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ABSTRACT

The forecasting procedure recently developed by Professors Box
and Jenkins, and described in Box and Jenkins (1970), is based on a class
of models (A.R.I.M.A. models) capable of representing a wide range of
time series. in this thesis we examine some of the practical problems
involved in applying the Box-Jenkins procedure to seasonal time series.
A Box-Jenkins analysis of a series of sales figures is described in
detail and some of the problems éncountéred during this analysis are
dealt with at length. The topics examined include the application of
hon—linear transformations in time series analyses and the employment
of differencing operators as a means of producing a stationary process.
The computation of the unconditional sum of squares when estimating the
parameters in an A.R.I.M.A. model and the performance of the Box-Jenkins
procedure when applied to series which include deterministic components
are also investigated. The A.R,I.M.A, model arising when a time series
is considered to be generated by stochastic trend, seasonal and extraneous
error components is developed while the interpretation of A.R.I.M.A.
models, and their generated forecasts, in terms of the more familiar
concepts of trend and seasonality, is'ex§81ored. A summary of 4 further
Box-Jenkins analyses is given, special reference being made to the topics
mentioned above. The performance of the Box-Jenkins procedure is compared
with that of the method proposed by Winters (1960), on the 5 series

included in this thesis.



CHAPTER 1

INTRODUCTION

1.1 Objectives

In business management today, almost every decision made at
executive level is based on some kind of forecast. The financial
consequences of poor forecasting can therefore be so serious that
reliable and detailed forecasts are now regarded as essential in
such areas as production planning and stock control. This increa-
sing need for accurate forecésts in business and economics has
stimulated the development of a number of new forecasting techniques
over the last twenty years or so. The many techniques currently
available possess various degrees of complexity, ranging from
inspired guesswork to methods based on complicated statistical
models.

One particular forecasting technique which has recently
aroused a great deal of interest is the method devéloped by
Professors Box and Jenkins and described in Box and Jenkins (1970).
Reid (1969) found that this method generally compared very favourably
with other univariate forecasting techniques when applied over a
large sample of economic time series.

The idea of this thesis originated following an approach by an
engineering firm (Company X). This firm supplied a seasonal series,
" consisting of the monthly sales figures of an engineered product,
and forecasts for a lead time of up to 12 months were required.

In the light of the promising results obtained by Reid (1969) it
was decided to apply the Box-Jenkins procedure to the data of
Company X.

The Box-Jenkins forecasting procedure will be described in
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Chapter 2 while a detailed account of the analysis of the Company X
data will be presented in Chapter 3. The following six chapters

will deal with some of the broblems encountered during the case study
of Chapter 3 and also with certain features of the Box-Jenkins
procedure which, it was considered, necessitated further attention.
The fopics to be covered will include the application of a non—linear
transformation to the data prior to performing a Box-Jenkins analysis
(Chapter 4), the use of differencing operators as a means of inducing
stationarity (Chapter 5) and a deeper look at some of the steps invol-
ved in the estimation procedure employed by Box and Jenkins (Chapter 6).
In Chapters T and 8 it will be assumed that any given.series can be
decomposed into trend, seasonal and error components. The use of the
Box-Jenkins procedure on series which include deterministic trend and
seasonal components will be examined in Chapter T while in Chapter 8
models involving stochastic trend and seasonal components will be
related to the class of models on which the Box-Jenkins procedure is
based. The interpretation of this latter class of models will be
discussed in Chapter 9.

In order to gain further experience with the Box-Jenkins procedure,
it was applied to a further 4 seasonal time series. Chapter 10 will
report onthese analyses andalso on how the Box-Jenkins procedure com-
pared with the method proposed by Winters (1960), on these U series and the
_Company X series. .

Finally, in Chapter 11, the material included in this thesis
wiil.be summarised, conclusions will be drawn and areas of further
research will be suggested.

At various stages it will érove necessary to refer to other
forecasting methods. For this féason we shall begin by briefly
reviewing some alternative forecasting techniques. Section 1.2 will

be devoted to this review while some of the considerations governing

the choice of the correct forecasting technique will be discussed in
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Section 1.3. An account of two comprehensive empirical comparisons
of univariate forecasting techniques will be given in Section 1.k.
The first was undertaken by Reid (1969), the second by Newbold and

Granger (197h4).

1.2 A Review of Forecasting Techniques

In this section it is assumed that the many forecasting proce-
~dures can be divided into three main categories: gqualitative techni-
qﬁes, univariate techniques and multivariate techniques. A similar

classification has been adopted by Chambers et al. (1971) and

" Chatfield (197L4).

1.2.1 Qualitative Techniques

A qualitative forecasting technique is defined to be one which
uses qualitative data to produce quantitative forecasts. Qualitative
data is a term used to describe data derived from a variety Qf sources.
Expert opinion, human judgement and markef research are just three
examples of sources of qualitative data. Others are described by
Chambers et al. (1971).

Qualitative techniques have proved most useful in situations where
no historical data are available. In cases when a new product is intro-
duced into the market, Green and Harrison (1973) have suggested a

Bayesian approach.

1.2.2 Univariate Techniques

The techmques outlined in this subsection derive forecasts
which are based entirely on current and past values of the variable
to be fbrecasted. More formally, given a time series consisting of
observations Xt (t = 1,2,3,...,n) made at discrete gqgally spaced

intervals of time, a univariate technique will produce a forecast

of some future value, X using only the past observations

n+4°
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Xt (t = 1,2,3,...5,(n-1)) and the current observation Xn. This
forecast will be denoted by in( 2) where n refers to the time base

(or origin) from which the forecast is made and £ to the distanée

into the future one is forecasting. The latter symbol is termed the
lead time.

Any'forecasting—problem can be considered to fall into one of
three categories: short-term, medium-term or long-term forecasfing.
The exact definition of what constitutes these.three ranges depends on
the area in which one is working. In relation to sales forecasting
the short-term is usually up to about nine months, the medium-term is
the next two or three years and the long-term is anything in excess
of this. Examples of the meaning of short, medium and long-term in
respect to other fields are given by Kendall (1973, page 115).

Many forecasting procedures could be included in this subsection,
some simple, others much more sophisticated. Almost all the univariate
techniques can be termed fully automatic in the sense that once a
computer programme has been written, forecasts can be generated without
further human intervention. The technique developed by Professors Box
and Jenkins is however a notable exception.

Brief accounts of the more important univariate techniques are

now given.

Trend Projections

This techniqueris most abplicable to the problem of long-term
forecasting. Essentially the method of trend projections involves
fitting a trend curve (e.g. polynomial, exponential) to past data
aﬁd extrapolating. A full discussion of the use of treﬁd curves for
forecasting is given by Gregg et al.(1964) and Harrison and Pearce
(1972).

The univariate techniques to be reviewed hereafter are generally

useful only for short or medium-term forecasting.



Moving Averages

Moving averages have been dealt with at length by Kendall
and Stuart (1966, Vol. III) and also by Brown.(1963). As an exémple,
for a locally trend-free, non-seasonal series, Xt’ the moving avérage at
time t (and hence the forecast for all lead times made at time t)
would be a simple (i.e. equally weighted) average of the most
recept N observations. The choice of an appropriate value HHr N
has been discussed by Brown (1963).

In practice moving averages are seldom used for forecasting
purposes in their own right. Of more importance is the fact that
they provide a starting point in. the development of more sophisticated

procedures.

Simple Exponential Smoothing

The technique of simple exponential smoothing is a logical
extension of the method of moving averages and is appropriate only
for trend-free non—-seasonal data. Instead of using a simple average
of past observations, forecasts are computed on the basis of exponen-
tially (or more correctly, geometrically) weighted moving averages
(E.W.M.A.'s). Given a series X£ it is easy to show that the E.W.M.A.

at time t, m, , can be expressed as

t
m, = AX, + (1-A)m, 1.2.1
or m, = m.t_l + Aey ‘ - : l.2.2
where m__, is the previous value of the E.W.M.A., e = Xt.— me is.

the forecast error appropriate to time t and A is termed the smoothing
constant (0 < A < 1).
Thé forecast made at time t for all lead times isvsimply m, .
Originally advocated by Holt, simple exponential smoothing has a

rather limited practical use due to its inability to account for trend

and seasonality.
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More deteiled accounts of simple exponential smoothing can be
found in Winters (1960), Brown (1963), Coutie et al. (1964) and

Harrison (1965).

Holt-Winters Procedure

This proceaure is described fully by Winters (1960) and Coutie
et al. (1964). Essentially the technique of simple exponential
smoothing is extended to cover time series which exhibit trend and
seasonality. For a series possessing a local linear (or additive)
‘trend and a multiplicative seasonal variation, the Holt-Winters

forecasting model is based on the following equations:

: X
t ,
= - +
m =A< + (-A)m_, +r, ) 1.2.3
t-L
= - + -
r, =Blm, - m _,) + (1-B)r,_, 1.2.4
X
s, =C + (1-C)s, o 1.2.5
t
where Xt(t =1,2,3,...,0n) is the given time series,
m, represents an estimate of the level of the series at time t,
re represents the current estimate of the linear trend
factor,
S, represents the estimated seasonal factor appropriate
to time t
and L is the period of the seasonal cycie.

A, B and C are all smoothing constants (or parameters) which can
be estimated by computing the sum of squared forecast errors
over a grid of values for A, B and C and choosing those values which
minimise this quantity.

Initial values for mos Ty and s, are determined from the first H
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observations of the series in question. These values are usually

‘taken to be

1
== I X 1.2.6
L LTt
H L
z X - I X
B C LS 1.2.7
1 L(H-L) e
L H/L
and 55 = ﬁ.iilsi’j s §=1,2,3,...,L 1.2.8
where H is chosen so that H/L is an integer and
xt
Si,,] = _ (L'*l _ J] N 1= 1,2,3,.-.H/L
1 2 1 .
J =1,2,3,...,L .
s. . is the estimated seasonal factor for the jthperiod in the

1,J

ith cycle and sot = J + (i-1)L. The seasonals obtained from equation

(1.2.8) may have to be normalised to ensure that they sum to L.
The f%-step ahead forecast made at time t is given by

xt(z) = (mt + zrt) s . 2 = 1,2,3,...,L 1.2.9

t-L+2e

The forecasting model defined by equations (1.2.3), (1.2.4), (1.2.5)
and (1.2.9) can be modified in an obvious way to account for additive
seasonal variations or indeed cases in which no seasonal pattern is

preSent.

Brown's Method (General Exponential Smoothing)

As the alternative name implies, this method is a generalised
form of simple exponential smoothing. Brown (1963) assumes that any
given series, Xt (¢t =1,2,3,...5n), can be described locally by a linear

comtination of m functions of time, viz.,



m .
X, = £ ai(t) fi(t) + e 1.2.10

t oy t

where ey is a random error. The components fi(t) may for example
be polynomials, exponentials or sinusoidal functions. The coeffi-
cients at time t, ai(t), are estimated by minimising the sum of

discounted squared errors

r ple? s 0<B<1.

The forecast made at time t, for a future observation % steps

~ahead is

X (2) = ¢ ai(t).fi(z) | 1.2.11

where ;i(t)(i =1,2,3,...,m) is the estimate for ai(t).

Brown (1963) goes on to show that under certain conditions,
updating formulae for the ;i(t)‘s can be derived.

The main feature of Brown's model is that it involves only one
smoothing parameter, 8. This can be contrasted with the Holt-Winters
model which relies on two parameters for non-seasonal data and three
parameters for seasonal data. In fact Harrison (1965) suggests that
for seasonal forecasting Brown's method is not satisfactory since a

suitable choice of the single parameter B cannot be made.

Harrison's Seasonal Method

The criticism of Brown's seasonal method has already been mentioned.
The Holt-Winters technique for dealing with seasonals also has its
drawbacks, the chief one being that each seasonal factor is updated
only once every complete cycle. ‘An improvement proposed by Harrison
(1965) is to smooth the most recent seasonal factors
Sys Sg_1» Syp_ps s Sp_paqe (obtained using equation (1.2.5)) by a

Fourier analysis. The Fourier coefficients are then estimated by



> L
c T T L s.cos kA,
=1 4
l.2.12
5 L
d == I s.sink A,
k L ._
J=1
for k = 1,2,3,..., L/2, where Aj = 2 L—l T _ .
The smoothed seasonal factors gt—L+j (j = 1,2,3,...,L) are given by
s =1+ .+ i . .2.
Sgorj = L I (ckcos kA, + 4 sink xJ) 1.2.13
sig k
The symbol L denotes the summation over significant harmonics.

sig k
The smoothed seasonals can be conveniently updated using formulae

developed by Harrison (1965).

Step-wise Autoregression

This technique has been suggested by Kendall (1973) and
Newbold and Granger (19T4). It is in some ways similar to the Box-
Jenkins procedure and for this reason a description will be delayed

until the next chapter.

Harrison—Stevens Bayesian Approach

This approach developed by Harrison and Stevens (1971) modifies
the Holt-Winters linear growth model to take into account the proba-—
bilities . (i =1,2,3,...,m) that the system is in one of m states
at any given time. TFor example, the process may be in a state of
"step change" at a certain time, implying that a permanent "jump"
in the level of the series occurred at that time.

»The main disadvantage of the procedure is that the computing time

is generally much greater than for most other univariate techniques.
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1.2.3 Multivariate Technigues

A multivariate forecasting technique is one in which forecasts
are computed on the basis of the current and past values of the variable
being forecasted together with currént and past values of other
variables which are related to this variable. Much care has to be |
exercised in selecting the related variables and for this reason
multivariate forecasting procedures are generally more expensive and

take longer to develop than pheir univariate counterparts.

Multiple Regression Techniques

Multiple linear regression techniques involve regressing the

variable to be forecasted, X » on certain lagged values of some

explanatory variables X and also possibly

2,t? x3,t’ xh,t’ Tt Xm,t

.

on past values of Xl,t'

The problem of determining the right
explanatory variables and the lags at which each should enter the
regression equation has been discussed by Kendall (1973). An example
of forecasting using lagged relationships can be found in the paper by
Coen et al. (1969).

The subject of forecasting using regression techniques has
proved to Be the centre of a good deal of argument. For various
opinions on the subject, the reader is referred to Brown (1963,
page T7), Coen et al. (1969), Box and Newbold (1971), Granger and
Newbold (1972) and Kendall (1973);

Econometric Models

Detailed accounts of econometric models and theirvuse in
‘forecasting are generally best provided by economic texts, e.g.
Bridge (1971), Christ (1966). fhe description given by Kendall
(1973, page 1b41) should prove adequate for any reference made to

‘econometric models in this thesis.
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Box~Jenkins Input—Output Model

The Box-Jenkins univariate procedure (see Chapter 2) is basi--
cally extended to cover the situation in which an "output" variable
Yt is related to some "input" variable Xt' In general several input

variables can be considered. A full account of this approach is

given by Box and Jenkins (1968, 1970).

1.3 Selection of Forecasting Techniques
| Chambers et al. (1971) discuss the problem of choosing the fore-

casting technique most appropriate to any given situation. Many .
factors need to be considered when making this choice, the most
important of which are summarised below:
(a) The amount of money a company or individual is prepared to

spend on a forecasting technique.
(b) The time available for making the forecasts.
(¢) The context in which the forecast is to be used.
(d) The availability of historical data.
(e) The accuracy required from the forecast.
(f) The distance into the future for which the forecast is required.
(g). The number of items to be forecasted.
(h) Whether the data are seasonal or non-seasonal.

An examination of how the selection of a forecasting technique
may be restricted on account of the factors (a) to (h) is now
carried out. - |

In the absence of historical data the forecasting technique must
be chosen from the qualitative class. Assuming this is so, if little
money is available and forecasts are required quickly, then the
relevant technique will, of necessity, be based on iittle more than
guesséork. However, given time and sufficient money, more sophistica-

ted techniques such as market research can be used. In such a situa-

tion, cruder techniques could still be employed but the relatively
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low cost and short time required by the latter methods must be
balanced against the more accurate forecasts (particularly in the
short-term) which the more involved techniques would be expeéted to
yield.

If historical data are available then qualitative methods
would rarely be used alone. The choice of technique would generally
rest between univariaste and multivariate procedures. We shail first
assume that the time and money needed to set up a multivariate model
are not available. If long term forecasts are required then the
method of trend projections is the only really appropriéte technique.
For short or medium-term forecasting, the field is much wider. A
comprehensive coverage of the factors governing the choice of a
univariate techniqug for short or medium-term forecasting will not
be given in this section. Instead reference should be made to the
conclusions arrived at by Reid (1969) and Newbold and Granger (1974).
More details of the comparative studies undertaken by these authors
will be given in Section 1.h4.

Multivariate forecasting techniques become candidates for selec—
tion when there are few finéncial restrictiéns and when forecasts are
not required with auy great haste. If used properly multivariate
techniques should generally produce férecasts which are at least
as accurate as those derived from univariate procedures. However
under certain conditions (see Kendall (1973, page 151)) it may be
unwise to employ a multi;ariate technique, while the context in which
the computed forecast is to be used should also be considered. A fore-
cast required as a standard or "norm" or a forecast used as a target
‘value could be generated quite effectively from a univariate procedure.
Indeed it is in such a context that univariate.procedures can prove
most useful. On the other hand if the forecast is to ﬁe used for

planning purposes or decision making then a multivariate procedure

may well be called for.
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So far the applicability of individual forecasting techniques
has been discussed. Where two or moré techniques are approPriate
Bates and Granger (1969) suggest combining forecasts. This idea
would appear to be useful when for example both univariate and
multivariate forecasts are available or when two univariate fore-
casts have been computed (see Section 1.4). Dickinsdn (1973) nhas
however shown that certain problems do exist in this area.

We have seen how the selection of a forecasting technique
can be restricted by the factors mentioned earlier. Nevertheless,
in most cases, there will be a number of applicable techniques.
Given such an occurrence, the choice will often rest between a
relatively cheap robust technique on the one hand and a more costly
sophisticated technique on the other hand. Only experience will
decide whether the extra expense involved in the latter can be

Justified.

1.4 The Studies of Reid and Newbold and Granger

When confronted with the problem of forecasting the sales of the
engiﬁeering firm, Company X, the question of which technique to
employ obviously arose. On the reasoning that experience should be
gained with univariate techniques before embarking on the more
complicated multivariate techniques, it was decided to employ a
univariate procedure. In choosing the appropriate univariate proce-
dure, reference was made to an empirical comparative study under-
taken by Reid (1969). A condensed version of this study appears in
Reid (1971).

Reid (1969) applied the univariate forecasting techniques propo-
sed by Winters (1960) (referred to as the Holt-Winters pfocedure),
Brown‘(l963), Harrison (1965) and Box and Jenkins (1970) to about
100 economic time series. Not every technique was applied to every

series, e.g. seasonal techniques were only applied to seesonsi:
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seasonal series. Most of the data analysed were national or industry-
wide aggregates which tend to be less volatile than many individual
firms' sales data. Both seasonal (quarterly and mohthly) and non-
seasonal series, composed of at least 50 observations, were

examined.

Each series was divided into two parts. The first part was
used to fit the appropriate model which was then employed to generate
forecasts over the second part of the series. The forecasts were
compared on the basis of a quadratic cost of error function, i.e.
by examining the mean squared forecast errors.

Reid found that for all series (seasonal and non-seasonal) the
Box-Jenkins procedure generally did better than Holt-Winters which in
turn did better than Brown's method. A closer examination of the
results for monthly seasonal series revealed that Box—Jenkins again
came out on top, followed by Harrison's method (only appropriate
for seasonal data) and then Holt-Winters. There was however genera-
11y no great difference between the latter two except that Harrison's
method performed better on series which had both a very strong
seasonal factor and fairly large random fluctuations. Brown's
method behaved particularly poorly on seasonal series.

From his experience with the comparative study, Reid constructed
a decision tree for choosing the forecasting technique most appro-

. priate to a given set of conditions. The factors governing this
choice were stated to be_the.length of the series available, whether
the data are seasonal or not, the importance of essentially unpredic-
table random components, non-stationarities and the lead time being
predicted.

The evidence of Reid's Stﬁhy suggested that it would be worth-
while to apply the Box-Jenkins procedure to the Company X data. At
the same time it should be remembered that most of Reid's data were

‘national or industry-wide as opposed to the sales of an individual
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firm such as Company X.

Recently, the results of a second comprehensive empirical
comparison of univariate forecasting techniques have been published.
Newbold and Granger (1974) compared the forecasting éerforméncé of
Box-Jenkins, Holt-Winters and the method of step—-wise autoregression
(see Section 2.7) on 106 time series. The collection of series
included seasonal and non-seasonal, macro—economic‘and micro sales
data. As in the case of Reid's study, each series was divided into
fitting and forecasting perio&séndthe comparison was again based on
a quadratic cost of error function.

Some of the conclusions arrived at by WNewbold and Granger
confirmed the results of Reid (1969). The Box-Jenkins procedure
generally outperformed both Holt-Winters and step-wise autoregreséion-
This superiority was most marked for short lead times but rather less

so for higher lead times. Overall there was little to choose

between Holt-Winters and step-wise autoregression although the former
performed somewhat better for higher lead times. )

In addition to comparing individual forecésting techniques,
Newbold and Granger also considered the combination of pairs of
forecasts using the approach of Bates and Granger (1969). The'most- 
interesting finding was that over a sample of 80 monthly series, the
individual Box-Jenkins forecasts were only slightly better than the
combined Holt-Winters and step-wise autoregression forecasts (fully
automatic forecasts). |

The empirical cbmparisons discussed in this section are the two
most extensive to appear in the literature. Instances in which the
performance of the Box-Jenkins procedure has been compared with that
of alternative forecasting techniques on a small number of series

include Box and Jenkins (1970), Naylor et al. (1972) and Bloomfield

(1973).



CHAPTER 2

THE BOX-JENKINS APPROACH TO FORECASTING A SINGLE TIME SERIES

2.1 Introduction

' In Chapter 1 an outline of the most commonly used univariate fore-
casting techniques was given. Many of these techniques were based on
the principal of exponential smoothing and were generally appropriate
. for a particular type of process, e.g. a series possessing a linear trend.
More recently, Box and Jenkins (1968, 1970) have proposed a class of
models capable of representing a wide variety of time series. The
~fitting of one of these models to a given set of data and the consequent
adaptétidn to forecasting is generally referred to as the Box-Jenkins
forecasting procedure.

This chapter is devoted to an account of the Box-Jenkins forecasting
procedure. A fuller description of this procedure appears in Box and
Jenkins (1970) while other less detailed accounts can be found in Box
and Jenkins (1968), Thompson and Tiao (1971), Naylor et al. (1972) and
Newbold (1973a).

A1l the time series mentioned in this chapter are considered to be
composed of observations made at discrete equally spaced intervals of
time. Sections 2.2 and 2.3 will deal with the class of models capable
of describing, respectively, stationary and non-stationary series. |
The steps involved in the model fitting process will be explained in
Section'2;h while Section 2.5 will demonstrate how the fitted models
are used to generate forecasts. In Section 2.6 the models will bev
extended to cover seasonal series. Section 2.7 will briefly describe
the concept of step~wise autoregression and its similarities to the Box-

Jenkins procedure.
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2.2 Stationary Time Series Models

A series Zy is said to be stationary to the second order

2

if it possesses a constant mean u, a constant variance ¢ and

constant autocovariances y(k) (k = +1, #2, +3,...). If the

z,'s are normally distributed then second order (weak) stationarity

is equivalent to strict stationarity as defined for example by

Anderson (1971).

Let w Y .. be values of a stafionary time series

£° V-1 Ve-20r
at discrete equally spaced times t, t-1, t-2,... . Suppose also

that at, at-l’
2

normally distributed with mean zero and variance oy Now the

at-2""’ are uncorrelated random variables, all

observations w.

£ Vg1 Wiopse+o WAY be highly correlated. A

.ﬁodel is therefore required to transform the series W into a series
of uncorrelated random variables a, . The two basic models considered
by Box and Jenkins (1970) are the autoregressive model and the

finite moving average model. These are both examples of stochastic

models (as opposed to deterministic models). The meaning of the

term stochastic is explained by Box and Jenkins (1970, page T).

2.2.1  Autoregressive Model

The model
W£ - ¢l Wt-l - ¢2 w£-2 = eee — ¢p Wt—p = at 2.2.1
where ﬁf =W, - (u being the mean of the series wt), is called

an autoregressive model of order p. Box and Jenkins (1970) utilise

the operator B defined by

to write equation (2.2.1) as

¢5(B) v, = 8, 2.2.2



-18-

where ¢(B) =1 - ¢,B - ¢,B% - ... - ¢p}§’

2.2.2 Moving Average Model

The model
v, Ta - 8ia, 9 ~ 858 5 7 eee - eqat_q 2.2.3
is called a moving average model of order q. Making use of the
B operator leads to
v, = eq(B)at 2.2.4

=1 - - 2 . _ a
where eq(B) 1 elB 62B ces qu

2.2.3 Mixed Models

A combination of equations (2.2.2) and (2.2.4) gives the

model

- ¢p(B)irt = eq(B)at ' ' 2.2.5

which is termed the general mixed autoregressive-moving average
model of order (p, q) (A.R.M.A. (p, q)). Substituting LA

for W, in equation (2.2.5) gives

tbp(B)wt o+ eq(B)at ‘ 2.2.6

where 8 _ = ¢P(1)u (1 - A P ¢p)u.

It is shown in Box Jenkins (1970, page T4) that for equation
(2.2.5) to represent a stationary process, the roots of the
equation ¢P(B) =0 (B considéred to be the variable) must lie out-
side the unit circle. The roots of the equation Gq(B)v= 0 are
also required ﬁo lie outside the unit circle. When this condition
is satisfied the model is said to»be invertible. The reasons for

imposing this latter restriction on the model (2.2.5) have been

discussed by Kendall (1971) and Chatfield and Prothero (1973b) in
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addition to Box and Jenkins (1970).

2.3 Noﬁ—stationary Time Series Models

Many time series encountered in practice are best described
by:a non-stationary model. For example, sales data often
exhibit an upward trend, the mean level of the series changing
with time. The Box-Jenkins approach to this particular problem
is to difference the non-stationary series until a stationary
series results. A stationary model of the type described in
Section 2.2 is then fitted to the differenced series.

Suppose that z_ is the criginal series and that a

t
stationary series Ve is produced after differencing 4 times.
Then we may write
_ _ _ a
v, = det = (1 - B) z, 2.3.1

Substituting v, = (1 - B)dzt in equation (2.2.6) leads to

d _
¢P(B)(1 - B) z, =0 + Bq(B)at 2.3.2

which is termed an autoregressive integrated moving average model
of order (p, 4, q) (A.R.I.M.A. (p, 4, q)). The word "integrated"

tlS

obtained by integrating or summing the stationary process LA

arises from the fact that the non-stationary process z

In practice p, 4 and q have often been found to take values

Q, 1 or 2.

2.4 Model Fitting

Having introduced a class of models suitable for describing
the behaviour of a time series, our attention is no% focussed on
the problem of fitting these médels to a suitably transformed
series Zy (¢t =1, 2, 3, ..., N) which should include at least 50

observations. Box and Jenkins (1970, Chapters 6, 7 and 8) use

s



-20-

an iterative procedure of identification, estimation and

diagnostic checking.

2.,4,1 Tdentification

This stage of the model fitting procedure is concerned
with the choice of values for p, 4 énd q in equation (2.3.2) and
the calculation of preliminary estimates for the resulting model
parameters.

The main tool employed in the identification of en A.R.I.M;A.
model is the sample autocorrelation function.

The sample autocorrelation coefficient, rw(k), at lag k for

a series w,_ composed of n observations is defined by

t
t. cw(k)
r (k) = —— ' 2.4.1
w e (o)
W
n-k _
wh?re cw(k) = ;.ti (W£ - w)(wt+k -w)
n
and w = L z wt
B g=1

Box and Jenkins (1970, page 33) suggest that the maximum value
k should be allowed to take in about /k.

The quantity rw(k) regarded as a function of k is the sample
autocorrelation function.

If the sample autocorrelation function of the series Z, dies

N is already

out quickly then it is reasonable to assume that z
stationary and no differencing is required, i.e. d = 0. On the
other hand, if the sample autocorrelation function is slow to die

out non-stationarity exists and z, is differenced successively

t

until a series v, = ‘th is obtained for which the sample auto-

correlation function does die out fairly rapidly. The degree



-21-

of differencing required to produce this effect is the value
for 4 in the A.R.I.M.A. model (2.3.2). A deeper examination
of the selection of the appropriate differencing operator will
be given in Chapter 5.

The initial values for p and q are arrived at by
considering the theoretical autocorrelation fUnctibn, pw(k), of
various stationary processes.

The theoretical autocorrelation function-for an auto-
regressive process of order P satisfies the difference equation

(see Box end Jenkins (1970, page 54)).

gw(k) -4 o (k ~1) - 0, P (k- 2) - ... - ¢p p,{k - p) =0

. ' 2.h.2
for k > 0.
Equation (2.4.2) has general solution
.k k ' k
p (k) = AG +AGT + ...+ A G, 2.4.3
Gi’ G2,...,Gp being roots of the characteristic equation
P _ -l _ , P2 _ - =
G ¢, ¢,G ¢p 0 2.h.4

end A., A .,Ap are constants.

1> 22t
Thus, in general, the theoretical autocorrelation function of
an autoregreésive process consists of a mixture of damped
exponentials and damped Sine waves. The former arise from the

real roots of equation (2.4.L4) while the latter occur when pairs

of roots Gi’ Gj are complex. When p =1

p (k) = ¢11:‘
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and so the autocorrelation function decays geometrically
(or exponentially).
For & moving average process of order q Box and Jenkins

(1970, page 68) show that

—0, + 0.0, )+ ..+ 0 0

1+62 +62+ ...+ eé

1 2
pw(k) = for k =1, 2, 3,...,q

0 for k > q 2.4.5

When q = 1, all the theoretical autocorrelation coefficients

are zero except for pw(l) which from equation (2.4.5) is

¥
-

-0
0, (1) = —— .

2
1+ 61

-

For an autoregressive-moving average process of order (p, q),
Box and Jenkins (1970, page T75) show that the theoretical auto-

correlation function satisfies the equation

P, (k) = ¢.0 (k- 1) - ¢,0 (k - 2) ----—¢ppw(k -p) =0

| 2.1.6

for k > q + 1. |
The first q autocorrelation ow(l), pw(2), pw(3),...,ow(q)

depend on the values of the q moving average parameters as well as
the p-autoregressive parameters. If p > q then the whole auto-
correlation function will consist of a mixture of damped exponentials
and/or waves. Hoﬁever, for q > p the first q - p + 1 auto-
correlation coefficients will not follow the general pattern.

When p = 1, q = 1, pw(l) will depend on 6, and ¢, while for

1

‘lags greater than or equal to 2 the autocorrelation function is
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given by

| pw(k) = ¢1°w(k -1)
or
k-

1 ,
1 pw(l) 2.4.7

p (k) = ¢

i.e. the autocorrelation fuﬁction decays exponentially after the
fifst lag.

In practice, tentative values for p and q in the A.R.M.A.
mbdel of order (p, q) are obtained by inspecting the sample auto-
correlation function of the stationary series L This function
is then compared with the theoretical autocorrelation function
of certain autoregressive-moving average processes. >For example,
if the saﬁple autocorrelation function exhibited an approximate
geometric decay then, using equation (2.4.3), the first order auto-
regressive model would be identified, i.e. p =1, q = O. On the

.

other hand if the sample autocorrelation coefficient at lag 1 was
the only coefficient which differed significantly from zero then
(from equation (2.4.5)) a first order moving average model would be
appropriate.

In addition to the sample autocorrelation function, other
tools are available for identifying A.R‘.I.M.A. models. The partial
autocorrelation function has been employed by Box and Jenkins (1970)
while Cleveland (1972) has suggested the use of inverse auto-
correlations. However, in the latter case satisfactory means of
~estimating the quantities involved have yet to be discovered.

The identification ;tage is completed by computing preliminary
estimates of the parameters included in the tentative model.
These estimates are arrived at by expressing the parameters in terms
of the theoretical autocorrelation coefficients and replacing the

latter by their sample estimates. For example, it has already been

shown that the autocorrelation function of the first order auto—

.-/’
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regressive process is given by

k
¢l

ow(k)

and hence pw(l) ¢, . Thus the sample autocorrelation coefficient

1

at lag 1, rw(l), is an initial estimate for the parameter ¢, -

2.4.2 Estimation

The next step following the identification procedure is to
find efficient estimates for the parameters in the tentative model.
The probleﬁ of fitting the A.R.I.M.A. model (2.3.2) to the non-
stationary zeries z-

t
the stationary model (2.2.5).

is equivalent to that of fitting, to the wt's,

* Under the assumption that the at's are normally distributed,
the maximum likelihood estimates of the ¢.'s (i =1, 2, 3,...,pP)
andhej's (3 =1, 2, 3,...,q) will ususlly, to a good approximation,

be given by minimising the sum of squares

S(¢l,¢2’¢3,. LR d !¢P’91392!e3" L ’eq)

= 2 -
= i at(¢ls¢2a¢3a° .o 9¢P,91392ge39- X geq)

i.e. 5(4,8) = 1 a?t(i,g) 2.4.8
| t
where ¢ = (¢1,¢2,¢3,...,¢é) and 8 = (81,0,,05,..+50 ).

