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SUMMARY

A r e l i a b l e  method was devised f o r  the  determ ination  

o f surface  a c id i t y  o f  c la y  m inera ls  and oxides, by the adsorption  

of m -  n i t r o a n i l in e  from aqueous s o lu t io n ,  which accounted f o r  

the  energy o f adsorption  o f the  protonated and unprotonated forms. 

The Hammett a c id i t y  fu n c t io n  [Ho] of a sample o f H * -K a o l in i te  

was 2 .2 1 ,  a t  bulk  pH 3 .0

The re a c t io n  o f c ry s ta l  v io le t  CCV] and c ry s ta l  

v io l e t  lac ton e  [CVL] were studied in  so lu t io n  and on c lay  m inerals  

CV and CVL decompose in  m ethanolic  and e th a n o lic  s o lu t io n  i f  

exposed to  l i g h t ,  to  y ie ld  demethylated d e r iv a t iv e s .  The 

products o f  CVL d i f f e r  from CV and th is  suggests, the  co lourless  

lac ton e  is  more p h o to la b i le  than CV. A co lo u r less  s o lu t io n  of  

CVL w i l l  undergo lac ton e  cleavage on c lay  m inera ls  and oxides to  

form a v io le t  z w i t t e r io n .  This z w i t te r io n  can be d isp laced from 

the surface  by w ater vapour. M inera ls  w ith  a high surface  

a c id i t y  r e s is t  the  displacement o f the z w i t te r io n  to  a g re a te r  

exten t then do those w ith  a low surface a c id i t y ,  the  counterion  

being an im portant f a c t o r  in  determ ining the acid  s tren g th  o f  

the su rface . CVL undergoes dém éthylation on s i l i c a  and S i l t o n  

to  y ie ld  the  same products as in  s o lu t io n .  Silton is a brand name

of an acid- treated di octahedral montmorillonite .

The re a c t io n s  o f  methylene blue [MB] and benzoyl 

leuco methylene blue [BLMB] were studied on c lay  m inera ls  and in  

s o lu t io n .  The f i r s t  o rder ra te  constant f o r  the  production o f

methylene blue from BLMB a t 39 and 50°C were 1 .54  x 10  ̂ and

■“6 — 1
3.47 X 10 sec ,



I l l

r e s p e c t iv e ly .

I f  sodium c o b a l t ! - n i t r i t e  or e e r ie  ammonium

n i t r a t e  were added to  an a c id ic  s o lu t io n  o f BLMB, the ra te  of

MB production was g r e a t ly  enhanced. The o v e r a l l  re a c t io n  was

2nd order in  the case o f Na_ CoCNO„]„ and 3rd order in  the case3 Z b
of (NH^Î 2  Ce(NOg)g . The ra te  constants f o r  the re a c t io n s  were

8 .95  1 M  ̂ sec  ̂ and 6 .25 x 10^ 1^ M̂  sec ^ . This suggested th a t

two e le c tro n s  were t ra n s fe r re d  from BLMB to  Na^CoCNü^îg s im ultaneously ,

and s in g ly  to  [NH^^CeCNO^jg . MB and BLMB demethylated on

s i l i c a  gel and S i l t o n ,  to  y ie ld  Azure A, B, C, sym -d im ethy lth ion ine ,

and th io n in e .  Production o f MB from BLMB re q u ire s  l i g h t  and

operates v ia  a photon induced f r e e  ra d ic a l  mechanism. The 

3+ 4 +presence o f Co or Ce , e le c tro n  acceptors, on s i l i c a  or S i l to n  

acc e le ra te s  the  re a c t io n  ra te  and does not re q u ire  l i g h t .
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CHAPTER 1

INTRODUCTION



INTRODUCTION ‘

1.1 General In tro d u c t io n

The de te rm ina tion  o f surface a c id i t y ,  on c lay  m inerals  

and oxides, using Hammett in d ic a to rs  is  w e l l  Known, W a ll in g , C . , (1950];  

Benesi, H .A .,  [1956 ];  Benesi, H .A . ,  [1 957 ].  Recently  c e r ta in  aspects  

of surface a c id i t y  d e te rm in a tio n , using Hammett in d ic a to rs ,  have been 

questioned, Laura, R .D . ,  [1 9 76 ] .  The course o f th is  research was 

envisaged to c l a r i f y  these d iscrepanc ies , and to  produce a more 

accurate method to determine surface a c id i t y ,  using adsorption o f  

an in d ic a to r  on c lay  m inera ls  and oxides. A method was developed, 

as described in  the t e x t ,  which was more accurate  than any p rev io u s ly  

used, and overcame the  o b ject io n s  ra ised  by Laura, R .D . ,  [1976 ].

The form ation  o f  co lour, and subsequent fad ing  o f  

c ry s ta l  v io le t  lac to n e , and benzoyl leuco methylene blue on c lay  

m inera ls  and oxides are  o f genera l and commercial in t e r e s t .  The 

research was designed to :

[ i ]  determine the ex ten t o f the form ation  o f th e ,  v io le t  

coloured, z w i t te r io n  2 -c a rb o x y -c ry s ta l  v io le t  from 

c r y s ta l  v io le t  lac to n e , on d i f f e r e n t  c lay  m inerals  

and oxides.

[ i i ]  to  deduce the mechanism f o r  the fad in g  o f 2 -carboxy-  

c r y s ta l  v io l e t  upon d i f f e r e n t  c lay  m inerals  and oxides.

[ i i i ]  ■ to  determine the ex ten t o f  methylene blue produced

from benzoyl leuco methylene on several c lay  m inerals  

and oxides.



Civ] to  id e n t i f y  the mechanism of methylene blue fo rm ation ,

in  su lphuric  acid  in  the  presence o f sodium c o b a l t i -  

n i t r i t e ,  or e e r ie  ammonium n i t r a t e ,  from benzoyl leuco  

methylene b lue .

Cv] to  determine the  ra te  o f dém éthylation o f  methylene

blue on s i l i o a  g e l .



1.2 The Structure of Clay Minerals

In  the  e a r ly  1 9 2 0 's X -ray  c ry s ta l lo g ra p h y  was f i r s t  

ap p lied  to the  problem of analys ing  c lay  m in era ls .  I t  was shown 

th a t  c lay  m in era ls ,  in  the  main, were e s s e n t ia l ly  c r y s t a l l i n e .

A c la s s ic a l  X -ra y  d i f f r a c t i o n  study was performed by Pau ling , L . , 

(193G]a and P au lin g , L . , [1930)b; in  which he concluded th a t  the  

micas, t a l c ,  p y r o p h y l l i t e ,  c h lo r i t e  and K a o l in i te  had la y e r  

s tru c tu re s  composed o f sheets o f c r is t o b a l i t e  (S io^] and e i t h e r  

g ib b s ite  (Al^COH]^) or b r u c i te ,  (Mg^COHJg). Thus a scheme of 

c la s s i f ic a t io n  was e s tab lis h ed . By 1940 the s tru c tu re  o f  a l l  the  

major la y e r  s i l i c a t e s  re la te d  to  c lay  m inerals  had been e s tab lis h ed .  

Grim, R .E . ,  (1 9 68 );  M arsh a ll ,  G .E . ,  (1949 ),  MacKenzie, R .C . ,  and 

M itc h e l l ,  B .D . ,  (1 966 ).

Layer s i l i c a t e s  are condensations o f  sheets o f linKed  

S i(ü ,ü H )^  te t ra h e d ra  w ith  M^.gCGHjg octahedra, where M is  e i t h e r  

a d i  or t r i v a l e n t  c a t io n .  When the  sheets are in  1:1 proportions  

the  genera l form ula  f o r  the h a l fu n i t  c e l l  is  . 1̂ 2 - 3  ' Og(OH)^,

and they are Known as dimorphic m in era ls . The best Known example 

o f t h is  type i s  k a o l i n i t e .  When the sheets are condensed in  the  

p roportions  2:1 the  m inera ls  are Known as t r im o rp h ic .  The octahedra l  

sheet is  sandwiched between two lay e rs  o f inward p o in t in g  te tra h e d ra  

and has a g enera l formula Si^^^ . 1̂ 2 - 3  '

4 +Defects  in  the re g u la r  a rray  occur when Si and/or  

^2+/3+ s u b s t i tu te d  by cation s  o f s im i la r  s iz e  but lower valency.  

This is  Known as isomorphous replacement.

I f  a l l  the octahedra l s i te s  are f i l l e d  w ith  cation s  the



m inera l is  known as t r io c t a h e d r a l . Whereas i f  only two out of th ree  

octahedra l p o s it io n s  are f i l l e d  then the m inera l is  known as 

d io c ta h e d ra l .

Isomorphous replacement r e s u l ts  in  a d e f ic ie n c y  of  

p o s i t iv e  charge, hence the l a t t i c e  has a net negative  charge. 

N e u t r a l i t y  is  maintained by sorp tion  o f cations,from  s o lu t io n ,  

these cation s  may be exchangeable. The ex ten t o f isomorphous 

replacement w i l l  determine the p ro p e r t ie s  o f the  m in era l,  e .g .  

sw e ll in g  in  w ater .



1 . 2 . 1 The 1:1 Type Minerals

Only the  d io c ta h e d ra l  c la y  m in e ra l ,  k a o l i n i t e ,  w i l l  

be discussed here . O ther 1:1 type m inera ls  in c lu d e  the d io c ta h e d ra l  

m in e ra ls  h a l lo y s i t e ,  and the  t r io c t a h e d r a l  m in era ls ,  serpen tines ;  

[ a n t i g o r i t e ,  and c h r y s o t i l e ) .

K a o l in i t e

The la y e r  s t ru c tu re  o f k a o l in i t e  is  shown in  F igure

( 1- 1 ) .

F ig u re  (1 -1 )  K a o l in i t e  la y e r  viewed along th e  a a x is  ( l e f t )  and 

along th e  b a x is  ( r i g h t ) .  He ight o f  atoms above the basal oxygen 

plane are  g iven  in  nanometres, (nm) from B r in d le y ,  G .W .(1951).

c< -9J 8"

T
I

Key;

O Oxygen;

O Aluminium;

•  Silicon;

(g ) Hydroxyl;

OH It  0-437nm 

AI et 0-327 

O.OH at 0219

Si It 006 
O a tO O



The basal Cd(001)) spacing of k a o l in i t e  i s ^  0.72nm 

From F igure  [1 -1 )  i t  w i l l  be seen th a t  k a o l in i t e  is  e l e c t r i c a l l y  

n e u t r a l .  But in  r e a l i t y  k a o l in i te  c a r r ie s  a small net negative  

charge, due to  isomorphous replacement; Quirk, J .P . ,  [ I 9 6 0 ) .  This  

is  a permanent negative  charge and is  not pH dependent; S ch o fie ld ,  

R .K .,  [1 9 4 9 ) .

Due to  the p o s it io n in g  of -0  and OH groups from adjacent  

la y e rs ,  H bonds are formed. The H bonds cause lay e rs  to  's ta c k '  

to g e th e r ,  hence the c ry s ta l  is  th ree  dimemsional and has faces and 

edges. The edges o f  k a o l in i t e  form a s u b s ta n t ia l  p a rt  o f  the t o t a l  

surface a rea , 10-20%. The H-bonding is  s u f f ic e n t ly  strong to  prevent 

some organic  molecules being adsorbed in to  the  in t e r la y e r s .  I t  

has been proposed th a t  the faces e x h ib i t  Bronsted a c id i t y ,  Hofmann,

U . , e t a l . ,  [1 9 61 ) ,  and the edges e x h ib i t  Lewis a c id i t y .  This is  

because the  edges have A l^* which is  not f u l l y  coord inated; F igure  

[ 1- 2 ) .

3+F igure  [1 -2 )  A1 a t  K a o l in i te  C ry s ta l  Edge:

3 +A1
Uncoordinated p o s it io n s  

a t  c r y s ta l  edges



Thus the  c r y s ta l  edge is  a s i t e  f o r  the sorption  o f  

ca t io n s  and anions, from s o lu t io n .  The sorption  is  a fu n c t io n  o f  

pH, anions being adsorbed a t  high pH and cations  a t  low pH. The 

c r y s ta l  edge is  a lso  a s i t e  f o r  e le c tro n  t r a n s fe r  re a c t io n s ,  Solomon, 

D .H .,  (1968 );  and Theng, B .K .G .,  (1 9 71 ) .
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1.2.2. The 2:1 Type Minerals

Of a l l  the  2:1 type m in e ra ls ,  d io c ta h e d ra l m o n tm o r i l lo n ite

is  the  most w ide ly  used as an adsorbent. This is  because m o n tm o r i l lo n ite

2 -1has a very  high surface a rea , ^  760m g , and a la rg e  c a t io n

-1
exchange c a p a c ity ;  C ~ 1 . 0  mol Kg , monovalent c a t io n s ) .  D io c tah ed ra l  

m o n tm o r i l lo n ite s  w i l l  r e a d i ly  form in t e r l a y e r  complexes w ith  organic  

molecules, MacEwan, D .M .C .,  (1 9 6 1 );  Weiss, A . ,  ( 1963) ; Greenland D .J . ,  

(1 9 6 5 ) .  This  can c le a r ly  be demonstrated by X -ray  d i f f r a c t i o n ,  

since the  basal spacing changes when organic molecules are  adsorbed 

in to  the  i n t e r l a y e r .

Other 2 :4  type m in era ls  inc lude  p y r o p h y l l i t e - t a lc ;  

v e r m ic u l i t e ,  mica and b r i t t l e  mica. Only m o n tm o ril lo n ite  w i l l  be 

discussed in  d e t a i l .



1 .2 .2 M o n tm o r i l lo n i te

The s t r u c tu r e  o f  m o n tm o r il lo n ite  was f i r s t  d iscovered  

by Hofmann, U . , e t  a l . .  Cl 9 3 3 ) .  Th is  basic s t ru c tu re  was s l i g h t l y  

m o d if ied  by M a rs h a l l ,  C .E . ,  (1935); Maegdefrau , E . , and Hofmann, U . , 

(1 9 3 7 );  Hendricks , S .B . ,  (1942) and t h is  s t ru c tu re  is  the  one 

g e n e ra l ly  regarded as c o r r e c t ,  F igure  ( 1 - 3 ) .

F igure  (1 -3 )  The H ofm ann-Endell-W ilm -M arshall-M aegdefrau-H endricks  

s t r u c tu r e  o f  a m o n tm o r i l lo n ite  la y e r  viewed along the  

a a x is .  Basal spacing is  given in  nm u n i ts .

1

exchangeable cattons 

water layers
Key.

O  Oxygen;

@  Hydroxyl;

O Aluminium;

•  Silicon;

»  MagnesiuRvIron;
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The c a t io n  in  th e  o c tahedra l la y e r  is  almost e x c lu s iv e ly  

A l^ *  in  m o n tm o r i l lo n i te .  The permanent net n egative  charge upon the  

l a t t i c e  causes a d so rp t io n  o f  exchangeable ca t ion s  upon the  surface  

and th e  i n t e r l a y e r .  The amount o f w ater adsorbed depends upon the  

n a tu re  o f  th e  exchangeable ca t io n s  adsorbed on the surface  and the  

i n t e r l a y e r s .  The basal (d (0 0 1 ) )  spacing o f  m o n tm o r i l lo n ite  w i l l  

t h e r e fo r e  vary  from 0.95nm f o r  the  f u l l y  co llapsed  s ta te ,  to 1.9nm 

f o r  a d iv a le n t  c a t io n  such as Mg^*, N o rr is h , K. (1 9 5 4 ) .  The nature  

of th e  exchangeable c a t io n  a lso  a f fe c ts  the  number o f uncharged 

p o la r  o rg an ic  molecules adsorbed, because they are  adsorbed by 

displacem ent o f  w a te r  m olecules.

An a l t e r n a t i v e  s t ru c tu re  f o r  m o n tm o r i l lo n ite  has been

proposed by Edelman, C .H . ,  and Favejee, J .C .L . ,  (1 9 4 0 ) ,  in  which

every a l t e r n a t e  SiO^ te tra h e d ro n  is  in v e r te d .  The a p ic a l  oxygens 

o f th e  te t r a h e d r a ,  which are  s t ic k in g  out o f  the  p lane, are rep laced  

by hydroxyl groups. F ig u re  ( 1 - 4 ) .

F ig u re  ( 1 - 4 )  The m o n tm o r i l lo n i te  la y e r  s t ru c tu re  viewed along the a

a x is  according to  Edelman and Fave jee . Basal spacing

in  nm u n i ts .

water layers

Key:

O  Oxygen; 

(§) Hydroxyl;

O Aluminium; 

•  Silicon
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In  t h is  type o f  s tru c tu re  no isomorphous replacement 

is  necessary to  produce an observable c a t io n  exchange c ap a c ity .

This  would be achieved by the  d is s o c ia t io n  o f the  a p ic a l  hydroxyl 

groups. I t  has been p o s tu la te d , by Grim, R . E . ,  and K u lb icK i,  G . , 

( 1961) ,  th a t  both types o f  s tru c tu re  e x is t .  The Hofmann-Endell- 

W ilm -M arshall-M aegdefrau-HendricKs s tru c tu re  being the Wyoming type  

m o n tm o r i l lo n ite .  F igure  ( 1 - 3 ) ,  and the Edelman-Farejee s tru c tu re  

the  Cheto-type m o n tm o r i l lo n ite .  F igure  ( 1 - 4 ) .
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1 .3  Colour and the Absorption o f  L ight

1 . 3 . 1 .  The Perception o f Colour

Colour is  a response by the human eye and b ra in  to

l ig h t  o f  a p a r t i c u la r  wavelength. The v is i b l e  region o f  the spectrum

extends from 400 to  SOOnm. This represents  a very  small f r a c t io n  

of the  t o t a l  e le c tro -m a g n e tic  spectrum.

L ig h t can be regarded as e i t h e r  a wave, or as d is c re te

p a r t ic le s  (photons). The wave model, produced by Maxwell over a

century ago suggested l ig h t  was an e le c t ro  magnetic wave w ith  m utua lly

pe rp en d icu la r  e le c t r i c  and magnetic vec to rs ,  these va r ie d  in  a

w avelike  manner w ith  respect to  both tim e and d is tan ce . The

8 -1w avefront o f  such a wave t r a v e l le d  a t  3 x 10 m.s , in  vacuo. The 

p a r t ic u la t e  th eo ry , es tab lish ed  by Plank and E in s te in  in  1905, 

regarded l i g h t  as d is c re te  photons, which t r a v e l le d  w ith  the  same 

v e lo c i ty  as the  wave f r o n t  in  the Maxwell model. Both models have 

been used w ith  equal v a l i d i t y .

The v e lo c i ty  o f  l i g h t  (c ) is  a product o f  i t s  frequency  

(v ) and i t s  wavelength (X) ,  i f  represented by a waveform.

V • X

• The w e l l  known Plank equation r e la te s  the frequency o f

the r a d ia t io n  w ith  th e  energy (E) o f a photon; where (h) is  P lan k 's

-34constant = (6 . 625  x 10 J . S . ) .

h. V
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I f  the  wavelenths o f l i g h t ,  between 400 and SOOnm, 

are mixed, the  sensation o f w hite  l i g h t  is  produced in  the  eye.

White l i g h t  can be s p l i t  in to  i t s  component p a rts  by passage through  

a prism o r  d i f f r a c t i o n  g ra t in g .  The dominant hues are in  the order;  

red; orange; y e llo w ; green; blue; and v i o l e t .  The red end of the  

v is i b l e  spectrum is  a t  SOOnm, and the  blue end a t  400nm.

The v is i b l e  spectrum can be d iv id e d , f o r  most purposes, 

in to  nine reg ions corresponding to colours which are e a s i ly  

reco g n isab le .  A co lour c i r c l e  can be drawn which shows some 

in te r e s t in g  fe a tu re s .  F igure  [ 1 - 5 ) .

F igrue  (1 - 5 )  Colour C irc le  according to G r i f f i t h s ,  J . ,  (1976)

700nm 400nm

60 5 n VIOLETRED

BLUEORANGE
595nm

GREENISH
\^BLUE

YELLOW

\ BLUISH 
\ GREEN

YELLOW
GREEN

GREEN

500 nm560 nm
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The scale  around the circumference has no physica l  

s ig n if ic a n c e .  I f  a l l  the colours o f  the c i r c l e  are mixed w hite  l i g h t  

is  produced. But a lso  i f  any two opposite  sectors  are mixed, such 

as blue and ye llow  l i g h t ,  w hite  l i g h t  is  produced, a t  le a s t  as 

f a r  as the eye is  concerned. Such colours are  c a l le d  complementary 

co lours . Purple is  a n on-spec tra l co lour, but can be made by the  

a d d it io n  o f  red and v io l e t  l i g h t .  I f  these are mixed w ith  green 

l i g h t ,  white  l i g h t  is  produced. This  is  c a l le d  a d d i t iv e  mixing of 

co lours . A d d it iv e  mixing is  not o ften  observed in  the normal 

environment, but s u b tra c t iv e  mixing is  much more w idely  observed. 

S u b tra c t iv e  mixing is  when w hite  l i g h t ,  which consis ts  o f  a m ixture  

o f  a l l  the wavelengths, is  passed through a f i l t e r  which removes 

a narrow band o f wavelengths. The co lour observed would be the  

complementary co lour to  the one removed. I f  the  absorbance maximum 

o f a substance is  a t  650nm the observed colour w i l l  be b lu ish  green. ' 

The co lour o f  a substance which absorbs between 400 and 700nm 

can be deduced from F igure  ( 1 - 5 ) .
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1 . 3 . 2  The Absorption o f L ight

The absorption o f l i g h t  by an organic molecule correspondes 

to  a d is tu rb an ce  o f the  e le c tro n  cloud o f the molecule. Quantum 

theory  p re d ic ts  th a t  a molecule can only e x is t  in  a l im ite d  number 

o f d is c re te  energy s ta tes . Equation ( 1 - 1 )  r e la te s  the  possib le ,  

energ ies  o f  these s ta te s ,  E^, to  the wave fu n c t io n  .

% = En (1-1 )

In  the  e q u a t i o n , i s  c a l le d  the  Ham iltonian o p era to r ,  

and is  not simply a constant but 'o p e ra te s ' upon . The v ib r a t io n a l  

and r o t a t io n a l  energies o f the molecule are ignored when d ea lin g  w ith  

the  absorp tion  o f  l i g h t  (Frank-Condon p r in c ip le ) .  Due to  Heisenbergs 

u n c e r ta in ty  p r in c ip le  only the  p r o b a b i l i t y  o f  f in d in g  an e le c tro n  a t  ' 

a p a r t i c u l a r  p o s it io n  can be determined. Thus the p r o b a b i l i ty  s ta te  

fu n c t io n  is

or more s t r i c t l y  . d T where is  the

complex conjugate  o f . Thus the value o f the  product in te g ra te d  

over a l l  space w i l l  be u n ity

+ oo

^ n - d T  = 1 (1 -3 )

When a photon o f l i g h t  is  absorbed by a molecule, i t  is  

promoted to  an e xc ite d  s ta te .  The energy o f the l i g h t  correspondes 

to  the  le v e l  o f  promotion.
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E e x c ite d  s ta te  -  E ground s ta te  = hv C1-4)

Although equation [1 -1 ]  appears simple i t  i s  not as 

ye t possib le  to  c a lc u la te  the exact s o lu t io n  f o r  complex molecules,  

only  approxim ations can be made. G enera lly  coloured molecules are  

la rg e  and re q u ire  f u r t h e r  s im p l i f ic a t io n  to  be handled m athem atica lly .

A simple but very usefu l approximation r e l i e s  upon the  

assumption th a t  a m olecu lar o r b i t a l  can be expressed as the l in e a r  

combination o f atomic o r b i t a ls ,  the (LCAO) method. Molecules are  

assumed to  be formed from the overlap  o f atomic o r b i t a ls .  Since atomic  

o r b i t a ls  are wavefunctions they have phase. In-phase overlap  

(++ or - - )  leads to  re in forcem ent whereas out o f  phase overlaps leads  

to c a n c e l la t io n .  Severa l types o f o r b i t a l  and t h e i r  overlapping  

are shown in  F ig u re  ( 1 - 6 )

F igure  ( 1 - 6 )  The L in e ar  Combination of Atomic O r b i ta ls .

© 0 •  •

é Bond

d* Bond

Qo oe
Pz Pz d Bond
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Px Px TT Bond

The p ic tu res  above do not represent a c tu a l physica l processes. 

The end on overlap  o f two s o r  two p - o r b i t a ls  re s u l ts  in  a strong a 

oond, i f  in  phase, and a strong antibonding o r b i t a l  i f  ou t of phase.

Hence molecules w ith  many sigma bonds are s ta b le  due to the  high  

snergy o f  th e  bond. P -o r b i ta ls  can a lso overlap  in  a sideways manner.

This i s  less  e f f e c t i v e  than a sigma bond and is  c a l le d  a tt bond.

I o r b i t a l s  are  o f  h igher energy than a o r b i t a l s .  The irbond d i f f e r s  

In shape from a a bond, in  th a t  i t s  wavefunction [ and thus the  

e lec tron  p r o b a b i l i t y ) ,  has a maximum above and below the in te rn u c le a r  

axis. Thus the  ï ï bond occupies a la r g e r  space than the a bond, and 

:he n u c le i  have less hold on the  ir e le c tro n s .  The tt bond w i l l  th e re fo re  

De weaker than the  a bond, and the e le c tro n s  w i l l  be more e a s i ly  

i is p la c e d .  Since e le c t ro n ic  e x c i ta t io n  invo lves  the displacement o f
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an e le c tro n  from one m olecular o r b i t a l  to  another, i t  would be

expected that it would require less energy to displace a tt electron

than a a e le c tro n  from i t s  o r b i t a l .  Hence the  lowest energy

t r a n s i t io n s  u s u a l ly  in v o lv e  the  tt e le c tro n s .  Out o f phase overlap
*

o f  P o r b i t a ls  r e s u l ts  in  an antibonding o r b i t a l ,  designated ï ï

*

Just as a ÏÏ bond has lower energy than a a bond, so the  ï ï bond is
*

less  antibond ing  than a . Thus the fo l lo w in g  order o f o r b i t a l
*  *

energies g e n e ra l ly  holds, a < ïï < ï ï  < a

The energy gap is  so la rg e  between the a and ï ï  o r b i t a ls ,  th a t  the

o r b i t a ls  can be t r e a te d  s e p a ra te ly .  T ra n s it io n s  can occur from the

lone p a i r  e le c tro n s ,  [n ) ,  non-bonding o r b i t a l ,  o f  a heteroatom in to
*

one of the vacant (usually lowest) ïï orbitals of the molecule.

Non bonding m olecu lar o r b i t a ls  are e s s e n t ia l ly  d e lo ca lis e d  ïï 

o r b i t a l s ,  and non bonding atomic o r b i t a ls  are e s s e n t ia l ly  lo c a l is e d  

upon the heteroatom. F igure  (1 -7 )  shows the  d i f fe re n c e s  in  energy 

of m olecu lar o r b i t a l s .

Figure (1 -7 )  The Energy Levels o f M olecular O r b i ta ls .

L ig h t  is  absorbed when energy is  t ra n s fe r re d  from the  

photon to  a m olecule . Absorption o f  the l ig h t  causes an e le c tro n ic -  

e x c i t a t io n ,  and t h is  causes the  promotion o f an e le c tro n  from a 

lower o r b i t a l  to  one o f  h igher energy. The major t r a n s i t io n s
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occurring  in  sim ple organic molecules a r e : -

*  *  *

a -> a ; TT TT ;and ri tt

as can be seen from F igure  (1 -7 )  the  a -v a is  the la rg e s t  

t r a n s i t io n ,  and the  r) tt* t r a n s i t io n  is  the s m alle s t.  I t  has 

a lready  been said  th a t  a  and t t  o r b i t a ls  can be t re a te d  s ep a ra te ly .  

These t r a n s i t io n s ,  occuring in  small organic molecules, absorb 

l i g h t  a t  the  fo l lo w in g  frequencies

a -> a vacuum u l t r a v i o l e t  (ISOnm)

TT TT* u l t r a - v i o l e t  (200nm)

(unconjugated)

r i  T T *  u l t r a - v i o l e t  (200 -  400nm)

I t  can be seen from P lan k 's  equation th a t  the  la rg e r

the energy o f  th e  t r a n s i t io n  the  s h o rte r  the wavelength w i l l  be:

E = hv = h£
A

Where,h is  P lan k 's  constant, c is  the v e lo c i ty  of  

l i g h t  and A is  th e  wavelength.

M o lecu la r  o r b i t a l  treatm ent o f  organic molecules and 

the absorption  o f  l i g h t  is  reviewed in  some depth in  G r i f f i t h s ,  J . ,  

(1976 ).

Once a molecule has absorbed l i g h t  is  must ra p id ly

d is s ip a te  the  energy in  order to  prevent d e s tru c t io n  o f the  molecule
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C o l l is io n s  w ith  so lven t molecules is  accompanied by ra p id  t r a n s fe r  

of v ib r a t io n a l  energy from the  exc ited  molecule, to  the so lven t,  

l i b e r a t in g  heat,  u n t i l  i t  reaches the lowest v ib r a t io n a l  le v e l  o f  

the  lowest e x c ite d  s in g le t  s ta te  F igure [ 1 - 8 ) .

F igure  (1 -8 )  Energy D is s ip a t io n  from E le c t r o n ic a l ly  Exc ited  S ta tes

E

Ground state S

a internal conversion, 

b intersystem crossing, 

c fluorescence, 

d phosphorescence
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This  process is  termed in te r n a l  conversion. Loss o f

e x c i ta t io n  energy between s in g le t  and t r i p l e t  s ta te s  is  quantum

m echanically  fo rb idden , but can occur under the c o rrec t  co n d it io n s .

This  is  termed in tersystem  cross ing . This  is  a r e l a t i v e l y  slow 

- 2
process, ( 1 - 1 0  secs), in d ic a t in g  i t s  forb idden n a tu re .  Energy 

may a lso be lo s t  from the  lowest s in g le t  e xc ited  s ta te  to  the  ground 

s ta te  by f lu o rescen ce . Phosphorescence occurs from the lowest 

t r i p l e t  s ta te  (T^) to  the  ground s ta te .  This has a r e l a t i v e l y  

long l i f e - t i m e .

Coloured molecules are u s u a l ly  la rg e  and complex,

and in  most cases i t  is  d i f f i c u l t  to  p r e d ic t ,  s imple, fundamental

processes to account f o r  the absorption band, w ith  the exception  
*

o f the r) II t r a n s i t io n .  These t r a n s i t io n s  r e t a in  t h e i r  c h a ra c te r 

i s t i c s  even in  la rg e  molecules. Coloured organic molecules can be 

d iv id ed  in to  fo u r  c lasses o f chromogen.

*

(a) ri -)■ TT chromogens.

(□) donor-acceptor chromogens

(c) a c y l ic  and c y c l ic  polyene chromogens

(d) cyanine type chromogens.

*

(a) r| -»• TT chromogens

These t r a n s i t io n  correspond to  the promotion o f an

e le c tro n  from a lone p a i r ,  non-bonding o r b i t a l  o f  the heteroatom in to
*

one of the vacant, usually the lowest tt orbitals.

*

ri TT t r a n s i t io n s  can be c la s s i f ie d  in to  two types,  

symmetry fo rb idden  t r a n s i t io n s ,  in  which the lone p a i r  e le c tro n s  

occupy an e s s e n t ia l ly  pure P o r b i t a l ,  and symmetry allowed t r a n s i t io n s .
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in  which the  lone p a i r  o r b i t a l  has some s ch arac te rs .

*

I t  is  possib le  to  c h a ra c te r is e  n ir t r a n s i t io n s  by 

the fo l lo w in g  c r i t e r i a :

Ci) low in te n s i t y  absorption  bands, w ith  an e x t in c t io n

c o e f f ic ie n t  u s u a l ly  less than 500.

*

C ii )  ri TT bands w i l l  always s h i f t  to  s h o rte r  wavelengths

when the  solvent p o la r i t y  is  increased.

*

C i i i )  p TT bands dissappear in  s tro n g ly  a c id ic  media,

*

Civ) the suspected p tt band w i l l  be absent from the

spectrum o f the isoconjugate  hydrocarbon.

Cb) ■ Donor-acceptor Chromogens

The donor-acceptor chromogen contains an e le c tro n  donor 

group [ i . e .  an atom possessing lone p a i r  e le c tro n s )  d i r e c t l y  l in ked  

to  a conjugated tt o r b i t a l  system. The lone p a i r  e lec tro n s  must be 

aligned  w ith  the  ad jacent P o r b i t a ls  o f  the tt system, thus they are  

p a r t i a l l y  d e lo c a l iz e d .  The v is i b l e  absorption band corresponds to  the  

m igrat io n  o f  the  lone p a i r  e le c tro n s  from the  heteroatom toward 

the re s t  o f  the  system.

(c) A cyc lic  and C y c lic  Polyene Chromogens

A polyene chromogen can be regarded as a c o l le c t io n  o f

2 1sp (o r  sp ) hybr^idised atoms in  which complete overlap  o f  the P
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o r b i t a ls  occurs. This  g ives  a conjugated tt e le c tro n  system w ith

as many e le c tro n s  as th e re  are  atoms. A c la s s ic a l  p ic tu re  o f t h is  is

a molecule with an alternating sequence of single and double bands

forming e i t h e r  open chains, or r in g  systems, or both. Polyene
*  *

chromogens can exhibit tt tt ; and p ->■ tt transitions.

(d) Cyanine -  Type Chromogens

Odd a lte rn a n t  hydrocarbons possess a non-bonding
*

molecular orbital midway between the bonding and antibonding tt

o r b i t a ls .  The anion o f such a system w i l l  conta in  two paired
*

electrons in the NBMG, because this is much closer to the tt 

orbital, the first absorption band will lie at unusually long 

wavelengths.
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1.4 Reactions Upon Clay Minerals

When c e r ta in  aromatic  amines are  adsorbed upon c lay  

m inera ls  they are  converted to  t h e i r  coloured d e r iv a t iv e s ,  Hauser, 

E .A . ,  and Leggett,  M .B ., [1940); Meunier, P . ,  [1 942 ).  Reactions  

occur w ith  both 1:1 and 2:1 type m in era ls .  I t  has been shown by 

W eil-M alherbe , H . , and Weiss, J. [1948) th a t  both Bronsted a c id i t y  

and redox re ac t io n s  occur w ith  c e r ta in  arom atic  amines. Treatment 

w ith  ammonia re s u l ts  in  loss o f Bronsted a c id i t y  and trea tm ent w ith  

stannous c h lo r id e ,a  Lewis b a s e ,re s u lts  in  loss o f  Lewis a o id i t y .

In  co lour reac tio n s  o f aromatic amines w ith  c lay  

m inera ls  both Lewis and Bronsted a c id i t y  a f f e c t  the adsorption  o f  

the amines, both a t  the c r y s ta l  surface and edges. Solomon, D .H .,  

e t a l . ,  [19B8)a, and Solomon, D .H .,  e t a l . ,  [1968)b , have proposed a 

model based on charge t r a n s fe r  between c lay  and adsorbed organic  

m olecule. The re a c t io n  o f benzid ine upon la y e r  s i l i c a t e s  is  

perhaps one o f  the best know c la y -o rg a n ic  re a c t io n s .

al edgeCr
PlaTw^ surface

• NH

-H  +

Colourless 
uncharged 
base.A.

Blue mono
valent radical 

cation, B.
Yellow di-valent 
radical cation,C.
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S everal workers have agreed th a t  the  mechanism f o r  the  

form ation o f  the  blue monovalent r a d ic a l  c a t io n  invo lves  e le c tro n  

t r a n s fe r  from the  diamine to  the  m in era l ,  |-b user, E .A . ,  and Leggett 

n . B . , (1 9 4 0 ) ;  Hendricks, S .B . ,  and Alexander, L .T . ,  (1940 ).  The 

blue co lour is  thought to  a r is e  from conjugation  o f the NBAO o f the  

n itrogen  and the t t  e le c tro n s  o f  the benzene r in g .  I f  the pH of. the  

system f a l l s  below 2 the r a d ic a l  c a t io n  B can accept a f u r t h e r  

proton on the  lone p a i r  of th e  n itro g en  atom, g iv in g  a yellow  c o lo u r .

Benzidine has been used as an in d ic a to r  o f  c lay  m inera l  

types. Treatment o f  k a o l in i t e  edges w ith  sodium hexametaphosphate 

showed an ap p rec iab le  decrease in  the co lour in te n s i t y  formed, 

Michaels, A .S . ,  (1 9 58 ) .  This in d ic a te d  to  Solomon, D.H. e t a l . ,  

(1968)b , th a t  in  some m in era ls ,  such as k a o l in i t e ,  the  c ry s ta l  

edges have o x id iz in g  (e le c tro n -a c c e p t in g )  s i te s  w h ile  others such as ■ 

m ontmorillonite have s i te s  m ainly on the p la n ar  surfaces . I t  

was suggested th a t  the  Lewis acids a t  the c r y s ta l  edge were 

aluminium atoms which were incom ple te ly  coord inated . Solomon, D .H . ,  

et a l . ,  ( 1 9 6 8 )b also proved c o n c lu s ive ly  thau c c ta h e d ra lly  coordinated  

f e r r i c  ions a f f e c t  the  co lour formed w ith  benzid ine .
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1 .5  Methods o f Studying Reactions upon S o lid  Surfaces

The study of re ac tio n s  upon s o l id  surfaces can be 

d iv id e d  in to  two types , d i r e c t  and in d i r e c t  methods. D ire c t  methods 

in v o lv e  spectroscopic  measurements such as N .M .R ., I . R . ,  u / v , 

v is i b l e  and E .S .R . The d i r e c t  method has the advantage o f studying  

the  re a c t io n  in  s i t u .  But has the  disadvantage th a t  the spectrum  

formed is  o f te n  complicated by the surface and i t  is  o ften  d i f f i o u l t  

to  i d e n t i f y  severa l products of a re a c t io n .  The in d i r e c t  method 

in vo lves  removal o f the substance to be studied from the surface  

and then examining the  m a te r ia l  in  s o lu t io n .  This has the advantage 

o f being ab le  to  separate  severa l components and q u a n t i fy  a cc u ra te ly  

small q u a n t i t ie s .  The disadvantage o f t h is  method is  th a t  the  

m a te r ia l  may not be the same i f  desorbed from the c lay  m in era l.

