UNIVERSITY OF

BATH

University of Bath

PHD

High-level interpretive languages and real-time programming.

Thompson, J. W.

Award date:
1977

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019



HIGH-LEVEL INTERPRETIVE LANGUAGES
AND REAL-TIME PROGRAMMING

Submitted by J.W, Thompson
for the degree of Ph.D.

at the University of Bath

1977

COPYRIGHT

"Attention is drawn to the fact that copyright of this thesis rests with
its author. This copy of the thesis has been supplied on condition that
anyone who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis and no information
derived from it maybe published without the prior written consent of the

author".

"This thesis may be made available for consultation within the University
Library and may be photocopied or lent to other libraries for the purpose

of consultation".



ProQuest Number: U442953

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest U442953
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



ACKNOWLEDGMENTS

I would like to thank the following people and organisations

for their contributions to the prépératioh of this thesis.

My superviéors , Paul Sawyer and Alan Charlesworth, for
their valuable advice and constructive comments throughout my

period of research and during the compilation of the thesis.

Tony Lockett, for his support in the hardware field, without
him the project would have been impossible.

The Professor and members of staff of the Department of
Chemical Engineering at the University of Bath for providing the

opportunity and facilities for my research and study.
The Science Research Council for providing financial support.
The typist, Gillian Lockett, who had the difficult task of

translating a hand-written manuscript which I could understand into

something which other people could understand.



SUMMARY

This thesis describes the design and development of high level
language programming systems for use on a small mini-computer

installation in an educational environment.

Any high level language may be implemented in a number of
different ways. The major alternatives are reviewed with particular
reference to hardware resources, ease of use and the need to cater for

both on-line and off-line applications.

The implementation of a programming system based upon the use
of an interpreter rather than a compiler is described. @ The system
enables a single user to create develop and execute programs for
applications involving on-line data acquisition and control.

' j

Hardware resources are most effectively utilized in a time shared
rather than a dedicated mode. The problems of extending this system to

permit time sharing are discussed and an appropriate solution is described.

In a situation where it is necessary to segregate data processing
from data acquisition, the use of. a common programming system is
desirable. An off-line operating system is described which adds file
handling capabilities to the interpreter and provides a common software

interface between data acquisition and data processing programs.



CHAPTER 1.

1.1.
1.2.
1.2.1.
1.2.2.

1.2.3.

1.2.4.
1.3.
1.4.

CHAPTER 2.

2.1.
2.2.
2.3.
2.4.
24.1.

2.4.2.

2.4.3.
2.5.
2.6.
2.7.

CHAPTER 3.
3.1.
3.2.
3.3.
3.4.

CONTENTS

A Survey of Programming Systems

Introduction

On Line Programming Systems

Block Diagrammatic Programming Systems

Fill in the Form Programming Systems

Compiler Based High Level Language Systems
Interpreter Based High Level Language Systems

Operating Systems

Conclusions

Preliminary Design Considerations
Choice of System Software
Hardware Coﬁfigu:cation
Applications and Uses
Data Acquisition Rates
Review of Existing Software Systems
Fill in the Form Prograraming
Compiler Based Operating Systems
Interpreter Based Operating Systems
Conclusions
Multi-Access Interpretive Programming
Extensions of Interpreter Facilities for

Off-Line Purposes

The FOCAL Interpreter

Introduction

Rules and Syntactical Limitations
Text Storage and Handling Routines
Variable Search and Storage Routines

Page

NN b N

12
12

13
14
14
14
‘15
16
16
17
18
19
19

20

22
23
23
26
27



3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.

CHAPTER 4.

4.1.
4.2.

4.2.1.
4.2.2.

4.3.
4.4.
4.5.
4.6.

4.6.1.
4.6.2.

4.7,
4.8.

CHAPTER 5.

5.1.
5.2,

5.2.1.
5.2.2,
5.2.3.

Interpretation

Expression and Argument Evaluation
Pushdown List Controls

Execufion of a Program

Error Diagnostics

Editing Facilities |
Control Pointers for FOCAL Programs
Speed of Operation of a FOCAL Program
The Interrupt Processor

Character Input and Qutput

Initial Modifications to FOCAL
Reconfiguration of FOCAL Software
Saving and Editing Variable Tables
Editing Variable Tables
Saving Variable Tables
Input Buffer Overflow
Enhancements to the MODIFY Command
Hard Copy Facilities for the ASK Command
Protection Systems
Command Buffer Overflow
Power failure Protection
New Functions

Summary

A Single User Real-Time Programming
System )

Real-Time Programming

The PDP-8 Computer and Interface System
Device Selection and Channel Addressing
Input Devices

Output Devices

Page
29
29
31
31
33

33
33
35
35

37
38
39
41

, 41

- 43

45
48
48
48
49
49

50
51
52
53
54
55



Page
5.2.4, Other Peripheral Devices 56
5.2.5. Interrupt System 56
5.2.6. System Clock ' - . 56
5.2.7. Fault Protection System 58
5.3. Real-Time Software 58
5.3.1. Current or Elapsed Time 58
5.3.2. Synchronous Data Scanning 61
5.3.3. Program Priority System | 63
5.3.3.1. FOCAL Break Points ' 64
5.3.4. Input/Output Transfers 66
5.3.4.1. Clock Driven Peripherals ' 66
5.3.4.2. Directly Accessed Peripherals 67
5.3.5. . Control Functions 71
5.3.5.1. Lead-Lag Function for Contxol 71
5.3.5.2. PCI Control Algorithm 76
5.3.5.3. Timing and Core Allocation of the Control .

Algorithm ) 79

5.3.6. Communication with Operating Program 80
5.3.7. Fault Protection 81
5.3.8. Error Detection 81
5.3.9. Timing of Functions 83
5.4. Conclusions . | 83
CHAPTER 6. - A Time Shared Real-Time FOCAL System 91
6.1, Time Sharing the FOCAL Interpreter 92
6.2. Desicn Constraints 93
6.3. User Exchange Techniques ' 93
6.4. . Terminal Input/Output Handling 94
6.5. Core Allocations and Design Criteria 95
6.6. Executive Routines of the Time Shared System 99

6.6.1. The Interrupt Processor 99



iv.

Page

6.6.2. User Status Record Manipulation 101

6.6.3. Keyboard Service Routine : 102

-6.6.4. Printer Service Routine | ) 104
6.6.5. Character Printing Routine ACTION Q 105

6.6.6. User Swapping Routine 105

6.6.6.1. Character Input Routine to the Interpreter XRD 105
6.6.6.2. Character Output Routine from the Interpreter

EXPRN 105
6.6.6.3. User Swapping Points Check Routine EXCHK -105
6.6.6.4. New User Selection Routine EXCHE 106
6.7. . Summary . | 106
6.8. Modifications to the Interpreter to allow for
proposed core modifications 109
6.8.1. LIBRARY Command ' 109
6.8.2. Symbol table Editing and Saving 109
6.8.3. MODIFY Command 109
6.8.4, Hard copy for ASK 110
6.8.5. Random Number Generator FRAN “'} 110
6.8.6. Other Differences : "11u
6.9. Timing Considerations 110
6.10. Priority Tasking System 112
6.11, Input/Output Transfer . 112
6.12, Control _ 113
6.13. Parameter Modification Routine 114
6.14. Error Code : 115
6.15. Initial Dialogue 115
6.16. Conclusions 116
CHAPTER 7. A File Structured FOCAL Operating System 122
7.1. Introduction 123
7.2, Structure of a File Monitoring System 124

7.3. Requirements of the Monitor System 125



74
7.5.1.

7.5.2.
7.6.
7.6.1.
7.6.2.
7.6.3.
7.6.4.
7.6.5.
7.7.
7.8.
7.8.1,
7.9.
7.9.1.
7.9.2.
7.9.3.
7.9.4.
7.9.5.
7.9.6.
7.9.7.
7.9.8.
7.10.
7.10.1.
7.10.2.
7.10.2.1.
7.11.
7.12.

7.13.

DECtape Programmingv

DECtape Controlling.Routine for the Monitor

system

Use of the Controlling Routine
File Directory System

Naming of Files

File Data stored in Directory
Length of Directory
Additional Directory Information
Directory Handling Routine
Interrupt Processor

Structure of the Command Decoder
Command Structure

System Commands
DIRECTORY

SAVE

LOAD

ERASE
RUN

COPY

FIND

ZERO

Special Monitor Commands
HELP
Interprocessor Communication
WRITE and ACCESS
Bootstrapping the System

Program Chaining Facilities provided by

the system

Discussion

Page
127

128
133
135
135
136
137
137
138
139
142
142
145
145

. 146
148

149
150
151
151
151
152
152.
153
154
155

156
158



CHAPTER 8.
8.1,
8.2.
8.3.
8.3.1.
8.3.2.
8.4.
8.5.
8.6.

APPENDIX A.
Al,
A2,
A.3.
A4,
A.S.
A.6.
A.6.1,
A.6.1.1.
A.6.2.
A.6.2.1.
A.6.3.

APPENDIX B.

B.1.

B.2,
B.2.1.

vi,

Conc:.lusions and Recommendations
Introduction
Choice of Operating Systém
Real-Time FOCAL Systems
Hardware Limitations

Software Limitations

FOCAL as an Off-Line Programming Language

Use of Interpretive Programming Systems

Conclusions

'REFBRENCES

Use of Real-Time FOCAL
Introduction
Equipment and Experimental Procedure
Choice of Objective Functions
Lattice Search Procedure
Results
On-Line Search Procedures
Simplex Search Procedure
Results
Random Search Procedure
Results

Conclusions

Effects of Errors in Timing upon the
design consideration of a Real-Time

Operating System

Methods of Providing Synchronous Scanning

Facilities ,
Types of Timing errors

Effects produced by missing a complete
sampling period

Page
175
176
177
178
178
180

183
183

185

191
192
192
193

" 194

194
195
196
197
198
198
198

236

237
238

239



B.2.2.

B.3.
B.3.1,
B.3.2.
B.3.3.
B.4.

APPENDIX C.

APPENDIX D.

APPENDIX E.

APPENDIX F.

vii.

Effects produced by random errors in
Sampling times "Jitter Sampling"

Simulation Studies

Data Generation

Least Squares Analysis of Data
Spectral Analysis of Data

Results and Conclusions
Flow Charts for FOCAL Modification

Flow Charts for Single User Real-Time
FOCAL

Flow Charts for Two User Real-Time
FOCAL.

Flow Charts for the File Monitor Sysiem

Page

239
241
241
242
243
245

266
276

298

. 329



CHAPTER 1.

A Survey of Programming Systems




1.1, Introduction

_One of the basic requirements of a computer system, whether
operating on-line for data acquisition and control purposes or off-line
for data processing, is that users should be able to operate the system
efficiently with a minimum amount of effort and experience. This is
especially true in an education and research environment where
applications are generally of a one-off nature and potential users have
only a limited amount of time available for program development.

For off-line data processing, high level languages such as FORTRAN,
ALGOL, BASIC and FOCAL¥* have beconie well established. These
languages allow users to express mathematical operations as a series of
instructions in a form which is similar to their natural manner of
expression.

High level languages can be implemented by the use of either a
compiler based system or an interpreter based system.

In the case of a compiler based system, high level source code
statements are converted into machine object code by means of a
translating program or compiler. The compiled program can then be
loaded into the computer and executed as required. The processes jof
translation and execution are therefore two distinct steps which must
proceed sequentially.

Ini:erpreti\;e systems are based upon the use of a core resident
interpreter program and high-level language statements which are stored
as text within computer memory. The interpreter program scans through
the text interpreting and executing it statement by statement. Each
statement in the users program is essentially a subroutine call to the
section of the interpreter providing the function required by the statement.
Statements are linked together by the executive part of the interpreter
in the manner demanded by the statement sequence within the text (1).

In this case, therefore, the translation and execution of the program
proceed in parallel. Figure 1. illustrates the differences between various
modes of computer programming.

In contrast to the high level language systems which have been

implemented for off-line data processing, systems for on-line data

*FOCAL is a registered trade mark of Digita! Equipment Corporation.,



chine Cod Assembly Code High Level Language

Compiler Based
g Fortran)
001010100000 - TADD
111000400001 . CIA
001010100001 TAD B . A=B4+C~D
001010100010 TAD C '
0141010100011 DCA A
I [
+ Assembler Y
Program
* Compiler
_Program

High Level Lar.zuage

Interpreter Based

gFocalz

. Interpreter <«— SET A=B+C-D

Executive

SET —w Evaluation
Subroutine Controller

Figure 4 : A Comparison of Programming Languages




L

acquisition—, processing and control have in the past been implemented by
programming at a low level in assembler or machine code (2). This has
been mainly due to the need for obtaining efficiency in the use of memory
and processing time which have been difficult to accomplish when using
high level languages. Programming at a low level does, however, have
the disadvantages of Being both tedious and time consuming. In addition,
considerable experience is required before effective applications programs
can be developed by a user.
With the current trends in computer hardware technology, the
costs of computers and memory in particular are falling rapidly (3),
whilst the cost of expertise in the programming field is rising by
| comparison. It has therefore become both feasible and desirable to use
a high level language system for on-line applications whenever possible.
| The use of a high level language system for on-line applications
suffers from two main disadvantages. Firstly, program execution speeds
are limited particularly in the case of an interpreter based system.
Secondly, it is difficult to provide users with the capabilities for truly
synchronous timing of events (4). i
These disadvantages would appear, however, to be out:reighed by

the advantage gained from the ease of use provided by such a systera.

1.2, On-line Programming Systems

The following approaches have evolved in order to make on-line
programming easier from the users point of view.

1. Block Diagrammatic Programming (5 - 9)

2. Fill in the Form Programming (10 - 13)

3. Compiler based high level languages (14 - 23)

4, Interpreter based high level languages; (1,24 - 28)

1.2.1. Block Diagrammatic Programming Systems

This concept of programming is based upon the use of a set of
sof tware "building blocks" analogous to those used by an engineer in the

design of a control system. A control program is constructed from



5

these blocks by specifying, as data, block parameter and inter block
linkages. The data is entered into the computer system from a special
purpose hardware communication device.

The structure of CCNRAD III (8), a typical example of this form
of programming, is illustrated in Figure 2. together with typical core
requirements for such a system., ‘

The programming skill necessary to use such a system is minimal
because it is an extension of an estatlished design procedure and because
user/system communization is simplified.

There are however a number of disadvantages associated with

this approach. Amongst these are:-

(a) The need to provide a special purpose hardware

communication device and associated software.

(b) The use of fixed block parameter tables results in

inefficient memory utilization.

(c) A large number of blocks are required to implement
complex control strategies,as blocks have to be

cascaded together to provide the necessary functions.

(d) The block diagrammatic approach is inappropriate for
. applications involving data acquisition and processing

in addition to control.

‘As a result block diagrammatic programming would appear to be
most suited for direct digital control applications rather than for general
on-line programming. The substantial memory requirements of such a

system (8) also precludes their use on small minicomputer systems.



Comrunication 6K,

Storage Requirements

Executive €K,

Subroutines

Operators 1 Communication » Logging
Control Routines Printer
Panel
Executive
Program
—— Input Regulation Sequence Output e
- Routine Control Control Routine —
——aed . e B
— Routine Routine ——
1 r 1 *
1 1 1 1
{ 2 2 2 2
3 3 3 3
L L L L
] I
Input Regulation Sequence Output
Data Control Control Dats
Block Block
Parameters Parameters

2K

Data Tables Require Core in Addition to above values

Figure 2 : Schematic Diagram of CONRAD III Operation




7

1.2.2. Fill in the Form Programming Systems

This approach to on-line programming is also based upon the
concept of a set of basic system subroutines. As its name implies,
however, parameters and iinkages for the blocks are specified by the
user on pre-printed forms. The information from these forms is then
transferred to punched cards or tapes for input to the system.,

Typical data input forms used in 1,B.M.'s PROSPERO (10) are
shown in  Figures 3, 4, and 5.

Fill in the Form programming, like Block Diagrammatic.
programming, is more applicable to the direct digital control of

industrial processes than to general on-line programming.

1.2.3. Compiler based High Level Language Systems

Systems of this type fall into two main categories (29) :-
(a) Proce dural Programming Languages, such as FORTRAN and
ALGOL which have been enhanced so ti'lat a user may program on-line
tasks such as timing, data acquisition and control in addition to data
processing. The original syntax of the language is retained in the ,
enhancements.
(b) Problem-orientated languages such as AUTRAN (29), whose
syntax has been designed specifically for the purpose of programming
the control of items of plant equipment. The commands and statements
of such a language is therefore closely related to items of plant.
For example, AUTRAN uses statements of the form
START (PUMPA), CONFIRM
which when compiled and executed, instructs the computer to start the
pump motor given ine identification PUMPA and to confirm that the
motor has started.
Alarm conditions may be set up by using statements of the form
WHEN (PUMPA. ALARMS. OFF) SCHEDULE (SHUTDOWN)
which instructs the computer to execute a shut down procedure should

PUMPA fail to operate in the correct manner.



TEM 1800 PROSPRO I

Variable Information for Supervisory Control

Description

7 8 D

[
0 I

oo o o o
o N oo v

S o

Identification
Engineering units
Processing sequence
Routine processing interval
Input filter factor m mts
Use average for reference and deviation checks? [I*Yes)
Console name for variable
Parallel Button; 1 - nnn

Omit questionable flag when current outside max/min?(1 Yei>

Currant Value Processing

— e
‘O‘b;— ENET IS SR

p—>

Input (I'measured supervisory, 2'DDC)
Continuously monitored for max min? (1*Yesl
Measured input number or DOC data block number
ADC readirsg at bottom of scale (a)
ADC span (b)

Option in conveision equation (l«Yes)
Bias IB)
Coefficient (C)
Special current value calculation
Intermediate special action

Limit Checking

=)

]

J

W W W W W
FN Y

%)
>
=
|
—

wow W

3

o © ® 2

J

J

wWow oW wew
[T VO S

J

Ip & & & &
F e -

<

J

N

Weo o

Process maximum limit
No Violation — Violation Special action when passing
Violation -» No Violation through the maximum limit
Process minimum limit
No Violation -» Violation Special action when passing
Violation —No Violation through the minimum limit
Process upper reference
Below — Above Special action when passing
Above -*  Below through the upper reference.
Process lower reference
Above -» Below Special action when passmg
Below -»  Above through the lower reference

Rate ofchange limit to notify operator.

Special action, rate of change limit exceeded - -
Rate of change required, predictive ad|ustment.

Action for a predictive adjustment.

Target Value arsd Drviatior. Processirsg
Variable has target or setpoint? (t-3 m Yes)*
Minimum time between tvvd target calculations and/or deviation adjustment.
Action to evaluate new target value.
De'viaticn limit
Action ..hen deviation limit exceeded.
Deviation for normal adjustment action.
Action for normal deviation adjustment.
Maximum sctpomt ad|ustment per pars.
Setpoint output (I “controller, 2=msg, 3=DDC).
Controller setpoint number
Setpoint output switch II = send output).
Final special action.

Enina* nvtikrd nilh an as’arisk m mot! e<*«> mutt be tilled m for DOC caneble*

Rumple** Irentlci o*»lion* t m only *uparc*o'V.

Figur

2 « *uper«i*ory end OOC. 3 « hold old target. GXIO 0G2U 0 D/M 025

e 3



[BI.I 1C00

General Action.

PROSPHO

Supervisory

Decveription

78 101 13 18

1 40 Calling Sour., and Remarks
lolol [GTAI [] ET
13; Arc vel'jes beyond MAX MIN limits acceptable? (0=-No, 1*Yes)
1822; Next General Action to be executed. (Chaining)
Step Code
12 16 20 22 40 Remarks
I
s L -
i |
1
11 ] ! i 1
1:
1 -
£] I 1 -
Ie.
L]
I )
J
]
ffl L l; .
RTN - Return to processing VTC - Variable Times Constant
END - End Variable Processing VDV - Variable Divided by Variable
CON - Constant VPV - Variable Plus Variable
MSG - Type Message No /Value VPC - Vaiiable Plus Constant
PVS -  Process Variable Special VMV - Variable Minus Variable
F8A - Feec'back Adjustrrent ABS - Absolute Result
FFA - Feedforward Adiustrr.ent CVV - Compare Variable to Variable
VSQ - Variable Status Query CVC - Compare Variable to Constant
SRT - Save Real Tm-.¢ 6RM - Branch Result Minus
COT - Calcu'ate Delta Time BR2 - Branch Result Zero
VEE - Variab'e Equals Equation BRP - Br.nch Result Pius
VEV - Variable Equals Variable BCL - Branch Compare Low
VEC- Variable Equals Constant 8CE - Branch Compare Equal
VTV - Variable Times Variable BCH - Branch Compare High
XSP - Execute Special Program BRA - Branch Unconditionally
RCS- Read Contact Pomt GET - DOC Item
XCO - Operate Contact Po.ot PUT - DDC Itrm
PCS — Put Supervisory Cascade Status

Figure 4

11

3

80

80

GXIO 0027 0 U/M 025



10

IBM 1800 PROSPRO I

Variable information for DDC ET

Devrnption

(o)
o

OOC processing phase

Routine DOC process interval (1. 2. 4, 8, 16. 32. 64 sec)
Measured input? (1=Yes)

Measured Input processing sub.ouime (O=none)

General Block evcecuted tor input calculation

Input filter type (O”none. 1-Union, 2=e%p.. 3=spare)
Input filter factor (with decimal point)

Time delayed input? (1-Yes)

70 4T General Block executed after ,nput is processed
71 Setpoint value (sign and dec ot. m eng units)
702 Deviation lor control action (eng jmts w,aec pt)
7 Input change vs. output change me,-me. (0). me -dee. (1)
74 Output (O-siored-oniy. l=vaivc. 2=cascade. 3=Imk)
705 DOC station or vanatile no lor cascade or link
76 Output maximum limitj Positive v.ilues to nearest 5%.
I Output mir.imum limit ( Negative values to nearest 10%. up to 100%
78 Output change limit 11-1% 2-5%. 3= 10%, 4= 1(X)%)
709 Reload ;n last output state or manual® (1 -manual)
e_ 0_ Controller setpomt no for setpomt tracking
6 1 Type of loo., JO-none. 1-standard)
8 5 Loop gam constant (sign and decimal pomtl
8 e Integral or reset constant m mm ,wrdee. pt )
8 7 Derivative or Ir'd constant m mm (w/dec. ot.)
B_ Nonlinear gam constant (with decimal pomtl
8 9 Omit proportional mode> (1-Yes)
9 0 Ramp to new setpomt? (1-Yes)
1 Nonlinear pro®,urtional mcde® (1-Yes)
2_ Nonlinear reset mode? (1-Yesi
9 5 General Slock executed after output is stored
6_ First Associated Data Block num,oer
9 7 Last Associated Data Block number

0X10 0028 0 U/M 025

Figure 3



1

The operation of a compiler based system is essentially a
multi-stage process involving:-

(a) Generation of the program source code

(b) Translation of the source code into machine code

' instructions

(c) The execution of the machine code program

The serial nature of these processes entails that only the
required segment of the system is core resident at a particular time.
The memory overhead required by system sof tware is therefore
significantly lower than that required by a system which is totally
core resident. The major disadvantage of the compiler based system
arises when users programs require modification during the
development stage. This involves repeating each of the separate
processes of the compiler system until a successful program execution
has been achieved.

The efficiency of most compiler based systems is such that
program execution speeds and memory ré:quirements are comparable
with those of programs written at assembler level. '

}

1.2.4. Interpreter based High Level Language Systems

As in the case of compiler based systems, interpreter based
systems are either extensicns of existing languages (BASIC, FOCAL) or
special purposes languages (e.g. NODAL).

The implementation of a language by an interpre{:er system results
in a slow speed of program execution by comparison with that achieved
when using a compiler. This is due to the fact that a program statement
must be re-interprrted each time it is executed (1). It is also necessary
to retain the entire interpreter system in memory during both program
development and execution. This results in a reduction of space
available for users programs when dealing with a fixed size minicomputer
system.

On the other hand, the resident nature of the interpreter together
with the mode of text storage has tﬁe -advantage that users can be

provided with a range of aids to program development and testing. These



12

include powerful interactive text editing facilities and the ability to
execute individual statements directly in an "immediate mode".
Users program development time can therefore be signi ficantly
reduced in comparison to the development time required when usiné
a compiler based system. '

.

1.3. Operating Systems

Irrespective of the type of programming system adopted, some
form of Real -Time operating system or executive mus* be employed
to control the various input/output operations of the computer system,
to share effectively the resources available between competing
programs and users on a priority basis and to control individual program
execution. In the case of a dedicated computer system, this can be
achieved by a simple interrupt processor and run-time system. When
however the resources of a computer system have to be time shared
between a number of users,the complexity of the executive (1,8,17,30,33)
demands that hardware priority interrupt systems and direct memory

access mass storage must be available (1).

" 1.4. Conclusions
It can be seen therefore that the software structure approp'riate
to on-line programming will be determined by the following factors:-
i. The facilities provided by the central processor
ii. The type and quantity of main memory and mass storage
available
iii. The range of input/output peripherals available
iv. The maximum data acquisition rates required of the
system
v. The type of users and applications for which the system

must cater.



13

CHAPTER 2.

Preliminary Desion Consideration




14

2..  Choice of System Software

The factors influencing the choice of system software have
been identified in the previous section. Before deciding upon which
type of software structure should be adopted, it was necessary to

examine the various factors with respect to the particular situation.

2.1. Hardware Configuration

A PDP-8 minicomputer (34) with 8K of core memory was
available. Although the associated Kent K70 (35,36) interface
provided a large range of input/output peripheral devices for signal
processing, the absence of any mass storage device and the primitive
interrupt system available within the processor imposed severe
constraints upon the design of an operating system.

The core only configuration of the computer meant that the
development of a multi-access system would be virtually impossible.
It would therefore be advantageous if program development time could
be minimized so as to produce a rapid turncver of system users. This
could be achieved by including powerful program editing and debugging

facilities within the systein executive. J

| 2.2, Applications and Users.

It was envisaged that any computer system developed would be
used for a variety of purposes both on-line and off-line. In particular
for on-line applications,the system was expected to be used for the
data acquisition from and control of experimental equipment varying
from a singie instrument to pilot plant. In addition to this, it was
expected that facilities for on-line data processing would be an
essential feature.

For effective teaching of topics such as engineering design it
was considered that an interactive off-line computer system would be
necessary. |

These considerations meant that users would be expected to
generate most of their own applications programs. As users would
either be students or members of staff from the depértment, the time

fhey could devote to creating working programs would be limited. In



15

order to reduce program development time therefore,an important
feature of any computer operating system would be to design the
system primarily for ease of use. The use of a common language l
~ for both on and off-line applications would also help to reduce

programming time,

2.3. Data Acquisition Rates

It is difficult to accurately assess in advance likely data
acquisition rates required of a laboratory computer system, although
certain guide lines may be used to obtain estimates of possible sampling
‘rates.

For control purposes the common variables which are required
are flow, temperature pressure and composition. Typical sampling

rates for these variables are as follows (37):-

FLOW 0.1 seconds tc 1.5 seconds

PRESSURE 1.0 seconds to 5 seconds
TEMPERATURE 10 seconds to 20 seconds ,
COMPOSITION > 20 seconds i

Another possible appiication for the system is that of the
analysis of chromatographic data. The scan rates required to recover
the area under a single peak is dependent upon the elution time of the _
component in question. However it would appear that about 10 samples
per peak are required to effect better than 0.25% accuracy in peak
area recove.ry (38).Since for most chfomatographic applications
minimum peak widths are of the order of 5 to 10 seconds, a sample
rate of about two points per second would be required.

v Baumann et al (39) suggests that a scan rate of five points per
second would be sufficient to provide satisfactory area recovery for most
chromatographic applications.

Signal analysis problems ox the analysis of data obtained from
instruments like a mass spectrometer generally require high data
capture rates, However,these tend to be specialised .problems and hence

require specialised software to handle the high data rates rather than the



16

more generalised approach required of a laboratory computer system.
It would however be advantageous if the computer operating system
could be modified as necessary in order to handle bursts of data such
as would be expected from signal analysis problems. The operating
system could 1;hen be used for system initialiﬁation purposes before
linking to a machine code subroutine used to obtain the data. Data
processing could then take place subsequently by returning to the
operating system.

It would appear therefore that for most laboratory applications
a maximum data rate of about 10 to 20 samples per second would be
sufficient. This magnitude of sample rate would not exclude any of:-
the available high level language operating systems.

2.4, Review of Existing Software Systems

The possibility of designing an entirely new operating system was
considered. This however would have involved the implementation of
ideas, procedures and data processing methods used in existing systems.
It was therefore decided that the most e ffective solution to the problem
would be to develop an operating system using as a basis,the framework
already provided within an existing cperating system. Any major !
deficiencies in such a system could be remedied to make the system

applicable to off-line use for the situation in question. Enhancements

would also'be required in order to provide facilities for on-line use.

2.4.1. Fill in the Form Programming

A £ill in the form programming system,PROCON (36),was available
for use on the PDP-8. However,experience gained in using this system
and also in extending PROCON for sequence control (40) emphasised the
inflexibility of the Fill in the Form approach. For example, a study of
the sequence control of a simple boiler system (40) showed that any user
would have to become proficient at assembler level programming before
being able to use such a system. The limited error diagnostic and
correction facilities available within the system made the process of
program development difficult.

The most severe disadvantage of this system was the absence of

any data processing facilities, the system having been designed



17

specifically for direct digital control purposes.
It was therefore decided that this form of operating system
could not provide the necessary facilities and flexibility required

even if large scale modifications of the system were undertaken.

2.4.2 Compiler Based Operating Systems

For an 8K PDP-8 core only computer FORTRAN II (41) was
available, This is in effect a multi pass system operating in the
following manner:-

1. A punched paper tape in ASCII format is created using

the text creation program SYMBOLIC EDITOR (41).

2. The paper tape source code is then translated into a
symbolic language SABR (11) using the FORTRAN
compiler program. This produces another punched
paper tape in ASCII format.

3. The symbolic punched paper tape is translated into a
relocatable binary coded punched paper tape by using
the SABR assembler program, (

4. The relocatable binary tape is loaded into memoxry J
together with any required library routines by
using the LINKING LOADER.

At this stage the program is ready for execution. The process has
however involved the loading of four binary coded paper tape programs.
SYMBOLIC EDITOR, the FORTRAN compiler, the SABR assembler program
‘and the LINKING LOADER. In addition, each separate stage invclves the
generation of one or more punched paper tapes to be reloaded in the
subsequent stage. Library routines ar e loaded in the final stage of the
process. A minimum total of ten paper tapes must therefore be loaded
into the system.

Errors in syntax and logic have to be corrected by returning to the
first sfage of the process in order to edit the source code program with
the SYMBOLIC EDITOR.

The sbove versioﬁ of FORTRAN is a typical example of the

implementation of compiler based systems on core only minicomputers.



18

The use of such a system implies that a user must become fully
conversant with the operating procedures of the computer and would
therefore violate the basic design requirement of being easy to use.
Adapting such a system for the provision of on-line facilities
also presents a large problem. The segmented nature of the system
would necessitate that modifications be made to most of the sections.
The compiler must be enhanced to decode new commands from source
code into SABR code. New library routines would have to be developed
in SABR code for loading into the system prior to running the program.
The LINKING LOADER runtime system would also have to be extended
to provide the additional interrupt service routines required for on-line

use,

2.4.3. Interpreter Based Operating Systems
The 8K FOCAL/69 (47,48) interpreter was available for the PDP-8

as an cff-line programming system., The main advantage of this system
is the way in which it operates. Once the system has been loaded, users
can create and edit programs from a keyboard terminal and then execute
the programs without the need for loading separate segments of the
operating system, Paper tapes are only required for the initial loading
of the system.and for use as a sforage medium for us ers programs.

The "load and go" mode of operation of the interpreter,although
simplifying the process of program development and execution,does
require that the whole of the interpreter remains core resident at all
times. The space available for extending such a system to pfovide on-line
capabilities in a core only con figuration is therefore limited. An
acceptable compromise between space available for text storage and
space required for system enhancements would therefore have to be
achieved if such an interpreter were to be used as an on-line operating
system,

Another advantage of the FOCAL interpreter is that it possesses
a command set which is similar in nature to that used in FORTRAN, a
language which is most commonly used for off-line data processing.

The transition between FORTRAN and FOCAL would therefore present

few problems to users.



19

2.5. Conclusions

Consideration of the above factors indicated that an interpreter
system would provide a suitable basis for. an on-line operating system
under the following constraints:- ‘ ‘

(a) . The system is to be deveioped primarily for case of use

| (b) Sampling rates required are in general not high

(c) No mass storage memory device is available

This conclusion has also been arrived at by a number of other
researchers in the position of trying to provide on-line computing
facilities in a laboratory environment (1,28,42,43,44,45). For larger
computer installations it would appear that the compiler based systems
take precedence (33,46), NODAL (24) being a notable exception.

A preliminary investigation of the FOCAL interpreter indicated
that the system could be modified and with suitable re-arrangements
would allow sufficient core space for most of the modifications required.
The main problem with such a system would be one of achieving speeds

of program execution compatible with the sampling rates required.
.
- 2,6, Multi-Access Interpretive Progreamming

As outlined earlier in the discussion, the limited capacity and
primi tive interrupt structure of the PDP-8 virtually eliminated the
possibility of creating an efficient multi-access high level lar zuage
operating system.

A preliminary investigation of the FOCAL interpreter indicated
that such facilities could perhaps be provided to a limited extent by
including a user swapping executive within the interpreter system. This
would effectively allow the interpreter to scan and erecute different
users programs on a roll-in/roll-out basis. Severe restrictions would
however be imposed upon the size of the programs which could be
accommodated as the available core would have to be shared by system
users,

The worst feature of such a system would be the reduced execution
speeds incurred by sharing available processing time between system usei's.

The interpretive mode of execution was expected to be slow for a single



20

user system and the performance of the system would be reduced even
further by attempting to share processing time,

| However,a§ most applications wou1.d appear to require relatively
slow sampling rates, it was thought to be possible to time share FOCAL,
thus enabling the advantages of the interpretive syétem to be retained.

Before attempting to develop a multi-user interpretive system,

it would first be necessary to assess the performance of a single user
system. Should it prove to be a satisfactory operating system, it
could be extended and re-arranged to provide similar facilities for more

than one user.

2.7 Extensions of the Interpreter Facilities for Off-Line Purposes

The major drawbacks of an interpretive system for general
cbmputational purposes in a core only configuration system are:-

i. The limited size of program which can be accommodated.

ii, The use of a paper tape as a storage medium both for

system software and for user developed software.

With a certain amount of re-arrangement of the FOCAL
interpreter it could be made possible for users to chain varicus prbgram
segments together. This would provide a modular program structure '
~ which can be an advantage in situations where it is advisable to examine
the sensibility of generated data before attempting further analysis.
Intermediate data and program segments would however have to be saved
on paper tape,adding to the problem of software storage in the core
only system. |

This problem could be overcome by the use of some form of
magnetic mass storage device, allowing all software to be saved and
reloaded simply and efficiently. ,

The purchase of a 12K PDP-8/E compufe:n: so as to extend the
compu{:ing facilities within the department meant that a processor was
available for off-line computation. The choice of a mass storage device
for the system was influenced by the need to provide more than a single
drive device for software security and hence backup in the case of
failure. The cost of providing either a duplicate disc drive or disc drive

and magnetic tape was beyond available finance. Thus a dual drive



21

TU56 DEC tape system and TD8E DEC tape controller (50) was
purchased as being the only system capable of providing the necessary
backup and security within the agreed budget.
The system unfortunately has the disadvantage of not being
a direct memory access device. All data transfers must therefore
take place through the aécumulator of the PDP-8/E under program
cbntrol, precluding its use during real-time operations. Its use was
therefore limited to one of an external storage device for system
and user created software thereby avoiding the need to use paper tape
as a storage medium,
A powerful off-line operating system, OS8, was available
for such a computer configuration. This provides excellent high level
language programming capabilities in the form of FORTRAN and BASIC
and extensive file handling facilities for program storage and use.
Unfortunately the provision of such extensive facilities
inevitably means that the system is complex and its efficient operation
requires that a user has knowledge and experience of computer operation.
In an educational environment where thz computer is used as a
tool and users are expected to develop their own programs, it is essential
that programming is macde as simple as possible. It was decided that
the use of 0S8 would require too much effort on behalf of the usef and
that a much simpler system could be developed using FOCAL as a basic
programming language. The decision was also mfluénced by the
advantages which would be gained by using a common language for both on

and off-line programming.



22

CHAPTER 3.

The FOCAL Interpreter




23

3.1. Introduction

A description of the FOCAL language and a brief guide to the
operation of its internal subroutines was available (47).- Unfortunately
there was insufficient detail available in the manual to enable
modifications to the system to be made efficiently. It was therefore
nécessary to examine the PAL III assembler listing of 4K FOCAL/69
in order to determine the structure and method of operation of the
interpreter. The flow charts (51) produced from the listing are
included on microfiche.

Figures 6 and 7 illustrate the core utilization of the 4K FOCAL
and the 8K FOCAL systems respectively.

3.2, Rules and Syntactical Limitations

FOCAL programs are created by entering commard strings into
the computer from the keyboard of a terminal device. The rules which
have to be obeyed are as follows:-

1. Al indirect program lines must be numbered according
. to group number and line within the group, XX.YY .
where '
1¢XX<31 is the group number
FlsYY<99 is the line number within the group

Hence line numbers are in the range ' 0l. 01 to 31.99 excluding
XX, 00 .
2. A line may contain any number of commands (except WRITE,
MODIEY and ERASE) separated by semi colons. The
line is completed with a carriage return.

A command has the form

(COMMAND) (SPACE) (CHARACTER STRING) (TERMINATOR)

The command name only requires the correct first character
to specify the command. The command name must be
followed by a space,to act as a delimitinmg character between

the command name and the character string.



24

B Syt Be oo

THa ROy

==

g0

OT-c\jJK> +mvor*®-V e -d A r*"@.T-c\jff\ d- ¢ r*-d-mvo M
r~T - A

T~t— T— T— T— t- CVICUCMC\TC\] €SI CU CVJ K> hT\ kS



12

33
34
35
36

37

10

12
13

14
15
16
17
20
21

22
23
24

25
26
27

31
32
33
34
35
36
37

25

8K FOCAL CORF t'AP Field 0

ro Pnce Point-jit ..

Corcirni Docolor

Fnt-ibf Do
Control &Transfer | .rite
Con,»jt r If

Typo & Ask
Getnrp;

Torii:s ICfn.Aba et ni iTstlpr,Partent |
Krar.o Findln
I"i.Pm tln,Prnt nr.i Printc
Intcrrunt Processor . I/O Knutirea

Fur.hi->wn Lint Control?

porio Grrtr.t | Innut |
Set & For Dys A Jnt 1 Cot.ro
Soi t.i I A'ic.Outl onci others
fpnpr,Tor.tn,Rnn,!"0iij -nl nthnra____
Fenll
Delete I Rondo IFntfibl
Giite Kndln
PC:.G

and Error Rocovory Routine

Rubout S.yr.iibol Table Du:n Ic/P ruffe7T

VARIABLES AlJD PUStDOV.N LIST

%)

Co3 nrd Sin

Atn
Log

FLOATING POINT

ii;piT

A0 oLTi-'jr

ROLT:;;ES

Hifth Speed Reedor Routint

FLOATING POUT r.'IER.PBST*R

Sqt

Lihrnr}'

Loaders

8K FOCAL CORE "AP Field 1

Cemraand In-r.it Buffer

Figure 7



26

The syntactical form of the character string is determined
by the particular command being executed, non-conformation
to the particular restrictions imposed by the command
structure causes an error condition. Each command must
be terminated either with a semi colon or with a carriage

return.

3. Variables are specified by a one or two character name, the
fir st one of which must be an alphabetic character other
than F, and an integer subscript in the range £2047. All

variables are floating point variables.

4, Al functions, i.e. algorithms for producing trignometric
functions etc.,begin with the letter F. The arguments
required by the function are enclosed within parentheses
immediately following thie function name.

For example the function call FCOS (WT) evaluates the
cosine of the variable identified by the symbol WT.
/
5. Any command which does not have a line number in front of it

is executed immédiately.

3.3. Text Storage and Handling Routines

As commands can be either entered into the system as a series of
indirect commands preceded by statement numbers or as direct commands
without a statement number, it is necessary to have an intermediate
buffer between character input from a terminal keyboard and program
storage within the text buffer. The intermediate buffer is known as the
command input buffer.

Input characters from the console are stored within the command
input buffer in stripped packed ASCII format (47). This form of storage
generally reduces the 8 bit ASCII character code to a 6 bit code so as to
economise in storage requirement. When a carriage return character is

detected on input, the initial characters of the input string are examined



,_ 27
’ in order to determine whether the command is a direct or indirect
| command. If no line number is found, the command is executed
immediately. Alternatively, if a line number is found, the four figure
number is reformed into a 12 bit code; the most significant five bits
for the group number between 1 and 31 and the least significant seven
bits for the line number between 1 and 99, e.g. :-

08.76 would give the following 12 bit binary code

DECIMAL . BINARY COMBINED CODE
Group 08 z 01000 ) 010, 001,001,100
Line 76 z 1001100 ) 2 1 1 4,

This 12 bit code, together with the rest of the character string
held in the command input buffer, is added on to the current end of the
text buffer. Any previous line entered into the text buffer with the
same line number as the new line is immediately deleted and the space
occupied by that line is recovered.

The new line is linked into its correct numerical order using
line manipulation routines. A pointer at the start of the next lower
numbered line is set to the starting address of the new line in the text
~ buffer. Another pointer at the start of the new line is sel to the.'
starting address of the next higher numbered line. A further pointer is
then incremented so as to maintain a record of the next free space
available within the text buffer. Fig.8 shows a simple example of the
method of text storage which allows . numbered lines to be typed in in

any sequence,

3.4. Variable Search and Storage Routines

Variables encountered during the execution of a FOCAL program
are searched for in the area of core allocated to the variable storage,
using a re-entrant variable search routine (GETARG). If the variable
is found within the existing table, its new value is entered into the table.:
If the variable is not found within the table, the variable name, subscript
and floating point value are appended to the end of the variable table. A
pointer is used to maintain a record of the next free location in the

variable storage area.



Program

*1.01 S A=1
02,02 S B=2
03,03 S C=3

16,90 T A,B,0,

28

Text entered in the order of
01.01, 03.03, 02,02, 16.90

Program Storage in Text Buffer

Location Contents ‘

0100 0114 Pointer to start of next sequential line 02.02
o101 0201 42 bit code for line number 0%.04

0102 2340 S

0103 0175 A=

0104 6477 1 carriage return character occupies two
0105 1500 six bit bytes (code 7715)

0106 0122  Pointer to start of next sequential line 16.90
0107 0603 12 bit code for line number 03,03 (

0110 2340 s .

o1 0375 C=

0112 6377 3

0113 1500

11k 0106 Pointer to start of next sequential line 03.03
0115 o402 42 bit code for line number 02,02

0116 23,0 S

0117 0275 B=

0120 6277 2

o124 1500

0122 0000 Zero signifies highest numtered line in buffer
0123 1132 12 bit code for line number 16,90

o124 2440 T '

0125 0154 A,

0126 0254 B,

0127 0354 c,

0130 177

013 1500

0132 First free location in buffer wil be 0132

Fircure 8 : An Example of FOCAL Text Storage



29

Each variable occupies five full words comprised of one word
containing two stripped ASCII characters for the variable name; one
word containing a single subscript value in the range z 2047 and a three
word floating point number (one for the binary exponent and two for

the mantissa). Fig.9.

3.5. Interpretation

The interpretation of the source code within FOCAL is essentially
"table driven ", i.e. there is a table in core which contains a list of
valid command characters and a second table of dispatch addresses.

To interpret individual commands ,FOCAL picks up the stripped
character from the source code and reforms them into full 8 bit ASCII
code. The first non-space character is tested against the list of valid
command characters (COMLST). If a match is found at the mth 1ocation
in the list, the address in the mth location in the second list (COMGO)
is used as the address to which control must be transferred. A non
matching character will cause an error condition. (

| " In addition to the lists for commands, there are also lists for
furctions (FNTABL, FNTABF), terminators. (TERMS) and various other
operations within FOCAL.This type of table driven system makes it
particularly easy to make modification and add extensions to the FOCAL

language.

3.6. Expression and Argument Evaluation

All arithmetic operations within FOCAL are done-in three (or four)
word floating point binary arithmetic. These operations arel controlled
by a re-entrant evaluation routine. This routine, ECALL,ensures that
higher priority operations are completed before lower priority operations
and uses a software push down list in order to hold the lower priority
tasks in abeyance.

Function calls are initiated from this routine by using hash coded
function names, Fig.10, and "sort and branch" tables. On entering the
subroutine associated with the particular function required, the first

argument .of the function call will have been evaluated and its value set



30

Location Contents

4000 0101 Variable name AA in stripped packed ASCIT
4,001 0000 Subscript value O ' '

4002 0004

4003 2000 “Three word flocking point value 1.0

OOl 0000

4005 0264 Varisble name B1 in stripped paoked ASCII
LO06 0010 Subsceript value 8 |

4007 7715 )

LO10 3146 Three word floating point value 0.1

Lo _3146

012 3200 Variable name Z in stripped packed ASCII
5013 0100 Subsoript value &

Lo, 000k

4015 2,00 Three word floating point value 40,0
016 0000

Figure 9 : An Example of FOCAL Variable Storage

Function call FINK hash coding = 2613

Character ASCIT code Hash code generation
I 0311
N 0316 ((0311 * 2) + 0316) * 2 ) +0313
K - 0313 : =2613

Figure 10 : Generation of Function Call Hash Code




3
up in the floating point accumulator. Evaluation of further arguments
in the function call can be achieved by recalling ECALL to determine the
value of a particular expression. On completion of the function
algorithm, the floating point accumulator is generally loaded with the
computed value ready for use by ECALL when control is eventually
returned to ECALL. ‘

The actual arithmetic is accomplished by using a software
floating point package. This consists of a decimal to binary floating
point input conversion routine, a binary floating point to decimai output
conversion routine and a floating point interpreter for controlling the

multiplication, division, addition, subtraction and exponentiation operations.

3.7, Pushdown List Controls

The PDP-8 has no hardware stack management to allow for
recursive subroutine calls and therefore the FOCAL interpreter includes a
sof tware equivalent known as a pushdown list, The controls for the
pushdown list allow for various operations such as saving data or subroutine

return addresses on the stack and the inverse operation as shown in Fig.11,

]
3.8. Execution of a Program

Each stored line within a FOCAL program  has within it a pointer to

the position in core of the next higher numbered line. These pointers
are used to control the sequence of operations within the program.

When execution of a program has been started, unpacking text
pointers are set up to access text from the starting line. Once that
line has been completed, the pointer at the beginning of the line is used to
reset the text position to the start of the next line in the sequence.

If a program branch occurs, i.e. a GOTO command or a DO command,
the line number in that command is decoded and used to determine the
position in core of the required branch line. Operation then proceeds from
that point in the normal fashion until the end of the program is encountered

or an error condition is detected.



