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ABSTRACT

The forecasting procedure recently developed by Professors Box 
and Jenkins, and described in Box and Jenkins (1970), is based on a class 
of models (A.R.I.M.A. models) capable of representing a wide range of 
time series. In this thesis we examine some of the practical problems 
involved in applying the Box-Jenkins procedure to seasonal time series.
A Box-Jenkins analysis of a series of sales figures is described in 
detail and some of the problems encountered during this analysis are 
dealt with at length. The topics examined include the application of 
non-linear transformations in time series analyses and the employment 
of differencing operators as a means of producing a stationary process.
The computation of the unconditional sum of squares when estimating the 
parameters in an A.R.I.M.A. model and the performance of the Box-Jenkins 
procedure when applied to series which include deterministic components 
are also investigated. The A.R.I.M.A, model arising when a time series 
is considered to be generated by stochastic trend, seasonal and extraneous 
error components is developed while the interpretation of A.R.I.M.A. 
models, and their generated forecasts, in terms of the more familiar 
concepts of trend and seasonality, is ex^^lored. A summary of 4 further 
Box-Jenkins analyses is given, special reference being made to the topics 
mentioned above. The performance of the Box-Jenkins procedure is compared 
with that of the method proposed by Winters (1960), on the 5 series 
included in this thesis.
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CHAFTER 1

INTRODUCTION

1.1 Objectives
In business management today, almost every decision made at 

executive level is based on some kind of forecast. The financial 
consequences of poor forecasting can therefore be so serious that 
reliable and detailed forecasts are now regarded as essential in 
such areas as production planning and stock control. This increa­
sing need for accurate forecasts in business and economics has 
stimulated the development of a number of new forecasting techniques 
over the last twenty years or so. The many techniques currently 
available possess various degrees of complexity, ranging from 
inspired guesswork to methods based on complicated statistical 
models.

One particular forecasting technique which has recently 
aroused a great deal of interest is the method developed by 
Professors Box and Jenkins and described in Box and Jenkins (l9T0). 
Reid (1969) found that this method generally compared very favourably 
with other univariate forecasting techniques when applied over a 
large sample of economic time series.

The idea of this thesis originated following an approach by an 
engineering firm (Company X) .* This firm supplied a seasonal series, 
consisting of the monthly sales figures of an engineered product, 
and forecasts for a lead time of up to 12 months were required.
In the light of the promising results obtained by Reid (1969) it 
was decided to apply the Box-Jenkins procedure to the data of 
Company X.

The Box-Jenkins forecasting procedure will be described in
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Chapter 2 while a detailed account of the analysis of the Company X 
data will be presented in Chapter 3. The following six chapters 
will deal with some of the problems encountered during the case study 
of Chapter 3 and also with certain features of the Box-Jenkins 
procedure which, it was considered, necessitated further attention.
The topics to be covered will include the application of a non-linear 
transformation to the data prior to performing a Box-Jenkins analysis 
(Chapter 4), the use of differencing operators as a means of inducing 
stationarity (Chapter 5) and a deeper look at some of the steps invol­
ved in the estimation procedure employed by Box and Jenkins (Chapter 6).
In Chapters 7 and 8 it will be assumed that any given series can be 
decomposed into trend, seasonal and error components. The use of the 
Box-Jenkins procedure on series which include deterministic trend and 
seasonal components will be examined in Chapter 7 while in Chapter 8 

models involving stochastic trend and seasonal components will be 
related to the class of models on which the Box-Jenkins procedure is 
based. The interpretation of this latter class of models will be 
discussed in Chapter 9*

In order to gain further experience with the Box-Jenkins procedure, 
it was applied to a further 4 seasonal time series. Chapter 10 will 
report on these analyses andalso on how the Box-Jenkins procedure com­
pared with the method proposed by Winters (1960) , on these 4 series and the 
Company X series.

Finally, in Chapter 11, the material included in this thesis 
will be summarised, conclusions will be drawn and areas of further 
research will be suggested.

At various stages it will prove necessary to refer to other 
forecasting methods. For this reason we shall begin by briefly 
reviewing some alternative forecasting techniques. Section 1.2 will 
be devoted to this review while some of the considerations governing 

the choice of the correct forecasting technique will be discussed in
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Section 1.3. An account of two comprehensive empirical comparisons 
of univariate forecasting techniques will be given in Section 1.4.
The first was undertaken by Reid (1969), the second by Newbold and 
Granger (1974).

1.2 A Review of Forecasting Techniques
In this section it is assumed that the many forecasting proce­

dures can be divided into three main categories : qualitative techni­
ques, univariate techniques and multivariate techniques. A similar 
classification has been adopted by Chambers et al. (l97l) and 
Chatfield (1974).

1.2.1 Qualitative Techniques
A qualitative forecasting technique is defined to be one which 

uses qualitative data to produce quantitative forecasts. Qualitative 
data is a term used to describe data derived from a variety of sources. 
Expert opinion, human judgement and market research are just three 
examples of sources of qualitative data. Others are described by 
Chambers et al. (l97l)•

Qualitative techniques have proved most useful in situations where 
no historical data are available. In cases when a new product is intro­
duced into the market. Green and Harrison (1973) have suggested a 
Bayesian approach.

1.2.2 Univariate Techniques
The techniques outlined in this subsection derive forecasts 

which are based entirely on current and past values of the variable 
to be forecasted. More formally, given a time series consisting of 
observations (t = 1,2,3,...,n) made at discrete equally spaced 
intervals of time, a univariate technique will produce a forecast 
of some future value, using only the past observations
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X. (t = 1,2,3,...»(n-l)) and the current observation X . This t n
forecast will be denoted by X^( z) where n refers to the time base 
(or origin) from which the forecast is made and £ to the distance 
into the future one is forecasting. The latter symbol is termed the 
lead time.

Any forecasting problem can be considered to fall into one of 
three categories; short-term, medium-term or long-term forecasting.
The exact definition of what constitutes these three ranges depends on 
the area in which one is working. In relation to sales forecasting 
the short-term is usually up to about nine months, the medium-term is 
the next two or three years and the long-term is anything in excess 
of this. Examples of the meaning of short, medium and long-term in 
respect to other fields are given by Kendall (1973, page 115).

Many forecasting procedures could be included in this subsection, 
some simple, others much more sophisticated. Almost all the univariate 
techniques can be termed fully automatic in the sense that once a 
computer programme has been written, forecasts can be generated without 
further human intervention. The technique developed by Professors Box 
and Jenkins is however a notable exception.

Brief accounts of the more important univariate techniques are 
now given.

Trend Projections
This technique is most applicable to the problem of long-term 

forecasting. Essentially the method of trend projections involves 
fitting a trend curve (e.g. polynomial, exponential) to past data 
and extrapolating. A full discussion of the use of trend curves for 
forecasting is given by Gregg et al. (1964) and Harrison and Pearce

(1972).
The univariate techniques to be reviewed hereafter are generally 

useful only for short or medium-term forecasting.
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Moving Averages
Moving averages have been dealt with at length by Kendall 

and Stuart (1966, Vol. Ill) and also by Brown (1963). As an example, 
for a locally trend-free, non-seasonal series, the moving average at 
time t (and hence the forecast for all lead times made at time t) 
would be a simple (i.e. equally weighted) average of the most 
recent N observations. The choice of an appropriate value £>r N 
has been discussed by Brown (1963).

In practice moving averages are seldom used for forecasting 
purposes in their own right. Of more importance is the fact that 
they provide a starting point in the development of more sophisticated 
procedures.

Simple Exponential Smoothing
The technique of simple exponential smoothing is a logical 

extension of the method of moving averages and is appropriate only 
for trend-free non-seasonal data. Instead of using a simple average 
of past observations, forecasts are computed on the basis of exponen­
tially (or more correctly, geometrically) weighted moving averages 
(E.W.M.A.’s). Given a series X^ it is easy to show that the E.W.M.A. 
at time t, m^, can be expressed as

= AX^ + (l-A)m^_^ 1.2.1

or m . = m . T + Ae. • 1.2.2t t-1 t

where m^_^ is the previous value of the E.W.M.A., = X^ - m̂ _̂  ̂is
the forecast error appropriate to time t and A is termed the smoothing 
constant (O < A < l).

The forecast made at time t for all lead times is simply m^. 
Originally advocated by Holt, simple exponential smoothing has a 

rather limited practical use due to its inability to account for trend 
and seasonality.
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More detailed accounts of simple exponential smoothing can be 
found in Winters (1960), Brown (1963), Coutie et al. (1964) and 
Harrison (1965).

Holt-Winters Procedure
This procedure is described fully by Winters (1960) and Coutie 

et al. (1964). Essentially the technique of simple exponential 
smoothing is extended to cover time series which exhibit trend and 
seasonality. For a series possessing a local linear (or additive) 
trend and a multiplicative seasonal variation, the Holt-Winters 
forecasting model is based on the following equations:

m = A   + (l-A)(m + r ) 1.2.3t t-1 t-1

= B(m^ - m^_^) + (l-B)r^_^ 1.2.4

where X^(t = 1 ,2 ,3,...,n) is the given time series,
m^ represents an estimate of the level of the series at time t,

represents the current estimate of the linear trend
factor,

s. represents the estimated seasonal factor appropriate t
to time t

and L is the period of the seasonal cycle.

A, B and C are all smoothing constants (or parameters) which can 
be estimated by computing the sum of squared forecast errors
over a grid of values for A, B and C and choosing those values which
minimise this quantity.

Initial values for m^, r^ and ŝ  are determined from the first H
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observations of the series in question. These values are usually 
taken to be

1 Lm, = 7  I 1.2.6
^ L t=l t

H L
Z X - Z X

^1 " ^ ^  ̂^ 1'2'7

Land s. = — Z s. . , j = 1,2,3,...,L 1.2.8
J i=l

where H is chosen so that H/L is an integer and

-------  - ,  i = 1,2,3,...H/LL+1 2 " J j = 1,2,3,...,L .

s. .is the estimated seasonal factor for the j^^period in the 3-, J
i^^ cycle and so t = j + (i-l)L. The seasonals obtained from equation 
(1.2.8) may have to be normalised to ensure that they sum to L.

The £-step ahead forecast made at time t is given by

X^(£) = (m^ + £r^) , £ = 1,2,3,...,L 1.2.9

The forecasting model defined by equations (1.2.3), (1.2.4), (1.2.5) 
and (1 .2 .9) can be modified in an obvious way to account for additive 
seasonal variations or indeed cases in which no seasonal pattern is 
present.

Brown ' s Method (General Exponential Smoothing)
As the alternative name implies, this method is a generalised 

form of simple exponential smoothing. Brown (1963) assumes that any 
given series, X^ (t = 1,2,3,...,n), can be described locally by a linear 
combination of m functions of time, viz..
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m
= Z a.(t) f.(t) + e. 1.2.10t i^i 1 1 t

where e^ is a random error. The components f\(t) may for example 
be polynomials, exponentials or sinusoidal functions. The coeffi­
cients at time t, a^(t), are estimated by minimising the sum of 
discounted squared errors

t-1 .
E g''ej . , 0 < $ < 1 .
j=o

The forecast made at time t, for a future observation £ steps 
ahead is

X.(£) = Z a.(t) f.(£) 1.2.11
t i=l 1 1

where a^(t)(i = 1,2,3,...,m) is the estimate for a^(t).
Brown (1963) goes on to show that under certain conditions, 

updating formulae for the a^(t)’s can be derived.
The main feature of Brown’s model is that it involves only one 

smoothing parameter, g. This can be contrasted with the Holt-Winters 
model which relies on two parameters for non-seasonal data and three 
parameters for seasonal data. In fact Harrison (1965) suggests that 
for seasonal forecasting Brown's method is not satisfactory since a 
suitable choice of the single parameter 3 cannot be made.

Harrison’s Seasonal Method
The criticism of Brown’s seasonal method has already been mentioned, 

The Holt-Winters technique for dealing with seasonals also has its 
drawbacks, the chief one being that each seasonal factor is updated 
only once every complete cycle. An improvement proposed by Harrison 
(1965) is to smooth the most recent seasonal factors 

s^, ®t-2* » ^t-L+1* (obtained using equation (1.2.5)) by a
Fourier analysis. The Fourier coefficients are then estimated by
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2 ^c, = —  E s . cos k X .k L J J

2 ^d, = 7  E s . sin k X .k L .^1 J J

1.2.12

for k = 1,2,3,..., L/2, where X. = - tt.
J L

The smoothed seasonal factors (j = 1,2,3,...,L) are given by

s, = 1 + E (c, cos k X . + & sin k X.) 1.2.13
t-L+J sig k k J ^  J

The symbol E denotes the summation over significant harmonics 
sig k

The smoothed seasonals can be conveniently updated using formulae 
developed by Harrison (1965).

Step-wise Autoregression
This technique has been suggested by Kendall (1973) and 

Newbold and Granger (1974). It is in some ways similar to the Box- 
Jenkins procedure and for this reason a description will be delayed 
until the next chapter.

Harrison-Stevens Bayesian Approach
This approach developed by Harrison and Stevens (l97l) modifies 

the Holt-Winters linear growth model to take into account the proba­
bilities 7T̂ (i = 1,2,3,.. . ,m) that the system is in one of m states 
at any given time. For example, the process may be in a state of 
"step change" at a certain time, implying that a permanent "jump" 
in the level of the series occurred at that time.

The main disadvantage of the procedure is that the computing time 
is generally much greater than for most other univariate techniques.
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1.2.3 Multivariate Techniques
A multivariate forecasting technique is one in which forecasts 

are computed on the basis of the current and past values of the variable 
being forecasted together with current and past values of other 
variables which are related to this variable. Much care has to be 
exercised in selecting the related variables and for this reason 
multivariate forecasting procedures are generally more expensive and 
take longer to develop than their univariate counterparts.

Multiple Regression Techniques
Multiple linear regression techniques involve regressing the

variable to be forecasted, X , on certain lagged values of some1 , t
explanatory variables X_ , X , X, , ..., X and also possibly, u j, L 4, t m,u
on past values of X . The problem of determining the right1 »t
explanatory variables and the lags at which each should enter the 
regression equation has been discussed by Kendall (1973). An example 
of forecasting using lagged relationships can be found in the paper by 
Coen et al. (1969).

The subject of forecasting using regression techniques has 
proved to be the centre of a good deal of argument. For various 
opinions on the subject, the reader is referred to Brown (1963, 
page 77), Coen et al. (1969), Box and Newbold (l97l). Granger and 
Newbold (1972) and Kendall (1973).

Econometric Models
Detailed accounts of econometric models and their use in 

forecasting are generally best provided by economic texts, e.g.
Bridge (l97l), Christ (1966). The description given by Kendall 
(1973, page l4l) should prove adequate for any reference made to 
econometric models in this thesis.



Box-Jenkins Input-Output Model
The Box-Jenkins univariate procedure (see Chapter 2) is basi­

cally extended to cover the situation in which an "output" variable 
is related to some "input" variable X^. In general several input 

variables can be considered. A full account of this approach is 
given by Box and Jenkins (1968, 1970).

1 .3  Selection of Forecasting Techniques
Chambers et al. (l97l) discuss the problem of choosing the fore­

casting technique most appropriate to any given situation. Many 
factors need to be considered when making this choice, the most 
important of which are summarised below:
(a) The amount of money a company or individual is prepared to 

spend on a forecasting technique.
(b) The time available for making the forecasts.
(c) The context in which the forecast is to be used.
(d) The availability of historical data.
(e) The accuracy required from the forecast.
(f) The distance into the future for which the forecast is required.
(g) The number of items to be forecasted.
(h) Whether the data are seasonal or non-seasonal.

An examination of how the selection of a forecasting technique 
may be restricted on account of the factors (a) to (h) is now 
carried out.

In the absence of historical data the forecasting technique must 
be chosen from the qualitative class. Assuming this is so, if little 
money is available and forecasts are required quickly, then the 
relevant technique will, of necessity, be based on little more than 
guesswork. However, given time and sufficient money, more sophistica­
ted techniques such as market research can be used. In such a situa­
tion, cruder techniques could still be employed but the relatively
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low cost and short time required by the latter methods must be 
balanced against the more accurate forecasts (particularly in the 
short-term) which the more involved techniques would be expected to 
yield.

If historical data are available then qualitative methods 
would rarely be used alone. The choice of technique would generally 
rest between univariate and multivariate procedures. We shall first 
assume that the time and money needed to set up a multivariate model 
are not available. If long term forecasts are required then the 
method of trend projections is the only really appropriate technique. 
For short or medium-term forecasting, the field is much wider. A 
comprehensive coverage of the factors governing the choice of a 
univariate technique for short or medium-term forecasting will not 
be given in this section. Instead reference should be made to the 
conclusions arrived at by Reid (1969) and Newbold and Granger (1974). 
More details of the comparative studies undertaken by these authors 
will be given in Section 1.4.

Multivariate forecasting techniques become candidates for selec­
tion when there are few financial restrictions and when forecasts are 
not required with any great haste. If used properly multivariate 
techniques should generally produce forecasts which are at least 
a^ accurate as those derived from univariate procedures. However 
under certain conditions (see Kendall (1973, page 15l)) it may be 
unwise to employ a multivariate technique, while the context in which 
the computed forecast is to be used should also be considered. A fore­
cast required as a standard or "norm" or a forecast used as a target 
value could be generated quite effectively from a univariate procedure, 
Indeed it is in such a context that univariate procedures can prove 
most useful. On the other hand if the forecast is to be used for 
planning purposes or decision making then a multivariate procedure 

may well be called for.
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So far the applicability of individual forecasting techniques 
has been discussed. Where two or more techniques are appropriate 
Bates and Granger (1969) suggest combining forecasts. This idea 
would appear to be useful when for example both univariate and 
multivariate forecasts are available or when two univariate fore­
casts have been computed (see Section 1.4). Dickinson (1973) has 
however shown that certain problems do exist in this area.

We have seen how the selection of a forecasting technique 
can be restricted by the factors mentioned earlier. Nevertheless, 
in most cases, there will be a number of applicable techniques.
Given such an occurrence, the choice will often rest between a 
relatively cheap robust technique on the one hand and a more costly 
sophisticated technique on the other hand. Only experience will 
decide whether the extra expense involved in the latter can be 
justified.

1.4 The Studies of Reid and Newbold and Granger
When confronted with the problem of forecasting the sales of the 

engineering firm. Company X, the question of which technique to 
employ obviously arose. On the reasoning that experience should be 
gained with univariate techniques before embarking on the more 
complicated multivariate techniques, it was decided to employ a 
univariate procedure. In choosing the appropriate univariate proce­
dure, reference was made to an empirical comparative study under­
taken by Reid (1969)• A condensed version of this study appears in 

Reid (1971).
Reid (1969) applied the univariate forecasting techniques propo­

sed by Winters (1960) (referred to as the Holt-Winters procedure), 
Brown (1963), Harrison (1965) and Box and Jenkins (l970) to about 
100 economic time series. Not every technique was applied to every 
series, e.g. seasonal techniques were only applied to gea80iMtà=-
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seasonal series. Most of the data analysed were national or industry­
wide aggregates which tend to be less volatile than many individual 
firms' sales data. Both seasonal (quarterly and monthly) and non- 
seasonal series, composed of at least 50 observations, were 
examined.

Each series was divided into two parts. The first part was 
used to fit the appropriate model which was then employed to generate 
forecasts over the second part of the series. The forecasts were 
compared on the basis of a quadratic cost of error function, i.e. 
by examining the mean squared forecast errors.

Reid found that for all series (seasonal and non-seasonal) the 
Box-Jenkins procedure generally did better than Holt-Winters which in 
turn did better than Brown's method. A closer examination of the 
results for monthly seasonal series revealed that Box-Jenkins again 
came out on top, followed by Harrison's method (only appropriate 
for seasonal data) and then Holt-Winters. There was however genera­
lly no great difference between the latter two except that Harrison's 
method performed better on series which had both a very strong 
seasonal factor and fairly large random fluctuations. Brown's 
method behaved particularly poorly on seasonal series.

From his experience with the comparative study, Reid constructed 
a decision tree for choosing the forecasting technique most appro­
priate to a given set of conditions. The factors governing this 
choice were stated to be the length of the series available, whether 
the data are seasonal or not, the importance of essentially unpredic­
table random components, non-stationarities and the lead time being 
predicted.

The evidence of Reid's study suggested that it would be worth­
while to apply the Box-Jenkins procedure to the Company X data. At 
the same time it should be remembered that most of Reid's data were 
national or industry-wide as opposed to the sales of an individual
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fim such as Company X.
Recently, the results of a second comprehensive empirical 

comparison of univariate forecasting techniques have been published. 
Newbold and Granger (1974) compared the forecasting performance of 
Box-Jenkins, Holt-Winters and the method of step—wise autoregression 
(see Section 2.7) on 106 time series. The collection of series 
included seasonal and non-seasonal, macro-economic and micro sales 
data. As in the case of Reid’s study, each series was divided into 
fitting and forecasting periods and the comparison was again based on 
a quadratic cost of error function.

Some of the conclusions arrived at by Newbold and Granger 
confirmed the results of Reid (1969). The Box-Jenkins procedure 
generally outperformed both Holt-Winters and step-wise autoregression 
This superiority was most marked for short lead times but rather less 
so for higher lead times. Overall there was little to choose 
between Holt-Winters and step-wise autoregression although the former 
performed somewhat better for higher lead times.

In addition to comparing individual forecasting techniques, 
Newbold and Granger also considered the combination of pairs of 
forecasts using the approach of Bates and Granger (1969). The most ■. 
interesting finding was that over a sample of 80 monthly series, the 
individual Box-Jenkins forecasts were only slightly better than the 
combined Holt-Winters and step-wise autoregression forecasts (fully 
automatic forecasts).

The empirical comparisons discussed in this section are the two 
most extensive to appear in the literature. Instances in which the 
performance of the Box-Jenkins procedure has been compared with that 
of alternative forecasting techniques on a small number of series 
include Box and Jenkins (l970), Naylor et al. (1972) and Bloomfield
(1973).
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CHAPTER 2

THE BOX-JENKINS APPROACH TO FORECASTING A SINGLE TIME SERIES

2.1 Introduction
In Chapter 1 an outline of the most commonly used univariate fore­

casting techniques was given. Many of these techniques were based on 
the principal of exponential smoothing and were generally appropriate 
for a particular type of process, e.g. a series possessing a linear trend, 
More recently. Box and Jenkins (1968, 1970) have proposed a class of 
models capable of representing a wide variety of time series. The 
fitting of one of these models to a given set of data and the consequent 
adaptation to forecasting is generally referred to as the Box-Jenkins 
forecasting procedure.

This chapter is devoted to an account of the Box-Jenkins forecasting 
procedure. A fuller description of this procedure appears in Box and 
Jenkins (1970) while other less detailed accounts can be found in Box 
and Jenkins (1968) , Thompson and Tiao (l97l), Naylor et al. (1972) and 
Newbold (1973a).

All the time series mentioned in this chapter are considered to be 
composed of observations made at discrete equally spaced intervals of 
time. Sections 2.2 and 2.3 will deal with the class of models capable 
of describing, respectively, stationary and non-stationary series.
The steps involved in the model fitting process will be explained in 
Section*2.4 while Section 2.5 will demonstrate how the fitted models 
are used to generate forecasts. In Section 2.6 the models will be 
extended to cover seasonal series. Section 2.7 will briefly describe
the concept of step-wise autoregression and its similarities to the Box- 
Jenkins procedure.
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2.2 Stationary Time Series Models
A series is said to be stationary to the second order 

if it possesses a constant mean v, a constant variance and 
constant autocovariances y(k) (k = ±1, ±2, ±3,...). If the 
z^'s are normally distributed then second order (weak) stationarity 
is equivalent to strict stationarity as defined for example by 
Anderson (l97l).