The at's are determined for given values of ¢ and 8 by

rewriting equation (2.2.5) in the form

at = wt - ¢1v£_1 - ¢2w5_2 = e = ¢pW£_p

0.8 + ... +0 a : 2.4.9

* 080 F 0% a*t-q



. =25-

Certain initial values of the Vi

however be specified and there are a number of ways in which

's and the at's mﬁst

this can be done. If the series is quite long and no roots
of ¢P(B) = 0 are close to the boundary of the unit circle then
initial unknown values can be set equal to their expectations,

zero in the case of the at's and ¢ for the wi's. Given that

LA has n observations, the sum of squares defined by equation

(2.4.8) will become

=0 for t < 0) 2.4.10

n
5(4,8) = £ a2(¢,8]w, =u,
| 41 b t t

An improvement on the sbove approach is to set a, = 0 for

's for t = p + 1 onwards using

t < p and then calculate the ay

equation (2.4.9). The sum of squares is then

- s(¢,8) = g a%(QJQJat =0 for t < p) 2.h.1
t=p+l

The loss of information in summing over n — p values of the
at's instead of n values will be unimportant for long series.
However, for short series or seasonal data this method is not
satisfactory.

Box and Jenkins (1970, page 211) recommend the use of back-
forecasting to calculate values for the unknown at's and Wt's.
This process is now described.

'If the Wt's are generated By the model (2.2.5) then they are
also generated by the model

¢P(F)&t = éq(F)et, ' 2.4.12

(see Box and Jenkins (1970, page 199)) where s €r_1° Cpoprtte is
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a sequence of independent random variables, each normally
distributed with zero mean and variance'cg 502: The operator

F defined by

is termed the forward shift operator.

Model (2.4.12) may be expressed as

et = w£ - ¢1W£+l - ¢2W£+2 = s = ¢PW£+p

+ 6 ) + 6 2.k.13

1%+1 T Po%pan e Y 004

Letting [et] denote the expectation of €y conditional on

%, 6 and w., w2, W

1 LA then algebraically we may write

3o
[et] = i?etlgﬁgd Wy aWosWaseeesV }

n

Taking conditional expectations throughout equation (2.4.13)

we get
Legd =00 = o001 = o b = e = ¢ i, ]
+ el[et+l] + 62[et+2] + ...+ eq[et+ql 2fh.lh
where

[w] =w, , fort=1, 2, 3,...,n

]
(@)

[ej] , for j <O

[éj] =0 , for j>n-p
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Starting with t = n - p, the [et]'s can‘be evaluated Workiﬁg
backwards using equation (2.L4.14) recursively. When [el] has
been determined, the back-forecasts [ﬁ_j] (3 =0,1, 2,...) are
computed {using equation (2.4.1k)) until some point (3 =K) is
reached after which [ﬁLj] = 0i,e. for J=K,K+1, K+ 2,... .

The [at]'s can now be computed for t = -(K - 1) up tot =n

by taking conditional expectations in equation (2.4.9).

i.e. (e =0w] - ¢ 0% 1 - ol _J - ...~ ¢P[€rt_p]
+6,la, .1 +6fa 1 + cel 4 eq[ at_q] 2.k.15
with ’
‘. [a.j] =0 , for j>K
and hence
n
s($,8) = I [at(g,g)]2 2.4.16
t=-(K-1)

The above is called the unconditional sum of squares function
while the sum of squares arrived at by the two simpler methods are
termed conditional sum of squares functions.

In computing the unconditional sum of squares function it is
possible to repeat the cycle involving equations (2.4.1L4), (2.4.15)
and (2.4.16). Box and Jenkins (1970, page 217) say that in practice
"a second iterative cycle would almost never be needed." An -
examination of situations in which ﬁore iterative cycles are required
will be made in Chapter 6.

If the identified model contains no more than three parameters
then the latter can be estimated quite conveniently using a graphical
technique. The unconditional sum of squares is calculated over a
grid of valges for each parametér and plotted against the parameter
values. This will lead to curves (for one parameter models) or

contours (for two or three parameter models) from which the values
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of the parameters producing the minimuﬁ sum of squares can be
obtained.

Another method by which the parameters‘can be estimated is
the iterative procedure of non-linear least squares estimation.
This process is described fully in Box and Jenkins (1970, pages
231-242). However, the same authors emphasise that this
technique should only be used when one is satisfied that no
anomalies exist in the estimation situation. This point can
only be tested by plotting the sum of squares function for each

new estimation problem.

2.4,3 Diagnostic Checking

If the least squares estimates of the parameters ¢ and 8

in the model (2.2.5) are denoted by ¢ and § then

_ ¢p(B)v'rt = eq(B)at 2.h.17
or
G ! ~ .
8, = eq (B) ¢p(B)W£ | . 2.4.18

A

The sequence of random variables & defined

1 ;t—l’ ;t—z""’
by equation (2.4.18) are known as the residuals.

Most of the checks on the adequacy of the fitted model are
applied to the residuals.

If the correct form of model had been assumed and the true values

of the- parameters ¢ and @ were known then

8,

- a1 :
v = eq (B) ¢p(B)W£ | 2.4.19

and the estimated autocorrelations ra(k) would be uncorrelated and

approximately normally distributed with zero mean and variance-%

(Bartlett (1946)). However, for the residuals 2y > Box and Pierce
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(1970) show that the value of'j¥ for the standard error of the
ra(k)'s is unreliable at low lzgs. ' Tt tends to underestimate '
the significance of departures from zero correlations.

Rather than use the abbve criteria fdr individual values of
the gstiﬁated autocorrelation function ra(k), Box and Jenkins
(1970) suggest a test on the first K éstimated autocorrelations
considered as a whole. A typical value for K, for non-seasonal
data, is 20. Box and Pierce (1970) show that the statistic

K 2
Q=n I ra(k)
k=1
is approximately distributed as x2 (K - p - q) for an A.R.M.A.
process of order (p, q). Reference to the appropriate percentage
points of a x2 distribution gives some clue to the adequacy of the
proposed model.

While tests on the sample autocorrelation function of the
resiéuals will to a certain extent detect non-randomness, they may
not be very sensitive to periodicities. The presence of the latter

should be made apparent by examining the periodogram which is

defined by

n ) n
(z a, cos o fit) + (= &,

I(f;) =
t=1 t=1

8

sin 2w fit)z 2.4.20

where a, (t =1, 2, 3,...,n) is the time series under consideration
and fi_(= %J is the frequency. Note that the frequenciés f. are

. aséumed to be harmonics of the fundamental frequency. If the
frequencies were allowed to vary continuously in the range O - 0.5
cycles then I(f) would be referred to as the sample spectrum (seé
for example'Jenkins and Watts (1968)).

The function C(fj) defined by
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J
ii I(fi)
c(f.) =
J n s2

2

where s® is an estimate of ci, is called the normalised cumulative

periodogram. If the at's are uncorrelated random variables,
normally distributed with zero mean and variance og then the
normalised cumulative periodogram for the series, piotted against
fj, would consist of points scattered about a straight line.

In the presence of, for example, seasonality "humps" will appear
at various frequencies; In practice the normalised cumulative
periodogram will of course be computed for the residuals ;t'

Limit lines can be included on both sides of the theoretical
line in order to detect possible inadequacies. Again this is
diééussed by Box and Jenkins (1970, page 297T).

Apart from diagnostic checks applied to the residuals, other
té;ts of a model's suitability can be performed. These include
examining the need for a further parameter (overfitting) end
looking into the possibility that the parameter values change over
a period of time.

Should any of the diagnost%c checks detect some inadequacy
in the original model then another model is identified and the

iterative procedure of identification, estimation and diagnostic

checking is repeated until a suitable model is found.

2.5 Forecasting

In this section‘we describe how the A.R.I.M.A. model introduced
in Section 2.3 can be adapted for forecasting purposes.

If we assume (without loss of generality) that the stationary
series Wy = det has a zero mean then employing the non-stationary

operator ¢;+a(B), defined by Box and Jenkins (1970, page 88) as
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o* =1 - 0%p - O%p — .. - g% p+d _ _md
p+a(B) =1 - ¢B - 03B prad $,(B)(1 - B)
the A.R.I.M.A. model (2.3.2.) becomes

* = '

¢ p+d(B)zt eq(B)at . 2.5.1

Thus for some future value Z, 4 Ve can write
= % * *
Zeen = P1%ag-1 T $o%pagn * o0 * Oiattenpea
ta T 915t+z—1 - 62at+£_2 = el -~ eqat+2_q 2.5.2

3
.

If zt(l) denotes the optimal forecast for lead time & from origin

t, Box and Jenkins (1970, page 127) show that

2,(2) =E [z
t t

t+2,1 2.5.3

where E [z
t
knowledge of all the z's up to time t.

t+l] denotes the conditional expectation of zt+2 given

Further N

a =2

w4l = Zpay - Z (1) 2.5.4

so that the required forecast zt(ﬂ,) can be obtained by taking
conditional expectations throughout equation (2.5.2), making use
of the fact that

E[
t

Zt+j] ;t(j)

for j =1, 2, 3,...

Efa
t

t+ j]
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and
Elz,_.] =2 __.
g t=J
for j =0,1, 2,...

t=j-1
In practice the true values of ¢f, 93 ¢§""’¢;+d’

61, 62, 03,...,Bq and the a, 's would not be known and they would

t
be replaced by the values estimated by the methods described in
Section 2.k,

It is also useful to express the A.R.I.M.A. model (2.5.1) in

the form of an infinite moving average viz.

L
N
"

2
£ ("’o“”lB*"’zB + ...)a,t

W(ﬁ)ﬂt ' » 2.5.5

-

where the Y weights satisfy
a .
¢ _(B) (1 - B) v(B) =6 (B) 2.5.6
p a .
Employing this representation we have

2,(2) = E [z

. s+l = Yo f‘_f[atﬂ,] *¥ BElag o 4]

t

+ ¥, f la ool + -

and so
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N
|

e+n T Vo Ppag T ¥ Bpagn Y Vo B oo

n 2-1
zt(z) +.Z
J=0

Vs Bragj 2.5.8

The distribution of Zyag? conditional on Z)> 22’ z3,..., £?

|z .92 ) will therefore have a mean Zy (2) and

’ Z ,..
t? Tt- 1£ -1 1
variance (1 + ¢2)02 (w 1). In addition, prov1d1ng that the
J-l ’
's are normally distributed with zero mean and variance o then the

Plzgy

&

distribution p(z |z ..,zl) will also be normal. Hence

t+2 %42 Zg-10

approximate (1 - a) x100% probability limits for zt(l) are

- 2-1
25
zt(z) + Uy /2 fl + 3 wJ}

j=1 &

where u / is the appropriate percentage point of the unit normal

a/2

distribution and s: is the sample variance of the at's.
Finally, it is of interest to note that by making use of
"equation (2.5.7), Box and Jenkins (1970, page 134) show that a

forecast made at time t for lead time £ can be updated when the

observation Zi41 becomes available, using the formula
t+1(2 -1) = Z, z, (2) + Yo 1 4l 2.5.9
where 841 = Zpap T zt(l)

2.6 Seasonal Time Series

In the preceeding sections we have considered the application
of the Box~-Jenkins procedure to non-seasonal series. 'Box and
Jenkins (1970, Chapter 9) also propose a class of models for
desceribing seasonal data. To illustrate how seasonality is teken

into account we will assume that Zy is a seasonal series of monthly

S
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sales figures.
An A.R.I.M.A. model of order (P, D, Q) is fitted to successive

sales for one particular month, e.g. September. This model takes

the form .

o, (B12) V2 2, = 0 o(B12) oy | . 2.6.1
where 0,(B12) =1 - ¢ BIZ - ¢ B2% - ... - ¢P§12P

GQ(Blz) =1 - 91312- @232“ - el - OQPIZQ

and V. zZ, =2, = %

D is the degree of differencing required to reduce the series

z to stationarity.

t2 Zg-12° Pg-alecce
Model (2.6.1) thus relates the current September sales to

previous September sales and current and past errors at, at—12’

Op _o)ysees For August the equiva}ent model would be
12y ¢ D = 12 _
0, (B%%) 10 %41 e Q(B ) oy 5 - 2.6.2.

and similarly for the other months. Box and Jenkins (1970, page
304) consider that it is reasonable to assume that the parameters

@ = (2, 05, 4o,...,0;) and 0 = (0

s 02, 03,...,OQ) are the

same for all months.

The error term o, from equation (2.6.1) could not be expected

t

to be uncorrelated with the error term a from equation (2.6.2).

t-1
A further A.R.I.M.A. model of order (p, d, q) is therefore fitted to

the series Ops Gp 95 Oy nsecs o Hence
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a
¢p(B)_V o -eq(B) a, 2.6.3

t
where ¢p(B), eq(B) and d have been defined in Sections 2.2 and 2.3.
Combining equations (2.6.1) and (2.6.3) leads to the model

~

¢,(B) o,(812) vd‘\agzt = 8 (B) 6,(B12) & 2.6.h

For a series possessing a seasonal cycle of period s equation
(2.6.4) can be modified to
szt

s a.>
¢p(3) "’p(B )V "

=6 (B) o_(B® 2.6.
a YQ( ) a 5
which is termed a general multiplicative seasonal model of order
(p, 4, q) x (P, D, Q)S. .
The model fitting process is essentially the same as that for

non-seasonal models.

-

2.7 The Method of Step-wise Autoregression

This method of forecasting suggested by Newbold and Granger
(1974) is based on the autoregressive models introduced in Section

(2.2.1). In most cases the first differences Wy ==Vzt of the given

series z, are analysed. A model of the form

M
LA jil¢j Vi3 +oay 2.7.1

where a, is a white poise process, is then assumed. Typical values

for M are 10 for non-seasonal data and 25 for monthly data.

At the first step of the model building procedure the lagged

value Vi3 which contributes most to explaining the variation in
w, is introduced. The next lagged value to be included is the one

t
which most improves the fit obtained after the first step. This

/

o
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process is continued until no significant improvement in fit
occurs at the introduction of further lagged values. At this
stage lagged values introduced earlier, which no longer contribute
significantly to the fit, are dropped.
.+ Forecasts are obtained by projecting forward equation (2.7.1).
* ~ We now make a brief comparision éf the method of step-wise
autoregression with the Box-Jenkins procedure.

Firstly, the model (2.7.1), as it stands, is the A.R.I.M.A.
model of order (M, 1, 0). It is thus a special case of the general
A.R.I.M.A. model of order (p, d, q). The absence of moving average
terms necessitates a large value for M and so model (2.7.1) does not
generally provide a parsimonious representation of the'series LA
Although a number of parameters will be eliminated during the model
fitting process, the final model will still generally include more
parameters than the A.R.I.M.A. model identified using the Box-
Jen%inS‘procedure. However, the inconvenience of working with a
model which includes a comparatively large number of parameters is
offset to some extent by the fact that it is much easier to estimate
aﬁtoregressive parameters than mbving average parameters.

Treated purely from a routine forecasting poin£ of view, the
important difference between step-wise autoregression and the Box-
Jenkins procedure is that the former approach is fully automatic
wvhile the latter is not. Unlike the Box-Jenkins technique, step-
wise autoregression does not involve an inspeétion of the sample
autocorrelation function in order to identify the appropriate model
and once the value for M has been specified, forecasts can be

generated without further human intervention.
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CHAPTER 3

AN EXAMPLE OF A BOX-JENKINS ANALYSIS

3.1 Introduction

The Box-Jenkins procedure, descriﬁed in Chapter 2, was applied
to a seasonal series of monthly sales figures. This chapter will be
devoted to a step-by-step account of this analysis. The data will be
tabulated and discussed in Section 3.2 while Sections 3.3 t9'3.6 will
deal respectively with the identification, estimation, diagnostic
checking and forecasting stages of the Box-Jenkins procedure. Some
glternative models will be examined in Section 3.7. In Section 3.8
general remarks will be made concerning the performance of the
Box-Jenkins procedure on this particular set of data.

Most of the computations were carried out using a set of
Box>Jenkins forecasting programmes included in the I.C.L. qomputer
package at the University of Baph. However, at certain stages, the
approach followéd by the I.C.L. programmes differed from that set out
in Box and Jenkins (1970). This difficulty was overcome by writing
a number of additional individual programmes.

Much of the material contained in this chapter is included in |

a published paper by Chatfield and Prothero (1973 a).

3.2 The Data

As mentioned in Section 1.1, the data were supplied by an
engineering firm (Company X) who required sales forecasts for an
engineered product for a lead time of up to 12 months. Monthly
observations were available from January 1965 to May 1971. The data

are tabulated below and plotted in Figure 3.1.
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Table 3.1 Sales of Company X, January 1965 — May 1971

Jan| Feb | Mar | Apr | May |Jun | Jul | Aug | Sept| Oct | Nov | Dec

1965 15k| 961 73| 49| 36| 59| 95|169}) 210 | 278 | 298 | 245

1966| 200 1187 90| 791 78] 91| 167 1169|289 | 347 | 375 | 203

1967 | 223| 1ok | 107} 851 751 99} 135|211 | 335 | L60 | 488 | 326

1968 | 346 261 | 22k | 141} 148 |1k5 | 223 | 272 | kb5 560 | 612 | L6T

1969 | 5181 Lok | 300 | 210|196 | 186 | 247 | 343 | 46L | 680 | T11 | 610

1970| 613} 392 | 273 | 322 | 189 257 | 324 | ok | 677 | 858 | 895 | 664

1971 | 628 | 308 | 324 | 248 | 272

-

The series can be seen to possess a definite upward trend and
8 marked seasonal pattern. The amplitude of the seasonal cycle is
roughly proportional to the level of the serieé, indicating a
multiplicative seasonal effect. At this stage the range of
transformations proposed by Box and Cox (1964) was not considered
and’a logarithmic transformation was applied to the data. The
transformed data are shown in Figure 3.2. The seasonal effect is
now approximately constant although the trough in the first years
data is rather on the low side.

In order to examine the seasonal pattern more closely, the
logarithms of the sales for each month were plotted individually
(Figure 3.3). These trend lines turn out to be roughly linear and
parallel, indicating that a logarithmic transformatipn is reasonable.

More discussion on the choice of transformations will appear

4

in Chapter L.

3.3 JIdentification

Let the observed sales at time't be denoted by Xt and the
transformed value by Zt, where

zZ =
¢ = 1084 Xi 3.3.1
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We seek to select a model from the class of general multiplicative
seasonal models, defined in Section 2.6, which will adequately represent
the series Zy - Thus, suitable values for p, d, q, P, D and Q in the

model

d D

p(B) o, (B!2) v'v 2z, = eq(B) % (B12)a, 3.3.2

must be chosen. The notation employed in this chapter is the same

as that defined in Chapter 2.

3.3.1 Differencing to Attain Stationarity

The first stage of the identification procedure is to determine
the degree of differencing necessary to transform the non-stationary

series zy into a stationary series Wy Following the approach

described in Section 2.4.1 the sample autocorrelation functions for

various differences of the series z, were examined. The sample

autocorrelation functions for z Vh 122t and V V are given

£° 12%¢
in Table 3.2 and plotted in Figures 3.4(a), (b), (c¢) and (d).

The autocorrelation functiors for both Zy and Vzt show a strong

cycle with period 12, the peaks bccuring at lags 12 and 24 and the

troughs at lags 6 and 18. This suggests that both Zy and Vzt are

non-stationary. The series V12  Possesses an autocorrelation
function much more like that of a stationary series but a sequence

of positive correiations is followed by a long sequence of negative
correlations (with one exception) implying that some degree of
non-stationarity still exists. On the other hand,the autocorrelations
for Vvl2zt appear to be quite consistent with those for a stationary

series. If the series VV12 £ was random then the standard error of }

1
each autocorrelation coefficient would be approximately Ve = 0.125

(see Bartlett (1964)). Thus the only "significant" autocorrelations

are those at lags 1, 2, 10, 11 and 12.
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It should be noted that the series Zyo Vzt, Vlzzt and VVlgz,t

. contain 77, T6, 65 and 64 observations respectively. Further
differencing was not contemplated since this would reduce the number
of terms even more. Values of d =1 and D = 1 were therefore

entertained.

3.3.2 Identifying the Stationary Process

The series AP is denoted by wt(t=l,2,3,.;.,6h) i.e.

= z . -
LR N ‘ 3.3.3

~ the zt's being defined from t = -12 to t = 64. A seasonal A.R.M.A.

model of the form

qsp(B) <1>P(Bl~°-)wt = eq(B) OQ(BM)% 3.3.h4

which will provide a good description of the stationary process v
must now 5e identified. Thus values have to be ascigned to the
integers p, P, q and Q.

As described in Section 2.4.1, reference is made to the sample
autocorrelation function of the seriés Wt. The autocorrelation
coefficients at lags 1, 2 and 3 are -0.58, 0.36 and -0.22 and so
initially the sample autocorrelation function is decaying by a
factor of about —-0.6. This suggests the presence of a non-seasonal
autoregressive parameter in the model (3.3.4) i.e. p = 1.

On £he other hand, the autocorrelation coefficient at lag 12
is "large" while that at lag 24 is "small" and so although no
reliable estimates for the sample autocorrelatioqs at lags 36, 48, etec.
can be computed, the choice of a seasonal moving average parameter

would seem td be reasonable i.e. Q@ = 1. In the interests of

"parsimonious parameterization", P and q were both taken to be zero.
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The tentatively identified model was therefore
(1- ¢B)wt = (1 - eBl-"—)at 3.3.5

where ¢ and O satisfy |¢I<l and |0|<l in order for the process to be
both stationary and invertible. |

Using a method similar to that emﬁloyed by Box and Jenkins
(1970, page T4), it can be shown that the theoretical autocorrelation

function for the model (3.3.5) is given by

( 12-k ok
k o(1-
¢ - 2 > ( lg ) for k = 1,2,3,...,12

1+6°-24"°0 R

p(k) = 2

¢ p(k-1) for k > 13

L 3.3.6

Provided ¢ is not too close to *1 a good approximation to

p(k), for certain values of k, is

. k

¢ for k = 1,2,3.
i plk) = |12-x|
=0 9 fork =10,11,12,13,14.
1+02

3.3.7

This theoretical autocorrelation function thus compares reasonably
favourably with the sample autocorrelation function for LA except at
lag 11. The sample autocorrelation coefficient at lag 1l is greater
than that at lag 12 whereas the theoretical autocorrelation function
for model (3.3.5) implies that p(11) < p(12). The model (3.3.5)
would therefore explain some of the high correlation present in Ve
at lag 11, but not all of.it. A model including an additional
moving average parameter at lag 11 may be more successful, but this
would take us outside the multiplicative class of seasonal models
defined by equation (2.6.5). The extra complications involved in

including a further parameter at lag 11 did not seem to be justifiable

and the model (3.3.5) was retained.
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3.3.3 Preliminary Estimates of Parameters

The final stage of the identification procedure is to obtain
preliminary estimates for the model parameters. These estimates
are generally used as starting values for the more exact estimation
techﬂiques to be described in section 3.L.

Using eqﬁation (3.3.7), for p(1) And p(12), and replacing
the theoretical autocorrelation coefficients by their sample

estimates we get

-0.58

© >
]

- . 3.3.8
0.42

(O]
n

| Again, for model (3.3.5) it can be shown that the variance of

the residuals is given by

o2 = (1=0%)
& 1402-p4l29 ¥ 3.3.9

-

where 02 is the variance of the stationary series w Thus a

w t°

preliminary estimate for og can be arrived at by replacing ¢ and

© by their initial estimates and substituting the sample variance

-

of Wy for 03. This resulted in

~

cg = 0.0063 : 3.3.10

3.4 Estimation

Having tentatively identified the model (3.3.5), least squafes'
estimates for the parametefs ¢, © and ci were determined by two
methods, the graphical technique outlined in Section 2.4.2 and the
non-linear least squares approach described by Box and Jenkins |
(1970, pages 231—2h2). Since both methods involved the computation
of the unconditional sum of squares, we will begin by illustrating

how the latter was evaluated.



-

3.4.1 Computation of the Unconditional Sum of Squares

In computing the unconditional sum of squares, use is made
of the fact that the model (3.3.5) can be expreséed in terms of

the forward shift operator F, i.e.
(l-¢F)W£ = (1—@F12)et . 3.k.1

where the et's are independent random variables, normally distributed
 with zero mean and variance 02 (= og). Rearranging equations (3.k4.1)
and (3.3.5) and letting the symbol [ ] denote expectations at time t,

conditional on ¢, © and W) oWasWase e e Wg) We get. -

[et] = [Wt] - ¢[wt+l] + 0[et+12] 3.4.2
and ['at] = [w] - olw,_,]1 +elag_, ] 3.L.3
Setting [e6h]’ [e65], [e66], ..... ,[eTS]equal to zero and

IW£] =W, (for t = 1,2,3,...,64), values for [et], for particular

values of ¢ and ©, were calculated in reverse order using equation

(3.4.2) down to'[el]. Then setting [eO], [e_l], [e_2], ..... , equal
to zero, equation (3.4.2) was used to back-forecast [WO], [W¥l]’
[w_2], ..... , until these values approached zero. For ¢ =-0.60,

@ = 0.40 this point was judged to have occurred at t = -1T7 when
[W-17] was less than 0.0005. The [a.]'s for t = -16,-15,-1h4,...,6k4

were then computed using equation (3.4.3) and setting [a-lT]’[a-IB]’

f&_lgl, ..... , equal to zero. The sum of squares S(¢,0) was calculated
using
64
5(4,0) = I [a]?
t=-16

A specimen calculation of S(¢,0) for ¢ = -0.60 and © = 0.40

is shown in Table 3.3.



_50_

Table 3.3 Specimen calculation of S(¢,0), for ¢ =-0.60, O = 0.40

Zy t . [at]" [wt] [et]
-17 o - 0.000
-16 -0.001 -0.001
2.188 -12 -0.005 —6.008 o]
1.982 -11 0.008 0.013 0
2.389 -1 0.0L7 0.0k
2.301 0 -0.006 -0.029
i 2.072 1 ) -0.038 -0.024 -0.010
1.95h4 2 -0.016 0.001 0.095
2.508 51 0.194 0.227 0.096
2.277 52 -0.073 -0.202 -0.108
2.395 63 -0.003 -0.188 -0.025
2.435 64 0.130 0.272 0~
6L
S(-0.60,0.40) = £ [a,]12 = 0.391

t=-16 °©




3.4.2 Graphical Study of the Sum of Squares Function

The sum of squares S(¢,0) was calculated over a grid of values
 for ¢ and © using the technique described in Section 3.4.1. In'view.
of the fact that the preliminary estimate for O, obtained in Section
3.3:3, was not close to #1 and also in the light of the statement by
Box and Jenkins (1970, page 217) it was decided not to perform more
1than one iterative cycle for any value of ©. The justifiecation of
this decision will be examined in Chapter 6.
The unconditional sum of squares function is tabulatéd below

‘and the sum of squares surface is illustrated in Figure 3.5.

Table 3.4 Sum of Squares over a grid of valueslfor4¢ and ©

0.10 |0.20 {0.30 }|0.40 |0.50 | 0.60 [0.70 [0.80 |0.90 {1.00

-0.10}0.601|0.562| 0.526| 0.492[ 0.460{ 0.431|0.403}0.383|0.407[0.703

-0.20}0.543}0.510{ 0.480} 0.452| 0.425) 0.400{0.376|0.360] 0.384} 0.664

-0.30 0.497/0.470| 0.445[0.421] 0.399{ 0.378]0.358[0.34L}0.368}0.635

-0.40j0.463|0.441} 0.421| 0.401} 0.382| 0.365[0.348]0.336]|0.360]0.616

-0.50]0.L442] 0.42L4{ 0.40T} 0.391]| 0.375[ 0.361}0.347]0.336/0.360| 0.608

-0.60 O.h33 0.418}0.404{ 0.391{0.378]0.366{0.354|0.344}0.36T}0.610

-0.70]0.436| 0.423] 0.412] 0.401]| 0.390] 0.380]0.369|0.360|0.382|0.623

-0.80]0.451] 0.440[ 0.430] 0.42110.412}0.403}0.392|0.383]0.405|0.649

-0.90]0.478|0.469] 0.460] 0.451|0.kLk3}0. 434 0. b2k 0. Lb16{0. 4b41]0.T10

-1.00 0.518 0.509[0.501} 0.492{0.484}0.47€]0.468[0.470]0.560[1.211

From Figure 3.5 it can be seen that the sum of squares
surface is fairiy flat and reasonably quadfatic in the neighbourhood
of its minimum value. A closer examination of the sum of squares
surfacekfor values of ¢ and © in this neighbourhood revealed that
thé minimum value occurred when ¢ =-0.45 and © = 0.81. Thus we

have
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1.21110.710|0.649]0.623{0.610/0.608]0.616|0.635|0.66L|0.703

’//,’—- \

0.560}074T110., k05| 073820 36710. 360/0. 360 o.368~ST§§E‘o.ho7 6.9
- N - N
0.L70]0.416]0.38346.36070.3L4.10.3360733610.34410.360(0.383) ; o

0.168 |0. 42k |0.392)0736970. 354 0. 347 |0. 358 |o. :

\ 7 P / 0-7
\\ /////{{///4 //, //// /
0.47610.43430.4030.380|0%.36610.36170.365|0.378{07400|0.431

0.484 10.144310.412]0.390/0.378]0.375[0.3820.399|0.42540.460
(()\)

e
’ Q.
o.h9;\ 451 o.h;}\p.h01 0.391 o.391¢o:ﬁgz/o.h21 0.4s51 |0/k92
N

0. 1o

v /
\ - /o
0.501 |0, 0

460 10.430 o.u12~o:hoh’ffh07 0.421 {0, 4k45]0.48

S 0.3
| , A b
0.509 |0.469 [0.440 j0.423 0. 418 0. hok 0.4 O.)-VTO/O.SZLO 0.562
9

// 0.2
N )
0.518 [0.478Y0.451 10.436 j0.433 [0.LL2 |0.463 07497 [0.543 |0.601 0.1
: 0
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 O
¢+
. FIGURE 3.5
Sum of squares surface for model (1-¢B)w, = (l—OBlz)at. Shaded

area is an approximate 95 per cent confidence region
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; = -0.45 é = 0.8;

A~ A~

and figure 3.5 shows that ¢ and O are approximately uncorrelated.
A 95% confidencé region was constructed following Box and
Jenkins (1970, page 229). This is also shown in Figure 3.5.
An estimate of oi is given by

, ;2 = S(Qﬁ,é)
a 64

=_945§i = 0.00523

(see Box and Jenkins (1970,page 277)).

,

3.4.3 Non-linear Estimation

The parameters ¢ and O ﬁere also estimated by a non-linear
least squares approach using the I.C.L. computer»package. Initially
¢ and O were set equal to zero which differs from the starting values
suggested by Box and Jenkins (1970, page 233) who employ the

preliminary estimates computed et the identification stage. However

the estimates arrived at by the I.C.L. programme were
$ = -0.U7 © = 0.81

which agree closely with those arrived at in Section 3.4.2
It is shown in Box and Jenkins (1970, pages 240-242) that

~ A

for large samples, the variances of ¢ and O are given approximately

by

(1-02)

o

V() = 2 (1-¢2) and V(6) =

-~ -

and hence in our case the standard errors associated with ¢ and ©

are approximately 0.11 and 0.07 respectively.
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3.5 Diagnostic Checking

Using the parameter’esfimates obtained in Section 3.k.3, the

fitted model can be expressed as

(1+o.l+7B)wt = (1-0.81B12)at

3.51

The residuals at(t=l,2,3,...,6h) from the above model are

computed by rearranging equation (3.5.1) as

&

t

=W

t

+ O.h7wt_l + O.Blat_

12

-~

3.5.2

where the initial estimates of a, and w, are derived using the

t t

method of back-forecasting described in Section 3.k.1.

The diagnostic checks illustrated in this section are concerned

chiefly with the residuals from the fitted model although an

example of "overfitting" will be looked at in Section 3.5.3.

3.5.1 Autocorrelations of the Residuals

The sample autocorrelation function of the residuals, for lags

1 to 24, is shown in Table 3.5.

Table 3.5 Sample autocorrelation function of residuals from the

model (1+0.47B)w,
|9

= (1-0.81B12)a .

L

Lags Autocorrelations
1-12|0.01| 0.10|-0.10{-0.10|-0.16|~0.08{-0.29|-0.06|-0.0L| -0.06[ 0.34} 0.08
13-24[0.02{-0.08{-0.02}] 0.07|-0.04}-0.10| 0.04| 0.05| 0.02| 0.04]-0.03]-0.20

-~

Under the assumption that the a_'s form a sequence of normally

t

distributed independent random variables, an'ubpér bound for the

standard error of the autocorrelations ra(k) would bé l/VGh (Bartlett

(196L4)). The estimated autocorrelations at lags 7 and 11 both lie

outside *2 standard errors.

The "large" autocorrelation at lag 11

is not unexpected since we remarked in Section 3.3.2 that the model
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(3.3.5) would not be capable of explaining all of the high

correlation present at lag 1l in the series w The autocorrelation

£
coefficient at lag 7 (-0.29) is rather more surprising in view
of‘the fact that the autocorrelation at lag T for the series LA
was -0.17 (see Table 3.2). However, the model (3.3.5) cannot
really be expected to produce a reduétion in correlation from

"~

w, to a

A 42 for all lags. Overall it is not too- surprising to find

2 "significant" values in 24 coefficients.

The overall adequacy of the fitted model (3.5.1) was tested
by the method based on the Q-statistic introduced in Section 2.k.3.
After taking into account the amount of data available, this
statiétic was calculated by summing the squares of the first 36

estimated autocorrelations i.e. K = 36 and

: 36
Q=6 x rg (x) = 29.07
k=1

If the fitted model is adequate Q should be distributed
approximately as x2 with 36 - 1 - 1 = 34 degrees of freedom. The
observed value is thus not significant, indicating that the model

(3.5.1) is adequate.

