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ABSTRACT : -

(iii)

The subject matter of this thesis lies within the
confines of the mathematical study of finite deforma-

tion solid mechanics.

The pertinent equations of the field of study are

first surveyed. Following this an ad-hoc solution

method is developed and used to solve a variety of
plane stfain problems. The method is compared and
contrasted with that of JOHN. A complex variable
formulation is developed fer finite deformetion
plane strain problems. Out of this formulation a
general solution method for a significant class of
materials results. This method is developed and
applied to a variety of probtlems. For one yroblem
the solution is developed to the stage where the
deformation field may be plotted. The solution

method is compared with that ot MUSKHELISHVILI —,

At all points in the thesis materizi limitations
in the form of inequalities are nighlighted where

appropriate.
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CHAPTER O: INTRCDUCTION

Within the confines of the small deformation (linear) theory of
elasticity a great number of problems have been solved. This is not;
however, the case when largce deformations are admitted; as in the theory
of finite or non-linear e}asticity. It is within this latter context that
the subject matter of this thesis lies. In particular, problems which
admit a two dimensional description are considered, that is problems con-
cerning non-linear material undérgoing finite plane strain deformations.

Much work in [linite elasticity adopts the simplifying assumption of
incompressibility. Solutions to a number of so restricted problems sare
known. Conversely, when this assumption is not adopted and the elastic
material is allowed to be compressible very few solutions are documented.
The intention of this thesis is to explore possibilities for the solution
of boundary-value prcblems for compressible isotropic materisls within the
context of plane strain.

The purpose of this thesis is to investigate a tééhnique for solving
two dimensionzl large deformation elastostatic problems. The techaique
developed is analytic in nature as are the solutions obtained. Clearly,
numerical solutions are obtainable as is evidenced by the book by ODEN
(1972). Such solutions are of value bui the objective of an analjtic
solution is different. The aim here ic to gain some insight into the
fundamentals of material behaviour particularly when finite deformations
are admitted. One such fundamental gquestion is what constitutive lows
may be admitied such that the corresponding material behavicur may be said
to be physically reascnable. This particular question is addressed through-
out this thesis. The numerical‘and analytical approaches are cpmplementary.

In Chapter 1, a summary of the pertinent equaticns and concepts of
finite elasticity theory are given. The notation is also introduced.

Chapter 2 introduces a solution method to be developed. Initially the



technique derived much motivation from that employed by F. JOEN (1v960)

for his defined class of harmonic materials. In Chapter 3 certain problems
are solved, using the technique developed in Chapter 2. The problems are
not of any paramount importance but the solutions are of theoretical
interest. Their inclusion is purely to demonstrate and highlight charac-
teristics of the solution method. The analytical soluticns are employed

to characterise inherent properties of the material class chosen. A
version of the work presented iﬁ Chapters 2 and 3% has appeaied in the
International Journsl of Solids and Structures 1977.

In Chepter 4 a complex variable formulation is employed. All the
equations of Chapter 2 are posed in terms of a Lagrangian comnplex co=-
ordinate % and its conjugate Z. The equations are seen to take a parti-
cularly simple form for materials of the harmonic type and a general
sclution is obtainable. The solution generated is in terms of two
arbilrary functions analytic in % and E;respectively. These arbitrary
functions are shown to be determined for some specific boundary-value
problems. Solutions obtained are discussed with particular emphasis
being placed on volume change characteristics. Finally, in this chavter
a small strain asymptotic analysis is employed and the solution technigue
is shown to reduce to that of MUSKHELISHVILI: (1963).

In Chapter 5, the problem of an infinite plane with a rigid circular
inclusion subjected to a uniaxzial tension spplied at infinity is considered
in some defail. Other boundary-vaiue probleiis concerning a circule™ ancm-
aly in an infinite plate are also considered as are problems pertaining
to annuli. Throughout this and Chapter #, constitutive restrictions are
highlighted when appropriate.

In Chapter 6, the solution of the préblsm specified above and which
is solved in detail in Chapter 5 is again considered. A closed form

analytic solution is obtained for the "scmi-iinear' meterial class. The



solution is continued numerically. In particular. the deformation field,
as represented by the deformation of an imtedded mesh, is presented dia-
grammatically for various applied traction values. Singularities and
branch points of the'solution field are discussed in some considerable
detail.

The work surveyed in Chapters 4 and 5 has been published in the
RHEOLOGICA ACTA VOL.16, NO.Z2.

In order to place the present work in true perspeciive, the relevant
work of previous authors is discussed at all stages. Where necessary
their results are included in sufficient detail to afford comparison
and preserve continuity. Names of authors in capitals, followed by a
date, indicate the appropriate references which are listed alphabetically
at the end of this thesis. Every effort has been made to make this dis-
sertation self-contained, but where it is felt greater depth might be

useful, a pertinent reference is given.



CHAPTER 1: GENERAL ELASTICITY THEORY
SECTION 1.1 INTRODUCTTON

In thic chapter the concepts and equations underlying the stﬁdy or
s01id mechanics are presented. There are many texts wherein may be found
a full and comprehensive development of the theory; TRUESDELL & NOLL (1965),
GRFEN & ZERNA (1954), PRAGER (1973), JAUNZEMIS (1967) and CHADWICK (1976)
are but a selection. Texts of this type are very general in scope, whefeas
in this thesis a restricted field of interest, that of elastostatics, will
be considered and, as such, the theory presented will be tailored accordingiy

The presentation of the theory of elastostatics given in this chapter
will be of a summary nature, serving to introduce the notation to be
employed and to bring to the fore the underlying concepts. Where clarifi-
cation is required, a reference to one of the above texts will normally bc
givenu, while in other cases the theory will be expanded in more detzil.

In this thesis the materials considered are taken to be perfectly
elastic, and they are presumcd to be both isotropic and: homogeneous. All
processes considered are taken to be quasi-static and isothermal. All
spatial co-ordinates are referred tc a single rectangular Cartesian btack-
ground frame.

SECTION 1.2 KINEMATICS

The co-ordinates %ﬁ and x4 respectively, denote the rectangular
Cartesian co-ordinates of a typical material point in the rcference and
in the deformed configuration of the material. The co-ordinates are con-
ventionally referred to as the Lagrangian and Eulerian variables respect-
ively, and in this thecis they are referred to the same background frame.
The reference cconfiguration is taken to be both unstressed and strain free.

The map

Xi = Xi (X}l)’ 10201

serves to define the deformation, where %ﬁ may range over the rcgion
occupied by the material.

There are many deformation measures that may be defined as evidenced



by HILL éf968(a)(bl7, who discussed in detail a particular class of such
measures. One of the simplest of these mersures,

&£, = éx./BX, = X s . 1.2.2
i’

ip i’
is the deformation gradient and is adopted in this thesis. This measure
satisfies many basic requirements, the most rudimentary being that it is
a measure of local changes in length. It also satisfies the reguirement

0° Galilean invariance (JAUNZEMIS £T967, p.l9l7). Other commonly employed

deformation measures are as introduced in HILL 4i968(a27,

g(m)z_e_i_(?é'f?gm._ I ymAo
' 1.2.3
¢ 1 (g{Ta_c_') .

These reduce to that employed by the classical theories, for small defor-
mations.

As a consequence of the characteristics of the field of interest
examined here, the mapping l.2.1 is required to be topological in nature.
A sufficient condition for this is that the defeormation éradient should
exist almost everywhere and that the Jacobian J, should be non-zecro.
However, .

J = det (c(i)i) >0 l1.2.4
is adopted, as this ensures that the deformed to undefocrmed volume ratic
is positive.

The so-called Polar Decomposition Theorem (see CHADWICK ZI976, pe33/)

may be employed to decompose the “%p of l.2.1, as
(7 =RU  (=r,u )
W 1P pu 1.2.5
= ! E ’ (=viprﬁﬂ) ’

where R is a rotation. This decomposition, 1l.2.5, serves to define U and
Y which are both positive definite ard symmetric, representing pure

stretches. U and V areicommonly calied fhe right and left Green deforma-
tion measures respectively. A fuller diszcussion of these may be found in

JAUNZEMIS (1967, p.1l50).



SECTION 1.3 STRESS
Denoting by ti the components of the traction vector at a point on

a particular surface with unit normal Nj, then

t, = ETiij 1.2.1
is a statement of Cauchy's Fundamental Theorem (see JAUNZENMIS éf96?,
Sect.197). This serves tc introduce the Cauchy stress tensor G—ij’ which
may be shown to be symmetric. The interpretation of each element G—ij is
that of the force per unit area'in the i-th direction on a surface with a
normél in the j-th. The Cauchy stress neasure ZTI&jJZ,is conventionelliy
employed, because it has a simple interpretatiion. The relationship 1l.3.1
is in accord with the Principle of Local State (TRUESDELL & NOLL (19€5),
Section 267).

The Cauchy stress measure is by nc means the cnly one, in fact it is
possible to define an infinite number. In section 1.4 it will be shcwn how
a conjugate stress measure may be defined for each of the strain measures
of 1.2.3. In this dissertation two further stress measures are employed:-

(i) The Nominal or First Piola-Kirchoff stress measure § with

%pi: each %ui represcnts the i-th component of

traction on a unit urdeformed area with an undeformed normal in

components

the jp~th direction. The use of this measure eases the application
of a Lagrangian description and it may Ye shown to be conjugate
to the deformation gradient of equation l.2.2.

(ii) The Symmetrized Biot Stress measure 4 This measure has no

y N
simple‘interpretation but it is conjugate to th’ the right
stretch tensor of equation 1l.Z.>5.

The first of these measures is widely used as it enables quantities to
be referred to a fixed reference configurétion, facilitating the manipula-
tion of integrals over material bodies. The second, which is also called
the Jaumann stress by some authors ZKOITER (1975), CHRISTOFFERSEN (1973)
and DILL (1974)/, has been used by HILL (1975) and BIOT (1965), and more

recently it has been used extensively by OGDEN (1977).



The three measures, Nominal, Biot and Cauchy introduced above, are

related as follows:-

L =3"as (2)
m 10302
4 =2 (SR + R'S) (b)
J and R are as defined in equations 1l.2.% and 1.2.5.
Corresponding. to 1.3.1 there is a relationship for S,
T. =8 .. N ’ 1.%.3

i Hi oom

where N : is the unit normal to ghe undeformed surface. This equation
serves to define the nominal traction Ti vhich is interpretted as the
force per unit undeformed area. .This interpretation is easily confirmed
using Nanson's formula, which relates surface areas. I1f ﬁz.is a surface
element in the undeformed configuration and dS the corresponding surface
after a deformation 1l.2.1, then
ds = J'ga*_?? , 1.3.4

where‘ﬁ is the inverse of &. - Employing the definition of the ti of
equation 1.3.1 with 1.3.1, 1.3.2(a) and 1.3.4 allows the interpretation of
Ti given above to be recovered.
SECTION 1.4 CONSTITUTIVE RELATIONS: ELASTICITY

In this thesis attention is confined to Green (or Hyper) elastic
materials. Standard manipulations, see OGDEN LI975(al7, yield the follow-
ing expression:-

| § s_-}l.., ol . 1.4.1

for the energy required in taking a materizl element through a closed
cycle in strain space. Equating this expression to zero, as is convention-
ally done for elastic materials, yields the conclusion that S is a conserva-
tive field. The poterntial for S is the Strain Energy Density function which
we denote by W. An elastic material is said to be HYPERELASTIC if it is
assumed that it possesses a strain energy density function.

The function W may be regarded as a function of any strain measure.
Using this characteristic, and the property of béing a potential for the

stress field, stress measures may be defined for any selected strain



measure. The stress measures so defined are said to be conjugate, in the
sense of HILL 4T968(a)(b27, to their corresvonding strain measure. Thus,
for example, if the strain measures of 1l.2.3 are taken, then their com~-
panion (conjugate) stress tensors E:(m), may be defined as

aW = E:(m) dg(m)
or l.4.2

E—_—(m) - )w/)_e-(m) .
In particular, S. the nominal sfress, is conjugate to ¢f, the deformation
gradient, with

8,5 = éw/éo(iJu , 1.4.3
and-ﬁj the Biot stress, is conjugat? to U, the right Green strain measure,
with

b = éw/b-ijuv ' 1.4.4

The relationships l.4.3 and l.4.4, in that they relate stress and
strain measures, are constitutive laws, indeedy for a given W they are
equivalent descriptions of the material. It is to be ncted that the con-
ventional Cauchy stress E: is not, in general, conjugate to any stirain
measure.

The strain energy density function W may be taken as defining the
material. The form of W is, however, not arbitrary but must satisfy
certain conditions so that the defined material will be physically
reasonable. The problem of just what restrictions and inecgualities should
be imposed on W is one of great significauce in contemporary continium
mecharnics and is At present unresolved.

Tre lozal elastic state of a material element must be independent
of any local rigid rotation, that is, independent of the R of equation
1.2.5. This requirement is a statement of the Principlevof Material
Objectivity in its simplest Hrm, and is fully discussed in TRULZSDELL &
NOLL (1965), section 19A. The requirement may well be incorporated in

+
4

the strain measure adopted such as those of 1.2.3, or alternatively, i



A6

may be incorporated in the material description W, which must be coanstrained

as
Wige) = W(Be0) »v Qs.t. PRT = - 1.4.5
which is equivalent to
W) = w(U), . l.4.6

where I is the identity tensor and U right stretch tensor of 1.2.5.

Another requirement to be imposed on W is that it must incorporate
any material symmetrics of the material under consideration. This means
that W must be insensitive to rotationsig, of the Lagrangian frame, where
Q is contained in the isotropy group. It is assumed here that the material

is fully isotropic and the consequential restriction on W is thus

W) = w(xq) 7 Q s.t. Q@ =1 1.4.7
which is eguivalent to

V being the left stretch teansor of 1.2.5
Now l.4.5 and 1.4.7 may be combined in a natural way to yield the

relationskip

W) = MR Q ), PR = I =43, 149
for all fully isotropic materials. A consequence of this result is that
W may be considered to be a function of only 3 independent scaiar variables.,
That is

W=VWI(p, g, ), 1.4.10
where p, g aud r are three linearly independent functions of the (eig=nJ
principal values of U (or g?gﬂ. In particular,.they may be the principal
similarity invariants, or indeea, the principal values. W must be

symmetric as a function of the principal values.



SECTION 1.5 PHYSICAL PRINCIPLES: MECHANICS

The formation developed so far allows the elastostatic state of a material
element to be described. 1In order that the states are properly selected,
governing equations must be employed. These governing equations are dev-
eloped as a consequence of simple physical and geometrical constraints.
The laws and their interpretted forms are briefly outlined below but
further discussions of these may be found in any of the standard texts,
JAUNZENMIS (1967) for example

(i) Principle of Material Impenetrahility:

J = det & >0 l.5.1
everywhere within the material. This not only ensures the invertability
of the deformation map l.2.1, but ensures that no two material points
occupy the same location.

(ii) Conservation of Mass:
¢ = 4¢ 1.5.2
o)
where Qo and ? are the mass densities in the reference snd deformed
states respectively, and J is defined by l.2.4. It is this principle
which necessitates the strictly positive condition in 1l.5.1 and 1.2.4
(iii) Conservation c¢f Linear Momentuz::
G .. .
J1lsJ

where fj reprasents ti.e body force per unit undeformed volume. In the

% - 2 2
+ fi D Xi/Dt 105.3

context of elastostatics whein no body forces are admitted; this condition

reduces to

~

S
or l.5.4
S .. = 0 .
R1.p
In this latter form the expressions are conventionally referred to as the

Equilibrium Equatiouns.



(iv) Conservation of Angular Momentum

L..=0

1] Jji

%Sk = S

the latter of these being.a consequence of 1l.3.2(a), given the former
(v) Strain Compatibility

«;”,v = “&vgu 1.5.6
This condition ensures that the matrix of deformation gradients is derivw
able from a deformation field, that is, that equation 1.2.3% may bte colved
for a'deformation field x(X).

The five conditions given above are necessary and sufficient to
ensure thaf any solution pair (é, gﬁ is mathematically admissible.
SECTION 1.6 THE COMPLETE BOUNDARY-VALUE PROBLEM

It has been emphasised that a variety of variables may be adopted in
describing a problem. Which variables are chosen is often a matter of
personal prefereénce, but it is conventionally a compromise between ease
of interpretation, ease of manipulation and suitability for the particular
problem in hand. For the purpose of this thesis a Lagrangisn formulation
is adopted, all quantities being referred to the undeformed configuiation.
The conjugate pair (S, of) of 1;4.3 is employed almost exclusively, although
the pair CQ, U) as in 1l.4.4 also play an importaut role,

In addition to the thecry and results discussed in the previous
sections, all that now remains is to consider the boundary conditicrz be-
fore a problem in elastostatics may be posed. The basic governing egua-
tions of elastostatics are demoustrably of second order and for a well-
defined non-singular problem, elliptical in character. It is thus
necessary to specify conditions on all points of the boundary in order
for a problem to be well posed. The boundary conditions may either be

one of place, where a displacement is speccified, or one of stress, vhere



an applied traction is specified. Given a material volume V, in the
A
undeformed state, with boundaryZ: with the displacements x, specified
E: . . . A <7
on part G x, of the boundary, and with nominal tractions ti on‘ot, where

<t
&= %24{/§; s a complete problem may be stated as:-~

Find the pair (S, &) satisfying the following

S . =0 in V., {a)
ALK
ie,1 =K 2V ()
with 1.6.1
~ .
%piqp = ti onza: (c)
and
_.'A’ 4
X, =X, on(v;'x {(d)

vhere N.. is the outward unit normal toé;t. The equations a%p = X,

‘i i
-t E v .
S ;= é‘r!/am_ andG:S}J}E’H are also relevant. The strain energy function
i in £ :

P
W is taken as defining the material to be considered.

The remainder of this thesis is dedicated to the %pvestigation of the
system 1.6.1 and its solution. Assumptions will be made regarding isotrovy
and the dimensjonality of the deformation. Those are shown to lead to
simplification of the system and will finally lead to a formzl theoretical
and analytical solution.

SECTION 1.7 A COMPLEMENTARY FORMULATION

A formal solution to the system l.6.1 may be obtained by eadcpting the
deformation field xi(%h) as a ﬁrimative, as the strain compatability equa-
tions 1l.6.1(k) are then automatically satisfied. If the stress field is
represented in terms of the deformation gradient via the constitutive law
1.4.3, for a given W, then it may be employed to eliminate the stress field
from the equilibrium equations 1.6.1(a) and the stress boundary conditions
1.6.1(c). The resulting partial differential system in x5 is of second
order.

Conversely, the stress poféntials may be introduced such that the

equilibrium equations 1.6.1(a) are satisfied automatically. This postula-



b=
e

tivn or introduction of stres= potentials is a widely ﬁéed technique

especially when plagar~dcfcrmations are to be considered. Airy's stress
pqténtiai is, in fact, a potential for the siress components of a planar
stress field, sec MUSKHELISHVILI.. ~ {1963} or Appendix 2. In developing

this inverse method as in the paragraph above, an inverse constitutive

law is required. The inverse law allows the deformation gradient to te

expressed as a function of the stress potentials, so as to eliminate the
1Y Po! ’

former from 1.6.1(b) and l.6.1(c). 1In other words, an expression of the

form

a%p = a&ﬁ (Svj) - 1le7.1

is required. The question of the existence and validity of tkis inversion
has, untillrecently, not been ‘satisfactorily answered as uniqueness is nct
guaranteed and the results also depend upon the choice of cqnjugate var-
iables.

Clarification of the situaticn has been provided recently in a paper
by OGDEN (1977). Given W(x), the strain energy density function, theh its
degendfe dual’wc(g), the complemsentary energy density function may be
derived as follows
WC(S}Ji) =.Spi°‘€i}1 - "‘"(“’ip)‘ . | 1.7.2
This expression may be formally differentiated with respect to the strain
measure allowing equation 1.4.3 to beArecovered. Differentiating it with
respéct to tﬂe stress, an inverse relationship is obtained,

oy, = ch/as)jj . 1.7.3
Thus the question of inversion of the constitutive law to yield 1.7.1 is
equivalent to the question of the existence of the pctential.WC, as #
function of S.

Employing the conjugate pair %ﬁ; U), Ogden has demonstrated that the
inversion, 1.7.1, exists in some neighbcurhood of the origin in strain

space and 1is locally unigue provided this ncighbourhood is convex. A

further discussion of the complementary constitutive law 1.7.3, when plans
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deformations only are-considered, may be found in ISHERWOOD & OGDEN Zi977
(al7. |

The duality of the system 1.6.1 as regards the interchange of the
defermation field and stress potentials may be further gkploited, as has
been pointed out by HILL & SHIELD (1974).and OGDEN 45375(b27} These authors,
employing this duality, have concluded that the‘stress potentials may be
viewed as the deformation for a different boundary data/material pair.
The deformation field may correspondingl& be viewed as the stress potentials
for that same pair. The dual boundary conditions, as they are referred to,
have a non-trivial interpretation but the dual material is simply deter-
main: . from W by taking the Legendre transform as in 1.7.2, where Wc defines
the new material.

Throughout tﬁis thesis the topic of duality, and the complementary '
formulation, will be repeatedly discuséed as it seems to be a most resiliant

feature of the system 1.6.1 and its solutions.




CHAPTER 2? PLANE STRAIN
SECTION 2.1 INTRODUCTION

In this chapter aitention is ;estricted to the consideration of a
IpartiCular deformation class, that of plane strain. The equations of
elasticity of Chapter 1 will be simp;ified and reduced to a form amenable
to aralytic solution. The solution of these equations for a particular
- problem class will be presented.

" Inlinear {classical) elasticity, the technique of superposition is
widély employed in the solution of many problems. Additionally, assump-
tions are made which aid practicability of solution and also ease interpreta-
tion and understanding of that solution.

When a non—linear'constitutive law is employed and/or finite deforma-
tions admitted, then superposition of solution fields is precluded. This
does not apply when quéstions of infinitesimal stability are being
addressed, ic where virtual infinitesimal displacements are considered.

In this case superposition may be employed, see WU & WIDERA (1969), KERR &
TANG (1962) and SENSENIG (1964) for examples.

When the solution bf a fully non—linear elastostatic problem is
attenpted, the number of difficulties arising is considerable, as is
evidenced by the relatively few solutions presented in the literature.

' Not the least of these difficulties is the proclem of dimensionality.

The dimensionality of a problem is not simply that of the physical space

in which it is posed, but is a measure of the irreducible number of inde-
pencdent variables involved in the formulation. It is usual for assumptions
to be made in order to reduce the dimensionality of the provlem. Often
employed assumptions are those of isotropy and homogeneity which remove
both spatial and directional variations in the material problems.

The assumption of‘inektensibility in one or two directions is also
employed, especially since the introduction of carbon fibre materials,
see PIPKIN (1975) and GREEN &‘ZERNA (1954) Another assumption is that
-of incompressibility. ~This is specified as ‘

Jd =1 everywhére, : 2.1.1



where J, of equation 1l.2.2, is the Jacobian of.the deformation. The form
2.1.1 is widely used. |

The assumption of incompressibiiity will not oe adopted in this thesie.
Indeed, the qﬁesuion of volume changrs is discussed in some considerable
detail. o .

A more direct way of reducirs the dimensionality of the probiem is to
reduce the dimernsion of the physical space-éonsidered. A first step would
be tc consider problems which are independent of one spatial co-ordinate.
These assumptions are adopted throughout this thesis; The problems con-
sidered are those of two-dimensional élastostatics.

Problems have been posed, and solved, in diverse two-dimensional sub-~
spaces. Convected éo—ordinates are usually emplcyed. GREEN &% ZBRNA (193h),
GREEN & ADKINS(1960), STICKFORTE (1975), ADKINS, GREEN and NICHOLAS (1954)
and the many texts on shell theory are examples of the use of this assump-
tion. FREUND (1972), SIH (1973), CRAGGS (1960) and BROBERG (19_67),' in
considering crack problems, illustrate the effqptive use of flat two-
dimensicnal subspaces. In this thesis the two-dimeasional subspace
considered is flat and is spanned by two rectangular Cartesizn co-orcdinates.

The considerationvof a flat, two-dimensional subspace corresponds,
physically, to the consideration of prismatic material configurations, the
generators of the prism being perpendicular to the subspace. Bouadavy
conditions are assumed constant along any generator. This situation is
generally referred to és that of PLANE STRAIN. It must be distinguiched
from the situation of PLANE STRESS which deals with plates of materials,
and not prisms, see WU & WIDERA (1969) for an example. In classical elasticif
theory the two situations aré functionally identical but the material con-
stants are differentt

The restr;ction of the region of interest cto that of a flat, two-

dimensional subspace has two further advantages, zpart from simply reducing
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the number of independent varizbles:-

(a) It enables the formidable armoury of complex variable thoory to
be used. This has, to'date, primarily Pteen donc within the
confines of clessical elasticity. The aporocach of MUSKHELISHVILI
is a good example, see Appendix 2.

(b) Solution fields may immediately be compared with experimental
observations, this being particularly practicaile when plane
stress 1s ccnsidered. Graphiqal representation is aiso made
possible.

0f the two advantages, (a) is used to great advantage in Chapters 4 and 5,
while (b) is employed only insofar ez graphical results are presented in
Chapter 6.

It is not unusual for authors to use combinations cf the assumptions
mentioned above. KLINGBEIL & SHIELD (1966) consider planar deformalions
cf incompressible materials. ANTMAN (1976) introduces a series of papers
dealing with the ordinary differential equations of elastic beam theory.

The final.assumption mentioned here is that of symmetry. This cssump-
tion is often used tc simplify problems and will be used when deriving
illustrative solutions in this thesis. It is used extensively in
ISHERWOOD (1976). When combined with those assumptions above, symmetry
facilitates the soluticn of many problems and is widely used.

