+06
46 -1.494E+04 1.696E+06
47 -5.242E+04 1.643E+06
48 -5.936E+04 1.584E+06
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coordinates in the third dimension tend to be extremal. For example, 

many road distances to Penzance are greater than the direct distance 

because the Bristol Channel intervenes. This exaggeration is the cause 

of the high third-dimensional component and anomalous position of these 

towns. However the magnitude of the second eigenvalue is about four 

times larger than that of all negative eigenvalues, and its inclusion 

allows closer agreement under the trace criterion. Although it is small in 

comparison with the first eigenvalue, on balance we would include it, if 

in ignorance of the true dimensionality of our land (presumably three I )

The procrustes statistic, Vg» is 0.02965 and the time taken by the 

Bath I.C.L. 2980 computer to run the whole job, including procrustes 

analysis and input/output, was 112 units, a figure we provide for comparison 

purposes with the other methods. A summary of these two figures for 

all the methods used is given at the end of the section.

(b) Ordinal Scaling

The dissimilarity matrix was scaled twice by the ordinal method, 

once with a starting configuration generated by random sampling from a 

uniform distribution over the unit square, and once using the configuration 

generated by classical scaling as the starting configuration. Fifty 

iterations were performed in each case, the solution being sought in two 

dimensions. The global ordering of dissimilarities, and primary treat

ment of ties were used. For a random start the first step is taken as 

0.2, for a 'rational’ start 0.05 is the value selected.

(i) Random Start 

The progress report on the iterations is given in Table 1.6.2.

The stress function is approaching convergence, but the stress value 

is quite high for what should be a splendid fit. As might be 

suspected, the configuration is about to attain a local minimum.

Holyhead, abandoned in the North Sea, is trying to reach its proper
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IT. NO. STEP SLOPE STRESS

0 0.00485 0.43303
1 0.20000 0.00154 0.40708
2 0.16115 0.00119 0.40346
3 0.09964 0.00097 0.40199
4 0.05700 0.00056 0.40080
5 0.04372 0.00060 0.40003
6 0.03495 0.00060 0.39923
7 0.03162 0.00068 0.39831
8 0.05749 0.00099 0.39611
9 0.10530 0.00170 0.39003
10 0.14242 0.00241 0.37673
11 0.17494 0.00240 0.36011
12 0.15154 0.00253 0.34866
13 0.12853 0.00241 0.33936
14 0.11167 0.00259 0.33165
15 0.09890 0.00219 0.32333
16 0.08917 0.00216 0.31628
17 0.08789 0.00205 0.30910
18 0.08900 0.00195 0.30252
19 0.08681 0.00221 0.29670
20 0.07393 0.00229 0.29037
21 0.07556 0.00242 0.28287
22 0.09838 0.00234 0.27222
23 0.14988 0.00269 0.26222
24 0.12602 0.00358 0.25931
25 0.09420 0.00246 0.25198
26 0.07919 0.00264 0.24572
27 0.06980 0.00285 0.23846
28 0.07845 0.00340 0.22769
29 0.13467 0.00427 0.20580
30 0.22543 0.00678 0.16606
31 0.22418 0.01123 0.16261
32 0.20051 0.00945 0.13880
33 0.11077 0.00477 0.11617
34 0.10860 0.00753 0.11075
35 0.11883 0.00918 0.10936
36 0.06906 0.00293 0.09364
37 0.07209 0.00461 0.08804
38 0.07992 0.00838 0.09237
39 0.04251 0.00228 0.08175
40 0.06825 0.00689 0.08332
41 0.06066 0.00503 0.07995
42 0.01877 0.00180 0.07692
43 0.03998 0.00505 0.07830
44 0.02447 0.00090 0.07528
45 0.01843 0.00105 0.07469
46 0.01665 0.00189 0.07465
47 0.01058 0.00069 0.07420
48 0.00734 0.00076 0.07407
49 0.00543 0.00059 0.07396
50 0.00368 0.00047 0.07389
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position but, as it moves that way, is meeting resistance from towns 

near Humberside that realise that it should not be near them. Hence 

we have a high procrustes statistic, 0.08574. It has been known for 

a random start to completely flip Scotland about the North/South Axis. 

The time taken for the entire run was 106 units.

(ii) Classical Start 

The progress report on the iterations is given in Table 1.6.3.

It may be noted that the stress value before any iterations have 

taken place is less than that obtained after 50 iterations from the 

random start. The slope and stress settle down very quickly and 

convergence to what we may suppose is the global optimum is rapid, 

so that about one half of the iterations are really unnecessary.

The final procrustes statistic is 0.03194 which is slightly 

inferior to that obtained from classical scaling itself. The final 

configuration is more elongated, for example Penzance is displaced 

southwards to compensate for the Bristol Channel effect, and this 

accounts for the minor difference. The total time taken was 

157 units.

(c) Least Squares Scaling

Again the dissimilarity matrix was scaled twice, once with all 

weights set equal to unity, and once with weights the reciprocals of 

the dissimilarity values (non-linear mapping). For both runs the 

configuration obtained from classical scaling was used as the 

starting configuration, and the solution obtained in two dimensions,

(i) Constant Weights 

The Fletcher-Reeves algorithm satisfied its convergence 

criteria after 85 evaluations of the function, during which time the 

residual sum of squares had dropped from 469,498 to 219,062, and the 

gradient norm from 3981.1 to 0.98. The final procrustes statistic was
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TABLE 1.6.3

IT. NO. STEP SLOPE STRESS

0 0.00843 0.07134
1 0.05000 0.00484 0.05589
2 0.06720 0.00614 0.05385
3 0.04182 0.00352 0.05020
4 0.02482 0.00316 0.04951
5 0.01439 0.00138 0.04869
6 0.01217 0.00214 0.04869
7 0.00718 0.00056 0.04832
8 0.00586 0.00056 0.04821
9 0.00467 0.00076 0.04818
10 0.00298 0.00034 0.04813
11 0.00197 0.00030 0.04811
12 0.00137 0.00023 0.04809
13 0.00106 0.00020 0.04808
14 0.00136 0.00017 0.04807
15 0.00188 0.00021 0.04806
16 0.00125 0.00020 0.04806
17 0.00075 0.00011 0.04806
18 0.00049 0.00009 0.04805
19 0.00060 0.00008 0.04805
20 0.00079 0.00009 0.04805
21 0.00054 0.00009 0.04805
22 0.00035 0.00005 0.04805
23 0.00023 0.00005 0.04805
24 0.00028 0.00004 0.04805
25 0.00046 0.00004 0.04805
26 0.00035 0.00006 0.04805
27 0.00021 0.00003 0.04805
28 0.00014 0.00002 0.04805
29 0.00013 0.00002 0.04805
30 0.00014 0.00002 0.04804
31 0.00011 0.00002 0.04804
32 0.00008 0.00001 0.04804
33 0.00007 0.00001 0.04804
34 0.00009 0.00001 0.04804
35 0.00012 0.00001 0.04804
36 0.00008 0.00001 0.04804
37 0.00005 0.00001 0.04804
38 0.00003 0.00001 0.04804
39 0.00004 0.00001 0.04804
40 0.00008 0.00001 0.04804
41 0.00006 0.00001 0.04804
42 0.00003 0.00000 0.04804
43 0.00002 0.00000 0.04804
44 0.00004 0.00000 0.04804
45 0.00003 0.00001 0.04804
46 0.00002 0.00000 0.04804
47 0.00001 0.00000 0.04804
48 0.00001 0.00000 0.04804
49 0.00001 0.00000 0.04804
50 0.00001 0.00000 0.04804
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0.02843, and the time taken 147 units. That this is a slight 

improvement upon the classical scaling result is probably a result 

of having to use all of the information available in two dimensions 

Certainly the near linearity of true and road distances is helping 

the method to behave well in this example.

(ii) Non-Linear Mapping 

This time 88 evaluations of the function were required. The 

residual sum of squares dropped from 2,523 to 990 and the gradient 

norm from 23.4 to 0.2. The final procrustes statistic was 0.02824, 

and the time taken 147 units. Again there is a slight improvement. 

This is caused by the sensible weighting of residuals, since it is 

certain that larger discrepancies will occur over greater road 

distances.

To summarise the results:

Classical ......................

Ordinal (Random Start)

Ordinal (Classical Start)

Least Squares (Equal Weights)

Least Squares (Non-Linear Mapping)

Procrustes

Statistic

0.02965

0.08574

0.03194

0.02843

0.02824

Time

Units

Taken

112

106

157

147

147
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1.7 Preprocessing the Dissimilarity Matrix

When it is unlikely that the specific values taken in the 

dissimilarity matrix are reliable, but their rank ordering can be 

used for multidimensional scaling, we naturally try the Shepard- 

Kruskal ordinal method. However an alternative is available. We may 

preprocess the dissimilarity matrix according to some distributional 

assumptions and use one of the methods that attach significance to 

the actual numerical values obtained, such as classical scaling or 

least squares scaling. Prior references are Benzecri (1964),

Shepard (1966), Young (1970) and McGinley (1977).

Faced with the ordinal data, we may obtain a provisional 

numerical structure by replacing the ranking numbers by suitably 

chosen quantiles from the distribution we would expect the distances 

to follow if the configuration to be obtained were a sample of 

independent observations from, say, a multivariate normal 

distribution. The system of distances between independent points is 

not itself a system of independent random variables, but it is 

dissociated, and thus many parallel limit theorems apply. In partic

ular, the empirical distribution function of the distances converges 

to the distribution of a single distance, and this provides the 

method with some kind of justification. The theory of dissociated 

random variables is developed in McGinley and Sibson (1975) and 

Silverman (1976). In Chapter 3 we explore the effects of assigning 

numerical values to ordinal data under the assumption that the 

underlying configuration is spherical normal in two dimensions with 

unit variances, in which case the distribution of squared interpoint 

distances is approximately a 2 distribution. We also investigate 

the effect of assuming an underlying configuration which is uniform 

on the unit disc, in which case the interpoint distance density is
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^  {cos  ̂ - ^r/(l - |r^)} (0^r^2) (1.7.1)

as given for example in Bartlett (1964). Where there happen to be 

ties in the ordinal data, the transformed values may be averaged. 

Finally we note that this can be an effective way of generating an 

initial configuration for use in ordinal scaling, although there is 

no point in using the transformed values themselves for they will 

have the same rank ordering as the original dissimilarities.
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1.8 Single-Link Clustering

The single-link method of cluster analysis is the most famous 

and most straightforward of all the so-called sequential, 

agglomérative, hierarchical, non-overlapping group of techniques. 

Sibson (1973) describes an efficient algorithm that enables single

link clustering to be applied to dissimilarity matrices derived from 

over 1,000 objects at quite reasonable cost in computer time. We 

provide a brief formulation of this standard technique.

Let A = (ô^j) (i,j=l,...,N) be a symmetric, zero-diagonal, 

dissimilarity matrix formed from N objects, some entries of which 

might well be missing. For all d^O we may group the objects into 

disjoint sets formed by joining all objects with dissimilarity less 

than or equal to d. Thus a chain of links corresponding to 

dissimilarities less than or equal to d joins all members of a set, 

and we have a natural equivalence relation. This clustering may be 

defined for all values of d, and so we may derive a dendrogram, and 

the minimum spanning tree (see Gower and Ross, 1969) from the 

resultant nested equivalence classes.

This method alone possesses a combination of desirable 

mathematical properties outlined by Jardine and Sibson (1971).

However such hierarchical clustering methods are limited, and single

link clustering is often criticised for its tendency to produce long, 

thin clusters as a result of its chaining structure. In the next 

section we describe a non-hierarchical method.
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1.9 Partition Likelihood Clustering

The partition likelihood method of cluster analysis was 

developed by Gazard to cluster ceramic objects according to their 

distribution of trace elements following a neutron activation 

analysis. See Hammond, Harbottle and Gazard (1976) for details.

We use the method to cluster languages according to the distribution 

of phoenetic value of the first syllable of their words. In this 

section we provide a brief description of the mathematical background 

and computer algorithm. Many similarities may be detected between 

this method and others that minimise within cluster sums of squares, 

such as that described by Ward (1963) and Ward and Hook (1963). A 

comprehensive list of other references may be found in the review 

paper of Cormack (1971).

The basic requirement is an N x P data matrix X = (x^j), whose 

rows represent N objects, whose columns represent P variables, and 

whose elements x^j represent the number of 'atoms' of variable j 

associated with object i, where 'atom' can be interpreted as a 

particle or as a word in the quoted examples. Let us now consider a 

subset of R of the N objects, which we shall label 1,..., R for 

convenience, and which we shall assume derive from a common source.

We treat the elements of each row of the submatrix corresponding to 

these R objects as observations from a multinomial distribution with 

unknown parameter

^  ~ (q » • • • » <lp)

representing the proportion of each variable in the assumed common 

source.
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Let S.. = be the observed proportion of atoms of

variable j associated with object i(i=l,...,R)

Let N. = Z X., be the total number of atoms corresponding to 
" k=i

object i.

Then the maximum likelihood estimate of ^ is where

q. = Z N.S.. (j=l,...,P) (1.9.1)
J i=l ^

R
Z N. 

i=l "

Thus these maximum likelihood estimates are the centroids of 

the individual proportion vectors weighted according to the total 

number of atoms from each object. The associated loglikelihood is 

approximately proportional to

R P q
- Z N. Z S.. log f ijl (1.9.2)

i=l  ̂ j=l Uj J

where Stirling's formula has been used for simplifications.

If we now consider the partition of the N objects into 

T clusters it can be shown that the total loglikelihood is just the 

sum of T terms of the form (1.9.2). In practice we are unlikely to 

know . We can either choose to regard it as constant, or make an 

assumption that it can be approximated by the total mass corresponding 

to object i. This can be interpreted as the mass of elements or
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size of dictionary in our two examples. We also need to estimate the 

unknown ^  values by their maximum likelihood estimates However we 

have all the necessary ingredients for an iterative clustering 

technique. At each stage the loglikelihood of a partition of the 

objects provides a criterion for assessing its satisfactoriness. We 

successively amalgamate clusters, choosing to join those which 

produce the least drop in loglikelihood. At each stage we check to 

ensure that the partition is admissible, that is that no object's 

vector of proportions lies nearer to that of a cluster centre in 

that it would produce an increase in loglikelihood if it were 

relocated to that group. Gazard produced three computer programs 

that seek the globally best partition into T clusters. These 

programs have varying degrees of sophistication and, correspondingly, 

make varying demands on computer storage and time. None of them are 

able to guarantee obtaining the globally best solution. The 

possibility of relocation at each stage means that this method is 

not hierarchical.

The method has an intuitive appeal for the non-mathematical 

user. He can easily think in terms of N species, each original 

specimen corresponding to a unique species, and the subsequent 

amalgamations are then just a matter of determining which division 

into T species would most satisfactorily, that is with most 

likelihood, represent all the specimen data. The concepts of 

likelihood, relocation and weighting by confidence are then seen 

to be quite natural.
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1.10 Principal Component Analysis

Several times we have recourse to principal component 

analysis. Thus, given a N x P data matrix X = (x_j), where the N 

rows correspond to objects and the P columns correspond to variables, 

we find the eigenvectors and eigenvalues of S, defined to be the 

sample variance/covariance matrix, and project the P-dimensional 

point configuration onto the leading principal axes. We note that 

if we use Euclidean distance to derive a measure of dissimilarity 

between the objects, then principal component analysis is 

equivalent to classical scaling. Assuming P < N, it is 

computationally more efficient to use principal component analysis, 

which can then be used to generate a starting configuration for 

ordinal scaling.
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1.11 The Generation of Dissimilarities

Sometimes data will arise naturally in the form of a N x N 

matrix of dissimilarities. Such is the case for example when 

subjects in a psychological test are required to produce estimates 

of the similarity between objects presented to them. However it is 

more common to have to derive the measures of dissimilarity, and so 

in this section we briefly review the particular methods that we 

use.

The first case we examine arises when the data occur in the 

form of a N X P matrix X = (x^j) of N rows corresponding to objects, 

and P columns corresponding to variables or attributes. The most 

common measure for us to use is the Euclidean distance given by

P 2 16 = { Z (x . - X .) (r,s=l,...,N)
j=l

or equivalently

We need to be careful about the units associated with the 

variables, which might have vastly differing variances, and we need 

to beware of correlations among the variables. With both of these
2considerations in mind we sometimes use the estimated Mahalanobis D

statistic given by

<Ŝ s = ^(x^ - Xg) (r,s=l,... ,N) (1.11.2)

where S is the P x P sample variance/covariance matrix. We also use 

the P X P sample correlation matrix R to remove correlations, but not



- 32 -

scale effects via

6^ = (x - X )^R ^(x - X ) (r,s=l,...,N) (1.11.3)rs — r — s — r — s

And we may define the diagonal matrix T which has variances on the 

diagonal to standardise the variance of the variables, but retain 

correlations. Hence

= (x^ - x^)^T ^(x^ - 2£g) (r,s=l,... ,N) (1.11.4)

The whole range of Minkowski metrics may be used, where these 

are defined by

p
6 = { Z (x . - X (R%l;r,s=l,...,N) (1.11.5)rs s]

These include

R = 1 The city-block metric

R = 2 Euclidean distance

R =r oo The dominance metric

When interested in the distribution of data values for a 

particular object taken across the whole range of variables, we 

sometimes use a measure of dissimilarity called the information 

radius which has been derived by Sibson (1969) as follows:

Let 2  and £  be the proportion vectors for objects i and j 

respectively.
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Thus p = ’‘ir and q =

Z X.
t=i

X._J±

Z X. Jtt=l

l^r, s^P

Then !(£/£) = - J ,  %  A )
‘ i“k>

is the information gain of £  given £.

We define the dissimilarity between objects i and j as

Ô. . = I (£/ ) + I (£/ )ij IZi, j3N (1.11.7)

Thus p = q = > 0 . .  =0, so that ô.. = 0—  ij 11
and p ^ q => 6.. = 6..>0.-  -  iJ Ji

We are effectively assuming that the vectors £  and £  represent a 

probability distribution, and it is therefore necessary that the data 

values x^j should all be positive if a natural interpretation is 

required. We shall call the matrix of 6^^ values so generated the 

information radius dissimilarity matrix.

The second case we examine arises when the data are binary and 

we record for each object the presence or absence of a set of 

particular characteristics. The first step is to form the 2 x 2  

association table for each pair of objects.

Object i 

Present Absent

Object j
Present

Absent



— 34 —

Thus a + b + c + d = P ,  the total number of characteristics.

We may then define various dissimilarity measures, for example

Ô.. =  b + c  (1.11.8)
 ̂ a + b + c + d

is Hamming distance, familiar from communication theory

6.. = b + c (1.11.9)
a + b + c

is Jaccard distance, familiar from plant ecology. These both 

satisfy the metric inequality, although the proof that Jaccard 

distance is metric requires some subtlety, and are constrained to lie 

in the range 0 to 1. Choosing between them will depend upon how 

significant we feel the entries in the absent/absent cell to be.

Finally we consider the case of abuttal data. Data for 

scaling sometimes arise in the form of a three valued dissimilarity 

coefficient whose values are

identical (precisely between each object and itself)

neighbouring

not-neighbouring.

We may think of the objects as really being regions rather than points, 

and it is the abuttals between regions which are recorded. Such data 

have been studied by Kendall (1971, 1974) who, for example, has 

successfully reconstructed a map of France from the information 

about the Départements that are neighbouring. The method that we 

use is to represent the regions by points, and then to assign 

conventionalised regions with the implied neighbour or contiguity
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relationship by way of the Dirichlet tessellation (Green and 

Sibson, 1978). This construct assigns to each point the part of the 

space nearer to it than to any other point. The problem of 

reconstructing configurations from abuttal data is not easy and has 

been tackled by McGinley (1977). A significant step towards a 

solution is made by replacing the original three-valued dissimil

arity coefficient by an integer valued one, the graph-theoretic 

distance or Wilkinson metric, which is the minimum number of 

abuttals traversed along a path from one point to another via 

abuttals. It is this Wilkinson metric that we use as the measure 

of dissimilarity between such objects.

The methods we have described are but few of many available. 

Comprehensive treatments of the subject and lists of references may 

be found in Jardine and Sibson (1971), Gower (1971a) and 

Cormack (1971).
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1.12 Choice of Dimensionality in Classical Scaling

The results of this and the next section may be found in 

Sibson (1979), in which the author undertakes a perturbational 

analysis of classical scaling based upon small changes in the 

dissimilarity matrix.

In this section we investigate criteria that Sibson has 

proposed for determining the appropriate number of dimensions for a 

solution configuration from classical scaling. The correct choice 

of dimensionality is a problem in common with all multidimensional 

scaling methods, although it does not always arise in the same way. 

Here, for example, we effectively solve the scaling problem for all 

dimensions simultaneously. This is also true for principal 

component analysis. The problem is then to decide how many of the 

possible solution dimensions to accept. In contrast, ordinal 

scaling and least squares scaling are only solved for one number of 

dimensions at a time. Often the researcher might produce solutions 

in several spaces of differing dimensionality and try to determine 

which combines interpretability, ease of display and accurate 

representation of the original dissimilarity matrix. Then the 

situation is comparable to that which is faced with classical 

scaling. Kruskal (19644 suggested looking at the stress values and 

deciding at what level there ceased to be 'significant lowering of 

the stress with increasing dimensionality'. Others have taken the 

problem further by including an allowance for the number of objects 

and the suspected error in the dissimilarity values. None of these 

methods seem particularly satisfactory, especially when it is rememb

ered that solutions in high numbers of dimensions are difficult to 

inspect visually, which is surely the primary objective of any 

scaling method.
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However, returning to classical scaling, if we have what is 

believed to be a set of nearly-Euclidean dissimilarities it is 

possible to make some sensible estimate of the correct choice of 

dimensionality from the eigenvalue spectrum. Of course, if we have 

transformed the dissimilarities under the distributional 

assumptions of Section 1.7, then we have effectively imposed a 

dimensionality upon the configuration, and that is the only 

appropriate value to consider. We now follow the argument and 

notation of Sibson (1978).

Let E be an exact, squared distance matrix

" F be a symmetric, zero-diagonal matrix
2" E(e) = E + eF + 0(e ) be a perturbation of E

" B = q(E) be the exact inner product matrix

" X be a positive, simple eigenvalue of B

" £  be the corresponding unit eigenvector, orthogonal to in

order to satisfy centring conventions.

Then

X(e) = X - e e^Fe + O(e^) (1.12.1)

so that

E(X(e) - X) = - E e^E(F)e + O(E^) (1.12.2)

Also tr(q(E(e))) = tr q(E) + ^  F U  + O(e^) (1.12.3)
2N

T 2Thus Z (eigenvalue perturbations) = 1^ F 1^ + 0(e ) (1.12.4)
2N

But also

Z(eigenvalue perturbations)

= Z(positive eigenvalue perturbations) 

+ Z(zero eigenvalue perturbations)
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Thus, Z (zero eigenvalue perturbations) =

F lo + 1   ̂ + 0(eh (1.12.5)
2N 2 positive

eigenvalues

We may look at these results in either of two ways. Firstly, 

suppose that K, the number of genuine positive eigenvalues, and E(F) 

are known, then we can estimate e from the observed bias in the zero 

eigenvalues. Alternatively if we can assume that £ is small, we can 

estimate the value of K, because the sum of the genuine positive 

eigenvalues ought then to be close to the trace of the perturbed 

inner product matrix q(E(e)). This gives rise to the trace 

criterion for determining the dimensionality of a solution from 

classical scaling: the sum of the genuine positive eigenvalues ought 

to be approximately equal to the sum of all the eigenvalues. This 

procedure has much greater appeal than the previous rule of thumb 

concerning looking for a large downwards drop, between the last 

supposed genuine eigenvalue and the first supposed spurious one, 

which incorporated the danger of disregarding useful information if 

the solution configuration should be narrow in some sense.

An allied technique is to reject as spurious those eigenvalues 

whose absolute magnitude is less than or not much greater than the 

absolute magnitude of the most negative eigenvalue. Underlying this 

criterion is the assumption that the perturbation of the multiple 

zero eigenvalue will be roughly symmetric if there is little error in 

the dissimilarity matrix. To justify this theoretically would involve 

the use of multiple eigenvalue perturbation theory and would seem a 

difficult task.

Thus the magnitude and trace criteria of Sibson both depend
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upon the same assumption, and their performances tend to be 

comparable, as will be demonstrated in Chapter 3. It is clear that 

the results will be more satisfactory for nearly-Euclidean 

dissimilarities.
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1.13 Perturbational Analysis of Procrustes Statistics

Sibson (1979) derived approximate expressions for the 

procrustes statistics and Gg under perturbations to a configur

ation and subsequently under perturbations to the squared interpoint 

distance matrix used to construct a configuration by classical 

scaling. We have two reasons for being particularly interested in 

these results. Firstly they are fundamental to our approach to the 

error analysis of classical scaling reported in Section 3.2. Secondly 

we examine their range of validity in Section 3.5 and Section 3.6.

We briefly summarise the results, starting with those relating to 

perturbations of a configuration.

Let X be a centred, full rank K x N configuration matrix.
TB = X X , its inner product matrix, has eigenvalues

Xi > > ... > > 0 ^K+1 ~ *** ~ have corresponding
eigenvectors , ... , e^ where e^ = .

2Let Y = X +  eZ + 0(c ) where Z is a K x N matrix.

Then

G*(X,Y) = { I (£j(X Z + Z X)e^^2 ^  ̂ i e^Z^Ze^}+0(6^)
2 j,k=l X . + X k=K+lJ K

(1.13.1)

and

G„(X,Y) = G^(X.Y) - (tr (x'^Z))^ + O(e^) (1.13.2)S E  ^

tr X X

In particular if the entries in Z are independent N(0,1) random 

variables then

Gg (X,Y) + O(e^) where f = NK - jK(K+l) (1.13.3)
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and

Gg (X,Y) E^Xg + O(e^) where g = f - 1 (1.13.4)

It is these forms that we examine in Section 3.5.

Next we summarise Sibson's results concerning perturbations to 

the squared interpoint distance matrix used to construct a 

configuration by classical scaling.

Define = { (i,j): 1 ^ i,j ^ N ~  1 }

" = { (i,j): K+1 ^ i,j $ N - 1 }

M = M^\ .

Let E be the squared distance matrix of a centred, full rank, 

configuration X of N points in K dimensions. Let B be the

corresponding inner product matrix with the usual eigenvalue

structure

> X2 > > 0 = X^^^ = ... = X^

and eigenvectors

where = l^/v^.

Let Y be the K-dimensional configuration recovered from
2E(e) = E + eF + 0(e ) where F is symmetric.

Then,

4

T
G (X,Y) = Z Z (-Î ^ + O(e^) (1.13.5)

8 (j,k) eM X. + X^

and

G_(X,Y) = GL(X,Y) - E^ ( Z e? Fe, )^ + O(e^) (1.13.6)
16 { k=l }

K
E X 

k=l k

Thus the expressions for G^ and Gg are quadratics in the elements of
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F in both cases, albeit very complicated ones. This allows some

distributional theory to be developed for the case of random errors
2in the distances, much in the same way that the x results were 

obtained for the procrustes statistic between two slightly different 

configurations, see (1.13.3) and (1.13.4), where the procrustes 

statistic was also a complicated quadratic in the elements of Z.

For example if F is symmetric with zero diagonal and its off 

diagonal entries are independent with zero mean and unit variance, 

then Sibson shows that if we write

G_(X,Y) = + 0(e^) (1.13.7)
2

then

E(A) = 1  E E { 1 + ^jk " 2 E } (1.13.8)
(j ,k) EM ---------------- — ------

+ ^k

In Section 3.6 we consider this particular case and obtain values for
2the actual procrustes statistic, the approximation up to e , and the 

expected value of this approximation.
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2.1 Introduction

In this chapter we present a review of papers that have 

appeared in the multidimensional scaling literature and that have 

contained at least an element of simulation study. Twenty-four such 

papers are reported. Most of them have appeared in the psychometric 

literature. All of them relate to ordinal scaling; none relate 

directly to either classical scaling or least squares scaling.

Firstly we record the early work of the founding fathers of 

ordinal scaling, Roger Shepard and Joseph Kruskal, whose original 

insights are so important that subsequent developments have been 

successful only to the extent that they have kept close to these 

original ideas. There then follow three sections, each of which is 

devoted to a problem that has captivated the imagination of the 

many who have followed in Shepard and Kruskals' footsteps without 

their imagination, but with access to better computing facilities.

The first of these is the problem of how well the method can 

reconstruct a given configuration. There are many parameters that 

have a bearing on this and all of them have been investigated.

Thus we find studies on the number of objects to be scaled, the 

quantity of error introduced to form dissimilarities from the 

original configuration, the dimensionality of the original 

configuration, the dimensionality of the reconstructed configuration, 

the Minkowski metric constant used to form the dissimilarities and 

the Minkowski metric constant used in forming the reconstruction. 

