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This thesis is concerned with the developments firstly in
combinational logic, where the problems involved in multi-threshold
realisations are examined, and secondly in sequential logic, where

the specific type of system known as serial input logic is considered.

Chapter 1 is an introduction which discusses the areas covered
by this thesis and indicates their relationship to one another within

the general framework of logic design.

Chapter 2 sets out to extend the number of functions that can be
realised by a multi-threshold logic gate with near optimal weights
and thresholds. Use is made of the already existing spectral trans-
lation method of obtaining a single threshold solution with additional
exclusive-or gates, a multi-threshold solution being obtained by
algebraic manipulation of the weights and threshold. The mathematical

basis that enables this to be done is derived and examples given.

Chapter 3 discusses the possible advantages of using a multi-
threshold logic gate within a charge-coupled device over the alternative
Boolean AND/OR and quaternary logic gates. The fundamental operations
of a charge-coupled device are reviewed, and the tolerancing problems
that result from the charge transfer inefficiency and voltage fluctu-

ations are considered as limiting factors on the logical complexity

of the gate.

Chapter 4 is concerned with the subject of serial input logic.
Initially it sets out to define serial input logic in terms of a
general sequential system, and then goes on to show that with regard
to state reduction using compatibles it is unique since it only
requires the derivation of the implied maximal compatibles. Further-

more, a modular realisation is given, where the design procedure consists



iv
of the use of reverse response trees. Various labelling schemes are
considered and finally one is considered that guarantees an optimal

solution.

Throughout the thesis emphasis is placed on finding general
solutions whenever possible, so that not only do they apply to the
situations described herein, but also may prove useful in as yet

undeveloped areas of research.
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CHAPTER 1

INTRODUCTION



1. Introduction

Two of the observable current trends in logic design are:

a) to accept that physical miniaturisation of circuits is a
finite process and hence the search for devices with greater
logical power per unit area of chip,

b) to simplify ana unify logic design procedures by the use

of universal logic modules.

For the former, the bulk of research ﬁas been concentrated on
multi-valued logic (usually ternary, 3-valued, or quaternary, 4-valued)
-and threshold logic. The subject of threshold logic has been extensively
researched over the past two decades but its application has been limited,

mainly due to the relatively few functions that can be directly realised

with single threshold devices.

Chapte} 2 of this thesis attempts to extend the use of threshold
logic by the utilisation of multi-thresholds. To date the major

features and operations of threshold logic theory are as follows [1]:

a) the characterisation of threshold functions with n + 1

coefficients called the Chow's parameters.

b) Lists of Chow's parameters are available for n < 8 which
can be used to determine whether or not a function is
threshold realisable, and if so gives the optimised weights
and thresholds to do so.

c) the ability to invert a threshold function and/or any of its

input variables by the negation of the relevant weights;

also the ability to permutate the input variables.



d) the classification of all functions including the non-
threshold ones by the use of the 2" coefficients known as
the Rademacher-Walsh spectrum, functions in the same class

being related by the use of "spectral translation".

e) the division of these classes into threshold and non-
threshold classes, the former consisting of functions which
are, or upon the application of spectral translation become,
threshold functions, the latter functions being unable to be

translated into a threshold class.

f) 1lists of the Rademacher-Walsh spectra of all functions of
n < 4 giving "optimised" weights and thresholds for a multi-

threshold realisation are available.

The aim of Chapter 2 is to extend the number of manipulations
that can be done to the weights and thresholds of a function in order
to obtain dissimilar functions. These manipulations can then be used
to convert functions contained in the threshold class into multi-
threshold solutions, i.e. convert functions which are realisable with
a single threshold gate plus any'exclusive-or gates (to perform the
equivalent in the Boolean domain as spectral translation in the spectral
domain) into multi—threshold form. The reasons for wanting a multi-
threshold solution as opposed to the single threshold with additional
hardware are given, and also proposed is the conversion of at least

some of the functions contained in the non-threshold classes into a

multi-threshold solution.

Another area of development in threshold logic has been in the
design of the gate itself. Many have been developed using various
technologies, two of the most promising being the Digital-Summation-

Threshold-Logic gate (D.S.T.L.) and the IzL gate [1]. However, recently



a need'has been expressed for the incorporation of logic in charge-
coupled devices (C.C.D.'s), with a view to deveioping a system comprising
both a digital memory and a logic processor on a single chip [2]. The
previously mentioned threshold logic gates are incompatible with C.C.D.
systems since the data would have to be taken out of the C.C.D. system,

logic operations performed, and then the data returned.

The hitherto proposed glternative logical approaches which can
be incorporated into C.C.D. technology are either arrays of binary
AND/OR gates [2] or quaternary logic gates [3]. Chapter 3 sets out
to indicate that the operations used in these logic gates, such as
charge input, transfer, and overflow, can be applied equally well to
a C.C.D..threshold logic gate. However, an additional feature 1is
required for a threshold logic gate, namely the use of multi-levels of
charge when the number of levels is greater than fdur, quaternary
logic having already illustrated the use of up to four levels. A

justification of this is therefore also included in Chapter 3.

A multi-threshold logic gate structure is proposed and details of
its mode of operation and timing diagrams are included. Its drawbacks
_are discussed, such as tolerancing problems and voltage rail fluctuations.
The gate is then compared not only Qith the alternative C.C.D. logic

gates but .also with the previously suggested threshold logic gates.

An interesting feature of the gate is that a clock is present and
therefore it represents a synchronous system. The application of
threshold logic to synchronous systems has received some attention but
it is not pursued in this thesis. Of note, however, is the fact that
the gate can also be described as having clocked parallel inputs. An

alternative approach would therefore be to use clocked serial inputs.



Such a system with serial inputs would have to be synchronous since

the data would be arriving on the same input liﬁe, and therefore each
piece of data would have to occupy its own time slot. Thus the data
can be envisaged as a word-formatted n bit serial stream. To date

such systems have received little attention, that which it has received
being confined to mode-controlled logic [4].‘ This area is therefore

examined in more depth in Chapter 4.

The intention of the first part of Chapter 4 is to define the
subject more broadly and to examine it from the point of view of a
general sequential system. In particular, the field of state reduction
using compatibles is studied. The chapter sets out to prove that a
serial input logic system is a special class of sequential system
where the number of states can be reduced by merely considering the
maximal compatibles, as opposed to the usual situation where a great

deal of complex and time consuming manipulation is required.

The chapter goes on to consider the use.of modules in the design
of serial input systems. As stated at tﬁe beginning of this introductory
chapter, the use of universal logic modules is an important aspect of
logic design in both combinational and sequential systems, the difference
being that in sequential logic the modules usually contain delay elemenfs
whereas in combinational they do not. Of particular interest is the
work that has been done on fhe application of modular networks to the
design of any sequential system, where the network needs at most one
feedback lbop [S]. Furthermore, it has been shown that some machines,
known as definite machines, do not need any feedback and are therefore
more easily realisable and testable. The chapter shows that serial
input logic systems are definite machines and therefore they too do

.not require any feedback.



More specialised design procedures are considered where the need
for flow diagrams, state tables, state reduction, and state assignment
are dispensed with. These consist of reverse response trees, which
are particularly easy to use, and it is shown that they can be drawn
directly from either the Boolean expression of the required function

or from its truth table vector.

The chapter then considers some additional features and shows
that by relaxing some of the initial conditions some of the more

commonly encountered systems such as code converters and serial adders

can be designed.

Overall, the thesis covers topics which involve many different
areas of combinational and sequential logic. Figure 1.1 depicts
schematically the relationship between these topics and indicates those

that appear in the main chapter developments of this thesis.
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THRESHOLD LOGIC
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2. Threshold Logic

2.1 Single Threshold Logic

Threshold logic has received much attention over the past twenty
years [1,2,3,4] but has enjoyed very limited application. There are
a number of reasons for this which will presently be discussed, but

first a definition of threshold logic.

A threshold logic gate is a non-vertex gate which receives binary
inputs and_yields a binary output and which obeys the following
equation:

. n
f(x) = 1iff ] ax 3t

i=1
2.1

= O otherwise
vhere a, is an integer weight associated with the input variable X,
and t 1is an integer threshold value.
Figure 2.1 shows the conventional symbol for a threshold logic

’

gate.

f(x)

Figure 2.1 Symbol for a threshold logic gate

The first limitation of threshold logic is thatbalthough équation
2.1 is a very simple equatioﬁ, if is extremely difficplt to apply to
a general Boolean function, firstly because not all are threshold 7
functions, secondly because it is difficult to determine those that

are from those that are not, and thirdly because of the problems of
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finding suitable weights and thresholds for those that are. To a
large extent these problems have been overcome by the use of tables
of Chow's parameters [5,6]. Essentially, Chow showed that if a function
is a threshold function then it can be uniquely characterised by
n + 1 coefficients. For a given function if these coefficients are
calculated, their moduli taken, and then set in descending order, they
can be compared to available lists of known parameters of threshold
functions, and thus determine whether or not the function is a threshold
one. The tables also include optimised weights and thresholds which
have been derived empirically. However, these tables are restricted
to up to eight input variables only since the size of the tables become
unmanageable for a greater number [7,8]. Appendix A gives a listing

of Chow's parameters for up to six variables.

The second limitation of tﬁreshold logic is the physical realisation
of the gate itself. Many gates have been suggested, more of which will
be mentioned in the next chapter where one is proposed which consists
of a charge—coupled device. However, none of these have ever been
accepted commercially which is not due to any fault of the gates them-
selves, but to industries' lack of enthusiasm to support something
having such a limited applicatiqn, namely the realisation of the
restricted class of simple threshold functions of up to eight input
variables. Therefore work is still required to be done to extend the
number of functions that it can realise. Two ways of doing this are
by the use of either spectral translation or multi-threshold logic,

both of which will be discussed in detail in the following sections.
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2.2 Spectral Translation

A spectrum is an alternative description of a function to the more
conventional truth table which is used to highlight particular features

that were previously concealed [1,4,91. It is obtained by the following

equation:

[T]FJ = R] 2.2
where R]is'the column matrix of the spectral coefficients
4 is the truth table vector of the function recoded in
<1,-1>instead of <0,1>

and [T]is the 2% by 2" transform matrix.

Although there are many different transform matrices [10] one of
the most commonly used is the Rademacher-Walsh, which will be the only
once considered from here on. As an example of this matrix Figure 2.2

shows the case for n = 3.

Equivalent to Spectral function

the row entries Transférm matrix coefficients
x 10101 01 11 1 1] | r, '
X 1 1. 1 1 -1 -1 -1 -1 r,
X, 1 1 -1 -1 1 1 -1 -1 r,
X, 1 -1 1 -1 1 -1 1 -1 . r,
x, @ x, 1 1 -1 -1 -1 -1 1 1] ),
x @ x, 1 -1 1 -1 -1 1 -1 1 Ty,
x, @ x, | 1 -1 -1 1 1 -1 -1 1 T)s
X ® X, ® Xq L 1 -1 -1 1 -1 1 1 -1 | | r123‘

Figure 2.2 Rademacher-Walsh transform
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It can be seen from Figure 2.2 that each row of the transform
matrix, when converted back to.the original <0,I> coding, is equivalent
to an input variable or the exclusive-or combination of input variables,
which indiéates the convention of the subscript labelling of the

spectral coefficients.

If a function is a threshold function then the first n + 1
coefficients, namely ToTp e Ty are equivalent to the Chow's parameters
discussed earlier, and therefore uniquely describe that function.
However, functions which are not threshold require up to the full 2#

coefficients of the spectrum to describe them.

The inverse transform is readily available so that functions are

retrievable from their spectra as follows:

2_“.[TJ'1.] = F] 2.3
where [?]-1 is obtained from the relationship:

-n -1 . .

2 .[TJ .[T] = [IJ the unit matrix 2.4

As an example of a spectrum and its uses consider the following
logic function:

f(x) = xl.x2 + xl.xz + 32.x3

Applying the transform of equation 2.2:

1 1 1 1 1 1 1 1] 1 -2
1 1 1 1 -1 -1 -1 -1 1 2
1 1 -1 -1 1 1 -1 -1 -1 2
1 -1 1 -1 1 -1 1 -1] -1 2
1 1 -1 -1 -1 -1 1 1] -1 6
1 -1 1 -1 -1 1 -1 1| -1 -2
1 -1 -1 1 1 -1 -1 1 1 -2
1 -1 -1 1 -1 1 1 -1]| -1 2 |
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Whence:

o 1 T2 T3 T2 Ti3 T3 Y23

If the first n + 1 coefficients, in this case r,r,r,ry, are taken,
the modulus of each found, and then placed in descending order, they" can be
compared with the table of Chow's b parameters in the list for n < 3
(see Appendix A). It is found that there is no entry of 2222, and so
the function is non-threshold. However, the spectrum contains the

coefficient r., = 6, so that if in some way this could be included

12

in the set of n + 1 coefficients then the ordered set of their moduli
would be 6222 which is among the entries in the table. One way of doing
this is by "moving" or “translating" the coefficients. This is there-
fore known as spectral translation [4,11,12], which may be divided into

two distinct operations namely output and input spectral translation.

2.2.1 Output Spectral Translation

This is achieved by taking the exclusive-or of the function f'(x)

with an input variable to obtain a new function f(x) which is related

by equation 2.5.

f(x) = £f'(x) @ x; 2.5

The effect of this operation on the spectral coefficients of f'(x)
is to delete i from the subscripts of coefficients which already have
i in them, and to append i if they have not. In other words, pairs

of coefficient values are exchanged according to the following rule:

In<—=>71;

r. r.. 2.6
JS—Tij

T Tijk '

etc .
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Clearly this can be extended to include more than one input variable,
in which case the subscript i in equation 2.6 is replaced by the combined

subscripts of the variables involved.

In the previous example, if the exclusive-or is taken of the

function and the input variable X)» then the new spectrum is:

T12 T13 T23 Ti23

Comparing with the list of Chow's parameters, the relevant entry

e
n
e

parameter subscripts 0 1 2 3
b parameters 6 2 2 2

a parameters 2 111

When the a parameters are reordered and the signs reintroduced

they become:

The threshold is found using the following equation:
T 0 '
t = 5.(] a;+1) =1 2.7
i=0

Figure 2.3 shows the final realisation of the function.

Figure 2.3 Realisation of the function f(x) = X, - %, + §i-x2

+ x_.X
. . 2
using output spectral translation.
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2.2.2 Input Spectral Tramslation

This converts a function f'(x) into a new function f£(x) by
replacing one of its input variables with the exclusive-or of the same
input variable and one other as in equation 2.8.

f(xl,xz,....,xi,xj,....,xn) = f'(xl,xz,....,xi ® xj,xj,....,xn)

2.8

The effect on the spectral coefficients of ftx) is that if a
coefficient contains i in its subscript then delete j if it is already
present and append j if it is not. In other words, pairs of coefficient

values are exchanged in accordance to the following rules:

< Ty 2.9

This can be extended to the situation where an input variable is replaced
by the exclusive-or of itself and more than one other input variable,
in which case j in equation 2.9 is replaced by the combined subscripts

of the other variables involved.

Again consider the previous example, only this time replace X, by

X ® X, The new spectrum is:

The same Chow's b and a parameters are found as in the case of
output spectral translation, but when reordered and the signs replaced

the set of weights is found to be:
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and a threshold using equation 2.7 of:

f(x)

Figure 2.4 Realisation of the function f(x) = x .;i +';1.x2 + X, %q
using input spectral translation.

2.2.3 Rademacher-Walsh Spectral Classification

A scheme for the classification of functions has been proposed
where functions are classed together if they are related by the

following [4,11,12]:

a) negation or inversion of one or more input variables
b) permutation of one or more input variables
c) negation or inversion of the entire function
d) output spectral translation using one of more input
variables
" e) 1input spectral translation involving one or more

input variables

Lists can then be compiled where the entries are representative or
prototype functions from each group. The first three relationships have
been used for a classification system known as N.P.N. [ﬁ] (standing
for negation, permutation, negation) which, for example, requires 221

entries for all functions of n ¢ 4. Using all five relations has yielded
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the Rademacher-Walsh spectral classification which has, for example,
only eight entries for n < 4 és shown in Appendix B. However, it is
only convenient to use this system for up to five input variables,
where 48 eﬁtries are required [13 ]since for n > 5 the lists are too
large, for example, for n < 6 there would have to be in excess of

69,000 entries.

The interesting feature of this classification is that, of the
eight entries for n<4, seven are threshold functions. This means that
a large proportion of non-threshold functions of four variables can be
translated into threshold functions, yielding a design strategy, the

topology of which is shown in Figure 2.5.

This method can be improved if the remaining non-threshold entries
in the claésification representative functions are found which are
realised using multi-threshold gates. In the case of n < 4, as stated
earlier, there is only one such remaining entry for which the following

could be a representative function:
f(x) = x.x ® xl.'x3=—® X)X, ® X, Xg ® Xy X, ® X%,

which has a spectrum of:

Figure 2.6 shows the multi-threshold equivalent of this function,
indicating why it is a good choice as a representative since it has
unit weights and only two thresholds. If this function is chosen, then
for n £ 4 it is possible to realise any function using the topology of
Figure 2.5 with a kernal fdnction consisting of a threshold logic gate

with at most two thresholds.




19

N D

:)D_.
>

. e o
n l, Kernal !

- [Pre-kernal threshold logic I Post-kernal
|exclusive-or gate. | exclusive-or gates
|9ates and - land inverters.
linverters. |

Figure 2.5 Design topology using Rademacher-Walsh spectral
classification

1,:)D—>. )

Figure 2.6 Multi-threshold representative function for the
single non-threshold class for n < 4
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For n £ 5 there are 27 non-threshold entries, and it is proposed
that multi-threshold representative functions may be chosen for these
also. However, this is left for future research. For n > 5, the
listing of representative functions is impractical, and so only functions
belonging to groups which have single threshold representative functions

can be realised using this method.

2.3 Multi-threshold Logic

A multi-threshold gate {}4,15] has more than one output each of
which has a threshold associated with it and acts in exactly the same
way as a single threshold gate. These outputs are then processed by

an exclusive-or gate to give the final output f(x) ‘as in equation 2.10.

f(x) 2 t, 2.10

]
Pt
e
Hh
)]
(a4
v
nes1s
'Y

= 0 otherwise

where j = 1,2,3,etc.

Figure 2.7(a) shows the conventional symbol for a multi-threshold

logic gate and 2.7(b) shows a graphical representation of its output.

One of the most important aspects of a multi-threshold logic gate

is that it is universal, i.e. any function can be realised with one.

.. . . . . . n-i
This is easily shown by considering a function to have weights a; = 2 ’
n v

so that the sum z a x; is different for every minterm position.
i=1 n
Thresholds can then be assigned with the values of ) a;x, where the

i=1 .
function output changes from O to 1 or 1 to 0. Consider the example

given in the previous section:

f(x) = xl.xz + Xy - X,y + Xy Xy
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a)
S
X2
Xn
b)
A
f(x)
1 e

Figure 2.7 (a) Symbol for a multi-threshold logic gate
(b) Multi-threshold logic gate output
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Figure 2.8 shows the truth table of this function and the multi-

threshold solution. The function changes from O to 1 and 1 to O at

points where .E a;x, = 2,6,7, and so these values are the threshold
values. =
22 21 20 ) €72 £,=6  t,=]
X; Xy Xg 121 a;x. £(x) fl(x) fz(x)" f3(x)
0O 0 o (0] 0 0 0 0
o 0 1 1 0 0 ) o
O 1 o 2 1 1 0] 0
o 1 1 3 1 1 0] 0
1 0 o 4 1 1 0] 0
1 ) 1 5 1 1 o 0
1 1 o0 6 0] 1 1 0
1 1 1 7 1 1 1 1

Figure 2.8 Truth tabl? of function f(x? = x f§é + ;i.xz + X, «Xq

and a multi-threshold solution.

Thus the function is realised with a three threshold gate.
Although this weighting procedufe could be applied to every function,
the values of weights are generally much larger than is neceséary; for
example, the above function could be realised with a weight set of 2, 2

and 1 instead of 4, 2 and 1.

Another point about multi-threshold logic is that although it is
conventional to include an exclusive-or gate at the outputs as in

Figure 2.7, a simpler gate could in fact be used. Consider the

following:



23

Since tl < tz < c3 < ... < tm 2.11

then fl(x) 2 fz(x) Y f3(x) 2 eee 2 fm(x) 2.12

This means that it is impossible for £i+1 to be a 1 when fi(x)
is a 0, so that a "don't care" term appears in the truth table of

Figure 2.9.

fi(x) fi+1(x) f(x)
0o 0 0
0 1 - cannot occur
1 0 1
1 1 0o

Figure 2.9 Truth table of f(x) showing don't care term

Assigning a value of O or 1 to the don't care term gives the two

alternatives:
a) fx) =f.(x).f. ,x) when the don't care =0
i 1+1
2.13
b) fx) = fi(x).fi+1(x) + fi(x).fi+1(x) when the don't care = 1

£ @ £, ®

The function (a), known as the "half-exclusive-or" [4], can be used
in place of the conventional exclusive-or gate resulting in less gate

complexity.

Finally, a single threshold gate has to perform three distinct

operations:

i) taking the product of each input variable with its
associated weight,

ii) summing all of these products,
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iii) comparing the sum with the threshold to give a

0 or a 1 output.

If the first two operations are to be executed it seems wasteful
not to extract the most power or usefulness from the gate by having one
threshold. Indeed, in some gates such as the Digital-Summation-Threshold-
Logic gate [};12,13] more.than one threshold are included in thg
structure, and so it would seem sensible to incorpordte them into the

final design.

These three reasons, namely the multi-threshold logic gates
universaiity, the fact that the half-exclusive-or gates can be used
instead of the conventional exclusive-or gates, and that the extension
from a single threshold to multi-thresholds in a gate is usually available
has led to the conclusion that this is the desirable solution to the
problem of the realisation of non-threshold functions. However, the
difficulty of this solution is the determination of the values of the
weights and thresholds. Tables have been compiled [16,17]whichv1ist
solutions for n < 4, but beyond this it is impractical to compile tables.

because they would be enormous.

The previous section showed that spectral translation can be used
to find threshold solutions for at least some non-threshold functions of
up to eight variables, including all functions of n ¢ 4. A method is
proposed, therefore, to convert from the spectral translation solution

to a multi-threshold one.

2.4 Conversion from Spectral Translation Solution to Multi-
threshold Solution

As stated earlier, spectral translation covers two distinct operatioms,
output and input, each of which requires a different method of conversion

to multi-threshold.
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2.4.1 Output Spectral Translation Conversion

2.4.1.1 Single Input Variable

Consider the situation shown in Figure 2.10 where a four input
variable threshold function f'(x) is exclusively-ored with the input

variable x, to give f(x) as in equation 2.14.

1

f(x) = f'(x) @ X 2.14

Since f'(x) is a threshold function it can be represented by a

weight-threshold vector as in equation 2.15.

a t' ' 2.15

1
3, a a

1} \J | I
2 23 %4
A multi-threshold equivalent of f(x) is shown in Figure 2.11, so
that f(x) can be represented by a weight-threshold vector as in
equation 2.16 or as an expression of the functions fl(x) to fm(x) in
equation 2.17.

a; a, a; a,; tl,tz,...,cm 2.16
f(x) = fl(x) ® fz(x) ® .... ® fm(x) 2.17
The requirement is therefore to find functions fl(x),fz(x),etc.

which satisfy these two equations. Starting with equation 2.14, if

f'(x) is decomposed about the variable xl then:

f(X) = (;{_lg].(x) @ xlgz(x)) @ x]. 2’18

Table 2.1 illustrates this situation.

X £f'(x) Xy
Table 2.1 Decomposition of
0 gl(x) 0 the constituent
functions of f(x)
1 gZ(X) 1 about X,
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Figure 2.10 Output spectral translation where

fx) =£f'(x) ® x;

Figure 2.11 Multi-threshold equivalent of f(x)
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Clearly, f;(x) and X, cannot be a multi-threshold solution because

they do not obey equation 2.12. If, however, the terms in Table 2.1

corresponding to X = 1, namely gz(x) and 1, are exchanged then the

situation shown in Table 2.2 arises.

X, fl(x) fz(x)
0o gl(x) 0
1 1 g, ()

‘Table 2.2 Reordered functions

This gives fl(x) and fz(x) as defined in equation 2.19.

fl(x) f'(x) + x

‘ fZCX)

1 2.19

f'(x).x1

Since fl(x) P2 fz(x) now, equation 2.12 is satisfied. Thus a valid
solution has been found if it can be shown that fl(x) and fz(x) are
threshold functions realisable with the same set of weights but different

thresholds.

It can be shown that if a threshold function is decomposed about
a variable then the two sub-functions formed are also threshold. Table‘2.3

shows f'(x) decomposed about x

1°
x; £'(x)

| I S . |
0 32 a3 34 s t

[ I R | r
1 a2 a3 a, s t a1

Table 2.3 Decomposition of f'(x) about X, showing
weight-threshold vectors
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Now if a new function is considered which has the same weight-
threshold vector as f'(x) but which has a constant c added to ai and
a second threshold included having a value of the original threshold

t' plus c, then its weight—threshold vector is as in equation 2.20

and its decomposition about X, shown in Table 2.4.

ai +c aé aé az s t', t' + ¢ 2.20
x; fl(x) fz(x)
(0] aé aa az ; t , t' + ¢
1 aé aéaz;t'-ai—c,t'—ai

Table 2.4 Decomposition of the new function about X,

If the value of c is chosen such that it is large enough to ensure

4
that the threshold t' + ¢ is never reached by the sum z a,X,, and that
4 i=2
the threshold t"‘ai"c is always reached by ) a;x., then Table 2.4

i=2
is equivalent to Table 2.2. Therefore the function represented by

equation 2.20 is a solution.

The value of the constant c can be found by the conditions stated

above, namely:

4
Y a.x, <t'+c
hut 11

2.21

If all the weights are considered positive, which does not affect

the generality of the situation, then the maximum and minimum values of

4
Z a;x; occur when all the xi's are 1 and O respectively, thus:
i=2 :
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2 . 2.22

Rearranging and making the number of input variables n for the

general case:

2.23

Note that even in the general case, the relevant variable 1is X
This means that given any one variable spectral translation involving
X, the inputs must be permutated so that X, = X;. The reason for this

becomes clearer later on where more complex general equations will be

encountered.

Referring back to the example in section 2.2.1, Figure 2.3, a
conversion can now be made, but first the weights have to be made
positive. This is done by placing an inverter on any input variable
that ﬁas a negative weight associated with it; the weight can then be
made positive and since the threshold is related to the weights by
equation 2.7, it must also be altered to a new value equivalent to its
original value minus the weight values of the inputs being inverted.
Since these weights were originally negative, the threshold value

increases, as is shown in Figure 2.12.

Note that an inverter has been placed on the output of the
exclusive-or gate. This is because when the weight ai is made positive
by placing an inverter on X)» due to the fact that Xy is fed forward

to the exclusive-or gate, the function is unnecessarily inverted, and

hence the re-inversion.
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D&—» t(x)

Figure 2.12 Example of output spectral translation to

obtain the function f(x) = X, -X, + X, %, + xz.x3

))((l _ E\g:)Do——» f(x)

XZ—DO—_:_L/

Figdre 2.13 Multi-threshold solution of

f(x) = X, -, + X, X, + X,y Xq
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Equation 2.23 can now be used to find the value of c.

c24-3+1=2

3-1-=2

0
\'4

. e =2

Equation 2.20 gives the weight-threshold vector as:

Thus the final realisation is shown in Figure 2.13.

2.4.1.2 More than One Input Variable

The technique described in the previous section of taking the
weight-threshold vector of the function f'(x) and increasing the relevant
weight by the constant c¢ and adding a threshold can also be applied if
more than one variable is involved. Consider the situation where two

input variables are exclusively-ored with the function as in equation 2.24.

fx) =£'(x) ® x; ® x, 2.24

If the constituents of f(x) are now decomposed about the variables

Xy and x, as in Table 2.5, it is immediately clear that as before these

three functions do not obey equation 2.12.