3.5.2 Cumulative Periodogram of the Residuals

The normalised cumulative periodogram for the residuals was
calculated following the approach outlined in Section 2.4.3. This
quantity is plotted in Figure 3.6. Also shown is the theoretical
line joining the origin to the point (0.5,1) while Kolmogorov-
Smirnov limits are drawn either side of the former. 'In this
case the 1limit lines were constructed such that for a truly random
series they would be crossed 25% of the time. For more information
concerning the Kolmogorov-Smirnov iimits, thé reader is referred to

Box and Jenkins (1970, page 297).
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FIGURE 3.6
Normalised cumulative periodogram for the residuals

from the model (1+o.h7B)wt = (1-0.81B!2)a,
(9
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It can be seen that the plot of the normalised cumulative
periodogram lies wéll within the 25% limits. However, a slight
hump does appear in the function at a frequency between 0.09 and
0.10 corresponding to a period of 10 or 11. It is recalled 6f
course that the autocorrelation of the residualé at lag 11 was
also "targe". Nevertheless, the cumulative periodogram check

does not appear to bring any serious anomalies to light.

" 3.5.3 Overfitting

The technigue of overfitping basically.involves the addition
of extra parameters to the identified model to cover directions
in which discrepancies are most feared (see Box and Jenkins
(1970, page 286)).

In the case under consideration it was decided to add a
secondlmoving average seasonal parameter to the model (3.3.5) in
’an—attempt to explain some of the correlation present in the
residuals at lag 2k, (r;‘(QL) = -0.20). No effort was made to

explain the correlation at lag 11, for the reasons given in

section (3.3.2). The extended model to be entertained was thus
1-¢B)w, = (1-0. Bl2_g p2b ' 5.
(1-¢Bw, = ( 5 0,82%)a, o 3.5.3

At this stage, the I.C.L. programme produced unsatisfactory

estimates for ¢, Ci and 0, - estimates which gave rise to a larger

2
residual variance than that possessed by the fitted model (3.5.1).
This unfortunate occurrence could probably be attributed to the
choice of starting values mentioned in Section 3.4.3.

The problem was overcome by using a graphical éechnique
similar to that employed in Seétion 3.4.2. The unconditional

sum of squares S(¢,Ol,02) was computed over a grid of values for

d, Ol and 02. Figure 3.7 shows two dimensional contour diagrams

e
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(a) ¢ = -0.30

(b) ¢ = -0.50

o o

O

(c) ¢_=-0.70

FIGURE 3.7
' Sum of squares surface for the model (1-¢B)w, = (1—01B]2—OQB2”)aL.
") (4 19

Shaded areas indicate non-invertibility region
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for the parameters 0, and 0., for fixed values of the third parameter

1 2°
¢. The fitted model was found to be

(1+o.5OB)wt = (1-0.70}312—0.1032‘*)at 3.5.4

with

= 0.00523

The minimum value of the sum of squares agrees with that for
the two parameter model (3.5.1), up to three decimal places. In
fact, Figure 3.7(b) confirms that it is not worthwhile including
a third parameter in the model;

In summary, neither the residual analysis nor the overfitting
suggested any gross deficiencies in the model (3.5.1). This model
was therefore used to generate forecasts.

*

3.6 Forecasting

Forecasts were evaluated using the difference equation approach
described in Section 2.5. The fitted model (3.5.1) is re-written

in terms of z, as

- 0.53 z

N
1t

0.53 Zyq * 0.47 Zi_o ¥ Zi 90 £-13

1

04Tz, 1), *a, -0.8la ., 3.6.1

and following the notation of section 2.5 the forecast made at time

t for some future value Zien is given by

2, (2)

] +0.47 Eiz

t+2-1 ]

E[Zt+£]= 0.53 Elz

% % t+2-2

+

E[

" Zevg-120 ~ 0-53 E[z

1- 0.47 E[z

t+£ 13 t+2- lh]

+

E[ 1- 0.81 E[a

1 | 3.6.2
t ,

S+ t+2-12
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with
i) E[zt+j] =2,03) , E[at+jl =0 for j =1,2,3,...
t t
ii) Elz__.} =z __. ,Ela__.) =a _.=2_.-2 (1)
t t-J t-J t t-J t-J t-J t-j-1

for j = 0,1,2,...

As explained in Section 2.5 the accuracy of the point forecasts
derived from equation (3.6.2) can be assessed by expressing the model

(3.5.1) as an infinite moving average

= (1+wlB + xp2B2 + .....)a 3.6.3

% t
where the wj's are arrived at by equating the coefficients of various

"powers of B in the equation
(1+0.47B) (1-B) (1-B!2) (l+wlB+¢2B2f ..... ) = (1-0.81B12)
These ¢ weighté are quoted in Table 3.6.

-

Table 3.6 The ¢ weights for the process (1+0.h7B)wt = (1-0.81B12)gt

il 2 3 4 5 6 7 8 9 |10 | 11 12

¥. |0.54]0.75] 0.65| 0.70| 0.67| 0.68| 0.68| 0.68| 0.68 |0.68 | 0.68] 0.87

The Y weights are used in computing the variance of the forecast errors,
for each lead time, following the theory of Section 2.5.

Forecasts made at May 1971¥% for lead times 1 toA12 are illustrated
in Figure 3.8. These pointuforecasts together with associated tolerance
limits are given in Table 3.7. The tolerance limits are taken to be

+2x (estimated standard deviation of the forecast errors).

* Recalling that the series z_ is defined from.t = -12 to 64 .
corresponds to t = 64, U ; o 04, May 1971
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The forecasts shown in Figure 3.8 and Table 3.7 are of course in
terms of the transformed variable Zy - More important are the forecasts

in terms of the original variable X . Since z

+ = loglo Xt’ the

t

simplest forecast of Xt+ made at time t is given by

%
X, (2) = 107 (%) o 3.6.4
Although the forecast errors in terms of the z_'s are assumed to

t

have a zero mean, the forecast errors in terms of the Xt's will not

have a zero mean. Granger and Newbold (1970) say that a "bias" is
introduced by the transformation and that the forecast defined by
equation (3.6.4) is not optimal. Further, the same authors show that

1f the errors €Ly = Zt+£ - zt(l) are normally distributed with Eero

mean and variance 0% then the percentage bias in the forecast 10zt(£),

2
o
is {exp[—§£ (logelO)Z] - 1} x 100%. For "small" values of 022, the

lagter expression can be adequately replaced by the linear approximation
o]
{—5&(loge10)2} X 100%. 1In our case estimates for o2, were less than

L
0.04 for x =1,2,3,...,12 and so the approximate formula was employed.
The percentage bias was generally quite small and although it did become
more pronounced as the lead timg increased (about 8% for lead time 12),
the re—transformed forecasts were computed using equation (3.6.Lk). These

forecasts together with approximate tolerance limits are given in Table

3.8 and plotted in Figure 3.9.

Table 3.8 Forecasts (with approximate tolerance limits) of XL+2 made
U

at May 1971 for lead times 1-12

i6h(z) 286| 437] 562 881| 1148| 1221] 897 889 535 L52| 367 314

T.L. +103}#186] £315] 521 {+759 {+899 [+721]+735| +471| +L12|+336| +300
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At this stage it should be pointed out that the forecasts given
in Table 3.7 (and hence those in Table 3.8) were computed using the

fitted model (3.5.1) with

A

Ela B5o4p°

t

] = for £ = 1,2,3,...,12

52+%
B52+2 .
Ags described in Chatfield and Prothero (1973 a), the I.C.L. programme

denoting the residual obtained by the method of back-forecasting.

generated forecasts by setting

~

Ela 1=

Elesarg a52+£(zero), for £ = 1,2,3,...,12

where a (zero) represents the residual at time 52 + £, initial

52+%

" unknown residuals being taken to be zero as suggested by Box and
Jenkins (1970, page 131). Using equation (3.5.2) a relationship can

be established between the residuals a, and at(zero). For example

when t =.58 we find that

PN

agg = ;58(zero) + (0.81)° ;_2 , 3.6.5

end thus a quite considerable amount of weight is given to the back-

A

forecasted residual a_,. If the-latter is non-zero then a substantial

difference may exist between a g end a 8(zero). In actual fact, in

b p
terms of the transformed observations, the forecasts computed using

the residuals ;t(zero) did not seem to differ greatly from those
generated using the back-forecasted residuals. However, Figure 3.9
shows that in terms of the original observations the difference between
the two sets of forecasts is quite marked, particulariy in the peaks of
the data. It would therefore seem to be reasonable to recommend the
use of back-forecasted residuals for forecasting purposes, especially
vhen a transformation is involved.

All future forecasts computed in this thesis will be based on

back-forecasted residuals.
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Visual inspection of the forecasts shown in Figure 3.9 suggests
that these forecasts are much higher, particularly near the peak,
thén one could reasonably have expected. Since the immediaté‘require—
ment of Company X was forecasts for lead times up to 12 months‘from
May 1971, it was decided to seek some plausible alternatives to the

fitted model (3.5.1).

3.7 Some Alternative Models

MAlthough the autocorrelation function of the series'wt led
naturally to model (3.3.5), we have seen that the forecasts made for
the lead times specifically required were intuitively very poor. An
attempt was therefore made to find an aiternative model~which possessed
a similar autocorrelation function to the modei (3.3.5) but which
produced more reasonable forecasts from May 19T71.

Restricting ourselves to two-parameter models, there are four

possible models capable of accounting for high autocorrelations

at lags 1, 2, 11 and 12. Theée models are

(1 - ¢B)wt = (1 - 9312)at (a)

(1 - ¢B) (1 - <I>Blz)w,c =8, (B)

(1- (;,1312)»5c = (1 - 6B)a, (c)
and v, = (1 - eB) (1 - eB!?)a, | (p)
where in all cases v, = v Vl2 loglo Xt'

Hereafter these models will be referred to as model‘(A), model (B),
etc. Model (A) is of course the initially identified model.

The four models were compared from both a "fittiné" point of view
and a forecasting point of view. 'The results of these comparisons will

now be discussed.
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3.7.1 Fitting the Models to the Data

The models (B), (C) and (D) were fitted to the whole data by exactly
fhe same procedufe as that descfibed for model (A). The paraﬁeters in
each model were estimated by the two techniques employed in Section 3.h;
Again there was a good agreement between the fwo different estimates.
Using the estimates derived by the non-linear least squares approach, the

four fitted models were

(1 + o.h'(B)wt = (1 - 0.81312)a£

(1 + 0.513) (1 + o.lr(BlZ)wt = a,
1+ 0.561312)wt = (1 - o.th)at
and v, = (1 - 0.44B) (1 - 0.85312)at

while the estimated variances of the residuals (cé) for each model are

shown in Table 3.9 '

-

Table 3.9 Estimates of residual varilance

Model 3;
(a) 0.00523
(B) 0.00659
(c) 0.0069k
(D) 0.00539

The residual variance is smallest for model (A), indicating that
this model fits the data better than the 3 alternatives. However, it
seems doubtful whether the differences between the four estimates are
statistically or practically significant - certainly there appears to
be no "significant" difference between the estimated variances of (A)

and (D) or between (B) and (C). The problem of comparing the fit of
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two models including the same number of parameters has not been discussed
by Box and Jenkins (1970) although tests have been suggested by Whittle
(1952) and Walkei (1967). |

The residuals were estimated by the method of back—forecaéting and
a visual inspection emphasised fhe similarities bétween models (A) and
(D) and between models (B) and (C).

An examination of the autocorrelation functioné of the residuals
for each model revealed that "large" autocorrelaﬁions at lags T and
11 were present in all four cases. In addition, other significant
autocorrelation coefficients occurred at lag 24 for models (B) and (C)
and at lag 2 for model (D). The presence of these autocorrelations
in the models (B), (C) and (D) seemed to'justify the use of a model
including a non-seasonal autoregressive parameter and a seasonal
moving average parameter i.e. model (A).

As an overall test of the adequacy of the four models the Q-statistic
was calculated in each case and the results are shown in Table 3.10.

The squared estimated autocorrelations were summed over lags 1 to 36.

Table 3.10 Values of Q

Model Q
(a) 29.07
(B) ~ 38.60
(c) 35.87
(D) | 33.94

Mbdei (A) produced the smallest value for Q suggesting that the
assumptions made about the residuals were rather more_;alid for this
model than for models (B), (C) and (D). Even so, none of the Q-values
were significantly large when compared with the percentage points of

the x? distribution with 34 degrees of freedom. Thus it was concluded

e ’
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that no serious inadequacies were present in any of the four models.

3.7.2 Forecasting
| Point forecasts were computed, using all four models, from May

l97l'for lead times 1 to 12. The forecasts resulting from models (A)
and (D) and from models (B) and (C) were so similar that only those
from model (A) and model (B) are shown in Figure 3.10. From a purely
intuitive standpoint, the model (B) point forecasts look far more
reésonable than those of model (A’. Although the former are more
satisfactory than the latﬁer, the tolerance limits associated with
the model (B) forecasts were found to be much wider than expected.
 For example, the tolerance limits for lead time 3 are 452 * 227.

An interesting point concerning the two sets of forecasts shown
in Figure 3.10 is that the difference between the point forecasts
from the 2 modeis is of a much higher order than that‘which can occur
through errors in estimating the parameters within each model. As an
example, the forecast for November 1971 resulting from model (B) is
1,025 when ¢ = —-0.80 and & = -0.20 and 978 when ¢ = —-0.70 and ¢ = -0.50
as compared with 992 using the estimated parameters ; = -0.47 and
¢ = -0.51. On the other hand, the corresponding forecast generated by
model (A) is 1221.

Thus far only a simple visual comparison between the forécasts
made from just one origin has been atteﬁpﬁed. ‘A more general comparison

of the forecasting performance of each of the models was also undertaken.

models was ] . .
Each of the four medelks ssere fitted to the first 60 observations

of the logged data z,, the parameters being estimated by the non-linear

t!

least squares technique. The resulting fitted models were
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(1 + o.3TB)wt = (1 - 0.801312)at

(1

+

12 -
0.27B) (1 + 0.62B )wt =a,

(1

+

0.61312)wt = (1 - o.2BB)at

and W

—- - 12
+ (1 - 0.29B) (1 - 0.79B )at

The forecasting potential of the four models was assessed over
the remaining 17 observations. The forecasts (in terms of the zt's)
were compared using the mean squared error function M.S.E(z), where

% refers to the lead time. In our case the mean squared error was

defined by
1 6k -
M.S.E(2) T7=pT1 ) (zt zt_z(z))

t=bT+8

Table 3.11 gives the above function for each model and for lead

times 1 to 12.

-

Table 3.11 Mean squared errors, lead times 1-12

Lead Time Model (A) Mcodel (B) Model (C) Model (D)
1 "~ 0.0060 0.0105 0.0107 0.006T
2 0.0058 0.0096 0.0091 0.0056
3 0.0081 0.0141 0.013k4 0.0083
L 0.0075 0.0124 0.0120 0.0077
5 0.0053 0.0118 ' 0.011Lk 0.0058
6 0.0065 0.0117 0.011k 0.0069
T 0.0087 0.0137 0.0132 0.0091
8 0.0103 0.01k6 0.01k2 . 0.0111
9 0.0129 0.0143 0.0135 0.0131

10  0.0167 0.0202 0.0193 0.0176
11 0.0134 0.0127 0.0124 0.01k41
12 0.0178 0.0229 0.0221 0.0189




It can be seen from Table 3.11 that model (A) gave rise to the
smallest mean squared errors for ali lead times excebt 2 and 11 when
models (4) and (3) respectively were best. On account of the small
sample over which the mean squared errors were com@uted (e.g. 6
observations for lead time 12) it would be unwise to attach too much
importance to these resulté. Nevertheless the similarities between
models (A) and (D) and between models (B) and (C), noted in section
3.T7.1, are again apparent. '

As well as obtaining some quantitative measure of each model's
forecasting ability, a visual inspection of the individual forecasts
over the final 17 observations was also carried out. Models (A) and
(D) were found to yield very good forecasts from December 1969, for
all lead times, while the forecasts made from May 1970 were generally
very poor. On the other hand, models (B) and (C) gave rather more
consistent forecasts and seemed less dependent on the month from

which the forecasts were being made.

3.8 Conclusions

The results obtained from the Box-Jenkins analysis described in
this chapter were unfavourable.. The main disappointment was the failure
to achieve the original objective, namely that of finding a model
capable of producing a satisfactory set of forecasts from May 1971. The
initially identified model (A) generated point forecasts which were
subjectively far too high and an alternative model was sought. Reasonable
point forecasts were provided by the model (B) (and (C)) but the tolerance
limits associated with these forecasts were exceptionally wide, especially
for the higher lead times. A closer examination of the forecasting
performance of the models (A) and (B) over the final 17 observations
revealed that the magnitude of the forecast errors resulting from the
former tended to depend on the month from which the forecasts were being

made while for model (B) this was not so. All the evidence suggested



that model (B) would be a better proposition than model (A) although
the fact that its gelection would be on subjective grounds, rather
than via the identification procedure recommended by Box and Jenkins
(1970), was in itself unsatisfactory.

. Obviously the most immediate problem is to seek reasoﬁs why the
identified model (A) failed to generate a reasonable set of forecasts
from May.l971 and also why more.accurate forecasts were generally
derived from base points in the peak of the seasonal cycle rather than
in.the troughs. As mentioned in the conclusions of Chatfield and
Prothero (1973 a) we suspected that the use of the logarithmic
transformation may have been at the root of these problems. For this
reason, Chapter 4 will be devoted to the subject of transformations
with particular reference to the analysis described in this chapter.

Meanwhile, a number of interesting points arose during this
case-study, regardless of the transformation employed.r

The estimated autocorrelation function of the series W, = v V12 z,
exhibited a "large" value at lag 1l. This was rather unexpected and
may have arisen to a certain extent through use of the differencing

operator V V The possibility of autocorrelations being induced by

12°
the differencing operation is one of the points looked at‘in Chapter 5
which deals generally with the concept of differencing as a means of
producing stationarity.

A rather disturbing feature of the analysis of the Company X
data was that although the diagnostic checks did not reveal anything
‘seriously wrong with the models (A), (B), (C) or (D), the models (A)
and (D) produced point forecasts from May 1971 which differed considerably

from those generated by models (B) and (C). All of these models were

In Section 5.5 we shall see

based on the differencing operator V V12.

that a model based on the differencing operator V

12 will flt the data

equally as well as model (A), yet the tolerance limits associated with

the two models become quite different as the lead time increases,
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The similarities between models (A) and (D) and between models (B)
and (C) were noted throughout Section 3.7. On reflection, the common
parameter in models (A) and (D) was the moving average seasonal parameter
while the autoregressive seasonal parameter was common tc models (B) and
(C). Thus the behaviour of each model tended td be determined by the
seasonal parameter and the choice of a mbving_average or autoregressive
non-seasonal parameter was relatively wnimportant.

One further feature of the Box-Jenkins procedure apparent from
the analysis described in this chapter is the fact that it is not
obvious vhat autoregressive-moving average models actually tell us
about the data in terms of the more familiar concepts of trend and

seasonality. This point will be expanded in Chapter 9.
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CHAPTER &

TRANSFORMATIONS

4.1 Introduction

The Box-Jenkins forecasting procedure generates forecasts
vwhich are-a linear function of current and past values of the
variable being forecasted, i.e. it is a linear technique.

.However, many time series encountered in practice possess non-
linear properties, e.g. monthly sales data often exhibit a
multiplicative seasonal variation. When a non-linear model is

" appropriate, Box and Jenkins (1970, page 94) suggest transforming
the data into a fofm to which a linear model may reasonably be
fitted. Forecasts for future values of the transformed variable
are computed using the techniques deécribed in Chapter 2 and
these are then transformed back in terms of the original variable.

The data analysed in. Chapter 3 displayed a multiplicative
seasonal effect and so in order to employ the Box-Jenkins procedure
a non-linear transformation was first required. For reasons given
in Section 3.2 and also in Chatfield and Prothero (1973a) a
logarithmic transformation was applied to the original series.

In the discussion following the Chatfield;Prothero paper, Dr. G.
Tunnicliffe Wilson suggested that this choice of transformation was
the cause of some of the problems raised by the paper. In particular
D?. Wilson demonstrated that more satisfactory forecasts could be
obtained by allowing for the wider range of transformations considered
by Box and Cox'(l96h).

This chapter deals with the subject of transformations as
applied in conjunction with the Box-Jenkins forecasting procedure.

In Section 4.2 the effect of making a logarithmic transformation,
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when confronted with data of a form similar to that analysed in
Chapter 3, will be examined. The results obtained in Chapter 3
based on a logarithmic transformation will be compared (in
Section L4.3) with those arrived at by Dr. Wilson, using a
different non-linear transformation. Section 4.4 will contain
comments on some of the problems encountered when applying non-
linear traﬁsformations, in particular the class proposed by Box
and Cox (1964), to time series. General comments and conclusions

will be given in Section L.5.

4,2 The Effect of a Logarithmic Transformation

In Section 3.2 it was observed that the sales of Company X
possessed a roughly linear trend together with an approximate
multiplicative seasonal wvariation. In order té examine the
validity of employing a logarithmic transformation in such an
instance, it will be assumed that a series Xt is composed of a
purely deterministic linear trend and a multiplicative seasonal

pattern with period 12. Thus we may write
X, = (o + Bt) s, h.2.1

where a, B and sj (3 =1, 2, 2,...,12) are constants, the sj's
representing the seasonal effect for each period and Sy = st—12'

Alternatively, equation (4.2.1) may be re-written as

Xpy = (a(t) + B(t) w) Stu h.2.2
foru=0,+1,% 2,... etc.

vhere o(t), B(t) represent respectively the level of the series and
the slope at time t. In terms of equation (4.2.1) a(t) = o + Bt

(i.e. a(o) = a), and B(t) = B, for all t, so that equation (k.2.2)
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becomes
Xppg = (oft) + Bu) Sppy » TOT U =0,+1,%2,... ete h.2.3

Now performing a logarithmic transformation on Xt+u we get

!
,
e
0
>4

|

= log [ (a(t) + Bu) St_,_u]

log (a(t) + Bu) + log St 4u

B_u '
log a(t) + log Y5 | F St

B u
A(t) + log|l + @) |t Steu L.2.h

st = S . = <] = ] =
where s} == log S, =1logS, . ., =S! = i, &nd A(t) = log af(t).

"Although equation (4.2.4) now represents an additive model at

time t, the trend component is no longer linear in u. In fact, for
Iu[kfgéﬁl[ we have
B _ B #8 12 5 B 13 4
log |1 + ot(‘t)u —mu [a(t) us + MO VWeeieennnnn
L k.2.5

which will be approximately linear for smaller values of u only if the
ratio ﬁ/a(t) is also small, i.e. if the monthly growth rate is small.
For the sales of Company X, approximate values for a(o) and B were

100 and 5 respectively, representing an initial monthly growth rate of

about 5%.
Figure 4.1(a) shows a purely deterministic series constructed

witha = 100, B = 5, s; = 1.2, 5, = 0.8, S5 = 0.6, 5), = 0.4, 85 = 0.4,

T 9 10 = 1.8, 517 = 1.8 and

S1p = 1.4, The logarithmic transformation of this series is plotted

sg = O:h, s, = 0.8, sg = 1.0, 55 = 1.4, s
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iFIGURE 4.1(a)

A gurely deterministic series given by
X, = (a+8t)st, where a=100,

t
B=5, 5,1.2, 5,=0.8, 5,=0.6, 5,=0.k,
ss=0.h, s6=0.h, sT=O.8, sg=1.0, 59=l.h,
T slo=l.8, sll=l.8, 312=l.h.
I ! 1 | 1
12 24 36 L8 - 60

FiGURE 4.1(b)

The logarithmic transformation of the above series
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in Figure 4.1(b). This latter series appears to exhibit a non-
linear trend over thé first twelve to eighteen months data buﬁ
thereafter the trend seems to be fairly linear. This behaviour
can be explained by referring to the logarithmic expansion
(4.2.5). TInitially, the ratio B/a(t) takes the Qalue iga-(= é%-'
so that the expansion (4.2.5) is valid only for |u[<20 and the
linear approximation will hold good only for u = 1,12 or 3 at the
most, i.e. the initial trend is not even locally'linear. At a
later point in time, however, the ratio B/a(t) will be much smaller.
For example, when t = 40, a(LO) = 300 and so 8/a(t) = 3%6-(= é%).
Thus the logarithmic function can be expanded for |u]|<60 and the
~trend will be approximately linear over é wider range of values of
U

Using the same values for o and sj (3 =1, 2, 3,...,12) but with

g =1, a second series was generated and a logarithmic transformation

was again applied. These two series are shown in Figures 4.2(a) and
(b). On this occasion, B/a(o) = I%a, the logarithmic expansion can

be used for |u|<100 and the linear approximation will be quite reason-
able over a fair range of values for u. Thus, as can be seen from
Figure 4.2(b), the trend will be locally linear over the earlier part .
of the series as well as in the latter part.

We have seen that when a logarithmic transformation is applied
to a series described by a model of the form (4.2.3) the resulting
series may possess a good approximation to a linear trend. This
leads naturally to the question: What form must the trend take .in
the original model in order for a logarithmic transformation to
produce a trend which is exactly linear? By assuming that the original

model is

h.2.6

t+u - Tu Stéu
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FIGURE L4.2(a)
A purely deterministic series given by
Xt = (a+Bt)st, where =100, B=1,
sl=l.2, 52=O.8, s3=0.6, sh=0.h,
s5=0.h, s6=0.h, s7=0.8, 58=l.0,
59=l.h, le=l'8’ sll=l.8, 312=1.h.
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FIGURE b.2(b)

The logarithmic transformation of the above series
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where Tu represents the trend component at time t, it is easy to
show that Tu must take the form
T = ce™ | 4.2.7

where C and D are constants. This point was also made by
Professor P.J. ﬁarrison during the discussion on the paper by
Chatfiela and Prothero (1973a). |

In conclusion, the effect of a logarithmic transformation on a
series described by a linear trend and multiplicative seasonai
variation depends on the monthly growth rate at any given time.
The study of a series similar to the Company X data revealed that
while for the most part the transformed series possessed a local
linear trend the same was not true for the early part of the series.
In the next section we shall see if this absence of local linearity
in the first 12 - 18 months data was responsible for the poor fore-

-

casts obtained in Chapter 3.

4,3 Analysis of the Company X Data Using a Different Transformation

As mentioned in Section 4.1, Wilson (1973) analysed the Company
X datas using a transformation of the type proposed by Box and Cox
(1964). Such a transformation is designed to produce linearity in
the transformed series. This alternative analysis will not be
described in detail but some of the results derived from it will be
compared with those generated in Chapter 3 using model (A).

Wilson (1973) assumed a model of & similar form to model (A) and
the parameters, including the transformation parameter, were estimated

from the first 60 observations. The resulting fitted model was

th°'3h = (1 - 0.798"%)a 431

vV
(1 + 0.37B) 1 ¢
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Re-estimating the parameters, using all of the data, by the
approach to be described in section L.h we found that the fitted

model was

12)a

1 - 0.80B +

(1 + 0.50B) "V x2-23 - (

1% F.3.2

The fitted model (4.3.2) is not quoted by Wilson (1973).

. 0.23
Z =
Setting 't Xt

were computed from May 1971 for £ =1, 2, 3,...,12. The point

in equation (L.3.2), the forecasts zt(z)

forecasts xt(z) from May 1971 were obtained from

1

1)0-23 4.3.3

x,(2) = (7, (2
since the bias (see Granger and Newbold (1970)) involved in using
such a forecast was found to be less than 5% for all lead times.

The %atter forecasts are plotted in Figure 4.3 and tabulated together
with tolerance limits in Table 4.1. Also shown in Figure 4.3 and
Table 4.1 are the corresponding forecasts resulting from the fitted
model (A) (equation (3.5.1)) based on the logarithmic transformation

employed in Chapter 3.
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Table 4.1 Forecasts Made At May 1971'For_Lead Times 1 - 12

Lead Time Model (A) Model (k4.3.2)
1 286 + 103 275 + 83
2 437 + 186 399 + 125
3 562 + 315 493 + 176
L 881 + 521 734 + 263
5 . 1148 + 759 929 + 350
6 : 1221 + 899 980 + 393
7 . 897 + T21 751 + 34k
8 889 + 735 Th2 + 363
9 535 + 471 L82 + 276

10 52 + 412 416 + 260
11 367 + 336 352 + 2Lo
12 ’ 314 + 300 310 + 228

It can.be seen that overall the point forecasts generated
by the model (L4.3.2) differed considerably from those resulting from
the model (A) fitted to the logarithmic transformation of the original
data. This difference is most noted in the peaks of the seasonal
cycle and rather less marked in the troughs.

Thus it seems that the departure from linearity in the early
part of the logarithmic transformation of the Company X data was
responsible for the poor forecasts produced by model (A). Wilson
(1973) showed that by expressing model (A) in terms of past
observations only, a considerable asmount of weight was given to
observations in the first years data. On the other hand, the point
forecasts computed using the model (B) introduced in Section 3.7
depended only on the most recent 26 observations where the assumption

of linearity on the logarithmic scale was quite acceptable. This
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explains why model (B) produced more reasonable point forecasts
then model (A). However, the tolerance limits associated with
model (B) were of a similar magnitude to those of model (a).
From Table 4.1 it can be seen that model (h.3.2) gives rise to’
much narrower tolerance limits than those resulting from model
(A). Hence the absence of linearity on the logarithmic scale
at the start of the series appears to be the cause of the wide
tolerance limits associated with tﬁe models (A)‘énd (B) and the
unreasonable point forecasts produced by the former.

The above comparison is based on just one set of forecasts
 from one particular origin. To achieve a more general comparison,
the fitted model (L.3.1) and the model (A), fitted to the first
60 observations, were used to generate forecasts over the remaining
1T observations. The fact that the models were based on different
transformations made a comparison rather difficult. However some
measure of the relative forecasting potential of the two models was
‘achieved by calculating the mean absolute forecast errors in the
original variable Xt' These quantities are given in Table L.2 for

lead times 1 and 6.

Table L.2 Mean Absolute Forecast Errors

Lead Time Model (A) Model (L4.3.1)
1 51.8 Lhg.2
6 124.3 79.6

For both lead times quoted in Table 4.2 the model (4.3.1)
produced the smaller mean absolute forecast errors. The difference
between the forecasting performance of the two models was small in

the case of the lead time 1 forecasts but for lead time 6, model

v



(4.3.1) reduced the mean absolute error by about a third. From
this it can be concluded that the choice of transformation is not
too important with respect to the one step ahead forecasts but for
higher lead times the consequences of any lack of linearity in the

transformed series become progressively more serious.

4.4 The Use of Non-linear Transformations in Time Series Analysis

The transformation employed b& Wilson (1973) in the model
(4.3.1) is taken from the set of non-linear transformations discussed
by Box and Cox (1964). The general non-linear transformation takes
the form

'(Xt""'m)x S -)L»#O»

z = ' L.h.1
log (X + m) A =0

where the parameter m is chosen so that Xt + m is positive for all t.
For simplicity, it will be assumed that Xt is positive for all t so

that equation (L4.4.1) can be replaced by

xi AEO
z = L.h.2
log X A=0

Now in choosing a suitable value for the transformation parameter
A there are several approaches which could be adopted.

Judging by some of the published Box-Jenkins analyses, e.g.
Box and Jenkins (1970), Makridakis and Wheelwright (1972), Tomasek
(1972), it would appear that a subjective choice of transformation
can often be made (usually A = O or A = 1). Alternatively, A can
be estimated from.the data using the techniques described in Box ana
Cox (196L). The essential features of this approach are now out-

lined.
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The vector X' = (X .»X ) is used

“N#n+1® FoNan+2? X-Nen+3® o

to denote the N observations which compose the non-stationary,

seasonal time series Xt' A transformation of the form defined

by equation (4.L4.2) is to be applied to the series X, , the

observations of the transformed series 2 constitﬁting the vector

[ - . .
2! = (Z—N+n+l’ Z—N+n+2’ Z-N+n+3""’zn)' It i1s assumed that Zt
can be described by the general multiplicative seasonal model

(2.6-5) s OT

s s
B) ¢ (B”)w, =6 (B) 0,(B L.k,
6,(B) & (8%)w, = o (B) 0,(B%)a 3
where Wf‘(t = 1,2,3,...,n) represents the stationary series
resulting from differencing zy the appropriate number of times.

The vector W; = (w_, Wé, W3,...Wh) denotes the observations of w

t
while the (p + P) x 1 vector ¢ and the (q + Q) x 1 vector &
refe{’to the respective sets of autoregressive and moving average
parameters.

Following the approach of Box and Cox (1964) the likelihood
associated with the X!s for a fixed value of A is

t

L'($,8,0,|%) = L($,8,0,]2)]J] bk

where L(Qngﬁoalg) is the likelihood associated with the zeries Z

and J is the Jacobian of the transformation from the Z%s to the X%s .

For A # O,
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] :
J = AX_-N+n+1 .
®
)\X—N+n+2
A-1
XX-N+n+3
AX)\-—l
n
n
= 1 Xi 1 . ks
t=-N+n+l
so that equation (L4.L.4) becomes
"-'.H'-H‘N‘r‘ll_l
L'(9,8,0,[X) = L(g,0,0,|2)]A]" 1 xp RN
t=—N+n+1
and the log-likelihood is
2'($,8,0,]X) = 2($,8,0,]2) + N log [A]
n
+ (1) =z log X, L.hT
£=-N+n+1 :

where z(g,g,ca[_Z_) = logf L($,8,0,[2)1 .