Typically either the final value of stress or the correlation between 

true and derived interpoint distances will be used to measure the 

success of the reconstruction. The second line of pursuit for 

scaling programmers has been to try to approximate the cumulative 

probability distribution for stress by Monte Carlo methods given



- 49 -

random rankings in the dissimilarity matrix. The idea is to be able 

to gauge when an empirically obtained stress value is sufficiently 

small to suggest that it is not just the result of random phenomena 

and that there is some structure in the dissimilarity matrix. Since 

stress is dependent upon the number of objects and the number of 

solution configuration dimensions, it is clear that the effect of 

at least these two parameters has had to be studied. The final 

popular problem has been the effect of the starting configuration 

upon the possibility of obtaining a merely local optimum value of 

the stress function. In the literature, a sharp contrast has been 

drawn between the approach of using a randomly generated starting 

configuration, and that of using a 'rational* starting 

configuration. Often the latter will be the configuration derived 

from classical scaling or possibly that derived from a procedure 

based on repeatedly scaling in a high number of dimensions and using 

all but the least of the solution principal axes dimensions in the 

starting configuration for the next iteration. Problems with local 

minima are alleged to have cast serious doubts on the validity of the 

other studies we have mentioned.

Three extra papers are reviewed for their particular interest. 

The first by Graef and Spence (1979) tackles the question of which 

dissimilarities play the most important part in enabling us to 

reconstruct a configuration adequately: the small, the medium or the 

large. This is highly relevant for computational considerations when 

the dissimilarity matrix is large. We address ourselves to this 

question in Section 3.4. We take special interest in the 1974 

review paper by Roger Shepard, entitled 'Representation of Structure 

in Similarity Data: Problems and Prospects'. The author refers to 

six major problems and the prospects for overcoming each of them.
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We accept his challenge, subsequent chapters providing partial 

answers to some of these difficulties. The third paper that we 

refer to at greater length is that of Lingoes and Roskam (1973), 

in which the authors attempt to compare the mathematical and 

computational aspects of two algorithms for ordinal scaling, the 

standard Shepard-Kruskal method and the Guttman-Lingoes SSA-I 

method.

The chapter is concluded with a statement of our view of the 

approaches that have been described, and with motivation for our 

simulation study design as reported in Sections 3.1, 3.2, 3.3 and 

3.4.
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2.2 The Founding Fathers: Shepard and Kruskal

The first published algorithm for ordinal scaling was 

presented by Shepard (1962a). The author sought that configuration 

for the objects in his study which would simultaneously have perfect 

correspondence between the ordering of interpoint distances and 

dissimilarities and yet lie in a space of minimum dimensionality.

This was achieved by providing points too far apart with a force of 

attraction, providing points too close with a force of repulsion 

and then taking the vector sum of forces for each point. This process 

was performed in discrete steps, the configuration being adjusted at 

each step according to the magnitude and direction of this 

resultant force, and occasionally being projected into a space of ' 

one fewer dimensions. For N points the starting configuration was 

the regular simplex in N - 1 dimensions. Shepard (1962b) then 

proved the power behind his idea by showing that he could recover 

a known configuration of points from the interpoint distances, even 

after these had been subjected to monotonie transformations of various 

kinds. This must have been the first simulation study of ordinal 

multidimensional scaling. Shepard mentioned five individual 

simulations amongst which he used three monotonie transformations and 

configurations lying in spaces of 1, 2 and 3 dimensions. For these 

simulations he demonstrated how the method was also able to recover 

both the point configuration and the underlying monotonie transfor

mation to a remarkable degree of accuracy. However no method of 

comparison between configurations was introduced.

We have seen in Section 1.4 that a more satisfactory algorithm 

was devised by Kruskal (1964a, b), who employed least squares monotone 

regression techniques and established an explicit criterion for the 

measurement of the success of a configuration. The effectiveness of
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his algorithm was shown by its ability to solve precisely the same 

reconstruction problem as that tackled by Shepard's simulations, 

with the additional distortion of a random error term added to each 

dissimilarity value. The first test of robustness had been 

performed, even if subsequent understanding does show that it was a 

rather mild one. To display his success Kruskal rotated configura

tions by eye, and measured any disagreement by the percentage 

difference in corresponding configuration distances.

That such accuracy could be obtained about the metric 

structure of a configuration from purely ordinal data was a point of 

fascination to Shepard, and is the basis of the success of ordinal 

scaling. Shepard (1966) sought to examine how many points were needed 

for the constraints provided by ranking interpoint distances to 

effectively determine the configuration. To do this he performed 

a large Monte Carlo study, using numbers of points lying between 3 

and 45, and measuring the correlation between distances in the 

true configuration and the configuration regarded as optimal after 

ordinal scaling. The results show that fifteen points can be 

reproduced quite accurately, and any further improvements 'are of 

theoretical interest only'.

Thus these original simulation studies can be seen to have 

justified ordinal scaling, having shown it to be a method that can 

be relied upon to reproduce configurations very accurately, even 

after transformation of the underlying dissimilarity matrix and the 

addition of random error. Furthermore, empirical examples reported 

in these papers demonstrated the diverse practical applications that 

were possible.
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2.3 Robustness of Ordinal Scaling

We now turn to ten other studies that concern the 

reconstruction of configurations by using ordinal scaling. We may 

conveniently summarise their approaches in terms of the following 

ten features

1. K, the dimensionality of a ’true'configuration, X.

2. N, the number of points in a 'true’ configuration, X.

3. r(X), the function used to derive the dissimilarity 

matrix, A .

4. E, the number of levels of error introduced into P(X) .

5. The particular algorithms used to reconstruct the 

configuration.

6. y(Y), the function used to measure distance in the 

reconstructed configuration, Y.

7. k, the dimensionality of a reconstructed configuration, Y,

8. The functions used to measure the success of the 

reconstruction.

9. R, the number of replications for each combination of 

parameters.

10. Other properties emphasised in the study, and

conclusions.

We consider the papers in chronological order of appearance.

(a) Sherman and Young (1968)

1. K = 2 only.

2. N = 6, 8, 10, 15, 30.

3. r(X) : Independent normal deviates were added to each point 

coordinate immediately prior to each Euclidean distance



- 54 -

calculation. Distances were then squared and added to 10.

4. E = 4.

5. The Young-Torgerson implementations of ordinal scaling, TORSCA.

6. y(Y) : Euclidean distance.
7. k = 2 only.

8. Kruskal's stress; correlation between true and reconstructed 

distances.

9. R = 5.

10. Recovery was shown to improve with more points but to worsen

with more error. Stress increased with the number of points

and so was not regarded as a sensible measure of reliability.

(b) Spaeth and Guthery (1969)

1. K = 1, 2, 3.

2. 4 ( N ( 36.

3. r(X) : Unperturbed Euclidean distances were used.

4. E = 0, no error was added at all.

5. Kruskal's MDSCAL and Guttman-Lingoes' SSA-I.

6. y (Y) : Euclidean distance.
7. k = 1, 2, 3.

8. No measure apart from eye-appeal.

9. R = 1.

10. The true configurations formed known geometrical shapes, for 

example the vertices of a cube. MDSCAL was faster, SSA-I was 

equipped with a superior initial configuration; neither could 

guarantee successful reconstruction. We note that classical 

scaling would reconstruct these configurations exactly, and 

this would seem the obvious method for generating a starting 

configuration. Spaeth and Guthery introduce the least squares
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criterion (Section 1.5), but do not seem to have implemented 

any method based upon it.

(c) Spence (1970b)

1. K = 1, 2, 3, 4.

2. 6 ^ N  ̂ 36.

3. r(X) : Independent normal deviates were added to each point

coordinate immediately prior to each Euclidean distance 

calculation.

4. E = 4.

5. Young and Torgerson’s TORSCA, Kruskal's MDSCAL, Guttman-

Lingoes’ SSA-I.

6. y(Y) : Euclidean distance.

7. k = 1, 2, 3, 4, 5.

8. Kruskal’s stress, correlation between true and reconstructed 

distances.

9. R = 2.

10. The possibility of becoming entrapped in a local minimum of the

objective function was the motivation for this approach. 

Successful convergence was shown to depend upon the accuracy 

of the initial configuration, and local minima were shown to 

be much more prevalent in one-dimensional solutions. The 

three algorithms produced solutions of comparable quality.

(d) Young (1970)

1. K = 1, 2, 3.

2. N = 6, 8, 10, 15, 30.

3. r(X) : Independent normal deviates were added to each point
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coordinate immediately prior to each Euclidean distance 

calculation. Distances were then squared and added to 10.

4. E = 5.

5. The Young-Torgerson implementation of ordinal scaling, TORSCA.

6. y(Y) : Euclidean distance.

7. k = K precisely.

8. Kruskal’s stress, and the squared correlation between true and 

reconstructed distances.

9. R = 5.

10. Young laid particular emphasis on the ratio of degrees of

freedom in the dissimilarity matrix to the degrees of freedom 

in the configuration. He showed that when this ratio is large

the reconstruction will be good, even for large error. Once

again it was shown that more points produce more precision, 

yet higher stress values.

(e) Wagenaar and Padmos (1971)

1. K = 1, 2, 3.

2. N = 8, 10, 12.

3. r(X) : Actual Euclidean interpoint distances were multiplied

by independent normal random variables with mean 1 and 
2variance a to derive the dissimilarity values.

4. E = 5.

5. Not specified, presumably not a standard implementation.

6. y(Y) : Euclidean distance.

7. k = 1, 2, 3, 4, 5.

8. Kruskal’s stress.

9. R = 11.

10. The authors used their results concerning stress values for
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different levels of k to show that given one of either the 

true dimensionality, K, or the level of error, it is possible 

to estimate the other. Kruskal’s elbow effect for determining 

dimensionality was shown to be inadequate for larger amounts 

of error.

(f) Spence (1972)

1. K = 1, 2, 3, 4.

2. 6 3 N 3 36.

3. r(X) : Independent normal deviates were added to each point 

coordinate immediately prior to each Euclidean distance 

calculation.

4. E = 4.

5. Young-Torgerson’s TORSCA, Kruskal’s MDSCAL, Guttman- 

Lingoes’ SSA-I.

6. y(Y) : Euclidean distance.

7. k = 1, 2, 3, 4, 5.

8. Kruskal’s stress, correlation between true and reconstructed 

distances.

9. R = 2.

10. This paper presents the results of Spence (1970b) in much

greater detail. In particular it is a useful source for its 

description of the rationale behind the algorithm used and the 

initial configuration generated in each of the three publicly 

available computer packages. Guttman’s SSA-I technique of 

rank images, and Young and Torgerson’s iterative initial 

configuration routine are clearly presented. The conclusions 

are unchanged.
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(g) Sherman (1972)

1. K = 1, 2, 3.

2. N = 6, 8, 10, 15, 30.

3. r(X) : Independent normal deviates were added to each point 

coordinate immediately prior to each Minkowski metric 

calculation. The resultant distances were then squared and 

added to 10. The Minkowski metric parameter took values

1 (city-block), 2 and 3.

4. E = 3.

5. The Young-Torgerson implementation of ordinal scaling, TORSCA.

6. y(Y) : Euclidean distance ( but alternatives are discussed ).

7. k = 1, 2, 3.

8. Kruskal’s stress and the squared correlation between true 

and recovered distances.

9. R = 5.

10. This is an extension of the work of Young (1970), with more

emphasis placed upon the Minkowski metric parameter. Young’s

results are substantially reaffirmed. In addition it is shown 

that it is only helpful to determine the correct Minkowski 

parameter if the true dimensionality is known.

(h) Spence and Graef (1974)

1. K = 1, 2, 3, 4.

2. N = 12, 18, 26, 36.

3. r(X) : Independent normal deviates were added to each point 

coordinate immediately prior to each Euclidean distance 

calculation.

4. E = 5.
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5. The Young-Torgerson implementation of ordinal scaling, TORSCA.

6. y (Y) : Euclidean distance.
7. k = 1, 2, 3, 4, 5.

8. Kruskal*s stress.

9. R = 5.

10. A computer program is described which minimises a quadratic

loss function that has been designed to have the correct number 

of solution dimensions and a reliable estimate of the error at 

its optimum. The program uses interpolation based on the 

results of this study. Empirical examples are given. The 

authors provide warnings; the method requires successful 

location of minimum stress values and is probably sensitive 

to the error model used.

(i) Isaac and Poor (1974)

1. K = 1, 2, 3.

2. N = 6, 8, 12, 16, 30.

3. r(X) ; Independent normal deviates were added to each point

coordinate immediately prior to each Euclidean distance 

calculation.

4. E = 6.

5. Kruskal’s MDSCAL.

6. y(Y) : Euclidean distance.

7. k = 1, 2, 3, 4, 5, 6.

8. Kruskal’s stress, squared correlation between true and

reconstructed distances.

9. R = 5.

10. The authors propose a measure, termed 'Constraint', designed

to enable the user to infer correct solution dimensionality.
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It is assumed that the difference between the mean stress value 

from random ranking (Section 2.4) and a typical stress value 

obtained from the above procedures, or in practice, will be 

maximal in the correct dimensionality. The criterion is tested 

and shown to be moderately effective in general, and quite good 

when there is little error.

(j) Cohen and Jones (1974)

1. K = 3.

2. N = 9, 12, 15, 18.

3. r(X) : Independent normal deviates were added to each point

coordinate immediately prior to each Euclidean distance calcu

lation. However one of the three coordinate contributions was 

eliminated; this one being chosen from a probability 

distribution over the three dimensions. Four such distributions 

were used. The resulting two-dimensional distance was squared 

and added to 15 to form the dissimilarity.

4. E = 4.

5. The Young-Torgerson implementation of ordinal scaling, TORSCA.

6. y(Y) : Euclidean distance.

7. k = 3.

8. Kruskal's stress, squared correlation between true and recovered 

distances, percentage intersection variance.

9. R = 4.

10. This study was based upon a psychological model that envisaged 

subjects having to estimate dissimilarities as using only two 

of three available dimensions in a 'stimulus space'. Those 

dimensions that were often used were well recovered, others 

poorly. Cohen and Jones also make some remarks about the
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inadequacy of measures of recovery that have been used in the 

simulation studies.
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2.4 Random Rankings

Several Monte Carlo studies have been carried out in an 

attempt to allow interpretation to be given to the optimal value of 

Kruskal’s stress. Kruskal’s (1964a) own early attempts at 

providing an interpretation were soon shown to be inadequate 

because they were independent of N, the number of objects, and K, 

the number of solution dimensions. In particular, investigators have 

sought a value of stress beneath which the dissimilarity matrix could 

be regarded as having 'significant structure'. Thus attempts have 

been made to obtain the cumulative probability distribution for 

stress for varieties of values of N and K, where the dissimilarities 

are random permutations of the first 5N(N - 1) integers. We have 

encountered six such studies, due to Klahr (1969), Stenson and 

Knoll (1969), Wagenaar and Padmos (1971), Spence and Ogilvie (1973), 

Spence (1970a) and Isaac and Poor (1972). The latter two are less 

accessible being in thesis and unpublished manuscript form only. 

However we summarise the range of parameters used in the other four 

studies and the typical number of replications for each combination 

in Table 2.4.1.

TABLE 2.4.1

Min (N) Max (N) Min (K) Max (K) Replications

Klahr 6 16 1 5 100

Stenson and
Knoll 10 60 1 10 3

Wagenaar and
Padmos 7 12 1 5 100

Spence and
Ogilvie 12 48 1 5 15
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We make a few other observations.

There does seem to be reasonable correspondence between 

results where separate studies overlap.

The results are also interpreted as an aid to determining 

correct dimensionality.

Stenson and Knoll consider the effect of tied values, which 

they demonstrate is very small under all treatments.

Spence and Ogilvie suggest methods of interpolation for 

intervening parameter values. They also recommend regarding a 

dissimilarity matrix as 'more than random' if the stress values 

obtained from scaling in all numbers of dimensions from 1 to 5 

are all more than three standard deviations below their 

respective means. The peaked distribution of stress is the 

reasoning behind this apparently conservative approach.

None of the studies mentions particular care taken in 

avoiding the local minimum problem.
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2.5 The Choice of Starting Configuration

The choice of starting configuration is an important element in 

the success and efficiency of ordinal scaling. That it can make a 

lot of difference is clear from the straightforward examples of 

Section 1.6. Recently attacks have been made upon the whole basis 

of published simulation studies, because they are alleged to have 

neglected this problem and been vitiated by the occurrence of local 

minima of stress. Arabie (1973, 1978a, 1978b) points to 

discrepancies that exist between papers reporting equivalent 

Monte Carlo analyses, and suspects that care has not been taken in 

dealing with merely local optima. He advocates the use of many 

random initial configurations before choosing that which leads to 

the lowest overall value of stress. Defences have been attempted 

by Spence (1974), Clark (1976) and Spence and Young (1978). The 

controversy has added little to our understanding. Four more 

helpful contributions are those of Spence (1970b,1972), discussed 

in Section 2.3, Lingoes and Roskam (1973), Section 2.7, and 

Shepard (1974), discussed in Section 2.8.



— 65 —

2.6 The Relative Importance of the Small, Medium and Large

Dissimilarities

If it is known that, say, the medium sized dissimilarity 

values contribute most to the success of a reconstruction by 

ordinal scaling, then other values might possibly be able to be 

treated as unknown. This would certainly make the scaling 

more economical and might take into account any redundancy 

that exists in the dissimilarity matrix. One simulation study of 

this problem has been carried out by Graef and Spence (1979) .

We report their findings.

Graef and Spence considered true configurations that had 

31 points in 2 dimensions, randomly generated within the unit 

disc. Error was added to each interpoint distance according to 

one of the two popular error models reported in Section 2.3.

Examples of the uses of the models come in Young (1970) and 

Wagenaar and Padmos (1971). Five combinations of model and error 

level were employed. Ten replications were used. The dissimi

larity matrices were scaled by TORSCA in five different ways.

(i) The entire matrix was used.

(ii) One third of elements were deleted, according to a

cyclic design.

(iii) The smallest one third of elements were deleted.

(iv) The middle third of elements were deleted.

(v) The largest third of elements were deleted.

For each of these five treatments the root mean square

correlation between true and recovered distances as well as their 

mean absolute differences were presented for the small distances, 

the medium distances, the large distances and all distances together 

These measures were used because Graef and Spence claim that the
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recovery of distances, and the recovery of configurations are very 

highly correlated.

The main conclusion to come out of the study is that the large 

distances are by far the most significant. When they are deleted 

the reconstruction suffers most drastically. It would seem that they 

determine the coarse structure of the configuration. When they are 

missing it is difficult to obtain an adequate starting configuration 

and the subsequent iterations lose their stability. We demonstrate 

in Section 3.4 that the small dissimilarities provide the fine, 

local structure.

Graef and Spence proceed to make recommendations about the 

practical consequences of their findings in terms of data collection 

methods. They also relate the results to a minimum adequate 

fraction of the &N(N - 1) dissimilarity values, which yields 3NK as 

the minimum number of entries required.

These and our finding are of great importance in the 

applications reported in Chapter 4.
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2.7 The Contribution of Lingoes and Roskam

The most elaborate simulation study of multidimensional 

scaling algorithms was presented in a 1973 "Psychometrika" monograph 

supplement by Lingoes and Roskam. Their objective was to examine 

the effectiveness of Kruskal's MDSCAL and Guttman-Lingoes’ SSA-I in 

reaching the true optimum quickly. To discuss robustness and speed 

they were primarily concerned with the avoidance of local optima 

and the behaviour of the convergence process, two features which 

they demonstrated were dependent upon:-

(a) The choice of initial configuration (including even its 

dimensionality).

(b) The definition and construction of monotonicity and 

correspondingly the choice of loss function for 

minimisation (it is at this point that MDSCAL and SSA-I 

are most divergent).

(c) The treatment of tied values.

(d) The strategies used for guiding the algorithm to a 

desirable solution, including the calculation of step 

size.

Lingoes and Roskam performed over three thousand scalings to 

demonstrate their conclusions, and these were based upon:-

(a) Some empirical matrices.

(b) All distinct untied matrices of order 4.

(c) Randomly generated matrices derived from interpoint 

distances of configurations lying in spaces of from one 

to five dimensions with from four to twenty points. The 

proportion of tied values was forced to vary from none 

to one half.
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No matrix corresponded to more than twenty objects. Matrices were 

scaled in solution spaces of from one to five dimensions.

The main conclusions to emerge from the work were as follows

(a) The choice of a good initial configuration is most important. 

Randomly generated configurations and the original Kruskal *L' 

configuration have poor properties. Apart from these it is 

difficult to differentiate between other published suggestions.

(b) Local minima are more likely when working far below the true 

dimensionality, and especially in one dimension.

(c) The use of both MDSCAL and SSA-I loss functions in the same 

algorithm can reduce the likelihood of local minima, but necessi

tates more iterations.

(d) Starting solutions in large numbers of dimensions followed by 

subsequent projections will also reduce the possibility of local 

minima. If this strategy is employed then it is worth spending 

fewer iterations in high dimensional spaces and occasionally 

projecting through more than one dimension in order to conserve time

(e) The primary treatment of ties is to be preferred to the 

secondary on the grounds of parsimony, as this will produce a less 

rigid structure. Indeed ties may then even be introduced in a 

discretisation of the data in order to reduce the solution 

dimensionality. This may also have the effect of reducing noise if 

the data is particularly suspect.

These considerations have been incorporated into a synthesis 

of the two previous algorithms now entitled MINISSA-I.
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2,8 The Recent Contribution of Shepard

Many facets of multidimensional scaling that are relevant to 

our simulation studies (Chapter 3) and applications (Chapters 4 - 7)

have been discussed in a recent review paper by Shepard (1974), in

which the author identified six problem areas in the subject and 

proceeded to give his opinion as to the prospect for their solution. 

These problems concerned

(a) Local minimum solutions.
(b) Finding meaningful interpretations.
(c) Choice of dimensionality.

(d) Loss or imposition of structure caused by degeneracy.

(e) Choice of the underlying metric.

(f) Representation of categorical structure.
The first five of these are all highly relevant in this thesis, and

accordingly we review Shepard’s comments.

(a) Local Minimum Solutions

Shepard was dissatisfied with the solutions obtained from both 

random and classical scaling starting configurations. For both, 

local minimum solutions were likely, especially in spaces of one 

dimension and with non-Euclidean metrics. Random starts had the 

additional disadvantage of very slow convergence. Altogether, 

Shepard advocated the use of at least twenty different random starts 

in order to ensure attaining the global minimum. Classical scaling 

produced a poor configuration when the relationship between 

dissimilarity and distance was highly non-linear. The whole problem 

cast doubts on the usefulness of published Monte Carlo studies.

The problem was put down to the mutual repulsion between dissimilar 

points which prevented them from ’crossing-over’ or swopping 

positions.
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The initial configuration is vital in this problem, and methods 

were suggested that would generate a successful one. Thus Shepard 

advocated an iterative approach using classical scaling and 

transforming the dissimilarity values to linearise the resultant 

dissimilarity versus distance plot, proceeding until this process 

converged. A similar approach is adopted in the algorithm TORSCA, 

in which successive dissimilarity values are replaced by the least 

squares monotone regression fit to the distances of the configur

ation produced by classical scaling. Alternatives suggested 

included permuting the objects into best fit with respect to a 

previously established configuration, and also building up the initial 

configuration by adding points one by one in the best available 

location. Neither of these has been explored. However, the method 

that Shepard recommended most highly involved scaling in higher 

numbers of dimensions and successively projecting the solution 

configuration onto a space of lower dimensionality and using this 

configuration as the starting point for the new iteration. This 

method he described as "uniformly successful".

(b) Finding Meaningful Interpretations

The success of an exercise in scaling was to be measured by 

its interpretability, and conversely a useful interpretation added 

confirmation to the number of dimensions used, whilst making a 

local minimum, degenerate or random solution seem unlikely. Stress 

was to be treated with caution because a low stress could mean a 

large number of unreliable, uninterpretable dimensions. Equally 

the axes that defined the solution could be inappropriate for 

describing its structure. Shepard emphasised the need for 

awareness of five points.
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(i) Axis rotation may provide extra insight,

(ii) There is a trade-off between stress and dimensionality,

(iii) Solutions in spaces of one, two and three dimensions 

are more easily appreciated.

(iv) Clusters and circular orderings often arise.

(v) Objective methods can be used to measure variables on 

particular sets of rotated axes as an aid to inter

pretation.

(c) Choice of Dimensionality

In the same spirit Shepard appealed against the common 

practice of extracting too many dimensions, and the over-importance 

attached to the stress value. This had been encouraged by the 

artificial Monte Carlo experiments on the distribution of stress, 

which often applied to spaces of high dimensionality. Furthermore 

what were essentially one-dimensional solutions often arose in two- 

and three- dimensional spaces as ’C*, ’S ’, or helical shapes, a fact 

that could be demonstrated by reordering the rows (and columns) of 

the dissimilarity matrix. There was also the hope that powerful 

mathematics could be developed which would infer the true 

dimensionality from the constraints within the dissimilarity matrix.

(d) Loss or Imposition of Structure Caused by Degeneracy 

Unjustified structure could be imposed if stress took the

value zero, in which case several starting configurations would 

determine the range of possible solutions, and after which more 

objects could be introduced in the analysis, and less dimensions 

used. Shepard recommended a minimum of ten objects for two- 

dimensional solutions.

An alternative cause of low stress was the degenerate case in
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which the objects split into clusters such that all within-cluster 

similarities were greater than all between-cluster similarities, in 

which case zero stress may also have occurred. Thus true structure 

within the clusters was obscured. The tendency for many of the 

least squares monotone regression values to be equal was shown to be 

an indicator of this type of degeneracy. This behaviour was 

undesirable from both the statistical and substantive points of view, 

and if it was possible Shepard recommended that the objects should 

be chosen so as not to be obviously grouped into clusters. If 

degeneracy did occur he recommended reanalysing each sufficiently 

large cluster independently. Finally he showed examples in which 

the monotone fit was to some parametrised functional form which 

would force the distinction between points. This can be thought of 

as a metric method. Indeed this idea has been exploited by 

Critchley (1978, 1980) as referred to in Section 1.3.

(e) Choice of the Underlying Metric

Shepard dealt with the range of Minkowski r-metrics available, 

and pointed out that for values of r apart from two, there were 

even greater problems with slow convergence and local minimum 

solutions. This effect was so pronounced that Shepard advised 

avoiding random starts altogether. The best chance of reaching the 

global minimum was obtained by working outwards from the global 

minimum solution with r taken as two. Stress values could not be 

compared for different metrics, and it was shown that tied 

distances, degeneracies and lower stress values were easier to obtain 

with non-Euclidean, particularly dominance, metrics. In addition 

there was the problem of the misleading representation of the 

structural information for the non-Euclidean metrics which were 

axis dependent. It would also have been difficult to infer the
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correct choice of r from the dissimilarity matrix, since the rank 

ordering of optimum configuration distances among the different 

’r ’ values was likely to be similar. In conclusion it seemed that 

little was to be gained from using anything other than Euclidean 

distance.
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2.9 A Summary and our Approach

In order to summarise our reactions to the methodology and 

rationale behind the studies that have been reported in this chapter 

we first of all explain the reasoning for our approach reported in 

Chapter 3. This can be done by developing the points in precisely 

the same format as that used in Section 2.3, whilst criticising and 

commenting upon the other studies. This will not cover everything 

that has arisen, and so we must append the remaining observations to 

the end of this section. Firstly, however, it seems important to 

develop the reasoning lying behind the use of a ’true’,’parent’ 

configuration in multidimensional scaling simulation studies.

The crucial point is that the final product of a successful 

exercise in scaling is a point configuration. It is not a set of 

distances, nor a least squares monotone regression fit to those 

distances. Thus to be concerned with the effectiveness of a partic

ular algorithm, or to measure its response to error is to be 

concerned with configurations. So it is important to be able to 

measure relative differences between configurations, which the 

procrustes statistic does naturally, and also to measure the absolute 

difference of a reconstruction from a specified yardstick, which is 

provided by a ’true’ configuration.

Whilst a reconstruction which corresponds identically with 

the true configuration minimises the procrustes statistic, it 

need not necessarily correspond to the global minimum of the scaling 

method once error has been added. Here the procrustes statistic pro

vides a natural measure of the effect of the introduction of error. 

Another benefit of using a ’true’ configuration is that it enables 

an easy check to be made to determine whether a scaling method has
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converged to a local minimum solution or not. This becomes clear 

if one or more points has become badly placed. Any methods based 

upon stress itself or, say, rank correlation between dissimilarities 

and distances, would not require ’true' configurations, but would 

correspondingly fail to be sensitive, configuration-based or useful 

in fixing standards. All reported studies have agreed and used 

true configurations.

1. Having decided that it is sensible to use ’parent’,

’true’ configurations we must decide how large to make their 

dimensionality. It is only possible to appreciate solutions from 

scaling methods adequately when these lie in one, two or three 

dimensions. If we realise that one-dimensional solutions show up 

in two-dimensional spaces as horseshoes and ’S’ shapes, then there 

is no danger in seeking a reconstruction in two dimensions, 

particularly as this will give less local minimum problems.