. 1 ]
X X, £'(x) X, X,
00 gl(x) 0 0
01 g,(x) 0 1
10 - g3(x) 1 0
11 ga(x) 1 1

Table 2.5 Decomposition of the constituents of f(x) about

x1 and x2
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If, as before, the terms are reorganised so that they do obey

equation 2.12 then the result is shown in Table 2.6, and the functions

fl(x), f2(x) and f3(x) are as in equation 2.25.

X%, fl(x) fz(x) f3(x)
00 gl(x) 0 0]
01 1 gz(x) 0
10 1 g3(x) 0
11 1 1 g, (x)

Table 2.6 Reorganised decomposition of the constituents
of f(x)

fl(x) f'(x? + x. + X,

1
fz(x) = f'(x).x1 + f'(x).x2 + XX, o 2.25
- 1]
f3(x) = f (x).xl.x2

The requirement is, therefore, to show that fl(x), fz(x) and f3(x)
are threshold functions which can be realised with the same set of

weights but different thresholds.

Consider the weight-threshold vector of equation 2.26,

ai + c aé + c aé az s t', t' +¢, t' + 2¢ 2.26

Decomposed about X, and X, gives the situation shown in Table 2.7.

.
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X)X, fl(x) fz(x) f3(x)
00 35 az ; tf , t' + ¢ , t' + 2c
LI S e B | I | v at
01 a, a4 s t a, c , t a2 , L a, + c
LI | L A | B | 1 At
10 a3 a4 s t a1 c , t a1 , t a1 + c
LA RO D D LS IS e | S B )
11 83 a4 s t a1 a, 2c , t a1 a, c, t al a,

Table 2.7 Decomposition of the function given in 2.26 about

xi and x2

If c is chosen such that all functions with thresholds containing
the term -c are equivalent to logic 1's, and all those with thresholds
containing the term +c¢ are equivalent to iogic 0's, then Tables 2.7
and 2.6 are identical. In order to achieve this, ¢ must obey all of

the following conditions:

2 2.27
c 3 ai + aé + az +1-1t'

c;aé+aé+az+1—t'

Previously, it was stated that if an output spectral translation
involves only one input variable, then that variable is to be ca11ed-x1;

Similarly, if two input variables are involved then they are to be

called x, and x,, and have associated weights ai_and aé which satisfy

1 2

the condition:

2.28

More generally, if k variables are involved, then they are to be

. . . 1] 4
called X to x where their associated weights a; to a satisfy the

condition:
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' ' '
al>az>a3>....>ak 2.29

Thus the equation for a general conversion is:

a. = a! + ¢ for 1 =1 to k

i i

a., = a!l, fori =k +1 ton 2.30
i i

t. =t' + (- Dec for j =1tok +1

and where ¢ > t' - a&

and c a!
i

+1-t'-a."(

WV
he~3

i=1

-+ 2.4.1.3 Non-threshold Initial Function f'(x)

Consider the case where the initial function f'(x) is itself a
non-threshold function, but which can be represented by a weight-

threshold vector with p thresholds, where p > 1, as in equation 2.3l.

ai aé aé az ; tl,tl, ...t 2.31

" For instance, let p = 2, and exclusively-or the function with X,

to get f(x) as in equation 2.32.

f(x) = f'(x) @ x, = f'l(x) ® fé(x) ® X 2.32

In order to convert this to a completely multi-threshold solution
each function f;(x) has to be treated separately, as in the previous
section. Thus each function is exclusively-ored with X, as in

equation 2.33.

f(x) = £1(x) @ £2(x) @ x = (f1(x) ® %) © (£K) ® x) ® x

2.33

The extra X, terms do not alter the function f(x) since X, ® X, = 0.

Table 2.8 illustrates the functions decomposed about X, -
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L} 1
X fl(x) Xy fz(x) x1
o} gl(x) 0 hl(x) ‘ o
1 5,0 | 1 | B, 1
Table 2.8 Decomposition of the constituent functions

of f(x)

The same method as described in section 2.4.1.1 can be applied to
each function, resulting firstly in the reordered functions as in
Table 2.9, a weight—-threshold vector as in equation 2.34 and the

decomposition of this function in Table 2.10.

X, fl(x) fz(x) f3(x) f4(x) fs(x)
0 gl(x) hl(x) (o} o 0
1 1 1 1 gz(x) hz(x)
Table 2.9 Reordered decomposition
L 1 1] T . 1 ' ] L}
a) tca,aya ; tl,tz,c,t1 tec, ty)+c 2.34
X £,(x) £,(x) £,(x) £,00 fS(X)
[ [ v . ] ' ' []
0 a, a3 aa ; t1 » t2 s C s t1 +c¢ , t2 +
' ] v . I T [ T _at [ v
1 a, a3 a4 H tl a1 c, t2 a; c , a1 s tl a1 s t2
Table 2.10 Decomposition of the function of equation 2.34
about X,

If ¢ is chosen as before so that thresholds containing -c belong
to functions which are equivalent to logic 1's, and those with +c are
equivalent to logic O's, then Tables 2.9 and 2.10 are identical. Note
that a new function has been added, namely X1 which has a threshold of

c. This means that the value of ¢ must be such that:
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+ a' + az + 1 2.35

This extra function appears because initially f'(x) consisted of
an even number of functions, i.e. p was even. If k variables are
involved in the translation then k extra functions are required if p
is even, having threshold values of ¢, 2c¢, 3c¢,..., kc. This can be
summarised iﬁto a general equation with the thresholds ordered so that

the extra ones appear last, thus:

a, = a, +c for i =1 tok
i i
a. = a} for i =k +1 ton
i i
! = ¢! : s - -
tj+(q—1)(k+1) tq + (J e for ;3 ltok+1,q=1t¢top
and if p is even: tj+p(k+1) = jc for j =1 to k 2.36

. _ '
where c 2 t:p ak
n _ /_1\P k
and c 2 z ai +1 - [1 2( 1) -[ Z a! - tﬂ
i=k+1 i.—.l 1

2.4.1.4 Final Adjustments

A situation which has éot yet been taken into account is where
some of the functions in the multi-threshold solution are ideqtical and
therefore can be cancelled out. For example, in the Tables 2.9 and
2.10, if hl(x) = 0, then the functions fz(x) and f3(x) are identical,
but one has a threshold of té and the other a threshold of c, and so
from the thresholds alone it may not be immediately apparent that the
functions are the same. One way to overcome this problem is as follows.
"Firstly, note that the value‘of ¢ in equation 2.35 has to be greater
than a'! + a! + az + 1, so that the function f3(x) in Table 2.10 1is

2 3
equivalent to X If the threshold t3 is raised to c + ai; then the
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function f3(x) is unaltered if the value of c obeys the following:

+a! +a'+1- a! ' 2.37

cza 3% 3, 1

L
2
Clearly this is less than that required in equation 2.35, and

therefore it is an improvement. Reconsidering all five functions, the

value of ¢ must be such that:

- v [ ]
for fl(x) L tl a;
. I |
fz(,X) Pocx by - a)
f3(x) H aé + aé + az + 1 - ai 2.38
f4(x):c;aé+a:';+az+1—ti
. v ' ' - gt
and fs(x) : c 2 a, + al! + a, +1 t2
= ot [ ] - v
Let c a, + ay + a, +1 a; 2.39
Then for fl(x) : aé + aé + az +1 - ai > ti - ai
or t! < a! +a! +a' +1 2.40

1 2 3 4

otherwise gl(x) = 0 from Table 2.10.

If gl(x) = 0, then fl(x) = f3(x) = X and so t1 must be altered

to l.e. + .
ty, i.e. c a;

The same applies to fz(x).'

. ] t ' N | ] ] (] - ]
for f4(x) 2 a, + a; +a; +1 a, z a, + ay + a, +1 tl

or ti 2 ai 2.41

otherwise gz(x) = 1 from Table 2.10.

If gz(x) = 1, then f4(x) = f3(x) = X and so t& must be altered

to t i.e. ¢ + a'.
3’ 1

The same applies to fs(x).
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Thus the value of ¢ in equation 2.39 is valid if the thresholds are:

ti = ti + (c + ai - ti) ‘ include terms in brackets if ti > al +a! + az
t, =ty + (c+a -t) " v " "oty za, vagta
ty =c+ ai

t, =t; +c+(a - t]) " oo " "ot ag
t5=té+c+(ai—té) | ;ésai

2.42

The presentation of these thresholds can be made more formal if

the following function is included:

F = T(A 3 B)
where F =0iff A < B : : 2.43
and F=11iff A > B

Figure 2.14 shows the case when A and B have values of up to two.

ANl o 1 2
0 1 0 o
1 1 1 o
2 1 1 1

Figure 2.14 F=TC((A 2 B)

Using this function results, for example, in £ from equation 2.42

becoming:

- 1 ' ' ] ' v '
tl tl + T(t1 > a, + a, + a, + 1).[c + a; tl] 2.44

A general solution can now be given which is the extension of
equation 2.36 but which now has a new value for c, as in equation 2.39,

and which incorporates the adjustments to the thresholds using the

above method.

+

+



a. = al! +c¢ for 1 =1 to k
i i
2.45
a. = a! for 1 =k +1 ton
i i

n
t. Ny =t'+ (3 - 1c+ T(t' > 2 al! + i a! - al +1).
j+(q-1) (k+1) q q i=k+1 1 i= 1 J .

k : k
+ T( a. - a' .2 t"). a, - t'-a' .
i=k§1—j 1 ak+1--J q [i=k§1-j 1 q ak+l-J
for j =1 tok+l, q =1 top
If p is even then:
i
t . = jc + al for j=1tok
pk+1)+j ick+1-j *
where:
n k v k
= - " ]
c 121 a; Y - Y )) . a; + 1
i=2k+1+(-1)" i=2k+3+(-1)
4 4

Although this equation can be applied easily with the aid of a
computer, by hand it is difficuit to use. However, the method described
in section 2.3 and shown in Figure 2.8 for proving the universality of
multi-threshold logic can be adopted with the weights from equation 2.45

being used. Both methods are shown in the following example.

Example
f(x) = X1 oXye Xy + X)Xy Xg + X, -Xy-Xq * Xy Xq.X, + X -Xg. X,
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The spectrum of this function 1is:

Yo 1 %2 T3 T4 Y12 T13 T14 T23 T24 T34 T123 T124 T134 T234 1234

0 0 4 =464 -4 4 -4 8 0 O 8 o) o 4 =4

Comparing the first five coefficients with the tables of Chow's
parameters shows that there is no entry for n < 4 which is 44000, and
so the function is non-threshold. However, if the function is exclusively-
ored with X, ;nd Xq, then ﬁutpuf spectral translation results in the

spectrum:

Yo T1 T2 T3 T4 T12 13 T14 T23 T24 T34 T123 T124 T134 T234 F1234
8 8 44 4 & -4 -4 0 0O 0 O O O 4 -4

The tables of Chow's parameters have an entry of 88454; therefore
this function is a threshold function, and the corresponding a para-

meters are 22111. Thus:

Using equation 2.7 gives:

t=3

Thus the weight-threshold vector of f(x) is:

2-1111; 3

Figure 2.15(a) shows the final realisation of f£(x), and Figure 2.15(b)
shows the initial adjustments which have to be made in order that a
conversion to multi—fhreshold can occur, namely the weights must be
made positive, and the relevant input variables which are involved in

the translation must be ordered according to equation 2.29.



b)

41

— e — m—— —— — e— e— —— e—— G— —

Figure 2.15 (a) Solution to function f(x)

(b) Reorganised function f(x) with positive weights
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The function shown inside the dotted line can now be converted

to multi-threshold using equation 2.45.

In this example k = 2, n = 4.
4 2 2
= ' - L = af v ot =
c .Z a; Z a; '2 a; +1=a3+a -a+ 1 =3
i=1 i=1 i=2
Thus, a, = 4,.a2 =24, ag = 2, a, = 1.

The thresholds according to equation 2.45 are therefore:

k=2,n=4,q=1, c =3, t' =4,

: 2
B . . ot -
tj =4 + (] 1).3 + T4 23 + i a; aj"’l). |} 4+ ._z . aI:L
i=1 1=3-]

1 to 3

h
e}
o}

.
]

4+T(4;4).[—1+1] +T(034).[—4]=4

£ = |
t2=4+3+T(4;4+1).l_—1+2]+T(1;4).[1-—4]=7
t3=4+6+T(4;4+2).[—1+2] +T(2;4).[2-4]=10

The solution is shown in Figure 2.16.

n
The thresholds could also have been calculated by using |} a;x,
i=1
with the a, values of 2,4,4,1 calculated as before, and comparing with

the function f(xl,xz,x3,x4) = f"(x) as in Figure 2.17.

n
Thus comparing 2 a,x, with f"(x) in Figure 2.17(a) shows that
i=1 '
f"(x) changes from O to 1 at values of 4 and 10, and 1 to O at the value

of 7, which can be represented as in Figure 2.17(b).



Vi f(x)

Figure 2.16 Multi-threshold solution of £(x)

b)

2 4 4 1

n
X, X, X3 X, ) a;x, £ (x) £'(x)

i=1
000 O 0 0 .
000 1 1 0
6010 4 1 01236456789101112131415
001 1 5 1

n

0100 4 1 Y a.x

] 1=111
010 1 5 1
0110 8 0
011 1 9 0
1 000 2 0 7
100 1 3 0
1010 6 1
101 1 7 0
1100 6 1
1101 7 0
1110 10 1
111 1 11 1

Figure 2.17 (a) Truth table of function f"(x)

(b) Graphical illustration of multi~threshold solution
of f"(x)
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2.4.2 fnput Spectral Translation Conversion

2.4.2.1 Single Input Variable

Consider the situation shown in Figure 2.18 of a four input variable

Fhreshold function f'(x) where its input variable X, has been replaced

by the exclusive-or function of X and x, as in equation 2.46.

f(x)

Figure 2.18 Input spectral translation where x, is replaced
—_— . -1
by X, ® Xy, to give £(x)

. o
f(xl,xz,x3,xa) £ (x1 ® xz,xz,x3,x4) 2.46

As in section 2.4.2.2, since f'(x) is a threshold function it can be
represented by the weight;threshold vector of equation 2.15, and the
multi-threshold equivalent function can be represented as in Figure 2.11
and equations 2.16 and 2.17. The requirement is therefore to find a
set of functions fl(x) to fm(#) which satisfy equations 2.16 and 2.}7

and which, when exclusively-ored, give the function f(x).

If £'(x) is decomposed about the variables 3 and X, then:

' - - - v - = '-
f'(x) = 1'x2'g1(x) + xl.xz.gz(x) + xl.xz.g3(x) + xl.xz.ga(x) 2.47
Substituting X, ® X, for x; to give f(x):
f(x) = xl.xzigl(x) + xl.xz.gé(x) + xl.xz.g3(x) + xl.xz.gz(x) 2.48

This 1s illustrated in Table 2.11
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Table 2.11

X, f'(x) f(x)

(0] gi (x) 81 (x)
1 g, (x) 8, (x)
0 g3(x) g3(x)
1 g, (x) g, (x)

Decomposition of f£'(x) and f(x)

about x, and x

1

2

Now consider the set of functions given in equation 2.49.

fl(x) = gl(x) ME SRR
fé(x) =x +x,
_f3(x) = xl.g3(x) + xz.ga(x) * X%, 2.49
fa(x) = X;.%,
fs(x) = xl.xz;gz(x)
Decomposing each of these functions about X, and X, gives:
X%, fl(x) fz(x) f3(x) fa(x) fs(x)
00 |g 0 0 0 0
01 1 1 g, (%) 0 0
10 1 1 85(x) 0 0
11 1 1 1 1 g, (%)
Table 2.12 Decomposition of the function fl(x) to fs(x)

It can be seen from Table 2.12 that if the five functions are
exclusively-ored then the result is f(x), and thus these functions
represent a solution which obeys equation 2.12. Thus, if these

functions are threshold and can be represented by the same weights

but different thresholds then a multi-threshold solution has been found.
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The decomposition of the function, represented by the weight-

threshold vector of equation 2.50, about x, and x, is shown in Table 2.13.

1 2
c aé +c aa a& ; th,e,t' + ¢ - ai, 2c + aé, t' + 2¢c 2.50
X%, fl(x) fz(x) f3(x) fa(x) fS(X)
00 aé az ; t! s C , t' + ¢+ ai s 2c + aé, t' + 2¢
01 aé az ;s t' - aé -c, —aé , t' - ai - aé s C , t' - a! +
10 aé az s t' - ¢ , O , t' - ai ,c+al,t'+c
11 aé az 3 tf - a' - 2¢, —aé - c, t' - ai - aé -c, O , t' - ai

Table 2.13 Decomposition of weight—-threshold vector of
equation 2.50 about x. and X,

1
If in Table 2.13 all weights are considered positive, then all
functions with thresholds which are negative, O, or contain —-c can be
considered logic 1l's, and those containing +c as logic O's so that
Table 2.13 is equivalent to Table 2.12. The value of ¢ must be chosen,

therefore, such that all the following conditions are obeyed:

for fl(x): cz t'
. A )
fz(x)-CZa3+a4+1
. . * ' v Y | [N B |
f3(x). cxa) +taz+a -+ 1 t' and c 2 t a) -~ 3, 2.51
- \ ] ]
fa(x). c 2 ag + a, +1
. ' ' I |
and fs(x). cza, + a, + a, +1 t
Let ¢ = ag + az +1 2.52
1
which immediately satisfies fz(x) and fa(x).
- L} L} 1
Then for fl(x). az +a, +1z2t - 2.53

otherwise gl(x) = 0 from Table 2.12.

Cc
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If gl(x) = 0, then fl(x) = fz(x), and so tl can be altered to

ty, i.e. c.

) . [ ' ' [} ' gt
For f3(x). a3 + a, + 132 a, + a3 + a, +1 t

or t' > ai 2.54

Otherwise ga(x) = g3(x) =1 from Table 2.12.

1f ga(x) = g3(x) = 1, then f3(x) = fz(x) and so t; can be altered

to t,, i.e. c.

Also: aé + aa +13>t' - ai < ai

L} ] L 1] ]
or ay +a, +aj+a + 1zt 2.55
otherwise g4(x) = g3(x) = 0 from Table 2.12.

If ga(x) = g3(x) = 0, then fs(x) = fa(x) and so t3 can be altered

. ]
to té’ i1.e. 2c + az.

. ' ] ' v ' - gt
For fs(x). ay + a; +1 3 a; + a; + a, +1 t

or t' > aé . 2.56

otherwise g,(x) = 1 from Table 2.12.
2

If gz(x) =1, then fs(x) = fé(x) and so tS can be altered to tys

i.e. 2¢c + a'.
2

Thus ¢ in equation 2.52 is valid if the equations for the

thresholds are as follows, where T(A 2 B) is as before in equation 2.43:

t, = t' + T(t' > aé + az + 1).|c - tj

t, =c

ty = t' + ¢ - ai + T(ai > t"). ai - t'] + T(t' 2 ai + aé + aé + az +1).
[c + ai + aé - t']

t, = 2¢c + aé

tg = t' + 2¢c + T(aé > t').[aé - t'] 2.57
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The general solution for n input variables is therefore:

n
= ¢! ' [ .
t t' + T(t ;.Z ai+1).E: t]
1i=3

1
a; + 1).

1 1

1

ne~1g

t, =t' +¢c - a' +T(,ai > t').[a' ~t'] ¥ T(t' 32

1 [
[c+a1+az t]

2.58
= 1
t, = 2c + a,
tg = t' + 2c + T(aé 2 t'). [?é - t']
n
vhere ¢ = ) a! +1
i=3

Note that the general solution applies only to situations where
the variable x; is replaced by X, ® X,s SO that if a function has
an input variable X; replaced by X, ® X5 its inputs must be reordered

such that i =1, j = 2.

2.4.2.2 Non—threshold Initial Function f'(x)

This situation is identical to that at the start of section 2.4.1.3,
so that f;(x) is still>as.in'equation 2.31. Again, in order to find
the multi—-threshold solution to f(x), each of the functions fi (x) are
treated separately, and so in this case each would be expanded into
five threshold functions according to equation 2.58. For example,

consider a two threshold function-f'(x) as in equation 2.59.

L} 1 - L} ] .
aza, ; tl,t2 _ 2.59
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Using equation 2.58, the five thresholds for each new function are:

a) t, =t +T(ti;

he~—3

a! + 1). [S:-t']
ji=3 1 1

n
= 1 - ' ' 1 | - ] ' ]
t 2 + c a; + T(,a1 > t:l). [al tl] + 'r(t:1 > Z a; + 1).

4 2
= ] [ 1 " ]
tg t! + 2¢ + T(a2 > tl). [az tl]
] n
= (] (] ] - ]
b) tl tz + '1‘(!:2 > i§3 a; + 1). [c .tz] 2.60

n
= ¢! - ' ' ' [ - ¢ ' ]
t t! + ¢ - a' + '1.‘(a1 > tz). [al tz] + T(t:2 P iZ a; + 1).

= ' v v | . v
t t! + 2¢ + 'r(a2 > cz). [az t2]

Clearly each expansion of five thresholds contains t, and t,
which are independent of the original threshold and pairs of them can
be cancelled out. Thus if the original function f'(x) has p thresholds,
then each one expands into three new thresholds which are obtained as

and t_. in equation 2.58, and if p is odd then two more are added

t1s t3 5

which are equivalent to t, and t,-
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2.4.2.3 More than One Input Variable

In this case, an input variable is replaced by the exclusive-or
function of the same input variable and more than one other. Consider

the situation of the function in equation 2.61.
- ' "
f(,xl,xz,x3,x4) f (x1 ® x, ® x3,x2,x3,x4) 2.61

Table 2.14 shows the decomposition of this function f'(x) about

X 5X, and Xge Also shown is a set of seven functions which when

exclusively-ored with each other give the function f(x).

xp%, | £ | 6,60 6,60 [ £,60 |£,00 |£,60 |£,G [£,00 | £

000 g, (x) | g (%) 0 0 AQ 0 0 0 | g
001 8, (%) 1 1 gG(x) 0 0 0 0 gg (%)
010 | gy 1 1 g, () 0 0 0 0 g,(x)
011 | g (0 1 1 1 1 1 g, (x) 0 0 :'g4(x)
100 | g 1 1 g5 (x) 0 0 0 0 | g
101 | g0 1 1 | 1 1 g, (%) 0 0 | g,(®
110 g7(x) 1 1 1 1 8300 0 o | gy
111 | gy 1 1 1 1 1 1 gg(®) | gg(x)

T

Table 2.14 Decomposition of f(x), f'(x) and fl(x) to f7(x),

about xl, x2 and x3

The functions fl(x) to f7(x) satisfy equation 2.12, and so it is
required to shew that they are threshold functions which can be realised
with -the same set of weights but different thresholds to obtain a multi-

threshold solution.

Table 2.15 shows the decomposition of the function, represented by
the weight-threshold vector of equation 2.62, about the variables X)» %,

and x3.
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c aé + cal +¢ az ; t',e,t' + ¢ - ai, 2c + aé, t' + 2c, 3c + aé + 33’

t'+ 3¢ - a'1 2.62

If in Table 2.15 all the weights are positive and the involved -
input variables X, and X, are arranged such that aé > aé, then if ¢ is
large enough, Tables 2.15 and 2.14 are identical. The actual value

c can be shown to be as in equation 2.63, using the same arguments as

in equations 2.52 to 2.56 in section 2.4.2.1:
c = al - aé'+ az +1 2.6;
1f the thresholds include conditional adjustments as in equation 2.64.

t, = t' + T(t' > a! +1). [c-t:']

1 4

t, =¢

ty = t' +c¢c - ai + T(_ai > t'). [ai - t'] + T(t" 2 ai#aé + 32; +1).-
Lc- t' + ai.+ aé] 2.64

t, = 2¢c + aé

= ¢ ' ' U gt ' ] ' '
t t' + ?c + T(a3 > t'). [a3 t] + T(t' 3 a2_+ a3 + a, +“}}.

[c - t' + aé + aé]

= 1 ] 1]
t6 3c + a, + a3

= ¢ - At ' ' ' ' ' ' v ]
t7 t' + 3c a; +'1‘(.a1 +.a, +a3 > t"). I:a1 + a, + ay t]

It can also be shown that when a function has its input X, replaced
by X, exclusively-ored with k variables, where k > 2, it too can be
converted into a multi-threshold solution, and thus a general solution

for k variables, where the initial function has p thresholds, is:

a, =c¢
a., = al! + ¢ i1=2tok

i i

a. = a! 1=k +1ton
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1 -1y
C& +(j - e - [;—iii—ll—] a! + T(t! 3 [%—igs—ll—J - a;

Li4(q-1) (k+1) ~ 1 q

n j+l 1 N
£ ) al+1+y a!-—a!+1—T(j2k+1),[a[])[c_-t'+ 1+ D
i=k+1 * i=2 ] 3 q 2
k 3
. 1 + (-1
+ Y al-a _.—T(Jak+1).[a']+T([-———]-a'
foici1—j b Pk+1-j 1 2 1

k| ¥
[ _- At . ' . o 1+ (-1)
P T Ml T A P TA 2 D) [ak+1] > Eg)- [ fq ' [ ) ] :

i=k+1-j
k
' [ - [ : [
* i=k§1-j 3 T Ae1-j T Feep-y * T 20D [akﬂ]]
for 3 =1 tok +1
q=1¢top 2.65

and is p 1s odd then include the thresholds:

k
t . = jc + ) a; —a' . . for j =1 tok
P(k+1)fJ i=k+1-j 1 ak+1 J
n
where c = z al! +1 + a! - a'
i=k+1 T 2 ak

As in the case of output spectral translation, this general
solution is cumbersome to use for calculating solutions by hand,.and:
therefore the method of finding the thresholds by stepping through the

n
table of 2 a x. values is suggested here also.
i=1



54

Examgle

f(x) = X)Xy Xq + X)Xy Xq + X

The spectrum of this function is:

To T1 T2 T3 T4 T12 13 14 23 T24 T34 F123 T124 F134 T234 1234

6 -26 2 2 -2 -6 2 2 2 -2 10 2 -2 -2 -2

Comparing the first five coefficients with the entries in the

tables of Chow's parameters shows that there is no entry of 66222, and

hence the function is not threshold. Input spectral translation of

the input x; replaced by X, ® x, ® X4 results in the spectrum:

To F1 T2 T3 %4 T12 T13 T14 T23 T24 T34 T123 T124 T134 T234 F1234
6 106 2 2 -6 -2 -2 2 2 -2 -2 -2 2 -2 2

There is an entry of 106622 in the tables, so that this function

is threshold and the corresponding a parameters are:

which gives a threshold value from equation 2.7 of:

t=35

Figure 2.19 shows the realisation of this function. °

X\ ——13
X2 12 5 f(x)
X3 11
X, —1
Figure 2.19

Realisation of f(x) using input spectral
translations



In this instance the weights are already positive and arranged
in proper order, so that the conversion can take place immediately.

Using equation 2.65, where k = 3, n = 4:

' I B - =
ai + 1 + az a3 1 +1+ 2 1 3

(¢]
]
| 18

i

’ —1yJ gy i
t. =5+ (j -1)3 - [li—g—ll—].3 + T(5 2 [L-iig—ll—J.3 +1+1

J 2
i+l i 3
' _ [ : ] - 1+ (-1) ] ° [ - '
+ igz aj - ai, + T(j 2 4). [aj])f [3 5 + | [_—Tf___—- .3+ i:Z—j aj = a_.
j 3

s : 1+(—1)J] C

T(j > 4). [al]J + T( [——2——7 3+ ._z ] ai alb"j a5"j

- i=4-] .
j 3
2 ] - 1 + ('I)JJ | - (] - Al
+ T(1 2 j) [aa] 2 5). [- 5 + L——Tf_——- .3+ '_2 .3 T 3 aS-j
N 1_4-J - .