The first part of this chapter cansists ¢f a statement of the field
equations and boundary conditions of elastostatics, suitably restricted to
plane strain. This will be followed by a discussion of admissible forms
for the constitutive law. Allied with this, a discuszion of the admissivlie
forms of the material description - namely the strain energy density functie
is given. Several deformation invariants {see 1.54.8) will be introduced and
discussed. Lastly, symmetry argumerts will be employed to solve a variety

KAl
T

¢f problems for varicus materizls.




SECTICN 2.2 REDUCED FIELD EQUATIOCLS
Attention is henceforth restricted to the deformation of a flat, two-

dimensional subspace. For manipulative convenience the X, (=x,) is taken
>

3

to be perpendicular to this subspace. All deformations considered are

constrained to be such that x,= X,. All quantities introduced in Chapter 1

3 73

will be considered to be functions of (Xl, XZ) or (xl, X.)

Py only.
Variables will be suitably restricted to the dimensionality of the sub-
space. In particular, the component representations of tensors will be
2 x 2 matrices. Summation will hencefortli be over the values 1 and 2 only.
The reduction in dimensionality allows the governing eguations of
i1.6.1 to be written in full:-
S11,1 * So1,2 = O

+ = 0

S12,1 * S22,2

are the equilibrium equations 1l.6.1(2), in terms of the nominal stress

(with no body forces).

&l - o = 0
12,1 11,2 555
501 " %1, = O

are the deformation compatibility equations of 1.6.1(b). The similarity
of the two pairs of equations has been pcinted out in Chapter 1. This is
again considered in Section 2.4. The traction - stress relationship may

also be written in full as

t* = S.. N. + S._.N.

1 118+ Sl 223
* i
B = SNy + 85N,

where ti represents the force per unit initial area. In the context of

planar deformation, area iz now to be intcrpretted as line length. N, is

H

the outward normal to the undeformed surface (curve).
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SECTION 2.3 ISOTROPIC STRAIN ENERGY DENSITY FUN”TION
INVARIANT
CONSTITUTIVE LAd
In Section 1.4 it was shown that for isotropic materials W, the strain
energy density function is a function of the similarity invariants of gggg o
being the deformation graqient of 1.2.2. The restriction to two spatial

dimensions results in there being only two independent invariants. The

conventional invariants are

_ 2 2° 2 2
I =3 (a&l + «12 + “%l + afa )

-— J —_ " - 203.1
J s det(x) = o 19,5 = &) S .

However, in this thesis it is found to be advantageous to employ the invar-

iant pair

1
P = EZ(I + J);L = E(mil+«22)2 + (xiz S )237'0
q | 2.3.2(a)
3
Q= EE(I - J’\g E(“'ll“"(aa)z + (o y4er zl)d;>

In order to obtain a feel for the invariants p and g it is best to look at
the form they assume on the principal axes of gmgg i.e. when gﬁg is referred
to its eigenvectors as a base, where it is diagonalized. Letting?\i, i=
1,2 be the diagonal (principal or eigen) values; ’}i>-0 are called the
principal stretches. Then 2.3.2(a) beromes
P =N +')é
a=/A - N

In this thesis conditions when q = O will subsequently be seen to be of

2.3.2(b)

importance. From 2.3.2(b) we note that this occurs when the princinal
stretches are equal. This condition is asscciated with a hydrostatic

stress, where the principal stresses are also equal,

(m) . ()

Now, if e is any strain measure of 1l.2.06 and its conjugate
(see Section l.4) stress measure, ther fof isctropic materiels their princi-
pal directions coincide; see HILL (196&q) for proof. The conditions g = O,
being ascociated with equal principal stresscs (strains), leaves the
principal directions indeterminate. In this seunse such a condition is

singular.
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It was pointed out in Section 1.4 that any rational symmetric
functions of the principal stretches suffice as invariants. A further
pair of invariants to be employed is

p* = p+ g, 9" =p -1 . » 2.3.3

In Section 1.% the constitutive law was determined for a given W as

S. . =9 W/ 2.3 4

ni 5‘“1}1 .
Introducing the invariant pair p and q of 2.3.2 into 2.3.4 produces

ap 9 |
S . =W - + W, % . 2.%.5

ni r gfiu q Qxiﬂ
Aprlying the polar decomposition theorem of 1.2.3 teo ¢ yields

«=VR 2.3.6
where .

RR=1 and ¥ =V . 2.3.7
Then writing

Cos¥ - SinX! z

R Sin} Cosx ’ 2.3.8
equation 2.3.6 may be used to obtain the result

Tan /= Kgl " OC_LZ ) 2:309

&1t %

as a necessary condition that 2.3.7 (ii) is satisfied. Additionally, using
J . g

2.3.6 and 2.3.2 with 2.3%.7, the following may be derived

Ky + %p = P CosK
x,) - K, =P sin} .

Formal differentiation of the invariant pair (p, q) with respect to the

2.3.10

e EEST T S e T T e

deformation gradient results in

9 <.  + J@ .
=AM ML
JCJ’%i)l P
and 2.3.12
o« - J¢
- T

) i q
where ﬁgis the inverse ¢ The results 2.3.10(1) and 2.3.11(1) may be used

in conjunction to abtain
30 | .
J§:. | ¥

S

i
i
no
»

W
I,_J
\S]

e T BaAAC . P — o e e
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Prompted by 2.3.12, consider the derivative Bq/}xip. Simple algebra

verifies the following

da = -29 , 29 = Ja
e doy, 0, decy)
and
( 29 )2 ( 2q )°
(Jm) o+ CSmy) -

These results suggest that a further angle:X? and its associated rectation

(improper) R* be introduced, such that

in P SinX* - CosX
and - -
+
Tan)(_* = ﬁz—mj"?‘“}; ) . 2.3.14
<1 22

No easy interpretation of the angle'xg can be made. If a further deforma-

tion were to be introduced, onto that already undergene, such that

—_ !
xl 4 xl = xl
and
- = %
' X5 - X, = X5
then
and

Xsn . X Y,
Where quantities with a superposed prime refer to the new configuration.

In addition
*- = . 2‘ ‘-'—
X -X 2 6, . 3.15
The angle @E (o< @E 3’7?2) is the orientation of the principal axes of the
left Green strain tensor V of 1l.2.35. with respect to ithe background frame.
In summary, the constitutive law 2.3.5 may be written as
S =WR + WRY 2.3%.16(1
S =WR +WR | 3.16(4)
when 2.3.12 and 2.3.13% are employed.

It must be appreciated that the exact form of the constitutive law

depends intimately on the invariants chosen. I1f the pair (I,J) were



employed 2.3.16(i) becomes
T

8 =Wpo o+ Ju; & | 2.3,16(ii)
where ¢¢ is again the deformation gradient and g its inverse. There is no
particular merit in the selection of any invariant pair, save their applic-
ability to the problem in hand.
Consider a material class defined by

Wo= f(p) + % pgt , 2.3.17(i)
where p iz a constant and f(p) some function whose behaviour need not be
specified at-present cxcept that it bte twice continuously differentiable.
This 2.3%3.17(i) form may be re-arranged to yield

W o= F(p) - 2n "(pa - q2) 2.3.17(ii)
In this form it may be recognised as that considered in JOHN (1960) as the
Harmonic material. This class of materials is of particular interest and
will be used extensively. The second term of 2.317(ii) may, using 2.3.2(a),
be written as

2nd . ‘ 2.3.18

Now in deriving thé constitutive law from 2.3.17(ii) with the seccnd term

replaced by 2.3.8, a term of the form

oJ :
= JE@.., 2¢3%.19
E&iﬁ 1P
results. Writing the strain compatibility equations 2.2.2 as
(Jé.y_l),p = 0 2.3.20

it may be noted that the term 2unJ does nct contribute to the equilibrium

equations 2.2.1
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SECTION 2.4 DUALITY: THE COMPLEMENTARY ENERGY FUNCTION

In Section 1.7 au alternative material definition, that of the Comple-~
mentary Energy Function Wc, was introduced. This function is either
explicity defined or may be obtained from W via a Legendre contact trans-
formation. In this section the properties of this function and a duality
in the formalism are discussed. This duality will be a recurrent theme
throughout this thesis.

The function Wcis assumed to exist and be twice differentiable in a
simply connected neighbourhood of the origin in stress space. If Wc is
determined from W this neighbourhood is determined by the condition
det Z73£y93_7} 0; see Section 1.7 for details.

As in Section l.4, the principles of mhterial frame indifference and
isotropy may be invoked with respect to Wc¢ to yield

We = 'ch(pT,qT) . 2.h.1

This result is analogous to l.4.8 with

= 3 2 - g
bp = +VE(II)T = 1 § (848,07 4 (5,58, 070, )
1 oo 02
= z 2 2 )°
g =\/2(IT—JT) = } <311'522) + (521“‘512) g
and
- da- ; _ - .
Ip = 28,¢S e With Jp = 8,5, = 5,5, 2.4.3

These are four similarity invariants of the nominal stress. Substituting
for S from 2.3.17 in 2.4.2 a little, but tedious, algebra serves to demon-

strate that !

W= anaw = % ER
P 4 2 ‘

In order to expcse the algebraic duality of the system of equations

being considered, it must be noted that VWc¢ is obtained frem W via the

transform
W+ We =0, S . . 2.5
in i
A consequence of this is that
o o 2
. - I }
in Qspi
and hence, employing 2.4.1,
ocip—_-wcpT ’;pg + wcq QqT : 2.h.E
S . T 3
At Sni
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From 2.4.3 a little algebra confirms the following

9py Py | 9Py - 25,
95y, 95, 95, 95y,
with 2.4.7
i
( as11) ’ (9%2)
The following may also be verified
day  -dag Oy dag
I8, 95;2 P98, T 95,
with 2.4.8
(dag ) (g )°
(T T (B T

The results 2.4.7 and 2.4.8 prompt the introduction of two anglest; and

;{T* say, such that

51,75, 170
Taix& T S,.,+S ac, . +0C 2-4-9
11%°22 1172
and
rafXyt = S12'%a1 = %t ) 2.4.10
8117520 11 7%s

The second equality in both of the above, being determined from equation
2.4.6, affords comparison with the previously defined angles;}( andt%f. On

comparing 2.4.9(2) and 2.4.10(2) with 2.3.9 and 2.3.10 it may be concluded

that
) Y . Tk Yk
Xy = Kand 3gr =% ) 2.4.11
In summary, the following may be written
o = Wo. R +HWc . -R* (a)
with 2.k.12
$ = pp R+ qp RY (b)
2 Z
or
®« = pR+ g R (a)
2 2 -
with - 2.4.13

1o}
il
=
o
+
Q
|m
*
-
Py
o
N’



R and R* are as d:fined in equations 2.3.8 and 2.3.13 respectively.
Additiorally, the wvsuedc-Legendre contact transform

We + W = 2 (ppT + qu) 2. 4,14
may be noted. Thus the duality and algébraic similarity of equations
Ze2e1 and 2.2.2 are seen to carry over to the constitutive and inverse
coastitutive laws of 2.4.i2 and 2.5.13.

The algebraic duality illustrated above is largely fortuitous insofar

as.it's clear form is depencdent uron the choice of invariant pairs. Consider,

for example, the further pair.

f = f(p,q) 4 & = glpsa) , - 2.4.15
where f and g will be assumed to be linearly independent. Then

W : v £ ; - /

" Jf ot ngp Pp/ 5
and

W

]
w
4

W

'g8q = %/

qa” “fq
where 2.4.4 has been employed. Then, provided f and g are linezrly inde-

pendent,

noj-

W = S S < \'(fg - f )
(ppiy, + Bqap’/ I8y = T8y

with : 2.4.16

[N

W =

(f - p.f )/f - fg ) .
g plr 7 Priqp8q T Tofp

Consequently expressions of the form

Wyoz Welpgaag)
and
wg = Wg(pT,qT)
may - - be written if and only if it is possible to invert W to obtain

Wce In which case

p = We and q = We
P P 2 Qip

may be employed to eliminate p aund g from the expressions 2.4.16. 1t is
only when f and g are linear functions ol p and g that the simple slgebiaic

By

duality is obgerved.
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It should be noted that the expressions 2.4%.9 and 2.4.10 for Tai{ and

Ta@Xf serve to illustrate a universal relationship, that of

- -Q
Koy L 8578,
K1+, 5117555
with
®117%oo = S137555

Gty SyotSy

Notwithstanding the above discussion regarding fortuitous algebraic
duality, there is a guite general duality to be noted. Indeed this duality
is indepcndent of the material isotropy, but it is restricted to plane
strain., The duality is real, insofar as when the solution to problem I is
known, then suitable interpretation of the variables results in the solution
of ancther problem II, say, In OGDEN(1975b)the following is proved:=-

1f (e,8) is the solution pair for provlem I, with boundary conditions

T ified on {
; specified on (G,
and : A
xi specified on éu,
with ZZrU Zé.z 6, the whole boundary, then (adjugate S,
adjugate:zﬂ is the solution pair for a problem II. If the material For the
problem I is defined by a given W, then the material for problem II is that

given by ¥We, when the arguments are suitably interpreted as invariants of

«t+

he new deformation gradient. IThe duaiity of the boundary data is not as
straightforvard. It may be summarised as follows:-

"Thus, 1f the position (or displacement) of the boundary is specified
for the original problem it follows that the tangential componexnts
?ﬁxip of the deformation gradient on the boundary can be calculated.
This immediateliy specifies the components of traction ?u?ui for the
dual problem. Conversely if the traction is specified irn the criginal
problem the tangential component of cc on the bounaary is kaown for the
dual problem." OGDEN (31975b, p.88)

(t. and %p are simply the tangential and normzl vectors to the material
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This completes the formal discussion of duality. However, it will bre
referred to again in Chapter 3%, where it figures in a new formal approach
to the solution of probiems developed there. At present the duwality has
the status of an elegant formal relationship and as such is a satisfying
piece of mathematics. As far as the author is aware it has not been

employed ir the solution of any problems.
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SECTION 2.5 PHYSICALLY ACCEPTABLE CORSTITUTIVE LAW

It is not easy to resolve the question of what restrictions ought to be
placed on a material descripticn so that physically acceptable solutions czn
be obtained. Even within the somewhat reduced field of consideration, ie
that of isotropic, homogeneous matgrials subjected to static plane strain
deformations only, the consideration can only be fragmentary.

Consider a material defined by

W(p,q) ' 2.5.1

and, in particular,
W o= f(p) + g(q) . 20502
In HILL ZI957(al7 it is shown that for the BIOT stress measure with

the current configuration as reference, that

[%%j = [g;gﬁ +ve definite ) 2e5.7%
=j 7=~
implics incremental uniqueness of solution and hence stability. The U in
2.5.3 is the RIGHT GREEN strain measure of 1l.2.3 and is ccnjugate to (in the
sense of 1.4.3) £. This result and some restrictions arc discussed further
in BILL (1968a) Denoting the principal BIOT stresses by i&,i:l,a and
reczlling that the principzal strains are dencted by;\i,i=1,2, then 2.5.3
implies,and is implied by

(a) det o,/ 0N, /> © ’ 2.5.h4

() € - £ -A) >0 - 2.5.5
These conditicns also cnsure that a Wc may be determined from W. They are
assumed to hold within some neighbcurhoou of the unstrained state in stress/
strain space. GHEN (1977) noted that if ettention is focussed on a convex
neighvournood then 2.5.4 implies 2.5.5.

In terms of the assumed material descriptioné (2.5.1 and 2.5.2), the

restrictions 2.5.4 and 2.5.5, which are henceforth adopted, become

W, >0 2.5.6

q

and
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for form 2.5.1, and

g' » 0 2.5.8
with

frrgr' >0 _ 2.5.9
for 2.5.2.()'denofes the derivative with respect to the argument.

To supplement conditions 2.5.6-9 others may be generated by subjecting
the material to conceptunal experimentis. The results of these experiments
are required to corresnond qualitatively to intuitior and result in further
restrictions.,

As a first example, consider a material body subjected to an applied
hydrostatic pressure. To facilitate interpretation, the Cauchy stress is
used as its associated tractions are measurable. Equation 1.3.2my be used

witn 2.4.13(b) to yield

_ -1 . . _J W ' .
Gij = 9 2 WAV VY L, gijg , 2.5.10
( 4 )

where 513 is again the kronecker delta and Vij is the Left Green strain
measure. Now E and V are both symmetric and demonstrably coaxial. Referr-
ing to principal axes and equating diagonzl elements, the following are

obtained.

1 (W #W, Sqn (Ay-N,) )
El 2 ( P g 12 )

- = 1 (Wo-We, Sgn (A -1, ) )-
e 271

For the case of hydrostatic pressure vhen Gl = G; =G say, and when
7& =?E = N\ then the above reduce to

G=1 wi(ax,0) ,
~ P
Given this hydrostatic pressure N is expected to be monctonic increasing as

[

a function of g, and to be equal to 1 when b = 0. The first of these is

guaranteed provided

d Mop,0) ) )
— Vo DAP s/ S 1)
ap y 70 2.5.11(2)

for p) O. The second is guarantesd by

-
N
—

“'/I)(I?.’O) = 0 . ?pf}cl



Similarly, considering an applied uniaxial tension it may be concluded

that

2

£1(p) O as p 2 . 2.5.11(3)

Allv

A further reasonable requirement which is adcpted here, is that the
material definition must be asymptotically equal to the classical descrip-
tion, for small strains. -In following JOHN (1960), consider a material
defined by

W = F(p) + KJ,
as was introduced in Section 2.3. Then, proceeding as in JOBN (1960, page

2k9),

1

p-2 = (a;-1) + (A;-1) = tr(V-8)

J=1

1l

(A -1) + & ,-1) + (O -1)(A,-1)
tr (V-8) + det (V-8)

= tr (7-8) + o/Ty-8)77

n

where tr denotes the trace and det the determinant. VWriting V-£ = L, the

above may be written as

tr % ' 2¢D.12

p=-2
and

J=2

i
tr l + 0 (l_T). 2.5.13
Expanding equation 2.5.10 about //j// as a small quantity then

G = ZTWP+WJ) + (wpp+2w -wp) tr l;? 8 + wp L + 0 (ll?), 2.5.14

W
pd g
is obtained with derivatives being evaluated at p = 2, J = 1, the undeformed

configuration. Adopting a natural reference configuration, that is one whick

is both undeformed and unstressed, gives, from 2.5.14

j \:! = - ﬁn ]
Wpﬁ Jlp=2,J=1 0 | 2+5.15
Then setting
W . 7
p. p:L’onl = 2}] 205.]‘0
and
i W i = N 2
Npp+2 “pJ+ 33| p=2,d=1 + 2u

equation 2.5.1% becomes
f

E;zfﬁﬁ tr l + 2p L + 0 (llT) . 2.5.17




"hand.p may be identified with the conventional Lamé constants. The restric-
tions normally placed on}\and)u may now be applied to a morg general material
definition via equations 2.5.15 and 2.5.16.

From the foregoing analysis a particular material may be identified as
being of interest. It is.that material which is simply an extension of the

classical isotropic strain energy function, namely

W o= —23—5—1‘-— (p—2)2 + 2p (p-J-1) 2.5.18

cr, in terms of the preferred invariants

W =A—§-ﬂ (p-2)° + % ¢ 2.5.19
This material class is of sufficient importance to warrant a name and is
conventionally termed the '"'SEMI-LINEAR" or "STANDARD" material. Applying

conditions 2.5.6, 2.5.7 and 2.5.12 to this form for W, the following

results:-
pq)O ’
M(A4u) >0
and )
b%? >0
P

respectively., Together they imply
a2 0
and 2.5.20
N> 0 .
Finally, it should be noted that 2.5.15 and 2.5.16 may be cast wit!

reference to W as a function of p and g as

: = ! . =
WP} (2,0) = v ¥a(r0) =9
and
wg _ ’ -
q.(E,O) = M . 2.5.21
with

pr, (2,0) = A* A
From the discussion presented in this section it may readily be seen

that the concept of a physically realistic material is ill-defined.




Restrictions may be obtained by a variety of means and, indeed, some will
become apparent as solutions are generated in Chapter 4. In particular,
one further restriction which will become evident in considering a pure
shear is

£ (p)<pup 2.5.22
vhere f(p) is as in expression 2.3.17(1). It is included here for complete-~
ness, being generated in a similar fashion to 2.5.11(1)-(3). As a conse=-
quence of 2.5.22, it will be coﬁcluded that the semi-linear material deccrip-
tion {2.5.19) is valid only for

(N )
pl2 (o)

N
>
\n
.
o
N



SECTION 2.6 RADIALLY SYMMETRIC PROBLEMS

In this section the theory developed in the preceding sections is
employed in solving problems of a particular class for various materials.
The problem class itself is distinguished only in that it may be solved,
from first principles, for a variety of materials.

The problem class to be considered is characterised by the fact that
the deformation is constrained to be radial (in the considered plane). The
solution method employed is the ST. VENANT Semi Inverse.

With the notation of Section 1.2 the deformation may be described by

x; = ;xi i=12 2.6.1
only. The radial expansion factor ¢ is not constant. As a Lagrangian
description is being used, F'may be regarded as a function of the pclar
radius in the undeformed configuration, R.

R = (x-x-)% = r/ 2e0.2

= RR v
where r is the polar radius in the deformed configuration. Given equation

2.6.1 the deformation gradient may be determined as

¢ oCi E,axl = (\)Si + XiX Q!, 2&6.3
S » i

where ()' denotes differentiation with respect to the argument. In their
turn the invariants p and g may be obtained by using 2.3%.2 to yield

28 + RY

and 2.6.4
'R .

Equations 2.3%.8, 2.3.9, 2.3.12 and 2.3.14 allow the following to be derived

cosX = ¥11%%22 = 1, sinX = 0

p

i

q

P
2ox?
COSX* =Ocj_l_OC22 = 1 ;ﬁ_ = Cos20 , 2,6.5
q . RE
and
Sink* = Sin2e,

where © is the angular co-ordinate of a material point in both the defornmed




and reference conligurations.
directly from the definition of
Applying the relationship

determined as

Sll = Wp +
512 7 821 ¢
522 = W'p -
As a direct conseguence of the

equations 1.5.5 arc satisfied directly.

remain to be satisfied. Now
511,1%%21,1
and
512,1%%22,2

are the recuced form of the equ

of basic but cumbersome manipul

3
7/

d .., .
aR (wp+wq

The satisfaction of this equati
equilibrium equations to hold.

introduced by equation 2.4.2, e

= -2k

The above results could also be derived
the problem class with equation 2.3.16.
2.4.1%3{(b) the nominal stress field, § is
We Cos20
i Co

wq 3in2e 2.6.6

W Cos26 .
a
formulation, the strain compatibility

The equilibrium equation 1.5.4

S W

Py

N W-n 7 i Z =
l+(dquos2@),l+(Jq81nc®),2 o

=0

= W
> P

ilibrium eguations.

vl ., W QA —
2.+(%1C062@),2+(Hq51n2@),1 =0

’

These, after a few linres

ation result in the following form

q -
2.0.7

R
on is beth necessary and sufficient for the

In terms of the complementary invarianis as

quation 2.6.7 may be written

d R
R
Equation 2.6.7 is seen to assume a simpler form if the invariants
f = ptq and g = p-q 2.6.9
are employed, for then
- = i w
with 2.6.10
{ — L LY, .
| Nq hf W
Equation 2.6.7 then becomes
ii-~V(I:€'W."J’) = ﬁ 2.A.11
dR f g . [
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It is to be noted that were the deformation gradient not derivable from
a deformation field, then the strain compatibility equation would be

reducible to the forms

d 2
55 (p-a) = =
or . | 2.6.12
4 we
-5 (e - We ) =2 Q.
P % g

In gereral, a problem of the defined class is solved by the substitu-
tion of a specific form for W intc 2.6.7. The resulting equation will be -
a second ordcr ordinary differential equétion for P{R). If the o.d.e. wers
to be of first order, it can be concluded‘that the material selected is
not realistic; at 1§ast for problems of this class. In general, howevef,
being of second order, two boundary conditions have to be specified in
order that the solution be‘fully determined. These boundary conditions may

be either that of displacement or of nominal traction specified at the

surface of a cylinder; or exceptionally,; as limiting conditions as R tends

i
l
‘
i
i
t
t

to infinity.
Considering now the traction boundary condition. The stress distribu-

tica cf 2.6.5 may be rewritten as

= W 5
ap = ¥ i v Y "‘“§7ﬁi

where 4567 is an improper rctation through angle 20, € being defined above.

2.5.13%

S R —

The only tractiions preserving the symmetry required by the problem class are -
hydrastatic pressure or tension. .. . Applying 1-56.1(c¢) with normal (CosS.

8inG), the f3llowing is cbtained

S, = W o+ W, 2.6.1h
where SR is tue unowminal. pressure. The true traction is given by
. - I 8 .
ty = \"-’p + wq)/f . 2.6.15

In terms of nominal pressure and considering the deforwraticn of an
~annulus, the boundary conditions may be written as
S.zu +u =%
= + W =
R~ 'p a R
and 2.6.16

s specified on esch .

s
rn
s

I T . \ h o - - 2 o R o s A1 D
vhaere () derntes a suecifled value. One condition




o

of the boundaries.
Finally, before pussing onto the soluticn of various problems it
should be noted that 2.6.7 is linear in W. A consequence of this linearity
AiS that:-
(1) (1) .
i

has a general solution set (g

If a material W = 1l,n of the

equilibrium equations then the material {Zaiw(l’ has a soluticn set

Jyy with
iei%,n) _
The intersection may be null, this does not mean that there is no solution
for such a material.

The detailed solution of a particular "problem is presented here for
illustrative purposes cnly. The material chosen is as in 2.3.13 but is
adjoined by linear terms to ensure that the reference is both unstrained and
unstressed. This normalisation eases comparison between the solutions
produced for other materials; many such solutions are tabulated here.