Equally since three-dimensional solutions are that bit more 

difficult to appreciate, a two dimensional solution is usually 

sought first. So the natural first choice when one is scaling is 

a two-dimensional reconstruction. In Sections 3.3 and 3.4 we are not 

concerned with the problem of estimating the dimensionality, 

rather comparing scaling methods and determining the relative 

contributions made by different sized similarity values. Thus the 

natural choice for the dimensionality of the ’true’ configuration is 

two. However in Section 3.2 we are concerned with the robustness of 

one particular method, classical scaling, and the effectiveness of 

criteria for determining the true dimensionality from the eigenvalue 

spectrum. So in that section we use spaces of two to six 

dimensions, although once again we place most emphasis on two- 

dimensional true configurations.
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2, The next step is to consider the number of points that 

should be used. Here we differ considerably from most previously 

published studies. It seems that a typical problem in psychology 

involves about twenty objects. That most of the development of the 

subject has taken place in psychology is reflected in the small 

numbers of objects that these studies have used. We seek to 

demonstrate that scaling has a much broader field of application.

It was felt that fifty objects would correspond to a medium-sized 

problem, and accordingly this is the number that has been used in 

all our simulations. Subsequent experience suggests that this might 

even be unrealistically small. For example, the three applications 

reported in this thesis all involve scaling at least one hundred 

objects. However, in the interests of conserving computing 

resources and bearing in mind that different behaviour is unlikely 

to arise beyond such a level, fifty points would seem to be quite 

adequate for our simulation studies. Our configurations are 

generated by realising these fifty points uniformly and independ

ently in the unit disc of appropriate dimensionality, but the only 

feature of real significance is, in our view, that the configurations 

should be roughly spherical with no special structure. We do not 

generate an unlimited supply of new configurations, but we do use 

enough to provide a check against being misled by the behaviour of 

any particular one.

3. The models that have so far been described to derive the 

dissimilarity matrix from the true configuration are open to some 

criticism. Firstly it is our view that in the majority of applicat

ions of scaling methods it is not appropriate to assume that the 

observed dissimilarities differ from the true interpoint distances 

by errors that are independent. This has been the case in all the 

error models we have described so far, for they produce independent
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errors. Secondly, all the models we have seen have set up an error 

distribution by decree, usually adding to interpoint distance a normal 

deviate. No justification has been attempted for this approach.

Thirdly some models have used a non-Euclidean Minkowski metric. To 

do so would normally presuppose the search for a best representing 

solution considering all Minkowski parameters, and we accept Shepard’s 

(Section 2.8) warnings about the lack of wisdom of such an approach.

In Section 3.1 we describe the four Euclidean models that we use for 

the generation of dissimilarities. These are designed to be simple, 

but practically relevant, and are based upon simple ideas from 

geometry and probability and use measures of similarity commonly 

employed in taxonomy. At once we are able to introduce dependent 

errors, test the effects of dependence and use naturally occurring 

error distributions. It is always possible to produce plots of the 

actual interpoint distance against the derived dissimilarity, and 

this we do to show up the spread and nearness to linearity of the 

relationship.

4. In common with nearly all the other simulation studies

we are able to vary the error level and so determine the sensitivity 

of the scaling methods to different amounts of error. Not only is 

this a vital element in the study of robustness, but also the use of 

different error levels enables us to draw conclusions about the 

types of dissimilarity matrix for which the varying scaling methods 

will be appropriate. In nearly all of our studies we use six levels 

of error and these are admitted quite naturally by the models described 

in Section 3.1.

5. The other studies have demonstrated that a large variety 

of versions of Kruskal’s original algorithm are available in computer 

packages. All of these are aiming to solve the same problem, even
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Guttman-Lingoes’ SSA-I in which the actual algorithm is slightly 

different. The version of MDSCAL that we use was developed by 

Robin Sibson at Cambridge and offers all of the options outlined in 

Kruskal’s original papers with a few extras, and is written in an 

exceptionally compact and efficient manner. The classical scaling 

program was produced by the same author in the same style and relies 

upon the NAG subroutine F02ABF for eigenvalue extraction. The other 

scaling method we describe, least squares scaling, has been 

implemented by Adrian Bowyer and Robin Sibson at Bath and depends 

upon Fletcher-Reeves function minimisation by conjugate gradients 

as programmed by NAG in their subroutine E04DBF. The procrustes 

analysis program was produced by Adrian Bowyer, and again depends upon 

the subroutine F02ABF. The theory behind these techniques is 

developed in Sections 1.4, 1.3, 1.5 and 1.2 respectively.

6. In accordance with all of the other studies we have 

reviewed we use Euclidean distance in relating the reconstructed 

configuration to the dissimilarity matrix. This is appropriate,in 

order to correspond to the measurements used in forming the 

dissimilarities as described in Section 3.1 and defended earlier.

Any more elaborate method would require ample justification in 

the light of Shepard’s (1974) warnings.

7. Two situations arise when we consider the number of 

dimensions to choose in reconstructing our configurations. Firstly 

when we are comparing methods (Section 3.3) we are not directly 

concerned with the choice of dimensionality, rather the relative 

Success of the algorithms, and so we do no more than reconstruct the 

configuration in the correct number of dimensions, assuming that 

this can be determined in practice. Secondly, however, when we are 

looking at classical scaling (Section 3.2) we are effectively 

solving the scaling problem for all levels of dimensionality
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simultaneously. The problem with classical scaling comes in 

choosing how many of the available dimensions to accept. We can 

examine our criteria without having to compare our solution with the 

original configuration. After we have done this we can look at the 

precision of the reconstruction by first choosing exactly the 

correct number of dimensions and then using our measure of goodness- 

of-fit, namely the procrustes statistic, to enable us to do this.

8. Nearly all of the studies we have reviewed have used

Kruskal’s optimal stress value and the correlation between true and

recovered distances in order to assess the success of the recovery

of the true configuration. One exception was the paper of Cohen and

Jones (1974) who used Percentage Intersection Variance as well, but

this is also a form of correlation coefficient. Specifically, if

r,j is defined as the correlation between true and reconstructed dd
dimension d after procrustes fitting, then

3 2P.I.V. = ( I rj,)/3 . 
d=l

We feel that these methods leave a lot to be desired. Cohen and 

Jones have themselves pointed out a number of objections to using 

correlation to measure recovery. Firstly, it is insensitive for 

similar configurations, and these will often be our concern. Also 

it can be drastically misleading following the displacement of one 

single point. It is unaffected by the addition of a constant to 

either or both sets of distances. Neither does it deal 

satisfactorily with the comparison of configurations of differing 

dimensionality. We would summarise all these objections by saying 

that the correlation coefficient simply fails to relate properly 

to either the geometrical or the probabilistic aspects of the problem.
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The other common measure of the success of the reconstruction is the 

Shepard-Kruskal stress achieved at optimality in the ordinal method.

This seems to us to reflect a misunderstanding of the role of the 

optimised stress function, which measures the euclideanness of a 

set of ordinal data, and not the extent to which the reconstruction 

matches the original configuration. It is quite easy to derive 

measures of resemblance other than the correlation function between 

the distances in the original and reconstructed configurations; some 

of these look rather like the stress. However, when used as 

measures of the success of reconstruction, most of the same 

criticisms may be applied to these as to the correlation coefficient: 

all such measures miss the point of the problem, which is that it is 

configurations, not distances, which must be compared. The approach 

we adopt,using procrustes statistics, avoids these criticisms.

We always compare a recovered configuration Y with its parent 

configuration X by using a procrustes statistic: see Section 1.2 and 

Sibson (1978). The particular form of statistic employed allows Y 

to be fitted to X under the action of the group of similarity 

transformations, that is, the group generated by translation, rotation, 

reflection and uniform scale change. This leads to the statistic 

Gg(X,Y) as in (1.2.5) and we normalise this to Yg(X,Y) as in (1.2.6). 

We use Yg(X,Y) which lies in the range Co,l] , for all our comp

arisons. It is appropriate to do this even with classical scaling, 

because in practice the approximately linear relation between 

dissimilarity and distance is usually an unknown one.

9. Estimation of the variance of the distribution of the 

procrustes statistic for a particular combination of parameters has 

been made possible by repeated realisations from the random processes 

involved. In particular in the classical scaling studies of Section 3.2
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we use ten replications. In the comparative studies of Section 3.3 

the idea is to use the same dissimilarity matrix with different scaling 

methods, and so the emphasis is not so much on the distribution of the 

procrustes statistic and replications are not so essential. However 

it is possible to repeat the whole procedure for different matrices 

and this we have done. Similarly the Section 3.4 simulations on the 

relative importance of different sized dissimilarities for good 

reconstruction rely on using one matrix in different ways, but again 

this is repeatable, and we do repeat to a limited extent.

10. It has emerged that there are several features of unusual 

interest in our scaling studies. Our aim is not so much to compare 

adaptations of the same algorithm, but rather to treat different 

methods of scaling. Here the emphasis is on the use of classical 

scaling and its robustness (Section 3.2), but least squares scaling, 

ordinal scaling and preprocessing techniques are also considered 

(Section 3.3). To do this we develop four euclidean models for the 

generation of dissimilarities (Section 3.1) which enable us to 

investigate dependence among errors, these models being quite unlike 

anything that has appeared previously. We are concerned with problems 

of local minima, and correct choice of dimensionality in classical 

scaling, but these topics are dealt with as they arise rather than 

being our focus of attention. The final point of novelty is the 

development of the procrustes statistic as the tool for comparing 

configurations.

We now turn to mention other relevant points arising from these 

studies.

One recurring theme has been the inadequacy of stress for 

measuring the success of a reconstruction. It has been emphasised 

that stress is far too dependent upon the number of objects and number
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of dimensions to be comparable for different values of these 

parameters, and it has been demonstrated that larger stresses may 

correspond to more precisely constrained configurations. In view of 

this it seems to have been rather futile to expend so much energy in 

computing random ranking stress distributions. These efforts have 

been dogged by the need to perform the simulations for every possible 

combination of parameters, the need to avoid local minima and the 

need to justify the use of a set of 'structureless similarity 

matrices'. Unfortunately failure has occurred in all three areas; 

the ranges of parameters are limited, accusations are made 

concerning the studies' reliability and little practical use has 

been made of the results.

The contributions made by different sized similarities are 

discussed in Section 3.4.

It is our experience that the configuration obtained by 

classical scaling has been most satisfactory in avoiding merely 

local minima. Clearly the extent of the euclideanness of the 

dissimilarities will determine how reliable this method will be. 

However if the dissimilarities are clearly not very euclidean it is 

always possible to devise a transformation which will cause an 

improvement. An additive constant and simple power transformation 

are useful first steps. More complicated, but in the same spirit and 

very useful, is the TORSCA technique of replacing the dissimilarities 

by the least squares monotone regression fit values obtained with the 

classical scaling configuration. This can establish an iterative 

approach. With these extra facilities the use of classical scaling 

seems uniformly powerful.

Finally we note that the applications reported later in this 

thesis provide examples of several of Shepard's remarks on
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interpretability. Circular orderings abound in Chapter 4; Chapter 6 

shows the formation of clusters, and the objective choice of axis 

in aiding interpretation is illustrated in Chapter 4 and Chapter 7.
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3.1 Euclidean Models for the Generation of Similarities

The techniques that we use for testing the operation of 

scaling methods have been previewed in Section 2.9 as a response to 

the work of others. In particular we have defended the use of 

’parent’, ’true’ configurations and introduced our choice of such 

configurations as those of fifty points lying in spaces of 

dimensionality from two to six, generated independently from a 

uniform distribution over the unit disc. We now turn to a detailed 

account of the four euclidean models that are used to generate 

similarities. These are based upon simple geometrical and probabilistic 

constructs with a view to allowing dependent errors and different 

quantities of error. A range of conditions are thus provided for our 

various scaling methods. In addition the models use measures that 

are commonly employed in taxonomy and so have an added appeal. The 

effects of dependence are examined more exactly by arranging that 

one of the four models is a version of another with errors forced 

to be independent. See also Sibson, Bowyer and Osmond (1981) for an 

alternative account of these models. Much of the derivation of the 

following models is due to the first author of that trio.

Binomial Hyperplane Model

The first model is an attempt to represent the simple matching 

coefficient of numerical taxonomy in which objects are compared by 

counting the number of attributes (variables) in which they concur 

and normalising with respect to the total number of attributes. If 

the attributes are coded into 0 (absent) and 1 (present) we have a 

straightforward form of binary data. The total number of differences 

between any pair then provides a metric which is known in 

communication theory as Hamming distance. For a specified 

configuration in k dimensions, random Hamming distances may be
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generated by a number of randomly located hyperplanes, each of which 

divides the space into two half-spaces, one arbitrarily coded as 0, 

the other as 1. If the hyperplanes are realised from a Poisson 

hyperplane process, then each Hamming distance is almost surely 

well defined, finite, and has a Poisson distribution, the parameter 

of which is the product of the euclidean distance between the two 

points and the intensity of the process, where this is expressed in 

appropriate units. The Hamming distance may then be seen to be just 

the number of hyperplanes that are traversed in passing from one point 

directly to the other. The mean Hamming distance will then be 

proportional to the corresponding euclidean distance, so that the 

relationship between them is roughly a linear one. As the intensity 

of the Poisson process becomes large, so the relative values of the 

system of Hamming distances converge to those of the euclidean 

distances. The Hamming distances are not independent; any two of 

them together have a bivariate Poisson distribution (see Mardia, 1970) 

whose parameters may be expressed in geometrical terms.

For example, consider the two-dimensional situation where

P(p) denotes a Poisson random variable with mean y.

denotes the number of Poisson lines intersecting line segment XY. 

X, the intensity, is expressed in units to make the expected number 

of lines intersecting a segment of unit length equal to two.

Four non-trivial cases may occur (see e.g. Kendall & Moran (19630 )

(1) «AB & AC ~ P(AB+AC-BC)))
Na b & bc P(AB+BC-AC)) independent 

”a C & BC ~ P(AC+BC-AB))
N = N + NAB AB & AC AB & BC
N = N NAC AB & AC + AC & BC
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(2) A/I \/ \

J /

N,^ , P(2AD+DC+DB-AB-AC)
A D  Qt rSL

«AD & BC= ~ P(AB+AC-BD-CD)

. .T\C ~ P(2BC-2AD-BD+AB+AC-CD) 
BC  & A D

independent

ÎJ = N + N cAD AD & BC AD & BC

N = N + N cBC BC & AD BC & AD

(3) , A  ^AB & CD P(AD+BC-AC-BD)

; (KAB&AC+%AB&BD) ~ P(2AB+AC+BD-BC-AD)
C -------  D

(KCD&AC+KCD&BD) ~ P(2CD+AC+BD-AD-BC)

independent

N = N  + ( N  + N  )AB AB & CD  ̂AB & AC AB & BD^

N = N  + ( N  + N  )CD CD & AB  ̂ CD & AC CD & BD^

(4) Ax N*-o , ~ P(2AB+2CD-AC-CB-BD-DA))A B  QE CD ^

^  ^ \ c &AD"^^BC&BD^ P(AC+AD+BC+BD-2CD)^ independent
)

(%CA&CB+HDA&DB) ~ P(AC+AD+BC+BD-2AB))

N = N + fN + NAB AB & CD  ̂AC & AD BC & BD^

N = N + fN + N )CD CD & AB  ̂ CA & CB DA & DB'̂

In each case we are interested in the joint distribution of 

two Poisson variables X,Y which may be written as:

where Z^, Z^, Z^ are independent Poisson variables. But this is

precisely the condition specified for the bivariate Poisson
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distribution described by Mardia.

The system as a whole will have as its joint distribution a 

multivariate generalisation of this bivariate Poisson distribution.

All realisations of systems of Hamming distances arising from this 

joint distribution will automatically satisfy the metric inequality. 

Hamming distance is in fact just one of a large class of dissimilarity 

functions which do so (Gower 1971) . We call this model for the

generation of euclidean-like distances the Poisson hyperplane model. 

However in practice it is more convenient to condition on the total 

number of hyperplanes involved, whereupon Poisson distributions 

become binomial, and it is in this form that we actually realise the 

model. We give two examples of the dependence of this binomial 

hyperplane model distance upon euclidean distance in the 

configuration. Fig. 3.1.1 was produced from 50 hyperplanes;

Fig. 3.1.2 derived from 500 hyperplanes. In Fig. 3.1.2 the points 

lie in a narrow band demonstrating the near-linearity of the two 

distances, and with less hyperplanes the width of the band is 

correspondingly greater.

Independent Binomial Model

In order to be able to assess the effects of the dependence 

structure we have described in the binomial hyperplane model we 

introduce another model in which each individual dissimilarity has 

the same distribution as in the binomial hyperplane model, but the 

dependence is removed, producing a model with independent errors.

Thus each dissimilarity has a binomial distribution with parameters 

N, the number of hyperplanes, and p, the probability of one 

hyperplane intersecting the line segment of interest. The 

dissimilarity-against-distance plots arising from this independent 

binomial model are visually indistinguishable from those arising in 

the binomial hyperplane model.
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FIG. 3.1.1 Binomial Hyperplane Dissimilarity Plotted Against 

Euclidean Distance; 50 Hyperplanes
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FIG. 3.1.2 Binomial Hyperplane Dissimilarity Plotted Against 

Euclidean Distance; 500 Hyperplanes
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Jaccard Distance Model

The third model is chosen to treat dissimilarities which 

arise in problems where data are in binary objects-by-attributes 

form, and where 0 corresponds to absence, 1 to presence. Such 

data occur in plant ecology, where the objects are sites, and the 

attributes are plant species which are recorded as either present or 

absent at each of the sites. A commonly used coefficient in such 

cases is Jaccard’s coefficient, which we use to form our Jaccard 

distance model. This is obtained by dividing Hamming distance by 

the number of attributes present in either or both of the two objects 

under consideration. Jaccard distance also produces a metric, 

although it takes values in the range zero to one, and so its 

relationship to euclidean distance certainly cannot be linear.

We describe a method of generating random Jaccard distances as 

follows. Each attribute is "present" over a region of space interior 

to a disc, whose radius is drawn from some fixed distribution, and 

whose centre is a point in a realisation of a Poisson point process. 

Provided that the expected disc area is finite all Jaccard distances 

will be almost surely well-defined, except when two objects each 

lie in no discs at all. In this latter case we arbitrarily assign 

value unity. Any version of this model is characterised by the rate 

of the Poisson point process and the nature of the radius distribution, 

For a fixed radius distribution the relationship between euclidean 

distance and expected Jaccard distance is a monotone one, and has 

decreasing fluctuation about the mean as the intensity increases.

In Fig. 3.1.3 we show the form of the value of the expected Jaccard 

distance plotted against euclidean distance for a fixed radius of 0.2. 

The three curves correspond to fixed values of 20, 50 and 100 discs 

and are based upon exact (up to computer accuracy) calculations.
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FIG. 3.1.3 Expected Jaccard Distance Dissimilarity Plotted Against 

Euclidean Distance; 20, 50 and 100 Discs of Fixed 

Radius 0.2
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The concave relationship is shown up. The dependence of this 

monotone relationship on the nature of the radius distribution is 

calculable in principle, but has no simple form and is better 

treated as unknown. This model is of particular interest for 

comparisons between classical and ordinal scaling, for the non- 

linearity of distance relationship would be expected to be handled more 

effectively by the ordinal method. In Fig. 3.1.4 we show a typical 

dissimilarity-versus-distance scatterplot. In practice we use an 

exponential radius distribution or a constant radius distribution 

and condition on the total number of discs. In Fig. 3.1.4, 500 discs

were used and the exponential radius distribution had mean 0.2.

Again the width of the spread about the expected line is inversely 

related to the number of discs.

Wilkinson Metric Model

The final model relates to abuttal data. As derived in 

Section 1.11, the Wilkinson metric or graph - theoretic distance 

between two points is the minimum number of contiguities traversed 

along a path from one point to the other via contiguous points. 

Contiguity is here defined via the Dirichlet tessellation. The 

distribution of euclidean distance between contiguous points in a 

planar Poisson process is known (Miles, 1970; Sibson, 1980) but 

this knowledge does not extend to points at larger Wilkinson 

distances. However it appears from simulation that the mean 

euclidean distance is close to linear with the Wilkinson metric in 

two dimensions, which for computational reasons is the only currently 

practicable case. A simulation model may be obtained by taking a 

fixed configuration of points between which the values are to be 

calculated, and superimposing on this a realisation of a Poisson 

process. The Wilkinson metric for the combined configuration may
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FIG. 3.1.4 Jaccard Distance Dissimilarity Plotted Against

Euclidean Distance; 500 Discs with Radius Distribution 

Exponential Mean 0.2
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then be calculated from its Dirichlet tessellation. In practice, 

of course, only finitely many additional points are generated. These 

are taken over a region larger than that occupied by the original 

configuration in order that edge effects may be negligible. As the 

number of additional points increases it appears that, as in the other 

models, the relative variability of the Wilkinson metric decreases.

We generate the model, conditioning on the number of additional 

points, these being taken from a disc concentric with that containing 

the original points, but of radius two. In Fig. 3.1.5 we show the 

effect of 3,200 additional points in this larger disc.

Preprocessing Techniques

In Section 1.7 we described the reasoning underlying 

preprocessing techniques, and introduced the two particular trans

formations corresponding to assumptions of normal and uniform 

distributions of the parent configuration. It is instructive to see 

what form of dissimilarity-versus-distance plots such transformations 

induce. Figs. 3.1.6 and 3.1.7 are based upon two dissimilarity 

matrices from the Jaccard distance model, using an exponential 

radius distribution of mean 0.2 with 1000 discs. The two figures 

correspond to the normal and uniform assumptions respectively. For 

the normal assumption the plot is much more linear than was the 

original matrix, however there is a tendency for values at large 

distance to be too high and this corresponds to the lack of upper 

bound on the normal distribution. For the correct uniform 

assumption the linearity of the plot is greater still, and this 

applies at all levels of distance. This behaviour is not surprising 

and is not specific to this particular choice of matrices.
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FIG. 3.1.5 Wilkinson Metric Dissimilarity Plotted Against

Euclidean Distance; 3,200 Additional Points in the 

Larger Disc
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3.2 Simulation Studies of Classical Scaling

Each of the four euclidean models derived in the previous section 

is now used to assess the robustness of classical scaling. We use 

procrustes statistics to measure the degree of departure from the 

original configuration. In these studies we also examine the effect 

of the trace criterion, magnitude criterion and preprocessing 

transformations.

Design

Altogether 976 trials of classical scaling are reported in this 

section. The design is summarised in Table 3.2.1. Five two- 

dimensional configurations are used; one each in three, four, five 

and six dimensions. Six levels of error are allowed for each model 

by varying the number of hyperplanes, discs or points used to 

generate values. To compare different numbers of dimensions we make 

the standardisation that the expected number of hyperplanes 

intersecting a line segment of given length should be a constant.

Thus in six dimensions "1000 hyperplanes" should be interpreted as 

that number of hyperplanes which will give the same expected number 

of cuts of a line segment of length I , as would 1000 hyperplanes 

in two dimensions; generally this number will be higher as the 

number of dimensions increases, for in n dimensions the 

probability that a hyperplane cuts a line segment of length £ is 

given by

&r{|n}

(n-l)/^ r{4(n-l)}

For the Jaccard distance model the radius of discs that cut the unit 

disc is given an exponential distribution with mean either 0.2 or 1.0 

It is not necessary that the centre of the disc should lie within the
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unit disc. For the Wilkinson metric model extra points are added 

to the centre disc of radius two, the combination being tessellated 

in the square -4 ^ x,y ^ 4. Both of these are precautionary 

measures to minimise edge effects. Since the Wilkinson distances 

increase approximately as the square root of the number of points 

in the unit disc,we may use /(50 + | extra points) to measure the 

level. Preprocessing is also assessed, using the assumption 

(which is incorrect) of an underlying bivariate normally distributed 

configuration. This is done on different matrices from the 

unprocessed version, so that comparisons are unmatched.

Results

Mean values and sample standard deviations for the procrustes 

statistic are provided in Table 3.2.2. Corresponding log/log plots 

of procrustes statistic against error level are shown in Fig. 3.2.3 

(binomial hyperplane). Fig. 3.2.4 (independent binomial).

Fig. 3.2.5 (Jaccard Distance), Fig. 3.2.6 (processed Jaccard 

distance) and Fig. 3.2.7 (Wilkinson metric).

Overall Impressions. The distribution of the procrustes
2statistic is known to be approximately of a general x in type 

(Sibson, 1979) , so it is not surprising that it is quite skewed, 

with occasional values being very high. The range and standard 

deviations of the replications are thus quite large. A few general 

rules stand out. The mean value increases with dimensions, decreases 

as the rate of the underlying Poisson process increases and is always 

smaller for the larger of the two Jaccard distance model disc radii.

Binomial Hyperplane Model. Each of the doubly logarithmic

plots is remarkably linear with slope close to -1 , indicating that 

the dominant term in the procrustes statistic is constant/number of 

hyperplanes. The actual value of the constant is dependent upon the
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FIG. 3.2.3 Log Mean Procrustes Statistic Plotted Against Log

Hyperplanes for Classical Scaling Simulations of

Binomial Hyperplane Model
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FIG. 3.2.4 Log Mean Procrustes Statistic Plotted Against Log

'Hyperplanes' for Classical Scaling Simulations of

Independent Binomial Model
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FIG. 3.2.5 Log Mean Procrustes Statistic Plotted Against Log

Discs for Classical Scaling Simulations of Jaccard

Distance Model
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FIG. 3.2.7 Log Mean Procrustes Statistic Plotted Against Level

for Classical Scaling Simulations of Wilkinson Metric 

Model
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dimensionality, the standardisation used to compare dimensions, and 

the procrustes statistic normalisation used. It would seem that the 

procrustes statistic could be made arbitrarily small with any 

specified probability less than one, given sufficient hyperplanes.

Independent Binomial Model. Here again there is emphatic 

"constant/number of hyperplanes" behaviour for both dimensionalities, 

However the constant is quite different from that found in the 

binomial hyperplane model. For the two-dimensional configurations 

it is smaller by a factor of about two. For the six-dimensional 

configuration it is slightly larger, although there is a tendency 

for the difference to diminish with more hyperplanes. The only poss

ible cause for the inferior performance of the binomial hyperplane 

model in two dimensions is the covariance structure which must act 

to reduce the available information about true interpoint distance.

Why does this effect not work for six dimensions? As we move 

from two to just three dimensions we observe a slackening of the 

constraints upon the line cutting process. For example, in two 

dimensions three non-collinear line segments may be arranged so 

that a line may pass through at most two of them. However in three 

dimensions a plane may pass through any three such segments. As the 

dimensionality of the space increases such freedoms increase and the 

covariance structure is much weaker. On the other hand if we 

reduce the dimensionality and consider what would happen in one 

dimension, we see that the 1225 entries of the data matrix are 

entirely determined by the 49 Poisson (or binomial) random 

variables defining the number of cuts between neighbours of the 

configuration on the interval (-1,1). Thus the 49 random 

variables contributing to the Poisson hyperplane model may be 

compared with the 1225 random variables producing the independent
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binomial model, which has therefore much more information and is 

likely to provide a more satisfactory scaling solution.

Jaccard Distance Model. Here the doubly logarithmic plot is 

much flatter than before. As the number of discs increases the 

dissimilarities become closer to their expected values, which are not 

linear with configuration distance, so that it is uncertain that 

classical scaling will ever be able exactly to reproduce the original 

configuration. It is not practical for us to allow enough discs to 

gain a clear impression as to whether the procrustes statistic may 

become arbitrarily small, or will remain above a fixed level 

dependent upon the disc radius distribution. The limitations of 

classical scaling are seen most clearly for this model, and the 

improvements provided by other models are demonstrated in the 

following section.

Wilkinson Metric Model. Here again the doubly logarithmic

plot is quite linear with slope about -1. This has been achieved 

by transforming the number of extra points, so that the behaviour is 

constant//(no. of extra points). Again it seems likely that the 

procrustes statistic could be made arbitrarily small.

Processed Jaccard Distances. For discs of mean radius 1.0 

the processing does not improve the mean procrustes statistic. Two 

factors contributing to this are the incorrect assumption about the 

underlying configuration, and the lower values that are obtained for 

the discs of mean radius 1.0 as compared with those of mean radius 0.2 

For these latter discs quite considerable improvements are made, for 

the original values are that much further from euclidean. This may 

be deduced from the fact that for discs of constant radius 1.0 the 

intercepts of the expected Jaccard distance curves are pulled down 

towards the origin relative to those of Fig. 3.1.3. Thus there is
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evidence in favour of preprocessing a matrix that is known to be far 

from euclidean.

Eigenvalue Spectra. When scaling in practice it is normal 

to inspect the eigenvalue spectrum in order to gauge how many 

dimensions are required for the solution. We provide an impression 

of how the spectra appear in the presence of differing amounts of 

error in the following figures: Fig. 3.2.8. (binomial hyperplane 

model, 2 dimensions). Fig. 3.2.9 (binomial hyperplane model,

6 dimensions). Fig. 3.2.10 (independent binomial model, 2 dimensions). 