+ T(1 2 §). [;z]] _

for j =1 to 4

.ot =5+ T(5 22).[-2] + T > 5). [-5] =3

.o

340 +133 5. [-5+3] =

+

ty=5+3-3+T(523+2+2). [:2

+

tg=5+6+T(532+2+1. [F2+2+1]+1025.[5+1] =12

t, =5+9-3+T(533+2+2+1). F2+3+2+]1]

+T(3+2+135), [Fs5+3+241] =12
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Since p = 1, i.e. odd, include the thresholds:

3 .
t, .=3i+ ] al-al. for j =1 to 3
4+4)3 i=4-j 1 4-3
<. ‘t5=3
te = 6 +1=7
L, = 9 +42 +1=12
Note that t, = tg = 3, and so they cancel out, and that
ty =t, =t, = 12, so that any two of these cancel out. Thus the final

weight-threshold vector is:
3541 ; 5,7, 12

as shown in Figure 2.20.

The alternative method of finding the thresholds by comparing
n
the function f(x) with the values of Z a; X is shown in Figure 2.21.
i=1

Figure 2.21(a) shows that the function changes from O to 1 at
n

values of z a; x, of S and 12, and changes from 1 to O at value of 7,
i=1 '
which can be represented as ‘in Figure 2.21(b).

f(x)

3¢
Y
~ oW

RS
Y
\;:\\

2

Figure 2.20 Multi-threshold solution to function f(x)
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a)3 5 4 1 b)
n
x| Xy X3 X, .g a;x; £(x) £(x)
i=1
000 0 0 0
1 —
0001 1 0
oo 1o b ° 01234567891011 12 13
0011 5 1
)
a, X,
0101 6 1
0110 9 0
0111 10 0
1000 3 0
1001 4 0
1010 7 0
1011 8 0
1100 8 0
1101 9 0
1110 12 1
1111 13 1

Figure 2.21 (a) Truéh table of function f(x) .
(b) Graphical illustration of multi-threshold

solution
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2.5 Conclusions and Further Work

A method for function synthesis has been presented which converts

the following into multi-threshold form:

a) functions exclusively-ored with any number of input
variables, provided that they can initially be expressed
as weight-threshold vectors, using equation 2.45,

b) functions which have one of their input variables replaced
by the exclusive-or of that input and any number of other,
provided that they can be initially expressed as weight-

threshold vectors, using equation 2.65.

Examples have been presented which give an indication of the type
of solutions found. .As mentioned in section 2.3, tables exist [16,17]
which give solutions for n ¢ 4, and thus a comparison can be made.
Listed below are the weight-threshold vectors of the two examples
previously shown in Figures 2.16 and 2.20, and the equivalent vectors

obtained from the tables.

Example 1
a) 2 -4 4 1;0, 3,6 Solution developed herewith.
b) 2 3 -3 1 -1, 3 . Haring and Ohori, and Mow and Fu's"

previously published solution.

Example 2

a) 3 5 4 135,17, 12‘ Solution developed herewith. ;

b) -3 6 2 13;1, 2, 4, 7 Haring and Ohori's previously
published solution

c) -2 3 2 13; 3,5 Mow and Fu's previously published

solution.
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Clearly the solutions developed herewith are not optimal, but
there is not a great deal of inefficiency. However, this method can be
applied to functions of n > 4. In general then any function which can
bé reduced to a threshold function, or a function which has a known
multi-threshold equivalent, using spectral translation can be converted

to a multi-threshold solution by the applicationof the two equations

2.45 and 2.65.

An area of further work which has been illustrated as a result
of this work is that a function with a particular weight-threshold
vector can be converted to another function by adjusting the weights

and threshold. From previous publications all that could be done was:

a) invert an input variable x; by negating the relevant
weight a, and subtracting a; from the thresholds.

b) invert the whole function by negating all the weights
and thresholds and then adding one to the thresholds.

c) permutate any two input variables by exchanging their

weights.

Now it has been shown that, for example:

a) the OR function f'(x) + X, can be obtained by adding
c to a!, where ¢ = t' - al,
i i _
b) the AND function f'(x).x; can be obtained by adding c to
n
ai and to t', where ¢ = jZl aj + 1 - ai - tf,
¢) the exclusive-or function f'(x) @® x, can be obtained
by adding c to ai and including another threshold of value

t' + ¢, where ¢ must be greater than or equal to the two

values of c¢ above.
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More complex functions too can be created by the process of
adding constants ¢ and increasing the number of thresholds. The
potential of this procedure has not been pursued, but one consequence
is that it may possibly be used to find the weight-threshold vector
of a function more directly, say by taking a simple initial function
and adding to it, and thus saving a great deal of computational time.

However, such a method has not yet been formally researched.
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CHAPTER 3

CHARGE-COUPLED DEVICES (C.C.D.’s)
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3. Charge-Coupled Devices (C.C.D.'s)

3.1 General Description [z,3,4,5]

3.1.1 Creation of a Well

The C.C.D. was invented in 1969 by Boyle and Smith [ij . However,
it was not really a new device but an alternative way of using an
older and more familiar device, the Metal-Oxide-Semiconductor (M.O.S.)
capacitor. Figure 3.1 shows a cross section of an n-channel M.O.S.
capacitor consisting of a p-type silicon layer or substrate, a silicon
dioxide layer, and a metal plate known as the gate. A p-channel
device would be identical except for an n-type silicon substrate and

in the following discussion all voltage polarities would be reversed.

'Mh>Vg>0

METAL
mam SOXIDE

. SEMICONDUCTOR
depletion

region

-type N bstfute

Figure 3.1 M.O.S. capacitor
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The p-type substrate is doped with acceptor ions [24] which can
be considered as '"free holes' or mobile positive charges. When a
positive voltage is applied to the gate, therefore, the holes are
repelled forming a depletion region immediately under the gate and
extending into the substrate. Increasing the voltage increases the
extent of the depletion region until a critical point is reached when

the applied voltage Vg equals a threshold voltage V Then, if

th’
electrons are available, an inversion layer or very thin n-channel forms
at the semiconductor-oxide interface. In the case of an M.0.S. trans-
istor, electrons are available from the source or drain, but in the
M.0.S. capacitor their only origin is from the thermally (or optically)
generated electron-hole pairs which occur at finite intervals of time.
Therefore, if the applied voltage is suddenly pulsed to a voltage
beyond the threshold voltage the depletion region will extend initially
far into the substrate; a situation known as deep depletion. As time

1
passes, electrons will be generated and will start to form the inverse
layer and the depletion region will shorten. Ultimately the state when
the device is said to be in equilibrium is reached, where the depletion
region is the same depth as at the onset of inversion. Figures 3.2
and 3.3 show the relationship between the gate voltage Vg’ the voltage

at the semi-conductor-oxide interface known as the surface potential

¢s, and the charge in the inversion layer Qinv'

The diagrams indicate that the threshold voltage Vth is defined
as the gate voltage at which the surface potential ¢s equals twice the
Fermi potential, ¢F, which in this instance is approximately 0.6V.

The reason for this would require a fuller explanation which is not
necessary for this thesis but which can be found in any semiconductor

physics textbook [24]. Above the threshold value, however, it can be
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seen that there is a very good linear relationship between the

quantities and which is approximated by equation 3.1

Q

(0),¢

3.1

where is the oxide capacitance per unit area.

This linear relationship can be used to form a simple model where
the region under the gate is regarded as a well, the charge is analogous
to a liquid in the well, and the surface potential is regarded as the
distance from the top of the veil to the surface of the liquid as in

Figure 3.4.

Figure 3.4 Model of an M.O.S. capacitor

Note that this is only a schematic diagram, so that the well must
not be confused with the depletion region. The maximum amount of charge
that can be stored in a well, known as its "depth” or charge handling

capacity, can be found by letting 4»”“equal zero in equation 3.1, and
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multiplying by the area of the electrode, as in equation 3.2

Qm «- C AV 3.2
ax 0X g

where A is the area of the electrode.

A gate like this would generally be in a state of non-equilibrium,
since the charge under it would rarely be required to be equal to Q
Therefore an amount of charge stored in this way would have to be
repeatedly refreshed so as to avoid degradation by the electron-hole
pair generation. Alternatively, the charge could be transferred to

other wells fast enough to avoid corruption.

3.1.2 Charge Transfer

A typical cross section of a C.C.D. is given in Figure 3.5. It
consists of a number of gates placed serially between the input diode
and gate and the output diode and gate. Each gate can have a voltage
applied to it to create a well with a charge handling capacity as in

equation 3.2.

rpu’ A A A Output

d£1)0de Gate gf, (20 ¢ Gate diode
p-type
substrate

Figure 3.5 Typical cross-section of a C.C.D.
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Generally the input diode is held at a high positive voltage and
is therefore reverse biased. However, if it is pulsed to a low voltage,
charge will overflow via the input gate to the well under ¢1, as in
Figure 3.6. This charge can then be transferred to the well under ¢2

as in Figure 3.7.

Figure 3.7(a) shows a well which contains same charge. In
Figure 3.7(b)_an adjacent well has a voltage V suddenly applied to it,
whiﬁh, if the gates are close enough together, causes the two wells
to merge and the charge to distribute itself equally between the two.
Figure 3.7(c) shows the first well having its gate voltage slowly
decreased so that its remaining charge flows into the adjacent well
until finally.the second well contains all the charge. Clearly this
process could be continued té a third well, thus giving the facility
of charge transfer. A three phase clocking system which allows this

is shown in Figure 3.8.

Other clocking schemes have also been preéented which only require
two phases and even a one phase system [3,5]. However, the three phase
is the most commonly encountered since the others require more complic-

ated fabrication processes.

Finally, the charge reaches the output where it overflows the
output gate into the output diode which normally has a positive voltage,
applied to it. Typically a capacitor and amplifier is placed at the

output to detect this charge and give a voltage proportional to it.

It is the C.C.D.'s ability to store charge and to transfer it
which has resulted in its three main applications, namely, image sensing,
analogue signal processing, and digital memories. Recently, interest

has been shown in developing C.C.D. logic gates for use in digital signal
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Figure 3.6 Charge input

4)s (k T o

Figure 3.7 Charge transfer
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Figure 3.8 Three phase clocking system
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processing, which opens up a completely new area of application.

3.2 Logic Design

As ﬁentioned already the C.C.D. has received a great deal of
attention in the area of digital memories, where the presence or absence
of a unit charge packet corresponds to a stored logic 1 or logic O
respectively. Clearly this idea can be extended to digital signal
processing uéing properties of the C.C.D. to.perform simple logic
functions [7].' This means that tﬁere is the possibility of combining
dense memory érrays and complex digital signal processors on the same
chip. So far this idea has been approached in two ways; firstly,
simple binary logic functions and secondly, multi-valued logic, mainly

four-valued (quaternary).

3.2.1 Some Additional C.C.D. Properties

In order to follow the operation of C.C.D. logic circuits it is

necessary to understand the following three functions:

a) charge summing,
b) . charge overflow,

c) charge sensing.

3.2.1.1 Charge Summing

Earlier it was discussed how a C.C.D. stores charge in a well and
how this charge can be transferred to another well using a three phase
clocking system. Consider what happens when charge from two wells are

clocked into the same well. Schematically this is shown in Figure 3.9.
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WELL 1
Q1
clocked
charge '
transfer
WELL 2 ' WELL 3
Q2 Q3

Figure 3.9 Charge summing

Clearly, if well 3 has a large enough charge handling capacity,

then Q3 will be the sum of Q1 and Q2, as in equation 3.3.

Q=Q +Q, 3.3
More than two wells can obéiously be used, provided that the

sumning well has a large enough charge hanaling capacity.

3.2.1.2 Charge Overflow

If a well contains charge Ql’ and this charge is then clock trans—
ferred to a second well whose charge handling capacity is less than
'Ql’ then the excess charge can be made to overflow into a third well

via a barrier gate, shown schematically in Figure 3.10.
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charge overfiow

clocked
charge '
transfer M
WELL 1 WELL 2 WELL 3
(&) . Q2 Q3
barrier
gate

Figure 3.10 Charge overflow

If the third well has a large enough charge handling capacity

to overflowing charge, then Ql’ Q2 and Q3 are related by equation 3.4.

Ql - QZ = Q3 3'1‘

The barrier gate is simply an electrode with a low ﬁoltage applied,
similar to the input gate shown.in Figure 3.6. Another barrier gate
and well could be place&.after well 3 so that if the chafge handling
capacity of well 3 is less than the charge that it receiies, a further

overflow could occur into the fourth well, and possibly into a fiftb,

sixth, etc.

3.2.1.3 Charge Sensing

Although charge can be detected destructively at the output:as
described earlier, it can also be sensed at any point without alt?ring
it whatsoever. - A charge sensing amplifier detects the presence of
charge under an electrode and alters the voltage on another electrode
by an amount proportional to the sensed charge. A ;}pical structure

is the master-slave floating gate shown in Figure 3.11 [8].
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Vg
'V'reset°_—* F.E.T.

WELL1 MASTER WELL 2
Q1 . Q2
WELL 3 WELL 4
w
Q3 / A% 04
-

n

Figure 3.11 Master-slave floating gate

The voltage on the master and the slave wells is set by the
F.E.T. and kept constant by the parasitic capacitances. Charge entering
the master well by a~ciocked transfer from well 1 will cause a drop
in the voltage on the master elecﬁrode and so a. corresponding drop
must also occur on the slave electrode. If the drop is sufficient
the slave will block all transfer of charge from well 3 to well 4.
After the charge.has been tranﬁferred from the master well, thg master
and slave are reset to their original voltages. Thus the function of
the structure can be given by equation 3.5. |

Q = Q3 If Q< Qy

3.5
Q, =0 if Q >Qy

where ch is some arbitrary threshold charge.
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3.2.2 Binary Logic

Binary logic uses unit charge packets, the presence or absence

of which constitutes a logic 1 or O respectively. Developments in

this area have been mainly concentrated on logic arrays using the very

simple AND/OR structure [8_,9,1(3 shown in Figure 3.12.

WELL 1
Ql

WELL 2 WELL 3 WELL 4
0w |2 o o
 OR AND

Figure 3.12  AND/OR logic structure

All wells have charge handling capacities of unity. Thus if both

Q1 and Q2 are unit charge packets, when they are clocked to well 3

there will be a charge overflow of one unit into well 4. Thus there

is charge in wéll 3 if there is charge in well 1 OR well 2, and charge
in well 4 if there is charge in well 1 AND well 2. This kind of
structure is ideally suited for implementing functions in a pipelinedy
inbut manner, more of which is discussed in the following i

or serial

chapter. However, arithmetic functions can also be implemented using
a slightly modified structure. Figure 3.13 shows a full adder circuit

and the corresponding truth table for each of the wells [9].

As in the AND/ORcircuit, each well has a charge handling capacity

- of unity. Thus when two of the charges Ql’ Q2 or Q3 enter well 4 there
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WELL 7

WELL S

WELL 6

CARRY
b) WELL 1 2 3| 4 617
0O 0 0O 0}]0
0 0 1}1 o]1
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o1 1}]1 oo
1 0 0}1 041
1 0 1}]1 010
1 1 01 0}]o0
1 1 11 1 . 1

Figure 3.13

Full adder circuit and truth table
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is an overflow into well 5 which then blocks the transfer of charge
from well 4 to well 7. However, when all three charges are present
charge also overflows into well 6 which is then clocked to well 7,

the sum output.

Arrays of these structures can then be used to perform addition,

and with extra delays multiplication.

3.2.3 Multi-Valued Logic

C.C.D.'s have been mainly used as either analogue or binary devices
However, they can be used as multi-level devices as in Figure 3.14,

where four different amounts of charge can be stored in a well.

Gate
Two bit
binary Quaternary
30 11 3
Surface 10 2
tentkil 20
potentki 01 |
00 0

Figure 3.14 Multi-level storage of charge

These charge levels can then be used either to double the storage
density of a memory device by considering each level to be the equi-
valent to two binary bits [11], or as logic levels in quaternary

logic [i.2,13,14] . The main drawback of using multi-levels is the fact
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that it is extremely difficult to detect the different levels [2].
- The use of four levels has been researched and actual devices made,
but for more than four levels very little work has been undertaken,

although up to thirty two levels has been reported [15].

As an example of a quaternary device [}3] consider a full adder.
circuit which is identical to that of Figure 3.13(a) except that all
the wells now have charge handling capacities of three apart from
well 5 which has a capacity of one. Thus tﬁe contents of wells 4, 5, 6,

and 7 can now be shown in Figure 3.15.

Decimal sum of vell

Q +Q +Q, 41516 |7
0 0}l0 |O (o)
1 110 o 1
2 210 |0 {2
3 3]0 (|0 {3
4 311 1{0 jo
5 31111 j1
6 311 |2 |2
7 311 |3 |3

Figure 3.15 Contents of the wells of a quaternary full adder

The largest value of the sum is seven because one of the inputs,
Qllsay, is a carry signal from a previous full adder and therefore has

a value of 1 or O.

In fact for any m-valued logic, a full adder circuit would be
similar to that of Figure 3.13(a) with all wells having a charge handling

capacity of m - 1 except for well 5 which has a charge handling capacity

of ome.
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3.3 Threshold Logic

In the previous section it was shown that charge can be summed,
made to overflow, and that multi-level logic is possible. These facts
can be shown to be ideal for the production of a threshold logic gate.

Reconsider the threshold logic equation:

iff

L]
-

£(x)

e~
w
el

1=1 3.6

otherwise

n
(@)

f(x)

Therefore each input variable x. can have a charge packet associaged
with it proportional to the weight a;, and since a, is an integer this
‘charge packet can be envisaged as’ a, times a basic gharge packet, Q say,
as in Figure 3.14. Each pécket of charge can then be summed into a
common well as in equation 3.3, where.the charge handling capacity of
this well is proportionai to t - 1, so that charge of t or more entering
it would overflow into another well as in eqﬁation 3.4. Thus the charge

in this third well would be either equal to. zero, or equal to
n .

1=1
in an output of a logic 1 or O respectively, regardless of the amount

a,x, - t + 1. The presence or absence of charge in this well results

of charge.

It is interesting to note that the full adder circuit of Figure
3.13, and particularly the quaternary full addgr;‘the contentS'of_whicﬁ
are shown in Figure 3.15, acts in a very similar manner to a threshold
logic gate with three inputs. One of the inputs has a weight of one,
and the other two can have weights of up to three. The charges are
summed and made to overflow into wells 5 and 6, which can pherefore be

considered as acting as though they had thresholds of four and five.
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The following sections consider how a charge packet proportional

‘to a; can be formed and how the final charge can be detected at the

output.

3.3.1 Charge Input

A method which provides the input of a fixed amount of charge is
the charge equilibration, ér "fill-and-spill" L2,3,4,5], as shqwn in
Figure 3.16. Initiélly the input diode is strongly reverse biased
and no charge resides under gates 1, 2, or 3 as in Figure 3.16(a).
Figure 3.16(b) shows the voltage on the input digde suddenly pulsea
to a low voltage so that charge overflows thejﬁeils, in particular -
£illing the well under v,. Finally Figure 3.16(c) shows that the
voltage on the diode is again set to its original reverse bias so that
the charge spills back 1eaving_dn1y‘that charge in well 3, the amount

of which is given, using équation‘3;1, as:
Q=- (V; - V,).C_.A 3.7

The two gates ﬁith V1 and Vznactached are included instead of
the usual one so that the input variable x, can replace Vl. Thus the
previous description occurs when x; = 1, and therefore V1 > VZ.
However, if X, = 0, then V1 = 0 and charge from the input diode is

blocked as in Figure 3.17.

3.3.2 Charge Detection

As previously noted, the output has to detect the presence or
absence of charge regardless of the amount of charge, and hence practical
arguments against the use of multi-levels, namely the difficulty in

detecting the different levels, do not apply.
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Figure 3.16 Charge equilibration
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Figure 3.17% Charge blocking when x. =0
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A typical method of detection is shown schematically in Figure 3.18

f(x)

-A

p-type

Figure 3.18 Output circuitry

Switch 51 is closed long enough for the voltage on the capacitor
to settle at which then strongly reverse biases the output diode.
The switch is then opened and, assuming that the amplifier has a very
high input resistance, the voltage on the capacitor remains constant.
Any charge under the last clocked electrode will overflow the output
gate with the low voltage on it when the clock phase drops to
zero volts, and will then pass via the output diode to the capacitor,
thus lowering the potential across the capacitor. This potential drop
is amplified and inverted so that the NAND gate receives it as a logic 1
signal. (If there had been no charge and therefore no voltage drop on
the capacitor, the NAND gate would receive a logic 0 signal). The pulse
PI is set to a low voltage, logic 0, so that the output f{x) is equi-
valent to the logic input from the amplifier. The pulse PI is then

reset to a high voltage, logic 1, which then holds the output f(x) at
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the same level even if the signal from the amplifier is altered. The
switch S1 is then closed again to discharge the capacitor ;nd the
process repeated. All the devices shown, namely switches, amplifier,
sample and hold circuit, can be manufactured using M.0.S.F.E.T.'s
which are compatible with the C.C.D. and the whole can therefore be

incorporated on to the same chip [16].

3.3.3 System Integration

The inputs and outputs described so far have assumed that the
threshold logic gate is an independent‘device receiving logic signals
or VOICageAlevels and yielding the same signals or voltages. However,
it has been said that the desirable feature of logic circuits in
C.C.D.'s is that they can be incorporated into a complete digital pro-
cessing system, i.e. all C.C.D. devices on one chip. In this case the
inputs and outputs that the internal threshold logic gates would obtain
would be unit charge packets as in the case of the binary logic gates
described earlier. This is easily adopted, however, using the charge
sensing amplifier described in section 3.2.1.3, details of which are

considered in the following sections.

3.3.3.1 Charge Input

At the input, charge is sensed in a master well and the slave is
4

equivalent to v, in Figure 3.16; hence a charge packet of (V3 - Vz).Cox

. . »
is introduced to the threshold logic gate. If no charge is present.

in the master well then the voltage v, is at its maximum, which is set

so that V Py V3, as in Figure 3.19.

1 2 vZmax
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charge flews bad

Figure 3.19 Charge blocking

When the input diode is now pulsed all charge will spill back out

so that no charge packet is formed.

3.3.3.2 Charge Output

In the description of a threshold logic gate so far, it has been
assumed that there is only one output. The previous chaptershowed the
desirability of having multi-thresholds, and fortunately this is easily
incorporated into the C.C.D. by extending the overflow of charge to
more than one well, each of which has a charge handling capacity
proportional to t* - t ~ T h e logical values of each of these wells
then have to be exclusively-ored to give the final output. If these
logic values are voltage levels from the output of the circuits shown
in Figure 3.18 then the exclusive-or gate can also be manufactured
using M.O.S.F.E.T.’s [17]. However, if the gate is part of a digital
processor, it is more likely that the output will be required -tobe

in the form of a unit charge packet.
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If ‘the multi-threshold wells described above are considered as

the master wells of the master slave charge sensors, then the slave

end could be equivalent to V1 in Figure 3.16. Thus, if charge is

present in the threshold logic gate wells then no charge packet is
created in another part of the system, and if there is no charge then

a charge packet is introduced. Each of- these charge packets can then

be transferred to an array of C.C.D. binary exclusive-or gates [9], one

of which is shown in Figure 3.20.

WELL 1
(6]

WEW 2 WELL 3 well 5 ‘
Q2 Exdusive-

WELL 4

Figure 3.20 Binary exclusive-or gate

The structure of the exclusive-or gate is similar to the AND/OR

gate of Figure 3.12 except that well 4 is now a master well of a master-
slave charge sensor. Thus if well 4 contains charge, the transfer of
charge from well 3 to well 5 is blocked. The charge packets Q1 and
Q2 are in fact the inverse of what they should be since they are equi-
valent to a logic 1 if charge is not present in the threshold well and

a logic O if there is, which is the reverse of what is normally assumed.
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However, it makes no logical difference to the final output, since the
exclusive-or of two variables is equivalent to the exclusive-or of

their inverse.

The previous chapter showed that the "half exclusive-or gate" is
all that is necessary in a multi-threshold logic gate. Thus the simpler

circuit if Figure 3.21 can be used instead of the exclusive-or gate.

WELL 1
M

WELL 2 . WELL 3
Q2 E ' | Half exclusive-or

Figure 3.21 Half exclusive-or gate

In this situation, Q1 can never bg a 1 when Q, is a'O, so'ghat the
output is equal to Q2 Qhen Q1 is 0, and equal to O when Q1 is 1. For
more than two thresholds, arrays of these gates would be used. Note,
however, that the exclusivé~or or half exclusive-or of an odd number
of variables is inverted if the variaﬁles are inverted. Thus if there
are an odd number of thresholds and outputs then the last half exclusiﬁe-
or gate must have Q2 equal to a logic 1 to invert the final output.

This also applies when there is only one threshold, since this too is
an odd number. The array of gates would be structured so that thg

contents of well 3 in each gate run into a common well which would then
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contain the output logic value.

3.4 Threshold Logic Gate

Figure 3.22 shows the full structure of the proposed threshold
logic gate [19]. It has four inputs and five thresholds and outputs

which are a sufficient number to realise any four input variable

function.

The gate operates as follows: charge is formed in wells Gl to G4
usiné the charge equilibration method discussed earlier. The amount
of charge is proportional to a, if X; is a logic 1, or nothing at all
if x; is a logic 0. It is then transferred using a three pﬁase clock
to the large well G5 where it is summed. The charge handling capacity
of well G5 is determined by a voltage proportional to £, - 1, but unlike
the voltages on the other wells, this one has to be scaled down by a
factor k, where k is the ratio of the area of well G5 to the other wells,
which are assumed to be all the same size. 'Any-charge in exéess of t,
overflows into we11‘G6, more still into G7 and so on. Any charge that
is present in wells G5 to GlO is then transférred using a three phase
clock, this time with the phases reorderéd to minimise delay and to
avoid any backward flow of charge. The charge from G5 goes to a drain
for clearing, whereas charge frém the other wells go to drains where

it is then detected using circuits as described earlier such as in

Figure 3.18.

If the circuit is to be incorporated into a system where it will
receive binary inputs in the form of unit charge packets and is required
to yield charge packets then obviously the gate would be slightly
different although its basic structure would remain the same. At the

input the two input gates labelled xi's and V1 would be interchanged to
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Figure 3.22 C.C.D. multi-threshold logic gate
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give a situation similar to that of Figure 3.19, and at the output
the charge would still be transferred to drains only in this case for
all of it to be cleared. This is because wells G6 to GlO would be
master wells of charge sensing amplifiers as described in section 3.3.3.2,
and so the outputs would already be determined before the charge is

transferred to the drains.

Figure 3.23 is a cross section through the device showing the
contents of various wells at various stages of operation labelled in
accordance with the clock phases shown in Figure 3.8. The cross section
is taken through the iﬁput line corresponding to X,, one end of G5, and
the output line which in fact clears G5, but this does not alter its
generality since the other lines are identical. However, not shown is
the process of chargeloverflow into wells G6 to GlO since this occurs

effectively out of the plane of the paper.

It can be seen from this figure that there is latency inherent
to the system, since the inputs are sampled at intervals of one clock

period, and the delay between the relevant output being formed is three

clock periods.

3.4.1 Limitations of the Threshold Logic Device

One of the most serious limitations of all C.C.D.'s is that at
each charge transfer, a small fraction of charge is leftlbehind. This'
fraction € l?,3,4,§] is usually of thé order of 10_3, which at first
appears to be an insignificant amount. However, it has an accumulative
effect. Consider the gate in Figure 3.22. Charge is entered and
transferred to well G5, which involves four clbcked transters. Thus

the fraction ot charge reaching G5 is:
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(cont)
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Figure 3.23 Cross section of gate showing charge
transfer through the device
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4 n
Q=(1-¢" ] ax - 3.8

Since ¢ is very small compared to 1, higher powers of € can be

ignored, giving an approximate value for Q as:

n
Q = (1 - 4g) .Z a x, 3.9
1=1

The worst case arises when all the input variables x, are logic 1's,
n
and the fifth threshold t5 is equal to z a;, so that the well G10
i=1
should contain a unit charge packet. In fact the amount will be:

P o)
]

n
(1 - 4€) 121 a; - t5 +1

1- 4et5 | 3.10

This charge is then transferred to the output which again involves

four clocked transfers, so that the amount of charge which reaches the

output instead of one charge packet is:

Q=1-4e - 4et5 3.11

Table 3.1 shows that even with e = 10-3, a 907 charge packet can
n

be obtained at the output with values of te and hence Z a; of up to
‘ i=1
24. This is sufficient for any four input variable function, but may

be restrictive for more than four.

