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ABSTRACT

A theoretical and experimental investigation into the penetration 

of parametric acoustic beams into sediment is conducted. The theory 

is based on.', the assumption that the interface completely truncates 

the array. With this assumption, the gsymtotic farfield of the 

secondary radiation in sédiment is developed and discussed. When the 

primary field is truncated in its nearfield, the secondary farfield is 

found to be due to two apertures, one coincident with the transducer 

and one with the truncation. At subcritical angles of incidence the 

field is similar to that produced by a conventional beam. At post- 

critical angles of beam incidence the presence of the truncation aperture 

results in a steeper and deeper penetration of the beam than in the con

ventional case. As the trucation moves into the farfield of the pri

maries, the effect of the truncation aperture is reduced until the para

metric beam behaves qualitatively similar to a conventional beam.

Experimental measurements of the secondary field throughout two 

vertical planes in the sediment are made, and are in good agreement with 

the theoretical predictions. The wide bandwidth of the parametric 

array is exploited to distinguish in time Snell's law and evanescent 

arrivals in the sediment. These latter are seen to be important close 

to the interface.

It is concluded that the postcritical penetration of parametric 

sound beams into sediment is due to virtual secondary sources close to 

the interface and suitably phased.



NOMENCLATURE

a Radius vector describing a point on the edge of a circular
aperture

B(0) See equation (A.1)

0 ( 0 , See equation (A.l)

c , C g  Sound phase velocity in water and sediment respectively

D See equation (3.7)

Do Primary farfield directivity pattern

d = z-L Vertical co-ordinate of the secondary field point in sediment

E(0,^o) See equation (A.8)

e Radius vector describing a point on the edge of an elliptical
aperture

ex,Gy Components of e in the directions i and 2  respectively

F See equation (3.11)

g(x',m) Spatial variation of the primary radiation

First order Hankel functions of the first and second kind

I, Is, Is Transfer function of the parametric;^in water, transfer function
of the parametric array in sediment and the nearfield trun
cation aperture contribution to the transfer function

V -  i v„Ig , Ig The nearfield contribution, and nearfield end of the farfield
contribution to the transfer function in sediment when the 
array is farfield truncated

I Plane wave spectrum of the farfield array

l’'̂2, ^ j ^ 2  Contribution to the plane wave spectrum of the farfield primary
volume, the nearfield end of the farfield primary volume and 
the truncation end of the farfield volume respectively

i, ig Impulse response of the parametric array in water and sediment
respectively

i, j, k Unit vectors in a cartesian co-ordinate system



Jl First order Bessel function

Jg(w) Reciprocity parameter in sediment

k, k^ Wavevector in water and sediment respectively

k = k' =-^ Wavenumber in water and sediment respectively 

kx f ky Horizontal components of the wavenumber

kg, kg Vertical component of the wavenumber in water and sediment
respectively

kjr, kg See equation (3.7)

k^ ' See comments preceding equation (3.7)

L Height of the transducer above the interface

1 ,u Secondary source co-ordinates, see Figure 2

m = 1/n Reciprocal refractive index

n = c/cg Refractive index

P Secondary field point co-ordinate in water, see Figure 2

p, pj-, Pg Secondary incident, reflected and transmitted pressure

Pg , pjjj Average primary pressure and primary modulation respectively
in the nearfieId of the primaries

q Secondary source strength

R, R Transducer radius and Rayliegh distance

bt Position vector to a field point from the edge of the 
truncation aperture

r^, rY, r^ Components of r in the directions i, j and kt u b  — t —  —  —
r = |x'1 Chapter 4 only. Length of x'

r, rni, r-t Path lengths to the field point from a general secondary
source point, the centre of the array and the truncation 
aperture respectively

r^ The distance from the transducer to the boundary between
the nearfield and farfield of the primaries. See Figure 11

rp The distance from the transducer to a point on the interface



s(t), Snb(t), s^b(t) A general, narrowband and wideband secondary source
wavelet respectively

s (Appendices only) an integration variable

T Plane wave transmission coefficient

t Time

, Vg Nearfield and farfield secondary source volumes. See
Figure 11.

^ n b ' ^ w b ) Voltage waveforms used to modulate the primaries for
narrowband and wideband array operation respectively

'0

0

Arbitrary constant voltage

w = Ltana+u/cosa Integration variable. See equation (3.36)

X, X ' Position vectors of the secondary field and source
points respectively

X, y , x' , y ' Horizontal co-ordinates of the secondary field and
source points respectively

z, z' Vertical co-ordinate of the secondary field and source
point respectively in water

a Primary beam incidence angle

ctg Primary attenuation constant (in Np m“  ̂)
2(3-1) Non-linearity parameter of water

B
^ 8mpc^

Ô Dirac delta function

e Angle between the wavevector jc and secondary source
vector X '. See Figure 12

See equation (4.16)

Ep Pole of (c o s e - 1 + 2ia^/k) in the complex e plane

^(x') Vector path of primary radiation to a secondary source
point

n,a Spherical polar angles describing the direction of x\
See Figure 12



0/ ©S' ©m See equations (3.16) and (3.26)

0Q' Stationary points of 0, 0^ and 0^, with respect to 6.
See also Figure 3

0^ Additional stationary point of 8. See also Figure 3

0 = sin'l (n) Critical angle

M Primary beam incident angle at which the transmitted 
secondary pressure at a fixed location is a maximum

0, <f> Integration variables

0, See equations (3.16) and (3.26)

^ 0  ' ' ^ 2  Stationary points of 0, 0g and 0^ with respect to
See also Figure 3

Pole of D in complex plane

(zfg Additional stationary point of 0. See also Figure 3

Xq Secondary and primary wavelength respectively

\i, p Chapter 4 only. Spherical polar angles describing
the direction of 3c. See also Figure 12

V General vector

Vjç, Vy, Vg Components of v in the directions i, j,, k

p, Pg Density of water and sediment respectively

T(m), T^(w), T2 (m) Total, first order and second order receiving sensitivity
of the hydrophone in water

Tg(w) Receiving sensitivity of the hydrophone in sediment

\p Integration variable

ipQ See equation (4.16)

w, Wg Secondary and primary radian frequency

* Convolution

Re(z), Im(z) Real and imaginary parts of z respectively



Note on the use of symbols

Although considerable effort has been made to use a consistent set of 

symbols throughout this thesis, the finite length of the Roman and Greek 

alphabets has meant that a few symbols have been used twice. It is 

particularly important to note that in Chapter 4, r and p have been used 

as integration variables and not, as elsewhere, as a path length and water 

density respectively. The symbol Jc has been used on two occasions to 

denote the third cartesian unit vector of the set 2 , j and k because of 

its universal use in this connection; everywhere else in this thesis it 

is used to denote the wavevector.

There are a few equations which are unrelated to any other part of 

text and stand alone; here, nonstandard notation is used and explained 

in the immediate text, as for example equation (5.7). Appendix C, which 

is written as a self-contained chapter, also uses its own internal notation,

Finally, although when real many of the variables have geometric 

interpretations which are often made in the text, all variables are in 

general complex unless otherwise stated.
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CHAPTER 1 

Introduction

Total internal reflection is familiar to us from elementary physics.

It occurs when a wave attempts to enter a higher velocity medium at too 

high an incident angle: the wave is reflected and the higher velocity

medium only disturbed in a region very close to the boundary. The pheno

menon is exploited in many optical instruments, from the prism of a camera

viewfinder to the optical fibre of high rate transmission lines. In the 

natural world it is responsible for the mirage and in acoustics the same 

behaviour produces the SOFAR sound channels of the deep ocean.^

In 1979, Muir et dl,^ published the results of an experiment which

investigated the behaviour of very narrow sound beams incident on a water

sediment interface. Ordinarily, one might expect such a study to provide 

a demonstration of total internal reflection: the sound speed in saturated

sediment is typically 1.5 times that of water, giving a critical angle for 

the water sediment boundary of ^60°. Muir et at'3 experiments examined 

the dépendance of the transmitted pressure in the sediment on the incident 

angle of the beam. The results were in apparent contradiction of the 

rules governing total internal reflection: a travelling wave entered the

sediment at large postcritical values of beam incidence angle and it was 

found to penetrate to depths far in excess of a few wavelengths from the 

interface.

The beams used by Muir et at. in these and earlier* experiments had 

two special properties. They were parametric beams, i.e., they were 

generated non-linearly in the water by intense radiation from a piston 

source, and they were, by virtue of being parametric beams, very narrow.
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The experiments posed intriguing theoretical and practical problems: was

the behaviour Muir et at. observed because the beam was very narrow, or 

because it was parametric, and could this property be exploited in problems 

where, for some reason, the phenomenon of total internal reflection caused 

practical difficulties?

A particular practical difficulty caused by total internal reflection 

occurs when attempting to locate and/or identify by the use of sonar beams 

targets which lie just beneath a refracting interface. The problem be

comes acute when the "line-of-sight" {t.e., the straight line between the 

source and the target) makes a very shallow angle with the interface. Energy 

will not reach the target along this path because it will be totally in

ternally reflected. In order that a sonar beam should be incident upon 

such a target, it must be incident upon the interface at an angle close 

to the critical angle. Here, it suffers large losses due to reflection 

and refraction. This behaviour limits the angular range, and hence aerial 

coverage, of a sub-bottom sonar system. The energy arriving at the target 

is so weak it cannot compete with scattered energy from the interface. An 

early observation* of Muir et at. was that when their hydrophone was 

shallowly buried, the maximum pressure transmitted into the sediment from 

a narrow parametric beam occured when the beam was coincident with the 

line-of-sight to the object, and not the Snell's law path between the source 

and object, as might have been expected. Potentially, at least, the 

narrow parametric beam offered some hope of improving the angular performance 

of sub-bottom profilers.

A theoretical explanation of these phenomena would thus have a two

fold purpose. Firstly, it would resolve the contradiction between Muir 

et at.'s results and linear theory. Secondly, it would provide a quanti

tative method to evaluate the potential of narrow parametric beams as sub-
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bottom profilers.

A parametric beam is formed by launching a travelling wave with a 

high intensity from a sonar transducer. This high intensity wave, directly 

radiated from the transducer, is termed the primary field, and is of suf

ficient amplitude for non-linear effects in the water to be significant. 

Should the primary field contain two frequencies, say mi and m 2 , then a 

consequence of the non-linearity is the generation, in the water, of 

travelling waves at frequencies (mi+mz) and (mi-m2 ) . These latter,

subharmonic frequencies are termed the secondary, or difference frequency 

field. In a now celebrated paper,** Westervelt showed that the difference 

frequency field, p(x,t), satisfied an inhomogeneous wave equation whose 

source term was quadratic in the primary field, po(x ,t);

v^p(x,t) - = - ^ - ^ P q Cx ,t) . (1.1)— at — pĉ  at̂  ° ~

It was Lighthill,* however, who realised the significance of the fact that 

the primary field itself was a solution to equation (1.1), (the source term 

being the transducer motion). With a transducer used to generate a plane 

wave primary field, a set of difference frequency sources would be generated, 

cophasal in the direction of the primary plane wave but none other, and 

hence should generate a very narrow difference frequency beam in the dir

ection of the primary radiation; the parametric acoustic array.  ̂ In an 

unbounded medium they are characterised by very narrow, sidelobe-less beams.

It was the narrowness of the beams which was first thought to be res

ponsible for the unusual effects seen by Muir et at. and several theoretical 

studies of the behaviour of extremely narrow conventional beams [i.e., 

beams which would result from very, (probably impossibly), large trans

ducers] incident on a water-sediment interface were made in order to provide
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an adequate explanation of these phenomena. Horton based his discussion^ 

on the integral solution to the corresponding problem with a point source. 

This integral represents the field in the sediment as the super-position 

of a plane wave spectrum whose asymtotic approximation at high frequencies 

may be interpreted as the Snell's law raypath of geometrical optics between 

source and receiver.® Horton recognised this description to be even more 

suited to the behaviour of a narrow beam; the axis of the beam will follow 

the Snell's law raypath into the sediment, and the maximum pressure in the 

sediment will fall along the axis of the beam. He investigated the raypath 

into lossy sediment at incident angles greater than critical and found it 

to dip increasingly steeply as the incident angle increased. He concluded 

this raypath to be responsible for Muir et aZ.'s results. These arguments 

were based solely on the phase of the arrival in the sediment, and did not 

give consideration to the amplitude of the transmitted field. This was 

unfortunate, for the raypath he had investigated belonged to an evanescent 

wave, which decays exponentially with depth from the boundary and could not, 

therefore, be responsible for the results seen by Muir et at.

Tjotta and Tjotta® tried a rather different approach. They argued 

that a narrow beam incident upon the interface would produce a spot on the 

sediment, (in much the same way that a searchlight throws a spot onto its 

target). A very narrow beam would throw a very sharp edged spot; the 

field from such a spot in sediment could be calculated by applying Helmholtz's 

integral over the surface of the spot. They showed that such a spot would 

diffract into the sediment, even at postcritical angles of beam incidence, 

and provided near- and far-field expressions for such a case. As an 

explanation of Muir et at. 's experiments, however, this description was 

flawed. Parametric beams may be narrow, but they do not have sharp edges 

and they should not diffract in this fashion. The steeply dipping beams 

at postcritical angles of incidence were achieved by the disingenious use
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of a boundary condition which was not physically realistic, but forced 

the transmitted pressure to zero near the interface. Agreement with 

Muir's results was obtained by the rather arbitrary selection of a beam 

profile.*’® In addition, neither they nor Horton could shed any light on 

the role of the parametric nature of the beam.

This neglect was important. The mode of generation of a parametric 

beam is particularly relevant to the present problem because the secondary 

sources, called virtual sources, are widely distributed in space; as 

widely distributed as the primary field pg(x',t) itself. This introduces 

the possibility that the effects seen by Muir et at. were not due to the 

narrowness of the beam at all; but to the presence of virtual sources 

close to the interface being much nearer to a receiver in the sediment 

than those virtual sources at the transducer.

Two studies which explicitly acknowledged the parametric nature of 

the beam*’*’/*’̂  considered the primary field to be narrow enough to be con

sidered a line distribution of point sources. Each point source was

assumed to transmit sound through the interface in a manner described by 

the asymtotic solution previously exploited by Horton. The sources were 

numerically integrated over the length of the array to calculate the trans

mitted pressure in the sediment. Both these studies were considerably 

more successful in predicting the qualitative features of Muir et at.'s 

results, in particular they both exhibited the "line-of-sight" property 

of the experiments. It became clear that the virtual sources close to 

the interface could not be ignored in any description of the secondary 

field in the sediment. However, much of the physics of the problem, as 

is often the case with numerica? studies, remained unclear. It was 

not understood why, in the case of Jarzinski and Flax's calculations for 

example, the maximum pressures in the sediment were consistently over-
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estimated, sometimes by as much as 9dB, and their position as a function 

of incident angle also consistently over-estimated. The problem still 

awaited a useful theoretical formulation.

A very important contribution to the understanding of the problem was 

made by Pace and Ceen. This arose from their investigations into pulsed 

parametric arrays.*■*»*■ ** In common with much heterodyne equipment, the 

parametric array can generate signals of very wide bandwidth. For example: 

a 1 MHz transducer radiating a primary field with a bandwidth of 100 kHz 

could generate a secondary field whose spectrum was centred at 175 kHz 

with a bandwidth of 300 kHz. This wide bandwidth permits a parametric 

array to generate very short pulses. Working in water. Pace and Ceen 

used very short signals to demonstrate that when the primary field of a 

parametric array is truncated in its nearfield, the secondary field radiated 

from it is comprised of two arrivals, the first associated with the trans

ducer, the second associated with the truncation. This second arrival has 

no analogue in the primary field. These experiments were complemented by 

an elegant description of the parametric array impulse response in water. 

They then investigated the secondary field in sediment and found the same 

two arrivals to be present there too: the interface was truncating the

primary field and providing a second radiating 'aperture', in addition to 

the transducer, from which energy could enter the sediment. This second, 

truncation, aperature could explain in broad qualitative terms the results 

of Muir et at.'s experiments. The penetration at high angles of primary 

beam incidence was due to the arrival in sediment from this truncation 

aperture. Its arrival time at the receiver in the sediment varied with 

primary beam incidence angle, which dictated the position of the truncation. 

Its intensity was also a function of beam incidence angle by virtue of the 

increasing length of the array as the incident angle increased.



— 7 —

The success of Pace and Ceen's model** in predicting the behaviour 

of the truncation aperture in water suggested that a model of equal 

sophisitication would be similarly successful in predicting the behaviour 

of the truncation aperture in sediment. Such a model would acknowledge 

the finite width of the primary beam and the obliqueness of its truncation 

at the interface; but would not concern itself with the details of the 

primary field. In the present study a quantitative description of just 

such a model is developed, discussed and compared with experiment.

The present work

The purpose of this study is to provide a theoretical description 

of the secondary pressure in sediment due to a parametric beam incident 

on the water sediment interface and to compare this description with the 

measured field in sediment from such a source. At the beginning of this 

study the only closed form solution to the problem available® had been 

derived on the assumption that the modification of the primary field by 

the interface could be ignored, contrary to the most important conclusion 

to be drawn from Pace and Ceen's work. The theory of reference 9 could 

not account for the two arrivals found in sediment for certain geometries.

The theoretical account presented here explicitly acknowledges the 

truncation of the primary field by the interface. It is based upon the 

representation of the Green's function of equation (1.1) as an integral 

over a plane wave spectrum. This is the representation used by Horton^ 

in his discussion of the problem and the asymtotic representation of which 

Jarzynski and Flax*^ and Moustafa** numerically integrated over a line array 

The extension of the point surce solution, the Green's function, to an 

arbitrary distribution of sources is formally easy: the Green's function

is convolved with the spatial distribution of the sources. Expressed as 

three dimensional Fourier integrals, i.e., as plane wave spectra, the
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problem is formally even simpler : the spectrum of the Green's function

is multiplied by the spectrum of the source distribution. This is a 

particularly useful form for the present problem because the geometry 

of the plane waves matches that of the plane boundary and applying the 

boundary conditions is straightforward. Berktay and Moustafa** replaced 

the point source spectrum with that corresponding to a conventional aper

ture to investigate the behaviour of narrow beams penetrating sediment.

In the present study the point source spectrum is replaced with the 

spectrum of the parametric array. The calculation of this spectrum is 

equivalent to calculating the farfield of the parametric array. In an 

infinite medium this problem has received considerable attention.*®"*® 

These analyses are of little direct use because of the truncation, which 

reduces the symmetry of the problem. However, a closed form may be cal

culated if the truncation falls in the nearfield of the primary field. If 

the truncation lies in the farfield of the primaries only an asymtotic 

form is available for the plane wave spectrum.

The calculated spectrum is substituted into the integral solution to 

the problem which is then evaluated asymtotically in a similar fashion to 

the point source case by a combination of stationary phase^® and steepest 

descent^* methods. This yields high frequency, farfield solutions for 

the field in sediment, from which considerable qualitative and quantitative 

understanding is deduced.

The case of nearfield truncation is the most important and is given 

the most attention. This is the subject of Chapter 3. A simple 

description of the primary field in its nearfield is employed in order to 

obtain closed form solutions for the array spectrum. It is assumed that 

when incident on lossy sediment the transmitted part of the primary field 

is rapidly attenuated, effectively truncating it. The reflected part of
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the primary field is, in the first instance, ignored because its contribution 

is small.