Also i t  may not be possib le  to  remove the products from the c lay  

m in e ra l .  Very l i t t l e  needs to  be mentioned about the in d i r e c t  

methods since th is  is  expla ined in  some d e t a i l  in  Chapter 3.

A convenient method to study the  fa te s  o f coloured  

organio molecules upon c lay  m inera ls  is  v is ib le  spectroscopy. In  

p a r t i c u l a r ,  d i f fu s e  re f le c ta n c e  spectroscopy in  the  range 200-800nm.

The most general theory o f d i f fu s e  re f le c ta n c e  was 

developed by KubelKa, P . ,  and MunK, F. (1931 );  Kubelka, P . ,  (1948 ).

For i n f i n i t e l y  th ic k  la y e rs ,  ( f o r  p r a c t ic a l  purposes, w ith  f in e  

powders, t h is  is  a lread y  achieved a t  a la y e r  depth o f a few m i l l im e te r s ) ,  

the Kubelka-Munk equation re a d s : -

F (Ra>) E ( 1  -  Roo)  ̂ = k

2 Roo
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Where Roo = $ s am p le /0 standard, is  the r e l a t i v e  

d i f fu s e  r e f le c ta n c e  o f  such a la y e r ,  re fe r re d  to  a non-absorbing  

standard, e .g .  MgO or NaCl, K is  the molar absorption  c o e f f i c i e n t  of  

the  sample, de fined  by Lambert's law.

0  = 0 0  e x p ( -K .d ) ,  and s is  the s c a t te r in g  c o e f f i c i e n t ,  

which w i l l  p ro v is io n a l ly  be assumed to  be independent o f  wavelength.

According to  the Kubelka-Munk equation , a p lo t  o f  

F [Roo) as a fu n c t io n  o f the e x t in c t io n  c o e f f ic ie n t  K, should y ie ld  a 

s t r a ig h t  l i n e .  K can be determined from transm ission experim ents.

This theory has been confirmed f o r  weakly absorbing m a te r ia ls ,

Kortum, G., and S c h o t t le r ,  H . , C1953).

D if fu s e  re f le c ta n c e  is  p a r t i c u la r l y  usefu l when the  sample

to  be s tudied is  d i lu te d  w ith  an adsorbent. Since a l l  u n c e r ta in t ie s

about re g u la r  r e f l e c t io n ,  or d i f f e r i n g  g ra in  s iz e  are v i r t u a l l y

-3  -5e l im in a te d .  The d i lu t io n  should be 10 to  10 adsorbate : w h ite  

standard, so th a t  i f  the  surface area o f the standard is  high th e re  

is  not complete coverage o f the surface . This stops adsorbate -  

adsorbate in te r a c t io n s  and the  spectrum o f the adsorbed s in g le  

molecule is  observed. This spectrum can be s im i la r  or very d i f f e r e n t  

from the  s o lu t io n  spectrum, depending upon the adsorbent -  adsorbate  

in te r a c t io n s .

I f  the  fo rces  holding the adsorbed molecule are only  

Van-der Waals fo rc e s ,  the d i f fe re n c e  between the tran sm ittan ce  and 

re f le c ta n c e  spectrum are ; the re f le c ta n c e  spectrum is  broadened; 

the bands are d isp laced toward longer wavelengths; the v ib r a t io n a l  

s t ru c tu re ,  i f  present a t  a l l ,  is  s tro n g ly  suppressed. D if fu s e
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re f le c ta n c e  can a lso be used when the  in te r a c t io n s  between adsorbent 

and adsorbate are strong (ch em iadsorp tion ). G en era lly  the  changes 

in  the  spectrum o f adsorbate are la rg e  compared to  the f r e e  molecule  

Kortum, G . , and Vogel, J . (1960); Kortum, G . , (1962 ).  S im i la r ly  

photochemical re ac t io n s  can e a s i ly  be fo llow ed q u a n t i t a t iv e ly  and 

eva luated  k i n e t i c a l l y  using d i f fu s e  re f le c ta n c e  spectroscopy,

Kortum, G . , e t  a l . ,  (1962 ).



CHAPTER 2

SURFACE ACIDITY OF KAOLINITE •
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Surface A c id i ty  o f  K a o l in i te  

2.1 In tro d u c t io n

I t  has been shown in  Chapter 1 th a t  k a o l in i t e  is  a 

th re e  dimensional c r y s ta l  and has f l a t  fac es , (d [ 0 0 1 ) ] ,  and edges, 

page 6  . The faces have strong Bronsted acid  s i te s  upon them,

which are  pH independent and are  caused by isomorphous replacement. 

The edges have a pH dependent charge, and e x h ib i t  Lewis a c id i t y ,  

Solomon, D.H. [1 9 68 ) .  Isomorphous s u b s t i tu t io n  causes the  l a t t i c e  

to  have a net negative  charge. This is  n e u tra l is e d  by cation s  

from s o lu t io n .

The surface  a c id i t y  o f o e r ta in  k a o l in i te s  and 

m o n tm o r i l lo n ites  have been estim ated by examining the colour changes 

o f pH in d ic a to r s  when absorbed upon c la y  m in era ls ,  in  non p o la r  

so lve n ts ,  W a ll in g , C . , (1950 );  Benesi, H .A .,  (1956 ); Benesi, H .A .,  

(1 9 5 7 ) .  The basis o f  determ in ing the  acid  s tre n g th  of the  surface ,  

i s  th e  co lour ohange o f a Hammett in d ic a to r ,  Hammett, L .P . ,  and 

Deyrup, A .J .  (1 9 32 ) .  The acid  s tre n th  is  expressed as the Hammett 

a c i d i t y  fu n c t io n  (H ^ ) . H  ̂ g ives  a q u a n t i ta t iv e  estim ate  of the  

a b i l i t y  o f  the surface to  convert an adsorbed base to  i t s  conjugate  

a c id .  I t  is  r e la te d  to  the  pKa o f th e  in d ic a to r  b y :-

H = pKa + log B (2 -1 )
Â

Where B and A are the  concentra tions  o f basic and 

a c id ic  forms, o f  the  in d ic a to r  r e s p e c t iv e ly .  H  ̂ can be considered  

as an extension  o f  the  pH sca le  in to  media where the a c t i v i t y  o f



30

the hydrogen ion is  very d i f f e r e n t  to  i t s  s to ic h io m e tr ic  co ncentra t ion .

The method r e l i e s  upon a s e r ie s  o f in d ic a to rs  being chosen such th a t

they change co lour in  d i f f e r e n t  concentrations o f su lphuric  ac id .

The H of the  surface  is  then said to  l i e  between the  in d ic a to r ,  o

in  the  s e r ie s ,  th a t  is  not protonated and the previous in d ic a to r ,  

th a t  is  pro tonated , in  the  s e r ie s .  Hammett in d ic a to rs  have been 

used e x te n s iv e ly  f o r  determ ining the surface a c id i t y  o f  c lay  

m in era ls .  But the r e l i a b i l i t y  o f  c e r ta in  measurements, Henmi, T . ,  

and Wada, K . , (1 9 74 ) ,  have been doubted by o thers , Laura, R .D . ,  (1976 ).  

Laura, R .D . ,  (1976) s ta te s  th a t  th ree  fundamental co n d itions  must

be f u l f i l l e d  in  order to produce meaningful re s u l ts  f o r  the measure

ment o f surface  a c id i t y ,  using Hammett in d ic a t o r s : -

( i )  Clay m inera l surfaces must act as proton donors;

( i i )  The proton t r a n s f e r  on c lay  surfaces must s t r i c t l y  only  

be a fu n c t io n  o f r e la t i v e  a c i d i t i e s / b a s ic i t i e s  of c lay  

surfaces and the in d ic a to r  base, and;

( i i i )  The phenomenon o f  co lour change must only be due to  

p ro to n a tio n .

Laura, R .D . ,  (1976) a lso s ta tes  th a t  in  the  measurement 

o f the  surface a c id i t y  o f m o n tm o r i l lo n i te  by Henmi, T . ,  and Wada, .

K . , (1974) none o f these co n d it io n s  are  f u l f i l l e d ,  and th a t  the  

surface  o f m o n tm o r il lo n ite  is  b as ic . This statement is  co rrec t  but 

m islead ing . The l a t t i c e  is  n e g a t iv e ly  charged and so must be bas ic ,

but in  any r e a l  system the negative  l a t t i c e  m aintains  n e u t r a l i t y  

by adsorbing cat ion s  from s o lu t io n .  The adsorbed ca t ion s  then 

p o la r is e  w ater molecules which g ive  the c lay  i t s  a c id ic  p ro p e r t ie s ,  

Henmi, T . ,  and Wada, K . , (1 9 7 6 ) .  The a rg u m en t by Laura is  pure ly  

semantic. Laura, R .D . ,  (1976) c i te s  various  re ferences  which
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produce anomalous re s u l ts  using Hammett in d ic a to rs .  In  such cases, 

c e r t a in  in d ic a to rs  are not protonated when t h e i r  pKa suggests they  

should and v ica  versa .

An enhancement of surface a c id i t y  was observed when a 

K a o l in i t e  sample was d r ie d ,  Solomon, D .H .,  and Murray, H .H . ,  [1972 ].  

M ortland, M.M., [1970] a t t r ib u te d  th is  e f f e c t  to an increase  in  the  

p o la r iz a t io n  o f  the fewer water molecules remaining in the  

exchangeable c a t io n  hydration s h e l l .  At high r e la t i v e  humidity the  

p o la r iz a t io n  e f f e c t  exerted by the  ca t ion  upon the water is  spread 

over many more water molecules. The e q u i l ib r i a  below, according to  

M ortland , M.M., and Raman, K .V . ,  [1968] show the s itu a t io n s  o f  low 

and high r e l a t i v e  hum idity .

M[H^^x]"*;==L=[M[H20]x_i  [OH]]^""^) + h "" [2 -2 ]

M [H .0]^[H_0] ] [M(H^G] . [□H)[H„0] ] + h '" [2 -3 ]z  ̂ z y z X ~ I z y

Where K̂  and K  ̂ are the e q u il ib r iu m  constants f o r  the  

re a c t io n s ;  M is  the exchangeable ca tion  o f  valency n; x and y are  

the number o f w ater molecules in  the  in n er  and o u te r  coord ination  

spheres o f the c a t io n  r e s p e c t iv e ly .  E q u il ib r iu m  [2 -2 ]  represents  

the dry  system where K ^>K^. These e q u i l ib r i a  represent t y p ic a l  

Bronsted a c id i t y .

In  the  co lour re ac t io n s  of c la y  m inera ls  w ith  aromatic  

amines both Lewis and Bronsted a c id i t y  are in vo lved .

This work was designed to c l a r i f y  some of the argum ents  

ra is e d  by Laura, R.D. [1 976 ].  I t  seemed l i k e l y  th a t  any anomalous
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re s u l ts  were caused by d i f fe re n c e s  in  the  energy o f adsorption  of the  

protonated and the  un-protonated forms upon the c lay  m in e ra l .  I f  

the protonated form is  adsorbed f a r  more r e a d i ly  than the  un-protonated  

form, p ro to n atio n  o f th a t  in d ic a to r  is  more l i k e l y  than in  s o lu t io n .  

Where the reverse  is  t r u e ,  an unprotonated in d ic a to r  w i l l  not be 

protonated when i t s  pKa d ic ta te s  i t  should. I f  severa l in d ic a to rs  

are used to  measure the acid s tren g th  o f a p a r t ic u la r  c lay  m ineral  

many d i f f e r e n t  values could be obta ined . I t  is  the value o f the  

d is s o c ia t io n  constant in  the  s o l id  phase which is  re q u ire d ,  not

the pKa in  s o lu t io n ,  w here:-

+ H"" (2 -4 )

K = ( D ][ H ]
(2 -5 )

Where is  the concentra tion  o f the unprotonated dye

in  the s o l id  phase.

is  the t ru e  surface e q u i l ib r iu m  constant f o r  the  

in d ic a to r .  I f  is  g r e a t ly  d i f f e r e n t  from the d is s o c ia t io n  

constant in  s o lu t io n  th e re  w i l l  be la rg e  d iscrepencies  in  the  

measured. To ob ta in  r e l i a b l e  r e s u l ts ,  the value o f  must be 

determined f o r  each in d ic a to r ,  on the  p a r t ic u la r  surface to  be 

measured.
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2 .1 . 2 .  A Method to  Determine th e  Surface A c id i ty ,  by adsorption

from s o lu t io n ,  o f  k a o l in i t e

I t  was postu la ted  th a t  in  order to  obta in  a r e l i a b l e  

value  f o r  th e  Hammett a c id i t y  fu n c t io n  (H^), the  d is s o c ia t io n  

constant of th e  adsorbed base,on the surface, must be obtained.

B^h " B^ + Ĥ " (2 -6 )

= [ B  ̂ ] [ H~"] (2 -7 )

[ B^nl

The superscrip ts  r e f e r  to  the surface phase.

A value f o r  cannot be d i r e c t l y  found since th is  

re q u ire s  a va lue  f o r  the Hammett a c id i t y  fu n c t io n .  But i f  the  

energy o f adsorption  f o r  the unprotonated and protonated in d ic a to r  

are  known, the value o f can be o b ta in e d : -

1. Refers: to  the desorption  o f the f r e e  base from the su rface .

ZH*, B ^  Zh "* + B (A G °1 )  (2 -8 )

2 . to  the adsorption (o r  s t r i c t l y  ion exchange) o f  the

protonated  base.

Zh "̂ + BH"" ^  ZBH* + H"̂  (A G °2 )  (2 -9 )

3 . to  the surface  p ro to n atio n  i t s e l f .

ZH+,B 5̂=2̂  ZBH* (A G °3 )  (2 -1 0 )



34

4. to  the  acid  d is s o c ia t io n  o f the  dye in  so lu t io n

BH"" B + H* CAG°4) [2 -1 1 )

In  generalAG ° 1  +AG °2 = AG°3 + AG°4 (2 -1 2 )

and i f  AG° = RTl K (2 -1 3 )n n n

then = K . (2 -1 4 )

and th e re fo re

(2 -1 5 )

o r  i f  the e q u i l ib r iu m  constant, f o r  the adsorption o f  

the  f r e e  base is  w r i t te n  then.

k /  = 1  (2 -1 6 )‘1
k ;

and K = (2 -1 7 )

<  • ^

I f  the  e q u i l ib r iu m  constant, (K^), f o r  the surface  

pro to n a tio n , is  w r i t te n  in  terms o f a d is s o c ia t io n  constant, (K^),

then:

= 1 _ , and (2 -1 6 )

Therefore  (2 -1 9 )

S
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I f  the pH of the bulk s o lu t io n  is  chosen such th a t  only  

one species is  present, and th a t  species is  adsorbed w ithout fu r t h e r  

p ro to n a tio n , the value of and can be determined from an 

adsorption isotherm . Adsorption of dyes from s o lu tio n  o ften  produces 

an isotherm the  shape o f which has been deduced by Langmuir, on 

c e r ta in  assumptions, o r i g i n a l l y  f o r  the adsorption of gases onto 

s o l id s .  The assumptions are o ften  reasonable approximations f o r  dye 

adsorption from s o lu t io n .  The approximations a r e : -

1. The adsorption should be re v e r s ib le ;  a pure ly  physica l

process.

2. The adsorbate should not a f f e c t  the adsorption of

fu r t h e r  adsorbate molecules, i . e .  the energy o f  

adsorption  o f each molecule is  id e n t ic a l .

3. The so lu te  and so lvent must occupy the same area ,

when adsorbed on the surface .

4. The surface  should be id e a l .

5. The s o lu t io n  should be d i l u t e .
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2.1.3. The LangmuirEquation ; Theory. (Hiemenz, P.C., 1977)

The Langmuir isotherm is  an isotherm th a t  is  both easy 

to understand t h e o r e t i c a l l y  and is  w ide ly  a p p l ic a b le  to  experimental  

d a ta .

Considering d i lu t e  so lu tio n s  o n ly : -

Adsorbed solvent + so lu te  in s o lu t io n  ---------► (2 -20 )

adsorbed so lu te  + so lvent in  s o lu t io n  

The e q u il ib r iu m  constant f o r  t h is  re a c t io n  i s : -

K'' = ^2 ^'

( 2 - 21 )

Where 1 r e fe rs  to  the s o lven t,  2 r e fe rs  to  the so lu te ;  

a is  the a c t i v i t y  o f the species and superscr ip ts  s and b s ig n ify

surface and bulk  values re s p e c t iv e ly .

Next assume th a t  the two dimensional surface is  id e a l ,

th is  a llows us to  rep lace  a c t i v i t y  a t  the surface w ith  the mole

f r a c t io n  a t  the  surface  x^ :

I / /  _ s b
^2 ' ^1 ( 2 - 2 2 )

s b
Xf . a^

Since the surface only conta ins two components:

X ® + x^® = 1 (2 -2 3 )
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T herefo re

/  _ X s b
2 ' 1 [2 -2 4 )

[1-X2^)a2^

Rearrange t o : -

In  d i lu t e  s o lu t io n  the a c t i v i t y  o f the so lvent is  

e s s e n t ia l ly  constant, so th a t  r a t i o  K^/a^^ may be defined  as a 

new constant K.

X2 ^  = K . a 2 ^

Ka2  ̂ + 1  (2 -2 6 )

Phis is  one form o f the Langmuir adsorption isotherm .

I f  the  solvent and so lu te  occupy equal areas on the  

surface , x^^.A, equals the f r a c t io n  o f  the surface  occupied by the  

s o lven t,  0. Since 6  ̂ + 6 2  = 1, the r a t i o  rearranges the

same as the  r a t i o  to  g ive:

0 2  =

Ka2  ̂ + 1 (2 -2 7 )

The subscrip t and su p erscr ip t  are now redundant s ince  

the equation is  s o le ly  in  terms o f the s o lu te .
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At i n f i n i t e  d i lu t io n  a-»-G and equation (2 -2 7 )  becomes:

0  = Ka (2 -26 )

I f  Ka »  1 equation (2 .2 7 )  becomes

6  = 1 (2 -29 )

Equation (2 .2 8 )  shows th a t  0 increases l in e a r ly  w ith  an 

i n i t i a l  slope o f  K. This slope w i l l  be g re a te r  the  f u r t h e r  to  

the  r ig h t  the  e q u il ib r iu m  represented by equation ( 2 . 2 0 ) l i e s .

Equation (2 .2 9 )  in d ic a te s  the s a tu ra t io n  o f the surface  occurs a t

high concentra tions  o f s o lu te .

E xp erim en ta lly  the number o f  moles o f so lu te  adsorbed 

per u n it  weight o f  adsorbent, n^^/w, are measured and not the  

f r a c t io n  o f s i te s  f i l l e d  by s o lu te .

The f r a c t io n  covered is  re la te d  to  these q u a n t i t ie s  as

f o l lo w s : -

n„^. = n^^ IM„a° A = T o ta l  surface  area2 A 2 A

W Asp Asp = S p e c i f ic  surface  
area o f  adsorbent

= Avogadros Number.

a° = area occupied per 
adsorbed molecule.

Heimenz, P . ,  (1977) a lso  describes an equation f o r  

systems where the Langmuir assumptions are  not s t r ic t ly  adhered to .
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yet the  experim ental data resembles the Langmuir equation Fig (2 -3 )

The Langmuir equation is  then w r i t te n  a s : -

m. n^^ = (m/b)c (2 .3 0 )

W (m/b)c + 1

Where the  constants m and b have no physica l s ig n if ic a n c e  

Equation (2 -3 0 )  can be rearranged to produce a s t r a ig h t  l i n e  p lo t ,  

( 2 .3 1 ) .

c
= me + b (2 .3 1 )

s . 
n^ /w

Therefore  a p lo t  o f  c/n^^/w versus c should y ie ld  a 

s tra ig h t  l i n e .

I f  the experim ental system matches the model, the values  

of m and b can be assigned a physica l s ig n i f ic a n c e : -

m = N^a°

Asp (2 -3 2 )

and nn = K (2 -3 3 )
b
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2.2 Experimental

2 .2 .1 .  M a te r ia ls

( i )  K a o l in i te

The k a o l in i t e  used was an American Petroleum I n s t i t u t e  

P ro je c t  49 standard c la y  m inera l obtained from Ward's N a tu ra l  

Science Estab lishm ent. In c .  Rochester, New York. To ensure standard  

conditions  f o r  a l l  samples, the  m a te r ia l  was f i r s t l y  ground in  a 

glass p e s t le  and m ortar fo r  1 0  mins; a 1  gram sample o f t h is  m a te r ia l  

was then ground in  an agate m ortar f o r  30 mins.

[ i i )  C ry s ta l  V io le t

The c r y s ta l  v io le t  used was a sample obtained from 

HopKin and W il l ia m s . The u n p u r if ie d  compound was assayed f o r  p u r i ty  

by a m e lt in g  p o in t de te rm ina tion  184°C (decomposed), and th in  la y e r  

chromatography. The re s u l ts  o f the th in  la y e r  chromatography ,

(TLC) can be seen on page 101 Chapter^ , t h is  shows a la rg e  number 

o f im p u r i t ie s  but th a t  the  major band, c r y s ta l  v i o l e t ,  accounted 

f o r  95% o f the  t o t a l  absorbance o f the  compound.

( i i i )  Ortho, Meta and Para N i t r o a n i l in e

The samples o f o r th o , meta and p a r a - n i t r o a n i l in e  used in  

the  study were commercial samples supplied by Hopkin and W il l iam s.

These compounds were used w ithout f u r t h e r  p u r i f i c a t io n .
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( i v ]  A l l  the water used in  the study was high p u r i ty

— 0  — 1  — 1
double d i s t i l l e d  w ater, s p e c i f ic  conductance 10 ohm cm . A l l  

o th er  chemicals used were o f Analar grade unless otherw ise s ta te d .
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2.2.2. Methods

( i )  P rep ara tio n  o f a Homoionic K a o l in ite

The p rep ara tio n  o f a homoionic k a o l in i t e  is  described  

on pageS? Chapter 3.

( i i )  Adsorption Isotherm

One gram o f  a homoionic k a o l in i t e  was s lu r r ie d  a t 10wt % 

s o l id s  in  a dye s o lu t io n  o f known i n i t i a l  co n cen tra t io n . The s o lu tio n  

above the s o l id s  was adjusted to  a f i n a l  f ix e d  pH. The s lu r ry  

was then v ig o ro u s ly  shaken f o r  16hrs a t  20°C by a mechanical 

shaker. A l l  g lass-w are  had been soaked in  a sa tu ra ted  s o lu t io n  o f  

the  dye and then thoroughly washed u n t i l  no dye was present in  the  

washings. This  prevented any dye being lo s t  due to  adsorption  onto 

the  g lass  su rface . The co n tro l was a tube t re a te d  in  the  same way 

but w ith  only  the  so lvent p resen t, hence i f  any re s id u a l  dye was 

removed over the  16hrs i t  would be included in  the c o n tro l .

The s lu r r y  was then c e n tr ifu g e d  a t  5 ,000 rpm f o r  20 mins. 

The supernatant was decanted and re c e n tr i fu g e d  under the  same 

c o n d it io n s , to  remove any re s id u a l  c lay  p a r t i c le s .  The supernatant 

was then p h o to m e tr ic a l ly  assayed f o r  the concentra tion  o f dye 

remaining in  s o lu t io n .  I t  was th e re fo re  possib le  to  determine the  

amount o f dye adsorbed, by d i f fe r e n c e ,  upon the  c la y .  The e q u il ib r iu m  

co n cen tra t io n  was then p lo t te d  versus amount adsorbed.
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( i i i )  V is ib le  Spectroscopy

A l l  v i s i b l e  spectra  were obta ined from a Pye Unicam 

SP1800 s e r ie s  2 spectrophotometer w ith  an AR25 l i n e a r  reco rd er.

D if fu s e  re f le c ta n c e  spectra  were obtained on the  same instrum ent,  

but w ith  a Pye Unicam SP890 d i f fu s e  re f le c ta n c e  u n i t  in  the p o s it io n  

of the  normal m ir ro r  arrangement.
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2 .3 Results  and Discussion

2 .3 .1 C ry s ta l  V io le t  in  Aqueous A c id ic  S o lu tio n

When c r y s ta l  v io le t  is  in  aqueous a c id ic  s o lu t io n ,  i t  

can e x is t  as one o f th re e  coloured species; v i o l e t ,  green or ye llow .  

The hydrogen ion concentra tion  and the  pKa's o f the p ro tonations  

determines the  d is t r ib u t io n  o f the io n ic  species. This behaviour  

has been thoroughly studied by Cigen, R . , (1 958 ).  The th re e  

coloured species are the  mono, d i  and t r i c a t i o n i c  species o f  c ry s ta l  

v i o l e t .  Cigen designated the th re e  species in  the  fo l lo w in g  way:-

V io le t

Green

(B)

(G)

= +R 

= +RH +

Yellow • (Y) = +RH,

monocationic

d i - c a t io n ic

t r i - c a t i o n i c

Where (+R)

A diagram summarizing the p ro tonation  and hydration  

e q u i l i b r i a  o f  c ry s ta l  v io le t  can be seen on page 72 Chapter 3. The 

v is i b l e  spectra  o f the th ree  species can be seen on page 92 Chapter 3 

The v i o l e t  and ye llow  forms represent the  spectra  o f  the  pure 

mono and t r i  c a t io n ic  form r e s p e c t iv e ly .  The spectra  o f  the  pure 

green species cannot be e xp er im en ta l ly  determined because the pKa’ s 

f o r  th e  conversion o f  the  green to  b lue , and green to  ye llow  

species are  not s u f f i c i e n t l y  separated. Hence the green species  

cannot e x is t  alone in  s o lu t io n

Kb
^  B + H*
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The d is s o c ia t io n  constants as determined by Cigen f o r  

the  above re ac t io n s  a r e : -

Ka  ̂ = [ B * ]  I 'H *]  = 4 .07  x 1ü"^ M; (pKa^ = 2 .39 )

[G * * 1

Ka^ = [ G ** ] [  H""] = 1 .22  X lo"^ n; CpKa  ̂ = 0 .91 )

I Y + + 1

The X max values f o r  the  blue and yellow  species,  

determined e x p e r im e n ta l ly ,  are 592nm and 435nm re s p e c t iv e ly .  The \ 
max f o r  the green species has been determined by c a lc u la t io n  (Cigen,

R . , (1958 ))  and is  B35nm.

I t  can be c a lc u la ted  from the  d is s o c ia t io n  constants,  

th a t  a t  pH 1 .6 5 ,  the green species accounts f o r  74% o f the t o t a l  

dye c o n ce n tra t io n , w h ile  the ye llow  and blue species account f o r  

13% each. In  F igure  ( 2 - 1 ) ,  i t  w i l l  be seen th a t  the peak heights  f o r  

the  b lue , and green species are s im i la r  a t  pH 1 .6 5 .  This is  because 

the 592nm peak height is  g re a te r  than i t  should be, due to overlap  o f  

the  625nm peak. I f  the  log^^ o f the r a t i o  o f absorbances ( 635nm/592nm), 

are p lo t te d  versus pH, a s t r a ig h t  l i n e  is  produced. F igure ( 2 - 2 ) .  

Although F igure  (2 -2 )  is  an e m p ir ic a l  observation i t  enables the pH 

of a s o lu t io n  to  be determined, by f in d in g  the log^^ (absorbance 635nm/ 

absorbance 592nm). ;  log^^ (A 635nm/A 592nm).

pH = pKa - log (A625) 
(A592)
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FIGURE ( 2 —1), The absorbance of the three  species of Crystal V io le i  
in ac idic solution.

•  Blue species X m a x =  590 nm. 

□ Green species \  max- 635 nm.

o Yellow species iX mox=635nm.

2 ; 0.8

0 0,5 1.51,0 2.52.0 3.0
pH

FIGURE(2 — 2). Ratio of absorbance at 635nm to absorbance at 5 9 0 nm of crystal violet 
as a function of pH.

+ 0.6
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o
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A l l  absorbance values were e x trap o la te d  to  zero time  

due to  the form ation  o f the co lo u r less  hydrated species shown below:-

+ H^O — V hBoH

G + H^O — HGoH Colourless

+ + + + + + -
Y + H^O HYoH



45

3 .2 . 2 .  An Adsorption Isotherm o f  C ry s ta l  V io le t  upon H -K a o l in i te

The adsorption isotherm o f c ry s ta l  v io le t  upon 

h"^-k a o l in i t e  is  shown in  Figure ( 2 - 3 ) .  I t  can be seen th a t  at  

pH 3 .0 ,  measured in  the aqueous phase a t  e q u i l ib r iu m  w ith  sedimented 

s o l id s ,  th a t  the  isotherm was o f t h e L a n g m u i r  ty p e . This shows 

th a t  even a t  high coverage, 25 ymoles CV/g k a o l in i t e ,  99% of the  

c ry s ta l  v io le t  was adsorbed upon the k a o l in i t e  surface .



FIGURE ( 2 — 3) . Adsorption Isotherm of Crystal violet on H*—Kaolinite
at 20°C and pH 3.0
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2 .3 .3  To Determine the Amount o f Water T o le ra b le  to Produce

a Sharp R eflectance  Spectrum o f C ry s ta l  V io le t  on K a o l in i te

The amount o f water remaining in  a sample o f  k a o l in i t e  

has d r a s t ic  e f fe c ts  upon the spectrum o f the adsorbed CV, F igure ( 2 - 4 ) .

The spectrum is  broadened and shows no d e t a i l  rendering  i t  unusable 

f o r  measurements. A reduction  in  water content can be achieved  

e i t h e r  by heating  the  sample or applying  pressure and squeezing the  

water out. E i th e r  method is  ap p ro p r ia te  fo r  w ater,  but since the
-3

s o lu t io n  to be removed was 10 molar HCl, the a p p l ic a t io n  o f heat 

was ru led  out as t h is  would change the acid  c o n ce n tra t io n . Therefore  

the m oisture was removed by mechanical pressure in  a h yd rau lic  press.

F igure (2 -5 )  shows a t y p ic a l  graph o f i n i t i a l  water content aga ins t  

water remaining a f t e r  pressure has been a p p lie d .  This curve  

represents  an a p p l ic a t io n  o f 1500 p s i f o r  10 mins, and i t  can be seen 

th a t  the  curve plateaus a t  30% m oisture . Higher pressure reduces 

the p la teau  to  below 30%. An acceptab le  spectrum o f CV absorbed 

upon k a o l in i t e  was obtained a t 12% m oisture . The spectrum did not 

d i f f e r  s ig n i f i c a n t l y  from a dry sample. F igure  ( 2 . 6 ) .  To reduce 

the moisture content to  th is  le v e l  a pressure o f 7500 p s i was 

applied  f o r  10 mins. At th is  m oisture  le v e l  is  was estim ated th a t
-3

th e re  would be a t  le a s t  a m olecular la y e r  o f 10 M HCl covering the  

k a o l in i t e  surface



FIGURE. ( 2 — 5). The effect of pressure on drying Kaolinite.

51

cn
\(/)

0,3
1500 p.s.i.

0.2

0,1

0,10 0.502 0.3 0.5
Initial amount .(mls/g )

FIGURE. ( 2 —  6) .  Diffuse ref lectance spectra of Crystal v iolet  on kaol ini te .

coJD
O«/)JD
<

0 , 2 mg CV /g kaolini te.

.2 d 5,0 

e 10,0

. 8

0
300 : 0 0  500

Wavelength ( nm ).
600 700



52

2 .3 .4  An Estim ation  o f the Surface A c id i ty  o f  a Sample o f

H * -K a o l in i te

+ + + +
The r a t i o  o f the (G /B ] ,  on a sample o f H - k a o l i n i t e

a t  a bulk  pH o f 3 .0 ,  was measured f o r  severa l d i f f e r e n t  coverages

of c ry s ta l  v i o l e t .  Table (2 -1 )  shows the  peak height a t  the

wavelength maximum f o r  the th re e  species, (B ),  (V)and (*Y * )  a t

1 2 % m oisture content.

TABLE (2 -1 )  The Absorbance o f the Green and Blue Species o f CV on 

H - K a o l in i te

Concentration of  

CV

mg/g K a o l in i te

Absorbance 

( 590nm)

Absorbance

(670nm)

Absorbance

(430nm)

5.0 0.97 0 .63 0 .26

4 .0 0.97 0 .70 0 .30

2 . 0 0.87 0 . 6 8 0 .28

1 . 0 0.71 0 .50 0 .18

0 . 2 0.43 0.27 0 .13

In  ta b le  (2 -2 )  the  r a t io s  o f Abs B7Gnm/Abs 590nm are  

shown. These values represent the X max upon the H - k a o l i n i t e  

surface , of the green and v io le t  species re s p e c t iv e ly .
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TABLE (2 -2 )  The R a tio  of Green/Blue Spcecies o f CV on H -K a o l in i te

CV coverage 

mg/g K a o l in i te

A670/A590

5.0 0.65

4 .0 0 .72

2 . 0 0.78

1 . 0 0.70

0 . 2 0.63

Mean r a t io  AB70/A590 = 0 .70 ± 0 .18  (99% co n fid en ce ).

log^Q (A670/A590) = -0 .1 5

I f  i t  is  assumed th a t  the d is s o c ia t io n  constant f o r

the re a c t io n  below, on the surface is  the  same as in  a c id ic

s o lu t io n ,  the  r a t i o  A670 can a cc u ra te ly  p re d ic t  the pH o f  the surface,
A590

-I- +
B + H

T herefo re  i f : -

Log^Q (A670nm/A590nm) = -0 .1 5

From F igure  (2 -2 )  a value o f the surface pH can be 

d i r e c t l y  determined. A value o f  pH = 2 .10  was obta ined . That is  

approxim ately  1 .0  pH u n i t  below th a t  o f bulk s o lu t io n .

This method provides a simple but r e l a t i v e l y  accurate  

method, compared to  the  methods used by W a ll in g , C. ,  (1950) and Benesi, 

H .A ., (1 9 56 ) .  This method has the  a b i l i t y  to  measure small d i f fe re n c e s
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in  the o f the  su rface , whereas methods employed by W a ll in g ,  C . , 

(1950) and Benesi, H .A . ,  (1956) can only  sp ec ify  th a t  the  l i e s  

between two ad jacent in d ic a to rs  in  a s e r ie s .

The n earer the pKa o f the  dye on the surface is  to  the  

pKa in  bulk s o lu t io n ,  the more accurate  the  re s u l ts  w i l l  be.

C ry s ta l  v io le t  i s  u n su itab le  to  determine more accurate  

r e s u l ts ,  because the d is s o c ia t io n  constants o f the coloured species  

l i e  too c lo s e ly  to g e th e r ,  and the form ation  o f co lo u r less  hydrated  

species re q u ire s  e x t ra p o la t in g  the  r e s u l ts  back to  zero t im e.
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2.3.5. Isomers of Nitroaniline

The isomers o f N i t r o a n i l in e  e x h ib i t  in d ic a to r  p ro p e r t ies  , 

They are in d ic a to rs  because, when protonated, they change co lour,  

from ye llow  to  c o lo u r le s s .  F igure [2 -7  to  2 - 9 ) .

The protonation of p-nitroaniline.
+

NH 2  NH 3

+

0 0

+H

-H

Yellow Colourless

To eva lua te  the pKa f o r  the re a c t io n  in  bulk  s o lu t io n ,  

the absorbance o f the  yellow  uncharged species is  p lo t te d  as a 

fu n c t io n  o f bulk  pH, F igure (2 -1 0 )

Ka = [x.NG^ a n i l in e  ] [ H  ̂ ]

I x .N O ^an il in e .H  ]

At the  p o in t o f in f l e c t io n  o f the curve, i . e .  when 

[ x .N D ^ an il in e ] = I x .N G ^ a n i l in e .h "*" ] , the  pH w i l l  equal the pKa f o r  

the re a c t io n .  F igure (2 -1 0 )  shows the  curves f o r  the th re e  isomers 

o f n i t r o a n i l i n e .



f i g u r e  ( 2  —  7) .  The spectra of o - N i t r o a n i l i n e  as a fu n c t i o n  of pH.
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f i g u r e  ( 2 — 9) .  The spectra  of p - N i t r o a n i l i n e  as a f u n c t i o n  of  p H .

0.8

300200 500 600
Wavelength (nm

FIGURE ( 2 — 10). The absorbance at the %  max of o , m , and p -N i t roan i l in e
as a function of pH.

•  0 -Nitroaniline 416 nm.

384 nm.
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Isomers o f N i t r e  A n i l in e pKa value  
F ig .

obtained from 
( 2 - 1 0 1

ortho -0 .2 6

meta +2.5

para + 1 . 0

The molar e x t in c t io n c o e f f ic ie n ts f o r  the th re e  isomers

were evaluated in  H^O, pH 5 .0  and 0 . 1 , a t  t h e i r re sp e c tive  values

o f A max.