Calling Sequence

PUSHA

POPA

PUSHF
ADDRESS

POPF
ADDRESS

PUSHJ
ADDRESS

POPS

Figure 14

32

Operation
Saves the accumulator in the next free location .

of the pushdown list ’

Restores the last entry on the pushdown list

to the accumulator

Saves three successive data locations starting at
ADDRESS on the pushdown list. The data is generaly
floating point data , although it may be sets of
pointers such as text pointers eg. TEXTP

Restores the last three entries on the pushdown
list to the three successive data locations
starting at ADDRTSS

A subroutine call in which the return address
is saved on the pushdown 1list . ADDRESS is the
starting address of the required subroutine

$

)
Used in conjunction with the PUSHJ call . Uses the

last entry on the pushdown 1list as the return address

from a subroutine

Pushdown List Controlling Instructions

Program instruction

SET A =123.4
SET A=B
SET A=B*C

Figure 12

Best case Worst case
15 m sees 25 m secs
8 m secs 30 m secs
14 msecs 50 msecs

Timing of FOCAL Commands




33

3.9. Error Diagnostics

When an error condition is detected, either in syntax or in an
arithmetic operation, e.g. division by zero, a subroutine jump to the
error recovery routine is forced. _

This error recovery routine prints out the particular line
number where the error occurred, and uses the subroutine return
address, decoded from 12 bits and printed as a line number,as an error
code. Theé error code can then be lookad up by the user in a table of
supplied error codes so that the exact position and nature of the error

can be found.

3.10. Editing Facilities

Once an error has been detected and located, the powerful
editing facilities of the FOCAL interpreter may be used for correction.

The MODIFY command can be used for correcting any part of any
line within the program. This operates by copying the parts of the line
which are correct on to the end of the text buffer, characters may be
added or deleted by using the normal controls of the MODIFY command.
This provides two lines with the same line number, the old one of wlﬁch
is deleted, the space recovered, and the new line linked into its correct

sequence.

3.11. Control Pointers for FOCAL P:;;ograms

Most of the pertinent information dealing with the state of a
FOCAL program is kept as a parameter set within the first half of page 0
of field 0., thereby making them accessible to all parts of the FOCAL
interpreter. These parameters include the state of input and output
text pointers, pushdown list pointer, floating point accumulators,

variables and text pointers and character buffers.

3.12. Speed of Operation of a FOCAL program

The relatively slow speeds of execution of FOCAL programmes can be
mainly attributed to the manner in which variables are stored and

accessed and also the use of software routines for arithmetic operations.



34

For example, the execution of a single floating point operation
can take in the region of 3 to 15 m seconds because of the conversions
necessary from decimal to binary floating points.

Fig. 12 shows the best and worst case execution times of simple
FOCAL statements. The difference in times taken for the same
command is dependent upon the position of the variable in the symbol
table. As each variable is encountered in the statement, the variable
searck. routine (GETARG) is used to locate the position of that particular
variable. The search always starts from the beginning of the table; more
time will therefore be required to locate the variable if it is situated
near the end of the table.

Little timing advantage is gained even if constants are expressed
as numbers rather than assigning that value to a particular variable name.
This is due to the fact that these decimal figures have to be decoded from
text each time they are used with the decimal to binary conversion routine.

Another reason for the slow execution of FOCAL can be attributed
to text searching routines. If a program operates sequentially from its
lowest numbered line through to its highest numbered line, excess timing
overheads are not incurred as sequentially numbered lines are linke.d by
pointers. If however a program branch is forced from a DO or a GOTO  _
command, the interpreter must search the text buffer from the
beginning in order to deter:nine the position of the specified line before
program execution can continue.

Most of these timing overheads can be significantly reduced (52)

by adhering to a few simple programming rules. For example:-

1. Those variables which are going to be used most of ten
should be defined first so that they are placed
at the head of the symbol table.

2. Those lines of FOCAL which are to be used most often
should be given lowest numbered lines so that
they will be encountered early on in text search

routine,



35

3.13. The Interrupt Processor

The FOCAL interrupt processor operates using a skip chain type
structure ,i.e. testing if a particular device has caused the interrupt,
servicing it if it has and moving on to another device if not.

As FOCAL is intended as an off-line system, the devices in its
skip chain includes teletype reader, keyboard and high speed reader |
only. The interrupt processor is primarily used for the character

input and output from and to a terminal device.

3.14, Character Input and Output

Character input and output routines for use with a teletype
terminal device are interrupt driven, thereby allowing data processing
to continue while transmission to and from the teletype device is being
completed.

Input of characters from a keyboard device is in general a slow
process. As the computer is normally awaiting data before proceeding
on to another stage of an operation the data will be processed immediately,
thus requiring only limited butfering space. The FOCAL interrupt processor
uses a cingle word for an input buffzr which is used to store the dé‘ta
temporarily between being received and being used by the interpreter.

Data output is however a different process and it is preferable
if it can be done with as little hold up in processing as is possible. This
is accon.plished in FOCAL by having a 16 character long ring buffer
operating on a first-in first-out basis, Fig.13. Characters are loaded
into the buffer by the interpreter under program control. The buffer
is then emptied from the interrupt processor each time the output device
signifies its readiness to receive another character.

This type of procedure will reduce the possibility of the system
becoming output bound, i.e. the system waiting for the output device to
become available jalthough,with such a limited size of buffer, the problem

cannot be eliminated.



Ou®put
Routine

XOUTL

ﬁ:m"kq

FOCAL ' 4
Program

36

Buffer

Locations

Interrupt
Service

00
01
02
03

05

07
10
1
12
13
14
15
16
17

Routine

OPTRI\

W,

Figure 13 : Operation of Output Ring Buffer

Terminal

Device




37

CHAPTER 4.

Initial Modifications to FOCAL




38

4.1, Reconfiguration of FOCAL, Software

FOCAL /69 was designed to operate in 4K of memory, Fig.6. and
by using a standard overlay could be extended to use an additional 4K of
memory, Fig.7. The 8K configuration, although allowing users to ’
develop and execute quite large programs, leaves very little free space
for system modification. Admittedly, two areas of core are shown as
being reserved for paper tape loaders but this would only have released
one page of core which was insufficient for all the proposed system
modifications and enhancements.

Creating sufficient free core area within the FOCAL interpreter
to accommodate enhancements to the system therefore necessitated
the reduction of the core area allocated to program storage in some
manner. For example, new functions could have been located in field 1
by reducing the amount of that field allocated to the text. Alternatively
new functions could have been added below the pushdown list in field 0 by
reducing the core allocated to variables and pushdown list, A third method
could have been to relocate part of the interpreter, such as the floating
point package, in field 1 thereby releasing space in field 0 and reducing
the area available for text. !

All of these methods would have involved the generation of cross
field linkages between the original interpreter and the additional
modifications. They would also have rigidly defined storage allocated to
text and variables, providing no simple method of implementing a facility
whereby a user could trade off text storage for variable storage and vice
versa,

A solution which was adopted,was to modify the interpreter so
that the variables (53) and pushdown list were relocated underneath the
text in field 1. This method released space in field 0 enabling extensions
to be made to the interpreter without the need for cross field linkages.

Moving the variables and pushdown list storage areas into the same
field as the text storage area, created the problem of the division of
available storage area between the competing requirements of text,
variables and pushdown list.

Fixed areas of core could be allocated to text variables and push-
down list as in the standard 8K version of FOCAL.This type of approach

has the advantage that if modifications are made to either text or



39
variables then the other is not altered. It does however suffer from
the disadvantage of being inflexible and not allowing users to trade off
text space for variable space and vice versa.
| An alternative to this approach would be to dynamically allocate

the storage as in the original version of 4K FOCAL. This particular
system starts the variable storage immediately after the text storage;
the pushdown list builds back up from the end of the allocated area
for storége and an overflow error condition occurs if either variables
encroach into pushdown list space or vice versa.  This method does have
the advantage of using the available core storage to its maximum but has
the disadvantage that existing variables are erased from the store if any
of the text is modified. |

A method which would overcome these disadvantages would be one
in which a user could select fcr himself the amount of core to be allocated
to text and the amount to be allocated to variables and pushdown list.
The starting point of the variables list could then be changed at any time
so as to accommodate either more or less text,w ith no possibility of text
modifications erasing the variables list. Tlﬁ's method would also allow a
form of rudimentary chaiuirg of FOCAL programs as text could be read
in without disturbing data and data could be read in without disturbing text.

This method was thecefore adopted for use in 8K FOCAL. An )
extension to the existing LIBRARY command was developed to enable the
~core allocated to text and variables to be selected by individual users.

Fig.14. shows examples of the use of the modified LIBRARY command.

4.2. Saving and Editing Variable Tables

'In a real-time situation requiring a moderately high data acquisition
rate it may not be possible to process data at the same time as it is
acquired. Data may therefore have to be accumulated for processing at
some later time either using an of f-line program or possibly another
computer, |

In order to accommodate relatively large programs in the limited
space available within the minicomputer system, the facility whereby
program segments could be "chained" together would be necessary. Program

segments could then operate on variables created by a previous program



0100
3000
4000
4,000

? 1344

0100
3000
3400

40

User types command character and carriage return

at the terminal device

Start of text

End of text .

Start of variables list ~

End of variables list

The : prompt is echoed by the computer to signify
that it is waiting for the input of a four digit
octal number terminated with a carriage return.
Any other reply will cause the command to be
aborted

The error code 413.44 is printed to signify that
the command has been completed., The system returns

to command mode

Repeating the command shows that the start of the

3

)

variables list has been relocated

Command aborted by use of an illegal character
and the system returned to command mode

Fipure 1L : An Example of the use of the Modified LIBRARY Command




L1

segment. Having arranged text and variables in the manner described,
modular programs can be accommodated by loading the various segments
without disturbing the variable list.

In both these situations it would be advantageous if the data,
tables could be edited and unwanted variables deleted. The remainder
of the data table could then be saved either as a hard copy for processing
on another machine or within the existing variables area for use with the

subsequent program segment.,

4,2.1, Editing Variable Tables

An extension of the ERASE command was therefore developed and
included so that a named variable or string of variables could be deleted
from the symbol table.

The command is of the form

E.F, A, B, C.

where the F is usea as a switch to the extension of the ERASE
command using what was previously an error exit. The rest of the -
characters are those signifying the variables to be deleted from the
symbol table separated from each other by delimiting commas. '

The command operates by overwriting the named variable with
the last variable in the list, reducing the end of list pointer by the number )

of words occupied by a variable hence recovering the available space. It

may be used as either a direct or indirect command.

4.2.2, Saving Variable Tables

Saving a symbol table could have been accomplished by adding a
binary punch routine to FOCAL so as to enable a symbol table to be punched
out in standard binary format. This would have the advantage of speed on
punching and re-reading although it would necessitate a modification of
Binary Loader so that :~

“(a) It could be operated from a remote console
(b) The data could be read into any specified location
| within field 1. and not merely the position

from which it originated.



42
An alternative procedure; which was eventually adopted, was to
modify the existing symbol table dump routine,(T. $) so that the variable
names and values could be punched out in the format of a direct SET
e¢ommand. The tape produced would be in"ASCII code and could be read
into the computer in the same manner as that used for program tapes.
The existing symbol table dump roqtine prints a list of all variables
held in the table in the form.
"VA (XX) = 123.456
VB (XY) =789.C12
The subscript being printed as a two digit integer number between
00 and 99. Subscripts of greater value than 99 therefore are printed ‘
fhcorrectly, which is unsatisfactory when the data tape is to be read back
ih again,
 This had to be overcome by using the floating point binary to
decimal conversion output routine and avoiding the automatic print.ng of
the "=" in that routine.
- The direct SET command format was achieved by forcing an S and a

space to be printed immediately before the variable name.

{

) .
4.3, Input Buffer Overflow

An annoying feature of the 8K FOCAL system is that of the input

buffer overfiowing when paper tape programs and data tables are read in
through the lowspeed reader of a teletype terminal. As useis operating
from remote terminals will only have a low speed reader device available,
it was imperative that this problem be remedied. This was particularly
true when modifications had been made to allow for the creation of ASCII
coded data tapes.

The problem occurs because the lowspeed reader is operated under'
interrupt control and not under program control: Characters can therefore
be presented to the computer from the teletype at a rate which is
independent of the rate at which the characters are processed. In the
event of a second character being presented before a previous character
‘has been processed, an error condition results and the corresponding error

code displayed at the terminal device.



L3

The problem could be overcome by including a non-interrupt driven
input routine, which could be selected from the terminal prior to the
reading in of punched paper tapes. Once the tape had been read in, the
interrupt driven input routine could be reselected.

An alternative procedure would be to reduce character processing
time. This could be achieved by pr eventing input characters from Being
echoed on the terminal printer device, thereby saving valuable processing
time and also avoiding the possibility of holding the system up in an cutput
wait loop.

This second alternative was chosen because of its ease of
implementation. Fig.15 shows a flow sheet of the character input routine
used by the interpreter for picking up characters for processing from the
.input buffer. The PRINTC subroutine call is used to load the input
character into the output buffer for echoing. If the PRINTC call could
be bypassed on request, the problem of input buffer overflow would be
solved. Fig.16 shows the modifications made to the input routine in crder
to implement this facility.

If a user wants to read in a program ox data tape through the low
_ speed reader, a CTRL/X character can be typed in at the keytsard prior
to reading the tape. The PRINTC call within the character input routine is
replaced by a NOP instruct so as to eliminate character echomng. The echo
facility can be restored by typing a CTRL/R character which has the effect
of restoring the PRINTC call in the character input routine.

4.4, Enhancement to the MODIFY Command.

The existing MODIFY command allows a user to edit any line within
an indirect program. There are however no editing facilities available for
re-arranging the order of the lines in the program or for copying lines,
Such a facility would be extremely useful particulérly during the creation
and modification of programs.

On examination it was found that such a facility could be included
by adding a minor modification to the MODIFY command. |

The MODIFY command operates by first searching through the text
buffer for the specified line of the program. When found, a new line with



CHIN
Called by READC
‘Entry
INDEV
1Store character in char
SORTC (ECHOLST)
5 <+ J -
18t return 2nd return character not in list
line feed
or rubout {PRINTC

~
( Return )

Figure 15 : Original character Input Routine

< Entry ) ;-
N

(-— P~
YINDEV
YStore character in char
[SORTJ (NEWTERM NEWLIST)
A T Yy T
ctrl/R other line ctrl/X
feed
YReplace PRINTC YFRINTC or Restore
with a NOP or rubout PRINTC
1 instruction  |NOP
————
|
( Return ‘)
e/ . J

Figure 16 : Modification to Input routine CHIN for Echo Suppression




45

the same line number is initiated at the ehd of the current text buffer.
Typing in a search character causes the contents of the old line to be
copied into the location of the new line until a character corresponding

to the search character is encountered. Modifications are then made

to the line and the line terminated immediately if a carriage return is
typed or the rest of the old line copied if a line feed is typed. The old
line is then deleted and the space recovered before finally linking the new
line into its correct sequence by setting the pointer at the beginning of
the line as described earlier.

If however,the new line was provided with a different line number
from the original line, all the modifications would be added to the new
line, the old line would not be deleted and the new lilne would be linked
into its correct sequence.

Figs.17 and 18 are flow sheets of the original MODIFY command
and the extension incorporated so as to provide for line copying.

The new MODIFY command has the same syntax as the old MODIFY
command for line editing. However, for line re-arrangement the command
takes the form

M nn.xx, 00.yy
where nn.xx is the required line number for the new line
0o0.yy is the line number of the existing line -
the comma is used as a switch to denote which type of command it is.
'All the options available within the original MODIFY command still
apply to the extended form. The modifications however are inserted into

the rew line leaving the old line unchanged.

4.5. . Hard Copy Facilities for the ASK command

The existing ALTMOD reply in response to an ASK command is very
useful. It does not however echo the value of the variable to the user.
Another problem encountered with this facility is that the ALTMOD
key does not appear on some of the more recent terminal keyboards.
It was therefore thought advisable to alter this response so as to
overcome these defects. The LINE FEED character was selected as being

a suitable replacement for ALTMOD.



46

MODIFY. Line Editing Routine

tGETLN

YFINDIN

{st exit

Error

2nd exit line found

YSet up input text pointers to current end
of text buffer

{Store line number in text buffer and
‘Jcreate rubout protection

) |

|

{Read teletype silently via INDEV
ﬂ*Store character in branching list LIST3

. ¥Disable trabe

4 PACKC

other

ﬂlGETC

TPRINTC

YSORTJ (LIST3 and LISTGO)
/ - ,

't + {return

ret

N\

other or
search

\Eeturn

SRS

character
K_,_____ij

search character

Y PACKC
a1 - . )
YREADC .

#SORTJ (L15T6 and SRNLST)

Lctrl/l o J 1 |

\1in& feed

(ctrl/g

<3
-

ctrl/c

leftlarrow

Reset input text pointers
to overwrite first part of this

& =

A

Fipure 17. Flowsheet of the MODIFY Command




47

( Entry ’

{GETLN

Save line number on pushdown 1list

SPNOR

1Is character a comma

:4J
Mmo yes
‘ fGETC
GETLN
.
FINDLN j
e
1st exit 2nd exit

Restore line number from pushdown 1list

Omod

Figure 18 : Extension to MODIFY Command for Line Duplication




L8

By responding to an ASK command with a line feed, the value of
the required variable is obtained from the symbol table and loaded into
the floating point accumulator. The binary to decimal output conversion
routine is used to print the value of the variable on the terminal printed
device, Program control is eventually returned to the ASK command
leaving the value of the variable unchanged. This operation is as

described in reference 54

4.6. Protection Systams

4.6.1. Command Buffer Overflow

" When a character string is presented from a terminal keyboard
device, it is initially entered into the command input buffer for the
reasons explained earlier. In the original version of 4K FOCAL the command
buffer was protected against overflow. In the 8K version of FOCAL/69 this
particular facility was omitted. This was probably due to the difficulty
of implementing the system with the different core configuation. The
command bu~fer was therefore extended to accommodate about 100 1
characters which is great~r than the number of characters which can be
placed on a single teletype line.

In an effort to make FOCAL ac secure as possible, it was thought
that command buffer protection would be a desirable feature, particularly
as overflow causes corruption of the system.

As the new system incorporated a text variables and pushdown list
storage system similar in many respects to that encountered in 4K FOCAL,

command buffer protection was implemented in an identical manner.

4.6.2. Power failure Protection

The central processor of the PDP-8 includes an optional power
failure protection system, which causes a program interrupt if the input
voltage level is reduced below a certain level, By including a power failure
detection instruction in the interrupt processor skip chain active program
registers may be saved in known locations so as to avoid corruption while

the processor power is off.



49
When power is returned to the system, the processor is
immediately started at location 0000 .field 0. Control can then be
transferred to an automatic restart routine which will reinstate the
active program register. Program operation can then Be continued

from the point where the interrupt occurred.

4.7, New Functions

A new random number generator function FRAN was included in

the system, based upon the techniques explained in ref.55.

4.8. Summary

These modifications were implemented by using a PAL III
Assembler available on the University's 1.C.L. system 450 computer (56),
a4 standard binary coded punched paper tape being produced as an overlay
to 4K Focal 1969. The listings of the modifications have been produc:d
on microfiche together with supporting documentatibn in the form of
flowsheets which can be found in Appendix C. The 8K core configuration
produced is shown in figure 19 and tle system was released as 8K FOCAL
EXTENSIONS. ' ", _

The system enhancements provide users with an off-line
conversational programming system which can be operated from remote -
terminals. The inclusion of software to handle power failures essentially
means that the computer can be started and stopped from a single mains
. switch. There is no longer any need for terminating program operation on
power down and restartin g program operation after power up as the active
register of the computer are stored and reloaded automatically. The
system can therefore be used when required without the need for specialist .
personnel to initialise or halt the computer.

Approximately 800 locations of core are released within the same
field as the interpreter, making this particular configuration a suitable

starting point for further modifications to allow for real-time programming.



8X ?ocr)l lixtenricna Fjelil 0

9 Co'-.T-nl Dncn Inr
2 Kntnbf 1 rur.h>nv;n Lir.t Centro]
3 Control & Tr;:nsfer | irite Ter.to (“ertsl I Jnnist f
4 cotaot T If Set s For VS AInt. i Coijro~
5 Tytio & Ask Morlifv Sorti I Aac.Oiitl >ni otl.rrr
6 CoterR I Srr.or,Tetn,T('!o ,Po; j rn.i o
7 Kenll

Tenrs trn.Abs ct el iTstlpr.Pfirter.t | Del-ite I Brnde [Fnt.ibi~
{% Ereso Irindln | Goto neQn

Plcko txtonriJons

12 F3P .Fmtin.Prnt riri Frintc
13 Interrujit Frocesr.or . 1/C Routines >nd Error Recovery Routine
14 Rubout 1 S’r-.bol Tabl3 Dur.o |C/P buffer | 'r-cB,

15 txtenrlons to J.ibr rv rnd V-.rinnle re-.mh cho dis&ble or.d ov.er ?,;ilure Routines..
16 Fr.nP I —
17

21
22

23 Kxp Atn

24 | )

25 Cos nrd Sin i'od er.d ..Iti'ode
26 FLOATING POILI
27 IL'F.T A:;D OFT177
N ROUT'INFS

3
32

Hif-h Speed Regdor Boutin;

33 FLOATING POINT zrFRFTFT?

34
e Library

Sot
37 VriTiable Erase .icutir.e iJurther .xt'rsicnr. - Pen m i-ccr.

6K Fcc' 1 Irrter.sions “ield1l
Cozrrssnd Inrut Su:'fer

— e = e
QN RWLWN Foaan kLN =

D
S

RN NN
AW o=

[
[

V;.J<L.3Lc;3

W W W WL WW N
=N R N SN -]

11NT
i.osders

“w
=2

. Figure 19



.

50

CHAPTER 5.

A Single User Real Time Programming System




51

5§.1. Real-Time Programming

The basic requirements of a real-time operating system have

been outlined in the introduction. In summary, these are:-

1. The system should provide users with timing facilities
of two types:

(a) The ability to access or record current and/or
elapsed time

(b) The ability to multiplex data, enabling data signals
to be sampled or transmitted in a svnchronous
manner. This particular timing facility should
also include some form of priority system
whereby pre-selected signals can be sampled or
transmitted in preference to other signals.

2, The system should provide users with a means of communi-
cation with peripheral devices through the computer
interface system, thus allowing signals to be obtained
from or transmitted to external devices.

3. The system should provide facilities for linking timing,
mathematical and input/output functions for the Li
purpose of control.

4. The system should provide users with the ability to
communicate with a program which is being executed,
enabling parameters used within the prograra to be
altered without causing termination of program
operation.

The development of the FOCAL interpreter as an on-line
programming system therefore involved the integration of hardware
driving routines into the interpreter structure. In crder to accomplish
‘this, it was necessary to be aware of:-

(a) The hardware available and the methods by which data could

be transmitted to or acquired from particular items
. of hardware.

(b) Manipulation routines available within the interpreter

structure so that data transmissions to or from the

hardware could be providéd for in a form acceptable



52
to the user utilizing as far as possible existing
arithmetic facilities and character handling

facilities.

5.2, The PDP-8 Computer and Interface System

The internal mode of operation of the PDP-8 computer, i.e. the
manner in which instructions are decoded and used by the internal
registers is described fully in reference 58. Fig.20 is a schematic
diagram of the PDP-8 configuration showing all the major internal

registers of the system and the flow of data to and from them.

5.2.1. Device Selection and Channel Addressing

The associated interface system is based upon the Kent K70
interface (36) and is used for the timing, buffering and control of data
transfer to and from the processor accumulator. The transfers are
performed in response to an input/output transfer instruction (IoT
instruction, octal code 6) issued by the computer program.

The issuing of an IOT instruction causes one or more input/output
pulses, used for flag operations and to initiate data transfers, to be
sent to the device selectors within the interface. Each device /
selector is also connected to an appropriate binary pattern of bits
3 through to 8 of thé memory buffer, so that it is activated in response
to the appearance of its own code in the memory buffer.

For example, the digital input system has been allocated the
device code of 17, To read the status of an external contact into the
accumulator. from the digital ihput system, the octal instruction 6172 is
issued from the program. The first digit, 6, is used by the internal
register of the computer to denote that an IOT instruction has been issued.
The second and third digits are used by the device selectors to determine
which particular I/O device is required. The fourth digit is used to
generate the IOP pulse required for reading the status of the external
contact into the accumulator.

This method of device selection would allow up to 64 peripheral
devices to be selected if some of the device codes were not used for
internal options in the PDP-8 and for standard peripheral devices. For

instance power failure protection, field operations and interrupt



53

vO

T SED-sqy O v

0
o]

(=19

-3

(V]

JV

d
L



b
manipulation réquire IOT instructions and device codes. Standard
peripherals such as magnetic storage devices, photoelectr ic reader,
data for which does not pass through the K70 interface system',
require the use of other device codes.

The number of device codes available for data transmissions
through the interface is therefore limited. In order to extend the 1/O
capabilities of the computer, the interface has been provided with a
channel address sclection system. This allows more than one of the
same type of peripheral to be inéiividually addressed from the same
device selector.

The channel address of the device required is loaded into the
accumulator and transferred to a 6 bit output buffer register under
program control. Binary to octal decoding of the register is
accomplished by hardware to give outputs on a 16 line address highway
for the selection of the required devire. The IOT for the device caa then
be issued so as to provide either a data transfer to or from the device

or to determine the status of the device.

§
;-

5.2.2. Input Devices

The following input devices are linked to the central processor
unit by the K70 interface system. |
1. A successive approximation analogue to digital converter as
- an integral part of the central processor. So.id state
addressable single pole scan switches are allowed to time
share the converter. An input signal in the range O to 5v
produces a O to 10 bit value in the processor accumulator.
The conversion time is approximately 40useconds.
2. A digital input system for the detection uf on-off or
| fleeting contact closures. The inputs are arranged in
groups of four, each group of inputs being address
selectable., Isolation between the plant equipment and
the computer is provided by interposing relays.
3. An input counter card system for accepting inputs .from
transducers with a frequency modulated output. The

12 bit input counters are addressable and are read and

reset by program,



55

4, An extension of the input counter card system for accepting
binary serial data transmitted from a digital panel meter
(59). The serial data pulses from all digital panel meters
are read into the input counter card on channel address 0
when requested by program, Each panel meter is also
individually addressable. The conversion of an analogue

signal in this fashion takes approximately 60mseconds.

5.2.3. Output Devices

The following output devices are linked to the central processor
“unit by the K70 interface system:-

1. A pulse width modulation system,capable of providing for
the output of data generated by program for the purposes
of control and display. A seven bit output word comprising
of six data bits and one sign bit can be sent to one of the
addressable counters under program control. The data
could represent for example, the change in poéition of a
control actuator calculated by an incremental control
algorithm. An output voltage signal is then ouiput on one
of two lines, depending upon the sign, until the counter
has been decremented to zero by an external clock.

2. A digital output system for switching purposes. The outputs
are arranged in groups of 4, each group being address
selectable by program. A four bit output word set by
program is used to select the status of each group of
4 changeover relays.

3. An alarm output system for signalling the occurrence of
a fault condition to the user. The alarms are arranged in .
groups of four, each group being address selectable. A
four bit output word is used to select the status of each
group of four alarm annunciators. Individual alarms are
set by providing that particular alarm with a 0 from the
accumulator. Setting the respective bit in the accumulator

to a 1 will clear the alaxrm signal.



56

4, A digital to analogue conversion system for output to
analégue recording devices. The 9 bit converter is
loaded from the accumulator under program contxol
and the converter output is then held on one of the
addressable set and hold amplifiers. The conversion
process takes approximately 200 « seconds providing
an analogue output signal in the range 0 to 5v with a
maximum drift rate ct less than 5 millisvolts per second.

by

5.2.4. Other Peripheral Devices

Other peripheral devices available on the computer system are:-

i. A high speed photo electric reader, capable of reading
bunched paper tape at a maximum rate of 500 characters
per second.

ii. A high speed paper tape punch operating at a maximum rate
of 50 characters per sccond.

iii, Two standard ASR 33 teletype units.

Figure 21 shows a schematic diagram of the computer system and

its associated hardware. : _ e

5.2.5. Interrupt System

The standard PDP-8 system allows any external device connected
to the interrupt bus to interrupt the program at any time. This causes
a temporary halt so that the interrupt may be serviced. In addition to
this, the interface provides a four level priority interrupt system capable
of being enébled or disabled at any level by program. External devices

are hard wired to a particular priority level.

5.2.6. System Clock

T he interface provides a real-time clock driven by the 50 cyéle
mains frequency protected against spurious pulses by a phase locked loop.
The clock, which is essential to on-line programming, is connected to the
interrupt bus and generates interrupts at fixed time periods. The period
at which the clock provides interrupts is switch seleétable in the range

of 10m seconds to 1 second.



to
to



58
5.2.7. Fault Protection Systems

The computer system has been provided with limited fault
protection in the form of a power failure detection system. As
described previously, the detection of a low voltage condition, causes
a program interrupt which can be serviced within an interrupt processor
so as to save active program register.

The pulse width modulation output system (output counter cards)
is designed such that it will fail safe. Additional protection against
spurious outputs and timing errors is provided by the "watchdog timexr".
This disables the output of the sign bit of the signal from the output
counter card if the timer is not updated at regular 1 second intervals.

It is necessary to include a routine within the interrupt processor for
resetting the timer every second. In doing so, not only is the output
syste m protected, but a visual display is obtained as to the correct
operation of the clock.

In order to assess the accuracy of the analogue to digital converter,
standard signals have been provided on channel address 0 and 1. These
signals can be read in by the user and compared with known values.

A similar technique has also been employed on the digital pa;nel

meter sub system.

5.3. Real-Time Software

The following section discusses the me thods available for adapting
FOCAL to provide a real-time operating system. The reasons why a
particular method was adopted are dzscribed and the ways in which they
can be used are illustrated. |

The modifications were accomplished by using the PAL III cross
assembler available on the University ICL system 450 computer. The
modifications produced for 8K FOCAL Extension were also included so as
to produce a binary coded paper tape overlay for 4K FOCAL 1969. The
listings have been included on microfiche and supporting documentation in

the form of flowsheets have been included in Appendix D.

5.3.1. Current or Elapsed Time

The ;real-tifne clock available in the computer interface provides
program interrupts at a switch selectable rate . There are, however, no

external hardware registers available for maintaining a record of current



59

or elaﬁsed time. If a record of current time was to be kept, therefore,
a service routine must be included within the interrupt processor in
order to count the number of clock interrupts. Other routines must then
be incorporated into the interpreter structure so that the clock counters
may be accessed by the user.

This could have been achieved in either of two ways:-

1. By summing the clock interrupts received in a multiple word
counter, i.e. for a clock interrupt rate of 100 per second,

a single 12 bit word would provide an elapsed time record

of approximately 0.7 minutes. Therefore a 36 bit counter
would be required to extend the elapsed time register into
days. The elapsed or current time record in terms of days,
hours, etc., would then require the decoding of the counter
upon a request from the user.

2. By providing a series of counters for fractions of a second,
seconds, minutes, hours and days. Each clock interrupt
would be used to decrement the count in the fractions of
a second counter. When a counter has been reduced to zero
it would be provided with a reset value and cause the next
higher counter to be decremented by one unit, Thus a
continuous record of time since initialisation would be
available for access by users,

The first of these methods although requiring less store and time in
the interrupt processor would have required more handling routines in order
to decode the total interrupt count into absolute terms. The counter
would also require resetting each time the clock interrupt rate was changed.
unless a separate counter was included for counting interrupts per second
as in the case of the alternative procedure. |

The second method was therefore chosen for implementation within
the interrupt procéssor of FOCAL, The counters were made accessible to
users by the use of a new function FTIM. By using the FTIM function as
shown in Fig.22, users can access any one of the four counters available,

" e.g. SZ = FTIM (0 MNS) would set the value of Z to the current value of
the minutes counter,

It has also been arranged that the counters may be initialised to any
value by use of a multiple argument variation of the FTIM function, for
example, S Z =FTIM (0ST, A, B, C, D) initialises the clock counters



wanSi=!

60

X=CF OHE

to —
— 0
to s
P Z a
s <
t fo Q v p
A a P
18] <T S ki P
@
H f- ulJ
> P — U. Z
< s 'S I X
Q 2 -
: ® (0] )]
@ to o <
N a
5 a I to
X <r t/l —= PH
% e} S o + :
o * to v p to
(6] tr, o —* o *
(s © a
to z o Q co P
ce «» —« 10 X
TJ] H 10 (S H + t-
g ) - O I X to P P
U H - 0 m 1 LO (D in O co
to M — t— to O P < a Ma —
P ee ee e« t/; co S) O C3 ts 8'« 1) «
<n to P O to toto X O H P Up (S<£)coejtS)Ci)Gio<a
QP p A0 'O r- ¢ o Q — Mo
MO C I0C- 0o Mo <T H (0 81 i 0(;1_%8 0
3<s S0 QQ i p Fa a a P o P S( XO0SG'GCT! loloek
e e e e e e e e e . ° P e
=g

—4 —t — — QUMMM M ro co tt]
a

G L0 ¢ Q Wco S I a a * H D If I I 0T O 0 0 I T

82 TYzoch O T

£3=e



61
to the values of seconas, minutes, hours and days designated by the
arguments A, B, C, D respectively. The 0ST argument had to be
included as a switch to provide this facility. The variable assigned on
_ the left hand side of the set command is used as a dummy variable for

the function call, and has no particular significance.

~ 5,3.2, Synchronous Data Scanning

In providing the system with facilities for synchronous data
acquisition, it was necessary to determine the effects errors in timing
have on data acquisition and signal reconstruction. The need to provide
precise timing would not only affect the methods by which a synchronous
sampling scheme could be implemented but would also affect the modes
by which data could be acquired from peripheral devices.

A simulation study of the effects of errors in timing on signal
recovery was therefore made and the results compared with theoretical
solutions (70, 71).

The method results and conclusions are described fully in
Appendix B. In summary, the results of the simulation study agreed with
the theoretical work in that the maximum amount of error which can be
- tolerated is dependent upon the maximum frequency content of the 'signal
being processed. It was also concluded that for a system which is
essentially going to be used for relatively slow data rates,synchronous
sampling could be set up by use of clock flags accessible to the user
from functions in the high level language. Input and output transmission
to peripheral equipment could then be performed directly without the use
of clock driven handlers.
| It was therefore arranged that a user may define three scanning
flags within the interrupt processor. Counters within the interrupt
processor are set by the user and decremented by, one unit every clock
interrupt. When a counter has been decremented to zero, a software flag
associated with the particular counter is set, and the counter reset to its
initial value. Scan flags are cleared either by the next clock interrupt if
they have not been accessed by the users program, or by accessing the scan
flag from the program. |

A new function has been included in FOCAL to perform these

operations.



62

The scan flags must be initially set up by defining the arguments
of a multiple argument FLAG function in the following manner:-

4,01 S N=4; S A=1;, S B=2; S C=4

4,02 S Z =FLAG (0ST, N, A,B,C)

The 0ST argument is used as a switch to denote that the remaining
arguments are to be used for setting up the scan flag counter.

N is an argument used to denote the nuraber of inferrupts
generated by the clock every second. In the above example, the clock
will have been set to 4 interrupts per second.

The arguments A, B and C define the periods at which the scan
' flags will become set in terms of number of clock interrupts. In the above
example, the scan flags A, B and C will therefore appear at ¥ second,
% second and 1 second intervals respectively. |

Interrogation of the scan flags has been implemented by means
cf a single argument FLAG function. If the scan flag being interrogated
is found set, the floating point accumulator is set to a negative value,

thus making it possible to use the IF command in FOCAL for interrogation,

e.g.:- ‘
10.01 1 (FLAG (A)) 10.03 , 10.05 , 10.05 3
10.03 DO 11 - % second task
10.05 1 (FLAG (B)) 10.07 , 10.09 , 10.09
10.07 DO 12 % second task
10,09 1 (FLAG(C)) 10.11, 10.01 , 10,01
1011 DO13 ; G 10,01 | 1 second task

The negative value of the floating point accumulator causes the
first exit of the IF command to be taken if the software scan flag is
found in a set condition,

The FLAG function makes use of the sort and branch routines
available in FOCAL, ‘the argument of the single argument function being
tested against a list of possible flag values. If a match is not found, an
error condition results. If a match is found, then the current value of
that particular scan flag is obtained. This stxucture will therefore not
allow two flags to be set to the same period, as the first one will always

be found as the matching value in the table.



63

As a certain degree of error is acceptable in synchronous
sampling (Appendix B), a synchronous sampling scheme could be

achieved by using the FTIM function by a differencing process for

example :-
© 8.001 S Z1 = FTIM (05CS) Initialisation
8.03 S Z2 = FTIM (0SCS) )
8.05 I (22-Z1-1) 8.03,8.09, 8.99 ; Timing wait loop
8.07 1 (Z2+59-Z1)8.99, 6.09, 8.03 )
8.09 S Z1=22 )
') Operation
8.40 G 8.03 ;

8.99 T "TIMING ERROR" , !

Approximate timing errors of 40 to 50 m seconds would be incurred
by the evaluation processes reeded in such a system. However this would

be acceptable for slow data rates.

5.3.3. Program Priority System '

A certain degree of priority structure could be achieved with the
FLAG function with suitable program organisation. In the example shown
below, FLAG A is interrogated after the completion of any of the tasks )
associated either with FLAG A or either of the other two flags. This
type of structure would increase the possibility of the task associated
with FLAG A being executed in preference to any of the tasks associated

with the other flags.

10.01 1 (FLAG(A)  10.03, 10.05, 10.05 )
10.03 D 11; G 10.01 ;
10.05 I (FLAG (B)) 10.07 , 10,09 , 10.09 )
10.07 D 12; G 10.01 ;
1009 I (FLAG (C)) 10,11 , 10.01 , 10.01 )
10,11 D 13; G 10.01 )

This arrangement is however of no use in a situation where batch
data from ar éxﬁeﬁment run is Being processed at thé same time as the
experiment is being controlled. This situation requires that the
processing be terminated whenever a control scan is nece;'.sary and would

be impossible with the existing flag structure.



64
5.3.3.1. FOCAL Break Points

In general, FOCAL's internal subroutines are non re-entrant.
However, once a line of text has been executed the routines can be used
again without the need for saving subroutine return addresses and
parameter used within the routine. There are therefore two convenient
break points within FOCAL where a running program may be held up, a
* different section of the program executed, and then return to the
original FOCAL sequence.

One of these points is at the start of each line or sub line (i.e.

a section separated by a ;terminator) and the other is at the end of a
complete line before control is transferred to the next FOCAL line. The
second of these two break points requires only the saving of a single
parameter, the pointer at the start of the current line used for pdinting
to the next line. The first point requires the saving of text manipulation
pointers in addition to the saving of the pointer to the next line.

At one of these break points, it would be possible to temporarily
hold the operating sequence of a FOCAL program in order to check the status
of some external »trigger or clock flag. If this was found in a set state,
the pointers of the operating background program could be held, a
separate foreground section of the program executed, eventually restoring
the program pointer of background program so that execution could continue.
The foreground program could be implemented by forcing a DO command on
a particular group of statements as shown in reference 44.

For reasons of simplicity, it has been arranged that at the end of
every line, a software flag set every second in the interrupt processor,
should be interrogated. When the flag is found in a set condition, the
execution of group 31 commands has beenforced by use of a DO subroutine
call before continuing on to the next line in the original sequence. If the
flag is not set then the background program will continue in the manner
prescribed by the sequence in the FOCAL program.

This arrangement allows an essential foreground task to be
executed in preference to a background task which takes up any spare time
available. It can also be used as a priority tasking system and an example
is given in Fig.23. It's main disadvantage becomes apparent if the task
to be executed is longer than 1 second, in which case group 31 will be

executed at multiple levels which the system is never able to complete.



65
10.01 I (FLAG (A)) 10.10

10.03 R
1010 S M=1
10.12 S X2 (M) = FIN (MV (M) , CH (M))
10,14 S DP = KG(M) * ((XI1(M)-X2(M))+A * (SP(M)-X2(M))/(N * IT (M))))
10.16 S OT (M) = OT (M) + DP
10.18 I (FABS (OT (M)) - 512) 10.22 , 10.22
10.20 S OT (M) = 512 * FSGN (OT (M))
10.22 S X1 (M) =X2 (M)
1024 S M=M+1;1 (M-MX) 10.12 , 10.12
10.26 R
31,01 S MM=1
31.03 I (50 - FABS (OT (MM))) 31.07
31.05 S OR=0T (MM); G  31.10
31.67 S OR = 50* FSGN (OT (MM))
31,10 S OT (MM) = OT (MM) - OR
31.12 S QA = FINC (CO (MM) , OR)
31.14 S MM=MM+1; I (MM-MX) 31.03 , 31.03 1
3116 R '
NOMENCLATURE
A = Number of clock pulses between appearances of flag A.
M, MM Counters for ccatrol loops ‘
MX ~Total number of control loops
X2 (M)X1 (M) Current measured value and last measui‘ed value of control
loop
MV (M) Input device required
CH (M) Channcl address of input
KG (M) Gain factor of control loop
SP (M) Set point of control loop
IT (M) Integral action time of control loop in seconds
N Number of clock pulses per second
OT (M) Summed output values
- DP Temporary stores
OR o
CoO (M) Output channel address -

Fig.23 : PCI Controi Algorithm Written in FOCAL



" 66

It was found necessary to include a means of enabling or
disabling the foreground - background facility from the users terminal.
If the system is constantly enabled, an error condition is produced if
no lines for group 31 are included in the program. Although this is
easily remedied, it provides a constant source of annoyance to forgetful
users. If the facility is disabled by a patch in the software, it
necessitates an experienced user inserting in the required single word
into core so as to re-enable the system. This is undesirable and would be
better if each user could enable or disable the system if and when required.
This was accomplished by an extension to the ERASE command,
which provides a suitable error exit that can be used to branch to various
commands, executable in direct or indirect mode. Thus a user may enable
the foreground - back'ground routine by typing E C at his teletype console
and disable the routine by typing E D at his console. The C and D ar~
detected by the extension to the ERASE command and are used to either

insert or clear a POPJ call in the foreground - background routine.

5.3.4. Input/Output Transfers
5.3.4.1. Clock Driven Peripherals

Having decided upon the method of synchronous scanning and that -
pefipheral devices could be accessed directly (Appendix B), the question
arose as to whether any of the peripherals would have to be driven by the
clock interrupt system.

This is a question of whether a particular task can be accomplished
more effectively and conveniently if done automatically rather than a
question of synchronous timing errors or delays in conversion time if the
task is done when requested.

It was found necessary to include service routines for the inpuc
and output counter cards within the clock service routine.

(a) Input Counter Cards

An input counter card is a device capable of counting input pulses
in a 12 bit counter. Each time the count is read, the counter is reset to
zero and the counting procedure con tinued. If the counter is not read at
a sufficiently high rate, the counter will eventually "roll over" to zero,
resulting in an eroneous input count. To avoid this possﬂaé]ity, it was

essential that the input counter cards be read at fixed time intervals, the



period of which should be small enough to prevent rxoll over.

Another reason for driving the input counter cards from the
clock routiné is that it is generally the rate at which pulses are input
which is of interest. It is therefore essential to know the exact time
interval between successive readings of the input counter card. It was
however found to be more easily and accurately accomplished by reading
automatically at fixed time intervals.

It was therefore arranged that the counter cards on channel
addresses 1 through 6 (0 being dedicated to the use of panel meters)
should be read once every second The values obtained being stored in an
input table accessible by the FOCAL interpreter.

The table structure was adopted in preference to providing usexs
with the facilities to include any selected channel address within intexrupt
processor mainly because of the simplicity of the chosen method when
compared with the alternative. Inserting specified devices into the
interrupt service routine would require the use of sophisticated handling
routines and hence an increase in the amount of core used.

The function call used for accessing the data table of inputs is
described later in this section.

f

(b) Output Counter Cards ‘ )

The output counter cards are in general used for the output of a
change in actuator position for contrcl. The reasons why it was necessary\
to include them within the clock service routine of the interrupt processor
have therefore been outlined in the section of this chapter dealing with

control functions.

5.3.4.2, Directly Accessed Peripherals

As previously explained, function calls in FOCAL are arranged in
tables for use with the sort and branch routines. There is therefore a limit
to the number of new functions which can be included within the existing
FOCAL structure without having to resort to the relocation of these tables.
The limited space available for the modifications were also insufficient to
allow for further table rearrangement.

It was therefore decided that instead of using separate function
calls for each of the peripheral devices, a single function call would be used
for input devices and another for output devices. Some timing penalty is

obviously incurred by adopting this method although it was insufficient to



68
cause any problems.
This particular type of structure necessitates the use of an
extra argument to define which of the input or output peripherals would
be required. '

1. Input Devices

The following function calls allow the user to access input devices:-

S Z = FIN(0HRZ,CHANNEL) Input counter cards

S Z = FIN(ODPM, CHANNEL) Digital panel meter

S Z = FIN(0ADC , CHANNEL) Analogue to digital converter
S Z = FIN(0DIG, CHANNEL , BIT) Digital inputs

Operation of the FIN function

By placing a 0 in front of the character string in the first argument,
the alphabetic characters are decoded as a number. Each alphabetic
character being allocated a value of from 1 to 26 according to its position
" in the alphabet (except for E which is used for exponentiatvion-)

Thus the string OHRZ is decoded by the decimal to binary input
routine in the following manner:-

H =z 8 R = 18 Z = 26

OHRZ = 0« 10° + 8 , 102 + 18x10 +26 J
= 1006 1, o
= 1756 4 )

On entry to the function subroutine, this argument has been decoded and
loaded in*o the floating point accumulator, It is then converted into a

12 bit integer numbexr by using a routine in the floating point package and
saved. The second argument is then evaluated, converted to an integer
value and saved as the required input channel address. The initial argument
is then tested against a list of standard codes using a sort and branch
routine. If a match is not found an error condition is signalled to the user.
Finding a match causes program control to be transferred to the software
driving routine for the required input device, the channel address is set and
the input read into the accumulator.

As in most cases, the result of the input argument is awaited by
the users FOCAL program, it would be pointless to drive these particular
peripherals from an interrupt system. Also the complexity and size of skip
chains in order to detect which particular device of the many available

would be prohibitive,



69
The scaling of the input value is then accomplished in the following
mamef for each of the separate input devices.

Digital Panel Meters

The data input from a three digit digital panel rmeter produces a
count of between 0 and 999 input pulses on thé input counter card of
channel address 0. This count is loaded into the floating point accumulator
so as to set the variable assigned in the SET command to a value of between
0 and 999 on return from the function subroutine.

Analogue to Digital Conversion

The analogue to digital converter produces a 10 bit value in the
accumulator for an input voltage of between 0 and 5v. The 10 bit value
is loaded into the flaning point accumulator in such a manner as to set
the value of between 0 and 1, i.e. fraction of full scale.

Input Counter Card System

As previously described, these are serviced by the clock service
routine every second. The counts from each card, stored in a data table
are accessed by using the channel address argument of the function call.
The floating paint accumulator is loaded with the value of the count in such
a manner as to set the value of the assigned variable in the SET cor}nmand in

terms of pulses per second.

Digital Input System

A third argument is necessary in order to specify which bit of the
four bit input word is required. The four bits are read into bits 8 through
11 of the accumulator. Each of these bits is specified by designating the
third argument with the codes 0A through 0D respectively.