On these assumptions, the high frequency secondary farfield in the 

sediment is derived, together with expressions indicating the range of 

validity of the theory. By making the additional assumption that the in

cidence angle of the array is well postcritical, expressions for the near

field of the truncation aperture are derived. The chapter is concluded 

with a discussion of these solutions, illustrated with numerical examples 

chosen to fit the later experimental parameters.

In Chapter 4, the case of farfield truncation is studied. The general 

integral form for the parametric array plane wave spectrum is constructed 

and found to split into two terms, one associated with nearfield of the 

primaries and the second with the truncation. Both terms are too complex 

for exact integration: a mixture of heuristic and asymtotic approximations

are exploited to examine their properties. The chapter closes with a dis

cussion of these properties and in particular, addresses the question of 

how far distant the array must be from the interface before its behaviour 

is indistinguishable from a conventional array.

This chapter concludes the theoretical work and the experimental in

vestigation is introduced in Chapter 5, which details the apparatus, in

strumentation and sediment. A description is given of the construction and 

calibration of 1.85 MHz, 4 cm diameter transducer, together with measurements 

of its primary and secondary fields in water. These latter are compared 

with the predictions of Chapter 3. The transmission and reception system 

are described and their linearity assessed. The 250 |im / sand, chosen as 

a typical sediment, has its physical and acoustical properties described 

and measurements of its attenuation and dispersion are presented. These
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latter are the first of their kind ever made: they are considered in

greater detail in appendix C.

Chapter 6 presents the measurements of the secondary field in sediment 

due to the parametric array incident on the interface in the nearfield of 

the primaries. The object of these experiments was to confirm the main 

qualitative features of the model discussed in Chapter 3 and to see how 

good the qualitative predictions are.

The field at fixed angles of primary beam incidence angle the secondary 

field was measured in two vertical planes through the sediment, one con

taining the primary beam axis and the other perpendicular to it. A sub- 

and post-critical angle, 50° and 70° respectively, was investigated and the 

results are presented here in the form of contour plots of the pressure 

variation throughout the planes. The field at a fixed location in the 

sediment was studied as a function of primary beam incidence angle; three 

depths were chosen to ensure a complete picture emerged. These measure

ments are described, and, together with the contour plots, compared with 

the theoretical predictions of Chapter 3.

The final experiment described in Chapter 6 is an investigation of the 

field very close to the interface, using the array in the pulsed mode. In 

a similar way to Pace and Ceen,*®'*** the wide bandwidth, short time-width 

signals are used to distinguish the various arrivals. The time domain 

data are compared with the theoretical arrival times and the Snell's law 

and evanescent arrivals distinguished.

In the concluding chapter. Chapter 7, a review of the main results of 

the thesis is presented. The previous literature in the field, parti

cularly references 2, 9 and 11,is reviewed in the light of the present 

findings, together with a discussion of the nearfield of the secondary 

field, and the possibility, originally raised by Muir et at.\ that the
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parametric beam is significantly displaced. The thesis is concluded with 

a general discussion of the features of the parametric field in sediment.
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CHAPTER 2

General Solutions to Westervelt's Equation

Westervelt's equation for the scattering of difference frequency 

sound from a primary sound field is the inhomogeneous wave equation.

General solutions, both in an infinite medium and in the presence of a 

boundary, are well known in both acoustic® and electromagnetic^^ theory.

In this chapter these general solutions are exploited, and a number of 

integral solutions to equation (1.1) in an infinite medium are introduced 

and cast in a form particularly suited to the present problem. The 

boundary is introduced and the solutions modified to take account of it.

The resulting integral solutions form the starting point for the specific 

cases discussed in later chapters.

General solutions in an infinite medium

The general solution to Westervelt's equation (1.1) for the difference 

frequency pressure in an infinite medium is

9 f d q(x' ,t-

V

The source function q(j£',t) is quadratic in the primary pressure field:

q(x’,t) = (3/p c P q (x*/t) . (2.2)

It has been established^® that equations (2.1) and (2.2) are of sufficient 

generality to include the case where po (x',t) is the primary field radiated
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from a large piston at low Mach number. To this degree of accuracy,

Pq. (2<'/t) is given by its parabolic approximation,^** and as a result 

B e r k t a y ' s ^ s  "self-demodulation" result may be used so that we can write

q(x',t) = (3/2p^c**) g^ (x',0) )-^ p^ (t - |ç(x')|/c) . (2.3)—  —  u dt m '------

Here, g(3£',(jOp) accounts for the spatial variation of the primary; 

p^(t) is the average nearfield pressure.

Substitution of equation (2.3) into (2.1) yields

p(x,t) = / q ^ ( x ' (lc(x') | + |x X ' |)/c) (2.4)
-  8wpc / -  0 dt' I .I -x-x

Equation (2.4) may be rewritten

f

p(x,t) = s(t)*— ^  fgZ(x',w )^(t (|c(x'),| + |x X' |)/c  ̂ (2.5)
“  Sirpc I ~  x-x' ~

V

and we can identify

f

2,̂ ., „ . 6(t-( |C(x' )| +iK,-2i'l )/ci(x,t) =    I g (x' ,Wg)------ '----- '---^ '---- dx' (2.6)
Sttpc I I x-x ' I

as being the impulse response of the parametric array. This definition 

is consistent with Pace and Ceen's,^® but not that of Rolleigh,^® who 

includes the travel time to x within an "input" term p^(t-(fa^iJx^^V)/c). 

I prefer the present definition as being neater: the "input", or
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secondary source, term

9^ 2s(t) = ^^2 PA't) <2.7)

is determined entirely by the voltage supplied to the transducer; the 

impulse response of equation (2.6) is a function of the geometry alone. 

There is, of course, no "correct'choice.

The transfer function, I(jc,U)), is defined by

+00

I(x,w) = — ^  I i(x,t)e ^^^dt , (2.8)^  f  i(x,
2^ J  -/2

which, from equation (2.6), yields

I(x,(i3) - 3 f g^ (x,w )---------------------- dx' . (2.9)
8/2r/2pc** 7  -  ° I x-x'I

^-ik ( IC(x’)I + Ix-x'I)

A very useful form for I()c,w) is obtained from Weyl's integral representation 

of a point source :^

+CO

-ik|u| f  r -i(k u +k u + k  u )
“ftr ^ ^ dk^dk.. , (2 .1 0 )

where

u = + u i + UgkX -  y

and
kz = /(k^-k^2 -k^2 )  ̂ (2 .1 1 )
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the sign of the square root taken so that I^(k^) < 0. Substituting for 

the point source in equation (2.9) with equation (2.10) and reversing the 

order of integration gives

+00

III(x,w) =-- "— Ty---- I I  I(k ,k ,w)e dk dk , (2.12)—  / I X  y X  y

where

I(k ,k ,w) = ^  /'g^(x’,o) )e I ^ (2.13)
^ y I

V

The exponentials in equation (2.12) are themselves solutions of the homo

geneous linear wave equation by virtue of equation (2.11), so that it is 

natural to term I(k^,k^,m) the "plane wave spectrum" of the parametric array. 

It is also worth noting that solving the integral of equation (2.13) is 

equivalent to calculating the farfield of I ()(,w) . Making the usual farfield 

approximations of

|x-x' I 'h 1x1-x' .n (2.14)

in the integrand's phase term and |x-)('| - |x| in its denominator reduces

the integral of equation (2.9) to the integral of equation (2.13).

General solutions in two fluid half spaces in contact at a plane boundary

This study is concerned with the behaviour of a parametric array near 

a water sediment interface. Accordingly, the solution for the impulse 

response, equation (2.6), must be modified to take account of the boundary;
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and this modification must recognise the fact that both the general 

solution for the secondaries, equation (2.1), and the particular solution 

for the primaries p^ (jc',t) , of the inhomogeneous wave equation (1.1), are 

incomplete in the presence of a boundary. A sufficiently detailed account, 

(for the purposes of this study), of the new solution for the primary pres

sure near an interface can be deduced from the work of Brekhovskikh^^ (re

flection) and a paper by Berktay and Moustafa^^ (transmission). It may 

be concluded from these sources that a narrow high frequency beam incident 

on a fluid fluid boundary gives rise to a geometrically reflected beam and 

a Snell's law refracted beam at subcritical angles and an evanescent wave 

at post critical angles. The presence of small signal absorption in the 

sediment makes no qualitative change to this picture.

At subcritical angles of primary beam incidence this small signal ab

sorption is assumed to make the contribution to the secondary from the 

primary field in the sediment negligible; with evanescent primary pene

tration this will certainly be the case at post critical angles of primary 

beam incidence. For example: the transmission coefficient at normal in

cidence in the experimental part of this study is 1.34, the small signal 

attenuation 0.4 dB/A, so that the secondary source strength in the sediment 

will be 11 dB down within one secondary wavelength of the interface.

The reflected primary is incorrectly phased to contribute to the 

secondary and we initially assume that it too may be ignored. This is not 

a necessary assumption, an additional reflected array may be added to the 

incident one. However, a more comprehensive light may be shed on this 

problem once we have solved for the secondary field from the incident 

array, (see the discussion of Chapter 3).
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The justification for these a priori, theoretical assumptions (and 

historically the reason for making them), is the work of Pace and Ceen^®'^** 

on truncated parametric arrays, the importance of which has been noted in 

the introduction, and whose major conclusion is that the secondary field 

in sediment contained an arrival which could be associated with the dis

continuous truncation of the primary beam by the interface.

Thus, to the extent that it affects the secondary field, the primary 

field fj)(x' ,t) is assumed to be zero in the half-space occupied by the 

sediment, and unchanged in the water above it. In equation (2.1) this can 

be accommodated by changing the limits of V, the volume over which the 

primaries are integrated.

Formally then, equation (2.1) is unaffected by the change in the 

primaries due to the interface. This is not the case when we come to 

calculate the secondary pressure. However, with the transfer function 

and hence pressure [via equation (2.5)] in the form equation (2.12) (with 

V suitably redefined), the formal calculation of the impulse response in 

the sediment (treated as a fluid) is identical to that for a point source. 

This problem, a classic problem in seismology, is dealt with in a number 

of textbooks, see, for example, reference 8, and so will only be summarised 

here. That Weyl's integral, equation (2.10), should lead to a form 

suitable for this problem is, of course, no coincidence: it was introduced

for just this purpose. Sommerfeldls^® more compact expansion in cylin

drical waves has not been exploited because its symmetry is not echoed 

by the array volume.

In Figure 1, the general geometry for this and succeeding discussions 

is shown. Two fluids, characterised by sound speed and densities c,p 

and Cg,Pg respectively, occupy two half spaces in contact at a plane boundary.
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field point 
In w ater 

(x,y,zlx - x

the plane z=L

field point 
in sediment 

(x,y,d=z-L)

Figure 1. The general geometry for the problem. Two half spaces are 
in contact at a plane boundary. The sources lie entirely 
in the upper half space and are described by the co-ordinates 
x', y', z'. The field point in the upper half space is 
described by co-ordinates x, y, z and in the lower half space 
by co-ordinates x, y, d = z-L.
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The sources are completely contained in the upper fluid; the interface 

lies in the plane z = L in the co-ordinates x,y,z chosen to describe the 

secondary field in the upper medium; the field in the sediment is des

cribed by an alternative depth co-ordinate, d = z-L, measured positive 

from the interface.

The calculation proceeds by representing a reflected wave (in the 

upper medium) and a transmitted wave (in the lower) in the form of 

equation (2.12), as integrals over as yet unknown plane wave spectra. 

These are then substituted into the boundary conditions requiring contin

uity of pressure and normal velocity at the interface:

P 3 = P + P;

and (2.15)

P 9ps ^ ^
pg 3z 3z 9z

Algebraic elimination of the reflected wave allows the formal solution for

the transfer function in the sediment to be written down :

+00

irr/f8 (2tt) pc J  J

-ik x-ik y-ik L-ik^dIg(x,y,d,w) = -----    // T(k^,ky,w)I(k^,ky,w)e x y z z dk_dk_,X y

(2.16)

where

and

k^ = /(m^/c^-k^-k^) with I (k^) < 0 (2.17)z s X y m z

2p k
T(k ,k =-- — ---  , (2.18)
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which can be identified as the plane wave transmission coefficient.^^ In 

general, Cg, and hence k^, will be complex as the lower medium is assumed 

absorbing.

To obtain an explicit form for Ig(x,y,d,oj) the integration (2.13) over the 

secondary source volume V must be performed. Because of the differing 

geometry, the treatment of this integral depends on whether the termination 

at the interface is in the near- or farfield. As it turns out, this dis

tinction has a physical significance in that it (roughly) determines the 

performance of the array in sediment. The two cases are treated separately, 

starting first with the most important: the nearfield truncation.
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CHAPTER 3 

The Nearfield Truncated Array

This chapter is concerned with calculating the radiated farfield 

secondary pressure in sediment from a parametric array when the in

cident primary beam strikes the interface within its nearfield. As 

Westervelt pointed out in one of his early p a p e r s , l i n e a r  beam theory 

is not in a satisfactory enough state to allow an exact substitution in 

equation (2.3) for the primary pressure in the nearfield. The primary 

field is therefore approximated by collimated plane waves lying within 

a cylinder bounded at one end by the transducer and at the other by the 

truncation which may, or may not, be normal to the primary beam axis. In 

the co-ordinates of Figure 2, the functions g{x',iüo) and Ç (jç') take the 

following definitions:

g(x,o)o) = e , (3.1)

I ; (x')I = I (3.2)

and V is the volume shown in Figure 2. As we shall see, there would be 

little point in designing an array for which ao£ was not very small within 

V, so equation (3.1) is simplified still further by putting

g(x/,wo) = 1 . (3.3)

Physically equations (3.2) and (3.3) are likely to be good approximations 

if the secondary wavelengths are very long in comparison with variations 

in They have been used almost universally by investigators

dealing explicitly with the nearfield.
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dS

x.y.z

Figure 2. The secondary source volume V and its co-ordinate description 
for the case of nearfield truncation.
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With these simplifications the plane wave spectrum can be calculated 

exactly from equation (2.13), which, with equations (3.2) and (3.3) becomes

1 I I  -ik£ + ik z' +
K j r

I(k^,k^,(o) = I /e ' ^^x* ^ ^^y^ dudyd£ (3.4)

S L

where L singles out a particular line array and S is the transducer aper

ture. The L integral integrates directly to give

I(k ,k ,w) = i/k (k sina + k cosa - k) X y z X z

I, i(k usina + k ucosa + k y') - [e z X y^

S

i (k L + k (Ltana + u /cosa) + k y ' - k(L/cosa + utana)).^ . , e z X y^ ]dudy' (3.5)

with u as in Figure 2. This integral has two terms corresponding to each 

end of the volume. The first describes a set of time coincident sources 

lying at the transducer, the second term describes a set of sources lying 

at the termination with a phase shading corresponding to the arrival time 

of the primary field from the transducer.

Both these terms may be reduced to a standard form by a suitable re

definition of the wavenumbers. The first term requires rotating the k^

and k axis so that k ' = k cosa - k sina lies in the plane of the trans- Z X X  z
ducer. The second requires defining k ' = k /cosa - ktana to take accountX X

of the phase shading. Then both integrals are of the standard form

J*J*_ik_'u + ik ye x  y dudy'
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and equation (3.5) integrates to

27TiI (k ,k ,bi) = -—  D(k ,k ,to) * X y k X y

[R J i(k^R ) -  + ik^L  + ik^Ltana (3.6)

where D(k ,k ,w) = 1/(k sina + k cosa - k) ,X y X z

k = [(k cosa - k sina)^ + k ^ ^r X z y
and (3.7)

k = [ (k /cosa - ktana)^ + k ^ ^  ,s X y

the square roots taken so that Re (k^ > 0  and Re (k^) > 0. The second of 

these two terms RJj^(k^R)/k^ is identical to that of Tjotta and Tjotta. ̂  

It is important to note the integration is over the primary beam cross^ 

section; R being the transducer radius.

It will be useful to have an alternative form for I(k^,k^,w) near

the poles of D(k ,k ,w). As k ksina, and k 0, k and k -> 0,X y X y s r
(k^R) and (k^R) -y k^R/2 and k^R/2 respectively and

Î (kx'ky.w) -

eKk^L + k^Ltana - kL/cosa)/2g.^(^/2cosaD(k^,ky,w)) . (3.8)

The truncated array in water

The ability to truncate the primaries artificially means that the 

description of the primaries^equations (3.1) - (3.3),can be investigated
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independently of the sediment. Remembering the comments following 

equations (2.13) and (2.14), the farfield in water with a normal trun

cation (a = 0) follows directly from equation (3.7):

 ̂ ^ i/5wYe-ikPRJi(Rksin*);2-ikL(l - cos*)_^j , n.9)
Pk^sin^(l - cosi[j)

large |x|

with P and ip as in Figure 2. In fact, equation (3.9) may be improved 

upon by the addition of a Fresnel-type of correction to improve the des

cription of the phase variation with the length of array. The correction 

is identical to that described by Berktay^ ° for line arrays and so we will 

simply quote the result. With a = (ksin^^)/2P and b = k(l - cos^).

I(P,f) ~ (3 .1 0 ,k2Psini/;(l - cosip)

fwhere F(P,^) = f e du (3.11)

4 ' *  - 4
lu

which may be evaluated in terms of the tabulated Fresnel integrals. 3 1

It is also possible to give an exact expression for the on-axis 

transfer function when the array is truncated normally. One way is to 

use the transform, equation (2 .8 ), of the on-axis impulse response, which 

in turn may be calculated from the recipe provided by Pace and Ceen.^^

The impufee response is given by
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i(0,0,z > L,t) /Y

= 2ttL when z ^ ct ^ + 2} ,

= - TT (ct + z - 2L) when / P  + R̂  ^ ct ^ / (2-L) ̂ + R^ + L ,

(3.12)

= Û when ct < z or ct > L + / (2-L)^ + R^ .

Putting

r% = / r  ̂ + ẑ  and r̂  = /"r  ̂ + (z-L) ̂ + L 

it may be shown that

(•;̂) I (0 ,0 , z > L,w) = R̂  e [Ci (k (rj-2 ) ) - Ci(k(ri-z))

- isi(k(r;-z)) + isi(k(ri-z))] (3.13)

2iLc -ikz -ikrir2iL iri c i(z-L) ,+ ----  e + ce [---  +    + +  ]W 0) 0) 0) Ü)

_ + JL + .i(E:Ll] ,
w w w

where si(x) and Ci(x) are the tabulated sine and cosine i n t e g r a l s . T h i s  

is not the only way of deriving this formula. The untruncated version has 

been given by Berktay et at

The truncated array in sediment

The field in the sediment is found by substituting the plane wave 

spectrum, equation (3.6),into the inverse transform, equation (2.16). In

troducing the new variables 0 and via

k^ = ksin8co&/ ,

k^ = kcosBsinçzJ (3.14)
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and hence

we find

I^(x,y,d,o))

k = kcos6 , z

7r/2+i°° 2it

-kY
'2 tt

0

J *  T(0)sin6d0 D(0,0,w)d0

(3.15)

-ik (sin0 (xcosjzJ+ysin^) + Lcos0 + d (n^-sin^ 0) ̂ )

^RJl(krR) _ RJi (kgR) ̂ -ik (L/cosa - Lcos0 - Ltanasin0co) .,I :----   ;-----G J ,

with Im(n) < 0.