Now using the result quoted by Box and Jenkins (1970, page 273),

1
G(Q_G)e-égg— 5(8,8) b.k.8

M)

L($,0,0_[2) = (om cgf
and

: . n 1 :
2(¢,8,0,]z) = — log o2 + log G(¢,8) - Egsk(g,g) b.4.9
where G(¢$,0) is some function of the parameters ¢ and 8 and

. .
5,(¢.8) = Ila.z,0,8]2 4.4.10

==00
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For moderate or large values of n the term log G(¢,8) is
unimportant compared with the other quantities in the expression
(4.4.9) and so for most practical purposes substitution for

2(g,g,ca]g) in equation (L4.L.7) results in

n 1
!L'(i,_ﬁi,oalg{_) « —Elog Gi —2—52— S)‘(g,g_)

n
+ N log |A] + (A-1) I log X, 4.kh.11
t=-N+n+l
Differentiating 2’(QJ§Joal§) partially with respect to og and
equating to zero leads to the maximum likelihood estimate for ci
. S, ($,8)
02 = B et 7 Lh.h.12
a n

(see Box and Jenkins (1970, page 277)) where Sx(éﬁg) is the minimum
unconditional sum of squares for a fixed value of A. Thus the value

of the log-likelihood maximised with respect to ¢, 6 and 0; is,

apart from a constant, given approximately by

5, ($,8)
' r Bygy AT
2'max(i’-e-’ca|§) o108 n
n
+Nlog [A] + (A-1) =  log X = Lk.k.13
t=-N+n+l

However, Dr. Wilson has pointed out that the form (L4.k.13) is

affected by scaling. If all the terms of Xt are multiplied by some

fixed constant K, then all the terms of z, are multiplied by Kx.

t
Consequently the first term of Léax(g,g,oalg) is affected by -nX log K
and the last.term.by N(A-1) log K leaving a net effect (-n) + NA - N)
| log K and so the maximised log-likelihood (k.4.13) is affected by
scaling. The reason for this is that the likelihood (4.4.8) is,

strictly speaking, associated with the series of n values 21’22’23”"’zn

L
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rather than with the series of N values Z—N+n+1’ Z—N+n+2’

Z—N+n+3”°"zn‘ Thus the likelihood corresponding to the series

Z-N+n+l’ Z_N+n+2’ Z_N+n+3, e v e ,Zn Should be

1
203 51 (8:8)

N

L($,8,0,]2) = (2m 02) = c(g,8)e
although since the unconditional sum of squares SA(QhQ) is computed
via the n values Wy sWosWaseeas W the estimate of oi is still given
by equation (4.4.12). Hence the first term in the expression
(4.4.13) should include the factor g-and not 53 i.e.

5,(8.8)

ImégﬁalX) ——hm'*7r—

n

+Nlog [A] + (A-1) I logx =~ L.b.1k
t=-N+n+1

The form (4.4.14) is now unaffected by scaling.

- n :
Similarly when A =0, J = 1 %}- and

t==N+n+l
so(g,g)

(iﬁolx) —Ehg "

n
- I log X L.h.15
==N+n+1
By plotting zéax(g,g,oalz) against A over a range of values for
A, an estimate of the transformation parameter can be obtained.
The estimate corresponds to the value of A for which the function
zmax(gjg,oalg) is maximised.
An example of the above procedure is given by Wilson (1973)
who obtained a value of A = 0.34 using the first 60 observations of
" the Company X data and assuming a model of order (1,1,0) x.(O,l,l)le.

A closer examination'of the use of the methods of Box and Cox

./’



(1964) in time series analyses in general and in conjunction with
the Box-Jenkins forecasting procedure in particular yielded a
number of interesting points. These will now be discussed.

In estimating the transformation paraméter A, we have seen
that the form of the model must be identified before the log-
likelihood function can be computed. However, in identifying
the order of an A.R.I.M.A. model, use is made of the sample auto-
correlation function. It is not clear whether the sample auto-
correlation function of the untransformed data or of some other
specific transformation of the data (e.g. the logarithmic trans-
formation in the case of the Company X data) should be examined.
That the sample autocorrelation function is not invariant under
transformation can be seen from Table 4.3 where estimated auto-
correlations of the differenced Company X data wt(=VV12 X:) are
shown for lags 1 - 12 and for values of A between O and 1. This
point has been no%ed by Chatfield and Prothero (19735) in replying
to ;he discussion on the original papef.

In Chapter 3 we saw that when A = O, an inspection of the sample
autocorrelation of w, suggested the model (3.3.5) (model (A)). For
A =1, the sample autocorrelation function (see Table 4.3 for lags

1 - 12) leads to the tentative model
(1—¢B)wt = (1-6B) (1"6312)% 4.4.16

Thus, for a fixed degree of differencing, one strategy would be
to calculate the sample a&tocorrelation function over a range of
values for X and then to assume the most general identified model when
estimating A. This solution would of course not apply to situaﬁions
where the identified model for oﬁe value of X is based on a different
degree of differencing to the model implied for another value of A.

It is however possible that the estimate of the transformation parameter

p
a
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Table 4.3 Sample autocorrelation functions for differenced Company
X data VY, X, , A = 0 to 1, lags 1-12.
Lag
\ 1 2 3 L4 5 6 7 8 9 10 11 12
0 |-0.58]0.36|-0.22]|0.05{-0.05{0.10{-0.17}-0.02[0.10{-0.26 |0.4k |-0.36
0.1 |-0.59}0.36|-0.22|0.06{-0.06/0.11}-0.17|-0.02|0.11|-0.26]0.44|-0.36
0.2 |-0.60{0.36(-0.22]0.06/-0.07/0.11{-0.17}{-0.02{0.11{-0.26|0.4}4|-0.35
0.3 |-0.59]/0.36|-0.22{0.06|-0.09/0.11|-0.17 ~0.02|0.12]-0.26 |0 451-0.3k4
0.4 [-0.59]0.35|-0.22{0.06|-0.10]0.11]-0.17]-0.01]0.12}-0.25[0.145 -0.33
0.5 |-0.57{0.35|-0.22/0.06|-0.11]0.11|-0.17}-0.01|0.12{-0.2L4 |0.45}-0.32
0.6 |-0.56/0.3L -0;22 0.05/-0.13{0.11/-0.18} .0.00]|0.12|-0.23|0.45{-0.31
0.7 |-0.53}0.33]-0.22/0.05{-0.14}0.11}-0.19} 0.00|0.12 40.22.o;h5 -0.29
0.8 }-0.51}0.32{-0.23]|0.04}-0.15}0.11]-0.19} 0.00{0.12|-0.20}0.L45}-0.27
0.9 |-0.48{0.31{-0.24{0.02|~-C.17{0.11(-0.20{ 0.00/0.12{-0.18]0.L5[-0.25
1.0 |-0.khj0.30{-0.24}0.01|-0.18{0.10{-0.21| 0.00{0.11{-0.17{0.45(-0.23

will not be greatly affected by the choice of model.

possibility further, the function £

three different A.R.I.M.A. models.

and

(1-¢B) Wi, X

A
2t

'
ma

To look at this

x(g,g,calg) was calculated for

The three models entertained were

= (1—@1312)at

(1-4B) (1-9B12) w,

_ _ 2y g2
(1 ¢,B ¢2B ) VlZ xt

2t

Xl

I
o

—a nl2 _ 24
(1 o,B 023 )at

.47

L.4.18

L.4.19

Models (L.4.17) and (4.4.18) possess the same forms as models

(A) and (B) introduced in Section 3.7.

Model (L.4.17) was chosen

because it was the initially identified model when X = O (see Chapter

3) and model (L4.4.18) because it produced quite reasonable point fore-

casts from May 1971 when A = O (again see Chapter 3).

The model
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(4.4.19) was selected because it is based on a different
differencing operator to the other two. A model of the form
(h.¥.19) was suggested by Wilson (1973) as being suitable for
describing the untransformed data, i.e. A = 1.

:The log-likelihood functions for each of the three models,
computed from the whole of the data, are plotted in Figﬁre L.k,
Also indicated are the point estimates for A and 95% confidence
intervals for A, obtained using the method set out in Box and
Cox (196L).

The most striking feature of Figure L.k is fhat the point
estimates for ) are §ery close to one another (all lying between
0.2 andIO.S)'suggesting that fhe-transformation is not. influenced
to any great extent by the choice of model. Although the point
estimates are in close agreement, the confidence intervals for
these three estimates are more variable. The log-likelihood
function for the model (4.L.17) possesses a much shafper maximum
than the log-likelihoods associated wifh the other two models,
indicating a more preciée point estimate. In fact, the 95%
.confidence interval for A in the case of model (L4.4.17) ranges
from 0.09 to 0.36 while for model (L4.4.18) it is from 0.07 to
0.46 and for model (4.4.19) from 0.01 to 0.52. It can also be
seen from Fiéure 4.4 that a value of A = 0, i.e. a logarithmic
transformation, is rejected with rather more confidence for model
(4.4.17) than for model (h.h.lBj which explains why, in Chapter 3,
"model (B) proved more acceptable than model (A). Finally, for
model (L4.4.19) a logarithmic transformation is only just rejected
at the 5% level of significance. This is rather surprising in viev
of the fact that Wilson (1973) fitted a model of this form to the
untransformed data. More comments on the use of this model will

be made in Section L.S.
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We now look briefly at how & relatively small number of
observations can influence the estimafion of a transformation
parameter in the field of time series analysis. Again for
illustrative purposes reference will be made to the data of
Company X.

Fitting the model (ﬁ,h.lT) to the first 5 years data (60
observations), Wilson (1973) estimated A to be 0.3k and a
logarithmic transformation was rejected at the 5% level. As can
be seen from Figure 4.4, on fitting the same model to all TT
cbservations it was found that i = 0.23 and although A = 0 was
again rejected, a value of A = 0.1 was just inside the 95%
confidence interval.. . Thus it .may well be that as more observ-
ations become available a logarithmic transformation will prove
acceptable - a conclusion arrived at in Section L4.2. Further
confirmation of the theory developed in Section 4.2 can be
obtained by fitting the model (L4.4.17) to the final 65 observations
of the Company X data, i.e. by excluding the first years data. An
estimate of A was found to be 0.16 and the 95% confidence interval
'for A included the logarithmic transformation.

Just how critical the estimation of a transformation parameter
can be, is emphasised by the fact that the value of XA estimated from
the first 60 observations (assuming model (4.4.17)) is only just

within the 95% confidence interval for A obtained using all the data.

4.5 General Summary and Conclusions

In view of some of the results obtained in this chapter it is
worth re-stating the reasons why a logarithmic transfqrmation was
applied to the Cdmpany X data in Chapter 3. An inspection of the
original data revealed that the éeries possessed an approximate
linear trend and a multiplicative seasonal variation so that a

non-linear transformation was called for. Wishing, if possible,
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to avoid the added complications involved in estimating a
transformétion by the methods of Box and Cox (196L4), it was
tentatively decided to employ a logarithmic transformation.
Furtﬁer, reference to Box and Jenkins (1970, page 94) suggested
that for "the sales of a recently introduced commodity" where

the "sales volume was increasing at a rapid rate and that it

was the percentage fluctuations which showed non-stationary
stability" "it would clearly be sensible to analyse the logarithm
of sales",

A graph of the transformed series (Figure 3.,2) showed that
the latter exhibited an approximate 1ineaf.trend and additive
seasonal component, although the trough in the first years data
was rather low, The logarithms of the monthly sales were
plotted individually for each month (Figure 3.3) and the resulting
lines were found to be roughly linear and parallel, Thus at this
stag?'there seemed to be no obvious reason why any other transform~
ation should be contemplated.

However, the forecasts generated by the model (A) based on the
logarithmic transformation compared unfavourably with those generated
by Wilson (1973) from the seme model using a different transformation,
This led naturally to the conclusion that the logarithmic transformation
was responsible for the disappointing results obtained in Chapter 3.
In order to find out why this should be so, a logarithmic transform—
ation was applied to a series exhibiting a deterministic linear trend
and multiplicative seasonal variation, i.e. a series similar to the-
Company X data. The conclusion arrived at was that the transformed
series will generally possess a local non-linear trend, Nevertheléss,
provided the monthly growth rate is small, the assumption of a local
linear trend will be valid to a éood approximation. In the case of
the Company X data, only in the first 12 - 18 months was the growth

rate too high to justify this assumption.



The effect of the initial absence of linearity in the
transformed series on the derived forecasts has been illustrated
in Section 4,3 where the forecasting performance of the same
model based on a logarithmic transformation and on a transform-
ation estimated from the data by the methods of Box and Cox (196L)
was assessed, Generally spesking, the one step ahead forecasts
were not greatly affected by the transformation employed but for
higher lead times the choice of transformation became more criticalf

Although the Box—=Cox transformations are specifically designed
to produce linearity in the transformed series, their use doeé
present certain difficulties. The estimation of the transformation
_parameter»is a :ather‘lqng,}cqmplipated rrocedure Which negessitates
the identication of an A.R.I.M.,A. model before any estimate can be
computed. This latter point in itself creates a problem since the
main identification tool, the sample autocorrelation function, is
not invariant under transformations. In the case of the Company X
dat; it was however found that the estimate of the transformation
parameter was not greatly altered by assuming different models.
| A cruder method of estimating the transformatidn parameter has
been used by Box and Jenkins (1973). This involves an inefficient
trend estimate (as pointed out by Chatfield and Prothero (1973b))
and so the parameter estimate may tend to be rather unreliable.

Apart from the problems involved in estimating A, two other
points require comment, Firstly, the use of a transformation of
ﬁhe form 3 = Xt makes interpretation of the fitted A.R.I.M.A. model
in terms of the original aata even more difficult, Secondly, for
short or medium length series the estimate of A can change
considerably over short periods of time so that the need for re-
estimation should always be considered,

In the light of the above problems and criticisms it is perhaps

pertinent to seek some alternative to employing a non-linear trans-—
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formatioh. One.possibility is an approach similar to that
adopted by Wilson (1973) in proposing the use of the seasonal
AJR.IM,A, model of order (2,0,0) X (0,2,2)12 for describing the
Company X data. Although Wilson (1973) fitted this model to the
untransformed data, the Box-Cox estimaté of the transformation
parameter was ; = 0,26, Nevertheless, the log~likelihood function
associated with this model is flatter than those for the other two
models shown in Figure 4.l and in general it would seem to be
advisable to avoid the complications involved in employing a non-
linear transformétion by applying a suitable choice of differencing
the

operator to-¥e untransformed observations, wherever such a choice is

possible, -
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CHAPTER 5

DIFFERENCING

‘5.1 Introduction

An important step at the identification stage of the Box-Jenkins
forecasting procedure involves the selection of the degree of differen—
cing which will reduce some suitably transformed non-staticnary series
zy to a stationary series LA Indeed, according to Akaike (1973),

"when the variation of the systematic part, i.e. the trend and seasona-
- lity, is dominant the effectiveness of the A.R.I.M.A. model is mainly
determined by the initial simple differencing operations and not by the
time-consuming A.R.M.A. model fitting to the stationary part”.

In this chapter we will discuss the choice of the differencing
operator and then examine some of the consequences of using differencing
as a means of achieving stationarity. We will concentrate on seasonal
time series and for convenience the seasonal cycle is assumed to have
a period 12.

Section 5.2 will show how classical (or traditional) time series
models can often be utilised to suggest the appropriate degree of
differencing. This approach could be c&nsidered to be complementary
to the usual methods advocated by Box and Jenkins (1970, Chapter 6).

The latter will also be outlined in Section 5.2.

The desirability of keeping track of the variance of the differen-—
ced series for successive degrees of differencing will be proposed in
Section 5.3 while the effect of the differencing operation on the
efror components in the classical model will be considered in Section 5.k.

In section 5.5 we will see how in some cases the choice of differen-
cing operator canvinfluence the tolerance limits attachéd to a set of
point forecasts.

The conclusionsdrawn from Sections 5.2 to 5.5 will be summarised
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in Section 5.6.

5.2 Selecting the Degree of Differencing

Let us begin this section by describing the approach to selecting
the degree of differencing necessary to produce stationarity, recommen-

ded by Box and Jenkins (1970, Chapter 6) and outlined in Section 2.h4.1.

5.2.1 The Box-Jenkins Approach

Box and- Jenkins (1970, page 75) show that for a non-seasonal, sta-
tionary mixed autoregressive moving average process of order (p,q), the
theoretical autocorrelation function p(k) satisfies the differgnce

equation
p(k) - ¢l p(k—l) - ¢2 p(k-e) = eeee < ¢p p(k-p) = O
for k>q+1, or

¢p(B) p(k) =0 5.2.1

p .
Letting ¢p(B) =10 (1- GiB)’ then providing the roots Gi are
i=1
distinct, equation (5.2.1) has a solution of the form

X X k. K
p(k) = AlGl + A2G2 + A3G3 + ... + ApGp . 5.2.2

for k>aq- p,

where the Ai's (i =1,2,3,...,p) are constants.

In order for the stationarity condition defined by Box and Jenkins
(;973, page T4) to be satisfied, the roots G, (i =1,2,3,...,p) must lie
inside the unit circle. Thus, in the case of a stationary model when
none of the roots-;;ezclose to the boundary of the unit circle, the
function p(k) will die out quickly for moderate and large values of k.

However, if one of the roots, e.g. Gl’ approaches unity then Box and
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Jenkins (1970; page ITlk) show that p(k) will not die out quickly.
Failﬁre of the autocorrleation function to die out quickly would there-
fore tend to indicate the presence of a root close to unity, i.e.
non-stationarity.

In practicé of course the theoretical autocorrelation function
would not be known and so the behaviour of the sample autocorrelation
function would be examined. The Box-Jenkins approach is therefore to
inspect the sample autocorrelation function for successive differences
of the non-stationary series, until stationarity is indicated by the
behaviour mentioned in the previous paragraph.

. For a seasonal process z_, the procedure is similar to that

t"
described above except that the sample autocorrelation function of

the series vdvfe is examined for values of d = 0,1,2,..., D = 0,1,2,... .
Non-stationarity with respect to the seasonal period will be characteri-

sed by the failure of the autocorrelations at lags 12,24,36,..., to

die out quickly.

5.2.2 The Use of Classicql Time Series Models

The degree of differencing necessary to produce stationarity
can often be decided by assuming that the series in question can be
decomposed into three components: a trend (possibly local), a seasonal
component and an error terﬁ. The three usual forms of this so called
classical representation are given by Kendall (1973, page 56) but we
shall confine ourselves to the two cases in which the error (or unpredic-
teble) component is additive with respect to the other two components.
Algebraically, it will be assumed that a series X, can be described by

t
the model.

X, =4, +n 5.2.3

where dt is a deterministic component composed of trend and seasonality
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and n, is the error component (not generally independent)..

If the variation associated with the deterministic part is dominant
then the differencing operator capable of reducing Xt to a statianary
series would be one which removes the deterministic components from

X, l1.e. one which renders

t
d D _
\Y V12 dt =0 |
or 5.2.4
a _D _
\Y Vl2 dt =C

where C is a constant.

-Iﬁ érécfiée; fhé épprbximété fofm‘of dtrmﬁsf Be-dédﬁcéd-by |
inspecting the series under consideration. Firstly, one must decide
whether the seasonal component is additive (the amplitude of the
seasonal cycle is independent of the level of the series) or multi-
plicative (the amplitude of the seasonal cycle increases proportionally
with the level of the series). Secondly, an approximate trend must be
specified.

We shall now look more closely at two particular forms of

dt’ viz
- 2.
dt a + Bt + S¢ 5.2.5
and
o= + ’ - O/
d, (o Bt)st 5.2.6

where a, B and sj (j = 1,2,3,...,12) are constants, the sj's represen-
ting the seasonal effe;ts with Sy = Stf12'
Equation (5.2.5) describes a process with a linear trend and

additive seasonal component while equation (5.2.6) describes a linear

trend and multiplicative seasonal component.
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a) Additive Trend and Seasonals

Y

Simple differencing of the equation (5.2.5) results in

v

vada =8 +s, - s

I
jos]
+
1]

% ' 5.2.7

1t 1 = - = - = '
WITh 8. = 8. 7 S0 T S 1075%¢-13 T St-12

Thus, the linear trend is removed but a seasonal component s%
with period 12 still remains. On the other hand the seasonal operator

Vl2 removes both the linear term in the trend and the seasonal

component since
V12 a4, = 128 : . 5.2.8

The constant term 12B can be removed, if required, by using
the simple differencing operator V in conjunction with the seasonal
operator. However this is not essential since the stationary A.R.M.A.
models can be fitted to series with constant or zero means.
In general, for a polynomial trend of order r, the operator
r

v V12 will completely remove both trend and seasonal components while

the operator Vr—lV will produce a trend-tfree, deseasonalised series

12

with a non-zero mean.

b)  Multiplicative Trend and Seasonals

Although the model (5.2.6) is non-linear in terms of trend and
seasonality, Wilson (1973) has shown that a éuitable choice of differen-
cing operator will obliterate the deterministic component 4 _, thus
avoiding the use of non-linear transformations of the form dealt with
in Chapter 4.

Simple differencing of the model (5.2.6) gives
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va,- = (a + Bt)(

+ 5.2.9

S T Sgep) T Bsy g .

and obviohsly this does not produéé the desired effect. Turning to

the seasonal operator V12 we get
V1o T 12 Sy g
= 128 Sy | 5.2.10

and so the trend component is removed, leaving just a seasonal component

Re-employment of the operator V12 leads to

viz 4 =0 5.2.11

r+l1

In the case of a polynomial trend of order r, the operator V12

would be the appropriate choice.

2 will also remove

It is interesting to note that the operator V12

a linear trend and additive seasonal component which would explain
why , in_Section 4.4, the log-likelihood function for the model based

on Vi2 was found to be flatter than those of the models based on the

operator VVl2.

Summerising, it would appear that for the additive model (5.2.5)
either of the operators V12 or VV12 may be acceptable. It should however
be remembered that in the above discussion the error structure has not
been considered and so the appropriate choice may be suggested by an
examination of tﬁe sample autocorrelation functiomsof VlEXt and VV12Xt
following the arguments of Section 5.2.1.

The results for the multiplicative model (5.2.6) are probably more

useful than those for the additive model (5.2.5) since the identifica-

2
12

Jenkins approach described in Section 5.2.1. This is especially true

tion of the operator V2 _  may prove extremely difficult using the Box-

for shorter series.
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5.3 The Effect of Differencing on the Variance

In addition to inspecting the sample autocorrelation function
(as discussed in Section 5.2.1) for various differences of the series
X, » ve will demonstrate that it is also useful to keep track of the

..variance of the differenced series at each stage.

Let us suppose that W is a stationary series with variance o2,

w
Teking first differences of Ve would yield
th EWLT W g 5.3.1
and the variance of the differenced series 1s given by
= 2g2 -
Viw] =202 (1 pw(l)) 5.3.2

where pw(k) is the kth autocorrelation coefficient of the series W

Generally, for d degrees of differencing, the appropriate

variance 1is

v [det] - 03 [ [%f) -2 pw(l)[é%i] *2 pw(2) [;%2) B

Ceeenee ] 5.3.3

Setting wé = det and differencing a further D times with respect

to the seasonal period results in

V'[ng il = op, [-[i?] -2 pw'(lz)[5?1]+ 2 p,(24) [5¥2] -

2 and pw,(k) are respectively the variance and autocorrelation

where 0%,
w

function of the series w%.

In identifying the degree of differencing in practice, the above

results could be utilised in the following way.
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For some particular degree of differencing, the sample variance

sé and the sample autocorrleation function rw(k) of the differenced

series &t are calculated. Réplécing 0; and pw(k) by sé and rw(k) in
equation (5.3.3) (similarly for equation (5.3.4)), estimates of the
variances for further.differences of v, can be derived. These
estimates can be compared with the corresponding sample variances.

If L is non-stationary, the equations (5.3.3) and (5.3.4) will be
invalid and the agreement between the two quantities will be poor.

On the other hand, close agreements between the two different eétimates

would tend to support the assumption that w, is stationary.

t
To illustrate the above approach, reference will be made to
various differences of the logarithmic transformation of the Company X
data. This particular transformation is con;Zdered becausé the
initial model in Chapter 3 was identified on the basis of the logged
data and also because even when some other transformation is to be
entertained the appropriate model must be assumed (from some form of

the data) before the transformation parameter can be estimated (see

Section 4.4). The transformed series will be denoted by z, and

t
Table 5.1 shows the estimated variance of wt = VdVth for several
values of 4 and D.
Table 5.1
Estimated Variance of W, = VdVth for various values of d,D
Series Estimated Variance

zt 0.0968

Vzt 0.0200

szt 0.0259

v3zt 0.0806

Vl2zt 0.0101

2

VlZZt 0.0262

vleZt 0.0112
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We shall first assume that the series v, = Vzt is stationary.

Using equation (5.3.2) with 03 and pw(l) replaced by their sample

.

estimates, an estimate of the variance of Vw

t is given by

v [th] 2 x 0.0200 (1 - 0.35)

0.0260

This agrees closely with the sample variance of szt (0.0259,
see Table 5.1), suggesting that Vzt is stationary with respect to
trend. However, let us now examine the effect of differencing Vzt

further with respect to seasonality. In this case we have

v [\712»«,C 2 x 0.0200 (1 - 0.59)

0.0164

" which does not compare favourably with the sample variance of VVlZZt
(0.0112). From this we conclude that Vz, is non-stationary with

regard to seasonality.

Let us now assume that the series w is stationary.

t T V1%

On this occasion simple differencing results in

L}

V[Wu]= 2 x 0.0101 (1 - 0.45)

]

0.0111

agreeing closely with the sample variance of VV (0.0112). Differen-

12%t

cing over the seasonal period leads to

v [vlzwt] 2 x 0.0101 (1 + 0.26)

0.0255

Again the agreement with the sample variance of Vlz_ezJC (0.0262)

is good, so that the variance of V behaves like that of a .

12%

stationary series. It is recalled that in Section 5.2.2 we concluded
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that the operator V may prove acceptable even though the inspection

12
of the sample autocorrelation function (see Table 3.2) suggested the

use of vvlz. The employment of the operator V 12

12
will be looked at further in Sections 5.4 and 5.5.

as opposed to VV

5.4 Autocorrslations Introduced by Differencing

In tqis section we consider once again the model (5.2.3) in which
the deterministic component is composed of a linear trend and an
additive seasonal effect, 1.e. the model

Xt =a + Bt + Sy + n, 5.4.1
where a, B, St and nt have been defined in Section 5.2.2. Also in
Section 5.2.2, we diécussed the choice of differencing operator capable
of removing the deterministic component from the series Xt' It was
found that both the operators Vl2 and VV12 remcved the trend and
seasonal components although in the case of the former a constant term
still remained. We now look at the effect that the choice of differen-

cing operator has on the error component n for ‘poth stationary and

t,

non-stationary structures.

The following stationary error structures will be considered:

i) n, =&
ii) n, =a - 6a .
iii) n, =a - 0a_,,
where a «v+s. 158 a white noise process with variance 02

13 Bg-1° B0 a’

Table 5.2 shows the autocorrelation coefficients for lags 1-12 of

the series V12 Xt and VleXt when the error structure takes the above

three forms.
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Table 5.2

Theoretical autocorrelation coefficients (lags 1-12) for Vl Xt and VV. X

2 12t

Oy = 8 ng =ap - ba n =a, -0 o,
Lagf -
Vo | Wik Vi V% Vio% V%
_ 1 _ ) _ (1+62) _ 1
1 0- 2 (1+62) 2(1+6+62) 0 2
2 0 0 0 — - 0 ' 0
' 2(1+6+6%4)
3 0 0 0 0 0 0
4 0 0 0 0 o 0
s o] o 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
0
11 0' 1 6 (1+6)2 0 (1+0)2
B 2(1+62) L(1+6+62) L(1+0+02)
121 -1 -1 22 _1 (=02 | ___(+e)?
2 2 2 2 " 2(1+0+067%) 2(1+0+0%)

It can be seen from the above table that for the three stationary

error structures considered, an A.R.M.A. model based on the operator VV12

would include more moving average parameters than one based on the

operator Vl For example, when n_ = s the appropriate model based

2° t
on VV12Xt would be
= = - - 12
W, vyl2xt (1 elB)(l 0,B ) a, 5.4.2
while the model based on leXt would be
- = - 12y,
W v.,.X (1 GlB )dt + C | 5.4.3

t 127t
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where C is a constant which is generally easier to estimate than’

an extra moving average parameter (see Section T.L).
A similar situation arises when autoregressive error structures
are assumed. However, let us now look at the following three simple

cases when the errors are non-stationary.

i) Vnt = a
ii) V12nt = a
1ii) VVl2nt = e

The autocorrelation coefficients (lags 1-12) for V12Xt and VV12X£

in these three instances are given in Table 5.3.

Table 5.3. Theoretical autocorrelation coefficients (lags 1-12)

for v_,X, and VV12X

127t t
Vnt = at V12nt = at VV12nt = at
Tag .
VioXe | VWioXe | VaoXe | WaoXe | Vi | Wit
1 11/12 0 0 -3 N 0
2 10/12 0 0 0 0 0
3 9/12 0 0 0 0
N 8/12 0 0 0 S 0
~ T
5 7/12 0 0 0 0
A
6 6/12 0 0 0 7 0
7 5/12 0 0 0 I 0
8 /12 0 0 0 0 0
N
9 3/12 0 0 0 A 0
10 2/12 0 0 0 "R 0
11 1/12 0 0 0 T 0
12 0 -3 0 0 0
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For the non-stationary error structure Vnt = at, botg VlQXt
and VV12Xt are stationary processes. From Table 5.3 we see however

that VV:LQX.t possesses a much simpler autocorrelation function than

127t 12

to identify. In the case of the error structure Vl2nt = a the opera-

tor V12 would present less difficulties than the operator VV12 but when

V. X, and hence a model based on the operator VV would be easier

l2nt = at the series VlEXt 1s non-

stationary and so VV12 must be used.

the errors follow the process VV

Thus for the model (5.4.1) it is not possible to draw any general
conclusions regarding the appropriate choice of differencing operator.

In practice, the structure of the errors n_ would not be known although

t
Box and Newbold (1971) do suggest that in the case of economic models
the errors might best be represented by "some stable non-stationary
noise quel". Even so, as we have seen in the previous paragraph, the

best choice of differencing operator still depends to what degree the

errors are non-stationary.

5.5 The Influence of the Degree of Differencing on Tolerance Limits

In the previous three cections much empaasis has been placed on
the identification of the degree of differencing necessary to induce
stationarity in a time series. We now loqQk at a facet of the Box-
Jenkins procedure on which the choice of diffrerencing operator can have
a considerable effect.

Using the approach described in Sections 2.4.1 and 5.2.1 an
AR.I.M.A, model of the form'

- = - opl2 i
(1 - ¢B) vvlgzt (1 - oBlZ)a 5.5.1

t

= X, 023 (see Section

was identified for the Company X data, where Zy +

4.3). As we have seen in Sections 5.2, 5.3 and 5.4 there is a case for
fitting a model to the transformed data using only the seasonal differen-

cing operator Vl This being 50, the identified model obtained by

o
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inspecting the sample autocorrelation function of V

12zt was found to
be
o= - - 2 - 12
V0% (1 6B - 0,B )(1 - eB )at +C 5.5.2
where C is a constant and again z, = X 0°23,

t t

Now it has been shown in Section 2.5 that the approximate

(1 - a) x-100% probability limits associated with a forecast zt(z),

made at time t for the future observation Zt+£’ are
. z-lé%
z,(2) # U, /o 1+ 1 93 5,

J=1

where U, /0 is the appropriate percentage point of the standard
normal distribution, sg is the sample variance of the at's and the
wj's are arrived at by expressing the relevant model as an infinite
moving average, i.e.

2y SV, 8 YV A g vy E e

-

and ¢o = 1. Thus the two quantities which affect the width of the
probability limits are the ¢ weights and the sample standard deviation
S .

a

Expressions for the wj‘s (j =1,2,3,s..,12) for the models (5.5.1)

and (5.5.2) are given in Table 5.k,

Table 5.4.

Expressions for the § Weights for Models (5.5.1) and (5.5.2)

- .
;:;;}\\ ol 1 2 3 L 5 6 T

(5.5.1)] 1 |1+¢|1+¢+02|L+d+..+¢3| Lap+. .+ | Lo+, .+¢> [L+p+. 408 | Lo+, . 447

(5.5.2)] 1|-6.i-6 0 0 0 0 0
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Table 5.4 (Cont'd.)

J o :
;:;;I\\\\ 8 9 . 10 | 11 12

1-0+
(5.5.1) 1+dp+. +¢8 | 1+¢+. . 4¢° |1+o+. . +¢10] T+¢+. . +¢1 1] 14¢+. . 4912

(5.5.2) 0 0 ) 0 1-0

gubstituting the parameter estimates obtained for both models into
the above expressions, numerical values for the wj's were computéd.