If the required bit is set to a 0, the floating point accumulator
and hence the value of the assigned variable is set to a positive value. If
the bit is a 1 then a negative value results. This arrangement makes it
possible to use the digital input function most easily with the IF command.
eg., 3.03 I (FIN(ODIG, A , 0A)) 3.05

3.04 G 3.03
3.05 C  CONTINUE TO NEXT
2. Output Davices _
The output function has been given the function code FOUT and

implemented in the following manner:-



70

FOUT (0DIG , CHANNEL , BIT , STATE) Digital output

= FOUT (0ALM , CHANNEL , BIT , STATE)  Alarm output
= FOUT (0DAC , CHANNEL , VALUE) Digital to Analogue

The first and second arguments are used to define the output device
and channel address required in a similar fashion to those of the FIN
function. The allowed values of the other arguments are as follows:-

Digi tal and Alarm Qutputs

Both the digital and alarm outputs require an extra argument to
define which particular bit of the four bit output word is required. The
definition of each bit was a third argument value of 0A through 0D (or 1
through 4) as in the case of digital inputs.

The final argument defines the required value of the state of the
changeover relay and has the allowed value of 0 or 1.

Digital to Analogue Conversion

The final value of this variation on the FOUT command defines 'the
output voltage of the digital to analogue converter. A value of between
0and 2048 produces an output voltage of 0 to 5 volts.

In all the variations of the FOUT function, the variable used in the
SET command is only a dummy variable and has no particular significance.

Cutput Counter Card Direct OQutput

A function for transmitting outputs through the output counter card -
system was also written. This however was given a separate function name
S Z = FINC (CHANNEL , VALUE)

Although it had been decided that the output counter card system
should be clocked out (see next section on control) it was found necessary
for testing purposes to be able to output directly to this subsystem,

The channel argument obviously defines the channel addvess highway
required. The value argument specifies the output value required. As the
output counter card register only has six bits, the maximum range of the
VALUE argument can only be 0 to ¥ 63, A full scale output will take
approximately 1% seconds to be decremented from the counter although this
does not hold up the FOCAL operation,

Again the variable assigned in the SET command is a dummy variable,



Al

5.3.5. Control Functions

dontrol is achieved by linking input/output, mathematical and
timing functions in some prescribed manner. This could be achieved with »
the FOCAL system without any further modifications a.s shown in Fig.23.
This is an example of a programmed incremental PCI control algorithm (60),
output of control parameters being achieved through the output counter
card system using the foreground background programming facility.

Group 10 in the example has been written as a subroutine to be
entered from an overall executive program. Changes in actuator position
are computed using the PCI algorithm in line 10,14. The, value obtained
is summed with aﬁy previous output still remaining, the sum being
restricted to ¥ 512 units so as to avoid integral saturation of the control
loop. v ,

Group 31 of the example is the priority task group, designed tc be
entered once every second as a foreground program. The actuators n.ay be
driven at their maximum slewing rate of 50 units per second by using this
group in the manner shown.

The major disadvantage found in using the above me thod was timing,
t'he computation of output values from the control algorithm being .
approximately 150 m seconds per loop minimum,. The driving routine in
group 31 required a further 100 m seconds per loop minimum, This would only
allow a maximum of four control loops being scanned at a rate of once per
second.

It was decided that these execution times . were excessive, and
that the only way of providing an imprcvement would be to write the control
algorithm at assembler level as an additional FOCAL function. By adopting a
fixed data table structure for storing control loop data , the time required
fo:f: variable search routines could be eliminated. Also by using a clock driven
output routine for the output of computed data, the time taken could be
reduced further.

5.3.5.1. Lead-lag Function for Control

It was decided that if possible a digital version of a lead-lag function
would be used. The reason for this was that with suitable manipulation of
the various constants of such a network, various different functions could

be obtained.



72

For example the lead-lag network whose transfer function has

the form

Gc(S) = K|{1+TmS (1)
1+ Tgs

where K is the static gain
Tm is the lead time constant
Tq is the lag time constant
has been used as a compensation function for Feed forward control (59)
and for digital filtering purposes. Such a network can be made to
approximate to a proportional plus integral feedback controller if the
lag time constant Tq is made large while the lead time constant is kep®

relatively small,

ie. Tg » 1
Ge(S) = K 1+ TmS
TqS

1o

1
cam [14d,]
Tq

which is the Transfer function of a proportional plus integral controller

where:- ‘
]
K.Im is the gain factor
Tq
Tm is the integral aciion time

If on the other hand Tq is made very small

Ge (S) = K,[1+ TmSi] = K.[TmS +1]
1

and therefore approximates to the transfer function of a proportional
plus derivative feedback controller where:-
K is the gain factor

Tm Derivative action time

More complex control forms could also be implemented by cascading
algorithm blocks together.

For computational ease equation (1) can be manipulated into a
slightly different form.

Ge(s) = K[1+ TmS}
| 1 +TqgS

= Kjg1l+——

1
H
3

. TgS




73

= K| KR(1+TgS)+1 - KR
1+ TgS

= K { - (KR-IQ
-1+ Tq

Where KR is the ratio of the two time constants of the network.

The lead lag network is thereby converted from a lead and lag in
series, to a lagged signal in parallel with an unlagged signal, fig.24.

The lagged signal can be generated digitally in the following
manner:-

If x represents a signal and y the signal lagged by Ty units of time:

x=y4+Ty _dy
dt

expanding in finite difference form

san=yn + T2, yp4e1 - yn

Yntl = At xn+ (I-—_At) yn - (2)
Ty Ty

The lagged signal part of the transfer function can be generated
for the next cycle through the control loop by using the difference formula
of equation (2), where At will represent the interval at which the particular
control loop is being scanned.

This function was iuitially developed in a differential form for
output of a change in actuator position on the output counter card system.
Initial trials with this control algorithm were carried out using the equipment
described in Appendix A. When using the algorithm as a P + I feedback
controller on the flow control loop, large offsets were producl:ed in response
to . step cﬁanges in set point. This could be attributed to many reasons,
primarily that it is only an approxi mation to a P + I controlier and does not
possess the required gain and phase characteristics and secondarily rounding
off errors occur when converting the floating point computed output value
into an integer value for output. |

The function was also very costly cn core requirements, the
differential form requiring eight words of core per control loop; one for the
output channel address, one for storing the summed output ready for

transmitting on the clock driven output counter card system, three words



Y

1+ ');s

=(Ke=1)

Ke

Y

Figure 24, Simplified Lead=Lag Function

> M(s)



5

for storing the floating point value of the past measured value of: the
control loop and another three words to store the lagged signal value.

The function was however kept in the system, but in a non
differential form. This enabled the output facility and associated
manipul ation routines to be omitted thereby reducing the core requirements,
It was envisaged that the function could be used for feed forward compen-
sation or for digital filtering. If necessary, it could be ovérwritten at
some later date so as to provide space for a new user defined function,

The function of this form requires the following five parameters:-

a.” One to define the position in core of the stored lagged

' function value for this particular 100}_:; |

b. One for the ratio of the two time constants KR

c. One for the lag time constant

d. One “10 . define the interval at which the particulér

| loop is being scanned

e. One for the numerical value of the function being

compensated.

The loop number and function value must be provided each time the
control algorithm is used, the other parameter could be changed only when
" necessary by inclusion of a different nuimber of arguments in the fﬁnction
call. This would hav ever require that the control parameter be stored -
within the data block for the specified loop requiring three words for each
parameter and hence a total of twelve per loop.

The function was therefore implemented under the name of FDYN
in the following form:-

S Z =FDYN (A,B,C, D, E)
where A = loop number to define the data block

B = The function value to be compensated
= Lag time constant

D = Scan time constant

E = Ratio of time constants '

The first argument is used to set up the data block in which tﬁe
lagged signal value is to be stored. The rest of the arguments are picked
up and manipulated using calls to the floating point interpreter so as to
i)roduce the compensated value of the input.function and also to compute

the lagged signal for the next entry of the loop. The fleating point



76
accumulator is finally loaded with the compensated function value and
return is made via the normal function return 1n FOCAL so as toset Z
to the value of the compensated function.
A facility has also been included for initialization purposes when
the data area will need to be cleared. This takes the form
S Z = FDYN (0CL)
Z this time is used as a dummy variable, the 0CL being detected in
the initial section of the routine and the data area completely cleared.
" The function céJl in full form takes about 35 m seconds to be
completed which is a vastvimprov‘t—ament on the sorts of times one could
expect for a similar algorithm written in FOCAL; the penalty paid is
that of core. Three words are _required per loop, and a maximum of

6 loops have been allowed for.

5.3:5.2.PCI Control Algorithm

As the initial efforts of providing a multi purpose control function
were unsatisfactory, it was decided that a more specific type of control
algorithm would be required. Experience gained with the use of a PCI (60)
control algorithm when writing the algorithm in FOCAL showed that it
was sirmple to use and provided good responses. :

For a normal P + I controller, an equation of the form:-

P =Kc e+_1_Iedt - (3)

Ti
is used.
Where P is.the position of the actuator driven by the controller
Kc is the gain factor

e is the error value between the set point and the
measured value

Ti is the integral action time constant
As the output from the control algorithm is to represent the
change in actuator position for output on the output counter card system,
equation (1) must be expressed in differential form.

dp =Kc| de + e

dt dt Ti
and in difference form

APn = Kc [len + At en - (4)
Ti



77

- where A Pn is the change in actuation position at the nth

sampling interval

en is the error at the nth sampling interval

Aen is the difference between the error at the nth

n-1th sampling intervals

en = Spn»- MVn
Soh. is the set point
MVn is the measured value at the nth sampling interval
en = Sp- MVn - Sp + Mvn-~
= = (MVn - Mvh~ )
If the set points remain constant
Equation 4 can be expressed in the following form
APn=Kc |- (MVn-Mvn- )+ At (Sp - MVn)) - (5)
Ti

This algorithm is the same as a P + I controller if no change in
set point occurs, however it is reputed (60) to provide better response to
set point changes than is a P+ I algorithm.

For the same reasons as explained in the development of FDYN
~all of the parameters have to be transferred each time a contzol loop is
entered, sacrificing time for core utilisation. The function call is
therefore of the form

S Z = FCON (LOOP, MV, SP, IT, SC, KG, CHANAD)
where LOOP is a loop number to define a data block '

MV is the measured value for the control loop

SP  is the set point

IT  is the integral action time

SC is the interval at which the loop is being scanned

KG is the gain factor

CHANAD is the output channel address

Z will be set to the computed output value

For effective direct digital control, the maximum slewing rate
of the actuator must be maintained (61), this means that it is essential
for calculated control outputs to be driven out through the output counter
system by using the clock routine in the interrupt processor. The output

counter cards have a maximum slewing rate of 50 units per second and a



78

‘max:imum actuator travel of 512 units.

The interrupt processor was therefore extended in order to service
the output counter cards with the calculated control outputs. The table
of outputs is. examined every second; if no output is present then the
routine skips on to the next in the table until all has been examined.

If an output value is found, its magnitude and sign are tested. If the
value is greater than 50 then the maximum output of 50 is driven out on
the rcquired channel with the correct strobe (i.e. + and -) and the
remainder is restored. Output values of less than 50 units are merely
driven out and the store cleared.

For speed of operation in the interrupt processor, it is essential
that the arithmetic operations are done in single word integer arithmetic.
As the floating point package is essentially non re-ehtrant, it cannot be
entered from the interrupt processor. Conversion of the output
calculated in floating point must therefore take place within the control
routine,

The floating point output is therefore converted into a 12 bit
integer number, tests being made to see that it does not exceed I 2046,
added to any previous output still waiting to be clocked out. Th;a resultant
integer is then tested for magnitude, If it exceeds the maximum travel of
the actmator in either direction, the resultant is replaced by an integer
value equivalent to the maximum travel and stored in the output table.
Integers of less than maximum travel are stored immediately in the output
table.

In order to provide the control function with an extra degree of
| flexibility, the channel address argument has been included in the function
call, Channel addresses could have been incorporated within the loop |
number, allowing output only on fixed output channels of 0 to 6. This
could however require swapping users data lines to the computer, each time
a different experiment or research programme is implemented on the
computer. The channel address is therefore stored within the data block
for the particular loop so as to define which output address highway is
required by which loop. |

The channel address argument has also been made to act as a switch.
When initialisihg a particular control loop, the value stored as the past

‘measured value could be set to any arbitrary value. Using it as a bona fide



79

past measured value could result in a spurious output being generated.

It is,essential therefore to be able to load the past measured value store
without sending an output. This facility will also be useful if cascading
control loops, or debugging a program. If the 7th argument in the
function call, representing the channel address, is included,the output
table is filled as described and the calculated change value is returned to
FOCAL in the floating point accumulator in the normal fashion. If however

7th argument is omitted in the function call, the output table is not

the
filled, the change value being returned to FOCAL only.

_ In this form the storage requirements of the function are five
words per block, one for channel address, one for the stored integer output
value and three words to store the floating point value of the past measured
‘value of the controlled variable.

The facility for totally clearing the data blocks has also been

included, the availabie forms of the function call are therefore

S Z = FCON (0CL)
S Z = FCON(A, B, C, D, E, F)
S Z = FCON(A,B,C, D, E, F, G).

The first argument is either used as a switch for the c!zar instric-
tion or as a loop number. The rest of the arguments are then picked up and i
loaded into the floating point accumulator by using the argument evaluation
routine, arithmetic manipulation being carried out by calls to the floating
point interpreter. The channel address argument is searched for and if
found , the floating ‘point value is converted into a 12 bit integer value and
stored in the manner previously described. After output sorting or
immediately in the case of no channel address argument, the floating
point accumulator is loaded with the computed output value. This ensures
that the variable named in the SET command, when calling the function,is
given the increment value when control is returned through the normal

function return.

5.3.5.3.Timing and Core Allocation of the Control Algorithm

The completion of this particular control algorithm takes approximately
50 m seconds per loop which is about one-fifth of the time taken for the same

algorithm if written in FQCAL language. Admittedly some time is also used for



80
data manipulation in the interrupt processor but the total time taken
in the interrupt processor is less than 500 u.seconds.
| A limit had to be imposed upon the number of control loops
available as five words of core were required for storage purposes in
each loop. Seven loops have been allowed, requiring a loop number of
between 0 and 6 but no restrictions have been placed upon the channel

address to be usea for the control loops.

5.3.6. Communication With Operating or Program

An essential feature of a real-time operating system is the ability
to modify the value of a parameter within a program while the program is |
running, for example, the manual control of the set point of a control
loop, or for setting a flag to initiate the start up or shut down of an item
of equipment. This process of communication should not hold up the
execution of the program except for the brief period of time necessary to
reset the value of the parameter.

If special hardware had been available such as an operators control
panel, this process could have been included by use of a service routine
within the interrupt processor. However with only a teletype keyboard
" availcble as a communication device it wes necessary to make adapti.ons to
the FOCAL structure so as to allow communication via the teletype. while
the program is still operating,

The facility has been incorporated into FOCAL by agai: making use
of the end of line break point, allowing the internal character handling
routines of the FOCAL interpreter to he used. |

It has been arranged that at the end of every line of the FOCAL
program, the teletype input buffer is examined for input. Once the
character handling routine has been activated, by typiag a CTRL/S charactér
(ASCII code 223) at the terminal keyboard, subsequent characters, when
detected, are packed into the command input buffer. Upon receipt of a
carriage return character a direct SET command is forced, operating on
the text which has bean packed into the command input buffer. The routine
is thgn de-activated and the program resumed. Activation and completion
of the routine are signified on the teletype device by the characters > and

< respectively. .



| 81

In order to provide a suitable hard éopy of the parameter modified
it was found necessary to inhibit any TYPE statement while tle parameter
modification routine was activated. The reason for this being that output
characters are entered into a first in, first out ring buffer for echoing.

It was also found necessary to inhibit any ASK statements so as to
avoid corruption of input data. -

As both TYPE and ASK commands use common system sof tware
routines both could be inhibited by including a JMP instruction at the
be/gi.nning of the TYPE/ASK subroutine.

This protection system is enabled immediately the CTRL/S
character has been given and is only cleared when the parameter modifi-
cation has been completed. ’

- Thus if a TYPE or ASK statement is encountered during parameter
modification, the program is halted until the modification operation has
been completed. The TYPE or ASK statement is then re-activated and
the program resumes from the position where the program was halted.

The handling routine makes use of the character reading. and
packing routines available within the interpreter which are re-entrant at
the break point chosen. | b’-’, '

Since many flags and inhibit switches are set during the parameter
modification it was necessary to extend the error recovery routine to clear.
the flags etc. in the event of an error occurring during the process of
modification,

Fig.25 illustrates the use of the parameter modification routine,

the wmderlined character being echoed by the computer.

5.3.7. Fault Protection

Limited faul: protection has been built into the system by including
standard routines for handling the power failure protection option as
described in éhapter 3. Also within the clock routine of the interrupt
processor, the output counter card system is protected by updating the

watchdog timer once every second.

5.3.8. Exror Detection

In most of the functions developed for real-time FOCAL, a certain

degree of error protection was necessary so as to avoid the possibility



< o

=]
o

XEF EMDOAX =F 4

=

LIRS

-8

®
u o
0 o
)()+>®p
IPCX%
® PH
to p
® O¢ o
0-H9
Rew s
gk O
%11—1
® od fd
P ® ti® ®
CX P
AP HH %
bty
UO["JT%dg
)zo%a§C
P nd ®
CX Td ®
TJ THp CrO
C 6 0
a a 0(®T
m msT'%‘X
>
® ®p ®od
X X%
M P
S §y8i
5 ® 0
H » ® o i
P X
‘]}/ F& 0o ®
CtJ ®X
X mﬂsgl p
o, ?’5}6 )%p(ﬁ
0/0 ®od ®P X
k®¢gup,\
T3 H
/o NIEE.
w P & fo
(0] %"IH%O'&
=BX O
H w
u
N I X
<r 2] = H
€S co
. LO co
- .5 €O
o I LO -
<r LO 1
LO m o +
o . LO LO ui LO
LO o cp iT
o G' o G) ;2
o co 0O X
— **1 H(UO X
LO co t* B H
H w co I L, LD —= 10 il]
U. E- -+ B oI 0 I X LO (50 <1 (Qn 'KO
wo— g U) o X X COM (50 —
j o * s 10 co co — i\ — ™M o
CD LO LO L0 U, o E- X LO LO co co 1 — 1 ro e
D. X <r 10 1 iro 1l 10 VO
? iT) M €l o\ M ro <r —4 E- LO ro co il] ro X 0 ro
G» a o (O CO CO (50 co Q X o > C X o o X o X o\ CM
e e e A W« . B X o Tl x >* *
— — —=< Ci M QM (™ W o X » o X E- E-
«G) co co O co GJ (0 o m* H 10 2 X I 0 A# V| I Al VI T 1T

=i

Zwse B - =g



83

of users corrupting the system. For this purpose, the error recovery
routine available in FOCAL was used extensively. A list of error codes

and their purpose is given in Fig.26.

5.3.9, Timing of the Functions

Fig. 27 gives a list of all the new functions developed with their

respective execution times,

5.4. Conclusions

In adding all the required enhancements to FOCAL, it became obvious
that more core space than there was readily available would be req\}ired.
Thus it was necessary to overwrite some of the existing "extended
functions" present in FOCAL.

The initial version of Real Time FOCAL, REAL TIME FOCAL : DYN
included all of the enhancements described within this chapter however the
standard FOCAL function FATN, FEXP, and FLOG had to be excluded.
The core configuration is as shown in Fig.28.

At some later stage it was found necessary to exchange tle FDYN
function with a standard FLOG function for av final year undergraduéte
project on the examination of the dynamics of a heat exchanger (62).

Fig. 29 shows the core configuration of this second version REAL TIME
FOCAL : LOG.

As a test of the FOC.AL system experiments were carried out on a
Heat Exchanger system, the results of the test have been included in
Appendix A. | |

It was found that the system worked perfectly although a restraint
was obviously imposed by the interpretive nature of the language. This
however is not too 2 severe restraint:~

(a) Because most of the data rates dealt with in the laboratory
are slow,

(b) If a high data rate application is found, then a new function
for FG@CAL could easily be written. This would allow
initialisation to take place from the high level
language and result in the execution of a dedicated
subrouting' followed by eventual return to the ]?QCAL

interpreter.



84

Subsequent experience gained in the use of the system, both for
ﬁndergraduate and postgraduate (63 work has not highlighted any major
deficiencies in the system. The main advantage of the system is its
ease of use, requiring only a few hours use for any potential user to be
able to use the system to its full capacity.

| The ability to operate the system from a remote terminal also
makes its use ideal in the laboratory environment where the operations
terminal can be located near his experiment and not necessarily in the

neighbourhood of the computer.

Lt



Error Code

1344
13436
15,26
15.<5
16,04
16.59
16.69
18.03
18.08
18.17
18.61
18433
19.72
20,22
20.51
20.60
20.97
2144
31.05

31446

85

Diagnostic
Normal exit from LIBRARY command

Illegal function cgll in FIN or FOUT functions

Missing argument in function call

Too many arguments in FLAG function

Iliegal character in multiple argument handler

No scan flag of that value has been éet up

Illegal code in FTIM function

Too many arguments in FIN,FOUT or FINC function calls
First ergument of FCON function call should be positive

Control loop number outside range(0O-6)in FCON function call,

Too many arguments in FCON or FDYN function call
Missing argument in FCON function call '

Missing argument in FINC function call

Negative argument in FLOG function call )

First argument of FDYN function call should be positive
Control loop number outside range in FDYN function call
Too many erguments in FDYN function call

Illegal character or line not present in MODIFY command
Terminator other than or , or ; or RETURN used in
variable erase command E F, 3
Character other than A,C or D used in ERASE commar.d

and extensions

" Figure 26, Error Diagnostics for Real-Time FOCAL




86

Ly

1l

g¢

¢l

éc

s09sW °SWT3 UOTINOS8XH

SOWT,, UOTFNOSXY mpmaﬁxOhmm¢ PUB BUOL3OUNG Y004 OWLI-180Yd °L¢ eanatg

AG 030 Jo ndut I0F | 03 0 =7

vV sseJapp® Hmnﬁdsm uo

UOTSJISAUOD ( 03 ¥ SWIOJIS]

V¥ Teuwueyo Jo
pIBO J93009 ndur UT JuUNoo
8Y3 JOo enTBA 8y} 03 Z sjeg

{
F8TJ usos

pejsudtsep Jo sourxsvasdde

oy3 uo eAtT3BIou 7 sjeg

s898TJ uBoE §OSTTBTJTUT

X £q pegeuldTsep JI64UNOO
qoO0TO JO enysA mp 998 €T Z

£109UN00 }OO0TO SOSITETITUI

UOT3OV

£E8IPPB TOUUBYO

]
<

SgoIppe TOUUBYO

1]
<

sgBTT uBOS

e8aY3 °Y3 JO BUO=Y

sesTnd 3ooTo UT
STBAIOYUT UBOES=]°g‘y
puooss xad

s3dnaasqut ooTo=N

$0S0* SNHO “ SYHO * SXQ0=¥

enTeA sABp=(Q

enTeBA sanoy =9

enTBA sojnUTU =g
enTsBA SpPUOOIS=Y
SUOLNGIY

(Vv 0av0)NII=Z S

(V¢ Z9@0)NII=Z S

(V)ovid=z s

(0°g VN IS0 )avVTI=Z S

(X)RIng=z s

(a“0‘a“vISO)NITI=Z S
TI80) uotgoung




87

h

L2

L2

9¢

G2

N

08 °3 O%

£096W ‘8uWT3 UOTINOSXH

panuT3uo0 ) .Nw 2anI T I

Wy3 TI03T®
I5d T®3USWaIOUT SuTsn
TOJJUOO {0BQPOSF sOpPTAOX]

wIBT® Pej3oOseTes
S§I8OTO JO S83BAT30B

. b a0 0 o3 9 Jurzzesg

£N38B9E 30B3UO0O S8FUBYY

AG 03 O 93usx utr gndano

UOTSIBAUOCD ¥ 04 @ B SWIOJISJ

uado
ST 930B3U00 JT 8AT}858U €T Z

SN}B3E 308B3UO0D SOSUSG

666 03 O .,hmumw Touad
3T9TP ¢ ® £q perrddns
enTBA 8Y3 0% 7 §388
ToT30v

SS8JpPPE TOUUBYD=:)
sgutyqes
JeTToa3u00=g ‘g~
Pcmom 108=9
~ anTBA poanseom=g

zoqunu dooT=y

qundqno
Te3T3TP I0F s% 0°g‘y

£N3848 PaJgTsep =9
8poo 3Tq =g

ssoappe dnoad =y

g2 03 0
snTBA gndjno =g
£58JDPP8 TOUUBYD =Y
8p0o 3Tq=g

$§8IpPPB dnoaxd =y

Jejem Tausd peatnbey =y

S3UBUNIIY

(9‘g‘T‘a‘0‘a vINODI=Z S
Ao“qu.sg<oVa:omuN S
(0‘e‘v*0I00)In0d=Z S

(g°v¢ovao)Inod=z s
.Am“<.¢HaovsznN S

(V*WdaO)NTZ=7Z" &*
TT80 uoTzoung




88

{2

119

008U 'elT3 UOLNOeXy

penutjucy /g eanstg

L~
-

o0To 8y3
Jo Arauopusdspur wegzshs paeo

Je3unoo gndano Jyo uotgeasdp

g JO enysa
pogesuadwoo sy3 mp 38s_ST 7

\ Tox3uoo

PIBMOJ~POSJ UT SN J0F
uotgesusdwoo oTwsulp s9pTAOX]

€9 032 0
enTBA qndgno=g
£50JDpPB TOUUBYO =Y

sxoqemsaed

w3 T203Te=7‘q* D
pagBsuadmoo

8q 03 eTqBTIBA=g

Joqunu dooT=y

SYUSUNIIY

(2°V)ONTI=Z S

"(2a‘0°e ‘¥ )NAAI=Z S

T80 uotgoung



Nk wN =S

—_
—

NN B W -

11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
54
35
36
37

Tire PocrJ.

89

D'/n Cor? roo Tiel.d /

Pn'nfoT'T
Co! TT:ni Decolor ! Grtln 1
Fnt-ibf 1 Do 1 Pur.h. nvn Li.st Controls
Contfo) & Transfer | ..rite * | Teste forte Grptnt 1 Iniiut |
Coi..l.st 1 If 1 Set A For Dvs S: Tnt 1 Co:. *o
Tv:io & ylsk 1 fodifv 1 Sorti 1 Ade.Outl .-eni ocrera
Getnre 1 fanor.Testn.t-n i fitt. Mes
Ke.ill 1
Terrs brn.Abs et .al |?stii'r, Partost | Delete s 1Rende IFnt.abl
Hresc Fi.cdin | Getc 1 Lnlln
K-r .Pnitln. Pmt and Pr'.r.tc | P.,A.C 1.a tensions
Intorruis;t Processor . I/O Routines e+mni Frror Recovery Poutine
Rubout 1 fyr..bol Table du:’i) |e/P suffer | I - 3
rkitennio:.:-. to .ibr-rr” V riae'e Icarch 1 rki.o c\ble 1 Lirch'c.Jertr.cot. .5t d
r.n ter loiiifteatic.n ocr.ti!12
Clee!: -..rvieo ...uti;. ; .et,.Mic.n to t;.0 Jnten.'jnt aroccerer 1 Fi- ccnti.' oo
Set.j-i%0 1;¢ r V :Tu-¢c R:. :nen 1 1 tti- 1 lists
s -r.c{or nous .ncrvico .ruti.'?’ 1 'ire 1 ICI Alr-crithr.i F" ta Table
;> >»t- m 1 -r n 1 Foodfei'.-ard CC----1 do:;."*anaataon earitPj'. Gm
Cos nrfi Sin 1 od ajad It.oie
FLo;.rr-;¢ poir.T
H;P"T .;3;D OITIOT
RCUTIXIS
1 Hiph Sneed Reader Routine
Fr,0.ATi:;c mi:.? r.'T.ikPPnT"?.
Sot 1 Library
V ori:oclg s. .cutina T, , D II'nrt. r :terriens : -emech
Real Tire Focal : D'.ti Ccre ran Field 1
Go-n..ni n-.ut = ] ’
TIGT
V.JJ .3172)
A = LUT

Figure 28.



—
RN B N7 I N S ]

11

12
13
14
15
16

17
29
21

22
23
24
25
26

27
39
31
32
33
34
35
36

57

S 9 N R W N=S

26
27
30

31
32

33
34
35
36
37

Real Tine Focal

90

: Top Core mop Field 0

Gena I'"ce Pointers

Getln 1
I'ur-h.' O0vn L::'.t Controls
Teste forte Grptst 1 Input |
Dys A Int I Conro

Delete

Cornnn'l Drooler 1
Kntnbf 1 Do 1
Control A Transfer | <i'ite |
Comlst 1 If 1 Set A For
Tyro & Ask I Podifv
Getnrp
Ecnll
Terms |frn,Abs ct nl [Tstlnr, Feitest |
Krar.o | Findln |
Hsp .Fmtin.Frnt and Printe 1

. I/O Routines

Sorti 1 Adc.Outl and others
1 Pt'nor.Tentn.Ran.i’nni find r.t.hfrs
1

1Ruade [Pnt,ibl
Getc 1 Kndin

Paeke 1:.xtcneicn3-'

Interrunt Processor
Rubout 1

extensions to Liciv.rv -T.. Variable search

and Frror Recovery Routine

fvr.bol Tnbla Dunn
| Echo Disable

Ic/j-> buffer | Geio-,. a.ab, a'/rd
1 DinchdCfGortnr.et,:icti.dd

Parameter Fcdification Fout.ire

ni *U r* - " Arrifinn sn T pvrréo<-a r 1Flap continued
Cotarrt*~ Parser F '"lure '-ouf"ne?, 1 1'~ 1 t tirs 1 lists
bin and Fcut Corr.ands
I'll Control Algorithm
d-.T.chronous service e¢c tines I ¢ Fine 1 PCI :.dror4 - T'bTe
Fran 1 Lok 1 _
Cos nnd Sin 1led .rd ..It ode
FLOATING POINT
L.P-T ALD OITPT
KOLTINKS
1 Hiph Sneed Reader Routine
7
FLOATING POINT r.TFRPRFT'"P.
Sot 1 Library
Variable Prase Ro-.tir.e s <A ill , [Further Extensions Ian itch
J

Real Time Focal

Lor Cere man Field 1

Co—arh Irnut B'aflsr 1

TEJT

V.P.IULaS

F .PikVI: 1d ST
Ix): .ufvrs

, Figure 29.

T *



9

CHAPTER 6.

A Time Shared Real-Time FOCAL System




92
6.1. Time Sharing the FOCAL Interpreter

As discussed previously, the primitive interrupt structure and
the absence of any direct memory access mass storage device had
eliminated the possibility of developing an efficient multi-user time
shared operating system . for the PDP-8 based upon the use of a high
level language. It was however thought to be possible to provide a
minimal time shared system by extending the capabilities of the FOCAL
interpreter.

| The FOCAL interpreter operates by scanning the text of a program,
interpreting and executing the statements of the program. Parameters
regarding the state of the program are constantly maintained, so that at
any particular time, a record is available as to the exact state of
execution of the program, Thus it is possible to terminate the execution
of one program, replace the program and associated parameters with a
different program and its associated parameters and then continue the
execution of the new program.

This type of process would require the inclusion of some form of
Executive Routine within the interpreter structure so as to determine
when program exchanges could occur and hence share the interprete?

* between two or more programs, If facilities were provided whereb.y the
programs were created by different users, then the system would |
essentially be sharing its processing time between different system users.

As the PDP-8 system does not possess any external mass storage
device, all programs would have to be stored within the area currently
available for program storage in the single user version. This would
result in a reduction of the space available for individual programs and
hence the maximum size of program which could be accommodated within
the time shared system.

Another disadvantage of such a system would be that of the reduced
execution speeds for a single program which would be incurred because the
available processing time would be shared between a number of programs.

Experience gained when using the single user version of Real Time
FOCAL showed that in general, programs for on-line use would not
necessarily be large. Also the execution speeds achieved were adequate for

the type of work which was envisaged.



93
Thus it was decided that the FOCAL interpreter could be ~enhanced

in order to provide on-line computing facilities for more than one user on

a single core only computer.

6.2. Design Constrain_ts

The prime constraints of a shared system are:-

a. A user should not be able to access or corrupt any
part of any other users program. This essentially
means that each user must be allocated a fixed
amount of core for program storage and then
provided with protection facilities so as to ensure
that no other user can access that area.

b. The possibility of a user waiting for a 1/0 device to
become available and thereby temporarily holding
up the operation nf another users program should
be.prevented

c. Available processing time should be divided in such a way

as to provide each of the system users with virtually
ﬁ.

J

A, ' Sufficient space must be made available for adding reai-

equal shares.

time functions to the FOCAL system and if at all
possible, the facilities made available in the single
user versinn of Real-Time FOCAL should be made
available in the shared version of FOCAL.

e. The processing time used for exchanging users and

servicing console devices should be minimised.

6.3. User Exchance Techniques

The parameters specifying the current state of a particular FOCAL
program  are located within the first half of zero page in the same
memory field as the interpreter. At program/user exchange time, the
parameters of the new program must be inserted into their respective
locations in page zero, soas to control the operation of the new program.
At the same time, the parameters of the old program must be saved until
such time as the operation of that program can be recommenced. In order
to provide each of the system users with equal shares of the available

processing time, this process of data interchange should really be clocked



9L

in some manner and users should only be allowed to remain in an
operational state if no other user is waiting to use the computational
facilities at a specified exchange time. |
Unfortunately the iﬁternal subroutines of FOCAL are non re-entrant,
This would involve the saving of all subroutine return addresses and data
stores used within the subroutines, for each of the system users,if an
external event was used to trigger the user interchange process. This
would require large amounts of core for storage purposes and also an
increase in the time reguired to exchange users. It would therefore be
more convenient if some other method could be used for initiating the
exchange of users.
This can be achieved in FOCAL by making use of the fact that either
at the end of every line or the start of every sub line, no subroutine is
in the position of being partially executed. At this point, any of the
subrouatines could therefore be used without havin g‘ to save return
addresses or data stores. ,

- The above techniques would not provide exactly equal shares of the
processing time for each of the system users. The inequality could
however be minimised by th2 selection of the "break point" which occurs
most frequently,i.e. the start of each sub line. The>savings in swapping
times and core used by such a technique would outweigh the inequalities in
time allocations invclved particularly when dealing with a core only

mini computer,

6.4. Terminal Input/Output Handling

| If a users program was allowed to wait, either for input from its
associated terminal device, or for output of a character to tiiat terminal
device when the terminal device is still in the process of handling the last
character, a lot of valuable processing time could be wasted. The
possibility of a single user holding up all other users in this situation could
be avoided if all input/output transfers between the users program and its
associated terminal device were buffered.

Thus if any users program requests input from its associated

terminal device, the input buffer must first be examined to determine

whether a character is available. If an input character was present in the



95

buffer, the program could continue in the normal fashion. Alternatively,
if no input was available, it would be essential to put this particular use:’s
program into a wait status and select another user's program. When input
data eventually becomes available in the input buffer, the wait status of
‘the program could be cleared and the program swapped into the active
status in due course.

Similarly with character output. If the terminal output buffer
becomes full and the program is waiting for another free space in the
buffer for the output of further characters, the program should again be
put into a wait status. The interrupt processor could be used to fill th=
input buffer and empty the output buffer thereby making the operation of
the terminal device virtually independent of the state of execution of the
program, , |

This particular technique, although allowing effective use of the
available processing time, necessitates the exchange of users at a position ‘
 where a subroutine has been partially executed. It would therefore require
the saving of all subroutine return addresses associated with terminal
I/O transfers and all possible active stores used within those routines in

addition to the parameter set located in zero page. )

6.5. Core Allocations and Desipn Criteria

The core only configuration of the PDP-8 computer system
necessitated that a limit be imposed upon the maximum number of users
which could be accommodated by the system. This limit was determined by
the following factors:-

a) The amount of core available after the real-time extensions,
user exchange Executive routines and terminal handling
routines have been integrated into the FOCAL interpreter.

b)  The minimum acceptable area of core required for a users
program, A

Experience, which had been gained in developing FOCAL programs
for data acquisition and control purposes, had shown that the minimum
acceptable core space for a program * would be about the same as that
provided in the 4K version of FOCAL (Chapter 3, Figure 6). This
magnitude of core area for users program * storage could have been

achieved by an adaption of the 4K FOCAL system in the following manner:-



96

In the 4K system, the .users program * is accommodated in the
same field as the interpreter. The user exchange executive routines
of a multi-user system could be used to exchange this core area, holding
an active program * with another core area holding a non-active program *,
The executive routines, terminal handling routines and non-active users
programs * and associated running parameters could then be accommo-
dated within the unused 4K of an 8K computer system.

Such a system has been adopted for the four user off-line version
of FOCAL, QUAD (47), which operates with the core configurai:ion
illustrated in Fig.30. Three non-active user buffers are made available
in field 0, together with the Executive Routines and terminal handling
routines. The active user:. program area is located in field 1 with the
interpreter. This core configuration also provides a limited amount of
free space for extensions to the interpreter. A

This particular configuration has been used as a basis for a ‘real—
time multi-user version of FOCAL (49) but with only limited
capabilities. .

This technique of time sharing emplojed within the QUAD system
has nurherous disadvantages, amongst these are:- b

1. Swapping the whole of a users program in addition to the

zero page pointer and I/O subroutine parameter entails
that approximately 1K of core must be transferred in
both directions, i.e. active to non-active and non-active
to active. This takes approximately 55 m seconds in
the executive routines of QUAD, during which time
approximately six FOCAL commands could have been
executed. Obviously some time will be regained, as
less of the available processing time will be wasted by
a single user becoming 1/0 bound. The nett result is
that approximately one-third of the available processing
time is used by the swapping routine even when users are
exchanged once every four sub-lines. The remainder of

the time is divided between system users. Since an

* program refers to text, associated variables and pushdown list,



97

UOT}BINITIUOO ©I00 (VN0 °*0¢ oIndt g

SI5D80 ' song
- xezmq wexdoxd xesp
EERE ] .
e3eoBd
jutod
SutyBOoTg Jsyynq wexoxd xesgy:

JOJJNG J9EN FUSIIND

a9JJnq weadoad aesp

0X3U00 OJUgyoxs JogJ0g

A
LN 1

sax913nq

andgno/gndut adfysfey

x030ad10quT soutqnoa Furddems ass

seurInox eoTAIss edfyeToy

pus gosseooad jdnaxequr

§3UB3SUOO PUB SI93UTOJ

LLLL

| CTaIa . 0 GTELZ



98
interpretive mode of progrém execution is inherently
slow, an additional time loss of this magnitude would
severely reduce the response of the system.,

2. In view of the core required for extensions to FOCAL

for single user real-time application,it would be
preferable if a little more spare core space was ’
available than that present in QUAD. Also for the same
reasons as were described when developing real-time
FOCAL, it would be preferable if the available core were
located in the same field as the interpreter.

3. Although the user space available within QUAD is the same

as in 4K FOCAL, this is the absolute minimum amount .
which could be tolerated and it would be an advantage if
it could be extended.

An allied probler.i to this is the use of the dynamic
storage allocation techniques of 4K FOCAL. As
described in Chapter 4, this is an annoying feature as
variables are automatically erased every time the program
is modified. B

.11 of these disadvantages could be easily overcome by adopting a
different method of user core allocation. If each of the system users
was allocated a fixed area of core within the field not occupied by the
interpreter, only the zero page pointers, I/0 subroutine return addresses,
active register and the pointers defining the program area would need to
be saved at user swapping time. This would mean that the transfer of about
120 words of data would be involved, requiring approximately 6 m seconds,
an essential improvement upon the 55 m seconds taken by QUAD,

The core arex used within QUAD for the active program would be
released completely allowing sufficient space within the interpreter field
to include all facilities available within Real-Time FOCAL, |

The available core for program storage could provide three users
with about the same amount of program space as was available in QUAD.
This as previously discussed is not really sufficient and it would be
preferable if the available space was divided between only two users and

not necessarily in equal proportions.



99

It was therefore decided that a two user version of FOCAL should
be implemented. The envisaged core configuration is as shown in Fig.31.
It is in many ways similar to the core configuration adopted in Real-Time
FOCAL with the program storage area located in a different field to the
interpreter. Many cf the facilities added to Real-Time FOCAL could
therefore be implemented providing a two user system compatible with
the single user system.

The system executive would control the execution of users programs
on a Roll-in Roll-out basis using the start of line breakpoint as a swapping
point. So as to reduce the amount of time spent exchanging users,
swapping will essentially be carried out every four sub lines, providing
facilities for altering this value should the response prove inadequate. A
user in an I/O wait status awaiting the availability of his terminal device
would be inhibited from becoming active, thereby avoiding the possibility
of an 1/0 bound user holding the system up.

Input/Output character transfers would be buffered, the terminal
device being interrupt driven. .

6.6. Executive Routines of the Time Shared System b

The executive routines which allow two users to execute programs
and effectively time share the interpreter = are similar in structure to
those employed in QUAD. They can be subdivided into the Interrupt
Processor, Teletype Input and Output Service Routines and User Swapping
Routines.

As a program interrupt causes an automatic subroutine jump call
to location ‘0000 in field 0 it would be convenient if the interrupt
processor and teletype service routine were located in field 6. The
Executive Routines were therefore developed to reside in field 0 and

operate upon the resident interpreter in field 1.

6.6.1. The Interrupt Processor

This operates using a skip chain technique. It has been arranged to
service interrupts from the following devices:-
a) Power failure protection option. Detection of Power low

condition causing the active register of the computer



100

SI0PBOT

CES T S |

e3exqoBg
jutod

gutgeoTd

£UOTEUSIXD PUB
SPUBWTOD ¢ SUOTJOUNS

MOU JOJ O9TQRITBAY

LN |

J93eadaxegul

b QTEIZ

Zo3TWTTq ¢

4STT umopysnd
§OTqBTIBA
3xeg

2 xes(

oTqR3800ToY ¥

4STT umopysnd
§9TQBTIBA
4xa ],

} Jesq

saszjnq 8dA3sTsy}

pue sasjewsaed wsadoad
SI9EN SAT}0B=UOU’SOUTINOI
afuByoxs Jesn‘saurynox
sndgno /Andut edf3aTs93

‘zossaooad gdnaaejur

0 aTHIX

0000



104

to be saved ready for automatic restart once the powe.r
level returns to the normal state.

b)  The teletype terminal.devices of both system users. The
detection of an interrupt from an input terminal device
causes the keyboard service routine to be entered. The
detection of an interrupt for an output terminal device
to signify that it is ready to receive another output
character causes the printer service routine to be entered.

c)  The real-time clock. (See Section 6.9 on timing considerations)
Every clock interrupt.causes a single set of counters
recording current time and the counters used for users
scan flags to be updated. If any of the scan flag counters
"rolls ovex" to zero, the scan flag associated with that
particular counter is set to a negative value and the
counter value re-initialised. As each user has been allocated
three scan flags, a total of six counters must be updated
at each clock interrupt. Each second the watchdog timer
on the output counter card protection system is updated,
the input counter cards on channel addresses 1 to 6 .::.r
read and reset, the count values being stored in an input
table. Provision has been made to service outputs for the
output counter cards on channel addresses 0 to 9 if there

is any output data available in the output table.

6.6.2. User Status Record Manipulation

As only one user can be in an active state at any one time, it is
necessary to hold information as to the state of execution of a non-active
program. Such information would include the restart address for when the
program becomes active again, the next available position in the teletype
output buffer, the position in the input buffer which should contain the
next input character. Information would also be required as to whether a
particular user is an I/O wait status or similar condition.

Similarly when dealing with interrupts from terminal devices, it is
necessary to know which users terminal has caused the interrupt, where in
the output buffer the next character for output can be found, where in the
input buffer the next input character should be stored.

\



102

In order to maintain a record of all this information, each user
is provided with a set of parameters, Fig.32, which are normally located
in a "base"area of core. In order to update this set of parameters it
is necessary to move them from the base area of core into the active
locations in zero page (Fig.32) and upon completion of all the updates,
the parameters are returned to the base area of core. The routines which
perform these functions are ONDECK and OFFDECK respectively.
The occasions at which updating of the pointer is necessary are:-
1. At user swapping time where a record of the state of
the new non-active users program must be maintained.
2. Either when a character is entered into the output buffer
or requested from the input buffer by a FOCAL program,
the buffer control pointers must be updated.
3. In the event of an interrupt from either a keyboard device
a character will be entered into an input buffer,
requiring that the input buffer input pointer be reset.
4, In the event of an interrupt from a printer device a
character will be extracted from an output buffer, if
available, and the output buffer output pointer must be

reset.

6.6.3. Keyboard Service Routine

This routine has been designed to service an interrupt from either
of the keyboard devices in the following manner:-

The skip chain in the interrupt processor maintains a record of
which user'sdevice interrupted the program. The routine ONDECK is then
used to transfer this user's parameter set into page zero.

The IOT code held within the parameters is used to form a read
instruction, and the character is read in to the processor accumul ator.
The input character is first tested for a control code which performs

various functions. within the system., e.g.:-

Character ~ ASCII code Function

CTRL/C 203 Program abort
CTRL/R 222 Teletype Echo Disable
CTRL/T 224 : Teletype Echo Enable

CTRL/S 223 Online parameter modifizd



103

Location Tag Function
0105 PCM Active users program counter
0106 OBUFO Teletype output buffer output pointer
0107 0BUFI Teletype output buffer input pointer
0110 OBUFO Reset value for active users input and

output teletype buffers

o111 IBUFT Teletype input buffer input pointer
0142 IBUFO Teletype input buffer output pointer
0113 ' DECKP Active users status word.See figure 34

for detailed explanation

o114 JOTX IOT code for active users teletype

Figure 32, Active Users Status Parameters




104

Ordinary 1'.ﬁput characters are echoed at the user's console via
the routine ACTION Q, provided that the echo facility has not been
disabled. The character is then loaded into the character input buffer
using the pointer IBUFI which is then updated to point to the next free
space available in the buffer.

If the character input buffer has more than 9 characters stored
in it, or if a carriage return characters is detected on input, the input
wait status bit is cleared, allowing a user’s program to be continued at
the next exchange point.

Furthermore, if a user's program. is only waiting for a single
character input as in the case of ASK and MODIFY commands, it is
necessary to enable the user to obtain the character immediately. Thus
entry into either ASK of MODIFY or new LIBRARY commands cause a
single character input mode flag to be set which signifies that the input
wait bit must be cleared upon the receipt of a single character.

Exit from thé keyboard routine returns control back to the
interrupt skip chain after replacing the updated user's parameter back
in their "base area" using the Routine OFFDECK. t

: B

6.6.4. Printer Service Routine

This routine is also entered from the interrupt processor skip |
chain, the routine ONDECK being used to obtain the interrupt user status
parameter.

The output buffer is examined in order to determine if any
characters are available for printing by using the pointer OBUFO. If no
characters are present in the output buffer, the printer flag is cleared,
and the output wait status bit for this user is also cleared. If a character
is found in the buffer, itis transmitted to the printer for printing and
the software teletype in progress flag set.