The other material definitions are also normalised. The modifications to
the material definitions simply involve the addition of terms linear in p
and q'and a constant term, in order to ensure that |

w(2,0) =0

and 2.6.17

¥5(2,0) = Wgq(2,0) = 0 ,
The addition of these terms in no way affects the essential material behnav-
iour as none Iigure in the eguilibrium eqﬁation 2.6.7.

Rewriting 2.3%2.3 as

w,= f(p) + B(pz—qz) 2.A.,18
and modifyirg to ensure that 2.6.17 holds, leads to

W= (£(p)-£(2)) + £1(2)(2-p) + B(p°=q°) + 4Bp, 2.6.19
which defines the material to be considered. This, on inserting into 2.6.7

results in the reduced form of the eguilibrium equations

o df) 4 . . c o4
dR (dp) = O L..OO.C—O



This equation has two solutions

(i) f(p) e bp
or 2.6.21
(ii) p constant
The first of these, 2.6.21(i) is untenable as a reasonable colution as no
restriction is placed on the deformation; the material so defined automat-

ically satisfies 2.6.7. The second solution 2.6.21(ii) is of interest.

Solving with 2.6.4(a) results in the following deformation class

R-c+ DR"Z_ , _ 2.6.22

vhere C and D are constants. The expression for the invariant p is obtained
from 2.6.4, arnd is

p = 2C.
The property that p is constant is seen to characterise many, but not all
solutions presented in this thesis. Using 2.6.22 with 2.6.,1(i) and 2.6.19

allows the nominal pressure SR to be determined as

8y = £'(20)-11(2) + hiC - ke +4DER™Z. 2.5.2%

The expressions 2.6.22 and 2.6.23 allow boundary data as indicated by
2.6.16, to be incorporated to yield a complete solution. The full nominal
stress field may then be recoverecd using 2.6.13. As an illustration:-
Consider a material configuration consistihg of the entire Euclidean
3-space with a right circular cylinder radius 'a', and generators parallel to

the X,-axis removed. Assume that a nominal pressure Pa is applied to the

3
interior of this cylinder. Then, adopting the assumption that
Q-»lasR»—)w,

may be concluded that

from 2.6.22. This, using 2.6.23 implies that

-=2
SR = 4BDR “.

Egquating this with P_ on R = 2, D may be determined as

a
2
LB :
and consequently using 2.6.22 and 2.6.24,
g)z 1478 (a)2

I (R)



with 2.6.26
(2)° =
Spi = Fa(®) éa@(pl
where /20/ is as introduced in 2.6.6. The complete problem is thus solved.
It ought to be noted that both the deformation and stress fields deter-
mined above are independent of the particular form of f(p). This is not the
normal situation. The constants C and D are to be expected to depend on f(n)
viz the boundary data. For this reason in the solutions tabulated below a
particular f(p) will be adopted;
The three problems considered as representative of the class are:-
a) As considered above,
b) A finite annulus radii a<b with zero displacement specified on
R = b. A nominal pressure Pa applied on the inner surface R = 2,
and c¢) The same configuration as b) but with pressures Pa and Pb applied
to the inner and outer surfaces respectively.
Various méterials are considered:-

Material Class T

W = Ap“+B(p°-q°) - 4BP - LAP 2.6.27
This corresponds to that discussed above with f(p) = Ap2
2 =2
a) €=1+PaaR , 8. =P a’R?
TIE Roa

b) P=1+ P,EA+L+B(1-a'2b227'1 /T - v°R™%7
-1
-2 255 T 5
Sp = P, (A+B/1- -b°R"%7 /A+B£l -v2aT7 7 7
) P=14 8- 3/9 a™® + P % - P+P_ R 2/

2 2

Sg=(5°-aT AL -RT 4+ [5C - T

Material Clas= TI

oN
.
no
x

W = A(p2+q2) + B(pz-qz) -~ (28+B) - L(B+A)p 2
This has a kernel of the form W = A(I-2)+B(J-1)
a) P =1 + Pa )2
4(B-4) )

b) (’:lJ.-PéJ_ba7 [1'-bf7

4(B-4) R®

a)” , S, =P_(a
R) R2 R

~~



-1
Sp = P /b -1//b%a" -1/
-1
c) ﬁ) = 1+/b "-a E/ P a~24p b -2 . /P.+P__/R
- L_aT
L 4B/ k/b-B/

Sp = [0 -a‘f7-l§b@ “2R797 - pa@'"a "7 7

Material Class II1

oc +1

W o= B(p - q )+L -4Bp-4B ec£-1,0 _ 2.6.29
-1
a) § = 14p_a?/oCgme/ec /IB-2(cc +1)L_/
a / “""—'Oc"“"“
2/ec
_p (a)
Sr = Pa(®)

g
-0
i

1+p_/BB/a -2/ /e g 2(oo+1)Ia a/"‘;7 ébz/"‘ R/ 17

s, = P/WB/a" 216t -2/ 7 2ec 41 )* -2/ 7 44}3@ =2/ 57200 o (ser L )R
o< e
-1 — 2k -
C) P = l+é’5-2/a3.a"2/m—/ éPba"a/x -2/CC—/ AP /R 1./05 _/
B [kB-2Ge +1)L_/
&<
-1
— -2/, ~2fec 5 T = s -2 _=2fc 5 o = =2 ~2fee 5 5
Sy = [a "/ pRE T B R TR G, REE G 7
Material Class IV E;ii = 2pey +\\S1J Kk 2.6.30

The classical linear material

n

a) ¢ l-Paa2 , SR=Pa(a/R)2
\tep

. 1 '
b) P 1+Paﬂ3)\ 3 )a—2+b—2(_p+2,\l7 [“5 -2 —R—BJ

tp = Pac{—("3?\+)1)a‘2+b-2(}1+2h)7 */_ﬁ "2 (3N +Ju)-b_2(}1+2?\_)_7

-1
o) © =122y ﬁba"2+19ab"‘2 + (P"+PB)R~2 7
(n+2n ) (3~ +pm)
tp = (b-z-a-z)-l[ﬁb(a-z-R—g)+Pa(b_2--R-2)_7

(See Appéndix Al for a summary of the manner in which these solutions
- for the classical material were obtained).
Inspection of the detailed solutions reveals that apart from
material class III, the form is very much the same as that for the

classical soluticn, corresvpending to



4y -

©-c+ DR

and 2.6.31
5y = P17°

whcre C and D are constants, P some pressure term and 1 is soﬁe character-

istic.length of the probleme No further analysis of the solutions is

presented. The solution form 2.6.31 will be reproduced in a later chapter

after a new technigue has teen developed. The form 2.6.31 is seen to be

associated with the fact that g is constant.

As for the material class III there is good reason to doubt its
validity. £s was indicated in Section 2;5, it is a reasonable reguirement
that a defined material class becomes asymptotically linear for smali
strains. The material of class ITI does not satisfy this requirement,
unless ¢ = 1. The material class must, however, not be discounted as it
may well be valid away from the origin in strain space. The equivalence

for small strains may be employed to suitably restrict the parameters in’

the materizl c¢lasses I and IT.



CHAPTER 3 A NEW APPROACH
SECTION 3.1 INTRODUCTION

In this chapter a new approach to the solution of the equilibrium
equations for plane strain is introduced and developed. In developing the
new approach an assumption is made concerning the form of the eguilibrium
equations. The adoption of this assumption has the effect of reducing the
class of problems which may be consideréd to that consistent with this
assumption. The restriction of'consistency is discussed. The latter
part of this chapter consists of example solutions illustrating the
application of‘the new approach.

In Section 3.2 the formalism and notation is introduced. The equilti-
brium equations are assumed to decouple into a pair of Cauchy-Riemann
equétions. The consequences of this assumption are discussed and, in
particular, the effect on the field variables is exémined. Section 3
contains a discussion of the complementary formulation in terms of Wc(pT,qT}
The duality as considered in Section 2.4 is again surveyed. In Section 3.4
the general solution of the equations is generated for particular materials
and the restrictions imposed by the aséumption of Section 3.2 are irncorpor-
ated. Two problems are solved for a pérticular material class and the
impact of the assumption of Section 2 on another class is considered. No
further problems are discussed as the.approach of this chgpter is eclipsed
by another presented in Chapter h, where closed form anzlytic solutions
are cbtained. Finally, in Section 3.5 the method is compared and contrasted
with one which provided much motivation for that in this chapter, the
method of JOEN (1960).

The work presented in this chapter has been published as "TOWARDS THE
SOLUTION OF FINITE PLANE-STRAIN PROBLEMS FOR COMPRESSIBLE ELASTIC SOLIDS!
in Int.J.Solids Structures, 1977, Vol.l12, ppl0O5-123%, the paper was co-

authored with DR. R. W. OGDEN.



SECTION 3.2 FORMALISM ARD ITS CONSEQUENCES
Starting with equation 2.4.13(2), which may be expanded thus

S

- *
11 prnsX + Wq_CosX

V¥ + W.as *
S5 wpslﬁt kthlﬁi

) 3.2.1
SZl = W‘I')'SIL!D(_ + L‘qulﬂ)(
— W - W .CosY*
S, = wﬁcst xq,c*os,,t ,
and introducirg the notation
A =W CosX, = B = wsinX
p q
with | | 3.2.2
C = WJCodxy, D= W!Siﬁx;
q q
we may write 3.2.1 in the compact form
Q — . = -
Sy =A+C, S,= -B+D
30243
It follows from 3.,2.2 that
a
Wy = (1% + B)Z2 “
and , 3.2.h
2 2.3
W(q = (C + D ) 1]
and from 2.3.9, 2.3.4, 2.4.17 and 3.2.2 that
v _ %¥127%1  SaS12 s
Tan\_ = o T = S +q = K’\']p # O 3.2.5‘
22771 P11tv22
and
. %t S1ovSna p
TanX* = =g g = an(fl £ 0, a # 0., 3.2.6
1% P12

From these eqguations, X and){* may be determined to within an integral

multiple of T, for a given S. This is so provided 2.2.4(1) and (2) are

. PR N . . . .
nct zero, in which caseX and ,{* become indeterminate, respectively. Using

2.3.10, 2.3.13, 2.4.4 and 2.4.14, equations 3.2.5 and 3.2.6 may be manipul-

ated to yield

1]

Lavg
: =pT/pT

Il

o511,
LeCue /pT

%17%, Pp

ard 30247

o
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provided Pr # C. The existence of Wc is discussed in Chapter 1.

{l

Now, using the relationships

P =-2(A2+B2)%, Ap = 2(C2+D2)% 3.2.8
which are obtained from 2:4.2 and 3.2.3, the right hand sides of equations
3.2{7 are demonstrably functions of A, B, C and D. When these are known,
and providing Wc can be determined (See OGDEN (1977) or Chapter 1), the

components of gz can be determined (from 3.2.7). They must satisfy the

‘compatibility equations 2.2.3.

Introducing the notation
P = = W e
p = Wey /Pps  Qqp “gq'/qT 3.2.9
T T
and using 3%.2.7, the deformation gradient components may be written as

1
1

In summary, the basic problem specified by equaticns 2.2.1 and 2.2.2

i

2(PTA+QTC), « , = 2(PTB+QTD) 5.2.10.

2(—PTB+QTD), <55 = Z(PTA—QTC).

2
may be replaced by four first order partial differential equations in A, B,
C and Ds Specifically,

(A+c),l + (B+D),2 =0

3.2.11

(-B+D),; + (A-C),, = O
with

(PTA+QTC),2 - (PTB+QTD),1 =0 7 A
)0201C

- - D - _

( PTB+QTD),2 (‘TA QTC),l =0 .

Considering boundary conditions, let the boundary of the plare region

occupied by the material be denoted by'zs in the undeformed configuration.
Assume also that *he unit tangent to Ejlua (COSw,SiﬁW), then the components

(t 2) of the traction per unit (undeformcd) area are given by

WpSin(P)0 + 4g 5in(¥3E)
nl(A+Q) + n2(B+D)
> WPCCSCV{Xj + Wqus(Ngk?)

= nl(-B+D) + n.2(A4C),

4
1"

t

3.2415%

ct
]

where (nl,n ) denotes the unit normal tc 5. Equations 3.2.13 are oblainzd

2



by contracticn of the nominal stress with a normal to the surface (Zguations
1.3.%3, 2.4.13(3) and %.2.2). The functions A, B, C and D must be consistent
with the traction boundary conditions in&. The solution for %y and X5 frem
3.2.,10 must satisfy the boundary conditions of place where specified anS.

The equilibrium equations, 2.2.1, can be satisfied identically 1f

stress functions h. and h. are introduced such that

1 2
- - - = - = . . 3 L
S11 - h2,2’ S2l - h2,1’ sl2 h1,2 and SZZ hl,l .241%
Using these, equations 3%.2.3% may be rewritten to yield
2A = hl,l+h2,2 2B = nl,Z_nZ,l
pl - - - ) - 3.2.15
2C = h2’2 hl,l 2D = nl’2 h2,l .
The relationships ) o
2 ‘ :
v h, = 2(A,1+B,2) = -2(C,1+D,2)
5 3.2.16
Vv h, = 2(A,2'-B,1) = 2(Cy,+Dy,)
where
ol
2 3° o
Vo= e
X, X,

should also be noted.
It will be noted from 3.2.11 and 3%.2.16 that harmonic hi’i = 1,2
are sufficient conditions for the eguilibrium equations to be satisfied.
It is this as§umption which will be adopted, viz. the harmonicity oif hl and

h It must be emphasised that this assumption is but one of many that

o
could be made. It is adopted here merely toc illustrate a technique.

Up until now the analysis has been completely general, given the stated
field of interest., W is as yet unresiricted save that Wc¢ is assumed to
exist in some neighbourhood of the natural configuration in strain space.
The assumptiqn of harmonicity of the stress vpcitentials restricts W to those
materials for which the problems considered have a solution consistent with
this assumption. No assumptions have to be made and problems can be solved
in complete generality. Indeed, the solutions presented at the end of
Chapter 2 coulid be presented in the current formalism. This will be

demonstrated in the next and subseguent chapters.,




In the singular case, wher W? = O and the anglej{_indeterminate, then
the equation 2.2.9(1) 1s no longer valid. However, in this case A = B = 0

and, 2P;A and 2P,B must be replaced by pr CosX and ch SinX.in 5.2.20,
e B rT‘ .

T T
respectively, wherej{ is now taken as arbitrary. This, together with the

boundary conditions serves to determine:(. Reducing 3.2.15 employing the

fact that A = B = 0, the following is obtained
2C = ¢122"¢’ll L) D= -¢’12

with 3.2417
v % - o.
The problem reduces to finding the harmonic function # together with:X,
consistent with the boundary data.
The consequences of the stress potentials being harmonic are many.
Firstly, as was noted in Section 3.1, the equilibrium equations effectively
decouple to become

Ay) + By, =0  -B J}A,Z:o

1 1
C’l + D’Z = O "D’l + C,2 = O-

3.2.18

Thus (A,B) and (C,D) are conjugate harmonic pairs, and functions g, @7,
ﬁyandﬂy* may be introduced such that
A= g'l = 1@2 B = gsa = -Y’l
C=¢*11 =JY*’2 D=g*92=-‘**$1

3.2.19

with
. -
VoG =P = Y =Y =0 . 3.2.20

Equations 3.2.18 may also be employed to demonstrate that the compatibiliixy
equations 3.2.12 may be written as

VP Y8 =Vt VB = 0

T T
V’PT/\§7¢ + V7QT/VV%*

3.2.21
0O,

. in the conventional dyadic notation (i.e. * scalar product, A vector

-,

product and V the rector operator (B/BXl, ¢/X ))e In addition, usiug

2
3.2.5 with 3.2.18, it may be shown that
2 2y
K =TX =0 . ‘ 3.2.22

When used with the equilibrium equations, these equations also secve to

demonstrate that



" ‘
a2 ' 7 fa
VU =W, =W, = X, -0 . 3.2.23
P s
The consequence of paramount importance, however, is that for a given
problem only a restricted class of materials is suitable for consideration.

The quantities P, and QT in equation 3.2.21 are both functions of w¥¢g and

T
T g*.. through equations 3.2.8, 3.2.9 and 3;2.19. In general, the coaditions
represented by 3.2.21 are.inéompatible with 3%.2.22. This does, of course,
reflect the fact that an assumption has been injected intc a self-~consistent,
closed system. However, in certain circumstances 3.2.21 and 3.2.22 are

consistent. It is this that defines the soluable material/problem class,

given the assumption of harmonic hl and h2. A trivial case in which this

is true is when p and q are constant, and the deformation homogenecus; a
state achievable by all materials given suitable bcundary data. Another
case, as will be seen subsequently in Section 3.4 is that of harmonic
materials when radially symmetric deformations are concidered (see equation
2.6.27, material class I). |

The components of traction (nominal) ti,izl on ¢ can be written

2
t, = M T OWY*)

1
L

ty =M - V(F-P)

where 1 is the unit tangent to & measured in the positive sense. These

3.2.24

relationships are generated as for 3.2.13. W+¥* and g*-Z are simply the

stress potentials hl and .h2 respectively.

Thus summarising; by adopting a material class and problem consistent
with harmonicity of the stress potentials, the solution is derived as
follows:~-

i) Determine h; harmonic inside & such that 3.2.2L4 holds where

tractions are specified.
ii) Evaluate the function A, B, C and D from 3.2.15.
iii) Integrate 3.2.19 to yield #,@*.
iv) Incerporate @,2* into 3.2.21.
v) Again ewmploy 3%.2.19, this time to obtain A, B, C and D, which are

likely to be simplified from their form at stage ii.
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vi) Use 2.2.9 to find P and Qpe

T

vii) 2.2.10 may now be used to obtain e

viii) Integrate the ac obtained at stage vi to obtain xi,i=1,2

(Stage vi ensures that this integration is possible).
ix) Incorporate boundary conditionc of place where specified.

The advantage of this formulation over that conventionally adopted is
that a schema can be defined for the solution where each stage is given
in terms of well studied problems. Harmonicity has the additional

advantage that complex variable theory may be invoked. The schema

idcntified above is illustrated in Section 3.4.



SECTION 3.3 THE DUAL FORMULATION
An alternative approach to that described in Section 3.2 will begin
with the strain compatibility equations 2.4.11(a).

Now,

= W Cos W CosX*
ey = Ve, 0o+ ey coX

Pp
C . = -»We_ SinX + Wc  Sin}*
M2 “Pp X Ay K ;
3.%.1
oe,, = Wo_ SinX + We_ sinX
21 -'.p( q
T T
= Y 03 - .
%5 e, Co X ey CosX
T T
Continuing as in Section %.2 and introducing
R = We_ CosX B = We_ Sif
Y P; %
— T (( - T 3.)-2
C=W CosX* D = Wc_ Sin
9, 0 q X
T T
and rewriting 3.3.1 as 7
«ﬁl = A + C maz = B + D L
- = - 3343
ec21=-B+D °CP_2=A-C
ihen the relationships
’ 1 - =2 _;_
2p = We_ = (A™+ B7)*
' p'I
and 3.3.4
ul
3q = We_ = (524 D92
v qT )

are easily obtained from 3.3.2 and 2.4.1k4.
Now, adopting xi,i = 1,2 as the primitive fields, the compatibility
equations are satisfied identically. Equation 3.3.3 is employed to yield

2A = x + X 2B = x - X

_ ’ _ 3.3.5
2C = xl,l ~ x2’2 2D = x172 + xZ,l .
Then using 3.3%.2 and 2.4.13 with P and Q defined as
P o= W/p, Q = ¥,/q, 3.3.6
the stress components may be written as
Sy = 2(PX + T), $9o = 2(=FB + QD)
o = - 3.3.7
S, = 2(PB + QD), P =.2(FA - QC).



The equilibrium equations become

(PR + QT:'),l + (PB + QB),? =0

_ _ - _ 3.3,8
(-PB + QD),l + (PA - Qg),2 =0

These last two equations, being of a similar form, are comparable with

2%2.2.12. The results

2(By; + By,) = 2(Cyy + Dy,) =v2;<l
and
2(K,, - B,) = -2(C,, - B,,) =vx
2 1 2 i 2
are also obtainable and are analogous to 3.2.6.

As an alternative to solviﬁg 3.3.8 directly (which is unlikely to be
a trivial task), assumptions regard?ng the X5 could be made in a similar
manner to those about hi in Section 3.2. This avenue is not developed
and only the method of Section 3.2 is illustrated. The duality of formuia-
tion has only been coansidered in order to expose an elegant symmetry under-

lying the general theory, at least in plane strain.



SECTION 3.4 SCLUTIOK OF PRCOBLEM

Prior to solving any problems, the restrictions placed on two materi=zi
classes, given the assumption that the stress potentials hi are harmonic,
will be investigated.
CLASS 1

The class of harmoni; materials (2.3%3.17 - 18, JOHN £I9697) is writtesn
as

W= f(p) + ‘%‘;zqz . 3.4.1

where m is the conventicnal shear modulus and f(p) some function.

Now, from 3.2.9 and Z.4.1k,

Qp = We, =219 3.4.2
T W,
q
dp
and thus, for the form 3.4.1;
Qp = 4n a constant, 3.4.3
and in particular
VQT = O, 3.h.h
The compatibility equations as written in 3.2.21, become
VP, = O 3445

provided Y@#0. If V@ were zero, A and B would also be zero andjﬁ_would
be indeterminate. The degenerate case leading to equation %.2.17 would
result. It follows from 3.4.5 that either

(i) £(p)ac p°

or i 3.4.6

(ii) p constant
(See equationc 2.6.21, which were generated generally for this material
class but for a restricted deformation class).

| The sclution (i) is untenable in that the corresponding energ

density function would not represent a realistic material. In particular,
such a material would not be stress-free at zerc strain, when p = 2. To
be realistic, the results of Section 2.5 must be applied, in which case,
for small strains, the form 3.%.5 must be such that

£(2)=0, £'{2)=C, £'7(2)=Am, b7




contradicting the adoption of solution (i) above. The semi-linear materia
of 2.5.19 is the minimal strain energy function satisfying these constraints.

That ¢ is constant is a necessary consequence 6f the assumption of
harmonic stress potentials hi’ fer this class of materials. This does not
mean that p is forever constant for zll materials of Class I. It simply
means that the technique és applied is consistent and valid only for prob-
lemns where p happens to be constant for materials of Class I. Other
restrictions would naturally lead to other problems being solvable by anal-
ogous techniques.

CLASE_IT

This class is the class of materials with strain energy densify func~-
tions of the form «

W = %};pz + g(q). : 3.4.8
The result

VP, =0 3.4.9
is derived as in 3.4.4, from 3.2.9 and 2.4.14., This mzy be employed to
simplify the compatibility equations13.2.21, to yield |

VQp =0 ' 3.4.10
and hence,

q constant Z 4,11
provided g(q)%KqZ, some K.

However, this class of material is only of marginal interest in that
the undeformed state is only maintainable by the application of a hydro-
static stress magnitude 2p. Indeed, this class of materials could be
precluded from consideration on the basis of the argument used to discount
3.4.6(1).

In considering the two classes of material it is seen that solutions

“to problemé in which either p or g are constan:t may be generated.
Section 2.6 contains solutions of the form p is constant, for harmonic

materials and as such the technique as developed may be employed.'jln

"4y

employing this technicue further insight as {¢ the forms of W consistent

with harmonic h, and h, is gained.



In the case of radial symmetry, eguation 2.6.2 demcnstrates that the
deformation gradient cg is symmetric. Then czquations 2.3.9 and 3.2.5
imply

X =0 and B = 0, | 3eka12
respectively. Hence, from 3.2.18(1) it caen be seen that

A is constant. 3ehal3
Thus, from 2.4.14 and 3.2.19,

A is ccnstant

2Py = Wp (pyq)
and ' 3, 0,10

(c2p?)? = VA4V

I}

= Wy (p,q)

ol

Q
=]
|

with ‘72¢* = 0. Additionally, when equation 3.3%.16 is used

xX* = 28y 3.4.15
is obtained, where SE is the angle of orientation of the KEulerian axes.
To obtain the result

D = CTAN2§ 3.4.16

E
equation 3.2.5 may be employed.

Now, as ihdicated above, o is symmetric for this class of problem.
Consequently. when the polar decomposition theorem of l.2.3% is invoked,
the rotation is found to be the identity transformation. Hence the angle
SE may be identified with the éonventional polar angle, O, theré being no

local rotation. Equations 3.4.14 thus yields

_cr®
2 . 2
X, X,

%qT = CSec28 =

and 2.6.23 may be generalised to obtain an expression for SR’ the nominal
radial pressure

Sp = Wp + Wy | . 5,0,17
Then, imposing 3.4.13 and invoking the essential symmetry of the problem
class, in that SR is a function ot R 6nly, it can be concluded that
3.4.16
is a function cof R only.

In proceedirg, the system

2.
P = 0



with Z.4,19
SPAS A
20
must be solved, in order that C and D may be found.
Now, as @* is harmonic, it may be reuiresented thus
#* = Re(F(2)), ' 3.4.20
for some analytic F(#) where % = Xl+iX2. The region of analycity is such

that 2 is some material point of interest. The Cauchy-Riemann equations

then yield

¢*s1 - i¢*12 = F(’Z‘)LZ_ . 34,20
Consequently
[T = @),
1
= (F(z‘),“?_11“(%5',_5)2 . 3.4,22

Now, if F(#) is represented as a power series in %, the applicaticn of
3.4.,22 results in a doubly infinite set of equations (non-linear) to be
solved for an infinite set of coefficients.

llowever, consider

1 e+l
—_— , s - 1
ol ae+l & e#-1. Z.0t423

F(z)
This is recognised to be a general term of a power series if e were to be
an integer, but e is not so restricted. Then

./V;ZS*;/ = ./ae+lﬁ/Re 3oh.24(1)
and is indeed independent of 6. It would nct be surprising if this soiution
set were unique, the reason being that the governing equations for finite
elastostatics are demonstrably well posed. in addition, the system is
second order and suitable restrictions on W guarantee that the system is
elliptical. The consequence of this is that at least in plane strain, two
boundary conditions (or limits) have tc be satisfied. Indeed, in the
problem class in question, radial symmetry, these conditions are to be
applied at points only. The problem posed is fully solved once qT=2ﬁK7ﬁ*/'
has been determined. ‘oo many undetermined parameters cannot be admitted
as there are conly two boundary conditionz to e satisfied. The solutions

presented in Section 2.5 correspond tc e = =2 Tor all materials apart irom
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Letting

/Bg,/ =620, 2 . 2h(2)

it may be concluded that
e
Ap = 2R
and ' 3.4.25

C = oR®Cos28 , D = aR"Sin26 ,

where 3.3.2(2) and 3.4.18 have been used to generate equation 3.4.25.