Isomers o f N i t r e  A n i l in e pH 5 .0 XmaxCnm) pH 0.1 Xmax (nm)

o r t h o - N i t r o a n i l in e 4500 416 -

m e ta -N i t r o a n i l in e 13200 384 8000 260

p a r a - N i t r o a n i l in e 1560 358 8200 260

O r th o -n l t r o a n i l in e  was not used as an in d ic a to r ,  f o r  

the  d e te rm in a tio n  o f  surface a c id i t y ,  because o f i t s  low pKa va lue ,  

i . e .  in  order to  produce ^^90% o f the protonated form, a hydrogen 

ion co n cen tra t io n  o f 11 molar would be needed. At th is  concentra tion  

the ac id  would have damaging e f fe c ts  upon c lay  m in era ls .
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2 .3 .6 .  Adsorption Isotherms o f para and m e ta -N i t ro a n i l in e

upon H ^ -K a o lin ite

Adsorption isotherms o f para and m e ta -n i t r o a n i l in e  a t  

a bulk  pH o f 5 .0  and 0.1 are shown in  Figures (2-11 and 2 -1 2 ) .

I t  can be seen from Figures (2-11 and 2 -12 ) th a t  the isotherms a t  

pH 0.1 are  the  Langmuir type, or L2 according to Giles, C .H .,  e t  a l . ,  

(1 9 60 ) .  The isotherm  o f  m -n i t r o a n i l in e  a t  pH 5 .0  resembles an L4 

isotherm , again using the  G iles  n o ta t io n .  The adsorption of 

p - n i t r o a n i l in e  a t  pH 5 .0  was a t  such a low le v e l  the re s u l ts  were 

d i f f i c u l t  to e v a lu a te ,  and so p - n i t r o a n i l in e  was not used f o r  surface  

a c id i t y  d e te rm in a tio n s . Since both the  m -n i t r o a n i l in e  isotherms  

resembled the  Langmuir shape, the  Langmuir equation was a p p lie d .

The shape o f  the m -n i t r o a n i l in e  curve a t  pH 5 .0  was assumed to  be 

two consecutive Langmuir curves.

A value  o f  K was obtained by p lo t t in g  the  l in e a r  

form of the  Langmuir equation , equation (2 -1 4 ) .

me + b (2 -14 )

A p lo t  o f  c/n^^/W versus c y ie ld s  a s t r a ig h t  l i n e ,  and 

K can be estim ated from m/b, where m is  the  slope and b is  the  

i n te r c e p t .  The data were p lo t te d  in  t h is  form in  F igure (2 -13  and2-14).  

From Figures (2 -1 3  and 2 -14 ) the value  o f  and were estim ated.

For m - n i t r o a n i l in e ,  = 196, and = 259; where and are

the e q u i l ib r iu m  constants f o r  the adsorption o f the  f r e e  base of  

m -n i t r o a n i l in e  upon H * - k a o l in i t e ,  and the ion exchange o f the  

protonated base o f  m -n i t r o a n i l in e ,  re s p e c t iv e ly .



FIGURE ( 2  —  11). Adsorption isotherm of m - N i t r o a n i l i n e  upon
H"-  Kao l in i te .  at  20°C.
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FIGURE. (2 — 12). Adsorption isotherm of p - N i t r o a n i l in e  on
H*-Kaol in i te  , at 20 ° C .
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FIGURE ( 2 — 13) . L inear  plot of the adsorpt ioro of m an d p-Nitroanil ine
on H *K a o l in i te  at 2 0 ° C , p H  0.1.
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FIGURE ( 2 — K ]  L inear plot of the adsorpt ion of m and p - Ni t roani! ine
on H*-Ka olinite at 2 0 °C  , pH 5^0
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Equation (2-19) shows:-

(2 -1 9 )

Where is  the acid d is s o c ia t io n  constant o f  the dye 

in  s o lu t io n  and is  the surface d is s o c ia t io n  constant f o r  the  

in d ic a to r .

Then = 196 x 3 .16  x ID  ̂ = 2 .39  x 10‘ ^

259

pK^ = 2 .62

The pK f o r  the p ro tonation  o f m -n i t r o a n i l in e  on a
+

H - k a o l i n i t e  surface  has been determined, and a value o f 2 .62  

obta ined, c . f .  a value o f 2 .50  was obtained in  bulk s o lu t io n .
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2.3.7. A Method to Determine the Surface Acidity of H*-Kaollnlte

using m-Nitroaniline as an Indicator.
+

( i )  D i f fu s e  R eflectance  o f m -N i t ro a n i l in e  on H - K a o l in i t e

In  o rder  to  estim ate  the Hammett a c id i t y  fu n c t io n  (Hq )

o f the  su rface , a value  o f the  r a t io  o f (Protonated B a s e ) / (F re e  Base) 

is  re q u ire d .  Since the f r e e  base o f m -n itroan il ine  is  ye llow  and 

the protonated form co lo u rless  a measurement o f the y e llo w  concentra tion  

w i l l  determine the  r a t i o ,  i f  the t o t a l  concentra tion  is  Known.

A c a l ib r a t io n  curve o f absorbance a t 410nm versus amount o f  

m -n i t r o a n i l in e  added a t pH 5 .0  bulK s o lu tio n  is  shown in  F igure  ( 2 -1 5 ) .

( i i )  Adsorption o f m -N i t ro a n i l in e  upon K a o l in i t e  a t  pH 3 .0

The Hq o f the  surface was measured a t  bulk pH 3 .0 .

This was close to  the  pK^ o f the dye, and so the r a t i o  o f  (Protonated  

B a s e ) / (F re e  Base) was near to  1 .0 .  More accurate  r e s u l ts  could be 

obtained in  th is  re g io n , as a la rg e  proportion  o f the m -n i t r o a n i l in e  

was in  the  coloured, f r e e  base form. More than 90% o f the  app lied  

dye must be adsorbed upon the  surface to  obta in  r e l i a b l e  measurements. 

Otherwise non-adsorbed dye in  s o lu t io n  would a lte r ,  the r a t i o  o f  

protonated to  f r e e  base observed by d i f fu s e  r e f le c ta n c e .  F igure  

(2 -1 6 )  shows an adsorption  isotherm of m -n i t r o a n i l in e  a t  pH 3 .0 .

The e q u i l ib r iu m  co n centra tion  was determined by r a is in g  the  pH 

to  5 .0 ,  a f t e r  sep ara tio n , by c e n t r i fu g a t io n  from the  c lay  m in e ra l .

At t h is  s o lu t io n  pH a l l  the non-adsorbed dye was in  the y e llo w  form.

As can be seen from F igure (2 .1 6 )  a t an i n i t i a l  concentra tion  o f
-3

0 .5  X 10 Molar, 87% o f the dye was adsorbed upon the  c lay  

m in e r a l .



•54

FIGURE ( 2 — 15). The absorbance of m -N i t r o a n i l in e  on H^kaolinite .
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FIGURE (2 — 16). The Qdsorption isotherm of m - N i t r o a n i l i n e  on H-kaolinite
at 2 0 * 0  pH 3.0.
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C i i i )  D i f fu s e  Reflectance  o f m -N l t ro a n i l in e  on H * -K a o l in i te

a t  bulk pH 3 .0

The d i f fu s e  re f le c ta n c e  spectrum o f  m -n i t r o a n i l in e  

upon H - k a o l i n i t e  is  shown in  F igure  (2 .1 7 3 .  From F igure  (2-173  

the  peak h e igh t was determined, a t  410nm, as being 0 .27 absorbance 

u n i ts .  From the  c a l ib r a t io n  curve. F igure  (2 -153 , a value of 1 .4  

ju m o le s /g  K a o l in i t e  was obta ined, f o r  the f r e e  base. The t o t a l  

i n i t i a l  amount o f m -n i t r o a n i l in e  ap p lied  was 5 x 1 0 ^  moles. 

T h ere fo re  i f  i t  is  assumed th a t  a l l  m a te r ia l  was adsorbed the amount 

o f  the  protonated  base would b e :-

(5 X  10 ^3 -  (1 .4  X  10 ^3 = 3 .6  x 10  ̂ m oles ,g

The r a t i o  o f protonated to  f re e  base would then b e ;-

Protonated = 3 .6  x 10  ̂ = 2 .57

Free base 1 .4  x 10 ^

I f  t h is  value is  then a p p lie d , using the value of pK^, 

an accurate  va lue  f o r  the Hammett a c id i ty  fu n c t io n  can be found.

Hq = pK^ -  log Protonated base

Free base

Hq = 2 .62  -  lo g (2 .573  = 2 . 2 1

This  method is  more accurate  than the method using 

c r y s t a l  v i o l e t  as the in d ic a to r  o f surface a c id i t y ,  because i t  takes  

in to  account the  surface  d is s o c ia t io n  constant o f  the in d ic a to r



FIGURE ( 2 — 17). Diffuse ref lec tance spectrum of m- N i  tr o anil  i ne
on H^-Koolinite at pH 3^0 '
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ra th e r  than r e ly in g  upon a value from bulk s o lu t io n .  The value  of  

Hg determined from c ry s ta l  v io le t  as in d ic a to r  was 2.1, and a value  

of H q  = 2 . 2 1  from m -n i t r o a n i l in e  as in d ic a to r .  I f  the  value o f

the  bulk acid  d is s o c ia t io n  constant were used f o r  m -n i t r o a n i l in e :

Hq = pK^ - log Protonated base

Free base

Then: = 2 .5  -  log (2 .5 7 )  = 2 .09

This va lue  is  the  same as the value obtained by c ry s ta l  

v i o l e t ,  w ith in  experim ental e r r o r .  C le a r ly  any measurement of  

surface a c id i t y  must take in to  account the d is s o c ia t io n  constant 

f o r  the in d ic a to r  upon the surface and not assume th a t  the value  

w i l l  be the same as in  bulk s o lu t io n .

The amount o f in d ic a to r  added should be a minimum 

value to  perm it the measurements to  be made, because la rg e  amounts 

of in d ic a to r  w i l l  not be completely adsorbed, i e .  when the  

surface is  covered by a monomolecular la y e r  no more w i l l  be adsorbed 

i f  the Langmuir assumptions are to  be a p p lie d . Also la rg e  amounts 

o f in d ic a to r  w i l l  change the value o f the surface a c id i t y  by 

consuming protons, and hence lower the surface a c id i t y .
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2.4 Conclusions

The re s u l ts  have shown th a t  c r y s ta l  v io le t  can be adsorbed 

upon a c lay  m in era l ,  and by d i f fu s e  re f le c ta n c e  a value f o r  the  Hammett 

surface a c id i t y  fu n c t io n  (H^), can be obta ined. The value of  

obtained upon H * - k a o l in i t e ,  a t bulk pH 3 .0 ,  was 2 .1 .

Using m -n i t r o a n i l in e  as an in d ic a to r  o f surface a c i d i t y ,  

the value f o r  the  Hammett a c id i t y  fu n c t io n  o f m -n i t r o a n i l in e  

adsorbed upon H - k a o l i n i t e  was 2 .21 , a t  bulk pH 3 .0 .

The discrepency between the  two values can be a t t r ib u t e d  

to  the a b i l i t y  to  determine the surface d is s o c ia t io n  constant f o r  

m -n i t r o a n i l in e ,  and not f o r  c r y s ta l  v i o l e t .  The d is s o c ia t io n  

constant f o r  m -n . i t r o a n i l in e  in  bulk so lu t io n  was +2 .5 , and on the  

surface was +2 .52 . I t  was not possib le  to  determine the surface  

d is s o c ia t io n  constant f o r  c ry s ta l  v io le t  due to  i t s  complicated  

io n iz a t io n ,  and h ydra t io n .

To o b ta in  r e l i a b l e  re s u l ts  f o r  the Hammett a c id i t y  

fu n c t io n ,  upon a c lay  m in era l ,  the surface d is s o c ia t io n  constant 

fo r  the  chosen in d ic a to r ,  upon the chosen adsorbent, must be c a lc u la te d .

In  th is  way re s u l ts  obtained f o r  the. H  ̂ o f  a surface which appear  

in c o rre c t  could be r a t io n a l iz e d  by c a lc u la t io n  o f the surface  

d is s o c ia t io n  constant.



CHAPTER 3

REACTIONS OF CRYSTAL VIOLET AND CRYSTAL VIOLET 

LACTONE ON CLAY MINERALS AND OXIDES .
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Reactions o f C ry s ta l  V io le t  and C ry s ta l  V io le t  Lactone on Clay 

M inera ls  and Oxides.

3.1 In t ro d u c t io n

C ry s ta l  v io le t  is  an im portant dye which is  used 

e x te n s iv e ly  f o r  s c i e n t i f i c  and commercial purposes; from s ta in in g  

t issu es  to  dyeing t e x t i l e s .  The l i t e r a t u r e  is  abundant w ith  re ferences  

r e la t in g  to  c r y s ta l  v i o l e t .  Barker, C.C. e t  a l . ,  C19593; B arker, C.C. 

e t a l . ,  (1960); Cigen, R. (1958) ;C igen, R. (1960); Goldacre, R .S . ,  

(1949); Lewis G .N .,  e t  a l . ,  (1942); Nemcova. I .  e t  a l . ,  (1969);

Sequoia, E. (1971); Turgeon, J .C . ,  and La Mer, V .K . ,  (1 9 52 ) .  Numerous 

accounts o f  c r y s ta l  v io le t  lac ton e  a lso occur, mostly in  the  

paten t l i t e r a t u r e .

C ry s ta l  v io le t  is  a t r ia ry lm e th a n e  dye. The f i r s t  dyes 

of th is  type were discovered by G r e n v i l le  W il l ia m  (1 8 56 ) ,  and were 

c a l le d  cyanines. O r ig in a l ly  the name re fe r re d  to the dyes W illiam s  

had d iscovered, having the genera l formula ( 1 )

CHR

Considerable research in to  these and re la te d  dyes was 

c a r r ie d  ou t, due to  t h e i r  a b i l i t y  to  s e n s i t iz e  s i l v e r  h a l id e  

c r y s ta ls  in  photographic p la te s ,  to  wavelength o f l i g h t  to  which they  

norm ally  would be in a c t iv e .  This has now become more general and 

r e fe r s  to  any system resembling ( 2 )



70

R^N -  (CH=CH)rCH-NR2 <-------  ̂ R^N = CH-(CH=CH)r-NR^

( 2 a) ( 2 b)

G r i f f i t h s ,  J . ,  (1976) d e fines  a cyanine type chromogen 

as any conjugated system th a t  is  isoconjugate  w ith  an odd a l te r n a n t  

hydrocarbon, and th a t  can be represented by a t  le a s t  two eq u iva len t  

or near e q u iva len t resonance forms.

As f a r  as the HucKel m olecular o r b i t a l  (HMG) theory ,  

is  concerned, unsaturated hydrocarbons can be d iv ided  in to  two 

d is t in c t  types. The a l te rn a n t  hydrocarbon (AH), conta in  open 

chains w ith  an odd or even number o f atoms, and/or r in g s  co n ta in in g  

an even number o f  atoms. N o n -a lte rn an t hydrocarbons (NAH) conta in  

a t le a s t  one r in g  possessing an odd number o f carbon atoms. A 

system atic d e f in i t io n  o f  the types, invo lves  indexing the m olecule.  

The f u l l  s t ru c tu re  is  drawn out, and any one o f the  carbon atoms is  

" s ta r r e d " . A continuous path is  then traced  through the  m olecule,  

s ta r r in g  each a l t e r n a t e  atom in  the  same way. I f  is  is  found th a t  

no two ad jacent atoms are  both s ta rre d  or uns ta rred , the  molecule  

i s  an a l t e r n a n t .  I f  is  is  not p oss ib le  to  avoid having two ad jacent  

s ta rre d  o r  unstarred  p o s it io n s  the  molecule is  a n o n -a l te rn a n t .  The 

s ta r r in g  sequence is  always arranged so th a t  the number o f  atoms 

s ta rre d  are  the g r e a te r .

A l te rn a n t  molecules con ta in ing  an odd number o f  carbon 

atoms, must have an odd number o f molecular o r b i t a l s .  I f  one 

" p a i r d ' th e  o r b i t a l s ,  then obviously  th e re  w i l l  be one molecular  

o r b i t a l  rem aining. This  o r b i t a l  l i e s  a t  the "centre  o f g ra v i ty "  

o f the  energy le v e ls  o f the  o th er  o r b i t a ls ,  i . e .  a t  the non-bonding 

energy l e v e l .
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I f  aromatic  r in g  systems are  made p a rt  o f  the  conjugated  

chain o f  a cyanine, the c h a r a c te r is t ic  p ro p e r t ie s  o f  the  chromogen 

are not a l t e r e d .  Thus the  system w i l l  s t i l l  be iso conjugate  w ith  an 

odd a l te rn a n t  hydrocarbon anion, and w i l l  absorb a t  long wavelengths  

by v i r t u e  o f  the  presence o f a non-bonding m olecular o r b i t a l  CNBMG). 

The d i  and tr ia ry lm e th a n e  dyes are examples o f t h is  type. C rys ta l  

v io le t  is  an odd a l te r n a n t  system, but i t  is  found on " s ta r r in g "  

the molecule th a t  the  number o f s ta rre d  p o s it io n s  exceeds the  

number o f  unstarred po s it io n s  by two C3).

NMe.

This  means th a t  c ry s ta l  v io l e t  has two NBMO's which are  

n ece s sa r i ly  degenerate, and in  the simple model the 590nm band is  due 

to the two degenerate t r a n s i t io n s  in v o lv in g  promotion o f an e le c tro n  

from one o f  these o r b i t a ls  to  the lowest an ti-b o n d in g  o r b i t a l ,  

G r i f f i t h s ,  J . ,  [1 976 ).

S t r u c t u r a l ly  the  parent t r ip h e n y l  methyl c a t io n  (4) 

is  not p la n a r ,  but each phenyl group is  ro ta te d  approxim ate ly  30 

degrees out o f  the  p lane, so th a t  the shape is  s im i la r  to  a p r o p e l le r .  

Gomes de Mesquita, A .H . ,  e t a l . ,  [1965 ).

Almost c e r t a in ly  c r y s ta l  v io le t  w i l l  adopt a s im i la r  conformation.
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3.1.2 The Behaviour of Crystal Violet in Aqueous Acidic Solution

When c r y s ta l  v io le t  (CV) i s  in  aqueous a c id ic  s o lu tio n  

i t  can e x is t  in  th re e  d i f f e r e n t  coloured forms, ye llow , green and 

v i o l e t .  A very complete study o f  the behaviour o f CV in  aqueous 

a c id ic  s o lu t io n  has been published by Cigen, R . , (1 9 58 ) .  The diagram 

below summarises the behaviour o f C.V in  aqueous a c id ic  s o lu t io n .  

Figure (3 -1 )

F igure (3 -1 )  P r o t o ly t ic  E q u i l ib r ia  o f  C ry s ta l  V io le t

Colourless :

~H + +

Hg RoH

Coloured :

+H2 Ü

+H

-H 2 O

-H

-H

ROH

R +

yellow

HR

+H

green

+H

-H

+H

+

HRGH ROH

R +

v io le t

Where R+= [ (CH2 ) 2 -N.CgH^l^0+

The d is s o c ia t io n ,  hydratio n  and k in e t ic  constants were 

evaluated f o r  a l l  the species in  the diagram by Cigen, R . , (19 58 ).

I f  the  m olecular species in v o lve d , in  the proton  

t r a n s fe r ,  and hydratio n  e q u i l i b r i a ,  are  designated as fo llo w s

ROH = C; HROH = ; li^ROH = S^; *H*ROH =
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R+ = B; HR+ = G; H2 R+ = Y; I H ] = h;’ [ DH ] = oh

Then the ac id -base d is s o c ia t io n  e q u i l ib r iu m  constants

are : -

= h [ G ] ; K2  = h_l_Bl ; = h I S2 1 ;Ï1T
Kg = h tS^l ; K3  = h le

Sgi iS^

and hydration  e q u i l ib r iu m  constants a r e : -

K4 = [S^]oo J = IS^] “  ; Kg = IS^oo

l Y ]oo [ G1 0 0  l B1 0 0

The values f o r  the  e q u i l ib r iu m  constants as determined  

by Cigen, R . ,  (1958) are;

* ^ 1  °
0 . 1 2 2 S '  = 0.00406 Molar< ■ 486 X 10"^ 1 .78  X 1 0 “ ^ 2 .46  X 1 0 - 6 Molar

79 1̂ 5 " 0.0319 s  =
1 .46  X io"^

The spectra  o f  the  th re e  coloured species are  shown in

F igure  (3 -2 )

I t  can be seen from F igure  (3 -1 )  th a t  a l l  the  hydrated  

species are  c o lo u r le s s . The hydration  constants are in  the order > 

Kg > Kg. The ra te  o f hydration  and hence loss o f  co lour being  

g re a te s t  f o r  the  t r i c a t i o n  and le a s t  f o r  the mono-cation.
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FIGURE .(3 —  2) Spectrum of Crystal Violet Lactone in ethanolic
solution
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FIGURE.(3 — 3) Spectra of the Blue and Green Species of Crystal
Violet Lactone in acidified ethanol
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3.1.3 The Behaviour of Crystal Violet Lactone on Clay

M inera ls  and Oxides

C ry s ta l  v io le t  lactone is  co lourless  in  e th a n o lic  

s o lu t io n ,  see F igure  ( 3 - 2 ) .  When a co lo u rless  s o lu t io n  o f Q/L 

is  app lied  to  a c la y  m inera l or ox ide , and the  solvent a llowed to  

evaporate, a v io l e t  co lour is  formed.

I t  has been shown by Kortum, G., and Vogel, J. (1960)  

th a t  the co lo u r less  lactone o f m alach ite  green-o-carboxylic  ac id  (MGL) 

when adsorbed onto d r ied  NaCl is  g re en is h -b lu e . The re f le c ta n c e  

spectrumon d r ied  NaCl corresponds to  the  spectrum o f m a lach ite  green  

in  methanolic  s o lu t io n .  Hence the  lac tone  r in g  has undergone 

r e v e r s ib le  cleavage on the  surface and a resonance s ta b i l is e d  Z w it te r io n  

i s  formed:

M02N Me

adsorb
desorb

Colourless (M.G.L.) Greenish-blue zwitterion

( I )  ( I I )

The IR spectrum o f the adsorbed lac tone  shows th a t  

t h is  exp lana tion  is  c o r re c t ,  because the  -COO" band can be observed 

as w e l l  as the  r in g  freq u en c ies , Kortum, G. and O e lf ,  H. (1 964 ).

Since the  lac ton e  cannot be converted to  the Z w it te r io n  by heating  

in  s o lu t io n ,  or m e lt in g ,  the r in g  cleavage must have a high a c t iv a t io n
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energy. This energy b a r r ie r  is  lowered during adsorp tion , by the  

p o la r is in g  e f f e c t  o f  the  io n ic  l a t t i c e ,  so th a t  a p a r t i a l  c leavage

occurs even a t  room tem perature . A p lo t  o f  FCR’ o° ) f o r  the  maxima

-1 -1 of the  bands a t  16,500 cm and /or  24,000  cm , which corresponds

to the  cleaved lac to n e , against the mole r a t i o  x g ives a Langmuir

isotherm . This  im p lies  th a t  when the f i r s t  monolayer is  sa tu ra ted

no f u r t h e r  c leavage takes p lace .

The degree o f r in g  cleavage, as measured by the  band 

i n t e n s i t ie s ,  decreases from L iC l  through to CsCl f o r  a given surface  

coverage on these adsorbents. The p o s it io n s  o f  the z w i t te r io n  bands 

are v i r t u a l l y  unchanged. On the c o n tra ry ,  exchange o f the  anions  

(F , Cl , Br , I  ) has no e f f e c t  on the  in te n s i t y  o f  e i t h e r  band.

Thus the bonding is  mainly coulombic, between the l a t t i c e  ca t ion s  and 

the carboxy la te  groups, because the p o s i t iv e  charge o f the z w i t te r io n  

is  d is t r ib u te d  by resonance over the g re a te r  p a rt  o f the m olecule. 

Therefore  the  sm alle r  the l a t t i c e  c a t io n ,  the g re a te r  the  p o la r iz in g  

e f f e c t  on the  lac ton e  r in g  and the more the e q u i l ib r iu m  I  — *- I I  

is  s h i f te d  to  the  r i g h t .  A s im i la r  e f fe c t  is  observed on a lk a l in e  

e arth  oxides. The stronger p o la r iz in g  e f fe c t  o f  the double charge 

i s  shown by the  g re a te r  degree of r in g  cleavage f o r  a given surface  

coverage, compared w ith  the a l k a l i  metal ions.

The r in g  opening is  r e v e r s ib le ,  a f t e r  desorp tion , the  

co lo u r less  lac ton e  is  reformed. This a lso occurs in  the presence o f  

w ater [moist a i r ] .  The z w i t te r io n  is  d isp laced by H^O but th is  a lso  

depends upon the  s iz e  o f the l a t t i c e  c a t io n .  Displacement is  slow 

from L iC l ,  i e .  a f t e r  13 hours the  c ry s ta ls  are s t i l l  b lue on 

exposure to  moist a i r .  The la r g e r  the  ca t io n  the s m alle r  the  p o la r iz in g  

e f f e c t  and hence the  g re a te r  the necessity  to  p re -d ry  the  s o l id  in  

order to  a f f e c t . t h e  r in g  c leavage.
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There fo re  a s im i la r  s i tu a t io n  w i l l  occur when CVL is  

adsorbed upon c la y  m inerals  and oxides. The in tense  blue colour  

formed, is  2 c a rb o x y -c rys ta l  v i o l e t ,  analogous to  the z w i t te r io n  ( I I )  

of m a lach ite  green lac to n e .

Mq 2 MeoN

NMe

COO

NMe NMe-

Colourless
CVL
( I )

Violet zwitterion 
2-carboxy-crystalviolet.

( I I )

The expected e f f e c t  o f having an e le c tro n  withdrawing

s u b s t itu e n t  such as -COO in  an ortho p o s it io n  to  the c e n t ra l

carbon atom of c r y s ta l  v i o l e t ,  would be to s t a b i l i z e  the c a rb o -ca t io n ,

and cause a bathochromic s h i f t  o f the f i r s t  v i s i b l e  absorption  band.

This  is  observed, 2-carboxy. CV ^^OH/HCl _ gQ2nm o f,
A  max

CV . ETHDH/HCl _ Also the e x t in c t io n  c o e f f ic ie n t  o f
A  max

2 carboxy-CV should be sm alle r  than Cy due to the  s te r ic  hinderance  

o f the COO in  the  ortho p o s i t io n .  This causes the  r in g  to be 

tw is te d  f u r t h e r  out o f  the p lane, and hence reduce it  o r b i t a l  overlap  

Barker C.C. e t . a l . ,  (1959 ).
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3.1.4. Possible Modes of Fading; Crystal Violet and Crystal

V io le t  Lactone.

( i )  R evers ib le  Fading R eactions .

Since 2 CO^- Cy is  s t r u c t u r a l ly  very s im i la r  to  Cy^

the z w i t te r io n  d e r iv a t iv e  should undergo the  same proton t r a n s fe r  

and /or acid -base  e q u i l ib r i a  as the parent dye. Hence i t  should be 

capable o f  p ro tonation  to  the  d i  and t r i c a t i o n i c  species. S im i la r ly  

a l l  forms would be su sceptib le  to  h ydra t io n . From th is  study i t  has

been shown th a t  when CyL is  d issolved in  absolute  ethanol i t  is

-3  +c o lo u r le s s ,  but i f  the s o lu t io n  is  made 10 M w ith  respect to H

using concentrated HCl o n ly , a blue co lour is  produced. Increas ing

+  — 2
the co n centra tion  o f H to  10 M causes the  co lour to  change to  green 

Figure  ( 3 - 3 ) ,  A max 640nm. F u rth e r  a d d it io n  o f acid  causes the colour  

to  be d ischarged. The absolute  ethanol used was d r ie d ,  but i f  the  

coloured s o lu tio n s  were l e f t  open to  the atmosphere they ra p id ly  

deco lourized  (30 m ins). This shows th a t  the  coloured species formed 

were su sc ep tib le  to  e i t h e r  r in g  re fo rm ation  or h yd ra t io n , in  a moist 

atmosphere.

+H,0A ^ , C /  / N M e ;
R ------  -H R \-- ' -HgO R

Colourless CVL Violet Colourless carbinol
(I) (II) (III)

Where R= Ph.NMe^
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The loss o f co lour can be ascribed to  e i t h e r ,  the  form ation  

o f ( I ) ,  o r  ( I I I ) ,  o r  both. The form ation  of the  co lourless  compounds 

i s  r e v e r s ib le  under the c o rre c t  co n d it io n s . The form ation  o f compounds 

( I )  and ( I I I )  can account f o r  r e v e r s ib le  fad in g  in  s o lu t io n  and on 

m inera l surfaces .

( i i )  I r r e v e r s ib le  Fading

I r r e v e r s ib le  fad ing  is  caused by exposure o f CyL, 

adsorbed on to  c lay  m inera ls  or oxides, to  l i g h t .  Photochemical 

changes can be broadly d iv ided  in to  two ty p e s : -

(a ) R evers ib le  Changes (Photo tropy)

A s t r i c t  d e f in i t io n  o f phototropy is  given by Luck,

W., and Sand, H . , (1964 ),  which s ta te s  th a t  phototropy is  a re v e r s ib le  

process th a t  is  produced by l ig h t  absorption and leads to  a quantum- 

m echanically  s ta b le ,  but thermodynamically unstable s ta te .  The 

phrase quantum m echanically  s ta b le  is  used to  exclude f lu o rescen ce ,  

phosphorescence and o p t ic a l  t r a n s i t io n s .

The term thermodynamically unstable  s ta te  d is t in g u is h e s  

phototropy from o rd in a ry  photochemical re a c t io n s ,  Egerton G .S .,  and 

Morgan A .G .,  (1 9 7 0 ) .  Phototropy is  g e n e ra l ly  r e s t r ic t e d  to  azo 

compounds which are  ye llow  or orange, because they e x is t  in  two 

g e o m e tr ic a l ly  isom eric  forms. These have d i f f e r e n t  sp ec tra , and 

phototropy causes conversion from one form in to  the o th e r .
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(b) I r r e v e r s ib le  Changes (Fading)

In  general in d i r e c t  methods, such as is o la t io n  and 

i d e n t i f i c a t i o n  o f  photochemical breakdown products, are  used to  study 

re a c t io n  mechanisms. This represents  the end r e s u l t  o f  extens ive  

chemical changes and can only in d i r e c t l y  provide evidence f o r  the  

fa d in g  process. A l im ite d  amount of work has been done on th e  

fad in g  products o f t r ia ry lm e th a n e  dyes in  s o lu t io n .  I t  was shown by 

Henriquez, P .C . ,  (1933) th a t  an aqueous s o lu t io n  o f  c r y s ta l  v io l e t  

i r r a d ia t e d  w ith  a mercury arc lamp f o r  a few days turned red . Since  

the  red compound possessed a f r e e  amino group, and had dyeing  

p ro p e r t ie s ,  i t  was concluded th a t  the fad ing  product was Fuchsine  

( p a r a r o s e a n i l in e ) .

MG2N NMe.

hv

NMe?

C ry s ta l  v io le tA m a x  590nm

H 2 N NH.

Fuchsine, red,\m ax 541nm, 
( p a r a r o s e a n i l in e ) .

M a lach ite  green undergoes s im i la r  change and turns  v io le t

Me^N ^ ^ ^ N M G 2

hv

M a lac h ite  green Doebners v io le t
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I f  c r y s ta l  v io le t  was exposed to  l i g h t  f o r  longer  

periods the s o lu t io n  turned c o lo u r le s s .  The fa d in g  products were 

is o la te d  by Iwamoto, K . ,  (1 935 ].  4, 4^ dimethylamino-benzophenone

was found to  be a major product.

NMe

NMe
hO

02
0

Crystal violet 4,4'^-dimethylamino- 
benzophenone .
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3.1.5. The Uses of Crystal Violet and Crystal Violet Lactone

C ry s ta l  v io le t  is  used as a b io lo g ic a l  s ta in  and as a 

t e x t i l e  dye. CV is  not used e x te n s iv e ly  f o r  t e x t i l e  dyeing because 

although CV produces a b r i l l i a n t  shade i t  is  not l i g h t  f a s t ,  as are  

many d i  and tr ia ry lm e th a n e  dyes.

C ry s ta l  v io le t  lac ton e  is  w idely  used as a dye in  the  

carbonless copying process. CVL is  encapsulated in  g e la t in  or a 

sy n th e t ic  polymer. The encapsulated dye is  then app lied  to  the  

underside o f a sheet o f  paper. The upper surface o f the sheet 

below has a c lay  m inera l c o at in g . W rit in g  ruptures  the capsules and 

re leases  the  dye. The CVL re leased immediately reac ts  to  form a 

v io le t  co lo u r .  The co lour fades w ith in  a few weeks when exposed 

to l i g h t ,  see page 197 Chapter 4.
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3.2 Experimental

3 .2 . 1 .  M a te r ia ls

Ci) Clay M inera ls  and Oxides

The s i l i c a  ge l used was Merck S i l i c a  ge l G (nach S ta h l ) ,

a standard chromatographic s i l i c a .  The m a te r ia l  had a surface area  

2
o f 500 m /g  as s p e c if ie d  by the m anufacturer.

The S i l t o n  was a sample provided by English Clays

Covering, Pochin and Co., L td . ,  S t .  A u s te l l .  Cornw all.  S i l to n  is  a

brand name; th e  m a te r ia l  is  produced by the  Mizusawa Company in

Japan. I t  i s  an ac id  t re a te d  d i-o c ta h e d ra l  m o n tm o r i l lo n ite ,

Sugara, Y . , e t  a l . .  Cl 970), w ith  a s p e c i f ic  surface  area , measured

by the  BET adsorption  method, Braunauer, S. Emmett, E. and T e l le r ,

2
E. Cl 938), o f  a t  le a s t  180 m /g .  The c lay  p a r t i c le  d iameters are  

a t  le a s t  75% by weight 10 microns or less  and not more than 45% 

by weight o f  the  p a r t ic le s  have d iam eter o f  1 micron or le s s .  We 

have measured by X -ray  d i f f r a c t i o n  CXRD) the basal spacing o f s i l t o n ,  

i t  was found to  be CdCOOl)) ^^1.44nm. The S i l t o n  was d r ied  f o r  XRD 

in  vacuo a t  20°C over IB hrs . The XRD was measured using the

'Powder Method’ , A z a ro f f ,  L .V . and Buerger, M.J. C1958). The X-ray  

wavelength CoK = 1.7902 A, and the  camera was 57.415mm rad iu s

The Upton Wyoming b e n to n i te # 2 5  and the K a o l in i te  used 

were both American Petro le ium  I n s t i t u t e  P ro je c t  49, standard c lay  

m in era ls ,  obta ined from Ward's N a tu ra l  Science E stab lishm ent. In c .  

Rochester, New York.
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( i i )  A l l  the  water used was prepared by double d i s t i l l a t i o n

in  an a l l  pyrex s t i l l  and stored f o r  short periods in  pyrex b o t t le s .

- 6  -1 -1The w ater had a s p e c i f ic  conductance o f  10 ohm cm . A l l  

chemicals used were o f A na lar grade unless otherw ise s ta te d .  C ry s ta l  

v io le t  was a Hopkin and W ill iam s  te c h n ic a l  s ta in  which was shown to  be 

90% pure by T .L .C .

The c r y s ta l  v io l e t  la c to n e , (6 Cdim ethylam ino)-3,3  b is  

dimethylaminophenyl isobenzofuranone) used was k in d ly  provided by 

English Clays Coverings, Pochin and Co., L td . ,  S t .  A u s te l l ,  Cornw all.  

The CVL had a m e lt in g  p o in t  o f  169°C o f .  Moriga, H. and Oda, R. 

[1964) 168-169°C.
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3.2.2 Methods

( i )  A n a ly t ic a l  Thin Layer Chromatography

The adsorbents used were e i t h e r  S i l i c a  ge l G or  

S i l i c a  Gel GF254, both were supplied by Merck. The adsorbent was

mixed w ith  the  so lvent [u s u a l ly  w ater) 1 :2  w/v and v ig o ro u s ly

s t i r r e d  in  a blender f o r  30 secs. The s lu r r y  was then evacuated w ith

s t i r r i n g  f o r  a f u r t h e r  1 min, to  remove any a i r  bubbles. The s lu r ry

was then spread on f i v e  20 x 20cm glass p la te s ,  using a Shandon 

p la te  spreader. The la y e r  was 0.3mm th ic k  when wet and 0.25mm 

when dry . The la y e r  was allowed to  dry in  the a i r ,  then heated to  

105°C f o r  30 mins to a c t iv a te  the la y e r .  A l l  TLC was performed  

on a r a d ia l  TLC apparatus [supp lied  by S ch le ich e r  and S chu ll  . In c .  

Selec ta  Sol Chromatography Chamber U .S .A . ) .  The TLC apparatus was 

wrapped in  aluminium f o i l  to  exclude l i g h t  when in  use.

Developed chromatograms were then examined in  d a y - l ig h t

and under a dual wavelength u /v  l i g h t  [Shandon). [254/280nm) 

samples were ap p lied  using disposable m icro p ip e ttes  [Microcaps, 

Drummond S c i e n t i f i c  Co., Broomhall, Pennsylvania U .S .A .)  o r  by a 

Hamilton l iq u id  m ic r o l i t e r  syringe [D is tr ib u te d  by P ierce  Box 117 

Rockford, I l l i n o i s ,  61105).

Two to twenty m ic r o l i t e r s  o f  0.5% w/v m ethanolic  or  

e th a n o lic  s o lu t io n s  o f  the  dyes were ap p lied  to  the p la t e ,  each dye 

on one spot [3mm max d iam eter) on a concentr ic  c i r c l e  approxim ately  

1 cm rad iu s  from the  cen tre  o f the p la te .