The problem of finding an asymtotic solution to equation (3.15) is 

similar to that for a point source above a fluid fluid boundary, which has 

been discussed by a number of a u t h o r s . T h e  solution of equation (3.15) 

by a stationary phase integration over ^ followed by a steepest descent 

integration over 0 has, however, a number of additional complications. 

D(0,/^w) has poles in the and 0 planes which must be accounted for. The 

two aperture terms Ji(kj-R)/kj. and Ji(kgR)/kg should be slowly varying in 

comparison with the exponential and have, in addition, radicals in their 

arguments. Finally, the truncation aperture lies at the interface and so 

has no term in cos0 in the phase of its exponential. In appendix A it is 

demonstrated that the singularities of the integrand may be ignored in the 

asymtotic solution of equation (3.15). The problem of the truncation phase 

is discussed, together with a wider description of the steepest descent 

contour, in appendix B. The restriction on the apertures leads to limi

tations discussed later.
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With the notation 

0 = xcos^ + ysin^ ,

0 (x - Ltana)cos0 + ysin^ , (3.16)s
0 = 0sin0 + LCOS0 + d(n^ - sin^0)^

and

0  = 0 sin0 + d (n̂  - sin^0 )^ ,s s

the result of the stationary phase integration of equation (3.15), equation 

(A. 6 ) , is TT/ 2  + i«»
~iTr/4 4 Ig(x,y,d,w) ~ e Yk^ J *  T(0)sin^ 0 d 0 (3.17)

-•iï/2 -i‘»

D( 8 ,^o ) RJi (kr(0 ,^o)R) ^-ik 0  ( 6 , çz$ o ) 

(0 " (d^))* (kf(0 ,^o)

D(0,^l) RJi (kg (0,iẑ i)R) ^-ikL/cosa - ik0g(0,^i) 
(0 " (d^))* kg(0 ,di)

where

m e m y

0 ' (îẑo) = 0  ,

tan^o = y/x

(3.18)

(3.19)

and ' (9̂ i) = 0 (3.20)

From equation (A10) the result of the steepest descent integration of 

equation (3.17) is

I (x,y,d,w)

- iY(2TT) ̂ T(0o) sin 0 0
0" (çzio) G" (iz5o,0o)

RJl(kr(^o,8 o)R)n/a ^ \ -ik 0  (0q ,jz(q ) 
- kr(^,/6 o)

(3.21)



-  29 -

+ iY(2TT) ̂ T(0i)
sin0 i i RJl(k ((Ẑ i,0i)R) -ik[L/cosa+0

Here

0 ’  ( 6 o )  =  0 , (3.22)

(d^)cos0Q + Lsin0 dsin0 ocos6 o 
(n̂  -sin^ 0 o) i

=  0 (3.23)

and 0 '(0i) = 0 (3.24)

When the values 0q and 4^ correspond to directions close to the array 

axis (0 = 0, 0 = a), equation (3.21) becomes singular. In this case the 

alternative form for I(k^,k^,w), equation (3.8), is used in equation (3.15) 

and results in

(2 tt) ̂ R' YT(0 2 )

I(x,y,d,w) 4,

sin0 2
i
D (0 2 ,^2)

-ik(L/2cosa + 0 (^^,0 2 ))
® ^ . sin (L/2cosaD (0 2 ,

where

and
= (x - (l/ 2  ) tana ) cos{Z$ + ysin^m

0 = ^ sin0 + (L/2)cos0 + d(n^-sin^0)^ ,m m

(3.25)

(3.26)

with

and (3.27)
0  ' (ĝ 2 ,0 2 ) = 0m
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Provided s in 8 < n and 0 is not too close to 0^, the square bratket terms 

in equations (3.21) and (3.25) may be regarded as 'spherical spreading' 

terms. For example,

sin 0 1

^  (3.28)

where r^ is the path length from the truncation to the field point. As 0 

approaches 0 ^, however, all three terms tend to zero.

The two solutions, equations (3.21) and (3.25), are subject to the 

following restrictions:

kr >> 1 , (3.29)

where r is any path length from within the volume V to the field point, in

order that higher order terms of the asymtotic expansion may be ignored;

kd > 1 , (3.30)

prevents the field point getting too close to the interface where T(0) 

varies rapidly in the vicinity of 0 o; the previously mentioned requirement

that the aperture terms be slowly varying in comparison with the phase

leads, with equations (3.28) and (3.29), to the estimate that

r-f- > ïïR̂  tan^ a/X , (3.31)

when using equation (3.21), putting the field point in the farfield of 

the truncation aperture, and

r < L/cosa , (3.32)m

when using equation (3.25), putting the field point in the farfield of the 

array. [Interestingly, equation (3.32) is independent of frequency, a
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feature of line arrays previously noted by Berktay and Shooter.

The three pairs of angles (6 0 ,^0 ), and (8 2 , correspond to

the raypaths shown in Figure 3. In addition to these angles, equations 

(3.22), (3.24) and (3.27) have an additional set of solutions for some

0 > 0Ç,. These have been discussed by (among others) Gerjouy^^ and 

Brekhovskikh,^^ and correspond to the evanescent arrival in the sediment.

The raypath associated with the evanescent arrival from the transducer

is shown in Figure 3, marked 0g, .

The problem of finding the solutions to equations (3.22), (3.24) and

(3.27) is a numerical one; the details are left to appendix B. As shown 

there, a close numerical examination of the behaviour of the steepest des

cent contour confirmed Gerjoy's^^ suspicion that the evanescent arrival 

need only be included when

Re[ 0 (0o)] Re[ 0 (0^)] , (3.33)

Not only is (3.33) easy to check once the stationary points have been found,

it also has a simple physical explanation. This can be seen by noting that

if
+00

a(t) = —  I (3.34)

then +°°

XTT / F(m)e e^^^do) = a (t) * 6  (t-Re (0 )/c) (3.35)

so equation (3.33) requires the arrival time of the evanescent wave to be 

equal to or greater than the Snell's law arrival time before it need be 

included in the asymtotic solution to equation (3.15),



Nûtt û\yaLoLu?L in :

/Tll 6  ̂ is A. A&Æ/& /6 ot̂ Àŷ  exists,

^ 5  b h jl ü^ouûUyt̂ A^ ocru^'xA^^cu^ ùo t^a^^n>îÂ^sopi% .

^?(yn>^U' O t e s s h y o i ^ n .  ôyi P i ^  2 .
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Figure 3. The geometric raypaths into the sediment from a nearfield 
truncated array. 0Q, Snell's law arrival from the
transducer; Snell's law arrival from the truncation
0 2 , 9 2̂ : Snell's law arrival from the middle of the array;
0 0 f • evanescent arrival from the truncation. The points
P, Q, R, S and T lie in the plane of the interface.
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Horton^ has shown that the ray may be appreciably displaced

(i.e., suffer a discontinuous horizontal shift at the interface), if Im(n,) 

is large and w sufficiently small. This is achieved (theoretically) by 

including the phase of T(0) in the exponent of (3.15). This amounts to 

the selective inclusion of second order terms in the asymtotic expansion 

of (3.15); to do this consistently requires the remaining terms to be 

included. To the level of approximation implied by équation (3.29) these

terms are small and so any displacement is ignored in this study.

Getting in close; the high angle, high frequency nearfield

Useful as they are, equations (3.21) and (3.25) are limited to the 

farfield and it is natural to ask what analytic progress can be made as 

the field point approaches the truncation. This problem is a more com

plicated version of the more familiar piston radiator problem, which, as 

we have noted, is itself unsolved. Moreover, the one approximation which 

has led to some p r o g r e s s , t h a t  the piston is many wavelengths across, is 

unlikely to be a useful one for a parametric beam.

To see what can be done the truncation aperture term is first made 

to look like a piston problem. Substituting the second term of equation

(3.5) into (2.15), changing the order of integration, integrating asym- 

totically over kj  ̂ and ky, and substituting w = Ltana+u/cosa, the truncation 

aperture may be written

_^trunc,  ̂ -ikL/cosalo (x,y,d,w) 7 e(2 n)t
(3.36)

R /r  ̂+y^ /cosa

/ / D (w,y\w)T ( w , y V e -ik' [(x-w)^ + (y-y')̂  +d^] + (w/n)sina2 _i_̂ 2  ̂2.

,  dy'dw ,-R - v R  +y /cosa
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where k' = w/cg. This integral is seen to be the field from an amplitude 

and phase shaded elliptical piston, provided r^(w,y'), which like T(w,y') 

and D(w,y') is an implicit function of w and y ' by virtue of equations 

(3.30) and (3.24), may be approximated by

r^^ 3̂ (x-w)2 + (y-y')2 + d^ . (3.37)

This approximation is just equation (3.28), and so is subject to the 

same constraints. It should also be noted that equation (3.36) ignores 

the evanescent arrival, so is unlikely to work close to the interface. 

[Tjotta and Tjotta^ have used a similar integral for their study of con

ventional beam penetration, based on the Helmholz integral. That integral 

is generally valid, of course, provided the boundary conditions are dealt 

with properly. The Tjotta's approximation to it, however, is subject to 

the same constraints as equation (3.36). This should be borne in mind 

when interpreting their results.]

If a > 0Ç,, then D(w,y') is well behaved throughout the region of in

tegration, because there is no ray for which 0 i can be > 0 ^, and the poles 

of D lie at 0% = a. Secondly, the phase is nowhere stationary, for 

(l/n)sina > 1 , so that the non-linear term is not enough to change the 

gradient of (w/n) sina. For large k, we can use the following asymtotic 

expansion, equation D 4 ,

+ O ( ^ )  (3.38)/
provided 9$' (t) / 0 on a,b.
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Identifying ^(t) with [(x-w)^ + (y-y')  ̂ +  ̂ + (w/n)sina, and

applying (3.38):

^trunc, j \ „ lo (x,y,d,w) 'v iYn -ikL/cosa
R(2ir)

/
I  /r^ +y^

D(Wyy")T(w,yf) e 
[(x-w)/r^ + m]

-ik'ft (ŵ y") - (w/n) sina C O S O

-v̂ R̂  +y^ 
cosa

-R

dy' (3.39)

This can be recognised as an integral around the 'rim' of the ellipse. In 

addition, the phase is stationary over y'and so the straightforward station

ary phase approximation can be used.

Putting y ' = Rsin^, the phase of equation (3.39) is

C) = [ (x - + ((y - Rsin^) + df)2 -K mtanaRcos^]cosa (3.40)

and the stationary points are given by

coeg Rsin^ (y - Rsin^)Rcos^
cosa ± mtanaRsinjzS = 0 (3.41)

Equation (3.41) is polynomial in sin and algebraically it is far from 

clear that equation (3.41) has real roots. The stationary phase method 

usually has a geometrical interpretation: if equation (3.41) has real roots

they will correspond to a particular raypath.
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Consider first the case when a = 0. Then equation (3.39) describes 

a circular aperture and equation (3.41) becomes

^t
(3.42)

Suppose ^  is the position vector of the point on the edge of the aperture 

from which thageometric raypath leaves. ^  lies in the plane of the aperture 

and so has no vertical component:

a = Rcos^ i + Rsin^ j (3.43)

The vector r̂  ̂= r^^ + r^^2 + describing the raypath is

(x - Rcosç^)i + (y - Rsinçz() j + dk (3.44)

so equation (3.42) is a statement to the effect that

Ê. A  (r^i + r^2 ) =  0 (3.45)

i.e., the projection of r^ in the plane of the transducer is colinear with 

a. Figure 4(a) shows this interpretation.

At angles of incidence away from normal equation (3.41) may still be 

considered a homogeneous equation of the sort equation (3.45). Because the 

aperture is now elliptical, a is replaced by e where

Rcos^ . ^  .e =   1 + Rsinçz( i—  cosa —  — (3.46)

and equation 3.41 may be written

;— —  i + e cosaj) A cosa —  X —
■(----  + ms ina ) i +   -J

l i t  I -  l i t l -
=  0 ( 3 . 47 )
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Figure 4 (a) Geometric interpretation of the stationary phase equation from 
a circular aperture. The vectors ^  and r ^  + r ^  are co
linear.

9a/cosa 1 + Gx cosa j

t _L

msina i

Figure 4 (b) Geometric interpretation of the stationary phase equation from
an elliptical phase shade^aperture. The equation selects a ray 

, closer to the major axis than in the circular case.
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Equation (3.46) says that, in general, £  and r^^ + r^j^ are no longer co

linear. The ellipticity and phase shading of the aperture result in a 

raypath closer to the major axis of the ellipse than is the case with a 

circular aperture. Figure 4(b) shows this interpretation. That equation 

(3.47) has such a solution is seen when it is realised that taking the ray

path around the edge of the ellipse takes ^  through 360°, but r̂ _i + r^j_ 

considerably less. At some point (two, actually), equation (3.47) is satis

fied.

Thé result of integrating equation (3.39) by stationary phase is thus

^trunc, J . Ig (x,y,d,w)

eA, ± i T(±)D(±) eikftj±)+msinaRcos^ (3.48)
r^(±) 'ï’"t (i)[(x ± Rseca)^ + msina]

the ± signs indicating arrivals from either edge. It is possible to show, 

with some algebra, that as r^ becomes large, equation (3.48) is the first 

term of the expansion of the truncation term of equation (3.21) for large 

kg with the Bessel function replaced with Hankel functions:

2Ji(z) = H^^^i(z) 4- H^^^i(z) . (3.49)

Discussion of the asymtotic solutions to the nearfield truncation with 

numerical examples

To examine the beaviour of the solutions, equations (3.21) and (3.25) 

were used to calculate the secondary pressure in the sediment. Numerical 

values for the constants were chosen to allow comparison of the theoretical 

predictions with the experimental measurements: R = 0.02 m, L = 0.2 m,
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C = 1500 m s“ ,̂ 0) = 2it X 10^ sT^, p = 10 ̂ kg m~^, Pg = 1.8 x 10^ kg , 

n = 0.866 - 0.0071 [hence RefG^) = 60°] and the source function [equation

(2.5)] was taken to be a unity amplitude cosine wave at 100 kHz.

Figure 5 shows the secondary pressure contours in the plane y = 0 

with a subcritical primary beam incidence angle of 50°. At subcritical 

values of a, a can equal 6 2  and equation (3.25) is used to determine the 

pressure in the main beam. For a fixed value of a, this expression behaves 

similarly to a conventional beam. The maximum pressure occurs along the 

Snell's law angle of transmission associated with a (i.e., 62°) and the 

evanescent arrival is too small to influence the contours. The slight 

asymmetry of the beam is due to the 'spherical spreading' term. This 

asymmetry is obvious in the beam cross-section of Figure 6 , which is the 

pressure in the plane x = 0.5 m. The contours are compressed as the field 

point approaches the interface. The beam width, on the other hand, is 

hardly changed by the presence of the interface.

At a fixed location in the sediment, however, the maximum pressure 

does not occur when the array is aligned with the Snell's law path from 

the transducer to that point. Figure 7 shows the pressure at x = 0.75 m, 

y = 0 and d = 0.1 m as ^  function of a. The most striking feature is 

that the peak pressure occurs at an angle 0ĵ  = 62°, which is 5° greater 

than the Snell's law angle 0q and 2° greater than the critical angle 0^.

The cause of this behaviour is twofold. Firstly, as a increases, so too 

does the array volume. This is implicit in equation (3.25), for as 

0 2 -4- a , sin [kL/2cosaD ( 0,0 ) ] (Ltana)/2, ï.e., half the array length. 

Secondly, the centre of the array is also a function of a and becomes 

closer to the field point as a increases, so that the spherical spreading 

reduces. This shift of the effective centre of the source volume from
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offset in cm
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5 -

depth

cm

10 -

15-
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Figure 6 . Secondary beam cross-section in the sediment in the plane
X = 50 cm, when the array incident angle is 50° [dB re 10“  ̂ Y Pa]
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pressure
35-

3 0 -

2 5 -

20 -

6055

Incident angle0. 0.

Figure 7 Variation of secondary pressure in the sediment at a fixed 
location, x = 75 cm, y = 0 and d = 10 cm, as a function of 
beam incident angle. 0o: Snell's law angle to the field
point from the transducer; 0 ^: the critical angle ;
angle of maximum pressure. M
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the transducer towards the field point is responsible for the essential 

differences between conventional and parametric beam behaviour through an 

interface.

As a becomes increasingly postcritical, a - 6 2  increases until the main 

beam only penetrates the interface at small depths and the field in the 

sediment is largely determined by the interference of the two apertures of 

equation (3.21). Figure 8  shows the pressure contours in the plane y = 0 

with a postcritical primary beam incidence angle of 70°, and their behaviour 

may be understood in the relative importance of the arrivals from the two 

apertures.

At very large distances from the array, the spherical spreading is 

similar for both arrivals and they are of equal importance. As the field 

point approaches the array, the raypath from the truncation becomes sig

nificantly shorter than that from the transducer. In this region, which 

accounts for most of Figure 8 , the importance of the transducer arrival 

is reduced. Whether the termination aperture is in a position to take 

advantage of this reduction depends on a.

The directivity of the aperture has its maximum when 0i = a and dies 

away as a-0i gets larger. If the array incident angle is greater than 

critical, then the minimum value a- 0 i may take is a-0^, because 0 i is an 

'incident' angle, -i.e., 0i X  0̂ ,. This limitation on 0^ introduces a marked 

top/bottom asymmetry at postcritical angles of incidence, which is the 

main feature of the beam cross-section in Figure 9. The top half of the 

beam is reflected at the interface. This behaviour also provides a justi

fication for ignoring the reflected primaries in the source volume V. The 

raypath from such a beam would make such a large angle with its axis that 

its contribution would be negligible.
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Figure 9 Secondary beam cross-section in the sediment in the plane 
X = 75 cm when the array is incident at an angle of 70°
[dB re 10-G Y Pa].
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Figure 10 Secondary pressure in the sediment vertically beneath the 
truncation when the array is well postcritical, a = 75°.
— -----  : transducer arrival only;  .'transducer plus
truncation arrival.
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In addition, the argument of the Bessel function, kg, and hence the 

directivity term J (kgR)/kg is asymmetric about 8% = a. If ^ = 0, then 

kg = k[sin(8i-a) - tanasin^ (8i-a)]. If a > 8c, 6i-a is negative and kg

will grow much more rapidly than k̂ _ as the depth increases when a is large.

The effect of increasing a is thus to confine the penetration to an in

creasingly shallow region beneath the interface; clearly seen in Figure 8, 

where the importance of the truncation arrival is limited to a fan of angles 

with its apex at the truncation. This behaviour is emphasised by consider

ing the behaviour of the high angle nearfield, equation (3.48). Figure 10 

shows the pressure vertically beneath the truncation when a = 75° as a function 

of depth. Here, the asymtotic solution to the transducer aperture has been 

added to equation (3.45) to give the total field, and it is seen that the 

trucation aperture is merely a high frequency ripple on the more slowly 

varying transducer term. Only at the smallest depths does the truncation 

term differ significantly from the transducer term. In this region, however, 

the assumptions leading to the derivation of the truncation term become 

questionable, so care must be taken before attaching too much significance 

to the peak at a depth of 2 cm [see the remarks following equation (3.37)].