Then, using 3.4.12, %.4.13 and 3.4.25 to substitute inte 3.2.3, the

nominal stress field is obtained as follow:

- €A 8
Sll = A+ ccR Cos2
- a - e . l.
512 =8, = R §1n26 2. 4,26
e
= - 52 \0
522 A &R Cos28

Thus it may be noted that the method (harmonic hi implying the existence
of @*) is consistent with materials which demonstrate power decay (growth)
of nominal stress.

Now, remembering the definitions %.3%.29 for P

T and QT, and applying

3.b.1h,

d
3
1}

p/ kA

and Sl 27

q/ beek®

QT
the strain compatibility equations (3.2.21) become

p' - q' = 29/R, 3.4.28
where ()' denotes d/di. This equation shculd be compared with those in
Section 2.6, particularly 2.6.12(1). This form is independent of the
harmonicity assumption, and in particular, of the value of e in 3.4.25.
The admissible materials defined by W are restricted insofar as p and g,

as determined from

|
=

w?(p,q) =

and 34,26
W&pﬂ)=ﬁ£,

must be consistent with 3.4.26. No attempt will be made here to identify

those classes,
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Now, for materials of Class I

Wp = f'(p} = A
and 3.4,50
quz‘pq.
Thus imposing 3.4.29,
p = (£1)7H(a)
e 3 4,31
q = GRJAP ’

where (f")"1 denotes the inverse of ', which is assumed to exist. Then,
consistency on applying 3.4;28 requires that
e = =2,

znd hence with this condition, consistency.of the approach-material-problem
set is achieved. The material CGlass III of Section 2.6 appears to be con-
sistent for all e.

In terms of the variable € intrcduced in Section 2.6, the defermaticn
is specified, via

- Syt r- e - 3.4.32
‘ ZpR

As 3.4.3%32 indicates fer a solid cylinder, when R = O is allowed, the deform-
ation is necessarily homogeneous. This is a result analogous to that obtaing
from the classical theory.
For the Class II materials (3.4.8), 3.4.29 becomeé
P = A/n
and : 34433
- g'(q) = «Rr® .

Employing these in 3.L.28 yields an indeterminate result. Consistency
depends intimately on g(g)e. If

g(a) = Lq¥
is adopted, then 3.L.28 yields

e = Z(l-X)

as a requirement for consistency.




The discussion of this method is not continued, because a more
general method will be demonstrated in Chapters 4 and 5. However, prior
to leaving it entirely, the application to the problem of an annulus with
an arplied shear will be briefly outlined. The shear is assumed uniform
as a function of @.

From 3.2.13, introduéing the complex normal to Tp, nl+in2 the following

expression for the complex nominal traction is obtained

Sl+iS2 = (A-iB)(nl+in2) + (C+iD)(n1-inZ) . 3. 4,34

Attention will be restricted to material Class I for the remainder of this

chapter; substituting into 3.2.10

1l
]

o

<y ZPTB+D/%p, o,

is obtained. This may be integrated to determine the deformation field

ZPTA+C/2p, o 5 ZPTB+D/%P

3'4035

2P A-C/2p

X, The earlier discussion of harmonic materials has demonstrated liuat

p and hence PT are constant. As a consequence of 2.2.18(1) it may be
noted that A + iB is an analytic fun?tion of & = Xl+iXé. The fact that PT
is constunt implies that /A + iB/ is'constant. A corollary of the MAYIMUM
MODULUS theorem states that an analytic function having constant mcdulus
is itself constant, hence both A and B are constant; Employing the
potentials @#* and W* introduced in 3.2.19, the integral of 3.4.35 can be
expressed as

% = 2P (A+iB)E + 2(B)/p, 3.l.36
where x = x1+ix2, and where a constant term has been dropped as it corres-

ponds to a rigid translation.

wi(%) = gr-iy™
1+2X2 = Relg. It is nqted that

C=-iD = dw/D%. 3.4.37

is an analytic function of % = X

The components x; are single valued and as a consequence of

3.4,.26, the same may be said of w(#), in whizh case

o«

W& = & az" 3, 4,33

—0 n

is a2 valid (Laurent) zsxpansion of Wwi(&).



Consider now an elastic solid contained in an annular region radii

a(<l) and 1 in the undeformed state. The boundary data considered is as

follows

X = on R = a

and 3*4 .39

8 + is” - is on R =1
where S* and are the radial and hoop components of thenominal stress
respectively. They are given by

8% + i%} =A - iB + (C + iD)én, —in_&A 3*%4.40

with
~a * 3*4.4]

Substitution of 3*4.36, 3*4.37 and 3.4.38 into 3*4*39, and employing

3.4.40 with 3*4.41 yields

O — a qti , (a/
C - iD = (b)
and 3%4,42
X = 2P*(A-iB)-a- + (c)
with
a_* = *~a*|1-2P" (A+iB)j
= “A + i(B+S)j , 3.4.43

the latter being sufficient todetermine A and B in terms of S, once the

form f(p) has been selected. Using
Pm = Wc = _p = (i")""AM(A%BM)A(/4(A%+B'M) A, 3.4.44
PT
the deformation may be written as
2 2
~ 9 + 2P,%a(R-2){ + 4 P 5.4.45
P R ' 3
and P P
-2P*B(R-aVB )
Tan(G-0 ) = —p-———-——-—----- - PP 3%4.46

(a-/R+2P,*A(R-a /R )) .
This form of the solution is greatly simplified if an additional racial

traction magnitude A is applied on the surf.ace R — 1. The so].ution becomes

37



2
2 _ -\2 __q‘=._ (2—_ - _R_) : %
L a
where a_j = iec, o = (5+B) = -pP Ba® and 2P A = 1, with
Tan(6-0)=gc (1 - 1). 3.4.48
Co ap (2 p2)

It is worthy of note that with this radial tracticn applied, an auto-
matic consequence is an o;erall volume increase. Eqguation 3.4.47 indicates
that

ryR , ’ 3.4.49
the equality being when R = a, where this is snecified. In general the
guestion of volume changes depends intimately on the material form through
f(p). Also, it may be noted that Tan(@—@) is a monétonic function of R,

increasing from O at R = a to a maximum at R = 1. This is as expected.

For comparison, the corresponding classical results may be noted:
2 (r -1, 31,50

u =O, u =§__ _I_'_
2u (a2 r)

r Y]

where (ur,u@) is the polar displacement. The Cauchy stress (1.5.4) compon-

ents,; again polar, are

- — _i z L
G rr “6es Oy Err@ - r2 ° Seteol

From 3.4.50(1) it can be seen that the classical linear theory predicts an
isochoric or volume preserving deformaticn. It is a significant point of
interest that if this restriction were imposed under the assumption of
harmonic hi’ then the resulting deformation is forced to be homogeneous,
the boundary conditions of place force it to be an identity. Thus a volume
preserving solution is not compatible with this material for this problem.

In order to illustrate the divergence of the solution (as in equatious
3.4.45 and 3.4.46) from the classical resnits,; the following form f(p) is
chosen

L

£(p) = 30n ) (p=2)2 + 1 V(p-2) 3.4,52

ne
H‘$4F

This is seen to be an extension of the semi-linear introduced ir 2.5.19. 1In
order for this material to be ''reasorable'" in the sense of Section 2.5, the

conditions presented there are appended as the condition

‘V') 0. 3..‘!»53



i e o

\,
AN

The material will then be reasonable in the required sense. However,
further restrictions could feasibly be required to ensure a physically
reasonable response for other problem classes. Indeed, f(p), of 3.4.52
will be further restricted, even for the.problem considered here.,

The following non-dimensional quantities are introduced here:-

1}

N = W VE = V/m, £* = £/u, A* = A/p, B* = B/n

2 2 a 3.4-51"'
Y* = (A*S 4+ B*9)%, px =‘pPT, S* = S/u
Then, given 3.4.52, 3.4.432 may be employed to obtain A and B, or eguivalent-

ly A* and B*, in terms of the non-dimensionrnal gquantities

A* = 2a”(L+kp*a®)~t
3.4,55
B* = -5°(1+4p*a2)"t
where
a
pr = 182 ¢ WZ - Y ). 3.4.56
( JF 2 )
The quantity ¥* is determinable from
¥ = £ (p)
and : 34457
. 2 a
p = (502 WF e
L 2
a a
In non-dimensional form, the solution 3.4.45 with 3.4.46 becomes
r- (2_ + 2P*A*(1—§E)) + b(1-a” )2psipx’ 3.4.58
(
Rz (42 RZ ) Rz .
and
Tan(8-0 ) = -2P*B*(R-2)/(a+2P*4*(R-a)) Sele59
a R R a R

respectively.
Calculations have been carried out for a = % and %; and for a rauge
of S* from O to 1.5 in steps of 0.1l. Values of »A* = 0.1 and V* = 24

have been assumed for material corstants. The main features of the

- solution are insensitive to the valnues used,.
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Figure 3.1 is a graphical representation of one set of results for
equation 3.4.58. The case illustrated is for a = % and S* = 0.1, 0.3,
0.5 and 1.0, The measure rz/R2 represents the change of planar arza, teo
be interpreted as volume in the plane strain case, inside a circle radius
R. Notice, in particular, that near R = a(=3) there is a marked volume
decrease. Overall, howevér, there is a volume increase for all cases,
for.this material at least.

The fact that a local decrease in volume near R = a 1is predicted is
independent of the form of f(p). This is true because 3.4.58, 3.4.43 and

3.4.44 indicate that A, B and P, are independent of R. Then

l’l‘l

> +
d (r_) - * y L'_' Y
® (3 5 —_2_{_3._ <0 s %.4,60
R aj

It is possible to draw the inecuality conclusion of 3.4.60 by inspecting

%2.4.55, and noting that P* is positive, and hence that A* is also positive.
2,.2 C s ;

Thus as r /R = 1 at R = a, the result 3.4.60 indicates a local volume

reduction near R = a for all materials.

Equation numbers 3.4.61 — 62 h;::ve been omitted.
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In Figure 3.2 curves of Gv@ are plotted for S* = 0.1, 0.3%, 0.5 and
1.0, They illustrate that shearing is greatest at R = a, decreasing nono-
tonically with increasing R. This behaviour is to be expected since the
boundary R = a is fixed. The association of an increased shear with
reduction in 'a' is also to be anticipated.

Now, using 3.4.40, 3.4.42 and 3.4.44, the nominal traction on a

.18 .
surface normal e = may be determined

-1 - -2
L - - *( ] . 06
Sp* = p T8, A*(1-R ")« O 3.4.63
and
‘-l - . ]
SgF =M sy = _B*-qpif* > 0 3.h.64

when $* > O. It is of interest to obtain an estimate of the magnitude of
the stresses at R = a. For the case a = % and S* taken as 0.1
R
SR 0.37
and 3.4.65

Sk ’:-_' )

bg 1.2 .
is obtained. It is noteworthy that the shear stress has increased 12 fold
over that applied.

The value of the associated principal stretches may also be estimated.

Taking ?\l >/.7\2 then |

%1 = % (p+q)
P and
.Ag =z (Pfé)
where ‘ st
p = (£20)7TH(¥)
and
q = 2((1-2P*a%)® 4 yp#2pe2)? a2 .
R2

qu S* = 0.1 it is found that 7\1 has a maximum of 1.7 at R = a, decreasing
monotonically to 1.06 at R = 1; whereas }\2 increases monotonicall; from
0.36 to 0.98 over the same range. For higher values of S* the derived Ny
can be negative and zero near R = a. This is physically unrealistic.

This iz a consequence of the chosen f{p).




6l

The inequality
£'(p) <pup
is the necessary condition thzt must be satisfied in order that every
‘Al> O there is an associated'k2>_l in pure shear. This cqndition was
noted in JOHN (1960). ‘
Finally, in this section a deficiency in the class of material con-
-_sidered, that of 3.4.1, is identified. Ag solved it can be seen that

there is a limit as S*-$¢o when @-@-?JTV2. This in itself is unrealistic.

Towever, it is not clear whether it is the material or method which has

introduced this restriction. In any case the range of validity is suffi-
ciently large for the discussion presented above to be reasonable.
Generally sypeaking the technique developed in this cheplzr is not of
sufficiently general applicability ito be developed further. Realistically,
it is only of worth if, atpriori, some general properties of the solution
are known, allowing the correct and consistent assumption to be made. 1In
this case a semi-inverse method is likely to be of greater benefit.
Further work that could be profitably undertaken is the analysis of
composites consisting of annular rings of different materials. The
Lagrangian formulation facilitates the fitting of the continuity boundary
conditions. It would be of interestlto investigate the volume change and

the influence that the internal boundaries have on the stress concentration,
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SECTION 3*5 COMPARISON WITH JOHN'S FORMULATION
In JOHN (isso) plane strain problems for mate'"ials with a strain
energy density function of the form 3%4.6 are considered. The exact form
of the strain energy density considered there, is
W =F(p) -"J, 3*5%]1
where J = det*_ is as introduced in 1,2.2.
Using 2.3.4 (2.3*5), 2.3.11, 2.3*12 and 2.3*19, the nominal stress

components S may be written as

F'(p)Co*-

F' (p)SinX[.+

®12 = -F' (p)SinX+
S_22 = F' (p)Co” - 2pcC*”.
Then writing
A=F'(p)cé? , B =F'(p)Sii~ s *s s

(the A and B here differ from those previously defined), the equilibrium

equations reduce to

>
"
+
w
|
|
o

if it isassumed that the oc. satisfy the comnat ibil ityequations 2.4,1], (@'
Thefunctions Aand B are thus seen to be conjugateharmonics.

The components of the deformation field x*, are then found from
s .s *>3 , expressed with the aid of 2,3*12 and 2.3*11(1) in the form

X, . + X - pA/(A‘4B )

$i,2 - 2 a = pB/ (ALBh

where

I
*

P = (p:)"" ~(AMBN) -,/

Tnus in JOHN s method it is F '(p)CosXland F' (p)3in”C which are
naturally harmonic, whereas in that demonstrated above, *F' (p)-yap”*Cos) (_
and )F’ (p)-;ap;"E;iry(_are forced to be conjugate harmonics. JOHN 's me thod

continues in noting that x%,i = 1,2 may be decomposed quite generall]y in

the form

s. =%, ¥', , X -8B -Y,: 3.5.7



G
Y

where @ and W are scalar potentials. The solutionof 3.5.5 may thea be
reduced to the solution of tw»o Poisson equations, namely
9% = pa/(aPs?)?
and 3.5.8
<‘72-’V = p‘B/(A2+B2)? .

These are then solved using complex variable theory.

=3

It should be noted that JOHN's method for radially symmetric problcms
produces thc same solution as in Section 2.6, and as above, as would be
expected. The function -p is again constant but that is not apparent from
JOHN's formulation, the method of Section 3.2 having the advantage lLere,
However, for Class I materials, JOHN's method is more general in that it
makes no a'priori assumptions of the solution. On the other hand, the
method of Section 3.2 has the potential of dealing with a larger class of
materials in solving problems within the discipiine of plane strain finite

deformation elasticity, albeit in a cumbersome fashion.
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CHAPTER 4 4 CCMPLEX VARIASLE FORMULATTION - GENERAL SOLUTION
SECLION 4.1 INTRODUCTION

In this chapter a complex variable formulation of the equations of
Chapter 2 is introduced and developed. A general solution of the field
equations is also generated. The material class considered is the harmonic
class of equation 3.4.1. Ehis speclalisation to harmonic materials is nct
entirely necessary, but this class includes the semi-linear material
(2.5.19), the simplest notional ‘cxtension cf the classical linear material.

In Section 4.2, the complex variables are introduced and the ecuations
of Chapter 2 are re-formulated in terms of these variabvles. Section-Q.B
contains a further discussion of restrictions tc be imposed on the material
definiti§n in crder that it is physically reasonzble. Jn Section 4.4 a
completely general closed form solution is generated for harmonic materiail
subjected to riane strain deformactions. The sclution is given in terms of
two arvitrary functions. In Secticn 4.5 toundary conditions are discussed,
varticularly in relation to the determination of the two arbitrary functions.
The question as to what restrictions have to be placed on the problem in
order theat the determination is well vosed; is addressed. Finalliy, a small
strain asymntotic analysis is undertaken, resulting in the method of
Section 4.4 reducing to that dctailed by MUSKHELISHVILI {1963), for smail
strains.,

The fitting of bouncary conditions and tne =solution of problems is left

until Chapter 5.
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SECTICN 4,2 A COMPLEX VARIABLE FORMULATION
The underlyirg complex variables are introduced here. Thé position
variables in the deformed and undeformed (reference) configurations are
X =X+ ixa
and h,2.1
# = Xl + iX2
respectively, where X, and Xi are as defined in Section 1.2.
The deformaticn may thus be written as
x = x(&y5) ,' _ h,2.2
where # denotes the complex conjugate of %. The variables % and-g-may be

treated as though they are independent. Simple complex Qariable manipula-

tion serves to demonstrate that
51’-‘ 2leq) + e, + e -a ;)
= 2
and L,2.3%

3%5. 2l ) - o5y, + ileq yien)),

where ¢¢ is the deformation gradient, the compatibility-eguations are
assumed to hold. In other words, in deriving 4.2;5,g§ is assumed to be
derivable from a deformation field.

Now, referring to equation 2.3.2(a), it may be noted that

P = Z/X,g/ = 2/§t§/ Lo2.4
and
a = B/X,"Z'_ ‘v= 2//52"%[,0 ”‘"0205

The second equality in each of the acove two equations may be generated by

considering the derivative of X, or via the relationships

—— —-—

(1) Y,X = Y’X
— k,2,6
(ii) /Y/ = /Y/v

which are true for any complex function Y of a variable x.
Next, the equilibrium equations of 2.2.1 are considered. These are

satisfied identiczally if the stress potentials hl and h2 are deiined such

that they satisfy 3.2.14%. Then writing
h = h1+1h2,

“h is again a function of % and %. Ascuming that 3.2.14 holds, simple muni-
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pulation results in

+ i (8 )

]
N
~
0n
+
n

127501

and 4,2.8
- S, -1 (8

22 11 )

I
i
~

n

12%521

WM
Y

Comparing thece with 2.4.2 allows the following to be deduced:

Pp = z Z/h';%/=i2/—ﬂ’§/

and 4L, 2.9

ap = 2/hyz'= 2/hyy/

where P and aqp are the similarity invariants of the nominal stress S.

Again, the second equality may be derivéd from first principles or by
noting 4.2.6. The sign of P, is indeterminate as indicated in h,2.9{1).
This is a consequence of its interpretation as the sum of the principal
BIOT stresses. On the other hand p, g and qq are required to be positive.
Now, consider equation 3%.2.15 for A, B, C and D of 3.2.2 in terms of

h1 and h2. This may be employed to demonstrate that

2(A + iB) = (h +h, .+ i (h
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and that
2{(C + iD) =~(hl - h + i (h, .+h ))

= Qh 3 LL:Z.lZ

o8

Next, take egquations %.2.7, bearing in mind 3.2.9 as defining P,, and QT’

IJ.|
and multiply equations 3.2.7(3%) and (4) by i, and then add to 3.2.7, (1) and

(2) in a pair-wise fashion, then this will yield

Jx = 2 P Jh
P T3

and 4,2.13%
9x = -2 Qn dh .

Similarly, 3.3.5, 3.3.6 and 3.3.7 may be'employed to obtain the results
Noo S -
gh = 2 P gx b,2.1k
0% 2%

and
dh = =2 § X . L,2.15
kY2 oz



Taking moduli of these last two pairs of eguations, noting h4.2.%,

4,2.5, 4,2.9 and 4.2.10 and invoking the definition of the pairs P, @

T,

m
L

(3.2.9) sad P, ¢ (3.3.6), the following relationships may be recovered.

’.rg.s
-

We = W. = '%p _
Pp P T h.o2.16
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Frem thelabove, equations %4.2.13, 4.2.14 and 4.,2.15, the relationships
PPy = % Qg = % 4,2,17
are self evident.

The set of eguations given above afé valid if the equilibrium cguatioi.s
and compatibility conditions are satisfied since they are properties of the
associated solution fieldé. That is, they apply to variables which corres-
pond to an admissible solution of a plane strain, firite deformation,
elastostatic problem.

The conditions which must be satisfied in ordervfor the equations to ¢
truc are investigated at this stage. Consider the compatibility equaticas
&s given in 3.2.12. ZEmploying the identities

- ( ),1 = (
and
R P (D DA R Y
on 3.2.12(i) and (ii) in turn and re-arranging, 4.2.11 and bo2.12 may be
employed in order to obtain the results |
(PTE’E)‘g + (QTHt%)iE = 0
and 562,10
(PTh,%),g + (Quhyz)e, = 0 .
Noting the identity 4.3.6, these¢ eguations may be seen to be mutually con~
jugate and hence either may be adopted as the compatibility equation. &an
alternative interpretation is thatl either of these equations may be regarded
. as being the necessary coadition required to ensure the integrability of
4,2.13. The corresponding condition to cnsure integrability of equations
4.2.1% and 4.2.15 is similarly determined, and is
(Bxyp)oz + (Qrymdy, = 0, h.2.29

the equilibrium equation,
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The similar functional form of equations 4.2.18(2) and 4.2.19 is yet
a farther example of the duality pointed out in Sections 2.4 and This
duality is independent of any assumptions regarding the material definition.
The solution of a problem may thus be obtained in two alternative ways:-

(1) A stress potential field h (&,m) may be presumed to exist. Equations
4.2.18 may then be employed to suitably restrict this function such
that 4,2.13 may be integrated to obtain x (B2t. Now, 4.2.18 involves
both Prp and which, as- defined, are functions of p,” and ', and which
are indeed related to h (-§-8). Hence, strictly speaking, an h satis-
fying 4.2.18 can be founa.

(ii) A deformation field x (-*,%) may be presumed to exist. Equation 4.2.19
may be employed to suitably restrict this function such that 4,2.11
and 4.2.12 may be integrated to obtain h (i5,&-). This time the differ-
ential e”uauion involves P and Q which via p and q arc functions of
X (K,&), or at least its derivatives.

In both of the above methods, boundary equations must be imposed as and when

practical.

Practically speaking, methods (i) and (ii) are not identical, for the
imposition and character of the boundary data may bias the selection of
either. Also, it is conventional to specify a material by its strain energy
density function V/, rather than Wc, the complementary energy density. As
such, method (i) may be awkward to apply, in that ?1_'1’“(=Wcmj_1/p"£ and
Q%(JWb /qi) may not be obtainable as explicit functions of m? and qJ (We
is defined via the symbolic Legendre transform 2.4.14). Additionally, any
mode of solution involving p” has the unresolved sign of equation 4.2.9 to
contend with. This unresolved sign is not a problem of any great signifi-
cance, as the indeterminacy is resolved by the boundary data but it is
another factor to be borne in mind. In all then, method (ii) would appear
a more attractive proposition than (i) for practical purposes.

Rather than discuss boundary conditions at this point, it will be
deferred to Section 4.4 as after a general solution has been found such a

discussion will be more meaningful.



SECTION 4.3 FURLHER DISCUSSICN OF INEQUALITIES: RESTRICTED TO HARMONIC
MATERIALS

In order to obtain an analytic snlution to the equations of Secti~n 4.2
it is essential that equations 4.2.13 (4.2.19), 4.2.15 and 4.2.16 (4.2.18)
are in svnch a form that they may be integrated analytically to obtain
x (%,%) and h (£,%). Altérnatively, assumptions as to the form of h or x
could suffice, as in Chapter 3, h was assumed to be analytic as a function
of % only. 1In that chapter the. technique was shown to be of restricted
applicability.

In Chapter 3%, two classes of material are discussed, for which the
integration to find x and h can be done. The analysis of pertinent inequali-
ties is similar for both classes and is continued with the potentially most
useful class, that of the harmonic materials

W= f(p) + %;uq2 L 3.1
As discussed in Chapters 2 and 3%, this material was first introduced in'
F. JOHEN (1960), although different variables were used, For ease of
reference here the following will bejincluded; some inequalities (and
equalities) determined in 2.5, and restricted, where appropriate, to the
form 4.3.1:

(1) £11(2) = p+p ho3.2
where 7\and‘p are the classical Lamé moduli.

(i1) f£(2) = 0, £'(2) = O _ ho5.3
(iii) m>o0, £''(p)>0 . Ch.3lk

(iv) f£'{p) % Oasp%t2 . 4.3,5

ANV

The harmonic material in the form in 4.3.1l, has beer little used
generally, excevot 1in recent papers by KNOWLES & STERNBERG (1975) and
papers based on the subject matter of this thesis. JOHN (1960) and (1966)
appear to be the only explicit references. The inequalities and limiting
properties spelt out in the cited papers will be discussed belcw since

other authors in using the harmonic material, have specified it differentiy.
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Restricting “he discussion to materials as defined by 4.3.1 it may then

be noted that

p="p = £1(p) 4.3.6
b Y A
and
W
Q= _g=p only. Lk.3.7
3

Thus it can be concluded from 2.4.14 that

£t (p)

|
ie]

=]
n

and 4.2.8
24 = M- _
Now, given a pure dilation (?\l = /\2) it is.reasonable to expect W -3 oo as
J =7\1X2 ~> 0, where J is, as defined in l.2.2, the ratio of final to initiail
volume (surface area in the case of plane strain). It follows that in this
case f(p) o0 as p -» 0, or equivalently
f(p)~m p-n
as p —» O with m and n positive constants. From 4.3.8;\11: folluws that

P, ->-0 as p —» O and, moreover, that f'(p)/p => - e This condition was.