C ry s ta l  v io le t  is  a basic dye. Basic dyes are  water
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so lu b le  as the c h lo r id e  or p e rch lo ra te  s a l t s .  Many TLC solvent 

systems have been devised in  order to  separate  basic dyes, S ta h l ,

E. (1 9 6 9 ) ,  618-619. In  the course of t h is  work many so lvent  

systems have been t r i e d  but the most s a t is fa c to r y  was one devised  

by M a rs h a l l ,  P.N. and Lewis, S.M. (1974 )a , (Butan - 1- q 1, 12 vo ls  :

1% w/v aqueous NH^C1,5 vols : 2% v /v  aqueous form ic acid  ( 90%

pure) 2 v o ls ) .  A f t e r  vigourous shaking, the two phases were allowed  

to  separate  and the  aqueous phase was d iscarded. Development was 

a t ambient tem perature  ( 20°C) and u s u a l ly  took 4 -6 h rs .  The

chromatogram was d r ied  in  a draught o f cold a i r .

I f  a f t e r  examination, a p a r t i c u la r  band was o f  in t e r e s t ,  

i t  was scraped o f f  and sucked in to  a tube which contained ethanol 

washed cotton  wool. 3mls o f  absolute  ethanol was then run through  

the tube to  e lu te  the  compound.

( i i )  Fading o f C ry s ta l  V io le t  Lactone on S i l i c a  Gel G.

30 grams o f s i l i c a  gel G was washed in  a s o x le t

apparatus f o r  16hrs using absolute  ethanol as s o lve n t.  This

ensured removal o f  organic u /v  absorbing m a te r ia ls .  The s i l i c a

was allowed to  dry and then s lu r r ie d  (1 :2 )  w/v w ith  e th a n o l/w a te r

(1 :1 )  v /v .  IDGmgs o f CVL had been p rev io u s ly  dissolved in  the

e th an o l.  The p la te s  were spread as described above. The p la te s

were white  when wet, but turned b r ig h t  v io le t  on d ry in g . The dry

p la te s  were placed in  an incubator a t  4 D ° ±  G.5°C, w ith  constant

i r r a d i a t i o n  from a 1GG watt f lu o re s c e n t  l i g h t ,  22cms from the p la te s  

2
1 3 . G watts/m  , f o r  60 days.
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A f t e r  60 days the p la te s  were removed and washed w ith  

the  developing solvent fo r  16 hrs in  a Shandon p la te  washer. This  

concentrated the  mobile components in to  a narrow band a t the  end 

of the  p la te .  This narrow band was scraped o f f  the p la te  and placed  

in  a soxhlet apparatus. The s i l i c a  was f i r s t l y  e x trac ted  w ith  acetone  

f o r  8hrs. Each so lvent was then evaporated in  a Buchi ro ta ry  f i lm  

evapora to r . The e x tra c ts  were then separated by TLC. The remaining  

s i l i c a  which contained m a te r ia l  which was not mobile in  the  developing  

so lven t was removed from the p la te  and e x trac te d  using DMF in  a 

soxhlet apparatus.

C i i i ]  Transmission Spectroscopy

A l l  u l t r a  v io le t  and v is ib le  transmission spectroscopy  

was performed on a Pye Unicam SRI800 se r ie s  2 w i th  an AR25 l in e a r  

reco rd e r .  A matched p a i r  o f qu artz  c e l ls  were used,1 cm path len g th .

[ i v ]  pH measurements

Measurement o f pH to  =t 0 .05  pH u n its  were made w ith  a

combination e le c tro d e ,  P h i l l ip s /P y e  Unicam PW9418 pH m eterl The 

pH values quoted r e f e r  to  the aqueous phase in  e q u i l ib r iu m  w ith  the  

sedimented s o l id s .

[ v) P repara tion  o f Homionic Clay M inerals  and Oxides

K a o l in i te

The k a o l in i t e  was ground in  an agate m ortar f o r  

s evera l  minutes p r io r  to  preparing  the homoionic c la y .  Homoionic 

A l^ *  and C a ^ ^ -k à o l in i te  were prepared by suspending TOg o f  k a o l in i t e
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in  a 5% w/v suspension o f 1 M o la r ,A lC l^  or CaCl^* a t  pH 3 .0 .  The 

k a o l i n i t e  was e q u i l ib r a te d  fo u r  t im es, each tim e w ith  a fre s h  

s o lu t io n .  The k a o l in i t e  and s o lu tio n  being separated by c e n t r i fu g a t io n  

(5 ,0 0 0  rpm, G r i f f i n  and George bench c e n t r i fu g e )  f o r  10 minutes.

The k a o l i n i t e  was washed w ith  water, then w ith  90% ethanol : water  

v /v  to  ensure no exchange between Ĥ  amd A l^ * ,  or Ca^* took p lace .

A f t e r  washing, the concentra tion  o f the  ion in  s o lu t io n  was

”4 o< 1 x 1 0  M. The k a o l in i t e  was f i n a l l y  c en tr ifu g ed  and d r ied  a t  110 C.

The H  ̂ and NH  ̂ k a o l i n i t e  were prepared in  a s im i la r

- 2
manner, except th a t  the  HCl used, was 10 M, and the NH^Cl was 1 Molar. 

A f t e r  f i n a l  e q u i l ib r a t io n  and c e n t r i fu g a t io n  the  c la y  was evacuated 

to  remove any excess HCl(g) or NH^Cg). F in a l ly  they were washed 

as described above. A l l  samples o f homoionic c lay  were stored  

under vacuo over P^O^.

The same procedures were fo llow ed in  the  p rep ara tio n  

o f the o th er  homoionic c lay  m inera ls  and oxides.

( v i )  D i f fu s e  R eflectance  o f C ry s ta l  V io le t  and C ry s ta l

V io le t  Lactone on Clay M inera ls  and Oxides

The c la y  m in era ls ,  and oxides used, to g e th e r  w ith  the  

trea tm ent to  produce homoionic c lay  m inera ls  have been described above,

D if fu s e  re f le c ta n c e  spectra were measured on a Pye 

Unicam SP1600, the  normal m ir ro r  arrangement being removed and 

rep laced by the  d i f fu s e  re f le c ta n c e  attachment (Pye Unicam SP890 

D i f  . R e f t .  U n i t ) .  The samples were placed in  a metal sample holder  

supplied  by Pye Unicam. These were metal p lanchets approxim ately  

30mm in  d iam eter w ith  a c e n tra l  depression 25mm in  d iam eter and 2mm
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deep. Each d isk  held 0 .4  to  O.ôg o f m a te r ia l ;  the weight depended 

upon which c la y  m inera l was used. When in  p o s it io n  a quartz  window 

was placed over the  depression in  the sample holder to  r e ta in  the  

dry powder. A l l  spectra  were recorded against a c lay  m inera l or  

oxide standard.

The c lay  m inera ls  were ground in  an agate m o r ta r  fo r  

30 mins. To a weighed amount o f c la y ,  a Known amount o f dye was 

added, in  e th a n o lic  s o lu t io n ,  in  the  concentra tion  range 0.1 to  2 .0  

mg/ml. Th is  gave a f i n a l  d y e /c la y  r a t i o  o f 0.1 to 10 mg dye/g c la y .  

Each suspension was made to  a constant volume, to  f a c i l i t a t e  m ixing. 

The d y e /c la y  suspensions were thoroughly  mixed; a t  these con œ n tra t io n s  

the dye was ra p id ly  adsorbed, 10-20 mins, and then the  so lvent was 

evaporated. Approximately 99% o f the dye s t u f f  was adsorbed on to  

the  c lay  m in e ra ls ,  as shown by an adsorption isotherm page 48 

Chapter 2. The d y e /c lay  complex was then reground in  an agate m ortar  

to  ensure homogeneity. The sample was then packed in to  the metal 

d isks , and pressed f i r m ly  in  w ith  a metal d ie .

The samples were stored in  vacuo a t  4 0 ° ± 0 .5°C  in

th re e  c o n to l led  h u m id it ies ,  1 0 0 ,6 2 .5  and 0% r e l a t i v e  hum idity . The

100% RH atmosphere was produced by d i s t i l l e d  w ater, 62.5RH by lOOmls

of aqueous KÜH (285 .7  g /1 )  and 0% RH, by s to r in g  over P^O^. The

samples were c o n stan t ly  i l lu m in a te d  from fo u r  f lu o re s c e n t  s t r ip

2
l ig h t s  which produced 13.0  watts/m  a t  the  le v e l  o f  the samples.

Contro l samples were stored in  the  dark.
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3.3.1. Purity of Crystal Violet and Crystal Violet Lactone

Several c r i t e r i a  were used to  e s ta b l is h  the degree o f  

p u r i ty  o f  the  dyes used.

( i ) M e lt in g  Point

Compound Measured mp°C L i t e r a t u r e  value °C

CRYSTAL VIOLET-HCl 

CRYSTAL VIDLET LACTONE

184 (decomp) 

169

NOT AVAILABLE 

168 -  169*

* Moriga, H . , and Oda, R. (1964 ).

( i i 3  Thin Layer Chromatography

When commercial c r y s ta l  v io le t  was subjected to  TLC, 

tw elve  components could be reso lved . Table  (3 -1 3 .  2 to  10 j j l s  of  

0.5% w/v m ethanolic  s o lu t io n  was ap p lied  in  order to  o b ta in  accurate  

Rf values f o r  the major and minor components. Although tw elve  

components could be separated, band number 7 accounted f o r  90% 

o f  the  e x t in c t io n  o f  the dye.

Dnly one band could be resolved when CVL was subjected  

to  TLC using the  normal developing s o lve n t .  Table (3 -2 3 .  But th is  was 

near the  so lven t f r o n t .  Therefore  a second so lvent system was used
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(m ethonoliw ater 60/40  v / v ) .  This a lso showed only one component 

Rf = 0 .5 5 .

C i i i )  U l t r a  V io le t  and V is ib le  Spectroscopy

The spectrum of c r y s ta l  v io le t  in  e th a n o lic  s o lu t io n  is

shown in  F igure  ( 3 - 4 ) ,  X max = 590nm^mD* = 100 ,000 . These

f ig u re s  agree w ith  the best l i t e r a t u r e  estim ates . Cigen R. [1959 ).

The u /v  spectrum o f 0 / L is  shown in  F igure  ( 3 - 2 ) ,  = 272nmAmax

Zm = 50,000 .

( i v j  Nuclear Magnetic Resonance Spectroscopy

The N.M.R. spectra o f CV and CVL are  shown in  Figures  

(3 -5 )  and 3 - 6 ) .  A l l  proton peaks have been assigned, and agree  

w ith  s t r u c tu r a l  form ulae.
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3 .3 .2 .  R ad ia l Thin Layer Chromatography o f Some Tr iary lm ethan e  Dyes

P la te s  1 and 2 show a t y p ic a l  r a d ia l  chromatogram w ith  

unknown and standard components.

The Rf values f o r  the  standards used are  shown in  Tables  

(3-1 to  3 - 6 ] .  The A max shown in  the ta b le s  r e f e r  to the  A max o f  

the  component when desorbed from the s i l i c a  by absolute  e thano l.

A commercial sample o f  p a ra ro s e a n i l in e ,  p a ra ro s e a n i l in e -  

HCl (Eastman Techn ica l S ta in ]  was separated using RTLC. A second 

commercial sample o f  p a ra ro s e a n i l in e .  Fuchsine BDH s ta in ,  (fuchs ine  

i s  a synonym f o r  p a ra ro s e a n i l in e ] ,  was separated. The separa tions .

Table (3 -3 ]  and ( 3 - 4 ] ,  show com pletely  d i f f e r e n t  components. From 

s t r u c tu r a l  considera tions  p a ra ro s e a n i l in e  should have a g re a te r  Rf 

than CV in  the  same system, p a ra ro s e a n il in e  is  s m alle r  and less  

p o la r  then c r y s ta l  v i o l e t .  The separa tion  o f the BDH sample resolved  

e ig h t components, none w ith  an Rf g re a te r  than th a t  of CV. The major  

components on ly  having an Rf or 0 .12  and 0 .0 5 ,  c . f .  CV = 0 .5 2 .

The Eastman sample showed only two components, w ith  Rf values o f  

0.74 and 0 .6 8 .  Desorption o f  band No. 1 showed i t  to have a X  max 

o f 554nm. Th ere fo re  t h is  band is  p a ra ro s e a n i l in e .  The composition  

of the  BDH s ta in  is  unknown.

P la te s  3 and 4 show a ty p ic a l  chromatogram examined 

under two wavelengths o f u /v  l i g h t ,  c . f .  P la te s  1 and 2

I f  a s o lu t io n  o f  Cv in  methanol exposed to  l i g h t  i t  

w i l l  change c o lo u r .  When the components o f  the s o lu t io n  are separated  

by TLC, s ev e ra l  changes are  seen. Table ( 3 - 7 ] ;  no new bands appear
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PLATE 1. Radial Thin Layer Chromatograpy of Crystal Violet,

Crystal Violet Lactone and their derivatives.

*
y

a Fraction D see Table (3 -14) for Rf values
e Fraction C see Table (3 -13) "
g Pararoseaniline Table (3-4) "
i CVL in methanolic solution see Table (3-7) for Rf values
k Fraction E see Table (3 -15) for Rf values.
b,d, etc. CV standard, see Table (3 -1) for Rf values.
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PLATE 2. Radial Thin Layer Chromatography of Crystal Violet ,

Crystal Violet Lactone and Their Derivatives.

I

c .Pararoseaniline. Eastman Tech. Stain, see Table (3 -4) for Rf values,
i and e 4,4^ bis dimethylamino benzophenone see Table (3-6) 

for Rf values.
k and g 4 di methylamino benzophenone see Table (3 -5) for Rf values, 
a ,h, d,f,h,and j CV standard, see Table (3 -1), for Rf values.
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PLATE 3 Radia 1 Thin Layer Chromatography of Crystal Violet,

Cryst al Violet Lactone and Their Derivatives

: 3 ni%

%

a F r a c t i o n  E; see T a b le  ( 3 - 1 5 }  f o r  R f  v a l u e s

c " B; " ( 3 - 1 2 ]

e " Cj " ( 3 - 1 3 ]

g " D; " ( 3 - 1 4 ]

i  F u c h s in  (BDH];  " ( 3 - 3 ]

K CVL i n  m e t h a n o l i c  s o l u t i o n ;  see T a b le  ( 3 - 7 ]  f o r  R f  v a l u e s .

b , d ,  e t c .  C r y s t a l  V i o l e t  s t a n d a r d ,  see T a b le  [ 3 - 1 ]  f o r  Rf  v a l u e s



PLATE U Radial Thin Layer Chromatography of Crystal Violet,

Crystal Violet Lactone and Their Derivatives

99

j )  ins

a F r a c t i o n E ; see T a b le [ 3 - 1 5 ] f o r  Rf

c B; [ 3 - 1 2 ]

e C; [ 3 - 1 3 ]

g D; [ 3 - 1 4 ]

i F u c h s in [BDH]; [ 3 - 3 ]

K CVL i n  m e t h a n o l i c  s o l u t i o n ;  see T ab le  [ 3 - 7 ]  f o r  Rf  v a l u e s .  

b , d ,  e t c .  C r y s t a l  V i o l e t  s t a n d a r d ,  see T a b le  [ 3 - 1 ]  f o r  Rf v a lu e s
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but the  amount o f bands 3 ,4 ,5  and 6, Table C3-1) increase .

Component 3 has the  same Rf and X max as the standard p a ra ro s e a n il in e .  

Since the  bands 4 ,5  and 6 have Rf values which l i e  between p ara 

ro s e a n i l in e  and CV, and they appear in  la rg e r  q u a n t i t ie s  a f t e r  

i r r a d i a t i o n ,  i t  was concluded th a t  they were probably tr ia ry lm e th a n e  

dyes w ith  few er methyl groups than CV and more than p a ra ro s e a n il in e .

I t  i s  p o ss ib le  to  form e ig h t  in te rm ed ia tes  dyes between CV and 

p a ra ro s e a n i l in e ,  see Table [ 3 - 8 ) .
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Table [3-1] Radial Thin Layer Chromatography of Crystal Violet

ADSORBENT :

SOLVENT :

RUNNING TIME : 6 hours

S i l i c a  ge l GF254

BUTAN-1-OL/NH^Cl 2% aq/hcDOH 1% aq [1 2 :5 :2 ]

NO. Colour S ize  o f  band 
la rg e ,  medium 
small [L .M .S .]

* Mean 
Rf

+ X Max Comments 
[nm]

Experimenal
value

1 Yellow S 0.93

2 Blue M 0.84

3 Red M 0.77 542 P ara ro s ea n il in e

4 Blue S 0.74 548

5 Blue M 0.67 558

6 V io le t L 0.61 564

7 V io le t VL 0.52 594 Cv major
component.

8 ■ Blue S 0.45

9 Blue S 0.38

10 Red S 0.34

11 Blue S 0.26

12 Blue S 0.17

* The mean Rf is  the  mean o f a t  le a s t 6 separate samples.

The standard d e v ia t io n  f o r 6 samples = 0.01 Rf.

+ XMax o f coloured m a te r ia l desorbed from s i l i c a  by e thano l.
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Table  (3 -2 )  R ad ia l Thin Layer Chromatography o f C ry s ta l  V io le t  

Lactone

ADSORBENT : As Table (3 -1 )

SOLVENT :

RUNNING TIME :

NO Colour Size * Mean Rf + X max Comments

1 V io le t L 0 .95  272nm CVL

Table  (3 -3 ) R ad ia l Thin Layer Chromatography o f Fuchsin (BDH s ta in )

ADSORBENT : As Table (3 -1 )

SOLVENT :

RUNNING TIME ;

NO Colour S ize  * Mean Rf Experimental  
X max (nm)

Comments

1 y e llo w S .52

2 b lu e /p in k  M .40

3 blue S . 36

4 blue S .27

5 g reen /
y e llo w

S .24

6 p in k /
purp le

M .19

7 purple L .12

8 purple L .05
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Table (3 -4 )  R ad ia l  Thin Layer Chromatography o f P ara ro sea n il in e -  

HCl (Eastman Tech. S ta in ,  Mwt = 323 .83 )

ADSORBENT : As Table (3 -1 )

SOLVENT :

RUNNING TIME :

No. Colour S ize  * Mean Rf + Experimental
X max (nm)

Comments

1 • Red L 0 .74  542 P a ra ro s ea n il in e

2 Red M 0 .68  557

Table (3 -5 ) R ad ia l Thin Layer Chromatography o f

4, Dimethylaminobenzophenone

ADSORBENT : 

SOLVENT : 

RUNNING TIME :

As Table (3 -1 )

NO Colour S ize  * Mean Rf + Experimental
X max (nm)

Comments

1 Yellow L 0 .93  330



104

Table (3-6) Radial Thin Layer Chromatography of

4,4'bisdimethylaminobenzophenone

ADSORBENT : As Table (3 -1 )

SOLVENT :

RUNNING TIME :

No Colour S ize * Mean Rf + Experimental  
A max (nm)

Comments

1 Yellow L 0 .93 366

2 Blue S 0.51 591

3 Blue M 0.47 594

Table (3 -7 ) R ad ia l Thin Layer Chromatography o f iCV d issolved in

Methanol and Exposed to  L ig h t f o r  20 days a t  20°C

ADSORBENT : As Table (3 -1 )

SOLVENT ;

RUNNING TIME :

No Colour S ize Mean Rf Experimental  
A max (nm)

Comments

1 Red M 0.73 542 P a ra ro s e a n il in e

2 Blue M 0.69 548

3 Blue M 0.61 558

4 V io le t L 0 .55 564

5 V io le t L 0 .49 594 CV

6 red/brown S 0.41

7 red/brown S 0 .33
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'3,
N

/R

/ " 5

R,

^1 to  Rg Me C ry s ta l  V io le t

R to  R = H = p a rarosean il i 'el b

Table (3 -8 )  S tru c tu res  o f Triary lm ethane  dyes

R groups r e f e r  to  diagram above

No Methyl

Groups

" 2 « 3 ^̂ 4 R.5 " 2 °
X max 

(nm)

6 Me Me Me Me Me Me 590

2 5 H Me Me Me Me Me 587

3 4 H H Me Me Me Me

4 4 H Me H Me Me Me

5 3 H H H Me Me Me

6 3 H Me H Me H Me

7 2 H H H H Me Me

8 2 H H H Me H Me

9 1 H H H H H Me

10 0 H H H H H H 541
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No band had a X max = 587nm th e re fo re  No.2 Table (3 -8 )  

can be ru le d  ou t, t h is  has 5 methyl groups and is  commonly Known as 

m e th y lv io le t ,  a lthough i t  is  possib le  th a t  t h is  species was present  

but was unresolved. The seven remaining compounds can be d iv ided  

in to  two groups:-

Series (a) S eries tb)

No. of
methyl 4 3 2 1 2 3 4
groups

H H H H H H H

H H H H H «2 ' 2̂

'^3 H H H H H H

"4 "4 H H '^4 ^4

"s ^5 ^5 H H hi "5

^6 ^6 , ^6 Rs ^6 ^6

The dyes in  s e r ie s  (a ) are less s ym e tr ic a l  than those  

in  s e r ie s  ( b ) .  Loss o f  symmetry, as w e l l  as e le c tro n  donating power 

would tend to  produce x and y t r a n s i t io n s ,  analogous to m alach ite  

green. The e le c tro n  donating a b i l i t y  o f  amines are  in  the order  

t e r t i a r y > secondary> prim ary, but the  d i f fe re n c e s  are  small and are  

u n l ik e ly  to  be la rg e  enough to  produce x and y t r a n s i t io n s .

Therefore  i t  i s  not possib le  to  d is t in g u is h  between the  two se r ie s  by 

t h e i r  X max va lues . Only th ree  species are reso lved  out o f  a possib le  

seven. R eso lu tion  was very  good in  th is  system and i t  should have 

been possib le  to  d e tec t not only species th a t  d i f f e r  by one methyl
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group, but a lso  s t r u c tu r a l  isomers, c . f .  Azure A / symmetrical 

d im e th y lth io n in e  page226Chapter 4.

I f  an e m p ir ic a l  value  is  placed upon the hypsochromic 

s h i f t  caused by removal o f  one methyl group, a value  o f 9nm is  

obta ined . Table ( 3 - 9 ) .

Table (3 -9 )  Predicted X max values o f T r iary lm ethan e  Dyes

No. Methyl 
Groups

H^O

X max L i te r a t u r e  
values *

Predic ted
+

Observed Rf o f Band

6 590 592 594 0.52

5 584 583 - -

4 - 574 - -

3 - 565 564 .61

2 - 556 557 .67

1 - 547 548 .74

0 538 538 542 .77

The e m p ir ic a l  values were c a lc u la te d  b y :-

( X max CV - A max p a ra ro s e a n i l in e )  f 6 = hypsochromic s h i f t /M e  group, 

(592 -  538 = 54 f  6 = 9nm/me).

* No l i t e r a t u r e  values could be found f o r  the  dyes w ith  4 ,3 ,2  and 1 

methyl groups. The observed max f o r  bands 4 ,5  and 6 Table (3 -1 )  

most c lo s e ly  f i t  the  p red ic ted  values f o r  3 ,2  and 1 methyl groups. 

Since th e re  is  only one s tru c tu re  f o r  the dye w ith ,  one methyl group. 

Table ( 3 - 9 ) ,  only the  d is t in c t io n  between se r ie s  (a) and (b) f o r  

the dyes w ith  2 and 3 methyl groups is  necessary.
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From the  data no d is t in c t io n  can be made. But ser ies  (b ) ,  

where the  molecules are more symmetrical would suggest i t  is  the  

more l i k e l y  pathway.

Summarizing the possib le  dém éthylation as:

Me NMe

Crystal  v iole t

NHMe

- 3Me
MeH.N NHMe

NH

2N NHMe «6- Me

NH

NH

NHjN

Pararoseani l ine



3.3.3 1.09Radial Thin Layer Chromatography of Crystal Violet Lactone

A s o lu t io n  o f c r y s ta l  v io le t  lac tone  in  ethanol which 

was unprotected from l i g h t  r a p id ly  turned b lue . The X max o f the  

s o lu t io n  was 596nm. The in te n s i t y  o f  the co lour increased w ith  t im e .

2
Table (3 -1 0 )  shows the  RTLC separa tion  of such a s o lu t io n ,  13 watts/m  

l i g h t  a t  2G°C f o r  20 days. Comparing th is  w ith  Table (3 -2 )  i t  

becomes apparent th a t  severa l coloured species are produced. Any 

species which possesses a carboxyl group on the  C  ̂ atom t r a v e ls  

in  the  TLC so lven t as a lactone and is  th e re fo re  c o lo u r le s s .  Such 

species would t r a v e l  on the  so lvent f r o n t  because they are not charged.

I t  can th e re fo re  be concluded th a t  the  bands 3-11 in  Table (3 -1 0 )  show CVL 

has been decarboxyla ted .

Table (3 -1 0 ) R ad ia l Thin Layer Chromatography o f CVL disso lved in

s O ,

ADSORBENT 

SOLVENT 

RUNNING TIME

Ethanol and Exposed to  L ight f o r  20 days a t  20 C 

As Table (3 -1 )

No. Colour S ize Mean 
. Rf

Experimental ■ 
X max (nm)

Comments

1 V io le t L 0 .95 CVL

2 Red S 0.88

3 Red S 0.77 542 P a ra ro s e a n il in e

4 Blue s 0 .75 548

5 Blue vS 0.72

6 Blue vS 0.66

7 Blue M 0.63 574

8 Blue vS 0.58

9 V io le t M 0.53 594 CV

10 Blue S 0.46

11 Blue S 0 .42
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Components No.3 and 9, Table (3 -1 0 )  have been id e n t i f i e d ,  

by Rf and X  max, as p a ra ro s e a n il in e  and c ry s ta l  v io le t  re s p e c t iv e ly .  

Again, i t  is  h ig h ly  l i k e l y  th a t  bands 4 to 8 are  demethylated  

d e r iv a t iv e s  o f c r y s ta l  v i o l e t .  But in  th is  case th e re  are  f i v e  

bands separated compared w ith  th re e  f o r  CV. Not a l l  bands were in  

s u f f i c ie n t  q u a n t i ty  to  perm it i d e n t i f i c a t i o n .  But those th a t  were, 

seemed to  suggest th a t  a l l  the demethylated species were present.

There are  two routes to  produce demethylated d e r iv a t iv e s  

of CV from CVL, (1 ) dém éthylation fo llow ed by decarboxy la tion ;

(2) decarb o xy la t io n  fo llow ed by dém éthyla tion , see below:

NMe2

/ /

Mg2 N.

NMe2

NH2

0

1

^NMe2

NH.

NH

I f  ro u te  (2) was the major pathway, CV would be formed

and the dém éthyla tion  products would be the same as those formed from

the i r r a d i a t i o n  o f CV Table ( 3 - 7 ) ,  t h is  was not observed. A l l  the

demethylated products were formed and th is  would suggest th a t

c r y s ta l  v i o l e t  lac ton e  is  more su sc ep tib le  to photodegradation  

then CV.
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3.3.4. Thin Layer Chromatography o f C ry s ta l  V io le t  Lactone 

I r r a d ia t e d  on S i l i c a  Gel.

The re a c t io n  products o f CVL, which had been exposed to  

l i g h t ,  were c rudely  separated using the  fo l lo w in g  scheme:-

Scheme to  Separate Breakdown Products o f CVL

CVL + Reaction Products  
(Adsorbed onto S i l i c a  g e l)

P la te s  washed w ith  
B u to n - l -o l :  12

5NH^Cl :

Formic acid : 2

Desorbed

F ra c t io n  -f- 
A

Reflux  <—  
w ith  

acetone  
(SOXHLET] 

0hrs

Mobile

Desorbed
M a te r ia l

Immobile -y Reflux —  
w ith  

acetone  
(SOXHLET 

8hrs

F rac t io n
B

Desorbed

Desorbed
M a te r ia l

F ra c t io n  <- 
C

R eflux  w ith  
Ethanol 

(SOXHLET] 
8hrs

Reflux w ith  
Ethanol

(SOXHLET]
8hrs

F rac t io n
0

Desorbed 
M a te r ia l

R eflux  w ith  ------- ► F ra c t io n
DMF E

(SOXHLET]
8hrs

The components o f F ract io n s  A to E were f u r t h e r  

separated by RTLC.
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The butan-l-ül : NH^Cl 2% aq : formic acid 1 % aq (12:5:2)

Was intended to separate the mixture into 2 broad fractions of high

and low Rf.

The acetone e x t ra c t io n  removed almost a l l  o f  the  

unreacted CVL, F ra c t io n  A; Table ( 3 -1 1 ) ,  plus some CV. The a lco h o l

e x t ra c t io n  F ra c t io n  C; Table (3 -13 ) contained no major band. There

were 13 components reso lved , components 1 and 7 were id e n t i f i e d  as 

CVL and CV re s p e c t iv e ly .

F ra c t io n s  B and D, Tables (3-12 and 3 -14) were resolved  

in to  6 and 5 bands re s p e c t iv e ly .  Bands 2 and 4, Table (3 -1 4 )

were i d e n t i f i e d  as CV dém éthylation products.

R ad ia l Thin Layer Chromatographs o f  the Reaction Products o f CVL 

upon S i l i c a  ge l a t  4Q°C

Table 3-11)  

ADSORBENTS : 

SOLVENT :

RUNNING TIME :

F ra c t io n  A

As Table (3 -1 )

No Colour S ize Mean Rf Experimental 
X  max (nm)

Comments

1 V io le t VL 0.96 CVL

2 S 0.58

3 S 0.54 594 CV

4 S 0.48
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Table (3-12) Fraction B

ADSORBENT : As Table (3 -1 )

SOLVENT :

RUNNING TIME :

No Colour Size Mean Rf Experimental  
A  max ( nm)

Comments

1 brown/orange L 0.98

2 blue S 0.89

3 brown/orange L 0 .80

4 ■ brown/orange L 0.78

5 brown/orange L 0.61 A la rg e  %

6 orange vL o r ig in did not move.
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Table (3-13) Fraction C

ADSORBENT : As Table (3 -1 )

SOLVENT :

RUNNING TIME :

NO Colour Size Mean Rf Experimental 
A. max (nm)

Comments

1 blue m 0.94 CVL
(b lue  when

2 blue m 0.84 absorbed
co lourless

3 blue s 0.69 557 in  ETDH)

4 brown m 0.63

5 blue s 0.61 564

6 amber s 0.61

7 blue m 0.56 594 CV

8 pink m 0.49

9 • pink s 0.40

10 blue m 0.33

11 brown s 0.29

12 brown s 0.20

13 brown s 0.12
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Table (3-14) : Fraction D

ADSORBENT : As Table (3 -1 )

SOLVENT :

RUNNING TIME :

No Colour S ize Mean Rf Experimental 
A max (nm)

Comments

1 brown S 0.81

2 blue S 0.74 548

3 orange S 0 .70

4 blue S 0 .63 564

5 amber M 0.30

Table (3 -15 ) F ra c t io n  E

ADSORBENT : As Table (3 -1 )

SOLVENT :

RUNNING TIME ;

No Colour S ize Mean Rf Experimental  
A  max (nm)

Comments

1 Yellow S 0.98 338

2 Yellow S 0.78

3 Yellow S 0 .56
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F ra c t io n  E, Table (3 -1 5 )  resolved ye llow  and orange components.

Band 1 had aAmax 338nm. The Rf o f  4 , dimethylaminobenzophenone and 

4 ,4  bisdimethylaminobenzophenone are shown in  Tables (3 -5  and 3 - 6 ) ,  

both w ith  Rf 0 .9 3 .  The X  max o f 4 , dimethylaminobenzophenone is  330nm. 

This would t e n t a t i v e l y  id e n t i f y  band 1 Table (3 -1 5 )  as 4 , dimethylamino

benzophenone.

Many components were seperated in  q u a n t i t ie s  too small 

to a llo w  i d e n t i f i c a t i o n .  In  order to  i d e n t i f y  these components 

p re p a ra t iv e  la y e r  chromatography was attem pted, but the  separations  

were poor.

The RTLC showed the presence o f CV and benzophenone 

was t e n t a t i v e l y  i d e n t i f i e d ,  in d ic a t in g  degradation o f  the t r i -  

arylmethane nucleus . Benzophenones are known to  be f r e e  ra d ic a l  

sources when i r r a d ia t e d  w ith  l i g h t ,  i . e .  4 , 4bisdimethylaminobenzophenone  

(M ich le rs  Ketone) are  f r e e  r a d ic a l  sources in  u /v  ink  d ry in g , t h is  in  

tu rn  would f u r t h e r  a c c e le ra te  CVL decomposition.

A p oss ib le  scheme f o r  the decomposition o f  CVL on 

s i l i c a  ge l is  shown below.
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Scheme f o r  the  Degradation o f CVL upon S i l i c a  Gel

NMe2 NH2

MgoN b
[6 CH2 ) O'

0
II

X

NMg' H 2 N < y ,
/

(CVL) P a ra ro s ea n il in e

V - //

lactone

NH2

NMg2
(-C g^)

NH2

NMg NH2N

(CV)

0 = 0

4,4^bisdim ethyl^m ino

P a ra ro s e a n i l in e

NH2

NMg2

4 ,4^  aminobenzo-
phenone

NH.

4, dimethylamino  
benzophenone
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3.3.5. Diffuse Reflectance Studies of'Crystal Violet and

C ry s ta l  V io le t  Lactone Adsorbed upon S i l i c a  Gel

( i )  The E f fe c t  o f  Concentration

The absorbance o f CV and CVL, adsorbed upon s i l i c a  g e l ,  

as a fu n c t io n  o f  concentra tion  is  shown in  F igure  [ 3 - 7 ) .  The 

r e la t io n s h ip  was l i n e a r  over a wide range o f co n cen tra t io n s . The 

absorbance o f  CVL was 80% o f the absorbance o f CV a t the same 

co n ce n tra t io n . CVL reac ts  on the surface to  form a coloured z w i t te r io n ,  

page 77 Chapter 3.

adsorption
( I )  CVL "  -T- CVL . ( I I )

co lo u r le s s  desorption v io le t
lac to n e  z w i t te r io n

Only i f  the  re a c t io n  goes com plete ly  to the r ig h t  hand 

side o f the  e q u i l ib r iu m  can the absorbance o f  the CVL z w i t te r io n  

equal th a t  o f  CV, (mono c a t io n ic  v io le t  fo rm ) . This presumes th a t  

the e x t in c t io n  o f CVL(±) = CV(+). But t h is  presumption is  in o o rre c t  

since s u b s t i tu e n ts  in  an ortho  p o s it io n  to  the  c e n t ra l  carbon atom 

of t r ia ry lm e th a n e  dyes tends, by s t e r ic  hinderance, to  tw is t  the r in g s  

f u r t h e r  out o f  the  plane and hence reduce tt o r b i t a l  o v e r la p .  This  

w i l l  reduce the  in t e n s i t y  o f  the  v is ib le  band. Barker, C.C. B r ide ,

M.H. and Stamp, A. (1 9 59 ) .  At lower coverage the  curves tend to  

converge. Th is  is  expected because the  co lour change can only occur 

in  the  monomolecular la y e r  a t  the surface  o f the adsorbent. Hence 

v i r t u a l l y  a l l  the  CVL present w i l l  be in  the z w i t t e r io n ic  form ( I I ) ,  

when the coverage is  low, and a t high concentra tions  the absorbance 

w i l l  reach a l im i t in g  v a lu e . Such re ac t io n s  g ive  Langmuir type  

adsorption  iso therm s,and the surface area o f an adsorbent can be
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pred ic ted  a c c u ra te ly  when compared w ith  BET surface  area d e te rm ina tions ,  

Kortum, G ., and OelKrug, (1 9 62 ) .

( i i )  The E f fe c t  o f  M oisture  and L ight upon Adsorbed C ry s ta l  V io le t

There a re  severa l causes which can account f o r  the  loss in  

i n te n s i t y  o f  the  v is ib le  band of CV, when adsorbed onto a s o l id  

surface . These can broadly be d iv ided  in to  two types, (1 ) hydration  

and d e h y d ra t io n , ( 2 )  photochemical. Hydration and dehydration are  

e s s e n t ia l ly  r e v e r s ib le  changes whereas photochemical processes are  

g e n e ra l ly  i r r e v e r s i b l e .  I f  th e re  was e s s e n t ia l ly  no d i f fe re n c e  

between the  samples kept in  the  dark compared to those  i r r a d ia t e d ,  

the  re a c t io n  was assumed to be one o f  hydration  or dehydra tion . I f  

th e re  were d i f fe re n c e s ,  the change in  in te n s i t y  was e s s e n t ia l ly  caused 

by a photochemical process.

The zero time absorbance (A ) ,  was the  absorbance o f theo

sample d i r e c t l y  a f t e r  p re p a ra t io n ,  and as such was a i r  dry i 60% RH). 

Therefore  la rg e  d if fe re n c e s  can be seen in  the  f i r s t  24hrs, due to  

e q u i l ib r a t io n ,  when the  RH was g r e a t ly  d i f f e r e n t  to  60%. The 

spectra  o f CV adsorbed upon s i l i c a  g e l ,  a t  th re e  d i f f e r e n t  h u m id it ies ,  

as a fu n c t io n  o f  time is  shown in  F igures  (3 -6  to  3 -1 3 ) .  C ry s ta l  

v io le t  was adsorbed as the monocation (B+) a t  a l l  h u m id it ies .

100% R e la t iv e  Humidity

The absorbance o f  CV w ith  t im e , a t  100% RH is  shown in

F igure  (3 - 1 4 ) .  The in t e n s i t y  o f  th e  v is i b l e  band decreased in  the

i r r a d ia t e d  and n o n - ir ra d ia te d  samples. The in te n s i t y  a f t e r  24hrs

was 40% o f the  A va lu e , a f t e r  which i t  remained constanto

(1 to  43 d ays ). The loss o f in t e n s i t y  in  the presence o f water vapour
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FI CURE i 3-8). The Diffuse Reflectance Spectra of Crystal V i o l e t  
on Silica, at 100% RH, as a function of time w i t h o u t  
irradiation (2.5 mg CV/g Silica)

Numbers refer  to react ion time in days.

o 0,8
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700600500300
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FIGURE .( 3“ 9). The Diffuse Reflectance Spectra of Crystal Violet 
on Silica, at 100% RH, as a function of time with 
irradiation (2.5 mg CV/g Silica)

0 .