Let w^, w^_^, ^t-2’*'* be values of a stationary time series 
at discrete equally spaced times t, t-1, t-2,... . Suppose also 
that a^, a_̂ _̂ , a.re uncorrelated random variables, all
normally distributed with mean zero and variance Now the
observations w^, niay be highly correlated. A
model is therefore required to transform the series w^ into a series 
of uncorrelated random variables a^. The two basic models considered 
by Box and Jenkins (1970) are the autoregressive model and the 
finite moving average model. These are both examples of stochastic 
models (as opposed to deterministic models). The meaning of the 
term stochastic is explained by Box and Jenkins (1970, page 7).

2.2.1 Autoregressive Model 
The model

- *1 V l  ■ *2 Vs ■ ••• - S  V p  = \ 2.2.1
where w^ = w^ - y (y being the mean of the series w^), is called
an autoregressive model of order p. Box and Jenkins (1970) utilise 
the operator B defined by

_r . .
® = \ - r

to write equation (2.2.1) as

*p(B) = a^ 2.2.2
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where (|>p(B) = 1 - <(>̂B - O^Bf - ... -

2.2.2 Moving Average Model 
The model

*t " *t ®l*t-l " ®2®'t-2 ' ^q*t-q 2.2.3

is called a moving average model of order q. Making use of the 
B operator leads to

w. = 0 (B)a^ 2.2.4t q t

where G^^B) = 1 - 0^B - G^Bf - ... - Ĝ B̂̂

2.2.3 Mixed Models
A combination of equations (2.2.2) and (2.2.4) gives the

model

6 (B)w. = G„(B)a. 2.2.5p T» q u

which is termed the general mixed autoregressive-moving average 
model of order (p, q) (A.R.M.A. (p, q)). Substituting w^ - y 
for w^ in equation (2.2.5) gives

(f, (B)w^ = 0  + 0  (B)a^ 2.2.6p t o q t

where 0^ = *p(l)y = (l - (J>̂ - (l)̂ - ... - *p)y.
It is shown in Box Jenkins (19T0, page ?4) that for equation 

(2.2.5) to represent a stationary process, the roots of the 
equation ^^(B) = 0  (B considered to be the variable) must lie out­
side the unit circle. The roots of the equation G^^B) = 0 are 
also required to lie outside the unit circle. When this condition 
is satisfied the model is said to be invertible. The reasons for 
imposing this latter restriction on the model (2.2.5) have been
discussed by Kendall (l9Tl) and Chatfield and Prothero (1973b) in
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addition to Box and Jenkins (l9T0).

2.3 Non-stationary Time Series Models
Many time series encountered in practice are best described 

by a non-stationary model. For example, sales" data often 
exhibit an upward trend, the mean level of the series changing 
with time. The Box-Jenkins approach to this particular problem 
is to difference the non-stationary series until a stationary 
series results. A stationary model of the type described in 
Section 2.2 is then fitted to the differenced series.

Suppose that is the original series and that a 
stationary series w^ is produced after differencing d times.
Then we may write

w, = ^z. = (l - B)^ 2.3.1

Substituting w^ = (l - B)^z^ in equation (2.2.6) leads to

4» (B)(l - B ) V  = 0  + 0  (B)a. 2.3.2p x o q t

which is termed an autoregressive integrated moving average model 
of order (p, d, q) (A.R.I.M.A. (p, d, q)). The word "integrated" 
arises from the fact that the non-stationary process z^ is 
obtained by integrating or summing the stationary process w^.

In practice p, d and q have often been found to take values 
Q, 1 or 2.

2.4 Model Fitting
Having introduced a class of models suitable for describing 

the behaviour of a time series, our attention is now focussed on 
the problem of fitting these models to a suitably transformed 
series z^ (t = 1, 2, 3, ...» N) which should include at least 50 
observations. Box and Jenkins (1970, Chapters 6, 7 and 8) use
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an iterative procedure of identification, estimation and 
diagnostic checking.

2.U.1 Identification
This stage of the model fitting procedure is concerned 

with the choice of values for p, d and q in equation (2.3.2) and 
the calculation of preliminary estimates for the resulting model 
parameters.

The main tool employed in the identification of an A.R.I.M.A, 
model is the sample autocorrelation function.

The sample autocorrelation coefficient, r^(k), at lag k for 
a series composed of n observations is defined by

c (k) 
w

1 __ _where c (k) = — Z (w - w) (w - w)
^ ^ t=l

Box and Jenkins (1970, page 33) suggest that the maximum value 
k should be allowed to take in about

The quantity r^Xk) regarded as a function of k is the sample 
autocorrelation function.

If the sample autocorrelation function of the series dies 
out quickly then it is reasonable to assume that is already 
stationary and no differencing is required, i.e. d = 0. On the 
other hand, if the sample autocorrelation function is slow to die 
out non-stationarity exists and ẑ  is differenced successively 
until a series w^ = is obtained for which the sample auto­
correlation function does die out fairly rapidly. The degree
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of differencing required to produce this effect is the value 
for d in the A.R.I.M.A. model (2.3.2). A deeper examination 
of the selection of the appropriate differencing operator will 
be given in Chapter 5.

The initial values for p and q are arrived at by- 
considering the theoretical autocorrelation function, p^(k), of 
various stationary processes.

The theoretical autocorrelation function for an auto­
regressive process of order P satisfies the difference equation 
(see Box and Jenkins (1970, page 5%)).

P^(k) - P^Xk - l) - P^^k - 2) - ... " &y(k - p) = 0p w
2.U.2

for k > 0.
Equation (2.U.2) has general solution

p^(k) = + Ag.Gg’' + ... + ApG% 2.U.3

G^, G2,...,Gp being roots of the characteristic equation

- ... - = 0 2,h,h

and A^, A2j...»A^ are constants.
Thus, in general, the theoretical autocorrelation function of 

an autoregressive process consists of a mixture of damped 
exponentials and damped sine waves. The former arise from the 
real roots of equation (2.U.U) while the latter occur when pairs 
of roots G^, Gj are complex. When p = 1

P„(k) = *1
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and so the autocorrelation function decays geometrically 
(or exponentially).

For a moving average process of order q Box and Jenkins 
(1970, page 68) show that

+ Gg-kGg 
1 + 02 + 02 + ... + 02

p (k) = \ for k = 1, 2, 3,...,q1
0 for k > q 2.U.5

When q = 1, all the theoretical autocorrelation coefficients 
are zero except for P^(l) which from equation (2.U.5) is

P. (1) = 1 + 02

For an autoregressive-moving average process of order (p, q),
Box and Jenkins (1970, page 75) show that the theoretical auto­
correlation function satisfies the equation

P^(k) - <j)̂ p̂ (k - 1) - ((>2P^(k - 2) -...-^pP^Xk - p) = 0
2.U.6

for k ̂  q + 1.
The first q autocorrelation p (l), p (2), p (3),...,P (q)w w w w

depend on the values of the q moving average parameters as well as 
the p autoregressive parameters. If p > q then the whole auto­
correlation function will consist of a mixture of damped exponentials 
and/or waves. However, for q ̂  p the first q ^ p + 1 auto­
correlation coefficients will not follow the general pattern.

When p = 1, q = 1, P^(l) will depend on 0^ and (|)̂ while for 
lags greater than or equal to 2 the autocorrelation function is
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given by

P,(k) = *iPy(k - 1)
or

P,(k) = *1^"^ P^(l) 2.k.7

i.e. the autocorrelation function decays exponentially after the 
first lag.

In practice, tentative values for p and q in the A.R.M.A. 
model of order (p, q) are obtained by inspecting the sample auto­
correlation function of the stationary series w^. This function 
is then compared with the theoretical autocorrelation function 
of certain autoregressive-moving average processes. For example, 
if.the sample autocorrelation function exhibited an approximate 
geometric decay then, using equation (2.U.3), the first order auto­
regressive model would be identified, i.e. p = 1, q = 0. On the 
other hand if the sample autocorrelation coefficient at lag 1 was 
the only coefficient which differed significantly from zero then 
(from equation (2.U.5)) a first order moving average model would be 
appropriate.

In addition to the sample autocorrelation function, other 
tools are available for identifying A.R.I.M.A. models. The partial 
autocorrelation function has been employed by Box and Jenkins (l9T0) 
while Cleveland (1972) has suggested the use of inverse auto­
correlations. However, in the latter case satisfactory means of 
estimating the quantities involved have yet to be discovered.

The identification stage is completed by computing preliminary 
estimates of the parameters included in the tentative model.
These estimates are arrived at by expressing the parameters in terms 
of the theoretical autocorrelation coefficients and replacing the 
latter by their sample.estimates. For example, it has already been 
shown that the autocorrelation function of the first order auto-
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regressive process is given by 

= *1*

and hence P^(l) = Thus the sample autocorrelation coefficient
at lag 1, r^(l), is an initial estimate for the parameter

2.k.2 Estimation
The next step following the identification procedure is to

find efficient estimates for the parameters in the tentative model.
The problem of fitting the A.R.I.M.A. model (2.3.2) to the non-
stationary zeries z^ is equivalent to that of fitting, to the w^'s,
the stationary model (2.2.5).

‘ Under the assumption that the a^'s are normally distributed,
the maximum likelihood estimates of the (i = 1, 2, 3,...,p)
and 8:'s (j = 1, 2, 3,...,q) will usually, to a good approximation,«3 •
be given by minimising the sum of squares

S ( (|>̂ ^p’̂ 1 * * * *̂ q̂

— Z *^2’̂ 3’ * * * ’̂ 1’̂ 2*^3’ * * * *̂ q̂

i.e. S(i,i) = Z g?. (i,i) 2.k.8t t
where ^ ) and £ = )

The a^'s are determined for given values of ̂  and ̂  by 
rewriting equation (2.2.5) in the form

+ Vt-1 + ®2V2 + ••• + 2.4.9
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Certain initial values of the w. ’s and the a ’s mustt X,

however he specified and there are a number of ways in which 
this can be done. If the series is quite long and no roots 
of #p(B) = 0 are close to the boundary of the unit circle then 
initial unknown values can be set equal to their expectations, 
zero in the case of the a^*s and y for the w^’s. Given that 
w^ has n observations, the sum of squares defined by equation 
(2.U.8) will become

n
S(^,£) = Z aJ(l.j£lw. = y, a = 0  for t ^ O) 2.k.l0

t=l t ^ ^

An improvement on the above approach is to set a_̂ = 0 for 
t p and then calculate the a^'s for t = p + 1 onwards using 
equation (2.U.9). The sum of squares is then

n
S(^,£) = Z aj(_̂ ,̂ |a = 0 for t £ p) 2.U.11

t=p+l

The loss of information in summing over n - p values of the 
a^’s instead of n values will be unimportant for long series. 
However, for short series or seasonal data this method is not 
satisfactory.

Box and Jenkins (1970, page 211) recommend the use of back- 
forecasting to calculate values for the unknown a^'s and w^’s. 
This process is now described.

If the w_̂ ’s are generated by the model (2.2.5) then they are 
also generated by the model

4»„(F)w^ = 0 (F)e^ 2.U.12

(see Box and Jenkins (1970, page 199)) where e^, e^_^, c^_2 ,... is
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a sequence of independent random variables, each normally
2 ^ - 2VJ.UXX xut̂ ckij. ctxxvx V cij. J.cuxv^c yJ —

F defined by
distributed with zero mean and variance -a^. The operatore. a

= ’'t+r

is termed the forward shift operator. 
Model (2.k.l2) may be expressed as

^ V w i  V t + 2  ^ V t n

Letting [ ê ] denote the expectation of e^, conditional on 
£ and w^, Wg, w^,...,w^, then algebraically we may write

[ê ] = E{ê Iĵ ,£, w^,W2,w^,...,w^}

Taking conditional expectations throughout equation (2.k.l3) 
we get

[ y  = [ \] - *t+ll - *2' *t+2l - - *p[ *t+p]

+ W  + ®2̂  W  + --- + V  ®t+q’

where
[ŵ ] = w^ , for t = 1, 2, 3,...,n

[Oj] = 0 , for j £ 0

[ ê ] = 0 , for j > n - p



-27-

Starting with t = n - p, the [ ê ] ’s can he evaluated working 
backwards using equation (2.k.lk) recursively. When [ ê ] has 
been determined, the back-forecasts [w_j] (j = 0, 1, 2,...) are 
computed {using equation (2.k.lk)) until some point (j = K) is 
reached after which [w_j] = 0 i.e. for j = K, K + 1, K + 2,... .

The [ â ] 's can now be computed for t = -(K - l) up to t = n 
by taking conditional expectations in equation (2.U.9).

+ V 2 ^  + ... + 0q̂[ V q ’
with

[ a .] = 0 , for j >_ K«
and hence

n
S(^,^) = E [a.(i,i)]2 2 .U.16

t=-(K-l)

The above is called the unconditional sum of squares function 
while the sum of squares arrived at by the two simpler methods are 
termed conditional sum of squares functions.

In computing the unconditional sum of squares function it is 
possible to repeat the cycle involving equations (2.k.lU), (2.k.l5) 
and (2.U.16). Box and Jenkins (1970, page 217) say that in practice 
"a second iterative cycle would almost never be needed." An 
examination of situations in which more iterative cycles are required 
will be made in Chapter 6.

If the identified model contains no more than three parameters 
then the latter can be estimated quite conveniently using a graphical 
technique. The unconditional sum of squares is calculated over a 
grid of values for each parameter and plotted against the parameter 
values. This will lead to curves (for one parameter models) or 
contours (for two or three parameter models) from which the values
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of the parameters producing the minimum sum of squares can he 
obtained.

Another method by which the parameters can be estimated is 
the iterative procedure of non-linear least squares estimation. 
This process is described fully in Box and Jenkins (1970, pages 
231-2k2). However, the same authors emphasise that this 
technique should only be used when one is satisfied that no 
anomalies exist in the estimation situation. This point can 
only be tested by plotting the sum of squares function for each 
new estimation problem.

2.U.3 Diagnostic Checking
If the least squares estimates of the parameters ^ and 6_ 

in the model (2.2.5) are denoted by £  and ̂  then

(j)p(B)ŵ  = 8^(B)a^ 2.U.17
or

a. = 0 ^(B) <p (B)w. 2.U.18t q p u

The sequence of random variables a^, a^_^, &t-2''"'* &efined 
by equation (2 .U.18) are known as the residuals.

Most of the checks on the adequacy of the fitted model are 
applied to the residuals.

If the correct form of model had been assumed and the true values 
of the- parameters ^ and were known then

a. = 0~^(B) (j) (B)w 2.U.19b q p u

and the estimated autocorrelations r̂ (̂k ) would be uncorrelated and 
approximately normally distributed with zero mean and variance “ 
(Bartlett (19^6)). However, for the residuals a^ , Box and Pierce
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(l9T0) show that the value of —r for the standard error of the
n^

r^(k)’s is unreliable at low lags. It tends to underestimate 
the significance of departures from zero correlations.

Rather than use the above criteria for individual values of 
the estimated autocorrelation function rg(k), Box and Jenkins 
(1970) suggest a test on the first K estimated autocorrelations 
considered as a whole. A typical value for K, for non-seasonal 
data, is 20. Box and Pierce (1970) show that the statistic

K 2 Q = n Z r*(k) 
k=l ^

is approximately distributed as (K - p - q) for an A.R.M.A. 
prôcess of order (p, q). Reference to the appropriate percentage 
points of a distribution gives some clue to the adequacy of the 
proposed model.

While tests on the sample autocorrelation function of the 
residuals will to a certain extent detect non-randomness, they may 
not be very sensitive to periodicities. The presence of the latter 
should be made apparent by examining the periodogram which is 
defined by

i ( f i )  = f
n n

( Z a cos 2ir f.t)^ + ( Z a sin 27t f.t)% 
t=l  ̂ t=l ^

2.k .20

where a^ (t = 1, 2, 3,...,n) is the time series under consideration 
and f̂  (= ^) is the frequency. Note that the frequencies f^ are 
assumed to be harmonics of the fundamental frequency. If the 
frequencies were allowed to vary continuously in the range 0 - 0 . 5  
cycles then l(f) would be referred to as the sample spectrum (see 
for example Jenkins and Watts (1968)).

The function C(f.) defined by J
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J
z I(f.)

C(f.) =

where is an estimate of , is called the normalised cumulativea
periodogram. If the a^’s are uncorrelated random variables, 
normally distributed with zero mean and variance then the 
normalised cumulative periodogram for the series, plotted against 
fj, would consist of points scattered about a straight line.
In the presence of, for example, seasonality "humps" will appear 
at various frequencies. In practice the normalised cumulative 
periodogram will of course be computed for the residuals a^.

Limit lines can be included on both sides of the theoretical 
line in order to detect possible inadequacies. Again this is 
discussed by Box and Jenkins (1970, page 297).

Apart from diagnostic checks applied to the residuals, other
/

tests of a model’s suitability can be performed. These include 
examining the need for a further parameter (overfitting) and 
looking into the possibility that the parameter values change over 
a period of time.

Should any of the diagnostic checks detect some inadequacy 
in the original model then another model is identified and the 
iterative procedure of identification, estimation and diagnostic 
checking is repeated until a suitable model is found.

2.5 Forecasting
In this section we describe how the A.R.I.M.A. model introduced 

in Section 2.3 can be adapted for forecasting purposes.
If we assume (without loss of generality) that the stationary 

series w^ = has a zero mean then employing the non-stationary
operator 4)*^^(B), defined by Box and Jenkins (1970, page 88) as
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= 1 - **B - **B - ... - = *p(B)(l - B)(̂

the A.R.I.M.A. model (2.3.2.) becomes

+*p+d(B)=t = 2.5.1

Thus for some future value we can write

\+l " *l^t+&-l *2^t+&-2 * * ‘*̂ p+d̂ t+il-p“d

\+ Z ®l®'t+il-l ' ®2^t+2-2 **• ®q®'t+Jl-q 2.5.2

If z^(&) denotes the optimal forecast for lead time I from origin 
t. Box and Jenkins (1970, page 127) show that

Zt(l) = E [ 2.5.3

where E [ ẑ ^̂ ] denotes the conditional expectation of z^^^ given 
knowledge of all the z’s up to time t .

Further,

*t+l “ ^t+1 2.5.k

so that the required forecast z^(^) can be obtained by taking 
conditional expectations throu^out equation (2.5.2), making use 
of the fact that

E [ .] = 0
for j = 1, 2, 3,
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and

! ' %t-j] = =t-j
for j = 0, 1, 2,...

In practice the true values of <(»*, 4»*, (f)*,...
^1* ^2’ and the a^’s would not he known and they would
be replaced by the values estimated by the methods described in 
Section 2.k.

It is also useful to express the A.R.I.M.A. model (2.5.1) in 
the form of an infinite moving average viz.

= (4̂ q + + \p̂ B̂  + ...)a^

= V(B)a^ 2.5.5

where the ip weights satisfy

4(B) (1 - B) *(B) = 0^(B) 2.5.6

Employing this representation we have

2.5.7

and so
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^t+l " ^0 ®'t+A ®'t+A-l ^2 *t+A-2 *

&-1
= z^(£) a^+^_j 2.5 .8

The distribution of z^^^, conditional on z^, z^» z^,...,z^,

p(Zt^^|zt» ^t-i''"'*^l)' ■will therefore have a mean z^X&) and &-1
variance (l+ Z \p̂ )â  (\p = l). In addition, providing that the

j=l J °
a^’s are normally distributed with zero mean and variance then the 

distribution \ - l ’***’̂ î  will also be normal. Hence
approximate (l - a) x 100% probability limits for z^(&) are

- "a/2 J=1 ^

where u^y^ is the appropriate percentage point of the unit normal 
distribution and s^ is the sample variance of the a^ *s.

Finally, it is of interest to note that by making use of 
equation (2.5.7), Box and Jenkins (1970, page 13k) show that a 
forecast made at time t for lead time Z can be updated when the 
observation z^^^ becomes available, using the formula

V l  2.5.9

where = z^+i " Zt(D

2.6 Seasonal Time Series
In the preceeding sections we have considered the application 

of the Box-Jenkins procedure to non-seasonal series. Box and 
Jenkins (1970, Chapter 9) also propose a class of models for 
describing seasonal data. To illustrate how seasonality is taken 
into account we will assume that ẑ  is a seasonal series of monthly
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sales figures.
An A.R.I.M.A. model of order (P, D, Q) is fitted to successive 

sales for one particular month, e.g. September. This model takes 
the form

= 0Q(Bl2) 2.6.1

QAB^^) = 1 - G_BlZ - G_B̂ '+ - ... - 0-B12qvl I d  H

’ 12 =t = =t - =t-12

D is the degree of differencing required to reduce the series 

z^, z^_p2 , %t-2k'''' stationarity.
-Model (2.6 .1) thus relates the current September sales to 

previous September sales and current and past errors a^, a^_pg, 
ttt_2k > • • • • For August the equivalent model would be

%t-l = 8 Q(B'Z) *t-l 2 .6 .2

and similarly for the other months. Box and Jenkins (1970, page 
30k) consider that it is reasonable to assume that the parameters 
1 = ($̂ , $2 » $g,...,$p) and 0 = (0^, 0^, 0^,...,0^) are the
same for all months.

The error term from equation (2.6.1) could not be expected 
to be uncorrelated with the error term from equation (2.6.2).
A further A.R.I.M.A. model of order (p, d, q) is therefore fitted to 

the series a^, a^_^, 0^-2'''' * Hence
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4 (B) o. = 6 (B) a, 2.6.3
P  Xi q  x

where G^^B) and d have been defined in Sections 2.2 and 2.3.
Combining equations (2.6.1) and (2.6.3) leads to the model

*p(B) 4p(Bl2) = e^(B) Gg(Bl2) 2.6.4

For a series possessing a seasonal cycle of period s equation 
(2.6.k) can be modified to

4 (B) 4 ( B ® ) v V z  = 0 (B) 0-(B®) 2.6.5
p  r  s X  q ti X

which is termed a general multiplicative seasonal model of order 
(p, d, q) X (P, D, Q)g.

The model fitting process is essentially the same as that for 
non-seasonal models.

2.7 The Method of Step-wise Autoregression
This method of forecasting suggested by Newbold and Granger 

(197k) is based on the autoregressive models introduced in Section
(2 .2 .1 ). In most cases the first differences w^ =Vz^ of the given 
series z^ are analysed. A model of the form

M
w. = y + Z 4). w. . + a. 2.7.1t 0 t-j t

where a^ is a white poise process, is then assumed. Typical values 
for M are 10 for non-seasonal data and 25 for monthly data.

At the first step of the model building procedure the lagged 
value w^_j which contributes most to explaining the variation in 
w^ is introduced. The next lagged value to be included is the one
which most improves the fit obtained after the first step. This

/
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process is continued until no significant improvement in fit 
occurs at the introduction of further lagged values. At this 
stage lagged values introduced earlier, which no longer contribute 
significantly to the fit, are dropped.