Exit from this routine r;eturns control back to the interrupt skip

chain after replacing the user's status parameters with the routine OFFDECK.



105

6.6.5. Character Printing Routine ACTION Q

This routine is used for the handling of character for output.
If the teletype "in—progreés" software flag is set, a character is loaded
into the output buffer using the pointer OBUFI, the pointer being
updated to point to the position in the buffer where the next free space
should be. If the teletype in progress flag is not set, the character is
sent directly to the teletype and the in progress flag set.

6.6.6. User Swapping Routines

As previoﬁ.sly discussed, in a time shared system, effective
measure s must be taken in order to awid the possibility of an I/O bound
user holding up the execution of another user's program. Also users must
be exchanged at cher set times so as to give each a fair share of available
computing time. In the executive routines of the two user system these

operations are carried out by four routines.

6.6.6.1.Character Input Routine to the Interpreter XRD

Any request from a FOCAL program for input from the keyboard
device causes program concrcl to be transferred to this routine.

The users status parameter are set up in page zero with the
routine ONDECK and the teletype input buffer is examined for a charecter i
by using the pointer IBUFO. If a character is found in the buffer, that
location of the input buffer is cleared, the pointer IBUFO updated, the
status parameters are returned to their ""base area" of core by using’
OFFDECK and the character returned to FOCAL for program continuation.

Alternatively if the input buffer has no available character the users
input wait status bit is set, the return address to FOCAL is saved in the

location PCM of the users status parameter which are then returned to base

area. Control is then passed on to the new user selection routine EXCHE.

6.6.6.2.Character Output Routine from the Interpreter EXPRN

An output request from a FOCAL program causes control to be
transferred to this routine. The user'sstatus parameters are initially
loaded into page zero by using ONDECK, and the character is loaded into
the output buffer or printed by use of routine ACTION Q. If the character is
successfully loaded into the buffer or printed, status parameters are

returned to base area and program control returned to the active FOCAL



106

program,

Alternatively, if the output buffer becomes full at this stage, -
the output wait status bit for this user is set, the return address to
FOCAL saved in PCM and status parameter returned to base area.
Eventually control is passed on to the new user selection routine EXCHE,

Fig.33 illustrated the method by which all the character handling
routines are related to the I/O buffers.

6.6.6.3.User Swapping Points Check Routine EXCHK

This routine is entered at the start of every sub line break point+
of FOCAL. A counter in this routine maintains a record of the number
of lines executed in the active user’s program. If the requisite number of
lines have been completed (this number may be changed in order to tune
the system) the return address in FOCAL for this user is saved and
control is transferred to EXCHE,

6.6.6.4. New User Selection Routine EXCHE

This routine is used for testing the availability of either of the
two system users. Any user in input or output wait status is not allowed
to become active. The wait status bits of the users are therefore tested
until a user is found in the requisite state for becoming active.

If the selected user was the last active usex, control is returned
immediately to 'the continuation point in FOCAL. Alternatively, if the
selected user was in a non-active state, the program parameters of ‘the
two users are exchanged so as to set the selected user in acfive status.
On completion of the data exchange process, control is returned to the

correct continuation point in FOCAL.

6.7. Summary
All the routines were written using the available PAL III cross

assembler system so as to produce a standard binary overlay tape for 4K
FOCAL 1969. The listings have been included on microfiche and supporting
- documentation in terms 'of flowsheets in appendix E.
The remainder of this section deals with the modifications that were

necessary to allow the interpreter to operate under the new core

configuration and the differences between the real-time extensions



107

Teletype Input Buffer

. ) _ ‘/-\ ot r\‘ ' . v ' . 

00
02
03 .
o ,
05
(¢ 3
Teletype o7
§ FOCAL
Yeletype————» Keyboard ——— IBUFI . 10 IBUFO P EXRD e
| . PROGRAM
Processor ’ 1"
12
13
1
Eoho vis 15
ACTIONQ u 16 \J
. 17
'c_ T
J-
. ] ’ Teletype Output Buffer -
n 00 I )
I .ot 1 )
‘ 02 ————————Input character echo
03 ' '
(¢« -
05
6 .
Teletype ) 07
* [ 4 v - * chL
Teletype ~————— Printer «——| OBUFO 10 OBUFI |~————ACTIONQ 4————— EXPRNI4—————
T . PROGR AM
Processor 11 ’
' 12
13
1%
= 15
{ \) 16 1 \J Direct to teletype
17 : if buffer is expty

Figure 33, Opncration of Teletype Input and Output Character Buffers




108

0 1 2 3 L 5 6 7 8 9 10 11
INPUT [OUTPUT|CTRL/S|CTRLIS ECHO TTY IN| SINGLE
WAIT | WaZTY TYPED | READY D1SABLE - |PROGRESY MODE

BIT 1: Input wait bit
The bit is set to a 1 or wait status if the users program is
waiting for a character to b~ input.

'The bit is clezred for non wait status if more than 9 locations
of the input buffer have been used or if a RETURN is detected on
input.If the user is in single character mode (see BIT 11) this
wait bit is cleared after the input of a single character
Output weit bit

BIT 2:

The bit is set to & 1 or wait status if the users program sends
a character to the output routine'and encounters an almost full
buffer. _

The bit is cleared for non wait status if the character output

routine finds an empty buffer

BITS 3&: Used in the On-line Parameter Modification Routine

BIT 7:

BIT 10:

BIT 14:

If a CTRL/S character is detecved on input , BIT 3 is set to a 1
WVhen the next RETURN is detected BIT 3 is cleared and BIT 4 is set

to a 1 to denote that the message has been entered.BIT 4 is cleared

once the message has been decoded

Echo disable bit ‘
Set by CTRL/R code in order to kill input echo.Cleared by CTRL/C
or CTRL/T oo

‘Teletype in progress flag

Set by the character output routine when a character is sent to a

teletype.Used by the output routine to determine whether a character

should be sent directly to the teletype or to the output buffer,

Cleared by having an empty buffer and the teletype done flag being .

set

Single character mode flag .

Set by ASK or MODIFY commands.Causes the input wait bit to be cleared

after every input character. It is cleared whenever a new user is

brought into active status

Figure 34: Users Status VWord DECKP Bit Allocations




109

necessary for single user FOCAL and those necessary for two usexr FOCAL.

6.8. Modifications to the interpreter to allow for proposed core
configuration

The proposed core configuration is as illustrated in Fig.31 and it
is similar in many ways to that of 8K single user system. Except for the
obvious fact that the storage area is shared between two users and
executive routines have béen included so as to time share the interpretier,
the only difference is that the interpreter is now resident in field 1 instead
of field O. -

Therefore, modifications similar to those made in the single user
version (Chapter 5) to account for the change in variable search routires,
text storage and access routines, and push down list controls would have
had to be made to the two user versions, ‘the only difference being the

change in field setting and the location within the interpreter.

6.8.1. LIBRARY Command
To the user this command is identical in operation to the LIBRFARY

command in the 8K version of FOCAL, each user being able to cllocate his
fixed storage area between text and variables.
It was however necessary to add extra protection facilities so as

to avoid the possibility of one user straying into another user's area.

6.8.2. Symbol table Editing and Saving

The commands used for editing symbol tables and savin g them are
identical to those commands used in the single user version in both operation

and implementation,

6.8.3. MODIFY command

The modification to single user real time FOCAL whereby a user
may duplicate lines has also been included in the two user version. The modes

of operation and implementation are identical in the two versions.



110

6.8.4, Hard Copy for ASK

The hard copy facility implemented on the ASK command in
single user FOCAL (i.e. line feed response to the ASK prompt) has been

implemented on the two user version in an identical fashion.

6.8.5. Random Number Generator FRAN

A rarndom number generator of the same form as that used
in the single user versions was implemented in the two user version in

an identical fashion.

6.8.6. Other Differences

The high speed reader was made unavailable because most of
the system terminals were likely to be located in laboratories remote
from the computer and users would not therefore have easy access to

this facility.

6.9. TifningConsiderations

Before proceeding to develop timing and synchronous data
_sampling facilities in an identical fashion to those produced in the single
user real-time FOCAL, it was again necessary to consider the possible
timing errors which could occur.

For example, assuming that similar timing functions existed, the

following could represent timing loops created by both of .the system ucers.

USER 1. USER 2.
11.01 I (FLAG (A))11.10 11.01 I (FLAG (A)) 11.10
1102 S1=1+1 © 1102 S1=1+1
1103 S =J+1 1103 S ] = J+1
11.04 G 11.01 11.04 G 11.01
1110 T "TICK", ! 1110 T "TOCK" , !

1112 S J=0;S1=0; G 11.01 11.12 S I1=0;S]=0 ; G11.01

's scan flag could become

Under unfavourable circumstances, any user
set immediately after it has been interrogated. If users are being swapped
‘every four lines and this user has only just been set up in an active status,
then three lines of his own program and four lines of the other users program

might have to be executed before the flag could be re-interrogated.



11

Assuming an average time of 7 m seconds per command, together with the
12 m seconds required for user swapping, a delay of up to 70 m seconds
could occur. This of course is the worst possible case as it is unlikely
that four commands would be included within a simple timing wait loop.

It could also be reduced by swapping users more frequently, although this
would increase the proéortion of processing time used for swapping.

However if one considers a random error in timing of between
0 and 70 m seconds, results of the simulation study outlined in Appendix B
would appear to show that this magnitude of error is acceptable provided
that sampling periods of not less than % second are used.

Thus it was decided to implement scanning facilities in the two
user version in an identical manner to the scanning procedure implemented
in the single user version. Synchronous data sampling being set up by using
a software flag facility and 1/O peripherals being directly accessed rather
than clock driven (except for the Input and Output Counter Card Systems).

_As the computer system is only provided with a single clock
whose interrupts have to control the timing properties of the operating
system, it was necessary to implement the timing facilities in the following
manner so as to prevent one user corrupting the timing properiies of ano*her
user program, '

As the users will not necessarily require identical scaﬁning
periods, it was necessary to provide each user with his own resettable scan
flags. As both sets of scan flag counters would be controlled by clock
interrupts, the clock rate would have to be preset with users unable to
alter the frequency of timing pulses.

In the single user version of Real-Time FOCAL, the facility
was provided whereby the user could set up the value of his absolute time
counters. This could have been included in the two user version, if each
user was provided with his own set of time counter.s. Having to update two
sets of current time counters each time there was a clock interrupt,
results in a waste of processing time and core space which cannot be afforded
in a time shared system. _ |

It was therefore arranged that only a single set of absolute time
counters would be made available., The system users would be allowed to
share the facility but not allowed to reset the clock counters, If absolute

time is required then it would be necessary to preset the clock counter on



e et gt 112
initialization, _
Thus the FTIM and FLAG functions have been implemented and

are available in the form shown in Fig.35.

6.10. Priority Tasking System

A foreground/background priority tasking system has been
adopted in the two user» version of Real-Time FOCAL. The system uses the
end of line break point so as to avoid confusion with the beginning of line
break point which was allocated to user swapping.

' Group 31 has been allocated as the priority group. Each usex
has been provided with identical facilities for enabling and disabling the
~ priority groupas were provided in the single user versions, i.e. the E C and

E D commands.

6.11. Input/Output Transfer

| A1l the input functions produced are identical in operation and
implementation to those used in the single user version. This was possible
because there was no need to protect against one user reading another user's
~input device. Each time the peripheral is accessed, the current value is
obtained. Even in the case of the input counter card system, the data can
be re-accessed as it is not cieared after reading from the input data table. |

Output functions on the other hand must be protecied so that one ~
user cannot transmit data on another user's peripheral devices.

Protection has been achieved by allowing one user to output on
even channels only and the other user on odd channels only. The channel
address arguments of output functions must therefore be examined and
compared with the allocated channel addresses for the active user.

As this form of protection must be applied to all output functions,
it was decided that the "manual" incremental output function FINC should be
incorporated within the FOUT command as

FOUT (0INC , CHANNEL , VALUE)
‘so that the protection routines added to the FOUT command could be used.

The remainder of the output functions are identical in nature to

those used in the single user versions of Real-Time FOCAL.



113

6.12, Control

The PCI control algorithm was adopt.:ed for the two user system
but implemented in a slightly different form. Instead of using a FOCAL
function call, the control algorithm was written as a command. The
reason for this. wag, that a slightly improved speed of operation would
result. Also the available space within the same field as the interpreter
meant that all extended functions could be retained and the addition of more
function calls would have required a re-;arrangemenf of the function sort
and branch tables.. The alternative procedure of uéing an available space
within the command sort and branch lists (originally used for the high speed
reader) was a more attractive proposition, '

The command was developed . to be used in the following forms:-

PCI (A,B,C,D,E,F;QG) '

PCclI (A,B,C,D,E,F ,G)

~where A is the output chémnel address between0 and 9
B is the loop measured value
C is the loop set point
D is the Integral Action time §
E is the Scanning interval
F is the Gain Factor .
G is a named variable which is given the value of the
computer incremental output.

The final argument has been included so that a record is
available of the incremental output value for the purpcses of either checking
the numerical value produced by the control algorithm or for the purposes of
cascade control. In cascade control, the output of one control block would
be used as a vari able parameter for another block. As no actual output to
the equipment would be required under these circumstances the ; delimiter
has been included before the final argument so that output to the output
counter card system may be inhibited.

' Another useful feature of the ; version of the command is that
it may be used to initiate the control algorithm, Inhibiting output would

avoid the initial "bump" in the system when the control algorithm is started.



114

The use of a single channel address / loop number parameter
is restrictive but was a necessary condition which had to be imposed upon
the system so as to provide user protection and also to reduce the time
taken by the control algoritﬁm. One user has been allowed even channel
addresses and the other odd channel addresses. It was found that this
condition could be implemented easily if loop parameters were stored as a
combined table rather than having a separate table for each user.

" The system adopted also meant that one less argument was
‘required thereby saving a little time in evaluation on manipulation routines.
~ The algorithm is completed by calls to a floating point interpreter,

using the last argument as a variable name into which the floating point
-value may be loaded using the variable search and save routines available
within the FOCAL interpreter.

The computed value is also converted to integer which is clocked
out every second by the interrupt processor in an identical manner to that

used in the single user version of FOCAL.,

6.13. Parameter Modification Routine

¢
To the external rser, this routine is identical in operation to

the routine used in the single user versionof FOCAL. However as the modes
of character handling in the tiyo systems ar e different, it was necessary to ~
adopt a somewhat dif}ferenti approach.

When a CTRL/S control code is detected by the keyboard processor,
it has been arranged that a flag is set within the user's status parameter
(see Fig.34) to signify that the next set of input characters is to be used for
parameter modifiction. At this point it was also found necessary to inhibit
TYPE and ASK statements but only for the user trying to modify ore of his
parameters. A general inhibit in TYPE and ASK would cause the other user to
be held up as well,

When all the flags and inhibit switches have been set, a >
character is echoed by the computer as an acknowledgment. .

It has been arranged that subsequent characters typed in at the
keyboard, are loaded into the character input buffer and echoed on the printer
device., When a carriage return character has been detected, another flag is

set in the user's status parameter signifying that the complete command has

been entered into the buffer.



115
Using the end of line break point, the command complete

flag is examined at the end of every line in the FOCAL program. When
found in the set condition, FOCAL's internal routines are used to get the
input characters and perform a forced SET command. Completion of this
SET command results in the flags and inhibit switches being cleared and a <
character is echoed on the terminal printer to signify completion of the
task.

If an ASK or TYPE statement is executed during the process
of parameter change, control is passed immediately to the handling routine
to wait for the necessary input, the user being put into an input wait
status until all the characters of the command have been entered into the
keyboard input buffer and thereby causing no delay to the other system
user. After the direct SET command has been forced, the inhibited ASK

or TYPE command is executed.

6.14, Error Code

It was necessary to provide facilities for trapping out
erroneous conditions during the execution of all the new functions. This
was accomplished by standard calls to the error recovery routine. A list

4
of error codes produced has : bezn tabulaced in Fig.37.

6.15. Initial Dialogue

In order to avoid users corrupting each other's timing
properties, they could not be permitted to alter the clock interrupt rate
or absolute time counters.

- These could either be preset within the Assembler overlay
program or else facilities provided whereby the values could be selected
at lo'ading time.

As different users might require different amounts of core,
it wduld be very useful if at system loading time, core allocations could be
selected for each of the two users. '

Thus an "Initial Dialogue" section was included so that these
parameters could be set up easily from the teletype terminal. Fig.36 |
illustrates the use of the initial dialogue.



116

6.16. Conclusions \

The resulting core configuration of the 8K system is as
shown in Fig.38, and it canbe seen that it was possible to include all
the standard extended FOCAL functions within the system.

This two user version is still essentially undergoing a period _
of trials, experience to date suggesting that the system is capable of
providing two users with extensive facilities for data acquisition and
control. The main disadvantage of the system, which was realised at
the outset, is one of meximum data rates which the system is capable. of.
However, most of the laboratory applications so far could be easily dealt
with, even when a maximum clock rate of 4 interrupts per second has been
imposed.

Again, its main advantage arises from the interpretive mode
of operation, allowing progréms to be readily created and modified. If
this is an essential requirement of a computer operating system, then the

slow speed of response must be expected.



TYD0d I8S{] OM] DPUB a88[] O6TIULS USBMEOg SOO0UAISJIT(Q °Ge eandtg
t

*uoT3OUNS INOZ
oU3 UTU3TM z03 pepraoxd soT3TTToBJ uorgoezoxd eyz Jo esn asu

03 SB 0§ UOT3oung JNOL OY3 UTUITA DPo3eIodIoout useq sBY STUJ (2°VONIO )IN0I=Z S (2°7)oNTL=Z S
*uoT3dnizoo 48P PTOAT wIog (o°a‘v ‘WIV0)IN0I=2
03 ge os STOUUBYO PPO g ..Homs pUe STAUUBYO USAS PIJBOOTTE Udeq TBOT3USPT UT Aonm“inaovBDOmUN S
sey | Jesn 38Y3 ST suoTjoung 3ndyno eyj UT eousIsJJTp LTuo oyg eTqeTTeAR TTV (2¢v¢ovao )In03=2 S
(9°v DICO)NIZ=Z S
WIOF (VA0 )INII=Z S
TeOT3UepPT UL (v “0QvO )NII=Z S
~ 8TqeITeA®R TTV (V*Z4HONIZ=Z S
- WIOJ TBOTIUSPT
UT oTqETTeAY (2)9v1d=2 S
*uotqdnaioo pToA® 03 S8 0 andoTBTQ TBTH4TUIl oY3 ut 3es €T 3T
§8 peatnbex jou sT sesTnd 00To JO JeqUAU 63 I0J FueumIIB OYJ, (@09 T90)oVIaI=Z S (a‘o°a‘v Is0)ovii=z S
wIog
TeOT3USPT UT
8TqQeTTBA® TV (X)NT13=2 S

sonBoTeT(Q TBT3TUL oYy ut dn g49s
oJ® UYOTUM SI99STISI O3 38§81 04 DOMOTT® 8q 9JI0J8I9Y] FOUUBO SISS(]
SUOTSJIOA JOSN OM73 oYl Uurpssn m.n sx94sT9ax {0070 JO 385 oTdurs B LTUQ

oTQBTTeAY 30N

(a‘o‘g ‘v ISOINITI=Z S
) Jes[] oLdutg

Jos[] oM],

SNOILONAL

STONTEEILIQ ¥YOd NOSVEYH



118

*uoTyoung JBTnoT4aed STUG JO Osn PIYTUTT
pus sovds PI3TUTT JO dSNBO3Q 3NO 3JST USSq SBY UOTIOMMJ ST,

PUBLWLOD 8YJ UT POPNTOUT U3dq OSTB
sABY 89T3TLTo8} uotjzoojoad gndyng *swLg uoTynosxs oygq saoxduT

03 SB 0S UOT30UNJ B §B UBYJ JOUJBI PUBUWNOO B SB pajuswaTduf

SEONTYEAIIA Y04 SNOSVIY

oTqBTTEABR 30N

(o‘a‘g‘a‘o‘a‘v)Iond
88 oM,

(T°a‘o‘a‘v)NxaI=z s

(9‘2‘2°a‘0‘q‘v)NODI=Z S

SNOILONOX

J88() OTduls



119

38 8 Padl-Bs3:

88

%u&%lbss oV o0 [T«

cnB-on 8 =¥

=¥zo

in

J)

/)

Vi si
3 X

ui
Si

o

«I

3

zJ

X

3

vo m IO 3

JO 3

<7 ee e

C

vC
— JO

<r a4 C
X
-S

%o

..
S

ro <i 3
3 x o-
C H -

o

X
<€ x
X. = ¢

10 >

*rou'.



Error Code

11.73
110;9

13.57
13.90

15.13
15.23
15.48
15.56
15.77
16,03
16.07
16.18
17.06
17.<7
21 o<l

25.92

120

Diagnostic
Illegal subjfunction call in FIN or FOUT function
Illegal channel address in FOUT fuaction call. |
User 1 even, user 2 odd
Exit from LIBRARY command
Terminator other than , or ; or RELURN in variuble
erase command E F,
Illegal character in multiple argument handler
Missing argument in function call
No scan flag of that value has been set up
Too meny argument: in FTIM or FLAG function
Illegal code in FTIM function
PCI command should begin with a bracket
Channel address should be positive . ¢
Illegal channel address in PCI (0 to9 ouly a;e legal)
Only ; or RETURN are legal terminators of PCI command
Too many arguments in FIN or FOUT functicn call
Illegal character or no such line in MODIFY command

Character other than A,C or D in ERASE command

Figure 37. Error Diagnostics for Two User FOCAL




O O\u' @ =D

13
14
15
16
17

23
24
25
26
27
30
31
32
33
34
35
u36
37

121

IVO Core man Fiolcl 0

Zero rojr.terr. uto.at:c rcat rt ac.uti
Interrupt iroca-:or
Keyoo: ixi ;race: ror
clv’for .. t
Ti rt. mction * RO
Eynmt Vrer aoutinus
hr:r 1 1/( wrrf-"r'- I
Ctrl/s yxtvnsion I r.rchrennur. \ .z'vjej
r.orn- ctivn Ic¢ rs Z-yved ir'r.tarn
I'Fer 1 Co~mpjri Incut Butrer | wur 2 Inrut Hu: :'cr
TT V3L J-z lweyzep: 3 :
ToXT ~ 13 rUSaDCV,:: UJT
IXJO Core rar -ield 1
7£5"0 Por-n Pointers
Cecerrini Docoier 1 Getln 1
Fnt-jbf 1 Do 1 Pushdo'.vn List Controls
Control & Transfer | Arite ( Teste 1 Sorte Grutst 1 Innut 1
Coulst 1 If 1 Set d For D.V's & Tnt 1 Cot ro
Tyne & Ask | Vcdify 1 Sorti 1 Aie.Cutl end ctrers
Gatere 1 Srnor.Testn. u
Fenll 1. _
Terms tfn.”bs et ;1 [fstlnr,Partent | Delete sn'ic iFntnbl
Erase | Findln | Gate 1 Fndln
Im55,Pmtln,Prnt end Printc 1 Pncke 1 -3
Kubout 1 S': sol 'fab13 Dun.;
Extensions to .i'sr »» nI 7 ri-fe .c rch kn ti- -- 1 7. rir-b"'- r 1,
Parar.etor .oJ.r'ic tPon .-cunii.e na /i- c¢:.k aoinirc _
Yoyeey ItV mm'ViLCiIrA 1 Ftim s.t.d ,:dn—
1 Fin a-; Fout Co"..sr-s
rrn 1 -Cl ytcro 7Pole
1 - Fxo Atn
1 Loc 1
Cos nnd Sin 1 It .ode
FLOATI:;G PCINT
Ii:P.T ADD CUT;ET
ly. y :fU J ~ 1
Fin/. TT-.G fOT-? rxr3rrp?'"'R

Sot
I.oniern

Figure 38.

Library



122

CHAPTER 7.

A File Structured FOCAL Operating System



123

7.1, Introduction

Having made the decision to develop a file handling system for
the reasons described previously, it was necessary to examine the possible
ways of providing such a system. ‘

Basically a system was required which would allow for the
manipulation of FOCAL program files, FOCAL data files and FOCAL
system softwase, the prime design consideration being that the system
should be easy to use. Such a system could have been achieved in any of a
number of ways:-

1. By modifying and enhancing existing manufacturers software,
0S8, so that FOCAL software could be implemented on. the
system.

2. By further devvelopments to FOCAL, enabling FOCAL software
to be saved as files on magnetic tape from commands or
functions within FOCAL.

3. By developing an interactive file MONITOR system, accessible
from FOCAL, allowing all forms of FOCAL software to be
saved on fnagnetic tape. .

The eventual choice of system would be dependent upon factors
such as the degree of flexibility provided, the amount of' programming
effort required to implement the system and whether the system in its
final form would be easy to use.

It was decided that extending 0S8 so that FOCAL could be
implemented within the system would not be a viable proposition. Experience
suggested that the 0S8 system was by no means easy to use because of the
extensive facilities which it provides. Implementation of FOCAL within the
system would require restructuring of the existing FOCAL interpreter in
order to make FOCAL compatible with the device handling and file manipulation
techniques utilized in the OS8 system. This would also have necessitated an
in depth analysis of the OS8 operating system in order to determine the nature
of the routines used. Although a very flexible system could eventually be
produced, it was felt that an excessive amount of effort would be required
and the final system would not necessarily be easy to use.

The second method could have provided a suitable basis for a FOCAL
file handling system, The extra 4K of core available in addition to the 8K



124
required for the FOCAL system would proviae sufficient core space for
the new functions and commands required for the saving and loading of
program and data files. Such a system would be essentially very easy
to use as only a few extra commands would be implemented within the FOCAL
, system. However the inajor drawbacks of such a system would be the
limited flexibility provided by the system and the difficulty which would be
encountered in the saving and loading of differeht versions of the FOCAL
interpreter. These factors could be overcome with suitable programming
effort vihich would however result in the system becoming more complicated
to use.

The third alternative of providing a stand alone monitor system
was therefore considered to be the method which would provide an ideal
solution. By basing the monitor system upon simple and easy to use
commands of a form similar to those used in FOCAL, a system could be
devised in which any form of FOCAL software could be saved as files. This
solution would only require minimal modifications to any FOCAL system so
as to enable linkage between FOCAL and the monitor system from a siﬁgle
FOCAL command. As FOCAL system files would essentially be a direct
core image stored on magnetic tape, the monitor system could easily be
extended to provide facilities for saving image files of executable binary
programs. This would provide an extremely useful facility for experienced -
programmers.

It was therefore dccided that the monitor type of system should

be implemented.

7.2. Structure of a File Monitoring System

- The structure of the proposed monitor system was essentially

dependent upon whetter it was thought necessary to extend the available
8K FOCAL system to make use of the additional 4K of memory in the 12K
PDPS8-E. |

If FOCAL was to be kept as an 8K operating system, the monitor
could be developed as a core resident system, utilizing the 4K of memory not
occupied by the FOCAL system.

Alternatively, if some of the extra 4K was used to provide

additional space for program and variable storage, it would have been



125

difficult to p:r;ovide sufficient space for a totally core resident monitor.

In this case, only the magnetic tape handling routines, terminal handling
routines, and a command decoder would remain resident in core, a similar
type of structure to 0S8, s&ftware associated with the commands of the
system being stored on tape and read into core when required for operation.

Experience which had been gained when 8K FOCAL Extensions
(Chapter 4) (64)were made available during a final year undergraduate

~design project. showed that a limited vrogram size with the ability to chain
modular programs together could be highly advantageous. Developing
programs in this form meant that it was essential to check computed data
after each program module. Non sensible data could therefore be detected
early on in the programming chain and errors in method, program or input
data corrected before proceeding on to the next stage.

The alternative procedure, adopted by some students, of
developing one large program to perforin the same task using FORTRAN on
the University's computer, invariably took far longer to get the program
into an operational form.

On this basis, it was decided that the 8K FOCAL operating system
provided sufficient program storage as it stood and it was therefore.
unnecessary to extend program storage into the extra 4K of memory.

The monitor system. could therefore be designed as a core resident -

system in the upper 4K field of the 12K system,

7.3. Requirements of the Monitor System

The most essential feature cf any file handling system, is the
ability to select by name, files stored on a particular magnetic storage
device. ' This requires a directory of all files to be maintained for each
magnetic storage device. Data regarding the position of the file on the
device, the length of the file and its operational location in core, must be
stored in the directory under the name of the file.

When a file is called for loading into core, the information in the
directory can then be used to locate the file on the device and load it into
the required position in core. ‘

Similarly when saving a file, the file must be written on to the
device and a record of its namé, location on the device, and core location

must be inserted in the directory.



126

The directory therefore not only maintains a record of file
data but aléo a record of the amount of space still available on the device.
Other features which would form the essential requirements of
any file handling system are:-
1. The ability to list the directéry of any device so that a user
can determine if a particular file is available on that
device o
2, ‘The ability to save named files of three types on any storage
device:-
a. FOCAL program files
b. FOCAL dé;ta files
c. Core‘image binary files of either FOCAL system
software or other executable binary files.
3. The ability to load into core named files of the above three
classes from any device.
4. . The ability to delete any named file from any named device and
to recover the vacant space efficiently.
5. he ability to run any file, which has been loaded into core,

from a particvlar starting address. ]

Other features which could be incoxporated into a file handling
system so as to extend its capabilities and ease of use would be:-

6. The ability to copy a named file from one device to another
or on to the same device. With only the basic minimum
features, this would have to be done by loading the named
file into core and then saving it again.

7. The ability to search the difectory of a specified device to

' determine if a particular named file was present on that
device. This would avoid the need for listing the whole
of the directory to find if a specific file was present on
the device.

8. The ability to completely erase all files from a specified
device rather than having to delete each file sequentially.
This particular process would have to be used carefully and
have sufficient error detection procedures so as to avoid
the possibility of deleting important files through misuse

of the command.



127

Most of these particular facilities were dependent upon the
ability to program data transfers between core memory and the dual drive
DECtape magnetic storage devices available.

It was therefore necessary to examine the operation of the
. DECtape system and devise a general purpose controlling routine capable

of performing the appropriate data transfers required.

7.4. DECtape Programming

Unlike most other common forms of magnetic tape storage
devices . the DECtape system stores information at fixed positibns on
magnetic tape rather than at variable positions. This feature allows the
replacement of blocks of data on tape in random fashion without disturbing
data previously recorded in other blocks. |

This block type st.:ruc ture of the DECtape is made possible by A
using formatted magnetic tapes upon which mark and timing information
has been pre-recorded. When reading from ox writing to magnetic tapz the
format and timing information is used to determine the exact position on
the tape of the transfer. | ' ;

Each formatted tape is segmented into a set of sequentially
numbered blocks, the length of each block being selected in the formatting
stage. All blocks on the tape can be made either the same length or of
different lengths depending upon the requirements of the system.

The only constraints upon the size of a block is that the number
of words in a block must be an integer multiple of three. This is because
the data trapsfer operations are controlled by the mark track information
which requires the reading of six full lines from tape before a complete code
can be read from the command register. Normal data is stored on the
magnetic tape at 3 bits per line and 4 lines per word. Thus the lowest
common multiple of the six line mark track record and the four line data
record is twelve lines, the equivalent of three twelve bit words.

The operation of both DECtape drives is controlled by the use of
four flip-flops which can be set under program control to select:-

i. The required drive

ii. The direction of motion of the selected unit

iii, Whether to start or stop the selected unit



128

iv. Whether data is to be read from or written to the
selected unit

The flip-flops are set as shown in Fig.39, by loading the device
command register. . |

Mark track information can b'e obtained from the tape, by reading
the command register back into the accwmulator, Fig.40. Each time a new
line is read from the DECtape device selectea, a new bit is rotated into
the least significant bit of the mark track register, the most significant
bit of the register being lost. A single line flag is set by the controller
at this point to signify tha‘t another line has been read. Meaningful mark
track codes are as shown in Fig.41.

As data is stored as four lines of three bits, a QUAb line flag’

is set for each four lines of mark track data which is read from tape.

7.5.1. DECtape Controlling Routine for the Monito.r System

This routine is the most important routine of the £ile monitor
system as it must control transfers of data between core and magnetic
tape effectively and with a minimal possibility of data corruption.

Manufacturers scftware for controlling data transfers to' and from
the DECtape with checksum error protection, was available as a subroutine
which could be iﬁcorporated iito user written software. This however had a ~
number of disadvéntages which had to be overcome before it could be adopted
as a handler in the monitor system.

The existing software allowed for the transfer of up to 32 blocks
of sequential data to or from either DECtape drive, €ach block of data
being 128 words in length (with the option of 129 words), data transfers of
less than 128 words not being allowed, and automatic continuation of transfer
into the next field of memory not being provided for.

The system of fixed block transfers was an obvious necessity if
data transfers to and from tape were to proceed without affecting other
data stored on tape.

The internal configuration of the PDP-8E segments a core field
into "pages" of 128 words in‘ length for addressing purposes. A 129 word
block format on tape would therefore be a logical choice, this being the

nearest number of words per block in which a magnetic tape can be formatted



129

!

J0}BTNUMOOY 6Uj WOoIJ I836TIoY PUBWIO) SY3 O03UT PIPROT PION 8U} JO 3FBUIO] *6¢ sansTg

} | adsy woxJ peoy =0

edeg o3 83tapy =

ede3 oYz 03 B3BD 93TJM JO WOIJ BIEP PBOI 03 OATJIDP PO3OSTOS O3 §30NI3§UT W

arop =} dogg =0
edeq oyg dogs IO ©AOW 09 SOATIP PO308TOS OYj £30NIFSUT 9/s

esIoA8Y =} pasMIOT =0
SATJIPp PO30eTes Oy} JO UOTIOUW JO UOTF06ITP SY} SoUTWIS3( /4

pa3oaTes We3shg 8ATIQ TBnQ JO | 3TUn =i pojceres we3sds 9ATIQ TBNQ@ JO O 3TUn = QO
’ JI9JSUBIY BYBD B JOJ POSN oq 03 ST SATIDP YOTUM £300T0S ITUn

< I575Too THoUEo, oUF PUOT 67 DO 50U >
Y4 9/s 3/ 37U
bl 074 6 8 L 9 g R ¢ ¢ A b 0




130

!
J038 [NUNO0Y 9Ug3 O3 J035190Y PUBUUO) U3 WOJLJ POI9JSUBL] PIOMN Oy3 JO 3BWiog °Of aansdtTg

GYIN
J938TIoY NoBaL HIBN 3Tq XTS o3
OdIN
_ eorTd o003 odBynH(Q 9Y} JO JI9JSUBI} 3XOU 9U3 8I10J9q
‘ J99STSeYy B83B(Q Y3 UO {IOM 03 wanjgsg o3 ydnous 3s8J Sutysaedo jou sem wBIFoxd TOIFUO0O Y] °O
JI9JSUBI) BYBP ® JOJ POJOSTSs U8 sBY FTUN 9UO UBYJ 8JON °q
J9JSUBI)} BIBD B I0J POJOSTOS U98q sBY FTUN ON °® JI0JIIT]
SI0IIe SUTMOTTOJ oY} JO U0 £898OTPUT 3T L B 03 3988 ST 3Tq JI emT /ToS
} B 03 998 ST 3Tq JT POTqBUS ©3TIM 30U €BM 0% JIOJSUBIL BIBP JOJ POj3O8Tes vﬂﬂb 0'IM
g
aUTT Ax84a3 4s0T
1Tq MeyN _ 374 PTO
SuoTe s3Tq 3JTUS
—
J89sTdey NoBx] NIBRK
|
JI0aIq
CYIN IR ¢HIN 2UIN baIm OUIA | ewWwTl/TeS OTM /4 9/s u/a 3TUn
b ol 6 8 ﬁ L 9 4 % ¢ 2 3 0]




131



' 132 |
so as to correspond to the 128 word .page structurevadopted on the PDP-8E.
However having to always transfer a whole block of information would have
been a potential source of corruption when saving and-reloading FOCAL
programs. For instance, if a data set Haa been created by one program
and the monitor system was then used .to load in another program for
further data processi.nQ, the start of the symbol table could easily be
overwritten,

There was a need therefore to provide a system whereby a part
of a block could be transferred to or from the magnetic tape. It was
therefore arranged that if only a part of a block was required, the remainder
of the block would be filled with zero data for convenience in computing
checksums. On re-reading such a block back into core, only the meaningful
data would be used, the zero data being‘read only and used for the
computation of checksums for comparison ‘purposes. This required an extra
parameter for the handling routine to signify the fact that only part of the
block was required.

The feature whereby the system only allows a maximum data
transfer of 32 blocks, with no cross field transf ers, was thought to be

_restricting, particularly in the case of storing FOCAL system sof tware
where a 64 block transfer would be required, with the ability to change from
one field to the next.

It was therefore arranged that if the address pointer of the
subroutine returned to 0000 at any stage, the field setting would be .
incremented to the next highest field. Also, transfers of greater than
32 blocks were arranged by modifying the method by which the subroutine
was supplied with transfer control data.

Another facility which was thought to be particularly useful
was the ability to test high priority data transfers for integrity by checking
data stored on tape with data stored in core immediately after a transfer
had been completed.

This was accomplished by providing a branch within the section of
the routine associated with reading data from magnetic tape. Instead of
storing the data in core, the data read from tape is checked against the
data already in the particular core location in question.  As this system was

only to be used for high priority data, enablement and disablement of the

branch must be accomplished by patching in an instruction by software



133

immediately before and after the controlling routine is uséd.

A facility was also incorporated whereby a software switch
could be set, thereby allowing the routine to search for a particular
block on tape without reading it. ' This provided the ability to reposition

a tape after a data transfer had been completed.

7.5.2, Use of the Controlling Routine

For a subroutine developed with the above facilities, the
transfer of a file to or from a magnetic tape required that the following
parameters be defined to control the transfer operation. '

1. The DECtape unit of the dual drive system which is to be
involved in the transfer |

2, - The direction of transfer, i.e. is it read from DECtape into
core or write from core on to DECtape

3. The block number on the DECtape in which the file starts.

4, The initial field of core in which the file is to be transferred
to or from, this value being changed automat ically for

cyoss field transfer

t

5. The number of comp‘ote blocks on tape occupied by the file.

6. The number of meaningful data words in the final block of
the file. ,

7. The starting address of the file in the specified field.

8. The direction in which the selected drive should start,

i.e. forward direction or reverse direction.
9. A switch to select either search mode or transfer mode.

Fof convenience, it was arranged that these parameters should
reside in Page zero of field 2 as shown in Fig.42 so that they could be
accessed directly from any position in core.

As the subroutine would also have to be accessed from any
position within the field in which the monitor system was resident, the
most convenient method of linking to the routine would be via a pointer
located within zero page.

If an error occurs at some point during a transfer operation, for
example, attempting to write to a write locked device,v it is necessary to
signal the error condition in some fashion. This has been achieved by

providing a multiple subroutine return. An error condition returning to



134

Location Contents Function

0057 UNIT Set to 0000 for unit O and LOOO for unit 1
0060 REDWRT - Set to 0000 for Read and 000t for Write-
0061 BLKADR  Starting block for DECtape transfer

0062 FIELDE Field of transfer. (0000 to 0007)

0063 BLOCKS Number of whole blocks to be transfered
0064 FRTBKS Number of words used in final block

0065 BUFADR Cove address for transfer

0066 FWDRVS Set to 0000for forward and 0001 for reverse
0067 MWORDS Reset counter for number of words per block
0070 WCOUNT Counter for number of words per block

oo RIORDS Counter for number of words in final block
0072 BFCNT Pointer for transfer from tape to core

0073 P10 Constant used for field change process

0074 BLANK Constant used for field change process

0075 SRCHWD Set to 0001 if search only is required

Figure 42. Parameters used in DECtape Controlling Routine

$

CLA CLL / Set parameters to read from DECtape on ;nit 0
DCA UNIT X / into core. '

DCA REDWRT / Trensfer one block of 200 words into field O
DCA FIELDB / starting at address 0000 from block 100

JAC ‘ / of the specified DECtape

DCA BLOCKS /

DCA PRTEKS /

DCA BUFADR /

DeA FWDRVS /éet initial motion of tape in the forward direction
DCA SRCHWD /

TAD C100 /

DCA BLKADR /

CLA CLL / .

DTAFE /Call controlling subroutine

ERROR : /Return to this location signifies transfer error
CLA CLL /Continue
€100, 0100

Figure 43. Use of DECtape Controlling Routine




135

the first statement after the calling statement and a correct transfer
returning to the second statement after the calling statement.

Thus the sequence for using the control routine is as follows:-

1. Set up the zero page parameters for file transfer
2. Call the subroutine
3. If the first return is taken, signal an error condition

and if the second return is taken, continue with
the next séquence.
Fig.43 shows an example of the use of the routine within an
Assembly Code program. |
. The subroutine was written in PAL III assembler code and
occupied location 1000 through 1377 of field 2 of the monitor system

program.

7.6. File Directory System

As mentioned previously, it is essential to keep a directory of
files present upon a particular device. This meant that it was necessary
to define an area on each tape which could be used to store the list of
files. The size of the area, would be dependent upon the file information
required, the method of naming files, and also the maximum number Qf
files which were likely to be accumulated upon a particular magnetic tape.

The size of the directory area would also affect the methods in
which a directory could be searched in order to find a particular named file.
As it would be necessary to read the directory into a buffer for a file
search procedure, a long dizjectory would necessitate that the directory
area would have to be read into the buffer in segments. Each segment
would then have to be searched in turn for the required file. Alternatively,
if only a short directory was necessary, then the whole process could be

done in one operation.

7.6.1. Naming of Files

It was decided that files should be named as in the 0S8 operating
system so as to make the differences between the use of the two systems
minimal.

A file name was therefore allowed to be up to six alphanumeric



136
characters in length, always starting with an alphabetic character,

followed by a two alphabetic character file éxtension, e.g.

ABC . PR
ABC123 . DA
X2Y4Z3 . BN

The extension characters are used to denote the type of
.file being dealt with. In the monitor system, the types of files to be

allowed on the system were,

1. FOCAL program files using the extension character PR
2. FOCAL data files using the extension character DA
3. FOCAL system files or other executable binary

core image files using the extension BN.
The file extension is therefore a convenient method of informing
the monitor system how a file should be loaded into core.
By storing the file names in the directory as stripped paéked
ASClI charactérs, four twelve bit words would be required to hold the

six file name characters and two file extension characters.

kY
\

7.6.2. File Data stored in Directory j

It was necessary to define what information about the file should
be saved within the directory. |

One alternative was to store data regarding the position of the
file on the tape and the number of blocks occupied. An initial block in the
file area could then contain data regarding the running of that particular
file.

Another alternative would be to store all the data regarding
position on tape and running of the file within the directory.

The choice of method would be dependent upon the amount of
information required for running the file. As it was envisaged that all
files would be saved as direct core image files to be reloaded back into the
same position in core from which it came, the only information required
about loading the file would be the location in core and field from which
the file was saved. Admittedly in the case of saved executable binary
files the starting address could be an advantage but only of use in a load

and go system. As most of the file manipulation was to be with FOCAL



137

program and data files, this information was not really necessary.

It was therefore decided that all file information should be
saved within the directory area of the tape. This required a total of
9 twelve bit words per file, made up of 4 for the file name and extension,
1 for starting block on the tape, 1 for the number of whole blocks
occupied by the file, 1 for the number of words occupied in the last
block of the file, 1 for the field into which the file is to be loaded and
finally, 1 for the address from which the file was saved.

7.6.3. Length of Directory

The tape area required for a directory is dependent upon the
maximum number of files which can be saved upon any one magnetic Atape.

It was envisaged that most files saved would be of FOCAL
programs. The maximum length of a FOCAL program is approximately
7400g words in length which is equivalent to 301( blocks of 128 words.

The average length of a FOCAL file will in general be much shorter than

this. As each magnetic tape can accommodate approximately 1400 blocks

of 129 words each, and assuming that the average length of a file will be

in the region of 10 blocks, the directory will have to be of sufficient size

to accommodate about 140 file names. At nine words per file a diréctory -
ten blocks in length would be required.

A buffer for a directory this size could easily be accommodated
within the core configuration without the need for segmentation. If
necessary, an area in core already occupied could be utilized by the directory
by using a swapping procedure in which the active area is first saved on
DECtape before reading in the directory, the active area being reinstated

after the directory has been used.

7.6.4, Additional Directory Information

In addition to information regarding files it would also be necessary
for the directory to keep a record of the next available free block on the
tape and the next free location in the directory buffer. This would
simplify the process of saving new files on the tape, as a record of where
the file was to be added and where in the diréctory buffer file data was to

be stored, would be readily available.



138

7.6.5. Directory Handling Routine

The directory area is likely to be read from and written to more
often than any other section of the tape because of .thé need to seai:‘cl"l for
files and append new files. It would therefore be preferable to have it
located as near as possible to the beginning of the tape, thereby reducing
searching time. .

Blocks 1 to 10 of each DECtape were therefore selected for the
purpose of holding the tape directory.

The position of the butfer used for holding the directory when
read into core would be dependent upon the core requirements of the rest
of the monitor system. There was, however, sufficient room to locate
the buffer in addresses 5000 thru 7400 of field 2, avoiding the need to have
a segmented directory system.

A routine was therefore written to perform the task of reading
or writing the directory area from tape to core or from core to tape of
either DECtape drive using PAL III assembly language.

The routine is called as a subroutine using a pointer located within
zeropage of field 2 but first requires that the accumulator and link be set
up to define the unit required and the direction of transfer in the foilowing
manner :-

UNIT 0 set accumulator to 0000

UNIT 1 set accumulator to 4000

Read directory into buffer, set link to 0

Write diréctory on to tape, set link to 1

Fig.44 shows an example cf the use of the subroutine from other

routines in the system.

7.7. The Interrupt Processor

Operating system communication must take place through the
keyboard and printer of a terminal device, which requires an interrupt
processor for efficient use. The only other device requiring an interrupt
service, is the power failure protection optiun of the system, the DECtape
controller used being a non-interrupt driven device.

Any external interrupt from a device connected to the interrupt

skip bus causes the current program operation to be terminated and the



139

CLA CLL  /Set acoumulator and link to zero so as to
/reed the directory into the buffer from
/DECtape unit O

DRCTRY /Call directory subroutine

V4

evecs _ /

sasee o/

evess /

eoseve ./bperate on directory and files

ceees /

sesse /

coess /

coces /

CLA CLL CML /Set accumulator to 0000 and link to a 1 so as to
/write the directory frum the bufferto DECtape
/unit O 5

DRCTRY /Call directoiy subroutine

CLA CLL /Continue

Figure 4., Example of the use of the Directory Handling Routine




140 ,
equivalent of a subroutine jump to address 0000 of field 0 to be executed,
the next sequential address in the terminated program being saved in
location 0000.

For efficient use of the system, it would be necessary for all systems
software to use one core resident interrupt processor. However, this would
involve restructuring FOCAL systems softw are to make use of such an
interrupt processor. Also making the interrupt processor available to all
other systems software would increase the possibility of corrupting the file
handling system and in particular DECtape transfers.

It was therefore decided that the interrupt processor should be
specific to the file handling system.