0.

Numbers refer to reaction time in days.

0
700500 600400300

Wavelength (nm)
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The D.R. Spectra of Crystal Violet on Silica at 
62.5% RH, as a function of time, without irradiation 
(2.5 mg CV/g Silica)
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- Numbers refer to reaction time 
in days.
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FIGURE .( 3 — 11). The D.R. Spectra of Crystal Violet on Silica at
62.5% RH, as a function of time, with irradiation 
(2.5 mg CV/g Silica)
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Numbers refer to reaction time 
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FIGURE .(3— 12). The D.R.S. of Crystal Violet on Silica at 0% RH,
as a function of time, without irradiation
(2.5 mg CV/g Silica)
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FIGURE.I 3 —13). The D.R.S. of Crystal Violet on Silica at 0% RH, 
as a function of time, with irradiation 
(2.5 mg CV/g Silica)
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Numbers refer to reaction time in days.
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(moist a i r )  can be a t t r ib u te d  to  the displacement o f CV from the  

surface  by w ater, and the form ation o f  the c o lourless  form , 

see page 72 Chapter 3. The in t e n s i t y  o f  the v is ib le  absorption  

band was the  same f o r  the i r r a d ia te d  and n o n - ir ra d ia te d  samples, 

w ith in  experim ental e r r o r .  But the p o s it io n  o f the X max was 

s u b s ta n t ia l ly  d i f f e r e n t .  Figures (3 -17  and 3 -1 8 ) .  The X max o f  

the n o n - i r ra d ia te d  sample was constant a t  592nm, whereas the i r r a d ia t e d  

sample showed a pronounced hypsochromic s h i f t  of 20nm. Thus in d ic a t in g  

th a t  the  remaining coloured CV undergoes dém éthylation .

62.5% R e la t iv e  Humidity

The in t e n s i t y  of the  v is i b l e  absorbance o f  the  non- 

i r r a d ia t e d  sample increased to 150% o f  the va lue . F igure  ( 3 -1 5 ) .

The i r r a d ia t e d  sample i n i t i a l l y  increased to  120% but th e r e a f t e r  

decreased (40% A  ̂ a f t e r  43 days). An increase in  in t e n s i t y  can be 

expla ined in  terms o f  th ree  e f f e c t s : -

( i )  An increase in  humidity can reduce the s c a t te r in g  

c o e f f ic ie n t  o f  the  sample, because th e re  is  a reductio n  in  the r a t io  

of r e f r a c t i v e  in d ices  o f the  sample and surrounding medium, i . e .  

when a i r  is  rep laced  by water vapour. This causes a reduction  in  

the  s c a t te r in g  c o e f f ic ie n t  and hence an increase in  (FRoo ) ,  or  

absorbance, Kortum, G. et a l . ,  (1 9 6 3 ) j KubelKa, P and Monk, F . (1931) 

and Kubelka, P. (1 948 ).

( i i )  An increase in  humidity reduces the a c id i t y  o f  the  

surface  and any CV which was in  the d ic a t io n ic  form would be converted  

to the monocationic form, and th e re  would be a corresponding  

increase a t  592nm.
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FIGURE.{3— H). The Percentage of the Zerotime absorbance of Crystal
Violet, on Silica gel, remaining with time__________
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F I GURE .(3 — 15). 62.5% Relative Humidity
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FI  GURE .( 3—  16). 0% Relative Humidity
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The Position of X  max of Crystal Violet on Silica gel as a function 

FIGURE .(3 ~1 7). Non-irradiated

I
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( i i i )  A decrease in  humidity  could cause the  e q u i l ib r iu m : -

s ,

v io le t  co lourless  

to  be s h i f te d  to  the  l e f t .

I t  is  u n l ik e ly  th a t  [iii] is the co rrec t  reason as there  

should be an increase  in  r e la t i v e  hum idity , not a decrease. But 

no d is t in c t io n  can be made between [ i ]  and ( i i ) .

The p o s it io n  o f the A max f o r  the i r r a d ia t e d  sample 

decreased w ith  t im e, 584 to 578nm over 43 days. But the p o s it io n  

o f  th e  A max f o r  the n o n - ir ra d ia te d  sample remained constant a t  

584nm, F igures (3 -1 7 )  and (3 -1 8 ) .

Therefore  th e re  is  photo-decomposition a t  th is  r e la t i v e

hum idity .

0% R e la t iv e  Humidity

At 0% r e la t i v e  humidity both i r r a d ia te d  and non- 

i r r a d ia te d  samples decreased to  60% A^, a f t e r  10 days. F igure (3 -1 6 ) .  

A f t e r  th is  the  dark sample remains a t  a constant l e v e l ,  but the  

i r r a d ia t e d  sample was f u r t h e r  reduced to  20% A  ̂ a f t e r  43 days.

The i n i t i a l  reductio n  in  in te n s i t y  was caused by removal o f  water  

from the s i l i c a  su rface . This process is  much slower than hydration  

because w ater is  t i g h t l y  bound to  the s i l i c a  surface which is  

hygroscopic. An examination o f the  spectra . Figures (3 -12  and 3 -1 3 ) ,  

shows an increase  in  in t e n s i t y  a t  650nm and 450nm. This in d ic a te s  

the presence o f  the d ic a t io n  (G * * ) ,  and possib ly  the t r i c a t io n  (Y ) .  

The dehydration o f the  surface causes an increase in  a c id i t y  o f  the  

s i l i c a  and hence causes an increase in  the d i  and t r i c a t i o n i c  forms.
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The absorbance decreases because the  molar e x t in c t io n  o f  the green 

and ye llow  species are  less  than the v i o le t ,  Cigen, R. (1 9 58 ) .  

I r r a d ia t io n  causes a f u r t h e r  reduction  in  in t e n s i t y ,  but only a small 

hypsochromic s h i f t  (-2nm), F igures (3 -17  and 3 -1 8 ) .

( i i i ) The E f fe c t  o f  Humidity and L igh t upon CVL Adsorbed 

upon S i l i c a  Gel

The spectra  o f CVL adsorbed upon s i l i c a  ge l a t  th re e

h u m id it ies ,  (100, 62 .5  and 0 RH), are  shown in  Figures (3 -19  to

3 -2 4 ) .  CVL was adsorbed a t a l l  hum id it ies  as the  monocationic  
/

(B + ) z w i t t e r io n .  (A max = 596nm).

NM©'

COO'
2H

V io le t  mono-cation  

(B^+)

HNMe-

COON

C ---------------------------------------------  C -----------

green - d ic a t io n  

(G^++)
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FIGURE.(3-19).
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The Diffuse Reflectance Spectra of Crystal Violet 
Lactone on Silica gel, at 100% RH as a function of 
time, without irradiation (1.0 mg CVL/g Silica)
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FIGURE. (3 —20:
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The Diffuse Reflectance Spectra of Crystal Violet 
Lactone on Silica gel, at 100% RH as a function of 
time with irradiation (1.0 mg CVL/g Silica)
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FIGURE .(3-21). The D.R.S. of CVL on Silica gel at 62.5% RH as a
function of time, without irradiation (1.0 mg CVL/g
Silica)
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FIGURE ( 3 -  22) The D.R.S. of CVL on Silica gel at 62.5% RH as a 
function of time, with irradiation (1.0 mg CVL/g 
Silica)
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FI GURE.(3-23). The D.R.S. of CVL on Silica gel at 0% RH as a function
of time, without irradiation (1.0 mg CVL/g Silica)
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FIGURE.I 3 — 24). The D.R.S. of CVL on Silica gel at 0% RH as a function 
of time, with irradiation (1.0 mg CVL/g Silica)
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The z w i t te r io n  6"̂ + can undergo’ the same acid-base

e q u i l i b r i a  th a t  the  parent dye CV  ̂ can undergo, see page 72, Chapter 3, 

T h ere fo re  B^+ can be hydrated to  a co lo u rless  species as can the  

d i protonated species (c /+  + ) .  Also i f  6̂ +̂ is  d isplaced from the  

surface  the  lac to n e  r in g  w i l l  re form , and the v io le t  co lour w i l l  be 

discharged.

100% R e la t iv e  Humidity

The absorbance o f CVL as fu n c tio n  o f  t im e, a t  100% RH 

is  shown in  F igure  (3 -2 5 ) .  The absorbance a f t e r  24hrs decreased to  

10% o f va lue  , f o r  both the  i r r a d ia t e d  and n o n - i r ra d ia te d  samples. 

This showed t h a t  the  z w i t te r io n  was d isp laced from the surface  by 

water to  form the c o lo u rless  lac to n e .

The p o s it io n  o f  the \ max f o r  i r r a d ia te d  and non- 

i r r a d ia t e d  samples is  shown in  Figures (3 -28  and 3 -2 9 ) .  A small 

hypsochromic s h i f t  was observed f o r  the i r r a d ia t e d  sample and no 

s h i f t  was observed f o r  the n o n - i r ra d ia te d  sample.

62.5% R e la t iv e  Humidity

The i r r a d ia t e d  sample shows a la rg e  decrease in  

in t e n s i t y ,  10% A  ̂ a f t e r  8 days; F igure  (3 -2 6 ) .  But the n o n - i r ra d ia te d  

sample shows only  a small loss o f in t e n s i t y ,  80% A  ̂ a f t e r  8 days.

F igure  ( 3 - 2 6 ) .  Again the i r r a d ia t e d  sample showed a small hypsochromic 

s h i f t  C5nm), F igure  (3 -2 9 ) .  There fo re  the  reductio n  in  in te n s i t y  

was caused by photodegradation o f CVL.
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The Percentage of the Zerotime absorbance of Crystal Violet Lactone 
on Silica gel, remaining with time
FIGURE ■ ( 3 2 5 ) 100% Relative Humidity

(Solid symbols refer to non-irradiated samples)
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F I GURE .(3 — 26 ) 62.5% Relative Humidity
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The position of the X  max of Crystal Violet Lactone, on Silica gel, 
with time.
FIGURE ( 3 — 2 8) Non-irradiated
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0% Relative Humidity

The intensity of the non-irradiated sample decreases

to  40% a f t e r  24hrs, and remains constant t h e r e a f t e r .  F igure [3 -2 7 ) .

The i r r a d ia t e d  sample showed a decrease to 30% A a f t e r  24hrs,o

and s lowly  decreased t h e r e a f t e r  to  5% A . I t  can be seen from the□

spectrum th a t  the  peak a t  596nm decreases, and the absorbance a t  

B50nm and 45Dnm increases . F igure (3 -2 6 ) .  This in d ic a te s  th a t  

dehydration o f the  surface  has caused an increase in  the  a c id i t y ,  and 

the  co n cen tra t io n  o f  (G **) has increased , w ith  a loss o f in te n s i t y  

o f (B^+). I r r a d i a t i o n  has caused f u r t h e r  degradation , and re s u l ts  

in  a 6nm bathochromic s h i f t .

( iv )  The E f fe c t  o f  Counterions upon the Fading o f CVL

Adsorbed upon S i l i c a  Gel

The e f f e c t  o f exchangable counterions upon the fad ing  

processes o f CVL was measured as a fu n c t io n  of the  loss in  in te n s i t y  

and s h i f t  in  A max o f the adsorbed species. Four counterions were

3 + 2 +
used, A1 , Ca , H and . A l l  samples were maintained a t  

62.5% RH. Treatment o f  s i l i c a  w ith  the fo u r  counterions caused an 

increase in  the  in t e n s i t y  o f  the absorbed CVL, compared to  an 

untreated  sample. F igure C3-30). The absorbance o f CV was also  

a f fe c te d  by the  presence o f  counterions. F igure ( 3 -3 0 ) .  The

hydration  energ ies  f o r  the  counterions vary from 1149 K c a ls /g . io n

4f o r  Al^ to  87 K c a ls /g . io n ,  f o r  IMH. , N o rr is h , K . , (1 954 ).

A l^ *  as Counterion

A loss o f in te n s i t y  to 20% A  ̂ a f t e r  13 days was observed 

f o r ,  both i r r a d ia t e d  and n o n - i r ra d ia te d  samples. F igure (3 -3 1 ) .
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In  c o n tra s t  th e  untrea ted  sample maintained a high in t e n s i t y  when 

not i r r a d ia t e d .

CVL was adsorbed as the monocation. Both

i r r a d ia t e d  and n o n - i r ra d ia te d  samples e xh ib ite d  a small bathochromic 

s h i f t .  F igure  ( 3 .3 5 ) .  A nalys is  o f  the spectrum shows a new peak 

developing a t  350-360nm, when i r r a d ia t e d .  No peak developed unless 

i r r a d ia t e d .

A l^ *  as a counterion w i l l  cause an increase  in  the  

a c id i t y  o f  the  surface , due to  i t s  a b i l i t y  to  p o la r iz e  water  

molecules, R u s s e l l ,  J .D . e t  a l . ,  (1 9 68 ) .  This w i l l  s h i f t  the  

lactone z w i t te r io n  e q u i l ib r iu m  fu r t h e r  toward the  z w i t t e r io n .

Hence the  in crease  in  in t e n s i t y  o f  the v is ib le  band was caused by an 

increase in  th e  a c id i t y  o f the  su rface . The subsequent loss of  

in te n s i t y  must be caused by hydration  o f  the su rfa ce , because there  

was no requirem ent f o r  l i g h t .  Hydration o f the surface  would 

reduce th e  p o la r i t y  and cause the displacement o f the  z w i t te r io n  

by w ater.

Ca^ as Counterion

The in t e n s i t y  o f CVL, adsorbed upon Ca^* t re a te d  s i l i c a ,  

f a l l s  r a p id ly  to  4% A^ a f t e r  8 days i r r a d i a t i o n .  F ig u re  (3 -3 2 ) ;  c . f .  

untreated  sample 10% A^, 8 days exposure. The in t e n s i t y  o f  the  

n o n - ir ra d ia te d  sample 45% A^, 8 days s torage, a lso f a l l s  below the  

untreated  c o n tro l  sample o f 80% a f t e r  8 days s to rage. The loss in  

i n te n s i t y  o f  the  n o n - ir ra d ia te d  sample can be a t t r ib u t e d  to  hydration  

o f  the  surface  causing a reductio n  in  the p o la r i t y  o f  the surface and 

a displacement o f the  z w i t te r io n  by w ater . The e f f e c t  was more 

pronounced when'Al^ was counterion , because the hydratio n  energy o f
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FI GURE.( 3 31 ) as Counterion
(Solid symbols refer to non-irradiated samples)
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FIGURE 13 —  33)
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FI GURE .( 3— 3 4 ). n h4'*̂ as Counterion
(Solid symbols refer to non-irradiated seimples)
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F I GU RE (3 35 ). (s o l id  symbols r e f e r  to  n o n - i r ra d ia te d  samples)
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FIGURE .(3 —  36). (Solid symbols refer to non-irradiated samples)
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3+ 2+

Al >  Ca . Hence the g re a te r  the  hydration  energy the  more water  

th e  counterion a b s tra c ts  from the atmosphere. Small bathochromic 

s h i f t s  were observed f o r  i r r a d ia te d  and n o n - i r ra d ia te d  samples 

Figure  ( 3 .3 5 ) .  The i r r a d ia t e d  sample undergoes displacement from 

the  surface and photodegradation.

as Counterion

There was e s s e n t ia l ly  no d i f fe re n c e  between the H* 

t re a te d  s i l i c a  and an untreated  sample. F igures (3 -33  and 3 -3 6 ) .  

This  r e s u l t  was expected since the s i l i c a  surface  would have H* 

counterions in  the  un trea ted  s ta te .

NH^* as Counterion

Again no d i f fe re n c e s  were observed between the  

t r e a te d  s i l i c a  and an untrea ted  sample. Figures (3 -3 4 )  and (3 -3 6 ) .  

The production o f from NH  ̂ is  p o ss ib le , and hence the  behaviour  

would be s im i la r  to  H^O as counterion .

In  genera l the g re a te r  the  p o la r i t y  o f the counterion the  

g re a te r  the  e f f e c t  upon the  fad ing  process. Considering n o n - ir ra d ia te d  

samples, only the h ig h ly  p o la r iz e d  c a t io n  caused increased adsorption  

of water on to the  s i l i c a  surface , th is  d isp laced the z w i t te r io n  

causing a la rg e  decrease in  in t e n s i t y  compared w ith  an untreated  

sample. This is  co n tra ry  to the e f f e c t  o f in creas in g  the p o la r i t y  

of cations  in  the  l a t t i c e  s t ru c tu re ,  Kortum, G . , (1969)
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3.3.6. The Effects of Humidity and Light upon CVL Adsorbed

upon S i l t o n

( i )  The absorbance o f CV and CVL adsorbed upon S i l t o n  as

a fu n c t io n  o f  CV and CVL c o n cen tra t io n , are shown in  Figure (3 - 3 7 ) .

The r a t i o  o f CVL absorbance to CV absorbance tends to  0 .8  a t  low

coverages. The spectra  o f CVL adsorbed upon S i l t o n  a t 100, 62.5  and 

0% RH are shown in  F igures (3 -38  to  3 -4 3 ) .  CVL was adsorbed 

as the  d ic a t io n ic  green species (G '+ + ) ,  X max = 666nm. CV adsorbed 

upon s i l t o n  was a lso  in  the green d ic a t io n ic  form, X max = 650nm.

This shows th a t  s i l t o n  has a more a c id ic  surface than s i l i c a  g e l .

100% R e la t iv e  Humidity

At 100% RH the green species r a p id ly  turned to the  

v io le t  species. F igures (3 -38  and 3 -3 9 ) .  The zero time measurement 

was made a t  approxim ate ly  60% RH. This  causes the  green species  

to  predominate. The in t e n s i t y ,  measured a t  two wavelengths corresponding  

to  the B^+, and G^++ -X max re s p e c t iv e ly ,  o f CVL adsorbed upon s i l t o n  

as a fu n c t io n  o f tim e is  shown in  F igure (3 -4 4 ) .  The absorbance a t  

610nm, corresponding to  the  B̂+ species, remained constant a t  90%

A^ from 1 to  13 days, i r r a d ia t e d  and n o n - i r ra d ia te d .  The absorbance 

a t  666nm corresponding to  the G^++ species decreased to  50% A  ̂ in  24hrs  

and t h e r e a f t e r  remained constant. There are two possib le  routes f o r  

loss o f in t e n s i t y ,  ( i )  displacement from the surface by water,

( i i )  hydration  o f the  adsorbed species to  the corresponding co lo u r les s  

species. P r e f e r e n t ia l  displacement o f the green species ra th e r  than  

the v io le t  monocation is  u n l ik e ly .  The hydration e q u il ib r iu m  

constant f o r  the  green species o f  CV is  K^- I loo /  I G lo^ =0.0319,  

which is  200 times g re a te r  than the hydration  constant f o r  the blue  

species. T herefore  i t  is  probable th a t  the green species is



U 5

c
o
-Mi-H
-H
œ
M-l
o
Q)
C

s
u
3
+-) 
0) f—I
o•H
>

fO
+JÜ3
>
5-1
U
13
C
<0
4J 05 *—I
o-H
>

to4Jm>1
u
4-1 
O
Q)Uc
(0
5-1 O 
m 
ato
0)
ê

m

LU
cr
3
O

•  \

•H -H
-H

O
in

o

oro

5

oifT

5

o
n"

o
(N

c
5r—I
• HCO
CTt
\
I—I

6

C

.3
-Pto54
-P
C
0)
u
c
8

CM oq
o o

-31
O

(X
o

CM
O*

05
U
c
lO
A
pg



14̂

FIGURE.( 3-38).

0.

0.

The Diffuse Reflectance Spectra of Crystal Violet
Lactone on Silton, at 100% RH, as a function of time,
without irradiation (2.5 mg CVL/g Silton)

Numbers refer to reaction
time in days
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FI G URE,( 3 —39). The Diffuse Reflectance Spectra of Crystal Violet
Lactone on Silton, at 100% RH, as a function of time, 
with irradiation (2.5 mg CVL/g Silton)

1 .

0.

0.

Numbers refer to reaction time in days
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FIGURE. (3-^0). Th0 D.R.S. of CVL on Silton, at 62.5% RH, as a function
of time, without irradiation (2.5 mg CVL/g Silton)

1 .
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The D.R.S. of CVL on Silton, at 62.5% RH, as a function 
of time, with irradiation (2.5 mg CVL/g Silton)
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FI GURE.{ 3 —42 ). The D.R.S. of CVL on Silton, at 0% RH, as a function
of time, without irradiation (2.5 mg CVL/g Silton)

œÜc(DnPhocnn
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Numbers refer to reaction time in days
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FIGURE ,(3 43). The D.R.S. of CVL on Silton, at 0% RH, as a function
of time, with irradiation (2.5 mg CVL/g Silton)
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The Percentage of the zerotime absorbance of Crystal Violet Lactone, 147 
on Silton, as a function of ti.me

FI G U RE ■ (3 100% Relative Humidity
(Solid symbols refer to non-irradiated samples)
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FIGURE .( 3— AS). 62.5% Relative Humidity
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hydrated but s t i l l  adsorbed to  the s i l t o n .  The X max f o r  i r r a d ia t e d  

and n o n - i r r a d ia te d  samples as a fu n c t io n  of time are  shown in  

Figures (3-A7 and 3 -4 8 ) .  A small bathochromic s h i f t  (5nm) was seen 

f o r  the  n o n - i r ra d ia te d  sample. A la rg e  bathochromic s h i f t  was seen 

f o r  the i r r a d ia t e d  sample (30nm).

62.5% R e la t iv e  Humidity

The absorbance o f CVL, adsorbed upon S i l t o n  a t  62.5% RH 

remained high [80-90% A^), a f t e r  13 days, f o r  both i r r a d ia t e d  and 

n o n - i r ra d ia te d  samples F igure  [3 -4 5 ) .  The i r r a d ia t e d  sample a lso  

showed a la rg e  [20nm] hypsochromic s h i f t ,  but no s h i f t  was observed 

fo r  the n o n - i r r a d ia te d  sample. Figures [3-47 and 3 -4 8 ) .  The la rg e  

s h i f t  combined w ith  only a small reductio n  in  absorbance in d ic a te  

th a t  the  degradation  products are  probably d im ethyla ted  CVL or  

dim ethylated  CV.

0% R e la t iv e  Humidity

The absorbance o f  CVL decreased w ith  time a t  0% RH,

Figure [ 3 - 4 6 ) ,  f o r  both i r r a d ia t e d  and n o n - ir ra d ia te d  samples.

The absorbance decreased to 50% A and th e r e a f te r  remained constant.o

Examination o f  the  spectra . F igures [3 -42  and 3-43) showed an increase  

in  absorbance a t  450nm. The surface  had been dehydrated, and as a 

consequence the  surface a c id i t y  increased, thus causing the  e q u il ib r iu m  

to  s h i f t  towards the ye llow  t r i c a t i o n i c  species i\^+++). No s h i f ts  

in   ̂ max were observed. F igures  [3-47 and 3 -4 8 ) .
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a function of time.

FIGURE (3---i7] Non-irradiated samples
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FIGURE .(3— 48). Irradiated samples
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(ii) The Effect of Counterions upon the Fading of CVL

Adsorbed upon S i l to n

The fad ing  process was measured by m onitoring the s h i f t  

in  X max, and changes in  absorbance w ith  tim e, r e la t i v e  to  an 

u n trea ted  sample. A l l  samples were maintained a t  62.5% RH, 40°C. 

The o r ig in a l  absorbance f o r  the t re a te d  samples was higher than the  

corresponding un trea ted  sample. F igure  (3 -3 7 ) .

Al^ as Counterion

The behaviour o f  CVL upon A l^* t re a te d  s i l t o n  was 

id e n t ic a l  in  a l l  respects to  the un trea ted  sample. F igures (3 -49  and 3-51)

Ca^* as Counterion

CVL was absorbed as a m ixture  o f the  mono and d ic a t io n ic

forms upon Ca^ S i l t o n .  Amounts o f both forms were determined a t

614 and 666nm r e s p e c t iv e ly .  The absorbance o f the  (B  ̂+ ) blue c a t io n ,

a f t e r  decreasing i n i t i a l l y ,  s low ly  increased over the 16 day p erio d ,

f o r  i r r a d ia t e d  and n o n - i r ra d ia te d  samples, (70-80% A , and 60-100% A ).,o o

r e s p e c t iv e ly .  But the  d ic a t io n  only increased in  the dark and 

decreased in  in te n s i t y  when i r r a d ia t e d .  F igure (3 -5 0 ) .  These changes 

are  co n s is ten t w ith  a rap id  hydratio n  fo llow ed by a slow dehydration  

o f  the su rface . The change could be a r e f l e c t io n  o f the s ta te  o f  

th eco u n te r io h , i . e .

Ca^" + 2 H2 O Ca(0H)2 + 2H

The blue species e x h ib ite d  a small bathochromic s h i f t  

(5nm) f o r  both samples. The green species showed a la rg e  hypsochromic 

s h i f t  when i r r a d ia t e d  and a smallhypsochromic
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(62.5% RH)
3+FIGURE (3 — 6 9 ). Al as Counterion

(Solid symbols refer to non-irradiated samples)
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FIGURE . ( 3 — 51) as Counterion
(Solid symbols refer to non-irradiated samples)
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F I GURE .(3 5 2 ). Câ "*" as Counterion
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s h i f t  when not. F igure  (3 -5 2 ) .  This in d ic a te s  th a t  the  green species ' 

is  more su scep tib le  to  photodegradation than the  blue species.

as Counterion

When CVL was adsorbed upon t re a te d  S i l to n ,  i t  

behaved as i t  d id  on untreated  S i l t o n ,  F igure (3 -5 3 ) ,  and F igure  

(3 -5 5 ) w ith  respect to  in te n s i t y  and changes in  X max.

+
NH  ̂ as Counterion

CVL was adsorbed upon - S i l to n  as the blue monocation

( 2 / + ) .  The absorbance decreased over the  f i r s t  24 hrs to  50% A .o

The absorbance was then constant. F igure  (3 -5 4 ) .  No change in  the

p o s it io n  o f the X max (BQSnm) f o r  the i r r a d ia te d  or non-

i r r a d ia te d  sample was observed. F igure  (3 -5 6 ) .  The above re s u l ts

are a c le a r  in d ic a t io n  th a t  the  surface a c id i t y  o f  S i l to n  is

determined by the counterions presen t. In  order o f  increasing  

a c id i t y  NH^^> un treated  > H * >  A l^ * .  A reductio n  in

surface a c id i t y ,  (NH^ tre a tm e n t ) ,  can r e s u l t  in  an increase  in

in te n s i t y  because only the blue monocation is  formed, which has a

high e x t in c t io n  compared to  the green or ye llow  forms.
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F I GURE (3 —  53 ) H as Counterion
(Solid symbols refer to non-irradiated samples)
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FIGURE .( 3 54 ). n h4 as Counterion
(Solid symbols refer to non-irradiated samples)
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F IGURE . (3 5 5 ). h"*" as Counterion
(Solid symbols refer to non-irradiated samples)
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FIGURE (3 — 56). NH4^ as Counterion
(Solid symbols refer to non-irradiated samples)
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3.3.7 The Effect of Humidity and Light upon CVL Adsorbed

upon Wyoming Bentonite

( i )  The absorbance o f CVL, adsorbed upon Wyoming b e n to n ite

as a fu n c t io n  o f the  concentra tion  app lied  is  shown in  F igure  (3 - 5 7 ) .

CVL was adsorbed as the blue monocation. The re f le c ta n c e  spectra  

o f CVL adsorbed upon ben to n ite  are shown in  Figures (3 -58  to  3 -6 3 ) .

100% R e la t iv e  Humidity

At 100% RH the absorbance o f the i r r a d ia te d  and non- 

i r r a d ia t e d  samples f e l l  r a p id ly ,  due to  hydration , over the f i r s t  

24hrs to  30% F igure  (3 -6 4 ) .

62.5% R e la t iv e  Humidity

At 62.5% RH the  absorbance decreased ra p id ly  f o r  the  

i r r a d ia te d  and n o n - i r ra d ia te d  samples. Over the f i r s t  24hrs the  

absorbance f e l l  to 40% A^, F igure  ( 3 .6 5 ) .

0% R e la t iv e  Humidity

At 0% RH the absorbance increased a f t e r  24hrs to  200%

A  ̂ f o r  both samples. F igure  (3 -6 6 ) .  The i r r a d ia te d  sample showed a 

subsequent decrease, u n t i l  70% A  ̂ remained (16 days). The n o n - i r ra d ia te d  

sample remained constant a t  200% A^, over the  period o f the experim ent.  

When i r r a d ia t e d  a shoulder appears a t  650nm on the spectra , and a 

new peak appears a t  450nm, F igure  (3 - 6 3 ) .  IMo changes are  observed 

f o r  the  sample in  the dark. F igure ( 3 - 6 1 ) .  Also no change is  observed 

in  the p o s it io n  o f X max f o r  e i t h e r  sample. Figures (3 -67  and 3 -6 8 ) .
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FIGURE.(3— 58).
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The Diffuse Reflectance Spectra of Crystal Violet
Lactone on Wyoming Bentonite, at 100% RH, as a function
of time without irradiation (2.5 mg CVL/g Bentonite)

Numbers refer to reaction time in days.
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FI GURE .( 3 — 59 ). The Diffuse Reflectance Spectra of Crystal Violet
Lactone on Wyoming Bentonite, at 100% RH, as a function 
of time with irradiation (2.5 mg CVL/g Bentonite)

Numbers refer to reaction time in days
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FIGURE.(3 — 50). The D.R.S. of CVL on Wyoming Bentonite at 62.5% RH,
as a function of time without irradiation, (2.5 mg
CVL/g Bentonite)
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FI GURE ,( 3 —61). The D.R.S. of CVL on Wyoming Bentonite at 62.5% RH, 
as a function of time with irradiation, (2.5 mg 
CVL/g Bentonite)
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FI G URE.(3-62).
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The D.R.S. of CVL on Wyoming Bentonite at 0% RH,
as a function of time without irradiation, (2.5 mg
CVL/g Bentonite)
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FIGURE . (3 —63). The D.R.S. of CVL on Wyoming Bentonite at 0% RH, 
as a function of time with irradiation, (2.5 mg 
CVL/g Bentonite)
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The Percentage of Zerotime absorbance of Crystal Violet Lactone,
on Wyoming Bentonite, as a function of time.
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FI GURE .(3 64]. 100% Relative Humidity
(Solid symbols refer to non-irradiated samples)
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FIGURE (3 — 65) 62.5% Relative Humidity

(Solid symbols refer to non-irradiated samples)
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FI GURE . (3 (Solid symbols refer to non-irradiated samples)
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The Position of the A  max of Crystal Violet Lactone, on Wyoming Bentonitl^^
as a function of time.

FI C U R E . (3 6 7 ). Non-irradiated samples

620

610

o 600

590 O 100% RH
□ 62.5% RH
O 0% RH

580
2 4 6 8 10 12 16

TIME (days)

F IG U R E  .( 3 — 68). Irradiated samples
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The red u ct io n  in  absorbance o f the i r r a d ia te d  sample could be caused 

e i t h e r  b/an increase  in  temperature a t  the  surface o f the  i r r a d ia t e d  

sample, ( l i g h t  can increase  the temperature o f a s o l id  surface by 

as much as 10°C, Egerton, G.S. and Morgan, A .G .,  (1 9 7 0 ) ) ,  or  the  

blue z w i t te r io n  was unsymmetrically  demethylated, producing m alach ite  

green or one o f  i t s  d e r iv a t iv e s .

( i i )  The E f fe c t  o f  Counterions upon the Fading o f CVL

Adsorbed upon Wyoming Bentonite

Al^ as Counterion

The presence o f A l^ *  as counterion caused CVL to  be 

absorbed as the  green d ic a t io n .  Both samples were 80% A^ a f t e r  

24hrs and s te a d i ly  increased to  85% A  ̂ a f t e r  15 days. F igure  ( 3 -6 9 ) .  - 

The p o s it io n  o f X max f o r  the  dark sample remained constant a t  666nm, 

but the i r r a d ia t e d  sample e x h ib ite d  a -  8nm hypsochromic s h i f t .

F igure ( 3 - 7 1 ) .  The i r r a d ia t e d  sample was probably demethylated  

because o f  the  hypsochromic s h i f t  and no change in  absorbance.

Ca^* as Counterion

CVL absorbed upon Ca^* -  ben to n ite  was in  the  blue

monocationic form. The absorbance o f the  n o n - ir ra d ia te d  sample

decreased to  30% A a f t e r  24hrs and decreased f u r t h e r  to  20% A overo o

the 15 day p e r io d . F igure  ( 3 -6 9 ) .  The i r r a d ia te d  sample decreased

to  20% A a f t e r  24hrs and decreased to  10% A over the 15 day period ,  o o

Figure ( 3 - 6 9 ) .  The p o s it io n  o f the X max f o r  dark and i r r a d ia t e d  

changed from 608 to  598nm and 594 to  610nm r e s p e c t iv e ly .  F igure (3 -72 )
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The Effect of Counterions on the Percentage of the Zerotime absorbance 
of Crystal Violet Lactone, on Wyoming Bentonite as a function of time 
(62.5% RH) .

FI CURE.(3 —69) and Câ "*" as Counterions 
(Solid symbols refer to non-irradiated samples)

100

80

60 3+
2+□ Ca

20

0

TIMEl DAYS).

FIGURE .(3— 70 and NH4'*' as Counterions 
(Solid symbols refer to non-irradiated samples)

100

□ NH4
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2 4 6 8 10 12 U 16
T IM E  (DAYS



The Effect of Countdrions on the Position of the \ max of Crystal
Violet Lactone on Wyoming Bentonite, as a function of time
(62.5% RH)

1c:

FIGURE (3 71 ).A1^^ as Counterion
(Solid symbols refer to non-irradiated samples)

6 70
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c 650

630
0 2 U 86 10 12 U 16

TIME (days)

FI CURE . ( 3 — 7 2 )  Ca^^, h"*" and NH4^ as Counterion
(Solid symbols refer to non-irradiated samples)
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as Counterion

The blue monocationic form o f CVL was formed when i t  

was adsorbed upon -  b e n to n ite .  Both the in te n s i t y  and p o s it io n  o f  

A max changed in  s im i la r  manner to  CVL upon Ca^* -  b en to n ite .

F igures (3 -70  and 3 -7 2 ) .

as Counterion

As w ith  Ca^* and ben ton ite  CVL was adsorbed as the

blue monocation. The change in  absorbance w ith  tim e is  shown in

F igure (3 - 7 0 ) .  Again the  changes in  absorbance are s im i la r  to

2+ +those occuring upon Ca and H b e n to n ite .  Also the changes in  

p o s it io n  f o r  dark and i r r a d ia t e d  samples were s im i la r  to  those 

upon Ca^* and b e n to n ite .  F igure  (3 -7 2 ) .
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3.3.8 Reflectance of CV and CVL Adsorbed upon Kaolinite

CV was adsorbed upon k a o l in i t e  as the b lue , and green 

mono and d ic a t io n ic  species. F igure [3 -7 3 ) .  The r a t io  o f the  two 

forms remained constant, w ith  vary ing  coverage, see page52 Chapter 2.

Th is  provided a simple method to measure the surface a c id i t y  as has 

been o u tl in e d  e a r l i e r .  When CVL was adsorbed upon k a o l in i t e  i t  was 

adsorbed as the  blue monocation, w ith  a small percentage o f  the  

green d ic a t io n .  This was seen as a small shoulder a t  BSOnm, Figures  

(3 -7 5  to 3 -8 0 ) .  The absorbance o f CV and CVL as a fu n c t io n  o f  

concentra tion  are  shown in  F igure  (3 -7 4 ) .

( i )  The E f fe c t  o f Humidity and L ight upon CVL Adsorbed

upon K a o l in i te

The adsorbance o f  the n o n - ir ra d ia te d  samples decreases

p ro p o r t io n a l ly  w ith  the r e la t i v e  humidity (absorbance a f t e r  24hrs;

55% A , 100% RH; 70% A , 62.5% RH, and 90% A ; 0% RH), F igures  
0  0  o

13-81 to 3 -8 3 ) .  The absorbance remained constant a f t e r  24hrs f o r  

the  period the  experiment.

The absorbance o f  the i r r a d ia te d  samples slowly decreased 

over 13 days, to  50-60% A^, f o r  a l l  h u m id it ies .  A l l  n o n - ir ra d ia te d  

samples e x h ib ite d  a bathochromic s h i f t  over the f i r s t  48hrs, (100% RH,

+ 8nm to  610nm; 62.5% RH, + 2nm to  604nm and 0% RH, + 12nm to  614nm).

This  represented an e q u i l ib r a t io n  o f the surface to the s p e c if ie d  

hum idity . F igures (3 -84  to 3 - 8 5 ) . .  I r r a d ia t io n  causes a small (+3nm) 

bathochromic s h i f t ,  a t  100 and 0% RH. At 62.5% RH, a la rg e  +30nm 

bathochromic s h i f t  was observed.
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FI G U RE .( 3~75). The Diffuse Reflectance Spectra of Crystal Violet
Lactone on Kaolinite, at 100% RH as a function of time,
without irradiation (2.5 mg CVL/g Kaolinite)

0.

0.

Numbers refer to reaction time in days

2

0 J-
300 700500400 600

Wavelength (nm)

FIGURE .(3 76). The D.R.S. of CVL on Kaolinite, at 100% RH as a function 
of time, with irradiation, (2.5 mg CVL/g Kaolinite)
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0.