Fig. 3.2.11 (independent binomial model, 6 dimensions). Fig. 3.2.12 

(Jaccard distance model) and Fig. 3.2.13 (Wilkinson metric model).

The form of each of these is as follows. The loading on each of the 

leading nine eigenvalues is plotted for six levels of error where the 

loading is defined as the percentage of the sum of the first nine 

eigenvalues, averaged over replications. Direct comparison of 

Fig. 3.2.8. and Fig. 3.2.10 shows that the binomial hyperplane model 

produces a more clearly defined configuration dimensionality. The 

same is seen by comparing Fig. 3.2.9 and Fig. 3.2.11. If 

hyperplanes are sparse in some direction, dissimilarities measured 

perpendicular to this direction tend to be small, and the resultant 

configuration is more one-dimensional than the original. This 

accounts for the frequent overloading on the first dimension at high 

error levels of the binomial hyperplane model, which does not 

occur in the independent equivalent. These two major differences can 

only be attributed to the correlation structure. For the Jaccard 

distance model there is a different sort of behaviour. The 

perturbed zero eignevalues do not die away so quickly and, as the 

number of discs increases, more of them become positive. This latter 

effect would also be observed if an increasing constant term was
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added to all dissimilarities, although in that case all eigenvalues 

would become similar in magnitude, even the genuine positive ones. 

Here intermediate dissimilarities are being forced to be larger 

than would be anticipated by the concave dissimilarity/true 

configuration distance relationship. For the Wilkinson model slow 

convergence is seen. When there is loading left in the higher 

dimensions this corresponds to additional information, both 

useful and noisy, that can be used by ordinal scaling, as the 

comparative results will show.

Trace and Magnitude Criteria. The trace criterion for 

determining the true dimensionality of a configuration suggests 

that the sum of genuine positive eigenvalues ought to be 

approximately equal to the sum of all the eigenvalues. The 

magnitude criterion suggests that any positive eigenvalue whose 

magnitude does not substantially exceed that of the largest negative 

eigenvalue should be rejected as spurious. Here we have an ideal 

test for these ideas for we know the true configuration 

dimensionality. In Table 3.2.14 we provide the most common estimate 

of dimensionality for all of the combinations of model and error.

The criteria are applied strictly in that the closest approximation 

to total trace is used for the first; the eigenvalues larger in 

magnitude than the most negative are used for the second. It is 

doubtful whether such an approach would be adopted for the magnitude 

criterion in practice. A multiplicative factor of at least two would 

probably be used. The results show the need for the dissimilarity/ 

distance relationship to be roughly linear for this approach to work 

well. For the binomial hyperplane and independent binomial models, 

where this is so, there is some success, particularly as the 

underlying intensities increase. The magnitude criterion is
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marginally better. For the Wilkinson metric model the methods are 

less successful, often identifying a third dimension. However for 

the Jaccard distance model, the results are affected by the 

increasing numbers of positive perturbed zeros and are increasingly 

wayward. If the two-dimensional normal assumption is made, then 

these results are reversed, for the set of dissimilarity values are 

forced to look two-dimensional, and the criteria reflect this.
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3.3 Comparison of Scaling Methods

We now turn to consider other scaling methods, and use the 

four probabilistic models and procrustes statistics to compare the 

relative accuracy of the configurations recovered by them.

Design

Thirty dissimilarity matrices were derived from all combina

tions of the four probabilistic models, Jaccard distance being 

included twice with different disc radius distributions, and the 

six levels of intensity. These matrices were then used as input for 

the scaling methods which were thus compared on the same data. Only 

two-dimensional configurations were used. Classical scaling, 

ordinal scaling (based on classical and random starts) and least 

squares scaling (with weights all one, and with weights 1 / 6 were 

all used with these matrices. For the Jaccard distance matrices the 

two preprocessing transformations we have defined were also applied 

before using classical scaling. The two disc radius distributions 

were exponential with mean 0.2, and constant radius 0.2.

Several other simulations were attempted in order to test the 

consistency of the results presented here, but these were not

systematic in nature and are not presented. They were in general

agreement.

In summary we may express the three main aims of this 

comparison as follows:-

(i) To determine the relative accuracy of the methods.

(ii) To examine their behaviour for matrices with

differing degrees of linearity.

(iii) To examine their behaviour for matrices with

differing degrees of error.

Additional factors that emerge are:-
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(iv) The influence of the weights in least squares

scaling.

(v) The influence of the assumed distribution in the

preprocessing transformation.

(vi) The relative merits of random and classical starting

configurations.

Results

The results are summarised in Table 3.3.1 which provides the 

procrustes statistic from each of the 144 combinations of model, 

scaling method and error level.

To answer (ii) above we look at the results from the point of 

view of the probabilistic models.

Binomial Hyperplane. Although the configuration generated

by classical scaling is always least accurate, the differences are 

not great. Ordinal scaling and least squares scaling with unequal

weights provide the best solutions, the latter for the lower levels 

of error. The eigenvalue spectrum for the binomial hyperplane model 

is clearly two-dimensional, so that it is not surprising that the 

methods tend to work equally well.

Independent Binomial. Again the classical scaling

configuration is always the worst, and this time the differences are 

quite marked. The eigenvalue spectrum for the independent binomial 

model reveals more loading on the later eigenvalues, which contain 

information that may be used by the other methods. One of the 

least squares scaling formulations is always the best, indicating 

that these methods work particularly well for such strongly 

euclidean matrices.

Jaccard Distance (Variable Radius). Classical scaling

works badly for this non-linear dissimilarity/distance model and
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produces the highest procrustes statistics. It can be improved by 

the preprocessing transformations. Similarly the least squares 

methods are inferior to ordinal scaling when the error levels are 

low. For high levels of error none of the methods can cope 

adequately, and in these circumstances the least squares results 

are some of the best.

Jaccard Distance (Constant Radius). In this formulation

all dissimilarities corresponding to points at distance greater than 

0.4 are equal and 1.0. The least squares methods are quite unable 

to cope with this, and consistently produce bad reconstructions. 

Classical scaling is slightly better and can be improved by 

preprocessing. Ordinal scaling never produces a configuration that 

is markedly inferior to the other models’, and becomes the best 

when less error is present.

Wilkinson Metric. Similar observations may be made as to

those from the binomial hyperplane model. Classical scaling 

reconstructs the configuration slightly less satisfactorily, while, 

amongst the other methods, weighted least squares scaling is 

particularly successful.

To answer (i) we look at the results from the point of view 

of the scaling methods.

Classical Scaling. The success of classical scaling is 

highly dependent upon the euclideanness of the dissimilarity matrix. 

It compares favourably with the ordinal method for euclidean 

matrices, particularly where the eigenvalue spectrum shows clear 

indications of the true dimensionality.

Least Squares Scaling. Again this method is more suitable

for euclidean matrices, for which it is superior to classical 

scaling and often to ordinal scaling. It is less successful in 

dealing with non-euclidean matrices.



— 127 —

Ordinal Scaling. This method hardly ever produces a

solution that is badly inferior to that of another method, and so 

it seems uniformly trustworthy.

Preprocessing. The technique of preprocessing nearly

always improves the procrustes statistic from classical scaling.

Other Important Considerations. The weighted form of 

least squares scaling is more accurate in twenty-two of the thirty 

possible comparisons, and is therefore recommended. This finding 

conforms to the maximum likelihood theory underlying this choice of 

weights. In the same vein, the preprocessing transformation 

based upon the (correct) uniform assumption is superior in ten of the 

twelve possible comparisons. This suggests that the technique may 

be quite sensitive to the details of the underlying structure.

Finally it is important to record that nearly one half of the 

random starting configurations that were used failed to reach the 

same minimum of the stress function as attained by the classical 

scaling starting configuration, and thus often resulted in inflated 

values of the procrustes statistic. We have no guarantee that we 

always reach the global minimum, but repeated random starts and 

other arrivals at the same minimum suggest that this problem is not 

too serious, when a classical starting configuration is used.
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3.4 Simulations on Scaling Subsets of Similarities

In this section we refer to simulation tests on the 

feasibility of using a small part of a similarity matrix. One 

complete matrix is used, and this is derived from the Jaccard 

distance model of Section 3.1 with parameters, the number of discs 

as 1000 and the radius distribution as exponential with mean 0.2.

The underlying true configuration is two-dimensional with fifty 

points in the unit disc. Jaccard distances provide the sternest 

test of the ability of ordinal scaling to reconstruct a configuration.

Two different approaches are used. In the first, each point 

is taken in turn, and K other points are randomly (independently 

from a uniform distribution) selected so that the similarity with 

them is regarded as known. Pairs that are not selected in this way 

are taken to have unknown similarity value. For any pair, the
2probability of the value being defined is thus: 2(K ) - (K )

(49) (49)2

In the second approach each point is again taken in turn, but this 

time the K smallest dissimilarity values with other points are treated 

as known. In this case the acceptance of a value depends upon its 

size, and we may expect that less values will be known for the 

equivalent K.

Ordinal scaling is applied to the reduced matrix in the following 

way. First of all, because we want to measure the fineness of detail 

that is contained within the matrix, we do not want to become 

entrapped in any locally minimum solutions that would distort the 

results. A particular device that we use to reduce the possibility 

of such an event is to start the iterative method from the true 

configuration. In comparison studies we were genuinely interested 

in the ability of the method to avoid local minima; here this is
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not the immediate problem. Secondly, as the values are selected 

radially from each point it seems appropriate to use local order 

scaling. The other merit that this has in this context is that it 

reduces the number of comparisons that need to be made to those with 

a common endpoint, and thus streamlines the computation even further. 

All other parameters are chosen with the conventional values used 

in this thesis.

The measure of departure from the true configuration is made 

by a procrustes statistic, as usual. This is produced for nine 

different values of K for each of the similarity selection approaches 

In addition results from the complete matrix are available. Summaries 

of the success of the approaches are presented for the random 

selections in Table 3.4.1 and Fig. 3.4.2, and for the small values 

in Table 3.4.3 and Fig. 3.4.4.

As the minimum number of similarities in each row increases 

(and hence so does the density) the final stress value also increases 

for both cases. This behaviour is similar to that by which the 

final stress tends to increase with more points, as widely observed 

in the papers reported in Chapter 2. It is not surprising that the 

initial stress is higher for the small value selection procedure 

because the values here are more tightly packed, and hence more 

difficult to order correctly. However it is the behaviour of the 

procrustes statistic that is of particular interest. For the random 

selection procedure the procrustes statistic decreases with more 

values, whereas for the small value selection procedure it 

increases. ï'Then K is 49 both methods are trivial and identical so 

that the final values of the procrustes statistic must be equal.

How may these results be interpreted? An immediate reaction 

might be that because the true configuration is used to start the



— 13n —

TABLE 3.4.1

Results from Using Random Entries of the Matrix

K Sj(%) S2(%) R(%) V P

5 2.934 0.230 19.5 .991 0.01784

10 3.070 1.212 36.9 .988 0.01172

15 3.394 1.901 52.1 .985 0.00785

20 3.544 2.142 64.2 .984 0.00711

25 3.723 2.329 75.7 .978 0.00653

30 3.813 2.425 84.2 .977 0.00632

35 3.876 2.482 91.3 .976 0.00594

40 3.923 2.500 96.7 .976 0.00598

45 3.917 2.493 99.2 .976 0.00596

49 3.935 2.505 100.0 .976 0.00600

K = Minimum number of entries used in each row.

= Original stress value.

= Final stress value.

R = Density, which is the number of cells used expressed as a 

percentage of those available.

V = Proportion of different values amongst the cells used.

P = Procrustes statistic between the final configuration and the 

true configuration.
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TABLE 3.4.3

Results from Using the Smallest Entries of the Matrix

K s^(%) S2(%) R(%) V P

5 4.283 0.000 12.6 1.000 0.00111

10 3.835 0.371 24.1 .996 0.00259

15 3.656 0.736 35.9 .994 0.00313

20 3.628 1.083 47.3 .990 0.00434

25 3.949 1.425 60.7 .988 0.00478

30 3.934 1.645 72.6 .981 0.00528

35 3.930 1.911 82.6 .979 0.00553

40 3.822 2.165 90.4 .977 0.00514

45 3.854 2.370 98.0 .977 0.00567

49 3.935 2.505 100.0 .976 0.00600

K = Minimum number of entries used in each row.

= Original stress value.

= Final stress value.

R = Density, which is the number of cells used, expressed as a 

percentage of those available.

V = Proportion of different values amongst the cells used.

P = Procrustes statistic between the final configuration and the 

true configuration.
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process, the less constraints that are applied, the less the 

adjustment that will be required. But this will not do for, although 

the procrustes statistic increases for the small selection procedure, 

the opposite is true for the random process. Thus there must be 

something specific to the small values that is causing this 

behaviour. If we believe the results of Graef and Spence (1979), 

which seem reasonable, then we are forced to the conclusion that it 

is the large dissimilarities that determine the coarse structure of 

the configuration, and that they must be known in order to provide a 

good starting configuration. However these results would suggest that 

it is important to know the small values in order to deduce the fine 

structure.

How may these results be applied? In some circumstances there 

will be a natural constraint upon the dissimilarity matrix values that 

may be obtained. For example, in Chapter 4 we argue that it is not 

meaningful to derive a dissimilarity value for a pair of M.P.s if, 

as a pair, they fail to vote in a sufficiently large number of 

divisions. In these cases it is likely that we will be in the random 

sampling situation, although it may be that only within-cluster type 

measurements may be made in which case the values will be small.

More often the whole range of values will be at our disposal. If the 

matrix is of reasonable size (less than eighty by eighty, say) then 

we would have no hesitation in using all available values. Beyond 

this range, restriction to a subset becomes attractive and, if it is 

possible to generate a reasonable starting configuration, the use of 

the small values would seem to be justified.

This set of results demonstrates that there is great 

potential in the idea of using just a portion of the dissimilarity 

matrix. It would be a worthwhile extension to this exercise to
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undertake a more complete study of the properties of reduced 

matrices which would involve

(i) Different starting configuration approaches.

(ii) Different degrees of euclideanness of matrix.

(iii) Different amounts of error.

(iv) Global and local order scaling.

(v) Other subsets also defined by dissimilarity value.

(e.g. What would happen if we used the largest values?)

(vi) Different configurations. (Different numbers of points

would allow statements concerning possible economies.)

Such a study would add confidence to what has been proposed, 

but even these results provide an adequate basis for the neglect of 

certain values if their computation is regarded as dubious.
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3. 5 Procrustes Statistics Arising from Slightly Different 

Configurations

In (1.13) we referred to the results of Sibson (1979)

concerning procrustes statistics for two slightly different

configurations. In particular we noted that if X is a centred,

full rank, K x N configuration matrix which is perturbed to 
2Y = X + eZ + 0(e ), where Z is another K x N matrix, then both

G (X,Y) and G„(X,Y) can be represented as quadratics in the L o

elements of Z, the precise forms of which are given in (1.13.1) 

and (1.13.2).

Sibson then illuminates these results by considering the 

case in which the entries in Z are independent N(0,1) random 

variables. It then follows ( (1.13.3) and (1.13.4) ) that

Gg(X,Y) 'x, + O(e^) where f = NK - |K(K + 1)

Gg(X,Y) E^Xg + O(e^) where g = f - 1

These last two results are independent of the matrix X. They

can be justified loosely by noticing that the original procrustes

statistic, before translation, orthogonal transformation or scale

change, is the sum of NK squares of independent N(0,1) random
2variables, that is a x ^  random variable, and subsequently K degrees 

of freedom are lost through translation, approximately ^K(K - 1) 

through orthogonal transformation, and finally 1 through scale 

change.

We now examine the range of validity of the above approxi

mations (1.13.3) and (1.13.4). To do this we use a configura-
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cion of 50 points independently and uniformly distributed over the
2 2unit disc {(x,y) : x + y ^ 1 } in two dimensions, and then centre

it at the origin by translation. Only one such configuration was

generated, since the results are known to be independent of the base

configuration. Initial values of e were 0.02, 0.05, 0.1 and 0.2.

For each value of e ten independent realisations of Z were produced

from a pseudo random number generator, and the values of G (the

original procrustes statistic), G^ (the procrustes statistic after

translation), G_ and G„ were obtained. If a random variable V has 
2 2distribution (e > where h is sufficiently large (greater than 50 

in practice) then

/2V is approximately N(/(2h-l), ]) in distribution. 
2e

.2G 2G 2G
In Table 3.5.1. we record G, /—j, G^, /-y-, G^,/ — and

e e e
2Gg

/-y- for each level of e and each replication.
e

In Table 3.5.2 we present the mean values of the transformed 

statistics taken over the ten replications, and provide 95% 

confidence limits for these means based upon the normal approximation, 

Of course the values of G, G^, G^ and Gg are highly interdependent, 

and this must be remembered in interpreting the mean values.

The results show that the approximations to G, G„ and G_ areT E
entirely satisfactory for this range of values of e. That this is 

true for G and G^ is clear from the above intuitive arguments. That 

the result is true for Gg is of more interest, and is caused by the 

lack of any systematic rotation needed to match the original and 

perturbed configurations. We proceed by extending the range of e to



TABLE 3.5.1

- 138 -

G 4£ S £ S £ £

0.0440 14.83 0.0437 14.78 0.0435 14.75 0.0421 14.51
0.0414 14.39 0.0374 13.67 0.0374 13.67 0.0374 13.67
0.0408 14.28 0.0407 14.27 0.0400 14.14 0.0390 13.96
0.0383 13.84 0.0381 13.80 0.0381 13.80 0.0380 13.78

6=0.02 0.0397
0.0411

14.09
14.34

0.0395
0.0409

14.05
14.30

0.0395
0.0403

14.05
14.20

0.0390
0.0403

13.96
14.20

0.0436 14.76 0.0405 14.23 0.0404 14.21 0.0401 14.16
0.0473 15.37 0.0471 15.34 0.0469 15.31 0.0466 15.26
0.0432 14.69 0.0431 14.67 0.0429 14.65 0.0429 14.65
0.0353 13.28 0.0344 13.11 0.0343 13.10 0.0341 13.06

0.1878 12.25 0.1834 12.11 0.1834 12.11 0.1757 11.85
0.2206 13.28 0.2143 13.09 0.2089 12.93 0.2051 12.80
0.3016 15.53 0.3014 15.52 0.3006 15.51 0.2912 15.26
0.1948 12.48 0.1946 12.47 0.1928 12.42 0.1868 12.22

£=0.05 0.2354
0.2584

13.72
14.37

0.2211
0.2508

13.29
14.16

0.2157
0.2498

13.14
14.14

0.2058
0.2498

12.83
14.13

0.2286 13.52 0.2284 13.51 0.2187 13.23 0.2171 13.17
0.2130 13.05 0.2003 12.65 0.1962 12.52 0.1956 12.50
0.2768 14.88 0.2761 14.86 0.2715 14.74 0.2647 14.55
0.2741 14.80 0.2740 14.80 0.2728 14.77 0.2717 14.74

0.8886 13.33 0.8659 13.15 0.8553 13.08 0.8544 13.07
0.9509 13.79 0.9144 13.52 0.9142 13.52 0.8266 12.85
1.1382 15.08 1.1337 15.05 1.1337 15.05 1.0119 14.22
0.7566 12.30 0.7541 12.28 0.7493 12.24 0.7350 12.12

£=0.1 1.0159
1.0468

14.25 
14.46

1.0069
1.0465

14.19
14.46

1.0034
1.0393

14.17
14.42

0.9159
1.0129

13.53
14.23

1.0208 14.28 1.0142 14.24 1.0058 14.18 0.8923 13.35
1.2159 15.59 1.2043 15.51 1.2019 15.50 1.1172 14.94
0.7719 12.42 0.7717 12.42 0.7433 12.19 0.7038 11.86
0.7186 11.98 0.7115 11.92 0.6605 11.49 0.6197 11.13

4.0675 14.26 3.9917 14.12 3.9452 14.04 3.7020 13.60
3.8395 13.85 3.7548 13.70 3.7140 13.63 3.1253 12.50
4.2028 14.49 4.1182 14.34 4.1136 14.34 2.9417 12.12
3.6000 13.41 3.5821 13.38 3.5820 13.38 3.2647 12.77

£=0.2 3.5461
4.9116

13.31
15.67

3.4372
4.7585

13.10
15.42

3.4368
4.7581

13.10
15.42

2.9659
3.8728

12.17
13.91

3.8518 13.87 3.7386 13.67 3.7376 13.67 3.2819 12.81
4.5006 15.00 4.2776 14.62 4.2414 14.56 3.6223 13.45
3.9690 14.08 3.6863 13.57 3.6591 13.53 2.8684 11.97
4.1496 14.40 4.0287 14.19 4.0283 14.19 3.3099 12.86
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TABLE 3.5.2

Lower Confidence Limit 13.49 13.34 13.27 13.20

20 2G_ 2G_ 2G_
Mean Value of /~2 / - f / - fe E E E

e = 0.02 14.39 14.22 14.19 14.12

e = 0.05 13.79 13.65 13.55 13.41

e = 0.1 13.75 13.67 13.58 13.13

c = 0.2 14.23 14.01 13.99 12.82

Upper Confidence Limit 14.73 14.58 14.51 14.44
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test the robustness of the distributional approximation to Gg. But

first we observe that the approximation to Gg is not nearly as

satisfactory, especially for higher values of e. S. Langron

(personal communication) has demonstrated that the coefficient of the 
3 .e term in the approximation to Gg is large and, if ignored, causes

Gg to be over-estimated. Certainly we shall expect the mean square

object to origin distance to be greater for the perturbed configuration,

and so some systematic scale change will be required.

In order to test the approximation to Gg even more severely

we use the values e = 0.2, 0.5 and 1.0 and proceed as before, this

time generating 100 values of the procrustes statistic for each

level of e. The results are summarised in the three graphs.

Figs. 3.5.3, 3.5.4 and 3.5.5, which give the empirical distribution

function for the 100 values and the distribution function for the
2 2null hypothesis that the distribution is e x^» where both functions 

have been transformed so that the latter follows the line 

y = X  in (0,1). Two lines are also marked giving 95% limits for the 

acceptance of the null hypothesis under the Kolmogorov-Smirnov test.

At each of these levels of e the empirical distribution 

function lies well within the limits and we may conclude that the 

approximate distribution (1.13.3) is satisfactory even with e as 

large as 1.0. At this level of e there will be gross changes in the 

configuration but, as has been emphasised, there will be no 

systematic rotation effect. We may conclude that the approximation 

is robust, even with large displacements of the original configuration 

corresponding to e = 1.
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3.6 Procrustes Statistics Arising from Slightly Different

Squared Distance Matrices

There are two other results of Sibson (1979) that are examined 

here. These relate to procrustes statistics arising from two 

configurations produced from classical scaling when the method has 

been applied to two slightly different squared distance matrices.

The results were mentioned in Section 1.13 as (1.13.5), (1.13.6), 

(1.13.7) and (1.13.8), which provide explicit expressions for 

and Gg in terms of the elements of a symmetric matrix, F , used to

perturb a parent squared distance matrix. In much the same way as

in the previous section, Sibson sheds light on these results by 

following through the calculations for the specific case in which 

the entries in F are symmetric, zero on the diagonal, and

independent off the diagonal with mean zero and variance one,

and by calculating the expected value of G^ . We retain the notation 

of Section 1.13.

We turn to an investigation of the range of validity of the 

expressions (1.13.5) and (1.13.8). This is done in a manner very 

similar to that used in the previous section. One configuration,

X , of 50 points lying in the two-dimensional unit disc was generated 

and centred. Exact squared interpoint distances were computed from 

this configuration to form the matrix E . Four perturbation 

matrices, H , were obtained using a pseudo-random number generator 

such that the off diagonal entries were sampled independently from 

the N(0,1) distribution, the diagonal was zero, and the matrix was

symmetric. Four values of e were used. These were 0.1, 0.2, 0.5

and 1.0 . For each value of e and each perturbation matrix we
2 . 2calculated G_,e A (as in (1.13.5) ), and then calculated E(e A)

^ 2  —
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(as in (1.13.8) ). The results are given in Table 3.6.1.

The approximation to is quite satisfactory, being good for 

the smaller values of e and less accurate for £ = 1.0 . Indeed 

for £ = 1.0 the errors that are introduced into the squared 

distance matrix E are of the same order of magnitude as the 

squared distances themselves. Indeed it may occasionally be the 

case that the perturbed matrix F will have negative entries, and 

devices introduced to circumvent this problem (setting them as zero 

in our case) will change the expectation of the approximation, causing 

a little extra inaccuracy in that row of Table 3.6.1. If this is 

done, corresponding alterations have to be made to H , so that the 

approximation itself is calculated accurately.

In addition we present the results of applying the approximation 

(1.13.6) for Gg to some specific cases. These arise from the 

comparative studies of Section 3.3. We treat the two- and six

dimensional versions of the binomial hyperplane and independent 

binomial models. Considering the six standard error levels this 

provides twenty-four matrices. For each matrix we compare the 

procrustes statistic after classical scaling with the approximation 

based upon the perturbation induced by the hyperplane process. The 

results are displayed in Table 3.6.2. We see that the approximation 

is quite satisfactory, and particularly good for the low levels of error

Together these results demonstrate further how classical scaling 

processes the errors in the dissimilarity matrix. Allied with the 

simulation study findings of Section 3.2 we may agree with the 

conclusion of Sibson that "classical scaling is a method that is 

robust against errors which leave observed dissimilarities still 

approximately linearly related to distance".
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TABLE 3.6.1

e=0.1 6=0.2 6=0.5 6=1.0

First H G 0.0210 0.0848 0.549 2.39

6^A 0.0212 0.0849 0.531 2.12

Second H G 0.0256 0.1050 0.716 3.32

6^A 0.0250 0.1001 0.626 2.50

Third H G 0.0150 0.0603 0.389 1.79

6^A 0.0151 0.0603 0.377 1.51

Fourth H G 

e^A

0.0187 0.0745 0.468 1.91

0.0204 0.0817 0.510 2.04

E (6 A) 0.0208 0.0833 0.521 2.08
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4.1 Introduction; Motivation for the Project

Little is known about the consistency of parliamentary voting 

in the last 150 years. It has been generally assumed that M.P.s have 

only rarely voted against their party whips' advice since the 

emergence of the nationally organised political parties in the late 

nineteenth century. This project was conceived as an application 

of multidimensional scaling with the aim of analysing all 

House of Commons' divisions in one parliamentary session (1861) so 

that as full and as unbiassed a picture of voting behaviour as 

possible could be discerned. If this proved informative, extensions to 

more than one session were envisaged. The intention was to monitor the 

voting behaviour of specified sets of M.P.s on specified sets of 

divisions by producing multidimensional scaling maps. The project arose 

from a fusion of the research interests of Valerie Cromwell, Reader in 

History at the University of Sussex, who has a particular interest 

in nineteenth century British political history, and 

Professor Robin Sibson, who has been responsible for developments in 

multidimensional scaling. It was regarded as exploratory in nature, 

treating just one parliamentary year as it did, and was supported by 

a research grant from the Social Science Research Council. It has 

been very much a collaborative effort with Valerie Cromwell, who is 

acknowledged with gratitude. The form of parts of this chapter has 

evolved from the end-of-grant report that she has submitted to the 

Social Science Research Council (Cromwell, 1980).

As far as we know, multidimensional scaling has not been applied 

to the analysis of voting records. This attempt was designed to 

explore the usefulness and adaptability of the method when applied to 

Commons' division lists. If successful the strength or weakness of
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party and other group loyalties would be exposed, and assumptions 

derived from other sources such as political diaries and correspondence, 

press reports and comment could be tested.

The choice of session was important if assessment of the 

usefulness of the method was to be possible. A particular attraction 

of the 1860’s as a period for detailed attention of this kind was 

the apparent fragility of the political structure. Party loyalties 

in the early 1860’s are generally considered to have been weak and 

fluctuating. Palmerston’s government had come into office in the 

summer of 1859 with a slim majority, which had been calculated as 

being at most 16 by Mowbray (1900). During the early years of the 

ministry contemporary commentators repeatedly remarked on the 

difficulties created for the government by radical dissidents on their 

side of the Commons. There was some evidence that the conservative 

opposition leadership more than once indicated to liberal ministers 

a general reluctance to turn the government out of office as long as 

it pursued a moderate financial policy (Monypenny and Buckle, 1916 ). 

Although whig and radical support had assisted Palmerston to take office, 

it appeared that it was whig and conservative support which enabled the 

government to pass such legislation and parliamentary business as it 

dared to introduce in its lifetime. It was to test these assumptions 

that our analysis of voting in divisions was designed.

Within this period, the choice of which parliamentary session 

to use was obviously important. 1861 was chosen as a year close 

to the beginning of a ministry, but which did not see a change 

of government. The political complexion of the Commons near the 

beginning of a ministry would have reflected closely the political 

sympathies of the electorate. A change of government in the 

middle of a parliamentary session would have presented additional
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problems of data management which would have been unnecessary 

in such a feasibility study. Another advantage of 1861 was 

that no major divisive domestic or foreign issue polarised 

political opinion in that year. It was its very ’ordinariness' 

which made it a suitable choice.