When linking between perhaps the FOCAL interpreter and the file
handling system, it would be necessary to change the address pointer of the
interrupt processor, held in location 0001 of field 0, so as to select the
corre'ct interrupt processor. Alternatively, the interrupt processor could
be made to reside in the first two pages of field 0. This would require that
the interrupt processor for the mo-nitor was placed in core whenever the
monitor was in operation, and the normal zeropage pointers etc. to be
resident when any other system program was operational. Such a tec;hnique
would enquE_e that the interrupt processor was never available to othér programs
but would require the transfer of dafa to and from tape. Although data -
transfer are open to corruption, they would be checksum protected. The fact
that it would be the interrupt processor which was corrupted first would make
it difficult to enter meaningful commands into the system thereby giving ‘an
early indication of transfer corruption, avoiding the loss of valuable pzrogram
files.

It was therefore arranged that the interrupt processor should be
placed in the first two pages of field 0 whenever it was core resident, and
saved in blocks 11 and 12 of the DECtape on unit 0 when not core resident.
Before reading the interrupt processor into core, the program already resident
would have to be saved, this being accomplished by writing the first two pages
into blocks 13 and 14 of the DECtape on unit 0.

The following sequences would therefore have to be employed when

using the system:-



144

a. Loading a Saved File into Core

1. Save interrupt processor in blocks 11 and 12
2. Load the program file from tape
3. Save program occupying pages 0 and 1 of field 0 in

blocks 13 and 14

4, Re-load interrupt processor back into core

b. Executing a Loaded File

1. Save interrupt processor in blocks 11 and 12
2. Re-load blocks 13 and 14 into pages 0 and 1 of field 0
3. Execute program

c. Returning from executing a Loaded File

1. Save program occupying pages 0 and 1 of field 0 in
blocks 13 and 14

2, Re-load interrupt processor from blocks 11 and 12

3. Continue monitor operation

d. Saving a File )

1. Save interrupt processor in blocks 11 and 12

2 Re-load blocks 13 and 14 into pages 0 and 1 of field 0
3. Save whole program on tape

4. Save pages 0 and 1 ir. blocks 13 and 14

5 Re-load interrupt processor from blocks 11 and 12

e. Starting the System from the Console

1. . Save pages 0 and 1 in blocks 13 and 14
2, Load interru:pt processor from blocks 11 and 12
3. Continue

This type of system would also require a record to be kept of where
the interrupt processor was at any particular time so that in the event of an
error condition occurring within the monitor, the interrupt processor could be

re-loaded if necessary.



142

7.8. Structure of the Command'Decoder

An essential feature of a file handling system is that a user
~can manipulate files by using simple commands which can be entered into
the system and executed immediatgly. .

In view of the experience gained with FOCAL it was decided
to develop the system' using the techniques employed for the dire'ct
interpretation and execution of FOCAL commands. Input charactersfrom
the terminal device are therefore first loaded into a command input
buffer until a carriage return charactér is received which signifies the
entry of the command into the system. The command string is then
decoded directly from the command input buffer, utilizing the sort and
branch routines for linking to the subroutines associated with a particular
command. |

Errors in input command syntax and hardware faults when
detected cause control to be transferred to an error recovery routine.
This routine causes an error code to be printed out which can be used witha
look up table to determine the nature of the error. Fig.45.

1
v

4 7.8.1, Command Structure )

The basic command syntax has been developed in a form sirmilar
to that used in the 0S8 for language compatibility purposes. The commands
therefore have the following format:-
COMMAND DEVICE : FILENAME . EXTENSION .
COMMAND  is one of the set of commands which have been
included in the system described later.
DEVICE is the code name of the magnetic storage device
upon which the required file, FILENAME . EXTENSION
resides; As there are only two devices available,
these being the two DECtape drives, the code names
DTAO has been assigned to drive unit 0
DTA1 has been assigned to drive unit 1
FILENAME is between one and six alphanumeric characters long,
| starting with an alphabetic character
EXTENSION is a two character file identifier to denote the type
of file being‘dealt with



Error Code

0000
0174
0200
0262
0334
0354

0416
0430
0L75
0511

0621

1650
2222
2224
2250
2301

2302
2303
2315
2326
2334
2336
2641

2664

2717
2722
2723
2732
2734
2742
2745
2746
2756
2757
2772
3001

143

Diagnostic
Restart from console
Input buffer overflow
CTRL/C
Illegal command
Select or write lock error on DECtape
No FOCAL/SUPER-B codes on DECtape. Try another tape
DECtape error during transfer of interrupt processor
DECtzpe error during transfer of interrupt processor
Read,write or select error on DECtape during block search
Read,write or select error on DECtape whilst in check mode
Storage filled by pushdown list
Command input buffer is full’
No device has been specified
No device has been specified
Illegal device name
Filenames cannot start with a "D"
Filenames cannot start with a."D"
Filenames cannot start with a "D"
Too many characters in filename
No "," after filename
Filename extension must be two characters
Filename extension must be two characters
Not enough room left on DECtape
Read,write or select error during SAVE command
"," missing after BN extension in SAVE command
Field should 5e a single character
Field should be a single character
", " missing between field and starting address
Starting address should be in octal
"," missing after starting address
Number of blocks should lie in range 01 to 99
Number of blocks should lie in range 01 to 99
Number of blocks should lie in range 01 to 99
Number of blocks should lie in range 01 to 99
File specified in FIND command is not present

File specified in ERASE command does not exist

Figure 45. Error Diagnostics for File Monitor System




Error Code

3154
3160
3201

3206
3226
3245
3270
3,05
3420
3475
350k
3602
3610
3617
3633
3643
3662
3705
3113
3727
3753
3767
3770
Lo017
4231

4260
4,261

1267
L7y
4301

L375

144

Diagnostic .
Read,write or select error on DECtape during ERASE or COPY
Read,write or select error on DECtape during ERASE or COPY
Attempt made to copy non-existent file
Missing "<" in COPY command
Filename already exists on specified device
Not enough room left on DECtape
Not enough room left in Directory
Non-octal digit in field designation of RUN command
Non-octal digit in starting address designation of RUN command
Command must be terminated with RETURN
":" missing after.filename .
File not present for LOAD command
Only .BN,.FR, or .DA file extensions are legal
Too many blocks in PR or DA file
FR file cannot be accommodated in FOCAL text buffer
Read,write or select erroron DECtape during LCAD coﬁmand
DA file cannot be accommodated in FOCAL variable area
Filename already exists on specified device
Directory is full
Illegal file extension ¢
Read,write or select error on DECtape durirsg SAVE coamand
HELP commond must be followed by file number (O-to 9)
HELP command must be followed by file number (0.to §)
HELP file not present on DTAO
Checksum error during WRITE or ACCESS command
Field should be single octal digit in WRITE or ACCESS
Field should be single octal digit in WRITE or ACCESS
Only fields O or 1 are allowed in WRITE and ACCESS
Incorrect character in starting address of WRITE or ACCESS
Incorrect character in number of data transfers for
WRITE or ACCESS
", " missing between arguments of WRITE or ACCESS‘

Figure 45, Continued




145

The delimitting characters ™ " , " :%" /" " mustbe présent
within the command string as with FOCAL.

Internal subroutines used in the decoding and execution of the
commands are given in Fig.46 which also lists the routines which are
identical with those used with the FOCAL interpreter.

All internal subroutines have been created using the PAL III cross
assembler system available, the list having been included on microfiche.
Supporting documentation in the form of flowsheets is included in

'Appendix E, Fig.47 being the core configuration of the monitor system.

7.9. System Commands

The following section is concerned with the facilities which have
been included in the system and the methods by which they have been
implemented.

Examples of system use are also provided in Fig.48 which is sme

of the HELP files produced to provide users with system information.

7.9.1. _IEE/CTORY

This command has been designed to give ak complete listiné. of all
the file information available within the directory of a magnetic tape.

The output from this command is as shown in Fig.49 and it is -
achieved internally by using the "trace" facility which has been made available.
This particular facility is the same as that used in FOCAL whereby two
flip-flops are used. If both are zero when a character is reassembled from
text, the character is printed at the ccnsole device. The file names are
stored in the directory initially as stripped packed ASCII characters and have
to be reformed using the internal routine GETC whivch uses the output text
pointer to pick up the characters sequentially. With the trace facility
enabled, each of these characters is reprinted after it has been reassembled.

The parameters associated with each file are from left to right
(Fig.49) '

1. File starting block, i.e. the position on the tape at which the

file can be located. This number is printed out as a
four digit‘ decimal number using the‘internal binary to

decimal decoding and printing routine PRNTLN.



146 _
2. The number of blocks on tape completely filled by this
file., This is also printed out using PRNTLN and is
therefore a 4 digit decimal number.
3. The number of words used by this file in thé next block.
Four decimal digits using PRNTLN. | ‘
4, The address in core from which this file was saved.
It is a four digit octal address printed using PRNTOCT.
5. The field from which the file was saved. Four octal

digit numbers printed using PRNTOCT.

- 7.9.2. SAVE Command

Facilities will be required for saving three types of files from
core on to a magnetic storage device. |
1. FOCAL Program Files
2. FOCAL Data Files
3. Executable binary files of either FOCAL system software or
- other binary software.
a. FOC.;\L Program Files
In the 8K version of FOCAL, programs are held in field 1 ipf

memory in stripped packed ASCII form, lines in the program being linke:d
together by the use of a pointer system. -
There are therefore two possible ways in which files could be saved.
Either the entire users text must be saved as an image file to be reloaded
into the same place in core when required, or .alternatively, use must be
made of text output routines to load rcformed ASCII characters into a
buffer which may then be saved on tape. The reverse précess would then be to
read from tape into a buffer and use the text input routines to read fxrom the
buffer and repack the character in FOCAL program format.
This second method would provide a large degree of flexibility
allowi ng users to save groups of lines or single lines or whole programs with
the possibility of an overlay file system upon reloading. It was however
decided that the organisation of such a system would require a large amount of
modification to the FOCAL interpreter as well as the provision of a segmented
buffer system for the transfer operations. |

The first method was therefore chosen as being a compromise.

between flexibility and ease of implementation. By séving the whole of the -



147

program text currently in the text buffer, the reloading of any program
file will cause any previous information in the text Buffer to bé overwritten.

The PR extension was adopted for FOCAL program files and is
used to denote that an area of core from 0100 in field 1 is to be saved as
this is the starting point for FOCAL program text storage. The length
of the file has to be détermined by examination of the current end of text
pointer in the FOCAL interpreter. The number of words required being
~ converted into whole blocks and a single block containing the remaining
number of words not accommodated within the integer number of blocks.

" This data is used to update the directory of the particula.r device

upon which the file is to reside.

b. FOCAL Data Files

Again, a procedure as described for FOCAL Program Files could
have been adopted for the data file. |

However, for reasons of simplicity, a system was adopted whereby
the current data available in the symbol table is saved as a whole on the
DECtape using a filenane extension of DA. .

The length of the file and position in core in which it resides is
obtained by an examination of the FOCAL start and end of variables.pointers.
The file :is saved and the directory is updated. B

The versions of the SAVE command used for FOCAL program and
data files are therefore .

SAVE DTAO0: FOCLGM. PR

SAVE DTAO0: FOCLGM . DA

~and they cause automatic saving of program and data files.

c. Binary Files

It was assumed that any user who wanted to save binary files
would first have written the executable binary program and thexefore have
a’good working knowledge of computer operations.

It was therefore arranged that Binary files, whethexr FOCAL
system sof tware or other software would be saved as direct core image
files to be reloaded back into core in the identical position. The saving of
such a file would also require the user to specify the length of the file and

the position in core from which it should be saved. '



148 | | -
The format of the command for éaving binary files is therefore:-
SAVE DTAl1:BINARY.BN,H,I,JK
where H is a single octal digit field setting-
I is a one to four octal digit address from which the .
binary file is to be saved.

JK is a two decimal digit number, designating the number

of whole blocks to be saved.
Binary files are saved as consecutive locations in core and can
traverse across field boundaries. This allows a FOCAL system to be saved

as a 64 block binary file,

d. Monitor System Saving

A facility has been included whereby the monitor system can be
saved on DECtape. This was though* to be a necessary facility of the system
as it allowed minor updates in system software to be accomplished by toggling
in new instructions from the computer console. As a bootstrap loadér is used
(see a later section) this particular facility always ensures an up to date
operating system., "') .

The format of the command is simply

SAVE -

and the system area of core, i.e. the whole of field 2, is

automatically saved in blocks 20 through 52 of the DECtape in unit 0.

7.9.3. LOAD Command

All the files saved using the SAVE command are core image files
which in general must be loaded back into the same position in core from
which they were saved.

FOCA‘L Program files and binary core image files are therefore
loaded into core from tape into exactly the same position.

With FOCAL Program files, a check must first be made to see
whether the FOCAL text buffer is of sufficient length to accommodate the
file. If not, an error code is issued. If the buffer is long enough, the file
is loaded, and the end of text pointer .in FOCAL adjustéd accordingly.

With FOCAL Data files, it would not be convenient to load the file
into the exact position from where it came. It must be loaded into the

position of the current variable table.



149

Checks must first be made to determine whether sufficient
space is available. When the file has been loaded, the end of variable
bointer in FOCAL must be updated accordingly.

The versions of the load command are therefore:-

LOAD DTAO0: FOCLGM . PR

LOAD DTALl: FOCLXM . DA

LOAD DTAL : FCLVOIL. BN

7.9.4. ERASE Command

An ERASE command is required as a housekeeping faciiity so that
- unwanted files can be deleted from the DECtapes and the space recovered' for
new files.

This could be done in either of two ways:- '

1. 'By adopting a procedure of immediately recovering the space
occupied by the deleted file, files below the deleted file
being siphoned upwards and the directory modified
accordingly. New files can then be saved automatically
at the end of the current files on tape.

2. By adopting a procedure similar to that used in the 0s8
system, whereb'y files deleted from the DECtape leave
spaces which are then filled with new files when created. )

This second procedure would require that when a new file is created,
all of the empty spaces on the tape would have to be examined to de‘termine
which of the spaces was most suitable for the file in question. Empty spaces
too small to accommodate files would be inevitably left, requiring the use of
a special command to eventually recovér any embedded inter-file spaces.

| Quite sophisticated file saving procedures would have to be employed
in order to perform these tasks. ‘

It was therefore decided that the first method would be used thereby
simplifying the procedure of file saving, but increasing the time required for
file deletion because of the siphoning procedure required.

' File siphoning has been accomplished by use of the area allocated to
the directory buffer, ‘ten blocks being read into core from the area occupied
by the file and then written on to the DECtape into the new area. This cycle

is  continued until all the files have been moved and the space recovered.



150

The format of the ERASE command is
ERASE DTAl : OBSLET . BN

7.9.5. RUN Command

As the file handling system has been developed essentially for
the purpose of saving and recalling FOCAL programs, the save and load
commands have been developed purely as file manipulation routines. After
the use of these commands, control remains within the monitor system.
There was therefore a need to provide a command to enable programs to be
executed. In the case of FOCAL programs, this meant starting the FOCAL
interpreter at address 0200 of field 0.

For other executable binary files created by experienced users,
a command was required to start the binary program from any specified
address within core.

A RUN command was therefore incorporated into the system so as
to cater for the above requirements. The following formats are allowed:-

R A

This format transfers control to 0200 field 0 and is the version
of the command included specifically for the purpose of running the FOCAL
interpreter. '

In conjunction with this,an extension of the QUIT command has been
provided in the FOCAL interpreter in order to return control back to 0200
field 2, the starting point of the monitor system. The QUIT command has

the format

Q [ ]

.The other versions of the monitor RUN command are:-
R, A . - (1)
R,B,A. ..(2)

where A is a 1 to 4 octal digit starting address
B is al to 4 octal digit field setting.
Version (1) assumes a field setting of 0 whereas version (2) provides

the facility of totally defining a starting address.



151

7.9.6. COPY Command

The COPY command was included in the system in order to extend
users file manipulation capabilities. Instead of files having to be loaded
into core and then saved with existing commands, the COPY command
utilizes the ten block directory buffer to make a copy of an existing file
on the same DECtape or on another DECtape. If the copy is made on the
same DECtape, a new name must be allocated to the file. If, however,

a different DECtape is used, the same file name may be nsed. The system
therefore allows important program files to be saved on a master tape,
’ providing a safe copy in the unlikely event of system corruption.
The format of the command included is
COPY EXISTING FILE < NEW FILE
eg. ~COPY DTA0:FILEL1.PR < DTAI:FILE 1.PR
7.9.7.  FIND Command '

A FIND command was included so that a DECtape directory could
be examined to determine whether a named file was present, without the need
to print out a lengthy directory of the file. ‘

The command uses the internal directory search routine fé)r the
.purpose. If the file named is not prese..t on the selected device, an error
code is printed on the terminal device. If the file is present, the system -
returns to await further commands, no error code being printéd.

The format of the command is |

F DEVICE : FILE : EX

7.9.8. ZERO Command

This command was included within the system mainly for
initializing DECtapes to conform to a format specifi-d for the system.

G®ntrol words have been included within‘the directory heading of
the system so that DECtapes used for other file handling s ystems (OS8)
cannot be read. The ZERO command is used to set up the control words at
the beginning of the directory to clear the directory and to set up the first
block from which files may be saved. Files are saved from block 70 onwards,

the initial blocks on each tape being retained as a system area.



152

The form of the ZERO command is

Z DEVICE

This command will return wifh a ? and wait for further input p
from the user. .

CTRL/S or CTRL/F will result in the device being zeroed, any
other reply causing the command to abort, thereby affording some degree.

of protection for the inexperienced user,

7.10. Special Monito» Commands

-7.10.1. | HELP Command

In order to provide users with system information, it was thought
to be necessary to include a command whereby users could obtain a brief
guide to system operation. Alternatively, users could provide information
about *he running of their own files for other users. o

This could have been accomplished by including an ASCII'data
handling facility within the monitor system, data being initially stored in
a buffer, written as a file on to DECtape and then "replayed" when required.

An alternative procedure would be to allow direct running of a
FOCAL program from the monitor system. The information file could then
be created in FOCAL and the whole of the FOCAL interpreter and program -~
saved as a binary file. With suitable extensions to the monitor system, the
binary file could then be executed from a single command within the monitor.

The second method although requiring the saving of the FOCAL
interpreter for each HELP file produced and hence a slightly inefficient usage.
of magnetic storage, would provide a simple and flexible compromise by
utilizing facilities already available with MONITOR system.

HELP filer are therefore created by loading FOCAL and creating
an information file as a FOCAL program. The whole of the FOCAL
interpreter and program text is saved as a 64 block binary file on device DTAOQ
using the SAVE command. The file names for such files are HELP n . BN
where n is a single digit in the range 0 to 9.

The binary file can then be executed using the command

HELP n

where n again defines the HELP file number.

Automatic loading and execution ‘wag accomplished by use of the



153

internal routines of the monitor.
Fig.48 shows one of the HELP files which has been created to

. provide users with information about system operation and commands.

7.10.2. Interprocessor Communication

The development of an interprocessor buffer, uéing M series I/0
modules available for the PDP 8E and the buffered accumulator facilities
availei.le in the PDP8, made it possible for accumulator to accumulator
transfer to take place between the two machines.

Unfortunately the system requires the accumulators of both
machines to be available for transfers (non direct memory access),
programmed data transfers woula therefore hold up the operation of an
existing program, even if the system was driven under interrupt.

As the PDP 8E has to act as a controller for the DECtape
transfers, synchronous data transfers from tape to PDP8 via the PDP 8E
would be virtually imbossible because the PDP 8E };as no external clock,

This would make it difficult to incorporate the PDP 8E/DECtape system

into a dual processor Real-Time FOCAL operating system. The use of the

machines in this fashion would require the development of extremely"

sophisticated software. '

| It was therefore thought that they could be best used as a storage ~

medium for all FOCAL software used on the PDP8 and the PDP 8E. Such a

system would require handlers for the interprocessor buffer to be resident in

both machines for transfers in both directions.

As the PDP8 has only a minimum amount of free core space

- available, the PDP 8E file monitor system was chosen as the controller for
the proposed system , using a slave loader program in the PDP8. As magnetic
storage would effectively replace the need to use paper tape storage, the
slave program in the PDP8 could be made to occupy the area of core normally
associated with the Binary Loader. |

As the PDP 8E cannot control data transfers between itself and
the PDP8 concurrently with DECtape transfers, a buffering system would be
required. . ‘

This could be achieved either by using a small buffer, transferring

perhaps ten blocks of data per time or else by using the whole of the lower



15k
" 8K of core in the PDP 8E and creating a duplicate core image in the 8E of

programs in the 8.

This latter method was selected because of the ease with which
it could be implemented. Routines already available within the monitor
sysi:em ‘are used to save the core image on the DECtape once the transfer
process had been completed, .the reverse process being achieved by
reloading the program into core and transferring the core image back again.

The disadvantage of such a system would Be that any program
resident in the lower 8K of the 8E would be overwritten and require reloading.
This would however produce little inconvenience as all system sof{:ware would
be reloadable from the magnetic tape using the monitor system.

~ Thus it was decided to implement core image transfers using

programmed data transfers rather than interrupt driven data transfers which

would have required significant modifications to the interrupt processor.

710.2.1. WRITE and ACCESS Commands

The WRITE command causes a core image transfer from the PDP 8E
to the PDP8 and has the following format:-
WRITE , X, Y, ZZZ2Z

where Xis the field of transfe: only fields 0 and 1 being allowed

i

i

Y is the address within the field, from which the transfer -
is to start F
ZZZZ is a1l to 4 octal digit number used to dzfine the
- number of consecutive locations to be transferred.
The maxﬁnum size of data transfer which can take place at any one
time is 4K of memory, achieved by setting ZZZZ to O.
For transfers in the reverse direction, the ACCESS cox}mmand is
used. ]
_ACCESS , X ,Y, ZZZZ
Both of these commands must be used in conjunction with a
Special Loader written for the PDP8
Each time a data transfer is requested by using either the WRITE
or ACCESS commands, the PDP 8E sends four initial data words to the‘ PDP8
via the interprocessor buffer, the field, the starting address, the number of
words and a switch for the direction of transfer. During the transfer, a

two by 12 bit checksum is calculated in both machines. These are checked



155

against each other at the end of the transfer process by sending both of

the twelve bit words computed in the PDP8 to the PDP 8E. The words '
are then compared with the two words computed in the 8E ; non-corres-

pondence produces an error code at the monitor terminal device.

The special loader in the PDP8 resides in the area of core
normally occupied by the binary loader ,i.e. page 37, field 1. It may be
initialized by starting from the computer console in which core control
remains within the loader after the data transfer.

An alternative procedure to facilitate the use of the interprocessor
buffer trom FOCAL, an extension has been made to the FOCAL ERASE
command to transfer control to the loader program.

' VThus the FOCAL user may type

E E

at his terminal and control will be transferred to the loader.

- After the data transfer has been completed, control is returned immediately
to the FOCAL interpreter.

Fig.50 shows an example of the use of the WRITE and ACCESS
commands for loading the FOCAL system and program stored on DECtape into
the PDP8 and also the methods by which FOCAL programs running on the PDP8
may be caved.

7.11, Bootstrapping the System

The system was developed using a cross assembler in the ICL
system 450 computer (parts in the OS8 operating system using Symbolic
Editor + PALS8) and therefore exists initially as a paper tape binary program.
It is therefore necessary to load this program with the binary loader and
then save it on the DECtape in the system area automatically. This has
been done and in the initialisation of the system, the system area is saved
in blocks 20 through to 52 of the DECtape on unit 0. The interrupt
processor is also immediately written into blocks 11 and 12 of the DECtape
on unit 0.

As the system is present as a file in a DECtape, it would seem
sensible if the system could be loaded from the tape direlctly once the éystem
"has been built rather than having to use paper tape versions. The set of '
instructions shown in Fig.52 isthe bootstrap loader for the system, and is

used to load in a much larger bootstrap loader, stored in block 0 of the tape



" on unit 0. This maxi bootstrap is then used to load in the system from

tape, providing data transfer error detection by use of checksums.

This maxi bootstrap is saved in block 0 when the system is initially loaded

from paper tape.

Fig. 51 shows the configuration adopted on DECtapes for the

allocated system area.

7.12, Program Chaiﬁing Facilities provided by the system

The methods which have been employed in the development of the

Monitor system and also the FOCAL configuration used (see Chapter 4)

allow stored FOCAL program modules to be chained together.

For example, if a lengthy program is required, it may be split

up into a data initialisation section, computation section and an output

section in the following manner:-

# L DTAO:PRDAIN.PR
#R

200.00
e

*Q .
? 0000

# L DTAO:PRCOMP.PR

# R

200.00
x3

*G .
20000
# L DTAO:PROPUT.PR
#R
? 00.00
*G

Load initielisation program
j

FOCAL entered.
Input of data
Return to monitor

Load computation program

FOCAL entered

Data analysis program
Return to monitor
Load output program

FOCALL entered

dutpat of data



Similarly data tables could be created by using an

initialisation program, and then stored on DECtape for use at some

later stage, e.g.:-

L DTAO:PRDAIN.PR

#R
2 00.00
*G

*Q .
? 0000
#+S DTAO:DATF2.DA
=R
? 00.00
*G

*Q .
2 0000
+# S DTAO:DATF3.DA

H

Load date input program
Run program

FOCAL entered

Enter data for first file
Return to monitor

Save data file

Re-run for next file
Enter data for second file

Return to monitor

Save data file



158

This particular feature al though somewhat cumbersome and
not quite as convenient as a direct program chaining facility implemented
via calls within FOCAL does, in fact, make the system particularly easy
to use. Its simplicity ensures that all users know exactly what is
happening and can easily control operations for the selection of the

correct program module.

7.i3. Discussion

The system developed has been used extensively by Undergraduates, |
Postgraduates and members of staff within the School of Chemical
Engineering, |

As yet, no major defects have been-encountered when using the
system and the time required to become conversant with system operation
is minimal. It would also appear that most of the aims and objectives set
out prior to the development of tl';e sysitem have been achieved.

One of the major advantages of the system is the ease with which
extensions can be provided to the system. Minor modifications can be
corrected by inserting in the new sections frora the computer console, the

system then saved using the special version of the SAVE comumand.



us3skg J03TUON STTJd oY3 Aq POsN S8UTINOY TBUISIUI °gh eand Ty

J038TNUMOOB 8Y3 UT PToY ST YOTUM

Jaqunu Y00Tq ayj IoF 3Tun usaTd B Jo ad®g 8yj3 seyoseag

4L puB €| sjoorq wmoxF | pue O se3dsd saaxojsox
03 pus O 3Tun uo od®31)Hd JO 2L PUB L} S}00Tq UT xosssooad
3dnaaejutr syj aABs 03 WL LMY Pue ZLLLMY SSUTINOI oy3 sds()

2} pus || sioorq woxy xosssooad jdnaxsjut 8y3j

2103591 0% pu® O 3Tun uo 8de39EQ JO Wl PUB €| SH0OTq UT O PISTS

-

Jo | pus o sodud eA®s 03 HI{IMY PUS ZLLiMY SOUTINOX oU3 sos

ma3sAg J03TUON STTJ 9U3 JO Josssooxd

159

3dnaaequT sy} oABS IO 8I0388I 03 JI8PIO0 UT O 3Tun uo ade3nuq

Jo 2| pus || &300Tq O3 FUTITIM IO WOXF FUTPBOI JI0F POS)

0 PTSTF JO
| pue O seFed eABS IO 8I03§9I .04 JI8PI0 UT O 3Tun uo adeg g

Jo Hl pus €| sYo0Tq 0% JUTITIM JO WOIJ FUTPEOI JQF DPOS[)

*EITEM® V=MNITE Qvad ¢ O=INIT L 3Tum’ 000%=gv: O 3Tun‘ Q=0v
°duTinox ey3 Jurrrso 03 Jotad 3es oq jsnu

FUTT PUB JO3BTNUNOOB OYJL°ISJING £AI0308ITP H00Tq O} 9Y3 JO 3no
JO 03UT 90TASD PaTyTtoods B JO L£X0309JTP 9Yq 93TIM JO PBOY

uoT3oung

1

BNALLX

domMsEy

X4IoYa

eouanbag JUTTTB)

HO¥YVES

SNINYEL

AR |

(22371

Wigimy

QIIq

suUTINOY [BUI83UL




160

psnuTiuUO) *gY eansdtTyg

*JOPJIO 300JI00 8Yj} ur s3TITP sYj3 3no squtad useys pus ~

Jequnu TBUTOSP 3TSTP % B O3UT SIIN{ UT J0 J03B8TNINOOR

oYy3 UT J8U3TO PTOY‘pIom LIBUTq 3Tq Z} B SP0OSP 0% Pos|

TVd04 ut
TVD0d Ut

sy
sy

TVo0d Ut sy

.nohmnwnp ayq SUTJND PSIINO00 SBY JOJIId UB 3BU] S93BOTPUT

9UTANOJ STY3 WOJJ WIN3d8I 38ITJ°OUTInoa sTY3 Sutasjus o3 gotad

TVO0d Ut
TY00d UT
V004 Ut
T¥O0d UT
Y004 Ut
YOOI UT
Y004 Ut
TYI0d Ut
TYO0d UT

_dn g9s sa® sa938WBIBJ*SIdJsusa] adB3HIQ FUTTTOIJUOD JIO0F Pos(]

sy
sy
sy
sy
sy
sy
Y
sy
sy

PaImoo0o YyotTym IoFsusaj odsey 38BT 9Y3

Jo0y adeyngq JO S3U93UOOD 3SUTBIB 9J0D JO S4US3UOO 9897

uoT3oung

i

NTINEI
OINT¥I
- oQvEy

0IED

LAV
LI¥0S

JHSd
LHSA
VHSI
0LY¥0S
OLSEL

9114

pitecize]

aousNbag JUTTTBYH

INYIX
N0
NTIHD

2QAT
€140
IDINT
‘A
2
CHSOAX
VHSOAX
0I¥0SX
0ISHIX
9TIEX

ADEHIL

8UTINOY 1BUIOFUT



161

penuTauUo) °g% aanITg

£40J ® SuTsn speuw ST UM3ed PUB JOJ POJSOF I8 SI03BUTHILG

PUBLWOO 7081J00°008dE B J0J 8POD 9yl 0} 488 OX8 JOJJNq OYJ UT

19408180 FuTUTBUAI 6U3°‘YliSUsT UT SI830BIBYO XIS UBY] SSOT

ST SWBUSTTJ ® JI°*pIom aod omg peqoed aa8 SI9308J8YO puB JUOT
§paoa % ST I8gynq VYL °WINGTI I8FJnq Y3 UL Wﬁ Futaogs pus 3x0%
ndut ayj3 WOJIJ UOTSUSIXS PUB SWBUSTTJ OY3 JUTUTBRQO JOJ Pos(

SUT3NOJX YOUBJIQ PUB 3JI0S B8 UT POSN USY3 ST

YOTUM 9pOO YSBY B WJIOJ 03 PAsN 6J8 LYIQ PUB OVIQ Sepoo syj,

. °} 3Tun

$309T8s LVIQ U8 O 3TUn S309T8s QVIQ OFTMadY30‘Do3oaTas
ALTTvoTgBWOINE ST O 3TUN ‘3x93 oYj} UT POTJToads ST 80TAdD ou JI
*qaxeq qndur ey3 £q peTFToads aoTasp 8yz dn Furiotd aoF pesq

sutgnoa BurTpusy odwv3nIg U3 I0J sxsojsuwsaed eyz dn 39s 0%
wayy sosn puv 3STT AI10300JTp oY3 woxJy saegemsasd oTTy dn sioTd
TVD0d Ut sy

TVi0d Ut sy

TV00d Ut sy

TV00I Ut sy

SUOT3BOTFTPOU JOUTW M8F B YJTM TV[,0f UT SV

TVO0d U¥ sy

uoTgoung

!

TIILID
LHSd

JOTAIA

YISTIA
fdod
NISEL
YONLS

qouyx
AoVd

aousnbag JUTTTBY

TILIIED

d0Ad

YISTIIL
304X
NISEIX
YONJ SX
LNy
OMLY
Jd0goVd

eUTINO0Y [BUJIOFUT



162

1

penuTiuoy) *gh aamdTg

uexB]} ST 3TXS JOILID

U8B pUNoOJ 30U JI °*uInjax 938TIIBO B JOF nmwompmno B §989]

WAAON UT 3T §8X038 DUB sseapps TITP T8300 4 03 | B UT spesy

Jaqunu TB300 3TITp 4 ® €8

SIINAQ UT J0 JO3BTNWNOOB ©Y3 UT J9Y3Te PTOY J9qUNuU B SIUTIJ

ueyB] oq TITM 3TX® PUOOSS BY3 PUB 082 9q

TTT# Je3unoo ay3‘ Jutygou o3 qurod TTIM HIuX‘saezsuiaed oTTJ
oyg 03 jutod TTTM GIYX‘PUNOJ ST STTJ 8Yj JI°USBY 6q TTTM
3TX® 38aTF 8U3‘H- 03 385 8q TTTM YIND JI93UN0O 8Y3 pue JYINGTd
03 gutod TTTA HIuX‘asJyngq £I0408aTp ut soevds oTqBTTBAB 3X8U
03 gutod TTTM GIYX‘Punog j0u ST STTJ oY} JI*WINGId UT PISY
ST suBU osoyM 9TTJ B8 J0F adelQu@ B8 JO AJI0300JTP 9Y} SOYOIBEG

punoj 9JB SJI930BIBYD OM3
JT ud¥B3 ST UIN}8I Pug ‘punoF ST JI04BUTNJISE} B PUB I98308I8(O
oT8utrs B JT u&{B]} ST UIN}6J 93S| °*Yoasdss o[TJ ® 03 JoTad ¥IngdTd

ut SurJo3s J0J 94xXe3 3ndur woxJ saojovxeyo omj dn soTd

uoT3oung

—

YOLSEL

2¢10 I SHe

LOOINYL

HOYSTd

sousnbeg JUTTTRBYH

NI¥VIL

Vs

LNEJ LDO

HOUSsX

SMILTLHED

SuUT3noy [BUXe3uUl



DenutTau0y 9y eandtd

*£10308ITP ©Y3} UT punog sT STTJ oY} JT usye3 ST

3TXe puooes oYy, °A£10308aTp 8Y3 UT punoj 3o0u sT OTTI oYy JT
uex®e} ST 3TX0 3SJITJ OYJ°oUWBUSTTJ PoTJToads 8yj J0J PoYOIBOS
usyl ST hﬁopumnw@ sy a9 Ijngq £I0909ITP 9UJ OJUT PBOI I0TASD
poammbaax sys Jo £x10408aTp ay3 pus 3x93 oy3 woxy dn psexotd ST

SWBUSTTJ 9L °x8jufs §36983 DPIv 3X09 WOIJ 80TASD poaTnbea eyy speey

uotTgouny

/

OAQTITI

eousndeg FUTTIB)

JTIOAA

QUT3N0Y [BUISJUTL



163

=%

jas]
oo e

aaa Do

a0 as

coag

a0

oA

2 gae0as

=g

v -2

ca

rnpelzE  as 809 <3 ea
Newo o
= oo
o N S
Aao Po ad | Wopmpw_w
= eRTAS o =a®1F
- s & .Beo fo &8 f o QkY
nemo  FHOR |
-0 o=
Faoc »U&P‘U =

O e SIESE Do N

v . =

. =

PV VO ,
K\ <Al

ro CO

Cyj

(Si

LT\ VO
M CM CJ CJ CM CM CM (M

_9-

«¢T\ VO r-- mS) T- CJ

P

™M

I~ 8

'T\ VO

Cy

CSip



164

fame aasa amal 8220 270 NU S ®e v
.o pae mela wOaa ¥ oaa w87 a xi* AV New o
caal amaa smaa FZ2aa Zoamae Nx' Somde
Vard U Ua aeal J00a T Ua Na® NexN ¥

walU wlSa wall T VU VaCC NOU* 20050

[CRPN

] A

3 antoy Fn ot anFas Cxalmo axtyx S % aQwl #aOMNU axov al e aec< &
Nt caNZ2aaQewemema o Xa N g N |22 @ P%Qacax U axa

I & ee 20 »>%0ncaxiov Can o T dav

" PV/MPG
9 Pq vew 20 »>%Qanax © wu. Ms

<r G G G

mzwA A A A oo .%
o Mo a s AAD

Bun¥d Oa o¥axwbB

ey 2000 %O %o He 200« m vasOa ml B wmaawx e
w288 a200xa ac Oa Mu %28 ONSsnmU alla Txacva N X B &
L amr commaa aXae o
e S VAN I § xOa < SaOMose 0 = 22O vXox2 aabt aad il ed 2t o
5 aamU amxsed N AN o ANaX w0 aXa aoede o A A A S Ms
N Ox il N anfix Zaoace O 2o &N o ®3HP3PP O~ ana Xm

P ™ o T

EBusSzuf% %0 w0z 03

ONV Oo & 29 a8z a8« Oz 205 zZ20 ¢ 20a 52800 420 & Vi o0



1é5

Eo =3a00s ) o Sz,

xsxxox"xoxxz.@zxeXxo,xx
O BVX xe % AN wxz ) oNow EBx0¥ xx x 88 xxz oz No xION wx NEU 9% xow
T  3AN KAD S Ke ONOC oS FREI' ®X %ol Ix 0« He ¥ %10 53 Bedx zOxIx TET
KE st A x e AuuPox Tt ®PxO Axx o
S NX o % X3X@ C33@
T oo

— o — o T -

Tuomoun % %EZ v BxsBE8 Toin & me ¥ O H¥Kx
wtl wn ZEN N ex Gaxzt 28< o ZEL %o woezmmox xiz oz % %8 8y «80 Bxe x i
we¥ Iz 08 xnI i OKNTN  KE  OCexx S5m ¥ BxAon oF v xNBNNoo ZF9Bxx S

z

New NOXX ®e % wx s8N SxFBxx vt wed wdT Bzx w
, KA < e K K
MOAD O % xx 8N Sx58xx TR T ANCI-E- TR
@ < oo K X3a.@ 033@
% 88w~

111111111111111111
X
£¢ mBooxm: T By o
kxxxal Ne % Bod® xBom oL
A e ANOK ¥
N NOK s eIk o BN §x 7 om vr mer % T80 W
1 TR B R
N VgAGnJ % OXNV N SoVem VX.XSMXnP«.GQ )
N oA AT cmm

O



166

W OER00, () ©mTE

mXLmLZoo MO HOXK o0 wNIO ¥ oN & el NoN U xxxmB Hxa

L0000 o
. Q/A
wFCOK Noxx %o NoN U XXXel ol NxwZxx OO0

SUNBNNGU Xeo %OXx o= B0¥xx onN 3 «F OO K
| |

+

VO VL ¢

A

%O

ool x

x Q

w0 B%0 ko«

N % 3¢GOX3num %O of

. VO o% Nea¥ «N % ¥ N I S e NVXE

ST e % w¥x30 ¥ Mo 3VBEY wx NVo wumm
Bz i wT% « Z0e ¥ Z SN > zNU X

VURD « §5PT © HegFoy No % s¥rcoxn ¥ New X
Mo S BT O MeB Noxn NixmOxX ¥ Nmx KAAR X
Mk COMEHOT F M % NOx¥ NTxTomx Nk AL

z .
wZXOX om0 8 ocmem¥

Ne %



167

=

o Oz 8
* | o3

& O

O O N

080

&)
n N &XT

v

UX e S

%I3 oz

Tn Roxx
CRYUECES

QU o0 =sx=
O o

BKUO Hx% UXewwS HRx-o0

W <RI

LOUwOU tmoNIUE0 o B xx USwN U
XX oD SV A L0 Rox eanN AxD S

80T 30  <0U0 = xo ofa&t
“Eo %o 8AXD o wN0Ux<U8 x«l &
o 2Bolo0 %xw2NI< L %K Cmemo @ U
AP xED w0l een N Vex x xEO s

©

o

hs8

co

®ox O
ON

9]

G O Ne NO =wX¥ho NYUSFE %xEU Sxnol
New N Med® sxmx & v SXeoS O u® oF 0x LI T00 8§
O Hen®ol wOandix woOOX © RXe=w$ S0 om¥ ¢ dGE @
O Neo NO «Oxx JUO¥® = SHe=zS xX.XSMm/AdGFH g
LA GNX ] zX.GS.HGm g
N NO Mo % FxoN X © Sxess O % =¥88 2.3 a<00 %
. NO % eUBY «oxNyE ~Buox B 358 BO K- 8
. el
7)) Nem No emOxa «Boox @ exenS8 = 8
8 ]
I
e — e P e
%# >BN Bxam w38 wend. 88 Bo tol. ONBNNU oK 5 %X, %8
EOY B MNZ o0
Baned oxxs U =X ED o SHB
O <O ~Ne X = GV3XGG .00
®OI nJ OB XED xox Uife xx OUZBN mex Ty oBUx=IO
MU O Nx NXOSH & HUT kx mm P EO< 5=* 3 w200 MxFO
N % o0 HexdBa vhs YOISKO wxx 0 8-k
KB 250 NOKKY 5 ewxdxx 8§ g
OXO% mm F0OU ROPF° xwo QU ON8 & xx0 HKHRONK No

New 00 %0

Na XX TOOXO

OCXW o0 Boo

O x%h N w B
CurOn X o0 20w B

=
* o
P@ vo %

OX % »



168

B—F QO Mo o<

HEH QM NEE HAx oD KO VenO N N eSO K Mo aNu

ZONDT 00 HMHUO0ewH N & U N MXoOUKK no ORBN M «OXSHUOKK UMaxXH¥O o = o]
A Mk X Ko MK O U Uk IM HED N HHKXoxMr X oZXHOOX I OSax®XEON %O y

paga & XxRE Xxs N OXoOx 80 S

NADB4E M m Ko w R X N S LXK e o o

—— | T o o

NO U ~n< o¥N nTHHA NA N

O O Ne XIoOOXM =Ou Ioou
B U Ne HXoOUXK < Ox N mwx

llllllllllllllllll bt

SRV ek 4

MRV SN WO XO0U = XOx N«

HeadoO wOIN>S 0c0ls ©w %0o <o

NoXad ¥ N0 = = O AR

Sno SNMUK Ko X HeXorOmes XEXXU UeNO X xx =X0

e o o o T o o e v —

ONo SNEUNX ™ »

O oo #eOO HHOUuKoxo U |UMKoXXeo NT

3%) ANON el EmraNme N SHXOUcTKTNo =K UO MNO MK Nol SXNON He

SH NN K K



NS n

. 0T KO0

PAXXenTo U :OX OXo oNnn O ON
OedN  No Qo 3oen emotO0 MNoN
el X KOXT ohrdd ON

Xen N XenellN K Xen enenenOX 32Xcﬂ_u

< wen KooK oX MXO%o ¢ B> X N

KoedD NO O en XO o <L OOXenXi%
cerenl Mo K=o

e NO MNKOMK N X OO0 © O
SNoN > s - ON
XNON N XSO0 ONoN 00

« AN

D T D OXEDS O3nm ¥
MO cen HOX ON

X T RO cerdben ON
onerrn o P o denen NS . .00
X ey cobbeen X R GO

MK en NO 00 KO o< =S UOXedix
X UEN X<

BIIOXen NO P00 MO = O UOXerdX
NTEX D HonX o &

n 0eelenQ P AXen s Oen oN

G
X
(0]
avi

w08

3
d d
G M

PP PP QP G M o: ViV MAMMMVMIG MM (MM VMIQVKY OV QVIQVIQV 14

d

OXdddXCvLCMCMCMCOCOCOXXXXX'dG GGt&=MM

MX e d MX

odp 27 coX3 « E— G
XGowo|> GMMIX MOK >Sp p G Moo cod wa OMVMOVEOX

P X —Gp

od
X
P

V&
B0

MOz Men cax



170

p{ OO A ST

OIS
URTUOKD 5 w0z anl
NO b thD % moQert  OAxY ®xzl

XeFomo sl UON Ymom *msk
Ko =¥ ASTOUxe
No ANKUXY Aomor o=@ eamno
O%eU%Yom 333@
000Kt O R wm ¥ 2
miOO% FOK UF X w00 Awmo X
W x O = T U s e
oh <eAh Doem ©Q S A

Yen O >0 %N 2x00 @« UNza« o
N. UNEO»X S X ot Aemo
Aewno— ON
MO nhm xAOAT mN OX BN 8
nNSOX UON N=<NO¥x
U Uom «zQU0 NON
e d A OUR Ao .
o B AXE0
SO K K A
Noo Doxhs UK Qe > ON
e 2 N
HehS A KdT UXm
Ao  ON



171

IS
A A A
Al A
A A
O A
-
V-
O M A
B B
B B A
Y-S
A AR
B A i B
A A A
O A A
Jane
CEO--T
O A A
O A A
{ eoa
O AR A
O A A A
O A A A
O A A A
%%
T aaa

e al

- V-V V- TV
9 Y- - P T
B A A A A
(F-9Y- V- VR-9Y. W99
aalA ~OMAMA
padh AAAA
aOAA MMM
aal0 aaam
B P P B
aal% O
Anle aaas
AACD AMAAA
o)WV
AATD AR
-V owpp
aala Doka
asca Doan
aala Osan
V- mmpp
pala Uaba
aa A& alla
aala 0000
aaoa 000a
[-N-NCH-T - N9
peoa solm

aada Uoan

=1

-3

GRS

=0
=Uaa
=0aa
O amm
G- T-1-Y
Baan
T Qo &
VE-N-Ne

San
R B B
=0 & A
V-
=0 &
-
€ae0
-y,
T AR
Eacn
LN -")-7y-R
5202
Eaon
oF-N-¥-1
Taan
Paan
O A A
O A
CF-N-9-Y

=U=a
DLW
U880~
Usoea
S
239 a
000
U5a
mmmp
§C a
U3
[C A
Qu &
ol &
= @
=0 A&
V-
50 &
Vgl &
mmGP
Orla
sala
§ o
00eacn
Oarn

SRR
A O A

<

0 P M P G t-

G

N e

UK U
v 0n Qe
0QwmDe
CRCRU
200msz
"B ETe
C e 0.& %)
§wcnTom
30:._;G._t
3W3G.\U/O

Quneem
GI_.3®M0
Tt
v &N
«T e

U Ren
Eenl ©
m3mm3C,
o enth QNI
“thS oL
3003GO
QT e
SN & o

o enenT

« M a

cUD..on._nr
S Exd
8B N

[--{= -



172

R

cilfc )
00°00

O PTSTF 0020 SS9IPPB WOLF
J0382d193UT TYD0L SUF 3IB3S

oTOsuod g-ddd Y3
woxFy xspso Teroadg ayz uny

8=ddd

!