Q
0.9 0.8
1073 2% 49
€ . -4
10 249 499

Table 3.1 Worst case values for t5 and hence

I e~0
]
o]

i



93
However, Table 3.1 also shows that either an improvement in the
value of € or a reduction in the amount of charge reaching the output

would allow larger weights to be accommodated.

Another problem which restricts the gate is the fluctuation in
the voltages applied to the wells. Comnsider the situation where the
voltages can vary by the fractional amount * 8. The worst case occurs

when, as before, all the input variables are logic 1's, tg is equal to

n .
z a;, and all the voltages which are proportional to the weights at

i=1
the input vary by -8, and those proportional to the thresholds by +8.

The charge now reaching the output instead of being one charge packet

1s:

Q= (1-8.0- Ise).tS - (1 + B).(ts = 1) .(1 - 4¢)

= (1 +8 - 4e - 4Be) + t;(128c - 28 = 4e) 3.12

In this instance it is found that B has to be of the order of
- n .
10 3 to obtain values of ts and hence z a; similar to the previous
o i=1
values as shown in Table 3.2,

Q
0.9 0.8
103 16 33
[
1072 42 83

Table 3.2 Worst case values for tg with 8 = 10-3‘

Clearly this is a very difficult specification to meet. However,
if the voltages which determine the weights and thresholds could be made
to deviate in the same way, i.e. either all too high or all too low, then
the system would be vastly improved. This could be achieved if all

voltages are obtained by tapping potential dividers from the same
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voltage rail. The worst case now occurs when the voltage fluctuates
by the fraction -8, all other conditions being.the same as before.

The charge reaching the output would now be:

Q= (1-8).(1 - 45).t5 - (1 - B).(t5 - 1) .(1 - 4¢)

= (1- 8.0 - 4e - bet) 3.13
8 =102 =101
| Q =0.9 0.882 0.8
1073 2 4 27
€ -4 '
10 227 49 277

Table 3.3 Worst case values of ts

It can be seen from Table 3.3 that there is a great improvement.

In fact it is possible that with ¢ = 10-4 a charge packet of 88.2%

can be obtained at the output with the sum of the weights having a

value of up to 49, even when the voltage rail fluctuates by 107%.

3.5 Conclusions and Further Work

In comparison with other C.C.D. logic gates, it can be seen that
the threshold logic gate of Figﬁre 3.22 is similar ip,many wayé-to the
binary and particularly the multi-valued full adder circuit of Figure 3.13.
Thus the gate would be of a similar size and operate at similar speeds.
The main differences, however, lie firstly in ehe fact that the threshold
logic gate, although using multi-levels, does not need to detecé diff-
erent levels but just the presence or absence of charge; thus the output
circuitry does not need to be as sophisticated as in multi-level logic.
Secondly, only one threshold logic gate is required with a small number

of half exclusive-or gates, whereas using binary logic on array would
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be required which may need to contain a large number of gates. There-
fore threshold logic provides a very compact solution which could

easily be incorporated into a larger C.C.D. digital processing system.

As an individual device, however, i.e. a single'chip containing
a multi-threshold gate only, it would seem to be a far too complicated
approach when compared to some of the other proposed threshold logic
gates [18], and also much slower. In fact it is the speed aspect which
severely handicaps the device as recent developments have shown [Zdﬂ.
The limiting factor in the spéed of opergtion of a C.C.D. is charge
overflow; the further the charge has to overflow the slower the device.
Since tthe threshold logic gate relies heavily on this operation,
particularly with multi-thresholds, this imposes a restriction on the
number of thresholds allowed when 'a particular speed is required.
However, this problem is common to all C.C.D.'s so that the threshold

logic gate is still a viable alternative to the present C.C.D. logic

gates.

Some alternative technological developments that have appeared
of late may overcome some of the problems involved with C.C.D.'s.
For example, the buried channel device, B.C.D., can improve the value
of € and the speed of operation, but ‘this has to be paid for by a
decrease in charge handling capacity which, for use 1iW a.threshold logic
device, is an undesirable feature. Another idea is the use of Gallium
Arsenide, GaAs, instead of Silicon, which has resulted in an increase

in frequency of operation from just a few megahertz to a few hundred
[21].

Finally, since the C.C.D. threshold logic gate is a clocked device,

itis interesting to note that work has been done involving synchronous



26
threshold logic circuits [22,23]. An area of further work would

therefore be to expand on this to include, for example, the role of

multi-threshold logic in sequential systems. Also, there is the poss-—

ibility of using feedback which may increase the power of the gate and

hence open up another area of future research.
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CHAPTER 4

SERIAL INPUT LOGIC
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4. Serial Input Logic

4.1 General and Desirable Features

Recent work has indicated a need for the efficient high-speed
processing of logic data where the input and output are in a word-
formatted serial stream [1,2]. Figure 4.1 shows a schematic diagram

of such a system.

%% %24 | pELAY A Clock PERIODS [0 . )

input _ output
word word
CLOCK

Figure 4.1 Schematic representation of a serial input
logic system
The input to the system receives an n bit word, each bit corres-
ponding to the logical state of one of the input variables X, and
after a delay of A clock periods since the last bit x enters the
system, yields an output function f(x) of the input word. The remainder

of the bits in the output word are don't care terms since they are

unwanted signals.

The most obvious method of realising this type of system is to
initially perform a serial to parallel conversion using a shift register
and then processing the data using conventional combinational logic

circuitry as in Figure 4.2.

Since the data arrives at the system input at a constant rate,
with a clock period of T, say, in order that the output is not corrupted

by the end of the previous input word or the beginning of the next
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input word, T must be greater than or equal to the propagation delay-
time of the combinational circuit. Thus although the delay A of the
system is only one élock period in this instance, that clock period
must be greater than the propagation delay of the combinational logic
circuitry, which.firstly‘varies according to whatever function is being

realised, and secondly, for large values of n, this delay could be

large, thus slowing down the system.

CLOCK
. | SHIFT
. : REGISTER
3 :—_1 -"
COMBINATIONAL CIRCUIT (%)
. s '
] ]
OPTIONAL
DELAY
GATE

Figure 4.2 Serial to. parallel conversion

It is desirable, therefore, for a serial input system to have

the following features:

a) no serial to parallel conversion; the data is processed
as it arrives at the input, |
. b) no resetting bgtween input words thus saving one clock
period delay,
c) the delay A should be kept to a minimum, i.e. one,
d) the logical hardware should be uniform, e.g. universal

logic modules, so that the delay at each stage is well

defined and if possible minimal.
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To date the only system that has been deﬁeloped which approaches
these four ideals is mode-controlled logic [I,Z] which will ge discussed
in detail later in this chapter. A more general approach to obtaining

a system which achieves the above features will now be considered.

4.2 Conventional Sequential Logic Realisation

A general sequential logic system is shown in Figure 4.3. The
next state N is a function of tﬁe present state S and the input x,
wvhereas the output Z can be either a function of the present state
only, in which case the system is known as the Moore model, or the

present state and the input, in which case it is known as the Mealy

model 17]. In the following discussion and throughout the chapter

the Moore model only will be used.

. COMBINATIONAL 7
| CIRCUIT ' '
S [_1.N )
=K
O

CLOCK

Figure 4.3 General sequential logic system
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Typically a sequential machine would be realised by the following

design processes:

a) draw a flow diagram of the required system,

b) draw a state table,

c) reduce the number of states to give a minimal solution,
d) assign logical values to the states,

e) determine the hardware realisation.

It is the third step, state minimisation, that is of particular

interest and will be discussed in greater depth.

4.2.1 State Reduction in the Realisation of a Specific Function

Consider the logical function given in equation 4.1.

f(x) = X ¥y ¥ X 4.1
1

Figure 4.4(a) and (b) show the flow diagram and state table

respectively of a system which realises this function with serial

inputs.
a) Required function output b) x=0,1
— ‘<i_-—-
0,0’/ 1 S INI]N YA
First bit 012130
of input
word 1 123 ]1
2 |44 |-
Second bit 31415 1}-
of input
word 4 |0 O
S |1]1]-
Third bit
of input
word

Figure 4.4 Serial input sequential system
(a) Flow diagram for f(x) = Xp+Xy + Xg

(b)) State table for the same functiom
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It can be seen from the flow diagram that if the machine starts
in either state O or state 1 then the function f(x) is produced at the
output immediately after tﬁe arrival of the input variable Xqe
Therefore, the first three ideal cﬁaracteristics of a serial input
prdcessor have been achieved if tﬁis flow diagram can be realised.
Also in the state table it can be seen that there are a large number

of don't care terms in the output column which is useful in the reduction

of the number of states.

The usual method used for reducing the number of states of a
machine [5,6,7,8,9] involves the use of compatible pairs of states

which are defined as follows:

_ Definition 4.1

A pair of states Si and Sj are said to be output cpmpatible, shown
as Si n Sj’ if the outputs of these two states, namelykzi and Zj; are
identical in a completely specified machine, or if one or both outputs
are don't care terms in an incompletely specified machine. If they

are compétible then the compatible pair C = Sisj can be formed.

Whether or not pairs of states are compatible usually depends on
whether or not the pairs of next states for all input values are also
compatible. ‘These pairs of next states are said to be implied by the

original compatibles and are therefore known as the implied compatibles.

The set of primary implied compatibles, PC's, can be defined

as follows:
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Definition 4.2

A compatible C. has a set of primary implied compatibles PC,
which consists of all compétibles'cij implied by Ci for an input xj

such that:

i) Cij has more than one element,

ii) Cijq— c,

1i1) C (I C if C PCi

Incompatibility can now be defined as follows:

Definition 4.3

" A pair of states Si and Sj.are said to be incompatible, shown as
Si 7 Sj’ if their outputs, namely Zi and Zj,_are not equal, i.e. one
is a logic O and the other is a logic 1, or if at least one of their

primary implied compatible pairs of states is incompatible.

Sets of compatible states can be fqrhed by combining compatible

pairs.

Definition 4.4

A set of states C = SISZ....Sk from a state table of a machine M

is a compatible set if and only if for every pair of states Si,?jc C,

S. nS..
i %

In the case of completely specified machines the compatibility
function is tramsitive i.e. if Si n Sj and Sj n Sk, then it follows
K and the compatible C = Sisjsk can be formed. For incompletely

specified machines this is not the case and so in order to form the

that S. ~ S
1

compatible C = Sisjsk’ all three pairs of states have to be shown to be

compatible.
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Sets of maximal compatibles, MC's, can be formed where they are

~defined as follows:

Definition 4.5

A maximal compatible is a compatible which is not a subset of any

other compatible.

A method for determining all the compatible pairs is the "pair

-~

chart" as shown'in Figure 4.5. : \
1
, | 2.4 | 2.4
3,4 3,4
5 | 2.4 ] 2,4
3,5 3,5 ’
s | 20204040
3,1 3,1 4,1 5,1
5 2,1 2,1 4,1
3,1 3,1 4,1 5,1 ’
0 1 2 3 4

Figure 4.5 Pair chart

The pair chart is drawn such that every pair of states are examined,
and written in their corresponding boxes are the full sets of primary
implied compatibles for each pair. If a pair of states are incompatible
then a cross is placed over the corresponding box, e.g.'the pair of
states O and 1 are incompatible as can be seen from the state table of
Figure 4.4(b) since they have opposite outputs. Using definition 4.3,

it can be seen that 4 i 5 because O % 1 and hence 2 7 3. The remaining

compatibles are:
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02,03,04, 12,13,14,24,25,34,35

Combining compatible pairs, the maximal compatibles can be
formed, e.g. the three pairs 02, 04, and 24 can be combined to give

024, The maximal compatibles are tﬁerefore:
024,025,034,035,124,125,134,135

Note that a compatible pair can be used to form more than one
of the maximal compatibles since the machine is incompletely specified.
Had it been completely specified then this would not be the case and

therefore the maximal compatibles would have been disjoint.

In order to obtain the final solution, a minimal closed cover is
looked for where its states can be selected from the original states

or from the sets of compatible states including the maximal compatibles.

Definition 4.6

A machine M having states S.is said to be covered by a machine
M' with states S' if every state in S is a subset of at least one of

the states in S'.

Definition 4.7

A set of compatibles is said to be closed if every compatible
in the set has its primary implied compatibles also contained in at

least one of the compatibles in the set.

Definition 4.8

If a machine M can be replaced by a machine M', then M' is said
to be minimal if every other machine M" that can replace M and M itself

has more states than M'.
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For a completely specified machine the set of maximal compatibles
form the minimal closed cover and therefore the original machine can
be replaced by a new macﬁiﬁe wﬁbse states are the maximal compatibles.
For an incompletely specified'macﬁine the situation is far more
complex; not only have tﬁe maximal compatibles to be considered but

all subsets including the single states.

Definition 4.9

The set of prime compatibles consists of all maximal compatibles
and all subsets of maximal compatibles which are not dominated by

any other compatibles.

Definition 4.10

A compatible Ci is said to dominate another compatible Cj if
Ci :)Cj and PCi__ PCj where PCi and ch are the primary lm?11ed

compatibles as defined in definition 4.2.

For the example under consideration the full set of prime

compatibles is shown in Table 4.1.

Included in the table are the further implied compatibles which
‘are the compatibles implied by the primary implied compatibles  and
then those implied by the first set of further implied and the process

repeated to give the full closure class set.

Definition 4.11

The closure class set Ei of a compatible Ci is a set of all
compatibles implied by Ci obtained by repeated use of the transitivity
of implication such that the compatibles which are subsets of either

Ci or any other member of Ei are removed from the set.
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Closure class set

Prime Primary ié;I;;;/\-;:;:Ler implied Implication
compatibles | compatibles compatibles condition
024 134 135,124 I
025. 124,134 024,135 U
034 024,135 134,124 U
035 124,135 024,134 U
124 024,134 135 I
125 124,134 024,135 U
134 024,135 124 1
135 124 024,134 I
02 24,34 04,14,15,13,12,35 I
03 24,35 04,14,15,02,12,13,34 i)
04 02,13 24,34,35,14,15,12 I
05 12,13 24,34,35,04,14,15,02 U
12 24,34 04,14,15,13,12,35 I
13 24,35 04,14,15,02,12,34 I
14 02,13 24,34,35,14,15,12 I
15 12,15 24,35,34,04,14,02 I
24 04,14 02,13,34,35,15,12 {
25 14 { 02,13,24,34,35,04,15,12 U
34 04,15 | 02,13,12,24,35,14 I
35 14,15 02,13,12,24,04,34 I
0 - : - -
1 - - -
2 - - -
3 - - -
4 - - -
5 - - -

Table 4.1  Full set of prime compatibles and their implied

closure set
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As an example consider the compatible C1 = 024. From the state
table of Figure 4.4(b) it can be found that the implied compatibles
are 024 and 134, but by definition 4.11 the former is removed chaﬁse
it is a sﬁbsét of Cl' Tﬁe compatible 02 = 134 further implies 135 and
024, the latter again being removed, wﬁich in turn implies 124 and
135, 135 being removed because it ﬁas already appeared. The compatible

124 implies 024 and 134, Botﬁ.of which can be removed and so the

implication process is terminated, and the full closure class set has

been found.

Also included in tﬁe table is the information about whether a
compatible is implied or not, marked I or U respectively, i.e. whether
or not the compatible is a subset of‘at least one of the compatibles
contained in any other compatible's closure class set. This can then

be used to remove some more prime compatibles from the table by the

use of the following definition:

Definition 4.12

If a compatible is unimplied and at least one of its states is
included in at least one of the compatibles of its closure class set

then that compatible can be eliminated from the set of prime compatibles {6].

{

In Table 4.1 all the unimplied compatibles can be eliminated by
this definition, and a minimal closed cover can now be chosgn from
the rémainiﬁg.implied compatibles.. It is interesting to note that all
rth ordered compatibles, i.e. those that have r states, imply closure
class sets of only rth ordered compatibles. It would be futile
therefore to form a cover with mixed order compatibles because the
highest ordered ones in that cover would form a closed cover by them-

selves. Thus all closed covers have to contain only compatibles of
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the same order, which in this instance means that there are three

possible covers:

a) 024,124,134,135
b) 02,14,12,13,14,15,24,34,35

c) 0,1,2,3,4,5

Clearly the set of maximal compatibles is the miniﬁal closed
cover since it has only four elements. The new flow diagram and state
table for this machine is shown in Figure 4.6(a) and (b), where it can
be seen that the input X is now not labelled with X1, X, and Xq since

it no longer matters what state the machine starts in.

a) b) x=0,1
S N N YA
024 024 134 0
124 024 134 1
134 024 135 1
135 124 135 1
(0]
1
135,1
1
124,1
e

Figure 4.6(a) Reduced flow diagram for function f(x) = X)Xy + X4

(b) State table for the same function
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It has therefore been shown that the minimal closed cover for
this particular function is composed of the implied maximal compatibles.

This is due to three reasons:

. th - . . .
i) every r = order compatible implies T'h order compatibles
so that the closure class sets contain compatibles of

the same order only,

ii) every unimplied compatible could be eliminated from

the set of prime compatibles using definition 4.12,

iii) although as yet unstated it can be seen that every rth

-order closed cover is the complete set of rth order sub-
. sets of the maximal compatibles cover and hence contains

more elements.

If these three conditions can be shown to occur for any function
then the problem of state minimisatién is greatly reduced and would
consist of merely finding the set of implied maximal compatibles, and
comparing their number withitﬁat of the single states of the original
machine. If this number is less, then the maximal compatibles become
the states of the new reduced machine, and if more then the machine
cannot be reduced and therefore stays as it is. However, there may
~ be some advantage in using the maximal compatible machine even if
therg are more étates, because the restriction of the machine starting

in particular states would be eliminated.

4,2,2. State Reduction for a General Function

.

Figure 4.7(a) shows the flow diagram for any three input variable
function. States 4, 5, 6 and 7 all branch to either state O or state 1

dependent on the function being processed and so the labels p; are
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a) , b) X, X £(x)
1 [ 17273 |
LEVEL 1 |0,0 1,1
00 po
[ , T
o1
OA4J43\\ 1 P
\V
10 P,
11 Py
LEVEL 2 | 2,- 3.-
(0] ¢) pl‘
01 P
0 1 0/ 1 5
10 Pg
11 Py
LEVEL 3 4,- S,- 6,- 7,-
0 1 0 1 0 1 0 1
¢) x=0,1 d)
S N N 7 airs of states from level 1
v} 2 3{o0 2,4 2,4
12 {31 3,5 | 3.5 4
2 4 5 - 6 2,6 4,6 Pairs of states from level 2
? 3,7 5,7
3 6 7 - — 1
. _ 2,p4 | 2+Pg 4,9, 6,p,
51 py| Po| ~
2 3 .
2, 2, 4 6,p PAsP Pairs of states
6 | p,1 Pl — P2 °2 P2 "h2 0°"2 llfrom level 3
7] pg| Py
2,p, | 2op, | 452, | ©2P4 || PorPs | P2°Pu
2,p¢ | 2.0 | 41pg | 63Pg || PorPg | P2'P6 | PurPe

“Figure 4.7 (a) General flow diagram for any function of n = 3
(b) Truth table
(c) State table
(d) Pair chart
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included which can equal O or 1 and correspond to the function at
all the minterm positions as shown in the truth table of Figure 4.7(b).
The state table of Figure 4.7(c) also illustrates this point and can

be used to form the pair chart shown in Figure 4;7(d).

I1f this pair chart is examined in detail it is noticed that the
only possible incompatible pairs of states are those on the same
level, states from different levels being always compatible. In
particﬁlar whether states 4, 5, 6 and 7 are compatible or not is
dependent on the P; values, e.g. states 6 and 7 are compatible if
P, = Pg and ps = Py in which case their set of primary implied
compatibles is empty, or they are incompatible if P, # Pg OF Ps 3 Py
since then they would imply the compatible C = Ol which is already

shown to be incompatible.

Furthermore, among these four states compatibility is transitive,
e.g. if 4 n~ 5 and 4 ~ 6 then for tﬁis to be so it must be because
Py = Pps P; = P3s» Py = P, and P; = Pg- It therefore follows that-..
P, =P, and Py = ps which satisfies the conditions for 5 ~ 6. Finally,
it can be shown that if two of these states, 5; and Sj say are compatible
then no primelcompatible will exist which has only 5; or only Sj ;n_it.
This is because from defiﬁitioﬁ 4.10, any prime compatible which
contains only Si or only Sj is a subset of tﬁe prime compatible which
contains the same.states but with both Si and Sj, and since the com—
patible pair Sisj implies an empty set, both these prime compatibles

would imply the same compatibles so that the latter would dominate the

former which could therefore be removed.

These features are similar to those that can be found in completely
specified machines which enables the equivalence relationship [8] to

be used. Thus, of the states 4, 5, 6 and 7, if any two, Si and Sj, say,
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are compatible then they can also be said to be equivalent, i.e.

S. = 8S..
1 J

States othe? than 4, 5, 6 and 7 but wﬁich.are on the same level
as each other imply states‘wﬁicﬁ are also on the same level as each
othér, which ultimately imply some of the states 4, 5, 6 and 7.

As the equivalence operation is transitive it follows that any states
which are on tﬁe same level and wﬁicﬁ arebcompatible are also equi-

valent.

Essentially, what this equivalence operation does to the flow
diagram of Figufe 4.7(a) is to merge together into one state any states
on the same level which are found to be compatible. If the flow diagram
of Figure 4ﬂ4(a) is examined. and compared to the general flow diagram,
then it can be seen that tﬁe'tﬁree states 4, 5 and 6 have been merged
into one state 4, because each of these three states, upon the arrival
of the variable X3, branch in tﬁe same manner to states O énd 1 and

are therefore equivalent.

This equivalence operation can be put to good use in the derivation
of éhe maximal compatibles which in this instance uses the product-of;‘
sums method [10]. Essentially this is done by taking every incompatible
pair of states, Si and Sj say, forming the logic sum (Si + Sj); and
then taking the logical product of all these sums. Expanding this
expression yields a sum-of-products, eaﬁh product term being used to -
derive a maximal compatible by removing the states in thé product term
from the full set of states. As an example, the pair chart of
Figure 4.5 shows that there are three.incompatible pairs, namely Ol,

23 and 45. These can be used to form the product-of-sums as in

equation 4.2.
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(0 +1).(2 + 3).(4 + 5) 4.2
Expanding gives:

024 + 025 + 034 + 035 + 124 + 125 + 134 + 135 4.3

Each product term is then used to obtain the maximal compatibles

by subtracting it from the full set 012345. Thus:

Product terms Maximal compatibles
024 gives 135
025 gives 134
034 gives 125
035 givgs 124
124 gives 035
125 gives 034
134 gives 025
135 gives 024
Table 4.2

Comparing with-Table 4.1 it is found that the maximal compatibles

are identical.

A simpler method of presenting the maximal compatibles, rather
than to list them, is to express them also in a product—of-sums. Thus
the above set of maximal compatibles can be summarised as the expression

given in equation 4.4.
(0 + 1).(2 + 3).(4 + 5) 4.4
It is a coincidence that for this example equations 4.2 and 4.4

are identical, this not being the usual case. Returning to the general

case, it has been said that the only possible pairs of states that can
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be incompatible are those on the same level. Thus consider the

situation where all of these are incompatible, giving the product-of-
sums as:

(O +1).(2 +3).(4+5).(4+6).(4b+7).(5+6).(5+7.(6+7)
4.5

Partially expanding gives:

(O + 1).(2 + 3).(456 + 457 + 467 + 567) 4.6

If this expression is fully expanded, the maximal compatibles
found from the product terms and then reorganised into a product-of-

sums expression as done previously, then equation 4.7 is obtained.

O +1).2+3).(b+5+6+17) 4.7

Note that each bracket contains the sum of the states on any
particular level. If, instead of all pairs of states on the same level
being incompatible, some are compatible, e.g. 6 ~ 7, then it has been

shown that 6 = 7, and thus the expression for the maximal compatibles

becomes:

b e

(0+1).(2+3).(4+5+6+6) = (0+1).2+3).04+5+6)

4.8

since 6 + 6 = 6.

This expression is the same as would have been obtained if the
states 6 and 7 were first merged into one state called state 6 and then
the maximal compatibles obtained. Thus>in the example in the previous
section, it has been said that it is equivalent to the general solution
but with the states 4 = 5 = 6, Substituting this into equation 4.7
gives:

©+1).2+3).(4+4+4+7) =(+1).(2+3).(4+7) 49
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This expression agrees with that originally found in equation 4.4
_except that state 5 has been called state 7 which is a trivial diff-
erence that arises simply because of the initial state labelling, -and

does not affect the solution.

Therefore the general expression for the maximal compatibles
comprises of the logical product-of-sums, where each sum consists of
all the states on any particular level, which may then be found to be
equivalent and hence removed.from tﬁe term. Since each maximal com-
patible is found by the expansion of tﬁe product-of-sums expression
their order must be equal to the number of bracketed term; which, since
each represents the states on a particular level, must equal the number
of levels. However, the number Qf levels arises because of the number

.of input variables that are being processed, n, and hence the order of
the maximal compatibles is n. Furthérmore, it can be seen from the
flow diagram of Figure 4.7(a) tﬁat states on level' i, say, imply or
have next states on level i + 1 except for the very last level which
returns to the first level. Thus each bracketed term in the product-

of-sums expression. for the maximal compatibles implies states from a

different bracketed term. _ =
The term (0 + 1) implies states contained in the term (2 + 3)
” (2 + 3) 1] ' " (4 + 5 + 6 + 7)

”" (4"'5""6"‘7)" " ) '(_O"’l)

Hence no states on different levels can imply states on the same
level and it follows that if the maximal cowpa;ibles are of the 6rder
n, then they imply compatibles of the order Q. In fact this applies to
all compatibles of any order r, i.e. all fth order compatibles imply

only rth order compatibles, so that the first condition for a general
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solution consisting of maximal compatibles, as stated at the end of

section 4.2.1, has been met.

The next condition to be determined is whether or not all the
unimplied compatibles can be removed from the set of prime compatibles

using definition 4.12.

It is possible to derive the implied maximal compatibles directly
from the general expression of equation 4.7 using the state table of

Figure 4.7(c) as follows:

States in (0 + 1) have next states in (2) when x is a 0 and (3) when x is a 1

11 (2 + 3) ‘ 1" (4 + 6) L 1] (5 + 7) "

" +s+6+T) " (o +P,*P,+Pg) " (P +Py+pg+p) "

Thus the expression for the primary implied maximal compatibles is:

(2.4 +6).(py + Py + o, tP) +(3).5+ D).(p) + Py + Pg * Py)
' 4.10

The terms p; are either 1's or O's and so it can be seen that the -

set of maximal compatibles contained in equation 4.10 are a subset of

PSR-

those contained in equation 4.7. The maximal compatibles not contained

in equation 4.10 are therefore some of the unimplied compatibles and

L Sy 4

since all the states are contained in equation 4.10, by definition 4.12

the unimplied compatibles can be deleted from the set of prime compatibles.

The maximal compatibles in equation 4.10 further imply compatibles

as follows:

States in (2) have next states in (4) when x is a O and (5) when x is a 1

" (4+6) " (Py+p,) " (p; +pg) "
" (pg * pé *p,tpg) " (2) " (3) "
" (3 " (6) " (7

" (5+7) " (p, *+pg) " (p5+Py) "
" (py+py+pg+py) " (2) " (3) "
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Thus the expression for the first set of further implied compatibles

(po + p,‘)-(Z).(lt) + (pl + ps),(3) ._(5) + (p2 + p6).(2).(6)
+ (p3 + p7).(3).(7) 4.11

The set of compatibles implied by this set turns out to be the
same, so that no furtﬁer implication is needed, and therefore the
maximal compatibles contained in this expression form a closed cover.
The compatibles not contained in this set are the unimplied maximal
compatibles, and for tﬁe same reason as before can be e1imina§ed from

the set of prime compatibles.