Numbers refer to reaction time in days
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300 700600500400

Wavelength (nm)



17'

CD
U
CID
L,O
CDn<

FIGURE.(3— 77). The D.R.S. of CVL on Kaolinite at 62.5% RH as a
function of time, without irradiation, (2.5 mg/g
Kaolinite)

[umbers refer to reaction time in days
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FIGURE .(3— 78). The D.R.S. of CVL on Kaolinite at 62.5% RH as a 
function of time, with irradiation, (2.5 mg/g 
Kaolinite)
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FIGURE .(3-79). The D.R.S. of CVL on Kaolinite at 0% RH as a function
of time, without irradiation, (2.5 mg/g Kaolinite)
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F IG U R E .(3 —80). The D.R.S. of CVL on Kaolinite at 0% RH as a function 
of time, with irradiation, (2.5 mg/g Kaolinite)

03Uc
fD_o(ho
0 3JD
<

0.

0.

0.

Numbers refer to reaction time in days
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The Percentage of Zerotime absorbance of Crystal Violet Lactone,
on Kaolinite, as a function of time. 173

FI GURE (3 81) 100% R e la t iv e  Humidity
(Solid symbols refer to non-irradiated samples)

%A

6 6 8
TIME (days)

FIGURE .( 3 — 82). 62.5% R e la t iv e  Humidity
(Solid symbols refer to non-irradiated samples)

%A

6 6 8
TIME (days)

0% Relative Humidity 
FI GURE . (3 ~ 8 3 )  . (Solid symbols refer to non-irradiated samples)

%A

TIME (davs)



The Position of X. max of Crystal Violet Lactone, on Kaolinite,
as a function of time .
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FIGURE (3 — 84) Non-irradiated sample

O 'c 0) 
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F (GURE ■( 3 85) i r r a d ia t e d  sample
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Cii) The Effect of Counterions upon the Fading of CVL

Adsorbed upon K a o l in i te

3 +
A1 as Counterion

CVL adsorbed upon A l^ *  - k a o l in i t e  was in  the  blue pnd 

green, mono and d ic a t io n ic  forms. The absorbance of the  i r r a d ia te d  

and n o n - i r ra d ia te d  samples decreased to  70 and 60% A  ̂ re s p e c t iv e ly  

a f t e r  14 days. F igure  [3 -8 6 ) .  In  the dark the A max remained 

constant a t  6G2nm, whereas the  i r r a d ia t e d  sample showed a 4Gnm 

bathochromic s h i f t .  F igure (3 -8 8 ) .  The absorbance o f the i r r a d ia te d  

sample probably remained h igher than the sample in  the dark because 

the surface  tem perature was probably higher f o r  the i r r a d ia te d  

sample. This reduced the amount o f water on the surface and th is  

could cause a bathochromic s h i f t .

Ca^* as Counterion

CVL was adsorbed upon Ca^* -  k a o l in i t e  as the blue  

monocation. The absorbance o f the i r r a d ia te d  and n o n - ir ra d ia te d  

samples, w ith  time are  shown in  F igure  (3 -8 6 ) .  Both samples behaved 

s im i la r ly ,  but the  dark had a higher absorbance. A small bathochromic 

s h i f t  was seen f o r  both samples. F igure  (3 -8 8 ) .

as Counterion

The behaviour o f CVL upon - k a o l in i t e .  F igure (3 -8 7 )  

and (3 -8 9 ) ,  was s im i la r  in  in t e n s i t y  and p o s it io n  to A max, f o r  both 

i r r a d ia t e d  and n o n - i r ra d ia te d  samples, to CVL upon A l^* -  k a o l in i t e .
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of CVL on Kaolinite as a function of tine (62.5%-RH)
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FI GURE (3 8 6 ) . and Câ "*" as Counterions
(Solid symbols refer to non-irradiated samples)
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3 4 -

24 -□ Ca
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0
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0
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FIG U R E .(3 — 87). h"*" and NH4^ as Counterions
(Solid symbols refer to non-irradiated samples)
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The Effect of Counterions on the Position of X  max of CVL on Kaolinite
as a function of time (62.5% RH)
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FI GURE .( 3— 88). and Ca^^ ad Counterions
(Solid symbols refer to non-irradiated samples)

630

3 +O A1
2 +□ Ca
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FIG U R E  ( 3  —  8 9 ) h'*' and NH4'*' as Counterions
(Solid symbols refer to non-irradiated samples)
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NH^ as Counterion

CVL adsorbed upon NH  ̂ - K a o l in i te  was in  the blue  

c a t io n ic  form. Both i r r a d ia te d  and n o n - ir ra d ia te d  samples behaved 

s im i la r ly .  F igure  (3 - 8 7 ) .  They decreased to  10% a f t e r  7 days 

remaining constant t h e r e a f t e r .  The X max o f the i r r a d ia t e d  sample 

shows a 15nm bathochromic s h i f t  compared to  a 3nm bathochromic s h i f t  

f o r  the  dark sample. F igure  (3 -8 9 ) .

Table (3 -1 6 )  The Species o f C ry s ta l  V io le t  Lactone Formed, 

on Clay M inera ls  and Oxides

M inera l Al3+ No
Treatment

Ca2+ nh/

^  + + + + + + +
S i l t o n G G G G /B B

+ + . + + +
K a o l in i te G /B G /B G /B B B

+ + + + + +
Bentonite G B B B B

+ + + . + +
S i l i c a B B B B . B
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The behaviour of crystal violet lactone upon clay

m inera l and oxides is  summarized in  Tables (3 -16  to  3 -1 8 ) .  Table

(3 -16 ) shows the s ta tus  o f  the adsorbed c ry s ta l  v io le t  lac to n e .

I t  w i l l  be seen th a t  the acid  s treng th  o f the surfaces decreased as

you look down the  ta b le ,  and the  order is  S i l to n  >  k a o l in i t e  >

ben to n ite  >  s i l i c a ,  f o r  the untreated  m in era ls . Treatment o f the

m inerals  a lso  causes changes in  the a c id i t y  o f  the surfaces .

Treatm ent w ith  e i t h e r  Al^ or causes no change in  the s ta tus

o f  the  adsorbed dye, except f o r  Al^ trea tm ent o f  b e n to n ite ,  which

causes an increase  in  a c id i t y  o f  the  surface as shown by the change

from B^+ to  G^++ o f the adsorbed CVL. While treatm ent o f  e i t h e r  

2+ +
Ca or NH  ̂ reduces the a c id i t y  o f  the surfaces . Table (3 -1 7 )  

shows th a t  a t  high 100%RH the predominant cause o f  reductio n  in  

in t e n s i t y ,  is  v ia  the displacement o f  CVL by water from surface and/or  

hydration  o f CVL. Only S i l to n  m aintains a high in te n s i t y  a t  th is  

r e la t i v e  hum id ity . At 0% RH the in te n s i t y  is  reduced on a l l  surfaces  

except b e n to n ite .  B entonite  was the most a f fe c te d  by changes in  RH 

because i t  i s  an expanding type m in era l.  A f t e r  14 days exposure to  

l i g h t  a l l  the  i r r a d ia t e d  samples were o f lower in t e n s i t y  than the  

n o n - i r ra d ia te d  samples. I t  is  a c h a r a c te r is t ic  o f  the photodegradative  

processes to  be r e l a t i v e l y  slow, 1 to  14 days. Whereas hydration  

processes are  com parative ly  f a s t ,  less than 24hrs .A t 62.5% RH only  

ben to n ite  showed la rg e  changes in  in t e n s i t y  due to  h yd ra t io n .

S i l i c a  and k a o l in i t e  showed signs o f photodegradation over the  14 day 

period , whereas S i l to n  showed none. Treatment w ith  A l^*  caused 

ben to n ite  to  be more r e s is ta n t  to  h yd ra t io n , as is  expected because 

the in te r a c t io n s  between CVL and the  c lay  are  Coulombic. Treatment 

o f S i l t o n ,  and k a o l in i t e  w ith  NH^* caused a reduction  in  the  

i n te n s i t y  a f t e r  24hrs showing th a t  the  CVL-clay in te ra c t io n s  had been 

reduced, hence the  CVL was more e a s i ly  d isp laced  from the  surface a f t e r  

t re a tm en t .  Table  (3 -1 8 )  summarises the spectra l changes observed f o r  CVL 

on the m in e ra ls .



Table (3-17) A Summary of the Intensity of Crystal Violet Lactone

upon Clay Minerals and Oxide
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M inera l

%

RH

I r r a d i 

a t io n

% A^ a f t e r  t  days

A (1) A (14) 0 0 1 14 1 14

H+

1 14

nh/

1 14

S

I
100 NO

YES

10

10

10

10

L

I
62.5 NO

YES

85

85

80

10

75

75

20

20

70

30

45

4

85

80

75

10

95

70

80

10

C 0 NO 40 40

A YES 30 5

S

I
100 NO

YES

50 (8 5 )*  

50 (95)

50 (8 5 )*  

50 (9 5 )*

L

T
62.5 NO

YES

95

95

80

100

70

100

90

100

80

80

90

60

65

70

65

70

40

50

50

55

0 0 NO 80 50

N YES 80 40

B
E
N

100 NO

YES

35

20

35

15

T
0
N

62.5 NO

YES

40

40

40

30

75

80

80

85

30

20

20

15

30

20

25

10

40

20

30

10

I
T
E

0 NO

YES

200

200

220

75

K
A
□

100 NO

YES

55

75

40

40

L
I
N

62.5 NO

YES

70

92

70

50

70

100

55

70

90

60

40

10

65

75

40

60

50

60

10

10

I
T
E

0
NO

YES

100

100

85

60

Refers  to  + measured a t  614nm
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M ineral
%
RH

I r r a d i 
a t io n

Xmax a f t e r  t  days H+ NH
+

1 14 1 14 1 14 1 14

S

I
100

Nü

YES

608

606

608

604

L

I
62.5

Nü

YES

.604

598

603

594

596

596

600

598

592

592

593

593

593

593

596

596

593

593

594

594

C

A
0

NO

YES

598

598

598

695

S

I
100

NO

YES

608

608

610

635

L

T
62.5

NO

YES

664

663

664 

• 640

666

666

665

647

666

666

664

648

664

664

664

646

608

608

610

610

□ 0
NO 664 664

N YES 663 663

B
E
N

100
NO

YES

606

606

594

596

T
□
N

62.5
NO

YES

598

598

603

605

664

664

665

658

608

598

598

608

606

300

606

608

606

600

606

608

I
T
E

0
NO

YES

610

610

610

610

K
A
□

100
NO

YES

610

602

610

603

L
I
N

62.5
NO

YES

604

602

605

630

596

596

608

634

596

596

602

608

596

605

606

630

599

596

606

618

I
T
E

0 NO

YES

614

609

615

612
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3.4 Conclusions

A methonolic so lu t io n  o f c ry s ta l  v io le t  w i l l  decompose 

when i r r a d ia t e d  by day l i g h t .  The products o f the  photodecomposition 

are p a ra ro s e a n i l in e ,  and the  demethylated d e r iv a t iv e s  o f c r y s ta l  v io le t  

w ith  3 ,2  and 1 te rm in a l  methyl groups. C ry s ta l  v io le t  lactorfe decomposes 

in  e th a n o lic  s o lu t io n ,  w ith  i r r a d ia t io n  to  y ie ld  c ry s ta l  v i o l e t ,  

p a ra ro s e a n i l in e  and demethylated d e r iv a t iv e s  o f c r y s ta l  v io le t  w ith  

5 ,4 ,3 ,2  and 1 te rm in a l  methyl groups.

C ry s ta l  v io le t  lactore undergoes lactone r in g  cleavage  

when adsorbed upon c la y  m inera ls  and oxides, to form the coloured  

z w i t te r io n .  This process is  re v e r s ib le ,  and the coloured z w i t te r io n .  

can be d isp laced  from the  surface by water vapour. The species o f  

z w i t te r io n  formed, blue or green depends upon the nature  o f the  

m inera l on which the  CVL is  adsorbed, and/or the nature  o f the  

counterion on the  m inera l su rface . The surface a c id i t y  o f  the c lay  

m inera ls  and oxides used were in  the order : S i l to n  > K a o l in i te  

b enton ite  > s i l i c a ,  as judged by the species o f z w i t te r io n  formed.

The loss in  in te n s i t y  o f  the adsorbed z w i t te r io n  can 

e i t h e r  be a r e v e r s ib le  or an i r r e v e r s ib le  process. The i r r e v e r s ib le  

process being due to  photodecomposition, and the r e v e r s ib le  process, 

as mentioned above, is  due to  displacement o f the z w i t te r io n  from 

the m inera l surface  by water vapour. The m inera ls  w ith  the strongest  

surface a c i d i t y ,  e .g .  S i l t o n ,  are the  le a s t  a f fe c te d  by displacement 

of the  z w i t te r io n  by water vapour. The Coubmbic a t t r a c t io n s  between 

the carboxyl group on the z w i t te r io n ,  and the  p o s i t iv e  charge on the  

surface counterion  being g re a te s t  f o r  these m inera ls , and the m inera ls  

w ith  the weakest surface  a c id i t y ,  e .g .  s i l i c a ,  are the m inera ls
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where the z w i t te r io n  is  r e a d i ly  d isp laced . Exchanging the counterion  

on the m in era l surface  can a lso a f f e c t  the  s t a b i l i t y  o f  the z w i t te r io n .  

A l^ *  trea tm en t caused a s l ig h t  increase in  surface a c id i t y  and hence 

reduced the  displacement o f  the z w i t te r io n  by w ater.

The products o f the  photodegradation o f CVL on s i l i c a  

are the same as those f o r  the photodegradation in  e th a n o lic  s o lu t io n .  

Also 4-dimethylaminobenzophenone was id e n t i f i e d .  The exten t o f  

photodegradation was g re a te s t  on s i l i c a .



CHAPTER 4

REACTION OF METHYLENE BLUE, AND BENZOYL 

LEUCO METHYLENE BLUE ON CLAY MINERALS 

AND OXIDES
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Reactions o f Methylene Blue, and Benzoyl le'gco Methylene Blue 

on Clay M inera ls  and Oxide Surfaces

4.1 In tro d u c t io n

Methylene blue and benzoyl leuco methylene blue are  

cyan ine-type  chromogens. In  th is  respect they are  r e la te d  to  

c ry s ta l  v i o l e t .  Methylene blue is  a h e te ro -c y c l ic  analogue o f  the  

diary Im ethane dyes. Methylene b lue , (M B ),(11 , can be regarded as 

being formed by b r idg ing  the  2 - 2 ’ p o s it io n s  o f  the  d iary Im ethane  

dye, B in d sch ed le r ’ s Green (2 ) ,  w ith  a sulphur atom.

S NMe2

( 1 )

Methylene Blue 

(21

Bindsch ed le r ’ s Green

The b rid g in g  sulphur atom can be regarded as a 

mesomeric e le c tro n  donating group attached s im ultaneously  to  two 

unstarred p o s it io n s  o f a d iaryIm ethane dye.

P e r tu rb a t io n a l  theory p re d ic ts  a la rg e  hypsochromic 

s h i f t  o f  the  v is i b l e  band due to  the heteroatom and t h is  is  

observed, (see Table ( 4 - 1 ) ) .
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Therefore  a l l  h e te ro c y c lic  analogues o f d iaryIm ethane  

dyes absorb a t  s h o rte r  wavelengths than does the  parent dye. The 

more e le c tro n  donating the  heteroatom of the  b r idg ing  group the  

l a r g e r  the s h i f t ,  w ith  the  exception o f the sulphur atom, which 

exerts  the sm alles t s h i f t .  Thus the  hypsochromic s h i f t  produced 

by the  b r id g in g  heteroatom is  in  the ser ies  -NR)-NH)0)>S. Hence 

dyes w ith  sulphur as the b r idg ing  atom, such as methylene b lue,  

w i l l  g e n e ra l ly  be deeper in  co lour than those w ith  -NR as the  

b rid g in g  group, the  l a t t e r  w i l l  be y e llow . An example is  a c r i f l a v i n  

[ 3 ) ,

(3)
A c r i f la v in e

The methylene blue ca t io n  (1] can be represented by 

an a l t e r n a t i v e  resonance s tru c tu re  C4}, in  which the p o s i t iv e  charge 

is  lo c a l is e d  on the  b r idg ing  heteroatom.

S
+

C4)

This shows th a t  the  heteroatom is  involved in  the  

e le c tro n  system of the  chromogen. However they are best t re a te d  as 

perturbed odd a lte rn a n ts  where the p o s i t iv e  charge is  la rg e ly  

associated  w ith  the te rm in a l  amino groups.

The group o f dyes w ith  cyanine type chromogens which 

have s im i la r  s t r u c tu r a l  c h a r a c te r is t ic s  to  methylene b lue , can be 

f u r t h e r  c la s s i f ie d  as the  th ia z in e  group of dyes. They have the  

genera l form ula (5]
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Where:-

'1'^N
^R/

MB
Azure

B

Symdi-
m ethyl-
th io n in e

Azure
A

Azure
C Thionine

Me Me Me Me Me H

^2 Me Me H Me H H

Me Me Me H H H

^4 Me H H H H H

The standard redox p o te n tia ls  f o r  the th ia z in e  ayes 

are  about +0 .5  v o l ts ,  w ith  respect to  the hydrogen e le c tro d e ,  

Meyer, H.W. and Tread w e ll,  W.D. (19531.
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4.1.2. Photochemistry of Methylene Blue

When methylene blue is  d issolved in  d i lu t e  H^SO^, in  

the absence o f oxygen, the  co lour is  bleached on exposure to  

l i g h t ,  and the  co lo u r less  leuco form is  produced [6 ) .

H

S " S ^ N M e 2  

(61

Leucomethylene Blue

In  f la s h  ph o to lys is  experiments, when orange-red l ig h t

is  used to  i r r a d i a t e  samples o f methylene b lue , the  spectrum shows

a new band w ith  a mean l i f e t i m e  o f less than 30 jusecs. This is

assumed to  be the  t r i p l e t  s ta te  formed from the s in g le t  exc ited

molecule i n i t i a l l y  produced by the f la s h ;  P arker, C.A. (19581a,

P arker, C .A .,  (19581b; P arker, C.A. (19591; Hatchard, C.G. and

P arker, C.A. (19611. The photo chemical re ac t io n s  o f methylene

blue and the  th ia z in e  dyes are s im i la r ,  and the group o f dyes can

th e re fo re  be designated D. In  the presence o f fe rro u s  sulphate

t h is  spectrum is  no longer observed, but th a t  o f the f r e e  r a d ic a l

OH., analogous to  the semiquinone f r e e  r a d ic a l  is  seen. This has

a much longer l i f e t i m e  than the t r i p l e t  s ta te .  I t  is  not formed

from the s in g le t  e xc ited  s ta te  f o r  i t s  concentra tion  is  not c o rre la te d

2+w ith  the quenching o f  fluorescence by Fe , but presumably i t  is  

formed from the  t r i p l e t  s ta te ,  Cald in  E .F . ,  (19641.

hv * 3  Fe^ K
□ ------------  >■ D —   » D H . »-□ + DH„

I ^1 2
D + h\) ( f  luorescencel
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Where:- D = ground state
*

D = e xc ited  s ta te

3
D = t r i p l e t  s ta te

DH.= semi-quinone ' ty p e '  r a d ic a l

0 ^ 2 = leuco form

The semiquinone f r e e  r a d ic a l 's  disappearance, which 

has been studied by fo l lo w in g  the  adsorption a t  various wavelengths 

in  the  presence o f  various concentrations of Fe^*, was a t t r ib u te d  to  

the d is p ro p o rt io n a t io n  in to  the o r ig in a l  d y e s tu f f ,  D, and the leuco 

form DH2 .

The r a te  constants have been determined f o r  th io n in e ,

Hatchard C .G ., and Parker, C .A . ,  (1961 ),  f o r  the  quenching o f the

2+ 7 -1 -1
t r i p l e t  s ta te  by Fe , = 3 x 10 1  mol sec , and f o r  the

9 -1 -1d ism utation , K2  = 2 .4  x 10 1 mol sec

3 +Quenching o f the t r i p l e t  s ta te  by Fe has a r a te  

7 -1 -1constant o f 3 x 10 1 mol sec . The ra te  constants f o r  the

3 4 -
o x id a t io n  by Fe , o f  the semiquinone, and the leuco form, which

are responsib le  f o r  the  re v e rs a l  o f b leaching in  the  dark, are

4 2 - 1 - 17. 9 X 10 and 2. 6 x 10 1 mol sec respectively.

According to  o th er  workers, Koizumi, M ., and Usin, Y . ,

(1972 ),  the primary photochemical process a t concentra tions  of  

- 5
< 1 0  M methylene blue in  w ater and ethanol are  the in te ra c t io n s

3
of the  t r i p l e t  dye D and o x id is in g  or reducing agents; the dye- 

o x id iz in g  agent (D-G) and dye-reducing agent (D-R) mechanisms. At 

higher dye concentra tions  the re a c t io n  proceeds by the in te r a c t io n  

of the  t r i p l e t  and ground s ta te  dye; the  dye-dye (D-D) mechanism.
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There is also evidence for the formation of molecular complexes of
+ — + — 

the ion p a i r  typ e , such as D , 0^ and D , D . The o x id a t io n  and

the reductio n  re ac t io n s  occur v ia  d i f f e r e n t  pathways, and the

o x id a t io n  reverse  o f  bleaching occurs v ia  oxygen, through the D

pathway.

T h ia z in e  dyes, in  the presence o f p o ly m e th y l-a c ry l ic  

acid or p o ly a c r y l ic  a c id ,  undergo a s p ec tra l  s h i f t  when i r r a d ia t e d  

w ith  v is i b l e  l i g h t ,  Wotherspoon, N . , and G ster, G ., (1 9 5 7 ) .  Two 

photo-products were formed, one in  the  absence o f  oxygen and the  

second by the  photochemical o x id a t io n  o f the  f i r s t .  The ra te  o f  

form ation o f  the  second was re ta rd ed  by small amounts o f  paraphenylene-  

diamine, or by K I,  suggesting th a t  long l iv e d  exc ited  s ta te s  are  

invo lved . The f i n a l  photo product was the same f o r  a l l  th ia z in e  

dyes and was id e n t ic a l  to  th io n in e .  The re a c t io n  req u ires  a 

p o ly a c ry l ic  acid  but does not take place in  the presence o f o ther  

high polym eric a c id s . I t  is  known th a t  methylene blue may be 

demethylated by non-photochemical o x id a t io n  in  a l k a l i ,  to  g ive  dyes 

w ith  fewer methyl s u b s t i tu e n ts ,  Conn. H .J . ,  (1 9 46 ) .  The h ig h ly  

s p e c i f ic  na ture  o f  th e  polymer req u ired  f o r  the re a c t io n  im p lies  

th a t  the  p o ly a c r y l ic  acids serve as substrates  f o r  a s p e c ia l  type o f  

dye b ind ing . In  the  dye-polymer complex the  t r a n s i t io n  from the  

ground s ta te  to  the f i r s t  exc ited  s ta te  did not d r a s t ic a l ly  d i f f e r  

from the  f r e e  dye since the  absorption spectra were s im i la r .  But 

t r a n s i t io n s  from the  f i r s t  exc ited  s ta te  to  o th e r  exc ited  s ta te s  

must be profoundly  a f fe c te d  by complexation w ith  s p e c i f ic  polymers.

The carboxyl groups or p o ly a c ry l ic  acids are p a r t i c u la r l y  w e l l  su ited  

to complexing w ith  the  th ia z in e  dyes v ia  t h e i r  te rm in a l  amino groups. 

Gther workers have reported  photodegradation o f methylene blue in  

various s o lve n ts ,  such as H^G, MeGH, EtGH and p ro p a n -2 -o l ,  Yoshida,
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Z . , and Kazama, K . , (1956 ); Yoshida, A . ,  and Kazama, K . , (1 957 ).

They reported  th a t  methylene blue was not only  demethylated by a lso  

N-C bond breaking occured in  the dimethylamino r a d ic a l  w ith  the  

form ation o f a 2-m ercapto-diphenylamine d e r iv a t iv e .  Breaking o f the  

C-5 bond in  the  th ia z in e  r a d ic a l  was a lso  observed and t h is  

mechanism predominated in  p ro p a n -2 -o l .  The exis tance  o f  Azure A, 

AzureB and Azure C as breakdown products were a l l  shown by paper 

chromatography. Atmospheric oxygen re ta rd ed  the  photodegradation  

of methylene b lue  considerab ly , probably owing to  the high 

r e a c t i v i t y  o f f r e e  ra d ic a ls  w ith  oxygen.
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4.1.3. Reactions of Thiazine Dyes

As mentioned above th ia z in e  dyes are p a r t i c u la r l y  

s e n s it iv e  to o x id a t iv e  dém éthylation in  a l k a l i  media; adsorbed 

onto s p e c i f ic  polymers or on c lay  m in era ls .  I t  has been shown by 

Schaefer, F .C . ,  and Zimmermann, W.D., (1968 ],  th a t  methylene blue  

is  oxid ised in  the dark when in  organic  solvents  conta in ing  amines

The mechanism was ra t io n a l is e d  as base-cata lysed  

s e l f  o x id a t io n  o r  d is p ro p o rt io n a t io n  o f  methylene blue fo llow ed  

hydro lys is  o f the  ox id ised  species, ( 7 ] ,  to the demethylated dye 

Azure B, ( 8 ] .

H 2  C =  ( Me] N :o
7)

NMe2 .2C1

N

N S

8

Azure B

I t  was found th a t  f o r  a l l  the amines th a t  were used, 

the re a c t io n  proceeded in  a s im i la r  manner; f i r s t l y  degradation  

of methylene b lue , which takes place ra p id ly ,  fo llow ed by a slower 

dém éthylation o f  Azure B to  form sym m etrica l-d im ethyth ion ine  (9)
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Me
H

(9)

Sym -dim ethylth ionine (SDMT]

This  type o f dém éthylation is  comparable w ith  base-

cata lysed o x id a t io n  o f  methylene blue in  aqueous s o lu t io n  a t  pH 11 .0

which is  a common mode o f amine o x id a t io n ,  Barnes, K .K .,  and Mann 

C .K ., (1967 );  Smith P .A .S . ,  and Loeppks, R .N . ,  (1967); Bacon R .G .R .,  

ans Stewart □ . ,  (1 9 66 ) .  The observed ser ies  o f dém éthylation ,  

methylene blue Azure B Sym -dim ethylth ion ine . (S chaefer, F.C .  

and Zimmermann, W.D., 1968) c o n tra d ic ts  previous evidence by 

Kehrmann, F . , (1906), hi s work s tro n g ly  supported the ser ies

methylene blue —v Azure b —̂  Azure &(10)

Azure A

NMe-
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4.1.4. Reactions of Benzoyl-leucp-riethylene Blue

A co lo u r less  s o lu t io n  o f  Benzoyl leuco methylene b lue ,

BLMB (1 1 ) ,  in  aqueous su lphuric  acid tu rns  blue on exposure to  a i r .

C = 0

( 11 )

G ensler, W .J . ,  e t a l . ,  (1966 ),  have shown th a t  the  

o v e r a l l  process can be summarised by re a c t io n  (4 -1 )

BLMB + O.SO^ +----h ""------ V mb'" + PhCOGH (4 -1 )

Benzoic acid

There are  th ree  possiblesequences f o r  the  conversion  

of BLMB to methylene b lue, these are shown as reac tio n s  ( 4 - 2 ) ,  ( 4 - 3 ) ,  

and (4 -4 )

H 0 '
BLMB PhCOOH +  ̂ ^°2

S '^^=^^N M g 2  slow MB + OH (4 -2 )

( 12 )

Leucomethylene Blue 

LMB

2̂° : °2BLMB y PhCOOH + LMB  MB + OH (4 -3 )
slow fa s t

[ 4 - 6 ]
3  0 .  + 2 H+ r II 1 I + H_ 0

BLMB —  ------^ M6 2 N S NMG2  + H^O —^  MB’ + H ’ + PhCOOH
slow fa s t

(13)

Benzoyl Methylene Blue 

(BMB)
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The r e s u l ts  presented by Gensler W .J . ,e t  a l  11966) were 

co n s is ten t w ith  mechanism C4-3). The re a c t io n  was f i r s t  o rder  and 

the r a t e  constant a t  50°C was K50 = 3 .0  x 10  ̂ sec . The above 

workers a lso  found th a t  severa l oxidants  o th e r  than oxygen, e .g .

C eric  ion , lead  d io x id e ,  bromine or fe rro u s  ion-hydrogen peroxide  

(Fenton 's  reagent) were a lso  capable o f converting  BLMB to MB.

But in  a l l  cases the  ra te  o f  co lour form ation  was f a s t e r  than the  

h yd ro lys is  o f  BLMB. I t  is  th e re fo re  l i k e l y  th a t  these reagents  

can somehow a t ta c k  BLMB d i r e c t l y  w ithout a p re l im in a ry  hydro lys is  

step. One way in  w h ic h /th is  could be described would be v ia  

re a c t io n  ( 4 - 4 ) .  BLMB has been used as a reagent f o r  the q u a n t i ta t iv e  

d eterm in a tio n  o f  organic  peroxides, E iss , M . I .  and Giesecke, P . ,  

(1 9 5 9 ) ,  BLMB is  a lso  known to  produce a blue co lour when a s o lu tio n  

in  benzene is  ap p lied  to  s i l i c a  gel or c e r ta in  c lay  m in era ls ,  and 

exposed to  l i g h t .  The coloured product has been id e n t i f i e d  as 

methylene b lu e , P o tts ,  H .A . ,  e t  a l . ,  (1 972 ).  A simple hydro lys is  

step fo llo w ed  by an o x id a t io n  o f  leucomethylene blue to  g ive  a 

coloured product is  not a te n a b le  th e o ry , as n e i th e r  o f  the steps  

re q u ire  l i g h t .  Also the r a te  o f  co lour fo rm ation  was g re a te r  

than the  r a te  o f  h yd ro lys is  o f BLMB. I t  was suggested by P o tts ,

H .A .,  e t  a l . ,  (1972) th a t  a photoinduced f r e e  ra d ic a l  mechanism 

was o p e ra t iv e  This was supported by the f a c t  th a t  Fenton's  reagent,  

( fe r ro u s  su lphate  and 5% hydrogen p e ro x id e ) ,  a known f r e e - r a d ic a l  

source, caused immediate c o lo u ra t io n  o f  a BLMB s o lu t io n .  I t  was 

th e re fo re  l i k e l y  th a t  a d i r e c t  a t ta c k  by these reagents upon BLMB 

was the mechanism o f the  re a c t io n  . A possib le  re a c t io n  scheme is  

equation ( 4 - 4 ) .

P o tts ,  H.A. e t  a l . ,  (1972) have a lso shown th a t  the  

methylene blue produced was subsequently demethylated and th a t  a l l  

the demethylated species in c lu d in g  th io n in e  were present.
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4.1.5. Uses of Thiazine Dyes and their Derivatives

T h ia z in e  dyes in c lu d in g  methylene blue have f o r  many 

years been used as b io lo g ic a l  s ta in s  as w e ll  as t e x t i l e  dyes.

T h e ir  use as b io lo g ic a l  s ta in s  has produced much work on id e n t i f i c a t i o n  

and p u r i f i c a t io n  o f the  th ia z in e  group. The need to  do so was 

Caused by dyes such as Azure A, having d i f f e r in g  s ta in in g  p ro p e r t ie s  

from batch to  batch. I t  was found th a t  most o f the  commercial 

th ia z in e  dyes were m ixtures  o f the whole th ia z in e  group o f dyes, 

and such m ixtures  were re fe r re d  to as, metachromic methylene b lue .

This was not a s u rp r is in g  fa c t  since the  th ia z in e  dyes w ith  fewer  

methyl groups than methylene blue are  g e n e ra l ly  prepared by the  

o x id a t io n  o f methylene blue in  a l k a l i  media. The products are  

then crudely  separated . Also in s u f f i c ie n t  care when using th ia z in e  

dyes, can r e s u l t  in  dém éthyla tion . For instance i f  a s o lu tio n  o f  MB - 

is  exposed to  l i g h t  f o r  a short period o f tim e, 2 -4 h rs , the re s u l t in g  

s o lu t io n  w i l l  conta in  Azure A;B; C and th io n in e .  Therefore  in  order  

to  r a t io n a l is e  s ta in in g  procedures many workers attempted to  produce 

a rap id  way o f separa ting  the th ia z in e  dyes, S to tz ,  E . , e t a l . ,  [1950);  

B a l l ,  J . ,  and Jackson, O.S. (1953); Loach, K.W., (1971 ); Lohr, W., 

e t a l . ,  (1974); Lohr, W., e t  a l . ,  (1975 ); M arsh a ll ,  P .N . ,  and Lewis,

S.M. (1974)a; M a rs h a l l ,  P.M. and Lewis, S .M ., (1974)b; M arsh a ll ,  P .N . ,  

e t a l . ,  (1975); M arsh a ll ,  P .N . ,  and Lewis, S .M ., (1975 ).

A l l  the so lvent systems used by the above workers 

were t r i e d  in  the  course o f  t h is  work, but the  so lvent system used 

by M arsh a ll ,  P .M .,  and Lewis, S .M ., (1974)a  gave e x c e p t io n a lly  good 

re s o lu t io n ,  d e f i n i t i o n  and speed, p a r t i c u l a r l y  when using a r a d ia l l y  

developed chromatogram .
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As p rev io u s ly  s ta te d , page195Chapter 4, BLMB has 

been used as a reagent f o r  the q u a n t i ta t iv e  d eterm ination  o f organic  

per-o x id es . The a b i l i t y  to  produce a blue co lour when reacted  on 

oxides, or c la y  m inera ls  has been u t i l i z e d  in  the carbon-less  

copying process. In  t h is  process the underside o f  the  top sheet 

has BLMB or a s im i la r  MB d e r iv a t iv e  encapsulated in  g e la t in  or . 

s yn th e t ic  polymer. The upper surface  o f the next sheet has a c lay  

m inera l c o at in g . When pressure is  ap p lied  on the top sheet, i . e .  

when w r i t in g ,  the  capsules are ruptured and the  BLMB is  re le a s e d . ,  

th is  slowly re ac ts  (1 -4  weeks), w ith  the c lay  m inera l surface to  

produce a la s t in g ,c o p y ,  c . f . page 82 Chapter 3.
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4.2 Experimental

4 .2 . 1 .  M a te r ia ls

( i )  The s i l i c a  ge l used, s i l i c a  ge l G (type 60) acc to

S ta h l ,  was obtained from E. Merck, Darmstadt, Germany. The s i l i c a  

as c h ara c te r is e d  by the m anufacturer, a lso contained

Gypsum, 13%; Iro n  ( f e ) ,  0.02% and C h lo r id e , 0.02%. 

The p h ys ica l data f o r  type 60 s i l i c a  ge l G, a lso supplied by the  

m anufacturer, a r e : -

Pore volume (m l/g )  = 0 .75  

S p e c i f ic  Area (m^/g) = 500 

Mean Pore Diameter (A) = 60 

pH o f a 10% aqueous s lu r r y  = 7 .0

The pore volume is  determined using the Mottlam and 

F ish er Method; the s p e c i f ic  surface area using the  B .E .T .  

adsorption method.

S i l i c a  ge l GF 254 acc. to S tah l (type 60) f o r  TLC 

has the  same c h a r a c te r is t ic s  as s i l i c a  g e l G, but contains an 

in s o lu b le  in o rg an ic  f lu o re s c e n t  in d ic a to r  which under short wave 

u /v  l i g h t  (254 nm) produces a uniform greenish fluorescence  of the  

la y e r .

( i i )  The S i l t o n  used was the  same m a te r ia l  as described  

on page 83 Chapter 3.

( i i i )  Water and o th er  chemical reagents used were the same 

as those on page 84 Chapter 3.
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(iv) The methylene blue, (3,7 dimethylamino-phenothiazonium

s a l t ) ,  used was supplied by HopKin and W ill iam s (C^^yH^^.NgCl.S. 2 H2 0  

m.wt = 3 5 5 .8 9 ) .  The methylene blue c h lo r id e  was tw ice  r e c r y s t a l l i z e d

from d i s t i l l e d  water and d r ied  over P„ 0  a t  room tem perature .
 ̂ 5

Absorbance values were determined a t  the  maximum, 6 6 8 nm in  0 .5  Molar  

H2 SO4 .

(v ) The benzoyl leuco methylene blue (BLMB), 10 benzoyl,

3 ,7 ,  b is (d im ethylam ino) phenoth iazine used was a g i f t  from English  

Clays, Covering, Pochin and Co., L td . The pa le  green s o l id  (BLMB) 

was warmed w ith  c .a .  lOOmls r e d i s t i l l e d  a c e to n i t r iL e .  A l l  

subsequent steps were performed in  a n itrogen  atmosphere. Before  

f i l t r a t i o n  the  m ixture  was deco lourized  w ith  a small amount o f  

a t i a p u lg i t e  c la y .  The f i l t r a t e  was cooled and deposited f a i n t l y  

ye llow  c r y s ta ls ,  which were c o l le c te d  and washed w ith  cold a c e to n i t r iL e .

The pa le  benzoyl leuco methylene blue was then d r ied  

in  vacuo a t  80°C over ^ 2 ^ 5 * This m a te r ia l  in  a sealed c a p i l l a r y ,  

showed a m e lt in g  p o in t o f 194^C. BLMB has a reported  m elt in g  p o in t  

o f 194-196°C, ChalKley, L . , (1925); 185-187°C, Moriga, H . , and Oda,

R . , (1 9 6 4 ) .  BLMB was a lso  subjected to  TLC, using s i l i c a  ge l GF 254 

as adsorbent and cyc lo h e x a n e -e th y la c e ta te  (3 :2 )  as solvent system. 