T

imposed by JOAN (1960) and it implies that the (plane) hydrostatic Cauchy

pressure tends to infinity as the volume reduces to zero. On the other hand,
KNO./LES & STERNBERG (1975) required that
£'(p)/pp = 1
as p -> o In view of 4.3.8(i), p, > o0as p —» o0 . Therefore, invoking
L.z.4, it may be concluded tha’é the first of 4.3.8 is uniquely invertible.
Consideration of a hydrostatic stress, as was done in Section 2.5
results in equation 2.5.11 which may be rewritten as follows
pf'(p) - f(p»0 , P>O . he3.9
This was required by both JOHN (1960) and KNOWLES & STERKBERG (1975b) on
identical grounds. It is to be noted that it is automatically satisried
for p£2 by 4.3.4 and 4.3.5.
Then coupling the requirement f'(p)/ppr ->» 1 as p -» ¢ with 4.3.9.

' (p)/mp<l VO L,%,10

is obtained. This inequality will be considered further vhen solving a
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particular problem as it will be found tc be insufficiently’ strong.

Now, from the fact that ' (p) is a strictly monotonic increasing
function ¢f p and that f'(p) —=» -e@as p =+ O, it is clear that the
equation

f*(p) + pp = C | L.3.11
has a unique solution P, éay, this is because -pp is monotonically decreas-
ing and is greater than f'(p) at p = O. In addition, as f'{2) = 0, it
follows that

'O(pd(Z . E 4,3,12
This condition has been strengthened by KNOWLES & STERNBERG (1975b) to

1<p0<2 ,
the argument being on physical grounds.

The root p  of 4.3.11 is of great importance in JOHN's analysis, and
both JOHN and KNOWLES & STERKBERG restrict their analysis to deformations
such that p}po everywhere. For p(po the direction of maximal strain is
not coaxial with the direction of maximal Cauchy stress. The authors
deemed this tq be inadmissible and hénce imposed the restriction.

The above discussion summarises the restrictions placed on f(p) by the
various authors. The various conclusions and results will be further ais-
cussed as *hey arise in the current lext. For the immediate purpose the
only requirement is that the results of Section 2.5 hold, and tﬂét the
limit conditions |

f'(p) ~> ~o@as p ~>» O

and b,3%,13

f'(p) > was p > @ ,

are true. These are really just statemerts regarding the nominal hydrostatig

pressure at extreme deformations.
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SECTION k.k4 A GENERAL SOLUTION FOR A CLAS5 OF MATERIALS
In this section the complex field equations developed in Secticn 4.2,
for the material class explicitly selected in Section 4.3, are solved.
Substituting 4.3.6 and 4.3.7 into 4.2.14 and 4.2.15 resvectively, the
following are cbtained

Qﬂ = é P Qx
o3

and : | Lol
where P is a function of p = 2/9x/3%4/. Correspondingly, L4.2.13 becomes
ox = 2 PT Qg
and hoh,2
2x = =1 Jh
= 5%
where P = p /4t (p).
Note that %pT = wb = £f'(p) for this material aad f'(p) is strictly

monotonic and hence simple valued; ¢onsequently p = (f')-l(pT/P) is well
defined.
The second equations in each of 4.4.1l and 4.4.2 are equivalent. Each

may be integrated directly to yield

h = -2ux + 2pg(&), 4.4.3
where g{(%) is an arbitrary function. Using this to eliminate h from
L,L,1(1) results in

2pg' (%) = 2(P+p) QZ . b b L

>

while eliminating x between 4.4.3 and 4.4.2(1) results in

g'(®) =2 (P, + 34) 2h . bl 5
L H 3'_2‘_

Now, taking the modulus of 4.4.4 and gsiﬁg L,2.4 to eliminate /Jx/9%/ and
 remembering that Pp = Wy (3.3.6), the following is obtained;

| s op/g B/ = £'(p) + up. hh6
It is convenient that O(p) is introduced such that

2uf(p) = £'(p) + pp = 2uF'(p) hohi 7
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where F(p) is the function of p as used by JOHN (15¢0) (see 2.3.18}- Then
4,4.6 becomes
&(p) =1 /g9'(%)/ . 4.4.8
In Section 4.3 the equation ®(p) = 0 was considered and itwas con-
cluded that it has a root P” (Kp*<2). The importance other authors ha”e
placed on p* was also pointed out. Now, 4.4.7 indicates that £(p) - 0

when /g ‘'(S)/ is zero but this can only occur at isolated points, provided

g’ (-S)*'0 over its domain 0l analyticity. Indeed, the Maximum Modulum
theorem indicates that ®(p) = 0 can only occur at the boundary of the
domain. The contention is, and this will be oorneout in the next chapter,

that the sign employed in 4.4.6 is a function onlyof the boundary data.
The sign is constant throughout a body for a givenset of boundary condi-
tions. This merely confirms the remarks of JOHN (I-«<O) to the effect that
F’ (p) has a constant sign independent of &.
As in deriving 4.4.6 the modulus of 4.4,5 may betaken and employed to

obtain

+/g9'(3)/ = (£') ~(p*/2) + py " .
In writing

MEep) = (M + Pgi/4/: 4.4.10
it can be seen, as would be expected, that 4.4.6 and 4.4.9 are equivalent.

This occurs since

y(p*) =¥ (2fUp) | (£") "~ (£ (p))+2£' (p) />

=p+ £'(¢) 0(p)

where f*(p) has been relied upon to be strictly monotonie in order to
guarantee that (f.) is well defined.

Now, from 4.4.8 it is inferred that p may be determined as a function
of & and 3 once g' () has been determined. Additionally, given f£f'(p) is
monotonie, 0 is also monotonie and hence

P = (i/s' )/ = itd .
formally. The inverse (f) *(p”/2) must also be strictly monotonie and

hence so mustpv,,) . Consequently,
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pp =y T (Hg' (2)/)
ma; be written as the well-defined inverse to 4.4.9. The critical value
P at which 4.4.10 changes sign is given by Pp, = Zf‘(po). It 1s negative
and it corresponds to a net pressure.

Consider 4.4.4, where

% :ﬁgl(_'ﬁ) = )lg'(g‘)b .
(P4u)  (£'(p)Hup)

Then, on employing 3.3.6(1), it in turn becomes
-1 -
dx =20 C/lg @)/ g'(B) , hob.12
PES 2/gv %)/

where 4.4.6 and 4.4.11 have been used to eliminate the terms involving p.

Similarly, 3.4.14, 4.4.,10 and 4.4.12 may be used to eliminate P

£
from
T

4,4,5 to obtain

dh = Iny (/g \%__/)g ) . 44,13
ﬁ '\V 2/g! &)/

The right-hand sides of 4.4.12 and L.4.13 are known functions of the

arbitrary g'(%) and its conjugate, thus these equations may be integrated to

yiedld 2 -1 )
. ilf T (/g (®))g (8 + KE) Wk 1k
B’ e .
and .,
oy -1__/ (£)/)g' (8)az (Z) bk, 15
¥ ‘\ﬁ + \ ] e Te
S Y aCi el

where K(%) and K*(%) are arbitrary. The integrations are with respect to
%, with 8 fixed. |

Thus far there has been some redundancy in the development of the
theory in this section, since the arguments have been duplicated at all
points in order to highlight, and is facilitated by the elegant and robust
duality of the formalism.

The equations 4.2.18 and 4.2.19 have been solved in a parallel fashion.
The sclution of either of these equations would suffice, yielding #.4.14 or
4,L,15 respectively, since 4.4.3 enzbles an expression for h to be obtained
from L.4.14%, and for x to be obtained from L4.4.15. 1In going from h.Lk.14 to

an expression fcr h, using 4.4.3 allows
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4 -1
h o - T (/g (3)/)g (2)d2 + g(&) - K(B),
== = . = . h,L,16
2 /' (&)/
to be obtained.
Consistency of 4.4.16 and 4.4.15 is ensured provided
K* (&) = -2uK(&)
aund ’ Lok,17

Nt + -1 .
Y (/e (8)/)=tnset (8)/-on B (B/gt (@)/).

The complete closed form solution is thus obtained.
Now, 4.4.17 may be rewritten using 4.4.11 and 4.4.12 as
Py = = /g (B)/ —2)upA .
This result is known to be true from an argument based on other results.
Using b4.4.6 this equation may be reduced to
Pp = 2f'(p) + 2pp =2pp,
which is seen to be an identity when compared with 2.4.14. Reversibility
of the above steps is sufficient to‘ensure that the solutions 4.4.1lL4 and
L,4,15 are consistent - with the provisc that 4.4.17 is true. In subse-
quent work presented in this thesis bo4,14 and 4.4.16 are adopted to
represent the general solution for the plane strain f;nite deformaticn
elastostatic problem for harmonic materials. It is to be rnoted that either
the upper or lower sign must be taken thiroughout the adopted solnution pair,
which in turn depends on the boundary conditions. The determination cf the
complete soluticn depends on using these boundary conditions to determine
the as yet arbitrary g'(%) ande(E).

At this point the determination of g'(%) and K(Z) from the boundary
data will be discusczed. Firstly, one simple smooth boundary which is speci-
fied as

z =2 (2 , 4,4,18
will be considered. Secondly a pair of such boundaries will be considered.
An example of a boundary of this type is & = Aa/g which defines a circle of
radius A, This form will be uéed extensively in the next chapter when

specific solutions are considered, conformal transformations could be



employed to map a more general boundary on to a circle. For reasons that

will become apparcant, the notation

-3

ot -1 :

) (‘:AE'(%_)-/'_[E'(E_)] ) /' (5 y?d £, b.4,19

)
-

I =

M
is introduced. If the intecgral is indefinite the representation

1/~
will be employed.
Consider firstly the boundary condition of place imposed along the
simple curve L.4.18, représented bj

’:E’l = x, (&), ~ -~ 4.4,20

A
X

1 is the restriction of

where xl(%) is the prescribed deformation and
x to the contour 4.4.18. For simple smooth contours this specification
is quite general. Consider a parametrized curve defined by

% = f(e) - /_a_z:B,ho] ,
where o is rezl and neither-a% nor c&, is constrained to be finite. The
simplicity of the curve ensures that

f(“i) # f(ﬁ%) Vaﬁfc%24—£§%’“ﬁ) ’ éﬁ#&% *
Consequently '

o« = £71(8) *)
is well defincd, as is the function

o = £7H(E).
These may be employed to eliminate oC and to obtain

-1
) =T (@,

%=1/T (8)/.
Additionally, assume that the boundary condition is specificd as
* 4 Y . —
1% (e0) o< /65, 19)

then (*) may be employed to eliminate of and obtain

X

-1
— *
x, (&) = x *(f ~(8)).
This serves to define xl(%). Suitably equating this to the restriction

of the general x to the contour % the revresentation 4.4.20 is obtained.

1‘!



Returning to the consideration of the boundary condition of place,

equation 4.4.14 may be written as
o3-
-1 . ¥ . i i
X - -i/g' (2y d A (=/g'(§3/ 27 d ~ + K(qg) 4.4.21

which, taking into account the definition 4.4.19, becomes

I + K(3). 4.4.22
Combining this with 4.2.20 yields
-1
xM(-g) = iJ ZE' (W 1z *V + K(a), 4.':.23
which is evaluated for all 3 such that 4.4.18 holds. In other words

x*(2--|(5)) = -Z#'(5)/ I/"C (5)/ + K(S) 4.4.24

v/hich may be re-arranged to obtain K(3) as follows :-

K(5) = x~(K*(2)) + 1 &£ '("y I ZF(*1i7- 4.'*,25
As written in 4.71.25 the function K(3) is defined only for all 3 such that
the inverse of 4.1.18 holds. However, 4.4.25 is an identity in 3 and as su;
K(3) may be extended to all points 3 in the body. The elimination of K(3)
between 4.4.25 and 4.1.22 yields, ~

"X = x~(3*(3/) - /g'(32/ ' 1I (337 4.1,26
It follows that X can be seen to depend on g'(3) only. The corresponding

form for h may be determined from 1.4.26 and 4.1.3 to yield
1
h/g* = g(0) - x*|sp*)~i {Zg (527 I /a,0~(52/.4.4.27

Consequently it may be seen that K(3) has been eliminated from
4.4.14 and 4.4.16. in favour of a boundary condition of place on a simple
smooth boundary as specifiedin 4.4.18,

Consider now a traction boundary condition, again applied on a curve
as in 4.1.18. By denoting the normal to any curve of the form 1.4.18 bj

and and the nominal traction on this curve by t, and t*, and by

invoking 1.3*3 this produces the result,

h =hfT ' SgWp . p = + ®22«2'
where S is the nominal stress. Then, writing
t =t + itg , N - + iiy

the following is obtained using 1.2.8
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t = Nc)_l'_l "ﬁ(‘)h- ’ | holt, 29
0% o5
Adopting the form of curve given in 4,4,18 and writing it in the form
F(5,2) =8 - %,(3) =0

it is possible to use the result that the tangent to the curve is given by

7,2', . 1’!’.4@30

%, as ! _ -
( 2%,)% g ( d8))
T = (=) = (&) hok,31
(9%) (9% )
may be obtained. Consequentl;; an expression foi' the complex normal N
results as followus: _%
. (d21) .
N = -1iT = "l(-a%«—-\) ) 4-4-3{

Hence, using 4.4.32 and 4.4.29 with the second equality in 4.4.31
- - P
(d81)7% dny

t = =21 —— — L"oll'o 3
(3% ) a7 =
A
is obtained, where dhl/dZ is the directional (path) derivative of
~ _ .
h (8) = h(%,'ﬁl(%v’)).
The boundary condition of traction dan be written
"
t =t (&) boi.3h

on the boundary 3 = %l(g), where T is specified. This result may be
inserted into 4.4.33, which u?on integration yields

A

h) = hl(%), L,k 35
where hl(%) is kndwn apart from an additive constant.

Thus it can be concluded that, apert from « constant, the specification
of the nominal traction on a smooth simple contour is equivalent to specify-
ing the stress potential h on that contour. For the remainder of this
thesis the form 4.4.35 is adopted at the traction boundary condition. The
adgption of this result has the pleasing conseguence of continuing thke
duality in that the forms for x and ﬁ are similar in structure.

Proceeding, then, as in deriving L,i,26 from 4.4.14, again, the
arbitrary function K(%) is eliminated from 4.4.16, given 4.4.35 as specified

on some contour as 4.4.18, to obtain ]
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h = hlg 1(5))) + an/ets)-gla (B + n (&' (8) / I foa (B, bok.36
where I/, / is as defined in 4.4.19. The corresponding form for x may be
recoverecd from 4.4.,3 as
2ux = 2ng E,%l(-‘-ﬁ_); 1E 1(2) = a /B (%_7 I (5% (&), .k 37

Thus, both the traction and deformation boundary conditions as applied
on a simple contour have Been tackleds It is to be noted that in each case
the arbitrary K(%) was eliminated. The boundary conditions specified on a
gecond contour are now coansidered. The aim being to investigate how these
may be utilized to determine g'(&). |

The contour is taken to Ve specified in the same form as 4.4.18, speci-
fically

% = B,(#) or 7 = &, (#). L,4, 38

A boundary condition of place is specified as

&‘2 = x. (&), 4, L, 20
c

7,

where xz(%) is prescribed, and'?b(w) = x(%;§205)) as in 4.4.20. A traction
boundary condition is taken in the form
h.2 = hz(‘Z), L*’o""ol'{'o

A - .
where h, is prescribed and hz(ﬁ) = h(%,ﬁé\%)). The following notation is

introduced

:rjéhun,/ f ®-l(' ég (é.;7 L@ (ﬁ (2) _/ ) 48 (%.4/ d é* 4 hohl
It can casily be seen to be the integral Ié7\tp~/, when % is replaced by
% ,(8).

Firstly, consider the solution 4.4.28 which is such that a boundary
condition of place has been satisfied on one contour. This result is
employed tco determine g{(#) when a second condition of place on a second
contour is specified. Now, %4.4.26 is valid for all % contained in the
body, in particular on the second contour 4.4.38 where L4.4.39 is specified,
in which case 4.4.3% may be employed and ¥ constrained as 2 = B_(&) to

2

give
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x,(8) = x e 5,27 L3 [ @] T T@ 5 2] 7 bk b2
This theoretically allows g'(%) to be determined but it must not be ovar-
looked that’]Jéf,_7 involves g'(%). It may be argued that 4.4.42 allows
g' (&) to be determined on % = %2(5) only, but as it is an identity, any
solution may be extended over the interior of the body (between the
boundaries).

Secondly, and in a similar fashion, 4.4.37 may be employed with the
condition of place 4.4.39 to determine g (%) as the solutlon of the follow-
ing

2@ = e (15 - m (LB

a
o -2
Iy/ ‘g"gﬁz(ﬁ);J T, ‘Erl(z_‘r (zr))] b, b3
Thirdly, using 4.4.27 and 4.4.40 the expression
h, (%)
%

8(8) - % (5, 5,(8)/) 3
T3 :E i, 5—)) Va T[_z,,ul( 2(:’3,)_/ A

is obtained, from which g(#) may be aetermined. This case is that where a
traction boundary condition is specified on the second contour and cne of
place on the first.

Finally, 4.4.36 and 4.4.L0 perﬁit the generation of an expression
from which g(%) may be determined, where two traction boundary conditions

are specified. That expression is

( - —_— — -
h,(®) = b (% /3, (5;/3 s 2p [E(e)-g(8 [E,(8))) T ¥
) (= -2 b b, 45
R [ E a(ﬁ))_/ f]JéZ 51( 2(3))_/ .

Each of the above four equations may be used to determine g'(®).
Thus a solution may be determined.

Prior to discussing the uniqueness and existence of the above solu-
tions, the extent to which the equations simpiify for the semi-linear
material is investigated

2 2
W= R (pm2) A NG
[

is first introduced as 2.5.19, but is repeated here for ease of refercnce.
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Firstly, note that @(p)cf 4,4t,7 is zero for

p=p, = Z(']\+))A)/(?\+2).I) . L4, b7

Where Pyo being the critical value cdeciding which sign is to be taken througH
out this chapter, is the important quantity discussed after equation
4,4,8., 1If the boundary conditions are such that p>p,» the top sign must
he used, otherwise the lo#er must be taken.

From 4.4.7 and 4.4.11 and assuming L.4.46 as a material definition,
it fellows that

-1

p=0 (/g (3)/) = 2(vp) T 2u/z1 (2)/. bob 4E
n+2p n42p

Equation 4.4.14 then becomes

-2 1

: 5 y X et (2))2(51 (B))?2 z -

X = : %)1‘__(?&”/ 2)1(0_,-;&_%) )-(o;\a)) g'(ﬁ)d% + K(#%) '

- ) (80 Q)HEE (B2
which simplifies to

ra \
x = g(%) i- 7\+A}i — i g'(%)?d% -+ K(-Z-) . l} 4 49
(h+2u) (K+%p)(g‘(5))2 e
Empleying 4.4.3 the corresponding stress potential h, may be determined as
— - & 1
boys Se@ i 1o | e DRY 5 4450

2" hion /[ [CHENE

The two equations from which the arbitrary functions K(Z) and g(Z) may
be determiaed are quoted here, This is for the case when two boundary con-
ditions of place have been specified. %quation 4.4.25 becomes

(%) = x, ( zl(%")) - p g(3,(E) ¥

i
_ %, (2) 19
F Q) 5'(52,5_7 dS , 4oi4,51
Gh+2m) (z'(3))?

and 4.4.42 becomes

%, (%) Xlgzl [2’-2(%)—7§ *

+

p (g(8) - g(a (B, (#)0nt b 4,52
N+2u 12 o

5 4 P
f Q) g (° 4 47,
. Zl(ga(_z')) (?)"’2}3\) S'("t:("é)/ _'

§+

This particular example has beern chosen because physical arguments

imply that this situaticn is the most stable and so the one to whicn the
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Tije general question of uniqueness is considered now. However, at this
moment in time it is to be remarked that the theory is not sufficiently
advanced to discuss the general sol utions., HILL (1958) and (1968b) has
generated sufficient conditions such that the solution of incremental problems
be unique. These conditions were discussed in Section 2.5 in the context
of a requirement for physically reasonable material behaviour. In terms of

the material specified by h,50lv the conditions 2.5«6 and 2.5*7 become

and ~4.4.53

9;1" "(p)> 0
respectively. These conditions are also sufficient to ensure stability of
solution. Thus in general, it can be said that provided 4.4.53 holds, any
solution is locally wunique. This does not mean that the solution is not
independent of the scress/strain history. However, if the'-e exists some
neighbourhood JL , of p - 2 and g = 0 in invariant space such that 4.7&53
holds, then the result can be interpreted as follows:-

"If the material configuration was originally in and its subsequent

strain history has been contained in %4 at all points cf the material,

then the cun ent configuration is unique. As the set 1/l is open it
can also be said that the solution is stable."

Thus the problem that remains is whether any spurious solutions have
been introduced by the technique, assuming 1lliat the solution has remained
within A. Indeed, it is important to consider what, if any, is the
redundancy in the pair (g(3) ,K(3;). Eacn function g (3) or K (3) may contain
some redundant information. Any constant term in g (3) is but a trivial
example. The pair’ may interact such that ct+he»' additional terms do not
affect the overall solution as specified by the sLress and deformation
fields. From the general form 4,3.] it is obviously a task of considerable
complexily to resolve the question of uniqueness. JOHN (I960) has proved
that given 4,4.53, and provided the strain history remains in A; , then the

solulLicn he generates is unique, provided that the boundary data is that of
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place only, and provided also that the region of consideration is simply
connected.

It is formally straightforward to generalise the technique for deter-
mining g(%) and K(Z) employed above, to the case where the material is
bcunded Ly a set of piecewise smooth contours. Equations may be written
which specify g(#) and K(&) in this multiply connected region but the mani-
pulation of these equations would prcve somewhat troublesome and this exten-
sion is cmitted here. 1In discuésing the problem of uniqueness for the semi-
linear material, however, multiply connected regions are not precluded.

The equations 4.4.49-52 arc intimately dependent upon the form

a .
jg'(iﬁ'dﬁ b5k

M

where )tp are various functions of % and . The functions K(g), x(%,g) and
h(%,%) are well defined if L4.4.54 is path independent. This, itself,
cepends on the analycity of g'(%)%, which in turn devends upon the
singularities of g’(%). An obvious restriction, it may be thought, is

that g'(%) should have no singularities, such that % is a point of the
material. However, this condition is not sufficient as the region of inte-

gration is defined by the union of the following:

vy = (#: s.t. % is a point of tne body)
Vl = (% = %2(5‘): Sete '5-'(-\/0)
= = % Z : P % v
v, (3 = 2,(Z): s.t. 5LV )
7 (— \ .
le = (l‘l = Z2\_1(Z)/» Sato %-(_VO)
Vop = (8 = 5'1(52(%))' Sete 5—(—\10)

[
in other words, g'(J) must be analytic over

g
< - - — -
i A e er‘ LA 11V . '.1.
SV vV UL/ AP WAL P bt o55
This is a sufficient condition feor the integral to be simple valued.

In addition provided g'(%) has no zeros for %34E‘V0, it is also certain

that x and h are well defined and finite everywhere.
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The fact that g'(%) is by necessity of multiplicity two is not
discturbing, as the sign to be used in equations 4.%.49-52 is fixed by the
boundary data through 4.4.52 and this will select the correct branch.
Unfortunately, the situation is uwot as simple as the discussion above
would imply. In Chapter 6 a solution is continued numerically and the
expression 4.5.54 is showﬁ to have two branch points in V, cof 4.5.55.
Indeed, for an applied traction greater than a particular value, these
branch points correspond to pcints within the material. The solution
fields are fully discussed there.

This section is concluded by repeating that the question of unique-
ness, when applied to the technique introduced in this chapter, is as

yet unresolved. All indications are that the resolution is not a trivial

task but is worthy of note, even for the semi-linear material.
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SECTICN 4.5 SMALL STRAIN ASYMPTOTICS
In this section the technique developed in Section .4, is restricted
such that the strains are small. Thc small strain is assumed ai this point,
to be characterised by
p = () =1+E, 4.5.1
where /E/ is small. .
Consider the equilibrium equations in terms of the Cauchy stress
(1.5.4(1)) restricted to plane -strain. ZEmploying the argument as used
in Section 3.2,1\1 and.lh2 are now introduced such that
G =%2;20 Gy = ‘7]2;1’ Gys = 411;2’ Gos = hyae he5.2
where ";" has been used to denote differentiation with respect to the
cc-ordinates in the current configuration. Now Ei is symmetric, hence
Hoyr ~higo =0 5.3
Consequently the existence of a further function .Trof x, and x, such

1 2
that

Tt
52

may be inferred. Equation 4.5.3 is satisfied automatically. The function

> and T:l =1”l, a 4.5.4
T'is called the AIRY stress function, and is widely used in classical
elasticity theory. The major advantage in using_TTis the simple form
the equilibrium equations assume once the compatibilify equations have
been satisfied. which is that of a bi-harmonic equation er'71¢ The
works of MUSKHELISHVILI (1963) are based on the solution of this
equationf

Now, consider the relationship 3.2.14%, which are in terms of the

Langrangian co-ordinates (X,,X,). Referring them to the Eulerian pair

2

(xl’XZ)’ emyrloyins the relationship

h_ . =h_,. cC.
n,i n;j Jji

’ L.5.5
and substituting for the nominal stress, via 3.2.4, and employing
1.3.2 and 4.5.2 with 4.5.4, it may be demonstrated that

ho= QT .
b
QX



l+1h2 of 4.,2.7.