J Forecasts are obtained by projecting forward equation (’2.7.1).
We now make a brief comparision of the method of step-wise 

autoregression with the Box-Jenkins procedure.
Firstly, the model (2.7.1), as it stands, is the A.R.I.M.A. 

model of order (M, 1, O). It is thus a special case of the general 
A.R.I.M.A. model of order (p, d, q). The absence of moving average 
terms necessitates a large value for M and so model (2.7.1) does not 
generally provide a parsimonious representation of the series w^. 
Although a number of parameters will be eliminated during the model 
fitting process, the final model will still generally include more 
parameters than the A.R.I.M.A. model identified using the Box- 
Jenkins procedure. However, the inconvenience of working with a 
model which includes a comparatively large number of parameters is 
offset to some extent by the fact that it is much easier to estimate 
autoregressive parameters than moving average parameters.

Treated purely from a routine forecasting point of 'view, the 
important difference between step-wise autoregression and the Box- 
Jenkins procedure is that the former approach is fully automatic 
while the latter is not. Unlike the Box-Jenkins technique, step­
wise autoregression does not involve an inspection of the sample 
autocorrelation function in order to identify the appropriate model 
and once the value for M has been specified, forecasts can be 
generated without further human intervention.
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CHAPTER 3

AN EXAMPLE OF A BOX-JENKINS ANALYSIS

3.1 Introduction
The Box-Jenkins procedure, described in Chapter 2, was applied 

to a seasonal series of monthly sales figures. This chapter will be 
devoted to a step-by-step account of this analysis. The data will be 
tabulated and discussed in Section 3.2 while Sections 3.3 to 3.6 will 
deal respectively with the identification, estimation, diagnostic 
checking and forecasting stages of the Box-Jenkins procedure. Some 
alternative models will be examined in Section 3.7. In Section 3.8 
general remarks will be made concerning the performance of the 
Box-Jenkins procedure on this particular set of data.

Most of the computations were carried out using a set of 
Box-Jenkins forecasting programmes included in the I.C.L. computer 
package at the University of Bath. However, at certain stages, the 
approach followed by the I.C.L. programmes differed from that set out 
in Box and Jenkins (l970). This difficulty was overcome by writing 
a number of additional individual programmes.

Much of the material contained in this chapter is included in 
a published paper by Chatfield and Prothero (1973 a).

3.2 The Data
As mentioned in Section 1.1, the data were supplied by an 

engineering firm (Company X) who required sales forecasts for an 
engineered product for a lead time of up to 12 months. Monthly 
observations were available from January I965 to May 1971. The data 
are tabulated below and plotted in Figure 3.1.
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Table 3.1 Sales of Company X, January I965 ~ May 1971

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

1965 1^^ 96 73 49 36 59 95 169 210 278 298 245
1966 200 118' 90 79 78 91 167 169 289 347 375 203
1967 223 104 107 85 75 99 135 211 335 460 488 326

1968 346 261 224 l4l 148 145 223 272 445 560 612 467
1969 518 4o4 300 210 196 186 247 343 464 680 711 610

1970 613 392 273 322 189 257 324 404 677 858 895 664

1971 628 308 324 248 272

The series can be seen to possess a definite upvard trend and 
a marked seasonal pattern. The amplitude of the seasonal cycle is 
roughly proportional to the level of the series, indicating a 
multiplicative seasonal effect. At this stage the range of 
transformations proposed by Box and Cox (196U) was not considered 
and a logarithmic transformation was applied to the data. The 
transformed data are shown in Figure 3.2. The seasonal effect is 
now approximately constant although the trough in the first years 
data is rather on the low side.’

In order to examine the seasonal pattern more closely, the 
logarithms of the sales for each month were plotted individually 
(Figure 3.3). These trend lines turn out to be roughly linear and 
parallel, indicating that a logarithmic transformation is reasonable 

More discussion on the choice of transformations will appear 
in Chapter U.

3 .3  Identification
Let the observed sales at time t be denoted by and the 

transformed value by , where

3.3.1
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We seek to select a model from the class of general multiplicative 
seasonal models, defined in Section 2.6, which will adequately represent 
the series z^. Thus, suitable values for p, d, q, P, D and Q in the 
model

$p(B) = e^(B) (BlZ)a^ 3-3.2

must be chosen. The notation employed in this chapter is the same 
as that defined in Chapter 2.

3.3.1  Differencing to Attain Stationarity
The first stage of the identification procedure is to determine

the degree of differencing necessary to transform the non-stationary
series into a stationary series Following the approach
described in Section 2.4.1 the sample autocorrelation functions for
various differences of the series z^ were examined. The sample
autocorrelation functions for z^, Vz^, and V are given
in Table 3.2 and plotted in Figures 3.4(a), (b), (c) and (d).

The autocorrelation functiors for both z^ and Vz^ show a strong
cycle with period 12, the peaks occuring at lags 12 and 24 and the
troughs at lags 6 and I8 . This suggests that both z. and Vz. aret t
non-stationary. The series V^^z^ possesses an autocorrelation
function much more like that of a stationary series but a sequence
of positive correlations is followed by a long sequence of negative
correlations (with one exception) implying that some degree of
non-stationarity still exists. On the other hand,the autocorrelations
for ^^22^t appear to be quite consistent with those for a stationary
series. If the series V V _ w a s  random then the standard error of

1
each autocorrelation coefficient would be approximately = 0.125
(see Bartlett (1964)). Thus the only "significant" autocorrelations 
are those at lags 1, 2, 10, 11 and 12.
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It should be noted that the series z^, Vz_̂ , ^12^t 
contain 77, 76, 65 and 6k observations respectively. Further 
differencing was not contemplated since this would reduce the number 
of terms even more. Values of d = 1 and D = 1 were therefore 
entertained.

3.3 .2  Identifying the Stationary Process
The series is denoted by w^(t=l,2,3,...,64) i.e.

Vt = - 3.3.3

the z^’s being defined from t = -12 to t = 6k. A seasonal A.R.M.A. 
model of the form

*p(B) = 0^(B) 8g(Bl2)a^ 3.3.4

which will provide a good description of the stationary process w^ 
must now be identified. Thus values have to be assigned to the 
integers p, P, q and Q.

As described in Section 2.U..1, reference is made to the sample 
autocorrelation function of the series . The autocorrelation 
coefficients at lags 1,2 and 3 are -O.58, O .36 and -0.22 and so 
initially the sample autocorrelation function is decaying by a 
factor of about -0.6. This suggests the presence of a non-seasonal 
autoregressive parameter in the model (3.3.U) i.e. p = 1.

On the other hand, the autocorrelation coefficient at lag 12 
is "large" while that at lag 2k is "small" and so although no 
reliable estimates for the sample autocorrelations at lags 36, U8, etc 
can be computed, the choice of a seasonal moving average parameter 
would seem to be reasonable i.e. Q = 1. In the interests of 
"parsimonious parameterization", P and q were both taken to be zero.
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The tentatively identified model was therefore

(1 -  (j.B)ŵ  = (1 -  GBl2)a^ 3.3.5

where (|i and 0 satisfy |0l<l and |0|<1 in order for the process to be 
both stationary and invertible.

Using a method similar to that employed by Box and Jenkins 
(1970, page 7^)9 it can be shown that the theoretical autocorrelation 
function for the model (3.3.5) is given by

=  12
p(k) = J- -2* e

<() p (k-l) for k >_ 13
3.3.6

Provided <t> is not too close to ±1 a good approximation to 
p(k), for certain values of k, is

i(k) =
4»̂ for k = 1,2,3.

-*|l2-k|G for k = 10,11,12,13,lU.
1+0%

3.3.7
This theoretical autocorrelation function thus compares reasonably 

favourably with the sample autocorrelation function for w^, except at 
lag 11. The sample autocorrelation coefficient at lag 11 is greater 
than that at lag 12 whereas the theoretical autocorrelation function 
for model (3.3.5) implies that p(ll) < p(l2). The model (3.3.5) 
would therefore explain some of the high correlation present in w^ 
at lag 11, but not all of.it. A model including an additional 
moving average parameter at lag 11 may be more successful, but this 
would take us outside the multiplicative class of seasonal models 
defined by equation (2.6.5). The extra complications involved in 
including a further parameter at lag 11 did not seem to be justifiable 
and the model (3.3.5) was retained.
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3.3.3 Preliminary Estimates of Parameters
The final stage of the identification procedure is to obtain 

preliminary estimates for the model parameters. These estimates 
are generally used as starting values for the more exact estimation 
techniques to be described in section 3.U.

Using equation (3.3.7), for p(l) and p(12), and replacing 
the theoretical autocorrelation coefficients by their sample 
estimates we get

4> = -0.58  

0 = O.i+2
3.3.8

Again, for model (3.3.5) it can be shown that the variance of 
the residuals is given by

1+02_2^120 w 3.3.9

where is the variance of the stationary series w^. Thus a
preliminary estimate for can be arrived at by replacing 4> and
0 by their initial estimates and substituting the sample variance
of w. for a^. This resulted in t w

= 0.0063 3.3.10

3 .̂  Estimation
Having tentatively identified the model (3.3.5), least squares 

estimates for the parameters (f>, 0 and were determined by two 
methods, the graphical technique outlined in Section 2.b.2 and the 
non-linear least squares approach described by Box and Jenkins 
(1970, pages 23I-2U2). Since both methods involved the computation 
of the unconditional sum of squares, we will begin by illustrating 
how the latter was evaluated.
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3.^.1 Computation of the Unconditional Sum of Squares
In computing the unconditional sum of squares, use is made

of the fact that the model (3.3.5) can be expressed in terms of
the forward shift operator F, i.e.

(l-4>F)ŵ  = (l-QFlZ)e^ 3.4.1

where the e^'s are independent random variables, normally distributed 
with zero mean and variance (= &%). Rearranging equations (3.4.1) 
and (3.3.5) and letting the symbol [ ] denote expectations at time t,
conditional on (f), 0 and w^,w^ ,w^,... ,ŵ l̂  we get-

[ ê ] = [ŵ ] - ^f^t+l^ ®t+12^ 3.4 .2

and [ â ] = [ŵ ] - 3.4.3

Setting [e^^] , [e^^] , [e^^]  ....,[ e.̂ ]̂ equal to zero and
I ŵ ] = w^ (for t = 1,2,3,...,64), values for [ ê ] , for particular 
values of (j) and 0, were calculated in reverse order using equation
(3.4 .2 ) down to [ ê ] . Then setting [ ê ] , [e_^] , [e l̂ ,.... » equal
to zero, equation (3.4.2) was used to back-forecast [ ,  [w_^] ,
[w_g] ,...., until these values approached zero. For c|) =-0.60,
0 = 0.40 this point was judged to have occurred at t = -IT when

was less than 0.0005. The [ â ] 's for t = -I6 ,-15 ,~l4,... ,64 
were then computed using equation (3.4.3) and setting [a_^^] ,[ a_^g] ,
[a_^g] ,...., equal to zero. The sum of squares S(4>,0) was calculated
using

64
8(*,8) = B [a]2

t=-l6

A specimen calculation of S(#,0) for 4> = -O.6O and 0 = 0.40 
is shown in Table 3.3.
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Table 3.3 Specimen calculation of S(<j),Q), for 4> =-0.60, 0 - O.UO

=t t ■ [ŵ l i"ti

2.188

-17
-l6

-12

0
-0.001

-0.005

0.000
-0.001

-0.008

0
0

0
1.982 -11 0.008 0.013 0

. . . . •
• • • • •
. . ' . .
. • . • .

2.389 -1 0.047 o.o4i 0
2.301 0 -0.006 -0.029 0

2.072 1 -0.038 -0.024 -0.010
1.954 2 -0.016 0.001 0.095

. . . . .
• • • . •
. • ' . •
. • • • •

2.508 51 0.194 0.227 0.096
2.277 52 -0.073 -0.202 -0.108

. . . . .
• • • • •
' • • ' •
' • • ' '

2.395 63 -0.003 -0.188 -0.025
2.435 64 0.130 0.272 0 '

£;(-o.6o,o.4o)
64

=  ̂ [ a ] ̂  = 
t=-l6 0.391
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3.4.2 Graphical Study of the Sum of Squares Function
The sum of squares S((j),0) was calculated over a grid of values 

for (j) and 0 using the technique described in Section 3.4.1. In view 
of the fact that the preliminary estimate for 0, obtained in Section 
3.3.3, was not close to ±1 and also in the light of the statement by 
Box and Jenkins (1970, page 217) it was decided not to perform more 
than one iterative cycle for any value of 0. The justification of 
this decision will be examined in Chapter 6.

The unconditional sum of squares function is tabulated below 
and the sum of squares surface is illustrated in Figure 3.5.

Table 3.4 Sum of Squares over a grid of values for 4) and 0

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

-0.10 0.601 0.562 0.526 0.492 0.460 0.431 0.403 0. 383 0 .407 0.703
-0 .20 0.543 0.510 0.480 0.452 0.425 0.400 0.376 0. 360 0 .384 0.664
-0 ,30 0.497 0.470 0.445 0.421 0.399 0.378 0.358 0. 344 0 .368 0.635
-0 4o 0.463 0.441 0.421 0.401 0.382 0.365 0.348 0. 336 0 .360 0.616
-0 50 0.442 0.424 0.407 0.391 0.375 0.361 0.347 0. 336 0 .360 0.608
-0 .60 0.433 0.4l8 0.4o4 0.391 0.378 0.366 0.354 0. 344 0 .367 0.610
-0 70 0.436 0.423 0.412 0.401 0.390 0.380 0.369 0. 360 0 .382 0.623
-0 .80 0.451 0.440 0.430 0.421 0.412 0.403 0.392 0, 383 0 .405 0.649
-0 90 0.478 0.469 0.460 0.451 0.443 0.434 0.424 0.4l6 0 .441 0.710
-1 00 0.518 0.509 0.501 0.492 0.484 0.476 0.468 0. 470 0 .560 1.211

From Figure 3*5 it can be seen that the sum of squares 
surface is fairly flat and reasonably quadratic in the neighbourhood 
of its minimum value. A closer examination of the sum of squares 
surface for values of <f> and 0 in this neighbourhood revealed that 
the minimum value occurred when 4> =“0.45 and 0 = O.8I. Thus we 
have
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1.00.623 0.610 0.608 0.6l6 0.635 0.6641.21110.710 0.703

0C441 0.360 0.368 0.384

0.4l6 0.344. 0.336 0:336 0.360 0.383

0.468 0.424 0.348 0.3580.392

0.476 0.403 0.380 0.365 0.378 0:400 0.431

0.484 0.)i43 0.412 0.378 0.382 0.460'0.390 0.375 0:399

0.421 0.401 0.421 0.451 0:4920 . 3 9 1 0.391 0:401

o\46o 0.430 0.412" 0x404 0.421 0.5260.501

0.469 0.440 0.423 0.4l8 0.424 0.441 0.470 0.5620.509 0.510

0.436 0.433 0.4420:518 0.463 0:497 0.601

- FIGURE 3.5

Sum of squares surface for model (l-^B)w^ = (l-0B^^)â .̂ Shaded
area is an approximate 95 per cent confidence region
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<f> = -0.45 0 = 0.81

and figure 3*5 shows that (j) and 0 are approximately uncorrelated.
A 95% confidence region was constructed following Box and 

Jenkins (1970, page 229). This is also shown in Figure 3.5.
An estimate of is given by

a 64

= — = 0.00523

(see Box and Jenkins (1970,page 277)).

3.4 .3  Non-linear Estimation
The parameters (|) and 0 were also estimated by a non-linear 

least squares approach using the I.C.L. computer package. Initially 
(f) and 0 were set equal to zero which differs from the starting values 
suggested by Box and Jenkins (1970, page 233) who employ the 
preliminary estimates computed at the identification stage. However 
the estimates arrived at by the I.C.L. programme were

. ̂  A

<|> = -0.47 0 = 0.81

which agree closely with those arrived at in Section 3.4.2
It is shown in Box and Jenkins (1970, pages 240-242) that 

for large samples, the variances of <f> and 0 are given approximately 
by '

v(*) = -gç and v(0 ) = ^  (1-02)

and hence in our case the standard errors associated with <j> and 0
are approximately 0.11 and 0.07 respectively.



3.5 Diagnostic Checking
Using the parameter estimates obtained in Section 3.4.3, the 

fitted model can be expressed as

(1+0.4t b)w^ = (l-0.8lBl2)a^ 3.5 J-

The residuals a^(t=l,2,3,...,64) from the above model are 
computed by rearranging equation (3.5.1) as

where the initial estimates of a^ and w^ are derived using the 
method of back-forecasting described"in Section 3.4.1.

The diagnostic checks illustrated in this section are concerned 
chiefly with the residuals from the fitted model although an 
example of "overfitting" will be looked at in Section 3.5.3.

3.5.1 Autocorrelations of the Residuals
The sample autocorrelation function of the residuals, for lags 

1 to 24, is shown in Table 3.5.

Table 3.5 Sample autocorrelation function of residuals from the
model (1+0.4TB)v  ̂ = (l-O.SlB^^)a..--------------- 1-------  b

Lags Autocorrelations
1-12 0.01 0.10 -0.10 -0.10 -0.16 -0.08 -0.29 -0.06 -0.04 -0.06 0.34 0.08
13-24 0.02 -0.08 -0.02 0.07 -0.04 -0.10 o.o4 0.05 0.02 0.Ô4 -0.03 -0.20

Under the assumption that the a^'s form a sequence of normally
distributed independent random variables, an upper bound for the
standard error of the autocorrelations r*(k) would be (Bartletta
(1964)). The estimated autocorrelations at lags 7 and 11 both lie 
outside ±2 standard errors. The "large" autocorrelation at lag 11 
is not unexpected since we remarked in Section 3.3.2 that the model
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(3.3.5) would not be capable of explaining all of the high 
correlation present at lag 11 in the series w^. The autocorrelation 
coefficient at lag 7 (-0 .29) is rather more surprising in view 
of the fact that the autocorrelation at lag 7 for the series w^ 
was -0.17 (see Table 3.2). However, the model (3.3.5) cannot 
really be expected to produce a reduction in correlation from 
ŵ  to a^, for all lags. Overall it is not too surprising to find 
2 "significant" values in 24 coefficients.

The overall adequacy of the fitted model (3.5.1) vas tested 
by the method based on the Q-statistic introduced in Section 2.4.3. 
After taking into account the amount of data available, this 
statistic was calculated by summing the squares of the first 36 
estimated autocorrelations i.e. K = 36 and

36
Q = 64 Z r§ (k) = 29.07

k=l

If the fitted model is adequate Q should be distributed 
approximately as with 36 - 1 - 1 = 34 degrees of freedom. The 
observed value is thus not significant, indicating that the model
(3.5.1 ) is adequate.

3.5.2  Cumulative Periodogram of the Residuals
The normalised cumulative periodogram for the residuals was 

calculated following the approach outlined in Section 2.4.3. This 
quantity is plotted in Figure 3.6. Also shown is the theoretical 
line joining the origin to the point (0.5,l) while Kolmogorov- 
Smirnov limits are drawn either side of the former. In this 
case the limit lines were constructed such that for a truly random 
series they would be crossed 25% of the time. For more information 
concerning the Kolmogorov-Smirnov limits, the reader is referred to 
Box and Jenkins (1970, page 297).
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FIGURE 3.6
Normalised cumulative periodogram for the residuals 

from the model (1+0,Utb)w  ̂= (l-0.8lB^^ )â^
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It can be seen that the plot of the normalised cumulative 
periodogram lies well within the 25% limits. However, a slight 
hump does appear in the function at a frequency between 0.09 and 
0.10 corresponding to a period of 10 or 11. It is recalled of 
course that the autocorrelation of the residuals at lag 11 was 
also ’’large". Nevertheless, the cumulative periodogram check 
does not appear to bring any serious anomalies to light.

3 .5 .3 Overfitting
The technique of overfitting basically involves the addition 

of extra parameters to the identified model to cover directions 
in which discrepancies are most feared (see Box and Jenkins 
(1970, page 286)).

In the case under consideration it was decided to add a
second moving average seasonal parameter to the model (3.3.5) in
an-attempt to explain some of the correlation present in the
residuals at lag 2U, (r'' (2U) = -0.20). No effort was made toa
explain the correlation at lag 11, for the reasons given in 
section (3.3.2). The extended model to be entertained was thus

d-(|>B)ŵ  = 3 .5 .3

At this stage, the I.C.L. programme produced unsatisfactory 
estimates for ({), and 0^ - estimates which gave rise to a larger 
residual variance than that possessed by the fitted model (3.5<l). 
This unfortunate occurrence could probably be attributed to the 
choice of starting values mentioned in Section 3.^.3.

The problem was overcome by using a graphical technique 
similar to that employed in Section 3.4.2. The unconditional 
sum of squares S((j> ,0̂ ,̂0̂ ) was computed over a grid of values for 
(j>, 0^ and 0g. Figure 3.7 shows two dimensional contour diagrams
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FIGURE 3.7
Sum of squares surface for the model )a^

Shaded areas indicate non-invertibility region
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for the parameters 0^ and 0 ,̂ for fixed values of the third parameter
(j>. The fitted model was found to be

(l+0.50B)w^ = (l-0 .70Bl2-0 .10B24)â  3.5.I1

with
= 0.00523

The minimum value of the sum of squares agrees with that for 
the two parameter model (3.5*l)> up to three decimal places. In 
fact. Figure 3.7(b) confirms that it is not worthwhile including 
a third parameter in the model.

In summary, neither the residual analysis nor the overfitting 
suggested any gross deficiencies in the model (3.5.1). This model 
was therefore used to generate forecasts.

3.“6 Forecasting
Forecasts were evaluated using the difference equation approach 

described in Section 2.5. The fitted model (3.5.1) is re-written 
in terms of as

Zt-l + 0-^7 V 2 %t-12 - 0-53 %t-13 

- O.ltT ^ - 1 2  3.6 .1

and following the notation of section 2 .5 the forecast made at time 
t for some future value z is given by

f  W  = + 0-47 a  :t+a-2'

+ ̂ t W l 2> - 0-53 E[^ £ - 13!- 0-47 

+ 0-81 f^at+t-12] 3.6.2
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with
i) E[z^+j] = z^(j) , Ela^+j] = 0 for j = 1,2,3,...

for j = 0,1,2,...

As explained in Section 2.5 the accuracy of the point forecasts 
derived from equation (3.6.2) can be assessed by expressing the model
(3.5.1 ) as an infinite moving average

z^ = (l+^^B + + ......)â 3.6 .3

where the ^^'s are arrived at by equating the coefficients of various 
powers of B in the equation

(l+O.i+TB) (l-B) (l-BlZ) (i +i/^^B+iP^b 2 +..... ) = (l-0.8lBl2)

These ^ weights are quoted in Table 3.6.

Table 3.6 The 4; weights for the process (l+0.^7B)w, = (l-0.8lB^^)a. t U

j 1 2 3 k 5 6 7 8 9 10 11 12

0 .5U 0.75 0.65 0.70 0 .67 0.68 0.68 0.68 0.68 0.68 0.68 0.87

The ij; weights are used in computing the variance of the forecast errors 
for each lead time, following the theory of Section 2.5.

Forecasts made at May 1971* for lead times 1 to 12 are illustrated 
in Figure 3.8. These point forecasts together with associated tolerance 
limits are given in Table 3.7. The tolerance limits are taken to be 
±2x (estimated standard deviation of the forecast errors).