The effect of phase is so powerful that the reduced spherical spreading of 

the truncation arrival is irrelevant at high enough angles of a. [It is 

a pity, considering the industry put into its derivation, that equation 

(3.45) turns out only to be useful in this negative sense: if the assumptions

behind equation (3.45) are satisfied, the answer will not be of much interest.]

The detailed form of the sidelobe activity seen in Figures 8-10 is a 

consequence of the simplified form, equations (3.1)-(3.3), used to model 

the primary beam, which becomes increasingly inadequate as the array length 

approaches the Rayleigh distance of the primary beam. Tjotta and Tjotta^^ 

have calculated the departure of the secondary source strength q(x',t) from
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that used here [equation (3.3)] at several fractions of the Rayleigh distance 

of the primary beam and show that it becomes increasingly smooth and narrow.

It is difficult to assess the consequence acknowledging this behaviour would 

have on the sidelobes of the two apertures; whilst narrowing the truncation 

aperture would broaden its directivity, smoothing it would reduce its side

lobes.

Very close to the interface the contours turn horizontal, due to the 

evanescent arrival. As the field point approaches the surface, there is a 

narrow region where evanescent arrival, growing rapidly as e , and the 

Snell's law arrival, dying away as 8% 8̂ ,, are of the same amplitude and

interfere with one another, producing very localised maxima and minima.

The evanescent arrival is most noticeable as the field point approaches the 

truncation, 'I.e., as 8g a. This localisation is to be expected of the 

evanescent arrival from a beam which would be greatest where the beam strikes 

the interface (ignoring any displacement), dying away horizontally due to 

the beam directivity and vertically due to its evanescent nature.

A consequence of the truncation of the primary beam by the interface is 

that the parametric beam width in the sediment is a function of a. At sub

critical values of , the farfield directivity of the array is, with n = a-8^, 

sinlkLsin^ (g/2)/4cosa]/2ksin^ (g/2), so that as a increases, the beamwidth 

narrows. The importance of the interface in determining the beamwidth and 

signal level in the sediment mean that the performance of the parametric 

array incident on sediment differs considerably from the same array used in 

an unbounded meditwi. Conversely, should the array be so distant from the 

interface that there are no virtual sources near the interface, the para

metric beam performance will be qualitatively similar to that in an unbounded 

medium. In such a case the shift of the effective centre of the source
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volume would be negligible in comparison with the length of the raypath 

into the sediment and postcritical penetration would also be negligible. 

These remarks beg the obvious question: how far away must the array be

from the interface for this to occur? To answer this we need to consider 

the case of farfield truncation, which is the subject of the next chapter.
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CHAPTER 4 

The Farfield Truncated Array

In this chapter the qualitative features are discussed of the radiated 

farfield secondary pressure in sediment from a parametric array incident in 

its primary farfield on the interface.

When the truncation of the array lies in the farfield of the primaries 

it becomes necessary to split the source volume integral, equation (2.12), 

into two volumes. The first, v^, includes the entire nearfield of the 

primaries which are assumed to halt abruptly at some distance r^. The 

second, v^, encloses the farfield. These are assumed to start abruptly 

at rg and extend out to the truncation. The choice of the distance r^ is 

somewhat arbitrary; Zemanek's^^ and the Tjotta's^^ numerical calculations 

suggest it should be somewhat less than the Rayleigh distance ttR^/Aq , and 

here we will take

rg = R^/Xg . (4.1)

The geometry of the array is now that shown in Figure 11.

The secondary field resulting from the volume vj is given by the 

straightforward extrapolation of the nearfield truncation results, equation 

(3.21), allowing that the truncation (of the nearfield) is normal to the 

array axis and no longer lies in the plane z = L. In fact, as soon as 

the nearfield is any distance from the farfield truncation, (> 2ro say) , 

all the raypaths from within vj to the field points of interest may be 

considered parallel; then a single term will suffice for this contribution:
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Figure 11 Geometry of the secondary source volume when the array is 
farfield truncated. Vi and V 2 contain the nearfield and 
farfield of the primaries respectively. The points P and 
R lie in the plane of the interface.
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(x,y,d,w) ^2Y(27T)^T(02)e

sin0 2

0"(^2 )0 "(0 2 ,^2 )
KJlCk e,)R] M.2)

(12̂ 2/02)

sinLkro (1 - sinacos^2 Sin0 2  - sinacos0 2 ) / 2  ].

The first step for the volume V 2 is to calculate its plane wave 

spectrum from equation (2.12). Noting the comments concerning equation

(2.13), equation (2.12) may be written

I^^(kx,ky,w) = ^  / g^(x’o)o)e I ^ dx' , (4.3)

V2

where is the wavevector. (The geometric interpretation of this formalism 

breaks down when k^ becomes complex, but this need not concern us.)

Within V 2 the primaries are assumed spherically spreading. They are 

most easily described by a set of spherical polars, r, r) and a, seen in 

Figure 12. The wavevector k is described by a similar set having the

same axis: k, p and y. These are also seen in Figure 12. The interface 

still lies in the plane z ' = L, so that any point in the plane obeys 

the equation

rp (ri,a) cosdp = L (4.4)

The functions g(x',Wo) and Ç(x') are now given by



- 53 -

acoustic axis

Figure 12 The co-ordinate description of the secondary source volume 
X ' (r, n, o) , and the wavevector l<(k, p, , for the case of 
spherically spreading primaries. Q, rp and S lie in the 
plane of the interface.
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g(x',wo) WpR^ Dp(n)e 
2c r (4.5)

and

(4.6)

Defining g (x' /Wp ) in this way means that, with Dp (ri)- normalised to 

unity, p^(t) entering in equation (2.7) is still the average nearfield 

pressure.

Substituting equations (4.5) and (4.6) into (4.3) gives

2TT TT r (n,0) P

III
0 0 rp (4.7)

.e
ikr [cospcosri+sinpsinricos (p-o) ] 

sinpdrdrida

The r integral is elementary:

2TT TT

// ”
0 (n) sinridrida .

0 0

(4.8)

., ikr{cospcosri+sinpsinr|cos (y-a) - (l-2iap/k)} •ike________________________________________________
[cospcosri + sinpsinpcos (y-a) - (l-2ai/k)]

rp(n,0)

J r p

Just as in the nearfield case, there are two contributions from each end of

the volume. The term corresponding to the lower limit, denoted is
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,k =X y

27T TT

J  J  Dô (ri)e
ikroCcos£(ri,a) - 1 + 2iao/k]

iWpR^k / I D p X n ) e  sinridrida
2ck„ / / [cos£(ri,a) - 1 + 2iap/k] (4.9)

z
0 0

because ^-21' = krCcospcosri+sinpsinricos (y-a) ] = krcosE (see Figure 12). 

Noting that the line corresponding to the length L in Figure 12 has co

ordinates L,a,TT we can see that from equation (4.4) and a similar argument 

in reverse that

r^ = L/(cosacosri - sinasinpcosa) , (4.10)

so that the term corresponding to the upper limit is

^Pl^2(k ,k ,w) =X y

2TT TT

-ikLCcose (n,q) _/+ 2iap/k) (4.11)
/ / D,Z(n)e - sinasinncosS^.^^a^ao
I I

2ckg I I Ccose(ri,a) - 1 + 2iap/k]

0 0

Neither of the integrals (4.9) and (4.11) are simple; not surprisingly, 

I have been unable to integrate them exactly. Considerable progress, in 

understanding at least, can be made by approximate methods.

The term equation (4.9), can be investigated with methods sub-

stanially the same as developed by Moffett and Mellen'^ to calculate the 

farfield of parametric arrays. This entails enquiring as to the behaviour 

of when k is aligned with the array axis {-i.e., p = O) and when k is
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well away from the axis {i.e., p is large), and assuming that when k 

lies between these limits nothing 'silly' happens to First note

that Do (H) is only substantially non-zero for small p. [This is the 

implicit assumption of equation (2.3).] At the distance rp the phase in 

(4.9) can thus be simplified with

cosCe (ri , a ) ]cosp + ncos (y-a) , (4.12)

so that equation (4.9) becomes

2iT small T)
ikrp [cosp+risinpcos (y-a) ]

p£V2 3/ iwpR^k ^-ikrp-2apr / I Dp̂ (n) e_________sinpdnda________
2ckg ^ J J  Ccosp+risinpcos (y-a)-l+2iotp/k]

0 0

(4.13)

When p is large the denominator is slowly varying, so that
small ri

J 14.14)

sinydr)

When p is small the phase can be neglected, so that

2TT small T)

rp£V2 ^ iWpR^k -ikrp- 2dprp / / D^ (n) sinndpda
2ck^ [cosp-psinpcos(y-a)-l+2iap/k]

° ° (4.15)

The integral of equation (4.14) is the farfield of an amplitude shaded 

circular piston; the integral of (4.15) is essentially that of Berktay and



- 57 -

L e a h y . T h e  most important (though scarcely surprising) conclusion 

to be drawn from equations (4.14) and (4.15) is that the integrals con

tribute little to the phase of which is dominated by krp. When

is substituted into: equation (2.12), its phase, as we have seen, 

determines both the location and a ^ l a r  dépendance of ^°I^^(x,y,d,w).

The effect of is thus of an aperture of unspecified directivity

lying at x = rpsina, y = O and z = rpcosa. It is clear from (4.14) and 

(4.15), however, that the directivity will be similar to a conventional 

aperture in that it is a symmetric function of p and independant of y, 

and has its maximum when Ic coincides with the normal to the aperture.

Turning now to the truncation term, equation (4.11), the first step 

is to simplify the exponential by assuming that the change in absorption for 

points on the interface is small and so it may be removed from the integral 

with a representative value, the obvious choice being e 2#oLtana^ ^ 

stationary phase evaluation of equation (4.11) is complicated by the pole 

in the denominator which in the co-ordinates ri and a is difficult to deal 

with. For this reason the integral is transformed to another pair of 

polar angles, £ and ip , whose axis is the direction of the vector. In 

this system the pole always lies at £ = O (i.e., ignoring absorption, when 

the wavevector )c and source vector x ' coincide). Denoting the new co

ordinates of the line L in Figure 12 as £o/^o, equation (4.11) becomes

^Pl^^(kx,k_,w)
-iwo%2ke-2"°Ltana

y' ' 2ckg

//
-ikL(l-cos£)

_ 2, [cos£cos£o-sin£sin£ocos(^o-^)]Do(E,^)e sin£d£d4i
------------------------------   . (4.16)

(cos£ - 1 + 2iao/k)



- 58 -

Geometrically this transform is straightforward; algebraically is 

is messy. However, in the stationary phase evaluation of equation (4.16) 

the only concern is with points near the stationary points of the phase, 

(1-cose) , and so it is not necessary to enquire too closely into the limits 

of equation (4.16). Geometrically at least, (see Figure 12), it can be 

seen that the range of values of C is small because n is small, and because, 

in addition, it is noted that the phase is stationary at c = 0, e may be 

restricted to be small so that lies close to k_, and then equation (4.16) 

can be integrated to get

z (4.17)

I [ ~1 -ikL (1-cosE)
kL(l-cos£)tanetan£o) 2,_ . cosEcosen

cosccosEo ^jDo(£,o)e sinede
(cos£ - 1 + 2iao/k)

The phase of the exponential in equation (4.17) has a stationary point at 

£ = O, and because of the tan £ term in its phase the Bessel function may be 

assumed slowly varying. The poles in the denominator, however, lie at

£p = ± 2 / ̂  e^^^^ and these may be brought arbitrarily close to £ = O 

depending on the value do. An asymtotic representation of equation (4.17), 

for large kL/cos£o, can be found by approximating it with

•,<2d 2, -2aoLtana 
rpî":(kx,ky,w) = rf(o,o)

/
-ikLEi <4-18)

ee de

(£2+C_2)
0

and, from equation (D.9), we finally get
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2 2 -2otoLtana -ikLCp  ̂ ^
TÎ"2(kx,ky,w) ~ E,2(o,o)e“ " " » E , ( - ^  ) (4.19)

^ . c o s E q

where Ei is the tabulated exponential integral.^* [Dq^(o ,o ) is taken to

refer to Dô (ri = p, a = y) , not D q̂ Cti = O, a = O).] Unlike the previous
^Vi. rp'^Vo Tn^V?expressions for I or I , has no phase term corresponding to a parti

cular location in space, so that when substituted into the inverse transform, 

the raypath selected by steepest descent is unaffected by and is simply

given by equations (3.18) and (3.22): the raypath from the transducer. It

will be recalled that in addition to determining the direction of the ray

path, equations (3.18) and (3.22) determine the spherical spreading of the 

arrival. That part of the transfer function provided by the truncation 

arrival thus has the directivity of the primaries and 1/r spreading from 

the transducer. In short: it is indistinguishable from a conventional

arrival.

Equation (4.19) is a stationary phase approximation and is only good 

provided the directivity Dp does not vary too fast in the vicinity of the 

stationary point. Dp has a half power angle given by Ap/ïïR. If this 

angle is used as a limiting value for this condition to be satisfied, then

' '4.20)

i.e. 3 the truncation must be further away than a distance given by the 

product of the primary Rayleigh distance and the ratio of the primary to 

secondary frequency.

Discussion of farfield truncation

The main purpose of this chapter is to arrive at the conclusion 

implicit in equations (4.19) and (4.20): if the truncation lies beyond the
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range ttR^X/A q̂  the parametric array will behave in a similar fashion to a 

conventional beam. This is not to say that secondary sources beyond this 

range do not contribute to the incident secondary field; their contribution 

is reflected. The limit, equation (4.20), is a familiar one in parametric 

array theory. Moffet and Mellen^^ have shown that it characterises the 

distance at which the secondary sources become spherical with a directivity 

that is a function of angle only. Such a beam has a plane wave spectrum 

(or farfield) qualitatively similar to a conventional beam and so it is 

not surprising (in retrospectI) that this limit should also be important 

in determining the behaviour of a parametric beam incident on an interface.

Rolleigh's^® theoretical investigation of the nearfield of a parametric 

source in water has shown that as the range from the transducer increases, 

so the sources which contribute to the secondary field become increasingly 

restricted to locations near to the raypath between the transducer and the 

field point. The same conclusion may be drawn from the stationary phase 

behaviour of equation (4.17), where, as the range of the truncation in

creases, so the important range of c decreases. In the sediment an 

analogous explanation applies: the sources which contribute to the secondary

field become increasingly restricted to locations near to the Snell's 

law path between the transducer and the field point. This is also why 

the oblique truncation has no affect on the directivity.

This behaviour is in sharp contrast to that of nearfield truncation, 

where the truncation arrival is due to virtual sources lying where the 

primary beam strikes the interface. The difference between the two cases 

emphasises the importance of phase in determining the farfield, in this case 

the phase introduced by the spherical spreading of the primaries. As the trunca

tion moves into the farfield of the primaries and the useful secondary sources
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become increasingly restricted in direction, so the effective centre of 

the array will move away from the interface and the post-critical pene

tration will reduce, until the limit of equation (4.20) is reached, when 

the parametric array will be Indistinguishable from a conventional narrow 

beam.
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CHAPTER 5

The Apparatus, Instrumentation and Sediment

In this and the succeeding chapter a description of the experimental 

half of the study is given. The experiments and their results are left 

to Chapter 6; here, the equipment and its specification, arrangement and 

calibration are described.

Choice of experimental parameters

The aim of the experiments was to investigate the theoretical predic

tions of the nearfield truncation theory, developed in Chapter 3, by measuring 

the secondary pressure in sediment due to a parametric array incident in its 

primary nearfield on the water sediment interface. The choice of various 

experimental parameters, and in particular, the choice of transmitter, was 

made to allow direct comparison with the theory, whilst being constrained by 

the physical limits of the tank and sediment.

The first constraint was size. The maximum useable area of sediment 

was 1 X 1 m ^ , and the maximum usable depth of 0.8 m of sediment. Secondly, 

the sediment had an absorption of 0.4 dB/X, upon which rapid truncation of 

the primary field depended. The theory predicted the secondary nearfield 

of the array to be within a distance of twice the array length of the trans

ducer [equation (3.32)]. This limited the maximum array length to '̂ *0.7 m, 

and in order to accommodate incident angles of up to 75°, the height of the

transducer above the interface was limited to being < 0.2 m.%

The primary nearfield had to be larger than 0.7 m to ensure nearfield 

truncation. This could be achieved with either a large aperture or high 

frequency. The aperture dimension needed to be large enough to influence 

the secondary directivity, and the primary frequency low enough to avoid
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excessive non-linear attenuation. A suitable combination was found to be 

a 4 cm diameter, 1.85 MHz transducer. This has a Rayleigh distance of 

1.61 m, and the primary field would be absorbed in sediment at 5.5 dB/cm 

(which is 11 dB/cm loss in virtual source strength). The choice of a 

secondary frequency of 100 kHz met the following requirements; it was 

sufficiently high for the asymtotic solutions to be valid; it provided a 

moderate value of kR for the two apertures as desired ('V'12 for the trans

ducer aperture); it was sufficiently low for the secondary field to

be insensitive to the high frequency variation of the primary nearfield, and 

in particular, to "see" the truncation as sharp; and finally, it was high 

enough to ensure useably large secondary signal levels (which are proportional 

to w^).

With these choices for the fundamental parameters made, the specification 

of the receiver, a B & K 8103 miniature hydrophone, and supporting instru

mentation was straightforward, the main requirement being a bandwidth of 

^250 kHz centred around 150 kHz, which would be needed when the array was 

used in the pulse mode.

The tank and gantry

The experiments were all performed in the School of Physics underwater 

laboratory at the University of Bath. Figure 13 shows a sketch of the ex

perimental arrangement. Within the large underwater tank, 1 . 5 m x 5 m x 2 m  

deep, was a second tank, 1.3 m x  1.3 m x  1 m deep, filled to a depth of 1 m 

with saturated air-free sand. On two rails running the length of the large 

tank, a gantry was mounted. The gantry comprised two trolleys, one moving 

the length of the tank, and a second, mounted on the first, running the 

width of the tank. From this second trolley, viu a turntable, a vertical 

shaft dropped into the tank, and at its base was a second, horizontal, shaft.

Onto this second shaft the transducer was mounted. This arrangement allowed
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Pi

T T

Figure 13 The tanks and gantry arrangement. The transducer is mounted 
on the horizontal shaft closest to the sediment tank. The 
five degrees of freedom are indicated by arrows.
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the transducer the five degrees of freedom shown in Figure 13, three linear 

and two axial.

With the exception of the vertical motion, the position and orientation 

of the transducer was controlled by, stepping motors instructed by computer. 

This allowed measurements to be made at numerous locations swiftly and 

accurately. The relative linear accuracy of the transducer position was

0.002 m, and the angular accuracy <0.1°. Absolute accuracy was maintained 

by linear and angular scales attached to the rails and trolleys, or, in the 

case of the horizontal axis, by a mechanical stop, from which the rotation 

was measured in stepping motor increments.

The author was fortunate enough to inherit the gantry. Full details 

of its design and construction may be found in reference 37.