On linearization using the above, 4.2.18 may be shown to pe equivalent

—r1is regarded ac a function of x and X, h is again h

to the classical
—a;:I; =0 k,5.6
X DX
of the infinitesimal theory. Thus, for small strains, the generated
field equations reduce to their linear small strain equivalents.
A more direct comparison with the linear theory is afforded by a
linearization of the solution fields presented in Section 4.4, In
Section 2.5, & particular member of the élass of harmonic materials, the
semi-iinear material was identified as sat?sfying all thé asymptotic
requirements for small strains. This can be rephrased as ; as the strains
become small, the material behaviour must approach that exhibited for the
semi-linear material. The semi-linear material itself, is the simplest
material, such that the small strain analysis is consistent with the
linear theory.
In applying the analysis, start from the solution as stated by equaticn
b 4,14, The form 4.4.50 is inappropriate, insofar as it is not amenable to

a small strain analysis. Given

W= pip (p-2)° + J ¢ he5.7
2 2
the semi-line2r material, then
£1(p) = (htp)(p-E). L,5,8 .

Substituting this f'{p) into 4.4.4, taking the modulus and employing

ho2o. b
. -1
p=2Gwp) - op/g'(B)/ (=0 (/g'(8)/), 4.5.9
(h+2p) |
is determined. Inserting this into 4.4.14, the following is obtained;
%
X = ‘%j [ 2Qwp) + 2n/e' (B)/ / g'(3) a% + K(B) 4.5,10
Che2p) /e (#)/

where the top (+ve) sign has been taken throughout. The reason for isking
this sign is that small strains are to be considered consequently it is

ensured that p>p0>0.
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In contrast to 4.5.1 a small strain specification of
g (3) =1 +7(z) | h.5.11
is adopted, where /k(%)/ is uniformly small over the bedy. The
asymptotic analysis consists of a linearization with respeci to
ﬁx%) as a small quantity. Given g'(#) as above, yields
/g'(z—.>/ =1 +hE) + T1,(55)
and _ 4.5,12
/e @)/ =1 =) - e
to first order in /%(%)/. Assuming the terms of second crder in
/%(ﬁ)/ are zero, and inserting b,5,12 1nto L4L,5,10, scme simple algebr

will produce the form
uzx-8 ED_« ) - hm X'(B)E + K(B) 4.5.1%

T%P h+gp
wherel}q%(%)da =X(8) has been written; the displacement u is also

" introduced. Employing 4.4.3, the corres:;onding comulex stress potential

h may be simply recovered as

Do ( 2 ) Il ) - (% ' ‘ 5.1k
Lo e - R@) - x@ 5.1k
The classical results may be obtained from the book by MUSKHELISHVILI

(1963) and a summary of his techrnique will be found in Appendix A2, The

results are

e s

L= BB) + TG +Y ()
and 4,5.15

=
i

NG(Z) - % F'(5) - Y(&)

U..L

1

where the 'L' denotes a linear quentity. Comparing these with

4,5.13 and 4.5.14, it may be concluded that

K(EZ) = -Y(8)
and

X(3) = wap g()
_ N
with

N = p/ ()
are sufficient conditions to permit the lwo solutions to be identified.
- Thus it has been shown that the technique employed is consistent with

that of MUSKHELISHVILI. . A)1 that needs to be done now is to verify
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that the form 4.5.11 is indeed implied by small strains, this follows
below.
By employing 4.4.27 and 3.3.6
2pg'(2) = 2(£1(p) + p) 2z 4.5.16
p 0%
can be obtained. Taking the modulus of this and using 4.2.4(1), gives

p/e'(B)/ = /£ (p) +p/ p . 4,5.17
D .

On applying the small strain criteria, as defined by 4.5.1, and expanding
fr{p) about the point p = 2 to linear terms only, the following results:

/' &)/ = /' (2)+2pn + £'(2)+uE/ k.5.18
%p T %p

vhere E = p - 2. Thus for harmonic materials, it may be ensured that

given a sufficiently small strain (as measured by E), that /g'(8)/ lies
arbitrarily close to a fixed constant. If the material is the semi-linear
material or any harmonic material consistent with it for small strains,
then the condition f'(2) = O noted in Section 2.5, forces this constant

tc be 1. Thus equation 4.5.13 is a statement that /g!'{8)/ may be
arbitrarily close to 1 for small enodgh strains, and hence the interpre-

tation 4.5.11 is shown to be consistent.
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CHAPTER 5 SPECIFIC SOLUTIONS
SECTION 5.1 INTRODUCTIORN

In this chapter the general solution and techniques deveioped in
Chapter 4 are used to obtain closed form solutions to a variety of
problems. Firstly the deformation of annula material configurations
is considered, this includes the degenerate case of a cylinder. The
boundary conditions are assumed to be constant as a function of the
polar angle, thus ensuring that the deformed configuration is again an
annulus. Examples of this problem class and their solutions are to be
found in Sections 2.6 and 3.4.

Finally, in this chapter the problem of an infirite vlate with a
circular anomaly is considered. The boundary condition at infinity is
taken to be that of a uniaxial tension. The elastic properties of the
anomaly will range from being rigid to being simply that of a hole.

The solutions of problems of this clascs are not; in general, of a closed
form and integrodifferential equations are involved. 1The soclutions are
analysed, as far as is practical, analytically. 1In the next chapter the
scluticn for a particuler material will be continued numerically and
pictorial and tabular results will be presented there.

In Section 5.2 the equations of Section L.4 are restricted such that
the boundaries considered are circles centred on the crigin. 1In Section
5¢3 the equations of Section 5.2 are used to sclve a variety of protlems
pertaining to annuli. In Section 5.4 the general characteristics of the
solutions of Secticn 5.2 are discussed and common factors are highlighted.
In Section 5.5 the solution of three problems concerning an infinite plate
containing a circular anomaly are considered. A large proporticn of the
work in this section is ar asymptotic analysis for large /Z/.

To conclude Section 5.5, the problem of a finite length crack is

formulated, but nnt solved.



SECTION 5.2 SPECLALISATICN TO CIRCULAR BOUNDARIES
In this chapter several problems in which either one or both bounda-
ries are circular are to be considered. For this reason the equations
generated at the end of Section 4.4 are presented below, restricted to
this form of voundary.
The boundaries are specified as follows:
&) (%) Az/g

and ' 5elel

I

— e
52(5) =B /%,
representing circles of radii A and B respectively with A< 3.
It is expedlent to define an nxpre=51onﬁf”o;y

h’lé?\,;y f (— /8" (‘S)/ [Z' (B /Z)_7 ) s'(‘)) ﬁ . 5.,2.2

r\)l_\

The equations to be specialised are 4.4.42 - 45, The process of
specialisation is but automatic substitution. The resulting equations

are given below:=-

'5'

%, (8) = % (8P8/y2) T 3 (B (870 T T (B’ g2 7, 5.2.3
%pxz(ﬁ) = %pg(Aaﬁ/B2) - ?l (AEZ/Bz) +
. - e - -
= LB (B?/5)_/ T a2 7, | 5.2.4
h,(8) = 2ng(8) - 2px, (A%8/p2) &
2 B
i
fp [5G T WiEGe T 5:2.5
-n /B _/ [B+87B/32 5.2.5
and
n(8) = b (4%8/2) + 2 (8(8) - 5(a%8/,2))]

A
—— _“2 —
P BT FBaem ]

respectively. These correspond to the pairs (x,x), (h,x), (x,h) and

02.6

\n

(k,h). The ordered pair indicates the bound ry conditions specified on

v
the circles radius £ and radius B; x denotes displacement and h traction
boundary conditions. fter g(%) has been determined the appropriate

solutions are obtained from 4.4.26, L.4, c?, Loit,57 and L.4.35 respectively.

u



The substitution Elig) = A2/§ is also required. In practice, however,
after 4.4.26 or 4.4.27 or L4.4.36 or 4.4.37 have been employed to

determine either x or h, 4.4.3 is then emvloyed to find the other

field.

Q

4
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SECTION 5.3 A CTLOSED-FORM SOLUTION FOR AN ANNULUS

The configuration adopted is one of an annulus centred on the origin
with radii A <B. Thus, given the boundary conditions, one of 5.2.3=6 may
be employed to determine the unknown function g(z).

The problein to be considered first is that of the radial expansion of
the inner boundary whilst‘the outer boundary remains unstressed. It is
supposed that the boundary radius is increased by a factor cof or.

The first problem is how to phrase this condition in the required form
(4iu4,20). As mentioned in Section 5.2 the curve is specified by

8 = 3, (%) = £C/3 . : 5.3.1
Hence the boundary condition is written
x, (8) = o=, | 5.3.2

The second problem is the form of the stress boundary condition,.

As in Section 5.2 the outer boundary is speciiied by the curve

3=L,(2) =3/5 . 5.3.3
From equation 4.2.7 the condition of zero traction on the contour
5¢%.% becomes hz(%) = constant. Without lcss of genefality this constant
may be tzken tc be zero. The szcond boundary condition thus becomes
h(8) = 0. ’ 534
Now, substituting 5.3.2 and 5.3.4 into 5.2.5, the following may

be written

N

2 - = - — :
0 =2pg(®) - 2pec A" & + [g'(BZ/%)_/ ’F’Z&,Aza/Baj , 5.3.5

[oe]
n

as an equation for g(%&), wherefT{is defined by eguation 5.2.2. An
obvious solution of this is
g(#) = W& : 5.3.6

to within an additive constant, where ﬁlis a constant depending only
on the boundary data.

The question as to whether this solution is unique is at present
unanswered. This was discussed at the end of Section k. k. However,
inverting the order in which the boundary conditions are taken yields

~

a similar form for the solution,.
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Taking the boundary conditions as

h(8) =0 on B (&) - 3%/%
and then . .5.3.7

xa(%) =oac?% on 32(%) = AZ/% R

and employing 5.2.4, yields

A+

Jpoc B = 2pg (8%2/4%)

Z

[N/
ol

a Rl
— . -2 _ _z _
T (e (N B wes8y T e (N7 al
B°3/,2 |

1+

e
5.3.8
as the equation for g(8). The same form of solution is again suggecsted.
Returning to the problem as originally posed, observe that 5.3.6 with
the definition of ®(p) i 4.4.8, results in
op) = 2. | 5¢3.9
Thus, provided f'(p) # -pp, p is independent of %. Substitution of

5¢.3.6 and 5.3.9 into 5.3.5 yields the following

A
280 - % 0-a%0) 7Y = e, 5.5.10

where the left-hand side is left in terms of p so that the general properties

~ |

p
independent of the particular harnoiic material may be discussed. i is the

| « |
unit vector in the direction of’k . It can be seen immediately that ﬁ,is

real. From 4.4.7 it is found tnat

§(p) ~'%p(1~A2/B2) = f'(p)/Z}1 + %pAa/BZ. 5.3%.11
This, in view of 4.3.4, is a monoionic increasing function of p, with the
value AZ/B2 when p = 2. Equations 4.4.7 and 4.3.3 yield §(2) = 1 and
hence qL = 1, when p = 2. Consequently the prositive sign in 5.3.9 must ve
taken and %}: E(p) taken in the neighbourhcod of p = 2. Equation

&

5¢3.10 then becomes

2,2

5
£1(p)/ 5, + 3pa°/8° = a8, 5.3.12
In view of the monotonicity discussed above 5.3%.12 shows that p is

a monotonic funciion of o (for Tixed A ard )., This is also the case for

§(p) which is clearly now valid for all p2 2. It is worth noting that




7
for O<e{1l, equation 5.3.12 indicates that &(3)>0, so that o has a lower
limit greater than the critical P, for this problem. For a given £(p),
5¢.3.12 may be solved to yield p as a function of o= .
The solution for x can now be written from 4.4.20 with Zi(g) = Az/z,
qL: @(p) and 5.3.8, as
x = zp(% - Az/g) +oeB . 5.3.13
This solution is now employed tc anzlyse the volume changes taking
place in the material, bcth locally and globally. Using 2.3.18, which
gives the local volume ratio J in terms of p and>q, with 4.2.4 and 4.2.5,
an expression for the velume change may be determined as
5= ¥ - 222 - @%/R%, 5.3.14
where R° = Z&.
Note firstly that J increases with R. This is in accord with the
concluéions reached at the end of Charter 2. Noting 5.3%.12, the dependence
of 5.3%3.14 on a:may.be eliminated to yield

2 4

J = op° - f'a(p) B 5.3,15(1)
%ﬁz \2R2
or
J = 3(p - £1() B5) (p + £1(v) BS). 5.3.15(?)
J AR A AR

The requirement of the material impenetrability (1.5.1) may be appliad

and the following concluded; either

f'(p)<g3_ with  £1(g) w-AR 5.3.16

np 52 Jp B2 )
or

f’(p)>£\_13 with f'(p) /~-AR 5.3.17

Np B& Mp BZ

must hold. The latter (5.3.17) are mutuzlly ecxclusive, as such
5.3.16 is adopted. The requirement of f'(p)/up<1l as in 4.3.10, was
noted by JOEN (1960) and KNOWLES & STERKBERG (1.975b). It may be seen

that 5.3.16(1) is a stroanger restriction for this particular deformation,
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The condition 5.3%.16(2) represents a lower bound on f‘(p)‘pp and thereby

coriradicts the hypothesis of JOHN (1960) who reguired f'(p)épp -3 -0 as
p =¥ 0. Further, note that 5.3%.10 implies that @(p) is greater than zero
and consequently p must be restricted to be greater than the critical P,

for this problem.

Consider the Jacobian of the transformation evaluated at R = A, JA'

Its dependency on p, or eguivalently oc , is now discusced. Putting R = A

in 5.3.14

-

J, = (p-oz) 5.3.18

is obtained. Insisting that ihis is non-negative enatles 5.3.16{1i) to be

recovered with R = A. In Section 4.3 the condition f'(p) - as p —-p» +©

was imposed. As p increases monotonically with oc; it is appropriate to
impose 5.3.16(1) for all p)O, then 4.3.10 follows immediately. Alternatively
5.3.16 may be regarded as limiting the range of of's admissible for this
problem. The validity and scope of these restrictions is discussed below,

The dependence of J on p may be investigated using 5.3.15(1) yielding

' L
dJ _p _ 2f'(p) £"(p) B -
& 2L 5.3.19
dp 2 4}12 A%R?

From 4.3.3 tlhe above may be concluded to be greater than zero and hence
that:-~
J increases initially from unity as oz increases from unity;
independently of the magnitude of B/A or the form of f(p).
The question as to whether the volume will always increase is not possible
to answer for a general material, except chat locally at R = A it may be

said that

> . o
J, 5 1 accordin Ti =
AZ c & 2, 3 % . 5.3.20

If J,21 then 1 for all R{A < R £ B) as J is monotonic increasing in R.
However, as may be seen from 5.3%.20 whether JA>1 or JA<1 depends intimately
on the function f(p). For the semi-linear material the situation is some-

what clearer, in that
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and thuf -

?

u 5.3.21

ensures that J*>1. Consequently, noting that the terra dependent on p is
monotonie increasing as p —>co from p = 2 and as this term tends to the

value ], s .s.21 1is seen to be a restriction of the wvalidity of this

material class. In order that with oc->1, p is restricted as
2<P<2 , s.’, .22
Having discussed, the local volume ratio at R = A, the expression

for the ratio of the total deformed to the undeformed, volume of the

annulusis considered Dbriefly. From 5.3.I3 it is possible to write

P2 1 B(f'(v))2 ,

where a<b are the radii of the deformed boundaries. This, on noting
s .3.2s wWith R = A, is seen to he greater than Consequently, there
is an overall volume increase provided J 1. The converse is not

necessarily true.

Note that is monotonie decreasing as a function of B/A for
fixed c¢C , as should be expected.

It must be borne in mind that the restrictions placed upon £(p) so
as to ensure that a reasonable elastic response 1is predicted, must nut be
applied unthinkingly. No real material has an infinite elastic regime,

and thus there is no reason to impose a ]easonab.Ie response for the whole

range 0<p”oo. Provided the restrictions hold in some domain enclosing the
point p = 2, then the theory and material are reasonably applied within
that domain. For the semi-linear material 5*3.-i6(l1l) cannot be satisfied

for all p>2 unless ?\CO, in which case 5.3*16'2) is invalidated for some
P Indeed, KNO'..”IES & STERNBERG (1975b) have argued that

£'x(p)/).i>1



which, because {%(2) = A+p implies that A0. Thus an inconsistency existg

1=

2

if the restrictions are applied for all p. However, if it is borne in min
that the semi-linear material is a highly restricted form of the constitu~
tive law, being but an extension of the classical linear one, it cannot
reasonably be expected to be appropriate as a description of the complete
non-linear elastic behaviour ol real materials. All the restrictions noted
here, in Section 4.3 and in Chaptier 2 serve merely to identify the neigh-
bourhood of p = 2 where the description is valid.

For real materials the theory of elasticity fails to be velid beyond
some critical range of values of p (containing p = 2), for a number of
reasons. Fror example, the material may rupture or yield at values of p
outside this range. Therefore for any given material, provided the
inequalities hold within the critical range, the material is deemed fo be
feasonable. 1hat the material deviates from these conditions outside the
range is irrelevant from a physical viewpoint, since elasticity theory is
not appropriate there.

Thus, adopting a form of f(p) which fails to satisfy certain
inegualities should not mesn automatic rejection of that material. It
could well be that the elastic domain, where the restrictions hold, is
sufficiently large for non-linear characteristics to be discussed.

Consider now the inflation of an annuius. This problem is an
interesting variant of that Jjust considered. In some nreighbourhocd of
the undeformed configuration the soluticic ought to be formally identical.
However, in the problem considered now the vossibility of bifurcation into
an asymmetrical configuration exists, for some critical value of the
pressure. |

It is assumed that on the inuner boundary 5% = A2 there is a uniform
hydrostatic pressure 5 per unit current area. Employing NANSEN's formula
(TRUBSDELL & TOUPIN /1960/, Eqn.20.3) which relates the deformed to the
undeformed normal tc a surface, svecialised to a curve in plane‘strain,

the expression
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t = -G (u 33 -N ¢x ) 5.3.23
32 JB

for the nominal pressure (referred to as TR in Chapter 2) per unit
undeformed lergth, where N is the unit undeformed normal, is obtained.
For the moment, generalise the equation of the toundary curve tc

3 = El(&) and note that 5.3.23 may be recast as

t = -BN JX; 5.3.2L
2%
where X, (&) = x EE,El(Z)g as in Section 4.4. Then, inserting

Q

4,4.22 in 4,4.3%% and comparing with 5.3.24 it may pe concluded that

= ”53;‘\-1
3%

where hl is again the restriction of the stress potential field to

=

d
d

|

s 5¢3.25

i N

¥

the contour & = 51(5). Integration of 5.%.25 yields

A A .
h = -bx . 5.%.26
a. constant term being ignored. However, from 4.4.3 '
A A .
hl = wépxl + %pg(%) R 5.%.,27
and hence
A ' A
X, = 2pg(®) ) b, = -2plg(® . . 5.%.28
- %peds p-G

Thus, althougli for this problem the boundary condition is in neither
of the standard forms, it may be expressed in either of these forms by
means of 5.3%.25. The problem does, however, become that more difficult
insofar as the unknown g(#) becomes an integral part of the boundary
conditicn.
Specify zero traction on the other boundary as

h,(%) = 0 | 5.3.29
ca & = 3.(8) = BZ/%. Either 5.2.5 or 5.2.6 may be employed to determine
g(Z). Thus, from 5.2.5 withjg {(#) given by 5.3.23(1), an exprescion for

1

g(#) is obtained as

[

2p s(W%/B%) - g() = T 1 F (/)T P/B.a%s/]. 505430

-5
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Again, as in 5.3.8, it may be noted that one solution is as 5.3.6 and
may be written g(2) =1L*Z. The * serves to differentiate this from the
constant defined in 5.3%.6. On substituting this into 5.3.20.

T(p)/p = 2(1-A%/,2) (6 =2p)/ (G -ap(1-2°/;2)7 5.3.31
is obtainea. An argument presented above has been employed to infer
that the upper sign in 5.3.30 must be taken. The sclution for the
deformation field is obtained from 4.4.37 with %,(3)=A"/Z,

x = dp(8-a2/g) + 2a R (- D), 5.3.32
where @(p) =1L* and p is obtained from 5.%.3l. p is again independent
of 3., Comparing 5.3%.32 with 5.3.13% yields

e = 2n A%/ (2p-5), 5.3.33
and the two solutions are identified. Clearly,G is determined as a
function of «&= . Thus a relationship is détermined; that of the measur-
able strength of the material.

Noting the requirement 5.3.16(1) which ensures that J is greater
than zero and using 5.3.31 and 4.4.7, the condition

. oc < 2n(1-A%/2)
is obtained. This requirement ensures that /x/ is a monotcnic increasing
function of G, the applied Cauciiy pressure. Thus the magnitude of the
true applied stress is bounded akove. That this limit exists should
not be of ccncern, considering the above discussion concerning harmcnic
materials in general. However, this result could have been anticipated
from other physical considerations; albeit for this material classe.
From 5.3%.31 it may be calculated that

B - P82 (ma%/2) (5T ()-8 ) o

vhere 0C 1is the radial stretch on R=A. As a consequecnce c¢f this
expression it is seen that the behaviour of\G as a function of p (or
- equivalent o€ ) depends on the factor
E;Eﬁp)-g(p)g .

This, using 4.4.7, may be simplified to -
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2 .,
4 /e 7 5.3. 3k
T wl 72

Now,AJOHN (1960), KNOWLES & STERNBERG (1975b) and Section 2.5, in
requiring a physically reasonable response for hydrostatic stress,
infer that f'(p)/up has to be monotonic increasing. Hence given that
p is positive, 5.3.3%2 and-the two preceeding expressions are greater
than zero. Thus a reasonavle, physically based requirement is that
G is a monotonic function of = . Equation 5.3.32 thus limits the
range of applicability of the mwaterial class. It may be noted that
from E;k(@p(l—Aa/BZ), that this limitation increases in severity as
the annulus approaches a cylindrical membrane.

For rubber-like solids it is well known that as the volunme
enclosed by‘a circular cylindrical membrane is increased, the inflation
pressure rapidly attains a maximum, falls:to a minimum and then
increéses monotonically up to rupture (ALEXANDER é:97l7). However,
the mode of deformation between the maximum and mirimum is asymmetrical
in nature. It may be noted that the solution corresponding to the form
5.3.6 and S5.3.32 is symmetric. Thus experimental evidence predicts an
upper bound to the applied pressure, such that the deformation is
symmetric. It is conceivable that other solutions of 5.3.5 exist snuch
that an asymmetric deformation results. However, it must be emphasised
that the constitutive law considered here is not appropriate for rubber-
like solids, since the bulk modulus is c¢f the same order as the shear
modulus, whereas for rubber-like solids their ratio is of the order of
104.

As an illustration that the =zign of §(y) depends on the boundary
data and that this degree of indeterminacy presents ne fundamental
problems, consider the case of an annulus as tefore but with a solid
- interior and a boundary condition specificd on R=B of a fixed displace~
ment, The boundary coendition on 5§=A2 is thcrefore

xl(ﬁ) = %, ' (W)

and that on ﬁ@:BZ ig

N

i
-
it
N
o

e O {5
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where 9 is real and

a5 <9 (3)
Substitution of 5.3%.35(1), (2) and (3) into 5.2.3 yields
-2
2 + 1=, 0l v - 2 i
R-1/52)8 = 2 IF (=%/8) P [3.07%8/ 27 5.3.36
A solution of the form 5.3%.6 is again possible. Inserting into

5.3.36 yields

3 /A = ([ -a%/g2)/(1-p/52) - 5.3.37
As from 5.3.37, | ie real 5.3.9 may be written as
o = Y, | 5.3.38
and 5.3%.37 becomes '
| Ip = T(P-12/,2)/ (127, 2). | 5.3.39

The requirement that p be positive for all ? such that 5.3.5(3) holds,
indicates that the positive sign must be taken, at least in scme neigh-
bourhood of p = 2. Indeed'taking the lower bound of ? = A/B, 5.3.39
gives

p>2A/(A + B) , 5.2.4C
as a limit,

From 4.4,26, with Zl(é) = AZ/—, the solution for x in the form

x = 2p(8-A%/=) + A°/= 5.2.41
£ %
is obtained. As previously, using J = %(pz-qz) and 4.2.4 with
L,2.5 to evaluate the local volume change on R=4,
= - - 1 ’ ".—’.,‘
JA = p~1. _ 5.3.%42

results, wiaicu again is required to be positiive. Thus from 5.3%.39,
imposing 5.3.42, a requirement of

U>3240%/,%), p>1
is obtained.

Ncw, recalling the definition of P, from Section 4.3, it is seen
that % = §(p> passes through the value p = p, as ? decreases, provided
po) 1. 1In general, however, whether po( 1 or 71 depends on the form
@(p). KNOWLES & STIRNBERG {1975Sb) pressnt an argument that pc}~l for

any form of g(p).
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If A=0 and the annulus degenerates to a cylinder the solution
5.3.41 reduces tec
= 3p2 = Va. - 5.3.43

The deformation is homogeneous, J = ?2 is automatically positive and

m‘-\

the sign of ﬁ(p) must change as ? decreases through the valueﬁ’ =2P,

Finally in this Section the problem of the shear of an annulus
fixed between two circles of fixed radii is considered. This problen
was first considered a2t the end of Chapter 3 where a different solution
nethod was employed. The formal solutions of Section 2.6 are also of
relevance.

The bouﬁdary curves are as before and the boundary conditions in
the conventional form adopted are

xlé%) =% , xz(%) - %8 5% 44
where 6 is the fixed angle of applied shear. Insertion of thnese into
S5e2e3 yields ,
(e 16’--A“/ 2)% = = %431(52/527~2”P23,A25/Bg7 5.3.45
for the determination of g(3). Again 5.3.5 is a possible solution.