B u t a n - l - o l  : NH^Cl 2% aq : fo rm ic  a c id ,  1% aq ( 1 2 : 5 : 2 ) ,  was a lso  

used as a so lven t to  de tec t any coloured species such as methylene 

blue. In  both so lvent systems th e re  was only a f a i n t  spot o ther  

than the main spot, t h is  showed the presence o f  a tra c e  im p u r ity ,  

or some h y d ro lys is  o f  BLMB occured when the m a te r ia l  was app lied  to  

the p la t e .
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( v i )  The Azure A, B, C and Thionine used were a l l  commercial

samples supplied  by BOH. These samples were used w ithout f u r t h e r  

p u r i f i c a t io n .
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4.2.2. Methods

Ci) Analytical Radial Thin Layer Chromatography (RTLC)

The absorbents used were e i t h e r  s i l i c a  ge l G or s i l i c a  

gel GF254. The absorbent la y e r  was prepared as described on page 85 

Chapter 3.

A l l  r a d ia l  TLC was performed using a tank supplied by 

S ch le ich er and Schuell In c .  Se lec ta  Sol Chromatography Chamber U.S.A. 

When in  use the  tank  was wrapped in  aluminium f o i l  to  exclude  

l i g h t .  The developed chromatograms were examined in  d a y l ig h t  and 

under u /v  l i g h t .  The u /v  lamp was dual wavelength 254/280nm supplied  

by Shandon.

Samples were app lied  using disposable m ic ro -p ip e t te s  

[Microcaps, Drummond S c i e n t i f i c  Co., Broomhall, Pennsylvania, U .S .A .) ,  

Two to  twenty m ic r o l i t r e s  o f  0.5% w/v methanolic s o lu t io n  o f dyes 

were ap p lied  to  the  p la te ,  each dye in  one spot (3mm max d iam eter)  

on a co n cen tr ic  c i r c l e  1 cm rad ius  from the  cen tre  o f the p la te .

The developing so lvent used was th a t  described by Marshall P .N . ,  

and Lewis S .M .,  (1974)a  page 86 Chapter 3.

The chromatogram was developed in  the  dark a t  ambient 

tem perature  ~  2G°C. The chromatogram was then d r ied  in  a draught 

of cold a i r .  The spectrum o f a component o f p a r t ic u la r  in te r e s t  

was ob ta ined , by scraping the  band o f f  the chromatogram. This  

m a te r ia l  was then sucked in to  a tube which contained e thanol washed 

cotton  wool. Absolute ethanol was run through the tube to  e lu te  

the component. The sample was made up to  3mls t o t a l  volume.
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( i i )  Transm ittance Spectrophotometry

A l l  u /v  and v is i b l e  spectrophotometry was performed on 

a Pye Unicam SP18D0 se r ie s  2, w ith  an AR25 l in e a r  reco rd er ,  using a 

matched p a i r  o f  quartz  c e l l s ,  1 cm path len gth .

( i i i )  D i f fu s e  R eflectance  Spectrophotometry o f  Methylene

Blue and Benzoyl leuco Methylene Blue

The s i l i c a  ge l and s i l t o n  used have a l l  been described  

above page 198 Chapter 4. The apparatus, and p rep ara tio n  of the  

sample, have been d e ta i le d  p re v io u s ly  on page 88 Chapter 3. The MB 

and BLMB were made up to  th a t  a f i n a l  concentra tion  o f  0.1 -  10 .0  mg/g 

m in era l,  was achieved i . e .  (0 .2 8  -  28.1 pm oles /g ).  A l l  samples 

were stored a t  40 ±  0 .5 °C , 0% r e la t i v e  hum idity , i . e .  stored in  

vacuo over

( iv )  M e lt in g  Point

A l l  m e lt in g  po in ts  were determined using a Gallenkamp

automatic m e lt in g  po in t apparatus, using a slow ra te  o f heating .

(v) Q u a n t i ta t iv e  Estim ation  of Methylene Blue and

Related Dyes Adsorbed on to  S i l i c a  Gel

In  o rder to  estim ate  the q u a n ti ty  o f  MB, and re la te d  

re a c t io n  products on s i l i c a  g e l ,  the m ixture  was f i r s t  separated  

using RTLC, the d e t a i ls  o f  which are  shown on page201 Chapter 4.

A l l  the coloured bands were assigned according to  t h e i r  Rf and 

absorbance maximum, r e la t i v e  to  standard samples. Each component
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was then q u a n t i f ie d  by scraping the band from the TLC p la te  and

the procedure on page201 Chapter 4 was fo l lo w ed . The absorbancy

a t the  X max was measured, and from the  e x t in c t io n  c o e f f ic ie n t s ,

the q u a n t i ty  o f  each species was determined. TLC spots can be

estim ated d i r e c t l y  using d i f fu s e  re f le c ta n c e ,  Frodyma M.M., e t a l . ,

(1 964 ),  but t h i s  method was not used due to  the  r e la t i v e  i n s e n s i t i v i t y

of the  method. Also each band on the RTLC was p h y s ic a l ly  too small

2
to  s ize  i . e .  average area 20 mm .

( v i )  A Method to  Determine the  Rate o f  Déméthylation o f

Methylene Blue and Benzoyl leuco Methylene Blue 

on I r r a d ia t e d  S i l i c a  Gel

To determine the q u a n t i ty  of the  demethylated species  

of MB abd BLMB w ith  t im e, a f ix e d  amount o f MB and BLMB was app lied  

to  a small spot on a TLC p la te .  Subsequent spots were app lied  a t  

in te r v a ls  up to  13 days. The la s t  spot ap p lied  was taken as the  

zero time sample. Six spots were app lied  to  a TLC p la te .  Therefore  

the samples ranged from zero to 13 days. The p la te s  were stored  

a t 40 ±  0 .5 °C , over w ith  constant i r r a d i a t i o n .  The spots

were then chromatographed on the p la te  in  s i t u ,  and the q u a n t i ty  of  

each species determined using the  procedure on page 201 Chapter 4.



204

4.3. Results and Discussion

4 .3 . 1 .  Methylene Blue in  Aqueous So lu tion

The X max o f the v is ib le  spectrum o f  methylene blue  

is  668nm in  0 .5  molar su lphuric  acid  and 657nm in  absolute  e thano l.  

Figure ( 4 - 1 ) .  These values agree w ith  o ther workers, Formanek, J . ,  

(1908 ),  Schubert, M and Levine, A . ,  (1955); Bergmann, K . , and O'Konski, 

C .T . ,  (1 963 ).

The e x t in c t io n  o f methylene blue was determined a t  

” 0 ”0
several concentra tions  (1 x 10 to  30 x 10 M. 1 ) ,  and the

values showed d e v ia t io n s  from B eer's  law. A c a l ib r a t io n  curve o f  

the observed absorbances d i r e c t l y  re la te d  to  the concentra tion  o f  

methylene blue in  0 .5  M H^SO^ is  shown in  F igure ( 4 - 2 ) .  The 

experim ental molar e x t in c t io n  c o e f f ic ie n ts  a t  the  X max (668nm) 

decreased w ith  inc re as in g  co n cen tra t io n . F igure ( 4 - 3 ) .  This was 

also tru e  f o r  so lu tio n s  o f methylene blue in  0.1 M H^SO^, but not 

fo r  so lu tio n s  in  1 .5  M H^SD^, F igure  ( 4 - 4 ) .  Other workers have 

reported the  f a i l u r e  o f methylene blue to obey B eer's  law; Lewis, G .N .,  

(1943); Hayon, D. e t a l . ,  (1957); M ic h ae lis ,  L. and Granick, S . ,  (1945);  

Rabinowitch, E. and Epste in , L .F . (1941); Schubert, M and Levine, A .,  

(1955) and H o ls t ,  S. (1 935 ).

The d e v ia t io n  from Beer's  law and the  hypsochromic 

s h i f t  on inc reas in g  the concentra tion  o f methylene blue have been 

a t t r ib u te d  to  d im e r iz a t io n ;  H o ls t ,  G . , (1938 );  Rabinowitch, E . , and 

Epstein , L .F .  (1941); Lewis, G .N ., e t a l . ,  (1943 );  and V i c k e r s t a f f ,

T . ,  and Lemin, D .R .,  (1946 ).
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F IG U R E.  (6 1). Absorbance Spectra of Methylene blue in Ethanolic
and acidic solution

-5I M. in absolute ethanol 
-o  . .  . ^  _ _ _ _ _ _ _ _
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FIGURE.(4 2). Absorbance of Methylene Blue in 0.5 M sulphuric acid
at 22°C
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FIGURE (A — 3). The variation of Molar extinction coefficient w ith  
concentration.
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FIGURE .(  ̂ 4). Absorbance of Methylene blue in three concentrations
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I t  has been confirmed th a t  the v is ib le  spectra  o f  

aqueous methylene blue so lu tio n s  can be in te rp re te d  q u a n t i t a t iv e ly  

on the assumption o f a monomer-dimer e q u i l ib r iu m  f o r  concentra tions  

up to  2 .15  X 10 ? M .I  Rabinowitch, E . , and Epste in , L .F .  (1 941 ).

In  the  e q u i l ib r iu m : -

The d is s o c ia t io n  constant f o r  the dimer i s : -

K = Cmf.
Cd

Where Cm and Cd are  the molar concentrations o f the  

monomer and dimer r e s p e c t iv e ly .  I f  h igher polymers are neg lected ,  

the t o t a l  molar concentra tion  o f methylene blue as monomer i s : -

C = Cm + 2Cd

I f  a is  the  f r a c t io n  of MB present as monomer th e n : -

a = Cm 
C

and i t  fo l lo w s  th a t

K = 2C a ^ / ( 1 - a )

The absorbance o f a s o lu t io n  o f MB a t  a t o t a l  concentra tion  

of C, and 1 is  the pa th leng th , is  A.
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E = A/Cl 

I f  1 = 1cm E = A/C

Assuming B e er's  law holds f o r  each component, 

i t  fo l lo w s  th a t :

E = Em + (1 -a )E d /2

The d is s o c ia t io n  constant f o r  the  monomer-dimer 

e q u il ib r iu m  has been determined by Bergmann, K . , and O'Konski, C .T . ,

(1963) and is :

K = (1 .7  ± 0 .2 )  X 10"^ M. 1 1, 

and the  standard f re e  energy o f d is s o c ia t io n  is  th e re fo re

A G° = -RT In  K = 5.1 Kcals. mole
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4.3.2. Hydrolysis and Autooxidation of Benzoyl leuco Methylene

Blue

When a co lourless  s o lu t io n  of BLMB in  0.5M su lphuric  

acid  is  exposed to  a i r  the s o lu t io n  turns  b lue . A thorough 

q u a l i t a t iv e  and q u a n t i t iv e  study o f the re ac tio n  mechanism has been 

performed by Gensler, W .J .,  e t a l . ,  (1966 ).

The blue co lour formed was methylene b lue . H ydro lys is

of BLMB in  0 .5  M su lphuric  acid  is  a f i r s t  order re a c t io n  (K5G°C =

" B2.93 X 10 sec ) ,  which is  una ffec ted  by, and independant o f  the  

concurrent a u to o x id a t iv e  development o f methylene b lue . BLMB 

reac ts  in  0.5M H^SO^ w ith  0^ in  the  molar r a t i o  1 : 0 .5  to  form MB 

and benzoic a c id .

BLMB + 0 .5  0^  ^ MB + C^H.CGOH2 b b

1/2-O2 ■ n .

A f t e r  an i n i t i a l  induction  p erio d , the methylene blue

form ation fo llow ed  f i r s t  order K in e t ics ;  r a te  constant a t  50°C 

- 6  -1
(K = 3 .0  X 10 sec ) .  A l l  the data f o r  au to o x id a t io n  were 

consis ten t w ith  a slow hydro lys is  o f BLMB to  leucomethylene b lue ,  

fo llow ed by rap id  o x id a t io n  o f LMB to  MB, re a c t io n  ( 4 - 3 ) .

F igure  (4 -5 )  shows the  h ydro lys is  o f  BLMB, (sample 

provided by English Clays L td ) ,  a t  39 and 50°C in  0 .5  M F^SO^.
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The f i r s t  o rder  r a te  constants f o r  methylene blue form ation  a t  39°

and 5Q°C were, CK^g = 1 .54  x 10  ̂ sec and = 3 .47 x 10  ̂ sec  ̂)

re s p e c t iv e ly .  These r a te  constants agree w ith  those o f  Gensler,

W.J. e t  a l . ,  [1 9 66 ) .  I t  has been shown by Gensler W .J .,  e t a l . ,

[1966) th a t  the  r a te  o f the re a c t io n  was dependent upon the .

concentra tion  o f hydrogen ions. I f  the su lphuric  acid concentra tion

was increased to  1 .5  molar the f i r s t  order ra te  constant was 

- 6  -18 .0  X 10 sec . The above workers a lso found th a t  severa l  

oxidants o th e r  than oxygen, e .g .  e e r ie  su lphate, lead d io x id e ,  

bromine or fe r ro u s  ion-hydrogen p er-o x id e  [Fenton's  reagent)  

were a lso  capable o f converting  BLMB to  MB. In  a l l  cases, however, 

the i n i t i a l  r a te s  o f co lour form ation  were found to  be g re a te r  

than the  r a te  o f BLMB h y d ro lys is ,  and i t  was assumed th a t  these  

agents were somehow capable o f d i r e c t l y  a t ta c k in g  BLMB, re a c t io n  

[4 -4 )

9 = °  H d

B L M B -----------y I L -----------------------  ̂ me [4 -4 )

Benzoyl Methylene Blue
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4.3.3. The Hydrolysis of BLMB in the Presence of Co^*

I t  has been discovered in  the course o f  t h is  work th a t

i f  sodium c o b a l t i n i t r i t e  is  added to  a so lu tion  o f  BLMB in  su lphuric

a c id ,  a blue co lour is  ra p id ly  produced. The i n i t i a l  r a te  o f  the

re a c t io n  was dependent upon the concentra tion  o f BLMB, F igure  ( 4 - 6 ) .

This in d ic a te s  th a t  the re a c t io n  was f i r s t  order w ith  respect to

BLMB. I f  the  r e s u l ts  are p lo t te d  as 1 In  b (a -x )
a-b (b -x )

versus tim e.

Where :

a = (BLMB) -  i n i t i a l  BLMB concentra tiono
3 +  3  +

b = (Co ) -  i n i t i a l  Co concentra tiono

X = (MB) -  Methylene blue concentra tion
during the course o f  the  re a c t io n .

a s t r a ig h t  l i n e  is  produced. F igure  ( 4 - 7 ) .  This in d ic a te s  th a t  the

1 3+ 1t o t a l  re a c t io n  order was 2nd o rder, i . e .  Rate = K2 (BLMB) (Co ) .

The ra te  constant (K^) was determined from the  slope o f F igure  ( 4 - 7 ) ,

• < “ I Û
= 8 .69 1 mol sec a t  25 C. The i n i t i a l  re a c t io n  r a te  was

4 3+approxim ately  10 times f a s t e r  than w ithout Co p resen t. By

vary ing  the  CcP* c o n cen tra t io n , and holding the BLMB concentra tion

constant, the re a c t io n  was confirmed as being f i r s t  o rder w ith

respect to  the  Co^^ co n cen tra t io n . A second order p lo t .  F igure ( 4 - 8 ) ,

shows the re s u l ts  and the second order ra te  constant, (K^), was

-1 -1 0determined from the slope o f the l i n e ,  = 9.01 1 m sec , a t  25 C.

This agrees w e ll  w ith  the re s u l ts  obtained from F igure  ( 4 - 7 ) ,

-1 -1 3+g iv in g  an average r a te  constant o f 8 .95  1 m sec . The Co used

was Na„Co(NG„)- as t h is  was a s ta b le  Co^ s ta te .  .When sodium o Z o
c o b a l t i n i t r i t e  is  in  0 .5  molar su lp h u ric  acid  i t  is  orange in  co lour;  

210nm, E = 2 X 10^; 272nm, E = 1 .16 x 10^; 360nm, E = 0 .59  x 10^.
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I f  the  s o lu t io n  o f sodium c o b a l t i n i t r i t e  was allowed to  stand f o r  

severa l hours, the  orange co lour was discharged, and c o lo u r les s  

s o lu t io n  formed. The loss of co lour is  due to  the  form ation  o f  

e i t h e r  CCoCH^Olg]^ or Co^tSO^)^* Both of these species are  

unstab le  and w i l l  r e a d i ly  reduce to  C o C o t t o n ,  F.A. and W ilk inson  

G. (1972) p. 875-892.

(Co(H20)g)3+ + e (Co (H20)g)^'" E° = +1.84

The ra te  o f hydro lys is  o f BLMB in  the  presence o f

co lo u r less  sodium c o b a l t i n i t r i t e ,  prepared 16 hours p re v io u s ly ,

was measured. F igure  ( 4 - 8 ) .  The ra te  constant f o r  the re a c t io n  

-1 -1was, 6 .94  1 m sec . This value was sm alle r  than the ra te

constant f o r  the  f r e s h ly  prepared sample and the  d e v ia t io n  was

la rg e r  than experim ental e r r o r .  This in d ic a te s  th a t  sodium

c o b a l t i n i t r i t e  is  reduced on standing in  aqueous su lphuric  acid  to

C o C o i s  in e f f e c t iv e  in  o x id iz in g  BLMB and th is  would be

re le c te d  by a . f a l l  in  the ra te  constant, as was observed. Co^*

can e x is t  in  aqueous so lu t io n  in  two d is t in c t  forms, (Co (H^U)

2 +
or (Co(HLO)c) . Both species have an absorbance in  the v is ib le

^2°region but the  e x t in c t io n  c o e f f ic ie n ts  are  sm all,  = 10 and
H^Q S40nm

Eyoonm '  ^00 re s p e c t iv e ly .

4 .3 .4 The E f fe c t  o f  the Hydrogen Ion Concentration upon

the S p ec tra l  C h a ra c te r is t ic s  o f Methylene Blue

The e x t in c t io n  c o e f f ic ie n ts  and the  X max o f methylene  

blue are  both a f fe c te d  by changes in  the hydrogen ion concentra tion  

o f the  s o lu t io n  Table ( 4 - 2 ) .  The absorbance o f methylene blue a t  

668nm as a fu n c t io n  o f concentra tion  in  0 .1 ,  0 .5  and 1 .5  molar
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Table C4-2)

The Xmax, and E x t in c t io n  C o e f f ic ie n ts  o f Methylene Blue in  D i f f e r e n t

Concentrations o f S ulphuric  Acid

moles. 1 ^ Methylene Blue Concentration Xmax E x t in c t io n
Z  4 Moles. 1-1 [nml C o e f f ic ie n t

“3 ^_-5 4
1 0 1 0  y 666 6.95 X 1 0

^ - 2 , 4
1 0 667 6.75 X 1 0

—  ' I 4
1 0 If 667 6.65 X 1 0

0 .5 II 666 5.65 X 1 0 ^

1 . 0 If 673 4.1 X 1 0 ^

1 .5 If 674 3 .9 X 1 0 ^

2 . 0 If 676 3 .25 X 1 0 ^

5 .0 If 681 3 .50 X 1 0 ^

1 0 . 0 II 684 2 . 0 X 1 0 ^
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aqueous su lp h u r ic  acid  is  shown in  F igure  ( 4 - 4 ) .  When concentra tions  

o f methylene blue were c a lc u la te d  from the absorbance va lues , the  

p o s it io n  and change in  e x t in c t io n  c o e f f ic ie n t  in  d i f f e r e n t  hydrogen 

ion concentra tions  were allowed f o r .  The ra te  o f  MB production  

from BLMB w ith  Na2Co(N02)g present in  various s trengths o f su lphuric  

ac id , is  shown in  F igure ( 4 - 9 ) .  This shows th a t  the ra te  o f colour  

production was g re a te s t  a t  the  lowest (H * ) ,  in d ic a t in g  th a t  when 

sodium c o b a l t i n i t r i t e  was present the  ro le  o f th e  acid was d i f fe r e n t  

from when none was p resent, and in  some way reduced the  a c t i v i t y  o f  

the Co^*. Since the (H*) was in  excess o f the (BLMB) or (CcP*) 

the K in e t ics  can be regarded as pseudo-second o rd er.  When the data  

were p lo t te d  in  the  form of a second order re a c t io n ,  severa l s t r a ig h t  

l in e s  were produced F igure  (4 -1 0 ) .  I f  the re a c t io n  was f i r s t  order  

w ith  respect to  (H * ) .  the tru e  ra te  constant can be obtained by 

d iv id in g  the  apparent ra te  constant by the (H * ) .  The re a c t io n  was not 

f i r s t  order w ith  respect to (H * ) .  An approximate method to  determine  

the order o f  a re a c t io n  is  by the Va n 't  Hoff method. The log o f  

i n i t i a l  r a te  is  p lo t te d  versus lo g (H ^ ) ,  as shown in  F igure  (4 -11 )

This p lo t  should produce a s t r a ig h t  l i n e ,  and the  slope o f t h is  l in e  

gives the order o f  the re a c t io n .  F igure  (4 -11 ) shows d e v ia t io n s  from 

a s t r a ig h t  l i n e .  The amounts o f methylene blue produced at the  

lowest su lp h u ric  acid  concentra tion  (0 .01 m o la r ) ,  decreased a f t e r  

reaching a maximum in  1 .5  mins. The reduction  in  co lour can be 

a t t r ib u te d  to  the  g re a te r  o x id iz in g  power of Co^ , in  low su lphuric  

acid  co n cen tra t io n s , causing i t  to  bleach the s o lu t io n .

A l l  the data f o r  the  production o f methylene blue from 

BLMB in  the  presence o f Co^^were consistent with a direct attack by Gô

on BLMB causing immediate production of a blue colour.
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C=0
I

BLMB * Co3+ — f S r  + B_,OH + Co+ + H+

Benzoyl Methylene Blue

2+ . + (BMB) blue
Co + 2e ------ » Co

- 2 : '  2+ " 2 °
BLMB ------ > BMB MB'" + B^OH + H""

The sodium c o b a l t i n i t r i t e  complex is  an e f f e c t iv e  

e le c tro n  acceptor, w ith  respect to  BLMB, but as the c h e la t in g  

n i t r i t e  groups are  replaced by water the Co^* ion is  no longer

2 4 -
s ta b le ,  and is  reduced to  Co • This is  in e f f e c t iv e  as an e le c tro n  

acceptor. Since the  re ac t io n  r a te  is  1st o rder w ith  respect to  

the  Co^* co n cen tra t io n , i t  seems l i k e l y  th a t  both e le c tro n s  are  

exchanged s im ultaneously . The ro le  o f  su lphuric  acid  is  u nc lear ,  

but i t  does have a supressing e f f e c t  upon the re a c t io n  r a t e .

The su lp h u ric  acid  must reduce the a b i l i t y  o f  the sodium c o b a l t i n i t r i t e  

complex to  accept e le c tro n s  or reduce the a b i l i t y  o f  BLMB to  

donate them.
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4 +4.3.5. The Hydrolysis of BLMB in the Presence of Ce

BLMB was r a p id ly  ox id ised  in  0 .5  molar su lphuric  acid

4 +when (NH^)2 ' (C e [N 0 2 )g) was present. A complex form of Ce was

used because o f  i t s  g re a te r  s t a b i l i t y  in  aqueous s o lu t io n .  The ra te

4 +o f MB production was g r e a t ly  enhanced by the presence o f  Ce

4 +
The ra te  o f methylene blue production as a fu n c t io n  o f Ce

concentra tion  as shown in  F igure ( 4 -1 2 ) .  I f  the v a n ' t  H o ff method

was used to determine the order o f  the re a c t io n ,  w ith  respect to

Ce , as described above, the slope o f the l in e  was 2 , in d ic a t in g

4 +
th a t  the  re a c t io n  was 2nd order w ith  respect to  Ce , F igure  (4 -1 3 ) .

Rate = K.3 (BLMB)(Ce4  + )2

The o v e r a l l  re a c t io n  was th e re fo re  t h i r d  order .  

I f  the  data was presented as a th i r d  order re a c t io n :

2A+B — V Products

( a - 2 x ) (b -x )  X

dx = K (a -2 x )^ (b -x )  
dt

Then 1 (2b -a )2x  (a -2 x )  vs time
b

( 2 b -a )^  a ( a - 2 x)
+ In  — a

(b -x )

Should y ie ld  a s t r a ig h t  l i n e .  F igure (4 -14 )

Where:

4 +a = (Ce ) i n i t i a l  concentra tiono

b = (BLMB) o

X  = (MB) a t  tim e t .
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4 +
FIGURE .(4 — 12). The E f fe c t  o f  Ce Concentration on the Rate of Production  

o f MB from BLMB, in  0 .5  M H^SO^.
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I t  can be seen from F igure  (4 -14 ) th a t  the re ac t io n  

only obeys 3rd o rder K in e tics  i n i t i a l l y ,  1 minute, a f t e r  th is  the  

re a c t io n  d ev ia tes  from a s t r a ig h t  l i n e ,  the ra te  constant f o r  the  

i n i t i a l  period is  6 .25  x 10^ M  ̂ 1^ sec \  a t  25°C. This in d ic a te s  

the re a c t io n  is  proceeding in  a more complex manner a f t e r  the i n i t i a l  

period o f re a c t io n .  The i n i t i a l  re a c t io n  product was methylene 

b lue, X max = 6 6 8 nm. I f  the s o lu tio n  was exposed to  the atmosphere 

f o r  one hour the  p o s it io n  o f the  X max changed to  550nm, a hypsochromic 

s h i f t  o f  118nm. This in d ic a te d  f u r t h e r  o x id a t io n  o f  methylene b lue ,  

causing dém éthyla tion , and t h is  would r e s u l t  in  the  re a c t io n  ra te  

being reduced. I f  the  s o lu t io n  was allowed to  stand f o r  several  

days i t  was bleached.

I t  was expected th a t  the re ac t io n  would be 2nd order  

w ith  respect to  (NHg)2 (Ce(N 0 g )g ) ,  as e e r ie  ammonium n i t r a t e  is  Known 

to be a s in g le  e le c tro n  acceptor, and is  used as such to  i n i t i a t e  

p o lym eriza t io n s .
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4.3.6. Radial Thin Layer Chromatography of Methylene Blue

and Related  Thiazine Dyes

Tables (4 -3  to  4 -7 )  show the Rf values and absorbance 

maxima o f  methylene b lue , th io n in e ,  azure A, azure B and azure C, 

when separated using r a d ia l  th in  la y e r  chromatography. The Rf 

values quoted were the  mean o f a t  le a s t  s ix  separate samples, w ith  a 

standard d e v ia t io n  o f Rf ± 0 .0 1 .  The absorbance maxima were also

the  mean of a t  le a s t  s ix  separate samples w ith  a standard d e v ia t io n

o f ± 2 . 0 nm,

The separated bands were id e n t i f i e d ,  where p o ss ib le ,  

by t h e i r  Rf va lue  and absorbance maximum. Spots were removed from 

the  TLC p la te  as described on page 83 Chapter 3, and the  absorbance 

maxima were measured in  aqueous s o lu t io n .  The id e n t i t y  o f  the  spot 

was then assigned, by comparison w ith  standards and the l i t e r a t u r e  

values , shown in  Table ( 4 - 8 ) .

When separated a sample o f Azure A showed no major

band. Table ( 4 - 5 ) ,  a l l  seven coloured components being o f  equal

in te n s i t y  and s iz e .  Azure A was id e n t i f i e d  by e l im in a t io n  o f the  

o th er  components, which were o f Known Rf and absorbance maximum.

The absorbance maximum o f band No.3, Rf 0 .4 3 , Table (4 -5 )  has a 

s im i la r  wavelength maximum, 640nm, to  the  l i t e r a t u r e  values (620-  

638nm) o f Azure A. Table ( 4 - 8 ) .  Large d iscrepancies  occur in  the  

l i t e r a t u r e  values f o r  Azure A, presumably because the m a te r ia ls  used 

d i f f e r  in  p u r i t y .  The o th er th ia z in e  dyes had a major component which 

was r e a d i ly  i d e n t i f i a b l e  using the  absorbance maximum. These 

were compared w ith  l i t e r a t u r e  values Table ( 4 - 8 ) .  The component 

in  Azure A, B and C, Rf = 0 .4 8 ,  was t e n t i t i v e l y  id e n t i f i e d  as 

sym -d im ethy lth ion ine , X max = 630nm, Tables (4 -5  to  4 - 7 ) .
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Table (4 -3 )  R ad ia l TLC o f  Methylene Blue a t  20 C 

Absorbent : S i l  Gel GF^^^ (M erck).

Running Solvent : b u ta n - l -o l /N H ^ C l 2% aq /fo rm ic  acid  1% aq. (1 2 :5 :2 )  

Running Time Bhrs

Spot
No

Colour S ize Mean Comments Experim ental  
Rf + 0 . 0 1  X max (nm)

 ̂ 1 Blue 1 .29 MB BBS

2 Blue m . 3B Azure B B49 |
1

Table (4 -4 )  R ad ia l TLC o f Thionine a t 20°C

Absorbent : S i l  Gel (M erck ).

Running Solvent : b u ta n - 1 - o l /  NH^Cl 2% aq/Formic acid  1% aq (1 2 :5 :2 )

Running Time Bhrs

Spot
No

Colour Size Mean Comments Experimental 
Rf + 0 . 0 1  X max (nm)

1 Red s .49

2 Red 1 . B3 Thionine B05

3 Y e l lo w /
Green

s .7B

4 Green s .83

5 Red s .89

6 Yellow s .94

7 Y e l lo w /
Green

s .98
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Table (4-5) Radial TLC of Azure A at 20 C

Absorbent : S i l  Gel (Merck)

Running Solvent : b u ta n - l -o l /N H ^ C l 2% aq/Formic Acid 1% aq (1 2 :5 :2 )

Running Time Bhrs

Band
No

Colour S ize  
1 , m j s ■

Mean
Rf

Comments Experimental  
X max (nm)

1 Blue m 0.29 MB BB5

2  • Blue m 0.3B Azure B B49

3 Blue m 0.43 Azure A B40

4 Blue m 0.48 B31

5 Blue m 0.5B Azure C BIB

B Red/
Blue -• m 0.B2 Thionine B04

7 Red/
Blue m 0.B8 Thionine B05

B Colourless  
'^•u/v absorb s 0.84

A l l  Rf values r e f e r  to  the mean o f a t  le a s t  7 d i f f e r e n t  samples
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Table (4-6) Radial TLC of Azure B at 20 C

Absorbent : S i l  Gel GF__^ (M erck).2b4
Running S olvent ; b u ta n - l -o l /N H ^ C l 2% aq/Formic Acid 1% aq (1 2 :5 :2 )  

Running Time Bhrs

Spot
No

Colour S ize Mean
Rf

Comments Experim ental  
X max (nm)

1 Blue m .29 MB BB5

2 Blue 1 .37 Azure B 648

3 Blue m .48 ? 630

4 Blue s .56 Azure C 618

5 Red s .60 Thionine 605

Table (4 -7 ) R ad ia l TLC of Azure C a t  20°C

Absorbent : S i l  Gel (Merck)

Running Solvent : butan - 1 -o l/N H ^C l 2% aq/Formic Acid 1% aq (1 2 :5 :2 )

Running Time Bhrs

Spot Colour S ize Mean Comments Experim ental
No Rf X max (nm)

1 Blue m .29 MB 665

2 Blue m .35 Azure B 648

3 Blue m .43 Azure A 640

4 Blue m .48 ? 630

5 Blue 1 . 56 Azure C 617

B Red m .59 Thionine 604
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Table (4-8) Literature Values for the Absorbance Maxima of Thiazine Dyes

No. Subst
methyl group.

Compound MB Azure Azure Sym Azure Thionine
B A dim ethyl C

Reference th io n in e

a 656 640 624 617 605

b 665 652 620 616 599

c 6 6 8 638 603

d 667.5 651.7 638 620.1 611.4  602.5

Solvent
a Schaefer F.C . and Zimmerman , W.D. ETDH.

(1968)
b Wotherspoon N. and D ster G. (1957) H^D

c Kehrmann F. et a l . ,  (1906) H^D

d Formanek, J . , (1908) H2 D

Table (4 -9 ) Experim ental Values f o r  Absorbance Maxima and

Rf o f T h ia z in e  Dyes

Common
Name

MB Azure
B

Azure
A

Sym
methyl
th io n in e

Azure Thionine  
C

No of S u b s titd .  
methyl group

4 3 2 2 1  0

X Max (nm) 665 649 640 630 618 ,605

R f . so lvent : .29 .36 .43 .48 .56 .61
M arsha ll ,  P .N .,
and Lewis, S .M .,
(1974)a
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Sym-dimethylthionine

Me.H.N

N

This was based on the  Rf o f  the component, r e la t i v e  to  Azure A. 

Sym-dimethylene has the  same number o f methyl groups as Azure A.

H2 N S '^ H ^ N M 0 2

Azure A

But th e  p o s i t iv e  charge on Azure A w i l l  be lo c a l iz e d  on the te rm in a l  

n itro g e n  atom ad jacent to  the  methyl groups, whereas on sym- 

d im e th y lth io n in e  the p o s i t iv e  charge w i l l  be shared between the  

two te rm in a l  n itro g en  atoms. The p o s i t iv e  charge on Azure A w i l l  

th e re fo re  be s t a b i l i z e d  by the  s tro n g ly  e le c tro n  donating methyl 

groups to  a g re a te r  ex ten t than sym -d im ethy lth ion ine . I t  is  th e re fo re  

l i k e l y  th a t  sym -d im ethylth ion ine  w i l l  t r a v e l  f a s t e r  in  t h is  so lvent  

than Azure A. The suspect sym -d im ethylth ion ine  had a g re a te r  

Rf than Azure A, 0 .48 c . f .  0 .43  f o r  Azure A, and a X max = 630nm.

The X max being midway between the l i t e r a t u r e  values f o r  sym- 

d im e th y lth io n in e  and Azure A, Table ( 4 - 9 ) .  I t  is  possib le  th a t  the  

band represented  two unresolved species.

A l l  the  th ia z in e  dyes, w ith  the  exception o f MB, 

were h ig h ly  contaminated w ith  o th er  th ia z in e  dyes.
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4.3.7. A Diffuse Reflectance Study of Methylene Blue

Adsorbed upon S i l i c a  Gel

The spectrum o f  methylene blue adsorbed upon s i l i c a  

g e l is  shown in  F igure  (4 -1 5 ) .  I t  w i l l  be seen th a t  the p o s it io n  o f  

maximum absorbance (Xmax) changes w ith  the amount o f methylene blue  

a p p lie d .  The p o s it io n  of the Xmax o f MB, as a fu n c t io n  of  

co n cen tra t io n  is  shown in  F igure (4 -1 6 ) .  I t  has been mentioned 

p re v io u s ly ,  page 204, th a t  o th e r  workers have reported  s im i la r  changes 

ta k in g  p lace  in  s o lu t io n ,  H o ls t ,  G . , (1938); Rabinowitch, E . , and 

Epste in , L . F . ,  (1941 );  Lewis, G.N. e t a l . ,  (1943 );  M ic h a e l is ,  L . , 

and Granick S . ,  (1945 );  V ic k e r s t a f f ,  T . ,  and Lemin, D .R .,  (1946) 

and S chu bert,M .,  and Levine, A . ,  (1 9 55 ) .  The s p e c tra l  changes were 

a t t r ib u te d  to  the form ation  o f  dimers. Also i t  has been shown by 

Bergmann, K . , and O’ Konski, C .T . ,  (1 963 ),  th a t  a monomer-dimer 

e q u il ib r iu m  e x is ts  when MB is  adsorbed upon N a-m o n tm o ril lo n ite ,  

and i t  is  t h is  e q u i l ib r iu m  which caused s p e c tra l  s h i f t s  a t  d i f f e r e n t  

coverages. I t  was th e re fo re  concluded th a t  the  s p e c tra l  changes 

observed when d i f f e r i n g  amounts o f MB were adsorbed onto s i l i c a  gel  

were caused by dimer fo rm atio n .

The monomer absorbs a t  660nm, and the  dimer a t  612nm. 

D i f f i c u l t i e s  are  thus introduced when measuring the concentra tion  o f  

MB present. I t  would be d i f f i c u l t  to  measure the  two composite 

wavelengths and summate them due to s p ec tra l  o ver la p . F igure  (4 -17 )  

shows the absorbance a t  the X max f o r  d i f f e r e n t  concentra tions  o f MB, 

and the  absorbance a t  660nm, and 612nm. I t  w i l l  be seen th a t  the  

absorbance a t  the  Xmax most c lo s e ly  coincides w ith  the dimer 

absorbance, 612nm, a t  h igher concentra tions , and most c lo s e ly  

coincides w ith  the  monomer absorbance a t  lower co n cen tra t io n s .
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This is explained by:-

From page 208

E = Em + (1 - a )E d /

I f  a = CM and a - > 1 . 0

C

Then E = Em

Also i f  a ^  0

Then E = Ed

The e x tra p o la te d  spectrum of pure dimer has been

c a lc u la ted  by Bergmann, K . , and O'KonsKi, C .T . ,  (1 9 63 ] .  The dimer

^2° 4
in  aqueous s o lu t io n  has a X max o f BOSnm, and E^ = 13 .2  x 10 .

C a lc u la t io n  o f the r e la t i v e  concentra tions  o f monomer 

to dimer present although possib le  would be ted io u s . Also the  

measurements would be l im ite d  by the accuracy o f d i f fu s e  re f le c ta n c e ,  

^2% e r ro r .  The area under the spectrum provides a r e l i a b l e  

measure o f both species. F igure  (4 -1 7 ] .  This w i l l  a lso  measure the  

presence o f o th e r  species, p a r t i c u la r l y  decomposition products.

This cannot o f  course be an accurate  method due to  the d if fe re n c e s  

in  the  molar e x t in c t io n  c o e f f ic ie n ts  o f the species.