The transmission and reception gystem

The transmission and reception system used for this study was designed 

for general purpose experimental acoustics and could supply and record a 

very wide range of signals varying in shape, length, frequency and power.

A box diagram of the arrangement is shown in Figure 14.

The transmission system

The signal source and transducer had to satisfy a number of requirements:

(1) a long enough nearfield to ensure nearfield truncation within 
the dimensions of the sediment tank; ,

(2) wide enough bandwidth to allow pulse operation of the parametric 
array ;

(3) a primary frequency low enough that non-linear attenuation of 
the primaries is negligible at distances less than the trun
cation distance, but not so low as to overlap the primary and 
secondary frequency spectra ; and

(4) 'good' nearfield behaviour and linearity at the primary frequency.
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Figure 14 Box diagram of the transmission and reception system.
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These criteria were satisfied by the purchase of a very flexible signal 

source and careful construction of the transducer, and these are described 

below.

The Signal Source

The Database Arbitrary Function Synthesizer,^® Was designed and 

built to the author's specification for the purpose of this study. Its 

function was to generate an analogue voltage waveform from a computer 

defined digital input which could be output directly to the power amplifier, 

or, alternatively, used to amplitude modulate a high frequency carrier.

The input waveform was built up from (up to) 2048 8-bit voltage levels 

spearated in time by (at least) 0.125 |is. In response to an external trigger, 

the waveform was output from a. D/a converter directly to a 500 driver or 

passed first to a modulator with an externally supplied carrier. The com

bined effect of the A/D converter and drivers also produced a gentle low pass 

filtering, which removed the steps from the waveform. Figure I'S has a 

schematic diagram of the synthesizer. The device was interfaced to an

I.E.E.E. 488 bus, and limited remote control (triggering, on/off, hold) was 

possible.

An extremely wide range of signals was available from this source, in

cluding FM sweeps, specially shaped pulses, tonebursts or a high frequency 

carrier modulated with any of these. In this study, two particular forms 

were used to modulate a 1.85 MHz carrier to the transducer, corresponding to 

narrowband and wideband use of the parametric array.

In Figure 16 the narrowband modulation, V^^ft), and the wideband modu

lation, (t), are shown, together with the secondary source waveforms 

Snb(t) and calculated from equation (2.7), which would result with

a very wideband transducer.
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The narrowband modulation. Figure 16(a), was chosen to be

v^b (t) = VO (a + bcoswt)^ (5.1)

[With a = b = 1 the signal supplied to the transducer, (t) cosa'ot would 

have been

vnb(t)coswot = {cos [ (a)Q+j) t] + cos [ ((uq-^) t] } (5.2)
/ 2  ^

which is the usual theoretical description of the signal supplied to a narrow

band parametric array.]

The modulator circuits were not capable of producing the full depth of 

modulation implied by equation (5.2). For this reason, the constants a 

and b were chosen to be a = 1.02 and b = 0.98, which produces the modulation 

shown in Figure iO.

The wideband modulation shown in Figure 16 is given by:

-2 nft^ ^-2 nit^ ^
Vwb(t) = vo(^- — —  - —  + t/2TT [erf (/2nit) - erf (/2 n 2 t) ] } ̂ (5.3)

This complicated looking function has the useful property that as ni ^ 0 

and n% ^ œ, the secondary source function ŝ ]̂  (t) tends to a delta function, 

as is shown in Appendix D. In practice, the values of n^ and n 2 are 

limited by the bandwidth of the transducer. Within these limits, n% and

ng provide convenient control over the bandwidth of the secondary spectrum. 

From equation (D.13), this spectrum is

Swb{<^) = 4vo/ir/2(e ^ - e ^ /8 n 2  ̂ (5.4)

so the difference nz - n^ determines the secondary signal bandwidth. For 

applications in the sediment, n% = 5 x 10^ Hz and n 2 = 2 x 10^ Hz.
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The power amplifier

Whichever of the two modulations were used, the output from the function 

synthesizer was passed to a 200 W, 50 dB fixed gain E.N.I. power amplifier. 

This amplifier has a transfer function flat to within 2 dB over the frequency 

range 10 kHz to 12 MHz, 'i.e., more than sufficient for the present purpose, 

and its output circuitry is sophisticated enough to be insensitive to load 

impedance.

The transducer

The transducer design combined simplicity of construction with a wide 

bandwidth and long nearfield. The principles of construction were those 

followed by Kossoff:**^ the P.Z.T. element was provided with a low impedance 

backing and a quarter wavelength plate on the front to improve the band

width. The backing material was a mixture of epoxy resin and 400 |i ^ 

glass spheres. This composite has a low acoustic impedance and a high 

absorption (1.5 x 10^ Rayls, > 45 dB/cm at 2 MHz^^) . A 2.5 cm depth of 

epoxy-glass mixture was poured into a 4 cm length of 8 cm diameter plastic 

pipe (plastic drainpipe, in fact), and allowed to set hard. A (nominally)

2 MHz, 4 cm diameter P.Z.T.4 disc was cut into four sectors to prevent low 

frequency flexing and set into the machined surface of hard epoxy-glass at 

one end of the pipe. This end of the pipe was then sealed with epoxy resin 

and the upper surface machined down (with great care, to avoid removing 

the wiring contacts to the disc), to a quarter wavelength thickness. Mounted 

onto the back of the pipe and immersed in epoxy resin was a matching trans

former with the primary and secondary coils adjusted to remove the static 

capacitance and tune the input impedance to 40 Ü. Figure 17 shows the 

details of its construction.
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transformer
araldite-glass backing

craldite seal 
machined to 
1/^ wavelength

PZ.T element

araldite
filling

plastic case

Figure 17 Details of the transducer construction and schematic view 
of its front face. The wires are not shown for clarity.
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The primary field

The primary field calibration of the transducer was done using the 

plane wave self-reciprocity technique,incorporating the diffraction 

correction of Brendel.^^ The nearfield transmission sensitivity as a 

function of frequency is shown in Figure 18. The low Q of about 5 has 

been bought at the cost of the efficiency, which was typically 30%. How

ever, the sensitivity was quite sufficient for the purposes of this study, 

and the useful bandwidth of ^250 kHz sufficiently large.

To investigate the degree to which the primary field conformed to the 

theoretical assumptions of a long and collimated nearield and negligible 

non-linear attenuation, the primaries were measured with a plastic P.D.F. 

film hydrophone.**^ The variation of on-axis transmission sensitivity 

with drive voltages is shown in Figure 19, and the variation of beam cross- 

section with range is shown in Figure 20. At low drive voltages 10 V) ,

the behaviour is a good approximation to the theoretical behaviour of a

baffled p i s t o n : t h e  last axial maximum occurs at a range of R^w o c /2tt, 

and is accompanied by a corresponding focussing of the primary field, clearly 

seen in cross-section (Figure 20) at 0.5 m range. At ranges less than 0.5 m, 

the field is well collimated, but beyond it becomes progressively less so. 

Remembering, however, that the virtual source strength is proportional to 

the square of the primary pressure, it can be seen that even at 0.75 m the 

assumption of collimation is still reasonable.

At drive voltages higher than 10 V, the effect of non-linear attenua

tion becomes increasingly important. It can be deduced from Figure 19

that at a range of 1 m, the absolute primary pressure on axis at 80 V drive

level is the same as at 40 V drive level! To avoid non-linear attenuation 

having any significance, a drive level of 30 V was chosen. For ranges 

0.5 m, approximately the largest distance to the truncation, this ensured 

a linear primary transmission sensitivity.
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Figure 18 Primary nearfield (plane wave) transmission sensitivity as 
a function of frequency.
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Figure 19 Primary transmission sensitivity as a function of range at 
three drive voltages, 10 V, 40 V and 80 v.
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Figure 20 Primary transmission sensitivity across the beam at four 
ranges. R^/A for this transducer is at 0.5 m.
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The acoustic filter

The acoustic filter provides a mechanism for artificially truncating 

the primaries in water. It is a cork loaded butyl rubber sheet, which 

acts as a low pass filter to plane waves. To find the loss at difference 

frequencies, the pulse from an already terminated array was measured with 

and without the filter present. Above 300 kHz, the loss was measured with 

the direct radiation of the primaries. The transmission loss as a function 

of frequency is shown in Figure 21. At the primary frequency of 2 MHz, 

the loss is ^60 dB, which is a 120 dB loss in secondary source level.

The reception System

The hydrophone

For reception of difference frequency signals both in water and in 

sediment a B & K 8103 miniature hydrophone was used. The receiving sensi

tivity in water of the hydrophone was measured with three transducer reci

procity and is shown in Figure 22. (The calibration in the sediment is 

discussed later.) The directivity of the hydrophone in the equitorial 

plane is quoted as ±2 dB at 200 kHz, so it was always orientated in the 

same sense when used for absolute measurements.

Amplification and filtering

The output from the hydrophone was passed to a Brookdeal 9452 Precision 

pre-amplifier with variable gain from 20 - 100 dB. The input impedance 

of 100 M^ in parallel with 20 pF was essentially open circuit for the 

hydrophone with a capacitance of 3.6 nF. The output was passed to a Krohn- 

hite 3100(R) bandpass filter. This was a Butterworth low pass filter in 

series with a Butterworth high pass. In both cases the attenuation was 

3 dB at the cut-off, continuing downwards at 24 dB/octave. The phase 

response was poorer, ±180° for 3 octaves on either side of the cut. Usually
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Figure 21 Transmission loss of the acoustic filter as a function of 
frequency.
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the low cut would be set at 1 kHz to remove extraneous low frequency noise, 

the high cut at 700 kHz to remove any primary energy received by the hydro

phone, or, occasionally, at a lower value when an antialias filter was 

required. Both these instruments were active devices.

Display and recording

The main display instrument was a Gould OS 3500 60 MHz oscilloscope, 

which was used to monitor both the voltage supplied to the transducer and 

the output of the hydrophone-amplifier-filter receiver. Two recording 

instruments were available for the digital recording of the signals, both 

of which were interfaced into the computer. For high (primary) frequency 

work and high signal-to-noise (SNR) ratios, a Datalab DL910 transient 

recorder was used, providing considerable flexibility of sample intervals 

and data lengths. With a high SNR the signal could be averaged in the 

computer with repeated recording. For very low SNR, when this method 

became too time-consuming, the transient recorder was replaced with a H.P. 

3721a  correlator. This instrument had a minimum sample interval of 1 p.s 

(hence an alias frequency of 500 kHz) and would record only 100 samples.

It would, however, hardware add up to 128000 recordings at a rate determined 

by the trigger, meaning that signals could be recorded in otherwise hopeless 

SNR environments.

The output from both instruments could be displayed in addition to 

being recorded on the computer. In the case of single frequency measure

ments the amplitude was measured directly from the display; for pulse 

measurements, the entire signal was recorded for processing later.

Linearity of the reception system

The presence in the water of two signals with a large difference in 

amplitude meant that it was important to establish that non-linearity, in
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the recording system could be neglected. Usually, in non-linear work, 

this problem is dealt with by the introduction of a passive filter between 

the hydrophone and amplifier. In this study, however, the passive filter 

concerned was acoustic, either the artificial butyl rubber one, or the 

natural filter of sediment attenuation.

Non-linearity in the detection system may be identified by the presence 

of the primary beam pattern being superimposed on the expected difference 

frequency beam p a t t e r n . F i g u r e  23 shows this effect clearly, in a beam 

cross-section measured at a difference frequency of 20 kHz, a range of 0.5 m, 

a drive level of 30 V, and 50 dB pre-amplifier gain. The cross-section has 

been measured both with no aoustic filter present, the black dots, and with 

the filter placed immediately in front of the hydrophone, the white dots.

The removal of the filter allows the primaries to reach the hydrophone.

The resulting signal generated non-linearly in the receiving system inter

feres with water generated difference frequency signal: the zone of inter

ference, ±4 cm of offset, is equal to primary beam width at 0.5 m, as can 

be seen from Figure 20.

Figure 23 allows an estimate of the second order sensitivity,**^ T2 (wo), 

of the receiving system. X 2 (m) is defined by assuming the reception to 

have a (weakly) non-linear response to an incoming wave, po(t)cos(m't-kx):

2
T(w',t) = Ti(w')po(t)cos(w't-kx) + T 2 (m *)— [1+cos2wQt] (5.5)

Figure 23 shows the interference of the water generated difference frequency 

signal, Ti(w)p(w) and the contribution of the primaries at the difference 

frequency vi-Q reception non-linearity, %2(wo)po/2. It is convenient to 

measure T 2 referred back to the hydrophone output. With the acoustic filter 

present, the on axis incident pressure is 100 Pa. The +3.5 dB - 5 dB inter

ference implies that



- 81 -

T2(üio^pj_(t)_ ^ 0.5 Ti(w)p(w) (5.6)

At 30 V, drive level po (t) is (from Figure 20) 2.1 x 10^ Pa, and making the 

relevant substitutions, gives:

% 2 (wo) = -258 dB re 1 V/Pa

Referring T 2 (iüo) back to the hydrophone makes it independent of pre-amplifier 

gain. Experimentally, it was found to be a very weak function of amplifier 

gain (±3 dB) up to 60 dB. Above this value it rose rapidly with pre

amplifier gain. For this reason, gains higher than 65 dB were avoided.

The sediment

The sediment used throughout this study was a fine sand supplied by 

British Industrial Sands Ltd., Redhill. Its physical properties are sum

marised in Table 5.1.

Table 5.1 (from ref. 48)

Diameter Deviation Porosity Wet density Specific gravity 
(jz5) (o.) (%) (kg m-3)

2 0.5 43 1946 2.64
(250 |im)

The sand was contained within the smaller of the two tanks in Figure 13.

The dry sand was placed in a pressure vessel (a beer barrel, in fact) and 

this was evacuated. The barrel was then emptied into the sediment under 

water. This procedure ensured the sand was air-free, and using two tanks 

allowed the water level to alter without aerating the sand.

Acoustically, the wet sand was found to be variable in its properties.

A continual problem during the experiments was the uneven settlement of the 

sand, and of the hydrophone "plant" when buried in the sand. To provide as
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uniform and consistent a sediment as possible, each time the sand was dis

turbed, it was shaken for some hours with a 1" vibrating poker of the type 

used to remove air from wet concrete.

The sound attenuation and velocity dispersion were measured using the 

wideband signal generated by a truncated parametric array. The attenuation 

as a function of frequency is shown in Figure 24; the velocity dispersion 

in Figure 25. The scatter of these data gives an indication of the acoustic 

variability of the sand itself. These measurements are of considerable 

intrinsic interest; previous attempts to measure the velocity dispersion 

in saturated sands have failed to find any.^^,^G For this reason, a detailed 

account of the experimental procedure is given in Appendix C.

The solid line in Figure 24, which has displaced +10 dB for clarity, 

shows an absorption of 0.36 dB/X, which was taken to be representative of 

the data. (For the reasons described in Appendix C, no attempt at regression 

has been made.) The solid line in Figure 25, displaced by +0.004 for clarity, 

is the velocity dispersion required by the constraint of wave causality when 

the attenuation is 0.36 dB/X: it is as reasonable a description of the dis

persion as 0.36 dB/X is of the absorption. These two solid lines were used 

in any theoretical description of the sediment.

Hydrophone qàllbratiôn in the sediment

The calibration of the hydrophone introduced the first large uncertainty 

in the measurements in the sediment. Even after shaking the sand, the cali

brations still showed variations of ^ 2 dB due, presumably, to "plant" i.e., 

the local disruption of the sand around the hydrophone. Because of this 

variation, the three transducer calibration**^ was performed with two of the 

hydrophones in the water above the interface, as shown schematically in 

Figure 26. The usual equation for the sensitivity becomes slightly more
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Figure 2 4 The attenuation of the sound in the sediment. (See Appendix C 
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an interface.
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★complicated than usual, as correction must be made for transmission 

through the interface. In passing through the interface a (high

frequency) spherical wave refacts, changing the centre of its 

spherical divergence, and only a fraction gets transmitted. (These remarks 

follow from the derivation of Section 3. ) The plane wave transmission co

efficient at normal incidence is given by equation (2.18) with kz = w/c and 

kg = co/Cg. The spherical spreading correction comes from a more general 

form of equation (3.28) to include the raypath in water. In the notation

of Figure 26, the spherical spreading from water to sediment is 1/(d+s/n); 

from sediment to water 1/(nd+s). These two results may be used to modify 

the reciprocity calculation used in water. Figure 26 has a schematic 

representation of the derivation, resulting in the following equation for 

the hydrophone sensitivity in sediment Tg(w):

,̂ oc ^r (cd+CgS) 2ici) (d/c+s/cg)
i^ (pc+pgCg)^ w%Zg(w) = T ^ 2 —  (5.7)

where it is appreciated that Cg is complex.

The results of the three calibrations, each separated by a reburial of 

the hydrophone, are shown in Figure 27. The scatter around 100 kHz is 

^1.5 dB. In comparison with the calibration in water. Figure 22, the hydro

phone in sediment is marginally less sensitive, but the differences are not 

dramatic.

*There is, of course, the tacit assumption that both reciprocity holds and 
the reciprocity constant remain unchanged in the presence of absorption. 
Short of a model of sediment absorption, there is little alternative.
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- 88 -

CHAPTER 6

Secondary Field Measurements in Water and Sediment

In this chapter, the experimental measurements of the secondary field 

are described. These were designed to test the predictions of the theory, 

in particular that:

(a) the simplified model of the primary field was adequate;

(b) the high incident angle penetration associated with 
parametric arrays was due to the truncation aperture;

(c) this penetration is limited to a shallow region beneath 
the interface by the directivity of the truncation 
aperture ; and

(d) the field very close to the interface is dominated by 
the evanescent arrival.

The ability to truncate the primaries artificially in water using the 

acoustic filter allowed (a) to be investigated independently of the inter

face. In addition, measuring the field in water provided a yardstick for 

the performance in the sediment both with regard to qualitative features 

such as the sharpness of the truncation aperture and quantitative features 

such as the accuracy of the farfield theory.

In the sediment, nearfield truncation theory concludes that the relation

ship between the primary beam incident angle and the transmitted secondary 

field is complicated; indeed, a unique angle of transmission of a para

metric array at finite range is not definable (see Figure 3). A detailed 

investigation of the secondary field would have to include measurements of 

the spatial and angular distribution of the secondary field. Therefore, to 

investigate (b) and (c), the secondary field was measured throughout two 

perpendicular planes in the sediment at fixed incident angles, and over a 

range of incident angles at fixed locations in the sediment.
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Very close to the interface, the possibility of reflections made the 

toneburst experiments ambiguous. The very shallow arrivals were observed 

with both toneburst and pulse measurements to investigate (d) .

The Secondary field in water

The secondary field measurements in water were carried out using the 

geometry of Figure 28. The primary field was truncated using the acoustic 

filter at distance L from the transducer and the hydrophone placed at a 

range P and offset H. The array was driven with a 100 kHz toneburst 

[voltage signal: equation (5.1)], and received signal amplitude was mea

sured directly from the oscilloscope.

The simplest test of the model used to describe the primaries would be to 

measure the on-axis secondary field as a function of range from the trans

ducer with the array unterminated. At large enough ranges, the secondary 

field due to collimated plane waves would grow logarithmically.^^ To avoid 

problems of non-linearity, the only slightly more complicated arrangement 

of having the filter immediately in front of the hydrophone was used {'i.e.,

L = P) , and the results are shown in Figure 29. The measured pressure is 

compared with the "exact" expression, equation (3.13), which also grows 

logarithmically at large ranges .