Adopting this solution form, 5.3.45 becomes

YA = (20n?/2)/(1-a%/8), 5.3.46

with §(p) =I /% /. Taking the modulus of 5.3.46,
i 2. o \E 2 e w e
= (1+A =~ 2A"Cos8)</(1-a"/.2) 5.%.47

B B° l

results. Clearly p is a monotonic increasing function of €& over the
range O ﬁ“’and
1§ 3p < (142%/52)/ (1-27/,2). 5.%.48

Since p) 2 the positive sign is appropriate and @(p) = /1/;?1.
Using 5.3.46 and 4.4.26, the deformation field is obtained as

x = (¥ / 2)(38 - A /—’/(_L - A /Ba) + A% /g - 5.3.49

Notice that.tnls solution is independent of the form of the

function f(p). This is coatrary to the conglusion of the previous

examples,
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As previously, note that the volume ratio J is an increasing function

of R for any given value of 8.
(-

) > )
I, = ( AL+ 200-£7)0as9y/(1-4%/8%)°, $.3.50
B 32
and is positive for ® in the range o<<9<’vl provided
Cos® >3 (1+4%/,2) . 5.3.51

This condition resiricts @ to some range Og G(:Oo say, where
®o depends on the ratio B/A. Tpe smaller the value of B/A the smaller
the value of ®O. Additionally,\®0<f%fﬁ'as this correqunds to a plate,
B/A = <.

The condition 5.3.51 represents a limit to the angle througn which
an annulus can be twisted. For example, if B/A=2 the angle So is atout
500 and the maximum principal stretch about 2. This limitation can be
intervreted in various ways:-

(i) It could be that the form of constitutive law is not appropriate
for the representation of the elastic deformation described
beyond some critical angle ®0.

(ii) It méy be that internal buckling is iritiated at some critical

value of ®<®0. In this case’the deformaticn does not have the
simple form resulting from g(&) =%,5, but bifurcates into a
more complex mode. |
" (iii) The value O, lies outside the elastic domain of the material
in question.
(iv) The solution g(%) =’k5 of 5.3.45 may not be unique.

It ié worth noting that within the allowable range of O, JA decreases

monotonically from 1 as O increases from zero. Moreover, for R’A 1t

is easy to show that J=1 where R2:AB and.J>l for RZ)AB. The result

JA<1 was noted in Section 3%.6.

In the corresronding problem for incompressible materials the
S E(R)

solution is necessarily of the form x = 3 . Haterial circles
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in particular do not change their radius, whereas for compressible
solids as considered above, all material circles apart from 3
change radius. In fact, it is easy tc show that a non-trivial
solution with r = R is impossible for the harmonic material class;
this was done in Section }.6. Thus it is concluded that, in geueral,
non-homogeneous isochoric deformations are not possible for compress-

ible elastic solidse.
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ECTION S.k4 GENERAL CHARACTERISTICS AND SPECIAL CASES

Bach of the solut.ons presented in Section 5.3 were characterised by
the fact thot g(3) = hZ for someqL. A consequence of this was that p vas
independent of the spatial variable £, and dependent only on the boundary
data. This was shown to be a necessary consequence of circular symmetry
for this class of materials., A characteristic of the provlems of Section
5.%, 1s that the boundary data were linear in 2. Indeed, for the strain
energy function 4.3.1, if the boundary data were linear in % then a
solution with g(&) =‘k5 and p constant is always possible whatever the
boundary gecmctry, as is evidenced by thé general forms 4.4.42, Loh, b3,
Lok, 4l and 4.4.45. Whether or not this class of solutions is unique is
undetermined. The topic of uniqueness was discussed in Section hL.4.
Section 5.3 illustrates that solution of the form p = constant contain
many interesting traits. Problems in which p varies as a function of
position are considered in Section 5.5.

It is of interest to note that a deformation field of the
form

X =7L5(5/-%-)m + K(3), 54,1

where k and m are constants and K(B) arbitrary, is such that p is
constant. In this connection it is worth remarking that SENSENIG
(1965), using a semi-inverse method, obtained a solution to a
problem of the deformation of a sector of a circular annulus. His
solution in respect of the semi-linear material may be written

_=(1+2m)

1+em o 3 5.4,2

x = (Mp) 3 (5/§)m+clz o

(hep)  (L+m)

with %(m(O and C1 and 02 constant. This solution is the only non-

trivial solution for compressible elastic solids to be found in

the literazture on finite strain deformations. For a complete
circular annulus continuity arguments require m=0 and 5.4.2 reduces
to 5.3.1% with p again constané. This result and those of Section
2.6 would appear to lend weight to an argument that the solution

g(%):tkﬁ is indeed unigque for this class of problem where circular
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Consider now the boundary value problem of a circular anomaly in
an infinite plaie. Tho results of Section 5.3 are applicable in the
limit as B/A —> o provided the boundary condition has meaning there.

Firstly suppose that there is no stress at infinity; that is
h = o as /%/~» oo . On the boundary Z§=A2 the data is specified in
the standard form L4.4.35, the stiress condition hl(ﬁ) Tor the moment

being left quite gereral. The sclution of 5.2.6 with B/A a0 , is

applicable and reduces to

- > -
o=nh (AZ-Z/ 2)4—2p(g(£)-g(A_-Z/ 2)) +
1 B ( B<7)
__'.}. ' 504.3
- = R2 IaNT /T 2 2m T
* p[E(B/8)/ P /%,A78/B/
wherefrfégyg7 is defined by 5.2.2.
Prior to taking the limit B/A —» @0 , consider a solution of
the form g(ﬁ):lk%. It is of interest to investigate which forms
of hl(%) are admissible with this form. Equation 5.4.3 reduces to
- 2 : (,"‘"“711 2,) = -2 iLo -
o = h (A%8/52) + 2p A —:-}1p5 [T-h /B_2_7 et . | 5.4k
B .
This on taking the limit AZ/BZ ~> o becomes
- 1w
h, (0) + (2/7&/+p)y5e =0, 5.4,5
Ia/ jud . N . .
where = /‘/e « This 3is really an identity for all % and
hence
h’l (0) =0
and . : S..6
2/b/ p =0

result. These follow from the fact that p is constant given the
form g(Z):ﬁ,Z. Thc form g(%)=%,% is a solution foanny boundary
data of stréss pecause 5.4.56 is not a real restriction. The
corresponding solutions are obtained from cquations 4.4.36 and
L,L4,37 as

x =18 - b (4°/B )/2p 5. k.7



and
h = hl(Az/-'Z), 5.4.8
where 5.4.6 has been employed.
It will be noticed that 5.4.6(2) is independent of the boundary
data hl(ﬁ). Consequently, if a loading path from hl(ﬁ) = O when
p = 2 is considered, then these values will not alter as the surface
2Z=A° is loaded. Thus from 5.4.6(2) with P = 2 it may be concluded
that /}/ = 1 and .
?L _ i | 5.4.9
may be written. Additionally it may be noted that 5.4.6 indicates
that the negative sign must be adopted in S.4.4 and 5.4.5 as p’O.
The value ofw depcnds on hl(ﬁ) as will be demonstrated.
The resultant force on a curve C, the contour 27 = AZ, in the
undeformed configuration is given by the integral of the nominal

traction around that curve. Using 4.4.33 this may be written as

A -
T tdl = -i/h (8)/ 5,10
U

C

where dl is the elemental length on C and éi_z denotes the variation
on describiug C of the enclosed function. As a result of 5.4.1C the
condition of zero resultant on C is elegantly expressed as a require-

ment that hl(59 is simple valued. The resultant couple is given by

. — S TR B R Gt T
g (xlt2 xatl)dl = -3 Y\xch+xdh) . 5.4,11
c Ve .

- This couple must also vanish on 23 =_Aa which is denoted by C. Thus
using 5.4.7 and 5.4.8 with the rigut-hand side of 5,4.11 and equating,

some manipulation yields
( I 7 2 o D 2 2)
\ - Z : -
§C(1hl\A~/é> 1LA hl(‘)/Z ) dz
- 2 Lﬁl(ﬁ)ﬁl(Az/%)"/c =0 . 5.4,12

But on C, 31(A2/%) = h1LE) and therefore as hl(ﬁ) is single valued,
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the second term is zero. Hence the condition of a zero couple becomes

[\hg (A*/«) A*hg(Z)/a*bo = 0. 5.4.1;
Je ”

This iiiay be rearranged and 5*4.9 employed to give an expression from
v/hichU7 may be determined.
h~ (A~/*)d2. 5*%4 .14
c c
Thus, as stated, uO is determined from h”(S-) in contrast to the
modulus of \ .
In the pressure loading case (5*3*25) considered, 5*3*28 may
be used with g(*) = to produce
h*(3) = -2jul3d'\g/(2pi-i5") 5%4.15
and 5*4,14 is automatically satisfied, the reason for this is that
in the particular case of radial symmetry the ang1eis indetermin-
ate but constant.

If hj*(2) = T3 is taken where T 2 N + is is constant, N and S
respectively being the normal and shear components of load on ZE@#E,
then from 5,4.16, Tanu5* - S/N, When 5 =0 the solution 5*4.7 with
5.4.8 becomes

X =3 4+ TAY/?*h
and
h = TA~/-
If m is identified with x this solution is seen to be the one obtained
from the classical linear analysis. The reason why this solution can be
recovered is that p = 2 for this problem. The situation is somewhat

different in the second problem considered.

Suppose iivw that zero tractions are applied to the surface

so that h, 3) = 0, Suppose also that a uniform field at infinity is
applied,

h_(3) T3 , 5%4.17
as /=/ CO . A more general form of this 1limit condition is dis-

cussed in Section 5.5. Using 5*2.6 as in the previous example



- el (/% /tp) = 0 5.4.18
. . i . .
is obtained, where %/7qb/ = e . From the case when T = O it can
easily be deduced that the negative sign is the correct one to be
adopted, at least in some neighbourhocd of p = 2. From 5.4.18 and
using L.4.7, it may be inferred that

(i = T obfol

> N =y | 5.k.19
and
(ii) f'(p) = /T/o 50“’.20

From 4.4.%36 and 4.4.37 with 5.4.18, 5.4s19 and 5.4.20 the solution

pair
x= & -1 (2- 2°/B) 5.5,21
and %P
h = 7% - Ta%/3 5,422

is obtained. When T is real it is possible to empléy 5.4.18 and

L. L7 to eliminate /”%/S given that /1,/ = @(p), to show'fhat
2n(x-3) = p(p=2)% + TA%/F . 5.k4,23

This, for the sSemi-~linear material, specialises to ’
n(x-3) = pTs + mA%/% ‘ 5.4,2h

N+

upon using 5.%.20. This has the same form as the corresponding

solution in the infinitesimal fheory, & and x being-identified on

the right-hand side. Details of the infinitesimzl solution may

be found in JMUSKHEUSHVIU 11953, Chap.2), a summary oif which

may be found in Appendix AZ.

In this case the linear solution was only recovered on

- specialisaticn to the semi-linear material., Results 5.4.19,

5.4.20 and 5.4.22 illustrate how the solution depends upca the

' boundary data through the form f(;). .Thié is in ceontrast to the

. example considered previouslye.



SECTION 5.5 PROBLEﬁS CONCERNING AN INTINITE PLATE

In this section three problems concerning a circular anomaly in an
infinite plate are considered. The approach used is that of Section 5.3
and some results are taken from Section 5.4, In this section it will be
shown that g(2) being lingar is not & restriction of the method. As a
consequence of non-linear g(#), p is shown to have a non-zero spatial
variation. The method of Chapter 3 is inappropriate for this class of
problem.s A large proportion of‘the tsork presented here is an asymptotic
analysis for large /%/.

Tlie problem of a circular hole in an infinite plane with zero stresses
at infinity and a prescribed stressuon %nga has been discussed in Section
S5.4. The problem cf a stress free circular hole with a uniform stfess
boundary condition at infinity has &also been discussed here., In this

latter problem h is linear in # and independent of % as /3/->co . lore

generally, if the nominal stress is uniform at infinity h may be limited

as )
h,\-%(T F 0+ i(8.-8.))8 + %(T -7+ i(5.45.)% 5.5.1
("1 2 1727) ("2 1 1Y)
as /%/-» oo , where Tl’T2’Sl and SZ are cpnstants. Physically Tl and

T2 are the nominal components of stress at infinity in the Xl and X2

directions respectively, whilst Sl and S2 are the corresponding shear

components.
Henceforth, in using the notation °*~', explicit reference to
'/3/—> o ' will be omitted but this is always implied. ‘hen T2 =T

= T and Sl = -82 = S, the =clution is as presented previously. The

1

deperdence on Z in 5.5.1 has not been considered previously. An
interesting problem which typiiies this dependence is that of a uni-
axial tension applied at iufinity. In this casc Tl = T and T2 =S

= Sl = O. The boundary condition 5.5.1 becomes

h~3T(% - %). 5.5,2
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This boundary condition is now considered in detail for two problems;
firstly, for a circular hole with zero tractions on 27 = A2 and secondly;
for a circular rigid inclusion cf radius A.

Firstly then, the problem of a circular hole under uaniaxial tension

at infinity. From 4.4.36 with Zl(g) = Aa/z and h, = O the boundary condi-

1

tion on 2% = A° is satisfied by
2,4 = 1 =T
ho=g(®) - gAY/ T 2 3@ 7
o
where%{-LJ7 is defined by #.4.19., From 5.5.2 a requirement of

%‘QN%T . : 5.5,k
% _

is identified. Hence from 5.5.3% that

-1 :
88 ¥ 8 (e'@)) g1 @) /e )/~ L 5.5.5

2
-2

1 /Z,A%/5.7 , 5.5.3

=

This expression may be simplified on using 4.4.7 and L4.4.8 to become
£1(p)g' (8)//g (B)/~ T . 5.5.6
It follows that g'(2) is real as /2/—» o and more generally, g'(#)
bas the same argument as T. Further, it must be positive because
@(2) = 1 and both ®(p) and f'(p) are monotonic increasing functions
of p. Hence, also
£1(p) BT | . 5.5.7
again more generally f'(p)«a%/T/; It may be deduced that the upper

sign in 5.5.% and 5.5.5 must be taken. .Additionclly

§(p).vcc , 5.5.8
where o is a real constant such that
gt (Bl o . 5.5.9
Moreover from 5.5.7 and 5.5.8 with h.#.?,éﬁ,can be obtained as a
function of T as
e(m) =T (07 ) = 11 20D, 5.5.10
This is mcnotonic increasing as%g function of T witheo) = 1. For

the semi-linear material f'(p) = (A+_m)/{po - 2), and 5.5.10 becomes

ac (1) = 1 + T(Qwp)/Cu@d+2p)) . 5.5.11



low in view of 5..9, g'(#) may be expanded as
o
g' (&) =oc+5 a® ", 5.5.12
n=1

where the a,'s are constant. This is the conventional Laurent expansion

n

and is valid *or /#/>R*, say.5.5.9 ensures that no further assumptions
are made in adopting this. expansion. The first two terms in 5.5.3 may
thus be expanded as

§(8) - g(A°/z) = oc (3 - 4%/z) + a,1n(2E/a°) +

%
2 -n T '
+ 212 (87 -F°/ n). 5.5¢13%
n A
n=2 .
The ¢xpression 5.5.3% then becomes
2 - 2 i ‘an -n,n =n
h =ex(% - A'/;) + alln(-ZZ/A ) + > = (8 A" = 37) -
ep ' ' n=2 A
-1 )
-2 [F 3BT 1 /B, A/E T . 5.5.14

For the semi-linear material the asymptotic form of 5.5.1l4 can

be solved to yield
g'(8) =c+ a25—2 . 5.5.15

The selection of this form for a general harmonic material is motivated
a3 follows. A strong argument is that a fornm such as 5.5.15 fulily deter-
mines a voundary condition of the form 5.5.2. Any further terms in
5.5.15 would have undetermined coefficients. These coefficients,; being
independent of the boundary data, would correspond to residual stress and
deformation fields. An assumpﬁion of a natural reference configuration
rorces ithese cerms Lo be zero. In view of 5.5.2 it may be argued that
a = O for n2 2 since no term involving %' (n>2) can arise from the
integral (as shall be demonstrated shortly) to remove contributions of
this form from 5.5.13 in the limit as /3/-»c0 . Additionally, in the

linear theory there is no logarithmic contribution to x and h and so

a; = 0, as no term may result from the integral in 5.5¢14 to compensate

-~

e [l . .. T .
for allnGﬁu/A in the limit. Lastly, note that in the same way, for
small strains, any strain energy density function must approach the seni-

linear and so must their solutiocns similarly converge.



Equation 5.5.1i4, assuming 5.5.15,reduces to

.
- D

h :oc:(i‘:-A?'/-g) + ig(&-Az/z) - 3= (B 1/, /-__/ 5.5.16

21 A2

As o is known from 5.5.11 it rewains to determine a. by considering

2
the dependence of h on % as /%/-» 0, bearing in mind 5.5.2.

Firstly, from 5.5.16 and 5.5.15
A

h~veaed + a

21 2

1 Q =1 -T2 - F s
w |y, VL 0T IE 8T,

A

%lt‘ﬂl

where 4.4.19 has been employed and the asymptoticforn|ofthe'hﬁegral
has yet to be determined.
For large /S/, g'(a)ﬁ»oc and the integrand in 5.5.13 beccmes
0 ch;ﬁx:? and the last term in 5.5.18 bacomes
=t +
-z20 (o) 5.5.19
far the upper limit only. It remains now to consider the asymptotic
form at the lower limit whendﬁ) is small and
g,<’o>~a2§'2 . | ' 5.5.20

The integral becomes

- 5 Xg 2]l we =1 : _
~ 9; ((l': 23.2 % )aeaé . 509.21
—“l '
As & becomes small the argument of @ becomes large, hence the con-
-1

sideration of the behaviour of @ for large values of its argument
is motivated.
Now @(p) is monotonic increasing and by assumption Q(p)=> o

as p—>» <» . According to an assumption of KNOWLES & STERNBERG (1975b)

el

9(p)~p as »-» av and hence O(p)< p for p{=> . However, when consid-
ering the problem of the deformation of an annulus, a more stringent
requirement was noted, namely
K—’ - \2 ~
Clp)~ Zp(1+A /52) s 5.5.22
which is 4.3.16, with & = A and 4.4.7, has been used. In general

then it is =2poropriate to assune

'+Equoﬁon 5.5.18 has not been used.
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0{o)uvp 5.5.23%
as p = ® , where 'V depends on @(p). In light of 5.5.22 ¥<1 is
taken. Now 5.5.23% may be equivalently written as

-1

0 (p) ~pAs 5.5.2k4
as p > ® . Thus 5.5.21 may be written as

z -2
~ €2y § 5.5.25

I'Lf -
as /5/-:L => 2 . The lJower limit of the integral in 5.5.17 therefore

contributes

=)

azg . 5.5.26

nra®

N

Thus using 5.5.19 and 5.5.26 it is possible to re-write 5.5.19 ac

h %c-«ga-l<x>)z;(1_
Eril -

1 g/ 2 eHa2
2_V>a2n/A , 5.5.27

hence, it may be seen that the boundary data of the fcrm 5.5.2 is fully
determined by a g'(Z) of the form 5.5.15.

For the semi-linear material, 5.5.27 becomes
; 4

e2p h ., = -1)8 + a 8/,2 5.5.28
DL 2u 2 A

as v = (A+2pn)/2p, and hence using 5.5.2 and 5.5.11, a, is determined
as

a = "AZT(PH'E}.‘.)/"?I(A‘*‘}).) . 5-5929

2

As mentioned above, this result may be obtained by integration of

5.5.14. Equation 5.5.14 becomes

1

n (A+2m)

a
— 2
o (28-0%/=) + 2 (F - A%/.) -
% A2

. =2 2 B
- e + a3 )7? (c + a 3"2)2d5. 5.

\n
.

\S1
(@]

The integral may be expanded as

% 1 i
_2 = 9 l r-.” _1

(ec + a2s )‘di\; = (oc 5_+a;\)2 - (GC%)Z

2/ ' i

rans

A




-2 1
(a::%c+a2)d - a.?
in/———eee G e

(o Za+a2)$ + a

A
2
2

5.5.31(i)

1
+za

>

’

The dominant term in 5.5.31(i) as /%/-» @ is simply the expression
2 .

oc “Z. Inserting this into 5.5.3%0 and taking the limit as /5/=> o ,

allows 5.5.28 toc be recovered. However, in the asymptotic analysis

A
of 5.5.31(i) a 1ln® term has been ignored in favour of oc “% and if

this term is included, 5.5.30 becomes

z 1 L -
M2 hales - 18 + 220 - (a))% 1n (a,% /%) . 5.5.31(ii)
AL 2m 2 (=) | ‘

In the specialisation to infinitesimal elasticity, in which case
T/u<<{ 1 and hence aZ/A2<<'l, and when oc = 1 + O(T/u), linearisation
of 5.5.31(i) yields

Z

1
]

’1 ‘ Ll .
(ec + a9 2% 4 S~edfs + 3 %2 % , 5.5.32.
2 ’ 2
£/ g A
L2 .
all terms of the order (T,/n)  being neglected. Comparison of the
asymptotic forms 5.5.31 and 5.5.32 with 5.5.2 yields

a. = -2A°T (a2um) '5.5.33

e ;u(hhus

which replaces %.5.29 in the linear situation. This value of

. 2
a2/A leads to the correct solution for the infinitesimal situaticn,
namely

. D ea - - - ho - -
W= 3 T(5-07/3) - M0(E - 4%/2) - 21(z -A/EIAY/EC .

Thais vesult is proved in Appendix A2 using the technique of
MUSKHELISHVILI. = (1963).

On the other hand, for the semi-linear material the non-linear
solution is given by 5.5.30 with 5.5.31. «ac is given by 5.5.11 and
azly 5.5.29. It is important to appreciate that 5.5.3% must be
used in the infinitesimal specialisation. The difference arises
because of the conflict between the guantities AZ/-E2 and aa/A2
competing as small quantities in the exgansion of

)

A

nY-a

ln%(&:."\?'/'-ﬁe + aa/,ﬂz)—g - a2



119

It is necessary to carry out the linearisation before considering the
asymptotic form. ©Note, in particular, that linearisation of the fornm
5.5.3%1 is invalid. Moreover, such a linearisation would be incompat-
ible with 5.5.2.

Adopting the form 5.5.23 which arguably is reasonable for =211
harmonic materials, then 5.5.27 with 5.5.2 yields

a. = -TAS 2v . | 5.5.3k

2 Wy Bl
This is made compatible with the linear theory if
V= (A+2n)/(nt3p) | 5.5.35
is taken. This &~ is generally less than 1, as required;
Thus from an extensive asymptotic analysis the coefficient in
the expansion of g(g8) as 5.5.15 has been determined. The total
solution is then determined by using 5.5.10 to obtain occ(T),

5.5.27 for a h is given by 5.5.16 and the deformation field

5*
is obtained from 4.%.3. Thus in principle the problem is solved
for all harmonic materials.

Consider now the case of a rigid circular inclusion under uniform
tension at infinity. The solution of this problem closely parallels
that presentcd above except that L4.4.26 is used rather than 4.4.36.

As a consequence of this similarity only an outline is presented here.

From 4.'1.26 with %1(§) = Az/g and xl(ﬁ) = %4 the deformation field
is given by ]

2z -"—/_'l"_-? 7 227 7
x = A/E + 72 /B'(B) I /56,A%/4 /., 5:5.36
and satisfies the boundary condition on %% = AZ. Equation
4,4.3 gives
RN 5.5.37
2n ‘
This equation allows an asymptotic investigaticn ef condition

" 5.5.2 in terms of the expression 5.5.28. As in the solution above

the form

n
n
oo

\n
L]
1 ]
N

g'(#) =oc + 8.2%-2

is taken, with a different a., however. It is found that
<



oc(T) = 1 7 - 3(e)7 3 505439
.
but a2 is now given by
a, = ATAs 5.5.40
20

with v given by 5.5.35. The solution 5.5.36 reduces to the solution
corresponding to an infinitesimal elastic formulation namely,

2n(x-2) = (8-8°/2) + 2T(8-2°/2) -

T
2{a+u)

-3 (2 ﬁ% (3 - 8%/Z) a%/B° .  s.5.1
+2p

The solution for the non-linear problem is given by 5.5.38 with
5.5.39 and 5.5.40 inserted into 5.5.36. The stress potential is
recovered using 5.5.39. In the next chapter the solution of this
problem is continued for the semi-linear material. Graphical and
tzbular results are also presented, as is a discussion of the numerical
method.

To conclude this set of three problems the problem of an elastic
circular incluFion with a uniaxial ténsion applied at infinity is .
considered. As there is no essential difference between this and the
two problems previously considered the sclution is dealt with briefly.