I6Jg0g 410580600ad~d03UT OUgF JO ©8[] U3 JO o[dWexXy °0G oandtg

°adeq otTgeudsm uo wsadoxd TYHOI U3 ©ABS
*PTSTF 3XOU JI8JSUBIF PUB

Jepeo Teroads oyl 03 x:.ﬂmimm..nm.wmﬂmnp PISTT
Yo®Be J99J% 9POW PUBUWOO 03 UINGSI TTTM TVI0J
*PUBWIOD SSHOOV OU3 FuTsn

Ig-ddd 8Y3 93 BLBP 89U} I8FsuBIY} PuUB G-J0d
eyj uo yood WoxJy Iepsvo] TBToads oyj 03 ulq
‘U533 TIMIOLO

q0u sT JepsoT TBToedg eyuz 38U} FuTansus
8-ddd 843 03 EHG-ddd °y3 ®|OIF | PIOTJ JI8FSUBI]
°g=ddd 8y3 °%

d8Fdad 9U3 woxF O PIOTF JO STOUM 8} JI8FSUBI],

*4g-dad 03Ut wexdoad Tyod peITnbex peot
*OVIQ WOxy HER-ddd U3 JO 8I00 03UT TVO0L PeOT

NOITOV

YdNATTOIL® WVIA FAVS#

LLGL0 L v&

o0‘0‘o¢v#

LLGLO L e

o‘o‘om+

© U CNAQTTIOIC WWId aVOoT#

NE°NIQTOL: AQVOT#

I8~ddd



BLOCKS

0

1 to 10

11 and 12

43 and 14

15 to 19

20 to 51

52 to 69

70 to end

173

CONTENTS

System Bootstrap Loader

Directory of files stored on the DECtape
Interrupt Processor for File Monitor System
Pages O and 1 of field O

Not used

Saved coré image file of File Monitor System
Not usgd

Saved files

Figure 51, Block Allocation of Formatted DECtapes




ADDRESS
OCTAL

7300
7301
7302
7303
7304
7305
7306
71307
7310
31
312
7313
314
7315
7316
317
7326
321
7322
7323
324
7325
7326
7327 -
7330
331
7332

CONTENTS
OCTAL

1312

- 4342

4312
6773
5303
6777
3726
2326
5303
5732
2000
1300
6774

A
5215
6776
0331
1527
7640
5315
2321
5712
757
7756
1747
0077
7617

174

SYMBOLIC SOURCE LINE

BEGIN,

QUAD,

SEARCH,

INLOOP,

BKFIND,

POINT,
M22,
M31,
cii,
START,

TAD SEARCH
JMS SEARCH
JMS SEARCH
SDSQ

JMP -1
SDRD

DCA 1 POINT
1SZ POINT
JMP QUAD
JiP 1 START
2000

TAD BEGIN
SDIC

SDSS

IMP . =1
SDRC

AND C77
TAD M22
SZA CLA
JMP INLOOP
1SZ BKFND
JMP 1 SEARCH
57

-22

=31

0077

7617

//START DECTAPE IN REVERSE
//BACK TO END ZONE

//MARK TRACK CODE OF 31
//MAIT FOR QUAD LINE FLAG

//READ DATA

//STORE DATA

//{OVE ON TO NEXT
//MORE TO COME YET
//NOW TO MAXI-BOOTSTRAP

//SET FOR DECTAFE 0

//LOAD COMMAND REGISTER

//WALT FOR SINGLE LINE
)

//READ COMMAND REGISTER

/ISOLATE MARK TRACK BITS -

//END ZONE INITIALLY

//FOUND YET

/#NO KEEP LOOKING

//RESET FOR MT CODE 31

//KETURN

//LOAD ADDRESS

//END ZONE CODE

//START COLE

//MARK TRACK MASK

//START ADDRESS

Figure 52 , Bootstrap Loader for File Monitor System



A75

CHAPTER 8.

Conclusions and Recommendations




176

8.1. Introduction

One of the major problems encountered when using computers is
that of communication. The computer only "understands" binary words
stored within its memory and the general user only "understands" language
statements. In order to make it possible for the user to communicate
meaningfully with the computer, some form of "translator'" must be
interposed between them.

The "translator" could take the form of an experienced programmer,
capable of creating programs at machine code level and developing all
applications programs for users. This type of system generally results in
the potential user having to wait a considerable time before his program
becomes operational and the final product is inclined to be more what the
programmer thinks the user requires, rather than what the user actually
requires. Further difficulties arise when the program requires modification,
either to correct it or to make it more flexible, as the experienced
programmer must be involved once again.

A more flexible approach to this communications problem would be to
have some form of software or hardware "translator" to convert users
language statements into binary machine words. This would allow users to
create their own applications software and modify it as necessary without
having to involve a third party at any stage.

For off-line data processing problems, this latter method has been
employed for a long time in the form of compiler-based or interpreter-
based high 1evel language systems. However, for on-line control problems,
the former method has been used in the past because it has been necessary
to make more efficient use of core, peripheral equipment and processing time.

Recently however, there has been a trend towards developing and using
more flexible systems in on-line situations. This has resulted in "Fill-in-
the-Form" techniques, hardware programming aids and high level language
systems being adopted for real time applications. The type of system
employed is dependant upon the nature of the real time application and the

facilities required by the users of the system.



177
8.2. Choice of Operating System

In an Education and Research environment, off-line facilities
are required for data processing, mathematical modelling and simulation
studies.  In addition to this, on-line facilities are required for the
control of experiments, data acquisition from experiments and data
processing of the results of experiments. Rather than having different
systems and lahguages for on-line and off-line applications, it would be
more efficient if the same or similar systems were adopted in both cases.

Programming systems based upon the use of either "fill-in-the-
form" techniques or hardware pushbutton programming techniques were
discounted because their specific orientation towards plant control meant
that they lacked the facilities for general data processing problems.

The choices available were therefore either to select an existing
h-igh level language system and modify it to provide on-line facilities or
alternatively to develop a new programming system. As any system
developed would have had to include general data processing facilities, it
was decided that under the circumstances it would be better to take an
existing high level language system and use it as the basis for an on-line
system. ) ¢

Although FORTRAN is a "standard" high level language, it is géianerally
a compiler-based language. The use of a compiler-based language on a small
minicomputer, without mass storage, is extremely tedious, involving the
user in several steps of creating, compiling and running using paper tape as
an intermediate storage medium for source, object and compiled programs.

FOCAL, an interpretive language, was therefore selected as being
a suitable basis for an operating system. The core resident nature of the
interpreter avoids the necessity for loading separate sactions of the operating
system during the various stages of program development and execution. The
interpreter also possesses the advantages of single statement or group
execution and extensive text editing facilities, thereby making the process
of progra.mltesting and correction easy and relatively fast. Its major
disadvantage stems from the fact that program execution speeds are much

slower than for a similar compiled program.



178

8.3. Real-Time FOCAL Systems

The FOCAL interéreter was first extended to provide on-line
facilities for a single user. The tests described in Appendix A show
that the system is fully capéble of dealing with a control and data
acquisition problem typical of those which would be encountered within
a laboratory environment. As expected, the system was quite slow
in terms of program execution, being capable of a maximum data sampling
rate of the order of 20 per second. This however was not thought to be
too slow to prevent the cystem being extended so as to permit two users
to time share its facilities.

Alfhough most of the slowness of the FOCAL systems may be
attributed to the method of operation of the interpretive system, the
architecture of the computer on which it is being used also influences

operating speeds.

8.3.1.Hardware Limitations

The 12-bit word length of the PDP-8 computer only allows direct
addressing of 128 words of memory and indirect addressing of 4096 words
of memory. As most referei:ces to variables will be outside the 128 word
range, indirect addressing has to be used. Thus the time taken to access
a word of information will be greater than that for computers with larzer
word lengths.

Allied to this is the fact that the PDP-8 has only a single accumulator
and a simple instruction set which requires that all data transfers and
manipulations occur through the accumulator. The time taken for even
simple operations is therefore greatef in the PDP-8 than in machines with

multiple accumulators and more sophisticated instruction sets.

For example:-



179

PDP-8 (12 bit word) PDP-11 (16 bit word)

CLA CLL ‘MOV A,B )
TADIA reference to A ) 3 words
DCAIB reference to B )

A, X A: 023456

B, Y ' B: 000000

X, 2345

Y, 0000

Execution time 7.5 « secs Execution time 4« secs

Words used 7 (84 bits) Words used 5 (80 bits) v,.'

All multiplications and divisions whether unsigned integer or floating -
point mus't be done by software on a minimal PDP-8 system. This will -
obviously have a detrimental effect upon program execution speeds. For
example, a software routine to perform unsigned integer multiplication of
* two twelve bit numbers will take approximately 500w secs on the PDP-8.

On machines with this function incorporated into the instruction set, the
process would take of the order of 1Qusecs. Similarly with floating point
software, a single operation whether addition, multiplication, subtraction
or division will take about a milli-second. The same process done with
parallel processing floating point hardware takes about 1Qusecs.

If a "push down list" is required on the PDP-8, all management
functions must be done by software, unlike other machines which have
hardware controlled stack management. This must also add to the execution
times experienced in FOCAL particularly within the expression evaluation

routine, where numerous stack operations are required.



180

Within the PDP-8, all interrupts are connected to a common
interrupt bus which means that an interrupt will have the same effect as
any other interrupt. Thus in order to detect which peripheral dévice has
caused the interrupt, a software skip chain must be used to test the
status of the flags of all devices. This obviously is less efficient in
terms of processing time usage than for a system which has priority
vectored interrupts, which immediately link the interrupting device with
its handling software. This may not have a great effect in a single user
system Eut it is essential for efficient use of peripheral devices in a

multi-access system.

8.3.2. Software Limitations and possible enhancements.

Most of the time required by the FOCAL interpreter for program
execution can be attributed to the variable search and line location routines
used. If the execution times of FOCAL programs were to be reduced,
these routines would have to be modified. The major problem would then
be to modify them so that the flexibility of the system was not reduced
significantly. ) ;

The same type of line structure could be maintained within a system
which "semi-compiled" source lines on input. System subroutines for
commands could be linked directly into a line before it was stored within the )
FOCAL text area. Thus instead of having to decode command lines during
execution‘, a subroutine address could be inserted at entry time which would |
cause a direct jump at execution time. The resultant savings in execution
times could be of the order of 0.5 milliseconds but in order té maintéin the
same editing facilities, more sophistication would have to be added to line
editing routines. A two level command structure would also have to be
implemented, as it would not be necessary to semi-compile command lines
‘executed in immediate mode, or commands like MODIFY and WRITE which
are generally used in direct mode.

Methods of by-passing line location routines by a similar process would "
be extremely difficult to implement as branches to lines not existing at the
time of source line input could not be changed to an address until the

referenced line was inserted. This would mean that a process similar to

compilation would have to take place prior to the program being run. Many of



184!
the better characteristics of the interpretive system would be destroyed
by such modifications thereby defeating the object of using the interpreter.

A similar problem exists within the variable search routines. If
variable addresses were to be inserted instead of the variable name, a
compilation stage would have to be inserted between the creation and
running of the program.

A method of reducing variable search times would be to employ a
slightly different data storage structure. Instead of allowing all
variables to have subscripts, they could be split into arrayed variables
and non-arrayed variables in a manner similar to that employed in FORTRAN.
The name of an arrayed variable could then be used to locate the position of
the stored data vector, and the subscript used to determine the position of
the defined variable within the vector. This would of course require the
use of array dimensioning before program execution and would create a two
section variable table for arrayed variables and non-arrayed variables, with
a resultant slight decrease in the time taken to access a variable.

All these modifications have one common drawback in that they need
memory space for their inclusion in the system. In a minimal 8K system,
the extra core would have to be found at the expense of variable and text
storage areas. ’

Finding sufficient core space in order to add functions to FOCAL for
real-tine computing was a constant problem. Many of the facilities had to
be implemented by using multiple argument function calls requiring one or two
arguments in order to define a sub-function of a function call. As each
function evaluation takes of the order of 1 millisecond, the time taken to
execute a particular function is lengthened. This situation could be avoided
if more core was available allowing a separate function to be included for
each group of peripherals. Most of the functions could in fact be included
as system commands, thereby avoiding the initial excursion through the
function evaluation routine which all FOCAL functions must take. .It would
also avoid having to use an extra command in order to invoke the function call.
In this manner, time savings of about 2 milliseconds per function could be

obtained.



- 182
8.4, FOCAL as an Off-line Programming Language

The development of a system for using DECtapes as a medium
for saving FOCAL programs and system software was undertaken in
order to extend the computation facilities so that FOCAL could be used
extensively as an off-line system as well as an on-line system.

It might be argued that the OS8 operating system already
available, provided more than adequate off-line programming facilities.
However, as has been previously stated, the 0S8 system is necessarily
complex because of the comprehensive file handling facilities which it
provided. The user not only has to learn the programming language
but also has to learn the commands of a number of utility programs in
order to create source programs as files and manjpulate them.v

The version of FORTRAN which is supported by 0S8 will allow quite
largé programs to be run on a mini-computer system when the overlay
facility is fully implemented. Its major disadvantage is that even small
programs take of the order of ten minutes to be compiled into an
executable core image program when using DECtape as the mass storage
device. This process can be very tedious during the program development
stage where large numbers of errors have té be found and corrected:

The main objective was therefore tn pfovide FOCAL with siméle
but comprehensive file handling capabilities 1n the form of a mon_ith'-m_system.\

The monitor structure was adopted invorder tb provide the system
with added flexibility. If the file manipulatisn facilities had b-.en implemented
through direct commands from FOCAL, then;each different version of FOCAL
would have had to have been saved on separaté tapes which would have required
loading each time a different version was required. A monitor structure
however allowed different versions of FOCAI; to be saved as core images
which could be loaded from commands within i:he monitor. This has the
added advantage of allowing other binary coreg images of programs or data
to be handled, a facility useful to users wishijng to program in assembly
code. g

' The system allows for a fairly primiti!ye overlay structure which must

be controlled directly by the user. Pxogram; have to be developed in a
modular form, each section being loaded and executed after the termination

of a previous section. Although this appears to be rather crude, it allows



. 183

the user to make decisions at the end of each program module, In cases
where it is extremely difficult to program complex logic, this can be
ad\}antageous since it minimises the possibility of taking wrong program

paths.

8.5. Use of Interpretive Programming Systems

The selection of any operating system is essentially constrained
by the type of computer available and the applications for which it is to
be used.

1f, for example, most of the programs to be developed are likely
to be "standard modules" to be used frequently without change, then a
system is required in which program execution speeds are rapid. The
develgpment time in such a situation is only of minor importance.
Alternatively, in an environment where programs are developed for a
specific application, to be used only a few times, then development time
should be made as short as possible. Similarly, where there are several
users all wishing to use the system for their own data acquisition purposes,
development times should again be of prime importance.

In order to make program development times as short as possib}e, it
is essenfial to provide a programming language with a simple but |
comprehensive syntax and a system which is easy to operate. FOCAL and -
other interpretive languages do in fact provide these requirements.
Subsequent experience with F2RTRAN on an RSXIID/PDP-II real time
operating system has shown that it can take considerably longer for users
to become familiar with the compiler based system and that program
development times are also far greater.

Hardware checking by direct line execution is another advantage which
the interpreter has. In compiler based systems, if any hardware checking

is done, then short programs must be written so as to test the item.

8.6. Conclusions

" The investigation described in this thesis demonstrates that the use
of an interpreter based system is feasible for the programming by the user,
of real-time applications. The advantages associated with the flexibility
of an interpreter are shown to outweigh the disadvantages associated with

its limited speed of execution. Whilst some improvements in execution



184

times could be achieved by a restructuring of the interpreter, significant

improvements would re quire additional hardware resources.



185

REFERENCES



10.

11.

12,

13.

186

PERONE, S.P. and JONES, D.O. "Digital Computers in Scientific
Instrumentation". McGraw-Hill Book Company, 1973.

"Computer Software for Process Control". Report of the
working party on Real Time Computer Software,
May-December, 1968. Plant Engineering and Energy
Division, B.I.S,R.A.

"Future Trends in the Minicomputer Industry". Proceedings
Minicomputers in Instrumentation and Control, June 1973
p.117. (Paker, Cain and Morse).

KIPINAK, W., QUINT, P. "Assembly vs Compiler Languages".
Contxol Engineering Vol.15, February 1968, pp.93-98.

LEE, W.T., BOARDMAN, R.M., HIGHAM, J].D. "Block Diagrammatic
Programming in Computer Control Projects". 2nd U.K.A.C.
Convention on Advances in Computer Control. I.E.E.
Conference Publication No. 29, 1967. Paper C.6.

LEE, W.T. "Experience with an On-Line Conversational Control
Software System'". A symposium on experiences with
software in computer control applications. Institute of
Measurement and Contrcl, July 1969, pp.12-18.

HIGHAM, ].D., JONES, R.E. "Conrad Software in the Paper and
Cement Industries'". ibid pp.19-25 :
J

HIGHAM, J].D. "Conrad III - Conversational On-Line Software fo:

DDC Supervisory and Sequence Control". Conference on
Computer Aided Design, Southampton, April 1969.

BAILEY, S.]. "Push Button Programming for On-Line Control".
Control Engineering, Vol.15, August 1968, pp.76-79.

EWING, R.W., GLAHN, G.L., LARKINS, R.P., ZARTMAN, W.N.
"Generalised Process Control Programming Systems".
Chemical Engineering Progress, Vol.6 , No.l. January 1967,
pp. 104-110,

MARKHAM, G.W. "Fill in the Form Programming". Control
Engineering, Vol.15, May 1968. pp.87-91.

SMITH,C.L. "Fill in the Forms Computer Languages for Process
Control". Chemical Engineering, March 3rd, 1975. pp.151-156.

KELLY,V.H., WAKEFIELD,A.]J. "APE. - A New Approach to
Programming for On-Line Control". 2nd U.K.A.C.
Conference on Advances in Computer Control, Paper C.11,



187

14. CLOUGH, J.E. "Fortran for On-Line Contro ";. Control Engineering
Vol.15, Marxch 1968., pp.77-81.

15. GASPAR,T.G., DOBROHOTOFF,V.V. "New Process Language Uses
English Terms" . Control Engineering, Vol.15, October 1968,
pp. 118-121,

16. TURNER,G., NORMAN,D.E., BELCH,R.F: "A Computer Operating
System for Plant Control". 2nd U.K.A.C. Convention on
Advances in Computer Control. Paper C.8.

17. MECKLENBURGH,].C., MAY,P.A. "PROTRAN, A Fortran Based
Computer Language for Process Control". Automatica,
Vol.6., 1970. pp.565-579.

18, GERTLER,]. "High Level Language for Process Control". The
Computer Journal, Vol.13, No.l., February 1970. pp.70-75.

19, NEVE,N.J.F. "Coral 66 - The U.K. National and Military Standard".
Trends in On-Iline Computer Control Systems. IE.E,
Confere nce Publication, No. 127, pp.139-146.

20. EYRE,D.M., WILLIAMS, H.B, "The Application of Coral 66 to
Control Computers". Software for Control. I.E.E.
Conference Publication, No. 102, p.155.

21, WETHERALL,P.R., "Coral 66 - A language for the control of
Real Time Processes". A synposium on experiences with
software in computer control applications. Institute of
Measurement and Control, July 1969., pp.56-59.

22, BARNES,].P. "Process Control Systems using RTL/2". Software
for Control. I.E.E. Conference Publication, No.102, p.75.

23. BURGESS,A.M. "Users experience with a Real Time Language
' - RTL/2" ibid

24, CROWLEY-MILLING,M.C. "Interpretive Software for a Large
One-Off Procescs", ibid p.63.

25. CROWLEY-MILLING,M.C., HYMAN,]J].T., SHERING,]J.C. "The
Multi-Computer Control System for the CERN 400 GEV
Accelerator". Trends in On-Line Computer Control Systems,
I.E.E. Conference Publication, No.127, pp.101-107,

26. DUNCAN,].B. "Anatomy of PCZ; Process Control Language".
Control Engineering, April 1974, pp.42-44,

27. WILKINS, C.L. KLOPFENSTEIN, C.E, "Laboratory Computing with
Real-Time Basic". Chemtech, November 1972, pp.681-686.



28,
29.

30.
31.

32.
33.
34.
35.

36.

37.

38.

39.

40,
41,

42,

43.

188

ANDERSON, R.E. “Programrhing Languages for Laboratory Control"
Journal of Chromatographic Science, Vol.7, 1969, pp.725-730.

PIKE,H.E.Jr. 'Process Control Software'". Proceedings I.E.E.
Vol.58, January 1970, pp.87-97.

SPANG,H.A. "The Structure and Comparison of Three Real-Time
Operating Systems for Process Control". Automatica,
Vol.8, 1972, pp.49-64.

PURSER, W.F.C., JENNINGS,W.M. "The Design of a Real-Time
Operating System for a Minicomputex". Software - Practice
and Experience, Vol.5., 1975, pp.147-167.

GERTLER,]., SEDLAK,]. "Software for Process Control - A Survey"
Automatica, Vol.11, 1975, pp.613-625.

SECREST,D. "Time Sharing Experimental Control on a Small
Computer". Industrial and Engineering Chemistry, Vol.60,
1968, No.6., pp.74-380.

Small Computer Handbook 1968. Digital Equipment Corporation.

SALMON,J.D. "A Versatile Computer Control System".
Instrument Engineer, October 1966, pp.110-118,

SALMON,].D. "Computer Compatible Hardware and Software for
Process Control", Advances in Computer Conirc!, LLE.E,
Conference Publication, No.29, Paper C.19. B

BECK, M.S., WAINWRIGHT,N. "DDC of Chemical Processes".
Control, Vol.12, January 1968, pp.53-57.

BOOTH,A.D. "Resolution of (Complex) Gas Chromatograms using
a Digital Computer", Transactions of the Society of
Instrument Technology, Vol.19, No.l.,March 1967, pp.12-16.

BAUMANN, F., HERLICSKA,E., BROWN,A.C., BLESCH,].
"Quantitative Evaluations of Chromatograms by Digital
Computers"., Journal of Chromatographic Science, Vol.7.,
November 1969, pp.680-684.

THOMPSON, J.W. M.Sc. Dissertation, University of Bath, 1972.
Programming Languages, 1970, Vol.2, Digital Equipment Corporation.

KONGAS,M. "Focal - An Easy Way to Real Time". Decus Europe
Proceedings, 1972, pp.223-224,

ENGLISH,].C "Focal used in Data Acquisition and Control Systems -
Advantages and Disadvantages". Decus Proceedings,
" Spring 1972, pp.191-194,



44,

45,

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

57.
58.

59.

60.

61.

62.

189
SIEGEL,W., WHITTLE,K. "Using FOCAL in Research", ibid 195-202

WREGE,D.E., HARMER, D.S. "FOCL/F.. An Extended Version of
8K FOCAL/69". ibid pp.213-219 :

CAVE,P.R. "Real Time Fortran in a Mechanical Engineering
Laboratory". Decus Europe Proceedings. pp.70-80.

Advanced FOCAL Technical Specifications. Digital Equipment
Corporation.

Programming Languages 1969 Vol. 2. Digital Equipment Corporation.

WEEKS,C.H. "An Extended Version of FOCAL for Multi-User Data
Logging and Control". Decus Australia Proceedings, 1972. .

Small Computer Handbook, 1973. Digital Equipment Corporation.

CHARLESWORTH,A.S. "Assembler Program Documentation'.
Decuscope, Vol.14, No.1.,1975.,pp.8-12.

PAYNE, W.D. "Speeding up FOCAL" Decuscope. Vol.10,No0.13,1971,pp.79.
CHARLESWORTH,A.S. Private Communication,

CHARLESWORTH,A.S. "Altmode/Echo". Decuscope, Vol.12, No.3.,

1973. p.17. )

EAST,L.V. "An Improved Random Number Generator for FOCAL ¢/15",
Decoscope, Vol.11., No.2., 1972, -

PRINGLE,R.G.C. "PAL 11 Symbolic Assembler User's Guide".
University of Bath Computer Unit (December, 1970).

PDP-8 User's Handbook. Digital Equipment Corporation

- LOCKETT,A.D. To be published.

SHINSKEY, F.G. "Feedforward Control Applied”. 1.S.A. Journal ,
November, 1973,

ROVIRA,A.F., MURRILL,P.W., SMITH,C.L. "Modified Algorithm
for Digital Control".

GOFF,K.W. "A systematic Approach to DDC Design". I.S.A. Journal,
Vol.13, No.12,, December 1966. pp.44-54. '

DUNN,C. Final Year Project Report. Department of Chemical
Engineering, University of Bath,



63.

64.

65.

66.

67.

68.

69.

70.

71,

- 190

ROBINSON,K.S. Ph.D. Thesis, University of Bath.

STAGEMAN, M. Final Year Project Report Department of
Chemical Engineering, University of Bath.

WILLS,D.M. "Tuning Maps for Three Mode Con trollers".
Control Engineering, April 1962. pp.104-108.

LOPEZ,A.M., MILLER,J.A., SMITH,C.L., MORRILL,P.W,
"Tuning Controllers with Error Integral Criteria".
Instrument Technology, November 1967. pp.57-62.

EDLER,]., NIKIFORUK,P.N., TINKER,E.B. "A Comparison of
the Performance of Techniques for Direct On-Line
Optimization". The Canadian Journal of Chemical
Engineering, Vol.48, August 1970, pp.432-440.

BEVERIDGE,G.5.G., SCHECHTER,R.S. "Optimization: Theory
and Practice". McGraw-Hill, 1970.

AEAPS,H.S., WELLS,R.V. "The Effects of Noise on Process
Optimization". The Canadian Journal of Chemical
Engineering, December 1968. pp.319-324.

. DANNENBERG, K.D., MELSA,].L. "Stability Analysis of Randomly

Sampled Digital Contrcl Signals", Automatica, Vol.11.,
pp.99-103. j

AKAIKE,H. "Effect of Timing Error on the Power Spectrum of
Sampled Data'", Annals Institute of Statistical Mathematics,
Vol.11., 1960, pp.145-165.

BLACKMAN,R.B., TUKEY,]J.W. "The Measurement of Power Spectra
from the point of view of the Communications Engineer".
Dover, New York, 1959,

SWINNERTON-DYER, H.P.F. "The Calculation of Power Spectra".
Computer Journal, Vol.5., 1962, pp.16-23,



191

APPENDIX 4.

Use of Real-Time FOCAL




192

AL Introduction
During the development of the extensions to FOCAL to
provide real-time progﬁamming capabilities, it was possible to test most
of the input and output routines for logical errors by using the direct
mode of operation available within the interpretive language. However,
for the purpose of testing the system as a whole, for timing errors,
control algorithm operation, ease of use and other defects, it was necessary

to select a simple but effective experiment for indirect operation.

A.2. Equipment and Experimental Procedure

The equipment used is illustrated in Fig.A.lL. The heat exchanger/
cooling tower equipment is generally used for undergradua te teaching purposes.

The flow transducer FT1 was of the propeller type providing a
pulse train, counted and displayed locally in terms of pulses per second.

The output of the transmitter was also supplied as an input to one of the
input counter cards of the corﬁputer interface, ‘J

The two temperature transducers TT1 and TT2 were resistance
thermometers, the out'puf being provided as a voltage signal fur a bridge
network and displayed locally. The voltage level s were also supplied as
input to the analogue to digital converter of the computer. |

Both the steam flow rate and the water flow rate were controlled
with automatic diaphragm valves, V1 and V2 respectively, operated by
manostat pressure regulating devices. The manostat device maintains a
constant air pressure on the diaphragm valve until a request for a change
in position is received from the pulse width modulation output system of
the computer. The pressure is then altered in order to change the valve
position.

This equipment had been used during the initial trials of FDYN
in order to test the effectiveness of the lead/lag network as a multipurbose
control algorithm. It had also been used to test the logic of the PCI
algorithm used in the FCON function. This previous experieﬁce with the

system had shown that the flow measurement was particularly '"noisy"



193
due to quantization errors and disturbances in flow pattern. Also the control
of flow was subject to noise arising from appreciable stiction and hys teresis in
the pneumatic diaphragm operated control valve.

It was therefore decided that an appropriate test of the system
software would be an on-line determination of the optimum paraméters in the
PCI algorithm when used to control the flow rate in the heat exchanger.

As the system was noisy, the effectiveness of various on-line search

techniques could be evaluated in the presence of process noise.

A.3. Choice of Objective Functions

Any technique used for the optimization of con.troller settings
requires the definition of a performance criterion. A simple measure of
performance for feedback systems would be to compare the magnitude and
duration of errors produced by a known digturbance. This can be achieved
by integrating a suitable function of error with respect to time.ss’ 66

The following integral error performance criteria have been widely used in

controller optimization studies:-

1. Integral of Absolute Error
2. Integral of Squared Error
3. Integral of Time and Absolute Error -

) The difference between these criteria lies in the weighting
given to the magnitude or the duration of errors produced.

It was decided that a set point disturbance would be the easiest
method to implement with the equipment available, Initial experiments
showed that of the three above criteria, the IAE was the least susceptible
to the noise on the input signal and that a simple trapezoidal integration
of error values was as effective and reproducible as any other simple method
of numerical integration. It was also found that the direction of the step
change had little effect upon the magnitude of the integral obtained.

It was therefore decided that the optimum control algorithm
parameter for the flow control loop should be determined by using the IAE
as an objective function in conjunction with trapezoidal error integration for

a step change in set point of 35% full scale to 70% full scale. A loop



194

. 37
scanning rate of 1 second ~ was adopted and proved to be adequate.

A.4, Lattice Search Procedure

Before proceeding to a fully automatic direct search procedure
it was thought necessary to first examine the response surface of the
system, This entailed the evaluation of the IAE for various values of
controller gain and integral action time so as to produce a contour map
of the response surface in the region of the optimum.

This lattice search procedure is in effect a pattern search
procedure (see later) requiring the evaluation of the objective function at
various regular lattice points on the response surface of the control loop.

It involved numerous function evaluation but proved to be very useful in the
latter stages of this project when the approach of the on-line search
procedure towards the optimum could be observed.

Figs. A2 and A3 are the program and associated flowsheets
developed to perform the lattice search At each selected lattice point,

a series of experiments were performed, evaluating the IAE for the
particular step change in set point in both upwards and downwards directions.
When the required number of experiments had been completed at the chosen
lattice point, the mean and standard deviations were computed and logged

for both directions of set point change. This procedure was then repeated -
at various other points over the regibn of the response surface surrounding
the optimum so that a contour map could be produced.

Fig.A4 gives a brief description of the operation of the program.

A.S. Results .
Figs.A5 to A7 show the results obtained for an upward change
in set point as plots of proportional band. The standard deviations at the
various lattice points are also expressed on these diagrams and serve the
purpose of showing how the IAE value was affected by the noise on the input
signal.
The proportional band (PB) in the result was related to the
- .control loop gain factor in the FCON function '
S Z = FCON(L,SP,IT, SC, KG, CO)

by KG = 100
PB



195

As the loop scan rate had been fixed at 1 second, the integral
action time was expressed in seconds.

Fig.A8 shows the results éxpressed as a contour map of IAE
values for variation in 1'nteg¥a1 action time and proportional band. This
particular figure showed that the optimum was located within a long
narrow valley which could make it difficult to locate with an on-line
search procedure, particularly when the system was also subject to
noise. However it would provide a suitable test in order fo determine
any limitation in the computer operating system and to provide experience

as to the most efficient ways of using the system.

A.6. On-Line Search Procedures

On-line search techniques can be divided into three main
categories:- o
1. Gradient search techniques in which the selection
of the next point is determined on the basis
of the local gradients of the response surface

in the region of interest.

2. Pattern search techniques in which the selection
of the next point is based upon some pre-determined
pattern. Lattice searches belong to this class of

techniques.

3. Random search techniques in which the selection of
the next point is random within the given area of

interest.

| EDLER et al 6.7'5;uggested that in the presence of process noise,
random search techniques were more effective than pattern or gradient
search techniques and were particularly easy to implement.
Gradient search techniques described in reference 67 were only
effective in the situation of little or no process noise. They also required
the evaluation of partial derivatives at each new point, thereby increasing

the computational load.



196

For processes with a limited number of controlled input
variables a "Simplex'" pattern search technique was suggested to be
effective even with appreciable noise. They also had the added advantage
of being easily implemented, requiring only the evaluation of one new
point per cycle as in the random search.

Having already determined the nature of the response surface
in the region of the optimum and observed that the main problems were
noise and dimensionality rather than ridges and multiple optima, it was
decided that implementation of a "Simplex" search and & random search

would provide a suitable test of the system software.

A6.1. Simplex Search Procedure

A Simplex search procedure is a pattern search which takes a
regular geometric figure as its basis. In the case of two independent
variables, this geometric figure is an equilateral triangle. Experiments
are performed such that the objective function is evaluated at the points
formed by the vertices of the geometric figure. After the initial
Simplex has been generated, the search proceeds in the following manner:-

1. So as to maintain the geometric figure, the new

vertex is selected as a reflected point in the
opposite side of the figure.

2, A vertex is rejected if it produces an inferior

value of the objective function when compared
with the value of the objective function at the
other vertices.

3. No return can be made to a point which has just
been rejected. This particular rule is necessary
so as to avoid the possibility of the Simplex
oscillating between two vertices. In these
circums tances the second worst vertex is
rejected.

4. If a vertex remains unchanged for several experiments,

the step size of the Simplex is reduced and the
search continued. The search is terminated when

the step size has been reduced to an extent whereby



197

the optimum has been located to the required
degree of accuracy.

A regular geometric figure can only be obtained if changes
in the indeperdent variables produce similar changes in th;z value of the
objective function. Therefore when starting the Simplex search, it is
necessary to examine the local gradients in the region of the starting
point in order to fix the dimensions of the Simplex and effectively
scale the independent variables.

For a two dimensional search, 68, recommends the vertices
shown in Fig.A.17.

The new vertex can be obtained in the following manner
assuming that (x, y, ) is the rejected point and (x4,y4) will be the new
vertex,

X4 = X3 + X3 - X1

Y4 =y3+y2-yl

thereby producing the vertex as a reflccted point in the opposite side.

Figs. 9 - 10 show the program and associated flowsheets
developed to perform the Simplex search procedure. At each selected
vertex, a single experiment was performed to determine the.IAE for a
step change of 35% to 70% full scale. Fig.A.l1l gives a brief description

of the operation of the program.

A61.1. Results

Fig.A.12 shows the results obtained from two such simplex
searches, plotted on the contour map determined by the lattice search
procedure. Both the searches shown eventually terminated within the
area found to be the optimum for the objective function and step change
’cl"losen. These two sets of results are particularly interesting as they
show the effect of the process noise upon the system, both searches
being started under identical conditions. Search 1. was initially sent in
the wrong direction and took a long time to return to the correct direction

and eventually locate the optimum value.



198

Other searches performed from different starting points with
different step lengths also terminated within the region of the optimum
but like the two searches illustrated, took various directions and numbers

of function evaluations to do so.

A.6.2. Random Search Procedure

A simple random search procedure of the form described in
reference 69 was implemented. From a starting point of (xi , yi) the
objective function is determined at points (xi + dx Rx , Yi + dy Ry) where
dx and dy are maximum step lengths allowed, and Rx and Ry are random
numbers in the range -1 <R <+ 1. Wherever a point (x; 4+ 1, ¥j 4 1) is
reached at which the response is better, (in this particular case a smaller
value of the IAE) then the response at the point (xi ; yj), the point
(xi+1, yi 4 1)is taken as the new starting point of the search,

The search proceeds until no better response is located within
a predetermined number of attempts. At such a point, the objective
function is redetermined and the search continues for another cycle. This
added condition avoids the possibility of obtaining a false minima due to
noises. ~ %',

Figs. A13 and Al14 show the program and associated flowsheets
developed to perform the search procedure. Fig.Al5 gives a brief

description of the program.

A.6.2.1. Results

Fig.A16 shows the initial stages of two random searches plotted
upon the contour map determined by the lattice search procedure. Both the
illustrated searches eventually terminated within the region of the optimum
as did other searches performed from different starting points with

different step sizes.

A.6.3. Conclusions

With regard to the search procedures, the limited number of
experiments performed seemed to confirm the suggestion that the random
search procedure was as effective, if not more so, than the pattern search

method of the simplex procedure.



199

Both methods adopted were easily implemented although the
random search techniques required slightly less effort than did the
Simplex search technique.

With regard to the operation of the Real-Time FOCAL system,
no adverse performance was detected during the experiments which were
performed.

The timing loop structure adopted in the development of the
Real-Time FOCAL operating system coped adequately with the
computational lcads involved. In simple tests run during the optimization
experiments no skipping of sampling time was detected. Admittedly,
scan rates of 1 second were being used for most of the time but these
were adequate for the system chosen,

The FCON control function and associated interrupt driven
output system also proved satisfactory in operation.

The debugging and editing facilities available within the FOCAL
language proved to be most useful, particularly in program development,
where various parameter and control logic needed to be changed and

enhanced frequently.



200

J99ndwo)

' §UBUTIedXy SUT[-UQ Jd0J Posn Fuslid by JO WeJIIs[(q OTFBUWSYOS ° |y OANITJI

A
A

£Le1dsTqg
18007

-~

/

998SUSPUO )—————

Jegusyoxy 388Y

wees.g

JMOT,

JutTo0)

N

XSTE




201

z e -
X AxO A mMTU I+ Dwx =0 s
J=zo =Fo Xo 2 0= 0 Xo
B>B05 . zid Tt Oxxosr w2 woot
Sened & i3
o = -
5 2o 802 2¥NU I . 8 o
& e lo I 5o
oo QiRBR.,
[3) mnmtm%

~Sonwn, §P Q. Somf R, Sp ani

o
o =

3
ok

[o]es

<

=}

. —
ot <AE g4

o

oG

o2 L.0=

— N s oo ©

A ToxXE HV,X.>. ™~
<

A s o
Brun"8YF5. =

<:
-

G ro
X 1
X

1
Xj
X
W
1l
a
<Xz

GW Av.A,W[

X
X
A

1l
G
—
9
i-

-Hxe-.GPiiGXf---.x>-<XHG x

awv e DX1r-G

+ Ba thdse X #0%T+ ZoZ0

Gw.4

CRR=

09

=% = Se= =

g3 $

o =
s
<< BREEZ 28 m
LR o= LB o s: o= . A
NO X oo+ ROs & Xx=.n .. o
9z i
VR 5.8 LOFOoX ZXX < L T om
B8 YR X SIREK Ko =20 a Y
vJd = D33X x .v_ﬂ
F Bz e
NI X T 0 Mer Lix &XTV
Ao LRED. o o X Zion Kone e
A v
D& L3 HzMLM _ o > dNA 5)

> Tz S

=< O

G

X%

G <

C

"GCUX-

equ

-
—<s.<—=<Co cc c: eu X X en X

T
G G

36}
X0
xO

o]

G G G G G

GGGGGAGAGEGAGEAGEG6E6a666a6E6s6a6G6aG6G6aG6a06a

5 mVook Baosxrg® » s



w4 B+ B den=

202

.@ wn 9= N@,Q 3ﬂ

BEMX e X Hen M T

B+ XBND = XX + 00+ XanoOS ulxx I ROO+ XOXO

B0 x 0= T Xe X =aoa
9z

. s FATE e T T o k=@

Nenen  en X ZQNF
A en

w o . UZE e «a < Oecnensx i
©O*3 « B =1

T X o B Tl en = > en
X oen = lﬁ e X 3 3 A.H.Xag

XX E O ik
OX™ X mam e

OFXO X OFm;m X 41HX3 < 4+F2H ~

o

wx DLV 4 momms

Tow” e wx o xt 3

Z_0OMr XAL Lo HXxSE aa W
20" x

OFEKO M OFm X —Hxe

0ol Xo ReauUXa
S B+ 2o =2x=f 2a oF
=lo

58°

0¥ % TO—"0m
Titom o xFo=x
VB X XT B »x

OX* X =~
XX E XaZ e
CICRES 31%W
SRTRER RV REX ®T ta=am

=
n © Xl

X X X X 3 X X

X X

X X

X #jH X

(4]

Xj x*

oA

=<0 XO

Q0

0O

O =0



203

O D= 3 e

B OO0 AN ITD#oz+ X8MD m XE BOU+ XMEUER m& BOU+ XOXUBw L3m T &
3OO Men hTp =M ¥ OmDE ¥RGx LTz

vﬁ -

4

X o X X

o H A H e

€u €u €u €u €u

el

X

4 E¥ o IXD wF
OF ma XFUX™IX 25 % OOxm BEEx »COim T9&y

00 wh®0% T D% o «Qudms

XX % XXOG

FOEY YU UMD U Rea™ wox=MAXEY

L0
o
%0
80

X X X
GGG

1¢
S1¢)
00
ov
ov



204

( Entry ,

{Set program parameters

'Set lower set pointy set GO FLAG to -1

end set up elapsed time counter

re <
-

T 1( ™~
tIs 1 second scan flag set yet
no yes
CONTROL
A
{Test GO FLAG
. A .
( - R ' .
-1 0 +1
Y Have 10 secs elapsed INTEGRATE
v
since last setting ]
of time counter : )|
L ' no
- — > -
yes
‘V
YSet GO FLAG to O y L
(—' - L
Y Ts the measured value = set point
no
A\ . )
yes -
I Is set point at lower value
N .
yes no
¥ Set upper set point Set lower set point
~ -t
Y Set GO FLAG to +1
\ X . y

Figure A3. Flowsheet of Lattice Search Program




INTEGRATE

Gr

oup 3

.205

< Entry )

Increment point counter and set

error value

{Is it the first point
A

yes

integral

{ Return )

|

[Set initial value of

( -

[Signify
instability

no

YGreater than 80 points yet

€3 no
Has system lined out yet
. y,
(mo yes
YAdd error Complete integral,log the value and
to increment trial number )
integral

( Return ,

no yes

Reset time

counter

»-

'Have the required number of trials -~

been completed

TCompute the meen and standard deviation

for the set of trials and log values

‘ Return } Y SELECT

YReset flags and counters

< Return )

Figure A3, Continued



206

CONTROL
Group 6 ( Entry )

Read in measured value

vIs it within dead zone

no yes -

ySet the measured value = set point

TUse FCON for control

‘ Return ’

SELECT
Group 12
Entry -
{Is PB greater than 6
- __/
(no yes
Y Increase IT by Reset integral action time to initial value
0.1
L vDecrement proportionel band by 5
’ A
tReset elapsed time counter

( Return )

Figure A3, Continued




207

Program Section Function

Lines 1.01 to 1.09 Conversational mode of input for
program initielization, also

brovides a hard copy log of system

parameters
Lines 1.11 to 1.16 Clearing of counters and flags
Lines 1.20 to 1.23 Timing loop for program synchronization
Line 1.25 DO subroutine calllfor I/0 functions

see group 6

Lines 1.27 to 1.62 Performs the logical operations of the

program, deciding upon the next operation

required
Group 2 Computation of stendard deviations
) .

Lines 3.01 to 3,34 Trapezoidal integration,line out test

and instability exit

Lines 3.40 to 3.48 Completion of error integration,
logging results and reset of flags and
counters for next attempt. Also tests
'for completion of set number of

experiments

Lines 3.50 to 3.64 Computatior of mean and standard
' deviation for upward step changes and
downward step changes. Logging results

for the set of experiments

Line 3.66 . DO sutroutine’'call to select a new

‘lattice point

Fipgure AL, Description of Lattice Search Program




208

Program Section Function
Lines 3.68 to 3.70 Reset counters and return for logical
operations
Group 6 Data input and output using new

FOCAL functions

Group 8 Pre-program initialization of user

scan flags

Group 12 Selection of next lattice point for

the search

Figure AL, continued




gl

1vi
St

c’t

209

g

F .