Up to ranges of 'vO.4 m, the form of the two curves is the same, but 

there is some 1-2 dB difference. Above 0.4 m the secondary pressure ceases 

to grow and the divergence from the theory increases. The > 2 dB agreement 

at lower ranges is consistent with other investigations.^^ Partly re

flecting the gross approximations to the primary field, the error also em

bodies the uncertainty in the primary pressure calibration. It is the square 

of this value which enters the theoretical calculation and introduces an un

certainty of 1 dB. The gradually increasing difference between the two
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Figure 29 The variation of secondary pressure with range. The array
was truncated at a distance L equal to P.-------  : "exact"
theory, equation (3.13); O: experiment.
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curves above 0.4 m is due to the primaries' spherical spreading. Smith 

et by extrapolating Rolleigh's^^ results into the nearfield, would

conclude the changeover between plane and spherical regimes (of the second- 

ary nearfield) occurs at a distance of 0.8 m for this transducer, although 

Humphrey's^^ experiments, in common with the author's, place the secondary 

maximum at a smaller range.

The theoretical expressions in the sediment are strictly valid only 

in the farfield of the array. The equivalent expression in water, equation 

(3.9), was compared with the variation in on-axis secondary pressure from 

an array truncated at 0.5 m. The results are shown in Figure 30. Also 

plotted on the graph is the "exact" result, equation (3.13), and the farfield 

expression. In common with the "exact" result, the measured pressure shows 

a more pronounced spherical decay than the farfield expression, indicating 

that the centre of the secondary sources is closer to the field point than 

the transducer. Not surprisingly, all three curves tend to a similar asym- 

tote; the difference between the measured pressure and the farfield pre

diction at a range of twice the array length is < 1.5 dB.

The behaviour of the secondary beam in cross-section at a range of 1 m 

from the array truncated at 0.5 m is shown in Figure 31. In addition, the 

theoretical farfield, equation (3.9), and Fresnel corrected, equation (3.11), 

expressions have been plotted. Even at this range, the Fresnel correction 

is necessary to predict correctly the beam width of the main lobe; the 

farfield expression overestimates the beamwidth by several degrees. Berktay^° 

introduced the correction for just this purpose.

In the skirts of the beam, the position is more confused. The measured 

pressure does not have the sidelobes which the theoretical curves predict; 

rather, the pressure decreases in smooth steps away from the beam axis. The



- 92 -
65H

QJL_

CL

1 0 ^  range Pm
M0 90 80-5 0 6 07

Figure 30 The variation of secondary pressure with range for a fixed
truncation length L = 0.5 m.--------: "exact" expression,
equation (3.13); —   : farfield expression, equation
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Figure 31 The variation of secondary pressure in cross-section at a 
range P = 1 m for a fixed truncation length L = 0.5 m.
--------- : farfield expression, equation (3.9);--
Fresnel corrected expression, equation (3.11); O: experiment
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location and general pressure level of the steps does coincide with the 

sidelobes of the Fresnel prediction. This behaviour can be accounted for 

by assuming the truncation arrival to be rather smaller than predicted, inter

fering with the transducer arrival, but insufficient to cancel it completely. 

However, the detailed behaviour of the truncation aperture may not be in

ferred from Figure 31. It does give warning that the off-axis behaviour of 

the secondary field in sediment may differ in detail from the theoretical 

predictions.

The secondary field in the sediment

The field in the sediment was measured with the hydrophone buried in 

the sediment. In Figure 3, the geometry of the experiments is shown. The 

relationship of the transducer to the hydrophone is uniquely described by 

the four space co-ordinates x, y , L, d and the tilt co-ordinate a (equal to 

the incident angle of the primary beam on the interface) . For all the ex

periments in the sediments, L was fixed and equal to 0.2 m.

The hydrophone was buried using the procedure described previously for 

its calibration. The interface was levelled with a horizontal metal scraper 

attached to the gantry which was lowered to the interface and traversed back 

and forth until the boundary was flat. The final traverse was performed 

using the computer driven stepping motor at a very low speed, which ensured 

a plane finish. The surface finish of the interface was checked by shining 

(reflected) light across it at a very acute angle. Any imperfection could 

be identified easily by the shadow it threw. Following this procedure, the 

hydrophone was located acoustically with the array normally incident on the 

boundary.

The secondary field in sediment at fixed primary incident angles

In these experiments, the field was measured in two vertical planes 

through the sediment; one coincident with the beam axis, and the second
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perpendicular to it. Because of the obvious difficulty of moving the 

hydrophone through the sediment, the pressure variation throughout the plane 

was synthesised in the following manner.

The hydrophone was buried at a suitably large depth (usually 'v20 cm) 

with its equatorial plane set vertically. The array incident angle was set 

to the desired value and the field from a 100 kHz toneburst measured at the 

hydrophone. The range x or offset y was varied by moving the transducer, 

rather than the hydrophone, and in this way the secondary field anywhere in 

the horizontal plane d = constant could be measured. A known thickness of 

sand was then removed from the interface, which was then scraped flat again 

in the manner described, and the transducer was lowered by the depth of 

sand removed to maintain a constant height above the interface, L = 0.2 m.

The measurements could then be repeated throughout another plane d = constant. 

By the removal of a number of layers of sediment, a picture of the pressure 

variation in vertical planes through the sediment could be built up, and used 

to draw pressure contour maps for each plane.

It has already been shown that pressure measured by the hydrophone varies 

with each reburial, introducing an uncertainty of ^1.5 dB at 100 kHz. Ex

perience showed that the scatter of pressure measurements at non-normal 

incidence was rather greater than this: 2 - 2.5 dB. Figure 32 shows the

pressure measured for the traverse x = 0.2 - 0.7 m, y = 0 and d = 0.1 m, with 

a beam incident angle of 50°, after three reburials of the hydrophone, and it 

is seen that the scatter is 2 - 2.5 dB. There are two possible causes for 

this increase in uncertainty over that due to the hydrophone : scattering

from an imperfect interface; scattering of the beam from within the sand. 

Either of these is possible, but in view of the exhaustive efforts to produce 

a good quality finish at the interface, the latter is considered to be more 

likely. Much time was spent trying to locate the cause of this scattering 

without much success; the use of the concrete poker served to minimise its
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Figure 32 The secondary pressure in sediment along the line y = 0,
d = 10 cm with an array incident angle of 50°, at 100 kHz, 
Each curve corresponds to a separate reburial of the 
hydrophone.
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effects. The acoustic variability of sediment has caused other workers 

p r o b l e m s . A t  any rate, it is important to appreciate that all the suc

ceeding graphs have an implicit variability explicit in Figure 32, and this 

may be regarded as the limit of the approximation of the sediment as homo

geneous .

Subcritical incidence: a = 50°

At a subcritical angle of beam incidence, a = 50°, the pressure was 

measured in the two planes y = 0 and x = 50 (see Figure 3 for the geometry).

The contour plots of the pressure contours throughout the entire planes were 

built up from the traverse measurements in the following manner.

The location of the traverse pressure variation's intersection with a 

5 dB contour interval was recorded. In view of the unpredictable variation 

of Figure 32, 5 dB was chosen as the contour interval; variations of this 

magnitude should be significant (in the statistical sense). These locations 

were then mapped onto graph paper and the contours drawn by hand. (The 

position of a on the contour plot is thus recorded data; the position

of the contours is an interpretation.)

Figure 33 shows the pressure contours in the y = 0 plane, and Figure 34 

shows the pressure contours in the x = 0.5 m plane. These may be compared 

directly with Figures 5 and 6 which were calculated with the correct values 

of the relevant constants. The agreement throughout is to within 2.5 dB; 

the slightly wavy quality of the experimental contours is the expected 

consequence of the problems of settlement discussed earlier. The theoretical 

prediction that the array behaves similarly to a conventional array at sub

critical angles of incidence is correct. The "transmission angle" seen in 

Figure 33 is the Snell's law angle; the beam is slightly asymmetric top 

bottom, the width of the beam is little changed by the interface, as comparison
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Figure 34 The measured secondary pressure contours [db re 10“® Y Pa] 
in the sediment in the plane x = 50 cm when the array 
incident angle was 50°. O: measured location of a 5 dB
contour.
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of Figure 34 with Figure 31 shows. In addition, the farfield expressions 

diverge only slowly from the measured values as the field point approaches 

the truncation, so that, as a first approximation, the farfield calculation 

may be used close in to the truncation.

Postcritical incidence: a = 70°

The pressure was measured in the planes y = Om and x = 0.7m at a post- 

critical angle of primary beam incidence, a = 70°, and contour plots drawn 

in the manner described previously (see Figure 3 for the geometry) . The 

pressure contours in the plane y = 0 m are shown in Figure 35, the contours 

in the plane x = 70 in Figure 36. These figures may be compared directly 

with Figures and

Qualitatively, the comparison is good, particularly in the following 

aspects :

(i) in the axial plane. Figure 35, the main region of pene
tration is limited to an angular fan, centred at the 
truncation, bounded by the interface and a line dipping 
at 25° (say) to the interface;

(ii) behind and below this line the contours are slowly varying 
and dip only very gently into the sediment;

(iii) the main "beam" dips at an angle of 75° to the vertical;

(iv) close to the interface the contours turn horizontal, and 
maxima and minima appear at shallow depths;

(v) the "beam" cross-section. Figure 36, is strongly top- 
bottom asymmetric ; and

(vi) the "beam" width is narrower than in the subcritical case.

Glucintitatively, the agreement is poorer. At depths greater than 0.15 m 

the contours become confused and the theory provides only the roughest esti

mate of their amplitude. At more shallow points in the plane, the agreement 

is rather better, but generally only to within ^3-4 dB. Once again, though.
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Figure 35 Measured secondary pressure contours {dB re 10“  ̂ Y Pa] in
the sediment in the plane x = 75 cm when the array incident 
angle is 70^. O: measured location of a 5 dB contour.



- 102 -

these remarks hold good for field points well inside the theoretical limits 

for the validity of the farfield expressions [equations (3.29)-(3.32)].

The agreements, (i)-(iv) above, are enough to demonstrate that the 

theoretical model is substantially correct. The slowly varying contours 

behind the truncation are associated with the transducer arrival. They are 

slowly varying because the transducer is some way distant; they are nearly 

horizontal because the incident angle associated with the transducer (see 

Figure 3) is well off the array axis. As the field point comes forward of 

the truncation, so the truncation arrival starts to interfere with the trans

ducer arrival. The detail of the sidelobes is different in theory and 

practice; but this was anticipated from the results in water. However, the 

major lobes are correctly positioned. A comparison of Figure 31 (the beam 

cross-section in water), with Figure 35, shows how the importance of the 

truncation arrival is emphasised relative to the transducer arrival by the 

differential "spherical spreading" at the interface. In the former case 

it was not large enough to cause sidelobes, in the latter it is big enough 

completely to cancel the transducer arrival.

The asymmetry of the beam cross-section in Figure 36 serves to emphasise 

the remarks made in the theoretical discussion concerning the "incident" 

angle of the truncation arrival; the top half of the beam has been removed.

It is because only the lower half remains that the beamwidth has been re

duced by the interface.

The contours turn horizontal as the hydrophone approaches the interface, 

and interference patterns are found at shallow depths. These can be 

ambiguously interpreted. Close to the surface, hydrophone/surface/hydrophone 

reflection paths may become important. Certainly the interference maxima 

and minima seen in Figure 35 could be caused by just such reflections. This 

ambiguity could be removed if the arrival times of the interfering components
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could be established, and later in the chapter an experiment which does just 

this is described. The noticeable feature of the growing pressure as the 

field point approaches the surface is that the theoretical prediction grows 

faster from a shallower depth. This is easily ascribed to the finite width 

of the hydrophone, effectively integrating over a depth of cm.

The secondary field in sediment with varying Angles of beam incidence

The field in sediment as a function of beam incident angle a was investi

gated at fixed locations in the sediment at a difference frequency of 100 kHz. 

The geometry of these experiments is shown in Figure 37. Three locations 

were chosen so that the "line-of-sight" to the shallowest depth, 2 cm, was 

well postcritical (74°), and the two other locations were chosen so as to 

examine how the field changed with depth. Figure 39 shows the results at 

the three depths d = 0.1 m, 0.05 m and 0.02 m, and range x = 0.75 m (y = 0 m) , 

together with the theoretical predictions from equations (3.21) and (3.25).

In the case of 2 cm burial, the theory has only been plotted up to a = 68°; 

beyond this angle the field can in no respect be described as 'farfield'.

The figure shows how, as the field point becomes shallower, the maximum 

pressure occurs at higher angles of incidence, and in addition, the pressure 

at lower angles of incidence is reduced. In fact, as the depth decreases, 

the whole weight of the pressure distributions moves towards higher angles 

of incidence. This is a very neat demonstration of how, as the field point 
gets closer to the truncation, the transducer arrival is reduced by the

effects of "spherical spreading" and the truncation arrival is increased.

The asymmetry of the main beam is a combination of this effect with the in

creasing secondary source volume as a increases. However, although in all 

cases the maximum pressure is postcritical, it is important to stress how 

shallow the effects are. The variation at 10 cm depth is not much different
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Figure 37 The geometry of the three hydrophone locations for the 
fixed location experiments.
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Figure 38 The geometry and associated raypaths for the pulse experiment 
to distinguish the evanescent arrival.
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from a conventional beam. Only at the shallowest depths, where the spheri

cal spreading advantage of the truncation arrival is not offset by its 

directional disadvantage, is there any real gain over a conventional beam.

Pulse investigation of the shallow arrivals

Theoretically, the evanescent arrival is expected to be dominant near 

the interface and the single difference frequency experiments produced 

evidence that this was indeed the case. The results were ambiguous though, 

because reflections between the hydrophone and the interface could have 

(somehow) been responsible for the observed effects. To remove this am

biguity, an experiment with short pulses was carried out, so that various 

arrivals could be identified by their arrival time.

The geometry of the experiment is shown in Figure 38. It was chosen so 

as to accentuate as far as possible the delay between the Snell's law arrival 

and the assumed evanescent arrival. The hydrophone was buried at x = 0.89 m, 

y = 0, and d = 0.02 m and the transducer was, as previously, 0.2 m above the 

interface. The array was driven in the pulse mode ; the voltage waveform 

applied to the transducer was the form in equation (5.3) . The waveform 

arriving at the hydrophone was recorded using the correlator for beam in

cident angles 60° to 90° in 0.3° increments.

In Figure 40, these traces are shown as a stacked plot. The only 

theoretical prediction that may safely be made is the arrival times of the 

pulses. The asymtotic solutions are not valid this close to interface; 

nor this close to the truncation; nor can they be used to predict the be

haviour of wideband signals. Therefore, the arrival time diagram shown 

above the traces in Figure 40 [calculated from the stationary point 

equations (3.22) and (3.24)] makes no prediction as to the amplitude of the 

various arrivals, or even their existence.
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Figure 40 The pulse arrivals in the sediment at the location shown
in Figure 38 as a function of beam incidence angle, together
with the theoretically predicted arrivals.  ------ : Snell's
law arrivals from the transducer and truncation:  ---------- :
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It may help in interpreting this figure to review Figure 38, which has 

a diagram of the relevant raypaths. A useful rule is that arrivals as

sociated with the transducer are stationary in time, arrivals associated 

with the truncation have a move-out associated with its changing geometry.

In Figure 40, there are two arrivals which are stationary in time. The 

first, at 500 |is, is rather weak and dies out as a approaches 70° of incidence 

The second arrival, at 622 |is, is barely visible at 60° of incidence, but 

grows to a maximum at 78°, dying away as a tends to 90°. In addition to 

these two stationary arrivals is a third, which breaks away from the first 

arrival at 68°, and wings across the second arrival at 78°, where it, too, 

has a maximum. It then rapidly dies away, so that, by 83°, it has dis

appeared.

Comparison with the arrival time diagram allows easy recognition of 

the arrivals. The first and second arrivals are the Snell's law and 

evanescent arrivals from the transducer; the third arrival is the Snell's 

law arrival from the truncation. This interpretation is additionally sup

ported by the amplitude information. The first arrival reflects the well- 

off-axis directivity of the transducer aperture. The evanescent arrival 

reflects the directivity of this aperture through its main beam, and has 

its maximum when the beam axis coincides with the evanescent raypath {-i.e., 

a = 0e) . The truncation arrival may be expected to have its maximum when 

the truncation is just above and in front of the hydrophone. But this is 

(almost) when a = 8g, so this maximum should conicide with that of the evan

escent arrival, which it does. Once the truncation has passed overhead of 

the hydrophone, its directivity ensures the rapid demise evident in Figure 40. 

[There was a possibility that, with the hydrophone this shallow, primaries 

could be responsible for this maximum through reception non-linearity. How

ever, even at normal incidence, the primary level would be -13.5 dB down on
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those in water. From the previously estimated second order sensitivity 

T2(ü)o) , this would generate an equivalent secondary pressure some -33 dB 

relative to the levels in Figure 40.]

There does not seem to be an evanescent arrival associated with the 

truncation aperture. As discussed in Appendix B , there are good theoretical 

grounds for assuming that this arrival would be reduced in amplitude relative 

to the transducer arrival. It is hard to make definite remarks, because of 

the difficulty of the mathematics.
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CHAPTER 7 

Discussions and Conclusions

The various theoretical and experimental results described in earlier 

chapters have each been followed by a discussion of their particular sig

nificance. In this contending chapter a review of the main results and 

conclusions is given, their limitations and future extension are considered, 

a retrospective eye is cast over previous work in the field in the light of 

the present theory, and the chapter is completed with some general conclusions

Review of the present work

The aim of this investigation was two-fold. Firstly, to provide a 

theoretical explanation of the properties of a parametric beam penetrating 

a water sediment interface, particularly at postcritical angles of incidence 

where its behaviour differs sharply from that of a conventional beam. Sec

ondly, to compare quantitatively these theoretical predictions with the 

measured field in sediment so that the theory's practical usefulness can be 

tested.

The theoretical development started with the general integral solution 

in an infinite medium to Westervelt's scattering equation, equation (1.1).

This integral was manipulated into a form which allows the inclusion of 

an arbitrary source distribution, and which was extended quite naturally 

to cover the presence of the interface and the sediment. A general, but 

formal, solution to the problem followed in the form of a double inverse 

Fourier transform, whose kernel, the plane wave spectrum, remained to be 

calculated for any particular case.
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Unlike previous theoretical descriptions of this problem, in this study 

the effect of the interface on the virtual source distribution was explicitly 

acknowledged, and the problem of calculating the plane wave spectrum of 

the modified, or truncated, source volume fell naturally into two cases: 

depending on whether the primary field ( and hence virtual source volume) 

was incident upon the interface in its nearfield or its farfield. Having 

made this calculation, the spectrum was substituted into the inverse Fourier 

transform and the high frequency farfield in the sediment was calculated by 

stationary phase and steepest descent integration.