Lower ordered compatibles are also found to be the same in that
all unimplied compatibles can be eliminated using the same process as
above. As a result, Table 4.3 can be compiled which contains all the

implied prime compatibles for a general function of n = 3.

It can be seen from Table 4.3 that the second order compatibles
are the full second order subset of the maximal compatibles. In fact
it can be shown that all implied compatibles are subsets of the implied

maximal compatibles as follows:

Let a maximal compatible_.MC1 = Sls2 cem Sn be implied by a maximal

compatible MC2 = SiSé oo S;, where the subscripts on the states refer

to the level that those states are on. Then:

ot . 1 :
Slsz cee Sn v SISZ cee Sn 4.12

Since every state implies a state on a different level it can be

said that:

S! A S, for 1 =1 to n-1 4.13
1 1+ .

1

and S; " S1
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3rd order maximal an order 1% order compatibles
compatibles compatibles or single states
p024 p02 (o]
p135‘ p04 1
P,26 p,3 2
P37 Py 3
p424 p22 4
P35 P,6 5
p626 p33 6
P37 P47 7
P2
P4
Pg3
Pg>
P2
Pgb
P;3
P47
24
26
35
37
Table 4.3 Implied prime compatibles for general

function of n =

3
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Every subset of MC, must therefore also be implied by the same

‘ordered subset of MCZ’ e.g.:

] ] X
Slsz n 5283 4.14

Thus every subset of every implied maximal compatiﬂle must also
be an implied compatible. Tﬁis means that all three conditions
‘required for tﬁe minimal closed cover consisting of the implied maximal
compafibles have been acﬁieved'wﬁich greatly reduce the amount of work

required to find a reduced system.

Returning to the example originally used, i.e. f(x) = X, X, + Xg,
if the P; values in the maximal compatibles in Table 4.3 are assigned
according to this function, and bearing in mind that states 4, 5 and 6

are equivalent, then Table 4.4 can be drawn.

Comparing with the original solution it is found that the maximal

. compatibles are the same.

General implied Specific implied maximal
maximal compatibles compatibles for f(x) = X -X, + X,
p024 024
P35 , 134
p,26 926~
p437 | 137
P,24 ;xnr/’ A
L pri e
Pg26 | 124
p,37 137

Table 4.4 Implied maximal compatibles, where terms are crossed
out if they appear more than once, thus leaving single
representatives of each implied maximal compatible
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All arguments that have been presented apply equally well to
functions of any value of n. Thus a new class of machines has been
obtained whereby, if the number of states can be reduced, the new
machine would contain states'wﬁicﬁ.are the implied maximal compatibles
obtained from the original macﬁine. If the number of states cannot
be reduced, i.e. tﬁe number of states in the original machine is less
than the nﬁmber of implied maximal compatibles, then it still may be
advantageous to chose the latter since it dispenses with the condition
that the machine has to start in either of the states O or 1.
Previously there were only two'clas#es of machine which had minimal

closed covers consisting of maximal compatibles, namely:

i) fully specified machines in which it consists of

all the maximal compatibles,

another class defined by McCluskey [}1,14 in which

[
[¥H
A

every cover consisting of maximal compatibles is closed.

The serial input machines, therefore, form an interesting third

class.

4.2.3 State Assignment and Hardware Realisation

Having reduced the number of states of the machine, they now have
to be assigned binary values in order to obtain a hardware realisation.
In this respect a serial inputvlogié system is no different from any
other sequential system and therefore state assignment will not be
discussed but can be found in a number of texts !?,9,13 . However,
it has been said earlier that one of the ideal characteristics of a
serial input system is that it consists of uniform logic hardware.

Thus in the diagram of Figure 4.3 it is desirable that the combinational

logic consists of uniform logic types, e.g. threshold logic gates ﬁﬁ],
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multiplexers [15], universal logic modules etc. Techniques have been
developed which enable such realisations to be obtained using the
Rademacher-Walsh spectrum discussed in Chapter 2. However, a feature
which is overlooked in tﬁese methods is that there is a choice of delay
gate or bistable used in the Systém. The four possible types of bi-
stable, their characteristic equations and their spectral equivalent

7 will therefore be briefly discussed.

4.2.3.1 Characteristic Equations of Bistables h6]

The general schematic diagram of a bistable is shown in Figure 4.8,
where the next state q; is a function of the present state y. and the
inputs qi and qg, and appears upon the arfival of the clock pulse.

This function is known as the characteristic function of the bistable

and is listed for each type of bistable in Table 4.5.

G
i1}
E)j v
Y, 2
=2
m ]
q
CLOCK

Figure 4.8 General bistable
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Type of bistable Input connections Characteristic equation
N = ' = =
D q; qj D 9; D
J-K q; J qj K q,; yi.J + yi.K
- L | - = R
R-S q; =S q; R q; = R.(S +y,)
where R and S are disjoint
i = ' = =
T q; Qj T Q =¥; ®rT

Table 4.5 Characteristic equation of bistables

D bistable
Usually it is assumed that, due to its simplicity, the D-type
bistable is used in which case the next state q; is obtained from the

‘mext state function as in equation 4.15.
a; = p = fi (yl.yz,...,ym.x) ' 4.15
where m is the number of bistables in the éysfem.

The hardware realisation could then be oﬁtained by finding the
combinational»logic solution for each of the next states q; - However,
it can be seen from Table 4.5 that if any other type of bistable is
used the hardware Co be realised would be quite different. In fact if
' the spectrum of the function in'equation 4.15 is ;s in expression 4.16,
then it is interesting to determine the spectra of the other functions

JyK,R,S and T.

ro rl r2 r3 “ee rm+1 r12 r13 e r123..mm+1 4.16

Each of the 2m+1 coefficients in eduation 4.16 are obtained usiﬁg
the Rademacher-Walsh transform as described in Chapter 2. There are
m+l variables because from equation 4.15 it can be seen that there are
m present states plus one input variable x which can be regarded as the

variable Ymel®
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J-K bistable

It has been shown ﬁ?] that if a function f(x) is decomposed about
one of its input variables X, as in equation 4.17, then the spectral
coefficients of the two sub-functions are related to the spectral

coefficients of the original function, rj, as in equation 4.18.

£(x) =§i.f1(x) + %, £, (x) 4.17

Coefficients of fl(x) are: 3(r. + r,.) for all subscripte j that do not
J 1 contain i

" fz(x) o i(rj - rij)
4.18

Comparing with the characteristic equation for a J-K bistable it
can be seen that J = fl(x) and K = fz(x). Thus the spectral coefficients

for J and K are:

j ij ] ' | 4.19

K =°i(rj - = i(rij-rj)

3

for all subscripts j that do not contain 1i.

R-S bistable

Since, in the characteristic equation of the R-S bistable it is

stated that R and S are disjoint, the equation can be rearranged to give:
q. = y..S + yi.i 4.20

where R and S are disjoint.

Thus, comparing with the characteristic equation of the J-K bistable
it can be seen that if J and K are disjoint the equations are identical
and the spectral coefficient values stated in equation 4.19 can be
used for S and R. One way of testing whether J ande are disjoint or -

not is as follows:
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If J and K are disjoint their spectral coefficients obey the

following equation [16]:

1 < m :
o [Jo 3 Jz.....Jummﬂ] L AR AR Y
Kl
K2
K12...m11
e o
Substituting from equation 4.19 gives:
:i_a [f?. - r?] I A A 4.22
for all j 1] J
not

containing i

But it has been shown that [18] the sum of the squares of the spectral

coefficients is 22(m+1), tﬁus:
j_./ 2 rg]' = 2@l o 4.23
for all j 1 J e
not '
containing i

Thus, combining the two equations:

2, = 2™ .. 4.24
for all j 1] 1

not

containing i

Thus it can be said that if all the coefficients in the original
spectrum of the required function, as in equation 4.16, containing i in
their subscripts are squared and then summed, compared with the coeff-
- . m+1
lcient r:.L times 2 , and found to be the same then the next state qi

can be obtained using an R-S bistable, with the S and R inputs equal to

the J and K functions respectively, the spectra of which are given in
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equation 4.19. If they are not the same, i.e. equation 4.24 is found
to be invalid, then the suggested S and R functions are given by

equation 4.25 which ensures that they are disjoint.

S = J.y.
N 4.25
R = K.yi

In this instance, their spectral coefficients are shown to be:

So = i(ri + ro) + 2" Ro = i(ri - ro) + 2"

Sj = }(rij + rj) | R.j = i(rij - rj) ‘26
Si = i(ri +.ro) - 2" <Ri = }(ro - ri) + 2"

Sij " A0y P Ry T A0y Ty

for all subscripts j not including i.

T bistable

In this instance the function T can easily be obtained from its
characteristic equation since the exclusive-or function is commutative.

Thus:

T=q, ® yi 4.27

In the spectral domain this operation is equivalent to output

spectral translation which was described in detail in section 2.2.1 in

Chapter 2.

The spectra of each of the bistables can now be used in the hard-
ware realisation where, for example, the J-K bistable may be chosen
because of the fact that the J and K functions only require at mdst m
variables since they are independent of the present state ;- As

another example, the T-type bistable may be useful since many of the
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methods of hardware realisation involve spectral translations, and
thus if the T-type bistable is used there could be a saving of one

exclusive-or gate.

It has been said tﬁac a desirable feature of a serial input logic
system is that it should consist of uniform logic hardware and that
one such realisapidn tﬁat can be obtained uses universal logic modules.
The fo}lowing sections show tﬁat if these are chosen at the start of

the design procedure then state assignment can be omitted altogether.

4.3 Modular Solution

4.3.1 Multiplexer-and Delay Module

The module that has been chosen is shown in Figure 4.9 which is

a one-out-of—-two multiplexer with a clocked delay.

X
A——— 3 1!
I N
<L .
[ g—Jr-ﬁ
B_—l_—— ______ —]
CLOCK

Figure 4.9 Universal logic module

The equation for N is given in equation 4.28.

N = x.A + x.B 4.28

This module was chosen for three main reasons:
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i) it has been shown B9,2Q] that any finite state machine
can be represented by a network of these modules and that
furthermore any "definite" sequential machine can be
realised with the wminimum delay A, i.e. one clock period.
A definite macﬁine is defined as one which does not
require feedback [?i]' and it is clear from Figure 4.2,
which is a valid realisation, that serial input logic

systems are definite.

it has been shown {22] that the maximum rate that data

e
e
| g

can arrive at a system input is equal to the reciprocal
of the module's delay, and that this particular module

has the minimum possible delay.

iii) it has been shown that a network of these modules,

particularly if there is no feedback, is easily

testable {23,24].

It would seem therefore that by these three facts alone the
module is a good choice, particularly with regard to the speed aspect
where, combining (i) and (ii), upon the arrival of the last input

- .
variable, or last bit of the input word, there is a delay which is

equal to the delay of one module before the function output is given.

" The design procedure using this module is as follows: consider

the state diagram of Figure 4.6(b), and rename the states 1,2,3 and 4

as in Figure 4.10.
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Figure 4.10 State table of the serial input
sequential machine which realises the

function f(x) = X)X, * Xg.

A graph is drawn which consists of interconnected nodes or circles

in accordance with the following steps D,19,20].

Step 1. Note all the states which have outputs of logic 1, which in

this case are states 2, 3 and 4. These states are then grouped together

and written in the first node.as in Figure 4.11(a).

Step 2. All states which imply the previous states, i.e. have them -
as their next states N, are noted and two new nodes are drawn; one

containing the states that imply the previous states when x = 0, and

the other when x = 1. Arrowed lines are then drawn from each of these

new nodes to the previous node, above which is written the correspcnding

X value.

Step 3. Step 2 is repeated for every new node until all nodes are
terminal. A node is terminal if it contains no states or all the states
in which case it it said to be empty or full and is shown as unshaded

or shaded respectively. It can also be terminal if it contains a set

] 53y such that some other node also contains the set Sl'

or if some other node contains the set, 52 say, such that SlkJ 52 =S,

of states, S

where S is the full set, in which case S1 is said to be the inverse of

SZ'
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a)
b)
0
LA
X X 2
0 B N
X 1 X 3
B N {—B N
1

Figure 4.11 (a) Graph of nodes and branches
(b) Modular realisation
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Figure 4.11(a) shows the graph for the example and Figure 4.11(b)

shows the modular realisation.

Every non-terminal node in the graph is replaced by a module in
the final network. The A and B inputs to each module correspond to
the arrowed lines from previous nodés labelled O and 1 respectively
and emerge from tﬁe N outputs of tﬁe modules corresponding to the
implying nodes. If the implying node is empty or full then it is
replaced by a constant logic O or 1 respectively. If a node is
terminal because it contains the same or inverse set of states as
another non—-terminal node, tﬁen in tﬁe modular realisation the module
corresponding to the non-terminal node supplies via its N or N output

respectively the inputs of the modules implied by the terminal nodes.

Thus, a modular realisation is obtained directly from the state
table and therefore does not require the state assignment stage of

the design procedure.

4.3.2. Mode-Controlled Logic [1,2]

In section 4.1 it was stated that to date the’only other approach

to the realisation of a serial input system is mode-controlled logic,

the modules which i§ uses being.shown in Figure 4.12.

<Im T ©
j :
DELAY
1

— — — — — — — — — — —

CLOCK

Figure 4.12 Mode-controlled logic module
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Compared to the module in the previous section it can be seen

that there is one extra input, M, the mode controller. The equation

A

for N is now given as:

N = M.D + M.(F.E + F.D) 4.29

The mode is set so that either the variable D is simply copied
at the output when M =1 or a function of F and D is performed when
M = 0. The function of F and D is preset by choosing a suitable value

for E as in Table 4.6. Note that the latter case is identical to

equation 4.28.

E Function
0 AND
Assuming that not only F and D
1 OR ,
but their inverse also are available.
D EX-OR

" Table 4.6 Values of E for selected functions

Modules are then connected in tandem in a single path, i.e. every

N output of a module goes to the D input of the module in front of it

as in Figure 4.13.

T
-n

F

7 I E
N N Nf— f(x)
X N N N
] ] ]
CLOCK

M M M

Figure 4.13 Tandem connected single path system of modules



136

The F input of every module is obtained as a feedback or feed-
forward link from any other module. Thus the design procedure consists
of finding the logical values for E and M and determining where to
attach the inputs F. Tﬁe approacﬁ is very unconventional and consists
of firstly.the use of spectral translation followed by an algorithm.
The details of this are felt to be not required for this the;is since
only a comparison of the solutions is necessary, but can be found in

the listed references ﬁ,i].
The main drawbacks of this system are:

i) additional circuitry is required for the mode controlling

signals

inherent latency in the system, i.e. the delay A between

[
He
~

the last bit of the input word entering the system and the
required output being generated is greater than one clock

period

iii) undefined number of modules, i.e. no upper limit is given.

N

However, actual modules have been manufactured [3] using E.C.L.
circuitry and have been operated at frequencies of up to 1 GHz. vapical
systems that it has been appliéd to are, for example, seriél input
adders, multipliers, a threshold logic gate and a Grey code converter,

details of which are all documented in the listed references E,&].

4.4 Tree Structures

In section 4.2 the problem of utilising the don't care terms in
the design procedure was confined to the process of state minimisation.

However, two points must be raised:
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i) state minimisation does not necessarily optimise the system
since a reduction in the number of states does not guarantee
a reduction in the number of state variables, i.e. the number
of Bistables, but merely introduces don't care terms into the
next state function. For example, if originally a machine
is specified by eight states, it requires three state vari-
ables to uniquely label each state. If, by the process of
state reduction, tﬂe new number of states becomes five, three
state variables are still required, only now there are three

don't care states.

1i) a modular solution ﬂas been shown in section 4.3.1 which eases
the design procedure by eliminatihg state assignment. Also,
because of the strictly defined delays that each module
involves, the timing of the system can be well organiséd and
thus operate at a ﬁighASPeed. However, if. it is decided at
the outset tﬁat modules are to be used, as in the case of
the mode-controlled logic system, then possibly there is a i
design procedure wﬁicﬁ can give a solutioﬁlmore directly, for
example omitting tﬁe staﬁe reduction phase altogether. This
could be done if tﬁe don't care terms in the initial state.
diagram could be incorporated into the graphical design method

as in Figure 4.11(a). Fortunately this is possible and is

therefore discussed in following sections.

4.4.1 Modular Solution Incorporation Don't Care Terms

A technique exists which gives a modular solution to incompletely
specified machines [25], the modules being the same as that described
in section 4.3.1. The technique uses next state mappings as in

A\
Figure 4.14 which shows the particular mappings for the next state
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table of the function f(x) = X| - %, + X4 (reproduced from Figure 4.4(b)}).

wn

-

—
!

b) O 0 0 0]
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
o, my

Figure 4.14 (a) State table for function f(x) = X Xy + Xq

(b) Next state mappings m, and m; where m, gives

the next state when x = 0, and o, gives the

next state when x = 1.

The mappings m, and my correspond to the next states, on the right,
of all the present states, on the left, for x equal to O and 1 respect-—

ively, e.g. the states O and 1 have the next state 2 when x is O as

shown in the mapping w, .

A simpler method than the mappings is to use equivalent next state

matrices m, and m, as shown in Figure 4.15.



139

mo ml
[0 0 1 0 0 0] 0 00 1 0 0
001000 000100
0000T1 0 000010
0 00010 0000011
100000 1o 1 000 o0
© 100 0 o0f 010000
b L. o

Figure 4.15 Next state matrices o, and m,

Thus, if the columns of the state table of Figure 4.14(a) are
regarded as column»matrices, the product of the matrix m, with the
column labelled S, i.e. the present states, results in a column matrix
equivalent to N when x = O, i.e. the next states, and the product of m,

and S gives N when x = 1.

A reverse fesponse tree can now be drawn where the initial node
is drawn with a label equivalent to the column matrix Z in the state
table transposed, i.e. converted to a row from a column. The descencant
nodes are drawn and labelled with transposed column vectors equivaient
to the product of m, and Z on the left and m and Z on the right. This
process is repeated for every node with the déscendants' labels

obtained from the products of the parent node's label and the matrices

o, and m, as in Figure 4.16.

01----

-——-11

00———- 11-—--
Figure 4.16 Reverse response tree for the state‘table of

R ~ 24Py R I & N U
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The tree stops branching when all nodes are terminal, indicated
by underlining the labels. Nodes become terminal, or are said to be

pruned, if they are in accordance with any of the following conditions:

i) prune any node labelled L1 if there exists another node

labelled L, such tﬁat for every element of each label L1 = L2’

2

ii) as above but with L1 # L2, i.e. its inverse.

iii) prune any node labelled witﬁ all 0's or all 1's, or a

mixture of O's and don't cares or 1's and don't cares.

To obtain a modular network replace all non-terminal nodes with a
module having its A and B inputs conpected to the N outputs of the
module equivalent of its left and right descendant nodes respectively
(the A and B inputs are shown' in Figure 4.9). If a descendant node is
terminal because of condition (iii) then it is replaced by a constaﬁt
Oor 1, and if it is Because’of conditions (i) or (ii) fhen it is
obtained from the N or ﬁ'output of the module equivalent to the non-

terminal node with the same or inverse label.

Clearly this is the same process as for a fully specified machine
as described in section 4.3.1, and the resulting modular solution of
the reverse response tree of Figure 4.16 is identical to that of
Figure 4.11(b). However, it has been arrived at far more quickly and

easily than when using the state reduction method.

4.4.2 General Solution

Reconsider the general three input variable function shown in
Figure 4.7(a), (b) and (c). From the state table the next state

matrices can be obtained and found to be as in Figure 4.17.
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Figure 4.17
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9 O
0O O
o o
0o 1
0O o0
0O o
0O o
0O o

Next state matrices

o o
0 O
1 O
0O O
0O o
0O O
0 o0
o 0

The elements of the next state matrices for any value of n are

listed in Table 4.7.

r’—‘\~/él’—“\ ——— N
i j mij j mij
1 3 1 4 1
2 to 2"} 2i - 2 1 2i 1
e le | Pyi-a%, | 1 Poi-gho1
1o |2 Pri-g"p | 2 Pai-2"-1
all others 0 0

Table 4.7

Elements mij of the next state matrices mb and m1

where i and j represent the row and column numbers
respectively
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The next state matrices of Figure 4.17 can be used to generate the
labels on the nodes of a reverse response tree using the same method
as in section 4.4.1, the initial node being labelled with the transpose
of the column matrix equivalent to Z in Figure 4.7(c). The result is

shown in Figure 4.18.

It can be seen from this reverse response tree that all the nodes
on the fourth level, i.e. after three branchings, can be terminated or
pruned in accordance with the pruning conditions stated in the previous
section, i.e. labels consisting of O's and don't cares or 1l's and don't
cares. Therefore the maximum number of nodes and hence modules is 2" - 1.
However, the nodes on the third level consist of don't care terms and

two p; terms so that every node has the possibility of having one of

the following four labels:

| dd
2
|
|
" Q
—
|
l
|
|

e
[ akd
e
A d
|
l
P
o
|
I
|
|

If any of the nodes have the labels (i) or (iv) then they can be
pruned in the same manner as the fourth level nodes. Of the remaining
nodes, let one have the label (ii); then any other nodes with labels

(ii) or (iii) can be pruned by the first and second conditions of
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pruning respectively, i.e. because the label appears elsewhere in the
‘tree or that the inverse appears elsewhere. Tﬁerefore there can only
be one unpruned node on the third level so that the maximum number of
modules in this case is four, or more generally 2n-1' In fact even
this figure is a little too ﬁigﬁ.because using the same argument as
above it can be shown tﬁat tﬁe maximum number of modules on any level,
k say, is given in equation 4.30.

~ th Ay
Maximum number of modules on the k" level = 2 -1 4.30

Thus, for example, wﬁen n=2_5, tﬁe number of modules on the fourth
level would initially seem to be at most eight, but by applying
equation 4.30 with n = 5, k = 4 it is found to be seven. Thus the
maximum number of modules instead of being 25-1 = 16 is 15. The maximum
number of modules for any function is given in equation 4.31.
n+l

Maximum number of modules = } min.(2
k=1

n-k+1_

k=1 52 1. 4.31

/

This equation takes the sum of all the lower of the two expressions

in the brackets for all values of k.

So far no account has been taken of the don't care terms which.
can be assigned values in order to prune even more nodes. Three possible
methods of assigning values will now be considered and the pros and

cons of each discussed.

4.4.2.1 Random Assignment

Labels on the same level in Figure 4.18 can be pruned if their
corresponding P; values are all the same or all different in accordance
with the conditions for pruning. However, labels on nodes on different

levels are such that the p; terms in one label correspond in position
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with don't care terms in the other or vice versa. Therefore any node
on any level can be pruned by setting its don't care terms so that its
label corresponds to any other label. This would appear to be an
advantage initially, but on closer examination it is found that there
are a number of drawbacksidue to the fact .that labels are obtained from
the labels of parent nodes using the next state matrices. Thus, if a
don't care term is assigned a value then some of the don't care terms
in the descendant nodes have to be aésigned the same value. Nodes
which have alréady been pruned may now have their labels changed which
may make them unable to be pruned and hence a gfeat deal of confusion
arises. Also, the nodes on the fourth level which previously could all
be pruned may now not be able to be pruned by the previous argument,
whkch therefore means that tﬁe reverse response tree may not hgve a
finite number of levels so that the maximum number of modules cannot
be &etermined as before. VAs an example of this, consider what happens
if it is decided to assign don't caré values such that the following

nodes are the same:

!

The resulting reverse response tree is shown in Figure 4.19 where
not all the sub-trees are drawn for ease of identification. However, the
one node which is fuliy expanded shows that the number of levels is
doubled and the number of modules greatly increased. Since the purpose
of assigning values to the don't care terms is to reduce the size of

the tree, it can be seen that this method is not particularly good.
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Figure 4.19 Randomly assigned don't care terms in the
' reverse response tree

4.4.2.2 Invisible Don't Cares [26]

If only nodes on the same level are compared for pruning then the

don't care terms are superfluous and can be ignored. This results in

the reverse response tree of Figure 4.20 which is a much simpler one

than before.
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Consider now a similar tree with the initial node labelled with
the function.f(x) that is being realised. The labels on the second
level nodes are obtained by setting Xq to O for the left hand node
and X4 to 1 for the right hand node. Further descendant nodes are
labelled by setting X, and finally x, to 0 and 1 as in Figure 4.21
where the specific function f(x) = X; -Xy * xq is shown. Nodes are
pruned if they have labels consisting of O's, 1's or Boolean

expressions which are the same or the inverse of some other nodes on

‘the same level.

Figure 4.20 Reverse response tree without the don't care terms

Figure 4.21 Reverse response tree of function f(x) X, .X, + X
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Comparing these two reverse response trees shows that in fact
they are identical. For example, consider the situation where the two
nodes labelled PPy and P,Pg are the same and therefore one of them is
equivalent to the initial Boolean expression with Xq = x2'= 0 for the

latter and;3 = Xy = O for the former. Thus the two labels are:

XjPg * ¥)P, and  x;py + xDg 4.32

Therefore , for the two expressions to be identical, it is required
that Py = Py and P, = Ps» which is then as for the other reverse response

tree.

Comparing the reverse response tree of Figure 4.21 with that of
Figure 4.16, it is found that they are identical and would result in
the same modular realisation. It is clear, however, that the derivation
of the former is far simpler than the latter which relied on state
minimisation as its means of utilising the don't care terms. However,
this method too has one drawback which is that only nodes on the same
level can be pruned if they have the same or inverse labels. As an
example of a situation where this drawback becomes apparent gonsider

the function given in equation 4.33.
f(x) = xl.x3 + X, . 4.33

The reverse response tree and modular realisation is shown in

Figure 4.22(a) and (b).

The mode in which the system operates is that as an input variable
arrives at tﬁe system it is processed by the modules in one particular
time slot. For example, the input variable X, would be processed by
the modules 2 and 3 in the time slot 2, the result of which would then

pass on to module 4 where further processing takes place with the next
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Figure 4.22 (a) Reverse response tree

(b) Modular realisation
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input variable Xq in time slot 3. Therefore, modules in a particular
time slot are only required to operate in that time slot, at all other
times they are redundant. Clearly, however, the modules are still
operating and it is only the results of these operations that are
redundant. Thus it can be seen in Figure 4.22 that module 1 processes

x. and module 3 processes x, one clock period later, and since both

1
receive the same input information it must be the same process so that
in fact modules 1 and 3 are identical and interchangeable, resulting

in the simplified network of Figure 4.23.

0

L N A N} A N—=f(x)
X 1 X 2 X 3 _

M N rB N [B N

1 1

Figure 4.23 Improved modular realisation of f(x) = x1.§3 + x,

It is difficult to discover which modules are identical and inter-
changeable from this method and so the following improved method which

allows pruning of nodes on different levels with the same or inverse

labels has been developed.

4.4.2.3 Specific Assignment of Don't Care Terms

In this method the labels on the nodes of the reverse response
tree are first obtained as in Figure 4.18 and then adjusted in the
following manner: a label which has k specified elements has its don't

care terms to the right of these k elements assigned to the k elements
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in sets of k. Thus the label;

k assigned Two groups of
elements k unassigned elements

---...~-LL, ... L, === .., -7 = .. .-

1 2 k

becomes All three groups of k elements are assigned with L1 to L

- .. .- LILZ cees LkLleL3 .. . LkL1L2L3 PN Lk

The reverse response tree for a general function of n = 3 now

becomes as in Figure 4.24.