Using these estimated values the quantity

, o [ ey, S
W) = 11+ £ ¢2}°2 \ 5.5.3
=1 J}

was evaluated for £ = 1,2,3,...,24, for both the models (5.5.1) and
(5.5.2). W(L) can be thought of as the ratio of the standard deviations
of the lead time & forecast errors and the lead time 1 forecast errors.
Thus W(1) =1 and W(2) > 1 for & > 1.

w(2) (2 =1,2,3,...,24) is plotted as a function of £ in Figure 5.1.
It can be seen that while for model (5.5.1) W(2&) increases steadily
(almost linearly) with &, reaching a value of 3.61 for & =’2h, for
model (5.5.2) W(2) takes a value of 1.23 when £ = 2 and thereafter
" remains constant apart from a slight increase at lead times 13, 1h
and 15.  The implication of this is that in the case of model (5.5.1)
much more confidence can be placed in the lead time 1 forecasts than
in the forecasts for higher lead times while for model (5.5.2) the
forecasts for higher lead times can be expected to be almost as accurate
as those for lead time 1.

So far we have been examining the tolerance limits, for various
lead times, within each model. Another, more important, problem is to

compare the tolerance limits resulting from the model (5.5.1) with

[

those from the model (5.5.2). To do this of course we have to take
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into account the estimated standard deviations of the lead time 1

forecast errors (or the at's). These standard deviations will be

denoted by s, and s_ for the models (5.5.1) and (5.5.2) respectively.
1 2 :
Further, wi(z) and W2(2)Aare defined by equation (5.5.3) with the

subscripts referring to the appropriate model. A measure of the
relative accuracy of the forecasts derived from the two models will

then be given by

w._(2) s
1 al
Wg(z) sa2

R(2) = 5.5.L

When £ = 1, wl(l) = w2(1) and so
S

R(l) = .i

S
&y

i.e. R(1) is simply the ratio of the estimated standard deviations

of the at's for each model.

Another interesting case is if 5, = 8, - Then we have
1 2
W, (2)
R(L) = wg(z)

and values of R(2) can be obtained quite easily from Figure 5.1. These

values (for £ = 1,2,3,...,24) are shown in Table 5.5.

Table 5.5. Values of R(2), & =1,2,3,...,24, when s =s
- a1 %

-

Lead Times| 1-12 1 |1.03}1.10(1.20]1.33(1.42f1.52{1.61{1.70{1.77]1.85]1.93

Lead Times 13—2& 2.03 |2.11{2.19]|2.28{2.37]|2.45({2.54 2.6012.67 2.7h4]2.82{2.89
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Thus, if Sa = Sa the probability limits associated with the
1 2 .
point forecasts derived from the model (5.5.1) would always be

wider than those for the model (5.5.2), after lead time 1.

In our particular example we found that

s
a
1 _ 01259 _
5 T 0.1006 103
8o

so that the values for R(2) can be obtained by multipiying1ﬂnoughout
in Table 5.5 by a factor 1.03. Thus the probability limits resulting
from use of the model (5.5.1) were in fact wider than those for

model (5;5;2,,‘f§r.ail>léad fiﬁeé.. -

Although it is desirable to obtain probability limits (for all
lead times) which are as narrow as possible, it should be remembered
that the way in which Box and Jenkins determine these limits assumes
that the true model has been fitted. In the case of the Company X
data, if the model (5.5.1) was known to represent the true under-
lying p;ocess then use of the model (5.5.2) would give far too
much confidence to the computed point forecasts for higher lead times.
On the other hand, if the true process was described by the model
(5.5.2) then the model (5.5.1)would lead to unnecessarily wide
tolerance limits. Have we a means theréfore of deciding which of
the models (5.5.1) and (5.5.2) is nearer the true underlying process?
The diagnostic checks described in Section 2.L4.3 did not reveal any
inadequacies in either of the models, but of course these checks
are primarily concerned wifh‘the autocorrelation properties of the
residuals and not with the forecasting perforﬁance of the model.

In order to look more closely at the hodels from a forecasting point
of view the following approach, similar to that used by Reid (1969),
was adopted.

Both models were re-fitted to the first 60 oBservations of the
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transformed* Company X data, z, , and forecasts were generated over

t
the remaining 17 observations. The mean squared error Function
M.S.E.(2) was calculated for lead times 1-12, for each model. It
should be stressed that in the case of model (5.5.1) Z, is considered

to be defined from t

-12, -11, -10, ..., 64 while for model (5.5.2)

z. 1s defined from t

N -11, -10, -9, ..., 65 so that the mean

squared error function is defined by

0 I z, -7, (2)]
T

for model (5.5.1)
M.S.E.(2)

1

5.5.5

i 7 (5,0
—=— 5 |z,-z ()]
17-2+1 £=L8+g t t-2

for model (5.5.2)

Now following the Box-Jenkins procedure, the mean squared
error for lead time & would be related to the mean squared error

for lead time 1 by the equation

2-1
M.S.E.(2) = [1 + 3 ¢%] M.S.E.(1) 5.5.6
j:l J

for & = 2,3,k4,...,12.

For convenience, the mean squared error defined by equation (5.5.5)
will be referred to as the sample mean équared error (S.M.S.E.(2))
and that defined by equation (5.5.6) as the theoretical mean squared
error (T.M,S.E.(2)), If S.M.S.E.(%) and T.M.S.E.(2) are in close
agreement for all 2 then the model is under examination can be
considered to provide a good approximation to the true underlying
process. However, if S.M.S.E.(%) and T.M.S.E.(E) compare unfavourably

then doubt can be expressed about the model in question.

*The transformation parameter was also re-estimated.
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The mean squared error functions S.M.S.E.(2) and T.M.S.E.(%)

are tabulated below for both the models (5.5.1) and (5.5:2).

.

Table 5.6. S.M.S.E.(%2) and T.M.S.E.(2) (2=1,2,3,...,12) for
Models (5.5.1) and (5.5.2)

Lead Model (5.5.1) Model (5.5.2)
Time [ S.M.S.E.(&) |T.M.S.E.(2) | S.M.S.E.(&){ T.M.S.E.(2)
1 0.212 | o222 | 0.199 0.199
2 0.245 0.297 0.201 0.255
3 | 0.356 | O.k22 .' - 0.239 | 0.329
L 0.377 0.533 0.239 0.329
5 0.363 0.6k45 0.236 0.329
6 0.308 0.758 0.231 0.329
T 0.304 0.870 0.252 0.329
8 0.237 0.983 0.272 0.329
9 0.210 1.095 0.297 0.329
10 0.338 1.207 0.320 0.329
11 0.279 1.320 0.360 0.329
12 0.541 1.432 0.h415 0.329

From Table 5.6 it can be seen that after lead time 3 there is a
closer agreement between S.M.S.E.(2) and T.M.S.E.(2) for model (5.5.2)
than for model (5.5.1). This would suggest that the model based on
the single differencing operator Vl2 is nearer the true model. However,
the sample mean squared errors are based on so few observations (17 for
S.M.S.E.(1), 6 for S.M.S.E.(12)) that fo reject the model (5.5.1)
( particularly since it was the one suggested by inspecting the sample

autocorrelation function) would be somewhat unwise.

For larger samples, the above procedure would probably prove quite
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successful for deciding between A.R.I.M.A. models which fit the ddta-
almost equally well. Granger (1973) has proposed a techﬂique by which
simultareous confidence limits can be placed on T.M.S.E.(2) (or-
equivalently the sequence of error variances) and it can then be
observed whether the S.M.S.E.(%) fall within these limits. The
determination of these confidence limits involves the assumption that
the forecasting period is long compared with the lead time being
forecasted. In our case this assumption would only be valid for short
lead times and so the technique was not applied.

Our experience in this sectioh does tend to highlight a problem
encountered in Chapter 3 and mentioned in Chatfield and Prothero'(l9733),
ﬁaﬁeiy.that in.eﬁpio&iﬁg‘tﬁe.Béx—Jenkins procedure it is often possible
to find several A.R.I.M.A. models which fit the data equally well
yet generate quite different point forecasts and/or tolerance limits.
For short series, it may not be possible to decide which model repre-

sents the closest approximation to the true generating process.

5.6  Summary

The selection of the differencing operator necessary to reduce
a non-stationary series to a stationary process need not always be based
entirely on an inspection of the sample autocorrelation function, as
described in Section 5.2.1. In Sections 5.2 and 5.3 two complementary
approaches have been proposed. |

When analysing seasonal data which have a relatively small random
variation, the series in question can be resolved into trend and seasonal
components and the appropriate differencing operafor will be one which
will remove the trend and seasonality. The same approach may not be
applicablé in cases where the random variation is more dominant since
it may be more difficult to recognise the trend and seasonal components

and the choice of differencing operator may depend on the structure of

the errors. No such restrictions need be placed on the use of the
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technique based on the theoretical behaviour of the variance of a
stationary series, described in Section 5.3. This technique can be
applied "to both seasonal and non-seasonal series.

The importance of identifying the correct degree of differen-
cing has been demonstrated in Section 5.5, where a model based on
the éingle differencing operator Vi2 gave rise to much narrower tole-
rance limits (for higher lead times) than those obtained from a model
based on ;he double operator vvlz. The models fitted the data almost
equally well and the diagnostic checks did not reveal any serious
inadequacies in either. Thus even‘though with respect to the one
step ahead forecasts it did not really matter which model was employed
(séeiBbx‘ahd.Jénkiﬁs‘(i9?3)); fof hiéhef léad fiﬁeé fhe éonséqﬁeﬁcés’

of fitting an inadequate model become more serious.
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CHAPTER 6

‘COMPUTATION OF THE UNCONDITIONAL SUM OF SQUARES

6.1 Introduction

The two most commonly used procedu%es for estimating the
parameters in autoregressive-moving average models are the graphical
technique cutlined in Section 2.4.2 and the non-linear least squares
approach described by Box and Jenkins (1970, pages 231-242).  Both
methods involve the computation of the unconditional sum of squares
defined in Section 2.k,2. In computing this sum of squares it is
- possible to perform more than just the one iterative cycle which is
illustrated for example in Table 3.3. Although Box and Jenkins
(1970, pages 218, 318) refer to this possibility, they do not state
any conditions under which further iterations may be necessary,
apart from mentioning that in pracfice "a second iterative cycle
would almost never be needed." On the contrary, we shall see in
Chapter 10 that for 4 of the 5 series analysed in this thesis, one
iterafive cycle was not sufficient and so clearly there is need to
discuss the problem in detail. This chapter is therefore concerned
with situations in which more than one iterative cycle 1is necessary
in order for the sum of squares to converge.

The steps included in the computation of the unconditional sum
of squares when several iterative cycles have to be performed will
be outlined in Section 6.2. The additional steps involved in this
process will suggest cases when more than one iteration should be
entertained.

In Section 6.3 the procedure set out in Section 6.2 will be
aﬁplied to fitting models to the Coﬁpany X data and the results will

be compared with those obtained when only one iterative cycle is
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employed.
The conclusions of the work described in this chapter will

be stated in Section 6.L.

6.2 The Full Procedure for Calculating the Unconditional Sum of

Squares

The series LA (t=1,2,3,...,n) is assumed to be stationary

and described by the multiplicative seasonal A.R.M.A. model
12 = Rl12
¢p(B)gP(B )wt eq(B)eQ(B )at _6.2.1

. where for convenience the seasonal cycle is considered to have a
period 12. It is further assumed, without loss of generality

that w,_ has a zero mean. The operators ¢P(B); @P(Blz), eq(B) and
GQ(BIZ) have the usual meaning (see Section 2.6) and the corresponding
vectors of parameters will be denoted by ¢, &, 6 and Q.

-

As stated in Section 2.4.2, the wt's generated by the model

(6.2.1) could equally have been generated by the model
12 = 12
¢p(F)§P(F )Wt eq(F)OQ(F )et | 6.2.2

where F is the forward shift operator and e, is a white noise process

t
possessing variance oé (= oi).

In order to describe the computation of the unconditional sum
of squares for the model (6.2.1) as clearly as possible, a.step—by— .
step approach will be adopted.
STEP 1

Set

=0 for t>n-(p+12P)

where [ ] is used to denote the expectation conditional on ¢, &, 8,
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© and wl,wz,w3,...,wn.
"STEP 2
Starting with t=n-(p+12F),calculate the [et]'s recursively, in

reverse order until t = 1, using the equation
12 = 12 '
¢p(F)®P(F w,] eq(F)OQ(F el 6.2.3

where IW£] =w,, for t=1,2,3,...,n.

t’
STEP 3
Set

[et] =0 for t<0

and generate the backward forecasts [wo], [w_l], [w_2],...,[w__K +l]’

using equation (6.2.3.) The integer Ki is chosen so that the :
[W£]'S are negligible for tijl.
STEP L4

/ Set

le) =0 for t<-K;

and calculate the [at]'s for t=-K_ +1,-K +2,—Kl+3,...,n, recursively,

1 1

using the equation
12 = 12
¢P(B)®P(B M= eq(B)OQ(B )[at] 6.2.4

STEP 5
Sum the squares of the [at]'s from t=—Ki+l;K +2,-Ki+3,...,n, to

obtain the unconditional sum of squares S(¢,2,6,0) i.e.

n .
5(4,2,8,0) = I Ia

12 6.2.5
=-K +1

t

The steps 1-5 constitute one complete iterative cycle and in

//
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all the estimation problems encéuntered thus‘far only one such
iteration has been employed. In order to perform more than one
iterative cycle the following additional steps are required.
STEP 6

Obtain the forward forecasts [W£] for t=n+l,n+2,n+3,...,nﬂiz—l,
using equation (6.2.4) where the [at]'s (t=—k

+1,K +2,—Kl+3,...,n)

1 1

are generated in step 4 and

[a =0 for t>n
The integer Ké is chosen so that [w£] is negligible for
STEP T
Set
| [e =0 | for tzn¥,
STEP 8

-

Starting with t=n+K,-1, calculate the [et]'s recursively, in

2
reverse order until t=1, using equation (6.2.3) where the [w]'s for
t>n are obtained in step 6 and [W£] =W, for t=1,2,3,..50.
'STEP 9

A new value for 5(¢,9,06,0) is computed via steps 3, 4 and 5.

More iterative cycles can be performed by following the steps
6, 7, 8 and 9 until the sum of squares is judged to converge.

In order to seek situations where the additional steps 6, 7, 8
and 9 may prove necessary we will now consider some special cases

of the seasonal model (6.2.1). Let us first examine the purely auto-

regressive model

. _ A
¢P(B)¢P(B 2)Wt = a, , 6.2.6
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In step 3 the backward forecasts [wb]’[W—l]’[w¥2]""’[wFK +l]

1
would be generated using the equation
12 -
¢p(F)¢P(F )[wt] [et] 6.2.7
but [et] = 0 for t<0 so that equation (6.2.7) becomes
12y 1 = : .
¢p(FIop(F 3w, ] =0 » 6.2.8

for t<0. Thus, the bgckward forecasts do not‘depend on the [et]'s
for >0 and so the steps 6, 7, 8 and 9 which affect the [et]'s (for
t>q).wquldAnqt-aff¢ct [wo],[w;l],[w;zl_etci ~Hence a single iteration
will always prove sufficient when computing the unconditional sum of
squares for a pure autoregressive process.

It should be noted that equation (6.2.8) has a solution of the

form

-

1)t 1)t 1 )¢
[w,] = = + A |=] +...+A —_— 6.2.9
% Al{Gl] 2[G2] p+12P[Gp+12P]

for t<0, where fngGi's are assumed to be distinct and defined by
¢P(B)§P(B12) ;P.gl(l - G;B) and the A.'s (i =1,2,3,...,pH12P) are
constants. Th;;, if one of the Gi's is close to #1 (i.e. the
process defined by equation (6.2.6) approaches non-stationarity)
[W£] will not die out quickly as t decreases and a large value for}(l
will result. This will tend to make the estimation procedure rather
lengthy.' .

We now consider some purely moving average processes, beginning

with the model

v, = (1 - eB)at 6.2.10
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The backward forecast'[wo] generated in step 3 is given by

]

[ wo] —é [ ell

-1[ vl

- o{lwy] + olwy] + 02w +...+0"

o™ enﬂ]} | 6.2.11

+

with [W£] = w, for £=1,2,3,...,n. In performing the first iterative

cycle [en+l] is set equal to zero while for further iterations
[en+l] is set equal to the forecast [wn+l] computed in step 6.

. . . . +
“Provided 6 1s not too close to il,‘the_coefflclent‘eg ;

will be
negligibly small for moderate length series and so [Wo] would be un-

affected by the starting value [en+ 1. Thus, only one iteration

1
would be necessary. On the other hand if 6 is very close to *1 then
for short series a second iterative cycle may have to be entertained.

" Let us look at the seasonal moving average model

= _ orl2
v, (1 - 0B )at 6.2.12

and it is assumed for convenience that the seasonal cycle is repeated
m times i.e. n = 12m. The backward forecasts [Wf] (t=0,-1,-2,...,-11)
can be expressed as

[yl =-6le, ;]

i (CSPP IR SR IECE SRV LR

+ oY 6.2.13

Vesro * O (_et+12(m+l)]}
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For the first iteration, [e =0 (t=0,-1,-2,...,-11),

t+l2(m+1)]

while for ensuing 1terat10ns[et+12(m+l)] = [wf+l2(m*1)] where the

forecasts [wt )] for t = 0,-1,-2,...,-11 are generated in étep

+12(m+1
6. On this occasion, the weight given to the starting values
[e£+12(m+1)] (t = 0,-1,-2,...,-11) is governed by m+l rather than

n+l and so for values of O close to *1 it may be necessary to perform
several iterative cycles in computing the unconditional sum of
squares; eﬁen for series of a moderate length. Once again, for
small values of © one iteration should suffice.

Generally speaking, when computing the unconditional sﬁﬁ of
squargé for a moving average process one should always be aware of
the possibility that more than one iteration may be required.

Further iterative cycles are most likely to be needed in situations
where the process in question approaches non-invertibility,
especially with respect to seasonality.

For autoregréssive processes, we noted that the back forecasts
[wii for t<0 generated in step 3 may take a long time to die out.

In the case of moving average models this is not so since for the

model
= 12
LA eq(B)OQ(B Ja, _ 6.2.1k
the backward forecasts are given by
= 12
[wl= 0 (Flog(Fi2)[e,] - 6.2.15
for t<0, where [et] = 0 for t<0 and so

[w,] =0 for t<-(q+12Q).

Finally, the conditions under which more than one iterative
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cycle may be necessary for mixed autoregressive-moving average
models are precisely those for the pure moving average models
since autoregressive models never require more than one

iteration.

6.3 Practical Examples
We first consider the effect of employing only one iterative
cycle in computing the unconditional sum of squares, as opposed
to iterating until convergence is achieved, when a model of the.
form
1 - & CxA = (1 - gR12)s 21
(1 - ¢B) v X = (1 - 6B ?)a, 6.3.1
is assumed to describe the Company X data. In Chapter k4, the
estimates of the parameters in the model (6.3.1) were obtained
using the graphical technique described in Section 2.4.2, only

one iterative cycle being employed in computing the unconditional

sum of squares S(¢,0). These estimates were found to be

¢ = -0.50, O =0.80,7 A = 0.23

and s(-0.50, 0,80) = 1,015,

Using the same estimate for A, the autoregressive-moving
average parameters in model (6.3.1) were re-estimated by the
. graphical technique, on this occasion iterations were performed
uﬁtil the unconditional sum of squares was judged té converge.

This resulted in

and S(-0.48, 0.97) = 0.85L,
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In employing the graphical estimation téchnique, S(¢,0) was
evaluated over a grid of values for ¢ and O. For smaller
values of © only one iterative cycle was necessary in computing
S(9,0) but as © became larger more iterationswere required to
achieve convergence. The behaviour of the minimum sum of

squares S(-0.48, 0.97) is shown in Table 6.1.

Table 6.1 Sum of squares S(-0.48, 0.97) for 8 iterations

teration | S(-0.48, 0.97) | Iteration | S(-0.48, 0.97)
1 - . 1.661 5 0.883
3 1.009 ° ( 0.858
N 0.922 8 0.854

S(-0,48, 0.97) was judged to have converged after 8 iterations;
aifhough a case could be made for stopping after fewer iterations.
It is of intérest to note that the minimum sum of squares after
one iteration, S(-0.50, 0.80), converged after 2 iterations to a
value of 0.973 which lies outside the 95% confidence regibn for
the sum of squares associated with the true parameters.

In addition to reducing the minimum unconditional sum of
squares from 1.015 to 0.854, the employment of further iterative
cycles caused the point estimate of © to be changed quite
considerably from 0.80 to 0.97. On the contrary, the point
estimate of ¢ was virtuélly unaffected.

Thus far we have considered the re-estimation of the parameters
¢ and © in the model (6.3.1) using the value of the transformation
parameter A estimated on the basis of the unconditional sum of

squares computed using just one iterative cycle. We now examine

the re-estimation of the parameter A.
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Figure 6.1 shows the log-likelihood fuﬂction for the model
(6.3.1) when the computation of the unconditional sum of squares
was obtained using (a) one iteration, and (b) the number of
iterations necessary to achieve convergence. It can be seen
that the point estimate of the transformation parameter remains
at i = 0.23 and the respective curves are almost parallel near
this maximum, although as A approaches 1 the lines become closer,
This letter characteristic is explained by the fact that as A
increases the point estimate for © becomes smaller and so less
iterations are required in order for the sum of squares toA
converge.

The - fitted models .

0.23 _ _ 12
(1 + 0.50B) vvl2xt = (1 - 0.80B )at 6.3.2
and
0.23 _ _ 12
(1 + 0.48B) vvlgxt = (1 - 0.97B )at 6.3.3

were used to generate forecasts from May 1971 for lead times
1 to 12, The point forecasts and their associated tolerance
limits are given in Table 6.2.

Even though there is quite a large change in the estimates of
the seasonal moving average parameter in the fitted models (6.3.2)
and (6.3.3), it turns out that the resulting point forecasts
actually differ only slightly. Also, while the fitted model
(6.3.3)reduces the width of the tolerance limits for all the
lead times considered, this reduction is less than 10% in each
case. These resﬁlts tend to support the view of Box and Jenkins
(1970, page 308) that the "forecasting procedure is robust to

moderate changes in the values of the parameters".
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Table 6.2 Forecasts made at May 1971 fdr iead times 1 = 12

Lead Time Fitted Model (6.3.2) Fitted Model (6.3.3)
1 275 + 83 282 + 78
2 399 + 125 Lo6 + 116
3 k93 £ 176 508 + 166
L T34 £ 263 Th2 + 246
5 929 *+ 350 936 + 323
6 980 + 393 987 + 365
T 751 + 3Lk 754 + 318
8 _ Th2 + 363 TW6 + 335
9 | Wexore ko5 + 259

10 416 + 260 426 + 2hL
11 352 = 240 356 + 222
12 310 + 228 317 + 212

L]

- The model (6.3.1) has been fitted to the first 60 observations
of the Company X data by Wilson (1973). = The parameter estimates
were derived from the unconditional sum of squares based on a
single iteration and the fitted model was

0.34

(1 + 0.37B) W, X .

- - 12
oK = (1 - 0.79B )at 6f3.h

For completeness, the parameters ¢ and © have been re-estimated
by the full procedure described in Section 6.2. This resulted in
0.34

(1 + 0.37B) Vv X °*

- - 12
10%% = (1 - 0.97B )at 6.3.5

and forecasts (in terms of the transformed variable} were generated
over the remaining 1T observations, for lead times 1 to 12, using

both the fitted models (6.3.L4) and (6.3.5). The forecasting
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performances of the two fitted modéls were assessed by computing
the mean squared forecast errors in each case. These quantities
are shown in Table 6.3.

From Table 6.3 it can be seen that the fitted model (6.3.L4)
produced the smaller mean squared errors for all lead times,
after lead time 1. However, as for the point forecasts quoted
in Table 6.2, the agreement between the two fitted models is very
close. Thus, in our case study, it did not seem to matter
grestly from a forecasting point of view whether the unconditional
sum of squareé was computed using one iterative cycle or by

iterating until convergence was achieved.

Table 6.3 Mean squared forecast errors, lead times 1 — 12

Lead Time Fitted Model (6.3.4) Fitted Model (6.3.5)
1 ' 0.212 0.205
2 0.245 |  0.252
3 - '0.356 0.357 .
L 0.377 ' 0.395
5 0.363 0.384
6 0.308 0.323
T 0.30L | 0.309
8 0.237 0.2k
9 0.210 0.205

10 0.338 0.349
11 0.279 0.316
12 0.5k41 0.561

In order to further illustrate some of the points made in

Section 6.2, we will briefly discuss the fitting of three other
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models to the transformed Company X data. The three models
examined were of the same form as the models (B), (C) and (D)

introduced in Section 3.7, i.e.

(1 - ¢B)(1 - <I>B12)wt = a, 6.3.6
(1 - <1>312)wt = (1 - GB)at ' 6.3.7
v, = (1 - eB)(1 - 91312)@.t 6.3.8

The parameters in each model were estimated using the

| gréphiéai feéhhidué in which the unconditional sum of squares
was based on (a) one iterative cycle, and (b) iterating until
convergence was achieved.

In the case of the purely autoregressive model (6.3.6), the
employment of more than one iterative cycle had no effect whatso-
ever, for the reasons given in Section 6.2. Again for the model
(6.3.7) the use of more than one iteration did not change the value
of the sum of squares. The reason for this was that the value of
8(= 0.49) was far enough away from #1. For the model (6.3.8)
however, 8 iterations were necessary before the sum of squares was
judged to have converged and as for model (6.3.1) the moving

average seasonal parameter was estimated to be 0.97.

6.4 Conclusions

Most techniques used for estimating the parameters in auto-
regressive-moving average time series models involye the
computation of the unconditional sum of squares. In evaluating
this sum of squares it is possible to perform more than one
iterative cycle by employing the procedure described in Section

6.2. This chapter has been concerned with situations in which

,
P
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several iterations are required before the sum of squares
converges.

For purély autoregressive processes one iteration will
always suffice but when moving average parameters are involved
this is not always the case. In particular for short series.
‘it may be necessary to employ more.than one iteration when the
process in queétion approaches non-invertibility. This is
also true for moderate length series when the moving average
operator includes a factor (1 - GB!2) where G is close to #1.

In situations where more than one iteration is appropriate,
the resulting estimates of the moving average parameters can
différvqﬁifevcbnéidefably from the estimates obtained when oﬁly
one iteration is employed. However from our experience with the
Company X data such an occurrence may not greatly affect the

forecasting performance of the model in question.
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CHAPTER T

SERIES WHICH INCLUDE DETERMINISTIC COMPONENTS

T.1 Introduction

When a time series includes for example a polynomial trend
component, Box and Jenkins (1973) say that a forecasting method
which involves the fitting of a polynomial regression curve is a
special case of the A.R.I.M.A. model. While in theory this is
often the case, in practice the fitting of a particular A.R.I.M.A.

"""" model in such circumstances can present‘certain»difficulties. Ino
this chapter we will discuss some of the problems encountered in
applying the Box-Jenkins procedure to series which include deter-
miﬁistic_components and it will be suggested that traditional
regression techniques can often be a more practical proposition.

,In Section 7.2 we will show that when the Box-Jenkins approach
of differencing to produce stationarity is applied to a serieé
which includes deterministic components then under certain
conditions the differenced series will be described theoretically
by a non-invertible A.R.I.M.A. model. When this situation occurs
the Box-Jenkins procedure would involve fitting a model in which the
moving average parameters are close to the boundary of the non-
invertibility region. Hence, from the results of Chapter 6, the
estimation of the moving average parameters may be rather tedious,
in which case it would be desirable to employ a more convenient
forecasting technique. In Section T.3 a series based on a deter-
ministic linear trend will be generated and the performance of the
Box-Jenkins procedure will be compared with that of a simple
regression technique. A further characteristic éf the Box-Jenkins

procedure when applied to series which include deterministic

s
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components will be examined in Section 7.4 and the conclusions

to be drawn from this chapter will be stated in Section T.5.

T.2 Non-invertibility in A.R.M.A. Models

The reasons for imposing the invertibility condition on
A.R.M.A. models will not be given in this section. Instead,
reference can be made to Box and Jenkins (1970), Kendall (1971)
and Chatfield and Prothero (1973b). The purpose of this section
is to discover the kind of series which when differenced gives
rise to a non-invertible A.R.M.A. model.

Let us suppose that a series X£ can be described by the

. additive model discussed in Section 5.2.2. viz.
X, =m + s, +n T.2.1

where m.t represents a deterministic trend, st is the seasonal

variation (again deterministic) with Sy = Sy_yp 8nd ny is the error

term. Now if m, consists of a polynomial of degree r, then we

showed in Section 5.2.2 that the differencing operator v Vl2 would

completely remove the deterministic components m, and Sy from the

series X, . Thus setting w

_ T
£ L = v Vl2Xt we have

w, =V V

= YT (1_nrl2
A 12 O (1-B) (1-B )nt T.2.2

So far no assumptions have been made about the structure of
the errors n, . Let us-suppose therefore that these errors can be
described by the general multiplicative A.R.I.M.A. model

12y ¢d1g D1
¢1(B)¢1(B ) VAV .t on

- 12 ‘
e = el(B)Gl(B ) 8y T.2.3
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vwhere ¢1(B), ¢1(B12), Bl(B) and Ol(Blz) are of order p,, 12P,, q

and 12Q1 respectively.

The model (7.2.2.) thus becomes

12y 411 = (1T (1_nr12Y; 12
¢l(B)¢1(B )y v Vip Wy = (1-B) (1-B )el(B)Ol(B )at T7.2.4

and we see that the invertibility condition will only be satisfied

if 513? and Dlz}. However, if LA is to be stationary then d,zr

and D.<1.  The model (7.2.2) will therefore be stationary and

invertible only if n, has the structure

Equally, the differencing operator Vr—lVl2 could be used to

reduce the deterministic components to a constant, C, (see Section

~

5.2.2) and the resulting process LA defined by the model

-~ - _ - _ r-1 _nl2 .
Wo=w -C= (1-B)" “(1-B )nt 7.2.6
would be both stationary and invertible only if the errors possess
a structure of the form
12y gr1 - 12
¢l(B)¢l(B ) v Vio oy el(B)Ol(B )at T.2.7T

Any error structure based on a lesser degree of differencing
than that shown in equation (7.2.5) (for model (7.2.2.)) and in
equation (7.2.7) (for model (7.2.6)) will thus produce non-
invertibility in the models (7.2.2) and (7.2.6) respectively. For

example, the process
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= (1- -pl2 ‘
v, (1-B)(1-B )nt 7.2.8
will be non-invertible if n, = a.
Similar conclusions can be drawn regarding the use of the
operator V§2 in respect of the series X, represented by the model

t

X, =m s, +n T.2.9

For example, if m, consists of a linear trend then the model

T.3 Analysis of a Generated Series

When the Box-Jenkins forecasting procedure is applied to a
series which includes a deterministic component we have seen in
Section 7.2 that, for particular error structures, the resulting

A.R.I.M.A. model will be non-invertible. We now consider a Box-

Jenkins analysis of a series generated by the model
X, = a + Bt + g T.3.1

Such a process is a special case of the model (7.2.1) and
since the errors are assumed to be stationary (nt = at), differencing
of equation (7.3.1) will produce a non-invertible A.R.I.M.A. model.
Although this thesis is primarily concerned with seasonal
forecasting, the above process should be adequate for illustrating
the use of the Box—Jenkins proéedure on series wﬁich include

deterministic components.
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T.3.1 Generation of an "Artificial" Series

An "artificial” series Xt (t=1,2,3,...,60) was obtained using

the model

Xt = 200 + 10t + ay » . T.3.2

The sequence of independent random variables 8rs By 1

8, _p»+++'Was generated from & normal distribution with zero mean
and variance 400, using tables from Beyer (1968).

The generated data are tabulated below and plotted in Figure

Table 7.1 Data generated from the process X, = 200 + 10t + a,

-1 1 223 | 16 37T 31 493 46 630
2 221 | 17 360 32 522 L 688
3 259 | 18 386 33 Lo2 | 48 661
L 238 | 19 k17 34 499 L9 666
5 280 | 20 | 431 | 35 | sk | so | 723
6 2bs | 21 | 395 | 36 | 572 | 51 | T12
T 263 | 22 | b11 | 37 | 579 52 | 733
8 255 | 23 459 38 5Th 53 738
9 25k | 2k 459 39 608 54 T48

10 311 | 25 LL6 Lo 618 55 728

11 298 | 26 | Ls8 | L1 | 606 56 | 755

12 355 | 27 463 b2 621 57 772

13 306 | 28 488 L3 634 58 766

1L 30 | 29 | w87 | uk | 627 59 | 191

15 359 | 30 526 45 664 60 810
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T.3.2 Box~Jenkins Analysis

Faced with the data generated in Section T.3.1, a Box-
Jenkins analyst would begin by examining the sample autocorrelation
function of various differences of the series Xi. Table T.2 gives

the sample autocorrelation functions for X, and VX,_, for lags 1 to

10.

t

Table 7.2 Sample autocorrelation functions for X, and VX,
(9 v

Series 1 2 3 4 > 6 T § 9 10
X, |.0.9%]0.89 [ 0.84f0.80 |0.75 | 0.70 0.65 | 0.60 0.5k | 0.k9
th ~0.56 ] 0.15 |-0.15 | 0.07 |0.0T |-0.2k |0.22 -0.09} 0.08 |-0.10

The ten sample autocorrelation coefficients quoted for the series

Xt are all "large" and positive confirming the fact (which is obvious

from a visual inspection of the data) that Xt is non-stationary.

On the other hand the sample autocorrelation function for VXt dies
out quickly, suggesting that VXt is stationary and that no further
-differencing is necessary.