Recalling that the series z is defined from-t = -12 to 6k May 1Q71 corresponds to t = 64. *
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The forecasts shovn in Figure 3.8 and Table 3.7 are of course in
terins of the transformed variable More important are the forecasts

in terms of the original variable X^. Since = ^°^1Q ^t*
simplest forecast of X_̂ ^̂  made at time t is given by

3.6.%

Although the forecast errors in terms of the z^'s are assumed to 
have a zero mean, the forecast errors in terms of the X_̂ 's will not 
have a zero mean. Granger and Newbold (19T0) say that a "bias" is 
introduced by the transformation and that the forecast defined by 
equation (3.6.%) is not optimal. Further, the same authors show that 
if the errors e . = z - z (&) are normally distributed with zero 
mean and variance cfj then the percentage bias in the forecast lO^t^^^ 
is {exp[-^ (log^lO)^] - 1} X 100%. For "small" values of the
latter expression can be adequately replaced by the linear approximation 
{—^'(log^lO)^} X 100%. In our case estimates for were less than 
0.0% for k = 1,2,3,...,12 and so the approximate formula was employed.
The percentage bias was generally quite small and although it did become 
more pronounced as the lead time increased (about 8% for lead time 12), 
the re-transformed forecasts were computed using equation (3.6.%). These 
forecasts together with approximate tolerance limits are given in Table 
3.8 and plotted in Figure 3.9.

Table 3.8 Forecasts (with approximate tolerance limits) of X^^  ̂made 
at May 1971 for lead times 1-12

2 1 2 3 % 5 6 7 8 9 10 11 12

%6%(*) 286 %37 562 881 11%8 1221 897 889 535 %52 367 31%

T.L. ±103 ±l86 ±315 ±521 ±759 +899 ±721 ±735 ±%71 ±%12 ±336 ±300
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At this stage it should he pointed out that the forecasts given 
in Tahle 3.7 (and hence those in Table 3.8) were computed using the 

fitted model (3.5*1) with

° V + H ’ *• ° ....

AB, denoting the residual obtained by the method of back-forecasting, 
As described in Chatfield and Prothero (1973 a), the I.C.L. prograjmne 
generated forecasts by setting

a^2+%(zero), for I = 1,2,3,...,12

where a^2_j_̂ (zero) represents the residual at time 52 + &, initial 
vmknown residuals being taken to be zero as suggested by Box and 
Jenkins (1970, page 131). Using equation (3*5*2) a relationship can 
be established between the residuals a^ and a^(zero). For example 
when t = 58 we find that

a^g = a^g(zero) + (O.Bl)^ a_^ 3.6.5

and thus a quite considerable amount of weight is given to the back- 
forecasted residual a_^. If the-latter is non-zero then a substantial 
difference may exist between a^g and a^g(zero). In actual fact, in 
terms of the transformed observations, the forecasts computed using 
the residuals a^(zero) did not seem to differ greatly from those 
generated using the back-forecasted residuals. However, Figure 3.9 
shows that in terms of the original observations the difference between 
the two sets of forecasts is quite marked, particularly in the peaks of 
the data. It would therefore seem to be reasonable to recommend the 
use of back-forecasted residuals for forecasting purposes, especially 
when a transformation is involved.

All future forecasts computed in this thesis will be based on 
back-forecasted residuals.
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Visual inspection of the forecasts shown in Figure 3.9 suggests 
that these forecasts are much higher, particularly near the peak, 
th«n one could reasonably have expected. Since the immediate require­
ment of Company X was forecasts for lead times up to 12 months from 
May 1971, it was decided to seek some plausible alternatives to the 
fitted model (3.5.1).

3 .7  Some Alternative Models
Although the autocorrelation function of the series w^ led 

naturally to model (3.3.5), we have seen that the forecasts made for 
the lead times specifically required were intuitively very poor. An 
attempt was therefore made to find an alternative model which possessed
a similar autocorrelation function to the model (3*3.5) but which
produced more reasonable forecasts from May 1971.

Restricting ourselves to two-parameter models, there are four 
possible models capable of accounting for high autocorrelations 
at lags 1, 2, 11 and 12. These models are

(1 - (j)B)ŵ  = (1 - 8Bl2)a^ (A)

(1 - (|)B) (1 - $BlZ)w^ = a^ (B)

(1 - $B^^)w^ = (1 - 0B)a^ (C)

and w^ = (1 - 0B) (l - GBl2)a^ (D)

where in all cases w^ = V log^^ X^.
Hereafter these models will be referred to as model (A), model (B) , 

etc. Model (A) is of course the initially identified model.
The four models were compared from both a "fitting" point of view 

and a forecasting point of view. The results of these comparisons will 
now be discussed.
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3.7.1 Fitting the Models to the Data
The models (B), (c ) and (d ) were fitted to the whole data by exactly 

the same procedure as that described for model (A). The parameters in 
each model were estimated by the two techniques employed in Section 3.4. 
Again there was a good agreement between the two different estimates. 
Using the estimates derived by the non-linear least squares approach, the 
four fitted models were

(1 + 0.47B)w  ̂= (1 - 0.8lBl2)a^

(1 + 0.51B) (1 + 0.47Bl2)ŵ  = â

(1 + 0.56b12)v = (1 - 0.49B)a.

and w^ = (1 - 0.44b ) (l - 0.85Bl2)a^

while the estimated variances of the residuals (ô ) for each model are 
shown in Table 3.9

Table 3*9 Estimates of residual variance

Model

(A) 0.00523
(B) 0.00659

(c) 0.00694

(D) 0.00539

The residual variance is smallest for model (A), indicating that 
this model fits the data better than the 3 alternatives. However, it 
seems doubtful whether the differences between the four estimates are 
statistically or practically significant - certainly there appears to 
be no "significant" difference between the estimated variances of (A) 
and (d ) or between (B) and (C). The problem of comparing the fit of
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two models including the same number of parameters has not been discussed 
by Box and Jenkins (1970) although tests have been suggested by Whittle 
(1952) and Walker (1967).

The residuals were estimated by the method of back-forecasting and 
a visual inspection emphasised the similarities between models (A) and 
(D) and between models (B) and (c).

An examination of the autocorrelation functions of the residuals
for each model revealed that "large" autocorrelations at lags 7 and 
11 were present in all four cases. In addition, other significant 
autocorrelation coefficients occurred at lag 2k for models (B) and (c) 
and at lag 2 for model (D). The presence of these autocorrelations 
in the models (B), (c) and (d) seemed to justify the use of a model 
including a non-seasonal autoregressive parameter and a seasonal 
moving average parameter i.e. model (A).

As an overall test of the adequacy of the four models the Q-statistic 
was calculated in each case and the results are shown in Table 3.10.
The squared estimated autocorrelations were summed over lags 1 to 36.

Table 3.10 Values of Q

Model Q
(A) 29.07

(b ) 38.60

(c) 35.87

(D) 33.94

Model (a ) produced the smallest value for Q suggesting that the 
assumptions made about the residuals were rather more valid for this 
model than for models (B), (c ) and (D). Even so, none of the Q-values 
were significantly large when compared with the percentage points of 
the distribution with 34 degrees of freedom. Thus it was concluded



—69’“

that no serious inadequacies were present in any of the four models.

3.7 .2  Forecasting
Point forecasts were computed, using all four models, from May 

1971 for lead times 1 to 12. The forecasts resulting from models (a) 
and (d) and from models (B) and (c) were so similar that only those 
from model (A) and model (B) are shown in Figure 3.10. From a purely 
intuitive standpoint, the model (B) point forecasts look far more 
reasonable than those of model (A). Although the former are more 
satisfactory than the latter, the tolerance limits associated with 
the model (B) forecasts were found to be much wider than expected.
For example, the tolerance limits for lead time 3 are 452 ± 227.

An interesting point concerning the two sets of forecasts shown 
in Figure 3.10 is that the difference between the point forecasts 
from the 2 models is of a much higher order than that which can occur 
through errors in estimating the parameters within each model. As an 
example, the forecast for November 1971 resulting from model (B) is 
1,025 when (j) = -0.80 and $ = -0.20 and 978 when <f» = -O.7O and $ = -O.5O 
as compared with 992 using the estimated parameters (f) = -0.47 and 
$ = -0 .51. On the other hand, the corresponding forecast generated by 
model (a) is 1221.

Thus far only a simple visual comparison between the forecasts
made from just one origin has been attempted. A more general comparison
of the forecasting performance of each of the models was also undertaken,

moltLs OJ0k.sEach of the four modcl-c- 'Wcro fitted to the first 60 observations 
of the logged data z^, the parameters being estimated by the non-linear 
least squares technique. The resulting fitted models were
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(1 + 0.3TB)w^ = (1 - 0.80Bl2)a^

(1 + 0.2TB) (1 + 0.62b 12)w^ =

(1 + 0.6lBl2)w. = (1 - 0.28B)a,

and = (1 - 0.29B) (1 - O.T9Bl2)a^

The forecasting potential of the four models was assessed over 
the remaining 17 observations. The forecasts (in terms of the z^'s) 
were compared using the mean squared error function M.S.E(JI), where 
Z refers to the lead time. In our case the mean squared error was 
defined by

1 6U .
M.S.E(J.) -

Table 3.11 gives the above function for each model and for lead 
times 1 to 12.

Table 3.11 Mean squared errors, lead times 1-12

Lead Time Model (a ) Model (B) Model (C) Model (d )
1 0.0060 0.0105 0.0107 0.0067

2 0.0058 0.0096 0.0091 0.0056

3 0.0081 O.OlUl 0.0134 0.0083

U 0.0075 0.0124 0.0120 0.0077

5 0.0053 0.0118 0.0114 0.0058

6 0.0065 0.0117 0.0114 0.0069

7 0.0087 0.0137 0.0132 0.0091

8 0.0103 0.0146 0.0142 0.0111

9 0.0129 0.0143 0v0135 0.0131
10 0.0167 0.0202 0.0193 0.0176

11 0.0134 0.0127 0.0124 0.0l4l

12 0.0178 0.0229 0.0221 0.0189



It can be seen from Table 3.11 that model (A) gave rise to the 
smallest mean squared errors for all lead times except 2 and 11 when 
models (U) and (3) respectively were best. On account of the small 
sample over which the mean squared errors were computed (e.g. 6 
observations for lead time 12) it would be unwise to attach too much 
importance to these results. Nevertheless the similarities between 
models (A) and (d ) and between models (B) and (C), noted in section 
3.7'1, are again apparent.

As well as obtaining some quantitative measure of each model’s 
forecasting ability, a visual inspection of the individual forecasts 
over the final 17 observations was also carried out. Models (A) and 
(D) were found to yield very good forecasts from December I969, for 
all lead times, while the forecasts made from May 1970 were generally 
very poor. On the other hand, models (B) and (C) gave rather more 
consistent forecasts and seemed less dependent on the month from 
which the forecasts were being made.

3.8  Conclusions
The results obtained from the Box-Jenkins analysis described in 

this chapter were unfavourable. The main disappointment was the failure 
to achieve the original objective, namely that of finding a model 
capable of producing a satisfactory set of forecasts from May 1971* The 
initially identified model (A) generated point forecasts which were 
subjectively far too high and an alternative model was sought. Reasonable 
point forecasts were provided by the model (B) (and (c)) but the tolerance 
limits associated with these forecasts were exceptionally wide, especially 
for the higher lead times. A closer examination of the forecasting 
performance of the models (A) and (B) over the final 17 observations 
revealed that the magnitude of the forecast errors resulting from the 
former tended to depend on the month from which the forecasts were being 
made while for model (B) this was not so. All the evidence suggested



that model (B) would be a better proposition than model (A) although 
the fact that its selection would be on subjective grounds, rather 
than via the identification procedure recommended by Box and Jenkins 
(1970), was in itself unsatisfactory.

; Obviously the most immediate problem is to seek reasons why the 
identified model (A) failed to generate a reasonable set of forecasts 
from May 1971 and also why more accurate forecasts were generally 
derived from base points in the peak of the seasonal cycle rather than 
in the troughs. As mentioned in the conclusions of Chatfield and 
Prothero (1973 a) we suspected that the use of the logarithmic
transformation may have been at the root of these problems. For this
reason. Chapter 4 will be devoted to the subject of transformations 
with particular reference to the analysis described in this chapter.

Meanwhile, a number of interesting points arose during this 
case-study, regardless of the transformation employed.

The estimated autocorrelation function of the series w = V V z
_  t Xt

exhibited a "large" value at lag 11. This was rather unexpected and 
may have arisen to a certain extent through use of the differencing
operator V The possibility of autocorrelations being induced by
the differencing operation is one of the points looked at in Chapter 5 
which deals generally with the concept of differencing as a means of 
producing stationarity.

A rather disturbing feature of the analysis of the Company X 
data was that although the diagnostic checks did not reveal anything 
seriously wrong with the models (A), (B), (c) or (D), the models (A) 
and (d ) produced point forecasts from May 1971 which differed considerably 
from those generated by models (B) and (c). All of these models were 
based on the differencing operator V In Section 5*5 ve shall see
that a model based on the differencing operator will fit the data 
equally as well as model (A), yet the tolerance limits associated with 
the two models become quite different as the lead time increases,
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The similarities between models (A) and (D) and between models (B) 
and (C) were noted throughout Section 3.7* On reflection, the common 
parameter in models (A) and (D) was the moving average seasonal parameter 
while the autoregressive seasonal parameter was common to models (B) and 
(C). Thus the behaviour of each model tended to be determined by the 
seasonal parameter and the choice of a moving average or autoregressive 
non-seasonal parameter was relatively unimportant.

One further feature of the Box-Jenkins procedure apparent from 
the analysis described in this chapter is the fact that it is not 
obvious what autoregressive-moving average models actually tell us 
about the data in terms of the more familiar concepts of trend and 
seasonality. This point will be expanded in Chapter 9*
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CHAFTER 4 

TRANSFORMATIONS

4.1 Introduction
The Box-Jenkins forecasting procedure generates forecasts 

which are a linear function of current and past values of the 
variable being forecasted, i.e. it is a linear technique.
However, many time series encountered in practice possess non­
linear properties, e.g. monthly sales data often exhibit a 
multiplicative seasonal variation. When a non-linear model is 
appropriate. Box and Jenkins (1970, page 94) suggest transforming 
the data into a form to which a linear model may reasonably be 
fitted. Forecasts for future values of the transformed variable 
are computed using the techniques described in Chapter 2 and 
these are then transformed back in terms of the original variable.

The data analysed in Chapter 3 displayed a multiplicative 
seasonal effect and so in order to employ the Box-Jenkins procedure 
a non-linear transformation was first required. For reasons given 
in Section 3.2 and also in Chatfield and Prothero (1973a) a 
logarithmic transformation was applied to the original series.
In the discussion following the Chatfield-Prothero paper. Dr. G. 
Tunnicliffe Wilson suggested that this choice of transformation was 
the cause of some of the problems raised by the paper. In particular 
Dr. Wilson demonstrated that more satisfactory forecasts could be 
obtained by allowing for the wider range of transformations considered 
by Box and Cox (1964).

This chapter deals with the subject of transformations as 
applied in conjunction with the Box-Jenkins forecasting procedure.
In Section 4.2 the effect of making a logarithmic transformation.
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when confronted with data of a form similar to that analysed in 
Chapter 3, will he examined. The results obtained in Chapter 3 
based on a logarithmic transformation will be compared (in 
Section 4.3) with those arrived at by Dr. Wilson, using a 
different non-linear transformation. Section 4.4 will contain 
comments on some of the problems encountered when applying non­
linear transformations, in particular the class proposed by Box 
and Cox (1964), to time series. General comments and conclusions 
will be given in Section 4.5.

4.2 The Effect of a Logarithmic Transformation
In Section 3.2 it was observed that the sales of Company X 

possessed a roughly linear trend together with an approximate 
multiplicative seasonal variation. In order to examine the 
validity of employing a logarithmic transformation in such an 
instance, it will be assumed that a series X^ is composed of a 
purely deterministic linear trend and a multiplicative seasonal 
pattern with period 12. Thus we may write

X^ = (a + 3t) 4.2.1

where a, 3 and s. (j =1, 2, 2,...,12) are constants, the s.’s J J
representing the seasonal effect for each period and s^ = 

Alternatively, equation (4.2.1) may be re-written as

\ + u  ° + 6(t) u) U.2.2

for u = 0 , ± 1,± 2 , . . .  etc.
where a(t), 3(t) represent respectively the level of the series and 
the slope at time t. In terms of equation (4.2.1) a(t) = a + 3t 
(i.e. a(o) = a), and 3(t) = 3, for all t, so that equation (4.2.2)
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becomes

= { o(t) + 3u) , for u = 0,±1,±2,... etc 4.2.3

Now performing a logarithmic transformation on X_̂ ^̂  we get

\ + u  ' [(«(t) + Bu)

= log (a(t) + 3u) + log st+u

= log a(t) + log I + 3 u 
a(t) + s » t+u

= A(t) + log 1 + 3 u 
a(t) + s' t+u 4.2.4

where = log = log "(t).
"Although equation (4.2.4) now represents an additive model at 

time t, the trend component is no longer linear in u. In fact, for 

Iu| < î̂ g~' I we have

log f, . ?. ,1 f̂ 3 1 f  ̂ 1^ + a(t)U ' ^ t T ^ a(t) u + a(t )
I J I ■ J

U '

4.2.5

which will he approximately linear for smaller values of u only if the 
ratio (̂x{t) slso small, i.e. if the monthly growth rate is small. 
For the sales of Company X, approximate values for a(o) and 3 were 
100 and 5 respectively, representing an initial monthly growth rate of 
about 5%.

Figure 4.1(a) shows a purely deterministic series constructed 
with a = 100, 3 = 5, = 1.2, s^ = 0.8, s^ = 0.6, Sĵ = 0.4, s^ = 0.4,

'7Sg = 0.4, s^ = 0.8, Sq = 1.0, s^ = 1.4, s^Q = 1.8, s^^ = 1.8 and
s^2 = 1.4. The logarithmic transformation of this series is plotted
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in Figure U.l(b). This latter series appears to exhibit a non­
linear trend over the first twelve to eighteen months data but 
thereafter the trend seems to be fairly linear. This behaviour 
can be explained by referring to the logarithmic expansion 
(U.2.5). Initially, the ratio ^/a(t) takes the value (= 
so that the expansion (U.2.5) is valid only for [u|<20 and the 
linear approximation will hold good only for u = 1, 2 or 3 at the 
most, i.e. the initial trend is not even locally linear. At a

Qlater point in time, however, the ratio /a(t) will be much smaller.
For example, when t = hO, a(kO) = 300 and so ^/a(t) = (= .
Thus the logarithmic function can be expanded for |u]<60 and the 
trend will be approximately linear over a wider range of values of 

u .
Using the same values for a and Sj (j = 1, 2, 3,...,12) but with

3 = 1, a second series was generated and a logarithmic transformation
was again applied. These two series are shown in Figures U.2(a) and

6 1(b). On this occasion, /a(o) = |̂q q , the logarithmic expansion can 
be used for (u|<100 and the linear approximation will be quite reason­
able over a fair range of values for u. Thus, as can be seen from 
Figure U.2(b), the trend will be locally linear over the earlier part 
of the series as well as in the latter part.

We have seen that when a logarithmic transformation is applied 
to a series described by a model of the form (^.2.3) the resulting 
series may possess a good approximation to a linear trend. This 
leads naturally to the question: What form must the trend take in
the original model in order for a logarithmic transformation to 
produce a trend which is exactly linear? By assuming that the original 
model is
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FIGUPE U.2(a)
A purely deterministic series Riven by 

= (a+3t)s^, where a=100, 3=1,
s^=1 .2 , 82=0 .; s^=0.6, s^=O.U,
s^=O.U, Sg=O.U, s^=0.8, Sg=1.0, 
s^=l.U, s^q=1.8, s^^-1.8, s^^=l.h.
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60U82h 3612

FIGURE k.2(b)
The logarithmic transformation of the above series
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where represents the trend component at time t, it is easy to
show that T must take the form u

= Ce^ 4.2.7

where C and D are constants. This point was also made by 
Professor P.J. Harrison during the discussion on the paper by 
Chatfield and Prothero (l9T3a).

In conclusion, the effect of a logarithmic transformation on a 
series described by a linear trend and multiplicative seasonal 
variation depends on the monthly growth rate at any given time..
The study of a series similar to the Company X data revealed that 
while for the most part the transformed series possessed a local 
linear trend the same was not true for the early part of the series.
In the next section we shall see if this absence of local linearity 
in the first 12 - l8 months data was responsible for the poor fore­
casts obtained in Chapter 3.

4.3 Analysis of the Company X Data Usine a Different Transformation
As mentioned in Section 4.1, Wilson (1973) analysed the Company 

X data using a transformation of the type proposed by Box and Cox 
(1964). Such a transformation is designed to produce linearity in 
the transformed series. This alternative analysis will not be 
described in detail but some of the results derived from it will be 
compared with those generated in Chapter 3 using model (A).

Wilson (1973) assumed a model of a similar form to model (A) and 
the parameters, including the transformation parameter, were estimated 
from the first 60 observations. The resulting fitted model was

(1 + 0.3TB) = (1 - o.T9B^^)a^ U.3.1
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Re-estimating the parameters, using all of the data, hy the 
approach to he described in section 4,4 we found that the fitted 
model was

(1 + 0.50B) = (1 - 0.80B^2)a^ 4.3.2

The fitted model (4.3.2) is not quoted by Wilson (1973).
Setting in equation (4.3.2), the forecasts z^X&)

were computed from May 1971 for & = 1, 2, 3,...,12. The point 
forecasts X^(£) from May 1971 were obtained from

1
X^(&) = (%t(&))^'^^ 4.3.3

since the bias (see Granger and Newbold (1970)) involved in using 
such a forecast was found to be less than 3% for all lead times.
The latter forecasts are plotted in Figure 4.3 and tabulated together 
with tolerance limits in Table 4.1. Also shown in Figure 4.3 and 
Table 4.1 are the corresponding forecasts resulting from the fitted 
model (a ) (equation (3.5.1)) based on the logarithmic transformation 
employed in Chapter 3.
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Table U.l Forecasts Made At May 1971 For Lead Times 1 - 1 2

Lead Time Model (a ) Model (U.3.2)

1 286 ±103 275 ± 83

2 h37 ± 186 399 ± 125

3 562 ± 315 li93 ± 176

881 ± 521 73U ± 263

5 llhQ ± 759 929 ± 350

6 1221 ± 899 980 ± 393
7 897 ± 721 751 ± 3hk
8 889 ± 735 lk2 ± 363

9 535 ± ^71 U82 ± 276

10 U52 ± lil2 U16 ± 260

11 367 ± 336 352 ± 2k0
12 3lh ± 300 310 ± 2 2 8

It can be seen that overall the point forecasts generated 
by the model (U.3.2) differed considerably from those resulting from 
the model (A) fitted to the logarithmic transformation of the original 
data. This difference is most noted in the peaks of the seasonal 
cycle and rather less marked in the troughs.