In the case of nearfield truncation, the resulting integral for the 

plane wave spectrum was simple enough to be integrated explicitly, and a 

detailed picture of the secondary farfield could be given. The field in 

sediment was found to be equivalent to two apertures, a circular one lying 

at the transducer face, and an elliptical, phase shaded aperture, which has 

no analogue in the primary field, lying at the intersection of the primary 

beam and the interface.

At a fixed subcritical angle of incidence, the secondary field in sedi

ment is similar to that of a conventional beam. However, the maximum pressure 

at a particular location in the sediment does not occur when the primary beam 

is coincident with the Snell's law path from the transducer to that point; 

but at an angle of incidence rather greater than the Snell's law angle. This 

effect is caused by the increasing volume of secondary sources with beam in

cident angle, and by the decreased spherical spreading from the truncation 

aperture to the field point.

At some angle of primary beam incidence angle sufficiently greater than 

critical, the secondary field is equivalent to the combination of the arrivals 

from the two apertures, and results in a deeper penetration than in the conven

tional case. The directivity of the truncation aperture becomes less
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favourable to penetration as the primary beam incidence angle becomes large, 

so that a small aperture is required to maintain penetration at high primary 

beam incident angles.

The case of farfield primary truncation is studied next; but the com

plexity of the integral forms for the plane wave spectrum make it impossible

to give such a detailed description of the secondary farfield as was possible
/levin the case of nearfield primary truction. However, it is possible to 

determine that the secondary farfield will essentially consist of contributions 

from the nearfield of the primaries and from the truncation. An asymtotic 

solution to the plane wave spectrum of the truncation contribution is obtained 

and used to demonstrate an important conclusion; the behaviour of the para

metric array will not differ qualitatively from a conventional array if the 

truncation of primaries occurs at a range from the transducer exceeding 

Roüjo/w. This limit is that already noted by Mellen and Moffet^^ to mark 

the point at which the secondary field in water may be regarded as spherical 

waves.

This concludes the theoretical investigation and it is followed by a 

description of the experimental investigation of the secondary field in sedi

ment from a nearfield truncated parametric array. The qualitative agreement 

between the results of these experiments and the theoretical predictions is 

very good; so good that the physics of postcritical penetration of para

metric arrays no longer seems in doubt. There is, especially at high angles 

of primary beam incidence, quantitative disagreement in detail. These dis

crepancies are explained by the approximations made to the primary field in 

its nearfield, and by the considerable acoustic variability of the sediment. 

These are differences in detail only; the broader characteristics of both 

sub- and post-critical penetration are well accounted for.
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At subcritical angles of incidence, these characteristics are similar 

to a conventional beam. At postcritical angles of incidence, the field in 

sediment is determined by the relative importance of the transducer and 

truncation apertures. The strength of an arrival from an aperture depends

on the directivity of the aperture, and the absorption, spreading and re

fraction loss along the raypath. The relative importance of the two arrivals 

is therefore a strong function of geometry. As a result, at postcritical 

angles of incidence the secondary field in sediment may be divided into three 

regions:

(1) behind and below the truncation the field is due almost 
entirely to the transducer, and is similar to the field 
of a conventional postcritical beam with slowly varying 
horizontal contours;

(2) in front of the truncation and lying within an angular
fan centred on the truncation, the field is due to the
interfering arrivals from the truncation and transducer, 
giving a more oscillatory higher pressure contour than a 
conventional beam; and

(3) very close to the interface, the field is dominated by the 
evanescent arrival. This region is bounded on its lower 
side by interference minima and maxima indicating the 
Snell's law and evanescent arrival have equal magnitudes.

The interpretation of these shallow maxima and minima was confirmed by 

the short pulse experiments which time resolved the secondary field into 

its components. The arrival time of the Snell's law and evanescent waves 

was in good agreement with the theoretical prediction based on the steepest 

descent calculation.

Limitations and future work

The major limitation of the theory presented here is the obvious one: 

it has not been possible to make quantitative remarks concerning the nearfield



- 114 -

of the secondary field. This is not surprising. As was noted in Chapter 4, 

the considerably simpler nearfield problem of a piston radiator still awaits 

a solution. It is an omission of some importance, however, because this 

region is just that region which previous investigators were, and future 

sonar users may be, interested in. Predicting the pressure in this region 

would seem to be a numerical problem. The refraction problem close into the 

interface would make this a calculation of some size, considerably more 

complicated than Zemanek's^® equivalent calculation of the nearfield of a 

piston radiator.

Time has prevented an experimental investigation of the case of farfield 

truncation* and there are no reports in the literature of such an investigation, 

This is a pity, because the present theory is only able to calculate the 

pressure in the sediment when the result is of little interest, -i.e., when 

the range of the truncation from the transducer exceeds Rowo/w. The com

plexity of the integrals would make the calculation of the pressure variation 

near the interface when the truncation lies between Ro and Romo/w an unwieldy 

task.

It is the author's suspicion that the significant range of truncation 

distance is considerably less than Rowo/w. This comment is based on the 

observation that stationary phase approximations, on which the limit Rowo/w 

is based, often work well outside their theoretical range of validity. AS 

evidence for this, compare Figures 33 and 5. The stationary phase approxi

mation, Figure 5, is seen to produce tolerable estimates of the measured 

pressure. Figure 35, well into the nearfield of the array. This behaviour

is helped by the long wavelength of the secondary field in comparison with the
*
Such an investigation is in hand at the time of writing. It is hoped the 
results will be made available in the open literature at some later date.



- 115 -

truncation aperture dimensions. Confirmation of this suspicion is well 

suited to an experimental investigation in which the variation of pressure 

with incident angle is observed as the value of R qW o/w is changed.

This study has not concerned itself with the reflected secondary field, 

although the formal development of the farfield solutions lends itself just 

as easily to the reflected field as it does to the transmitted field. It 

has not been pursued because the primary field may no longer be dealt with 

simply. The reflected primary may no longer be ignored, and in addition, 

if the sediment is very lossy, or the incident angle postcritical, the 

secondary sources generated after the primary reflection will not be co- 

phasal with secondary sources generated by the incident primaries. The 

primary source volume is further complicated by the splitting in reflection 

of a postcritical primary beam into reflected and head waves, each generating 

its own secondary sources. In comparison, the account of the field in the 

sediment presented here is quite straightforward.

This simplicity has arisen because the truncation has been assumed sharp. 

With the particular ratio of primary to secondary frequencies in this study, 

this is a good approximation, as Pace and Ceen's experiments demonstrate.

At subcritical angles of incidence modifying the source volume to include 

an exponentially tapered transmitted primary beam (and, if desired, a 

reflected beam) would present no new theoretical difficulties. It would, 

however, be difficult to extend the present analysis to include a near- or 

post-critical transmitted primary beam, because it would no longer be des- 

cribable by some simple geometric configuration.

Review of previous work: the secondary nearfield

In Muir et aZ.'s experiments,^ the hydrophone was buried very close to 

the interface, which placed it in the nearfield of the truncation aperture.
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As has just been noted, the present theory does not cover this case, except

at very high incidence angles and frequencies. Yet this lack of an exact

theory does not preclude some general remarks concerning the secondary nearfield, 

and earlier experimental and theoretical work provide a useful focus for this 

discussion.

Figure 41 is taken from Jarzynski and Flax's numerical account^? Qf the 

penetration of a water sediment interface by a parametric array. The solid 

line shows the pressure measured at a shallowly buried hydrophone, with a 

geometry similar to that shown in Figure 37, from a parametric array incident 

on the boundary in its primary nearfield. (Jarzynski and Flax's second

reference is ref. 3 in this thesis.) The dashed line is calculated on the

assumption that the virtual source volume may be considered a line array. The 

calculated pressure differs from the measured pressure in three ways: the

position of the main peak is misplaced by -4° of grazing angle, (grazing 

angle = 90° - incident angle) ; the minor peak at a grazing angle of ^26° 

in the measured pressure is entirely absent from the theoretical calculation; 

the maximum pressure levels shown in the table above are overestimated by 

9 dB. Comparison of this figure with Figure 39, which shows the result of a 

similar experiment at three different depths, makes it immediately apparent 

that all three errors can be attributed to the line array approximation.

The minor peak in Figure 41, rather arbitrarily assigned by Jarzynski 

and Flax as being due to attenuation, is recognisable as the main beam, and 

the main peak as a sidelobe whose importance is emphasised by the closeness 

of the truncation aperture. Acknowledging a finite aperture in the calcula

tion would reduce the importance of the sidelobe both absolutely and relative 

to the main beam. The phasing of the aperture would also tend to reduce the 

angle of incidence at which the peak pressure occurs. The earlier discussion 

(Chapter 3) of the high angle nearfield emphasised how irrelevant to the total
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TABLE I. Measured and calculated peak levels of the dlfference-frequency sound in the sand sedi
ment. Also Included are values of the array grazing angle at which the sound peak occurs, and the 
f re q u e n c ie s _ and pressure levels .  of the prim ary beams.

/ .  / .  
(kHz)

P* P. 
(dB re iPPa)

Peak pressure level 
(dBre IMPa) A rray  grazing angle

Measured Calculated Measured Calculated

210 205 214 215 140 143 15.5 13.3

205 195 215 214 143 146 16.0 13.6

210 190 214 213 137 146 15.5 13.6
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FIG. 3. Sound pressure In the sand sediment in s o n lf le d  by a
parametric array. --- : experimental data of Ref. 2;---- "
calculated values.

Figure 41 [From Jarzinski and Flax, J. Acoust. Soo. .4m.,, 1978, 62^(5), 1365.]^^ 
This figure compares Muir’s^ experimental curves with Jarziniski 
and Flax's numerical calculations based on a line array model of 
the primaries.
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field the closeness of the truncation aperture is if the sources are suf

ficiently out of phase. The phase difference across the aperture increases 

with incident angle: thus, the predicted maximum pressure of an array with

finite aperture will occur at a smaller incident angle than for a line array.

These arguments, which account for the differences between the measured 

and predicted pressures in Figure 41, are strictly only applicable to the 

farfield. Directivity, for example, is not meaningful in the nearfield. It 

is clear from this discussion, however, that qualitatively the behaviour of 

the nearfield may be understood in these terms. We are no doubt helped by

the characteristic low value of kR for parametric arrays.

The tendency of the truncation aperture to reduce the angle of incidence 

at which the maximum transmitted pressure at a particular location occurs 

has also led to what I suspect is the incorrect identification of beam dis

placement. The phenomenon of beam displacement is shown in Figure 42, 

which is taken from Muir et the paper used to introduce this thesis.

The displacement is the discontinuous horizontal shift of the axis of the 

beam between incident and transmitted beams at the interface. The authors 

report a displacement of "approximately one foot" and measure the velocity 

of the beam over the displacement to be the same as the compressional wave 

velocity in the sediment.

This displacement is half a secondary beam width. The experimental 

measurements of Figure 35 also appear to exhibit a shift of similar mag

nitude : if the "main beam" is extrapolated back to the interface, it inter

sects at around x = 60 cm. However, these measurements are consistent in 

the farfield with the present theory, which explicitly assumes the dis

placement to be zero. In the farfield at least, this shift may be explained 

by virtue of aperture phase alone.
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Scale 50 cm
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Figure 11. Displacement and half power angular response limits of the beam at the interface.

Figure 42 [From Muir, Horton and Thomson, J. Sound Vi-b. y 1979, 6^(4) , 539.
This figure illustrates the nature of displacement.and is scaled 
to agree with the half power measurements of Muir et at.

04,

c • • n
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FIG. 8. Constant pressure amplitude curves in the plane of incidence

Figure 43 [From Tjotta and Tjotta, J. Acoust. Soc. Am. y 1981, ̂ ( 4 ) ,  998.]
This figure shows the pressure contours in sediment due to a phased
shaded elliptical spot lying between C = ± 6, 'i.e. y C = 0 is the
spot centre. The apparent "displacement" is quite clear.
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Some insight into the behaviour of the nearfield may be gained from 

Tjotta and Tjotta's study  ̂of a phase shaded elliptical aperture, briefly 

reviewed in the introduction. As noted in Chapter 3, this aperture has 

many similarities with the truncation aperture of the present theory, pro

vided the cross-sectional radius of the secondary beam in water is replaced 

with the transducer radius. Figure 43 shows the calculated pressure contours 

in the vertical plane in the sediment containing the array axis. The centre 

of the primary beam is incident at ç = 0; the arrow incident at ç = 6 marks 

the edge of the secondary incident beam. In this case the beam axis again 

appears to be displaced by at least half a beam width. (The strange be

haviour of the contours at Ç < 5 is due to the parabolic approximation used

by Tjotta and Tjotta, which anticipates zero wavefield in this region.)

Tjotta and Tjotta's theory also explicitly excludes displacement* by virtue 

of the treatment of the boundary. These results, too, may be explained by

aperture phase alone. In summary, the evidence for the displacement of a

narrow beam on transmission is, at the least, ambiguous; and the use of a 

parametric beam, truncated by the interface in its primary nearfield, to 

investigate the phenomenon is likely to confuse, rather than clarify, the 

issue.

Conclusions

The purpose of this project was theoretically and experimentally to 

investigate the penetration of parametric beams into sediment and in parti

cular, to understand the circumstances in which the parametric field in 

sediment differs from that of a conventional beam.

*Tjotta and Tjotta do actually refer to the shift seen in Figure 43 as "dis
placement". This is loose use of the terminology. Here, and in references 
3 and 7 it is used in the precise sense defined by Brekhovskikh. The dis
tinction has importance. In this more precise sense "displacement" refers 
to behaviour inexplicable in terms of geometrical optics.
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The field from a conventional beam obeys Snell's law. In order to 

penetrate the sediment, it must have an incident angle less than critical, 

and when the incident angle is near critical, the transmitted beam suffers 

severe refraction loss. For this reason, a conventional beam has difficulty 

in insonifying regions in the sediment which lie at large horizontal distances 

from the source. In contrast to this behaviour, when a parametric beam is 

incident on a water sediment interface, the maximum pressure at large hori

zontal distances from the source occurs at angles of beam incidence greater 

than critical. The characteristic features of a parametric beam are its 

narrow beamwidth and distributed source volume.

The results presented in the thesis make it clear that the unconventional 

behaviour of parametric beams is due to the extended distribution of virtual 

sources above the interface. The truncation of the source distribution gives 

rise to a truncation aperture lying at the interface, and this aperture, which 

has no analogue in the conventional case, provides an additional path by which 

energy may cross the interface. It is this additional contribution to the 

field in the sediment which gives rise to the anomalous postcritical be

haviour of parametric beams.

It is not sufficient merely to have secondary sources close to the inter

face in order to produce high postcritical pressures in the sediment. The 

source must also be suitably phased. Too large a phase difference across 

the truncation will result in poor penetration. When the array is truncated 

in the nearfield of the primary beam, this phase difference may arise as 

the result of too high an incident angle. If the array is truncated in the 

farfield of the primaries, this phase difference results from the spherical 

spreading of the primaries. At truncation ranges greater than W q/o), the 

spherical phase lagging of the virtual sources is sufficient to prevent post- 

critical penetration. Increasing the secondary frequency will accentuate
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phase differences which result from the temporal and spatial distribution of 

the virtual sources. Thus: narrow primary beams aid penetration; narrow

secondary beams restrict it.

The field in sediment from a truncated parametric array is 

complicated. When the primaries are nearfield trucated at the interface, 

the field in the sediment results from the interference of arrivals from 

transducer and truncation, giving rise to rapidly oscillating pressure 

contours. The amplitude of the arrivals from each end of the volume is 

a function both of the directivity of each aperture, and the refraction loss 

along each path. The refraction loss is a strong function of angle at large 

angles of transmission, so that the secondary field varies strongly with 

depth. As the truncation moves into the farfield of the primaries, so the 

importance of the truncation arrival is diminished, together with, it is 

expected, the complicated interference pattern; but only at the cost of 

reduced postcritical penetration.

The complicated nature of the secondary field also makes it difficult 

to provide useful non-dimensional guides as to its performance. This is 

partly ture of parametric arrays in general; Mellen and MoffetJ?’̂ required 

three dimensionless constants to describe the secondary farfield in water.

It also reflects the difficulty in non-dimensionalising the depth/angle/ 

secondary wavelengths which are so important to the field in sediment.

In his review of the applications of parametric beams to underwater 

s onar,Konrad remarks that the good penetration and high resolution, both 

spatial and temporal, of parametric beams may make sub-bottom profiling their 

most important task. They have certainly been used very successfully at 

normal incidence where their wide bandwidth makes them particularly useful.
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The results in this thesis undoubtedly have helped to understand 

the behaviour of parametric beam 'sub-bottom', and to provide expressions 

to calculate their field under certain restrictions. However, the dif

ficulty in providing a wider quantitative picture, or providing general 

rules to achieve certain specifications, makes Konrad's prophesy no more 

certain. It remains to be seen whether a successful application will be 

found.
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APPENDIX A

Details of the Asymtotic Solution to Equation (3.15)

In the following discussion those elements of the asymtotic solution 

to equation (3.15) which are in addition to the published discussions^^^^ 

of the point source problem are detailed.

The discussion will be limited to the first of the two terms in the 

integrand of equation (3.15), bearing in mind that a similar description 

applies to the second. Denoting this term l|, from equation (3.15),

7T/2 + ioo 2 ttJ B(0)d0 y*C(0,5z()D(0,<Ig = I B(0)d0 / C(0,5z()D(0,9()e"^^ ®dçzi (A.l)

where comparison with equation (3.15) allows B(0) and C(0,çz() to be defined. 

The ^ integral in equation (A.l) can be viewed as a complex integral with

the contour running along the real ^ axis from O to 2ir in the complex (A

plane. Noting that along this contour the phase of the exponential is 

real a stationary phase integration over ^ is performed.

D(0,^) has oairs of simole ooles lyina at ± + mir, imaginary, 

m any integer. As 0 a, ^ O, reaching O when 0 = a. The phase has 

two stationary points + it on the contour given by

= tanrl(x/y) (A,2)

There will be occasions, therefore, when a stationary point will be 

close to one pair of poles of D(0,çz(), and a straightforward application of 

the stationary phase approximation would be incorrect, because D(0,^) would 

not be slowly varying in the vicinity of To deal with this problem

D(0,g() is factorised in the following manner
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7r/2 + i«> 2ïï
"ik 0 sin 8

The function in square brackets in equation (A.3) is now a slowly 

varying function. Making the standard stationary phase approximation 

equation (A.3) becomes,
%

TT/2 + i«>
Ig ~ f B|8)C(do,8)D(dQ,8) V  e-ik*(^o)sin8^g _

J
0

(A.4)
+ 00

I -is2 -iS%
® ® ds(s-Sp) (s+Sp)

with

which integrates to (see reference 27, page 240). 

Tr/2 + i<»

/ (0 )(0 ) 2
B(8)C(^o,8)D(^o,8) ° ^------ E- iïïe P . '

2>Sp

[erfc (  ̂is ) - erfc ( + is )] P P

for each stationary point.

The contributions from each stationary point may be combined into one 

by extending the 6-contour to run from -m/2-i™ (instead of O) to n/2+i™. 

Finally, in connection with the integral note that if is large,

the error functions may be replaced by their asymtotic expansion
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-z2eerfc (z) , large z (A.7)
/  TTZ

and equation (A.6) may be manipulated into the form shown in equation (3.17) 

The 6-integral may now be written 

•iï/2+i“
r -ikG(8,do)

Ig ~ I [E(e,5(Q)D(e,i!i^) («(q - «ip) W o  + üip)) ^

-n/2-i™

where comparison with equation (A.5) allows E(8,^g) to be defined.