The advantage of using votes by members was that it provided 

positive evidence, well recorded. It would have been even more 

convenient if all evidence of pairing and abstention were available. 

However when compared with the random, fragmentary evidence provided 

by diary, press, comment and correspondence it afforded a very hard, 

complete set of data. On a certain date, a member was prepared to 

walk into one of two Division Lobbies in support of a particular 

opinion and to have that vote recorded and published. While a vote 

might only have had procedural significance, as for instance when 

it ensured full debate of an issue, it was still an indication of 

an opinion of a very positive sort.

One problem with some divisions was their low participation, 

and this could have been seen to present a difficulty, but such 

smallness did not necessarily indicate lack of importance. Time of 

evening or stage of the session often affected voting in all but the 

most politically important divisions. The House was always thin at the 

dinner hour and towards the end of the session attendance at the Commons 

was poor. On the other hand we had size problems of a different nature 

to negotiate. The number of members with seats in the Commons was 

662; the number of divisions in the session was 187. These numbers 

were typical historically, but were much larger than commonly used 

in scaling applications. Additionally the M.P.s had highly variable 

participation rates ranging from a high of 182 to a low of 0 votes. 

Effectively this produced a group of M.P.s about whom nothing could
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be inferred and forced there to be varying degrees of reliability 

attached to findings on other M.P.s.

An accurate comparison between any pair of M.P.s required that 

there should have been a reasonably large number of divisions in 

which they both voted. Comparisons of rarely voting M.P.s on small 

sets of divisions were unlikely to be reliable. Thus we were 

unable to assess some quite famous M.P.s because they voted so 

infrequently in 1861, and little could be done to examine 

attitudes to Scotland, Civil Service reform or India, for example, 

because those issues were rarely debated in that year. Under less 

extreme conditions we were able to produce maps and look for 

changes in position of individual M.P.s for different sets of 

divisions.
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4.2 The Extent of Earlier Statistical Analysis of Voting

The advantages to be gained from a statistical analysis of voting 

have been appreciated for some time. The first numerical analyses of 

division lists were quite straightforward in concept and bore much 

resemblance to the initial data analyses that we report in Section 4.4. 

However physical developments in computing power and statistical 

developments in multidimensional scaling have considerably extended 

the range of possible analyses, as we demonstrate. In particular it 

has become possible to obtain an objective assessment of each individual's 

patterns of voting with respect to the rest of his colleagues.

Returning to traditional analyses, an index of party cohesion for 

each division was derived as:-
lY - N ]

Y + N

where Y represented the number of 'Aye' votes in the particular party 

in that division and N represented the corresponding number of 'No' 

votes. Introducing A as the number of abstainers, an index of 

abstention was formed as:-

Y + N + A

To compare two parties the index of party likeness was defined as:-

1 -

Yi + Y^ +

where the suffices represented the two parties being compared.

These indices were used alongside measures such as:-

(i) The percentage of votes for and against for each party in any

division.

(ii) The percentage of divisions unanimous for each party.

(iii) The percentage of votes against the party majority in any division,
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(iv) An individual's percentage of successes in passing legislation., 

in order to provide useful summaries. No study attempted to 

consider numbers as large as those found in this present analysis. 

Principal works in this area have been those of Wahlke and Eulau (1959), 

Aydelotte (1963, 1966, 1972, 1977), Anderson, Watts and Wilcox (1966), 

Berrington (1968), Loveday (1975), Loveday, Martin and Parker (1977) 

and Beringer (1978) , who provides a useful summary.

A popular technique with early authors was Guttman scale 

analysis. A scale comprised two rank orderings, one of a set of 

divisions and one of a set of voters. The idea was that if the 

ordering of the divisions was carefully chosen it would represent an 

'axis of attitude' such that individual voters would vote 'Aye' up 

to a certain point and 'No' thereafter. If such an ordering of the 

divisions could be found the voters could then be ranked according to 

the point at which their response altered. A successful scale would 

appear as follows:-

1 2

Division 

3 4 5 6 7

1 Aye Aye Aye Aye Aye Aye Aye

2 Aye Aye Aye Aye Aye Aye Aye

3 No Aye Aye Aye Aye Aye Aye

4 No No No Aye Aye Aye Aye

5 No No No Aye Aye Aye Aye

6 No No No Aye Aye Aye Aye

Voter 7 No No No Aye Aye Aye Aye

8 No No No No Aye Aye Aye

9 No No No No Aye Aye Aye

10 No No No No No Aye Aye

11 No No No No No Aye Aye

12 No No No No No No Aye

13 No No No No No No No
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Various freedoms were allowed when such perfect fits were not 

quite obtainable. It was hoped that both rank orderings would then 

contain useful information. The technique is mentioned in the works 

of Aydelotte and Beringer given above.

More recently Heyck and Klecka (1973) and Heyck (1974) have used 

techniques of discriminant analysis to classify radical M.P.s based 

upon the voting behaviour of known radicals in divisions that were 

specially chosen because of their known importance to the radical 

cause. Veitch and Jaensch (1974) have tailored principal component 

analysis and factor analysis to fulfil the special requirements of 

voting data. These ideas have also been used by Loveday, Martin and 

Parker (1977). Hartigan (1972, 1974, 1975) has successfully applied 

his direct clustering algorithms to the voting of countries in the 

United Nations. In his work the original data matrix containing 

objects (voters) by variables (divisions) had rows and columns 

permuted simultaneously in order to highlight rectangular blocks of 

consistent behaviour. A much less powerful version of the same type 

of method was used by Hatzenbuehler (1972) who formed a similarity matrix 

of percentage agreements between voters and sought squares of entries 

greater than a specified baseline, along the leading diagonal.

Some of these ideas are incorporated in the preliminary 

statistical analyses reported in Section 4.4. However we have been 

able to go much further by using scaling techniques. The range of 

interpersonal agreements and conflicts that can be studied is much 

greater, as is the sensitivity of the final results. The final results 

are appealing in their simplicity and interpretability. Many of the 

other techniques are limited in that they produce what is effectively 

a one-dimensional solution. This equally applies to single-link 

clustering (Section 4.7). Thus multidimensional scaling is 

intrinsically more powerful.
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4.3 Acquiring and Assembling the Data

The main sources on which the project was based were the 

Commons’ Division Lists as printed for the House. A typical list 

has the following format

“ Mercurii, 13° die Martii, 1861.

Numb. 19.

County Franchise Bill, - Order for Second Reading read; Motion made, 

and Question proposed, "That the Bill be now read a second 

time :" - Whereupon Previous Question put, "That that Question 

be now put;" - (Mr. Augustus Smith:) - The House divided;

Ayes 220, Noes 248.

A Y E S .

Acton, Sir John Dalberg 

Adair, Hugh Edward

Wyld, James 

Wyv ill, Marmaduke

Tellers for the Ayes, Mr. Locke King and Mr. Hastings Russell

N O E S .

Adderley, Rt. Hn. Charles Bowyer 

Arbuthnott, Hon. General

Wynne, Ito. W. E. (Merioneth)

Yorke, Hon. Eliot Thomas

Tellers for the Noes, Mr. Augustus Smith and Mr. Du Cane.
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Subsequent pages contained corrections and these we incorporated.

Some limited biographical information about each individual 

was also obtained. This nearly always came from Dod’s 

"Parliamentary Companion" for 1861 and 1862 and the "Dictionary of 

National Biography". Nominal party allegiance was obtained from 

Dod. The advertising slip for the 1879 edition of Dod vouched for 

these political descriptions by asserting, "In all possible cases 

the exact words of the member himself has been preferred to any 

other indication of his political opinions".

From these two sources we derived a matrix of voting behaviour,

M = (m^j), where 1 4 i 4 662 corresponding to M.P.s

1 4 j 4 187 " " divisions

and m^j was a variable that took one of the following six values:

A - M.P. i voted with the Ayes in division j 

N - " " " " Noes "

B - " " was teller for the Ayes in division j

M - " " " " " Noes " " "

X - " " did not vote in division j

Z - " " was not able to vote in division j , as he was not then

a member.

There were obvious reservations which had to be recognised in 

the use of division lists as an indicator of political or other 

allegiance, as there were with any records of voting behaviour. M.P.s 

may have had many reasons for not voting in a division, but we were 

only able to allow for the most straightforward. That is, casual or 

occasional absence from a division was separately coded from inability 

to vote for reasons such as resignation (Chiltern Hundreds etc.) or 

death. Where members were eligible to vote, their abstentions were 

uniformly coded as ’X*. This failed to allow for two common
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practices, pairing and deliberate abstention. No evidence of any 

systematic kind existed about pairing in particular votes, or about 

pairing agreements. It would therefore have been misleading to 

introduce into the coding such random evidence of pairing as existed. 

Similarly, it seemed dangerous to try to introduce any qualitative 

criterion into our coding of abstention. Although evidence existed 

of decisions by certain members to abstain from specific votes, such 

evidence was of a random nature. We decided that we could only use 

positive evidence, that of the actual votes by members.

A four-letter acronym was designed for each M.P. so that the 

alphabetical ordering of acronyms and surnames as used on the 

division lists should correspond and so that the acronym should give 

a good clue as to the M.P.’s identity. Thus PALM was derived for 

Viscount Palmerston and DISK for the Rt. Hon.Benjamin Disraeli etc. 

This required careful collection of a complete set of M.P.s for the 

year, seventeen new names having appeared during the year.

The following information was also collated for each M.P.:-

(a) His party allegiance defined by Dod.

(b) His full title, as used on the division lists.

(c) His constituency.

(d) Whether the constituency was in England and Wales, Scotland or 

Ireland.

(e) Whether the constituency was in a borough or a county.

(f) The M.P.'s age.

(g) Whether the M.P. had ever had a brother as an M.P., or any 

other relation.

(h) Whether the M.P. was a past or present government office holder

(i) Whether the M.P. had served in the militia, regular army or

navy.
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Other information that was available identified East India Co. 

directors or proprietors, governors and directors of the Bank of 

England, merchant navy officers, brewers and so on, but applied only 

to very small numbers of M.P.s and was thus considered unworthy of 

being encoded.

It was the placing of the information onto a computer that pre

sented the next challenge. Would this best be done interactively 

at the terminal or was an intermediate step of preparing coding 

sheets likely to save time and minimise error? It was decided that 

the interactive approach would be more cumbersome, require more 

training of staff and be more liable to error, so we devised a 

procedure based on coding sheets.

Fig. 4.3.1 shows one of the coding sheets (the A-sheet) prepared for 

M.P.s 26-50 in the alphabetical ordering of M.P.s. Each line eventually 

corresponded to a punched card of eighty characters. The first four 

characters on each card were the M.P.'s acronym. The last three on 

each card were one of 61A, 61B, 61C, 6ID, 6IE or 61F indicating that 

the year of study was 1861 and then the particular sheet chosen.

This allowed for the extension of the project to other years. If 

that took place it would probably not still be possible to maintain 

the same order among acronyms and surnames while keeping the

acronyms for M.P.s still serving. Otherwise the lines contained

for M.P. no. i :-

(a) A sheets : m. .ij for I3j3 56

(b) B sheets: m. .ij for 57<jsll2 ) recorded in groups of 4 in 5

(c) C sheets : m. .ij for 113sjSl68 ) for ease of punching.

(d) D sheets : IQ « •ij for 169$j3l87
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(e) E sheets: Columns 6 - 8 :  Dod*s party label, coded as

LIB = liberal

Lie = liberal-conservative

CON = conservative

REF = reformer

RAD = radical

WHI = whig.

Columns 11-75: The M.P.'s full title as used most 

often in the division lists, which 

included an indication of 

constituency in some ambiguous cases.

(f) F sheets :

Cols. 6-8: The constituency held by the M.P. (The three-digit 

number corresponds to the position of the 

constituency in the alphabetical ordering of all 

consituencies.)

Col. 9: 'S' means the consituency is in Scotland

Col. 11:

Col. 12:

'I' II II " Ireland

'E' II II " England or Wales.

'B' II II " a borough constituency

'C II II " county II

'2' means the M.P . is in his 20's

'3' II II 30's (Some ages

'4' II II 40's were guessed

'5' II II 50's from evidence

'6' II II 60's about

'7* II II 70's university

'8' II II 80's education etc.)

'9' II II 90's

'O' " we have no information.
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Col. 13: ’A ’ means the M.P. had no brother as an M.P. (in 1861) 

’B ’ " " had a brother as an M.P. ( in 1861)

Col. 14: 'F' " " had another member of family as M.P.,

e.g. father, father-in-law 

’U ’ " " was unrelated to any other M.P.,

or we have no information 

Col. 16: ’P ’ ” ” is a past government office holder

'G’ " " " present " " "

'H' " " has never been " "

Col. 17: 'M' " " has been in the militia
’R ’ M ti II the regular army

’X' " " " neither.

Col. 18: ’N ’ " " " the navy

’X' " " has not been in "

The design of the E sheets, which were the first to be 

prepared, made it simple to encode the original division lists, 

division by division, onto the coding sheets. An extra copy of the 

E sheet cut along a line between the 10th and 11th columns meant that 

the names could be placed alongside the column to be coded. It was 

then possible to run through the Aye voters inserting 'A’s 

appropriately and then to do the same for the Noes. ’Z ’ values were 

inserted first of all and after that ’A', 'N', 'B' and ’M' values 

were installed. All the remaining values had to be ’X ’ and these were 

filled in en masse. The final task was to produce the 'F' sheets and 

these were tackled independently. This proved to be quite an 

efficient arrangement and the process was considerably enhanced by the 

acquisition of the services of Mrs. Susan Thomas to do the bulk of 

the coding. Her degree in English and History provided her with a 

background knowledge of the period (through Trollope etc.) and this
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meant that she found the encoding interesting. As a result, not only 

was the final product very accurate, but also Mrs. Thomas had been 

able to contribute some interesting insights from her firsthand 

knowledge of the data.

The punching of the data from the 162 coding sheets was achieved 

quite rapidly and without enormous amounts of error being introduced.

The cards were punched in six batches, A sheets, then B sheets etc.

The cards were then read onto the University of Bath computer and the 

error-removing process began, the steps of which were to:-

(i) Obtain a print of the data.

(ii) Match acronyms from one batch to another, collating the 

output for each M.P. This was done by sorting the acronyms into 

alphabetical order for each successive batch and looking for mismatches, 

of which there were a few in each batch. The faulty acronyms were

then corrected and the data for the M.P.s merged together.

(iii) Search through the m^j values to discover impossible 

values and compare the printout and coding sheets to identify the 

correct code.

(iv) Develop a program to produce the total of Ayes and Noes 

in each division and compare this with the published version. Where 

there were errors, the program produced a facsimile of the original 

division list so that the culprits could be identified. This occurred 

in about one half of the divisions. Errors occurred in punching rows 

of the coding sheets and, rarely, in coding. Typically codes for 

neighbouring divisions were transposed.

(v) Produce special range-error programs for the F sheets, 

which were particularly accurately punched, and check through the 

listing of the E sheet cards to identify nonsensical spellings, of 

which again there were few.



- 165 -

This process was quite time consuming, yet still not as 

exhaustive as it could have been, for each computerised division list 

could have been compared with the original. No doubt the final 

version still contained a few errors; those that cancelled out and 

did not affect the totals of Ayes and Noes would certainly not have 

been spotted. However the overall impression we gained was that the 

encoding had been very accurate and the punching quite accurate. 

Certainly, in the face of such large numbers, we felt that it was 

unlikely that the residual error was of sufficient importance to 

vitiate the results of our study. It has been our experience that 

multidimensional scaling is sensitive to error in data and able to 

show up curious behaviour and subsequently we have had our maps 

to use. That Col. Samuel Auchmuty Dickson (DICK), an alleged liberal, 

consistently appeared amongst the conservatives in the maps seemed 

unexpected, but recourse to the original data in this and other cases 

showed that the error was not in the encoding but presumably in his 

party label.

The next step was to change the format of the data to make it 

more amenable to use by computer and conserve space where possible.

The intermediate blanks were removed, as were the repetitions of 

acronym and trailing year and sheet identification. Two files were 

produced, one containing acronyms and biographical information, the 

other acronyms and voting behaviour. The voting file contained just 

under 120,000 characters.

Three additional descriptive files were generated. The first 

contained the official division titles. The second contained a list 

of division subjects as shown in Table 4.3.2. Each division had to fall 

into at least one of these subject matter categories, but often more 

than one was appropriate. For example, taxation, government spending and 

defence often overlapped. The third file contained Valerie Cromwell's
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TABLE 4.3.2

Categories of Divisions

No. Category of Subject Matter Total Such 
Divisions 
in 1861

1. General, e.g. Queen's Speech, procedural matters. 26

2. Foreign policy......................................  4

3. Taxation, revenue, pressure to economise,

government spending..............................  52

4. Social problems.....................................  14

5. Electoral arrangements, e.g. voting qualifications,

constituency boundaries. .. .. .. .. .. 22

6. Religious and ecclesiastical matters..............  15

7. Defence. .. .. .. .. .. .. .. .. 23

8. Miscellaneous; personal matters.................... 2

9. Railways, roads'harbours...........................  12

10. Irish matters. .. .. . . . . . . .. . . 22

11. Local government and revenue. .................  12

12. Scottish matters....................................  12

13. Education, universities, schools.   15

14. India................................................ 9

15. Business regulation................................. 10

16. Legal reforms and rationalisation. ............  4

17. Civil service reform................................ 7

18. Fisheries...........................................  2
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allocation of divisions into categories, but no completely objective 

approach could be adopted.

It was hoped that these processes would make widely available 

a useful political and historical source. This encoded data has 

provided a valuable, machine-readable source for a wide range of 

researchers. To date, complete sets of printed Commons’ Division 

Lists have only been accessible in a very limited way in London.

Our magnetic tapes enable relevant information to be obtained much 

more quickly and economically than from the original printed lists.

For example, information about tellers has been derived with ease.

The tapes have been lodged with the Social Science Research Council 

Survey Archive. In addition other tapes containing the data have been 

located at the University of Bath and the University of Sussex.
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4.4 A Preliminary Approach

Preliminary Analysis of M.P.s

The raw data was used firstly to compile lists of M.P.s with 

respect to various biographical details. A series of such lists 

corresponded to each separate value taken by each variable defined 

in the F sheet encoding described in Section 4.3.

Apart from being of intrinsic interest, these lists provided a 

coding check and enabled the formation of several subsets of M.P.s 

that were later to be used in the multidimensional scaling analyses. 

Specifically, five sets were formed, each of which was a subset of 

one of these lists, chosen to satisfy a minimum voting criterion.

Thus we formed

(a) A group of the 79 most frequently voting past & present officers

(b) " " " 37 " " M.P.s in the regular army

(c) " " " 58 " " " " militia

(d) " " " 95 M.P.s used in (b) and (c)

(e) " " " 62 " " " " " with Irish

constituencies.

It was hoped that set (a) would be informative for all divisions, 

but that the three sets (b), (c) and (d) would be especially 

interesting with regard to defence matters, and set (e) interesting 

in Irish and religious divisions.
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The next area covered was voting participation by individual 

M.P.s. All 662 were formed into a league table according to the 

number of votes that they registered. This number ranged in 

value from 182 out of 187 (Sir William Dunbar, an active liberal 

whip) to 0 (eight different M.P.s). Thirty-three M.P.s recorded 

less than 10 votes. A histogram of voting frequency is shown in 

Fig. 4.4.1.

That the three most prolific voters were three prominent 

liberals, including the two party whips, enabled us to be more 

confident in our estimate of the position taken by each party in 

each division. To do this we determined the vote made by:-

(i) The majority of conservatives participating

and

(ii) The majority of liberals, radicals, reformers and whigs 

participating in each division.

This was uniformly straightforward for conservatives because we 

discovered that they were much more united as a group. However the 

liberals were more often divided and to check that we were obtaining 

the opinion of the centre of the party we compared the majority 

position with that of the senior whips and cabinet members and 

confirmed that these votes coincided. For example, there was only one 

discrepancy for the regularly voting Henry Brand. As a useful means of 

identifying probable dissidents we ordered each M.P. in the two groups 

we have just defined, of conservatives and of liberals with their allies, 

according to the number of times they voted against the majority of 

their party colleagues, and provided a break-down of the
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disagreements into the numbers coming in each of the eighteen 

categories of division subject matter. The liberal and allies group 

was much more split. Altogether 130 liberals disagreed at least ten 

times, with one disagreeing 75 times out of 87 (the incorrigible 

Colonel Dickson). By contrast only 51 conservatives disagreed at 

least ten times and the most disagreeing voice was that of 

John Pope Hennessy (40 out of 139). Liberal disagreements were often 

on matters of defence (category 7). This exercise enabled us to 

form two groups for subsequent use in multidimensional scaling.

(a) The 95 most frequently dissident liberal and allied M.P.s

(b) The 70 " " conservative M.P.s.

Preliminary Analysis of Divisions

The raw data was used to compile facsimiles of the original 

division lists, copies of which were made along with the full 

division title and division category descriptions. The divisions 

were also checked with the original lists in order to ensure that 

the totals of votes for and against matched the correct figure.

This enabled the formation of the histogram shown in Fig. 4.4.2 

which shows for each category of division the minimum, mean, maximum 

and sample size of votes for that category. The division attracting 

most votes was in category 3, finance. The category with highest 

mean voting was the fifth, electoral arrangements.

Four further analyses of the divisions were produced.

1. For each division successively the total of votes for 

and against was broken down into party contributions.

Thus, we obtained for the first division:-



- 172 -

250- Fy 4 12 G%6egori&s ocdtred ^  j^tuU^tjcy]

Aàd<tCor\aL t̂ jDrrv>atù3v\ (jOa6gu/i€0 boyES •—
OxJ: no.j Cat. descHpbi^^ no.ĉ  wivv maX.
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Ayes Noes

Liberals

Conservatives

Liberal-Conservatives

Reformers

Radicals

Whigs

38 (41%) 55 (59%)

0 (0%) 49 (100%)

0 (0%) 24 (100%)

7 (100%) 0 (0%)

1 (100%) 0 (0%)
0 (0%) 1 (100%)

Both the liberal and conservative majorities were on the side of the 

Noes. Suggestively the reformers and radicals were firmly on the 

side of the Ayes, the whigs and liberal-conservatives firmly against 

them. It seemed that even after the first division only, evidence 

was being gained for the political structure suggested in Section 4.1,

2. On the basis of the majority positions a table was set up 

to try to get a first impression as to which categories of division 

might be causing most inter-party disagreement. The figures, shown 

in Table 4.4.3, suggested, for example, that there was often 

disagreement concerning social and electoral problems, but 

relatively more agreement over financial matters.

3. Each division was classified into one of eighteen

exhaustive and mutually exclusive cells according to the following

three variables:

X:- majorities agree, X=0

majorities disagree, X=1

Y:- liberal majority was 50- 70%, Y=0 (where the intervals 

" " " 70- 90%, Y=1 had closed

" " " 90-100%, Y=2 right hand ends)

Z:- Conservative majority was 50- 70%, Z=0 

" " " 70- 90%, Z=1

" 90-100., Z=2.
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TABLE 4.4.3

Number of Times Number of Times
Category Liberal & Conservative Liberal & Conservative

Majorities Agree Majorities Disagree

1. Procedural 10 16

2. Foreign Policy 4 0

3. Finance 30 22

4. Social I 13

5. Electoral 5 17

6. Religious 6 9

7. Defence 14 9

8. Miscellaneous 0 2

9. Railways & Roads 7 5

10. Ireland 12 10

11. Local Government 6 6

12. Scotland 8 4

13. Education 5 10

14. India 1 8

15. Business 3 7

16. Legal Reform 3 1

17. Civil Service 0 2

18. Fisheries 6 1
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For example, cell (0,2,2) corresponded to divisions in which 

liberals and conservatives had clear voting patterns which agreed, 

and contained the five divisions numbered 104, 114, 135, 155 and 187. 

Strong disagreement, represented by (1,2,2), was found in 21 divisions. 

The most full cell was (1,1,2) which showed consistency among 

conservatives, less among liberals, disagreement between the parties 

and contained 24 divisions. Division one, as shown above, fell 

into (0,0,2).

4. For each particular category of division the distribution 

of divisions into the above 18 cells was shown. Placing (x,y,z) in 

position 9x + 3y + z + 1 in the following vectors, we expressed 

the distribution for category 4 divisions (social) as

(0,0,0,0,0,0,1,0,0,0,1,1,1,1,2,4,1,2)

This contrasted with category 3 divisions (finance) for which we obtained

(5,7,3,1,4,5,1,2,2,4,1,0,1,4,1,1,5,5)

These distributions were presented in the tabular form:

Y=0 Y=1 Y=2

(Z=0 1 4 7

X=0 (Z=l 2 5 8

(Z=2 3 6 9

(Z=0 10 13 16

X=1 (Z=l 11 14 17

(Z=2 12 15 18

(The integer 

in each location 

represents the position 

in the vector)
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4.5 The Measurement of Dissimilarity

A crucial aspect of the use of techniques designed to analyse 

similarity data is the measurement of the similarity values 

themselves. In this section we provide a brief justification of the 

practice that has been used throughout this particular study, that 

of using a Jaccard coefficient.

It was our aim to construct a measure of similarity of voting 

behaviour for every pair of M.P.s. For each pair we compared 

their two vectors or voting profiles, individual components of which 

were any one of the six values defined in Section 4.3. Our first 

simplification of this specification was to regard 'B* and 'M' votes 

which corresponded to tellers as equivalent to ’A ’ and ’N' votes 

respectively. There seemed little harm in this. More drastically, 

but in keeping with the desire expressed in Section 4.1 that we 

should only deal with positive evidence of attitudes, we chose to 

ignore those components for which either of the pair registered 

an ’X ’ or ’Z ’ vote. Thirdly we also maintained our expressed 

desire to regard each individual division as having equal 

importance in the final derivation of the coefficient. It would have 

been possible to weight divisions by participation rates, for 

example, but this would have contradicted the feeling that all 

divisions provided an indication of opinion that required equal 

respect. In practice it was not clear that a weighted coefficient 

would substantially alter the rank ordering of the pairs.

Thus we were left with four possible combinations of values in

the remaining components of the vector: First M.P. Second M.P.

Aye Aye
No Aye
Aye No
No No
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The next condition was that the reversal of the entire set of 

votes in a division should not be allowed to affect the measure of 

similarity so that the values ’Aye’ and ’No’ were important only 

in that they reflected either agreement or disagreement. Thus the 

problem was reduced to a comparison of the number of agreements and 

the number of disagreements. It then seemed natural to use the 

Jaccard similarity coefficient

No of agreements

No. of agreements + No. of disagreements

which had the useful property of lying in the closed interval from 

0 to 1 . The corresponding dissimilarity value was the difference 

from 1. The denominator could equally well have been written as 

the number of divisions in which both M.P.s participated. This 

raised the question as to how to define the coefficient if the pair 

had no divisions in common. We chose not to define it and indeed, 

if the common number of divisions was less than five then we also 

declined to produce a value. Five was chosen as a minimum 

acceptable value to allow any meaningful interpretation. The 

occasional absence of similarity values did not prevent us from 

using any of the scaling techniques with the exception of the 

algebraically based classical method. This was not a great 

hardship, for the similarity values had not been designed to be 

nearly-Euclidean (for example, they were bounded above by 1) and 

we only used classical scaling to generate a starting configuration 

for ordinal scaling. Plotting dissimilarity against distance in 

the final configuration after scaling showed that the dissimilarity 

values were very widely spread over the possible range.
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4.6 Definitions of Groups Used in the Analyses

In the following sections statistical analyses are applied 

to several groups of M.P.s. It is the purpose of this short 

section to provide concise definitions of these groups for 

reference purposes. The definitions depended upon three ’league 

table’ orderings of M.P.s, as introduced in Section 4.4.

(a) The league table of M.P.s with regard to their total 

participation in the session. (Highest = most voting.)

(b) The league table of conservative M.P.s with regard to 

their total number of votes against the conservative majority in 

divisions. (Highest = most dissenting.)

(c) The league table of liberal, radical, reformer and whig 

M.P.s with regard to their total number of votes against the liberal 

majority in divisions. (Highest = most dissenting.)

Seventeen groups of M.P.s were defined:-

1. Cohort 1; 1-100 in (a) above

2. Cohort 2: 51-150

3. Cohort 3: 101-200 "

4. Cohort 4: 151-250

5. Cohort 5: 201-300 ”

6. Cohort 6: 251-350 ”

7. Cohort 7: 301-400 ”

8. Cohort 8: 351-450

9. Cohort 9: 401-500 ”

10. Cohort 10: 451-550

11. Liberal Dissenters: 1-95 in (c) above

12. Conservative Dissenters: 1-70 in (b) above

13. Irish Based: The top 69 Irish based M.P.s in

14. Office Holders:The top 79 past or present off
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15. Regular Army: The top 37 M.P.s in the regular army in (a) above

16. Militia: The top 58 M.P.s in the militia in (a) above

17. Military: The union of regular army and militia.

In what follows we focus attention on the results for Cohort 1,

which is used to illustrate the type of results that have been 

obtained. Results for other groups are briefly discussed.
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4.7 Results Obtained by Single-Link Clustering

Single-link clustering has been applied to Cohorts 1 to 8, 

liberal and conservative dissenters, Irish members and office holders 

The analyses were only performed for similarities based on all 

divisions. Temporarily excluding the two dissenting groups, we may 

summarise the typical order of cluster formation for the rest as 

follows. The successive stages were obtained by gradually 

increasing the constant defining the clusters. (See Section 1.8 

for more details.)