Thus it seems that the departure from linearity in the early 
part of the logarithmic transformation of the Company X data was 
responsible for the poor forecasts produced by model (A). Wilson 
(l9T3) showed that by expressing model (a) in terms of past 
observations only, a considerable amount of weight was given to 
observations in the first years data. On the other hand, the point 
forecasts computed using the model (B) introduced in Section 3.7 
depended only on the most recent 26 observations where the assumption 
of linearity on the logarithmic scale was quite acceptable. This
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explains why model (b ) produced more reasonable point forecasts 
than model (A). However, the tolerance limits associated with 
model (B) were of a similar magnitude to those of model (A).
From Table U.l it can be seen that model (k.3.2) gives rise to 
much narrower tolerance limits than those resulting from model 
(a ). Hence the absence of linearity on the logarithmic scale 
at the start of the series appears to be the cause of the wide 
tolerance limits associated with the models (A) and (B) and the 
unreasonable point forecasts produced by the former.

The above comparison is based on just one set of forecasts 
from one particular origin. To achieve a more general comparison, 
the fitted model (k.3.1) and the model (A), fitted to the first 
60 observations, were used to generate forecasts over the remaining 
IT observations. The fact that the models were based on different 
transformations made a comparison rather difficult. However some 
measure of the relative forecasting potential of the two models was 
achieved by calculating the mean absolute forecast errors in the 
original variable X^. These quantities are given in Table U.2 for 
lead times 1 and 6 .

Table h,2 Mean Absolute Forecast Errors

Lead Time Model (a ) Model (4.3.1)

1 51.8 49.2

6 124.3 79.6

For both lead times quoted in Table h,2 the model (k.3.l) 
produced the smaller mean absolute forecast errors. The difference 
between the forecasting performance of the two models was small in 
the case of the lead time 1 forecasts but for lead time 6, model



(4.3.1) reduced the mean absolute error by about a third. From 
this it can be concluded that the choice of transformation is not 
too important with respect to the one step ahead forecasts but for 
higher lead times the consequences of any lack of linearity in the 
transformed series become progressively more serious.

4.4 The Use of Non-linear Transformations in Time Series Analysis 
The transformation employed by Wilson (l9T3) in the model

(4.3.1) is taken from the set of non-linear transformations discussed 
by Box and Cox (1964). The general non-linear transformation takes 
the form

z = t
(X + m)^ X 7̂ 0
* 4.4.1

log (X.J. + m) X = 0

where the parameter m is chosen so that X^ + m is positive for all t 
For simplicity, it will be assumed that X^ is positive for all t so 
that equation (4.4.1) can be replaced by

x # o
z = € 4.4.2

^ log X^ X = 0

Now in choosing a suitable value for the transformation parameter 
X there are several approaches which could be adopted.

Judging by some of the published Box-Jenkins analyses, e.g.
Box and Jenkins (l9T0), M^kridakis and Wheelwright (1972), Tomasek 
(1972), it would appear that a subjective choice of transformation 
can often be made (usually X = 0 or X = l). Alternatively, X can 
be estimated from the data using the techniques described in Box and 
Cox (1964). The essential features of this approach are now out­
lined.
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The vector X' =  X^) is used
to denote the N observations which compose the non-stationary, 
seasonal time series X^. A transfoimation of the form defined 
by equation (4.4.2) is to be applied to the series X^, the 
observations of the transformed series constituting the vector

= (=-K+u+l' *=:"*ed that
can be described by the general multiplicative seasonal model
(2 .6 .5), or

4 (B) 4 (B®)w. = 0^(B) 0n(B®)a. 4.4.3P p t q y t

where w^ (t = 1,2,3,...,n) represents the stationary series 
resulting from differencing the appropriate number of times.
The vector ^  = (^, denotes the observations of w^
while the (p + P) x 1 vector ^ and the (q + Q) x 1 vector Q_
refer to the respective sets of autoregressive and moving average
parameters.

Following the approach of Box and Cox (1964) the likelihood 
associated with the X^s for a fixed value of X is

where L(^,^,a^|_z) is the likelihood associated with the zeries ẑ  

and J is the Jacobian of the transformation from the to the X^s
For X ^ 0,
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J = XXX-1—N+n+l 
XXx-1-W+n+2 

XXx-1-N+n+3

o
0

XXx-1n

t=-N+n+l
4.4.5

so that equation (4.4.4) becomes

n

t=-N+n+l
4.4.6

and the log-likelihood is

n
+ (X-1) E log X 4.4.7 

t=-N+n+l

where &(_̂ ,8̂ ,â |̂ ) = log[ L(^,£,a^|^)] .
Now using the result quoted hy Box and Jenkins (1970, page 273),

n
L(^,^,o 12) = (27t a2)  ̂G(i,^)e *̂a 4.4.8

a
and

“ "f log + log G(^,£) - 2̂ ^(i,l) 4.4.9

where G(̂ ,9_) is some function of the parameters ^ and ̂  and

n
4.4.10

t = - o o
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For moderate or large values of n the term log G(^,^) is 
unimportant compared with the other quantities in the expression 
(4.4.9) and so for most practical purposes substitution for 

in equation (4.4.7) results in

n
+ N log |X| + (X-1) E log X 4.4.11

t=-N+n+l

Differentiating ' (̂ ĵ jCr̂ I X) partially with respect to and 
equating to zero leads to the maximum likelihood estimate for a

n

(see Box and Jenkins (1970, page 277)) where S^(^,^) is the minimum 
unconditional sum of squares for a fixed value of X. Thus the value 
of the log-likelihood maximised with respect to 0 and is, 
apart from a constant, given approximately by

ID = -§ios s^d.e)
max ̂  — a'— 2 n

n
+ N log [X| + (X-1) E log X 4.4.13

t=-N+n+l

However, Dr. Wilson has pointed out that the form (4.4.13) is
affected by scaling. If all the terms of X^ are multiplied by some-
fixed constant K, then all the terms ofz^ are multiplied by K^.
Consequently the first term of & ' (è,0,a |x) is affected by -nX log Kmax — a' —
and the last term by N(X-l) log K leaving a net effect (-nX + NX - N) 
log K and so the maximised log-likelihood (4.4.13) is affected by 
scaling. The reason for this is that the likelihood (4.4.8) is, 
strictly speaking, associated with the series of n values
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rather than with the series of N values ^-N+n+2’
z _ M + n + g ' ' T h u s  the likelihood corresponding to the series

^-N+n+1’ ^-N+n+2’ ^-N+n+3’ '""'^n

— “   1 ̂ g 0 ̂
 ̂G(̂ ,£)e ^

although since the unconditional sum of squares is computed
via the n values w^jW^jW^,... ,w^ the estimate of is still given 
hy equation (4.4.12). Hence the first term in the expression 
(4.4.13) should include the factor ^ and not i.e.

, N

n
+ N log |X| + (X-1) E log X 4.4.14

t=-N+n+l

The form (4.4.14) is now unaffected hy scaling.
n

Similarly when X = 0, J = n ^  and
tt=-N+n+l

" -2l°S „

n
E log X 4.4.15

t=-N+n+l

By plotting (_̂ ,8_,n |x) against X over a range of values for m&X 2L
X, an estimate of the transformation parameter can he obtained. .
The estimate corresponds to the value of X for which the function
&' (6,0,a |x) is maximised, max ’ a' —

An example of the above procedure is given by Wilson (1973) 
who obtained a value of X = 0.34 using the first 6o observations of 
the Company X data and assuming a model of order (l,l,0) x (0,1,l)^^ 

A closer examination of the use of the methods of Box and Cox
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(1964) in time series analyses in general and in conjunction with 
the Box-Jenkins forecasting procedure in particular yielded a 
number of interesting points. These will now be discussed.

In estimating the transformation parameter X, we have seen 
that the form of the model must be identified before the log- 
likelihood function can be computed. However, in identifying 
the order of an A.R.I.M.A. model, use is made of the sample auto­
correlation function. It is not clear whether the sample auto­
correlation function of the untransformed data or of some other 
specific transformation of the data (e.g. the logarithmic trans­
formation in the case of the Company X data) should be examined.
That the sample autocorrelation function is not invariant under 
transformation can be seen from Table 4.3 where estimated auto­
correlations of the differenced Company X data w^(=VV^2 X^) are 
shown for lags 1 - 1 2  and for values of X between 0 and 1. This 
point has been noted by Chatfield and Prothero (l9T3a) in replying 
to the discussion on the original paper.

In Chapter 3 we saw that when X =0, an inspection of the sample 
autocorrelation of w^ suggested the model (3.3.5) (model (A)). For 
X = 1, the sample autocorrelation function (see Table 4.3 for lags 
1 -12) leads to the tentative model

(l-<|)B)ŵ  = (l-8B)(l-GBl2)a^ 4.4.16

Thus, for a fixed degree of differencing, one strategy would be 
to calculate the sample autocorrelation function over a range of 
values for X and then to assume the most general identified model when 
estimating X. This solution would of course not apply to situations 
where the identified model for one value of X is based on a different 
degree of differencing to the model implied for another value of X.
It is however possible that the estimate of the transformation parameter
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Tàble U.3 Sample autocorrelation functions for differenced Company 

X data ̂ ^22^t' & = 0 to 1, lags 1-12.

X 1 2 3 4 5 6 7 8 9 10 11 12

0 -0.58 0.36 -0.22 0.05 -0.05 0.10 -0.17 -0.02 0.10 -0.26 0.44 -0.36

0.1 -0.59 0.36 -0.22 0.06 -0.06 0.11 -0.17 -0.02 0.11 -0.26 0.44 -0.36

0.2 -0 .6o 0.36 -0.22 0.06 -0.07 0.11 -0.17 -0.02 0.11 -0.26 0.44 -0.35
0.3 -0.59 0.36 -0.22 0.06 -0.09 0.11 -0.17 -0.02 0.12 -0.26 0.45 -0.34

0.4 -0.59 0.35 -0.22 0.06 -0.10 0.11 -0.17 -0.01 0.12 -0.25 0.45 -0.33
0.5 -0.57 0.35 -0.22 0.06 -0.11 0.11 -0.17 -0.01 0.12 -0.24 0.45 -0.32

0.6 -0.56 0.34 -0.22 0.05 -0.13 0.11 -0.18 O'. 00 0.12 -0.23 0.45 -0.31
0.7 -0.53 0.33 -0.22 0.05 -0.l4 0.11 -0.19 0 .00 0.12 -0.22 0 .45 -0.29

0.8 -0.51 0.32 -0.23 0.04 -0.15 0.11 -0.19 0.00 0.12 -0.20 0.45 -0.27

0.9 -0.48 0.31 -0.24 0.02 -0.17 0.11 -0.20 0.00 0.12 -0.18 0.45 -0,25

1.0 -0.44 0.30 -0.24 0.01 -0.18 0.10 -0.21 0.00 0.11 -0 .17 0.45 -0.23

will not be greatly affected by the choice of model. To look at this 
possibility further, the function was calculated for
three different A.R.I.M.A. models. The three models entertained were

(1-4B) VV^2 = (l-0B*2)a^ 4.4.17

and
(1-4^B - 4gB̂ ) X  ̂= (1-0̂ b12 - 02B2‘*)â

4.4.18

4.4.19

Models (4.4.17) and (4.4.18) possess the same forms as models 
(a ) and (B) introduced in Section 3.7. Model (4.4.17) was chosen 
because it was the initially identified model when X = 0 (see Chapter 
3) and model (4.4.18) because it produced quite reasonable point fore­
casts from May 1971 when X = 0 (again see Chapter 3). The model
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(4.4.19) was selected because it is based on a different 
differencing operator to the other two. A model of the form
(4 .4 .19) was suggested by Wilson (1973) as being suitable for 
describing the untransformed data, i.e. X = 1.

The log-likelihood functions for each of the three models, 
computed from the whole of the data, are plotted in Figure 4.4.
Also indicated are the point estimates for X and 95^ confidence 
intervals for X, obtained using the method set out in Box and 
Cox (1964).

The most striking feature of Figure 4.4 is that the point 
estimates for X are very close to one another (all lying between 
0.2 and 0.3) suggesting that the transformation is not influenced 
to any great extent by the choice of model. Although the point 
estimates are in close agreement, the confidence intervals for 
these three estimates are more variable. The log-likelihood 
function for the model (4.4.17) possesses a much sharper maximum 
than the log-likelihoods associated with the other two models, 
indicating a more precise point estimate. In fact, the 95% 
confidence interval for X in the case of model (4.4.17) ranges 
from 0.09 to 0.36 while for model (4.4.18) it is from 0.07 to 
0.46 and for model (4.4.19) from 0.01 to 0.52. It can also be 
seen from Figure 4.4 that a value of X = 0, i.e. a*logarithmic 
transformation, is rejected with rather more confidence for model 
(4 .4 .17) than for model (4.4.18) which explains why, in Chapter 3, 
model (B) proved more acceptable than model (A). Finally, for 
model (4 .4 .19) a logarithmic transformation is only just rejected 
at the 5% level of significance. This is rather surprising in view 
of the fact that Wilson (1973) fitted a model of this form to the 
untransformed data. More comments on the use of this model will 
be made in Section 4.5.
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We nov look briefly at how a relatively small number of 
observations can influence the estimation of a transformation 
parameter in the field of time series analysis. Again for 
illustrative purposes reference will be made to the data of 
Company X.

Fitting the model (U.U.17) to the first 5 years data (60 

observations), Wilson (l9T3) estimated X to be 0.3^ and a 
logarithmic transformation was rejected at the 9% level. As can 
be seen from Figure U.U, on fitting the same model to all 77 
observations it was found that X = 0.23 and although X = 0 was
again rejected, a value of X = 0.1 was just inside the 95#
confidence interval. Thus it may well be that as more observ­
ations become available a logarithmic transformation will prove 
acceptable - a conclusion arrived at in Section U.2. Further
confirmation of the theory developed in Section U.2 can be
obtained by fitting the model (U.U.17) to the final 65 observations 
of the Company X data, i.e. by excluding the first years data. An 
estimate of X was found to be O.I6 and the 95# confidence interval 
for X included the logarithmic transformation.

Just how critical the estimation of a transformation parameter 
can be, is emphasised by the fact that the value of X estimated from 
the first 60 observations (assuming model (^.k.17)) is only just 
within the 95# confidence interval for X obtained using all the data.

General Summary and Conclusions
In view of some of the results obtained in this chapter it is 

worth re-stating the reasons why a logarithmic transformation was 
applied to the Company X data in Chapter 3. An inspection of the 
original data revealed that the series possessed an approximate 
linear trend and a multiplicative seasonal variation so that a 
non-linear transformation was called for. Wishing, if possible.
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to avoid the added complications involved in estimating a 
transformation hy the methods of Box and Cox (196%), it was 
tentatively decided to employ a logarithmic transformation.
Further, reference to Box and Jenkins (1970, page 9%) suggested 
that for "the sales of a recently introduced commodity" where 
the "sales volume was increasing at a rapid rate and that it 
was the percentage fluctuations which showed non-stationary 
stability" "it would clearly be sensible to analyse the logarithm 
of sales".

A graph of the transformed series (Figure 3«2) showed that 
the latter exhibited an approximate linear trend and additive 
seasonal component, although the trou^ in the first years data 
was rather low. The logarithms of the monthly sales were 
plotted individually for each month (Figure 3.3) and the resulting 
lines were found to be roughly linear and parallel. Thus at this 
stage there seemed to be no obvious reason why any other transform­
ation should be contemplated.

However, the forecasts generated by the model (A) based on thé 
logarithmic transformation compared unfavourably with those generated 
by Wilson (1973) from the same model using a different transformation. 
This led naturally to the conclusion that the logarithmic transformation 
was responsible for the disappointing results obtained in Chapter 3.
In order to find out why this should be so, a logarithmic transform­
ation was applied to a series exhibiting a deterministic linear trend 
and multiplicative seasonal variation, i.e. a series similar to the- 
Company X data. The conclusion arrived at was that the transformed 
series will generally possess a local non-linear trend. Nevertheless, 
provided the monthly growth rate is small, the assumption of a local 
linear trend will be valid to a good approximation. In the case of 
the Company X data, only in the first 12 - l8 months was the growth 
rate too high to justify this assumption.
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The effect of the initial absence of linearity in the 
transformed series on the derived forecasts has been illustrated 
in Section %.3 where the forecasting performance of the same 
model based on a logarithmic transformation and on a transform­
ation estimated from the data by the methods of Box and Cox (196%) 
was assessed. Generally speaking, the one step ahead forecasts 
were not greatly affected by the transformation employed but for 
higher lead times the choice of transformation became more critical.

Although the Box-Cox transformations are specifically designed 
to produce linearity in the transformed series, their use does 
present certain difficulties. The estimation of the transformation 
parameter is a rather long, complicated procedure which necessitates 
the identication of an A.R.I.M.A. model before any estimate can be 
computed. This latter point in itself creates a problem since the 
main identification tool, the sample autocorrelation function, is 
not invariant under transformations. In the case of the Company X 
data it was however found that the estimate of the transformation 
parameter was not greatly altered by assuming different models.

A cruder method of estimating the transformation parameter has 
been used by Box and Jenkins (l9T3). This involves an inefficient 
trend estimate (as pointed out by Chat field and Prothero ( 1973b)) 
and so the parameter estimate may tend to be rather unreliable.

Apart from the problems involved in estimating X, two other 
points require comment. Firstly, the use of a transformation of 
the form ^ = X^ makes interpretation of the fitted A.R.I.M.A. model 
in terms of the original data even more difficult. Secondly, for 
short or medium length series the estimate of X can change 
considerably over short periods of time so that the need for re­
estimation should always be considered.

In the light of the above problems and criticisms it is perhaps 
pertinent to seek some alternative to employing a non-linear trans­
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formation* One possibility is an approach similar to that
adopted by Wilson (l9T3) in proposing the use of the seasonal
A.R.I.M.A. model of order (2,0,0) x (0,2,2)^^ for describing the
Company X data. Although Wilson (1973) fitted this model to the
untransformed data, the Box-Cox estimate of the transformation 

*
parameter was X = 0.26. Nevertheless, the log-likelihood function 
associated with this model is flatter than those for the other two 
models shown in Figure U.% and in general it would seem to be 
advisable to avoid the complications involved in employing a non­
linear transformation by applying a suitable choice of differencing 

tKe.
operator tountransformed observations, wherever such a choice is 
possible.
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CHAPTER 5 

DIFFERENCING

5.1 Introduction
An important step at the identification stage of the Box-Jenkins 

forecasting procedure involves the selection of the degree of differen­
cing which will reduce some suitably transformed non-stationary series 

to a stationary series w^. Indeed, according to Akaike (1973),
"when the variation of the systematic part, i.e. the trend and seasona­
lity, is dominant the effectiveness of the A.R.I.M.A. model is mainly 
determined by the initial simple differencing operations and not by the 
time-rconsuming A.R.M.A. model fitting to the stationary part".

In this chapter we will discuss the choice of the differencing 
operator and then examine some of the consequences of using differencing 
as a means of achieving stationarity. We will concentrate on seasonal 
time series and for convenience the seasonal cycle is assumed to have 
a period 12.

Section 5*2 will show how classical (or traditional) time series 
models can often be utilised to suggest the appropriate degree of 
differencing. This approach could be considered to be complementary 
to the usual methods advocated by Box and Jenkins (1970, Chapter 6).
The latter will also be outlined in Section 5.2.

The desirability of keeping track of the variance of the differen­
ced series for successive degrees of differencing will be proposed in 
Section 5.3 while the effect of the differencing operation on the 
error components in the classical model will be considered in Section 5.%<

In section 5.5 ve will see how in some cases the choice of differen­
cing operator can influence the tolerance limits attached to a set of 
point forecasts.

The conclusions drawn from Sections 5.2 to 5.5 will be summarised
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in Section 5.6.

5.2 Selecting the Degree of Differencing
Let us begin this section by describing the approach to selecting 

the degree of differencing necessary to produce stationarity, recommen­
ded by Box and Jenkins (1970, Chapter 6) and outlined in Section 2.%.1.

5.2.1 The Box-Jenkins Approach
Box and Jenkins (1970, page 75) show that for a non-seasonal, sta­

tionary mixed autoregressive moving average process of order (p,q), the 
theoretical autocorrelation function p(k) satisfies the difference 
equation

p(k) - <})̂ p(k-l) - (j>2 p(k-2) - .... - p(k-p) = 0 

for k ^  q + 1, or

4p(B) p(k) = 0 5.2.1

PLetting <j) (B) =11 (l - G.B), then providing the roots G. are 
P i=l  ̂ ^

distinct, equation (5.2.1) has a solution of the form

p(k) = A^G^ + A_G^ + A_G^ + --- + A G^ 5.2.2JLl d d j O P P

for k > q - p.

where the A^'s (i = l,2,3,...,p) are constants.
In order for the stationarity condition defined by Box and Jenkins 

(1973, page 7%) to be satisfied, the roots G^ (i = 1,2,3,...,p) must lie 
inside the unit circle. Thus, in the case of a stationary model when 
none of the r o o t s c l o s e  to the boundary of the unit circle, the 
function p(k) will die out quickly for moderate and large values of k. 
However, if one of the roots, e.g. G^, approaches unity then Box and
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Jenkins (1970, page 37%) show that p(k) will not die out quickly.
Failure of the autocorrleation function to die out quickly would there­
fore tend to indicate the presence of a root close to unity, i.e. 
non-stationarity.

In practice of course the theoretical autocorrelation function 
would not he known and so the behaviour of the sample autocorrelation 
function would be examined. The Box-Jenkins approach is therefore to 
inspect the sample autocorrelation function for successive differences 
of the non-stationary series, until stationarity is indicated by the 
behaviour mentioned in the previous paragraph.

For a seasonal process ẑ , the procedure is similar to that 
described above except that the sample autocorrelation function of 
the series is examined for values of d = 0,1,2,..., D = 0,1,2,...
Non-stationarity with respect to the seasonal period will be characteri­
sed by the failure of the autocorrelations at lags 12,2%,36,..., to 
die out quickly.

5.2.2 The Use of Classical Time Series Models
The degree of differencing necessary to produce stationarity 

can often be decided by assuming that the series in question can be 
decomposed into three components: a trend (possibly local), a seasonal
component and an error term. The three usual forms of this so called 
classical representation are given by Kendall (1973, page 56) but we 
shall confine ourselves to the two cases in which the error (or unpredic­
table) component is additive with respect to the other two components. 
Algebraically, it will be assumed that a series can be described by 
the model

5.2.3

where d^ is a deterministic component composed of trend and seasonality
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and is the error component (not generally independent)
If the variation associated with the deterministic part is dominant 

then the differencing operator capable of reducing to a stationary 
series would be one which removes the deterministic components from 
X^ i.e. one which renders

=  0
or (y 5.2.%

where C is a constant.
In practice, the approximate form of d^ must be deduced by 

inspecting the series under consideration. Firstly, one must decide 
whether the seasonal component is additive (the amplitude of the 
seasonal cycle is independent of the level of the series) or multi­
plicative (the amplitude of the seasonal cycle increases proportionally 
with the level of the series). Secondly, an approximate trend must be 
specified.

We shall now look more closely at two particular forms of 
df, viz

d̂  = a + Bt + 5.2.5

and

d^ = (a + Bt)s^ 5*2.6

where a, B and s. (j = 1,2,3,...,12) are constants, the s.'s represen- J J

ting the seasonal effects with s^ = ^t-12 *
Equation (5.2.5) describes a process with a linear trend and 

additive seasonal component while equation (5*2.6) describes a linear 
trend and multiplicative seasonal component.
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a) Additive Trend and Seasonals
Simple differencing of the equation (5.2.5) results in

V d; = e +

= 6 + 5.2.7

with s; = = 3^-12

Thus, the linear trend is removed but a seasonal component s^ 
with period 12 still remains. On the other hand the seasonal operator 

removes both the linear term in the trend and the seasonal 
component since

Vi2 \  = 123 5.2.