The initial node is left as it is since it plays no part in the
pruning due to the fact that no node can have the same label as one of
its descendant nodes. This is because, as stated at the beginning of
the chapter, a serial input logic system is a definite one, i.e. needs
no feedback loops. In the case Af this particular labelling system it
is impossible for a descendant node to be pruned by virtue of having the
same label as a parent node, e.g. let the label - - pop4pop4pop4 be the
same as the label - - - - PoP,P,Pg - For this to happen it is required
that Pg =Py =P, = Pg in which case the latter would have already been
pruned by virtue of the fact that it can be replaced by a logical
cdnstant O or 1. However, labels on different levels which are not
descendants of each other can be the same and therefore pruned. As an.
example consider the two nodes labelled - - - - PoPoP,Pg and
- - plbsplpsplps. In order for these two labels to be the same, it is

required that equation 4.34 is obeyed.

Py Py =P, 4.34

Pg = P) = Pg
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Now if, as in the case of the invisible don't cares of section
4.4.2.2, a similar reverse response tree is drawn with the initial label
being the Boolean expression of the required function, and descendant
nodes labelled by the corresponding decomposition about the appropriate
input variables, then the Boolean expressions for the two nodes under

examination would be as in equation 4.35.

X +XyePg * X Xp.Py * X oXyeP, + X Xy.Pe = X Py * XPg 4.35

This equation would be satisfied if equation 4.36 is satisfied,

which is not the required condition.

po -p2 =p1 4.36

Py, T Pg " Ps

If, however, the input variables in the Boolean expressions for
labels are adjusted in accordance with the fbllowing rule, the correct

conditions can be met.

Rule 4.1

If the input variable arriving at the system_is Xs s then all input
variables x. must be altered to xn-i+j and the labels of the descendant
nodes obtainedvby decomposing about the variable X . Thus, on the first
level, the incoming variable is X , SO that 1 = n and all variables
remain unchanged. On the second level, the incoming variable is X _1s
so that 1 = n - 1 and all terms xj on that level become‘;j+1. Thus,
in general when drawing the reverse response trée, as each level is
reached, the input variables in the Boolean expressions have their

subscripts incremented.

Usihg this labelling scheme, the required equation to be satisfied

in order that the two nodes have the same label is given by equation 4.37.
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x2.x3.po + x2.x3.p2 + xz.x ‘P, + x2.x3.p6 = x3.p1 + x3.p5 4.37

Now the conditions for this equation to be satisfied are the same
as in equation 4.34, so that this labelling scheme ensures that nodes
vith the same or inverse Boolean expressions can be pruned regardless

of what level they are on.

Applying this method to the example given in equation 4.33, the

reverse response trees of Figure 4.25 can be drawn.

a) X, - Xq + X,

Figure 4.25 (a) and (b) Reverse response trees of function
f(x) = X, +Xg3 + X,

Both trees in Figure 4.25 are the same in that the modular
realisation of them would be identical to Figure 4.23. It can therefore
be seen that this method is simple to apply and ensures that the number
of modules in the ‘solution is kept to a minimum. ' The procedure can be

summarised into the following steps:

Step 1 Express the required function as a Boolean expression and label

the initial node with it.

Step 2 Decompose this expression about the variable X labelling the
left hand descendant node with the expression when xh = 0, and the right
hand descendant node with the expression when x, = 1. Increment the

subscripts of all the input variables in the descendant nodes' expressions.
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Step 3  Repeat step 2 another n - 1 times, pruning all nodes labelled
0,1, or those that have the same or inverse labels as the labels of any

nodes that have appeared in the tree.

Step 4 Convert to the modular realisation by replacing all non-
terminal nodes with modules and wire in the same manner as described

previously in section 4.4.1.

This reverse response tree with Boolean expressions for labels
gives rise to a very interesting result. Consider again the reduced
ﬁachine consisting of the implied maximal compatibles from section
4.2.2. Figure 4.26 shows the state table, next state matrices, and
reverse response tree for a general function of h,= 3 obtained from thé
general maximal compatibles of Table 4.4 and the flow diagram of

Figure 4.7(a).

The reverse response trée is of particular interest because it has
the same structure as all the others obtained including the feature
that it terminates after three branches. However, when compared with
the reverse response tree of Figure 4.24 it is found to be almost identical,
the only difference being theAfact that it is fully specified. The
reverse response tree with Boolean expressions for labels is found to
be also interchangeable with this new reverse response tree, and since
it has been found to be sufficient to identify all nodes that can be
pruned and therefore optimal, it can be said that the maximal compatibles
machine is also optimal, at least when a modular solution is desired.r
Thus the arguménts presented at the beginning of this section against
the state reduction method for producing the minimal solution do not
apply in this instance and therefore the reverse response tree with

Boolean expressions or that of Figure 4.26(c) can be used to obtain a

modular solution.
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(b) Next state matrices

x = 0,1
S N ‘N YA
P024 p024 p135 Py
p135 p226 p337 p1
p226 p424 p337 P,
p337 p626 p737 Py
p424 p024 p135 P,
p535 p226 p337 Ps
p626 p424 p535 Pg
p737 p626 p737 Py
o, m
1000000 0] [0 1000
00100000 00010
000010 0 000O00O
000000 0] 00000
100000 0-0 01000
00100000 00010
00001000 00000
| 0000O0O QJ ~O 0000
Figure 4.26 (a) General reduced machine

state table
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If the reverse response tree with the minterm labels rather than
the Boolean expressions is used then the next state matrices are used
to obtain each label. Table 4.8 summarises the elements of the matrices

for any value of n.

™o 1
/\A/\ /\A/\
1 J Mae o J mij
- .n-1 . :
1l to 2 21 -1 1 21 1
2"l L1 o 2® 2i -1 -2 1 | 2i-2" 1
All others 0 0

Table 4.8 Summary of elements of next state matrices

4.4.3 Additional Features

So far it has been shown that given any function £(x) which is to
be realised in serial form, the optimal solution can be obtained by
finding a machine consisting of the implied maximal compatibles and
then choosing any appropriate type of logic elementé. If the realisation
is to be modular then this too could be obtained from this machine, but
it has been shown that there is a more direct approach using a reverse
response tree with the Boolean expressions of the function and its
decomposition about the appropriate input variables as the labels on
the nodes. However, it has also been shown that this is equivalent to
the reverse response tree of the.machine consisting of the maximal
compatibles which can also be obtained directly by the use of the next
state matrices. It is this latter reverse response tree which proves
useful when dealing with incompletely specified functions, since fhe
don't care terms can be present in the node labels which is not possible

when Boolean expressions are used.
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4.4.3.1 Incompletely Specified Functions

‘Given a function f(x) which is incompletely specified, it is
possible to utilise the don't care terms to reduce the number of modules
required to realise it. As an example, consider the function shown in

the truth table of Figure 4.27(a).

a) X XyXq f(x) b) 00-1-110
000 0
001 0
010 -
1 0--10—-1 , 01100110
011 1
100 -
0-0-0-0- -1-1-1-1 01010101 )} (10101010)
tot 1 11111111 A,
{10 . 00000000 S2222222 11111111 00000000
111 0
o) 00110110

0l100110
01010101

01010101 10101010

11111111 00000000

Figure 4.27 (a) Truth table of required function

(b) Initial reverse response tree with don't cares

(c) Reverse response tree after the assignment of
the don't care values.
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Figure 4.27(b) shows the initial reverse response tree and the
circled labels are the ones selected such that one can be pfuned by
virtue of having its label the inverse of the other. Special attention
must be drawn to the fact that nodes cannot be pruned if they have the
same or inverse labels of one of their descendant nodes since this

would violate the feedback condition, i.e. no feedback permitted.

4.4.3.2 Multi-Output System

If more than one function is required to occur simultaneously in
a system, then a reduced system can be obtained by drawing the reverse
response trees for each output function and then cross—-pruning between
them. As an example of this, consider the situation of a binary codéd
decimal (B.C.D.) to Greylcode converter ﬁﬂ, the truth table for a

four bit converter being shown in Figure 4.28.

Since there are don't care terms in the functions the reverse
response trees with actual minterm values are used. The four trees

for G,, G,, G, and G, are shown in Figure 4.29, where it can be seen

1 72* 74 8
that each of the initial labels of the three latter outputs can be
found in the tree for G1 and therefore can be pruned. The modular real-

isation is shown in Figure 4.29(e).

The letters in brackets next to the labels in the reverse response
trees are included for ease of identification of nodes with equivalent

labels.

It can be shown that if the number of bits in the conversion is n,
then the number of modules is n, the additional modules being placed

after module 4 and wired in the same manner as module 4 is to module 3. :



l6l

BlBZBABB 01G2G4G8
0000 0000
0001 0011
0010 0110
0011 0101
0100 1100
0101 1111
0110 1010
0111 1001
1000 1000
1001 1011
1010 -—---
1011 - -
1100 -
1110 -—-—
1111 -——

Figure 4.28 Four bit B.C.D. to Grey code converter

a) 0000111111~ - = = = - (A)
(B) 00111 - - - 00111- 00111- - - 00111 -~ - - (B)
(C) 011-011-011-011 - 0l- - 01- - 01- — 01- = (C)
(D) 0101010101010101 1-1-1-1-1-1-1-1- (D)
0000000000000000
1111111111111111
b) e 0011110000 - - = — - (B)
¢) e 0110011001 - = - - - (c)

d) e 0101010101 = = - —- - (D)
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e)

0
fo N A N A N A N}l-GI
B X1 _ L{x 2 L_{x 3 X &
! rB N B8 N B R B R
1
~G2
-G
~G8

Figure 4.29 (a), (b), (c) and (d) Reverse response trees for .

Gl’ GZ’ G4 and G8

(e) Modular realisation

4.4.3.3 Multi-Input Systems

It may be necessary in some situations to be able to process more
than one word formatted serial input in a system, such as in arithmetic
functions. The design in this situation would also involve tree
structures as before but each node would branch to 2" descendant nodes,
where m is the number of serial inputs to the system. The hardware
realisation would then consist of modules having 1-out-of-2" multi-

plexers and delays.

4.4.3.4 Serial Multi-Outputs

So far the output of the s&stem has been considered as an n bit
word, only one bit of which is relevant, the remainder being don't caré
terms as in Figure 4.1. The multi-output'system>that has been described
in section 4.4.3.2 had its outpufs in parﬁllel. each being an n bit
word. However, it may be desirable to haQe only one output, each bit
at least more than one of its bits, being a different function as in

Figure 4.30.
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X% X X %% | DELAY A clock perIoDS [FX--H004 0 X)-
input output
word word
CLOCK

Figure 4.30 Schematic diagram of serial multi-output system

If all the functions in the output word are specified then the
modular solution can be found by applying the techniques described in
section 4.3.1. However, an important point to note is that if the
delay A is to be kept at its minimum value of one, then each of the
functions fi must only be a function of the first i variables, i.e.

x, to X; otherwise it would be a function of the variables from more

1
than one irput word. If they are functions of more than i variables

and an uncorrupted signal is required then the delay A has to be
increased, i.e. latency would have to be introduced into the system

but the design procedure would remain the same.

If some of the functions are not specified then the suggested
approach is to use the method described in section 4.4.1, namely to
draw a flow diagram, state table, next state matrices, and finally
reverse response tree. This method cannot be simplified as before

since the conditions are much different.

As examples of the fully specified functions consider the Grey

code converter described in Figure 4.28 and then a serial full adder

circult.
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Example 1

On examination of the truth table of Figure 4.28 it can be found
that assignment of the don't care values could give functions which are
dependant on a reduced number of variables, the equations being given

in equation 4.38.

G, =B, ® B2 4.38

G, =B, ® B,

¢, =3, ® Bg

A flow diagram of a system which would realise these functions as
a single output serial stream is shown in Figure 4.31(a). -If the
methods for state reduction are applied it is found that the flow
diagram cannot be reduced. Applying the technique for obtaining the

modular solution results in the network of Figure 4.31(b).

The system contains modules 1 to 4 which provides a cyclic
sequence of O's and 1's that serve to invert or not invert the incoming
input variable respectively. In fact the sequence is 1110, and had there
been n bits to convert,the sequence would have consisted of n - 1 logic
1's followed by a logic O. When, for example, By arrives at the input,
module 6 simply transfers B1 to the input of module 7, whereas module 5

transfers the inverse, i.e. Bl. Thus, when the next input B2 arrives

at module 7, it is processed so that the output of module 7 is as in

equation 4.39.

output = B,.B, + B,.B, = Bll ® B, = G, 4.39

However, when the input B8 arrives at the system, both module 5 and

6 transfer B8 to the inputs of module 7 since this time the logical
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a)
— —
0.0 1.1 2.1 3.0
0 B> 0 B>
4,0 50 6.1 7.1
T 7
01
8.0 9,1
|
0]
12, 0 13,1
I
—Q—<Bi>
_ 1
> A N
B X6 _ G
) _L X 7
s N
1A NHH4A  NEHA - N#HA - NEHA
X 1 {ldx 2 idx 3 _Hidx & _|{@x 5 _
B N{YB Ny NHB NH{B N

Figure 4.31 (a) Flow diagram for system which realises a
four bit B.C.D. to Grey code converter

(b) Modular realisation
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constant from module 4 is O. Thus upon the arrival of the next input,
which is B1 of the next input word, the function given by equation 4.40

is produced at the output, which is the required one.

output = BB;EI + B8.B1 = B8 = 08 4.40
Example 2

The serial full adder is an example of a system which requires
latency, since when arithmetic addition is performed the result can be
a larger bit word than the inputs; in the case of two binary numbers
the sum requires one extra bit. The simplest way of introducing this
latency into the system is to place a logic O value between tbe. |
different words on‘the same input line. This then has the effect of
saying if the two binary numbers are n bits long, increase them ton + 1
bit numbers where therfirst bit is always a logic O. Figure 4.32(a)
then shows a flow diagram which can realise the full adder system.
Applying the fully specified modular realisation method as described in
section 4.3.1, taking into account the additional requirements described

in section 4.4.3.3 since there is more than one input, the graph and

modular realisation of Figure 4.32(b) and (c) are obtained.

Note that, as the extra bit between words has been Introduced,
feedback is also allowed over a distance of one module without inter-

ference between input words on the same input line.

4.5 Conclusions and Further Work

It has been shown in this chapter that if a system is desired where
serial word formatted logic data is to be processed then a general min-
imised solution can be obtained from an initial flow diagram. This

solution consists of states which are the implied maximal compatibles
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a)
1,0 2,1 3.0 4,1
00 1 og<w 1
' 01,0 0110
b)
c) 0
ﬂCD N 00 —=SUM
+—01 101
10 —{10
! N 11
1
X
Y

Figure 4.32 (a) Flow diagram of system which realises a

full adder
(b) Graphical approach

(c) Modular realisation
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of the original machine and can be used to find any hardware solution

that is desirable, including the modular solution.

However, it has also been shown that if a modular solution is the
desirable one, due to a number of features such as speed and testa-
bility, then there are a number of more direct methods that can be
used to obtain it. If a solution is to be obtained by hand then the
best method is that described in section 4.4.2.3, where the initial node
of the reverse response tree is labelled with the Boolean expression of
the desired function. Labels for descendant nodes are obtained by
decomposing this expression about the variable X and then incrementing
the subscripts of the variables, the process being repeated for all
further descendant nodes. Nodes can then be pruned if they are labelled
with a 0, a 1, or if their labels are the same or the inverse of any
other nodes in the tree. This is a Qery simple method which is easily
applied even if n is large, and it also guarantees that the minimum

number of modules are required.

If a computer is to be used to obtain tﬂis same'modulér solution
then it is more convenient if the nodes are labelled with logical values
rather than Boolean expressions so that it is easier to identify equi-
valent or inverse labels. The best approach to this solution is to
label the initial node with the truth table vector of the function
transposed, i.e. converted to a row matrix from a column. Descendant
nodes are then labelled with products of this matrix and the next state
matrices summarised in Table 4.8. This method is also useful for

incompletely specified functions as described in section 4.4.3.1.

Some of the more commonly met systems are described in section
4.4.3 such as the code converters and full adder. In a number of these

systems the above approaches do not apply because, as described in



169

section 4.4.3.4, the output word contains more than one function; in
fact, in the examples given, the output word is fully specified. The

suggested approach is then that of section 4.3.1.

It was said at the beginning of the chaptgr that, to date, the
only other approach to serial input logic has been mode-controlled
logic, which was discussed in section 4.3.2. It is therefore interesting
to make some comparisons. In terms of speed, the module used in mode-
controlled logic has the same propagation delay as the module considered
in this chapter since, by comparing Figures 4.9 and 4.12, it can be seen
that the fo;mer is a special case of the latter with the M input set
to a constant O. However, the system delay, & clock periods, in the
modular solution presented in this chapter is always minimal, i.e.
A = 1, whereas in mode-controlled logic it is at best one, and usually

much more than one.

In terms of the number of modules required, the_mode-controlled
logic solution has some advantages since it allows feedback‘which is
useful when highly repetitive functions are being realised. As an
example, if an n variable AND function is requifed, then only oﬁe module
is needed in mode-controlled logic, whereas n modules are required using
the method developed herein. However, firstly, when feedback is used
testability is reduced, and secondly, the upper limit on the number of
modules requires is not specified for mode-controlled logic, whereas it
is well defined by equation 4.31 for this method. It is also not clear
k] in ﬁode-controlled logic if all functions can be realised for n > 5,

as it can for any n by this method.

It would seem, therefore, that the modular realisation and the
synthesis methods described in this chapter are viable alternatives to

the existing ones and in some cases are an improvement. The area for
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further work lies in its application to more conventional systems.
For example, its ability to perform logical and arithmetic functions
serially and at high speeds would indicate a usefulness in the arith-
metic and logic unit (A.L.U.) of a computer or microprocessor. Other
areas such as digital signal processing could also benefit by its

application, since data in such systems is mostly in serial form.
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S. General Conclusions

In Chapter 2 a method was obtained which can be used to convert
a function f'(x), which can be initially expressed by a weight-

threshold vector, into either of the following two functions:

i) the exclusive-or of the initial function f'(x) with
one or more of the input variables,

the initial function f'(x) with one of its input

e
e
~

variables replaced by the exclusive-or of this input

variable and one or more of the others.

This was done by altering the value of the weights and thresholds,
and (usually) increasing the number of thresholds. Equations 2.45 and
2.65 provide the mathematical support for these operation;, and it was
found that it was readily applied to the weight values, but cumber-
some to apply to the thresholds. However, an altgrnative method of
determining the thresholds was presented which involved stepping
through the excitatipn values of .El a x, in the truth table of the
final solution and comparing withlzhe required function. The values

n
of ¥ a x, at which the function changes from a O to a 1, or vice

i=1
versa, become the required thresholds. Thus if a function is to be
converted by the repeated application of one or both of the two

operations, then the equations need only be applied to the weights;

the thresholds can then be determined as the final stage of the

procedure.

These operations can be applied in a number of situations, but
the chapter concerns itself with obtaining a multi-threshold solution
of any given function. The starting point for this was the use of the
Rademacher-Walsh spectrum in seeking a solution with a topology

consisting of a single threshold gate with pre- and post-kernal
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exclusive-or gates. The above equations then enable a :conversion Xrom

this topology to that of a multi-threshold network.

In addition to this the functions that could not boe converted to
the single.threshold topology as above, could be converrted to a multi-
threshold solution if initially they can be described bby a multi-
threshold gate with pre- and post-kernal exclusive-or ;gates. This
requires that, in the Rademacher-Walsh classification sscheme, the
non-threshold classes have a representative function wthich is a multi-
threshold function. Such a representative function wais given for the
single non-threshold class for n = 4, and it was proposed that the 27
representative functions for n = 5 also be found and llisted. For
n > 5, however, it is impractical to list the represemtative functhnw,.
so that functions in these classes cannot be convertedl to a multi-

threshold solution due to a lack of representative data.
Those that can be are therefore:

i) all functions of n g é which can be reaiise& by a
single threshold gate after spectral translation has
been applied. The limit of n ¢ 8 is because: tables
of Chow's parameters are only available for wup to
this number of input variables.

ii) all functions of n < 4, since a representative function
has been provided for the non-threshold ‘class.
iii) the potential of all functions of n £ 5, if the 27

representative functions are found and listed.

In Chapter 3 a multi-threshold logic gate was presented which
could be incorporated into a C.C.D. digital processing system. Compared

to existing C.C.D. logic it is similar in size, speed and complexity,



177

but is more powerful in that it can realise far more functions than

an equivalent sized alternative.

As a separate threshold logic gate, however, i.e. a single chip
with a multi-threshold logic gate only on it, it fared very poorly
when compared to other proposed threshold logic gates, particularly
with regard to its speed of operation. This is due to the fact that
C.C.D.'s are relatively slow devices and that the major contributing
factor to this speed is the charge overflow operation. The threshold
logic gate relies heavily on this operation, and as the number of
thresholds increases so the amount of charge overflow has to be
increased, and thus the slower the device becomes. There must be a
trade off therefore between the number of thresholds and hence the
number of functions that can be realised by the device and the speed of

operation.

However, as already stated, charge overflow is an inherent
property of all C.C.D. devices, and tﬁerefore applies to all forms of
C.C.D. logic, so that the threshold logic gate is still a more power-
ful device than the alternatives when used within a fully integrated

C.C.D. system.

Finally, Chapter 4 deals Qith serial input logic. To date,
the only other research that has been reported in this area is mode-
controlled logic, and therefore thi; chapter was intended to broaden
this field by considering serial input logic in a much more general

sense.

It was shown that in the design of any serial input logic system,
if the conventional approach of state tables, state assignment,.etc.

is used, then the number of states can be reduced by considering only
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the implied maximal compatibles. This result reduces the amount of
work that is involved and is also important since it defines a new

class of sequential system.

Also considered in Chapter 4 is a particular modular realisation
and alternative ways of obtaining it. The simplest method is shown to
be the use of a reverse response tree, where the nodes are labelled
with Boolean expressions. The initial node has the expression of the
desired function, descendant nodes are then 1abe11ed with the
decomposition about the variable X of this expression, and then the
subscripts of all the input variables in their labels are incremented.
This process is repeated until all nodes are terminal, a condition
that arises when a node is labelled with a logical constant O or 1,
or the exact equivalent or exact inyerse of an already existing label
on another node. The modular network is then obtained by replacing
all non-terminal nodes with modules which are then connected up in

the same manner as the inter-nodal connections.

An alternative labelling scheme which is useful in certain
circumstances such as when a computer is used or if there are don't
care terms involved is to replace the Boolean expressions with equi-
valent truth table vectors. Labels for descendant nodes are then
obtained by taking the product of these vectors and the next state

matrices.

These procedures can be extended to incorporate features such as
mul ti-outputs or multi-inputs. The resulting networks h;ye some
desirable properties such as high speed, no inherent latency, i.e. no
more than one clock period elapsing between the input of the last bit
of the input word and the resulting output function, and no feedback

connections so that the system is easily tested.
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When compared to the mode—controlled logic networks it was shown
tbat the speeds were the same, but that mode-controlled logic often
exhibited latency and feedback was used. However, in some instances
the use of feedback results in fewer modules being required such as
in highly repetitive functions. However, the upper limit to the
number of modules is not given, and also there is no guarantee that
all functions of n > 5 can be realised, whereas in the network

considered in Chapter 4 these two features are included.

Overall, therefore, the material presented in this thesis provides
methods for extending the use of logic design. It revives the ideas
of multi-threshold logic and extends them, and then finds a specific
area where it may become useful. It also introduces the recently
evolved topic Qf serial input logic, discusses it in general which
results in an interéstigg theorem on state reduction, and suggests a
modular solution which has many desirable features. It is hoped that

this work will be found significant and provide a guide for further

work in this area.
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APPENDIX A

CHOW S PARAMETERS FOR THRESHOLD FUNCTIONS
OF n Z 6
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Chow's Parameters for Threshold Functions of n < 6
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Number 164 B
ns<6
42 |40 24 24 8 4 4 4|6 4 4 21 11
43 |40 24 20 12 8 4 4]|7 s 4 3 2 1 1
44 |40 24 20 8 8 8 8|4 3 21111
45 |40 24 16 16 8 8 0|4 3 22110
46 140 24 16 12 12 8 48 6 4 3 3 21
47 |40 20 20 16 8 8 4|8 S S 4 2 2 1
48 |40 20 20 12 12 8 8|s 3 3 2 211
49 |40 20 16 16 12 12 4{6 4 3 3 2 2 1
SO 140 16 16 16 16 16 0|2 1 1 1 1 1 0O
s1 |38 26 26 6 6 2 2{7 5 s 2 211
s2 [38 26 22 10 10 2 2{8 6 S 3 3 1 1
$3 |38 26 22 10 6 6 6)]S5S 4 3 21 11
54 |38 26 18 14 10 6 2|9 7 5 4 3 21
SS |38 26 18 10 10 10 6{6 S 3 2 2 2 1
$6 |38 26 14 14 14 6 615 4 2 2 2 1 1
S7T |38 22 22 14 10 6 616 4 4 3 2 1 1
s8 |38 22 22 10 10 10 10]3 2 2 1 1 1 1
$9 |38 22 18 18 10 10 2]7 S5 4 4 2 2 1
60 |38 22 18 14 14 10 6|7 S 4 3 3 2 1
61 {38 18 18 18 14 14 2|5 3 3 3 2 2 1
62 |36 28 28 4 4 4 0|4 3 31 110
63 {36 28 24 8 8 4 4|6 S 4 2 2 1 1
64 |36 28 20 12 12 4 O]S 4 3 2 21 0
65 136 28 20 12 8 8 4|7 6 4 3 2 2 1
66 |36 28 16 16 12 4 4]6 S 3 3 21 1
67 |36 28 16 12 12 8 88 7 4 3 3 2 2
68 136 24 24 12 12 4 417 5 S 3 3 11
69 |36 24 24 12 8 8 814 3 3 21 11
70 {36 24 20 16 12 8 4|8 6 S 4 3 2 1
71 (36 24 20 12 12 12 8|S 4 3 2 2 2 1
72 |36 24 16 16 16 8 814 3 2 2 2 1 1
73 {36 20 20 20 12 12 O0]3 2 2 21 1 0
74 {36 20 20 16 16 12 416 4 4 3 3 2 1
7s |34 30 30 2 2 2 215 4 41111
76 {34 30 26 6 6 6 2|7 6 s 2 2 21
77 {34 30 22 10 10 6 2|8 7 5 3 3 21
78 |34 30 18 14 14 2 2}7 6 4 3 3 1 1
79 |34 30 18 14 10 6 6]9 8 S 4 3 2 2
80 {34 30 14 14 10 10 10]7 6 3 3 2 2 2
81 |34 26 26 10 10 6 6|S 4 4 2 2 1 1
82 [34 26 22 14 14 6 2|9 7 6 4 4 2 1

(cont)
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Number 164 fad
n<6
83 [34 26 22 14 10 10 6|6 S 4 3 2 2 1
84 134 26 18 18 14 6 6|5 4 3 3 2 1 1
8S |34 26 18 14 14 10 10|6 5§ 4 3 3 2 2
86 |34 22 22 18 14 10 2|7 S 5 4 3 2 1
87 (34 22 22 14 14 14 64 3 3 2 2 2 1
88 134 22 18 18 18 10 6|5 4 3 3 3 21
89 |32 32 32 0 0 0 0}1 1 1 00 OO0
90 132 32 28 4 4 4 414 4 3 11 11
91 |32 32 24 8 8 8 0|3 3 21110
92 132 32 20 12 12 4 4|5 5 3 2 211
93 |32 32 16 16 16 0 ©0]2 2 1 1 1 0O
94 32 32 16 16 8 8 8|4 4 2 2 1 1 1
9S 132 32 12 12 12 12 12{3 3 1 11 11
96 |32 28 28 8 8 8 4[6 5 S 2 2 21
97 132 28 24 12 12 8 417 6 5§ 3 3 2 1
98 [32 28 20 16 16 4 4|6 S 4 3 3 1 1
99 |32 28 20 16 12 8 8|7 6 S 4 3 2 2
100 {32 28 16 16 12 12 12|5 4 3 3 2 2 2
101 |32 24 24 16 16 3 0|4 3 3 2 210
102 |32 24 24 16 12 12 4|5 4 4 3 2 2 1
103 |32 24 20 20 16 8 4|6 S 4 4 3 21
104 {32 24 20 1616 12 8|7 6 S 4 4 3 2
105 |32 20 20 20 20 8 8|3 2 2 2 2 1 1
106 {30 30 30 6 6 6 6|3 3 3 1111
107 {30 30 26 10 10 10 2|5 S 4 2 2 2 1
108 |30 30 22 14 14 6 6|4 4 3 2 2 1 1
109 [30 30 18 18 18 2 218 S 3 3 3 1 1
110 130 30 18 18 10 10 1013 3 2 2 1 1 1
111 |30 30 14 14 14 14 14{2 2 1 1 1 1 1
112 {30 26 2 14 14 10 2|6 S S 3 3 2 1
113 |30 26 22 18 18 6 2|7 6 S 4 4 2 1
114 |30 26 22 18 14 10 6{8 7 6 S 4 3 2
11S (30 26 18 18 14 14 10{6 S 4 4 3 3 2
116 [30 22 22 22 18 6 614 3 3 3 2 11
117 {30 22 22 18 18 10 10}S 4 4 3 3 2 2
118 |28 28 28 12 12 12 0{2 2 2 1 1 1 0
119 |28 28 24 16 16 8 4}5 S 4 3 3 21
120 |28 28 20 20 20 4 03 3 2 2 2 1 0
121 |28 28 20 20 12 12 8|4 4 3 3 2 2 1
122 [28 28 16 16 16 16 123 3 2 2 2 2 1
123 |28 24 24 20 20 4 4|S 4 4 3 3 1 1

(cont)
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Number 164 lail
n<6
124 |28 24 24 20 16 8 86 5 5 4 3 2 2
125 |28 24 20 20 16 12 1217 6 5 5 4 3 3
126 |26 26 26 18 18 6 63 3 3 2 2 1 1
127 |26 26 22 22 22 2 2|4 4 3 3 3 1 1
128 126 26 22 22 14 10 10|55 5 4 4 3 2 2
129 {26 26 18 18 18 14 14]4 4 3 3 3 2 2
130 {26 22 22 22 14 14 14{4 3 3 3 2 2 2
131 |24 24 24 24 24 0 O]1 1 1 1 1 0O
132 124 24 24 24 12 12 122 2 2 2 1 1 }
133 [24 24 20 20 16 16 16{5 5 4 4 3 3 3
134 122 22 22 18 18 18 18]3 3 3 2 2 2 2
135 20 20 20 20 20 20 201 1 1 1 1 1 1

For tables of Chow's parameters of n

<

LY

7, and n £ 8

see Winder t?}and Muroga, Tsuboi and Baugh [8],

referenced in Chapter 2.
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APPENDIX B

RADEMACHER-WALSH SPECTRAL CLASSIFICATION
OF FUNCTIONS OF n f 4
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APPENDIX C

COPIES OF PUBLISHED MATERIAL
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CLOCK-STEERING SYNTHESIS USING
SPECTRAL TECHNIQUES

Indexing terms: Logic, Switches

A technique is described which uses the Rademacher-Walsh

where the square transform matrix [7] is (usually) the
Rademacher-Walsh transform, and F] is the truth table of the

_given function, but recoded {( + 1, — 1) from the more conven-

tional €0, 1). The resulting numbers in £] uniquely define
the given function, and represent a set of correlation
coefficients between the individual inputs and bination of
inputs of the function, and the function output. The theory and

spectrum 10 obtain the sp and quently the Book
form, of the clock-steering functions of bistables. Its

ful over dard hods is derived rom the fact that
s simplicity is independent of the ber of input variabics.
Being numerically based, it also is particularly relevant for
c.a.d. adoption.