Stage 1. A large cluster of similarly voting liberal M.P.s

was formed. These M.P.s voted very similarly to the members of the 

cabinet.

Stage 2. As this first group increased in size another

cluster of conservative M.P.s formed.

Stage 3 . These two clusters both increased in size.

Other clusters were uncommon, small and soon became engulfed in the 

two main groups. The growth of the conservative group was faster 

and thus more quickly completed. Meanwhile the liberal group began 

to include those M.P.s, known to have radical views, who appeared 

among the dissenters.

Stage 4. The liberal and conservative groups amalgamated,

leaving a few unattached individuals.

An impression of the resulting dendrogram is given for 

Cohort 1 in Figure 4.7.1.

Thus the historical suggestion was that there existed a 

strongly united liberal cabinet with supporters which faced 

opposition from both the less cohesive conservative group and the 

radical sympathisers. These radicals were more akin to the liberals 

than conservatives.
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The other two groupings had a similar structure to one 

another. For both dissenting groups a large cluster emerged that 

engulfed all temporary smaller ones leaving just a few anomalous 

individuals. For the conservatives this cluster started with 

orthodox conservatives who had voted frequently and thus their 

proportion of dissenting votes was small. Gradually the more 

extreme conservatives joined this group until only very abnormal 

voters remained. With the liberals the original members were 

radicals and the remaining few at the end were those who voted 

rather as conservatives.

Having completed this project these results became more 

clearly understood with the hindsight allowed by having used 

scaling methods. It was then possible to retrace the formation of 

clusters through the solution provided and see how each newly 

introduced individual related to the other group members. The only 

information provided by single-link clustering was the identity of 

the specific pair of M.P.s whose voting similarity caused the link 

to be formed. There was also a suggestion from the scaling maps 

that the tendency for large clusters to dominate the analysis was 

caused by the chaining effect of single-link. Other cluster 

analysis techniques, such as average-link, would not be so prone to 

this problem. Perhaps they would have identified a separate group 

of radicals. With single-link in this application, pairs of M.P.s 

were often immediately united through a third member agreeing with 

them both on all common divisions. Certainly the method was very 

efficient computationally, and could have coped with a single clust

ering of a much larger group had this been attempted. However, on 

balance, the results were not nearly as interesting as those to which 

we now turn.
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4.8 Results Obtained by Ordinal Scaling

Sixty-four combinations of groups of M.P.s and sets of 

divisions were examined to test the usefulness of ordinal scaling 

when applied to legislative data. An array showing these 

combinations is provided in Table 4.8.1. Cohorts 1 to 5 and the 

two dissenting groups were used in conjunction with all of the 

larger categories of division. Cohorts 6 to 10 voted less, so 

that scaling on proper subsets of the set of divisions was not 

attempted. The military groups were used in conjunction with 

defence divisions; the Irish-based group was examined for divisions 

relating to religion, finance and Ireland itself; office holders 

were also monitored for their voting on finance.

An outline of the computational arrangement used for these 

scalings is provided in Table 4.8.2. The input requirements were 

merely specifications of the required configuration dimensionality, 

the M.P.s to be used, the divisions to be used and a list of output

options. The versatility of the Honeywell Multics system enabled

temporary store to be used for all the intermediate files, and 

allowed jobs to be submitted at pre-specified, inexpensive times of 

the day. Thus the effort involved in running the programs was

minimal. Extra graphical facilities were provided by a

Tektronix 4014 graphics terminal with an attached hard copy unit, 

and a compatible Calcomp plotter allowing four ink colours.

Similarity values were produced according to the Jaccard 

coefficient of Section 4.5. Thus similarities were only defined 

for a pair when they voted in at least five common divisions. The 

number of values to which each M.P. contributed was calculated.

If an M.P. contributed to ten or less values his positioning was 

regarded as dubious and he was removed from some of the plotted
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TABLE 4.8.1

Combinations of M.P, Croups and Division Categories
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Cohort 1 J y y y y X y y X

Cohort 2 J y y V y X y y X

Cohort 3 sJ y y y y X y y X

Cohort 4 y y y y y X y y X

Cohort 5 V y y y y X y y X

Cohort 6 y X X X X X X X X

Cohort 7 y X X X X X X X X

Cohort 8 y X X X X X X X X

Cohort 9 y X X X X X X X X

Cohort 10 y X X X X X X X X

Liberal
Dissenters y y y y y X y y X

Conservative
Dissenters y y y y y X y y X

Irish Based M.P.s y X y X X y X y y
Office Holders y X y X X X X X X

Regular Army X X X X X X y X X

Militia X X X X X X y X X

Military X X X X X X y X X
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TABLE 4.8.2

A Summary of the Computational Arrangement for Ordinal Scaling 

Input

Specify (i) The identification numbers of the M.P.s to be used

(ii) The divisions to be considered (via a format statement)

(iii) The number of solution dimensions required.

Program

(i) Produces all possible similarity values (five common divisions needed).

(ii) If all values defined, forms starting configuration by classical scaling

(iii) Otherwise uses stored final configuration from ordinal scaling when 

applied to all divisions, for a starting configuration.

(iv) Runs ordinal scaling.

Output

(i) To the Line Printer

(a) A list of those M.P.s (if any) who had ten or less similarities 

defined with other M.P.s, with their actual number.

(b) If classical scaling was used, a report.

(c) A report of the ordinal scaling progress and results.

(d) The final configuration.

(ii) To the Tektronix 4014 Craphics Terminal

(a) A plot of dissimilarity values against final configuration distances.

(b) For two-dimensional configurations, plots of final configuration both 

with and without those M.P.s who had ten or less similarities defined.

(c) For three-dimensional configurations, perspective plots of the final 

configuration both with and without those M.P.s who had ten or less 

similarities defined, with minimum spanning tree from single-link 

clustering superimposed.

(iii) To the Calcomp Plotter

Just as to the Tektronix 4014, except that individual M.P.s were 

identified by ink-colouring according to party allegiance.
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configurations. However the values were still used in the scaling 

iterations. If an M.P. voted in less than five of the available 

divisions he could not have had any values defined. His position 

would not then have been adjusted in the iterations, and the final 

position would have been arbitrary and meaningless. This would also 

have applied if the M.P. had voted five or more times, but still not 

enough to find five common divisions with any other member. The 

reliability of the final position was thus dependent upon the 

number of votes cast, via the number of similarities defined.

Several aspects of this procedure need justification. The 

choice and definition of similarity measure was defended in 

Section 4.5. The choice of ten as a minimum sensible number of 

similarities was based upon the results of Section 3.4 concerning 

the accuracy of configurations produced from subsets of the 

similarity matrix. This was a conservative estimate, and it was 

thus felt that the final configuration would still be improved by the 

inclusion in the iterations of those M.P.s for whom some values were 

defined, but not enough to satisfy this requirement, and who thus 

would not appear on the final plots. Indeed the basis of the

acceptance of an M.P.'s position was the existence of more than ten

values with other M.P.s, some of whom might not have been plotted.

Our results suggest that an attractive extension of technique 

would be to use different definitions of the M.P. groups. For 

example, if each cohort had included a number of very regularly voting

M.P.s, then fewer positionings would have had to be regarded as dubious

This would have been advantageous, especially if the added regulars 

had been widely spread across the spectrum of opinion, 

and would have thus provided a useful comparison between
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plots. The extent of the problem may be gauged from Table 4.8.3 

which provides the numbers of M.P.s failing to produce more than ten 

values in the similarity matrix. One hundred M.P.s made up each 

cohort. Some division categories had high turnouts and large 

numbers of divisions. It was the other categories that caused the 

problems.

It was necessary to take precautions that would enable the 

ordinal method to converge at, or very near to, the global optimum. 

In the case of all values being defined, classical scaling was used 

to generate a starting configuration. This procedure usually 

speeded up the convergence and added reliability to the final 

values (see Section 3.5). Additionally the eigenvalue spectrum was 

helpful in suggesting how many dimensions might be appropriate. 

Classical scaling was nearly always possible when a group of M.P.s 

was analysed on all divisions of the House. Cohort 10 was the 

exception. The final ordinal scaling configuration started from the 

classical scaling output was reliable, and it was used as a 

starting configuration if certain values were missing. The overall 

impression gained from the results on all divisions was that party 

allegiance and grouping was the dominant factor, and that this was 

likely to be the case on smaller categories of division. The use of 

the configuration for all divisions had the merit of resolving the 

group of M.P.s into this party structure, ensuring that the worst 

forms of local minimum behaviour were unlikely.

Ordinal scaling was based upon the starting configuration we 

have just defined, using the standard global ordering of 

dissimilarity values, the primary treatment of tied values and up to 

fifty iterations. Occasionally more iterations were used if 

convergence did not seem near. However under the arrangements we 

have described this was quite rare. Progress reports of the
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TABLE 4.8.3

Number of M.P.s for Whom Ten or Less Similarity Values were Defined

Division Type and Category Number

00 
r—II

Group

Cohort 1

Cohort 2

Cohort 3

Cohort 4

Cohort 5

Cohort 6

Cohort 7

Cohort 8

Cohort 9

Cohort 10

COCo•H
CO•H>

• HQ

<
0
0

0
0
0
0

0
0
0
1

klg
(UÜo
kiP-i

0
3

12

23

42

CO
O
§c•H

cO•HOOCO
17

26

41

63

84

m
r—IcO
ktO4-1O0)T-4M
0
0
0
2

5

(Uuc<uCH0)(=)
0

6
38

64

72

rC
CO•Hkl

3

31

72

92

95

—  means that the combination was not attempted



- 139 -

classical scaling, and the ordinal scaling iterations were provided 

along with the final configuration.

The graphical facilities greatly enhanced the appreciation of 

the final configurations. The S.S.R.C. Spatial Data Project 

Tektronix 4014 terminal allowed efficient development of plotting 

routines, and this was complemented by the Calcomp plotter which 

provided permanent versions, coloured to highlight party groupings.

The ability to colour proved valuable in interpreting the M.P. clusters. 

Plots were produced of the final configuration with and without any 

dubiously placed M.P.s, the scatterplot of dissimilarity and 

configuration distance values, and for three-dimensional configurations 

a pair of perspective views with M.P.s linked by chains in the single 

link spanning tree. This last option was not extensively used in 

this application because three dimensions were rarely used and the 

number of M.P.s in each group was prohibitively large.

Three plots of configurations relating to Cohort 1 are provided.

The first. Fig. 4.8.4, is based upon all divisions and we follow its 

generation in detail.

All dissimilarity values were defined, so that classical scaling was 

used to provide the starting configuration. When the output configuration 

was rescaled to nine dimensions the loads on each dimension were as follows

Dimension 1 0.55

2 0.23

3 0.04

4 0.04

5 0.03

6 0.03

7 0.03

" 8 0.03

9 0.03
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The sum of all 100 eigenvalues was 9.990 which compared with; 

the sum of the first eigenvalue being 6.762

" " " two eigenvalues " 9.570

three " " 10.04

The magnitude of the first eigenvalue was 6.762

second " " 2.808

third " " 0.471

" " one hundredth " " -0.675

Thus inspection of the eigenvalue spectrum, the trace 

criterion and the magnitude criterion all suggested that the 

underlying structure should be represented in two dimensions.

The corresponding two-dimensional solution from ordinal 

scaling converged rapidly.

Iteration Step Slope Stress

Number Size Size Value

0 — 0.00365 0.14019

5 0.02375 0.00025 0.11720

10 0.01411 0.00024 0.11705

15 0.00100 0.00004 0.11696

20 0.00047 0.00002 0.11695

25 0.00028 0.00001 0.11695

30 0.00020 0.00001 0.11695

35 0.00008 0.00000 0.11695

40 ' 0.00006 0.00000 0.11695

45 0.00008 0.00001 0.11695

50 0.00004 0.00000 0.11695
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At this stage we defend the presentation of this solution as 

the final version, rather than solutions of any other dimensionality. 

It would be difficult to justify the use of more dimensions because 

classical scaling indicated so strongly that the underlying 

structure was two-dimensional, and any extra dimensions would be 

much more complicated to grasp. That the two-dimensional optimal 

configuration changed little from the classical scaling version 

reinforces this view. Moreover, both dimensions are important. It 

might be appealing to see if a one-dimensional solution would 

unwrap the ’horse-shoe’ of Figure 4.8.4 , but we dispel such ideas 

by demonstrating that each dimension has a simple interpretation 

that would be lost by such an exercise.

For each division we have already defined whether the positions 

taken by the majority of each party agreed or not. For each 

individual M.P. we then defined the two values, x and y , as:- 

X = proportion of conservative-type votes in divisions of 

disagreement in which he participated, 

y = proportion of minority-type votes in divisions of agreement 

in which he participated.

The agreement between the ordinal scaling configuration and the 

configuration produced by this means was quite extraordinary, and 

demonstrated that those M.P.s who would have been supposed to be 

most separated in an unfolded one-dimensional solution, actually 

adopted a similar dissenting attitude to divisions in which the 

majority of both parties agreed. The liberal cabinet was 

characterised by y=0 , indicating allegiance to the majority in 

divisions of agreement, and x=0 , showing liberal support. Apart 

from this superposition the M.P.s were arranged in a manner very 

similar to that obtained by ordinal scaling. The same surprise
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positionings occurred and the same individuals were identified as 

dissidents.

This representation of the voting behaviour of M.P.s in all 

divisions of the session presented a clear pattern which was to a 

large extent repeated for other Cohorts. As was expected, the 

bulk of the liberal cabinet and office holders voted in a similar 

way. Only three were at all distant from the cluster formed by the 

rest. The leaders of the conservative opposition voted less 

frequently and less coherently. For example, the leader of the 

opposition, Disraeli (DISK), did not appear until Cohort 4. The 

radical liberals were even less coherent as a group, though quite 

separate from other liberals. In addition to these three sets it 

was easy to identify individuals voting unusually. We refer to four. 

Colonel Dickson (DICK) was described by Dod as "liberal; and in 

favour of civil and religious liberty". He represented Limerick 

County. He was placed further away from the cabinet than almost all 

conservatives. In the light of this evidence it is interesting to 

observe that he was a member of the Carlton Club and was destined to 

back the vote of censure on Palmerston in 1865. Close to 

Colonel Dickson on the extremes was John Pope Hennessy (HENN), "a 

supporter generally of Lord Derby". He was another Irish member and 

the first Roman Catholic conservative elected. Augustus Smith (SMIB), 

lessee of the Scilly Isles and described as a liberal "in favour of 

a wide extension of the franchise", was very isolated even from the 

loose group of radical liberals. A conservative who was placed close 

to the liberal cabinet (as voting inspection justifies) was 

Charles William Gordon (CORD), although nothing in his career 

suggested such political sympathy. Of the six liberal-conservatives, 

three opted for liberal, and three for conservative, positionings.
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revealing their true colours.

The other two plots provided deal with the twenty-two electoral 

reform divisions (Figure 4.8.5) and the twenty-three defence divisions 

(Figure 4.8.6). The configuration for electoral reform shows a similar 

form to that for all divisions, but extended in the x-direction.

Here the suggestion is that there is an obvious two-party split. 

Exceptions are Augustus Smith (SMIB, close to the conservatives), 

the liberal William Garnett (GARN, even closer) and Alexander Finlay 

(FINE, alongside), a Commissioner of Supply. More striking is the 

configuration for defence divisions. This is the most different 

from that for all divisions, whichever Cohort is considered. A very 

large though scattered liberal dissenting group was close to a 

number of conservatives, whilst other conservatives were closer to 

the cabinet than their supposed party colleagues. For example, 

three former conservative office holders, Joseph Henley (HENM),

John Mowbray (MOWB) and Colonel Taylor (TAYT) were close to or in 

the group containing the liberal cabinet, whilst their positions 

on all divisions were quite different. Much of the differentiation 

among liberals and among conservatives that may be seen in the 

all-divisions configuration is thus accounted for by the defence 

divisions.

We summarise the results for other categories of division.

In Category 3 (taxation, pressure to economise etc.), although the 

government was very closely bunched because supply had to be approved 

if it was to survive, other M.P.s, both supporters and opposition, 

were scattered. As 52 of the 187 divisions fell in this category it 

necessarily played an important part in the all-division maps. The 

small number of divisions concerning social problems (Category 4) 

produced a more scattered configuration. On Irish matters (Category 10)
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liberal members were quite at variance, although some of the dissenters 

rejoined the cabinet.

These and similar exercises highlighted the contribution of 

different categories to the map for all divisions.

It would have been an attractive proposition to break down the 

voting more than we have described, but the number of divisions 

falling into other categories was a limiting factor. Another 

consideration had to be the popularity of voting in different 

categories, for low participation again reduced the scope of the 

method. However those we have considered may be seen to have 

highlighted interesting and useful differences in typical voting 

behaviour, and have contributed to our understanding of the total 

picture. A complete set of the maps produced has been submitted to 

the S.S.R.C. Survey Archive to be lodged together with the magnetic 

tape containing the original data.
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4.9 Results Obtained by Least Squares Scaling

Cohort 1 was used to test the effectiveness of least squares 

scaling when applied to voting data. The test was based on votes 

recorded in all of the available divisions, and a solution 

configuration was obtained in two dimensions, for a comparison with 

our earlier results.

The form of least squares scaling that was used was that 

suggested by Sammon (1969) in which squared differences between 

distance and dissimilarity were weighted by the inverses of the 

dissimilarity values (see Section 1.5). This treatment required a 

convention for the treatment of zero dissimilarity values, of which 

there were several. A cut-off value was defined such that all 

dissimilarities less than 0.01 were assigned weight 100. Just as 

for ordinal scaling, it was necessary to provide a starting 

configuration, and this was chosen to be the configuration produced 

by classical scaling, suitably normalised so that its sum of squared 

interpoint distances was equal to the sum of squared dissimilarity 

values. Our implementation provided values of the objective 

function and its slope for each iteration of the Fletcher-Reeves 

conjugate gradient minimisation. The algorithm terminated upon 

satisfying either a maximum iteration or convergence criterion.

In this case it was the iteration criterion, but inspection of the 

printed values indicated that the minimisation was close to 

convergence. The computer time consumed was then of the same 

magnitude as that required by the corresponding use of ordinal 

scaling.

Objective Function Slope
o o

After Classical Scaling 7.637x10 7.003x10

After Least Squares Scaling 5.964x10^ 3.107x10^
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The resultant optimal configuration is displayed in 

Figure 4.9.1,

There were both similarities and differences between the 

solutions obtained by ordinal and least squares scalings. On a 

coarse level it was true that nearly every M.P. could be found in 

the same region in the two configurations. However at a finer level 

there were differences caused by the introduction of the weightings 

and stronger assumptions. The interpoint distances had to be better 

approximations to the smaller dissimilarity values because these had 

greater weight. Thus to minimise the objective function those 

M.P.s with little disagreement were drawn together and spurious near 

neighbours were thrust apart. In terms of the configuration these 

effects meant that the liberal cabinet was even more compact, and 

the radical group was more diffuse (compare Figures 4.8.4 and 4.9.1). 

The impression we gained was that these refinements corresponded 

to the political cohesion of these groupings. As such the 

contribution of least squares scaling was helpful in highlighting 

these effects.

The values that were taken by the Jaccard coefficient were 

sufficiently spread over the possible range to make least squares 

scaling a possibility. Classical scaling suggested that two 

dimensions would account for most of the variation (see Section 4.8) 

in this case, so the dissimilarity values were expected to be close 

to linear with configuration distance. Under such conditions the 

resultant configuration enhanced understanding of the underlying 

structure. The effect was to concentrate upon small values, 

accurately positioning nearly identically voting M.P.s, whilst still 

managing to describe small increases. In summary, the stronger 

assumptions of least squares scaling made it less prone to degenerate 

solutions than ordinal scaling.
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4.10 Economies in Use of Similarities

An obvious advantage would have been gained if the entire set 

of M.P.s had been able to be scaled together. This would have 

enabled the comparison of the voting habits of all M.P.s 

simultaneously. However the corresponding set of similarity values 

would have been far too large to handle with our computational 

resources. In some cases many of the values were undefined and scaling 

then corresponded to using a subset of the similarities. Such 

subsets consisted of the whole possible range of values, rather than 

(say) the smallest third. The results of Section 3.4 on random 

subsets of the similarity matrix were then relevant. However, in 

other cases the available values were more than could be handled in 

themselves and so some selection procedure was required. Three were 

tried.

Firstly, when producing maps of overlapping sets of M.P.s 

the positions of the M.P.s were matched by Procrustean transfor

mations . This corresponded to considering only similarity values 

that were located in blocks along the leading diagonal of the 

complete matrix. It was therefore rather crude, but straightforward. 

The question arose as to how to treat the overlapping M.P.s, for 

they had two natural positions. It was decided to attach more weight 

to the M.P.'s position in the Cohort of higher voters, for it was 

felt that this would be the more reliable. Thus the procedure was 

to treat Cohort 1 as the target, fit the overlap with Cohort 2 and 

add the new M.P.s in Cohort 2 to Cohort 1 after they had experienced 

the same translation, rotation and scale change. This produced an 

extended target configuration of 150 M.P.s. Cohort 3 was fitted 

similarly and so on. There was room for instability in this process, 

and it was caused by only being able to compare M.P.s far apart in
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the voting list by way of a succession of intermediate positions. 

However, for all its inadequacy, this technique provided help in 

comparing maps. As an illustration, we give Procrustes statistics 

for the first three matches based on all divisions.

Target

Cohort 1 (100)

Cohorts 1 & 2 (150) 

Cohorts 1, 2 & 3 (200)

Fitted Procrustes

Configuration Statistic

Cohort 2 (50 overlap) 0.01400

Cohort 3 (50 overlap) 0.01195

Cohort 4 (50 overlap) 0.01520

It may also be noted that Procrustes statistics could have been used 

to compare the same sets of M.P.s for their positions on different 

sets of divisions. This was not done.

Secondly, and thirdly, maps were produced based on selected

subsets of the entire similarity matrix, according to high values 

(that is, small dissimilarities) and random positions in the matrix, 

conditional upon a minimum number of values for each M.P. When 

dealing with large values a good starting configuration was a 

requirement and the only ones available were generated by Procrustes 

fitting or the configuration obtained from a random sample. Trials 

were made with either six or ten as the minimum number of values for

each M.P. The existence of solutions for subsets of the M.P.s that

were being considered enabled checks to be made against poorly 

positioned M.P.s. These trials treated a maximum of 250 M.P.s 

although in principle this could well have been extended. The 

usefulness of such large maps is dependent upon their accuracy and 

the ease with which the information can be visualised, and going 

beyond 250 would have caused problems in this latter respect. The 

trials did not suggest a significantly different nolitical
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interpretation, but they demonstrated the feasibility of this approach, 

The main advantage that it had over Procrustean fitting was that the 

number of ’links* required to join each pair of M.P.s was small for 

the number of ’links’ leaving each M.P. This efficiency could have 

been enhanced by stipulating a design for the choice of similarities 

used. As it was, it enabled all of the scaling to be completed in 

one run rather than several.
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4.11 Conclusions

Perhaps the main conclusion to emerge from this study is that 

ordinal scaling is well adapted to dealing with the type of data 

provided in division list analysis. Several features that were 

common to the maps enable us to make this claim. Firstly we were 

able to produce interesting and illuminating interpretations of the 

data that could be appreciated in a straightforward, visual manner.

In particular the availability of coloured computer graphics helped 

to highlight the positionings of M.P.s of different party loyalties. 

The scaling maps we submitted were all two-dimensional, and this 

corresponded to our finding that the patterns underlying the 

dissimilarities could often be represented adequately in that way, 

whilst one-dimensional solutions missed some structure. Secondly the 

success of scaling was manifest at different levels of similarity 

value. Thus in any one map we found it straightforward to identify 

groups of M.P.s, whose members voted differently from those of 

other groups, but at the same time minor differences within those 

groups were also distinguishable. It was particularly easy to pick 

out those individual M.P.s whose pattern of voting behaviour was 

aberrant, for it seemed that multidimensional scaling was well 

suited to the isolation of eccentric or unexpected behaviour. It was 

possible to demonstrate the activity of sub-groups of voters, in 

this case the various forms of radical liberals. Thirdly the 

technique enabled us to compare with ease the maps produced by 

scaling equivalent sets of M.P.s on different sets of divisions.

This process identified marked changes in the composition of voting 

groups when different issues were at stake. We have illustrated this 

by considering the behaviour of the first one hundred M.P.s on all 

divisions, electoral reform and defence divisions.
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We were able to cope with one feature of the House of Commons *

division data that was unusual in scaling applications, namely sheer

size. In many fields of research, 40 objects would have been 

regarded as providing a large problem. Here, we have been 

confronted with 662, or at least 530, that number which corresponded 

to M.P.s who voted 'sufficiently often to be interesting'. We 

tackled this problem by producing maps of sets of 100 M.P.s which 

overlapped and could thus be compared. While 100 was not by any 

means an upper limit, it would certainly have been very hard to go 

beyond 150-200, at least with a full system of similarities.

We have seen the limited usefulness of single-link clustering,

which gave an indication of the group identities without spelling

out the inter-personal voting relationships. We have demonstrated 

the feasibility of applying least squares scaling to this type of 

data, formed as it was according to a nearly euclidean dissimilarity 

function. The results represented minor but helpful modifications 

of the ordinal scaling configuration. We have shown the advantages 

of a thorough attempt to correct the original punched data and to 

undertake several routine analyses of the data. Additional 

refinements have been the comparison of overlapping sets of M.P.s 

by Procrustes rotation, and the occasional use of less than the 

entire system of similarities.

Much can be derived from cluster and scaling analyses of 

voting data. It is to be hoped that their use in this area will 

become widespread.
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5.1 Introduction

This chapter describes an application of multidimensional scaling 

and related techniques in the field of linguistics. The project was 

undertaken in collaboration with Mr. Andrew Baring, an anthropologist 

and ethnologist, who has a particular interest in the central areas 

of Sudan.

It was in the course of writing a history of the central Sudan 

that Mr. Baring became dissatisfied with the classification of African 

languages proposed by Greenberg (1978), and generally accepted by 

ethnologists. In plotting the geographical distribution of 300 languages 

ranging from North-east Nigeria to West Sudan according to Greenberg's 

classification, it seemed to him that the resultant groups were not 

related to ecology, land formation or even likely history. These groups 

had been obtained by lexical and grammatical comparison of the languages. 

Phonetics had not been used. As with all such comparisons a large 

amount of hard work is needed to establish similarities. In order to 

provide a quick test of Greenberg's hypothesis, a simple phonetic measure 

of similarity between languages was devised, that could be made from a 

dictionary or word list. This used just the first sound in each word, 

and could be speedily obtained from an alphabetically-arranged list.

To his surprise there seemed to be similarity in the distribution of 

first sounds for related languages. A pilot study of twelve languages 

accorded well with lexical and grammatical patterns. In order to 

extend this further, the University of Bath was approached and this 

project was conceived. By its completion over 550 languages had been 

analysed.

In (5.2) we discuss the materials and methods used; (5.3) contains 

some sample results and these are discussed; (5.4) contains conclusions.



- 210 -

5.2 Materials and Methods 

Language Groups

The 554 languages and dialects studied were partitioned into 

26 families as shown in Table 5.2.1. For most of the languages only 

one word list, vocabulary or dictionary was available. However for 

others several such sources were easily obtained. Altogether well 

over a thousand sources were used, varying in size from lists of just 

a few hundred words to comprehensive modern dictionaries. Many of the 

languages have long ceased to be spoken and are used to help 

understand the evolutionary development. The families were formed according 

to traditional classifications. The original collection of languages 

was largely African. When this was seen to produce interesting 

results the range was extended to include the better understood 

Indo-European languages in order to test further this phonetic method.