Denote all quantitiés pertaining to the matrix (ZEZVAZ) as in the
preceding two problems an& dencte all those variables or parameters
pertaining to the inclusion (224A) by means of - - 2 suffix *. Take
the general solutions 4.4.14 and 4.4.16 and impose the conditions of
continuity of x and L acrecss 2% = A2, thereby eliminating K(Z) and
K,(%) to obtain:-

For 23y A° )

x = %éi'(i)_7_2 I JE,0%/87 + [n,e, (8°/B) ;pg(A2/§27Qp*1p) 5.5.42
with |

h/2,u=g(5)_x L]

\n
*
\n
[
o~
\N

and, for BZ£L AZ
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/Y

)

N

x = % E'*(Z),'/'- I*ég,AE/gJ + (p*g*(AZ/E)-}lg(AE/EY/Qu*-}l) 5.5.4i
with '
h*/%ﬁ* =g, (3) - x. 5.5."5
I éf,_7 and I*éf,_7 are obtained from 4.4.19. It now remains to
determine g, (3).
Firstly it is requiréd that x(0) = 0 and that h is finite at

%2 = 0. Thus considering 5.5.44 and 5.5.45 as /2/-> O then

8, (%) =oc B 5.5.46
results, where oc . is constant.
Szcondly, as mentioned above for the other two probiems,
5.5.42 and 5.5.43 can be inveétigated asymptotically as /3/—> oo

with L given by 5.5.2. Similar arguments as above lead to

-2

g'(8) =oc + a® 5.5.47
with
—-1 ’ '
15.5.49)
and
2 -1 ) 50
a2 = - TA (}1*-}1)(14"_1_-& ) ’ . 5050)
i 2 epv
b
being determined. Tnserting 5.5.46 into 5.5.44 and forcing
/8/=3 00 leads to
-1
< /T -/ (e, )] = plos—c,) 5.5.51
O x (}1*—}‘1)
as the consegquence of finite stress at ¥ = 0. This expression
allows ac, to te determined in terms of cce. The latter is known
from 5.5.48.
The solution 5.5.44 then becomes
-1
x =20 (o, )B+ __p_ a® ' 5.5.52
W,op) =5
A
with
-1 .
h o= fee 20 (0 )/B - aE 5.5.53
2n 2 o —=

IR

A

for 5§<A2. The sclution for %§2zA2 is given by 5.5.42 and

5¢5.43%3 with 5.5.46 through to 5.5.51. Within the inclusion the

ngzepcous. Indeed this arises for any homogeneous

T




boundary conditiecns at infinity, just as in the linear theory.
To conclude this section the problem of a finite crack in an
infinite plane with a uniaxial tensicn applied remotely perpendicular
to the crack is formulatecd. Consider the crack specified by
% = -5 , /3/L1/2 5.5.54
which is a crack centre t£e origin of length 1. Adopt the limiting
form 5.5.2 as that représenting a uniaxial tension of magnitude T,
For this problem T is considered to be negative, as werc this not
the case, the crack surface boundary data would not be that of a
free surface. On the crack surface zero applied traction is speci-
fied. This is stated as
h=0on%=-% /3/<1/2, 5.5455
on using 4.4.33. A condition of continuity of the deformation
field outside the crack but in the crack plane, is required. This
is specified as a requirement that the real component of x is zero
or the X2 - axis. This i; best writﬁen as
x,+%; = O on % = -%, /3/>1/2 , 5.5.56
although an equivalent form is
%, (8,-8) = i/X(2)+X(&)_/, /2/ >1/2, 5.5.57
for some X(%).
To summarise then, the solution to this problem is given by

L,4,16 and 4.4.14, yielding h and x respectively, where

h~T (% - 3) 5.5.58
2

hy =0 on#= -3 with /%/<1/2 5.5.59

x,+%; = 0 on 8 = -B with /8/>1/2 5:5.60

are the bcundary conditions.
Analysis of 4.4.,16 with 5.5.53 leads again to the conclusion
that

g(8) =oc+ 0y a @ " | 5.5.61
n»o

with

ro



and
2c 2@ (oc) =T . 5.5.65

Further from 5.5.59 with 4.4.16
A

. R R -
h =3 3/FE_ T _ 0 [Tt (& BNZfe (A)7a8 +g(8)-g(-2) 5.5.6L
2n -7

is obtained. IHowever, this is only valid for /2/K1/2. Consequently

[NV

it is not possible to extend this to infinity to employ 5.5.58.
Using L.lU.3

Re(x) = Re(g(3)) - 1 Re(h) ' 5¢5.65
2p

may be written and thus 5.5.60 becomes
IpRe(n) = Rel(g(8)) | 5.5.66
on 3 = -%, /3/>1/2. It is at present not known how this condition
is dealt with. The problem is left at this point. To date the
problem of the finite crack in a finite deformation context has
not been solved. It is not known whether a solution exists for

materials of the harmonic class.
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CHAPTER 6 NUMERICAL CONTINUATION OF A SOLUTION
SECTION 6.1 INTRODUCTION

In tnis chapter the solution of the problem of a rigid circular
inclusion in an infinite material plane subjected to a uniaxial tension
at infinity is continued pumerically. This problem was considered in
Section 5.5. The description 2.5.19 which is that of the semi-linear
material is adopted. Even for this simple material the solution possesses
many interesting characteristics.

In Section 6.2 a new terminology is introduced for two reasons.
Firstly, the general sblution 0f Section 4.I was originally developed
using the notation which will now be introduced. It is easier to ccatinue
the sclution of Section 5.5 in the original notzation and to simply point
out the equivalences where necessary. Secondly, a major characteristic
of the solution is a singularity with an associated indeterminacy which
are also better discussed in terms of the original nctation.

Section 6.3 contains a short description of the numerical algorithm
to be employed. 1In Secticn 6.4, the main sectiorn of this chapter, the
grapnical results are presented for varions values of the tractiou applied
at infinity. Some results are also presented which correspend to the case
where there is an applied sheaf in addition to the uniaxial tension. This
situation corresponds to the T of equation 5.5.2 being complex, and as such
the asymptotic anralysis of that section ceases to be valid. Thus the
asymptotic analysis of Section 5.5 is rcpeated for a complex T prcoducing
results which are at variance to those used when producing the graphical
resultss A counter-example is employed wnich throws some doubt on the
validity of the results of the asymvtotic analysis of this section.,
Finally, in this section some graphicgl fesults are presented which illus-
' trate the existence of a singularity.

The existence of this singularity is further confirmed by the non-

convergence of the numerical procedure in some cases, examples of which



~
ne
Ut

may be seen in this section. The singularity is discussed analytically
and it is seen to result from a branch point c¢f an integrand. This dis-
cussion is facilitated by the existence of an analytic representation of
the solution which will be obtained for this particular case. Whether the
singularity in the solution is inherent in the problemyor is introduced

by the method, is a question still to be resolved,



SECTION 6.2 A DIFFERENT TERMINOLOGY

The terminology and notation presented here are different from those
employed in Chapters 4 and 5. Howevery; the solution method is essentially
the same and there is little difficulty in converting to either of the two
representations of the solution, The terminology previously employed has
the advantage that the sign of equation 4.4.7 is easier to resolve. In the
notation to be introduced here the indeterminacy 1s lodged elsewhere allow-
ing a change of this sign within the material to take place. A comparative

analysis, however, reveals that this change of sign has to te made in ord

-
Ee

()

to keep the 0(p) of equation 4.4.7 of constant sign throughout the material
body.

As the solution method in the new notation is not fundawmentally differ-
ent from the one presented in Chapter 4, the results are simply gquoted and
the corresponding references are provided in brackets. The general solution

for harmonic materials may be developed as

% N o
x =2 | p(t,8)_£(t) dt + T(%) 6.2.1
/T(z)/ ' (hol,1l)
and J
B
" f(t)dt - 2x
)'I v
\Z"( )/T z) 7 =7 6
= f(t)/h - p(t,8) / dt - 2r(%8), .2.2.
u ﬁ?T%)/ (4.4.16)
with
/o + £1(0) / = 4 /T(&)/ £.2.3
2 (4,4,7 and 4.4.8)

A — —
where f(%) is analytic and r(#) anti-analytic. ¥oth f(%) and r(2)
are arbitrary and are determined from the boundary daca.

The consequences of the boundary data

and

h~T (2-3) as R = o 6.2.5
2 .

are now investigated. A general harmonic material description is
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first used ~nd is then specialised to the semi~linear description as
and when necessary. In employing the solution 6.2.1 to 6.2.3, the
form 5.5.15 will be seen to be deterwxned absolutely with few assump-
tions needing to be made. The analysis required in this section
differs from that of Section 5.5 only in the order of application
and, as such, a summary ié simply included here.

Consider equations 6.2.2 and 6.2.5 now. These may be differentia-

ted with respect to & and the limit condition applied to yield

T(z) /& - p(8,%) .1 . 6.2.6
F 7y 7S

Differentiating the same pair of eguations with respect to 2 and again

applying the limit condition, the followiné is obtained:-

g - - .

( - =\ iy - = —_ =)

£(t) [zp(t,2)£(8)d £(2) - 2p(t,%) _/ dt - 2r'(3)j~ -T/2. 6.2.7
f/"'rz—v & )

Now, 6.2.6 indicates now the integrand of 6.2.2 behaves asymp-
totically for large /%2/ and as a consequence of this behaviour it

may be deduced that

This result may then be employed in 6.2.7 to yield

ﬁ/f(z)/ S (p(#,2)) 43 ~ 0. 5.2.9
j Iz (JXZ)/) ’

The integral is zero and path independent, hence it can be deduced

thal. the integrand is zero. Thus, using 6.2.3, the result

A
/(&) 9 f£'ip) ~ O 6.2.10
pY 7<z,}/

follows. From this it may be concluded that f'(pzﬂ/g(z)/ is asymp-
totically independent of % for large /%/. This is best written as
5(2,8) 0 r(2) /1(8)/
with 6.2.11
£ (p(2,8)) ~ (b - 1(2))/T(8)/ .
M

The last of these is a conseguence of equation 6.2.3. The other
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root, /f(3)/~ 0, of 6.2.10 is discountecd as being singular since
T -~» 0 requires that /sz)/-» 2 for all Z.
From the fuct that both p and /?(%)/ are real and positive it
must be concluded from 6.2.11 that r(#) is real and positive.
Assuming this over some neighbourhood of infinity it may be con-
cluded that
r(&)~ r* ,
which is a real positive constant. Inserting this result into the
asymptotic form ©.2.3 and writing
P(E,Z)N p*2> O
and 6.2.12
/5(8)/~ t*y 0
results in the expression
/pp* = £ (p*)/=lpp*/r* , 6.2.13
fer a specified f(g). Additionally, from the asymptotic form for

/t(%)/, it may be concluded that

8

A -

~and from 6.2.6 that
Lt/ = . 6.2415
Thus this demonstrates that a_ in 6.2.14 is real for all harmonic
materials.

At this point in the analysis the semi-linear material descrip-

tion is selected with

f(p) = ___g (p-9) 6.2.16
Adopting this, 6.2.6 may be employed to relate p*,T and f* as

p* = bi* & /T///?__}.l 6.2.17
which, in 6.2.13, becomes

J(hEs = [T/) (P ) - 2@+pi/ = bpf* 6.2.18

2p

when 6,2.11 is invoked. In this expression there are a great many

unresolved signs which have to be resolved. The manner in which
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this is done is tedious as all cases must be considered. Once the signs
are resolved, a_ (£* = /ao/) is determined as a function of T with the
branches veing selected such that the basic coaditions

pJO

and

VA

'lima =
T=> O

are not viclated. On imposing these conditions the following arc

obtained
a =2+ T (p+2u) | 62419
° & "ip |
for Ty - u(hn)/(h+2u) 6.2.20
with
p* = 2 + T/2(h4n) 6.2.21
and
r* = 4/1 - TQup) 7. 6.2.22

hp(aep) + T(h+2p)
Now, when considering 6.2.4, the boundary data on the surface
of the inclusion, equation €.2.1 must be restricted to ihe circle
R = a. Differentiating the reduced 6.2.1 with resnect to the
angular variable of integration and applying 6.2.k4,
-ig ?(aeiG) ) 218

;|(ae1®) g%p(ae , ae )—;:"—Tr - 13 , 6e2e23
/f(ae” ")/ ’
is obtained. This is wvalid for all harmonic materizls. For the

semi~linear material,

r=_ 2  [Cam) + 2)1/?(5)/_/_ 6.2.24
g Zh+§p5

and 6.2.23 may be extended into the region /Z/> a resulting in

T(E® = a1 4 .aa YZ AL %+p/[/

) (a 2z-1 )/ o+ apf(azgnl)_7dg . b.2.2
(R Re)

'\ﬁ

In this expression //f(q =l )// is rot the conventional modulus

L. e . 2,7 .
but it is such that the modulus of f{(#) iz delermined and a /% is

substituted for all # terms. For instance, if

+ Equation numbers 6:2.25 — 27 have .not been used.
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A
f(g) =a + b 5
o o)
then
7%(3) a2 + 0%
= ao T DO
and
s, 2=1 2 2 =— = 2==2 2 ,
a z = a 2 % . el
//E(a"38 ) // a “+a_ b Bra b a +b_a 6.2.29

From 6.2.8 T(¥) is asymptotically linear in 3. A trivial
A
analysis using 6.2.29 indicates that the dominant terms of f(&) are

T(#) = a + el

H.2.30
in order that r(Z) e linear in the limit. The ccefficient of is
determined using the expressions 6.2.28 and 6.2.29 with the limit

6.2.8. After o has been determined 6.2.30 may be used in 6.2.28 to

yield an expression lor r(#) as

- 2=-1 S ml T 2
r(%) = a™3 (1 - 2a0§_) + %3 ¢czé + a ~é£§) I, 6.2.31
(%+%u) NP, Nrep
where
3 =
I, = (a02+aocc(E“2+52/a4) + Q:Z/au)zdz 6.2.32
¢ (305“ +ac)
with
o= = 1Quznla 6.2.35
8n
With « as above and a_ as in 6.2.19, it is to be noted that I, of

6.2.32 is path independent outside R = a.

With the sclution as generated above, the boundary condition of
place on the surface of the inclusion and that of traction at infinity
are both satisfied. It is of interest to note that there appears to be

A
some measure of non-unigueness in the form for f(Z). The form selccted
ensures that the boundary conditions are satisfied. Additional terms
such as
an{%'n ny 3
are admissible and do not invalidate any of the impdsed conditions ror
the foregoing analysis, The coefficients A are not connected with any

boundary conditions and may be arbitrarily assirsned. However, if thesc



a are to be constant, each must be zero as each could correspond
residual stress and deformation field.
to accommcdate a body force distribuiion provided the latter were

admit a scalar potential,

The a
n

If the a
n

were considered

could, however,

functions of

be

the

boundary data so as not to preclude a natural reference configuration,

this would be tantamount to allowing mechanical action ai a distance.

To summarise then, a complete solution may be written as

- . - -1 = .
x=r(#) + _2pn  fa Z-ccB _/ + pta I, (i)
‘ \X+;P) © M2H +
and ¢
ho= b T(8) B-2x (ii)
p J
with
' a_ + B 2
I, =[ o 4% (iii)
(a02 + aocc(%'-2+5-2) roclB eE9)?
and
- 2 ’ \ - ;). .
r(g) = a~ (1 - 2adn/ + p2ocB® + a " (A+u) 12 R (iv)
where
B 2 P J'r 2 a
I, = (ao +aocu(ﬁ 57 /a") + us“/ah) i, (v)
(a 72 |
a s + )
and
1 .
a =72+ T M2 (vi)
o oty
3
with
oc = T(p+2m)a” . (vii)
8 2
)

6.2.3k

Another solution form which may be rompared with that of Section 5.5

results if it is noted that 6.2.4 is satisfied when

(B = a5 -
7

pl
a™/z - .. 2
2 K p(£,8) f(t)° a:
Y ?(Z)f

6.2.35



and then '
2]
_2 1 =z -~ % ; 7
X =a_ + 7 p(t,ﬁ) _i;_@__ dt £.2.36

with h still being given by 6.2.2. Employing 6.2.24, 6.2.30 and

6.2.34(vi) and (vii) yields

2

X = éf + 2 (2 3-a_ Ei - ocz"1+¢§§_/ + ) I, 6.2.37
7 o) 2 2 (n+2n
where
Z
- = N '
I, = (ao2 + a o=(5 2% 4 2707 s ] 6.2.38
2 =2
a /Z (ao + e )

In this form the solution is directly comparable to the one produced in
Section 5.5. The two solutions 6.2,34(i) and 6.2.37 are demonstrably
equivalent. Additionally, provided the integrals in 6.2.34(i) are

taken to be path integrals from a fixed point Z2* say, then prowvided

B*F* = a° _ 6.2.39

they produce the same numerical results. Each of these solutions has

kteen emplioyed in tabulating the deformaticn field.
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SECTION €.3 NUMIDRICAL METHOD

In all, three programs have been written to tabulate the deformation
field corresponding tc the problem of Section 5.5. The first program is
employed to integrate equations 6.2.34(i) to (vii). The other two programs
are used to integrate 6.2.37 and 6.2.38 with 6.2.34(vi) and (vii), with
these two programs differing only ir mesh adopted. The reéson for this
seeming multiplicity of effort is to obtain an understanding of the branch
points of the solution functions. The question of singular points and
branches is considcred in the next section.

In all three programs &ll lengths are normalised with respect to
the inclusion radius as a unit. Values of ‘the material constants A= 1.0
and p = 0.5 are adopted. These values correspond to a Young 's modulus
E, of 1.3 and to a Poisson's ratio of 0.3. The applied traction ought to
be compared with the former. The applied traction is varied to include 2
remotely applied shear.

Equations 6.2.34 and 6.2.38 are to be tabulated. Their form is such
that an essential routine in any tabulation procedure is that of guadrature.
The generic quadrature procedure employed is that of PATTERSON \1968).
Essentially, this procedure is a modified Gaussian algorithm:

Starting with a 3-point Gauss rule a new,7-point rule is derived,

3 of whose abscissae coincide with the original abscissae. 'The

remaiﬁing L pivots are chosen to give the greatest possible

increase in polynominal iﬁtegxating degree. This process is

repeated and further rules with n pivots and of precision m

aré generated. The sequence is

n =7 with m o= 11

15 23
31 b7
63 95

127 . 191

255 383



The successive
results differ
In this application
and imaginary parts

The method was
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rules are applied in turn until two consecutive

by some specified small quantity.

when the quadrature is of a complex nature the real
are separately converged.

selected for two reasons:-

- It minimised the number of function evaluations required

for a given accuracy.

- The method did not require evaluation of the integrand at

the end points.

This second reason was of particular importance considering the branch

points. The quadrature sub-routine used in the procedure DPIACF

which is from the NAG (Nottingham Algorithm Group) Library.



SECTION 6.4 GRAFHICAL RESULTS AND DISCUSSION
The deformation fields presented graphically in this section are those
corresponaing to the problem discussed in Section 6.2. Deformation fields
corresponding to generalisations of this problem are also presented. The
figures presented are those of the deformation of one of two embedded
grids:-
(i) CIRCULAR - a set of concentric circles centre the origin. The
innermost circle with radius 1 represents the inciusion boundary.
The radii of the remaining circles are incremented by 0.5.
Superimposed on this set of circles is a set of equally spaced
radial lines with an angular separation qT78 radianse. In gecaeral,
the first radial line is at Tf/l6 radians to the real axis; the
reason for this will become apparent subsequently.
(ii) RECTANGULAR - a regular sgquare mesh of interstitial distance 0.5.
The inclusion radius is taRen as 1 to define the unit of length.
The programs are written so as to employ the samec scale in both co-
ordinate directions. Thus the inclusion maintains a circular profile and

the deformation is not masked by co-ordinate distortion. There are ouly

W

two scales employed and these may be identified by the abscissas markings
which are at unit intervals.
Figures 6.4.1 are a series of deformed circular meshes for various

values of uniaxial tension applied at infinity. The range of applied

tractions is 0.2 to 1.0.



/\

//

4/



6" 4N .

6

IFIiG 6A . i (#

A ‘sl;

-n— T i

ri6- é'4'ifv)

T-1-0






139

The second group of results, fig;res 6.4.2, is again for the same
problem of uniaxial tension as considered previously.

The exception to this is the last figure which is included here
for completeness and is the first example of a deformation field where
a remotely applied shear has been admitted., It also illustrateslthe
singularity which will be.discussed extensively towards the end of this
section. The first in the series of figures shows the deformation of a
complete rectangular grid surrounding the inclusion. The rest of the
figures are representations of the region to the right of Xl = 1.0
corresponding to the heavy line in figure 6.4.2(i).
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Finally in this series of results which correspond to the problem
discussed in Section 6.2, figure 6.4.3 is a graphical representation of
the strain along the co-ordinate axes. The ordinéte is the strain as
measured by the change in length of the @.5 interstitial distance. The
abscissas is the distance of the point in question from the origin.

The family of curves above the horizontal axis which are in tension,
correspond to points on the physical Xl-axis. The curves are indexed by
the tension applied at infinity; The position of the asterisk at the
end Qf each curve indicates the value of‘the average strain as measured
over the whole interval.,

The family of curves below the horizohtal axis correspond to points

on the physical X_ -axis and are under compression.

2
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The results, as vresented in figures 6.4.1, 6.4.2 arnd 6.4.3, are
distinguished only in that they are consistent with reality. Mere
precisely, they are consistent with how the real deformation fields
are envisaged. That is to say the predicted deformation fields are
qualitatively correct, The deformation fields agree in form with
thoze corresponding to a classical small strain analysis.

The deformation fields presented in figure 6.4.4 also appear to
be gualitatively correct. However, thesg results are obtained nct
from the asymptotics of Secticns 5.5 or 6.2, but as a consequence of
an assumption implicit in the programs. Figures 6.4.4 correspond
to theAcase when a remotely applied shear is admitted. That is the
T of equation 6.2.5 (or 5.5.36) is allowed to be complex. Indeed,

the assumption implicit in the programs is simply that.:
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If the analysis resulting in 6.2.19, 6.2.33 and 6.2.30 is carried out
for a complex T znd an applied shear admitted, then the form for ee(6.2.33)
is unchanged, whereas che analysis yields a value for ag of

a, =2 0 + T Ozau) . 6.4.1
7t/ B (haa)

The analysis leading to 5.5.11 may also be repeated for a complex T.
Indeed the analysis is implied in that section. The result of that analysis

results in an expression fcr orof that section, of

T + T(h+2m)
/T Q)

6.“?.2

and the form for & is unchanged. Inspection of the relationships between
the respective coefficients indicates that 6.4.1 and 6.4.2 are equivalent.

However, there is some reason to doubt the results 6.4.1 and 6.4.2.
Take 6.4.1 and the solution of Section 6.2 and consider the sclution as
represented by equations £.2.37 with 6.2.38. Two cases are considered;
firstiy, when an applied tension is relaxed tc zero and, secondly, when an
applied pressure is relaxed to zero. In each case o«of 6.2.34(vii) becomes
zero in the limit, but a, takes the value b 2 dependiné on whether a tension
or pressure is relaxed, The corresponding relaxed deformation fields are

given by

With 60403

A little algebra results in the relaxed deformation fields

' i)
X = & when ao = 4 =

and 6.4, b

X = 53 - % when a = - % .

%
Tnus the asymptotics with a complex T result in a form which oredicts a

deformation field resulting from a relaxed applied pressure, whicli is not
the undeformed contfiguration. As such the results of the analysis would
appear to be invalid at least in the limit as /T/-—> O when the term @/VT/

ceases to be well defined.
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The figures 6.4.4 which it has already Leen noted are qualitatively
correct, are produced by adocpting a form for a, as in 6.2.34(vi) but allow-
ing T to oe complex.

The peculiar deformation field illustrated by figure 6.4.2(ii) will
now be discussed. In that figure the deformation ceased to be single
valued. Figures 6.4.5 illustrate further cases when the deformation field

becomes multi-valued.
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In order to identify the cause of the obviously incorrect detormaticn
fields of figures 6.4.5, the form 6.2.37 with 6.2.38 is used. These

equations re-written with 'a' equal to 1 bhecome

x =1 + 2 LE A - a =-a+ a:§;7 + I 6.+.5
7 Grogn  ° E?' g Atep 3 _
with
£
> -2, ' .
I, = (a_+ a B °)72 (a_ +oc t™9)2 at. 6.4.6
3 o —-1 ©
z-1
Of the terms involved in this expression fo., x only 13 is capable of
causing any difficulty. The expression
a A
(a, +o= t7)7 | 6.b.7

is obvicusly multi-valued and has a branch point where it assumes
the value zero. When a and oc are taken from 6.2.35(vi) and (vii)
respectively with A= 1 and B = % as in the programs, the branch

point has a locus of

t = 67 . 6.4.8

To proceced with the analysis, a real 7' is assumed. Th;s corres~
ponds to the situation as pictured in figures 6.4.5, and a detailed
and particular analysis is possible. Figure 6.4.6 is a graphical
representation of the location of the branch point, é.4.8. The
ordinate represents its modulus and a dotted line indicates that the

branch point is real and a solid line that it is ourely imaginary.
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APPENDIX Al SMALL STRAIN ANALYSIS OF PLANE STRAIN RADIALLY S'~'TLETRIC PRCBLE"iS
In this secuion the notation as employed in many standard texts as "Advanced

Mechanics of Materials" SEELY-SMITH, WILEY-'fOPPAN is adopted.

Take
X.—*X_. 4+ u. ,
1 1 1
with Alsl
u. = X.f(r)
as a specification of the deformation, where r = (x . . is the polar raduiis.

The constitutive relationship is taken in t»* foi-gn

where
e.. =J(u. * +4u ) Al.3
JJ 4,0 JS-
defines the classical strain measure, is the conventional Cauchy stress

as used in the main text.

The equilibrium equations in terms of the strai-n measure are

N =0 * Al=4
where 57 is the conventional Laplacian operator. This equation may be
written as

(h+ /J) u . . 4 TDu. .. =0 . Ale>5

Now, given the deformation as in Al.l the forms
u. .- f(r)g. . & x.x.£*(r)/r
1:0 10 10
u. j - 2f(r) t rf’ ()
u. - 3x.f'(r)/r 4 x .t'"(v)
1:00 1 1
and
u. ..- 2x.f (r)/r & x.£f'(x) x.£f" (r)
0RJO 1 1 1
are obtained. Guhstituting these into Al.5 yields
u ! i n 3 * n ~
0.£3p) (3XJ._f__(_r_)__4, x.159(r)) e 2 (3x1_f (r) & x 8" (r)) G , AI«6

x*(>\42y0 (31'(r) 4 £"(xr)) =0

Assuming that A4 ~ / 0 this may be solved to yield

f(r) = C 4 D" . Al. 8