Introduction: Type D, JK, RS and T clocked bistables are
well-known items of sequential logic design. Where there are
only a few input variables, derivation of the appropriate clock-
stecring input functions to the bistables from the next-state
equations is a straightforward procedure. Previous authors!-*
generally ‘use one of two methods, involving either the use of
Karnaugh maps or the characteristic equations of the bist-

ables. These ch istic eq are as foll

Type D: Next-state output x; = D (1)
Type JK: Next-state output x; = {£,J + x, K} (2)
Type KS: Next-state output x; = {R(S + x,)} (3)

where R and § are disjoint;
Type T: Next-state output x; = {i;T +xTNi={x,®T] (4)

Note that x; represents the present state of the true output of
the bistable circuit, and x; the resultant next-state of the same
output point one clock pulse later. Fig. | shows a typical as-
sembly to which the above equations may be applied.

As the number of input variables increases, however, it be-
comes increasingly difficult to obtain the input functions using
the aforementioned methods, as both Karmaugh mapping and
algebraic manipulation become prohibitively tedious. It is
proposed, thercfore, that spectral techniques be applied to
overcome this difficulty.

The Rademacher-Walsh spectrum S)] of an a-variable com-
binational logic function is an alternative representation of its
truth-table vector F] of 2" clements. The spectrum is formed by
the multiplication of F] with a 2* x 2* transform matrix [7];
that is

(NA =93]
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use of spectral methods in the design of combinational logic
circuits may be found in published literature.?-* The inverse
transformation from the spectral domain back to the two-
valued domain, namely

(n'sj=4A
is readily available.

Method: Let the next-state equation x; have the following
Rademacher-Walsh spectrum:®-?

LR STLS TX S TRYRTE (URTRRN SO ¥ TN {F VRETTN SOV Y AAURTTS £'F § PO
Now consider cach type of bistable scparately.
(i) Type D: This is a trivial case which does not require

consideration, since by definition of the type D, x| is always
equal to D.

[—qso s o Lsu

Cy b Cx L Cy
R R R
clock
an ] L |
Fig 1 Typical or register bly: type RS storage ele-

menis shown, with R and S clock-steering logic f(x,, ..., x,) 10 be
designed for each R and S input. (Similarly for type D. T and J K storage
elements)
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(i) Type 1K : From eqn. 2 it can be scen that J and K are the
reduced functions obtained from a Shannon decomposition
about v, From previously published information concerning
the spectra of decomposed functions,” it follows that, if J and
K have the following spectea, respectively,

IR P PN FOIRRY F FYTR Y R Y SR PP
Ki Koo Koo Kpo oo Ko Kyp Koo K, Koo Ky

where no subscript contains i, then these spectra are obtainable
from the full spectrum of ¢ as follows:
Jy= Yy + o)\
S
K= Y(ry - o)l ®
where j = all possible subscripts not involving i, including
j = 0. Application of the inverse transform or by using prime

implicant extraction techniques®*® will then yield the Boolean
solutions for J and K (see the example later).

(iii) Type RS: Eqn. 3 can be manipulated to give
Xj= {i,S + -“R} (6)

re ry ry 1y

since S and R are disjoint. From this it can be scen, by compar-

ison with eqn. 2, that if J and K are disjoint then they are

equivalent to S and R, respectively. It is therefore necessary to

test whether the JK solution would be disjoint before accept-

ing such a solution for S and R. This can be donc as follows:
If J and K are disjoint, we have

g lUo i Jua Ko Y mf=2" 4 o + Ko)
K,

Kll...-

Substituting for all J;, K, from eqn. 5, we obtain

};.(n'; —rfi={=2 420 (U]
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~
N

(iv) Type T: This solution can be obtained directly from eqn. 4.
Since the exclusive-OR relationship is ive, then

T=(x®x) (t0)

n the specteal o this is oquivalcnt (o a disjoint spectral
translation,?* that ix, in all 2° spectral cocflicients, append i if it
docs not appear in the subscript and delete it if it i already
present,

Restated, this is

Fyooln

ads] an
finra ete.

Example: The next-state equation for circuit x, is
Xom (X3 %%y + Xy Kok + X3 X3X3 X4 + Xy X2X3
+ X X3 R + Xy XXy X4}
The Rademacher-Walsh spectrum is

Nz N3 Na Fa3 Taa Tya T2y Taae Tide T23s Ni2sa
o 8 0 0 O0 o 8 0 8 0 -8

From eqn. § we have a JKX solution:
I'o P f2 ) N3 Ny Ty Ny

J|o 0o 0 0 0 & 0 O
K|o o 0 0 0 0 o0 -8

whence
J = {x; ® x3} = {%, x5 + x, %>}
K= {x, ®x; ®x,}
- {i.i;i; + Xy XXy + X X3xy + x.x,i_‘}

For an RS solution, first check whether J and K are disjoint
using eqn. 7:

{64+ 63 — 64 — 64} = {—256 + (32 x O)} ?
0% —256

Clearly J and K are not disjoint, so, from eqn. 9,

l’o Ty r3 Iy Ta Ny My T Pay Tae i N2 Tae Tise e Niade

s|{s8 0 0 0 -8
R|8 0 0 0 8

Therefore if this equation is correct then S, and R, are equiv-
alenttoJ,and K, in eqn. S. If not, then use the modified expres-
sions given in eqn. 8, which ensures that S and R are disjoint:

Sw=Jx
®)

R = Kx,;

o 8 0 0 0 0 o0 O 8 o0 O
o 0 o o 0 0 -8 0 o0 o0 8

whence it follows that:
S = {(x) @ x3)%a} = {&a(R) X3 + x %)}
R= ((;I- 6;3_97.\)-"‘}
- x (X &y Xy + Xy X3X) + X X3X3 + X, X2 %3)}

For a type T solution, from eqn. |1 we have:

I’o Fry r3 Py Fs N3 Ny e T2y Tae Faa 12y Niae Tide Ta3e Tiase

T/lo 0 0o 00 0 8 0 0 0 0 -8 0 8 0 8

This yields the following:
So=4(ri+r)+2"""  Ro=i(rn-rd)+2"
S;edlry+r)  Ry=¥ry—r)
Si=dli+r)-2"" Ri=Hro=r)+2"" (9)
=S -2 - R+
Sy=4ry+r)=S; Ry=3¥r,-r)=-R,

where j = all possible subscripts not involving i, including
j=0.

whence it (ollows that

= {xi(Xs%s + X2%3 + X2X3X4)

+ R(xaxy + Xyke + X3 X3x)}

Note that, for convenience, this example has been of four var-
iables only, and hence within the capabilities of the nonspectral
design methods. However, the simplicity of manipulation of
the spectral data for larger functions than can be handled by
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previous methods should be apparent from this exampk. lis
case ol incorporation into cad. programs shouk! also be

apparent.
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Realisation of multithreshold threshold logic
networks using the Rademacher-Walsh transform

P.D. Picton, B.Sc.

Indexing terms:

Logic, Mulilthreshold threshold elements, Rademacher-Walsh transform

Abstract: A method is pvopo:ed by which binary logic functions are resolved into multithreshold form.
It is based upon an already unmn; design algorithm which involves spectral translations, and can be easily

dopted for CAD impi

List of symbols

n = number of independent binary input variables

x; = ithinput variable

a; = jth weight of a multithreshold threshold element

t; = ith threshold of a multithreshold threshold element

m = number of thresholds of a multithreshold threshold
element

J{x) = ith output of a multithreshold threshold element

J(x) = required function or output

f(x) = *%kernal’ function

a = ith weight of the kernal function

&i = ith threshold of the kernal function

P = number of thresholds of the kernal function

£i(x) = ith output of the kernal function .

© = Exclusive-OR or modulo-2 sum

1 Introduction

Previous research work in the area of majority and threshold
logic has been largely mathematical {1—6], being constrained
by the nonavailability of viable threshold-logic and other non-
Boolean (nonvertex) logic gates. The potential power and
discrimination of thresholdlogic relationships has been
extensively considered, but without viable circuit realisations
the commercial dominance of the Boolean basis of present
digital systems cannot be challenged.

However, recent research and development in semicon-
ductor technology has increased the possibility of commercial
circuit realisations for non-Boolean logic gates (7, 8] . Develop-
ments in both I’L and CCD technology appear particularly
relevant, CCD in particular appearing to offer a direct promise
towards ‘weighted’ digital signals and thresholds such as
are involved in the summation and detection requirements
of threshold logic. Hence it is not irrelevant to again consider
synthesis techniques using non-Boolean relationships as a
paralle] line of rescarch to the wider areas of semiconductor
technology research.

On the theoretical system synthesis side, previous work by

Edwards and others [4,9] has shown how the Rademacher-
Walsh spectral coefTicients may be used to classify functions,
and that all Boolean functions may be synthesised using
optimised thresholddogic gates together with 3 small number
of Exclusive-OR gates. As an altcrnative approach, Haring
and others [10—12] have shown that all functions can be
trcalisced with a multithreshold thresholddogic el t, and
in particular have tabulated all 221 optimised multithreshold
functions corresponding to the NPN classification for n < 4.°

*The NEN classification is a means of grouping similsr topology (unc
tinns together which are related by the following (hree oper:
Negation (complementativn) of the input varisbles, Permulation ul
the input variahics, and Negation of the oversit function [1, 4],

Faper 1298¢, received vd November 980

Mr. Ficton i with the School of Flecirics! Fagineering, University
of Bath, Claverion 1own, Bath, HA2 TAY, Englend
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Thus in total this tabulation covers all possible 65536 func-
tions of four or fewer variables.

These two approaches are illustrated in Fig. 1. Two
features in connection with the multithreshold topology
of Fig. 15, however, should be particularly noted, namely:

(a) The multithreshold outputs progressively switch from
logic 0 to logic 1 with increase in gate input summation

‘i ax;, s shown in Fig. 2a. The multi-input Exclusive-

kerral 1'(x) N

By ety

23 ——=q02 [

DT 0y
.

* . )
fp——aqGn

Fis. 1V Two threshold-dogic approaches 10 logic synthesis

@ Spectral translstion design topology, generating a kernal fuuction

with pre- and post-Exclusive-OR and/or Inverter gates

» Multllhulhold element dcn;n topulogy, with post-threshold
binati qui only

1(x)
b

OR interrogating these outputs therefore provides a final
output as in Fig. 2b.

(b) 1t will be seen that the output Exclusive-OR logic
never has to cater for the output condition #,,, =1 with
8/ =0, and hence this output Jogic may be realised by half-

Exclusive-OR relationships [4], ie. [f{(x)f;.,(x)] rather

than  [f{x)fi44(x) + f{x)f;41(x)]). Therefore instead of
the full Exclusive-OR gates required by the spectral trans-
lation synthesis methods of Fig. la, much simpler half-
Exclusive-OR gates such as shown in Fig. 2c are possible
with multithreshold synthesis.

This paper thercfore pursucs this latter approach, with
its simpler Exclusive sclationships, but with the possibly
more  complex  multithreshold kernal. Circuit  designs for
multi-threshold  gates have been considered by  previous
authors  [2-4, 13}, particularly in  Digital-Summation-
Threshold-Logic (DSTL) array form, but the possibility of
a mwye viable realisation in CCD technology arises if present
developments in this arca continuc. In particular CCD has
inherent propertics which offer the possibility of including
more than onc output thieshold without greatly increasing

0143 2062/K1/0.90107 ¢ 17 y01 Sofo 1"



Table 1: Canonic spectral classification of all binsry functions
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of 1 < 4 under tha {ull Rademacher-Walsh invariance operations

Canonic  Spectral coefficients Lincarscparable
function . (threshold)
r, r, rn n r, ra To [ZPRR T [JVUE S (4% [ 7iase or not

| 16 O 0 O (1] 0 [ 0 0 0 [} 0 0 0 0 0 Yes

2 14 2 2 2 2 -2 =2 -2 -2 =2 2 2 2 2 2 -2 Yes

3 12 4 4 [ -4 —-4 0 -4 0 0 4 [} 0 [ [} Yes

4 10 6 6 2 2 -6 -2 -2 -2 =2 2 2 2 -2 -2 2 Yes

$ ] 3 38 0 [} ~8 0 0 0 [ [ 0 /] [} 0 Yes

6 8 8 4 4 4 -4 —4 -4 0 0 0 0 0 —4 4 Yes

7 [ [] [ 2 } 6 -2 =2 -2 -2 =2 -2 -2 =2 -2 -2 6 Yes

8 4 4 4 4 4 4 4 -4 —4 4 —4 -4 —4 4 4 —4 No

I ntries 1. 3 and $§ arc for functions of & < 4 variables, wherseas entrics 2, 4, 6, 7 and 8 arc for functions of exactly m = 4 variables. Also entrics
1 10 7 arc all lincarlyscparable funciions, with entry 8 as the only nonlincarly-separable entry.

the gate complexity, which is a powerful attraction over
previous concepts. This is currently being rescarched by
the author,

2

The tabulated methods of synthesis noted earlier [10] are
restricted to a2 maximum of four input variables (n = 4),
due to the nonavailability of tabulated data for n > 4. The
developments disclosed herewith, however, extend the
spectral translation methods of Edwards er al. (9] to give
multithreshold gealisations, giving multithreshold results
comparable to the n <4 tabulated results of Haring, but
which may be extended to functions of n > 4.

Consider the case of four-variable combinational Boolean
functions. Using Rademacher-Walsh classification procedures,
all 65536 functions of n < 4 can be compressed into the eight
positive canonic entries detailed in Table 1 [4,9]. Thus
all n < 4 functions can be made with the network topology
shown in Fig. la, the pre- and post- kernal operations of
Exclusive-OR and Inversion corresponding to the operations
involved in the spectral classification procedure [9]. Only
one design of nonthreshold kernal is required for n <4,
to cater for functions covered by the classification entry 8
o) Table 1. A

For n> 4 there semains the same possible threshold or
nonthreshold topology of Fig. 1a, but now there is a require-
ment for more than one design of nonthreshold kernal to
cover the many nonlinearly-separable functions which are
present in m > 4 canonic classifications. However, as already ™
noted, any Boolean function of n variables, where n can
be any value, can be made with the single multi-output
threshold topology of Fig. 15, provided it has appropriate
weights and sufficient thresholds and half-Exclusive-OR
relationships on the outputs to distinguish each threshold
output {10.13]. This will be our objective in the following
developments.

Conversion from the first to the second network topologies
shown in Fig. 1 involves the three following operations:

{a) conversion into multithreshold form of functions
requiring disjoint spectral translation, that is the postkernal
Exclusive-OR of the kernal function output f'(x) with onc
(or mare) of the x; input variables

(h) conversion  into  multithreshold  form  of  functions
requiring input  spectral  translations, that is  prckemal
Exclusive-OR’s of one or more of the x; input variablcs to
create 2 new input variable sct to the function f'(x)

() conversion  into multithreshold  form of any non-
thecshold kernat function £'(x).

Any given function f(x) may requite simne or all of these

Developments

on

three operations to be applied if it is not inherently a single
or multithreshold function in its own right.

To consider the above operations for our present pur-
poses, first jet usvecall that the Rademacher-Walsh spectrum
S] of a n-variable combinational logic function f(x) is an
alternative representation of its truth-table vector £} of
2" clements [4, 14]. The spectrum is formed by the multi-
plication of F] with a 2" x 2" transform matrix, {77, that
is:

[TIF] = 5]

where the square transform matrix [T] is (usually) the
Rademacher-Walsh transform, and F) is the truth table
of the given function, but recoded (+ 1,— 1) from the more
conventional (0, 1). The resulting numbers in S], the spectral
coefficients, uniquely define the given function f{x), and
represent a set of correlation coefficients between the
individual inputs and combinations of inputs of the function,
and the function output. If a function is a threshold function,
then the primary coefficients, i.e. the first n + 1 coefficients,
are equivalent to the Chow parameters found in published
tables {1,4], and can be used to read off the weights and
threshold required to realise the function.

The theory and use of spectral methods in the design
of combinational logic circuits may be found in published
literature {4,9,15). The inverse transformation from the
spectral domain back to the two-valued domain, namely

(r17's] = F}

is readily available.

The relationships of the spectral coefficients of functions
S'(x) and f(x), see Fig. la, under the above three operations
will now be considered.

2.1 Disjoint spectral transiation
Disjoint spectral l{anslation is the modification of the output
of the network f'(x), where f(x) = f'(x) ® x;: this operation
results in the interchange of pairs of primary and secondary
coefficicnt values as follows between the spectrum of f(x)
and f(x) as follows:

o <
]

T ** Py clc.
This may be restated as: in all 2* coclficients append i if
“it docs not appear and delete it if it is already present.,

In this situation we consider the funclion f(x) is no

TEE PRIXC, Vel J28 Pt E Ne 8, MAY J981]
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linearly separable but the function ['(x) is. Thus f'(x) can
be represented by a weight-threshold vector of

f'x) = a',,n',,...,a;.....a,'.;l'.

If a multithreshold solution can be obtained it will be in
the form of

fx) = {(fix)o fr(x) 0 f3(x)...® [n(x))
which in weight-threshold vector form is
f(x) = g4,d;,...

where 1, <t; <1, <...<{,,,sce Fig. 2
It can be shown that a possible solution is

Hix) = [((x)+x
filx) = f(x)x,
since
Lix) e fi(x) = (S} +x)ef(x)x; = f'(x)ox,

The weight-threshold vector corresponding to these functions
is

fx) =ay,03,..

where ¢ (assuming all weights are positive) is given by

RNy A TTY P T S TR

ate,...,ant' '+

c>t'-ag ’
both must be satisfied
n
c> Y ap+1—q-t
L=
rreshoid
outpts (x) 1y(s) B0 thn) () 15(x)

. Py ¢

7
0 4 Gy Y % ts e
a il
tinal
output f(a)
1
o
-0 H 7Y % s n
Zo,n,
® is)
fy(x) [
"o ———4
H(n) 1s)
ftn) —
tg(n)
c

Fig. 2 Multithreshold relationships of Fig. 1.

# Individusl outputs £, (x) ot 1, f,(x) st ¢,, of the multithresheold
rale

» Esclusive OR
filxh. oo

« The usc of half-Exclusive-OR gates | f{x) 121 (X)) instend of anemal

wutput  ftom  the moltithreshold ouiputs £, (x),

Enclusive-OR gotes | f1x)1., (3) 4 fx )} fio o (3)) G0 vealise the final
wuiput fla)
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In other words, the original weight 4/ is raised by this amount
¢ and another threshold is added cqual to the original thres-
hold ¢’ raised by the same amount c.

The same method applies when more than one input-
variable is fed forward and Exclusive-OR'ed with the function
J/(x), e.g. with three input variables fed forward we have

) = ['(x)ox,ex;0x,
Here we find that
S(x) = fi(x) @ f3(x) @ [3(x) ® fo(x)
where
NHEx) = R +x+x+x,
f1(x) = ['(xXxg + x5+ x0) + x(xp + x2) + xpx0
5@ = L@ Ixx+xa) + xpal +xpxxa
Ja(x) = [1(x)x;x;xp
or that if
r'x)=d,a,...
then
f(x) = 4),05,...

' +c,t'+2,1" 4+ 3¢

. e . 0 e
'dlvaj-akc”-)aln’

Jaitc,agpteapte,...,an

where ¢ (assuming all weights are positive) is given by

LJ
c>t'—agqandc > LZ' ap+1—ag =1

a
e> t'—djande > Y ap +1—a;—1' {all must be
L= satisfied

n
ce>t'—ayandc > Y ap+1—ay—1t
ey

Example 1 in the following Section shows the application
of this numerical procedure to determine the required input
weights and output thresholds.

2.2 Input spectral translation

Input spectral translation [9)] is the replacement of any
input variable x; by the Exclusive-OR signal x;®x;,i# j#0;
this operation results in the interchange of all pairs of primary
and secondary coefficient values which contain i in their
subscripts as follows:

B/

e © g ele.

with 7o and all other cocfficients which do not contain i in
their subscripts g unchanged. This may be restated
as: in all coefficients which contain the subscript i delete j
if it also appears and append it if it does not.

In this situation we consider the function f(x) is not
lincarly scparable but £'(x) is. Thus f“(x) can be represented
by the weight-threshold vector thus:

’ e (N
..u,.u,—..,..d,..l_

[tx) = ay,05,..
The multithreshold solution would take the form of

J(x) = 1) f1(x) e fugx) .. [ (x)}

(1]



A possible solution to this is
Nilx) = foox)+x, +x
Li(x) = x+x .
Hx) = xfio(x) + X, 10(x) + xi%;
fa(x) = x;x; :
[s(x) = x;x;f01(x)
where foo(x), for(x), f1o(x) and fy;(x) are obtained from
a Shannon decomposition of f'(x) as follows:
I'®) = X% o0(x) + Xix;far (X) + Xy, 10 (x)
+x,x; 11 (x)

The corresponding weight-threshold vector for this solution
(assuming all weights are positive) is

n »
fx)=ay.dh,..., Y aL—a—aj+ 1, Y ap—q+1,
L=1 L=y

N YT P P P

The thresholds ¢, to r5 can be either calculated separately
by simply stepping through the truth table of the function
or. alternatively, values can be computed as follows:

n
0= - 3 ap+aitaj—1)
— L.. —

n
included if ¢ >L): ay —~a;—aj+1
-1

)
S a—aj—a)+1
Le)

I =

=1+ Y g} —2;—aj+1+(a~1")

Le) ——

included if g; > 1’

"
te=2 Y ap—2—aj+2
Ley
”
Is = 1'+2 Y oy —2j—2;+2+(a—1)
Leg S

included if g)> 1"

If the original function f'(x) has more than one threshold
to start with, then each original threshold must be expanded
into the corresponding five new thresholds. However, it
will be apparent that the thresholds corresponding to the
functions f;(x) and fs(x) are independent of the original
thresholds: thus, if the original function has more than one
threshold, when cach is expanded the second and fourth
function of each expansion will be identical and therefore
pairs of these functions will cancel out. In effect, therefore,
cach threshold expands into only three new thresholds except
for the first which expands into five new ones if the original
number of thresholds is odd.

This can be summarised as follows:
Lot the original function f'(x) have a weight-threshold vector
of
B Y N S A

Sy = ay.4y. ... .0;.9...

nn
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Then (assuming all weights are positive) f(x) is given by

f(x) = a,,0;,...,0,,85,...,8,:1,,1;,

cerliper-¢-1)?
where

ap =ap when L = lton L #i#j

o = ay —a;—a;+1

!:Ma

‘ap —a +1
1

¢l==

™M

and

n
N A (TR X al+a:+al'—l)
Ley

~ -

included if £} > ; ap —a;—a;+ )
<)

”
1 = ¥ aj —aj—a)+ lincluded if p is odd

L]
n =1 +‘§ 0L ~2j~aj+ 1+ (s} —1})
included if a; > 1)

=2 LG 63 — 2a) —a; + 2 included if p is odd

n
s =0, +2 ¥ 6y —2— 2+ 2+ (@} —1))
L=y P
included if a; > £}

.1
g =13 - (13 —LZ ';-*'l""ﬂ;"l)
. Y}
. —

L]
includedift3 > ) ay ~aj—aj+ 1
Ly
L 4

L.}
th= 634 Y &y —2; —2;—aj+ 1 +(a~13)
Ley ettt
included if a; > 13
(] > U L] , ’ (]
th =03+2 ) ap —20,—2a;+ 2+ (a;—13)
L-l S——
included if a; > 13
1y 10 7y as tg 10 1y but with 15 in place of ¢}
132 10 144 a3 1g 10 14 but with 13 in place of 13
Tapor-(-)? V005,04 _(-1y® aS 1, (0 1y but with l:,
in placc of 13

Example 2 in the folfowing Scction shows the application of
these arithmetic computations.

In general, functions may be resolved using both disjoint -
spectral translation and input spectral transation, in which
casc the two methods described would be used together.

IEE PROC., Ve, 128, P14, N 3, MAY 1981
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Note, however, that method 1 should always be applied first
since this method can only be applied to functions which
initially have one threshold. When this has been done the
second method can be applied to give the final solution.

It must also be noted that since the stipulation that all
weights must be positive has been applied throughout, careful
attention must be given to ensure that inputs with negative
weights are inverted.

Example 3 in the following section illustrates these points.