Phonetic Groups

Traditional phonetic studies of language consider the phonetic 

structure of entire words. They are laborious and time consuming to 

conduct. In restricting attention to just the first sound this 

process is made much simpler because the number of sounds recorded 

is reduced and, above all, advantage can be made of the ordering of 

words in dictionaries according to this very criterion. The hypothesis 

is that similar languages will have similar proportions of words of 

each phonetic type. Two immediate problems arise. Firstly there are 

well established processes of sound shift that may be frequently 

observed in cognate languages. Thus words beginning with F in one 

language may start with V in another (Father, Vater etc.). Many other 

possible shifts exist. To avoid missing such similarities between
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Greenberg’s Niger-Congo

Greenberg’s Afro-Asiatic

TABLE 5.2.1 

The Language Groups 

Group
No. Description

1 West Atlantic (African)

2 Voltaic

3 Kwa

4 Eastern Adamawa

5 Bantu

6 Sudanic

7 Semitic

8 Ethiopian-Semitic

9 Cushitic

10 Chadic

11 Berber & Ancient Egyptian

12 Iranian

13 Indian

14 Dravidian & Munda

15 Sino-Tibetan/Mon-Khmer

16 Malayo-Polynesian

17 Asiatic

18 Uralic

19 Miscellaneous (mostly other Indo-European)

20 Slavic

21 North European (except English)

22 English

23 Celtic

24 Romance

25 Eastern Sudanic

26 Gurage & Neighbours

N o . of 
’Languages’
15 

17

19 

11 

38 

40

20 
10
23 

11

9

44

24 

20 
28

25 

29 

22 

17 

12 

22

16 

8
23

26 

25

TOTAL 554
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the overall sound of a pair of languages, groups of sounds were 

formed. Their profiles across the nine groups (Table 5.2.2.) were 

compared rather than across the twenty-six letters of the alphabet. 

The groups were chosen according to known phonetic structure in order 

to maximise the interchange that might occur within groups, and 

minimise the interchange between groups. Phonetic theory and a 

little experience quickly established the final group formation. 

Secondly some languages abound in commonly used prefixes, others 

form their plurals at the beginning of the word. Where there was 

evidence of this, efforts were made to ensure that only the root 

word was counted.

Procedure with a Dictionary

When a dictionary, vocabulary or list had less than about

2,000 entries a complete census of the (unprefixed, unpluralled) 

words was carried out. Beyond that level it was found that the 

results were scarcely changed by counting the number of half-pages 

occupied by words with any particular starting letter. Care was 

taken with the three forms of ’C ’ and two of 'X'. The resulting 

estimate of the word profile was expressed as the percentage in each 

of the nine phonetic groups. When there were several sources for 

each language the final values were averages of the different 

sources, weighted for size of list. Some sample figures are 

presented in Table 5.2.3 which describes one language selected from 

every other language group as set out in Table 5.2.1. The crudeness 

of the technique did not warrant the recording of percentages to 

greater than integral accuracy.
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The Phonetic Groupings
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Group

No. Letters

1 A, E, I, Y

2 B, P, F, V

3 Ch, J

4 C (hard),K,Q,G,H,X(sometimes)

5 L, R

6 M, N
7 Z,S,Sh,C (soft), X(sometimes)

8 T, D
9 0, U, W

Description

front and palatal vowels

voiced and unvoiced labial stops 
and dentals

palatals

gutteral fricatives, laryngeal stops

liquids

nasals

sibilants

dentals

rounded back vowels
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Some Sample Data
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Phonetic Group Number

Language

Language 

Group No.

1 2 3 4 5 6 7 8 9

Fulani 1 9 16 8 18 8 11 8 14 8

Yoruba 3 39 11 2 9 5 5 6 8 14

Kikuyu 5 12 2 6 25 9 24 0 16 6

Hebrew 7 16 9 0 30 9 15 16 6 0

Beja 9 13 11 1 29 5 11 11 14 3

Coptic 11 7 7 12 19 5 12 19 9 9

Sanskrit 13 15 23 2 17 5 12 11 11 4

Vietnamese 15 2 12 9 18 9 13 7 28 2

Japanese 17 13 6 7 27 2 12 13 12 7

Basque 19 32 12 3 14 5 7 12 4 9

Danish 21 11 24 0 14 8 7 16 10 10

Welsh 23 19 13 1 33 8 7 3 15 1

Jur 25 17 10 12 15 10 7 0 13 16
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Stability Within Languages

A question of immediate concern was whether two different 

dictionaries of the same language would produce similar phonetic 

profiles. Dictionaries of English abound and this was the obvious 

first test case. Fifteen forms and dialects of English are shown in 

Table 5.2.4, some from quite obscure sources. The three modern 

'languages’ used (English, Modern English and American English) show 

very much the same pattern, with a largest discrepancy of two percent 

between any of the twelve contributory dictionaries. The others show 

a marked difference in the first component between mainstream and dialect 

English. Evidence of a time trend may also be seen (Old Icelandic,

Anglo Saxon and Medieval English are low on Phonetic Group 2 and high 

on Group 9). These effects showed clearly in the scaling configuration. 

These findings were taken as a justification of the underlying idea 

of using first sounds, and of the choice of phonetic groups. However 

English was unlikely to be a representative case,so similar exercises 

were conducted by gathering as many dictionaries as possible of Hausa, 

Hebrew and Chinese. Once more there seemed considerable stability of 

the profile between dictionaries. The most variable language 

encountered was Etruscan and this was not surprising since it is not 

properly understood. Compilers of Etruscan word lists tended to 

emphasise different aspects of the language.

Methods

A list of the methods employed is provided in Table 5.2.5. Once a 

combination of languages had been selected and gathered in a computer 

file, simple commands were provided, sufficient to perform the required 

combination of techniques. Most of these techniques were introduced



TABLE 5.2.4

The Varieties of ’English’
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Phonetic Group Number

Variety 1 2 3 4 5 6 7 8 9

American English 14 21 2 17 8 8 13 11 7

Anglo Saxon 11 16 1 20 7 7 13 11 14

Australian English 5 23 3 23 8 9 11 10 8

Black English 5 24 5 21 7 6 14 11 6

English 14 20 2 16 9 7 14 11 8

Hobson-Jobson 6 22 7 22 5 11 12 11 3

Jamaican English 6 26 6 20 6 9 10 10 7

Medieval English 13 19 2 17 9 7 12 10 10

Modern English 12 22 3 17 8 8 12 11 6

Obsolete English 16 22 3 17 8 6 11 11 6

Old Icelandic 13 14 0 20 8 7 15 10 13

South African English 8 23 1 20 7 10 14 11 6

Scottish English 6 20 2 21 8 6 17 12 8

Somerset English 6 23 2 21 9 7 14 11 6

Sussex English 6 19 4 21 10 6 18 11 5
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TABLE 5.2.5

The Set of Techniques Used

1. Partition likelihood clustering (standard search).

2. Partition likelihood clustering (extended search).

3. Formation of similarity matrix (euclidean distance or information radius)

4. Single-link clustering, from (3).

5. Principal component analysis.

6. Two-dimensional ordinal scaling from (3) and (5).

7. Three-dimensional ordinal scaling from (3) and (5).

8. Display of similarities against configuration distances for (6) and (7).

9. Configuration from (6) plotted with partition likelihood clusters

superimposed.

10. Configuration from (6) plotted with single-link clusters superimposed.

11. Configuration from (6) plotted with colours for different language groups

12. Configuration from (7) as a pair of perspective plots.

13. Histograms of frequency of phonetic group values for a set of languages.
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in the first chapter. A few comments about their use in this context 

should be sufficient.

The more extensive search for the optimal partition in the 

partition likelihood clustering method was not often used. Its only 

occasional refinements made it difficult to justify the extra 

computing resources for a moderately large (greater than fifty) 

number of languages.

Similarities were usually formed by euclidean distance between 

profiles. The resulting scaling plots were quite similar to those 

obtained from the information radius when both were used. The 

anthropologist found the similarity values from euclidean distance 

of interest in themselves.

The addition of clusters to configuration plots was done by 

hand. The three-dimensional perspective plots were only used for 

small numbers of languages, otherwise the effect was lost in the 

overall confusion. Simple histograms of the frequency distribution 

of specific values for the phonetic groups were quite useful in 

highlighting outlying behaviour and typical structure for any 

language family.

The relative success of these techniques and the anthropologist’s 

assessment are discussed in the context of two examples that follow 

in the next section. The first reproduced some known structure 

between languages, the second formed part of the evidence suggesting 

a new hypothesis about a pre-Indo-European mediterranean source, akin 

to Afro-Asiatic.
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5.3 Results 

Dialects of Gurage

Gurage is a region of southern Ethiopia, north-west of 

Lake Zway (Fig. 5.3.1), south-west of Addis Ababa. Its people 

derive from Sidamo, Tigré and Harar, surrounding areas. For centuries 

before the conquest by Ethiopia in 1875 it had links with that 

country even though it consisted of independent tribal units. In 

consequence the dominant language, Gurage, is Ethiopian-Semitic in 

nature. However this could be described as a dialect cluster with 

three main groups. The first, eastern Gurage, contains Selti,

Wolane, Ulbarag, Inneqor and Zway, all related to Harari. The five 

dialects certainly in western Gurage are Chaha, Eza, Ennemor, Endegen 

and Gyeto. Muher, Masqan and Gogot are sometimes linked with this 

group. Soddo and Aymellel, which are related to Gafat, constitute 

northern Gurage. The only literature in Gurage is a Chaha catechism 

written in Ethiopie characters. The vocabularies contain a number of 

Sidamo words, reflecting the peoples' earlier migration. The unity 

of the whole group is still open to doubt, as east and west dialects 

are largely mutually unintelligible.

Leslau (1979) has published a set of individual dictionaries 

treating twelve of the Gurage dialects (Table 5.3.2). He has used 

the same word lists for each. This comparability, allied with the 

advantages conferred by a standard hearing and writing of the 

dialects, allows a useful test of the sensitivity of the leading 

sound hypothesis. Firstly we consider the twelve dialects 

themselves, and then we introduce other representatives of the 

Ethiopian-Semitic and Chadic families for comparison.

Fig. 5.3.3. contains the two-dimensional configuration
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GÂ JGEgU,

Woi-AMfc
M U H E A

MA5CPAN

GURAGE

Z W A Y

L J W A T A

HAD'YYA GAUA
1I.OHVO

L.SALA

kAMBATA

ibilAtte'TFMgÂ Ô
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TABLE 5.3.2

The Dialects of Gurage

Phonetic Groun Number

Dialect 1 2 3 4 5 6 7 8 9

Chaha (W) 22 11 6 21 1 11 10 11 7

Endegen (W) 21 11 5 21 1 12 10 10 9

Ennemor (W) 23 11 5 20 1 11 10 10 9

Eza (w) 21 11 6 21 1 11 10 11 8

Gyeto (W) 20 11 6 21 1 11 11 11 8

Gogot (?) 21 11 5 20 3 11 10 12 7

Masqan (?) 20 11 5 21 3 10 11 12 6

Muher (?) 22 12 6 21 2 10 11 11 7

Soddo (N) 19 9 4 22 3 12 12 12 6

Selti (E) 16 11 5 24 4 11 12 12 7

Wolane (E) 18 10 5 22 4 12 11 11 6

Zway (E) 17 11 4 20 4 12 12 12 8
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produced by multidimensional scaling. The final stress was 3.2%.

The principal component analysis (equivalently classical scaling) 

used to derive the initial configuration indicated that the variation 

was most significant in the first phonetic group, with more moderate 

contributions coming from the fourth, fifth, seventh and ninth groups.

Inspection of the original figures confirms that western Gurage

dialects are higher in groups one and nine, lower in groups four, 

five and seven. This is reflected in the final configuration which 

has a dominant east-west dimension. Indeed the correspondence 

between Fig. 5.3.1 and Fig. 5.3.3. is quite striking. Single-link 

clustering was not so striking. One large group emerged from the 

western dialects, swallowing others on its way. Thus the final three 

clusters were a group of ten dialects, with Zway and Selti by 

themselves. In contrast both search algorithms for the partition 

likelihood clustering technique identified the last three clusters as:-

(i) The five western dialects

(ii) The three unknown dialects

(iii) The four northern and eastern dialects (themselves

separated at an earlier stage).

At the penultimate stage Masqan and Gogot were joined with the eastern 

group, Muher with the western. This may be seen to correspond better 

with the geography of Fig. 5.3.1 than with traditional attempts at 

classification.

Fig. 5.3.4 contains the two-dimensional configuration produced 

by multidimensional scaling when thirteen neighbouring languages from 

Ethiopian-Semitic and Chadic were added. Some of these are located 

in Fig. 5.3.1. The final stress was 8.8% (4.2% in three dimensions). 

The Gurage dialects may be seen to possess the same inter-relationships 

as when studied alone. Gafat is closest to the northern dialects.
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as expected. Harari and Amharic are closest to the eastern group. 

Sidamo, Galla, Kambata and Hadiyya, all to the south geographically, 

are quite distinct as a group but closest to the eastern dialects. 

Gangeru and Tembaro are also distinct, partition likelihood clustering 

putting them closest to the western group. Again geography matches 

the scaling configuration well: Gurage has been placed in its context. 

Principal component analysis demonstrates the importance of the 

first and fourth phonetic groups. Single-link clustering again 

evolves as one dominating cluster centred on Gurage. Partition 

likelihood clustering suggests the existence of a north and eastern 

Gurage group related to Ethiopian-Semitic and surrounding eastern 

Chadic languages, and a western Gurage group related to surrounding 

western Chadic languages.

The Gurage dialects seem related as a group, quite distinct in 

themselves. The overall impression is of the close relation between 

dialect and geographical proximity. Yet this has been obtained from a 

supply of dictionaries showing little variation in phonetic structure. 

These results encourage extensions to larger regions and time spans, 

where no such clear interpretation is available. We now turn to a 

much larger set of dictionaries with little prior indication as to 

the structure that would emerge.

Language around the Mediterranean

The following exercise in multidimensional scaling is based 

upon a set of 100 languages selected from the families that would 

be involved in the evolution of language around the Mediterranean,

They come from the following families:-
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A Sudanic (19) F Berber & Ancient Egyptian (7)

B Semitic (15) G Uralic (3)

C Ethiopian-Semitic (7) H Miscellaneous Indo-European (11)

D Cushitic (7) I Celtic (6)

E Chadic (3) J Romance (22)

Two- and three- dimensional solutions (stress values 16.4 and

9.3 respectively) were obtained following principal component analysis, 

as before. Percentages of the trace corresponding to successive 

dimensions were 42, 19, 14, 11, 6, 4, 3, 2, 0 respectively. Good 

convergence was then obtained. The two-dimensional solution is 

plotted in Fig. 5.3.5. The first character of each plotted symbol 

indicates the family as above, the remaining three characters 

provide an index number. Each of the ten families may be identified 

in a restricted location of the solution. To the left there is a compact 

cluster of Romance languages centred on Latin (J-15) and French (J— 6). 

Below these are the Miscellaneous Indo-European languages, mainly 

Greek,classical and modern. At the bottom are the Sudanic languages.

At the top on the right hand side are Berber and Ancient Egyptian 

languages. In between lie the other African languages: Chadic 

centrally; Semitic nearer to Berber; Ethiopian-Semitic and Cushitic 

nearer to Sudanic. Uralic lies between Romance and Berber/Egyptian, 

Celtic slightly more central. There are a few exceptions, but it is 

possible to draw a line through the plot that separates northern 

Mediterranean from southern with just five exceptions.

These exceptions are Old Breton (1-23), Cornish (1-25),

Welsh (1-27), Akkadian (B-39) and Sumerian (H-99). The first three 

are quite separate from the other Celtic languages including 

Irish (IlOO) and Gaelic (1-26). This corresponds to the usual 

division of Celtic into Goidelic and Brithonic. Akkadian is normally 

considered to be Semitic, but possibly Indo-European. Its position
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here is quite anomalous and may reflect a poor source. It is a 

characteristic of the least understood languages that their 

dictionaries and word lists are most variable. This could also 

apply to Sumerian, Hittite (H-34) and Etruscan (H-30). Albanian (H-28) 

is surprisingly placed, but quite near the Uralic group.

Despite these exceptions the groups are quite well defined. 

Conventional classification of languages according to Greenberg 

does not propose any hierarchical structure for the families it 

defines. This analysis suggests some similarities that could be 

used in such an exercise. Generally the degree of clarity of the 

relationships is greater for European sources, then Northern African 

and finally other African languages. The anthropologist concerned 

found evidence from this and similar maps for the existence of a 

pre-Indo-European source around the Mediterranean and for the 

similarity of many Sudanic and Semitic languages that correspond to 

Greenberg’s Saharan and Afro-Asiatic families.
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5.4 Conclusions

The rudimentary form of measurement used to assess each 

language could not be expected to yield results as convincing as 

more elaborate lexical and grammatical comparisons. The unsophisticated 

idea demands scepticism in the interpretation of results. However 

empirically the scaling plots conformed to accepted patterns when 

well understood groups of languages were studied. English and 

Gurage were two small, successful examples. The patterns for 

European languages seemed sensible, agreeing with established 

evolutionary theories. But recognisable success in describing 

African languages is more elusive for two major reasons. Firstly 

there is a far inferior body of dictionaries to use. These tend to 

be limited word lists, often compiled by amateur linguists who would 

hear and write language quite differently from one another. Thus 

comparability is less often achieved. Secondly there is a far less 

coherent picture of the history and development of the African 

languages against which to gauge the success of this method. It would 

be possible to conclude that better results were obtained when dealing 

with languages that were quite similar. This could reflect the 

greater knowledge of their development, or it could be that the 

measures are only really comparable locally.

Not all languages seemed to fit into the expected patterns.

There were several anomalous positionings which did not seem to be 

caused by sound shifts or prefixes. For example, Welsh and Bini (Kwa) 

were far removed from any other languages (and each other I). Bini has 

a very large number of words in phonetic Group 1, starting with vowels. 

The tendency is then to find the remainder of the languages compressed 

in the plot. These sorts of problems emphasise that this approach 

provides no substitute for careful lexical comparison of languages.
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a technique that is becoming within the range of a computer-based 

treatment.

Assessment of the different statistical techniques that were 

applied to these data must take into account their usefulness for 

(and appeal to) the consumer, here the anthropologist. Single-link 

clustering was found to be useful in principle, but difficult to 

interpret by itself and highly prone to chaining with these data.

By contrast, multidimensional scaling plots were easy to understand 

and stress values gave some indication of success of fit, although 

they were often quite high. The extra dimensions that would reduce 

the stress were difficult to present, although experiments with 

perspective views of small three-dimensional configurations and 

knitting-needle models of larger ones assisted a little. Consistently 

the most popular technique was partition likelihood clustering which 

was regarded as particularly accurate. Loglikelihood plotted against 

number of clusters helped to assess the minimum sensible number of 

clusters.(See Chapter 6 for an example of this). It was felt that the 

most useful combination of techniques was two-dimensional 

multidimensional scaling for its visual presentation and partition 

likelihood clustering for its accuracy. A popular initial approach 

for a particular language was just to provide an ordered list of its 

dissimilarities with others, thereby highlighting its nearest 

neighbours. Another initial display was a set of nine histograms 

for each language family, intended to demonstrate the typical values 

taken by the family across the phonetic groups. The suggestion that 

each family should have its own distinct pattern prompted the use of 

an average set of figures, representing the family, in some of the 

analyses.

Despite its lack of sophistication, this phonetic measure of 

language has several benefits. It is simple to calculate and
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therefore allows consideration of a large set of sources. It is 

objective in that different researchers would obtain the same measure 

from the same source, without having to decide subjectively whether 

two words for the same concept were cognate. It allows for the 

descent, growth, formation and convergence of languages quite 

naturally, in that the state of the language is reflected in the 

dictionary. It permits direct statistical analysis, the clarity of 

which has been demonstrated. Extensions could include analyses, as 

suggested in Chapter 4, that would allow comparability between plots 

through common languages so that a set much greater than one hundred 

in number could be considered. Subsets of a large dissimilarity matrix 

could also be used.

Only a few results have been presented here. It is intended to 

publish a much larger selection in "A Phonetic Experiment in 

Linguistic Classification", a work being prepared by Andrew Baring 

which will give a complete bibliography of the dictionaries that have 

been used.
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6.1 Introduction

The genus Colisa was first named by Cuvier and Valenciennes in 

1831. It consists of five species that inhabit the Indian 

subcontinent including Burma (see Figure 6.1.1). Additionally these 

species are kept as aquarium fish, for they are easy to obtain, to 

maintain even in poor and overcrowded conditions, and easy to breed.

Table 6.1.2 provides details of the five species including their 

natural location. Henceforth we shall refer to them by the 

abbreviated forms. Species A through to Species E.

An evolutionary theory for the development of these species 

has been suggested by various aurthors, including Liem (1963) and 

Dawes (1978). For some time geologists (e.g. Pascoe, 1920) have 

advocated the existence of an ancient river, the Indobrahm, that ran 

east to west across the north of India and connected the headwaters 

of the Indus, Brahmaputra and Irrawaddy. The evidence for this is 

based upon alluvial deposits, but other biological support exists, 

including the existence of river dolphins, common to more than one river. 

If this river existed then the river systems mentioned in Fig. 6.1.1 

and Table 6.1.2 would have been confluent. The genus Colisa belongs 

to the family Anabantidae, and Anabantids would have existed at that 

time (Sanders, 1934). However lowering water levels would have 

separated the rivers, isolating populations of fish and allowing 

visible changes to occur in them as time progressed. These changes became 

sufficiently marked to allow the classification into different species 

that has been described in Table 6.1.2. A factor that could have 

accelerated this process would have been the different strengths of 

water flow in the various rivers.

Several attempts have been made to establish the relationship
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between various Anabantid genera and species. These have been 

based upon a study of skeletal features (Liem, 1963) or 

behavioural factors (Vierke, 1975). However no statistical 

studies have been attempted. The advantages conferred by a 

statistical analysis of morphology would include the ability to 

examine preserved specimens, which often have to form a large 

component of a study, and the larger number of objects and variables 

that could be treated. The important discriminatory variables could 

then be determined.

Two pairs of species of Colisa seemed particularly closely 

related. It has been suggested by John Dawes that Species A and 

Species B may be one and the same. Males of Species B have a 

completely different colouring during breeding, and it is approxi

mately in this form that the nine specimens of the alleged Species A 

are to be found in the Natural History section of the British Museum. 

Further evidence for the existence of just one species is provided 

by Day (1878) who collected these nine specimens and regarded them 

as just a variety of Species B. Recent catalogues of Indian fish 

only include the one species (Sen, 1978; Sheri and Saied, 1975) .

The other species that seem closely related are Species D 

and Species E. The differences between them are quite small.

Species D has a more pointed posterior region in the dorsal fin 

with a corresponding greater surface area providing locomotory 

power. Small colour quality differences also exist.

Extra tests for correct classification may be provided by 

hybridisation experiments, which are easily set up with Colisa.

True species will not hybridise, or if they do the hybrids are sterile 

or only partially viable. Species B stubbornly refuses to breed 

with any other, even with Species C which is of similar size.
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Species A is not therefore a B/C hybrid. Hybrids have been 

produced between Species C and Species D and E. However these 

have always been male and sterile (Pinter (1960);

Dawes (1978) ). Fertile hybrids of both sexes have only been 

produced between Species D and Species E . Their patterns of 

courtship are very similar, as are their other breeding habits.

For example, whilst Species B has its own courtship display akin to 

standing on its tail. Species C, D and E produce a fine mist of 

bubbles under the nest from their gills as they shake their heads. 

At most two such shakes have been seen in Species C, but Species D 

and E average four to five. Heartbeat rates in embryos and young 

fry also support the similarity of D and E and differences with C. 

The overall suggestion that we test is summarised by the tree 

diagram in Figure 6.1. 3.

A = B D

(6.1. 3)

Morphology has always formed a fundamental part of 

classification. In this chapter we investigate the above 

assertions using scaling and clustering techniques based upon 

morphological parameters. This enables one hundred and fifty six 

preserved specimens to be considered.
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6.2 Preliminaries; Selection and Measurement of Specimens

One hundred and fifty six specimens have been analysed by 

John Dawes for this study. For each one the following procedure 

was adopted.

A. An X-ray of the specimen was taken.

B. A colour or black-and-white photograph was taken.

C. The following morphological parameters were measured 

(see also Fig. 6.2.1):-

1. Standard length, measured from snout to caudal peduncular 

crease.

2. Maximum body height.

3. Length of head, measured from snout to posterior margin of 

opercular bone.

4. Height of head, measured perpendicularly from the isthmus.

5. Interorbital width.

6. Length of preorbital.

7. Length of orbit.

8. Depth of cheek.

9. Length from snout to base of first dorsal spine.

10. Length from snout to base of first anal spine.

11. Length from snout to most anterior point of pectoral fin base

12. Length from snout to origin of pelvic fin.

13. Length of dorsal fin base.

14. Length of anal fin base.

15. Height of caudal peduncle measured at the caudal peduncular 

crease.

16. Number of dorsal fin spines.

17. Number of dorsal fin rays.

18. Number of anal fin spines.
19. Number of anal fin rays.
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20. Number of caudal fin rays in the dorsal lobe.

21. Number of caudal fin rays in the ventral lobe.

22. Number of pectoral fin rays.

23. Number of pelvic fin spines and rays (combined).

D. Other information was collected concerning the sex of 

the specimen, the name of the collector, the locality from which 

the specimen was collected, the catalogue number, the date of 

collection or registration and any further notes which were 

thought relevant about observable abnormalities, broken or torn fins, 

missing spines or rays.

Many of the specimens were borrowed from international 

museums and collections. Some came from the Zoological Survey of 

India, others from the Museum National D ’Histoire Naturelle in Paris, 

others from the Zoologisches Museum der Humboldt-Universitat in 

Berlin, and a large supply came from the Natural History section of 

the British Museum. This was done with the help of Dr. P. H. Greenwood 

and Mr. G. Howes of the latter establishment’s Zoology department.

Borrowed specimens were preserved in 70% alcohol. Aquarium 

specimens were fixed in 10% formalin and then transferred to 

70% alcohol. The measurements were made with adjustable 

mathematical dividers and rounded off to the nearest 0.5 mm. Any 

finer measurement would not have been justified by the nature of the 

parameters.

The total collection of 156 specimens consisted of:- 

9 from species A (the nine originally collected by Day)

29 ” ” B (including two very immature specimens)

38 " " C

25 ” ” D

41 ” ” E
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2 specimens labelled as B, but almost certainly C 

2 D/E hybrids 

2 C/D hybrids

8 miscellaneous specimens, labelled G, H, I which are 

Macropodus opercularis, M. chinensis and M, cupanus cupanus 

respectively.

The collection included some syntypes and a holotype.

However the holotype of Species E appeared not to be a member of 

that species at all. Rather it was suspected to be a Macropodus 

and accordingly other specimens of this genus were introduced to 

try to confirm this suspicion.

Many of the specimens were damaged so that not all of the parameters 

could be measured. Ninety-two of the specimens that could be 

completely measured were used in many of the analyses. Where more 

than twenty complete specimens were available in one species, twenty 

were randomly selected to form this group. It was usually possible to 

determine the sex of the specimen by the extent of pointedness of the 

dorsal and anal fins (males are more pointed), but where life colours 

were still present, these were also used. Representatives were taken 

from both sexes whenever this was possible.

It will sometimes be useful to refer to the composition of a 

set of specimens in terms of the number of representatives from each 

species. This will be done by producing a vector with six 

components corresponding to Species A, B, C, D, E and others 

respectively. Thus the total set is described by (9, 29, 38, 25,

41, 14) and the set of 92 completely measured specimens by (9, 20,

20, 20, 20, 3).

A small subset of the data set is provided in Table 6.2.2. 

to give an impression of the range of values taken. The labels
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for a specimen include the species from which it is supposed to 

derive and a serial number.

The analysis was performed using single-link clustering 

(Section 6.4), ordinal scaling (Section 6.5) and partition 

likelihood clustering (Section 6.6). As for our other studies, 

programs were set up to analyse specified groups of specimens and 

sets of variables. The choice of similarity coefficient was 

varied; this forms the basis of Section 6.3, along with a 

discussion of the correlation between the variables, and treatment 

of standard length.
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6.3 The Measurement of Similarity

A problem that required immediate attention was how to deal 

with the variability in size of the specimens when measuring their 

similarity. Six correlation matrices were produced for the set of 

variables based upon each of the five species individually, and 

finally their combination. Each of these showed that the variables 

that were based upon measurement of length (Nos. 1-15) rather than 

counts (Nos. 16-23) were highly positively correlated. For example, 

when considering all specimens, all such continuous variables had 

correlations in excess of 0.85. The picture was not so clear for 

the discrete variables, but spine counts tended to be slightly 

negatively correlated with the body parameters, whilst ray counts 

were positively correlated with these continuous variables. This 

is developed later.

These findings were a combination of two factors. Firstly, the 

large correlations were caused predominantly by size which acted to 

increase these measurements proportionally (at least to a 

first approximation). But also there were genuine effects, particularly 

amongst fin counts.

The process of growth is certainly not one of dilation, and so 

we anticipated difficulty in comparing different aged specimens 

from this set of variables. But since it was necessary to be able to 

classify specimens independent of their size, parameters 2 to 15 were 

divided by parameter 1, the standard length. The other parameters 

were left unaltered, since it seemed that these were not so influenced 

by the standard length.

Re-evaluating the correlation matrices showed that a 

substantial amount of the correlation among variables had been 

removed, but that some variables were still highly correlated.
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This was hardly a surprise, since some measurements are quite 

similar. For example the lengths from the snout to the anal fin 

and pelvic fin almost overlap (see Fig. 6.2.1) and so may be 

expected to be correlated.