If the series VXt were completely random, the standard error
of the estimated autocorrelations r(k) would be —— (= 0.13). The

/59

absolute value of r(l) is over four times this value and so it can
be concluded that the theoretical autocorrelation coefficient at
lag 1, p(1), is non-zero. Under the assumption that VXt follows a
first order moving aver;ge process, the standard error of r(k) for
k > 1 would be approximately {é; (1 + 2(-0.56)2)]% = 0.17 (see
Box and Jenkiﬁs (1970, page 34)). Since all the sample auto-
correlations for k > 1 lie wifhin + 2 x 0.17, our tentative choice

of model is the first order moving average process. Thus the

initially identified model is the A.R.I.M.A. model of order (0,1,1).
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Now VXt has a mean which differs significantly from zero

so the identified model can be expressed as

w, = VX =6+ (1—eB)at : 7.3.3
n
. z W£
where Box and Jenkins (1970, page 210) suppose that w = t=1 _
n

is substituted for 6, 1 being the number of observations
composing the differenced series Wy e Alternatively 60 could be
estimated simultaneously with 6 and this possibly will be examined

further in Section T.lk.

graphical technique described in Section 2.4.2 and the fitted model

weas

w, = 9,95+ (1 - 0.97B)a, . 7.3.h

with o2 = 33,

Despite the fact fhat 6 = 0.97, one iteration was sufficient
in computing the unconditional sum of squares S(0.97). The
reason why further iterative cycles were not necessary can be seen
by referring to the equation (6.2.11) used for generating.the back-
ward forecast [Wo]. The weight given to the term [en+l] is 6"
which in our case was (0.97)32 = 0.17 and further the value of
[en+l] computed to start the second iteration was not large.

The diagnostic checks on the residuals, described in Section
2.4.3, were performed and no inadequacies in the fitted model (7.3.k)

were indicated.

T7.3.3 Comparison with a Regression Analysis

When analysing the same data, Chatfield and Prothero (1973b)

say that "the traditional statistician would simply fit a straight
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line by least squares and extrapolate". Applying this approach

to the whole data, the fitted model was found to be

EIXt] = 203.43 + 9.91t T.3.5

Y

and the residuals e, were computed using

t

A

e, = Xt - E[Xt].
A residual analysis did not suggest any violation of the
assumption that the residuals were independent.
The forecast xt(z) made at time t for a period % steps into

the future can be generated using the equation

it(z) =E[X, ..] 203.43 + 9.91 x (t+2)

" t+2

fct(l) +9.91 x (2-1) 7.3.6

Comparing the fit of the regression model (7.3.5) with that
of the A.R.I.M.A. model (7.3.4), the estimated variance of the
residuals (82 ) in the regres;ion case was 330 while the Box-
Jenkins analysis of Section 7.3.2 yielded an estimated error
variance of 335. Thus the model (7.3.5) fitted the data marginally
better than the model (T7.3.4).

To assess the forescasting performance af each method, the data
were divided into two parts. The first 30 observations (probabl&
the minimum requirement for the Box—Jenkins procedure) were used
to estimate the parameters in each model and the remainder to assess
the relative forecasting potential of the two ﬁodels.

The re-fitted A.R.I.M.A. model was
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W, = vxt = 10.k5 + (1 - 0.99B)at 7.3.7

while the equivalent linear regression model was estimated to be
E[Xt] = 200.75 + 10.21t 7.3.8

On this occasion at least 4 iterations were needed in computing
the unconditional sum of squares S(0.99) during the estimation of
the moving average parameter in the model (7.3.7). Obviously the
small number of observations employed in the fitting procedure
contributed to this occurrence (see Section 7.3.2 and Section 6.2.)

Starting when t = 30, one step ahead forecasts, %t(l)’ were
computed (based on all the observations availesble at time t) over
the next 30 time periods using the fitted models (7.3.7) and (7.3.8).
These forecasts are plotted in Figure T7.1l. It should be pointed
out that in neither case waere the parameter estimates updated as
more recent observations became available.

Using the linear regression model (T7.3.8) the one step ahead

forecast made at time t is given by

it(l) 200.75 + 10.21 x (t+1)

iSO(l) +10.21 x (£-30) 7.3.9

for t=30, 31, 32,...,59, so that in fact these forecasts depend only
on the first 30 observations which constitute the fitting period.
On the other hand, the one step ahead forecasts generated by

the model (7.3.7) are given by
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it(l) =X+ 1045 - 0.99;t
= X, +10.45 - 0.99 (¥, - X,_{1))
= 0.01 X, + 10.45 + 0.99 it_l(l)
= 0.0L (X, +0.99 X, + (0.99)2 x,c_2+...+(o.99)t'31}c31)\5
+10.45 (1 + 0.99 + (0.99)2 +...+ (0.99)%73h)
+ (0.99)F % 5(30(1) 7.3.10

for t = 31,32,33,...,59, and so these forecasts depend heavily on
the forecast %30(15 although rather less so than the forecasts
generated by equation (7.3.9)7

It can be seen from Figure 7.1 that the regression model
forecasts are always less than the Box-Jenkins forecasts. The
forecast errors ;esulting from both models inciude a bias, the
mean of the forecast errors from the model (7.3.7) being -17.6 and
that for the model (7.3.8) errors is -12.9. The corresponding
mean squared errors for the two methods are

BOX-JENKINS ANALYSIS 583
LINEAR REGRESSION ANALYSIS 439

and so for the data generated in Section T7.3.1 the regreséion
approach performed rather better than the Box-Jenkins procedure.

Thus although in theory the linear regression technique is
equivalent to the A.R.I.M.A. model of order (0,1,1) with the
moving average parameter unity, in practice the results from the
two procedures are not identical, The reasons for this are two-—
fold. TFirstly, adopting the Box-Jenkins procedure it is impossible
to obtain an estimate of unity for the moving average parameter
since the sum of squares S(i.O) diverges as more iterations are

performed. Secondly and more important to the case in question,
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the estimate of the parameter 60 in the A.R.I.M.A. model differed
from the estimate of the linear coefficient in the regression

snalysis. The effect of this difference is examined in Section

7.k,

7.4 A Further Characteristic of the Box-Jenkins Procedure

The analysis described in Section 7.3 drew attention to a
further characteristic of the Box-Jenkins procedure when applied
to series which include deterministic components.

Leﬁ us consider again a series Xt which is a realisation of
the process (7.3.15. Employing a linear regression technique,

the.modei fitted to the éefies Xt wbuld be

E[Xt] = & + ét T.4.1

*
A ~

where a and B are the least squares estimates of the parameters o
and B.
Differencing equation (7.3.1), the equivalent A.R.I.M.A. model

would be

w, =X = eo + (1 - eB)at T.h.2

where eo =B and 6 = 1. In practice, a value of 6 slightly less
than unity would be employed. The problems involved in estimating
. ® have already been dealt with in Chapter 6 and Section T7.3. We
now turn our attention to the estimation of 90 (or B).

In Section 7.3.2 the sample mean of the wi's, w, was substituted
for B, following the statement of Box and Jenkins (1970, page 210) that
"for the sample sizes normally considered in time series analysis,

this approximation will be adequate". We will denote this estimator

for B by 8%, so that



B* = yw = = T.4.3

where N and n are the lengths of the series Xt and LA respectively, i.e.

n=N-1.. Let us now look at some of the properties of the

estimator B¥*.

Bias

E [B¥]

1 .
¥-1 Ely - %)

=TT Ella+ BN +a) - (a+8+a)l

]
w

Thus B¥*¥ is an unbiased estimator for B.

Variance of B¥

VIg¥] E[g* - E[g*]]2

E[WIT)Z “%«"&12] - 2
2

- 2
w2 9 for N > 1

Relative Efficiency of B* with Respect to the Least Squares

Estimator B.

~

The least squares estimator B for B used in the model (7.k4t.1)

is given by
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: [ N ] [ : }
NIXt-|ZxX||Zt
4=1 ¢ t=1 °) {g=1

B = N N 12
NEZt°-|z2+t
t=1 t=1
N N
6{2 Xt - (N+1) xt}
= t=1 t=1

(N-1) N (N+1)

This estimator for B is of course unbiased and it can be

shown that the variance of B is

A 12
VIl = oD T (e

a2 for N > 1
a

Defining the relative efficiency of B* with respect to B by

~

Variance of 8
Variance of B*

Relative Efficiency (R.E) =

we get

R:E. = 12 o2 L
T n-n)n(n+1) Ya (N-1)2 “a
= ggg;ig for N > 2.

Values of this quantity for variaus values of N are given in

Table T.3.

Table 7.3 Relative efficiencies of B* with respect to B.

R.E 1.00 |1.00 {0.90 | 0.80 |0.71 0.6k [0.58 {0.53] 0.49

N 20 30 Lo 50 60 70 80 ‘901 100

R.E 0.27 {0.19 J0.14 | 0.12 |0.10 ,0.08 0.07 {0.07| 0.06
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From the above table it can be seen that for seriesllong
enough to apply tﬁe Box-Jenkins procedure, the estimator B¥ is
relatively muéh less efficient than é. Even for a series of
30 observations (short by most standards) the relative efficiency
is as low as 20%.

These results suggest that in the Box—Jenkins analysis
described in Section 7.3.2 and 7.3.3 it would hafe been better
to have estimated the parameter 60 simultaneously with the 8
parameter, i.e. by least squares. This possibility is now
explored.

| ~The A.R.I.M.A. model (7.3.3) was re-fitted to the first 30
observations of the data generated in Section T.3.1, the‘péréméter
60 being estimated simultaneously with 6. The resulting fitted
model was

v, = VX = 10.21.+ (1 - o.99B)at 7.4

and this model was used to generate forecasts over the remaining
30 observations. The mean squaréd error was computed to be 405
which is less than the mean squared error (439) obtained from the
linear regression model (7.3.8) and considerably less than the mean
squared error (583) from the fitted A.R.I.M.A. ﬁodel (7.3.7).
Thus when applying the Box-Jenkins procedure to series which include
deterministic components it is advisable to estimate the constant
term 60 in the A.R.I.N%A. model by least squafes.

We now briefly consider two extensions to the linear model (7.3.1).
Firstly we will look at the case when the series Xf includes a quadratic

trend and secondly at the case when an additive seasonal component is

superimposed on ‘a linear trend.
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Quadratic Trend

The following process is considered:

- 2
Xt a + Bt + yté + a, T.4.5

The equivalent A.R.I.M.A. model is derived by differencing the

equation (7.h.5) twice to give

- V2% = -B)2
v, = VX eo + (1-6B) ay | T.4.6
with eo =2y and 6 = 1.
) n
—_ tilwt
Substituting w = o for ZY, the estimator y¥* for y will be
Xy Ty TR K

y* =

g |

2(N-2)

*

and the relative efficiency of y* with respect to the least squares

~

estimator y is

- 180(N-2)
T (N-1)N(N+1) (N+2) for N>L

R.E

Table T.4 shows valpes of the relative efficiency for several

values of N.

Table 7.4 Relative efficiencies of y* with respect to ¥y

N L 5 6 7 8 9 10

R.E. [1.00] 0.6k | 0.43 | 0.30 ‘0.21 0.16 | 0.12

R.E. } 0.02] 0.01 | <0.01 {<0.01 | <0.01 } <0.01 [<0.01
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S

The relative efficiency of y¥*¥ with respect to y decreases
rapidly as the length of the series increases. Thus it would
appear that the need to use the least squares estimator is even
greater than in the linear case encountered earlier.

-~

A Seasonal Model

Finally, let us suppose that the series Xt is a realisation

of the seasonal process
X, =a+Bt +s_+a T.b.7

where s£_= st—i2;

Differencing equation (7.4.7) with respect to the seasonal

period leads to the A.R.I.M.A. model
W, =V X =6+ (1-0B12)a, 7.4.8

with 00 = 128 and 6 = 1.

If w is substituted for eo, i.e. 128, then the estimator B¥* of
B is

v Ot ey T ety et

B*:—.
12 12(N-12)

and the relative efficiency of B¥ with respect to the least squares

A

estimator B is given by

72(N-12)

R-E. = F(wi2)

6(m-1)
;RE;ET for m>2
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where N is the number of observatioﬁs in the series Xt and it is
assumed that the seasonal cycle is repeated m times, i.e. ﬁ = 12m,

The above expression is similar to that derived for the non-
seasonal process with a deterministic linear trend. The only
difference is that fhe total number of observations N in the non-
seasonal case is replaced by the number of times the seasonal cycle
is repeated, m. As an example, for a non-seasonal series with 60
observations the relative efficiency of B* with respect to é is 0.10
while for monthly data with th¢ same number of observations the
relative efficiency is 0.80. To achieve a value of 0.10 in the
latter case, 60 years data would have to be available. Hence we
‘conclude that the substitution of aifor'B'compares more favourably
with the least squares estimate in the case of seasonal data than
for non-seasonal data.

If the seasonal cycle has a general period s, then the expression

for the relative efficiency of B¥* with respect to B still takes the

form

_ 6(m-1)

R.E. = (1) for m>2

where N = ms.

7.5 Conclusions

We began this chapter by considering the sort of series which
when differenced, produce non—-invertible A.R.I.M.A. models. If a
series which includes deterministic trend and seasonal components is
reduced to stationarity by the use of a differencing operator which
removes these deterministic components, then the resulting A.R.I.M.A.
model will be invertible only if the error structure is based on the
same degree of differencing. The possible estimation difficulties when

a process includes parameters close to the non-invertibility region



—lSh—

were discussed in Chapter 6.

The performance of the Box-Jenkins procedure was compared with
.that of a linear regressiqn on a generated seriés which included a
deterministic linear trend. Initially the regression technique
produced the smaller mean squared error but by employing a different
estimator for the constant term 90 in the A.R.I.M.A. model, the
Box-Jenkins procedure did much better and in fact performed slightly
better than the regression approach. In Section T.h we showed
that substituting the mean of the differenced series (w) for GO (as
in the original Box—Jenkins analysis) is relatively much less
efficient than estimating eo by least squares. Similar results

were obtained for a series which included a guadratic trend and for

a seasonal process. Clearly it is advisable to use the least squares
estimator for 60 when analysing series which include deterministic
components.

Although the Box~Jenkins procedure eventually generated rather
more accurate forecasts than the linear regression technique, the
difference between the two mean squared errors was not large.

Further, while the estimation of the parameters in the A.R.I.M.A.
model necessitated a numerical least squares procedure, thé‘regression
model parameters were estimated analytically. Thus in situations
where linear or quadratic deterministic trends are suspected, the use
of a traditional regression model would be preferred to the equivalent
~A.R.I.M.A. model. On the other hand, when it is only possible to
describe a time series locally by a trend-seasonal-model.it would be
inappropriate to use the regression approach as employed in Section
T.3.3. Instead, the more flexible Box—Jenkins procedure, or a
method such as that proposed by Winters (1960) in which the trend

and seasonal factors are updated, should be used.
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CHAPTER 8

A.R.I.M.A. MODELS ARISING FROM AGGREGATES OF

SEVERAL STOCHASTIC PROCESSES

8.1 Introduction

The additive model (7.2.1), for describing a time series X, , has
been employed previously in Sections5.2.2 and T.2. On each occasion
both the trend and seasonal components were assumed to be deterministic.
In Section 5.2.2 we discussed the differencing operators capable of
removing the deterministic components from the series Xt and in Section
"T.2 we examined the error structures for which the resulting A.R.I.M.A.
model would be non-invertible.

Box and Jenkins (1970, page 92) say that "the assumption of a

stochastic trend is often more realistic than the assumption of a

\

deterministic trend" and so in this chapter we will consider a model
similar to model (7.2.1) but with the trend component being assumed to
be stochastic. It will also be assumed that the seasonal component

ossesses a stochastic structure so that the series X, can be represented
t

algebraically as
X, =m +s_+n 8.1.1

where m, and st are stochastic trend and seasonal components and nt is

an extraneous error term. The series Xt can thus be regarded as the

aggregate of three independent stochastic processes.
Qur attention will be focussed on the relationship between the

degree of differencing required to reduce X, to stationarity and the

t
differencing operators on which the trend, seasonal (where applicable)

and error components are based. In addition, we shall also see how an

A.R.T.M.A. process can result from the aggregate of several less

e
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complicated A.R.I.M.A. processes, a possibility explored by Box and
Jenkins (1970, page 121) and Granger (1972).

In Section 8.2 we will examine the A.R.I.M.A. modei arising-when
the non-seasonal version of the model (8.i.l) is assumed WhileAa special
case will be looked at in detail in Section 8.3. ‘The seasonal case Wili
be investigated in Section 8.4 and Section 8.5 will contain a summary

.

of the results obtained from the preceeding sections.

8.2 DNon-seasonal Processes

Let us consider a particular case of the model (8.1.1) viz. the

model
X =m +n ' 8.2.1

It is assumed that the trend is described by the A.R.I.M.A. model

d
¢,(B) V71 m

- \

= '
m el(B) ay | 8.2.2

where ¢1(B) and el(B) are polynomials of order p, and g, respectively

2

and a! is a white noise process with variance O -

t

The extraneous errors n, are; considered to be represented by the

A.R.I.M.A. model

4,(B) ¥%2 n_ = 0,(8) a" 8.2.3

t

¢2(B) and eE(B) being of order p, and q, and a%' is a white noise process
(variance G;.,) mutually independent of aé.
Now if d is the order of differencing necessary to reduce the

series X, toa stationary series v, then from equation (8.2.1)
, a a .
= = + ’ e
v, VdXt Vom, v nt 8.2.4

and substituting from equations (8.2.2) and (8.2.3) leads to
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¢,(B) ¢,(B) (1-p)d1tdz, o (1-p)3*d2 )

" (B) el(B)a'

t

+ (1-B)%*41 N

(B) BE(B)aé' 8.2.5

If 4; > d,, then equation (8.2.5) can be written as

61(B) 4,(8) (1-B)17%2y = (1-8)392 (4,(3) o, (B)a}

.

+ (1-3)117% ¢ (8) 6,(B)a}'}  8.2.6

Since it has been assumed that Ve is stationary, then

d1 + d2 <d+ d2 i.e. d 3_dl

and also for the process (8.2.6) to be invertible

dl + d2 >d+ d2 1.e. d g_dl

Hence for the model (8.2.6) to satisfy both the stationarity and

invertibility conditions we must have 4 = dl.
Similarly, if d

> d, ve arrive at d = 4, and so in general the

2

degree of differencing necessary to reduce Xt to stationarity and at the

2

same time give rise to an invertible A.R.M.A. model, is given by
d = max(d ,d2)

When such a degree of differencing is employed, Granger (1972)

Shows that the stationary process LA is described by the A.R.M.A.

model of order (p,q) where
PSP *D,

and

v
[

__max(dl -d, +p +q, Dt ql) if 4 > 4,

e
A

|A
v
o

max(d, - 4, + Pyt ays Py ¥ q,) if 4, > 4;

S
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The need for the inequalities in the above expressions arises
partly from the fact that ¢1(B) and ¢2(B) may contain common roots

(see Granger (1972)).

8.3 The A.R.I.M.A. Model of Order (0,1,1)

Let us suppose that m.t and n, are described by the models

.

= ]
th at

= L . .
Ty T % 8.3.1

This formulation has been adopted by Muth (1960) and it assumes
that the observed time series Xt'is made up of two components, one
lasting a single time period (aL') and the other through all subsequent

periods (mt). The former is referred to as the transitory component,

the latter as the permanent component.

Using the result obtained in Section 8.2, the series w

% = VX% can

be represented by a model which is both stationary and invertible. From

equation (8.2.6)

= = ' - ' :
L vxt a + (1 B)Qt 8.3.2

and the autocovariance function for the w,'s is

t
[ o2, + 262, k=0
L, .
Y, (k) = | —ogu k=1
| O k > 2

The only non-zero autocovariance (apart from v, (0)) is at lag

1 so that W, can be described by the first order moving average process

v, = (1 - eB)at | 8.3.3

The parameters 6 and oi associated with the model (8.3.4) are

-
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related to 02, and ¢2,, by
a

a"
(1+02) 02 = a2, +2 02,
-602 = —ci,, ' 8.3.L

which on solving yields

2 ) Z M
(Oa'/oi,, +2) % /[g:'/c:,, + 4 Ua‘/og,,
2

whence 02 =
a 0

Generally two values for 6 satisfy the equations (8.3.14) but only

ﬁhe éméllef ﬁiil.bé inSide £he‘unit'cirélé.' Thus 6 must take the value

2 15 Z
(0] ' [¢) ag
( a'/Ugvy + 2) - // a'/0:|| + 4 a,/cgli

2

-8 =

which will always lie in the region O < 6 X 1. When 6 = 1 the model

(8.3.3) is of course non-invertible and such a situation will arise

when og, = 0 (see equation (8.3.4)). This implies that the trend

component is deterministic and given by m =a constant.
On the other hand, if m, = & constant, 02, = O and using equation
t a

(8.3.4) we get
- 2 L2 =
(1 - e) o2 0

but og ¥ 0 and so 6 = 1, Thus a necessary and sufficient condition for
the differencing operation to produce a model which is non-invertible
is that the trend should simply be a coanstant. -
The other extreme value of 6 is zero and from equation (8.3.4)
this occurs when og,, = 0 i.e. when the distribution of ng is concentrated

entirely on the point n, = 0.

In Section (9.4.2) we shall see that the forecast generated by the

model (8.3.3) is the same as the simple exponential smoothing forecas

-
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so that the expression for 8 guoted above is equivalent to that for the

2

optimal smoothing constant derived by Muth (1960). In practice of, and

ogv\ will not generally be known and 8 would be estimated by the means

described in Section 2.4 and Chapter 6. The forms of m, and n, defined

by equation (8.3.1) do however deomonstrate one way in which the A.R.I.M.A.

model of order (0,1,1) can arise. Alternative structures for r  and n

s

which also lead to the model (8.3.3) are

= |_ ] W
Vo = ey T 8y 8y
F R
-— [} .
n = a J | 8.3.5
- and
- Al _ ' )
th ay 91 a1
- ty ¥ tt (
Vo =ag 878 : 8.3.6

In the case of the formulation (8.3.6[, when Gl = ei =0 Xt would

be described by the A.R.I.M.A. model of order (0,1,0).

Generally, extending the approach followed in this section, if

dy _
v mt = at
_ e ’
no=a 8.3.7

then the aggregate series Xt can be represented by the A.R.I.M.A. model

of order (O’dl’dl)'

8.4 Seasonal Processes

The results derived in Section 8.2 are now extended to the case in
which the seasonal model (8.1.1) is considered. As in Section 8.2 it will
be assumed that the trend and error terms are described by the A.R.I.M.A.'
models (8.2.2) and (8.2.3) respectively. Additionally we suppose that

the seasonal component s, follows the general A.R.I.M.A. process of

)

t

order (Pl’D

1°71°12
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12 D = 12 v .
@1(3 ) Vo s, Ol(B ) N 8.4.1

where a''"’

N is a white noise process (variance dg,,,) mutually independent

1 te
of at and a.t .

If the differencing operator Vd v D is required to reduce the

12

aggregate series Xt to a stationary series w,, then

_.a.D _.a.D d.D 4 .D .
v, = v v12 xt =V v12 m + v v12 s, + v v12 n, 8.4.2

Substituting for m , s, and n_ from equations (8.2.2), (8.4.1)

and (8.2.3) leads to
¢1(B) ¢2(B) @1(312) (1-B)%1* 92 (;-p12)P1 W,
. e :
= (1-B)" (1-B%)" {¢,(B) ¢ (B!2) (1-B)"2 (1-B!2)"! o, (B) a,

+ ¢1(B) ¢,(B) (1-B)%1* %2 0, (12) ag'"

12 -3)81 (;_g12y]1 vy
+ ¢,(B) o, (B!2) (1-B) (l’B )"t o,(B) 8"} 8.4.3
If d, + D, <4 +d,, & + D, then from equation (8.4.3) it can
be seen that for the process Ve to be stationary and invertible d and
D must satisfy
d=4 -D ,D=D
Similarly, if 4, +d4, <d, +D,, d, + D,, then

while if d1 + D

|A

fof
+
lw]

'_J
o
+
[on

N
ES]
o
g
o
<
(1]

d=d4,-D s, D=D

Thus the differencing operators necessary for tﬁe process defined
by equation (8.4.3) to be both stationary and invertible must be of

orders

a= mgx(d1 - Dy 0, d, - Dl) , D= Dl:



-162-

The autoregressive operator in the A.R.M.A. model for describing

LA is of order p where
+
pipl+p2 12Pl

but the order of the moving average operator, q, depends very much on

. . o™ <

the relative values of le d2 and D1 For example, when é? + Dl __dl + d2,
+

dl Dl

q i_max(p2 +q +12P +11 Dl’

pl + p2 + d1 + 12 Ql - Dl’

Pt e, td -4, +12P 4+ 11 D) .

We illustrate the above results by considering the structures

n, =a'' : 8.4.4

d and D must be chosen so that 4 = max(1,0,-1) =1 and D = 1, hence

w, = Vv X

2. 11y, _ ‘nv _ _nl2y, 1t
A 1%, (1+B+B%+....4B )at + (1 B)at + (1-B)(1-B )at

(1—61B~62B2...... -0 313)at ‘ 8.4.5

13

The aggregate process Xt is therefore described by a multi-parameter
integrated moving average model which is not in the general class of
multiplicative seasonal models. In practice the fitting of an A.R.I.M.A.:
model with 13 moving average parameters would probably never be attempted
even if one strongly believed a time series to be génerated by the
models (8.1.1) and (8.4.4). Instead we would try to explain the non-zero
autocorrelations at lags 1 to 13 by a low order autoregressive, moving
average or mixed model. For example, if o:{y is much larger than both

ci, and cg.., then the A.R.I.M.A. model of order (0,1,1) x (0,1,1)12

>
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might provide an adequate approximation. Table 8.1 shows the

autocorrelation function for the model (8.4.5) when oi,. = 20,
ci, = G;vvv = 1 and also the autocorrelation function for the model
w, = (1 -0.368) (1 - 0.571312)at 8.4.6

with o2 = 63.
a
The autocorrelation function for the model (8.4.6) agrees reasonably
closely with that of the model (8.4.5) since the autocorrelations in
the latter case are all rather small between lags 2 and 10. In practice
it would be very difficult to decide whether a sample autocorrelation
function could be associated with the model (8.4.5) or (8.4.6), in

which case the simpler model would be assumed.

8.5 Summary

If a time seqies which includes a deterministic component is reduced
to stationarity by a differencing operator which reméves the deterministic
part, then we saw in Section 7.2 that fbr certain error structures the
resulting A.R.M.A. model.may be non-invertible. The situation in which
a series is assumed to be composed of several independent stochastic
(as opposed to deterministic) components is rather different. We found
that for stochastic trend and seasonal components it is always possible
to select a differencing operator which will produce a series describable
by a stationary, invertible A.R.M.A. model. Thus the estimation
difficulties discussed in Chapter 6 will occur less frequently if thé
‘series in question is generated by several independent étochastic
processes than if deterministic components are present.

In addition to examining the choice of differencing operator
necessary to produce a stationary, invertible process, this chapter

also demonstrated how a quite complicated A.R.I.M.A. process can be

generated from the sum of several simpler processes. In particular, for

<.
-

non-seasonal models, if the 4 difference of the trend component is a

1 ,
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white noise process and the additional error componeﬁt another independent
‘'white noise process then the aggregate series Xt can be represented by
the A.R.I.M.A. model of order (O,dl,dl). |

Our examination of seaconal processes revealed that in fheory the
aggregate series was generally described not by a model in the
multiplicative seasonal class but by a multi-parameter A.R.I.M.A. model.
However, in practice it may prove difficult to decide whether a particular

sample autocorrelation function is associated with a complex model or a

much simpler model. In such a case the latter model would be identified.
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CHAPTER 9

INTERPRETATION OF A.R.T.M.A. MODELS

9.1 ‘Introduction

As we have seen in preceeding chapters, the Box—Jenkihs
forecastiang procedure essentially involves the fitting of a particular
A.R.I.M,A. model which adequately describes the series to be forecasted.
On the other hand, the forecasting techniques proposed by such authors
as Winters (1960), Brown (1963) and Harrison (1965) assume that the
series in question can be described locally by a more traditional trend-
seasonal model such as that shown in equation (7.2.1). The resulting
forecasts can then be expressed in terms of exponentially weighted
moving averages (E.W.M.A.'s).

Generally, in the Box—-Jenkins case, it is not immediately obvious
what the A.R.I.M.A. model is telling us about the data in terms of
trend énd seasonai&ty and hence the interpretation of the derived fore-
casﬁs is not clear., This point has been commented upon by Chatfield and
Prothero (1973a). Box anvaenkins (1973) take the view that A.R.I.M.A.
models "are usually rather easy to understand" and illustrate their
point by expressing the forecast generated by one particular A.R.I.M.A.
model as an E.W.M.A.

The major part of this chapter. consists of an attempt at represen—
ting the general form of the A.R.I.M.A. model in terms of E.W.M.A.'s . N
Expressions for individual models can then be obtained by substitutien
in the general form.

It is of course a mutter of personal opinion whether A.R.I.M.A.
models are any easier to understand when'ekpressed as E.W.M.A.'s and other
representations may be preferred. One other alternative approach is

considered in this chapter: namely that of expressing the A.R.I.M.A.

model directly in terms of trend and seasonality.
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Section 9.2 contains é brief discussion §f E.W.M.A.'s and also
of how they have been adapted for forecasting purposes by Brown (1963)
The interpretation of A.R.I.M.A. models in terms of E.W.M.A.'s will be
dealt with in Sections 9.3 (stationary processes), 9.4 (non-stationary
processes) and 9.5 (seasonal processes). At each stage special casesv
will be examined. In Section 9.6 we shall see how the interpretation
is affected by the fact that, in practice, series are not infinite
in extent.

The interpretation of A.R.I.M.A. models will be considered from
rather a different angle in Section 9.7. It will be shown that by
solving the difference equation which constitutes the A.R.I.M.A. model,
a representation in terms of tren& and seésonél‘mbdelé cah be.achieﬁed;

The conclusions g;rived at from the results obtained in this

chapter will be stated in Section 9.8.

9.2 Exponentially Weighted Moving Averages

, ] _(a))
The first order E.W.M.A. at time t, Z 1 , of a time series
Zis Zy 95 Zyops e is defined to be
(4,) o .
e R _ J
Z, =A@ (1 A) Ze-j 9.2.1

J=o

where the super script (Al) indicates that the data have been smoothed

once with respect to the smoothing constant A, (0 < A, < 1).

1
o) _(a) (A _
Smoothing the series Zt , Zt—l s Zt—2 s e+« Wlith respect to a

second smoothing constant A,., we obtain the second order E.W.M.A.

=(4;,4,)

Z i.e.
t 3

2

(o) At (1-a)F E(Al)
% 2 o) Zyx
k=0

/
N
!

o ]

_a YI(1_a VK
Al A, T I (1 Al) (1 A2) z
J=o k=o

-5k 9.2.2
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Z(A A, .. 5A )
Generally, the mth order E.W.M.A. zt 172 n can be
defined by

2 (A, A seeuA ) ® © i i

- 12772 m’ _ 1 2
Z, S AALLA . io‘ . io...l Eo(l A) T(1-Ay) "Ll

1 2
m

In his discussion of exponential smoothing, Brown (1963) assumes
that the same smoothing constant is employed for all orders of smoothing

i.e. Al = A2 = ... = Am (= A).

Using the method outlined in Section 1.2.2, Brown (1963) shows

that when a series z, can be described by a polynomial function, the

resulting forecasts can be expressed in terms of the first mﬁh order
E.W.M.A.'s. The value of m depends on the degree of the polynomial.

If.zt éan be représented locally by the constant model

= +
b ao(t) e

% 9.2.4

t

where the coefficient ao(t) is to be estimated at time t and e, is a

random error, then the optimal one step ahead forecast Zt(l) is simply

-(4)

z, (1) =z,

Extending model (9.2.4) to the local linear representation

z, = ao(t) + al(t)t + e 9.2.5

Brown (1963) shows that the one step ahead forecast is given by

~

Tz (1) = 1-A Z

A 2-a) —(a) 1 -(A,A)
t ¢ T (1-A) %t
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while for the local quadratic model

ae(t) .
t2 + e A . 9.2.6

z, = ao(t) + al(t)t = "

t

~the one step ahead forecast is

. (1) = 22 - 37 + 3] -(A) _ | _3-A —(A,4)
% (A | B (1-a)?| ®

1 —-(A,ALA)

omTay? %

More generally, Brown (1963, page 133) goes on to prove that

if the local model is

_ N
2, = ai(t)t + e 9.2.7

(¢]

[ e = T

i

then the one step ahead forecast can be expressed as a linear combina-
tion of the first-(n+l) orders of E.W.M.A.'s.

A comprehensive account of general exponential smoothing is given
by Brown (1963) while most of the formulae of practical importance are

quoted by Kendall (1973).

9.3 Stationary Models

This section deals with the ihterpretation (in terms of E.W.M.A.'s,
where possible) of autoregressive models, moving averége models and
mixed autoregressive-moving average models. In each case the series
z, 1s assumed to have a zero mean.

t

9.3.1 Autoregressive Models

Ir Z is a series described by the autoregressive model of order p,

defined by equation (2.2.2), then the one step ahead forecast made at

time t, Zt(l)’ is given by
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Zt(l) = ¢l z, + ¢2 Zy_q + ... + ¢p Zt-p+l 9.3.1

This forecast is therefore a linear combination of the p most

recent Observations and does not involve E.W.M.A.'s. When p =1

t by o o] < 1
and the forecast is simply a fraction of the value of the most recent

observation.