The constant term 123 can be removed, if required, by using
the simple differencing operator V in conjunction with the seasonal
operator. However this is not essential since the stationary A.R.M.A,
models can be fitted to series with constant or zero means.

In general, for a polynomial trend of order r, the operator
will completely remove both trend and seasonal components while 

r—1the operator V will produce a trend-free, deseasonalised series
with a non-zero mean.

b) Multiplicative Trend and Seasonals
Although the model (5.2.6) is non-linear in terms of trend and 

seasonality, Wilson (1973) has shown that a suitable choice of differen­
cing operator will obliterate the deterministic component d^, thus 
avoiding the use of non-linear transformations of the form dealt with 
in Chapter k.

Simple differencing of the model (5-2.6) gives
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Vd̂ - = (a + 3t)(s^ - s^_^) + 3s^_^  ̂ 5.2.9

and obviously this does not produce the desired effect. Turning to 
the seasonal operator we get

^12^t ^ ®t-12
= 123 5.2.10

and so the trend component is removed, leaving just a seasonal component 
Re-employment of the operator leads to

 °  5.2.11

r+1In the case of a polynomial trend of order r, the operator 
would be the appropriate choice.

It is interesting to note that the operator will also remove 
a linear trend and additive seasonal component which would explain 
why, in Section %.%, the log-likelihood function for the model based 
on was found to be flatter than those of the models based on the 
operator •

Summarising, it would appear that for the additive model (5.2.5) 
either of the operators be acceptable. It should however
be remembered that in the above discussion the error structure has not 
been considered and so the appropriate choice may be suggested by an 
examination of the sample autocorrelation functions of and
following the arguments of Section 5*2.1.

The results for the multiplicative model (5*2.6) are probably more 
useful than those for the additive model (5*2.5) since the identifica­
tion of the operator prove extremely difficult using the Box-
Jenkins approach described in Section 5*2.1. This is especially true 
for shorter series.
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5.3 The Effect of Differencing on the Variance
In addition to inspecting the sample autocorrelation function 

(as discussed in Section 5*2.1) for various differences of the series 
, we will demonstrate that it is also useful to keep track of the 

variance of the differenced series at each stage.
Let us suppose that w^ is a stationary series with variance a^. 

Taking first differences of w^ would yield

= ''t ■ "t-i 5.3.1

and the variance of the differenced series is given by

V [Vw ] = 2al (1 - p (l)) 5.3.2

where p (k) is the k^^ autocorrelation coefficient of the series w^, w t
Generally, for d degrees of differencing, the appropriate 

variance is

VlVWtl = 21
- 2

2d
a-1

5.3.3

Setting w^ = V w^ and differencing a further D times with respect 
to the seasonal period results in

V [ V - 2 v ; i  = a 2 , 2D
D 2 P^,(12) 20""

D-1 + 2 p ,(2i() w'
2D
D-2

5.3.%

where and p^,(k) are respectively the variance and autocorrelation 
function of the series w^.

In identifying the degree of differencing in practice, the above 
results could be utilised in the following way.
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For some particular degree of differencing, the sample variance

s^ and the sample autocorrleation function r (k) of the differenced w V
series v, are calculated. Replacing and p (k) hy s^ and r (k) in t w w w w
equation (5*3.3) (similarly for equation (5*3*%)), estimates of the 
variances for further differences of can be derived. These 
estimates can be compared with the corresponding sample variances.
If w^ is non-stationary, the equations (5*3*3) and (5*3*%) will be 
invalid and the agreement between the two quantities will be poor.
On the other hand, close agreements between the two different estimates 
would tend to support the assumption that w^ is stationary.

To illustrate the above approach, reference will be made to 
various differences of the logarithmic transformation of the Company X 
data. This particular transformation is considered because the 
initial model in Chapter 3 was identified on the basis of the logged 
data and also because even when some other transformation is to be 
entertained the appropriate model must be assumed (from some form of 
the data) before the transformation parameter can be estimated (see 
Section %.%). The transformed series will be denoted by and 
Table 5*1 shows the estimated variance of w^ = V^V^z^ for several 
values of d and D.

Table 5*1
,d_DEstimated Variance of w^ = V V z^ for various values of d,D

Series Estimated Variance

0.0968

0.0200

0.0259
v \ 0.0806

0.0101

0.0262

0.0112
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We shall first assume that the series is stationary.
Using equation (5*3.2) with and p (l) replaced hy their sampleV V*
estimates, an estimate of the variance of Vw^ is given by

V [Vw^] = 2 X 0.0200 (l - 0.35)
= 0.0260

This agrees closely with the sample variance of V^z^ (0.0259, 
see Table 5*1), suggesting that Vz^ is stationary with respect to 
trend. However, let us now examine the effect of differencing Vz^ 
further with respect to seasonality. In this case we have

V [V^gŴ ] = 2 X 0.0200 (1 - 0 .59)
= 0 .016%

which does not compare favourably with the sample variance of VV^^z^ 
(0 .0112). From this we conclude that Vz^ is non-stationary with 
regard to seasonality.

Let us now assume that the series w_̂ = V^^z^ is stationary.
On this occasion simple differencing results in

V [Vw^]= 2 X 0.0101 (1 - 0.%5) 
= 0.0111

agreeing closely with the sample variance of VV^^z^ (0.0112). Differen­
cing over the seasonal period leads to

V [ V̂ gW,̂ ] = 2 X 0.0101 (1 + 0 .26)

= 0.0255

Again the agreement with the sample variance of V^^z^ (0.0262) 
is good, so that the variance of V^^z^ behaves like that of a . 
stationary series. It is recalled that in Section 5*2.2 we concluded
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that the operator prove acceptable even though the inspection
of the sample autocorrelation function (see Table 3.2) suggested the 
use of VV^g. The employment of the operator L̂s opposed to 
will be looked"at further in Sections 5*% and 5*5*

5.% Autocorrelations Introduced by Differencing

In this section we consider once again the model (5*2.3) in which 

the deterministic component is composed of a linear trend and an 

additive seasonal effect5 i.e. the model

= a + 3t + ŝ  + n^ 5*%.l

where a, 3, and n^ have been defined in Section 5*2.2. Also in 
Section 5*2,2, we discussed the choice of differencing operator capable 
of removing the deterministic component from the series X^. It was 
found that both the operators ^^12 the trend and
seasonal components although in the case of the former a constant term 
still remained. We now look at the effect that the choice of differen­
cing operator has on the error component n^, for‘both stationary and 
non-stationary structures.

The following stationary error structures will be considered:

i) "t =
ii) "t = s  - G%t-1

iii) “t = ^  - ®^-12

where a a._-, , a  is a white noise process with variance .U u -L w ^ Ü

Table 5.2 shows the autocorrelation coefficients for lags 1-12 of 
the series ^^12^t the error structure takes the above
three forms.



-109-

Table 5.2

Theoretical autocorrelation coefficients (lags 1-12) for and VV^^X^

^  ^  " Gat_i - ®S-12
Lag

^12^t ?7l2%t ?12%t ??12%t "l2^t ’^12^

1 0 . 1 8 (i+eZ) 0 1s (1+8^) 2(1+8+02) 2

0 0 0 8 0 02 2(1+8+82)
3 0 0 0 0 0 0
k 0 0 0 0 0 0

5 0 0 0 0 0 0
6 0 0 0 0 0 0

T 0 0 0 0 0 0
8 0 0 0 0 0 0

9 0 0 0 0 0 0
10 0 0 0 8 . 0 0%(1+8+02)

11 0 1 0 (1+8)2 0 (1+0)24 2 (.1+6̂ ) 4(1+8+82) 4(1+0+02)
12 1 1 1 1 (1+8)2 (1+0)2-2 “2 2̂ - 2 ■ 2Cl+0+0^) "2(1+0+02)

It can he seen from the above table that for the three stationary 
error structures considered, an A.R.M.A. model based on the operator VV 
would include more moving average parameters than one based on the 
operator . For example, when n^ = a^, the appropriate model based 
on VV̂ gX_̂  would be

12

5.It.2

while the model based on V̂ X̂_̂  would be

5.%,3
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where C is a constant which is generally easier to estimate than 
an extra moving average parameter (see Section 7.4).

A similar situation arises when' autoregressive error structures 
are assumed. However, let us now look at the following three simple 
cases when the errors are non-stationary.

i) Vrit =
ii)
iii)

The autocorrelation coefficients (lags 1-12) for ^^2^ ^^12^t
in these three instances are given in Table 5.3.

Table 5.3. Theoretical autocorrelation coefficients (lags 1-12) 
for and 7V^gX^

Lag
^12^t 77l2

V-, VV, V, _X_ VV X V _x VV X12 t 12 t 12 t 12 t 12 t 12 t

1 11/12 0 0 - i N 0
2 10/12 0 0 0 0 0
3 9/12 0 0 0

N
0

4 8/12 0 0 0 S 0
5 7/12 0 0 0 T 0
6 6/12 0 0 0

A
T 0

7 5/12 0 0 0 I 0
8 4/12 0 0 0 0 0
9 3/12 0 0 0

N
A 0

10 2/12 0 0 0 , R 0
11 1/12 0 0 0 Y , 0
12 0 0 0 0
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For the non-stationary error structure Vn^ = a^, both 

and VV^gX^ are stationary processes. From Table 5*3 we see however 

that VV^gX^ possesses a much simpler autocorrelation function than 

hence a model based on the operator would be easier

to identify. In the case of the error structure V^2^t ~ ^t opera­

tor would present less difficulties than the operator but when

the errors follow the process VV n = a the series V X is non-*t "t J_£- t
stationary and so VV^^ must be used.

Thus for the model (5*4.1) it is not possible to draw any general 

conclusions regarding the appropriate choice of differencing operator. 

In practice, the structure of the errors n^ would not be known although 

Box and Newbold (l9Tl) do suggest that in the case of economic models 

the errors might best be represented by "some stable non-stationary 

noise model". Even so, as we have seen in the previous paragraph, the 

best choice of differencing operator still depends to what degree the 

errors are non-stationary.

5.5 The Influence of the Degree of Differencing on Tolerance Limits 

In the previous three sections much emphasis has been placed on 

the identification of the degree of differencing necessary to induce 

stationarity in a time series. We now look at a facet of the Box- 

Jenkins procedure on which the choice of differencing operator can have 

a considerable effect.

Using the approach described in Sections 2.4.1 and 5*2.1 an 

A.R.I.M.A. model of the form

(1 - p )  VV^2^t = (1 - 0Bl2)a^ 5*5.1

was identified for the Company X data, where (see Section

4.3). As we have seen in Sections 5.2, 5*3 and 5*4 there is a case for 

fitting a model to the transformed data using only the seasonal differen­

cing operator V^^. This being so, the identified model obtained by
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inspecting the sample autocorrelation function of was found to

be

^12^t = (1 " - GgBZjCl - 0Bl^)a^ + C 5.5.2

where C is a constant and again z^ =

Now it has been shown in Section 2.5 that the approximate 

(1 - a) x'100% probability limits associated with a forecast z^(&), 

made at time t for the future observation z^^^, are

± \/2
&-1

1 + 1
j=l

where u^y^ is the appropriate percentage point of the standard

normal distribution, s^ is the sample variance of the a^'s and thea t
^j's are arrived at by expressing the relevant model as an infinite 

moving average, i.e.

and 1/;̂ = 1. Thus the two quantities which affect the width of the 

probability limits are the \}j weights and the sample standard deviation

Expressions for the ^j^s (j = 1,2,3,;..,12) for the models C5.5.1) 

and (5,5.2) are given in Table 5.^.

Table 5.^.

Expressions for the ip Weights for Models (5.5.1) and (5.5.2)

Models^ 0 1 2 3 U 5 . 6 T

(5.5.1) 1 l+(j) l+(j)+(j)2 l+(f) + .. +(j) 3 1+(|)+.. +(|)̂ l+(j)+.. +(|)̂ i+(j)+.. +(f)̂ l+(j)+.. +(p'̂

(5.5 .2 ) 1 -81 -8 2 0 0 0 0 0
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Table 5.^ (Cont'd.)

Model^'X^ 8 9 . 10 11 12 .

(5.5.1 )
(5.5.2)

1+(|)+. « +(j)̂ 
0

l+<})+. .+(j)̂ 

0
l+(j)+. . +(j) ̂ ̂ 

0
l+(l)+. . +(j) ̂ ̂ 

0

1—0+ 
l+(j)+. .+(j)̂ ^

1-0

Substituting the parameter estimates obtained for both models into 
the above expressions, numerical values for the ^j*s were computed. 
Using these estimated values the quantity

W(&) =
9-1

1 + 1
j=l

5.5.3

was evaluated for Ü = 1,2,3,...,2^, for both the models (5-5.1) and

(5.5.2). W(&) can be thought of as the ratio of the standard deviations

of the lead time I forecast errors and the lead time 1 forecast errors. 

Thus W(l) = 1 and W(&) >_1 for & > 1.

W(&) (& = 1,2,3,...,2U) is plotted as a function of i in Figure 5.1. 

It can be seen that while for model (5-5-1) W(&) increases steadily 

(almost linearly) with 5,, reaching a value of 3-6l for & = 24, for 

model (5.5 .2 ) W(&) takes a value of 1.23 when & = 2 and thereafter

remains constant apart from a slight increase at lead times 13, l4 

and 1 5. The implication of this is that in the case of model C5.5.1) 
much more confidence can be placed in the lead time 1 forecasts than 

in the forecasts for higher lead times while for model C5.5.2) the 

forecasts for higher lead times can be expected to be almost as accurate 

as those for lead time 1.

So far we have been examining the tolerance limits, for various 

lead times, within each model. Another, more important, problem is to 

compare the tolerance limits resulting from the model (5-5-1) with 

those from the model (5-5-2). To do this of course we have to take
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into account the estimated standard deviations of the lead time 1
forecast errors (or the a^'s). These standard deviations will he
denoted hy s and s for the models (5.5.1) and (5.5.2) respectively 

^1 ^2
Further, W^(&) and Ŵ (il) are defined hy equation (5.5.3) with the 
subscripts referring to the appropriate model. A measure of the 
relative accuracy of the forecasts derived from the two models will 
then he given hy

R(&) = y i r r ;

When & = 1, W (l) W Cl) and so

RCD =

i.e. RCi) is simply the ratio of the estimated standard deviations 
of the a^'s for each model.

Another interesting case is if s = s . Then we haveai

RCt) =
W^(t) 
WgCt)

and values of R[£.) can he obtained quite easily from Figure 5.1* These 
values (for Z = 1,2,3,...,Zh) are shown in Table 5-5.

Table 5.5. Values of R(t) , Z - 1,2,3,... ,2̂ *, when s = sag

Lead Times 1-12 1 1.03 1.10 1.20 1.33 1.42 1.52 1.6l 1.70 1.77 1.85 1.93

Lead Times 13-24 2.03 2.11 2.19 2.28 2.37 2.45 2.54 2.6o 2.67 2.74 2.82 2.89



—Il6—

Thus, if s = s the probability limits associated with the 
point forecasts derived from the model (5*5*l) would always be 
wider than those for the model (5*5.2), after lead time 1.

In our particular example we found that

- ë ü  ■

SO that the values for R(&) can be obtained by multiplying thjoughout 
in Table 5*5 by a factor 1.03. Thus the probability limits resulting 
from use of the model (5*5*1) were in fact wider than those for 
model (5.5.2), for all lead times.

Although it is desirable to obtain probability limits (for all 
lead times) which are as narrow as possible, it should be remembered 
that the way in which Box and Jenkins determine these limits assumes 
that the true model has been fitted. In the case of the Company X 
data, if the model (5.5*1) was known to represent the true under­
lying process then use of the model (5*5*2) would give far too 
much confidence to the computed point forecasts for higher lead times. 
0 nthe other hand, if the true process was described by the model
(5.5.2) then the model (5*5*1)would lead to unnecessarily wide 
tolerance limits. Have we a means therefore of deciding which of 
the models (5.5*1) and (5*5*2) is nearer the true underlying process? 
The diagnostic checks described in Section 2.4.3 did not reveal any 
inadequacies in either of the models, but of course these checks 
are primarily concerned with the autocorrelation properties of the 
residuals and not with the forecasting performance of the model.
In order to look more closely at the models from a forecasting point 
of view the following approach, similar to that used by Reid (1969)5 

was adopted.
Both models were re-fitted to the first 60 observations of the
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transformed* Company X data, ẑ , and forecasts were generated over 
the remaining 17 observations. The mean squared error function 
M.8.E.(&) was calculated for lead times 1-12, for each model. It 
should be stressed that in the case of model (5.5.1) ẑ  is considered 
to be defined from t = -12, -11, -10, ..., 64 while for model (5.5.2) 
z^ is defined from t = -11, -10, -9, ..., 65 so that the mean 
squared error function is defined by

M.S.E.(&) =

17-&+1
64
E

t=47+&
for model (5*5.l)

65

for model (5*5*2)

5*5*5

Now following the Box-Jenkins procedure, the mean squared 
error for lead time Z would be related to the mean squared error 
for lead time 1 by the equation

M.8.E.(&) =
£-1 

1 + E M.S.E.(l) 5*5*60=1
for Z = 2,3,4,...,12.

For convenience, the mean squared error defined by equation (5*5*5) 
will be referred to as the sample mean squared error (S.M.S.E.(£)) 
and that defined by equation (5*5*6) as the theoretical mean squared 
error (T,M,S.E.(£)), If S.M.S.E.(£) and T.M.S.E.(£) are in close 
agreement for all Z Then the model is under examination can be 
considered to provide a good approximation to the true underlying 
process. However, if S.M.S.E.(£) and T.M.S.E.(&) compare unfavourably 
then doubt can be expressed about the model in question.

*The transformation parameter was also re-estimated.
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The mean squared error functions S.M.S.E.(jl) and T.M.S.E.(£) 
are tabulated below for both the models (5*5.1) and (5*5*2).

Table 5*6. S.M.S.E.(£) and T.M.S.E.(£) (£=1,2,3,...,12) for
Models (5.5.1) and (5.5*2)

Lead Model (5*5*1) Model (5*5*2)
Time S.M.S.E.(£) T.M.S.E.(£) S.M.S.E.(£) T.M.S.E.(£)

1 0.212 0.212 0.199 0*199

2 0.245 0.297 0.201 0.255

3 0.356 0.422 0.239 0,329

h 0.377 0.533 0.239 0*329

5 0.363 0.645 0.236 0.329

6 0.308 0.758 0.231 0.329

7 0.304 0.870 0.252 0.329

8 0.237 0.983 0.272 0.329

9 0.210 1*095 0.297 0.329

10 0.338 1.207 0.320 0.329

11 0.279 1.320 0.360 0.329

12 0.541 1.432 0.415 0.329

From Table 5.6 it can be seen that after lead time 3 there is a
closer agreement between 8.M.8.E.C&) and T.M.8.E.C&) for model (5*5*2)
than for model (5*5*l). This would suggest that the model based on 
the single differencing operator is nearer the true model. However,
the sample mean squared errors are based on so few observations (l7 for
S.M.S.E.(l), 6 for S.M.S.E.(12)) that to reject the model (5*5*l)
( particularly since it was the one suggested by inspecting the sample 
autocorrelation function) would be somewhat unwise.

For larger samples, the above procedure would probably prove quite
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successful for deciding between A.R.I.M.A. models which fit the data • 
almost equally well. Granger (1973) has proposed a technique by which 
simultaneous confidence limits can be placed on T.M.S.E.(£) (or 
equivalently the sequence of error variances) and it can then be 
observed whether the S.M.S.E.(£) fall within these limits. The 
determination of these confidence limits involves the assumption that 
the forecasting period is long compared with the lead time being 
forecasted. In our case this assumption would only be valid for short 
lead times and so the technique was not applied.

Our experience in this section does tend to highlight a problem 
encountered in Chapter 3 and mentioned in Chatfield and Prothero (1973a), 
namely that in employing the Box-Jenkins procedure it is often possible 
to find several A.R.I.M.A. models which fit the data equally well 
yet generate quite different point forecasts and/or tolerance limits.
For short series, it may not be possible to decide which model repre­
sents the closest approximation to the true generating process.

5.6 Summary
The selection of the differencing operator necessary to reduce 

a non-stationary series to a stationary process need not always be based 
entirely on an inspection of the sample autocorrelation function, as 
described in Section 5*2*1* In Sections 5*2 and 5*3 two complementary 
approaches have been proposed.

When analysing seasonal data which have a relatively small random 
variation, the series in question can be resolved into trend and seasonal 
components and the appropriate differencing operator will be one which 
will remove the trend and seasonality. The same approach may not be 
applicable in cases where the random variation is more dominant since 
it may be more difficult to recognise the trend and seasonal components 
and the choice of differencing operator may depend on the structure of

the errors. No such restrictions need be placed on the use of the
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technique based on the theoretical behaviour of the variance of a 
stationary series, described in Section 5*3. This technique can be 
applied‘to both seasonal and non-seasonal series.

The importance of identifying the correct degree of differen­
cing has been demonstrated in Section 5*5» where a model based on 
the single differencing operator gave rise to much narrower tole­
rance limits (for higher lead times) than those obtained from a model 
based on the double operator VV^^. The models fitted the data almost 
equally well and the diagnostic checks did not reveal any serious 
inadequacies in either. Thus even though with respect to the one 
step ahead forecasts it did not really matter which model was employed 
(see Box and Jenkins (1973)), for higher lead times the consequences 
of fitting an inadequate model become more serious.
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CHAPTER 6

COMPUTATION OF THE UNCONDITIONAL SUM OF SQUARES

6.1 Introduction
The two most commonly used procedures for estimating the 

parameters in autoregressive-moving average models are the graphical 
technique outlined in Section 2.1+.2 and the non-linear least squares 
approach described by Box and Jenkins (1970, pages 231-2^2). Both 
methods involve the computation of the unconditional sum of squares 
defined in Section 2,U,2. In computing this sum of squares it is 
possible to perform more than just the one iterative cycle which is 
illustrated for example in Table 3.3. Although Box and Jenkins 
(1970, pages 218, 318) refer to this possibility, they do not state 
any conditions under which further iterations may be necessary, 
apart from mentioning that in practice "a second iterative cycle 
would almost never be needed." On the contrary, we shall see in 
Chapter 10 that for h of the 5 series analysed in this thesis, one 
iterative cycle was not sufficient and so clearly there is need to 
discuss the problem in detail. This chapter is therefore concerned 
with situations in which more than one iterative cycle is necessary 
in order for the sum of squares to converge.

The steps included in the computation of the unconditional sum 
of squares when several iterative cycles have to be performed will 
be outlined in Section 6.2. The additional steps involved in this 
process will suggest cases when more than one iteration should be 
entertained.