The spectrum o f methylene blue adsorbed onto s i l i c a  

gel ( 2 . 8  j j  moles/g] as a fu n c t io n  o f t im e , w ith  and w ithout
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irradiation can be seen in Figure C4-18) and Figure [4-19].

The n o n - i r ra d ia te d  sample remained unchanged, throughout 

the 13 days o f  the experiment; w ith in  the e r r o r  o f  the measurements.

But the  i r r a d ia t e d  sample shows a marked decrease in  the absorbance 

throughout the  period  o f exposure.

F igure  [4 -2 0 ]  shows the  percentage o f the ze ro  time  

absorbance rem ain ing , estim ated by the area method, w ith  tim e, f o r  

the i r r a d ia t e d  and n o n - i r ra d ia te d  samples o f  methylene b lue . I t  

w i l l  be seen th a t  the  n o n - i r ra d ia te d  sample remains a t  106 _+ 5%.

Errors  o f  up to  10% can be caused by changes in  humidity when 

t r a n s fe r r in g  the  sample to  the  spectrophotometer, and /or by re p la c in g  

the q u artz  window over the sample. The experim ental e r r o r  could be 

reduced by using a sample ho lder which had a f ix e d  quartz  window, and, 

a s e l f  conta ined , r e l a t i v e  humidity c o n tro l .  Experimental e r ro r  

would then be approxim ate ly  2%. The n o n - i r ra d ia te d  sample remained 

a t i t s  o r ig in a l  value w ith in  the experim ental e r r o r .  In  co n tras t  

the i r r a d ia t e d  sample o f MB showed a marked red u ct io n  in  absorbance 

w ith  time*

D if fu s e  re f le c ta n c e  gives no in d ic a t io n  as to  the  

amount o f  any p a r t i c u la r  species present in  a m ix tu re ,  but gives a 

measure o f the  t o t a l  amount o f coloured species in  the m ix tu re , i . e .  

a t o t a l  absorbance in  the v is ib le  reg ion  [400-700nm ]. The amount 

of MB present w ith  tim e cannot th e re fo re  be eva lu a ted . Comparing 

the area measured between 400 and 700nm w ith  the  peak height  

measured a t  660nm, the  agreement is  good between the  two methods i . e .

1% d i f fe r e n c e  f o r  0 .28  umoles f1B/g s i l i c a  g e l .  Demonstrating th a t  

the major species present a t  t h i s  coverage was the  monomer, and in
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FIGURE .( ̂  —  20). The Percentage of the Zero Time Absorbance of

Methylene Blue on Silica Gel
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FIGURE .(  ̂ 21). The P o s it io n  o f the Xmax of Methylene Blue on S i l i c a

as a Function of Time
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th is  case the  reductio n  in  peak height can be ascribed to  loss o f  MB. 

At o th e r  coverages the problem is  more complex, since removal of  

e i t h e r  dimer or monomer from the e q u il ib r iu m  2MB^MB^ w i l l  r e s u l t  

in  a change o f concentra tion  o f the o th er  component, in  o rder to  

m ain ta in  the e q u i l ib r iu m . I t  is  apparent th a t  the  t o t a l  absorbance 

of coloured species rem aining, w ith  t im e, changes w ith  d i f f e r e n t

— ̂
coverages, but not in  a p re d ic ta b le  way, 28 " 7  0 .28  >  2 . 8  jj moles g

F igure  (4 -1 8 ) shows the genera l loss of shape o f  the  

absorbance curve, both in  the u l t r a - v i o l e t  and v is ib le  region o f  the  

spectrum. The change of shape in d ic a te s  decomposition o f methylene 

blue, but cannot s p e c i f i c a l l y  i d e n t i f y  in d iv id u a l  components. The 

p o s it io n  of the  absorbance maximum, w ith  t im e , at 28, 2 . 8  and 0 .28  

moles MB/g s i l i c a  is  shown in  Figure ( 4 - 2 1 ) .  As expected, the  

d i f f e r e n t  coverages have d i f f e r e n t  absorbance maxima, a t  zero t im e ,  

(BBOnm, 0 .28  jj moles/g; 628nm, 2 .8  j j  moles/g; 612nm, 28 j j  m o les /g ),  

due to dimer form ation  a t  the higher coverages. The p o s it io n  o f the  

absorbance maxima of the n o n - ir ra d ia te d  samples remained constant 

throughout the  experim ental p er io d . Whereas i r r a d ia t io n  of the  

samples caused a hypsochromic s h i f t .  The la rg e s t  s h i f t  was seen a t  

the lowest coverage, 0 .28 j j  moles/g, (660 to  602nm). The absorbance 

maximum a f t e r  13 days was independant o f coverage, 602 to  608nm.

This suggests th a t  one of the f i n a l  products o f i r r a d ia t io n  was 

th io n in e ,  X max = 599 to BOSnm.
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4.3.8 A D if fu s e  Reflectance  Study o f Benzoyl leuco 

Methylene Blue, Adsorbed upon S i l i c a  Gel

When BLMB was absorbed upon s i l i c a  ge l G, a pale  blue  

colour was formed. D if fu s e  re f le c ta n c e  shows a peak in  the v is ib le  

region a t  BBOnm, F igure  (4 -2 2 ) .  Since MB has a X max a t BBOnm, 

i t  was concluded MB was formed i n i t i a l l y .  The amount produced var ied  

w ith  the  amount o f BLMB app lied  to  the s i l i c a .  Table (4 -1 0 ) .

Table (4 -1 0 )  The Percentage of MB I n i t i a l l y  Formed from BLMB 

Upon S i l i c a

BLMB

U moles/g S i l i c a

y moles MB 

(BBOnm)

% MB

(peak height a t  BBOnm)

28 0.36 1 .25

14 0.34 2 .49

5 .6 0.28 5 .0

2 . 8 0 . 2 2 7 .9

0.28 0 . 1 1 39.3

I t  w i l l  be seen th a t  the t o t a l  amount o f MB i n i t i a l l y  

produced tends to a l im i t in g  value o f 0 .3 6  j i  moles MB/g s i l i c a .

This suggests th a t  th e re  are a l im ite d  number o f  s i te s  which w i l l  

re ac t ins tan tan eous ly  w ith  BLMB to form 1MB. I f  the  MB were simply 

an im p u rity  the  percentage would remain constant f o r  a l l  coverages.
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The MB produced from BLMB must be subject to  the same 

re ac tio n s  as MB d i r e c t l y  a p p l ie d .  The area underneath the absorbance 

curve o f the  MB produced was measured and the  percentage of the  

possib le  t o t a l  MB was c a lc u la te d .  Table (4 -1 1 )

Table (4 -1 1 )  The Percentage o f Methylene Blue Produced from BLMB 

Applied to  S i l i c a  Gel

(BLMB) y moles MB % MB

y moles/g S i l i c a Produced Produced

28 0.64 2 .3

2 . 8 0 . 2 1 7 .5

These values agree c lo s e ly  w ith  Table (4 -1 0 ) ,  e s p e c ia l ly  

f o r  the  values a t  2 . 8  jx  moles/g, where the agreement was w ith in  4%. 

Area values were not used f o r  0 .28 jx moles/g s i l i c a .  The area  

measurements devia ted  fu r t h e r  from the  peak height measurements, as 

more MB was produced.

The re a c t io n  o f BLMB on s i l i c a  g e l ,  measured by the  

absorbance produced, as a fu n c t io n  o f time is  shown in  F igure (4 -2 4 ) .  

The n o n - i r ra d ia te d  samples d id  not in c rease  in  absorbance a f t e r  the  

i n i t i a l  p e r io d , i . e .  2 .3  and 7.5% f o r  28 and 2 .8  Jx moles BLMB/g s i l i c a  

re s p e c t iv e ly .  I r r a d ia t io n  caused a s ig n i f ic a n t  increase  in  the t o t a l  

absorbance produced see F ig u r e * (4 -2 3 )  and (4 -2 4 )  a t  28 yi moles/g  

the absorbance i n i t i a l l y  increased but then p la teaued . I f  the
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r e s u l ts  are p lo t te d  as log^ percent BLMB vs. t im e, f i r s t  o rder

o ~ 7 — 1K in e t ic s  are  observed, w ith  a ra te  constant a t  40 C o f 1 .4  x 10 sec ,

see F igure  [4 - 2 5 ) .  The r a te  constant measured was approxim ately

1 /10  o f  the r a te  constant in  a c id ic  s o lu t io n  (0.5M H^SO^), as

measured by Gensler W .J . ,  e t  a l . ,  [1 966 ).  This would g ive  a h a l f

l i f e  f o r  the  re a c t io n  o f 57 days.

At a coverage o f 2 .8  j j . moles/g s i l i c a  the re a c t io n  

proceeds d i f f e r e n t l y .  A f t e r  a ra p id  i n i t i a l  increase in  absorbance, 

the  absorbance then f a l l s  a t  a constant ra te  so th a t  2 0 % o f the  t o t a l  

p o ss ib le  absorbance was produced a f t e r  2 days, but by 13 days only  

17% remained. I t  is  a w e l l  Known phenomenon th a t  fad ing  is  

dependent upon the  t o t a l  q u a n t i ty  o f  m a te r ia l  p resent,  and th a t  

la r g e r  q u a n t i t ie s  o f dye app lied  tend to  r e s is t  photochemical 

degradation to  a g re a te r  ex ten t than do s m alle r  q u a n t i t ie s ,  % e rto n ,  

G .S .,  and Morgan, A.G. (1970 ).  This may be r e la te d  to the surface  

area a v a i la b le  to  each m olecule, the lower the  coverage the g re a te r  

the surface  area per molecule, and hence more re a c t iv e  s i te s  

are a v a i la b le  to  each molecule.

There was a lso a general in crease  in  the absorbance a t  

wavelengths lower than 660nm. MB produced on s i l i c a  g e l ,  from the  

BLMB, re q u ire s  l i g h t ,  and the  MB so produced is  co ncu rren tly  

degraded, (dem eth y la ted ), F igure (4 -2 6 ) ,  causing an increase in  

the  absorbance a t  wavelengths below 660nm.

This supports the f in d in g s  o f  o th er workers, who have 

shown by o th er methods th a t  MB was produced from BLMB on s i l i c a  ge l  

v ia  a l i g h t  induced f r e e  r a d ic a l  mechanism, P o tts ,  H .A . ,  e t a l  (1972)
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FIGURE (4 —  26: The position of the X  max of MB produced from BLMB 
on Silica.
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The reaction would be as follows:-

C= 0

BLMB
S 'S .x ^ N M e 2  M© 2  S

Benzoyl Methylene Blue Blue

Where the  production o f the coloured in te rm ed ia te  

benzoyl methylene blue would be the ra te  determ in ing  step in  the  

re a c t io n .

The tendency o f methylene blue and benzoyl leuco  

methylene blue to  r e a d i ly  demethylate on s i l i c a  ge l in  the presence 

of l i g h t  causes the concurrent production o f  Azure B, Azure A 

Azure C and Th ion ine . Since a l l  the species are  present on the  

surface  a t  the  same tim e th e re  is  absorbance throughout the v is ib le  

spectrum. The co lour produced is  th e re fo re  b lack .

NMG'
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4.3.9. The Isolation and Identification of the Reaction

Products o f MB and BLMB on S i l i c a  Gel

S i l i c a  ge l was chosen as the re a c t io n  medium and, a lso  

used as a medium to  separate the products of the re a c t io n ,  because 

the  dém éthyla tion  products o f MB, could be r e a d i ly  desorbed from  

s i l i c a  g e l ,  u n l ik e  c la y  m inera l systems where they remain f i r m ly  

adsorbed. Also s i l i c a  ge l has been used throughout the study as a 

model system, due to  i t s  commercial p u r i ty  and a v a i l a b i l i t y .

Table (4 -1 2 ) shows the TLC separa tion  o f the products  

formed from methylene blue on s i l i c a  g e l w ith  constant i r r a d i a t i o n  

f o r  30 days a t  4G°C and 0% r e la t i v e  humidity (s tored  over P^O^).

I t  w i l l  be seen th a t  the major products formed are  Azure A, B,

C and Th ion ine . T h e ir  i d e n t i t i e s  w e re  confirmed by comparison o f  

the Rf w ith  a standard sample see page 228, and a lso  comparing 

the wavelength maxima w ith  l i t e r a t u r e  va lues . The products  

i d e n t i f i e d  were h ig h ly  coloured and in  s u f f i c i e n t  q u a n t i ty  to  be 

analysed.

Table (4 -1 2 )  RTLC Separation o f Products Formed From the

I r r a d ia t io n  o f Methylene Blue, a t  4G°C, on S i l i c a  Gel

Band
NO

Colour Size  
( l ,m ,s )

Mean
Rf

Comments Observed 
 ̂ max (aq)

1 Blue 1 0 .29 MB 665

2 Blue m 0.36 Azure B 648

3 Blue m 0.43 Azure A 640

4 Blue m 0.48 Sym d i  methyl 
Thionine 631

5 Blue s 0 .56 Azure C 616

6 Red/blue s 0.63 Thionine 604

7 Red/blue s 0 . 6 8 Thionine 605

8 Orange vs 0 .84
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Table (4-13) RTLC Separation of Products Formed From the Irradiation
o f Benzoyl leuco Methylene Blue on S i l i c a ,  a t  40°C

Adsorbent , Solvent and Running cond itions  as Table (4 -12 )

Band Colour Size Mean Comments Observed

No ( l ,m ,s ) Rf X max (aq)

1 Blue m 0.29 MB 665

2 Blue m 0.36 Azure B 648

3 Blue s 0 .43 Azure A 640

4 Blue s 0 .48 631

5 Blue s 0 .56 Azure C 616

6 Red/blue vs 0 .63 Thionine 604

7 Red/blue vs 0 . 6 8 Thionine 604

6 Grange vs 0.84 - -

9 Colourless  1 
u /v  absorbing

0.98 BLMB

Other components were separated, but were in  

i n s u f f i c ie n t  q u a n t i t iy  to be id e n t i f i e d .  G en era lly  these components 

were not h ig h ly  coloured and tended to  be brown or ye llo w . The 

products o f  the re a c t io n  o f BLMB on s i l i c a  g e l ,  are  shown in  

Table ( 4 - 1 3 ) .  The BLMB was stored w ith  constant i l lu m in a t io n  a t  

40 _+ 0 .5 °C , over P^O^, f o r  30 days. I t  w i l l  be seen th a t  the  products  

of the re a c t io n  are the  same as the products o f methylene b lue ,  

under the  the  same cond itions; Azure B,A, C and Th ion ine . These 

products could be formed e i t h e r  by dém éthylation o f BLMB d i r e c t l y  

or by the  form ation  o f methylene b lue, fo l lo w ed  by déméthylation.

Scheme (4 -1 )  shows the possib le  routes f o r  the form ation  o f the



products. Azure A,B, C and thionine from BLMB

Scheme (4 -1 )  Routes f o r  the  Déméthylation o f  BLMB
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Colourless

BLMB

(-me) 

B. Azure B 

(-me) 

B. Azure A 

(-me) 

B. Azure C 

(-me) 

B. Thionine

Y

Coloured

MB

(-me) 

Azure B

(-me) 

Azure A

(-me) 

Azure C

(-me) 

Thionine

Y

Tables (4 -12  and 4 -13 ) in d ic a te ,  the  q u a n t i ty  o f the  

demethylated products decreases w ith  the number o f methyl groups 

removed, i . e .  Azure B > Azure A > Azure C > T h io n in e .

This  would in d ic a te  th a t  the methyl groups are  

removed in  a s e q u e n tia l  manner ( i . e . )

%
MB Azure B Azure A Azure C Thionine

R̂  = Me H H H H

R  ̂ Me Me H H H

R3  Me Me Me ' H H

R4  Me Me Me Me H
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4.3.10 The Rate of Déméthylation of Methylene Blue

Absorbed upon S i l i c a  Gel

Accurate q u a n t i ta t iv e  estim ates o f Azure A,B,C  

and Sym-dimethyl th io n in e  were d i f f i c u l t  as r e l i a b l e  values f o r  the  

e x t in c t io n  c o e f f ic ie n ts  were not a v a i la b le .  The p u r i f i c a t io n  of  

la rg e  q u a n t i t ie s  ( >  300mg) o f commercial Azure A,B, and C was 

attempted using r a d ia l  p re p a ra t iv e  la y e r  chromatography CRPLC).

The p re p a ra t iv e  la y e r  separa tion  proved to  be very  u n s a t is fa c to ry  

as the m a te r ia l  t r a v e l le d  along the surface  o f  the  la y e r  r a th e r  than 

through th e  e n t i r e  th ickn ess . The concentra tion  o f  dye to  s i l i c a  

gel was th e re fo re  very  high and t h is  probably caused the  poor sep ara tio n .

The e x t in c t io n  c o e f f ic ie n ts  o f Azure A, Azure B and 

Azure C are  based on values found e x p e r im en ta l ly ,  from r e c r y s t a l l i z e d  

commercial m a te r ia l .  The re s u l ts  show th a t  the  e x t in c t io n  c o e f f ic ie n ts

are  o f the c o rre c t  o rder, i . e .  they l i e  between th a t  o f  methylene
H O  4  ^2° . 4

blue (E = 8 .06  x 10 ) and th io n in e  [E = 5.1 x 10 ) 
m m

Table ( 4 - 1 4 ) .

The Azure dyes possess fewer methyl groups than  

methylene b lue and more methyl groups than th io n in e .  The methyl 

groups tending to  s t a b i l i z e  the p o s i t iv e  charge on the m olecule, 

hence in crease  the  probable l i f e t i m e  o f  the  e xc ited  species.

Table (4 -1 4 )  Molar E x t in c t io n  C o e f f ic ie n ts  o f Azure Dyes

tr H„D ,  ,E 2 max (nm)m

Azure A 6.5*x 10^ 640

Azure B 7.3 x 10^ 648

Azure C 5.8 x 10^ 618
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Commercial samples o f sym -d im ethylth ion ine  were not 

a v a i la b le ,  but the  e x t in c t io n  c o e f f ic ie n t  should be s im i la r  to  th a t  

of Azure A. The breakdown o f  methylene b lue , as a fu n c t io n  of time  

i s  shown in  Table  (4 - 1 5 ) .  I t  w i l l  be seen th a t  the  concentra tion  

o f methylene blue f a l l s  o f f  r a p id ly ,  and reaches a l im i t in g  concentra tion  

o f 5% o f  the  o r ig in a l  concentra tion  a f t e r  13 days.

Table  (4 -1 5 )  Percentage Degradation o f Methylene Blue on S i l i c a  Gel

Time days MB Azure
B

Azure
A

Sym
dim ethyl
th io n in e

Azure
C

Thionine

0 1 0 0 - - - - -

1  . 43 23 6 6 2 2

2 25 1 2 8 6 3 2

6 9 8 1 0 8 4 2  .

7 5 5 6 8 6 5

13 5 5 5 5 5 5

Each species was formed. and then subsequently breaks

down to  form the  next demethylated species, hence the re ac t io n  

proceeds as an o rd e r ly  dém éthylation .
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4.3.11 The Rate of Déméthylation of Benzoyl leuco Methylene

Blue on S i l i c a  Gel

I t  was observed th a t  the  coloured products o f  the  

o x id a t io n  o f  BLMB, on s i l i c a  g e l ,  decomposed when i r r a d ia t e d  w ith  

w hite  l i g h t .  The amount o f  the  coloured species formed from BLMB 

as a fu n c t io n  o f t im e are  shown in  Table [4 -1 6 ] .

Table (4 -1 6 )  Percentage Decomposition o f BLMB on S i l i c a  Gel

Time (days) MB Azure
B

Azure
A

Sym
dim ethyl
Thionine

Azure
C

Thionine

0 4 1 - - - -

1 5 4 1 1 1 1

2 5 5 2 2 1 . 1

6 . 4 4 4 4 2 2

7 4 • 4 3 3 3 2

13 4 4 4 4 4 4

A l l  values are expressed as percentages o f the  t o t a l  

amount o f BLMB. A complex p ic tu re  develops and i t  was d i f f i c u l t  to  

deduce what was the  exact mechanism o f the  dém éthyla tion . Since a l l  

species a re  present i t  would suggest th a t  no step was r a te  determ ining  

e .g .  a l l  steps a re  o f  a s im i la r  ra te  ( th e  ra te  constants would th e re fo re  

be n u m erica lly  s im i l a r ) .  Dnly the  coloured components on the r ig h t  

hand side o f  scheme ( 4 - 1 ) ,  page 194, have been determined, and not the  

co lo u r less  components. The co lo u r less  components could be separated  

using a d i f f e r e n t  so lvent system. I t  was th e re fo re  not possib le  to  

determine i f  BLMB was f i r s t  dem ethylated, or the  benzoyl group was 

i n i t i a l l y  lo s t .
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4.3,12 The Reactions of Benzoyl-leuco Methylene Blue
3+ 4 +on S i l i c a  Gel in  the Presence of Cg or Ce

The form ation  o f methylene blue from BLMB in  a c id ic  

s o lu t io n  in  th e  presence o f Co or Ce has been described e a r l i e r ,  

page 212 and 220 Chapter 4. I t  can be seen from these s tud ies  th a t  the  

ions are  needed in  a t  le a s t  s to ic h io m e tr ic  amounts to  a c c e le ra te  the  

r e a c t io n .  In  the  presence o f equ i-m o lar concentra tions  o f these ions
3

the  re a c t io n  r a te  was acc e le ra te d  by approxim ately  10 t im es. The

ra te  o f  methylene blue production from BLMB, when on equimolar  

3 + 4
q u a n t i ty  o f  Co or Ce are present on a dry s i l i c a  gel su rface ,

are  shown in  F igure  (4 - 2 7 ) .  I t  w i l l  be seen th a t  the i n i t i a l  r a te

4o f production  o f MB was increased severa l times when e i t h e r  Ce ,

o f  Co^* were present on the s urface . In  co n tras t to  the normal

re a c t io n  o f BLMB on s i l i c a  g e l ,  MB was produced w ithout i r r a d i a t i o n ,

^ + 3
when e i t h e r  Ce or Co were present. Also the ra te  o f fo rm ation  o f

MB was f a s t e r  in  t h e i r  presence, than on s i l i c a  which was i r r a d ia t e d .

3 + 4 ̂
When B LM B -s ilica  were i r r a d ia t e d  in  the presence o f  Co or Ce ,

the  r a te  o f  MB production was g re a te r  than in  the  absence o f  . . .

i r r a d i a t i o n .  Since th e re  was no l i g h t  requirement f o r  the re a c t io n  

3 + 4 +o f CP or Ce w ith  BLMB, i t  would seem th a t  th e re  was a d i r e c t  

4+ 3 +
a t ta c k  by Ce or Cb on BLMB. These ions are  o f  high o x id a t io n

p o t e n t ia l ,  and i t  is  l i k e l y  th a t  they ox id ized  BLMB to benzoyl

3 4" 4 ̂
methylene b lu e . Hence in  the  presence o f Cb or Ce when 

i r r a d ia t e d  th e  ra te  o f  the re a c t io n  w i l l  be the sum of MB produced by

the l i g h t  induced f r e e  r a d ic a l  mechanism and th a t  produced by

3 + 4 +
e le c tro n  t r a n s f e r  to  Co o f  Ce
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FIGURE . (6— 27). The Production of MB from BLMB on Silica Gel in the

Presence of Ce"̂  or Co^ ( 10mg BLMB/g Silica)
50

4 +Ce

40

4 + N on-irrad ia .Ce

3 +30

Co^* N o n - ir ra d ia te d

3+ 4 +or Ce i r r a d ia t e d
20

141210864

FIGURE U -28).
Time days 

The P o s it io n  o f the max of MB Produced from BLMB 
4 +in  the Presence of Ce (lOmg BLMB/g S i l i c a )

n 4+ 3 +No i r r a d ia t  No Ce nr Cq—

n___________ Co^* no i r r a d ia t io n

4 + no i r r a d ia t io nCe

4 +
or CeNo Co

3 + i r r a d ia t io nCo

4 + i r r a d i a t i o
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660

640
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4 6

Time (days)
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C = 0
I

- 2 e *

2  5 iNnt?2BLMB   Me o S NMe^   MB  ̂ + Benzoic + H^
acid

The bathochromic s h i f t  o f  the  absorption  maximum shows

4+ 3 +th a t  the  MB produced was subsequently a ttacked  by Ce or Co ,

4 +F igure  (A- 2 8 ) ,  w ith o u t the  requirement f o r  l i g h t .  The Ce th e re fo re

o x id ises  the  MB formed, producing the  demethylated d e r iv a t iv e s  o f MB.

4 +The g re a te r  the  excess o f  Ce the  more pronounced the o x id a t io n .

At an equi^molar co n centra tion  a q u a n t i ta t iv e  y ie ld s  o f  MB is

produced in  less  than a day. Cq^^ a lso  tends to  o x id is e  the MB

4+.produced, but to  a le s s e r  ex ten t than Ce
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4.3.13 A Diffuse Reflectance Study of Methylene Blue

Adsorbed upon S i l to n

The spectra  o f  methylene blue a t  various co n cen tra t io n s ,

(26 ja. moles to  0 .26  jj, moles/g S i l t o n ) ,  adsorbed onto S i l to n  are

shown in  F igure  (4 - 2 9 ) .  I t  w i l l  be seen th a t  the  spectrum d i f f e r s

s u b s t a n t ia l ly  from th a t  on s i l i c a  ge l F igure  ( 4 -1 4 ) .  The wavelength

o f maximum absorbance was a t  6 8 8 nm compared w ith  660nm on s i l i c a  g e l ,

f o r  the  monomer. Also the spectrum o f methylene blue on S i l t o n  d id

not markedly change w ith  in c reas in g  coverage, as i t  d id on s i l i c a  g e l .

This  suggests th a t  the  monomer was the  sole species presen t, even a t

high coverages. The spectrum on S i l t o n  shows g re a te r  d e t a i l  than on

s i l i c a . g e l  and in  t h is  respect more c lo s e ly  resembles the  spectrum

in  s o lu t io n .  The p o s it io n  o f  these a d d i t io n a l  peaks were not

id e n t ic a l  to  those o f  the s o lu t io n  spectrum. A d d it io n a l  peaks were '

reso lved on S i l to n  a t  370, 410 and 466nm. Peaks a t  s im i la r  p o s it io n s  are

resolved in  e th a n o lic  s o lu t io n .  The peaks were f a r  broader on

s i l i c a ,  and t h is  may have obscured the  d e t a i l .  A change in  the

p s o it io n  o f  the  1 st absorption  band to  6 8 8 nm, a +2 2 nm bathochromic

s h i f t ,  in d ic a te s  th a t  the energy o f the  1 st e xc ited  s ta te  was lower

in  the  bound form than in  f r e e  s o lu t io n .  Why MB on S i l t o n  remains

in  the  monomeric form is  d i f f i c u l t  to  e x p la in ,  as t h is  cannot be due

to  the  increased surface area o f  S i l t o n .  The surface area o f the

2
s i l i c a  ge l used was 500m /g  and the quoted surface area of S i l to n  is  

2
a t  le a s t  180m /g ,  Sugahara, Y e t  a l . ,  (1 9 68 ) .  S p ec tra l  changes are  

noticed  on s i l i c a  between 0 .28  ji moles/g and 2 . 8  moles/g, these  

trends continue upto the  maximum coverage o f 28 jx. m oles/g. I f  i t  

were an area e f f e c t  th e re  would be n o t ic a b le  s p e c tra l  changes 

between 0 .28  _p moles/g and 28 ju moles/g on S i l t o n .  These d i f fe re n c e s  

were not observed. Therefo re  the  S i lto n -d y e  in te r a c t io n s  must be of
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F I G U R E . —  31). The Percentage of the Zero time Absorbance of
MB on Silton, Non-irradiated

100

I.Omg MB/g S i l to n )[MB

80

60

o 40<
o\o

20

12 148 102 4 60
Time [Days)

FIGURE .(4 32). The P o s it io n  of X max of MB adsorbed on S i l to n

bflcœ
rH
Q)>to

[MB = I.Omg MB/g S i l to n )
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640
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600
141210862 40
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a d i f f e r e n t  Kind to  those on s i l i c a .  I t  has been estab lish ed  in .  

th is  study th a t  chromatographic so lvent systems which move MB on 

s i l i c a  cannot move MB on S i l t o n ,  showing th a t  the d y e -S i l to n  . 

in te r a c t io n s  are  extrem ely  strong. I t  is  l i k e l y  th a t  d y e -S i l to n  

in te r a c t io n s  are  more favourab le  than MB*-MB* in te r a c t io n s ,  which are  

observed on s i l i c a .  I t  is  p re s c is e ly  these strong d y e -S i l to n  

in te ra c t io n s  which cause la rg e  s p e c tra l  p e r tu rb a t io n s .  The r e s u l t  

of having very l i t t l e  dimer fo rm ation  can be seen in  F igure  C4-30),  

where the p lo t  o f absorbance versus amount ap p lied  is  a s t r a ig h t  

l i n e .  The amount o f MB remaining a f t e r  i r r a d a t io n  is  shown in  

Figure [4 -3 1 ) .  I t  can be seen th a t  th e re  was approxim ately 20% 

of the  o r ig in a l  amount a p p lie d , a f t e r  13 days, i r r a d i a t i o n ,  and 

100% remained w ithout i r r a d i a t i o n ,  a t  a l l  coverages. The p o s it io n s  

o f the Xmax as a fu n c t io n  o f time are shown in  F igure [4 -3 2 ) .

The X max o f th e  i r r a d ia te d  sample f e l l  ra p id ly  a f t e r  48hrs to  

635nm and then s lowly to  615nm a f t e r  13 days. The X max o f the  

n o n - ir ra d ia te d  sample s h i f t  towards s h o rte r  wavelengths, 6 8 8  to  

675nm a f t e r  13 days. Methylene blue behaves q u a l i t a t i v e ly  in  a 

s im i la r  manner on S i l t o n  as i t  does on s i l i c a  g e l .  But q u a n t i t a t iv e ly  

th ere  was a la r g e r  p roportion  o f methylene blue remaining a f t e r  the  

same period o f  t im e , approxim ately fo u r  times the amount. But th e re  

was s t i l l  a la rg e  hypsochromic s h i f t ,  in d ic a t in g  extens ive  dém éthyla tion .  

The n o n - i r ra d ia te d  sample a lso undergoes some dém éthylation as shown 

by the -13nm hypsochromic s h i f t .  This is  not observed on s i l i c a .
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4.3.14 A Diffuse Reflectance Study of Benzoyl Leuco Methylene

Blue Absorbed on S i l to n

I r r a d ia t io n  o f BLMB absorbed on S i l to n  caused the  

production o f a coloured species w ith  an absorption  maximum a t BBBnm. 

The same absorption  maximum as MB adsorbed on s i l t o n .  Continued  

i r r a d ia t io n  caused fu r t h e r  production o f MB, and the  p o s it io n  of  

the absorption  maximum s h if te d  to  s h o rte r  wavelengths, in d ic a t in g  

dém éthyla tion . The percentage o f  possib le  absorbance as a fu n c t io n  

of time is  shown in  F igure  (4 -3 3 ) .  G rea te r  amounts o f  MB are  

produced on S i l t o n ,  compared w ith  th a t  produced on s i l i c a .  I f  

logg per cent BLMB was p lo t te d  versus t im e , a s t r a ig h t  l i n e  was

produced, a f t e r  an i n i t i a l  rap id  phase. F igure  ( 4 -3 4 ) .  The ra te

o — 7 — 1
constant f o r  the  re a c t io n ,  a t  40 C, was K^g = 4.1  x 10 Sec

An o v e r a l l  increase  o f th re e  tim es, over the re a c t io n  on s i l i c a .

This gave a h a l f  l i f e  o f 19 .6  days. The peak height a t  BBBnm was

measured as a fu n c t io n  o f t im e . F igure  (4 - 3 5 ) .

This was a measure o f  the amount o f MB p resent.  

I n i t i a l l y  about 5% was p resent, t h is  r is e s  to 15% a f t e r  24hrs 

but then s low ly  f a l l s  and reaches a constant value of 8 % a f t e r  

13 days.

Hypsochromic s h i f ts  are observed F igure  (4 -3 6 ) ,  

in d ic a t in g  the  genera l trend o f dém éthyla tion , as w ith  BLMB and 

MB on s i l i c a .
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FIGUREU-331. The Percentage of Possible Absorbance of MB Produced
From BLMB on Silton; Measured at the X max
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FIGURE .(& 35). The Percentage of Possible Total MB Produced from

BLMB on S i l t o n ,  Measured a t  BBBnm
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FIGURE .{A 36). The P o s it io n  of A max o f MB Produced from BLMB on S i l to n
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4.3.15 The Reaction of BLMB on Silton in thé Présence
3+ 4+of Co or Ce

The r a te  o f  production o f MB from BLMB on S i l to n  was

3+ 4 +
enhanced by the  presence o f e i t h e r  Co or Ce , both in  the  i n i t i a l

r a te  o f  production  and the f i n a l  y ie ld ;  F igure (4 -3 7 ) .  As w ith  the

re a c t io n s  in  s o lu t io n  and on s i l i c a  g e l ,  the production o f MB did
3 + 4 +

not r e q u ire  l i g h t  when e i t h e r  Co or Ce were present. The e f fe c t  

3+ 4 +
o f  l i g h t  and Co o r  Ce were a d d i t iv e .  The fa s te s t  r a te  and

la rg e s t  y ie ld  o f co lo u r being produced when the  sample was i r r a d ia t e d

4 +
in  the  presence o f Ce ; approxim ately  80% o f the maximum co lour  

y ie ld ,  a f t e r  13 days. There was a lso  a s ig n i f ic a n t  bathochromic 

s h i f t  o f the  products in  the  presence o f Ce^* or Co^*, F igure  (4 -3 8 ) .
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FIGURE.14 37). The absorbance of methylene blue produced fro^^
BLMB on silton in the presence of Co and Ce
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FIGURE . (4 — 38 The absorbance maximium of Methylene blue^^roduced^_^ 
from BLMB on Silton in the presence of Co and Ce
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4.4 Conclusions

The first order rate constants for the production of

methylene blue from BLMB in  0 .5  molar su lphuric  acid  a t  39° and 50°

” 0  3^
were 1 .54  x 10 and 3 .47  x 10 sec re s p e c t iv e ly .  I f  CD is

p resen t, as sodium c o b a l t i n i t r i t e  the  re a c t io n  is  g r e a t ly  acce le ra ted ,

S to ic h io m e tr ic  amounts o f  Co^* are needed, and the re a c t io n  ra te  is

f i r s t  o rder w ith  respect o f  the Co^ co n cen tra t io n . The second order

o — 1  “ 1

ra te  constant f o r  the  o v e r a l l  re a c t io n  a t 25 C is  8 .95  Im sec

Exchange o f  the  n i t r i t e  c h e la t in g  groups f o r  w ater, reduces the

3+ 3+e ffe c t iv e n e s s  o f  Co , because (Co(H„0)„) is  l a b i l e  and w i l l
Z. b

r e a d i ly  reduce to  (CDCH^Og)^ when Cd^ is  present the  re a c t io n

mechanism is  by e le c tro n  t r a n s fe r  from BLMB to  Na_Co[NO_)_.
j  2 b

BLMB + Co^* ► BMB^* + Co"" — MB'" + Co"" + H* + Benzoic
acid

benzoyl methylene blue

(BMB)

Since the re a c t io n  is  f i r s t  order w ith  respect to Co^ ,

the two e le c tro n  t r a n s fe r  is  a concerted process. The ra te  o f

production o f MB by the  au to o x id a t io n  of BLMB in  su lphuric  acid  is

a lso  g r e a t ly  a cc e le ra te d  by the  presence o f  e e r ie  ammonium n i t r a t e .

The o v e r a l l  i n i t i a l  re a c t io n  ra te  is  t h i r d  o rder, and the  re a c t io n

4 +is  second order w ith  respect to  Ce c o n cen tra t io n . The o v e r a l l

8 1 - 2  -1i n i t i a l  re a c t io n  ra te  c o n s t a n t is l^  = 8 .25 x 10 1 M sec

C eric  ammonium n i t r a t e  is  known to  be a s in g le  e le c tro n  acceptor.  

T h ere fo re  the  mechanism f o r  the e le c tro n  t r a n s fe r  is :

BLMB + 2 C e ^ *— » BMB^* + 2Ce^*—  ̂ MB'" + 2Ce^* + H* + Benzoic acid  

benzoyl methylene blue  

(BMB^*)
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Methylene blue adsorbed upon s i l i c a  ge l forms dimers 

on the  s u r fa c e .  I r r a d i a t i o n  of MB w ith  l i g h t  on s i l i c a  causes 

d ém éthy la t ion , w ith  the  production of Azure A, B, C, th io n in e  and 

s y m m e tr ic a l-d im e th y lth io n in e .

BLMB in s tan tan eous ly  re ac ts  w ith  s i l i c a  ge l to  form 

a small percentage o f MB, (1-2% possib le  t o t a l  amount). I r r a d ia t io n

w ith  l i g h t  produces f u r t h e r  MB. The production is  f i r s t  order

""7 ” 1  oand th e  f i r s t  o rd er r a te  constant is  1 .4  x 10 sec , a t  40 C

(a h a l f  l i f e  o f  57 days).

This  supports the view th a t  the re a c t io n  operates

v ia  a l i g h t  induced f r e e  r a d ic a l  mechanism. The presence o f  

4or Ce on the  surface  a c c e le ra te s  the production o f MB and the  

subsequent dém éthyla tion  o f the MB formed, on s i l i c a .

When MB is  adsorbed on S i l t o n ,  only the monomer is  

p resent. The ra te  o f  production o f MB from BLMB on S i l to n  is  also
~ ' \  Q  3 +

f i r s t  o rder , = 4.1  x 10 sec , a t  40 C. The presence o f  Co 

4 +o r Ce a c c e le ra te s  the  production o f MB and the dém éthylation  of 

the  MB so formed on S i l t o n .
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