RN

Ol

ovtL

oit

oct

oSt

o3l

St

ovt

' OLL

A : 60

-1 oYt

- 0Lt

i

<l

oLt

60

S9=dd

oLt

—Hovi>
m

- 0Lt



i

1Yl
Lt

210

80

oLt

oviL

t 0GL

osk

OV oanstd

A

L0,

e o'l
i

el

oci

- OSGt

o1

- 08l

§8=89d

oSt

- 08L

Lyl
60

9°0

A

6°0

ozi

oSt >
m

ost

osl



211

1Vl
Ll

ozl

ost

- 08}

orL

oz

ot

1v!
0

S0

oct

los1 =
i m

<081



ot JWIL NOILOV IVHDOILNI

ov OE oz ot (5%}
AL S R i i T D _ T T T ¥ T v T T T | S A At S R MRS R B R _ | T T ~T” T T YT T “ [ et S RS A St S SR Sunah A [s24
i
I
—i 0¢

oy

[+14]

GNV8 TVNOILYOdOHd

09
o
-~
N

oL

o8

os

HNOLNOD OZL:- . "GV © T
‘ oot

HNOLINOD Ofl *»

HNOLINOD O%t =0

HAOLNOD OSt s« [ AN

AVHOILNI HOUNT IULNIOSEY 40 AVIN HACLNOD




213

S H#RO o aloos Tz o —~ @ ¥ e =z

v ¥ o 89%¥ o

o T o o8- To

o3 T o a8 o

'8 v v8*To

02 F¥08: 8T w¥ I 20 To

©n'Y8 O QT*¢T o

o8 ¥ o 88Fo

982 <« Y oBSvLLLE ¥ U8  w

= HQ 6 =08 8 F-=0=C¥T=ux 8:% ol=0 8 Tivo=oo S S o
00 o 8 Fo

858 v 81°Vo

8= Bzud B%u9= Cuivw ¢ ¥ T To

=8 v BfuS8= 8zov B v=Lx VFfo= 8 ox Ffo= T3 i S o *io

| ®NoNng © oo voof o r0°To

2% On oo 008 08 5.0 Lo tow ool oy =T Te v ozl o

V SonTshc0sE 0oo o o oNow v 20+10

RS T L0 OX O TS0 0&0Z Ovoo: YL ovooomnd T8 ¥ oot o
2 oo BBLLOOY TS VEO UABT <£f- U i Voo ¥ 8%V 3

T I, SBivssy < VRO 504 s o 2000 mede ¢ Vor 4

Sor ome 9] TPood B8 o848 He—o



214

—_— o &y )

vi o o888° Lxo03F =z ~loIzsz = 83z
+2 4805 oxdSon o P00 "%8r50Y = &t oo

O "o
W D 9% 8 =U QR o=52 8 8 53=8v o¥ 8ux =z Fx.+T ox=%82dx
Il =38 8FIT ol TP vo 9 BFo=xx

SXCING)

FVo § Qo Vol =2x 8fo=53 8fo=32 &Y v . =x 8 o B4z
tIdcr=torzrs 8§ - I3l = oz

Vs o

o T NT202ZnN82 - IF N8Tovo NB: Xo=oo

o Yo¥o ‘o 873 voza8- o ~n8E8o0Vo

O

B vfol v B3
[CRENC)

[CIC]
Lot o
©*8

02 0708 0¥o i ol 0w
LoF o

ol * 0% T ©8 wuoo
o=ovew 8 T-=80¢

=h i

Oz = VOUOUO N OON?wo <o o0a¥ 5 0OZ T ~0OZ3 NO woV @mvOOTIN

.. P . ~ A
WHK =27 2T TS0 oNvVO wovon ® zNZ¥oo on z vz8 ..

eu QO CO L: CO O y @O LO

(0]

@

eu G 3

G

G Q) 3

<

<r

G
C~

G <T v/D G <r WC.G < VC es
10 IO \U vu WU c-

< <r <T <r /1

si G

Oen

0O

SO
Qo
Qo
Qo
VO
3o
Qo
Ol
OO
[CR&}
[CR¢)
CRe}
8o
o
0O
Cl&}
O wn
Cl)
C1@)
C]©)



215

B e O By O

o0 BX4OU VK= NoUZmz
%Oy
0 SV = 8U § Za- 30 -#z0UL .
ONG_W HU,HX
CIECRECLICINCINCE T
Um0 U -SRI,
mGHG m =
98 £-80 v | Ns- 0 NB=
O 00 ¢ B L.3- 0 NO=
€m0 5§ UmD § =F
€0 5¢ =, § U=V
Q v g *F T288-0 N2

[EY O {OES O =y
O © o *% g2No—202ES
VU U 9B8°'TRE02NO-L B NO R

< 04
SXEY O W=E o xEox
Qe vy V2 € ax-u 4200 0DOEBO0R2O0

¢ O 50200+ :xX¥F o =2 ¥2NO

IN 00 25 =/ W8 v DV < o0y ExiTo XOuxox .
wirY0 . 0%0k0-50

U= ©u 0o U 0=308Y%00

0 ONVD UOUU LN2@ T332 U3z Ow TV XoxTZIONA .
oM © O Lo 0 oE=Exo 0 ¥=Eo

O 05 oo o o=coy 0o

Ha O 0 00 00 + 00 VUELOUS VO

-8R0 € voro coy- ofroo
Om 020 © + 0y Vo= O VO
ot*vivo-o 0 —x¥®

Gw GG X

H<3GGGZC w GXWGiXGXv-vwGOe"GXGZ

GGGXHG

t-t G

o,
0o.
[CACR

lo”

+4 (J<FVv0G G NT G
GGGG4-v-t-4-

v
N

TG G <=
BGGCCN

G
B 03

v
#

<T

(A
ol

(C)V)
eloj

| N



yv

vy

0]

yv

cv]

Yom

G

G

G

oaQ

te

tc

o1

G
4.4

vy
NI
G

LO

cry

G

an

216

oJ
o1

G

N

ANOQ I %X %

cc

«H

<r

G

tc

vy

anN

G

o)

b %o

NITEED o

o=

=
.o

=X

Bl

<r

4

G
-y

Qg=aQ

GJ
G
YV
x
x
vy
x ©
X .=

n 44
X 1
X m
ft.,
G (U
-
a4

*
Xga 007 Xy 0

YV »e

z L\

G GJ

G G

G G

44 44

tae 91Q “Oee oL



Q
=)

Q

“HEQ =CES OO0 =
Qe B >L° o927

Ao
SO R YISO 20 510 0O QO

ONgAE= SN

é) (=]
£8
é> a
6 Q

(=]

\S%

Q

co co
\
v
v\
G G
H X
+ o+
= X
H H
oo
2 c.
H H
44
G G
#
w co
N
XX
/-s
G G
x 0.
x X
+ o+
< ..
a x
X X
I o
<e U,
X X
X X
G G

Q

-H

® %

Xo%N

QI X %

N

A

I

<c

G
y-4

217

G
AN
yv

ce

N

yv
ce

vy

vy
64

yv

ce

6-

yv
ce

vy

BoXx 0 O

®

4d
0)

=C

0)



218

tInitialization of system paremeters

ySIMPLEX

yIs timing flag set yet
no

yes
rCONTROL

tHad system settled at the lower set pcint

and been given a set point change

A ;

A

} no ] W yes
Test for settling ¢INTECRATE
. . )
f
CONTXOL

Group 6 ( Entry ) i

Read in measured value

[Is it within dead zone

no yes

Set the measured value = set point

{Use FCON for control

1 Return ’

Figure A10, Flowsheet of Simplex Search Program




219

SIMPLEX '

Group 2 ‘ Entry )
rSet vp starting point and epproximate size
of simplex

~ >

Is timing flag set
yes
¢CONTROL
f tTest status flag
~t )\ >
wait for settling integrating integration complete
SETTLING [ TNTEGRATE Y1st,2nd or 3rd point
- . ) *
- . J
(1st (2nd 3rd
)’,

1 {Save value of {Save value of ffas integral for 3rd
integral and set integral and set " | point about the same
variables for variables for as for second point
2nd point AAJ 3rd point

N -~ « no yes

. Reset parameters ]Set up parameters

for 3rd point for the three
points of the

\. »

Simplex

‘ Return >

Figure A10, Continued




220

SETTLING

Group 3 < Entry ,

)Is'measured value = set point

(Mo yes

{Increment line out counter
' Increment trial counter

reset line out counter Is value of counter >10

. >

Is trial counter >100

L—_*‘_—\

{Reset counters
Return put set point to high value

and set go flag

‘ Return ’

IGive error message and reset line-out and trial counters

yes no

IWas system setting up simplex J
-4——)
ﬁ;;; no -~
[Ask tSet new sum to a maximum
for
new YPRIORITY
start

— vIncrement minimum infegral counter
{Will new point be rejected instantly
no yes '

YAlter priority

' SRLECT

‘< Return )

Figure A10., Continued




221

PRIORITY

Group 4 ‘ ‘ Entry ’

1Sort out priority of the three values of

the objective function

s . > -

- — S \
C>2 =5 r‘i->}>2 21=3 2>3>1 w 3152 22271
Sat FSet rSet Set §Set 1Set
A=t =1 |A=2 A=2 A=3 A=3
B=2 B=3 B=1 =3 B=% B=2
C=3 C=2 C=3 C=4 C=2 C=1

\_ \ - \ R , D, - w,

SELECT ,

Group 11 ‘ Entry } i

1Save parameters of point to be rejected
Select values flor new vertex

¥Set up low value of set point and

flags for settling

( Return )

Figzure A10., Continued




222

INTEGRATE

Group 10 ‘ Entry )

Increment point counter and set error value

Is this the first point

yes - no

fStart integration | Has number of points exceeded set maximum
no ’

q;és ' (Is error within dead zone

{Signify instebility kyes " "o

Test for start or Set error=0 Reset line-out counter

in progress

increment line-out

r———4———J Léounter and test
{Start 5

yAsk for new
starting

point !

QUIT

in progress

Set SM(A) to max ) DY

h i
lined out not lin~d out

Add exror to integral

( Return )

Complete integral and log results

t Test for start or in progress

in progress

L fSet SM(A)=integral

.

{FPRIORITY

A

Figure 410, Continued

- : \
start

YGet new values and

reset program parameters

‘ ﬁgfurn ’




223

Is the optimum of this cycle the same as optimum
0f the last cycle

(no , ’ \yes
{Save coordinates of tHas it been the optimum for
new optimum ) the last 412 cycles
< =
— —
no _ yes

tHalve the step length

reset flags and counters

YWill rejected vertex be

the same as last time

/no yes

for restart

‘ Return )

fAlter priority to avoid
rejecting newly formed

vertex

\—-*—ﬁ

SELECT

( Return }

Figure A10. Continued




Program Section

Lines 1.0 to 1.09

Lines 1.10 to 1.12

Line 1.13

Lines 1.15 to 1.52

Group 2

Group 3

Group 4

Group 6

Group 8

Group 10

Group 11

22l

Punction

Conversational mode of input for
program initialization and to provide

& hard copy log of system parameters
Reset of flags and counters

DO subroutine call to group 2 for

setting up the initial Simplex
Timing end sequence control of system

Simplex initialization by examination

of local gradients

Lower set point line out testing

and ins<ability exit
$
J

Grading of Objective Function values

for vertex rejection proceedure
Data input and control

Pre-program initialization of user

scan flags
Error integration routine

New vertex selection :procedure

Figure A11. Description of Simplex Search Program

C.
~—



225

e

.
el - -0
T N T
/A op
Ve
y
» os
L I\ \
o
| ]
09 3
\ ]
L X
N ~
s
! Howyge \\ 8
, \ o g
<o
| , /
L > |
e
“" OA.’ € Houygg !
b e
M,A/w/\w\. _
!
f&d \
AN 1]

. Cs
_
. Iy SIngTy .
/XMUJ/A:(‘./W. h\’ﬁ “1 ,Murwyk‘.”/ I-N.P-’/A- — - )

T



226

Bz O 0w B opwgIO Ve o= O

0"

o=

IV T
~= B8 030 8= wl U8

THT . B onBe o T |+ zn Ox T Mo NV abdx 8<R

~8 T
~8 7T
8=, B¥38=8 9V:=x0 B 3= 30 To 3 g=%eIF o0 =¥ t=xx
g

83 THgT—~ 83 5O
4+M2WM_uUH o o]
«8'7 38 T8I I~ 2 >3
=303 o0 ¥ +8c¥ TO= 2 o5
88T 498-3%¥38°3 8 -5
53+ %087 8:Jexx
w T
ZIShi
SERRE Exx Tuxe
T-=50 B4 sI=C 8 Hw. T=ex
o= 93 00 BFg= & 300 3  =x%
= o8EBx
S o Tox OxFxB [em nV
P55 onBE Sord Mos B Xy DR xox M Su
Mo o< uB< QZOMXXOMO WAZJ\VA Ma o no LBV P R
VZ@ZO jan) VAZOU VA/VH N
848N =nlcn 2B UNTS 8 AN oX 52 v oz N

»e

03 3 ¥ XT TAO XN The X oz UV 0B T¥ax<zN VoS
HFOoU BEMNood 53NNVEU TRNIGOa™™ SN nT N oo ox
Vm %@@w.a.GCq SNnnomo FosNn: O = dos0 L3N

>md N 570 =V 5 SsoaNsS8 ¢

D

CH< <EOQOO gec 44X 44O in ©(C o X Ot Wl 7 o
R

<1 < c:

¥

O
2
)
= )
q I+
B2
3 »
89 =
29 T4
W«..HZ
7257 o
IR
28-Tx
a8 .
88 I.
281 g
8833
ISR I
8. .
88 w»
SICER R
o1°%F 3
DF.M?.
ChIERE"
31+
* o
1-Y8
18
A .ﬂZ
.mo.u 8
838 .
T8 o
o



227

»n FN

co

P fzmo=s QU B

Kox A +Z®Is©
Bx -

2@.3 XQIO XW
T+ .a=I0

oY

NEREC RS dal 30
2@.3 [ Rl

% NE

a7 Qrm—1

R L LI AR T L

L

=

% 1 28 8 .o Byoxmy
iaxm Bixs € 7wz %8

H sz

O8 owf08 Z¥ u8 % % noldmz

% Omy
Ln- 5 EQ%e 80-Q ~Bxo=x ox¥x
C = «Ip=y

()

2

4

[ Co 2%

s OO, «x

O OO

o Wi O
—4 —4 —4 — 4 g NX

2 X ©

O w

22 22

-4

-4 ©I1O 2
22 X

2

H# e o o o

n N

3
2

N
o N
N

3
2

N

0N
N
NN

°

ca
s
SN

Yo

Fa
g0
Ba
g0
S



228

o
D o LD e Ty

IdmaaT ® X
¢+ 714840 "INz
ZQXX J+8 wie =
w77 TatT7 38
S NT Xt w5 OX=dd
FF e
Gu=8x % oI TI=I X o= X XWZﬂﬂz
H
Z2a73do=zad g2 X  =0Z

#NO N wFex xxEN  Fxzd¥ I9ES XV ON. TB7.
Kt mZ X~ o ta> = op

@3 o SN 3sW3.3 w7y gd - 2WV G

e =R S NON N w X7 MN. =Xix

@.3

~=an € Q di=zaTsd2 9éNF=zaT NX

oo RO INT o N TENRNVY 2 Bx, ¥ Xa
aFn B aE M 8 -840 XFIF aaT =D XUX =K

2«44

N B oom

XK o NA=XT 2 M +FNNF NN
Nt o 24WZX1SX
23 o
XE
2ﬁ.3ﬂxvﬁi
B o T Yy Vxx % ox.
OXOXS Xt =X
9P
2.4
2H
%ﬂ LT B
= XS VA X L Xk B PN .

X

X MX 2

X Ho

HFfEX C v XX 49X X - XXQXX BX o x

X e
A
Xa*
Xa®

Tt

X o
X on

Jen

N
(ol

tolel
KX

Jen

0

K3

£
i
o
N

—4 —4 —4 44 a€

[elq\l
N
NN
NN
NN

NN
- N
NN
NN
[Ne|
NN
N
NN
0NN
NN
[Nel
NN
N N
NN
na
NN
[selell
[sele\]
[Ne|
NN
AN
NN



229

( Entry )

no

\

(41

INTEGRATE

(yes -

Reset counters and
set GO FLAG to +1

no

\

Initialize -

Is scan flag set

yes

CONTROL

Test GO FLAG

-1

Has systgm lined out at low set point

no

tHas it had more than 100 cycles

yes

Signify instability

SELECT

Figure A1lL., Flowsheet of Random Search Program




CONTROL

230

Group 6 { . Entry ) .
: L]

no

SELECT
Group 11

V

YRead in measured value

Is it within dead zone

yes

Set the measured value = set point

Use FCON for control

" Return

Entry

)
=D

- y
~ * )
o « A

YAdd & random variable to proportiongl band

vIs new value greater than O -

yes

rAdd a random variable to integral action

time
[Is new value greater than O

yes

( Returh )

Figure A1l, Continued




251

INTEGRATE
Group 9

" -

first

Start integral

>

tSet lire-out

counter=0

-

vAdd error to

integral

G

O,

J
(yes
Y !
‘ V,
f
yes
{Log conditions,save values !
set best integral counter = O

1

A

‘ Entry )

 Increment points counter and

determine error value

$Test for first point

not first

Have there been more than 80 points
no

Is error within dead zone

yes

ISet error = 0 and increment line-out

counter

Has system lined out

yes

f Finish integral and log conditions

Is this the first experiment
no

| ©

Is this integral lessKthan Jast
smallest integral

no

' Increment best integral counter

©

Figure Atl4. Continued




232

© ©

Is best integral counter greater than 15
. J

mo yes

'SELECT 1Signify end of cycle

[Reset parameters Is the minimum integral of this cycle
: at the same point as the last cycle
Return . )

( ) - <

no yes

1 Save this point {Has this been the minimum for 3 cycles

_ ,

.

! Reset counter no

>
>

{Reset parameters

( Return ’

{Signify instability

tIs this the first experiment

< /
-(no yes

{SELECT

fReset parameters N

< Return )

Figure ALk, Continued




233

Program Section - Function .
Lines .4.01 to 1.17 Initialization of system parameters
Lines 4.20 to 1.90 Timing control,sequencing and low

set point error detection
Group 6 Data input and control

Group 8 : Pre-program initialization of user

scan flags

Group 9 Error integration routine
Group 11 "Selection of operating point for
next trial

Figure A15. Description of Random Search Program




AWIL  KNOILDY TVHDIALNI

“ B _ _ S _ T T T _

juiod paydesoe x

jujod peioafai °

GNvE IWNOILHOdOHd

L 09
o
julod pejdsoce ¢ — oL
jujod peyoefes o
L HOHV3S : +— B
— 08
P
\\ Ay .
o N
.
AY
X 4
AN
\
A Y
\
N
o
— 06
S3IHOHVIS WOANVH OML ) *olV O.Hw..m.ﬁr.w . — oot




235

WA

8/8G2°0
Aﬂuﬁn va

A U< .Nv

8lG96°0
Tll

Ve AﬂhaNUﬁ

3

®/G96°0




236

APPENDIX B,

Effects of Errors in Timing upon the design

considerations of a Real-Time Operating System




237

B.1. Methods of Providing Synchronous Scanning Facilities

The structure of a Real-Time Operating System will be dependent
to a large extent upon the accuracy required of a synchronous sampling
scheme.

If a high 'degree of accuracy in synchronous timing was required,
it would be imperative for all peripheral devices to be driven by the clock
routines within the interrupt processor. This would require handlers for
all peripheral devices to be available for use by the interrupt processor.

The simple approach could be adopted, whereby all available devices were
serviced, however this would lead to excessive timing overheads within the
interrupt processor. It would therefore be necessary to allow users io
specify which particular devices were to be used within his program so that
only those device handlers actually required would be activated.

Input from and output to peripheral devices would have to be
buffered in data tables which could be accessed by or loaded from commands .
availabie to the user in the high level language. The data table type structure
is unfortunately inefficient with respect to core usage ,as the same amount -
of core needs to be allocated irrespective of the number of peripheral devices
being used. In a minicomputer environment where core space is very limited,
peripheral device data tables would have to be restricted in length thereby
reducing the number of devices which could be used.

In order to provide synchronous data processing facilities, which
must be available for calculation of control outputs of various sorts, it
would be necessary to provide software flags. . These software flags would
have to be accessible from commands or functions in the high level language
so that a user would ensure that his data processing proceeded in synchronism
with data input and output.

The above approach would ensure that errors in timing of input and
output were reduced to a minimum level. However it wo uld also impose severe
limitations as to the number of peripheral devices which could be used and it

would be preferable if a more flexible approach could be adopted. v



238

An alternative to the above procedure would be to set a software
clock flag within the interrupt processor which could be interrogated by a
user from a cqmmand available within the high level language. If the flag
was found in the set condition the user could then access the required
peripheral devices from further commands available within the high level
language.

This approach would avoid the necessity for using ta‘ble driven
peripheral devices thereby extending the number of peripheral devices which
could be made available. It does however possess a severe disadvantage in

that timing errors can occur.

B.2, Types of Timing Errors

A program sequence similar to that shown below would be necessary

in order to set up a synchronous sampling scheme.

10.01 IF (FLAG (A)) 10.10
10.02 G 10.01
10.10 % 1/0 tasks and
) synchronous
) computation
. !
10.mm G 10.01 Return to waiting

; loop for next
) sampling period
This would apply to either method but in the first method input
output commands would merely be accessing data tables whereas in the
latter method the commands would access peripheral devices directly.
Two types of timing errors could be incurred with such a
sampling system:- —
1, If the computational load within the sampling loop is too great,
a complete sampling period could be omitted at some stage.
This particular error can occur irrespective of the sampling

procedure adopted.

2. As it takes a finite time to assess whether the timing flag is
set a random error in sampling time will occur. The length
of this particular sampling error will be between 0 seconds

and the time taken for the execution of the two statements



239

within the synchronizing waiting loop. In the above
example this could be as high as 10 m seconds.

In the case of all peripheral devipes
being driven from the interrupt processor this
particular type of timing error will not occur as
the flag is only used for synchronizing the processing
of data. However in the alternative procedure where
data input and output is also controlled by the flag,
this error will always occur.

. Fig.B.l shows a diagramatic representation
of such a sampling scheme.
Before deciding upon which of the two sampling procedures to
adopt, it was necessary to consider the effects caused by the above types

of sampling errors,

B.2.1, Effects produced by missing a complete sampling period

It is possible to avoid this type of error by ensuring that the
computational requirements of a sampling cycle do not exceed the period
of the sampling cycle. This type of sampling error is therefore of little
importance. However there is still a possibility of it occurring and it
would be advantageous to know the effects it would have upon a system.

Dannenberg and Melsa (70) have studied the effects of missing
a complete sampling cycle in a situation where a time shared computer is
being used for control and data processing. They concluded that it is
possible to occasionally skip a sampling cycfe with little detriment to the
stability of the system. |

-

B.2.2. Effects vroduced by random errors in sampling times.
"Jitter Sampling"

This type of process has been studied by AKAIKE (71) in order to
determine the effects of such timing errors on the Power spectra of
sampled signals.

For the process shown in Fig.B.1. where the sampling time Tn

is related to the sampling period At by the equation

Tn = nAt +e'n



240
Where e is the error in sampling time at the nth sampling
instant and is one of the set of independent random variables from the
same probability distribution,
AKAIKE has established the following relationship between the

true and aliased power spectra of a jitter sampled signat

R = 166 L.R® +ch - 166 Pq) df'

where
.F($) is the true power spectra of the process

P (§) is the aliased power spectra caused by periodic

sampling (B3)

é (f) is the characteristic function of the probab111ty density
function g (e) of the deriation in samplmg
intervals

o) = 5' exp (2rife). 8(9,).66

2 | 2
and | 95 @ |, is the aliased version of I é 3]

According to AKAIKE this can be interpreted as a white noise source
e N2 ¢ . .
of magnitude ‘S_o U~ ¢ )Wo . PG ).d 5‘ with a filtered
version of the original process, the transfer function of the filter
: 2 . J -
being [ (), |
For no timing errors, the relaticnship reduces to
Pof) = R ($)
indicating that the sampling process causes aliasing of the original x (t)
signal.

When timing errors occur

1 §G)1P <1 for fF£0
bm 12321" = 0 -

§ree
Thus concluding that this particular time sampling process acts as a low
pass filter, the power which was present in the higher frequency components
of the signal being transferred into the white noise effects.
The effects of jitter in sampling intervals is therefore to distort
any high frequency components of a signal and can therefore be minimized
by selecting a sampling rate which is significantly greater than the highest

frequency component present in the signal.



244

B3. Simulation Studies

A simulation study was carried out so as to obtain quantitative
data on the effects that jitter sampling would have on signal recovery
and whether it would make the use of an interrupt driven system
essential.  Simulation programs were written in FORTRAN IV and
compiled and executed on an I.C.L. system 4.50,

The methods adopted involved the generation of data as if a
sinusoidal signal had been sampled with jitter sampling procedure and:
then tc¢ analyse the data. '

a. by attempting to recover the signal from the sampled
data using a least squares fitting technique of a
simple model and assuming that the data came from an
equispaced sampling procedure,

k. by evaluating and examining the power spectrum of the

sampled data using a method for equispaced data.

B.3.1. Data Generation

In the type of sampling system envisaged, the actual sampling
time will always be later than or the same as the expected sampling ;
time. The deviation between actual and e.xpected sampling times will
vary between 0 and some maximum value with all values being equally
likely. Fig.B.2.

To simplify matters, it was decided that the original continuous
signal should be a single sinusoidal function of the form.

y =sin (W , t)
where W  is the angular frequency of the signal.
sampled data was generated in the form -

A Yp=sin W o(t +te )
where:-
- tpis the expected sampling time

en is the deviation between actual and expected sampling time and

is of the form
ep=mr,

where r p is a random number in the range 0 to 1, the probability

distribution function of the r ,, s was uniform so that all

numbers in the range 0 to 1 were equally likely.



242

m is a scaling factor so that the maximum value of the random
deviation may be varied as a fraction of the nominal

sampling period

If a nominal sample veriod  of 1 second is chosen, data sets
can be generated as if sampling at various rates by altering the angular
frequency W o of the input signal.

Sampling rates are most conveniently expressed in terms of
multiples of the Nyquist rate, this being the minimum rate at which samples
can be taken so as to be able to obtain full signal recovery.

The Nyquist Rate N = 2 samples per cycle. At a sampling rate of
1 sample per second, the maximum signal frequency must be % cycle per
second = 7 radians per second.

maximum value of W = 1T radian / sample

B.3.2. Least Squares Analysis of Data _
| Assuming that the sampled data produced would have the same

nominal angular frequency as the original signal, the model
. i
y=a, +a; sin Wot+ a,

was used in a least squares curve fitting technique so as to examine °

Cos W t . (1)
)

the amplitude and phase distortions produced by the sampling.

The least squares technique involves the solution of the equation

QN + Q égm\\/o Eha +aQ, i'nCos Woka = .fiy,t

Qo i SiaWo b, + q, A% SitWotn +4a, ‘ésl;n Waka.Cos Wo bn,:Z:l Yo SiaWo by
2 A

Qo % CosWotn + @, ?ﬁ SinWoth . CosWot4 ‘f'Qg_E.'CDbZ\I\Jotn - é Y CosWotn

in order to determine the values of the constants a 0 a 1 a2 in the model

equation.
Equation (1) can be rearranged to give

y=a0+b Sin (Wot+¢) .. (3)

where a, is the zero drift of the sampled signal

b is the amplitude of the reconstructed signal
2 2 :
WA . (4)



243

is the difference in phase between the recovered signal

and the original sinusoidal function

= ‘l:an--1 a2' - (5)
at :

The results obtained can therefore be conveniently represented
in terms of plots of amplitude recovery and phase difference against
sampling ffequency. This method will give some indication of the
distortion of the signal caused by the jittered sampling process provided
of course that the results obtained are statistically significant.

As all the sampling times never vary the data should approximate

to the equation:

y = Sin Wo [t+mAt] .. (6)
2

where t is the time interval between samples and mis maximum fraction
of the sampling period by which the sample will be delayed.

Figures B.3 to B.12 show the results of the computer simulator
study for a data set of 100 points. The results are plotted as amplitude
against sampling rate and phase difference against sampling rate for :
deviation in sampling time of between 0.2 and 1 sampling period as labelled.

From the results of this simple example it can be observed that the
distortion of the recovered signal with respect to the input signal increases
as the maximum deviation in sampling time approaches a whole sampling
interval. Furthermore, when the sampling rate is increased with respect
to the signal frequency, the distortion is reduced.

The continuous line on the graphs of phase difference vs sampling
rate is that of the phase lag predicted from equation (6), and indicates
that the recovered signal could be represented adequately by just a phase

lagged version of the original signal.

B.3.3. Spectral Analysis of Data

Estimates of the Power spectrum of the sampled data were made
using the method outlined by Blackman and Tukey (72, 73).

Assuming that the data is available at equispaced'intervals of time
estimation of the auto correlation function can be made at the times for

which the value of the function is known.



24,

i.e. For a sampling interval of At data is available at
t = o, At 28C, - e e natY

and the auto correlation function at these values of time

Cr = E (Xees =X ) (%=X)

ﬂ+l - |-

for O < ~ < m where m is generally taken as about 10% to 15%

of the maximum number of values within the data set.
X is the mean of the data set X, o Xa
A crude estimate of the power spectrum of the data can be made’

by using the unconvoluted cosine transfer.

vi/— Co + 2 20{" COS ;"m : + Cm Cosf’ﬂ'

for (Z/'Oa R A
Finally, smoothed estimates of the power spectrum can be obtained

from the crude estimates by using the Hamming Spectral window
Uo = OB4Vo + 0-46N .

for (V: h2 - M-

_ U—V = O 23 \/7,-| + 054'.\/1/ + 0'23 .\/&_‘, i
_uﬂ = 0'4'6.\/”_‘ + 054’.\/1‘1
The resulting values of Wgare obtained for frequencies near g

cycles per observation. 2M

'As only a single sided transfer has been considered, i.e. for positive
time and frequencies only, the results obtained should be doubled. However,
it is only the relative magnitude of the values which is of any concern and it
is not really necessary to do this.

Figs. B.13 - 17 show the power spectral estimates obtained from a
generated data set of 800 points, sampled at different sampling rates.
Each diagram shows the variation produced as the deviation in sampling rate

is increased from zero up to a whole sampling rate.



245

Figs.B.18 - 22 show power spectral estimation obtained by
generating data in the form

¥n =8Sin Wo (tn + en) + Sin Wo (in + en)
' 2

These tended to show that the higher frequency component was

distorted to a greater extent than the lower frequency component.

B.4. Results and Conclusions

The results obtained by both methods confirm the theoretical
analysis, high frequency components of the signal being distorted for more
than the lower frequency components. (Frequency in this context must be
compared with the sampling frequency). The distortion is therefore
decreased as the maximum error in sampling time decreases and also as
the relative frequency of sampling is increased.

It would appear that for signal recovery therefore that absolute
sampling synchronism is not essential. For a sampling frequency of five
times the minimum Nyquist rate a deviation value of about one-third of
a sampling interval would be perfectly acceptable and a deviation of up to
one-half of the sampling interval could be tolerated. i

In an interpretive system where commands take of the order of
5 to 10 m seconds each, a free running sampling system would reqtﬁ.fe
approximately 20 or 30 m seconds per sample, i.e. to pick up data, perform
a simple scaling operation and store the data. By including a software
clockflag for synchronism, the time taken per data sample would be
extended to approximate 50 m seconds with a maximum delay of about
10 m seconds. S

Therefore it would appear that by using a slower interpretive type
system, it wouid not be essential to have a totally interrupt driven system.
Synchronous sampling can be accomplished simply and effectively by allowing
users to interrogate a clockflag and then access the peripheral devic e when
the flag is found in the set condition. The necessity for table driven
software can therefore be avoided. ,

This view is also confirmed when one considers the scanning rates
which are likely to be used in most applications (B.5) and also as explained

in Chapter 4 high data capture rates can be accomplished in a different

manner.



2.6

Clock Clock Clock Clock Clock
Flag  pp Flag® ,n Flag ,p Flag ., Flag
i I [ | M
PN fe—ers ey |
Sample 4 7, R ta e t3 75 te
.Teaken .
Tn= nl + e
Figure B1, Expected Sampling Scheme
J
Expected tg 1;. 1': 1” tg\«
Sampling
Times _ AT AT AT AT

|
|

|
e |

|
%

Actual
Sampling
Times

|
L)
|

7.

N\

Figure B2, Signal Sampling with Jitter

¥s



247

A.m/OHm T\)OnmPB'mm U@D.; = I© VoI tOm.«ﬂAOO/n_rer_.B mm Mk& R

-

tL.

I
o
tl'
H
VI
t
)
u
k
u
v
L.
I
h-
Z
2

204

CXAJ)
— g

Q._ 4

cIQn_vs jas] le\wa mm o Obw lﬂou — ©n o

o s o X

D



246

cwr B <. L 5

Q0

2 km,mcﬂBﬂ» wm S

L UoE rom&ﬂA%m o0

et'

33H:JjjI70

5rL':3'Tj



249

3 Hw“&AIw <€ col® O Uoz Oefne o =0 g —
o<5 8
9< O

o8

o

SASIN

QS0

301111 idwy



250

O WUz T <N88 4 = RO FUTBF, n@IiSsy

oo = 8.Umo< BausEg € Sg

THIATy Se<lB g OmaTs B g0 POFLs0L

3 4

B

Lo Q

10

L'c

ut/ e

js™ynj

SNL'JCUhj-nNiyyjjic;



251

o U0 COTIEG p o TF QO OTORLL © cnE

S PN g

S 58

szs S

ogsg 8

= Ne)

0
©
€j

> =
<88 .
-

Cw o
—
=)
- —
- —

= et
—
- —
c—
|

=

o | =



252

0P B0 Qs < Mo Befoz,

') B fo< o O o R

P 0 PR <D ¥R TR

© 0z OFhc S o

S &

01

or

ot-

;N 3:djjjja



25)

Alﬁ...bwms 00 =

=T o R = “Op o TE Ab o

Eo= < «<c80F. =

=S, 1<Oo e ©

—

—

ooQest © Tz oM G W <

oo,

S

in

un
tn
m

D
(o4

11

t]



254

T c2EB@ =F g5 = xa o SR wo Mo

oo = TRUTO< oE o sk 4

—E ' § -0 oseTr O Udmn O Sqc 8%y

ol © &ﬁ

L To

JJIJT



253

p— SWuﬂm oo :

BEG

o
un
7)

— 0,0

= uUDuo@ Wz, — S
915& = Fo O,

a'Se)

tl

11

0



256

cﬂwsn_a o <0 ummcﬂaﬂp < B

%)

o0 O~ B © 0 I, wn

S O g [IDE A, wrg 48

e

T €0 ooF ORzc 5338 B

LP



257

39 0.7 S 4 m 35 2,0 2020 2 232020
FRI2i[N/-CE2L1S FF; 25 FRIATIN

SPECTRAL ANALYSIS

i ] /. . , . A

Figure B13. 800 Data Points Sampled at 1.25 times Minimum Nyguist Rate



258.

uly'

3 3,3 3 3 B3 3-3 333 3,3 3 J3 3-33 J3 3 33 37*3

FFUINGGUE] HR GSRETM

SPr.CTRfIL. PMRLVGIS

Figure B1”. 800 Data Points Sampled at 1.66 times Nyquist Rate



=

259

'y

¢c10 :JO : 05 o000 0. ojo :32 00 ,ws j » jto J .33

O\ Y9YCi:.3 "[v ¢js?

SPJCTf<:,L RMRLYSIS

Figure Bl5» 800 Data Points Samplod at 2*5 times Mifiimum Nyguist Rate



2¢0

3¢: :-,v 03 2 3B 370 333 31 33 343.3 33 313 3 PO 3 33
1p:3u[NCY= YA Fi

SPECTRAL ANALYSIS
nl L

Figure B16, 800 Data Points Sampled at 3»0 timqs Minimum Nyquist Rate



261

mXLLLUCROG B fr, dSOGRTOR

SPLCTRnL NAL\'51 S

Figure B17. 800 Data Points Sampled at 10.0 times “llnimum Nyguist Rate



jed

262

0i0 313 JB 140 3vj juy ed® d.9 "10 03 33 3133
FRE:uiNY-cYL?2 r-; C"HRRICN

SPr.CTRHL RNRLVSIS

Figure B18. 800 Data Points Sampled at 2.5 tines Minimum Nyquist Rate for



2€3

0&@ 0G 13 383 3/ 333 3iG 3 313 03 333 3iC 313 3jJ] 3C 333
FREUUCY-GARG =3 QHFPIRIM

SPfX.TRRL ANAL YSI5

Figure B19. 800 Data Points Sagpledat 3.33 times Minimum Nyguist Rate for (Jo



=0

264

0C ¢ 0Jo cI : "0 % g o cj: w

rRLf.i.‘LNCY-CrCLf 5 '[/<

SPIXTRRL RMIfiLVSiS

Figure BZO. 800 Data Points Sampled at 5.0 times Minimum Nyguist Rate for (»



285

c, 0 :0 <«<lo : W C ;0 00 G0 0 0jo 0.0 GO
RGONCYQUES o, GBLGVATI3

SPLCTRRL ANALYSIS

Figure B21. £00 Data Points Sampled at 10.0 times Minimum Nyguist Rate for Qo



266

APPENDIX C.

Flow Charts for FOCAL Modifications.



-P

*H

00

O

C\jK\_fL-\VD

-P

r~S.T -

O

-P

QJ N

8 O

XI

dn

267

irw o

f'-.

®7

2

2y

25

——ATL M
M CICM (M F

ngA

=
.

o

-P

.j- IBgMO 1
f



Cco

o tov

in vi

isi

268

T-

LT\
T-

A

r'-

T-

T- C
cvV Qv oQy

v\ tj-ir\lor' AT S )A

cj M CM @ c\j

Q\j
R

-J

vO
rn

1A



269

BREAK . Text/variable trade-off routine

Entered as an extension to the library command

‘ Entry )

PSet counter for four octal digit input

b |

[ YREADC
YWas input a number

no yes

TAdd previous digits from store
‘Error 7

tMultiply by 8 and restore

yes . JrAny more characters to come

no
PREADC

riVas character a carriage return
no yes

PReset text variable delimiter and clear

Error symbol table

Exit

:

Extension to Altmode reply to Ask Gommand

tmod

D

YGet value of variable into floating
point accumulator .

YFLOUTP

YREADC

Endfi
+5



270

Modification to Input Routine CHIN for input echo suppression

‘ Entry ’

(— o
t+INDEV (see Focal Flowsheets)
¢Store in char
$SORTJ (NEWTERM NEWLIST)
- TN r- >
(" . h
ctrl/r other line ctrl/x
| feed
Y Replace FRINTC or YRestore
with a nop . rub PRINTC
instruction YFPRINTC or nop out
P -
Return

d‘
\.

3
 §

Power on Automatic Restart Routine

-

Entry

1

A

\

\

Sort out data and instruction fields
from stored value

JRestart teletype printer flag

lReset accumulator and link from stored
values

fTurn the interrupt on again

where interrupt occured

f[Continue operation from point of program



27

GTEMP

Entry

{

tSave variable pointer pt1 in put

- U 1GSYIM8

yStore floating point accumulator in Temp

rSet variable pointer to point to Temp

PUTSYM

Entry

fSet accumulator to non zero for tty input

yFLINTP

tStore variable value held in Temp in
symbol table in field 1

Return

PSYMP

Entry

0

+PSYM8

YGTEMP

Return

i



272

Variable Erase routine

Entered from function error call in Erase command

=D

(" < ' YGETC
«E;ORTJ(GLIST ZLIST)
4
o > -
R return
rGETARG POPJ
rMove last variable in table
into locations occupied by
this variable
S YCorrect end of variables pointer
LY
o -~

v

Extension {0 Modify Command for line duplication
' ‘ Entry )
' }GETLN

¢Save line number on push down list

LSPNOR

bl s character a comma

Y
. no yes
IGETC
_ YCETLN
FINDIN

2nd exit

1st exit
fRestore line number from pushdown list

fContinue into 0ld Modify command at 1261

-l



GSYM8

PSyM8

GUB8

273

Entry

J

ySet data field to 1. -.

Get value of required variable into
floating point accumulator

tReset data field to zero

Entry

]g

¥Set data field to 1

¥Set value of variable in store to the
same as the floating point accumulator

YReset data field to zero

Return

!

Entry

l

Set data field to 1

¥Get variable subscript value into
accumulator

YReset data field to zero

Return

0



27k

Extension to Symbol Table Dump Routine

Prints an S for SET before the variable name and value
so that symbol table can be saved on paper tape and read again

Tdump

YInitiate pointer to start of symbol table

Y

r ¢ Test for end of table
end not end

POEJ t Get variable name and store in output store in
field 1 .

F Set output text pointers to point to output store
Yy Print ans and a space via PRINTC

f Print variable name and a ( from output store
using GETC and PRINTC calls

Y Get subscript value,load into high order part
of floating point accumulator

A4
F Set exponential part of floating point acc&mulator
¥ DNORM

¥ FLOUTP43 to avoid printing an

Y Print an ) via GETC and PRINTC calls

¢ Load floating point accumulator with value of
variable

y FIOUTP

f Print a carriage return using PRINTC

IMove on to next variable

} 3




275

DIPCHK Enable and Disable Commands

E C enables the routine
E D disables the routine

Entered from an Error call in Erase Command

( Entry ’

¥Is dharacter a ¢
s -
yes no
pClear POPJ YIs charaoter a d
in Dipchk
yes
[Set a POPJ in Dipchk to disable routine
\- >
j 1




276

APPENDIX L.

Flow Charts for Single User
Real-Time FOCAL




277

Cco

288 o

—_ v

Csm, <S8, "HuAcBOog &

©
£

cnaac.ﬂk
N P%B«M P

11 og
AGE o
o8 W(x PO@
500 Uy Ous  axog

p—

mO?vHPaq oSEAs I

[l
H

B do o8

omOc Upass 2

X"\

invo r-

XX XX XX XVXXXXr«\

J

ux}ji)wr-GPmﬂ

T3. & ivD r- G T- (i XX*
T-t-T-'T-T- A~C\IC\JC\IC\JC\1 eu

Vi

>m

(Y



o Fo: g

P o

Ao ®

atd Z e ] 9}”

=to)

278

APy

AACT. .
r*GT- ¢j XXCX;(%ﬁ\‘a CXJGXHA

YoQ

[S]

=

t\jxx-ch uxvor-

xxxxUfX XXXXXX



279

S 9

© 3 o Po g L,B SC<«®a d oo

QuIE, o0y 2RO oso RORVRZ gRo OCo®IT, R/ ¢ O\H

s 0N 8

"eom

DI Tom 900w

O L% 05 =0z gmn &L
aHE g Osen VH, O 39, <0« M\y | N 250
e L

=

SO O

i, Omafx Honse B aSoar o

RocosSoRF o RS aRg

oo oo N = 0oL« Baw Sd g oYt Yaoltd’ <o,
SRm@ ~ .02 CaaCHm BﬂaA
8
) - ° e
o KO U0 e Ba¥f =SS0 A fme® s o ° =
o WMo, avg o7y Red 5 T Sa e o8
Pmog o <=5 [|mog = S0 o g WOPORR g >  Oepm@0
SaoR WO ST, udrFbhs o z 0.V
Sg O RO OO §FES =0

S, 8 v _ Ts84d 08

«s?

eneo T <

GT-c\jxx_ d- mvor*G-r- (j XX +tnvp r*

CVJC\JgsJCWC\J CsJICNJCM XX XX XX XX XX XX XX

M XX

V-



[eX=1-%

ioo_”

oMxx~ i\

G

M XX

280

-d* UX VO

G T-
T- M M

MXX
o™ oM

d' lixvo
™M ™M

| Ne] Z@

e

r~
™

U2 e

GT-cMxv-d-uxMOfx-
XX XX XX XX XX XX Xv XX



281

Extensions to Focal Interrupt Processor

‘ Entry ’

¥Save acc and link

tIs power low

A

i

no

none

A

]

1

]

no

Y

p>
~

4

p
9

8)

Eest character

yes

\
\

[Save restart address and memory field
Set location @@Pd to a jump to restart
routine

‘ Halt }

s printer flag set

€S

lear flags and test buffer for a character

character present

end to printer,set flag and reset buffer pointer

s keyboard flag set

yes

) 4

r

blank

other

ctrl/c

Is input buffer clear

&>

no

IP

yes

*Store character
in input buffer

tRead and store in hinbuf

\

no

Error

Figh speed reader interrupt

yes



282

IR
¥Clock interrupt
r -%
no yes
{Update absolute time counters
fHas 4 second elapsed ‘
e J
(mo yes
VReset hardware watchdog
set flag for DIPCHK routine
TAny outﬁut on output counter cards
(mo B yes
\
TOutput required values on given channels
‘?
yes  (Any more channels
L - _ no
v \ -
YInput on channels 1 to 6 of input counter
L . cards and store in buffers ¢
Y j
tUpdate the three user scan flags,sei to
a negative value when time interval has.
elapsed
- »

)

YRestore instruction and data fields

fRestore accumulator and link from saved
values

&Turn the interrupt on agaiﬁ

‘ Return ,



283

. SORTNSET
( Entry ,
YINTEGER
tStore as input/output function required
ARG
{Store as input/ output channel address
[Get input/output function word
YSORTJ (CALLIST TYFES)
- o _J\ P P [
. -~ b \ gl N v
[ @dig @alm other Pdta ¢dac fhrz
Return ) Y ! 1

Error @

(Jdta



28l

On-line Variable lodification Routine

‘ Ertry ’

qHas a change just been completed .

(yes

¥Print a and return as
terminators

YReset type/ask inhibit

$Is a type /ask command
held at the moment

-¢Is in progress switch set t

no

tAny input in input buffer yet

no yes
yIs it a ctrl/s
D—
(no yes

4Set an in prc;gress flag

¥Set up inhibit in type/ask command to stop
input and output if command entered

1‘§et up temporary te;ct pointers for )

command input buffer

no

yes

Clear input buffer

Dipcht

b 4

Set inrut text pointers from temporary text-
pointers

FREADC

8.

FSORTJ (. YLIST YORLIST)

Jpdate temporary
text pointers

NP

K.--_..---'- Rt TEL LT

] -
oTher return " lback arrow
PCKC Y PACKC ' —
F PACKC

tSet ocutput text pointers to beginning of
command buffer

YCETC
¥Set command done switch . -

tClear in progress switch

Set

‘The dottad lines show the internal lcop<' mace v.hen type/ask comaand

is put into irhibit mode



285

Type/ask inhibit routine

Entered when user is in parameter modification mode and the
program enters a type or ask command

‘ Entry )

[Save current character and output text
pointers on pushdown list

fCreate the loops as shown in dotted lines
on main flowchart

Mod

Dipchk

Entered from variable modification routine

Entry

{POPJ (cleared by E C instructiong }
(reset by E D instruction

¥Is software clock flag set

»

no yes

YSave pointer to current line
¥Set up to do group 31

YDo group 31

fRestnre pointer to current line

PORPJ -



286

ARG

Cbtain next argument and convert to integer

‘ Entry )

{GETARG(*)

1st exitﬂ 2nd exit

YINTEGER

ey

NEXT

Called by GETARG(*) which should not be confused with
Focals variable search routine GETARG

( Entry ’

YSORTJ (RHBCOM COMPLIMNT)
J -

other comma, )

SEVAL-1

2nd ' 1st
=D G




Flag Routine for Real Time Focal

287

Set up pointer address to-start of
scan flag table ’

INTEGER

t ARG

Y Store as part seconds
in second scan flag

F ARG

tStore as part seconds
in third scan flag

(@st Y1st in —\anfln ‘\3rd inv \other
table table table
1 ARG
YIincrement
T - ; s
Y Store as part seconds pointer
count ¢ address
| ARG yIncrement
¢ Store as part seconds 223?2:2 ( Error )
in first scan flag '
—

YPick up current value of required
scan flag via pointer address

YStore in high order part of
floating point accumulator

[
v

3

t1s ther another argument present

A

yes

no

Error Function
Return



288

Time Routine for Real Time Focal

Entry

Y INTEGER

Y SORTJ (TIMELIST TIME)

- A > * M » '
(&st ®scs ) Pmns Yohrs ) Pdys Y other
Y ARG IGet T Get rGet rGet
: seconds | minutes |hours days

Y Correct and count count " | count count .

store as seconds . ‘

counter YCorrect ¥ Correct ¢t Correct
4 ARG
F Correct and AJ

store as minutes Z

. _ ) ( ” )
e - - .
counter Error

v ARG

't Correct and
store as hours

counter
Y ARG
Y Store as days
counter
T Clear ¢t Set up floating point accumulator with the
floating value of required count
accumlator
— "
1
t Is there another argument
« _
yes no

Function
(: Error j) <i Return




289

Input Koutines called from the Function FIN

Entry

ORTNSET

@aig

BITSET

{SETADD

YRead in digital input

fRotate out desired bit using counters set by
BITSET

tSet the floating point accumulator
-ve if desired bit is a 1
-ve if desired bit is a P

‘ Finish )

SETAID '

lose scan switch and allow a short settling
time

YRead in value from ADC
YAdjust and set floating point accumulator

so that @ to 5 volt input sets flac in tlie
range 0 to 1

Finish

Use channel address as a pointer to place in
buf'fer

et input value from buffer



no

NRMLIZE

290

pap

fClear all panel meter flags

{SETADD

fInitiate panel meter

YTurn interrupt on

fIs panel meter flag set yet

yes

YClear panel meter flags

Yinterrupt off

Sef channel address § for input counter card
fRead count in input counter card

PNRMLI ZE

Finish

()
=)

Entry

1Store accumilator in low order part of the
floating point accumlator

YClear the high order part of the floating point
accumulator :

¥Set the exponential part of the floating point
accumulator to 27 octal :

YDNORM(see Focal flow sheets)

‘ Return ,



291

Output Routines called from the Function FOUT

SORTNSET
BITSET SITSET
SETIT(OUTABLE) ETIT(ALTABLE)
@gdta
[SETADD
YARG

Convert to nine bits in the accumulator
YClear digital to analogue converter flag
YSend output

no ¥is the done flag set yet

yes

\

\chTARG (*)

2nd return 1st return ,no more arguments

Function
Return




292

SETIT

< Entry )

yPick up word after calling instruction
and use it as the start of the
Present Status Word Table

YFind correct place in table by using
output channel address

YGet present status word for this channel

YRotate desired bit into link and save
remaining bits in temporary store

YARG
ers value @ or 1

(o 1

Set the link to vSet the link to a 1
a2

b

444 stored bits and rotate back to correct
position and save as output word

§
YSETADD K

YGet output word

J’tAla.rm or digital

alarm digital

A

Output alarm status word Output digital status word

7
3

-¢

ave present status word in table again



293

BITSET
Entry
YARG
¢Add -5 to the integer argument so as to form
two rotation counters to be uvsed when
manipulating either alarm or digital
output status words
< Return )
SETAD
( Entry )

tTurn interrupt off ¢
i

[Get required channel address from store

§fClear and set the channel address

¥Clear accumulator and link

Return



294

Output Counter Card Routine (not interrupt driven)

‘ Entry >

YINTEGER

tStore as channel address

$GETARG(*)
1st return 2nd return argument present
YINTEGER
~ ,
. vIls vglue =ve or fve
. »
(~ve -ve
Y Mask out all YNegate value

but last 6 bits
fMask out all but last 6 bits
¥ Add raise
strobe ¢Add lower strobe

\.