In Section 6.3 the procedure set out in Section 6.2 will be 
applied to fitting models to the Company X data and the results will 
be compared with those obtained when only one iterative cycle is



-122-

employed.
The conclusions of the work described in this chapter will 

be stated in Section 6,h,

6.2 The Full Procedure for Calculating the Unconditional Sum of 
Squares
The series w^ (t=l,2,3,...,n) is assumed to be stationary 

and described by the multiplicative seasonal A.R.M.A. model

♦ (B)»p(Bl2)w^ = 8 (B)e (BlZ)a^ 6.2.1

where for convenience the seasonal cycle is considered to have a
period 12. It is further assumed, without loss of generality
that w has a zero mean. The operators (|> (B) , $ (B^^), 0 (B) andz p B q
0q (B^^) have the usual meaning (see Section 2.6) and the corresponding
vectors of parameters will be denoted by ^  and ̂

As stated in Section 2.4.2, the w^’s generated by
(6.2.1) could equally have been generated by the model

4. (F)*p(F'2)„^ = 6 (F)0^(Fl2)e^ 6.2.2

where F is the forward shift operator and e^ is a white noise process 
possessing variance (=

In order to describe the computation of the unconditional sum 
of squares for the model (6.2.1) as clearly as possible, a step-by- . 
step approach will be adopted.
STEP 1

Set
[ ê ] = 0 for t>n-(p+12P)

where [ ] is used to denote the expectation conditional on £, 2»
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0_ and .,. ,ŵ .
STEP 2

Starting with t=n-(p+12P),calculate the [ ê ] *s recursively, in 
reverse order until t = 1, using the equation

* (F)$p(Fl2)[%y = e (F)0̂ (Fl2)[ê ] 6.2.3

where [ ŵ ] = w^, for t=l,2,3,...,n.
STEP 3

Set
[ e.] = 0 for t<0t —

and generate the backward forecasts [ ŵ ] , [ w_̂ ] , [ w_g] w_^
using equation (6.2.3.) The integer is chosen so that the 
[ ŵ ] *s are negligible for t£-K^.
STEP 4

Set
[ â ] = 0 for t^-K^

and calculate the [ â ] *s for t=-K^+l,-K^+2,-K^+3,...,n, recursively.
using the equation

(j)p(B)$p(Bl2)[v̂ ] = 0^(b )0^(b12)[ â ] 6.2.4

STEP 5
Sum the squares of the [a^l's from t=-K^+lrK^+2,-K^+3,...,n, to 

obtain the unconditional sum of squares S(̂ ,̂ ,^,0_) i.e.

n
S(i,i,i,0) = S [aj2 6.2.5

t=-K^+l ^

The steps 1-5 constitute one complete iterative cycle and in
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all the estimation problems encountered thus far only one such 
iteration has been employed. In order to perform more than one 
iterative cycle the following additional steps are required.
STEP 6

Obtain the forward forecasts [ŵ ] for t=n+l,n+2,n+3,...,n+&2-l, 
using equation (6.2.4) where the [ â ] *s (t=-K^+l,-&^+2,-K^+3,...,n) 
are generated in step 4 and

[ â ] = 0 for t>n

The integer is chosen so that [ ŵ ] is negligible for
t̂ ji+Kg '.................................................
STEP T 

Set

STEP 8
[ ê ] = 0  for t^n+K^

Starting with t^n+K^"!,- calculate the [ ê ] 's recursively, in 
reverse order until t=l, using equation (6,2.3) where the [ŵ ] ̂s for
t>n are obtained in step 6 and [ ŵ ] = w^ for t=l,2,3,...,n.
STEP 9

A new value for S(^,^,^,^) is computed via steps 3, 4 and 5.
More iterative cycles can be performed by following the steps 

6, T, 8 and 9 until the sum of squares is judged to converge.
In order to seek situations where the additional steps 6, 7, 8

and 9 may prove necessary we will now consider some special cases 
of the seasonal model (6^2.1). Let us first examine the purely auto­
regressive model

((> (B)$^(B^^)w = a 6.2.6P i  V U
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In step 3 the backward forecasts [ ŵ ] ,[ w_̂ ] ,[ ŵ l̂ » • • • »[ Wj^ 
would be generated using the equation

$p(F)$p(Fl2)[wJ =[e^l 6.2.7

but [ ê ] = 0  for t£0 so that equation (6,2.7) becomes

*p(F)$p(Fl2)[w^] = 0  6.2.8

for t<_0. Thus, the backward forecasts do not depend on the [ e ] ’st
for t>0 and so the steps 6, 7, 8 and 9 which affect the [ ê ] ’s (for 
t>0) would not affect [ ŵ ] ,[ w_̂ ] ,[ w ]̂ etc. Hence a single iteration 
will always prove sufficient when computing the unconditional sum of 
squares for a pure autoregressive process.

It should be noted that equation (6,2.8) has a solution of the
form

fll•t + A fl] t+...+A _ ,
1 t

6.2.9
l"lj 2 P+12P °p+12P

for t^O, where the G.'s are assumed to be distinct and defined by 
P+12P 1

#p(B)$p(Bl2) = n (l - G^B) and the A^'s (i = 1,2,3,...»p+12P) are 
i—1

constants. Thus, if one of the G^'s is close to ±1 (i.e. the 
process defined by equation (6,2.6) approaches non-stationarity),
[ ŵ ] will not die out quickly as t decreases and a large value for K ̂ 
will result. This will tend to make the estimation procedure rather 
lengthy.

We now consider some purely moving average processes, beginning 
with the model

w^ = (l - 6B)a^ 6.2.10
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The backward forecast [ŵ ] generated in step 3 is given by

[ wj = -0 [ ê ]

= - 0̂ [ŵ ] + 0[w2l + 0̂ [ wj +...+0^ ŵ ]

V l l ]  6.2.11

with [ŵ ] = w^ for t=l,2,3,..^,n. In performing the first iterative 
cycle [ ê ^̂ ] is set equal to zero while for further iterations 
[ is set equal to the forecast [ w^^̂ ] computed in step 6 .
Provided 0 is not too close to ±1, the coefficient 0^^^ will be 
negligibly small for moderate length series and so [ ŵ ] would be un­
affected by the starting value . Thus, only one iteration
would be necessary. On the other hand if 0 is very close to ±1 then 
for short series a second iterative cycle may have to be entertained.

Let us look at the seasonal moving average model

w\ = (1 - 0B^2) 6 .2.12

and it is assumed for convenience that the seasonal cycle is repeated 
m times i.e. n = 12m. The backward forecasts [ ŵ ] (t=0,-l,-2,...,-ll)
can be expressed as

[Vtl = -0[ ê l̂2)

= -9&*t+12l + G[*t+2kl +

+ G"'4 ^t+12ml ^ V l 2(m^l)’l 6.2.13



-127-

For the first iteration, t ®-t+i2(m+l)̂  ” ^ (t=0,-l,-2,... ,-ll), 
while for ensuing iterationsfe^+^gf^+i)] ” ^\+12(m+l)^ where the 
forecasts [^t+12(m+l)^ for t = 0,-l,-2,.,.,-11 are generated in step 
6, On this occasion, the weight given to the starting values 

^®t+12(m+l)^ ~ 0,-l,-2,,..,-ll) is governed by m+1 rather than
n+1 and so for values of 0 close to ±1 it may be necessary to perform 
several iterative cycles in computing the unconditional sum of 
squares, even for series of a moderate length. Once again, for 
small values of 0 one iteration should suffice.

Generally speaking, when computing the unconditional sum of 
squares for a moving average process one should always be aware of 
the possibility that more than one iteration may be required.
Further iterative cycles are most likely to be needed in situations 
where the process in question approaches non-invertibility, 
especially with respect to seasonality.

For autoregressive processes, we noted that the back forecasts 
[ ŵ ] for t^O generated in step 3 may take a long time to die out.
In the case of moving average models this is not so since for the 
model

the backward forecasts are given by

(w^]= e^(F)0^(Fl2)[e^] 6,2.15

for t<0, where [ ê ] = 0 for t^O and so

[ŵ ] = 0 for t<-(q+12Q).

Finally, the conditions under which more than one iterative
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cycle may be necessary for mixed autoregressive-moving average 
models are precisely those for the pure moving average models 
since autoregressive models never require more than one 
iteration,

6.3 Practical Examples
We first consider the effect of employing only one iterative 

cycle in computing the unconditional sum of squares, as opposed 
to iterating until convergence is achieved, when a model of the 
form

(1 - fB) = (1 - 0Bl2)a^ 6,3.1

is assumed to describe the Company X data. In Chapter 4, the 
estimates of the parameters in the model (6,3.1) were obtained 
using the graphical technique described in Section 2.4.2, only 
one iterative cycle being employed in computing the unconditional 
sum of squares S((j),0). These estimates were found to be

(f) = -0.50, 0 = 0 .80,' X = 0.23

and S(-0.50, 0.80) - 1.015.
Using the same estimate for X, the autoregressive-moving 

average parameters in model (6.3.1) were re-estimated by the 
graphical technique, on this occasion iterations were performed 
until the unconditional sum of squares was judged to converge. 
This resulted in

= -0.48, 0 = 0.97

and S(-0.48, 0.97) = 0.854.
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In employing the graphical estimation technique, 8(^,0) was 
evaluated over a grid of values for (j) and 0. For smaller 
values of 0 only one iterative cycle was necessary in computing 
S(4>, 0) hut as 0 became larger more iterations were required to 
achieve convergence. The behaviour of the minimum sum of 
squares S(-0.48, 0.97) is shown in Table 6.1.

Table 6.1 Sum of squares S(-0.U8. 0.97) for 8 iterations

Iteration S(-0.48, 0.97) Iteration S(-0.48, 0.97)

1 - 1.661 5 0.883

2 1.209 6 0.865

3 1.009 7 0.858

4 0.922 8 0.854

S(-0.48, 0.97) was judged to have converged after 8 iterations, 
although a case could be made for stopping after fewer iterations. 
It is of interest to note that the minimum sum of squares after 
one iteration, S(-0.50, 0.80), converged after 2 iterations to a 
value of 0.973 which lies outside the 95% confidence region for 
the sum of squares associated with the true parameters.

In addition to reducing the minimum unconditional sum of 
squares from 1.015 to 0.854, the employment of further iterative 
cycles caused the point estimate of 0 to be changed quite 
considerably from 0.80 to 0.97. On the contrary, the point 
estimate of <p was virtually unaffected.

Thus fa-r we have considered the re-estimation of the parameters 
4» and 0 in the model (6.3.1) using the value of the transformation 
parameter X estimated on the basis of the unconditional sum of 
squares computed using just one iterative cycle. We now examine 
the re-estimation of the parameter X.



-130-

Figure 6.1 shows the log-likelihood function for the model
(6.3.1) when the computation of the unconditional sum of squares 
was obtained using (a) one iteration, and (b) the number of 
iterations necessary to achieve convergence. It can be seen 
that the point estimate of the transformation parameter remains

A
at X = 0.23 and the respective curves are almost parallel near 
this maximum, although as X approaches 1 the lines become closer. 
This latter characteristic is explained by the fact that as X 
increases the point estimate for 0 becomes smaller and so less 
iterations are required in order for the sum of squares to 
converge.

The fitted models

(1 + 0.50B) = (1 - 0.80Bl2)a^ 6.3.2
and

(1 + 0.48b ) = (1 - 0.9TBl2)a^ 6.3.3

were used to generate forecasts from May 1971 for lead times 
1 to 12. The point forecasts and their associated tolerance 
limits are given in Table 6.2,

Even though there is quite a large change in the estimates of 
the seasonal moving average parameter in the fitted models (6.3.2) 
and (6.3.3), it turns out that the resulting point forecasts 
actually differ only slightly. Also, while the fitted model
(6.3.3)reduces the width of the tolerance limits for all the 
lead times considered, this reduction is less than 10% in each 
case. These results tend to support the view of Box and Jenkins 
(1970, page 308) that the "forecasting procedure is robust to 
moderate changes in the values of the parameters".
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Table 6.2 Forecasts made at May 1971 for lead times 1 ^ 12

Lead Time Fitted Model (6.3.2) Fitted Model (6.3.3)

1 275 ± 83 282 ± 78

2 399 ± 125 406 ± 116

3 493 ± 176 508 ± 166

h 734 ± 2 6 3 742 ± 246

5 929 ± 350 936 ± 323
6 980 ±393 987 ± 365

7 751 ± 344 754 ± 318

8 742 ± 363 746 ± 335
9 482 ± 276 495 ± 2 5 9

10 4l6 ± 260 426 ± 244
11 352 ± 240 356 ± 222
12 310 ± 228 317 ± 212

" The model (6.3.1) has "been fitted to the first 60 observations 
of the Company X data by Wilson (1973). ' The parameter estimates 
vere derived from the unconditional sum of squares based on a 
single iteration and the fitted model was

(1 + 0.37B) VV^gXD̂.3U = (1 - 0.79B12) 6.3.U

For completeness, the parameters (j> and 0 have been re-estimated 
by the full procedure described in Section 6,2. This resulted in

(1 + 0.37B) = (1 - 0.97Bl2)a^ 6.3.5

and forecasts (in terms of the transformed variable), were generated 
over the remaining 17 observations, for lead times 1 to 12, using 
both the fitted models (6.3.^) and (6.3.5). The forecasting
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performances of the two fitted models were assessed by computing 
the mean squared forecast errors in each case. These quantities 
are shown in Table 6.3.

From Table 6,3 it can be seen that the fitted model (6,3.4) 
produced the smaller mean squared errors for all lead times, 
after lead time 1, However, as for the point forecasts quoted 
in Table 6.2, the agreement between the two fitted models is very 
close. Thus, in our case study, it did not seem to matter 
greatly from a forecasting point of view whether the unconditional 
sum of squares was computed using one iterative cycle or by 
iterating until convergence was achieved.

Table 6.3 Mean squared forecast errors, lead times 1 - 1 2

Lead Time Fitted Model (6.3.4) Fitted Model (6.3.5)

1 0.212 0.205

2 0.245 0.252

3 0.356 0.357 .
4 0.377 0.395
5 0.363 0.384
6 0.308 0.323
7 0.304 0.309

8 0.237 0.242
9 0.210 0.205

10 0.338 0.349

11 0.279 0.316

12 0.541 0.561

In order to further illustrate some of the points made in 
Section 6.2, we will briefly discuss the fitting of three other
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models to the transformed Company X data. The three models 
examined were of the same form as the models (B), (C) and (D) 
introduced in Section 3.7, i.e.

(1 - *B)(1 - $b 12)v^ =  ̂ 6.3.6

(1 - $b12)w^ = (1 - 6B)a^ 6.3.7

w^ = (1 - 6B)(1 - 0B^^)a^ 6.3.8

The parameters in each model were estimated using the 
graphical technique in which the unconditional sum of squares 
was based on (a) one iterative cycle, and (b) iterating until 
convergence was achieved.

In the case of the purely autoregressive model (6.3.6), the 
employment of more than one iterative cycle had no effect whatso­
ever, for the reasons given in Section 6,2. Again for the model 
(6.3.7) the use of more than one iteration did not change the value 
of the sum of squares. The reason for this was that the value of 
6(= 0.49) was far enough away from ±1. For the model (6.3.8) 
however, 8 iterations were necessary before the sum of squares was 
judged to have converged and as for model (6.3.1) the moving 
average seasonal parameter was estimated to be 0.97.

6.4 Conclusions
Most techniques used for estimating the parameters in auto- 

regressive-moving average time series models involve the 
computation of the unconditional sum of squares. In evaluating 
this sum of squares it is possible to perform more than one 
iterative cycle by employing the procedure described in Section 
6.2. This chapter has been concerned with situations in which
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several iterations are required before the sum of squares 
converges.

For purely autoregressive processes one iteration will 
always suffice bût when moving average parameters are involved 
this is not always the case. In particular for short series 
•it may be necessary to employ more than one iteration when the 
process in question approaches non-invertibility. This is
also true for moderate length series when the moving average 
operator includes a factor (l - GB^^) where G is close to ±1.

In situations where more than one iteration is appropriate, 
the resulting estimates of the moving average parameters can 
differ quite considerably from the estimates obtained when only 
one iteration is employed. However from our experience with the 
Company X data such an occurrence may not greatly affect the 
forecasting performance of the model in question.
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CHAPTER 7

SERIES WHICH INCLUDE DETERMINISTIC COMPONENTS

7.1 Introduction
When a time series includes for example a polynomial trend 

component. Box and Jenkins (1973) say that a forecasting method 
which involves the fitting of a polynomial regression curve is a 
special case of the A.R.I.M.A. model. While in theory this is 
often the case, in practice the fitting of a particular A.R.I.M.A. 
model in such circumstances can present certain difficulties. In 
this chapter we will discuss some of the problems encountered in 
applying the Box-Jenkins procedure to series which include deter­
ministic components and it will be suggested that traditional 
regression techniques can often be a more practical proposition.

In Section 7.2 we will show that when the Box-Jenkins approach 
of differencing to produce stationarity is applied to a series 
which includes deterministic components then under certain 
conditions the differenced series will be described theoretically 
by a non-invertible A.R.I.M.A. model. When this situation occurs 
the Box-Jenkins procedure would involve fitting a model in which the 
moving average parameters are close to the boundary of the non- 
invertibility region. Hence, from the results of Chapter 6, the 
estimation of the moving average parameters may be rather tedious, 
in which case it would be, desirable to employ a more convenient 
forecasting technique. In Section 7.3 a series based on a deter­
ministic linear trend will be generated and the performance of the 
Box-Jenkins procedure will be compared with that of a simple 
regression technique. A further characteristic of the Box-Jenkins 
procedure when applied to series which include deterministic
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components will be examined in Section 7.4 and the conclusions 
to be drawn from this chapter will be stated in Section 7.5.

7.2 Non-invertibility in A.R.M.A. Models
The reasons for imposing the invertibility condition on 

A.R.M.A. models will not be given in this section. Instead, 
reference can be made to Box and Jenkins (1970), Kendall (l97l) 
and Chatfield and Prothero (1973b). The purpose of this section 
is to discover the kind of series which when differenced gives 
rise to a non-invertible A.R.M.A. model.

Let us suppose that a series can be described by the 
additive model discussed in Section 5.2.2. viz.

where m. represents a deterministic trend, s is the seasonal t t
variation (again deterministic) with s,̂ = s^_^g and n,̂ is the error 
term. Now if m,̂ consists of a polynomial of degree r, then we 
showed in Section 5*2.2 that the differencing operator would
completely remove the deterministic components m,̂ and s,̂ from the 
series X^. Thus setting w^ = ^I2^t Bave

So far no assumptions have been made about the structure of 
the errors n^. Let us'suppose therefore that these errors can be 
described by the general multiplicative A.R.I.M.A. model

= 9^(B)0^(b12) 7.2.3
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where 6^(B) and 0^(B^^) are of order p^, 12P^,
and 12Q^ respectively.

The model (T.2.2.) thus becomes

= (l-B)^\l-Bl2)8^(B)0^(Bl2)a,t T.2.k

and we see that the invertibility condition will only be satisfied
if d^>r and D_>1. However, if w, is to be stationary then d^<r1— 1— t 1—
and D^^l. The model (7.2.2) will therefore be stationary and 
invertible only if n,̂ has the structure

4^(B)$^(Bl2) = 6^{B)0^(Bl2)a^ 7.2.5

r—1Equally, the differencing operator V 7^^ could be used to
reduce the deterministic components to a constant, C, (see Section
5.2 .2) and the resulting process w defined by the modelt

= Wt - C = (1-B)^ ^Xl-Bl2)n^ 7.2.6

would be both stationary and invertible only if the errors possess 
a structure of the form

*^(B)$^(Bl2) 7^^7^2 = 6^(B)0^(b '2)a^ 7.2.7

Any error structure based on a lesser degree of differencing 
than that shown in equation (7.2.5) (for model (7.2.2.)) and in 
equation (7.2.7) (for model (7.2.6)) will thus produce non- 
invertibility in the models (7.2.2) and (7.2.6) respectively. For
example, the process

y
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will be non-invertible if n,̂ = a^.
Similar conclusions can be drawn regarding the use of the 

operator in respect of the series represented by the model

St + “t 7.2.9

For example, if m^ consists of a linear trend then the model

= (1-b '2)2 7.2.10

will be non-invertible if n,̂ ~ ®'t*

7.3 Analysis of a Generated Series
When the Box-Jenkins forecasting procedure is applied to a 

series which includes a deterministic component we have seen in 
Section 7.2 that, for particular error structures, the resulting 
A.R.I.M.A. model will be non-invertible. We now consider a Box- 
Jenkins analysis of a series generated by the model

X^ = a + &t + 7 .3.1

Such a process is a special case of the model (7.2.1) and 
since the errors are assumed to be stationary (n,̂ = a^), differencing 
of equation (7.3.1) will produce a non-invertible A.R.I.M.A. model.

Although this thesis is primarily concerned with seasonal 
forecasting, the above process should be adequate for illustrating 
the use of the Box-Jenkins procedure on series which include 
deterministic components.
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7 .3.1  Generation of an "Artificial" Series
An "artificial" series (t=l,2,3,...,60) was obtained using 

the model

X^ = 200 + lot + 7 .3 .2

The sequence of independent random variables a,̂ , ^t-1’ 
a,̂ _g,... ' was generated from a normal distribution with zero mean 
and variance 400, using tables from Beyer (1968).

The generated data are tabulated below and plotted in Figure
7 .1 .

Table 7.1 Data generated from the process X. - 200 + lOt + â

t ^t t t ^t t

1 223 16 377 31 493 46 630

2 221 17 360 32 522 47 688

3 259 18 386 33 492 48 661

k 238 19 417 34 499 49 666

5 280 20 431 35 541 50 723

6 245 21 395 36 572 51 712

7 263 22 4ll 37 579 52 733
8 255 23 459 38 574 53 738

9 254 24 459 39 608 54 748
10 311 25 446 40 618 55 728

11 298 26 458 4l 606 56 755
12 355 27 463 42 621 57 772

13 306 28 488 43 634 58 766

14 340 29 487 44 627 59 791

15 359 30 526 45 664 60 810
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7.3.2 Box-Jenkins Analysis
Faced with the data generated in Section 7.3.1, a Box- 

Jenkins analyst would begin by examining the sample autocorrelation 
function of various differences of the series X^. Table 7.2 gives 
the sample autocorrelation functions for and VX^, for lags 1 to 
10.

Table 7.2 Sample autocorrelation functions for X^ and VX^

Series 1 2 3 % 5 6 7 .8 9 10

0.9% 0.89 0.8% 0.80 0.75 0.70 0.65 o.6o 0.5% 0.%9

-0.56 0.15 -0.15 0.07 0.07 -0.2% 0.22 -0 .09 0.08 -0 .10

The ten sample autocorrelation coefficients quoted for the series 
X^ are all "large" and positive confirming the fact (which is obvious 
from a visual inspection of the data) that X^ is non-stationary.
On the other hand the sample autocorrelation function for VX^ dies 
out quickly, suggesting that VX^ is stationary and that no further 
differencing is necessary.

If the series VX^ were completely random, the standard error
of the estimated autocorrelations r(k) would be —^  (- 0.13). The1

absolute value of r(l) is over four times this value and so it can 
be concluded that the theoretical autocorrelation coefficient at 
lag 1, p(l), is non-zero. Under the assumption that VX^ follows a 
first order moving average process, the standard error of r(k) for
k > 1 would be approximately i  (1 + 2 ( -0 .56)2 ) = 0 .17 (see
Box and Jenkins (1970, page 3^)). Since all the sample auto­
correlations for k > 1 lie within ± 2 x 0 .1 7, our tentative choice 
of model is the first order moving average process. Thus the 
initially identified model is the A.R.I.M.A. model of order (0,l,l).
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Now VX^ has a mean which differs significantly from zero
so the identified model can he expressed as

w^ = VX. = e + (l-0B)a^ 7.3.3
n
 ̂^twhere Box and Jenkins (1970, page 210) suppose that w = t-1
n

is substituted for 0 ,̂ n being the number of observations
composing the differenced series w^. Alternatively 0^ could be 
estimated simultaneously with 0 and this possibly will be examined 
further in Section 7»%.