While deforming the contour of equation (A.9) into that of steepest 

descent any contributions from singularities of the integrand must be 

included. Apart from the branch cut due to the radical (n^-sin^8)^, which 

can be shown^^ to have no contribution, the integrand has a branch cut due

to the term k̂ _ in E(8.^) and a d o  le due to

The branch cut can be ignored because J^(kj-R)/k^ is a svmmetric

function of kj- takina the same values on either side of the cut. The

Doles of D(6,^), which lie symmetrically about the real 8 axis, are 

negated by the zero's of ç̂ q ~ and + ̂ p. The term in brackets is 

thus a smoothly varying function of 8 and may be removed from the integral 

in the steepest descent approximation. is a function of 8 but not (Aq

and has a simple zero at 8 = a on the real 8 axis. When the contour is 

deformed, the residue from this pole must be included, but it can be shown 

that it cancels with the residue from the truncation aperture term.

With these preliminaries completed, the contour is deformed and 

together with the substitution

s= = ^ ^ " ( 8 o , d o ) ( 0 -  Go)^ (A'9)

d8 (A.8)
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the integration of (A.8) results in

(A.10)
-̂ikO (0o/9̂ o)

If 0Q is not close to a the error functions may be replaced with 

their asymtotic expansion and equation (3.21) results.

As 0^ -> a and -> O, the asymtotic solution equation (A. 10) tends to 

the residue at 0 = a and the two contributions from each end of the array 

cancel exactly. In this case the alternative form equation (3.8) for the 

plane wave spectrum is used in equation (A.l). This is correct in those 

regions of the 0 and ^ planes that contribute to the integral, i.e., around 

0Q and In this case there are no problems with additional singularities

and equation (3.2 5) results. Thus, provided the plane wave spectrum is put 

in a suitable form, its singularities do not contribute to the integral.
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APPENDIX B

The Contour of Steepest Descent

The purpose of this appendix is to discuss the contour of steepest 

descent associated with the integral

iT/2+i°°

I = I F(8)e"^k*(G)aQ (B.l)I
-'ir/2-i«>

where the phase 0(8) is given by

0(6) = Rsin0 + L C O S 0  + d(n^-sin^0)^, (B.2)

and in particular, what happens when:

(a) R becomes large;

(b) E O y and then

(c) d 0,

The most detailed published discussion of this contour is given by 

Gerjouy in the u = sin0 p l a n e . T h e  description of the contour is 

simpler in the 0-plane; it is in this plane that this discussion is framed. 

Its derivation is essentially similar to that of Gerjouy's, but is made 

simpler with a copy of Professor Berktay's notes on the subject.

Figure B.l shows the steepest descent contour, the contour of B.l, the 

branch cuts of (n^-sin^0)^ and the stationary points of 0. Starting on

the lower Riemmann sheet at -tan“  ̂(-^^ )̂-ioo it crosses into the 4^^ quadrant 

and onto the upper sheet. It passes into the 1^^ quadrant at the first

(Snell's law) stationary point, 0 = 0 ,  Once again on the lower sheet.
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•7X12 - tQnVlz«d1/R) , -taff̂((̂-dl/RI

Figure B.l The contours of integration of the 0 integral. steepest
descent contour on lower sheet with no evanescent arrival;

' ' : steepest descent paths on upper sheet; ---- : steepest
descent path on lower sheet including evanescent arrival;

: branch cuts .

N /

I /

Figure B.2 The behaviour of the steepest descent contour as the field 
point becomes shallow, i.e., d 0. ...... Snell’s law
path on upper sheet; : Snell’s law path on lower sheet;
-------- : evanescent path on upper sheet; branch cuts



- 130 -

if R is small it then heads directly to ir-'tan"'̂  +i«>. If R is large

enough, however, it curls around 0 = 0c and returns to the 3̂ *̂  quadrant

and upper sheet at -tan~^ '̂ 1 -i” , before finally arriving at n-tan  ̂ + i«I' R
via the second (evanescent) stationary point, 0 = 0e.

(a) Gerjouy suspected that the change in the contour would occur when

Re[$(0o)] .< Re[$(0e)] . (B.3)

The contour has been examined numerically and it has been established that 

inequality (B.3) is indeed the condition for the inclusion of the second 

stationary point at 0e. Figure B.2 shows the changing contour as the 

field point (R,L,d) comes closer to the surface. It is of particular 

interest to note that the behaviour of the contour on the Re(0) axis is 

not sufficient to determine whether 0c should be included. Once the 

stationary points have been found, however, it is easy to test (B.3).

Finding the stationary points was achieved with a sinple iteration scheme 

(also due to Berktay^**) , for real n.

In the vicinity of the stationary point

*'(0q+ae) = 60$"(0o) + 0(60=) , (B.4)

and hence

60 ~ $'(0Q+60)/$"(0Q+60) . (B.5)

Starting with an initial guess for 0^, equation (B.5) was used to iterate to

the stationary point. It was found to be equally efficient around 0q or

0e, converging to 6-figure accuracy within 7 steps.

To deal with absorption, this solution is perturbed by assuming that

if n = n^+6n, 0^ = 0^+60 and substituting in O' (0 ) = 0. Equating powers
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of 6n and 66 yields

60 = 2nôn
n^-sin^0^ V2 ̂  dcos20Q

sin20Q + (—---------) iRsin0^ + Lcos0„ +d 1 0 0 „ , 1-sin 2 0 0  ^ (n -sin 0^) .

-1

(B.6)

(b) Of particular interest in this study were sources just above the 

interface, i.e. ̂ L ->- 0. Provided d is not too small, nothing untoward 

happens to the contour, the stationary point equations and asymtotic 

solutions remain valid.

(c) However, if L is small and d 0 , then 0 „ ->• 0 and 0 ->■ tt/2. Neither
0 c e

of these cases is satisfactory for, in the former case T(0) changes 

rapidly, and in the latter T(0) 0. In the comments following equation

(3.28), it was noted that the spherical spreading terms ->-0 as 0^ ^  0^, 

but it may be argued that this conclusion is not valid in this region 

because of the behaviour of T(0). In fact, as d -> 0, the paths on the 

upper and lower sheets, which meet at 0 = 0^, become closer and closer 

together, until at d = 0 they coincide. Therefore, regardless of the 

detailed behaviour of T(0), the contribution from this stationary point 

will tend to zero as d -> 0. The contribution from the second stationary 

point is not zero however; only the leading term of the asymtotic series 

for I is zero, so that the most important evanescent contribution to I 

will be 0(l/k) and not 0(l/k)^.
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APPENDIX C 

The Dispersion of Sound in Sediment

It is well known that a plane wave suffering attenuation in a linear 

medium must also suffer dispersion. To a good approximation the at

tenuation of sound through sediment is l i n e a r i n d e e d ,  it is usually 

characterised experimentally by measuring a(w) (in Np m“ )̂ of the linear 

attenuating filter e"o(w)x. Yet, in his extensive review of measure

ments of the speed and attenuation of compressional waves in sediment, 

Hamilton^^ was able to conclude: "that velocity dispersion, if present,

is negligibly small from a few kHz to the MHz range".

A wave which is attenuated without being dispersed is acausal, i.e., 

arrives at a receiver before being projected from the source. This is 

clearly unsatisfactory, and it is natural to enquire how large the varia

tion in phase velocity needs to be in order that a wave, passing through 

sediment, remains causal. The functional relationship between the at

tenuation and phase velocity, or equally, the real and imaginary parts 

of the refractive index, of a causal medium, has been a matter of common

place discussion in electromagnetic,®^ quantum mechanical®® and network^® 

theory. It has also been widely exploited in acoustics. In three 

apparently independant papers Ginzberg,^° Futterman®^ and O ’Donnell et 

at. give discussions of varying sophistication of the application to 

acoustics of the Kramers-Kronig relationship between the real and imaginary 

parts of the refractive index; and it has been used by O ’Donnell®^ to 

predict the dispersion of sound in CoSO^ solution and polythene, by 

Beltzer®^ to predict dispersion in composites, and in particular by Horton^^ 

to predict dispersion in sediment. Unfortunately, he incorrectly deduced 

that in the important case of a(m) being a linear function of frequency
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there is no dispersion; a conclusion which may be shown to lead to acausal 

absorption. The affect on a plane wave of passing through a linear medium 

may be characterised by a linear filter

p(Xl,t) = p (Xq ,t) */(Xj^-Xg ,t) (C.l)

The filter f{xi~XQ,t) must be causal. In addition, we would expect no 

disturbance to be transmitted from Xq to x^ faster than some velocity 

Cq; thus we may put

/(xi-xo,t) = g (xi-xo/t)*6ft-(xi-xo)/c^] , (C.2)

where g(t) is a causal filter such that it is not possible to define a

third causal filter h(t) for which h(t) = g (t)*6(t-tq), to > 0. Fourier

transforming equations C.l and C.2, denoting transformed quantities by an 

upper case symbol, and substituting for F(xi-xo,w) gives

P(xi,w) = IXxo,M)e-'"(w)+ig(w)+iw/c«](xi-Xo) (C.3)

where

G(xi-x„,w) = + (xi-x„) ,c.4)

From equation (C.4), a(w) can be identified as the attenuation co

efficient in Np m-^ and c(w) = [I/cq + 6 ( m ) / m ] as the phase velocity. a(w) 

and c(w) are related to the refractive index, N(w) = N^(w)+iN^(w), where 

N^(m) and N^(w) are real functions, by

N(o)) = co/c(w) + icoa(w)/w . (C.5)

The refractive index has a real causal inverse transform, n(t), and as a
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result®®'®^ ®^ satisfies;

2̂ _ 2 r N, (n)udn
N (to) - N (too) = 2 (- --°-) /     , (C.6)J (û -tô ) (û -toô )

{.&, N^(to) is a known function of to, then N^(to) is calculable to within a 

real constant.

The attenuation of sound in a wide range of sediments is characterised 

by an absorption coefficient which is linear with frequency:

a (to) = k|o)f and hence N^(w) = coksgn (to) , (C.7)

where the modulus is necessary because n(t) is real. Strictly N^(w) is 

not an analytic function and may not be substituted in equation (C.6). This 

difficulty may be avoided either by following Futterman®^ and replacing 

sgn (to) with an analytic function such as ( l-e"Y | (J) I ) sgn (to) and letting y  

become large, or by ignoring equation (C.6) altogether and exploiting the 

causality of n(t) together with the known transforms of generalised 

functions.®® Either way it is found that

((o) = 2_co_k I I + N q , (C.8)

where N q is a real constant. From the definition of g(t) and equation 

(C.5), we get

No = 1 (C.9)

From equations (C.7), (C.8) and (C.9):

n(t) = 6(t) + 2kco/irt , t 0
(C.10)

= 0 , t < 0
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The l/t singularity at t = 0 is physically unacceptable. Its cause 

is the behaviour of N^(w) as b ^ This serves to emphasise that

equations (C.7), (C.8) and (C.9) are low frequency approximations valid

for wavelengths greater than, in the case of sediment, the particle size. 

Futterman and Ginzberg discuss this point in some detail.

The value of k for the sand used in this study was previously known to 

be 'v»4 X 10“  ̂ Np m~^ s“ .̂ Over a range of frequencies from 50 kHz to 

250 kHz, equation (C.8) predicts a variation in phase velocity of the 

order of 0.5%. A change of this magnitude is well within the scope of 

relative measurement, if not in absolute value.

The measurement of the phase dispersion

The variation in phase velocity, ACp(w), due to absorption is known 

to be small; it is therefore much easier to measure this variation directly 

than to attempt to measure the absolute quantity Co+ACp(w). If the 

spectrum of a plane pulse p(x,t) is measured at two locations xq and x% , 

the phase velocity may be calculated by division. ACp(w) can be distin

guished by its non-linear behaviour:

Co + Acp(m) arg[p(xi,w)/p(xo,w)]

Clearly, it is not necessary to know C q to measure Ac^ (m) to an accuracy 

determined by (xi-xg). This method amounts to measuring to total phase 

difference between the dispersed wave and one travelling at constant 

velocity Cg over a distance (x^-x^). In liquids, Carstensen's now standard 

méthodes for measuring ACp(w) is to find the distance (Xg-x^) for which 

the total phase difference is 27t- Both methods are essentially equivalent;



— 136 —

but in the case of sediment the difficulty in moving the hydrophone makes 

the former preferable.

To this end, the receiver, a B + K 8103 hydrophone was buried 40 cm 

deep in saturated air-free sand at the bottom of a water filled tank, as 

shown in Figure C.l. The sand used in the experiments was 250 p.m 

diameter = 2, = 0.5) medium sand with a density of 1946 kg m~^ and

50% porosity. The sand surface could be smoothed plane by a scraper 

attached to a trolley running on rails above the tank. The quality of 

the surface finish was maintained by shining light across the surface at 

a very acute angle : any imperfection could readily be seen from the

shadow it threw.

A truncated parametric array^^ was used to generate a broadband pulse 

incident normally on the sediment surface vertically above the hydrophone. 

The received waveform was amplified antialias filtered and recorded 

digitally on the transient recorder. To reduce the noise to negligible 

levels each pulse was repeatedly recorded and summed on the computer. (The 

trigger uncertainty of 0.1 iis introduces an error in the summed estimate; 

but this may be ignored below 300 kHz.) After each measurement the sand 

surface was lowered by removing 4 cm of sand and then again smoothed plane. 

In all, seven such 4 cm steps were taken. The eight recorded pulses are 

shown in Figure C.2 in order of increasing sand depth.

The velocity cg was measured from a graph of arrival time versus sand 

depth removed. It was found that Cg = 1690 ± 30 ms“^. The spectrum of 

each pulse was then estimated with the F.F.T. algorithm (512 samples at

0.2 hs). Sediment is not as acoustically homogenous as, say water, nor 

was it known with any certainty how acoustically repeatable the surface was. 

The eight spectra allowed more than one estimate of the dispersion and
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938 us

985 us

1008 us

1034 us

1057 us

977 1077 us

Figure C.2 The eight arrivals in order of increasing path length 
through sediment (downwards). The phase change from 
'v zero phase to 'v 90 ° phase is quite evident.
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attenuation at each frequency: seven estimates of the passage through

4 cm; six estimates of the passage through 8 cm, etc. Thus the in

creased dispersion and attenuation at larger separations was partly 

offset by having fewer estimates. It was found that the single measure

ment through 2 8 cm and the average of 4 cm were of poor quality. The 

remaining estimates of attenuation and dispersion are plotted in figures 24 

and 2 5 respectively.

The attenuation is seen to follow a linear dépendance on w. The 

solid line in Figure 24 corresponds to a value of k = 3.9 x 10“  ̂ Np m~^ s”^ , 

This value for k, and the value measured for cq , are consistent with values 

measured previously for the same sand.**® (This fact helps to confirm that 

any air has been completely removed from the sane. Earlier investigators 

have observed anomalous behaviour in sediment**® for which trapped air is 

assumed to be responsible.®®)

The solid line plotted in Figure 25 is the functional dépendance from 

equation (C.8): ACp(m) = 2cq ̂ kln | o) [/it . It can be seen that this curve

is as good a summary of the dispersion as a(w) = k|w| is of the attenuation. 

The variation over the frequency range measured is indeed small; but it is 

sufficient nonetheless to ensure that a wave remains causal when passing 

through sediment.
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APPENDIX D 

Three Mathematical Results

In this appendix, the derivation of some mathematical results used 

in the main text is given.

1. The first is the integral

I(X) = dt (D.l)

The problem is to find an asymtotic expansion for I(X) in inverse powers 

of X as X given that ^(t) has no stationary points on a < t < b.

Now

d iX^(t) . ^"(t)= e [lA - 1  ̂Jdt (t) (t)

hence

J iX çz(' (t) /<̂ " (u) iXd^u) du (D.2)

Integrating (D.l) by parts:

K X )  = ^ du dt (D.3)

and substituting from (D.2) gives
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I ( X) - TT-1_iX
(t)e iX{z5 (t)

iX
(u) iX(/(u)e du

h
(u) iX^(u)du dt.

and repeated application of integration by parts and equation (D.2) yields

I (X) J_
iX

(t)e iX$( (t) + 0(1/X^)
- a

(D.4)

which is the desired result.

2. The second derivation is the proof of the result

I (Sp)
I

ds
(s=-Sp=)

(D.5)

where the upper term is taken if Im(Sp) > 0, and E^(2) is the tabulated 

exponential i n t e g r a l . T o  prove equation (D.5), the known integral

f  seiSs'ds = f
^ f\

(D.6)

“ÎÇ sis multiplied by e P and the result integrated over ç from 1 to some 

limit p.:
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V. e. ,

/ i(s2-Sp2)

1 H

-11 U d; (D.8)

The limit p is taken to infinity so as to ensure the integrals converge 

for all Sp:

seKs^-Sn^)
+ 00

(S2-Sp2) -ds
" i / (D.9)

where the upper sign is taken for Im(Sp ) > 0. Making the substitution 

p = ±CSp^, equation (D.9) becomes

I(Sp) = - / .-ip
-dp

± S t

and hence

(D.10)

I(Sp) = E p i s / )  '
+ 0

(D.11)

which is equation (D.5), the desired result. The jump discontinuity when 

Ira(Sp) = 0 is to be expected because the residue at the pole s = Sp is 

added as the pole crosses the real s axis. Note that if |Spj is large, 

may be replaced by its asymtotic expansion and equation (D.ll) becomes

I(Sp) ^ - e^Sp e ^^P + 2 7Ti
2 + 0 (D.12)
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3. (After N.G. Pace). In this last section the rationale for the 

choice of wideband primary modulation, Uwb(t), equation (5.3), is discussed 

This choice arose from the natural desire to choose a primary modulation 

for which the secondary source function s(t) [equation (2.7)] is a delta 

function. Initially the choise of modulation was a Gaussian:

SO that
2^2

s(t) = 4n^e (4t^-l) (D.13)

The set of functions Sg(t,n) have the interesting property that

/ dn = /8? 6(t) (D.14)

so that by summing over an infinity of wavelets from Gaussian modulation, 

the secondary signal would be a delta function. In practice, the range 

of n is limited by the transducer bandwidth, so the secondary signal in 

the water will be

Swb(t) = (nz-ni)
-2n%^t^ -2nz^t n^e -nze

2.2
(D.15)

where n^ and n^ are the upper and lower limits on n. This function is 

plotted in Figure 16. This choice for s#b(t) has the spectrum

Swb(w) - \ -(jL) /8ni -oj /8n2
(n -n ) / 2  ̂® (D.16)

It remains to find what modulation, Pm(t) will produce s^^ (̂ e q u a t i o n  

(2.7) :



— 144 —

1

I
ni

nz
Sg (t,n) dn =

nz
1 f

n2-ni dt̂  J n̂ dn (D.17)

ni

and the substitution 2n t = x and an integration by parts yields

-2m^t^ -2nz^t^ ■e * e
n nz + t/2Tr{erf (/2nit)-erf (/2nzt) }

(D.18)

which is choice of envelope function seen in Figure 16(A).
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