9.3.2 Moving Average Models

Thg interpretation of moving average models is rather more
difficult than that of autoregreséife‘médélé.. in.the'fdrﬁef fhé
emphasis is on past values of the white noise process while for the
latter the models are expressed in terms of actual observations. 1In
order to examine the interpretation of the moving average model of

order q (see equation (2.2.3)) it is best to write this model as

-~

z, = (l—HlB)(l—H B) .... (1—HqB)a 9.3.2

2 t

where IHj| <1, for jJ = i,2,3,...,q, to ensure invertibility.
Theoreticaily, the Hj's may be real or any pair of roots Hi Hj
may be complex. For reasons which will become apparent later we
shall confine ourselves to the case when all the Hj's (3 = l,2,3,...,q)
are real.
Multiplying both sides of equation (9.3.2) by (l—HqB)—l we get

z =-H =z - B2 ¢

- .+ (1= -H_B)...(1-H_ _.B
t q “-1 ~ Bg %o (1-8,B) (1-HB) ... (1-H __ Ja,

q-1

q_lB)a

- (l—Aq)zt_l - (1-Aq)2zt ...+ (1-HB)(1-8,B)...(1-H

-2 t

9.3.3
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Now if O < Hq < 1 then O < Aq < 1 and we can write

N
o
1
=3
I~ 8

J
1-A 7, .
I a

Thus using equation (9.3.3)

H o _(a) |
z, == o 1 * (1-HB)(1-HB) ... (1-H__.B) a 9.3.L
, .

% “t-1 2 -1’ %

Such a rperesentation is not ‘possible for negative or complex
(4 )

values of Hq'since Zt—%

Both sides of equation (9.3.4) can be multiplied by (l—Hqﬁ

is not defined for these values.
=1
lB)

to give, provided 0 < H _

. g-l -""g-1 g :(Aq—l’Aq) '
Z, = - % 2o 1. TN A -1 + (1—H1B)(1—H2B)

eee. (1-H B)at 9.3.5

q-2
itl =1-H .
with Aq—l q-1

Thus, if O < Hj <1, for j =1,2,3,...,9, then continuing

the above operation a further -2 times the following expression for

the one step ahead forecast made at time t is arrived at:

; (1) = - El ;(Al) _ _Eg_ g(Al’Az) _ Hg é (Al’Ag"' ,Aq)
t t AA, Tt e TAA A %
1 12 12 q
9.3.6

vhere A, = 1 - H, (J =1,2,3,...5a)

The one step ahead forecast generated by a qth order moving average
model is therefore a linear combination of the most recent first, |
secqnd, «es5 qth order E.W.M.A.'s.

As an example, the one step ahead forecast forra first order

moving average process 1s

2,(1) =



-172- .

i.e. a multiple ;f the most recent first order E.W.M.A. with
smopthing constant Al = 1—61. This representation is only possible
for el in the range O < el < 1 when the corresponding range for

- el'/l-el is shown in Figure 9.1.

N

N
AN

Fig. 9.1. Range of values taken by - 81/(1—6

1

_ . -8
As 0. increases in the region O to %,-—41- decreases to -1 and
1 o 1-6
tends to — », This may seem rather
1-6
1 (4,)

surprising but it should be remembered that as Bl -+ 1 s0 Et - D.

then as el approaches unity

9.3.3 Mixed Autoregressive — Moving Average Models

As for the moving average models dealt with in the previous
section, it is more convenient to express the autoregressive-moving
average model of order (p,a), usually defined by equation {2.2.5), in

the form

~

o, 2y Y (1-#,B) (1-H

Py T0y Ppg Tl B o Y0y ). (17 B)

2 &

9.3.7
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Multiplying both sides of equation (9.3.7) successively by

B)—l,...,(l-HlB)—l, as in Section 9.3.2, then

1
provided all the Hj's are real and satisfy O < Hj < 1, the one step

-1
-H B) ~, (1-H
(1q) ( -

ahead forecast Zt(l) can be expressed in the form

- “H,  _(A]) H, -(A,,A)) H : (A, A ,...,4A )
O R TP wwserw
1 172 172" "%q
. L .¢ ;(Al,AQ,...,Aq)+¢ -_é(Al,Az,...,Aq)
AjAs...A 1%t 2 “t-1
(A B seeisA )
1@ 3 9.3.8

oot 0

ho) zt-—p+l

where again Aj =1 - Hj (§=1,2,3,...,9).

Thus Zt(l) is a linear combination of the first qth order

E.W.M.A.'s at time t and the qth order E.W.M.A.'s for the p most

recent time periods.

3

Mlternatively, by making use of the relationship

g(Al,Az,...,Ak) )

£ A

N e

(A yByseeesh ) Z(A, Anyerish))
X 1°% 1!, (1-4,) Zt—i’ > Ay

for ¥ = 1,2,3,...,Q

recursively, a different form of the equation (9.3.8) can be obtained.
a B

If p > g then Zt(l) can be expressed as a linear combination of the

first qth order E.W.M.A.'s at time t plus the (p-q) most recent obser-

vations. If q > p, the one step ahead forecast is a linear combina-

tion of just the first qU® order E.W.M.A.'s at time t.

For the A.R.M.A. model of order (1,1), equation (9.3.8) reduces

to
) -0 _(a) (a)
1 -1 1 -1
z;(1) = 5=~z . o 9, 2
t 1-6, 't 1-6 "1 7t
o.-0.) _(4)
11 = 1-
?[rwj z, (A, = 1-6.)
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 As for the first order moving average process, the one step

ahead forecast is some multiple of the most recent first order

(a))
E.W.M.A., although on this occasion the weight given to z, can be

positive or negative, depending on the value of ¢l—el.

9.4 Non-stationary Models

The expressions derived in Section 9.3 for stationary models
will now be extended to cover non-stationary processes. The general
A.R.I.M.A. model of order (p,d,q) will be dealt with first and then

several important special cases will be considered.

9.4.1 The General A.R.I.M.A. Model

The general A.R.I.M.A. model of order (p,d,q) has been defined by
equation (2.3.2). Once again the moving average operator is re-
parameterised in terms of its zeros and it is also advantageous to

express the stationary autoregressive operator and the differencing

operator in terms of the non-stationary operator ¢;+ (B). Thus

d

(l-¢iB-¢ZB2 - ... - 0¥ Bp+d)z

* . = (1-HlB)(1-HZB)...(1—Hq3) a,

9.4.1

~

and using the notation adopted in equation (9.3.8) the forecast z

t(1)

can (for real Hj and O <'Hj <1(j=1,2,3,...,q)) be expressed as

- (A A ... 5A
2(1) = - o) B EiAl’Ae)- ot ke
ATt AR, Ajhy.. A Tt
- : ceesh
+ l ‘b* E(Al’Ae’ 9Aq)+ ¢* E(A_'L’Az’ 9 q)
AA ...A 17t 2 "t

. S(A A, A
+ oo+ ¢x 2 172 q) ]

2ed Fhep-dtl 9.k.2
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The lead time one forecast made at time t is therefore a linear

C . th . . th
combination of the first g order E.W.M.A.'s at time t and the q
order E.W.M.A.'s for the p+td most recent time periods. Employing the

»

argument used in Section 9.3.3, Z£(l) has an alternative representation.
If p+d> g, then the forecast can be expressed as a linear combination
of the first qth order E.W.M.A.'s at time t and the (p+d-q) most recent

observations. On the other hand if p + @ < q then z_(1) can be

t
expressed as a linear combination of the first qth order E.W.M.A.'s

at time t, only.

9.4.2 The A.R.I.M.A. Model of Order(0,1,1)

If'o‘<'ei < 1, substitution in the general expression (9.L4.2)

results in

z = g 9.4.3

and the one step ahead forecast is simply the most recent first order
E.W.M.A.. This forecast will be identical to that obtained by

Brown (1963), when the constant model (9.2.4) is appropriate, provided
the.smoothing constant A = Al =1 - 0,. Box and Jenkins (1970, pages

1
106-108) also refer to this result.

9.4.3 The A.R.I.M.A. Model of Order (0,2,2)

Provided 0 < Hj <1 (j=1,2), we see from equation (9.4.2) that
the one step ahead forecast generated by the A.R.I.M.A. model of

order (0,2,2) is

z, 1 - —2-3 +
t A1A2 t A1A2

5>th1

z, (1) = - N

~
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However
t 2t 27 “¢-1
4 e E(Al,A2)= 1 [ E(Al’AE)_ . _(Al) ]
t-1 (l—A2) t 27t
Substituting for 2, ] in equation (9.4.4) and setting
Hj =1 - Aj (j = 1,2) results in
AR U NS
t Al t AlAZ t

+

1 [ , i(Al’Az)_ oy §<A1’A2); A -E(Al) »
AjA, t (1—A2) t 2 7t

} [ 1 - (1-a))(1-4,) 7 _(A]) Ay 7 z(A,A)
= A (1-1,) 2y T 24

9.4.5

which is a linear combination of the first and second order E.W.M.A.'s

at time t. Now if Al = A2 = A, where A is the smoothing constant

associated with Brown's method, then

- -(4,4)
_ [2-aA} -=(a) 1 =Y
Zt(l) - ( ] zZ - (l"‘A) Zt 9.’4.6

1-A] ¢

This is precisely the forecast quoted in Section 9.2 obtained by
exponential smoothing, when the linear model (9.2.5) is assumed. Thus
for a linear model, exponential smoothing produces forecasts which
are identical to those generated by a special case of the A.R.I.M.A.
modei of order (0,2,2) viz. the model in which Hl =H, = 1-Aor

6. = 2(1-A) and 6, = (1-A)2.

1 2

Similarly, it follows that in the case of the quadratic model
(9.2.6), the exponential smoothing forecast given in Section 9.2 is

the same as that generated by the A.R.I.M.A. model of order (0,3,3)



_177..

in the particular instance when Hl = H2 = H3 = 1-A or 61 = 3(1-4),

6, = -3(1-A)2 ana 63 = (1-A)3. Again, A is the smoothing constant
associated with Brown's method. -

Box and Jenkins (1970, pages 168-170) give aﬁ example where Brown
(1963) assumed the quadratic model (9.2.6) whereas the appropriate
A.R.I.M.A. model was of order (0,1,1). The latter model generated
considerably better forecasts than those obtained using Brown's method,
simply because the initial choice of model by Erown was & wrong one.
However, even if a quadratic model had been appropriate, the A.R.I.M.A.
model of order (0,3,3) would have yielded a mean squared forecast error
theoretically at least as small as that produced by exponential swmoothing.

So far we have concentrated on the interpretation of A.R.I.M.A.

models which include ,no autoregressive parameters. Let us now look

at a simple case in which an autoregressive parameter is present.

9.4.4 The A.R.I.M.A. Model of Order (1,1,1)
For the A.R.I.M.A. model of order (1,1,1), substitution in the

general expression (9.4.2) gives

» -6, (A)) (A) (a))
S | 1 A S |
2, (1) = 1-6, Zg F (1-e) [(1+ 9]z, 91247 |
1+ -0 ] _(a) ¢, _(4))
= ["ﬁfﬁ?ﬁ%f‘] v T (Tme) M2 9.4.T

i.e. the one step ahead forecast is a weighted average of the two most

reéent first order E.W.M.A.'s. Alternatively, making use of the

relationship
(4) (a,)
=R Ly o1
z, = Az, + (1 Al) 2,1
: _(a))
= rfl_el)zt + 6.2, 7

L)
Zt(l) can be expressed as



" 6,7 (&) ¢
z,c(1)=[1-31]ztl+3¥z,G © 9.h.8

which is a weighted average of the most recent first order E.W.M.A.

and the most recent obsefXagion. If el < 2¢l then more weight is

attached to Zy than to Et while if el > 2¢l the reverse is true.
Employing Brown's method in the case when the A.R.I.M.A. model of

ordér (1,1,1) is appropriate, the constant model (9.2.4) would be assumed

and the resulting forecast gﬁ(l) = ZiA). Thus the Box-Jenkins forecast

(9.4.8) is related to Brown's forecast by

-~ A ¢ (A.) 9. »
Zt(l) = zi(l) + [ 1 - El;] Z, 17y Ei zZ, ~ zE(l)
1 1
and if A = Al = 1—01

- (a.)
) =22+ 2 (g -5, Y]

GB ‘“B

= Zt(l) + ¢ [ z,~ Zt—l(l)] 9.4.9

The forecast generated by the model of order (1,1,1) would
therefore be Brown's forecast adjusted by a fraction of the error in

the previous Brown forecast.

9.5 Seasonal Models

In this section we will derive an expression, in terms of
E.W.M.A.'s., for the general multiplicative seasonal model (2.6.5),

| although for convenience a seasonal period of 12 will be assumed.

The interpretation of the forecasts derived frém the four models A, B,

C and D encountered in Section 3.7 will be dealt with in detail.

~
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9.5.,1 The General Multiplicative Seasonal Model of Order

(p28,0) x (PD,0)
The multiplicative seasonal model defined by equation (é.6.h)

can be re—-stated as
BIZ(P+D)) z

(1-9%¥Bl2 — g*p24 - |, - g%

1 2 P+D t

(1 - 9,812 - ¢ B2% - ... - ¢ pl2F) (1-B12)P ,

0

t

(r -4

Blz)(l—JzBlz) «e. (1-3.B12) oy 9.5.1

1 Q

where
"nl2 24 12Q Q 12
(1 - 0,B*% - 0B ~ ... - eQB )= i£1 (l-JiB )

and oy follows the process

- - $¥R2 _ p+d
(1 ¢IB o758 cee ¢;+dB ) oy

EY)

- - 2 _ - ayd
(1 -"9,B - 9,82 — ... ¢po)a B)" o

n

(1 - HlB)(l—HgB) oo (l—HqB) ay | . 9.5.2

Using equation (9.4.2), remembering that the o, 's are not generally

t

uncorrelated, the one step ahead forecast generated by the model

(9.5.1) is
) = - Iy E(Cl) _ J, i(cl,cz)_ ) I g(cl,ca,...CQ)
;1 ClCE_ t-11 lez"CQ t-11
+ l [@* é(cl,ce,.noCQ)*- Q* E(Cl,cz,..,’CQ)
C,Cp--Cq 1 “t-11 2 “t-23

i(cl,cz,...,cQ)

-+ ) *
* O5.p Z4-12(P+D)+1

+ E [at+l] | 9.5.3
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where for example

ey)
t-11 1 i= 1 t-11-12i

and CJ- = l - Jj (j = l,2,3,cv."Q)l

Again using equation (9.4.2)

ol = o) - -agthl Mo Stute)l Mg taeredy)
+ . o0
t+1 t ALt AA,E AlAz.,.Aq t
. 1 [dfi(Al,Az...,Aq)+ o (Al,AQ,...,Aq)
AlAe...Aq t 2%-1
(A Ayeeesh )
l’ 29 -] q
with
:(A A2’000,Ak)_ l :(Al,Az,oo.,Ak)(cl,cz,-oo,CQ)
e ST R
J l 2.'. Q
- ( ,...,Ak)(cl,cz,...,cQ) (Al,, ,...,Ak)(Cl,b ,.‘,03
- e t—lE— e 08 pTe-12(P4D)- -J
9.5.5
for k = l,2,3,..o’q’ j = O,l,2,co.,p+d_l-
l(A WA seees )(c 3CpsenesC ) ,
The notation Zt—? 22 9" refers to the k' order

E.W.M.A. smoothed a further Q times with respect to the seasonal period.

For example

é(Al)(Cl) —c 1 (1-c) % E(Al)
t-3 1, D0 om0y
. i.=o 1
1
SUBRL i i
) 1 2
=Chy I D () TQmA) T a0y

oo -J
11-0 12—0 12
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The expressions (9.5.3), (9.5.4) and (9.5.5) which define the
lead time 1 forecast are obviously too involved to interpret in the
general case. However these expressions are useful in the senée that
the forecast generated by a particular model can be expressed in
terms of E.W.M.A.'s by substituting for p,d,q,P,D and Q in the generai

form. This point is illustrated in the following subsections.

9.5.2 The A.R.I.M.A. Model of -Order (1,1,0) x (0,1,1)

12

The interpretation of the A.R.I.M.A. model of order (1,1,0)%(0,1,1) 5
has been discussed by Box and Jenkins (1973), for particular values

of ¢l and Ol, ~We now ponsider the understanding of this model for

any values of ¢l and Ol.

Substitution in equations (9.5.3),(9.5.4) and (9.5.5) leads to

- (c.)  (1+¢,) (c;) _(c))
_ -4 R N R |
2i{) =z 0y # ¢ [ e T Fg-l2 }
. o, 1 -(cp) _(c))
A [ “g-1 T %g-13 ]
(e (c,) -
= zt~il ¥ (1+¢1)[ 2¢” Zt—i2 J
(c.) ‘
-\
~ 4 [ Zg-1 T Pg-13 } 9.5.6

where Cl =1 - Ol.

. The forecast for, say, June made in May would therefore be the
 first order yearly E.W.M.A. for the previous June adjusted by a
weighted average of the differences between the most recent May figure
and the previous May's yearly E.W.M.A. and the most recent April figure
and the previous April's yearly E.W.M.A.

Thus if an alternative forecasting technique based on the simple

forecast

) = C ; (:L—c)i

£-11 - 2g-11-121
1=0

25 = 2°
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-

is employed then, provided C =C, =1 - 0 the forecast generated

1 1°

by the A.R.I.M.A. model of order (1,1,0) x (0,1,1).,. can be regarded

12
as the simple forecast adjusted by a weighted average of the two most

recent forecast errors resulting from the alternative technique.

9.5.3 The A.R.I.M.A. Model of Order (1,1,0) x (1,1,0)12

For the A.R.I.M.A. model of order (1,1,0) x (1,1,0)12

;t(l) = (1+¢)) 2, = ¢ 24 + (1+0)) 2,1, - (1+¢,)(2%8)) 2z .,

+ ¢l(1+¢l) 2, 13~ @

13 7 ¥ Zyopg t 2 (1%9) z

t-24

- ¢lq)l Zt_25 905-7

and so, for example, the forecast made in May for June is a linear combi-
nation of the most recent May and April figures and the June, May and
April figures for the previous two years. This forecast can be inter-

preted in two ways. If we consider the simple forecast
) : 8
2,(1) = (1+¢,) 2z, = ¢, 2 5 9.5.

~N
Zt(l) can be written as

Qt(l) = Qi(l) +(1e)) [z, - gi_lg(l)]
*s
=0 Lz pg = 2 (1]

and the forecast generated by the A.RfI.M.A. model of order

(1,1,0) x (l,l,O)12 is the forecast defined by equatioh (9.5.8) adjusted
by a weighted average of the érrors, resulting from the use of the
-simpler forecast, for the corresponding periods one and two years

previously.

On the other hand in terms of the forecast

~

;i(l) = (1+0.) z 9.5.9

1) %11 T % %03
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we have
2,(1) = 25(1) + (140)) [z, = 25 (V)]
- ¢, [z, o~ z> (1)1

and the forecast (9.5.9) is adjusted by a weighted average of the two

most recent forecast errors.

9.5.% The A.R.I.M.A. Model of Order (0,1,1) x (1,1,0)

12
The one step ahead forecast generated by the A.R.I.M.A. model of

order (0,1,1) x (l,l,O)12 can be expressed as

- _(a)) _(a))
2,(1) =z, = + (1+e)) [z o) -z 0l
()

- Ql [Zt—23 - Zt—2h] | 9.5.10

with Al =1 - 61
Thus the forecast for June made in May'is the first order monthly
E.W.M.A. for May adjusted by a weighted average of the differences between

the June figures and the preceeding monthly May E,W.M.A.'s in the

previous two years. Once 61 and @l have been estimated, one step ahead
forecasts can therefore be generated using simple exponential smoothing
and then adding to this forecast a weighted average of the simple exponen-—

tial smoothing forecast errors for the relevant period one and two years

previously.

9.5.5 The A.R.I.M.A. Model of Order (0,1,1) x (0,1,1)12

In the case of the A.R.I.M.A. model of order (0,1,1) x (0,1,1)12

. “ .
the one_step ahead forecast Zt(l) is

. (c,) _ta)  =(a)(c))
Z - Z

t-11 7 %t t-12 9.5.11



~184- . .

i.e. the forecast for June from May is the sum of the first order
monthly E.W.M.A. for May and the first order
yearly E.W.M.A, for the previous June, less the first order monthly,

first order yearly E.W.M.A. for the previous May. The interpretation
~(a,)(c,)

of the term Zt—12

is not obvious and a clearer understanding can be
achieved by re-writing equation (9.5.11) in the form

z (1) = z Ll -2 %

t t-11 t t-12
so that the one step ahead forecast is the first order yearly E.W.M.A.
adjusted by the simple E.W.M.A. of the errors obtained from employing

(c.) ' ' | '

Zt-il as a forecast. By a similar argument the forecast (9.5.11) can be

_(a))
interpreted in terms of the simple E.W.M.A. zt_]]_'

Thus it has been possible to relate the one step ahead forecasts
generated by various seasonal A.R.I.M.A. models to those based on the
more familiar E.W.M.A.'s. Although this improves the understanding of
A.R.I.M.A. models, other means of interpretation may well be more illumi~
nating. One alternative will be examined in Section 9.7. However

before concluding our discussion of E.W.M.A.'s we will investigate a

point of practical importance.

9.6 A Practical Consideration

The expressions derived in Sections 9.3, 9.4 and 9.5 are all
based on the assumption that an infinite amount of data is available,
"In practice of course A.R.I.M.A, models are fitted to series which
are composed of a finite number of ob§érvations. We now see how the
interpretation of the resulting forecasts is affected by the fact
that series encountered in pracéice are not infinite in extent.

In Section 9.4.2 we found that for the A.R.I.M.A. model of

. »
order (0,1,1) the one step shead forecast zt(l) was simply
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co .
= (1-0,) I Z_ 9.6.1
o |

where Al = 1—el

If however the series in question consists of the N observations
Zos Zys Zps eees Zp (n = N-1), then the forecast generated by the model

of order (0,1,1) would be

n""l ~

s 09 2. .+e% 2z -0 a 9.6.2

FS .
Zn(l) = (l—el) 520 1 “n-j 1 “o 1 0

LY
where ao is the estimate of the initial residual.

Provided 6, is not close to + 1 (see Chapter 6) then for moderate

o TR N S
values of n the terms ei J (j » 0) will be negligible and so to a good
approximation the forecast defined by equation (9.6.2) can be written
as

n-1 . S (A.)

z (1) =~ (1-6.) £ 69z .= (1-8,) I ej z .=32 *+
n 1° .- 1l n—-) 1° .- 1l n-J n
J=o J=o

Thus, even allowing for the fact that in practice the data will
be finite in extent, the one step ahead forecast generated by the
A.R.I.M.A. model of order (0,1,1) can still be generally regarded as

an E.W.M.A,

As pointed out by Chatfield and Prothero (1973b), the same conclu-
sion may not be true for seasonal data. Let us consider the seasonal

model

(1-B2) z, = (1—01312) a 9.6.3

t

Using equation (9.5.3), for O < ©, < 1, the one step ahead forecast

1
is theoretically given by

FS _(Ci) *® 3 6.l
2,(1) = 2,y = (-0 jio 1 Zt-11-12; 9:6-

where Cl = l—Ol.
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In practice, for a series possessing the N observations
Z_115% 103%-gr e sZy (n=N-12), in which the seaso?al‘cycle is repeated
m times (i.e. N=12m), the one step ahead forecast made at time t = n is
m-2 .
0z

z (1) = (1-0,) 1 Zp-11-1257 1 %a11” Bt tn 9.6:5

J=o
Unlike the non-seasonal case, OT may not be negligible even for
series of moderate length and so it will often be necessary to compute

mb. N
the term Ol a_ If the estimate a_

is set equal to zero then

11° 11
equation (9.6.5) becomes
PN vm;2. . ' ' C ‘
J m—-1
= (1- .+ .6,
zn(l) (1 ol) -E 0y 2 -11-12; 0, z . 9 6‘6

J=0

.

and quite considerable weight can be given to the remotest observation

N~
z . Alternatively, a_

-11 can be computed by the technique of back

11
forecasting described in Section 2.4.2 and Chapter 6. Employing just

-

)

one iterative cycle, the backward forecast [W-ll] (where LA Mt TN

is obtained from equation (6.2.13) as -

n-2 m-2-j
v j b =-0, = o Vh-11-12j
j=o
. ~
whence, from equation (9.6.3) with a_23=0,
a m-2 m—p—
- _ =J
& 11 . % 9§ Vh-11-12]
j=o
m-2 .
- _ m-2-j _
% jio % [Zn—ll—l2j zn—ll—l2(j+l)]
PN
Substituting for a_)q in equation (9.6.5) leads to
~ om-1 om-3
= - - .
z (1) {; 0,+0] ] z2-11 ¥ 0,(1 el)[1+el ] Z 53

Cn2(1_ I _2m—5 m-1 _n2
-+ 07(1 ol){1+ol }zn_35+ cee v 0 T(1-07)z 9.6.7
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The welghts given to z when

n-11° Zn-23° %p-35° ' Z.13

N=172(mn=6) and 6, = 0.8 are shown in Table 9.1, for the following

1
cases:
(a) when an infinite amount of past data is assumed (equation (9.6.4)),

~
(b) - when zn(l) is obtained from equation (9.6.6), and

Lol
(c) when zn(l) is obtained from equation (9.6.7).

Table 9.1. Weights given to past observations when N = 72, 0 = 0.8

Case Zh9 z37 225 213 zl z_ll
(a) :0.20 | 0.16 0.13 0.10 0.08 0.07
(b) | ©0.20 | 0.16 | 0.13 | 0.10 | 0.08 | 0.33
(c) 0.29 | 0.18 0.16 0.13 0.12 0.12

From the above table it can be seen that an E.W.M.A. (case (a))
would assign about T4% of its total weight to the observations
Zh9’ z37, 225, cies z—ll' The weight gilven to unknown observations
is therefore by no means negligible. A forecast resulting from equation
(9.6.6) (case (b)) would depend heavily on the most remote observation

Z_1, (about 1/3 of the total weight is given to z_..). On the other

11
hand, when back forecasting is used (case (c)), progressively less
weight is attached to observations farther in the past although the’
weights do not decrease geometrically. Hence for seasonal models,

under certain conditions (small m, realtively large el), the one step

ahead forecast is not, in practice, an E.W.M.A.

9.7 Interpretation in Terms of Classical Time Series Models
Thus far we have considered the interpretation of the forecasts
generated by A.R.I.M.A. models, solely in terms of E.W.M.A.'s. In

this section we explore another way in which the A.R.I.M.A. model
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can be more easily understood.

In Chapter 5 (also Section 7.2) we examined the particular-
A.R.I.M.A. models to be expected when the Box—Jenkins forecasting
procedure was applied to series which included detérministic trend
and seasonal components. We now look at the reverse procedure,
viz. solving the difference equation which constitutes the A.R.I.M.A.
model to obtain a model in terms of trend and seasonal components.

If in the general multiplicative seasonal model of order .

(p,d,q) x (P,D,Q) defined by equation (2.6.L4), we introduce the

122
operators ¢:(B) of order u(= p+12P+d+12D) and et(B) of order

V(= q+12Q) where

0%(B) = ¢ (B) 0, (12)(1-B)"(1-312)"

and

6* (B) eq(B) eQ(Blz)

then the model (2:6.h) can be written as
* = g% ol
¢u(B) z, eV(B) a, 9.7.1

The general solution of equation (9.7.1) can be considered, in

relation to the time when the process was first observed (t=0), as the sum

= 2! + 2 7.2
z Z zy 9.7

"

by the complementary function.

where z% is a particular integral and z
The particular integral représents the component which is unpredictable
at time t=0 and Box and Jenkins (1970, page 118) show that for t > v

the equation (9.7.1) has a particular integral defined by
* 0 for t <0

= 9.7.3
Bt Uy B g YUy B ot e H ey 8 FOr >0

with the y weights satisfying the equation
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¢* (B) ¢§B) a, = 0%(B) a _ 9.7.4

"

t represents the component of z

The complementary function z &

already determined at time t = O and it is evaluated by solving the

homogeneous difference equation
¢§(B)'= 0 ' 9.7.5

Now ¢§(B) can be expressed as

% = (1- - -
¢¥(B) (1 GlB)(l G2B)...(l GuB) 9.7.6
and when G,,G,,...,G are distinct zg takes the form
. L L ;N
z, ay Gl + a2G2 + ...+ auGu 9.7.7

where the ai's (i =1,2,3,...,u) are constants. If however the first

k roots of ¢§(B) are equal (= G,) and the remaining uy-k roots are

‘ 1
distinct then

k . u
z" = G; 5 oo, tY 1y I a. G? 9.7.8
j=1 9 j=k+1 9 Y

If more than one of the Gj‘s are repeated then the equation (9.7.8)
can be modified in an obvious way.
In general therefore the complementary function will consist of
polynomials and a mixture of damped exponentials and demped sine
waves (depending whether a root is reallor a pair of robts is complei).
It should be stressed that the general solution of eguation
(9.7.1) can be related to any time K < t. The observation z, can then
be expressed as the sum of the component which is unpredictable at
time t = K (the particular integral) and the component already deter-
mined at\time t = Kv(the complementary function). The coefficients

oy (i =1,2,3,...,1) in the complementary function change for different

values of K.
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We now look more closely at the particular forms of the model
(9.7.1) previously dealt with in Sections 9.5.5, 9.5.2, 9.5.4 and

9.5.3 (in that order). 1In each case K will be taken as zero.

9.7.1 The A.R.I.M.A. Model of Order (0,1,1) x (0,1,1)12

The A.R.I.M.A. model of order (0,1,1) x (O,l,l)12 has a particular
integral (for t > 13) given by equation (9.7.3) where the y weights

satisfy

(1-B)(1-B12) y (B) a, = (1—913)(1—01312) a,

The - complementary function.zg obtained using equation (9.7.8) is

-i2nt -ilnt
n o 12 12
Zt al + a2t + a3e + or.h e
-i221t
12
+ ... t al3 e
c 5
_ ] - vt _o 2mvt . 2mvt
=a, ¥ at’+ (-1) ( 5 E [Cv cos 5=+ dv sin —Ezrq}
v=1
=a, + u2t + s, 9.7.9
d 5
- (_1\t ) o 2nvt . 2mvt
where s, = (-1) {'2 + I [cv cos S5 + dv,SIH 15 ]§
v=1
12 . ,
and St = st—12’ til st = 0. The term st thus represents the seasonal
variation in the series z, and so the complementary function (9.7.9)

t

consists of a linear trend and an additive seasonal component.
It is of interest to compare the complementary function of the
gbove model with those associated with the models examined in Sections

9.5.2 to 9.5.,4s For this reason, the function
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is plotted in Figure 6.2, for o, = 2.00, a, = 0.01, s, = 0.10,
s, =-0.05, 53 = =0.15, 5 = -0.30, 55 = -0.35, 55 = -0.25, s, = -0.10,
.38 = 0.05, 59 = 0,20, SlO = 0.30, sll = 0.35 and 512 = 0.20.

9.7.2 The A.R.I.M.A. Model of Order (1,1,0) x (0,1,1)-12

The generalisolution of the A.R.I.M.A. model of order

(1,1,0) x (0,1,1)12 is, using equations (9.7.3) and (9.7.8),
z, =a, + a2t + a3 ¢; + s

t 1 t

+ at + wl ay + wg at_2 + ...+ wtfl al 9.7.10

for t > 12.. st.is as defined in Section 9.7.1 and the ¢ weights satisfy

(l—¢lB)(l—B)(l—B12) a, = (1—91B12) a,

The complementary function is composed of the linear trend and
seasonal components present in the expression (9.7.9) plus
the term u3 ¢§. Pnless ¢l is very close to + 1, the effect of a3 ¢§
diminishes rapidly as t increases and the deterministic component is
soon identical to that shown in Figure 9.2 for the model of order

(0,1,1) x (O,l,l)12 when the values of a., o, and 55 (3 =1,2,3,...,12)

1
quoted in Section 9.7.1 are employed.

9.7.3 The A.R.I.M.A. Model of Order (0,1,1) x (1,1,0)l2

The A.R.I.M.A. model of order (0,1,1) x (1,1,0)_, has the general

12
solution,
_ _ t/12 t/12
Zy = 0p + azt + aq ]@ll t sy + |¢l| Sy
R A T R R A R ] 9.7T.11

~

is as defined in Section 9.7.1 while s! is

t

for t > 1. Again, S¢

given by
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c! 5 :
t o : 2mvt . 2mvt
t = (- 2 t 1 =AY
s ( 1) { + vil {cv cos 10 + d\) sin )}

The ¥ weights satisfy the equation

(1~¢1312)(1—B)(1—512) xp(B)'at = (1—elB) a,

The complementary function for this model thus contains the

terms a,|@ It/lg t/12 s! over and above the linear trend and

3 t
- _ t/12
additive seasonal components,  The term o |9

3
not particularly close to + 1,

1 and |®l|

ll will generally decay

rather slowly, even for values of ¢

. 2 . . . L.
while |©l|t/l s% represents a simillarly decaying seasonal variation.

t/12 t/12

3 and sj‘(j =1,2,3,:..,12) but one possible

1

The effect of the expressions o ‘obviously

depends on the values of A

behaviour is illustrated in Figure 9.2 where the complementary function

is plotted for the values of ays O and Sj (3 =1,2,3,...,12) employed
for the model of order (0,1,1) x (O,l,l)12 and ay = 0.1, ¢, = 3,
ss = s (j =1,2,3,...,12). The complementary function is seen to

possess a seasonal component, the amplitude of which decreases as t
increases, eventually settling down to the pattern followed by the

complementary function of the model of order (0,1,1) x (0,1,1)12.