The standard length was the largest of all measurements, so 

that in order to bring the ranges and variances of the standardised 

body parameters and fin counts into approximate agreement, the 

former values were multiplied by 30. This set of values then 

constituted the final description for use in partition likelihood 

clustering. Additionally some runs of single-link clustering and 

ordinal scaling were made using euclidean distance, based on these 

values, and averaged for the number of variables that were used 

in making the comparison. If this was done a criterion concerning 

the minimum number of variables for which both specimens of a pair 

could be measured had to be satisfied. A classical scaling start 

was possible when the set of specimens was chosen so that all pairs 

satisfied this criterion.

In this same initial analysis we looked further at the 

relationship among the measurements by performing a principal 

component analysis of the variables based upon the specimens for 

which complete data were available. The loads on the first four 

dimensions were 51%, 17%, 9% and 6% respectively. The first two 

dimensions are plotted in Fig. 6.3.1. This enabled us to determine 

the variables which explained most of the variation between 

specimens, given that this was dependent upon scaling factors used. 

Under the arrangements described above the ten variables with most 

variance were:-
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1. Number of anal fin rays

2. " " " " spines

3. Height of body (standardised)

4. Number of dorsal fin rays

5. Snout to pelvic fin (standardised)

6. Snout to anal fin (standardised)

7. Number of dorsal fin spines

8. Length of anal fin base (standardised)

9. " " dorsal " " (standardised)

10. Snout to dorsal fin (standardised)

(19)

(18)

(2S)

(17)

(12S)

(lOS)

(16)

(14S)

(13S)

(9S)

A trailing 'S’ indicates that the value has been divided by standard 

length.

The way in which these variables tended to discriminate 

between the species is summarised in the following association of 

variables with the species for which they had relatively large 

values and small values.

Variable

(13S,14S,16,18)

(2S,9S,10S,12S)

(19)

(17)

Variable is Large Variable is Small

for Species for Species

A & B 

C 

D 

E

C & E

A, B, D & E 

A & B 

A & B

In order to provide a check against similarities being unduly 

weighted by the presence of many correlated variables, Mahalanobis D' 

statistics were also used to provide a measure of similarity.

Section 1.11 outlined forms of this coefficient that were used, so 

that in various analyses either the scale effects or the
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correlation effects, or both, could be removed. This approach 

was adopted with the original data both with and without the 

standardisation provided by division of variables by standard 

length. Values were supplied to single-link and ordinal scaling 

programs.

For all methods analyses were carried out on the body 

parameters alone, on the fin counts alone and on all parameters 

combined.

The mean length of specimens increased from those of A 

through B, C, D to E. Species E specimens were about three 

times longer than those from A. These procedures eliminated 

excessive dependence upon size. Some dependence was no doubt left, 

but that was inevitable and that real differences existed justified 

this further, because it would have been a feature that would have 

immediately discriminated between species.
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6.4 Results Obtained From Single-Link Clustering

We illustrate the results obtained from applying single-link 

clustering by using the standard set of 92 completely measured 

specimens defined in Section 6.2 with body and fin parameters 

separately.

For both analyses the chaining effect proved a severe problem 

as clusters developed. We may demonstrate that the initial 

attachments were often in agreement with the supposed subdivision 

into species by the following displays. For each pair of species the 

number of occurrences of a link in the minimum spanning tree being 

formed by specimens from these species is recorded.

Body Parameters

A 7

B 1 15

C 0 2 17

D 0 3 1 22

E 2 1 1 11 15

Other 0 0 0 2 0 1

A B C D E Other

Fin Parameters

A 4

B 7 22

C 0 3 16

D 0 0 2 22

E 1 1 5 11 13

Other 0 3 1 0 0 1

A B C D E Other
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The extra links are caused by truncation error in writing out 

the Mahalanobis distance calculation. This left open the 

possibility of equalities in similarity.

Most specimens start by linking to another of the same species. 

There is already a suggestion of similarity between A and B (fin) 

and D and E (body and fin). Other early cluster formation often 

agreed with the supposed subdivision as well.

However one large cluster soon emerged that tended to 

swallow the others. Thus considering body parameters, one cluster 

of form (7,17,18,18,20,0) soon developed, leaving eight single 

specimens (A,A,B,B,B,D,D,G) and two clusters of two elements (1,1) 

and (C,C). The picture was similar for fin parameters. Of course, 

this could have provided a perfectly satisfactory description of the 

data, but the more sophisticated technique of partition likelihood 

clustering, based upon more information, was able to demonstrate that 

this description was inadequate. Details are provided in Section 6.6, 

Nor could using another of the variety of similarity coefficients 

mentioned in Section 6.3 improve this situation. The position 

improved slightly upon amalgamating the body and fin parameters.



- 252 -

6.5 Results Obtained from Ordinal Scaling

We illustrate the results obtained from ordinal scaling by 

discussing results for the standard 92 specimens based on all 

parameters. Here the body measurements have been standardised and 

Mahalanobis distances are used. The final configuration is plotted 

in Fig. 6.5.1.

A classical scaling was performed first. Loadings on the 

first six dimensions were 83%, 7%, 4% 2%, 2% and 1% respectively.

This suggested that one dimension would be sufficient, but the first 

two dimensions were used to start the ordinal scaling so that a local 

minimum solution would be less likely, and because there was no 

additional difficulty in plotting the configuration. The ordinal 

method converged rapidly to the region of 7.4%, and then bumpily 

to a final value of 7.389%. We discuss the final configuration.

Species A . These nine specimens were fairly closely grouped.

A4 was found in the main mass of B's and A3 was more distant from 

the others. These findings concurred with the partition likelihood 

results for A3 and A4.

Species B . Eighteen of the twenty were grouped together,

BIO and Bll were separate. These two formed cluster ’C3' in Table 6.6.1

Species C. At least sixteen of the twenty were well grouped 

in the configuration. C17, C15 and C114 were closer to other 

E specimens, C112 was separate and by itself.

Species D . The entire group was located in a narrow region,

with several E specimens.

Species E . Eleven formed a clear group. Six were contained 

within the galaxy of D specimens at Stage 87 of the partition

likelihood clustering (see 6.6.1). Three were quite separate and

nearer A*s, B's and C's. These three E126, E129 and E133 are
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all identified as the three E ’s that do not fit a complete D/E union 

in 6.6.1, where a reason is given in terms of their morphology.

Macropodus Specimens. These were together and apart from 

all Colisa specimens, closer to C ’s than others.

Scaling demonstrated the broad division into species that 

became confused in single-link clustering. It also identified 

particular specimens that failed to conform to this supposed 

classification. A specimens seemed separable from B's, D's were 

contaminated with some E's. The picture was far from clear.

We turn to the use of partition likelihood clustering which, as 

we shall see, confirms the unexpected positionings and adds weight to 

the feeling that the different species groups are largely separable, 

despite their contiguity in the scaling solution.
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6.6 Results Obtained by Partition Likelihood Clustering

In Section 1.9 we observed that the method of partition 

likelihood clustering and those methods like it would have a special 

appeal for the taxonomist. In terms that he would understand we 

may state the problem as follows. "We are given N specimens from 

a particular genus and are required to produce the partition of 

these N specimens into K species which is most acceptable or 

likely." K is allowed to vary over the entire range from 1 to N, 

although the end points are trivial. It is most convenient to start 

from K=N and successively reduce its value by one, and this 

corresponds to a process of merging species. However it will 

possibly be beneficial to relocate individuals after such a merging.

We have measurements from our specimens to use to form our judgements. 

For certain specimens the measurements will be more reliable, 

perhaps because of their greater size, and this must be taken into 

account in the analysis. As we have seen this consideration arises 

quite naturally.

The conceptual framework is attractive, but in addition we 

now claim that the method works very well in practice. The basis for 

this assertion is the set of results obtained from partition likelihood 

clustering of Colisa. We have considered our standard set of 92 

specimens, from which complete data was available covering all 

23 parameters. Results have been obtained based on the body 

measurements, the fin counts and both combined. For comparison with 

Section 6.5 we present first the results based upon all of the 

parameters simultaneously. The last stages of the clustering are 

presented schematically in Table 6.6.1 and the value of the 

loglikelihood function for successive stages is plotted in 

Figure 6.6.2.
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The first seventy-one stages were simple unions of already 

existing groups. The twenty-one clusters that existed after these 

mergings had the following structure:

(2A), (5A), (2A + 2B), (IB), (5B), (2B), (8C), (4C), (6C), (2C), 

(3D), (3D), (6D), (3D + IE), (4D + IE), (ID + 4E), (3E), (7E), 

(4E), (21), (IG)

where, for example, (ID + 4E) represents a cluster of one specimen 

from Species D with four from Species E. Thus the only clusters 

that contained specimens from more than one species followed the 

suggestions for classification that were made in Section 6.1.

During the next nine stages four relocations were required.

The clusters that emerged are shown in Table 6.6.1. Clusters are 

identified in the table by abbreviation where ’C9' stands for 

cluster nine etc. Their structure was as follows:

Purely Species A 'Cl' 8
ti 11 B 'C3' 2
ff II C 'C4', 'C5' 20
n II D 'C12' 11
ti II E 'C8', '09', 'CIO' 14

A/B combinations 'C2' 19

D/E II 'Cll' 15

Purely Species G 'C7' 1
11 II I 'C6' 2

The method then produced the following results:-

Stage 81: The entire B group was united. One A member remained

with them.

Stage 82: Two purely E clusters united.
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Stage 83: The G and I clusters united.

Stage 84: All A's and B's were united.

Stage 85: Another purely E cluster joined the cluster from

Stage 82, totalling fourteen specimens.

Stage 86: All C's were united.

Stage 87: All D's were united. At this point the initial

classification hypothesis (Section 6.1) seemed to be quite 

accurate. A and B were together, C alone, D and E

separable but with a few specimens in common, all Macropodus 

specimens being quite distinct.

Stage 88: All D's and E's were united with the exception of

three E's which left on relocation, two to the C group,

one to the A/B group. The similarity between D and E

was thus further established. The three E specimens that 

did not fit well into this scheme were re-examined. Each had 

an unusually low number of anal fin rays for an E specimen 

and it was noted that these (which were from the aquarium) all 

had a membrane between the last ray and the caudal fin. The 

membrane had taken the place of anal fin which would normally 

have contained more spine and ray.

Stage 89: The Macropodus specimens united with the C group.

Stage 90: Contrary to the hypothesised tree diagram classification

of Section 6.1 the C group amalgamated with A/B. Four 

C specimens were relocated to join D and E.

Stage 91: The process complete, just the one universal cluster

remained.

In summary, the method worked very satisfactorily in so far as

it agreed with the hypothesised classification. It was seen to be

more powerful in discrimination than either of the other two methods
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that had been applied to these data, for such clean results did not 

emerge from single-link clustering or ordinal scaling. This was 

achieved at a correspondingly greater cost in computer resources, and 

it is difficult to conceive that the method could be applied to data 

arrays that were much larger. However the results for body 

parameters and fin parameters which follow demonstrate that quite 

clean results were obtained with less data. The form of presentation 

is deliberately made comparable.

Body Parameters

Stage 71:

(6B),

(ID +

(21),

Stage 80:

(2D +

Stage 81:

Stage 82:

Stage 83:

Stage 84:

Stage 85:

Stage 86:

(IB +

Stage 87:

(IB +

Stage 88:

(9A +

Stage 89:

(9A), (8B), (lOB), (IB + 8C), (IB + 4D + 2E), (12C), (7D), 

(20 + 5E), (2D + 8E), (5D + 5E), (21), (IG).

(21) + (IG) = (21 + IG).

(8B) + (lOB) = (18B).

(IB + 4D + 2E) + (2D + 5E) = (IB + 6D + 7E).

(IB + 8C), (12C), (18B) relocated to (IB + 17C), (18B + 3C) 

(9&) + (18B + 3C) = (9A + 18B + 30).

(7D), (2D + 8E), (IB + 6D + 7E) relocated to

6D + 8E), (9D + 7E).

(5D + 5E), (IB + 6D + 8E), (9D + 7E) relocated to 

IID + 12E), (9D + 8E).

(9D + 8E), (9A + 18B + 3C), (21 + IG) relocated to

(0, 1, 0,13,11,0) 

(0, 1,17, 4, 0,3)
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Stage 90: Clusters are relocated to be (1, 1, 0,13,13,0)

(8,19,20, 7, 7,3)

For body parameters alone, slightly different impressions were 

formed, indicating whether similarity between A ’s and B ’s or 

D's and E's was more strongly based upon body or fin morphology. 

In fact A's and B's were well separated in the early stages,

D's and E's were well mixed. Again the C group joined the 

A/B combination but there were more stray specimens from D 

and E with them at the end.

Fin Parameters

Stage 71: Final 21 clusters contained: (2A + 6B), (2A + IB),

(5A + IB), (5B), (7B), (4C), (3C), (3C), (6C), (1C), (1C),

(1C + 5E), (1C + 2D + IE), (7D + 3E), (6D + 1E),(5D + 2E), 

(4E), (2E), (2E), (IG), (21).

(2A + 8B), (7A + 5B), (7B), (13C), (2C), (1C + 9E),

(1C + 2D + IE), (3C + 4D + 2E), (14D + 4E), (4E), (IG), (21).

(2C), (1C + 2D + IE), (1C + 9E) relocated to

(3C + 2D), (1C + lOE).

(IG) + (21) = (IG + 21).

(2A + 8B) + (7A + 5B) = (9A + 13B).

(3C + 4D + 2E), (14D + 4E), (3C + 2D) relocated to

(3C + 9D + 2E), (3C + IID + 4E).

(9A + 13B) + (7B) = (9A + 20B).

(1C + lOE), (4E), (13C) relocated to (IIC), (3C + 14E).

(lie), (3C + 9D + 2E), (3C + IID + 4E) relocated to 

(14C + ID), (3C + 19D + 6E).

Stage 88: (14C + ID), (3C + 14E), (3C + 19D + 6E) relocated to

(5C + 19D + 6E), (15C + ID + 14E).

Stage 71:

(5A +

(1C +

(4E),

Stage 80:

(1C +

Stage 81:

(3C +

Stage 82:

Stage 83:

Stage 84:

(3C +

Stage 85:

Stage 86:

Stage 87:

(14C

Stage 88:

(5C +
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Stage 89: (9A + 20B), (5C + 19D + 6E), (15C + ID + 14E)

relocated to (9A + 20B + 1C + IE), (19C + 20D + 19E).

Stage 90: (9A + 20B + 1C + IE) + (IG + 21) =

(9A + 20B + 1C + IE + IG + 21) 

For fin parameters alone, A's and B's were a little more 

mixed, D's and E's more separate. Thus at Stage 85 a cluster of 

nine A's and thirteen B's merged with one of seven B's to 

achieve the grand union. At Stage 88 the D and E specimens were 

still quite distinct. Thus it would seem that A's and B's 

differed more on body parameters, D's and E's on fin counts.

This time the C group merged with E's (Stage 88) and subsequently 

D's. The Macropodus specimens were clearly separated when 

considering fin counts.
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6.7 Discussion and Conclusions

From the taxonomical point of view these analyses of 

morphological parameters have added weight to the proposed classific

ation of Section 6.1. Certainly the suggested similarity between 

Species D and E has been supported. Likewise Species A and B have 

always been seen to be alike, but there is a suggestion that the 

group of nine A specimens does have an identity of its own. Whether 

this is caused by them all being males, by their having been 

collected from one location, or by a genuine specific difference is 

unresolved. It can certainly be claimed that they strongly resemble 

B specimens. The graph of loglikelihood against step number 

(Figure 6.6.2) for all parameters showed that after the existence of 

four clusters (A/B, C, D/E and Macropodus) a great strain was 

required to make any further mergings. This has added further support 

to the classification.

Other scalings were based on specimens for which not all of 

the parameters were available. These demonstrated the holotype of 

Species E to be central to the Macropodus group of eight specimens, 

and quite distant from other known Colisa. The hybrids were also 

interestingly located, intermediately between the groups formed by 

their parents.

These methods have also highlighted the relative importance 

for discrimination of each of the measured variables, and in 

particular the two sets provided by the body and the fins.

From the statistical point of view we have seen the usefulness 

of partition likelihood clustering. Its value has been the extra 

confidence that it enabled to be attached to suspected groupings in 

a scaling solution. A measure for the strain required to accommodate 

each new cluster has been useful. Single-link clustering.
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although fast and efficient, was again not so informative. An 

important extra advantage of the partition approach was its natural 

formulation and, thus, appeal to the non-mathematician.
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7.1 Introduction to the Data

In this chapter we describe one additional application of 

ordinal scaling, namely to a study of regional trends and 

variations in dietary intake. The project was carried out with 

Michael Nelson, a nutritionist at the Medical Research Council 

Environmental Epidemiology Unit of the University of Southampton.

An interest of this unit is the association between diet and 

morbidity due to various complaints such as gallstones, renal 

stones, diabetes etc. The nature of this work was exploratory, as it 

was based upon a routinely published set of data known to have many 

weaknesses. However it was felt worthwhile to make such an 

attempt because all measurements of intake are liable to serious 

error, and are expensive.

The data that were used were compiled for the Ministry of 

Agriculture, Fisheries and Food and published in their annual report 

by the National Food Survey Committee under the title "Household Food 

Consumption and Expenditure". Reports dating back to 1958 and up to 1979 

were used. Each year the field workers sampled a number of private house

holds in Great Britain. In 1978, 7,173 such households were used.

Foods which entered into the household food supply intended for human 

consumption were recorded. Sweets, alcoholic drinks, soft drinks 

and foods eaten away from home were not recorded. Sampling took 

place throughout the year to minimise seasonal variations, and was 

based upon selected constituencies within standard regions of 

Great Britain, intended to be representative of the country as a 

whole. However only a limited number of localities were considered 

and these varied from year to year. Thus in 1978 Wales was 

represented by Merthyr Tydfil and Llanelli, the South West by 

Bristol North West, Wells, North Somerset and Taunton, but these
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would have changed by the next year. This implied that comparisons 

between individual years would be prone to large amounts of error, 

because a different, small, potentially unrepresentative sample was 

used each time. Additional complications were provided by changes in 

the standard regions used. The Food Survey Committee thus compiled 

a large mass of information concerning consumption, income, prices, 

expenditure, individual foods, regions, age, social class and 

nutritional value. It was with the regional consumption of individual 

foods that we were concerned.

The abbreviations that were used for the regions are defined 

below, with the period for which the region was used.

EM = East Midlands (1967-79)

EW = East and West Ridings of Yorkshire (1960-66)

LO = London (1958-79)

MI = Midlands (1958-66)

NM = North Midlands (1958-66)

NO = North (1960-79)

NR = North and Yorkshire (1958-59)

NW = North West (1958-79)

SA = South East and East Anglia (1967-79)

SC = Scotland (1958-79)

SE = South East (1958-66)

SW = South West (1958-79)

WA = Wales (1958-79)

WM = West Midlands (1967-79)

YH = Yorkshire and Humberside (1967-79)

The boundary changes allowed the timespan from 1958 to 1979

to be split into six convenient periods. These periods were used
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in the analyses in the hope that an aggregate of years would smooth 

out the fluctuations between individual years caused by the sampling 

plan. There were nine regions defined in the first time period, ten 

in all subsequent ones. The best approximation to the effect of the 

boundary changes was as follows

PERIOD

REGION

1958-59 1960-63 1964-66 1967-70 1971-74 19:

SW SW SW SW SW SW

SE SE SE SA SA SA

LO LO LO LO LO LO

MI MI MI WM WM WM

NM NM NM EM EM EM

WA WA WA WA WA WA

NW NW NW NT‘7 NW NW

NR<CC%2
^E W EW YH YH YH

"-NO NO NO NO NO

SC SC SC SC SC SC

Thus in all there were fifty-nine combinations of region and 

period, each of which was described by the two characters for region 

and two denoting the first year of the period. Thus SW67 represented 

the South West in 1967-70.

Seventeen broad categories of food were used. The measurements 

related to household food consumption and gave annual averages in 

units of ounces per person per week, unless otherwise stated.

In order to study vitamin A intake, two additional variables were 

included. These were liver and carrot consumption. Thus we 

considered:-
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MILK = Tota milk and cream (in pints or equivalent)

GHEE = Tota cheese

CRMT = Tota carcase meat

MTPR = Tota other meat and meat products

FISH = Tota fish

EGGS = Tota eggs (number)

FATS = Tota fats

SGPR = Tota sugar and preserves

POTA = Tota fresh potatoes

GVEG = Tota green vegetables

OVEG = Tota other fresh vegetables

PVEG = Tota processed vegetables

FFRT = Tota fresh fruit

FRTP = Tota other fruit and fruit products

BRED = Tota bread

CERE = Tota cereals (less bread)

BEVE = Tota' beverages

LIVR = Tota liver

CRTS = Tota! fresh carrots

A 59 X 19 matrix of values was formed by taking the

average consumption for a particular time period and region for all

of these foods. In order to give an idea of the range and

variability of the values taken, four rows of this matrix are 

provided in Table 7.1.1, and presented in column form.

From the four rows displayed in Table 7.1.1 it may be seen that

there is a considerable time trend, and also geographical difference. 

Thus during those years more and more meat products, processed 

vegetables and fruit products have been eaten. Geographically, 

Scotland has consumed more bread and potatoes, less carcase meat.



- 271 -

green vegetables and fresh fruit. These facts are emphasised in the 

multidimensional scaling solutions described in the other section of 

this chapter. The configurations show both time and geographical 

differences, with a convergence as more convenience foods are eaten. 

The foods which are causing the differences are also displayed.

TABLE 7.1.1

L058 L075 SC58 SC75

MILK 5.47 4.79 4.96 4.87

CHEE 3.30 4.07 2.67 3.60

CRMT 20.98 18.38 14.16 14.49

MTPR 17.29 23.90 17.75 22.71

FISH 6.35 4.89 5.44 3.99

EGGS 4.76 4.01 5.00 4.37

FATS 10.93 10.70 10.72 9.95

SGPR 20.70 12.56 21.83 13.73

POTA 52.64 39.69 60.19 44.95

GVEG 19.60 13.31 5.73 6.94

OVEG 10.15 16.04 10.13 13.25

PVEG 7.18 15.72 7.70 13.09

FFRT 27.89 23.01 16.07 14.67

FRTP 7.33 7.69 4.65 5.92

BRED 40.87 29.63 50.51 37.49

CERE 22.80 23.57 27.55 23.24

BEVE 3.78 3.08 2.81 2.52

LIVR 0.97 0.87 0.62 0.64

CRTS 2.33 2.72 3.41 3.19
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7.2 Results Obtained by Multidimensional Scaling

Two scaling solutions are reported in this section. The first 

considers the region/period combinations with foods as the variables, 

to look for geographical and temporal trend; the second considers the 

foods with region/periods as variables in order to determine what is 

causing the differences shown up in the first configuration. Results 

of similar quality from the same technique have been based upon 

vitamin A-rich foods only, but are not reported here. A simultaneous 

solution of the problem formed, for example, by correspondence 

analysis (Hill, 1974) or a biplot (Gabriel, 1971) might have been 

attractive. However the results as they stand offered suggestions 

of the underlying mechanisms and proved to be easily understood by 

the nutritionists involved. The other methods would have required 

considerably more explanation and sophistication.

(1) Region/Period Analysis

Some initial transformation of the data was necessary to ensure 

that the differences between region/periods were not dominated by 

largely consumed food variables, such as bread or potatoes. It was 

felt a priori that each of the variables should be considered equally 

potentially important in making up a difference. There is no reason 

to assume that an absolutely large quantity of any food must be 

eaten to change the relative risk of any disease. For example, small 

quantities of vitamin C are sufficient to eradicate scurvy. Accord

ingly the data were transformed so that the variables should have 

equal means and variances. Each variable was of independent interest 

in its contribution to overall similarity, and correlations, although 

they certainly existed, were not considered worthy of particular, 

individual attention. Thus a Euclidean distance was used to
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measure dissimilarity between region/periods. The starting 

configuration for ordinal scaling was produced by principal component 

analysis, which for this case was formally equivalent to classical 

scaling, but simpler because it involved the inversion of a smaller 

matrix. The loadings on the first nine dimensions were

37%, 26%, 10%, 7%, 5%, 4%, 3% 2%, 2% respectively.

These indicated that at least two dimensions were required, btit 

that a third was probably unnecessary and unreliable. The 

corresponding solution converged rapidly to that provided in 

Figures 7.2.1 and 7.2.2. The two plots show progress 

through time, and progress geographically. The final stress 

value was 12.8%.

Figure 7.2.1 shows points corresponding to each region (or 

its equivalent) connected by lines following progress through time. 

Each of these lines had a trend from the bottom left of the plot to

the top right as time passed. The lines tended to converge,

suggesting that the dietary habits of regions of Britain were 

becoming more uniform. In addition the lengths of segments of the 

line were seen to be in approximate proportion to the number of 

years’ difference between the mid-points of the periods in question. 

Thus the last two segments, which covered the longest intervals of 

time, tended to be the biggest. The overall impression was that the 

plot showed a clear time dimension, with a stable geographical 

configuration being translated across the plot. The rate of change

was approximately proportional to elapsed time.

Figure 7.2.2. highlighted the geographical contributions. The 

regions making up each time period were connected. In each period 

the pattern was similar. There was a gradient from London at one
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extreme, through the southern regions, the midlands, the north west, 

with Wales somewhere near, and Yorkshire, leading to the extreme 

north and then Scotland. As we have seen there was also a 

convergence effect bringing the extremes closer together. This 

gradient across the country was perhaps not too surprising, because 

many variables also show a similar pattern. Examples are mortality 

rates, social class measures and rainfall which are respectively low, 

high and low in London. Indeed the gradient corresponds quite well 

with latitude. That this should also apply to diet is to some 

extent accounted for by wealth differences, but it is also 

suggestive of a contributory influence to disease patterns.

(2) Food Analysis

Again an initial transformation of the data was required to 

ensure that we were not measuring just the differences in quantity 

of foods consumed. We did not want a single dimension from 

potatoes to liver, which would have provided no information about 

what was contributing to the regional differences. A slightly 

different device was used here. For each food the region/period 

values were transformed to their percentage contribution to the 

sum of all region/period values for that food. Thus the 19 x 59 

data matrix was forced to have rows summing to 100.0. This 

ensured that all foods were comparable in magnitude, but that if a 

food had a particularly high coefficient of variation then this was 

preserved. Such variables would have contributed most to the 

region/period differences. The transpose of this matrix could have 

been used for the previous region/period analysis, but there we 

wanted to make no assumptions about the particular foods creating 

differences, and thus equated all variances. Again there were 

correlations among the variables. As we have seen, short distances
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and small time differences would have brought about large 

correlations between region/periods. However each variable was felt 

to contribute its own important component towards overall similarity 

of foods, and accordingly a Euclidean distance was used. This 

generated no particular imbalance because regions and periods were 

all equally well represented.

This time the simplest initial configuration was obtained by 

inverting the 19 x 19 matrix required by classical scaling. The 

ordinal method converged quite quickly to a final stress value 

of 7.5%. The configuration is plotted in Figure 7.2.3. We turn to 

interpretation of the axes.

During the period covered by this study there was a general 

decrease in calorific intake per individual. This was the net 

result of a decrease in consumption of a lot of foods and the 

development of new foods that became more common. If we concentrate 

on the most recent of the six intervals used (1975-79) we can look 

at how many of the ten regions were consuming more than the overall 

average for all six intervals for any particular food. Doing this we 

found that foods for which at most one region consumed more than average 

were:- fish beverages

sugars and preserves eggs

fresh potatoes fresh green vegetables

bread

On the other hand those foods for which seven or more regions 

exceeded the average were:-

other meat & meat products cheese

other fresh vegetables carrots

processed vegetables 

These foods are marked on Figure 7.2.3. They were also identified by 

simple plots of the average national consumption for the different
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time intervals. Looking at Fig. 7.2.3 one dimension was seen to 

describe these differences.

A pilot study of foods had been based upon the year 1978 only. 

This enabled the removal of the time factor so that the configuration 

of foods produced by ordinal scaling described differences between 

regions only. The configuration had one dominating dimension which 

ranged from green vegetables (high in the South) to potatoes (high 

in Wales and Scotland). In this pilot study liver and carrots were 

not used, but the other variables were ordered along this leading 

dimension as follows

fresh green vegetables

fresh fruit

cheese

other fruit and fruit products

carcase meat

other fresh vegetables

milk and cream

beverages

cereals

fats

sugar and preserves 

processed vegetables 

eggs 

fish

other meat and meat products

bread

potatoes

No doubt this ordering varied a little with time, but it 

would not have done so substantially. Comparison with Fig. 7.2.3
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enabled us to identify another dimension, orthogonal to the first, 

which described foods accounting for the geographical differences. 

This hypothesis, based upon 1978, was easily extended to the other 

years of study by comparison with the original data. We can 

confidently claim to have identified the foods causing most regional 

diet difference.

(3) Conclusion

We have been able to explain and describe trends both temporal 

and geographical in dietary habits in Britain, by demonstrating a 

clear interrelationship between time, region and food type. This 

has been done by producing two ordinal scaling solutions, each in 

two dimensions, with two interpreted axes.
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