2.3 Nonthreshold kernal function
For n <4 the only nonthreshold classification of functions
is the so<called ‘all 45" spectrum {4, 9], due to the fact that
all its coefficients have the value of £ 4, see Table 1. The
simplest of the functions covered by this classification in

3 Example: multithreshold syntheses

3.1 Example 1
Consider the nonlinearly-separable function

[(x) = ;n;:xs +;|Ii;: +“l;l;)

Its spectral coefTicients are given in () below. In order for
this function to have a thresholdlogic kernal, spectral trans-
lations are required to give the magnitudes 4, 4, 4, 12 in the
primary set of coefficients. Disjoint spectral translation
with input x, and with input x; is therefore implemented,
giving the results detailed in (b) and (c), respectively.

(c) is now linearly-separable, as may be confirmed from
published data [1,4]. The corresponding b; and a; weights
are shown in (d) and (¢), giving the disjoint single-threshold
sealisation of Fig. 3a.

X re rn r ry fe T Iy M I Faa T N Tae N TN Tas
N
(o) 4 —~4 —4 -~ 4 4 4 0 4 0 0 12 .0 0
) —4 4 4 4 -4 —4 0 12 0 4 0 0
© 4 —4 —4 12 4 4 0 4 0 0 — 4 0
d) bo b b, b, be
-4 —4 —4 12 0
* ’ ’ " "
© @ @ &6 keFig
-1 -1 -1 2 0

terms of weights and thresholds is the canonic function
[(x) = x,x3 ® X, X4 ® X3Xq ®X3Xq X\ X3 ®X;3X;
which has a spectrum of
Re Ry Ry Ry Ry Ruy Ry
-4 4 4 4 4 4 4 4 4 4

However, in 2 multithreshold form it can be realised by
the weights and multiple threshold values of

61,8;,8;5,84:0,,13
where
a =4, =g, =g, = ]
n =2
=4

All other functions in this class can now be obtained by
using suvitable spectral translation, i.e. Exclusive-OR'’s on
appropriate inputs. Thus this function can be thought of as
the positive canonic function covering all the ‘all 45° classified
functions.

For n> 4 the problem of finding canonic nonthreshold
functions in multithreshold form is more difficull since
there would have to be a large number of them (for n <6
there would have to be > 69000). It is therefore proposed
that if a function is found to belong to a nonthreshold class
then it should be artitrarily decomposed about one or more
input variable so that each part of the decomposed function
can be transformed in single or multithreshold form using
the previously described methods.
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Correction of the negative a; weights give the modification
shown in Fig. 3b. Finally, conversion of this realisation to
the required multithrezhold form is given in Fig. 3¢, where

the required multithresholds are determined using the above

Ru Ry Rau Ry Ry Ry Ry Ray Ry

4 —4 —4 -4 —4 -4
4
a lﬂl)
1(x) .
2
o
-]

~
QL.
Y

- .

-

n

~

]
2 ——yo

Fig.3 Multithreshold synthesis of
f(x) = 5 2,8, $ X,8,k, ¢ x,x,8,

& Disjuiat spectrst transletions va given function f(x)
& Correction of negalive input weights
€ Transletion of A inlo » single multithreshold restisation



devclopments, namely
c>1'—dy =2
c>1'—ay =2
cPaytay+ai+1—1 =1

cPdy+ay+ta g+~ =1

reg ry ry ry rg
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Its spectral coefTicients are given in (@) below. Input spectral
translations shown in Fig. 4a give the spectral coefficient
revisions shown in (b) and (c), giving a single-threshold kernal
in this phase of the realisation.

Elimination of these two input spectral translations by
multithresholds give the two subsequent multithreshold
realisations for f(x), shown in Figs. 45 and ¢, respectively.

Na Iy N Ty Fa Ty Ny e T T Tiam

@) 04 0 4 0 4 0 —4 4 0 —4 0 —4 0 12 O
) 04 4 4 0 0 0 -4 0 12 -4 4 O 0 0 —4
¢) 04 4 4 12 0 0 00 0O 0 4 -4 —4 —4 0

whence e =2

Thercfore the final required input weights and thresholds
are:

gy =1+2=3

g, =1+42=13

ay

unchanged
aq
hy = 3
1n=34+42=395

h =5+2=7

3.2 Example2
Consider the function

X)) = x3x3Xx4 +X,;;X. +X3X3X4 + X, X3X3X4

+J.;1X)X4

DT
D

Fig. &  Multithresheldd synthesis of

IN) 5 N N K, ¢ X KK, 45, 0,5, ¢5,0,0,%, ¢ X,8,5,x,
P ndl ok ] Eandl lak ] 1T e [ ol |

o Input spectend (ranslations on the given function f(x)
b Kemaoval of the 1, inpul specirs! ransiation
o Remaval of the €, inpul spectrsl teansiation

112

(@) de b by by by

0 4 4 4 12

(¢) @ a) a7 a) a
1’ = 3,sece Fig.4a

o 1 1 1 2

3.3 Example3

As a final example which involves both input and disjoint
spectral translation in order to achieve a thresholddogic
kernal function, consider the function

f(x) = x,x3 +X53(x3 +X,) + x3X3x¢

D

[
el 1'(x)
2 3 1(a)

2
L

]

l;-De

£3 1(x)

"

1(x)

c
D- ta)
f .

Fig.$  Multithreshold synihesis of

JUx) = X M AT, VK )%, 8,
& Inpul and disjoint iranslstion on the given Tunclion f(x)
A Correction of negative Inpul weight

€ Remaval of the outpul disjoint speciral transinlion
o Kemeorval of the input specisel tronsintion
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The input spectral translation and the disjoint spectral trans-
lation to give a thresholddogic kernal are shown in Fig. Sa,
the spectral coefficients of the given function and the result
of these two translations being given in (a), (6) and (c) below,

To Ny Iy Fy Is I3 7y T Ny T3 In

@—4 4 84 00 —4 0 8 4 0
®) 80 -4 8 4 4 0 4 4 0 —4 -—4
) 84 -4 8 40 —4 0 4 0 —4

@) bo b by by b
8 4 —4 8 4
(€) ao oy a3 a) a
t' = 3,3cc Fig. Sa
21 -1 21

Correction of the negative weighting value for a3 is shown in
Fig. Sb. Elimination of the output Exclusive-OR is shown
in Fig. Sc where ¢ must obey

c>1t'—ay =3

cPatayta+1—1 =1
whence ¢ = 3, and finally the elimination of the input spectral
translation is shown implemented in Fig. 5d.

4 Discussion

The methods described provide a fast arithmetic means of
obtaining 2 multithreshold solution. In practice it is often
found that severa] alternative spectral operations may be
used 1o synthesise a function, each method possibly giving
rise 10 a different number of required Exclusive-OR gates.
Work has been done on which is the best to select, a full
treatment of which can be found in Edwards [16]. However,
no work has been done on which to select to give the best
sct of weights and thresholds in multithreshold form, the
*best’ usually considered as being the minimum integer values
for the weights or the minimum number of thresholds, and
hence this remains an area of further rescarch.

The examples shown give an indication of the values of
the weights and thresholds obtained using this method. In
comparison with the minimised sesults of Haring ef al. and
Mow et al,, it will be found that they differ only slightly.
However, this method can be applied to functions of greater
than four variables.

IEE FROC., Vel 12K, P E, N 3, MAY 1981
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HIGH-SPEED PROCESSING OF SERIAL
INPUT LOGIC DATA

Indexing terms : Logic und logic design, Seriol data processing

A method is p d which enables the synthesis of a serial
input logic processor 10 be obtained quickly and simply. The
synthesis gives a solution which uses modules previously
used in the design of general synchronous systems.

Introduction: Recent work'™ has indicated a need for the
eflicient high-speed processing of logic data where the input
and output are in a word-formatted serial strecam. This is
particularly relevant for data ication sy

L W el Y ’ processor | __ [ °) P Hx)
AN 3 e Sl ETL TR ¢

St ‘ ddﬂy A —————ad
nput word i output word

clocl::] G

Fig. 1 Schematic diagram of a sevial logic processor

Fig. 1 shows a schematic representation of a serial processor
where a function f(x) is produced from an a-bit input word
after a delay of A clock pulses from the time of the last bit x,
entering the machine. The output word therefore consists of
only one relevant bit, the remainder being ‘don’t care’ terms.

It is desirable to include the following fcatures in the design
to maximise speed and efliciency:

(i) direct serial processing, i.. no internal conversion (rom
serial to parallel data

(ii) no resetting between words, thus saving a clock pulse

(i) minimisation of the delay 4, the minimum solution being
A=]

{iv) minimum set of logic circuit types, ¢.g. modular design

(v) maximum speed modules if they are 1o be used

(vi) simple design stratcgy, e.g. utilisation of the don’t care
terms. , .
If the processor is considered as a typical synchronous
machine with one input and one output, then it has been
shown® how to obtain a realisation using the modules of Fig.
2. with a delay A of one clock pulse, thus satisflying conditions
(i) to (iv). It has also been shown®® how a high-speed bistable
with a two-input variable universal-logic-module at its input
can be built using ECL, which can be uscd as the module of
Fig 2 to satisly condition (v). Finally it has been stated that a
design procedure exists;® however, this procedure takes no
account of the (n — 1) don’t carc terms at the output of the
processor, and is consequently not an optimised solution.

Fig. 2 Logic module
D4 1) = (T4 + xBX)

However, a method has been developed” which does take
account of the don’t care terms in the general solution of
synchronous circuits. This letter therefore pr a desig
strategy based on the above method but which relates more
dircctly with the problem at hand. This simplificx the design
procedure greatly, satisfying condition (vi)

Design procedure : A geverse response tree similar to that of
Reference 7 is used. but which has a different fabelling system
which greatly improves the simplicity of the design. First, a

201

node is drawn and labelled with the Boolean expression of the
required function, as shown in the Example. This node then
branches into two more nodes, each of which is labelled
according to the decomposition of the function about the
variable x,, the kft node corresponding to x, =0 and the
right node corresponding to x, = I. Each of these nodes
further branches, this time about the variable x,_,, obeying
the same rules as before. This continues until the final
branching about x, is reached.

At each level of branching some of the nodes may be
*pruncd’ in accordance with the following rules:

(a) A node is pruned if it is Jabelled witha Oora 1.

(h) A node is pruned if its label f, is the same as the labelf; of
an unpruned node on the same level,ic. f, = f,.

(c) As (h) but with f, = f,, i.c. the inverse.

A pruned node thus becomcs a terminal node, ic. its
descendants are eliminated, and its label is underlined to
distinguish it from other nonterminal nodes.

(x,0 l‘).(l].ll. )-(lzu:uL )l‘

RGN N,

a
r——.—.'(l’
oD
C|
AXB
[ ) o 0
C C
0 A!Bj AXB
ny T
o b DD oD .
C — €
{Ax8 ) laxe o LAx8] |
q x| ¢ o2
D b
-4 Bc.—-
AX
(B el
X
c
b

Fig. 3 Exomple:f1x) = (x, @ x,) . (x; D x,) + (%, D x, © x,)x,

@ Reverse response tree
b Modular represcniation

Figs. 30 and b show an example of the design procedure to
synthesise a particular function. It is instructive to go through
the procedure step by step to ensure complete understanding.

Required function

JUx, X3 X5 X)) = (% @ x,) . Ux, D x,)

+U, DN D). N,
LTS PR E TR IE A B 2% 7% PR 5 P J% A
Step 1: Decompose the function about the variablex,:
TNy N %, W) = %y 8,
g Spe G D= w8y A vy b §, 1
Label the keft descendant node v, x and the right descendant
node Xy Ny + NNy 4 NN

Check whether any of rules (a), (h) of (¢} applics to these two
Labcls. In this instance they do nt.
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Siep 2 : Decompose about xy: Relerences )
1 sones, . v.: Pipelined combinational circuits for high speed scrial
f1x,. %,.0.0) =0 data”. Telecommunications Group report 15K, University of Essex

2 paws. n o CReslisation of mode o lled scrial pr
Sixx L0y =x, systems’, Telecommunications Group report 159, University of
Lssex
(6. %, 0. N =x, + x, 3 paws, 0, C. and JONEX, k. v.: "Hardware efficient bit sequential
- | addens and multiplices using mode comtrolled Jogic”, Electron.
f1xy. x5 1. D = x, Lett_ 19%0, 11, pp. 4M4-436
. . 4 vaws. . €. and JONES, E V. "Mode controlled serial logic
Label the nodes from left to right accordingly. A systems”, Proc. LEEE int. symp. on dircuits and systems, Chicago.
On checking it is found that aodce f{x,. x,. 0, 0) is pruncd Apsil 19K1. pp. 902 908
according to rule (o). 1t is therefore underlined, indicating that S NEwmORN, M. M. 'A xynlhesis technique for hinary input-binary
no further branching will oceur from that node. oulpul xynchronous sequential Moore machines. JEEE Troas
196X, C-17, pp. 697 69
S1en 3 - . ‘e & . 6 amix kv High-spoed transi bistable circuits’, Elevcrron.
Siep 3 : Decompose about xy: Tott. 1976, 12, pp. 375376
. : 7 wiinass G.oa T Uniform decomposition of incompletely specified
flx,. 0. L0 = x, xequential machines'. PEEE Trans.. 1975, C-24, pp. 830 K43
¥ = X AkErs, & K ‘Binary decision diagrams’, ibid, 1978, C-27, pp.
Jix,. 1L 1L0)=x, 509.816 y & PP
15,.0.0. ) =1 9 meE W. 12 A sequential approach 10 combinational logic

) design’, Rindio & Eleciron. Eng., 1951, S1, pp. 479 -304
Jix,. LO y=x,

15, 0.5 1) =0 0013-5194/K2/030148-0251.50/0
fix, L L) =1

Label the nodes accordingly.

This time five nodes are climinated: f(x,. 0, 0, 1), f(x,. 0. I.
1) and fix,. 1. 1, 1) are all pruned by rule (a). either f(x,. 0, I,
0} or f(x,. 1. 1.0} by rule (h) (it is immaterial which), and
Jix 1.0.1) by rule (). Fach of the nodes is therefore
underlined. Note that only nodes on the same kevel effect the
pruning.

Step 4 : Decompose about x,

110.0.1.0)=0
1.0 1.0y =1

Both nodes are pruned by rule (a): thus the branching cannot
continue,

Euach nonterminal node is now converted into a module.
The module receives at its inputs A and B cither the outputs
of preceding modules in the same manner as the branches of
the tree. or a logical constant O or 1 if the preceding node is
labelled 0 or 1. respectively. If a preceding node were pruned
duc 10 rule (ck then the module would reecive the inverse of
-the output of the preceding module. All modukes thus have
their x inputs connected 10 the machine input. and the design
procedure is completed. This final design is illustrated in Fig.
3h.

Conclusions : The method described provides a fast and simple
solution to the problem of serial processing. as is
demonstrated in the example given. In comparison with other
approaches' * it shows some features which are an
improvement. such as the delay time A and in certain cases a
reduced number of modules. In fact. a uselul feature is that an
upper limit can be shown to be 2* ' for the number of
inodules that are required, where 1 is the number of input
variables.
Finally, it is interesting to note that recemt work®® on the
design of parallel input combinational logic employs a similar
approach to this serial input logic synthesis, ic. a tree
structure and a modular realisation approach. It is therelore
possible that beneficial features of either approach could be )
inter-related. which kads to a promising arca of further .
rescarch.
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Realisation of multithreshold thréshold-logic

gates using charge-coupled devices
P.D. Picton, B.Sc. )

Indexing 1erms: - Logic gates, Threshold logie, CCDs

Abstract: A threshold logic gate is described which uses as its core a chargecoupled device. It is shown that
the CCD is suitable for this application because of its ability to {¢) quantise charge input to a gate, (b) add
charge packets from differemt gates, and (c) permit conditional charge overflow to occur. The peripheral
circuitry employs compatible MOSFET circuits, so that the cntirc gate can be made in intcgrated circuit

form. The gate is voltage programmbale.

1 introduction

Charge-coupled devices (CCDs) are very suitable for LSI logic
design because of their high packing density, low power
consumption, and their MOSFET compatibility. Previous
authors {1—-6] have shown that it is possible to perform
binary and higher-valued logic with CCDs and actual LSI
realisations have been achieved. However, the fact has been
overlooked that CCDs have inherent properties which are
ideally suited for the realisation of a threshold-logic element.

In the following Sections, these properties and others are
discussed and a possible design for a multithreshold threshold
element is given. lts main advantages over previously con-
sidered gates [7, 8] are its small size and the fact that it is
voltage programmable.

2 Threshold logic

A threshold-logic gate is a device which receives binary inputs
and yields a binary output, but unlike vertex gates it does not
obey Boolean algebra; instead, it obeys the arithmetic
summation of eqn. 1:

@ =10 5 ax, > 1 )
[L)]

[(x) = 0 otherwise
where

Xx; is a binary irput
ay is an integer weight associated with x,;
¢ is an integer threshold
»n is the number of inputs
f(x) is the binary output or function

Fig. 1 shows a typical symbol for a thresholddogic gate which
can perform many but not all binary functions; those that it

1(xn)

Ceencral theeshold logic gate symibed

Feg. V

Paper $82TF, first seccived Thth March and in revised fowom 274h
Augusl 198}

Che anther ia with the Schend of Fiectrical Engincering, University of
Hath, Rath HAZ TAY, England
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can being termed ‘linearly separable’. In order 10 perform the
nonlinearly separable functions, the number of thresholds in 2
device must be increased and each output passed through an
Exclusive-OR gate as in Fig. 2. This arrangement now obeys
eqn. 2:

J&x) = 1ile,; 3 Y ax; > 1y,
i=)

forj = 1,2,... )
J[(x) = 0otherwise ’

Thus, any binary function can be realised using a single or
multithreshold threshold-ogic device, providing that suitable
weights and thresholds and exclusive-OR gates are available
19.10].

Hr)

Fig.2 Gencral realisation of funciion f(x) using mudtithreshold
threshold-logic gate end m-input exclusive-OR gate

In order that a particular device is able to perform
threshold-logic operations, it must have the ability to (a)
provide the integer-valued weights and thresholds, (b) sum the
weights and (c) compare this sum with the threshold values 10
give the relevant 0 or [ outputs. The following Section will
now demonstrate how CCDs can provide cach of these
requirements.

3 CCDs (11,1213, 14]

Fig. 3 shows a cross-section of a typical CCD under a single
gate, where it can be seen that its structure is similar to the
gate of an MOSFET. If a positive voliage V¥, is applied to the
gate, then a depletion layer is created immediately beneath the
gate exteading into the substratc. If the gate voltape is
increased, the depletion layer extends further into the
substrate until a point is reached hbeyond which a thin layes ol
negative charge can bhe stored at the semiconductorfoxule
interface, this layer of charge heing equivalent 1o the inversem
faycr in @ MOSFET. 3t is in this region that the CCD opeates,
the charge being used either for dipital steaage or av a4
represcntation of an anatogue signal.

A simple maodel of a CCD can be used, since it is Tound thast
the surface potential decicases almost incarly as the aneung
of charge under the gate mcrcases. Thus, the arca immediately
under the pate is known as a *‘well’, the chage in this well then

0143 7002204107 ¢ 118 S01 S0j0 e
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being analogous to a liquid, and the surface potential being
analogous to the depth or distance from the ‘top® of the well
to the surface of the liquid. This *depth’ of the well is related
to the applied gate voltage ¥, and the maximum amount of
charge that can be stored in a well, known as its charge-
handling capacity, is given in eqn. 3; by a first approximation
this expression reduces to eqn. 4. However, if the adjacent
gates have a voltage V, applied, as in Fig. 3, then the
maximum amount of charge that can be stored under the gate
is now reduced to the value given by eqn. S. This is selfevident,
since, should any more charge enter the well, it would over-
flow into the adjacent wells,

O = Cox ALYy = V) 6))

Ores = CoxA(V)) @

Qe = CorA(Vy = V) ©)
where

Qmar is the charge-handling capacity, C,, oxide capacitance,
A area of electrode, V; gate voltage, Vy threshold or inverting
voltage and ¥, is the adjacent electrode voltage.

V2 vy V2

meta!
onde
semiconductor
depletion
region

7

potenticl

position
polential l along
® well | intertace
! !

Fig. 3 Cross-section of CCD under single electrode

a Creation of depletion region on applicatioa of positive voltage
& Corresponding variation in surfece p ial showing potential welf

| ]
! !
surfoce l |
| |

Vi Y Y Y
1 VUYLV,
= bl
2] charge h
surface ~ .—
potental E

Vi W 1"& Vi
o .

Fig. 4  Clocked charge trensfcr between two electrodes

@ Charge i stewed in well under ¢,
»and c @, gies from low veliage tu high volisge, aad so charge flows
into well under @,. The result ls that the charge distributes Meclf
eyually under ench elecirode

Jand ¢ ¢, ges from high ag

to bow
charge under @, Bows into wel under ¢,
J A-phose chicking system wavefuems

liage, s that re

Charge stored in this fashion in the well can then be
transferred to other wells within the device. This is usually
done with a 3-phasc clocking system, although 2-phase and
other clocking systems are quite commonly used. Fig. 4 shows
a typical transfer between two wells, and also the clock wave-
forms required 1o do this.

Some features particularly relevant to a thresholddogic
device can now be discussed.

P-type substrate

position
along
nterface

Fig.S Introduction of charge 1o CCD

@ Cross section of CCD showing source diffusion diode and electrodes
C, 106G,

» lSuvhc- potential under each electrode showing charge overflowing
G, to fill G, when volisge on diode is pulsed 10 low value, ic. when
xqis bogic ) and the other NAND gate input is pulsed to high value

€ Charge spills back when voltage ia diode returns to high value

d Clocked transfer beging

(@) Chargeinput :

Fig. S shows a method of inputting a packet of charge of
predetermined size. This is known as the charge equilibration
or ‘filled-and-spill’ method in which, initially, the input diode
is held at a high reverse bias, then pulsed to a low potential
which causes charge to flow into the storage well G;. When
the diode is reset to its high reverse bias, excess charge flows
back leaving a fixed amount in G;: this amount is given by
eqn. 6:

Qi = Cox AV = Veonad) (6)

Thus a packet of charge of fixed amount can be introduced to
the CCD, this amount being set by the difference of the 1wo
applied gate voltages Vj— Von,. Which is equivalent ot the
weight a; in eqns. | and 2. In order to get the product of
#;x;. 3 NAND gate is used with its inputs being x; and the
inverse of the pulse previously mentioned, i.c. the pulse gocs
from a low voltage to a high voltage. While it is at the high
voltage, if the input x; is also at 3 high volgage (logic 1), then
the output of the NAND gate is at a low voltage and the
charge packet is introduced to the system. Clearly the NAND
gate can be made using MOSFLT technology and therefore be
able to be on the same chip as the CCD owing to their
compatibility.

(b) Charge summing
Fig. 6 shows schematically how charge can be transferred from
two wells into one common well, providing that the charge
handling capacity of the common well is sufficient (o hold the
total amount of charge. This would also apply if mworc thae
two welis are summed.

BEE PROC, 3ol 12919 E. Nos. 3. MAY JUX°
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Thus

O =0+0 O]

(c) Charge overflow

Fig. 7 shows three wells. Charge is transferred from well 1 to
well 2, and if the charge-handling capacity of well 2 is less than
amount of charge it is presented with, there will be an over-
flow of charge into well 3 via the barrier gate, which is merely
a gate with a low potential. Thus the charge-handling capacity
of well 2, which is set by the applied gate voltage, can be
considered equivalent to the threshold value in egn. 1, and
the presence or absence of charge in well 3 can be considered
as an output of a logic | or 0, respectively. This could be
extended, such that should the charge handling capacity of
well 3 also be insufficient to store its presented charge; then
there would be a further overflow of charge into a fourth well,
and so on, thus providing the facility for multithreshold
operation.

well §
a,
docked —
chorge
tronster
well 2 well 3
9,; { 0,

Fig. 6  Cherge summation

4 Threshold-ogic gate

Logic gates have previously been proposed, using CCDs which
incorporate all of the above properties of CCDs (cf. the full
adder of Zimmerman et al. {1]). However, these gates have
been restricted to using unity charge packets at the inputs and
outputs to represent the digital signal. The proposed threshold.
logic gate differs from all previous gates, therefore, in that it
incorporates multilevel signals owing to the weights at the
input. To date, the use of multilevels in CCDs has been
gencially avoided and, at most, four levels have been used
[2,3,15], although up to 32 levels have been reported [16].
The reason for this is that it is difficult to differentiate
between the discrete levels at the detection part of the circuit
owing to various noises that occur in CCDs {11]. However, in
the proposed threshold-ogic gate, the detection at the output
merely looks for the presence or absence of charge in a well as
explained in Section 3c. Also, the number of clocked transfers
have been kept 10 a minimum, so as to reduce the transfer

. inefficiency. Thus, some of the main problems of using multi-
levels are overcome.

Fig. 8 shows the proposed threshold-logic gate, which has
four inputs and five separate thresholds and outputs. The gate
operates as follows: the four inputs are sampled at a specific
point in the clock sequence and the products a;x, formed
using NAND gates as described earlier. The charge packets are
then clock transferred to the large central well GS where the
chasge is summed, and if this sum is greater than the charge.
handling capacitics of this well, charge will overflow into well
G6 and possibly inte wells G7 1o G10. The charge-handling
capacity of wells GS 10 GY are propottional o the voltage
applicd al their gates and arc cquivalent 1o the thresholds in
eqn. 2.

""tc charges (if any) in wells Go 1o G0 are then transferred
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via the output drains into the capacitors C which convert the
charge into a voltage. The output circuitry is shown
schematically for one output only and consists of a switch, an
amplifier and a sample and hold logic circuit, the latter being
required to hold the output at a logic 1 after the charge has
been cleared from the capacitor via switch S to be ready for
the next output signal. All this circuitry can be seadily
designed using MOSFETs [17], including the final stage of the
gate, namely the exclusive-OR circuits [18], and thus the
entire structure could be manufactured on a single IC.

clocked
charge charge
transfer overfiow

|

well 3

barrier

l
m well 2

Fig.?  Charge overflow principle

S Discussion

The CCD muhtithreshold threshold-logic gate would seem to be
a powerful gate, owing to its small size, low power consump-
tion, MOSFET compatibility, and its programmability.
However, it suffers some drawbacks owing to the inherent
limitations of CCDs, such as its relatively slow speed, typically
clock frequencies of a few megahertz, and the very tight
tolerancing specifications. As an example of the tolerancing.
consider the previous gate.

Let the transfer inefficiency € be defined as the fraction of
charge left behind during a clocked transfer [11,12, 13, 14].
Thus, after the transfer from the inputs to the well GS, i.e.
after four clocked transfers, the total charge entering G5
would be:

'-i‘ G‘X‘(l "()‘ (8)

instead of

L]

z a;x;, the theoretical value

i=)
The worst case can be defined as being when all the inputs are
at.a logic 1 and the total amount of charge is equal 10 the
highest threshold, i.e.

"
z a;x; = g 9)
i=)
Thus, in well G10, one packet of charge should be found. The
actual amount would be

Y a(1—€) —15 +1
i=

10)

or
('-’C)‘l; —ig +1

This amount of chage is then tansferced (o the onpat diam,
and thus the amount of charge that reaches the output is

O = (L—€)' () - 't 15 + 1} uhn
A typical solntion of this cquation, for OfF = 0.9, is
€ = 0.001 24

e
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This states that, with a value of € of 0.1%, which is reasonable
for a typical CCD, then in order to get 90% of a charge packet

to appear at the output, f; which in this case equals ‘fl a;
must be less than or equal to 24, Qlearly, if the number of
input variables increases, It usually follows that 'il a; increases,

and thus, in order to keep 3 90% charge packet at the output,
the value of ¢ must decrease, which may not be possible.
Therefore it would seem that a finite upper limit to the value.

of f a; exists.
ie}

Finally, since the threshold gate is s clocked device, it does
not suffer from race hazards, and also feedback can be applicd,
s0 that the device may be used in a sequential mode.
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