¥

.*Store in output word
YTurn interrupt off
¥Clear and set channel address

¥Send output word

‘ Finish ,

Pseudo Random Number Generator

< Entry ,

YINTEGER(seed)

t4dd current total,multiply by 33
$443 a constant (9147 octal)
$Store as current total

¢Load floating point accumulator with the result

Function
. Return




295

FCON Two term PCI control algorithm

‘ Entry }

YI:EGER

¢Is it a clear instruction

Gres no
$1s loop number too big

yes no

< 8 ; . :
_ YSet up start of data block for this loop

{4KCERR (measured value)

YSubtract past measured value and save result

¢ Clear whole of PStore this measured value in table for next
data area time
GETARG(*) $2RGERR (set point)

Subtract from measurea value and store as -

error value :
1

ARGEPR (integral action time) :
i

tSave it for the moment

YARGERE (scan time)

tDivide it by the integral action time

(sc/it)

tifultiply by error value
((mv=-sp)*sc/it)

Y3ubtract error difference
((mv-sp)*sc/it =(mv-mv )

tSave the result
¢ARGERR (gain)
¥-ultiply by the error function and save the re:ult

fCompute address of channel address store for this

loop
YGETARG (*)
1st exit - end exit ’
output not [15TEC:K (channzl address)

required

fGave as channel address

@ Conco



296

Conco!

YGETARG(*)
< A
r 1st exit
- fCompute address of integer increment store
Error ¥1s calculated increment greater thlan l; 1024 |
-~ <
yes no
YConvert to integer
A yAdd to pust increment if any present
$Is result greater than %512}
r ™)
. es no
\ . Y
3 ]Ei Val;le positive or negative t
negative | positive
Store integer increment Store integer increment
of =512 of 4512
( to max travel) :
R B 1
+- N -
!
Cascad] > ~ J
D

Yload the floating point accumulator
with the calculated value of the
increment

Function
Return

ARGERR
Entry
GETAKG (*)
" y

1st return 2nd return

(.Error ) ( Rcturn_)




Function
Return

297

Lead-Lag Compensation Function

( Intry ’

91

A

J INTEGER

tIs it a clear instruction

) §

yes

YClear dgta
area

TGETARG(*)

1st exit |2nd exit

Error

\

\

\

no

rIs loop number too big

no

rCompute address of data block for this loop
FARGERR (function to be compensated)

FSave it

» ARGERR(time constant ratio)

Compute output value from above parameters
and value of delayed function

[

b ARCERR( lag time constant) !

tSave it

PARGERR (scan time)

*Ccripute delayed function value for next
entry of the voutine and save in data block
for this locp

FGETARG(*)

1st exit

rLoad floating point accumulator with result




298

APPENDIX E.

Flow Charts for Two User

Real-Time FOCAL




299

7

=

PERal og D VYE ey

mﬂUHﬂ.E §0‘3.U o w

L4 if\ \X)
IA A X\

t- M A

Q
rA

1A

,j_

LA vo
M M MMM W™M

™M

S t
r— T- M LV

T- M ro cT\ vX) r”
T- T- T- T-

S
T-

LT\ VO



300

cr
co

= a0TRg CU8 n0E. Al & <<=
D o= .o
A viBa SO & HAHPmH po no B o BO Meg
mm\hsO%O
©8 &z £z o8

o< 58L=0

A MO 'S-r- M A -d* A MO
NM KV A

MMM A A A

d-

=

-d" A MO ©- -c- (M A
.- T- T- T- M M CJ (M C

r-

A MO r- G. M 1A
T-

M rA

S-T -



0

Dynamic Duo Interrupt processor

cyes

YSet PPPP for

< Halt ’

restart routine

_ﬁm

tSave accumulator and link
vIs power low
< no
YSave active registers ¢Set USERNO to user 1
YThis users keyboard
no yes
{KEY
YThis users printer
no yes
¥TYPE
FSet USERNO-for other user
{This users keyboard
no yes
4KEY
.1}This users printer
no yes
Y TYPE
VClock interrupt
< yes |
YUpdate absolute time counters
yHas 1 second elapsea yet
no yes
YUpdate the watch dog system

Rst @ Ip1



302

Ipt

YInput on channels 1 to 6 of. input counter
card system

YTest output counter card output registers

for output
( i WAny output on this channel
no yes
d fOutput and update store
tMove onto next cﬁannel
no | tAll done yet
.

A

1 E yes

Y

YUpdate the scan flags for both users

Y

Restore accumulator and link

Power On Automatic Restart

,‘ Entry )

yPINIT

¥Sort out instruction and date fields from
saved data and set them

fRestore accumulator and link

3$Turn interrupt on

( Return >




303

‘ Entry )

<&

YONDECK

YRead in charagter ,save and test

blank Tubout

other control
code

'Is this user in a silent state
no
YIs the input buffer full

no

{ACTIONQ

yes

yIs user in single character mode
yes . iz
¥Clear input wait bit of DECKP

YIs input buffer nearly full yet
yes |

YClear input wait bit

YIs input buffer totally full

no

yStore character in buffer and reset
buffer input pointers

FOFFDECK

Return

!

YForm required users tty read in code



leader
trailer

(Jand /

D=m

" ctrl/c -

a

otrl/g
ctrl/x
and

N

i inefeed
| ctrl/1

Y

4

return

O

!ctrl/r

ctrl/t

Slnt

Set echo disable bit
in DECKP

.Jothers

@

.
v

‘ctrl/s

lear echo disdble bit
in DECKP



Ctr

305

<§E%E>

YGet address of error recovery routine into
accumulator as a return address

1BDUMP

1Clear all DECKP bits except tty in progress

Y

'Print a 4 using ACTIONQ

(15t exit

Y Get return

h
<
2nd exit :
I'¥ake control code into a printable code
address into :
YACTIONQ ,

accumulator
€ BDUMP 2nd exit
YOFFDECK
Return

Clear input wait bit of DECKP

est for cirl/s typed bit in DECKP
found

lear ctrl/s typed bit and set ctrl/s
finished bit in DECKP



>y

306

Set a ctrl/s typed bit in DECKP

fTest which user is active in the interpreter

&

‘ < 14 ™\
Same as interrupt not same as
user interrupt user

 Set type/ask inhibit YSet type/ask inhibit
patch in interpreter patch in saved addresses
field in this field

. »>

using ACTIONQ
PINIT

j
( Entry }
YClear both users DECKP's

¥Start both teletypes

, ‘ Return ’




XDECK

Called by ONDECK

307

Entry

J

A

_

tIs this users data block in DECK area
of page zero

no

yPut it there from base area

UNDECK

Called by OFFDECK

BDUMP

1

: ]

Return

Entry

Ul

YRemove this users data block from

DECK area to base area

Return

Entry

il

4

¥ Save return address in accumulator

in PCM

YClear this users teletype buffers and
reset pointers

¢tIs this user active at present

yes

¥In other field

f

yes

YReturn to operation within Focal with
a clear accunulator and link using
JICM as the return address pointer

Use subroutine return address

‘ Return }



308

XACTION
Called by ACTIONQ

(- Entry )

¢Is character in accumulator

?

yes no

¥Get from character store CHARM

T}Are there at least two locations in
output buffer .

I 3

( no yes
P One location

yes

3

take first take second return at end
return at end

F.
L

 ¥Is teletype in progress

A,

4

no ‘}yes ,
Form this users print tStore character in
IOT code output buffer

Print character TUpdate buffer pointer
Set teletype in progress

bit in DECKP )




309

TYFE
‘ Entry ’
YONDECK
YClear teletype in progress bit in DECKP
YForm this users output IOT code
YAny output in.output buffer
("no - yes
Yy Clear teletype flag ¥Print it
¢ Clear output wait ¢Set in progress bit in DECKP
bit of DECKP
vUpdate output buffer output pointer
\- g
YOFFDECK
‘ Return ,
)
Exprnt Exrd
¥Save character held ySet up ective user
in accumulator to use. interrupt routines
¥Set up pointers for YONDECK
active user to use :
Interrupt routines sAny input in buffer
YONDECK no < yes
YACTIONQ S?t %nput wait YGet charsacter into
* i¢blt in DECKP accumuletor and reset
2nd exit 15t exit buffer and buffer
pointer
¥Set output
wait bit in
DECKP
N

Return to Focal Operation



310

interrupt routines

Is it time for a user swap

(
yes no

Return to Focal operation

'Reset check counter

ONDECK

'Clear single character mode

rSave return address in focal for this user

'OFFDECK

Set up pointers for active user to use

\
Swap !
¥
y
fﬁbt
found
1
L
no
v y
yes

<
<

Frurn interrupt on
Look for a user not in input or output wait status
found

[Is user already active
N b

found

JLTo restart Duo

N

no yes

tIs active user in trece mode Return to
Focal

yes

'With input weit on

no

. >~ _J

tTest switch register for a stop bit

'Halt here ,press continue to go to Super D monitor in field 2

, load address 4277 field ¢§ &and start



344

Exswp

YSet up new user as active user

fMove this users non- re entrant addresses
into core and old users out of core

fMove in this users zero page pointers
and move out old users

YContinue this users focal program from
whereit was left

( Return )




312

Initial Dialogue for Duo

‘ Entry ’

PINIT

P -

Lyes

<
&L

{CRLF

from buffer
YGARBLE
YCRLF

YCRLF

[LISN

15t {NTEST
\return 4

2nd return

§TYFE

1

yes tMore digits to come
no

YIs value outside preset limits

no
¢Set up pointers in page zero for user 1

tSet up pointers in stored 1list for user 2

{CRLF

Dial

YSet up auto index .register for dialogue print out

¥Set up a counter for four octal digit input

Multiply previous digits by 8 and add current digit

{Move user 2's initial line to start of his area

ySet NMASK to allow for input of digits up to 9



3

Dial

+INTO

fIs result greater than 6¢

yes no
tStore as seconds count
1 {INTO
gjls result greater than 60
L~ -
yes no
tStore as current minutes count
\ -4INTO
tIs result greater than 24
os Tno
fStore current hours count
! (INTO
¢Is result greater than 31
ges ) no
YStore as current days count
‘ ¢vINTO
Ajmllow only 1,2 or 4
@rong ) lox
) {CRLF
YGARBLE
Tryagn

Clear i/o buffers

‘not done [|ilait for teletype to finish

done
‘D

Swap



34

GARBLE
Get next character from dialogue buffer
Is it a colon
A
yes
YPE YPE
( Entry ’
YPrint a return and a line feed
Return
TYPE

Entry

0

Cnot found YWait for teletype flag
y

found )

JPType character

Return

Entry

=
o
2}
=2
| ] U

(no jPIs keyboard flag set

A
vas

fRead character and clear flag

Return

i



NTEST

315

{ Entry )

J}Character greater than @

yes
YSave value as a single digit

YIs it less than 7 (or 9 later in dialogue)

)

yes

tGet ascii character into accumulator for
typing later

2nd
‘ Return
‘ Entry )

ySave dialogue buffer pointer

}@RLF

yReset dialogue buffer pointer
YGARBLE

¥ CONVET

( Return }




CONVET

316

‘ Entry )

~

YLISN

[
' ot

18t exit YNTEST
»

-

2nd exit

YIYFE

Y

YLISN

18t exit YNTEST
- A

2nd exit

yTYPE

( Return )

fMultiply digit by 10 and save

YAdd second digit to first



317

Library Modification

{ Eniry ) .

YPrint value of pointer to start of text

yPrint value of pointer to end of text
yPrint value of pointer to start of variables
Yt Print value of pointer to end of variables
[Print a colon

YSINGLE

tSet a counter for four octal digit input

(- ) Y READC
YTESTN
(period number
other

YGet previously stored total multiply by 8
end add current digit

JrAny more digits to come

yes \

Y

no

-
-

YREADC h

YWas it a return

mo yes

¢Does new pointer lie between end of text
+ and start of pushdown list

7 3

mo yes

t Accept as new start of variaebles pointer
end resct end of variables pointer

Start 1 Error '




318

CHIN
Called by READC < Entry )

v INDEV

yStore in CHAR

$Is it a return

yes

IType a line feed via EXFRIN (OUTDEV)
OUTDEV

Set to instruction field and data field @
INDEV ‘

Save return address -1 so that input
may be recalled if required

Set instruction field and data field @

EXCHEC

Entered at the start of every sub line as a swap check point

Save return address

Set instruction field and data field @



319

SINGLE
< Entry ,

YSet single character input mode bit in
active users DECKP

‘ Return ,

Modification to Modify Command for use with Puo

{ Entry ’

tEntered from command decoder

{SINGLE

f[Continue into extension of modify

4

Modification to Ask Command for use with Duc

Entered from command decoder

SINGLE

Continue into ask command



320

New Error Recovery Routine

Set acc to [Get return lear acc
0200 address :
Y

vStore in LINENO
yPrint a ?
yYPrint LINENO as an error code

vWas a line of indirect program
being executed

@
no yes

¥Get line number and print it
Print a return

YClear flags and inhibit switches set
by parameter modification routine

Start |

4

< Entry )

Y¥Test output channel address

YUser 1 has even channels
yUser 2 has odd channels

-

incorrect Correct

L 4
( Retum ’




321

SORTNSET _
‘ Entry ’
YINTEGER
tStore as function code
YARGINT
tStore as channel address
§Was it input or output that called fhis
) Agjroutine
input output
YGet channel address
YADTST
) tGet fuuction code
SORTJ (CALLIST TYPES)

@dpm i]@ﬂfz @inc \other

®

SETADD

Entry

‘ Return ’ ‘ Error ’

YGet channel address from store

¥Cleaer and set chamnel address

Return

. ~



322

Parameter Modification Routine

Entered at the end of every complete line

‘ Entry ’

YHas a command just been completed

4J

S

no

tIs ctrl/s finished flag set in DECKP
—

no @ yes _
) . YSet input text pointers to start of command

buffer
\gEADC , )
YSORTJ (MYLIST YRLIST)
“ N Y - i
- return other ;, comma :
line
g Print a YPACKC PACKC ferd
and a return YPACKC = —
YReset type/ask YSet output text pointers to start of
inhibit switch command buffer
Wes a type/ask Yset done flag and clear DECKP bits used for
commend in ctrl/s _
hold mode ! _ -
Set
\ .
yes no

YRestore character from pdl
and text pointers




323

INHIBIT

Entered from a type/ask command if a parameter modification
is in progress : ’

‘ Entry )

YSave current character and text pointers
on pushdown list

1Set type/amsk in hold mode switch

t1lp

Dipch

tPOPJ (cleared by E C and E D commands)

YIs software timing flag set

no yes
YSave program counter on pushdown list
YSet to do group 3‘.1 a
YClear séftware timing flag

¥D0 +1

YRestore program counter from
" | pushdown list

POPJ

NEXTARG

Multiple argument evaluation routine

{ Entry )

}Test character

-5 o
% Lot

) . other

1st Error
Return




32l

INTARG
Celled by ARGINT

d

Entry

YERRARG

¢ INTEGER

Return

ERRARG

Entry

I

Yy NEXTARG

oy

15t exit 2nd exit

U,.



FLAG Routine

325

( Entry )

{Set up pointer for resetting counts

Xit

v INTEGER
YIs it a set command
r Y J
(yes no
yIs this flag value in list
N y,
no yes
YGet current value of this flag
tSet up in floating point accumulator
G
! g 3
YNEXTARG
2nd exif 1st exit
' Y
: Function*
E
(: ror j)(: Return ;)
L A
y - )
Y ARGINT A
YStore as clock pulses
for particular scan
flag +
any more to come
_ . yes)
no )
A 4
\. - J




\

\

326

FTIM Routine

-

faays N (@hrs \ ¢mns \Pscs

[ Get days (Get hours Y Get minutes Get seconds
count count count count
L?orrect it"Correot it Y Correct it orrect it

el

Set up floating point accumulator
with value of count

Extension to FOUT command

P

—&

ARGINT
+ve or -ve

ﬁve

Get six least sig bits
of argument

f Add raise strobe

\.

¥t Negate and get six least
sig bits of argument

% Add raise strobe

ave -output word

SETABPD

Send out output word



327

PCI New command for PCI control algorithm

Entered from the command decoder

‘ Entry )

YTESTC
- _
other "~ lterminator
YECALL
Error

YINTEGER
\Fs it a clear instruction

- _

(yes no

YADTST
yIs channel address too big

yes no

YCompute address where data for this channel

YARGERR(measured value ) i

1
giziragiz {Subtract past measured value and save result
)Store this measured value in table for next
time
Parnt

ARGERR (set point)

Subtract from measured value and store as
error valuz

FARGERR (integral action time)
ave it for the moment
ARGERR (scah time)

ivide it by the integral zction time
(sc/it)

fultiply by error value ((mv-sp)*sc/it)

Subtract error difference
((mv-sp)*sc/it-(mv-mv ))



328

Pcict

tSave the result

YARGERR ( gain)

YMultiply by the error function and save result
YCompute address of stored increment value

tWas last character a , or a j;

we )
4

yes

3 L
\
yes <\no
1
.

3

¥Is calculated increment greater than X 1024
no

[Convert to integer

rAdd to past increment if any

Is result greater than X 512
- -

FS value +ve or =ve

[y

< ~\ {.
~-ve +ve : :
) .
FStore integer increment YStore integer increment
of - 512 of + 512
LA , ) . y
*GETC
ISPNOR
YCETARG (set pointers to variable)
" tLoad calculated value into floating point
accumulgtor and then into variable store
Dump EFOP call
¢PARTEST
['SPNOR
b
B JSORTJ (TLIST=ILIST)
; lother return
Process Error @



329

APPENDIX F.

Flow Charts for the File

Monitoring System



330

C.
°r1
=

0)
S
_2ii

He*l

<

» <<

ué

co

P

de4

M@

Lo PcrE ¢ v ond

Rom=O oz

—{o B

8 8= B o5 on | e—

<

Wwoz000 o A

"AroAN-'v

_:3-LPvi\ir~

=AKAN-"M-~tvrird-

v's£)r*(SIT-CMK>

T
"M C\IK

M en

Q

LTN vi

ro _

M



33

Super D Interrupt Processor

‘ Entry ’

1

ISave accumulator and link

f1s power low

(yes

tSave active
registers

¥Set lccation

restart

‘ Halt ’

@3¢ tor auto |

A

no

p

L*—;
\
no
p
<

s

\

y

no

t1s printer flag set

yes

Clear flags

rainy output in output buffer
yes

tPrint it and set software flag
rUpdate output buffer pointer
Is keyboard flag set

yes

E{ead in character and test it

" blank

1

other .

ris input buffer
clear

oy
v

yes : no

Error

?Load input buffer with character

Phestore memory field , accumulator
and link

( Return ’



332

Teletype Output Routine

‘ Entry )

¥Save accumulator and turn interrupt on

no ¢Any room in output buffer
yes
fTurn interrupt off

?t1Is software in progress flag set

4

no yes
Print FLoad character into output buffer and
character reset buffer pointers

Return

Teletype Input Routine

Entry
no § Is there character in the input buffer

yes

fSave character, clear input buffer and
reload character into accumulator

‘ Return }

Powér on Automatic Restart Routine

Sort out instruction and data fields
Start teletype

Restore accumulator and link

Reset instruction and data fields

Continue program from halt point



333

Super D Maxi Bootstrap

Entered from the Mini Bootstrap

. ( Entry )
\

ISet tape on unit @ to go foward

YREDQUD) allews mark track register to f£ill
YREDQUD) up with meaningful bits

not

YWait for single line flag

found
found
¥ § YRead command register,isolate mark track
bits
not

Test for block number segment

found

Read data register for block number

Is it required block number(starting at 2¢)
yes

et data field for transfer into field 2

found
Ignore 2 extra control words
REDGUD

¥Sort out foward checksum

Store in field 2 and increment address pointer

Any more words in this block

no



33k

Mb1

YREDGUD

fEWUIFUN (129 words per block)
IREDCUD get tape checksum
 Mask

 GETSUM

FAny timing errors or checksum errors

no
tIs total transfer complete

o yes

yStop tape motion on unit @

 § YJump to start of Super D Q20¢ field 2

vInitialize for transfer of next tape block

(ie2)

REDQUD
( Entry )
not fYiait for quad line flag
found
found
thead data register .

‘ Return ’



335

EQIFUN GETSUU
( Entry ’ : ( Entry )
Ylnclude last Change running checksum
word in checksum ‘ into an equivalent
checksum

‘ Return > YTest against value

found on tape
(non zero accumulator)
(is picked up later )

‘ Return ’




336

Super D Command Decoder

L 4

o~ @

Reset pushdown list pointer and trace switch

Print af via PRINTC

Set input text poingérs to start of command )

buffer
READC

ORTJ (LIST7 INLIST )

other

PACKC

f a c

® 6 ®

line
feed

) ‘ [ | [ | ‘

FPACKC

>

return

PACKC.

Set output text pointers
to start of command buffer

GETC
SPNOR
— ™

Is it a return

L 4
no res
SORTC(GIIST) @
2nd exit L - )

ave character on pushdown list

-
-

ETC

ORTC(GLIST)

(-
L g

1st exit

2nd exit

1st exit

Restore character from pushdown list

SORTJ (COXIST COMGO)

other 1 e z r s

BOEOOOOE

-



337

'Save input text pointers on pushdown
list

PACKG
' PACKG

-Set up unpacking text pointers to start of
conimajnd buffer

rPrjnt a carriage return line feed, and a "
using PRIUTC

mEnable trace facility
GETC

41s it a line feed

Disable trace

mRestore input text pointers from
pushdov/n list

Rpnt2



338

Directory Read/Vrite Routine

Called by DRCTRY

JMS I $152 ( Entry >
Y Store accumulator in UNIT as dectape
unit required
fStore 1link in REDWRT as read write flip flop
YSet parameters for transfer of ten blocks
of data from reguired dectape.
(to or from blocks 1 to 1¢ )
(into or out of 5@@¢¢ field 2 onwards)
1
LDTAP}J -
2nd exit 1st exit
YTest for read or write -
. ) Error
rwrite read
' t Are the four control words present on
dectape directory .
- —¢ 7’. A
yes no

Y Tape is not Super D format




339

Routines for setting up and saving the interrupt vrocessor

SETCON
‘ Entry )

f¥Store accumulator in REDWRT for read write

rSet othér parameters for field @ address@
no part blocks and clear search flip flop

Return

RVI1314

<>

YSETCON
ﬂSet starting block of 13 in accumulator
YSETVAR

YDTAPE

1st exit 2nd exit )

ySet starting block 13 in accumulator again
YSETVAR

YCHECK

< Return )




340

Ri1112
Entry

0

BCETCON

)Set starting block of 11 in accumulator
$SETVAR

YDTAPE

y,

vl

mtaﬂ 2nd exit

¥Set starting block 11 in accwmlator again

Error YSETVAR

YCHECK

Return

SETVAR

Entry

i

YStore accumulator as starting block

YSet parameters for 2 block transfer from address
(AN :

Return

!

ESTRT

Called by RES/OP

JMS I ¢15¢ Entry

!

¥Set acc for write into blocks 13 and 14
YRYV1314

ySet ace for read from blocks 11 and 12
YRVV1112

YClear error reset flip flop

YSEARCH

Return .

J



3

TERMNS
Called by XTRMNS

JS I @146 ( Entry )

YSet acc for write into blocks 11 and 12
YRW1412

¥Set error reset flip flop

¥Set acc for read from blocks 13 and 14
YRW1314

YSEARCH

{ Return >

SEARCH
( Entry ,
f1s accumlator zero
- A
(yes - no ‘
¥Set to block fSet to block number in acc !
number 1 -
Set search mode flip flop
fTurn the interrupt off

$DTAPE
)

1st ex1t 2nd exit
$Clear search mode flip flop

Error:)(:Return ﬁ:)




32

"TCHECK

Called by CHECK
JWS I #1153 ‘ Entry ’

ySet dectape routine DTAPE for
transfer checking mode

ySet REDWRT for read
¥Set foward reverse word for reverse

YDTAPE

.
-4

(1st exit ond exit

Y ¥Kill transfer checking mode in
dectape routine

C Error )( Return )




XTESTC

Called by THSTC

33

FSENOR

JSORTC (TERHS)

-ff:

character in list

Return
Calling 1

charactce not in list

Y1s characzter an f

&

na

S TESTN

A

Return
Calling 2

AXSCORTC

Called by SORTC -

Return
Calling 4

Y

Other

number

Return
Calling 2

!
( Entry } ‘

yGet list address from calling 1
VGet a character from the list

tIls it -ve

not in list

no

_ YIs it the same as char

yes

YCompute the position of the character
in the list and store the result in
sortecn

Return Return
Callirz 3 Calling 2



344

i\ishdcv;n Lint Controls

Called by hUOha
Entry
Store acc in t2

'lest if there is enough
room on pdl by using PCliit

Store contents of t2 on pdl

Y eset pdl pointer using

JPAIK

( ReturnD

PChK

A Entry
.educe pdl pointer by
contents of accumulator
@ill pdl overflow into
variable table

ye: no

¢ Return”

"Error

Called by FUShJ

C Entry

Get subroutine address
from location after
calling instruction
store in t2

Test pdl with PChK

Gtorc return address
on }xil

'beset pdl pointer

Jump to address field in t2

with PChK

PD2
Called by IGEhh

Entry

Get pointer address
from location after
calling instruction

"Test if there is
enough room for 3
words using LChK

Etore 3J'.'0o.eds pointed
to by pointer address
on pdl

Reset pdl pointer
using PChK

C Return

Called by POP?
A Entry

'Get pointer address
from location after
calling instruction

mRestore 3 v/ords from
pdl in tiie 3 words
pointed to by
pointer address

C Retu



XSPNOR

Called by SENOR

( Entry )

INPUT

-

R

345

rls character a space

-
yes no

FGETC ~

Return

( Entry >

9

s insub zcro

— y
(yes,input from no,input from keyboard
text
{READC
Return {SORTJ (INFIX SPECIAL)
Ao — A
ctrl/f other ctrl/s

{ . Return )



346

SOUTD . Sort and Branch Routine

Called by SCRIJ

yIs ther a character in the accumulator
ye$ no
et it from char
Negate character and store

Get character list address from calling#
(—Fai;et a character from character list
vls it the character negativé |
)

t—=

o

yes no

end of list

Return
Calling+3

no ¥Is it the same as the given. character

yes

A

Compute position in list and determine
Jjump address from second list after
SCR1J call

rJump to the tranch address

XTESTN,

Called by TESTN

‘ Entry >

vIs character a .
- _

yes no

leturn
Callingt1

¢1s character a nunber
— .

yes

tSave value of the number in sorten

Return : \
Calling43

Return
Calling®2



347

DTAPE . Dectape Handler for Super D

‘ Entry ’

YCorrect field

1Set try counter for three tries
fLoad command register with unit number

[Select or timing error

\
\_ o

no

7 YTest number of blocks for transfer

rx

®

d

o <
®
7]

none ok .

Chenge vSet up word eounters for block transfer

IForward or reverse
- >

forward : everse

Rwcom a

oy

YChecksum or timing error

A
N

<)
[}
w

no

A1l done yet

9
no |yes . o
fChange
Set up word counters for block transfer
Go

-.1 tSet link
o

G L
\vInvert link and rotate into direction bit

yStart correct unit

YRDQUAD) Ensures meaningful bits are
RDQUAD) in mark track register

@ |




31,8

Srch
th ¥ -
found tWait for single line flag
N
- found
v fRead command register and move motion
4 bit into link
tTest mark track bits for endzune
N\ > A
(end ¢ - not endzone
zone 1
(no .JIs it block number segment
tfwd or rvs -
yes
‘de rvs YRead block number
Fad @ YTest direction and block number
Forward (forward \reverse N\correct
block :number block number block number block
less than greater than less than

required required required
- lor reverse ¢
block number - YSet link

greater than

‘required ¢ to . ’dor
*Forwar .
YAnother try reverse
Srch
no yes — - ’
forward reverse

fClear link

YClear part block Is it search only
flip flop

YStop unit GO__J Jes
t | ( : @
( Rlzurn ) YClear accumulator
and link

A  §Stop unit

2nd
Return

Rdwr) -



349

Rdw

9

not :
f

ound

no 9

e/

\

read

yes

-y

!

<l

Y

no

!

(s

-l

\
1

|

\

ISet .up transfer address and field

Wait for single line flag

found

Is it reverse guard segment
yes

'Read or write

write
Write lock or select error

no
FRDQUAD (to skip control words)

LSet required unit to write and go
[Set up checksum

IGet next data from pointer address
WRQUAD

fHes pointer address gone to zero yet
yes

FLDCHG

[Have required number of words been put into
this block

yes
Fill remainder with zeros
'GETCHK
'WRQUAD

WRQUAD

655559



350

@

JRDQUAD) Tgnores control words on tape
YRDQUAD

WRDQUAD for first checksum

( }RDQUAD
., " YEQUFUN
YStore via pointer address
YHas pointer address gone to zero yet
no ‘yes
YFLDCHG
no YHave required number of words been read from
L ‘ ‘,this block yet
) yes
Were 129 words réad from this block
yes no

t

fRead remaining words and add to checksum
¢ RDQUAD

¥ Mask out correct bits

I EQUFUN

Yy GETCHK

Rwco



Change

351

Entry

J

‘}Is flip flop set

-

yes

Lno

A

no
ISet flip flop

YIs there a final block of less than
128 words

FLDCHG

WRQUAD

RDQUAD

yes

YSet up negative value in accumulator

Calling

Entry

U @

§Change data field to next field up

«

J

Entry

Uil

YEQUFUN

not X .
found tWait for quad line ?lag

found

Y¥rite data

Return

Entry

40

t

o}

e i
found ait for quad line flag

found (

YRead data

]

Return



352

EQUFUN
( Entry ’

YAdd data to current checksum total

YThe checksum is computed in equivalent
form and condensed later

. Return

GETCHK

Entry

J [

YForm a six bit checksum
from the equivalent checksum which is
continually computed

$The accumulator should be left at zero
any errors are picked up later at
Rwcom, where a non zerc accumulator

is detected

( Return }




353

UTRA. Unpack and Reform a Character from Buffer

Called by GETC

Entry
a_‘
fGET1 ™)
Test for normal, extended or a ?
r;ktended normal ?
20D 237 249 277 vIs trace enabled
d
3373577 300"%337 A
yes
FReform 8 bit tReform 8 bit
ascii code ascii code . Y'lip the trace 7
- > — no tﬁlip flop ,dmpsw )
yStore in char >
YTest if debgsw and dmpsw are both zero
ie trace on
yes
PIs character a line feed
FPRINTC
¢
Return j
GET1
Entry
est left/right unpacking pointer
( - " Y -1

/)

via axout

store in gtem and set
xct to -1

FRotate six'most sig
bits of gtem into six
L}east sig bits of acc

Y Get next word from buffer

r_*ﬂj

A

v,

.
L

1

yes,extenaed -

GET

[Get six least sig bits of gtem
into six least sig bits of acc

rStore in char
F1s char equal to 77
no,normal character

ISet acc for norm or extend

< ﬁeturn )

Invert acc to signify extend



Out

Called by PRINTC

Chin
Called by READC

-l

354

Entry

J

yes |no

YGet it from char
fIs it a return
no yes

YOUTDEV

YOUTDEV

Return

{

Bntry

PINDEV
Save in char

SORTC (ECFOLST)

D —

v

line feed
or rubout

other

$FRINTC .

A
>

Return

0

jIs character in accumulator

YGet ascii for line feed'int accumuleator



355

PACBUF . Strips and Packs ASClI Characters

Called by PACKC

‘ - Entry .. ) e e e

\

/

3

S

(e

Set acc to

337

\

"1s character in char a question mark (?)
no
1s character a rubout

S N
no

o
L

yes ,

*Are both or neither of bits 5 and 6 set

Store character code in t2

: | ie 11 or @Q
f__—*—_“/\‘*———F____\

no
¢ or 10

yes ‘
14 or 0@ character is extend variety
¥Set up 77 octal in accumulator

PCK1

\

- J

character

,

Test for null character

et six least sig bits of t2

ok

'PCK1

‘ Return )



356

¥exy
- “¥ls-lef't /right switch xctin set to
left or right balfl of add
(¢ , left half N ) -1 ,right half
§ Store six least sigibits t4dd accunulator to add
in six most sig bit. of ] :
add - YStore add via input text

pointer axin
" Set xctin to -1 so that
next character is stored v Clear add
in right half of add

£

Y Is there any more room left
in text buffer (or comaand
buffer for initial input)




357

Xprnt

Called by PRNTLN ( Entry )

Is velue in accumulator

.

1
A
no yes

{Store accumulator in UNITS(LINENO)

b 4
A_)

FClear other stores
tSplit UNITS into four decimal digits
YPrint the four digits

YClear UNITS

i

Return

Console Restart and Error Recovery

( Console ) ( )
Start Error

YRESWOP

Y
¥ Set yes
LINENO
= Q000 YRESWOP
Y not 9
done

L_, done

ITs interrupt processor in field @k

no

Store return address in LINENO(UNITS)
to be used as an error code

pVait for tty output to finish

( YClear tty buffers and reset I/0 pointers
& Set LINENO
Start tt
= 0200
¥Print a ?
Recovr Y PRNTOCT

YPrint a return and clear test patch in
dectape handler

Start



358

Charscter Removal Routine

s oo ot o est where last character was packed

-

"

-~ -
lef't half of add

1

right half of add and stored in text
buffer

+Test for start of new line

not new
Print a \ via FRINTC

YTest where last character was packed

left half of add

Test for ordinary
kgi extended

right half of add and stored in buffer

§Test for ordinary or extendecd characier
N ‘W&
extended " Yordinary

YClear last entry to buffer

e <

o
v

ordinary

~¢Set add to
| zero

\

*w extended

Y Reset input text pointers to acount
for deleted character

v Clear character

Y Set up add

b

Pacx



359

Filestr

Called by FILSTR !
‘ Entry ) .

YPick up starting block,number of blocks
part block,file starting address and field
from directory.Store in respective places
for dectape routine

¥Clear search mode

D

Dvce

Called by DEVICE

Entry
YSPNOR
{TESTC
A
r%erminator a number or other
¢Set for unit @ GETDVC
- J Error
return with last z‘
character in acc .
‘ Return ’
GETDVC
< Entry >

( ) ¥save acc in CODEWD(clears it first time)

AMdltiply previous  YGETC
bits by 2 and add
current character  YSORTC(TERMS)

bot in list
. y

-

in list
YGet CODEWD

¥SORTJ (DVCTBL DVCLST) -

- A >
Dtag other Dtat
t :
et for unit ¢ Set for unit 1

‘ Error >




360

GETFIL
< Entry )
vGETC
YSet. up buffer pointer and a
terminator counter for six file characters
device '
number AJTESTC
G4l other
a3
)
w@éTFWZ
18t return . 2nd return
¢ Set right half of add YGETC
to a space
k\ YSPNOR 4
FStore add in file
input buffer YSORTC (terms)
$Set add to double ist exit|2nd exit
space
YToo many characters yet JJno
tWas last char & . >
Y yes
no ) yes 1 "
‘ Error ) !

( Error ,

- ™~
WlGot six alpha numeric chars yet
+
no yes
Gt1 ¥ GETC

Y SORTC(TERMS)

1st eiE% 2nd exit

Y GETFW2

1st reéhrn 2nd return




GETFW2

-

361

Entry

|

rsteﬁj
1st
Return

Xsearch

Y

‘r

Pack first into left half of add

GETC

¥ SORTC( TERMS)

2nd exit
Pack charscter into right half of add

Store add in file buffer and reset ad
to double space :

4 2nd
Return

Called by FLSRCH

:

Entry

‘_—_4—-H

yes

1st
Return

same

2nd
Return

Set pointer to start of directory

éet pointer to file buffer

Set acounter for four words
End of directory yet
no

Test file name in file buffer with nanme
in direcatory

not same

Move on to next file in directory

Y

4

P




Director
B C
Y DEVICE
Y TESTCR
Y Get unit number into accumulator
Y DRCTRY
Y Save text pointers on pushdown list
Y Enable trace
{ Start at begining of directory
W(éet counters and priA; a return h
B 4 I End of directory yet
— <
no
y GETC
no Six characters yet
yes
Y Print a . N ;;
¥ Print two character extension
Y Print starting block,number of whole blocks.
number of words in last block as decimal
§ Print starting address and field in octal
ilfove on to next file |
yes -
‘VDisable trace
YRestore text pointers from pushdown list
YZSRCH -

362

<§EEEE>




363

Zero
Ze

Y{DEVICE

ITESTCR
YSet up control codes in directory buffer
{Print a ?

YSet switch for tty input

YINPUT
r - J
Set directory header Set directory header
to spaces to SYSTEM.BN

s » -

Y

any other Set directory parameters to base locations

tSet unit to required value

L '¢DRCTRY
N
yPrint a return

v

tClear input switch

rZSRCH

655559




Erase

364

Er

Y FILEDVC

1st exit

Error

yes

2nd exit

f Save pointer to start of file in directory
and another to start of next file

¥ Save starting block of file in XBLOCK

¥ Compute total length of file,save as a counter
in XX

¥ Save starting block of next file in YBLOCK
¢Is it last file on tape
no

Y Modify tha file starting block numbers of files
after one to be deleted

yShunt up files in directory after file to be

deleted

YReset next free block on tape pointer,reduce
number of entries by 1,reset next available
space in directory !

¢ Set link and accumulator for write on to required
unit b

¥ DRCTRY

{Set up write parameters
¥t TAPVAR - PDL

y Set up read parameters

¥ SETO

*'INOUT

1PZ§RCH

Y GETC

yTESTCR

<§E§E§§



365

SETO
Entry
~ YSet tape parameters for a 1@ block transfer
into or out of directory area in field 2
Return
INOUT _ ‘
Entry

Save pointer to first free block as endpoint

YTurn interrupt off

_ﬁ;TAPE (read into directory area from tape)1

18t exit 2nd exit

YIncrement block address for next time
-
Y INOUTS

DTAPE (write out of directory area to tape) 4
1st exit 2nd exit '

YIncrement block address for next timé‘

yes no

\t{ |
( Entry )

YTAPVAR-FDL )
IPDL. =» STRVAR)
YPDL =~ TAPVAR)
{STRVAR-» PDL )

L

YTransfer complete yet

A
\

Swaps read write parameters

Return

i



366

Cogx
Co
YFILEDVC
QSt exit 2nd exit

]

YTest last ocharacter for a

ot present

present
YSave file parameters
YGETC

YFILEDVC

@nd exif

1st exit
YStore file name in directory

YIs there enough room for this file on tape

yes
YSave length of file on DL

¥Is there enough room in directory

4

yes 4 j

[Reset next free location pointer and next
free block pointer

tSet acc and link for write on to required
unit

YDRCTRY

YSet up write parameters
YTAPVAR -+ FDL

¥Set up read parameters
YSETO

Y INOUT

YRewind both units
'FGETC |

YTESTCR

Star



OCTPRNT
Called by PRNTOCT

A

\

A

\

yes no
yStore in UNITS
'Print a space

367

< Entry )

"Is accumulator ¢

YRotate out four octal digits and
print

‘ Return '

i Ru
1

- ¢1Is character a comma

—
no

FSet field ¢
address ¢20¢

yes

‘LSA J -

| -
>

2nd exit 1st exit

YAncther comma

FSet required field

] no
Set for YLast input was field,save it
field @
YSA
o ond ¥ 15t
FTESTCR 1
I XTRMNS ( Error )

and jump to required starting address



368

< Entry ,

¥Set counter for a max of four octal
digit input and clear input store

'GETC
STESTN
N .

Y number other

4 -, ~N
tGreater than 7

J2nd exit
4
——
yes 3 no

. . 1st
1st YMultiply previous
Return digits by 8 and Return +
add current digit :

Save result

VAny more to come

yes

no

YGETC -

TC ARTN
Called by TESTCR

‘ Entry ’

}T1s character in accumulator

yes no,use CHAR
'uIs it a return
< _/
no yes

o) o)




DVCFLE

369

*Called by FILEDVC
‘ 1 Entry ’

-

YDEVICE

twas last character a colon

J

no

Error

yes
'GETFIL

fRead directory of required unit

FFLSRCH

Load

2nd exit

2nd
Retu

o i

FILEDVC ¢

1st exit 2nd exit

Error

LOADER

O 080



Load

Error

370

Logder
YXTRMNS
YFILEDVC
1st exit 2nd exit B LOADER
[FILSTR +3

Get file extension

‘ POPJ >
( Error )

\8RTJ (FLEXTN FLTABLE)
- S - > A
(ﬁr‘ Ajbg _ﬁ\da ) other
¥ BLSUB yBLSUB ¢
Y Is file too long v YIs file too long
for Focal buffer for variable list
— _ »~
T ’ *—‘
. yes no no yes
Y Set end of text : vSet end of variables
pointer in pointer in Focal
Focal  {
r fSet transfer address to
start of variable table
J
L~
Y Set for read from dectape into core ( )
Error
[ DT APE .
st Y2nd exit
exit
¥ GETC
Y TESTCR
Y ZSRCH
‘I
YRESWOP



3n

BLSUB

,< ‘Entry >

YConvert blocks into words
(128 words per block)

‘ Return }

Section for saving system area on dectape

SYSS

Extension of the save command

ISet tape parameters to write field 2
into blocks 2@ to 52 of dectape on unit ¢

YDTAPE
J

[ N

18t exit 2nd exit

YZSRCH 4
‘ POPJ ,




372

Save

@

YIs character a return

-

yes no

[FILEDVC

15t exit

. YIs there enough room on directory for another
inle

4

-

yes N

{XTRMNS

fWrite file name into directﬁry
fSet up starting block for transfer
fTest file extension

YSORTJ (FLEXIN FLTBLE)

. A -
(pr 9 other = ) da <}bn

A 4

J
( Error > Y Save starting address
end field on PDL ¢

YSave starting address

Y

of 1¢p field 1 on PDL Y Find length of file
in words
YFind length-of file
in words . ) BN
- .

. [Convert to blocks and part block
yStore in directory
yStore field and starting address in directory from pdl

A
PGETC | Y FILSTR

YTESTCR
YWrite file onto

¥1s there enough room on tape tape

Yirite directory

" ves onto tape
YReset next free block pointer
and next free space in directory YZSRCH
@lnter YRESWOP

Error .
. Start



373

BNT
GETC
[SPNOR
yIs it a comnra
(mo ) yes
¢ YGETC
YITESTN
P - A
period nunber
other
YSave single number field setting on FDL
! ¢GETC
Is it a comma
. y
(no yes
L 4
SA
r1:51: exit 2nd exit
v {Save starting address on PDL
YWas last character a comma
- -t
no yes
4 YGETC
YTESTN
- Y,
period number
other
[Multiply by 10 and store
f 1GETC
YTESTN
. J
G)eriod number
other
YAdd previous digit and store as blocks
Y
YClear part block counter

‘ Error ’ Bnr



37

He
YGETC

YTESTN
J

number
[Move intc six most sig bits of accumulator

YAdd. 6¢4¢ end store in help file buffer
as help file number

YXTRMN8
YMove help file name into file search buffer
YRead unit ¢ directory

YFLSRCH

18t exit

Error

2rd exit
YLOADER +3

LLoad a go command into Focal command buffer

¥ XTRMN8

Starti execution of Focal



375

Vrite

For use with Inter Processor Buffer

)

YSet switch for transfer 8e to 8

YINFORT

h 4

YREFELD

( ‘Set field of transfer
YGet data

)\ YReset back to field 2
YSUMS

YSEND

2nd 1st
Lexit | exit Jeaprst

s

Ird exit

WDelay for short time

Sm2 > “NRECEVE
fCompare with first checksum
YRECEVE

YCompare with second checksum

(Sums Wrong sums ok
YIESTCR

YRESWOP

( Error , @




376

Access

For use with Inter Processor Buffer

Set switch for transfer 8 to 8e

Store data

2nd 1st eset to field 2
exit exit
ADTST
P G
ard exit
%
i
REFELD

( Entry , ' h

YForm a CDF instruction in acc from single
digit field setting

SUMS

D

Entry

tSave data
rAdd to checksum total

YRegain in accumulator

Return

{



INFORT

377

‘ Entry ’

YSPNOR
{CMT ST
JGETC

{TESTN
y

Gmriod -
other

..

number
¥Save as field setting

¢Is it field @ or 1
J R

Mmeither

yes
YGETC
YCMTST

YSA

qst exit

2nd exit
Save as starting address for transfer
. 4

YCMTST

FSA (number of location;)

qst exit

‘ Error ’

2nd exit
¥ XTRMN8

¥Send synchronizing words

YSend number of words and set up a counter
for number of words

¥Send starting address

¥Send field
tSend switch for transfer direction

tClear checksum counters and delay counter

( Return ’



RECEVE

SEND

378

‘ Entry ’

_

>y
-l

no yes

L
(: Error ’(: Return :)
‘ Entry )

not fWait for Inter Processor Buffer flag

found
found
tRead data
‘ Return }

Entry

not
found

found

< Return ’

fWas last character a comma

YLoad Inter Processor Buffer Register

yStrobe data out

riait for done flag



ADTST

379

( . Entry ’

[ Increment address pointer

fHas it gone to zero yet

3)
73
]

-

no

I'Trensfer complete yet

renste

no yes

YIncrement field setting

YTransfer complete yet yes

no

A

2nd
Return

BEGINN

Used when building the system from paper tape

< Entry ’

|

¥XTRMNS

rSave maxi-bootstrap in block O of
unit @

rSYSS

ﬁESWOP

Recov
+1



380

PDP-8 Inter Processor Buffer Handler

Takes the place of the loaders in field 1

( Entry )

B

(" T R

A

wrong

\

\

)

1

\

|

“
|

{ L

2nd 1st
exit exit

A

console

ISet switch for Focal or console start
Read synch words

correct

READ

Save as number of words to be transfered
READ

Save as starting address for transfer
READ

Save as field of transfer

READ

Save as direction switch

Clear delay counter and éhecksums

@est direction of transfer

8e to 8 ' 8 to 8e
REFEIDS

READ

SUMS8

FSet field and store data

F ADRTST

3rd exit .
- - Hy
Write both checksums across

'WWas it a Focal call or console

Focal

< Return >



381

REFELD
Set field and get data
Reset field

WRITE

2ad

exit,

ADRTST

3rd exit

Delay

(=)

Form field setting in accumulator

Return .
( ) ) N
' ( Entry >

[Wait for flag

- REFELD8

READ

not
found

found

tRead data znd tel 8e that data has been
received

Return

-WRITE

Entry

i

ySend data ready strobe

not = g¢Wait for flag

found

YClear flag

Return

]



SUMs8

ADRTST

382

‘ Entry >

Save data
Add to checksums

Regain data in accumulator

‘ Return ’
( Entry ,

tIncrement address

I'Has it gone to zero yet

N

A

no

YTransfer complete yet

no yes

FIncrement field setting

¢Transfer complete yet

no

2nd
Return

h §

yes