9.7.4 The A.R.I.M.A. Model of Order {(1,1,0) x (1,1,0

2
In the case of the A.R.I.M.A. model of order (1,1,0) x (1,1,0)

i2?
the general solution for t > O is
- t t/12 t/12
Z, = 0y + a2t + a3 ¢l + ah |®l| + sy + ]@ll St
ta vy, a0+ Yoap o F eee T UL, 8y 9.7.12

where S and s% have been defined previously and the ¢y weights satisfy

(1-4,B) (1-0,312) {1-B) (1-B12) ¢ (B)a, = &,

As in Section 9.7.2, the effect of the term og ¢§ soon dies out
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as t increases and apart from the first few values of t, the comple-
mentary function is the same as that for the model of order

(0,1,1) x (1,1,0)12, an example of which is given in Figure 9.2.

9.7.5 General Comments

In cases where the influence of the random component is small,
the complementary function will tend to dominate the general solution
of the model in question. When this occurs, models associated with
almost the same complementary functioﬁ would be expected to behave
in a similar manner. Thus for example the models discussed in
Sections (9.7.1) and (9.7.2) would generate forecasts which agree
closely with each other, while the models of order (0,1,1) x (O,l,l)12

(0,1,1) x (1,1,0)., may well produce quite different forecasts since

12
as we see from Figure 9.2 the complementary functions can differ quite
considerably. Reference to Section 3.7 emphasises this point.

When the random component possesses & high variation compared
with the other components in the model, the particular integral will
dominate the general solution and as t increases the observations

will diverge quite quickly from the path predicted by the complemen-

tary function evaluated at time t = O.

9.8 (Conclusions

The main object of this chapter has been to gain a better under-
standing of A.R.I.M.A. models by expressing theﬁ in a form which is
generally more familiar to most statisticians. We have considered
the interpretation of the forecasts generated by A.R.I.M.A. models
in terms of E.W.M.A.'s and also the representation éf A.R.I.M.A.
processes by trend and seasonal models.

In Sections 9.3, 9.4 and 9.5 we found that provided the moving

average operator in an A.R.I.M.A. model possessed real roots Hj
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lying in the region O < Hj < 1, then it was possible to express

the generated forecasts as E.W.M.A.'s. The complexity of these
expressions depended on a number of factors. For non-seasonal

models the one step ahead forecasts could be described by a quite
elegant combination of various orders of E.W.M.A.'s, even in

the general case. When the model under consideration included few
parameters, the one step ahead forecasts were related to the forecasts
produced by techniques based on exponential smoothing. In particular
the forecasts resulting from the A.R.I.M.A. models of order (0,1,1),
(0,2,2) and (0,3,3) were found to be more general forms of those arrived
at by Brown's method, when the local models were_respectively_constant
linear and quadratic. However for A.R.I.M.A. models which included
many parameters, the interpretation of higher order E.W.M.A.'s was

in itself rather difficult and so the understanding was not improved.

The one step ahead forecast derived from the general multiplica-
tive seasonal model was an unwieldy combination of various orders
of E.W.M.A.'s., The forecasts for simpler seasonal models were
however arrived at by substituting in the general expression and it
was then possible to relate these forecasts to those involving more
familiar arguments.

It may be rather misleading to say that the forecasts generated
by A.R.I.M.A. models can sometimes be expressed as E.W.M.A.'s. The
latter assume an infinite amount of data and although a finite approxi-
mation is generally satisfactory for non seasonal models, the same may
npt be true in the case of seasonal models with moving average seasonal
parameters, even for moderate length series.

An alternative interpretation of A.R.I.M.A. models was achieved
- by solving the difference equations which constitute the models.
Thebgeneral solution consisted of a deterministic component (the

complementary function) and an unpredictable component (a particular
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integral). For seasonal models based on the differencing operator
Vle’ the complementary function élways ipcluded a linear‘trend and
an additive seasonal component described by dampéd sine waves. The
other deterministic terms depended on the autoregressive parameters
present in the A.R.I.M.A. model, while the effect of these terms was
more pronounced for seasonal parameters than non-seasonal parameters.
The complementary function tended to doﬁinate the general solution

when there was little random variation and the particular integral

when the random variation was high.
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CHAPTER 10

FURTHER EXPERIENCE WITH THE BOX-JENKINS PROCEDURE

10.1 Introduction

It would be unfair to Judge the success or failure of the Box-
Jenkins forecasting procedure solely on the basis of the single case
study described in Chapters3 and 4 and without taking into account |
the performance of other forecasting techniques on the same déta. In
order to gain more experience with the Box~Jenkins procedure it was
applied to a further U4 seasonal time series.. A summary of these
analyses will be given in Section 10.2 with particular attention being
paid to some of the points raised in preceeding chapters.

The Holt-Winters method (see Winters (1960), Coutie et al (196k4)
and—Section 1.2.2f was also applied to the L4 series mentioned above
and to the Company X data. The forecasts generated by this method were
compared with £hose resulting from the Box—Jenkins‘procedure and the
relative performanceiof the two technigques will be feported in Section
10.3. These results will be related to the conclusions arrived at
by Reid (1969).

The contents of this chapter will be summarised in Section 10.kL.

10.2 A Summary of Some Further Box—Jenkins Analyses

We begin this section by briefly describing the L4 seasonal time
series on which the Box—Jénkins procedure was employed. These series
will be referred to as series I, II, III and IV.

SERIES I |

This series is composed ofvthe Li-weekly sales figures of a food

product. The 57 observations available are given in Appendix I and

plotted in Figure 10.1. A high seasonal variation (period 13) is
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apparent while a slight downward trend can be detected.
SERIES IT

This series consists of the monthlylretail passenger car sales in
the U.S.A. The data have been tabulated by Makridakis and Wheelwright
(1972) who also give the results (without details) of a Box-Jenkins
analysis. The series, which is shown in Figure 10.2, is influenced by
strong seasonal and cyclical factofs and is composed of 8& observations.
SERIES ITI

This series 1s a scaled* approximation to the telephone time series
enalysed by Tomasek (1972). The data, composed of 108 monthly
observations (tabula£ed in Appendix I and graphed in Figure 10.3),
poésésé | én‘eitreﬁeiyvhigh seésdnél vériaﬁion aﬁd a significanﬁ upﬁard
trend.

SERIES IV

Series IV consists of quarterly despatch figures_in the footwear
industry. The series shows a fairly high seasonal variation and a
cyclical factor. The 48 observations which make up'the series are
tabulated in Appendix I and plotted in Figure 10.h4. ‘

In applying the Box—Jenkins procedure, each series was divided
into two parts. The first part was used for fitting the appropriate
A.R.I.M.A. model and the second part for examining the forecasting
performance of‘the fitted model. Obviously it was necessary for both
the fitting and forecasting periods to be of a reasonable length.

Table 10.1 gives the length of these periods chosen for fhe series I

to IV.

¥ Unfortunately the author does not tabulate the data and a graph of
the series does not include any scale. Hence series III was obtained
by a suitable choice of scale.
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Table 10.1 Fitting periods and forecasting periods for series I to IV

Series Total Fitting Forecasting
' Length Period Period
1 5T 39 18
IT 8h 60 ol
III 108 72 36 . ‘
Iv 48 36 10

' Using the iterative process of identification, estimation and

diagnostic checking described in Chapter 2, the following fitted

models were selected to describe the series I to IV.

(1 - 0.47B - 0.4982)a

SERIES I
Ve = V3% B
A2=
and ) Ua 205.9
SERIES IT
v = WX =
and 02 = 3179
a
SERIES IIT
Ve = VY X =
and ci = 217.6
SERIES IV
v, = VX, =
and 02 = 8863719

(1 - Q.95B13)at - L4.62

(L - 0.69B) (1 - o.9h}312)at

t

(L - 0.14B) (1 - 0.96B‘*)at

10.2.1

l1o.2.2

10.2.3

10.2.4
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In each case Xt denotes the untransformed observation at time t.

Throughout the model fitting procedures a number of the points
raised by the analysis of the Company X data were again encountered.
These will now be discussed.

It is recalled from Chapters 3 and 4 that a non-linear transformation
was applied to the Company X data prior to the Box-Jenkins analysis. The
monthly growth rates for the series I to IV are much smalier than that
associated with tﬁe Company X data making it less important whether a
model with additive or multiplicative seasonal effects is assumed. After
inspecting the Figures 10.1 to 10.k we decided to analyse the untrans-
formed observations in each case and thus the extra problems involved
in eétimétiné fhé trénéférﬁatidn.paréméter (see Séctién h;h) were
avoided.

The importance of the role played by the differencing operator in-
the A.R.I.M.A. model (discussed iﬁ Chapter 5) was emphasised during the
fitting of the four models (10.2.1) to (10.2.h). Table 10.2 quotes
the estimated variances of the original observations X, , the differenced
series w, and the residuals .a, resulting from the fitéed models (10.2.1)

t t
to (10.2.4). All estimates were computed over the fitting period.

Table 10.2 Estimated variances of Xt’ w, and at

Series o2 o2 o2
I 4,620 432.3 205.9
II 8,585 7488 3179
11T 11,949 278. 4 217.6
v 27,600,000 12,167,948 | 8,863,719
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If the percentage of the total variation unexplained'by:each fitted
model is taken to be °§/8§ X 100, the pefcentage variation accounted for
by the differencing operation to be (1 - 03/82) x 100 and the percentage
varlatlon explained by fitting the A.R.M. A. model to Wy to be
(cw/c - a/cz) x 100, then the results given in Table 10.2 are best

interpreted in the manner shown below.

Table 10.3 Variation'explained by differencingland fitting the A.R.M.A. Model

Percentage of Total Variation Explained
Series . By . By fitting the Unexplained
| Differencing | A.R.M.A. Model e
I 90.6 4.9 L.5
IT 15.7 418.5 35.8
I11 97.7 0.5 . 1.8
} Iv 55.9: 12.0 32.1

For the tﬁo series I and III,the percentage oflfge total variation
unexplained by the fitted models (10.2.1) and (10.2.3) is very small
compared with other variations in the series (i.e. due to trend and
seasonality) and in both instances most of the total variation is
explained by the differencing operation. In éontrast, the fitting
of the A.R.M.A. model to the stationary series accounts for only a
small percentage of the total variation, thus supporting the view of

. \ .
Akaike (1973). The variation unexplained by the models (10.2.2) and
(10.2.4) when fitted to the series II and IV represents a much highér
percentage of the total variation in these series. In the case of
series IV, the effectiveness of the A.R.I.M.A. model is again
determined mainly by the differencing operation but for series II
the fitting of the A.R.M.A. model explains much more of the total

variation than the differencing operation,

As we can see from equations (10.2.1), (10.2.2) and (10.2.4),
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the A.R.I.M.A. models fitted to the series I, II and IV all included

a moving average seasonal parameter close to unity. Hence, for the
reasons given in Chapter 6,‘one iterative cycle was not sufficient when
computing the unconditional sum of squares corresponding to the estimates
of these parameters. In fact, we found that at least L iterationms

were necessary in all three cases. Although not immediate%y obvious,

the fitted model (10.2.3) is also close to the non-invertibility boundary

since the moving average operator can bé expressed as
(1 - 0.47B - o.thZ)at = (1 - 0.97B) (1 + o.SOB)at 10.2.5

: However.iﬁ this case one iterative cycle Wasvsuffigiént_becguse
the parameter in gquestion isAnon—seasonal and also the fitting period
for the series III is of moderate length.

As in the analysis of the Company X data, we discovered that it
was possible to fit several models to each set of data without any
inadequacies being detected by the diagnostic checks. For example,

no discrepancies were revealed when the model

v, = V13Xt =a - h.6% . 10.2.6

was fitted to the sefies I, although the model (10.2.1) was chosen because
it gave rise to a much smaller estimate for 0;. It was however often
difficult to decide whether one model fitted the data significantly
better than some alternative model. The fact that our sgries were
rather on the short side undoubtedly contributed towards this problem
but nevertheless it serves to emphasise that one can'never be absolutely
sure that any one particular model is appropriate.

Forecasts were generated by the model (10.2.1) (up to lead time 13),
models (10.22) and(10.2.3) (up to lead time 12) and model (10.2.4) (up
to lead time 4), over the second part of the series in question. The
one step ahead forecasts in each case are plotted in Figures 10.1 to

10.4. Although some bias is present in the forecast errors it was

’
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not found to be statistically significant for any of the four series.

The mean squared forecast errors (S.Mfs.E (2)) for the lead times
mentioned above were computed and are given in Table 10.4. Also
tabulated are the correspornding theoretical mean squared errors
(T.M.S.E (2)) obtained using the formula (5.5.6).

It can be seen that the agreemenﬁ between the two quantities is
quite reasonable for the mdoels (10.2.1) and (10.2.3), fitted to the
series I and III which exhibvited small random variations, but not so good
for the other two fitted models. However, in the case of the series IV,
the forecasting period is so short (only 12 observations) that the
results are bound to be rather unreliable.

' We concluded in Chapter 9 that the one step ahead forecasts
generated by seasonal A.R.I.M.A. models can be expressed in terms of
E.W.M.A.'s, provided the roots Hj and Ji of the moving average operator
are real and satisfy O < Hj <1,0¢< Ji < 1. The expressions for the
fitted models (10.2.2) and (10.2.4) are arrived at by substituting
Al = l—Bl = 0.31, Cl = 1—01 = 0.06 and Al

in equation (9.5.11), remembering that in the latter case the seasonal

= 0.86, C; = 0.0L4 respectively

period is 4 and not 12. The one step ahead forecast derived from the
fitted model (10.2.1) is apart }rom a constant, simply the yearly
E.W.M.A. Eﬁ?igS). However the interpretation of each of the three
models mentioned above is affected by the practical consideration
aiscussed in Section 9.6. It is not possible to represent the forecast
generated by the fitted model (10.2.3) entireiy in terms of E.W.M.A.'s
since one of the roots I% is negative (see equation .(10.2.5)). :

A further means of interpreting A.R.I.M.A. models, dealt with in
Chapter 9, involves the solution of the appropriate difference equation.
On applying this approach to the models (10.2.1) to (10.2.4) we find that
thé complementary functions consist of a linear trend and an additive

seasonal component, except for the model (10.2.1) when no linear term

is present. Thus as we saw in Section T.2, the models could have

~
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arisen from the sum of a deterministic component and a non-stationary
error term. For example, since the moving average seasonal parameter

in the model (10.2.2) is close to unity the series X, could have been

t
generated by
= +
Xt o + Bt + st nt
where Vn =8 - eat-l ; .

t

and o, 8 and 5 (j =1,2,3,...,12) are constants with S, = Sy_q1o
However, since there is no physical reason for assuming that a
totally deterministic component is present in any of the series I to

IV it is perhaps more likely that the models (10.2.1) to (10.2.k4)

result from processes of the type examined in Chépfef 8.-

10.3 Comparison with the Holt-Winters Method

The Holt-Winters method described by Winters (1960) was applied
to the series I to IV and also to the Company X data. For the series
I to IV the fitting and forecasting periods employed were the same as
those for the Box-Jenkins enalyses (see Table 10.1) w%ile for the
Company X data the fitting and forecasting periods were composed of
60 and 17 observations respectively. The fitting periods were used
for estimating smoothing constants and starting values for the trend
and seasonal factors. quecasts were then generated over the second
part of each series.

The forecasting performances of the Box-Jenkins and Holt—Winteré
‘procedures were compared on the basis of the mean absolute forecast
errors over the second part of the series under consideration. The

use of this statistic assumes a cost of error function of the form
cle) = ale| for a > 0

which differs from the quadratic cost of error function employed by
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Reid (1969, 1971) and Newbold and Granger (19T4). However, since our
interest was in the comparative performance of two forecasting techniques
the choice of cost function is not a crucial one (see Granger and |
Newbold (1973)). In fact our conclusions would have been exactly the
same had a quadratic cost of error function been assumed, as remarked by
Reid (1971).

Table 10.5 gives the mean absolute one step ahead f;recast errors

arising from the use of the Box—Jenkins and Holt-Winters techniques.

Table 10.5 Mean absolute one step ahead forecast errors

' Meén.Absdlﬁte
. Forecast Errors
Series
Box~-Jenkins Holt-Winters
I 25.5 20.9
IT 73.3 73.5
I1T 11.3 ' 10.3
v | eus1 2502 .
Company X 50.9 44,9

It should be pointed out that the A.R.I.M.A. model fitted to the
Company X data was the model (h.3.1) and the mean absolute forecast
error was computed after re-transforming the forecasts.

From Table 10.5 we see that Box-Jenkins produced the smaller
mean absolute forecast errors for series II and IV and ﬁolt—winters
for series I, IIT and the Company X series. Using Reid's decision
tree (see Kendall (1973, page 127)) one would have expected Box-Jenkins
to have performedAbetter than Holt-Winters on thelseries II, III and
Company X (all with fitting period > 50 observations) with Holt-Winters
doing better on the series I and IV (< 50 observations). Of course
Reid's diagram is based on generalisations from a finite sample and as

he admits "a good deal of "hunch"" is embodied in the diagram.
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It is of interest to note that for the two series IT and IV in
which Box-Jenkins does better than Holt-Winters, we see from Table 10.3
that the random (unpredictable) component possesses a high variance
compared with other wvariability in these series.

We now look briefly at the mean absolute er;ors resulting from
forecasts for higher lead times. Table 10.6 quotes the mean absolute
lead time 6 forecast errors for the series I to Iii and Company X and

the mean absolute lead time 4 forecast errors for series IV.

Table 10.6 Mean absolute lead time 6 forecast errors, series I, IT

IT and Company X, mean absolute lead time 4 forecast

errors, series IV

Mean Absolute
. Forecast Errors
Series
) Box—-Jenkins Holt-Winters
I 2h.9 17.9
11 110.3 111.4 .
IIT 1k.0 7 11.8
Iv 3227 3117
Company X T7.3 ‘ 52.3

The only series for which Box—Jenkins performs better than Holt-
Winters is series II. In fact it would appear that Holt-Winters
compares more favourably with Box—Jenkins for higher lead times than

for the lead time 1 forecasts.

10.4 Summary

In this chapter, the Box-Jenkins forecasting procedure has been applied
to a further L seasonal time series. A number of the points waised by

the analysis of the Company X data and dealt with in Chapters 5 to 9

v
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were again apparent. These included the importance of the choice of
differencing operator, the possibility of several A.R.I.M.A. models
fitting the data almost equally well, the estimation of moving average
seasonal parameters and the interpretation of A.R.I.M.A. models and
the forecasts generated by such models. However, since non-linear
transformations'of the data were not deemed to be necessary, the
problems of estimating a transformatimparameter by fhe:methods
described in Chapter 4 were not encountered.

The performance of the Box~-Jenkins procedure was compared with
tﬁat of the Holt—Wipters method on the 4 series introduced in Section 10.2
and also on the Company X data. Overall, the Holt-Winters method
‘cémpared ﬁost favourably with the Box-Jenkins procedure for both lead
time .l forecasts and forecasts for higher lead times. However, it would
be unwise to attempt to draw any general conclusions on the basis of
these results, for the following reasons:

~ (1) The comparison was performed on a sample of only 5 series.

The conclusions arrived at from the comprehensive stu@ies conducted by
Reid (1969) and Newbold and Granger (1974) (see Section 1.h) suggest
that the Box-Jenkins procedufé generally performs better than the
Holt-Winters method, even on seasonal data.

(2) The fitting and forecasting periods (series III apart) were
rather short.

(3) The number of subjective decisions involved in the Box-Jenkins
procedure makes it extremely likely thgt different practitioners would
fit different A.R.I.M.A. models. It is therefore possible that someone

more experienced with the Box—Jenkins proéeduré could have improved

upon the Box-Jenkins results given in Tables 10.5 and 10.6.
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CHAPTER 11

SUMMARY, CONCLUSIONS AND FURTHER RESEARCH

11.1 Summary and Conclusions

This thesis has been concerned with an examination of various
practicai problems relateﬁ to the use of the forecasting_procedure
proposed by Box and Jenkins (1970). The emphasis has been placed
on the application of this prdcedure in the particular area éf
seasonal forecasting,

We-beganiour-examination-of the Box-Jenkins procedure by applying
it to a seasonal series consisting of the monthly sales figures of
an engineered product. The forecasts generated during this analysis
were intuitively very poor while in addition other more general
features of the p;ocedure were considered to be worthy of more detailed
attention. These points provided the stimulus for the topics examined
in Chapters_h.to 9. ' ' -

The employment of non-linear transformations in time series
analyses was considered in éhapter 4, It was shown that for a series
which possessesiad approximate linear trend and multiplicative seasonal
variation (e.g. the Company X data), a logarithmic trnasformation can
be justified as long as the monthly growth rate is small. When this
is not the case one approach is to assume a general non-—linear
‘transformation of the kind discussed by Box and Cox (1964%). However,
the estimation of the traﬁsformation parameter is a long, complicated
exercise which requires the prior identification of an A.R.I.M.A. model.
"Further it may Be necessary to perform this estimation procedure at
frequent intervals since we saw'that the value of the transformation
parameter can change quite significantly over short periods of time.

In view of this possibility it would seem advisable to avoid a non-linear

e
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transformation wherever possible by applying a suitable differepcing
operator to the untransformed observations.

Chapter 5 dealt with the important problem of selecting the
degree of differencing which reduces a non-stationary series to some
stationary process. It was proposed that the decomposition of a
~-series into trend, seasonal and error components and the theoretical
behaviour‘of‘the Qariance of & stationary series could both be used,
in addition to the sample autocorrelation function, when identifying
the differencing operator. We illustrated just how crucial this
identification can be by quoting an example in which two A.R.I.M.AT
models based pn‘different degrees of differencing fitted the transformed
- Company X data almost equally well, yet the two sets of tolerance
" 1limits associated with the generated point forecasts differed considerably,
particularly for higher lead times. However, in general, for short
or even moderate length series it is often impossible to decide which
of two models, fitting the data equally well yet forecasting quite
differently, is appropriate. ]

The estimation stage of the model fitting process in the Box-Jenkins
procedure was investigated in Chapter 6. When analysing seasonal
(especially monthly) data we discovered that an already complicated
estimation procedure can become even more involved when the identified
model includes a moving average seasonal parameter close to the
-non-invertibility boundary. In such a case several iterative cycles
are usually necessary in computing the unconditional sum of squares for
parameter values in the neighbourhood of the estimated value, even for
moderate length series. VA similar problem may also occur when estimating
moving average parameters for short non-seasonal series.

In Chapter T we showed that the estimation situation discussed in

Chapter 6 can occur when fitting A.R.I.M.A. models to series which

include deterministic components. This theory was confirmed when the

/
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Box-Jenkins procedure was applied to a short generated series possessing
a deterministic linear trend. During this analysis we found that when
fitting an A.R.M.A. model to the stationary series which had a non-zero
mean, it was important to estimate this parameter by least squares.
A simple linear regression on time was also performed on the generated
series and on the basis of the two aﬁalyses we concluded that although
the Box-Jenkins procedure produced the slightly better forecasts, the
use of the latter could not be justified in préference to the less
expensive linear regression approach.

The theoretical A.R.I.M.A. models resulting from the aggregate
of stochastic processes representing trend, seasonal and extraneous
error components were derived in Chapter 8. We found that even when
the individual components were described by quite simple A.R.I.M.A.
models the aggregate process generally involved many parameters
although it was shown that in practice it may be possible to approximate
by a2 less complicated model, depending on the relative sizes of the
variances of the white noise processes associated with each component.

In Chapter 9 we discussed the interpretation of the forecasts
generated by A.R.I.M.A. models, in terms of E.W.M.A.'s. Such an
interpretation is generally possible provided the roots of the moving
average operators (both seasonal and non-seasonal) are real and positive.
The expressions for the one step ahead forecasts are quite simple for
models with few parameters but for multi-parameter models (particularly
seasonal) we reach the stage where the E.W.M.A.'s are themselves
difficult to interpret. One point of practical importance is that
for short or moderate léngth series, the expressions for the forecasts
generated by seasonal models will bear little resemblance to E.W.M.A.'s
when the model in question includes a moving average seasonal parameter
close to the non-invertibility boundary.

An alternative means of intérpreting A.R.I.M.A. models was also

investigated in Chapter 9. The difference equation form of the

.
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A.R.I.M.,A, model was solved in terms of a deterministic component,
representing trend and seasonality, and an unpredictable component.
The deterministic component consists of polynomials and cyclical
terms (arising from the differencing operator in the A.R.I.M.A.
model) and damped exponentials and damped sine waves (arising ffom
tﬂe stationary autoregressive operators).

The application of.the Box—Jeﬁkina procedure to a fﬁrther L
seasonal time series was described in Chapter 10. Many of the
points raised by the analysis of Chapter 3 and dealt with in Chapters
4 to 9 were again encountered. In addition, the performance of the
Box-Jenkins procedure was compared with that of the Holt-Winters
method on.thevh.sérieé ﬁeﬁtioﬁea ébévé ﬁnd aléo'oﬁ fhé Coﬁpénj X
data. The latter method compared most favourably with the Box-Jenkins
procedure although it would be unwise to draw any general conclusions
on the basis of 5 rather short series, However this comparison did
support the view of several authors (e.g. Reid (1969, 1971), Chatfield
and Prothero (1973 a), Newbold and Granger (19T4)) that the main
disadvantage of the Box-Jenkins procedure compared with most other
wmivariate techniques are

i) the expense involved in fitting an initial model
ii) it can only be used effectively by an experienced skillful
statistician
and iii) it requires rather more data thanrare often available,

The Box-Jenkins procedure certainly proved more eipensive in terms
of compﬁting time than the Holt-Winters method and this was especiélly
true in the case of the Company X data when a non-linear transformation
was performed for the Box—Jenkins analysis whereas no suchvtransformatibn
was necessary when applying the Holt-Winters téchnique. The need for
experience and skill in the Box-Jenkins procedure is brought about

mainly by the number of subjective decisions involved in the identification

of an A.R.I.M.A. model although as we saw in Chapter 4 the aforementioned
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qualities are equally essential in deciding whether any transformation
should be applied to the data. Agéin, until a more general understanding
of A.R.I.M.A. models is achieved it may be necessary to relate these
models to the more familiar concepts of trend and seasonality, an
operation which, as demonstrated in Chapter 9, can itself be quite
complicated. The point that the Box-Jenkins procedure requires rather
more data than are often available was emphasised by the-problems arising
when short series were analysed. In such cases the tools employed in
the identification process are unreliable, the estimation situation
discussed in Chapter 6 is more likely to occur while the diagnostic
checks become rather insensitive, making it often impossible to decide
between two or more A.R.I.M.A. models which apparently fit the data
equally well yet forecast quite differently.

Against these practical difficulties, the results of Reid (1969,
1971) and Newbold and Granger (1974) suggest that when used by an
experienced practitioner, the Box-Jenkins procedure generally
outperforms the other invariate forecasting techniques reviewed in
Chapter 1. This is perhaps not surprising in view of the statement
of Box and Jenkins (1973) that'"the alternative and traditional
commonsense forecasting methods ...... are for most part special cases of
the A.R.I.M.A. model". However this statement should not be taken to
mean that other forecasting methods should never be used. The
important point is whether the extra complication and expense involved
in the Box-Jenkins procedure can be justified. Reid (1971) suggests
that the additional expense may be justified for macro—economic series
but not for sales forecasting when a large number of individual items
are involved. In the latter case the fully automatic method of Holt-
Winters would probably be preferred (see Chatfield and Prothero (1973 a)).

Only experience in the form of more comparative studies, similar
to those performed by Reid (1969) and Newbold and Granger (197h4),

will reveal the conditions under which the models assumed by automatic

L
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forecasting methods are a good enough approximation to the "true"
underlying process. For the 5 seasonal series considered in
Chapter 10, the extra cost and complexity of the Box-Jenkins procedure

could not be justified in preference to the method of Holt-Winters.

11.2 Further Research

Throughout this thesis we have concentrated on the-pérformance
of the Box-Jenkins procedure when generating forecasts based solely '
on past values of the variable to be forecasted (i.e. used as a
univariate procedure). This procedure can however‘be extended to
produce forecasts based not only on past values of the series being
foreéaétedvbﬁt aiso bn pésf ﬁaiués of 6thef reiated éefiés'(i.é.Aa'
multivariate procedure). Box and Jenkins (1970, Part III) have
introduced a class of models, called transfer function models, which
relate on "output', variable to one or more "input" variables. These
modéls can be expressed in a similar notation to the A.R.I.M.A. models
encountered throughout this thesis but the model fitting process is
naturally much more involved than in the univariate c;se. The generation ‘
of forecasts employing such models is termed "forecasting using leading
indicators". Apart from the additional complications associated with
fitting a transfer function model, there is also the problem of
selecting suiﬁable related variables. Occasionally the choice may
be obvious (e.g. in the case of series IV introduced in Chapter 10,
a "stocks" series was supplied together with the "despafches" series,
'so that the former coﬁld be used in forecasting the latter) but
generally the input variables need to be carefully selected.

It would be an interesting exercise to seek variables which
are related to the series analysed in Chapters 3 and 10 and then to
use the Box-Jenkins multivariate procedure for generating forecasts.

These forecasts could then be compared with the univariate forecasts

already computed. For the series in which only. a small percentage

/.
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of the total variation remains unexplained by an A.R.I.M.A. model

the employment of other variables could not be expected to greatly
improve the accuracy of the forecasts, but when a high percentage

of the total variation is unexplained by an A.R.I.M.A. model there

is certainly room for improvement, However, the Box-Jenkins
multivariate proéedure is relatively_untried and practical improvements
are still being infestigated (see e.g, Newbold (1973 b)J. As yet,

apart from the examples given in Box and Jenkins (1970), few case
studies appear in the literature and it would seem that much

experience is necessary with the univariate procedure before embarking

on the multivariate procedure,
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APPENDIX I

SERIES I.

1 2 3 4 5 6 T 81 9 |10 | 11 |12 | 13
153 189 | 221 | 215 | 302 { 223 | 201 | 173 | 121 | 106 86 87 |. 108

1k 15| 16| 17| 18| 19| 20| 21| 22 23| 24 o5 26
133 177 | 21 | 228 | 283 | 255 | 238 16& 128 | 108 87 Th 95

27 28 29 30 31 32 33 3k 35 36 37 38 39
1ks5 200 | 187 | 201 | 292 | 220 | 233 | 172 | 119 81 65 76 Th

4o 41 Lo 43 LY hs | L6 L7 48 ko { 50 51 52
111 170 | 243 | 178 | 248 | 202 | 163 | 139 | 120" 96 95 53 9l

53 5k 55 56 57
104 | 135 | 224 | 203 | 210
SERIES II

Jan | Feb | Mar | Apr| May | Jun Jul | Aug Sept| Oct Nov | Dec

1965 | 695 | 684 | 817| 8o0{ T73| 80T | Ti2| 610 kLog | 8L42| 8o1| Te2
1966 | 684 | 668 | 85u| 765| 692 | 751 | 635 | 608 | 01| TOu| TME | 678
1967 | 564 | 509 | 670 | TiO| T45 | T8O | 627 | 51T | Shk7 | 665| 618 | 615
1968 | 630 | 624 | 767 T29| 811 | 781 | 737 | 635| 563 885| T85| 679
1969 | 645 | 662 | 722 | 754 | 795 | 798 | 662 | s55| 709 | 817| 706 | 639
1970 | 539 | 598 | 646 | 691 | 699 | 800 | 641 | 526 | 489 | 630 | U436 | L2s
1971 | 586 | 637 | 756 | T37| 748 | 798 | 668 | 566 | 756 | 934 | 848 | 6L9
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'SERIES III
Jan | Feb | Mar lApr May | Jun | Jul | Aug | Sept| Oct | Nov | Dec
1961 | 75 | 65 | 85| 230 | 385 | 120 | 110 | 115 160 | 130 | 110 | 80
1962 85 75 | 105 | 270 | 430 | 135 | 115 | 130 | 160 | 155 | 120 85
1963 | 85 | 80 | 95| 270 | s | 135 | 135 | 145 | 165 | 160 | 135 | 95
1964 85 | 90 | 110 | 280 | 465 | 130 | 120 | 120 | 170 | 145 | 120 [ 95
1965 | 85 | 90 | 115 | 315 520‘ 150 155 145 | 190 | 175 | 150 | 125
1966 | 95 | 105 | 120 | 345 | 590 | 165 | 155 | 165 | 200 | 190 | 155 | 130
19677 110 | 95 | 125 | 380 | 615 | 175 | 185 | 200 | 215 [ 200 | 170 | 135
1968 | 120 | 115 | 125 | 370.| 605 | 190 | 165, 170 | 205 | 260 | 160 | 115
1969 | 115 | 110 | 135 | 370 | 590 | 185 | 170 | 170 | 235 | 210 155 130
SERIES IV
1st Quarter 2nd Quarter 3rd Quarter Lhth .Q,uarter
1-h 5Th61 52558 u9h§2 L8062
5-8 53440 46963 48672 50454
9-12 53194 51547 54812 58626
13-16 62814 62073 59406 54932
17-20 59253 55530 55456 57343
21-2k ‘6h193 57327 55984 52816
25-28 62657 56583 54271 57484
29-32 68617 i 61148 sosoh' 59856
33-36 70051 V57702 56861 55181
37-L0 63931 57200 55550 58300
h1-kh 65552 62428 59217 5TLET
45-18 7019k ST111 57921 53911