A

Taking 0^ = w = 9.95» an estimate for 0 was obtained by the
graphical technique described in Section 2.%.2 and the fitted model
was

w^ = 9;95 + (1 - 0.97B)a 7.3.%

with = 335.
Despite the fact that 0 = 0.97, one iteration was sufficient 

in computing the unconditional sum of squares S(0.97). The 
reason why further iterative cycles were not necessary can be seen 
by referring to the equation (6 .2.11) used for generating the back­
ward forecast [ ŵ ] . The weight given to the term [ ê ^̂ ] is 0^ 
which in our case was (0 .97 )̂  ̂ = 0.17 and further the value of 
[ computed to start the second iteration was not large.

The diagnostic checks on the residuals, described in Section 
2 .%.3, were performed and no inadequacies in the fitted model (7 .3.%) 
were indicated.

7.3.3 Comparison with a Regression Analysis
When analysing the same data, Chatfield and Prothero (1973b) 

say that "the traditional statistician would simply fit a straight
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line by least squares and extrapolate". Applying this approach 
to the whole data, the fitted model was found to be

E[X̂ 1 = 203.%3 + 9.91t 7.3.5

and the residuals e^ were computed using

A residual analysis did not suggest any violation of the 
assumption that the residuals were independent.

The forecast X_̂ (&) made at time t for a period Z steps into 
the future can be generated using the equation

X^(A) = E = 203.%3 + 9.91 X (t+&)

= X^(l) + 9.91 X (&-1) 7.3.6

Comparing the fit of the regression model (7.3.5) with that 
of the A.R.I.M.A. model (7.3.%), the estimated variance of the 
residuals (a^ ) in the regression case was 330 while the Box- 
Jenkins analysis of Section 7*3.2 yielded an estimated error 
variance of 335. Thus the model (7.3.5) fitted the data marginally 
better than the model (7.3.%).

To assess the forecasting performance of each method, the data 
were divided into two parts. The first 30 observations (probably 
the minimum requirement for the Box-Jenkins procedure) were used 
to estimate the parameters in each model and the remainder to assess 
the relative forecasting potential of the two models.

The re-fitted A.R.I.M.A. model was
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\  = vx^ = l O M  + (1 - 0.99B)a 7.3.7

while the equivalent linear regression model was estimated to be 

E[X^i = 200.75 + 1 0.21t 7.3.8

On this occasion at least U iterations were needed in computing 
the unconditional sum of squares S(0.99) during the estimation of 
the moving average parameter in the model (7.3.7). Obviously the 
small number of observations employed in the fitting procedure 
contributed to this occurrence (see Section 7*3.2 and Section 6.2.)

Starting when t = 30, one step ahead forecasts, X^(l), were 
computed (based on all the observations available at time t) over 
the next 30 time periods using the fitted models (7*3.7) and (7 .3.8 ), 
These forecasts are plotted in Figure 7.1. It should be pointed 
out that in neither case wSere the parameter estimates updated as 
more recent observations became available.

Using the linear regression model (7*3.8) the one step ahead 
forecast made at time t is given by

X^(l) = 200.75 + 10.21 X (t+1)

= X (1) + 10.21 X (t-30) 7.3.9

for t=30, 31, 32,...,59, so that in fact these forecasts depend only 
on the first 30 observations which constitute the fitting period.

On the other hand, the one step ahead forecasts generated by 
the model (7*3*7) are given by
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X^(l) = \  + 1 0 . -  0.99a

= X^ + 10.^5 - 0.99 (X̂  - X^_^l))

= 0.01 X^ + 10.U5 + 0.99 x^_^(l)

= 0.01 (X̂  + 0.99 + (0.99)2 X^_2+...+(0.99)^"^^X2i)

+ 10.U5 (1 + 0.99 + (0.99)2 +...+ (0.99)^”^̂ )

+ (0.99)^ ^  X^^d) 7.3.10

for t = 31,32,33,...,59, and so these forecasts depend heavily on
■ ..............................................the forecast X^q (1) although rather less so than the forecasts

generated hy equation (7.3.9).
It can. be seen from Figure 7.1 that the regression model 

forecasts are always less than the Box-Jenkins forecasts. The
• f

forecast errors resulting from both models include a bias, the 
mean of the forecast errors from the model (7.3.7) being -17.6 and 
that for the model (7.3.8) errors is -12.9. The corresponding
mean squared errors for the two methods are 

BOX-JENKINS ANALYSIS 583
LINEAR REGRESSION ANALYSIS ^39 

and so for the data generated in Section 7.3.1 the regression 
approach performed rather better than the Box-Jenkins procedure.

Thus although in theory the linear regression technique is 
equivalent to the A.R.I.M.A. model of order (0,1,l) with the 
moving average parameter unity, in practice the results from the 
two procedures are not identical. The reasons for this are two­
fold. Firstly, adopting the Box-Jenkins procedure it is impossible 
to obtain an estimate of unity for the moving average parameter 
since the sum of squares S(l.O) diverges as more iterations are 
performed. Secondly and more important to the case in question.
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the estimate of the parameter 0^ in the A.R.I.M.A. model differed 
from the estimate of the linear coefficient in the regression 
analysis. The effect of this difference is examined in Section

7.4.

7.4 A Further Characteristic of the Box-Jenkins Procedure
The analysis described in Section 7.3 drew attention to a 

further characteristic of the Box-Jenkins procedure when applied 
to series which include deterministic components.

Let us consider again a series which is a realisation of 
the process (7.3.1). Employing a linear regression technique, 
the model fitted to the series X^ would be

E[X̂ ] = a + 0t 7.4.1

where a and 3 are the least squares estimates of the parameters a 
and 3.

Differencing equation (7.3.1), the equivalent A.R.I.M.A. model 
would be

w^ = VX^ = 0Q + (1 - 8B)a^ 7.4.2

where 0^ = 3 and 0 = 1 .  In practice, a value of 0 slightly less
than unity would be employed. The problems involved in estimating
0 have already been dealt with in Chapter 6 and Section 7.3. We
now turn our attention to the estimation of 0 (or 3).o

In Section 7.3.2 the sample mean of the w_̂ 's, w, was substituted 
for 3, following the statement of Box and Jenkins (1970, page 210) that 
"for the sample sizes normally considered in time series analysis, 
this approximation will be adequate". We will denote this estimator 
for 3 by 3*, so that
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= " = = 7.U.3

where N and n are the lengths of the series and w^ respectively, i*e 
n = N - 1. . Let us now look at some of the properties of the 
estimator 3*.

Bias

E[6*] = 5 ^ e [Xj,-X^1

= E[(a + 3N + a^) - (a + 3 + â )]

= 3

Thus 3* is an unbiased estimator for 3.

Variance of 3*

V[3*] = E[3* - E[3*]]2

Tn4 f  <  for N > 1

Relative Efficiency of 3* with Respect to the Least Squares 
Estimator 3.

The least squares estimator 3 for 3 used in the model (7.4.1) 
is given by
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3 -

N ' N ' N '
N Z X/t - Z X Z t
t=l ^ t=l ^ t=l

^ 2 N Z t -
t=l
N

N
Z t 

t=l
N

6{2 Z X t - (N+l) Z X } 
t=l _________ t=l
(N-1) N (N+l)

This estimator for 3 is of course unbiased and it can be 
shown that the variance of 3 is

V[3] = for N > 1(N-1) N (N+l) a 

Defining the relative efficiency of 3* with respect to 3 by

Relative Efficiency (R.E) = Variance of 3 
Variance of 3*

we get

R.'E. = 12 2 
(N-1)N(N+1) *a

6(N-1)
N(N+1)

2 2 (N-1)2 ^a

for N > 2

Values of this quantity for various values of N are given in 
Table 7.3.

Table 7.3 Relative efficiencies of 3* with respect to 3.

N 2 3 4 5 6 7 8 9 10

R.E 1.00 1.00 0.90 0.80 0.71 0.64 0.58 0.53 0.49

N 20 30 40 50 6o 70 80 90 100

R.E 0.27 0.19 0.l4 0.12 0.10 0.08 0.07 0.07 0.06
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From the above table it can be seen that for series long 
enough to apply the Box-Jenkins procedure, the estimator 3* is 
relatively much less efficient than 3. Even for a series of 
30 observations (short by most standards) the relative efficiency 
is as low as 20%.

These results suggest that in the Box-Jenkins analysis 
described in Section 7.3.2 and 7.3.3 it would have been better 
to have estimated the parameter 0^ simultaneously with the 0 
parameter, i.e. by least squares. This possibility is now 
explored.

The A.R.I.M.A. model (7*3.3) was re-fitted to the first 30 
observations of the data generated in Section 7.3.1, the parameter 
0^ being estimated simultaneously with 0. The resulting fitted 
model was

w^ = VX^ = 10.21 + (1 - 0.99B)a 7*4.4

and this model was used to generate forecasts over the remaining 
30 observations. The mean squared error was computed to be 405 
which is less than the mean squared error (439) obtained from the 
linear regression model (7*3.8) and considerably less than the mean 
squared error (583) from the fitted A.R.I.M.A. model (7*3.7).
Thus when applying the Box-Jenkins procedure to series which include 
deterministic components it is advisable to estimate the constant 
term 0^ in the A.R.I.M.A. model by least squares.

We now briefly consider two extensions to the linear model (7.3.1). 
Firstly we will look at the case when the series X^ includes a quadratic 
trend and secondly at the case when an additive seasonal component is 
superimposed on ’a linear trend.
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Quadratic Trend
The following process is considered:

= a + 3t + + a^ 7.4.5

The equivalent A.R.I.M.A. model is derived by differencing the 
equation (7.4.5) twice to give

w^ = V^X^ = 0Q + (l-0B)‘ 7.4.6

with 0^ = 2y and 0 = 1 .
n
Z w

Substituting w = —^ — for 2y, the estimator y* for y will be

* _ Z = ^  ~ &-1 ^2 ^1
^ ” 2 2(N-2)

and the relative efficiency of y* with respect to the least squares 
estimator y is

R.E = l80(N-2)
(N-l)N(N+l)(N+2) for N>4

Table 7.4 shows values of the relative efficiency for several 
values of N.

Table 7.4 Relative efficiencies of y* with respect to y

N 4 5 6 7 8 9 10

R.E. 1.00 0.64 0.43 0 .30 0.21 0.16 0.12

N 20 30 40 50 60 70 80

R.E. 0.02 0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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The relative efficiency of y* with respect to y decreases 
rapidly as the length of the series increases. Thus it would 
appear that the need to use the least squares estimator is even 
greater than in the linear case encountered earlier.

A Seasonal Model
Finally, let us suppose that the series is a realisation 

of the seasonal process

X^ = a + 3t + ŝ  + a^ 7.4.7

vhere
Differencing equation (7.4.7) with respect to the seasonal 

period leads to the A.R.I.M.A. model

\  = ?i2%t = ®o + 7.4.8

with 0^ = 123 and 0 = 1 .
If w is substituted for 0^, i.e. 123, then the estimator 3* of

3 is

O* ^ JL ^  ̂V^-l'*'' ' ''*‘̂ -11 ̂ ^̂ 12*^11*• • • '*'̂1 ̂
* " 12 12(N-12)

and the relative efficiency of 3* with respect to the least squares 
estimator 3 is given by

72(H-12) 
- N(H+12)
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where N is the number of observations in the series and it is 
assumed that the seasonal cycle is repeated m times, i.e. N - 12m.

The above expression is similar to that derived for the non- 
seasonal process with a deterministic linear trend. The only 
difference is that the total number of observations N in the non- 
seasonal case is replaced by the number of times the seasonal cycle 
is repeated, m. As an example, for a non-seasonal series with 60 
observations the relative efficiency of 3* with respect to 3 is 0.10 
while for monthly data with the same number of observations the 
relative efficiency is 0.80. To achieve a value of 0.10 in the 
latter case, 60 years data would have to be available. Hence we 
conclude that the substitution of w for 3 compares more favourably 
with the least squares estimate in the case of seasonal data than 
for non-seasonal data.

If the seasonal cycle has a general period s, then the expression 
for the relative efficiency of 3* with respect to 3 still takes the 
form

where N - ms.

7.5 Conclusions
We began this chapter by considering the sort of series which 

when differenced, produce non-invertible A.R.I.M.A. models. If a 
series which includes deterministic trend and seasonal components is 
reduced to stationarity by the use of a differencing operator which 
removes these deterministic components, then the resulting A.R.I.M.A. 
model will be invertible only if the error structure is based on the 
same degree of differencing. The possible estimation difficulties when 
a process includes parameters close to the non-invertibility region
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were discussed in Chapter 6.
The performance of the Box-Jenkins procedure was conpared with 

that of a linear regression on a generated series which included a 
deterministic linear trend. Initially the regression technique 
produced the smaller mean squared error hut hy employing a different 
estimator for the constant term 8^ in the A.R.I.M.A. model, the 
Box-Jenkins procedure did much better and in fact performed slightly 
better than the regression approach. In Section 7.4 we showed 
that substituting the mean of the differenced series (w) for 0^ (as 
in the original Box-Jenkins analysis) is relatively much less 
efficient than estimating 0^ by least squares. Similar results 
were obtained for a series which included a quadratic trend and for 
a seasonal process. Clearly it is advisable to use the least squares 
estimator for 0^ when analysing series which include deterministic 
components.

Although the Box-Jenkins procedure eventually generated rather 
more accurate forecasts than the linear regression technique, the 
difference between the two mean squared errors was not large.
Further, while the estimation of the parameters in the A.R.I.M.A. 
model necessitated a numerical least squares procedure, the regression 
model parameters were estimated analytically. Thus in situations 
where linear or quadratic deterministic trends are suspected, the use 
of a traditional regression model would be preferred to the equivalent 
A.R.I.M.A. model. On the other hand, when it is only possible to 
describe a time series locally by a trend-seasonal model it would be 
inappropriate to use the regression approach as employed in Section 
7.3.3. Instead, the more flexible Box-Jenkins procedure, or a 
method such as that proposed by Winters (1960) in which the trend 
and seasonal factors are updated, should be used.
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chapter 8

A.R.I.M.A. MODELS ARISING FROM AGGREGATES OF
SEVERAL STOCHASTIC PROCESSES

8.1 Introduction
The additive model (7.2,1), for describing a time series , has 

been employed previously in Sections 5.2.2 and 7.2. On each occasion 
both the trend and seasonal components were assumed to be deterministic. 
In Section 5.2.2 we discussed the differencing operators capable of 
removing the deterministic components from the series X^ and in Section
7.2 we examined the error structures for which the resulting A.R.I.M.A. 
model would be non-invertible.

Box and Jenkins (1970, page 92) say that "the assumption of a 
stochastic trend is often more realistic than the assumption of a 
deterministic trend" and so in this chapter we will consider a model 
similar to model (7.2.1) but with the trend component being assumed to 
be stochastic. It will also be assumed that the seasonal component 
possesses a stochastic structure so that the series X^ can be represented 
algebraically as

+ St + “t 8.1-1

where m^ and s^ are stochastic trend and seasonal components and n^ is 
an extraneous error term. The series X^ can thus be regarded as the . 
aggregate of three independent stochastic processes.

Our attention will be focussed on the relationship between the 
degree of differencing required to reduce X^ to stationarity and the 
differencing operators on which the trend, seasonal (where applicable) 
and error components are based. In addition, we shall also see how an 
A.R.I.M.A. process can result from the aggregate of several less
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complicated A.R.I.M.A. processes, a possibility explored by Box and 
Jenkins (1970, page 121) and Granger (1972).

In Section 8.2 we will examine the A.R.I.M.A. model arising when 
the non-seasonal version of the model (8.1.1) is assumed while a special 
case will be looked at in detail in Section 8.3. The seasonal case will 
be investigated in Section 8.4 and Section 8.5 will contain a summary 
of the results obtained from the preceeding sections.

8.2 Non-seasonal Processes
Let us consider a particular case of the model (8.1.1) viz. the

model

X = m^ + n 8.2.1

It is assumed that the trend is described by the A.R.I.M.A. model

(f)̂ (B) m^ = 6^(B) a^ 8.2.2

where <f>̂ (B) and 0^(b ) are polynomials of order p^ and respectively 
and a^ is a white noise process with variance .

The extraneous errors n^ are; considered to be represented by the 
A.R.I.M.A. model

OgfB) = 8g(B) ap 8.2.3

Og/B) and 0̂ (1̂ ) being of order p^ and q^ and a^’ is a white noise process
(variance a^,,) mutually independent of a'.a t

Now if d is the order of differencing necessary to reduce the 
series X^ to a stationary series w^ then from equation (8.2.1)

w^ = + V^n^ 8.2.4

and substituting from equations (8.2.2) and (8.2.3) leads to
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*l(B) *2 (3 ) = (1-B)*+*Z *2(3 )

+ (l-B)*+*l 4>̂ (B) 82(8 )3̂ ' 8 .2 .5

If _> dg, then equation (8.2.5) can be written as

*l(B) *2 (3 ) (1-3)®^*^%*^ = (l-B)^+^2 {((>2 (3 ) e^(B)a^

+ (1- B ) *1"*2 *^(B) 82(3 )8̂ ' )  8 .2.6

Since it has been assumed that w^ is stationary, then 

d^ + dg ^ d + dg i.e. d ̂  d^ 

and also for the process (8.2.6) to be invertible 

d^ + dg ^ d + dg i.e. d £ d^

Hence for the model (8.2.6) to satisfy both the stationarity and 
invertibility conditions we must have d = d̂ .

Similarly, if d^ ^ d^ we arrive at d = d^ and so in general the 
degree of differencing necessary to reduce to stationarity and at the
same time give rise to an invertible A.R.M.A. model, is given by

d = max(d^,d^)

When such a degree of differencing is employed. Granger (1972)
Shows that the stationary process w^ is described by the A.R.M.A. 
model of order (p,q) where

P £ Pi + P2

and

q £ max(d^ - d^ + p^ + q^, P2 + if 1 d2

< max(dg - + Pg + q.̂ , + q^) if d^ £ d^
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The need for the inequalities in the above expressions arises 
partly from the fact that and may contain common roots
(see Granger (1972)).

8.3 The A.R.I.M.A. Model of Order (0,1,1)
Let us suppose that m^ and n^ are described by the models

8.3.1

This formulation has been adopted by Muth (1960) and it assumes 
that the observed time series is made up of two components, one 
lasting a single time period (a^') and the other through all subsequent 
periods (m̂ ). The former is referred to as the transitory component, 
the latter as the permanent component.

Using the result obtained in Section 8.2, the series w = VX can 
be represented by a model which is both stationary and invertible. From 
equation (8 .2 .6)

8 .3.2

and the autocovariance function for the w^'s is

Y„(k) =

0

k = 0

k = 1

k > 2

The only non-zero autocovariance (apart from (0)) is at lag
1 so that w can be described by the first order moving average process

w^ = (1 - 0B)a^ 8.3.3

The parameters 0 and associated with the model (8.3.4) are
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related to , and o ,. by a’ a''

(1 + e2) ol = + 2 Cj2,,

-0q2 ss _q2 8.3.4a a' ’

which on solving yields

whence = —
â f I

a 0
Generally two values for 0 satisfy the equations (8.3.4) but only 

the smaller will be inside the unit circle. Tims 0 must take the value

(^a'/c2,, +2) - / ‘̂a'/c^tT + 4 ^a’/c^,,
. 6 =    g----- ------------- —

which will always lie in the region 0 £ 0 1. When 0 = 1  the model
(8 .3.3) is of course non-invertible and such a situation will arise
when a ,̂ = 0  (see equation (8.3.4)). This implies that the trend 
component is deterministic and given by m^ = a constant.

On the other hand, if m^ = a constant, = 0 and using equation
(8.3.4) we get

(1 - 0)2 0% = 0

but + 0 and so 0 =1. Thus a necessary and sufficient condition for 
the differencing operation to produce a model which is non-invertible 
is that the trend should simply be a constant.

The other extreme value of 0 is zero and from equation (8.3.4) 
this occurs when t» = 0 i.e. when the distribution of n^ is concentrated
entirely on the point n^ = 0.

In Section (9.4.2) we shall see that the forecast generated by the 
model (8.3.3) is the same as the simple exponential smoothing forecast
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so that the expression for 6 quoted above is equivalent to that for the 
optimal smoothing constant derived by Muth (1960). In practice and 

1 will not generally be known and 9 would be estimated by the means
described in Section 2.4 and Chapter 6. The forms of m^ and n^ defined
by equation (8 .3.I) do however deomonstrate one way in which the A.R.I.M.A, 
model of order (0,1,1) can arise. Alternative structures for m^ and n^ 
which also lead to the model (8.3.3) are

Vm^ = a; - 01 a;_i

and
“t = 8 .3.5

= - ®i "-i-i I’“t ■ “t “1 “t-i j 6.3.6

In the case of the formulation (8.3.6), when 6^ = 6* = 0 would 
be described by the A.R.I.M.A. model of order (0,1,0).

Generally, extending the approach followed in this section, if

“t “ 4

“t = h  j 8.3.7
then the aggregate series X^ can be represented by the A.R.I.M.A. model 
of order (0 ,d^,d^).

8.4 Seasonal Processes
The results derived in Section 8.2 are now extended to the case in 

which the seasonal model (8.I.I) is considered. As in Section 8.2 it will 
be assumed that the trend and error terms are described by the A.R.I.M.A. 
models (8.2.2) and (8.2.3) respectively. Additionally we suppose that 
the seasonal component ŝ  follows the general A.R.I.M.A. process of 

order (P^,D^,Q^)^2
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= G^(Bl2) a^” 8.4.1

where a’'' is a white noise process (variance ,,,) mutually independent 
of a^ and a^ *.

If the differencing operator ^12^ is required to reduce the 
aggregate series to a stationary series w^, then

\  ^ 2  ""t = ^12 \  ^  8.4.2

Substituting for m^, s^ and n^ from equations (6.2.2), (8.4.1) 
and (8 .2 .3) leads to

*l(B) *g(B) $i(BlZ) (l-B)^l* '̂2

= (l-B)^ (1-B12)D $^(Bl2) (i-b )̂ 2 (1-b 12)®1 0^(b )

+ *i(B) tgfB) (1-B)^1+ @^(Bl2) a|"

+ * i(B )  * i(B l2 )  ( l-B )^ l (1- b12)®1 e^(B) a ^ '}  8 .4 .3

If dg + < d^ + dg, d^ + D^, then from equation (8.4.3) it can
be seen that for the process w^ to be stationary and.invertible d and 
D must satisfy

d = di - Di , D =

Similarly, if d^ + ̂ 2 — ^2 * then

d = 0 , D = D,

while if d^ + £ d^ + D^, d^ + dg, we have

1

d = d2 - Di , D =

Thus the differencing operators necessary for the process defined 
by equation (8.4.3) to be both stationary and invertible must be of 
orders

d = max(d - D̂ , 0, d^ D̂ )̂ , D = D̂ .



—162“

The autoregressive operator in the A.R.M.A. model for describing 
is of order p where

P 1 Pi + P2 + 12 ?!

but the order of the moving average operator, q, depends very much on 
the relative values of d^, d^ and D^. For example, when dg + £ d^ + d^,
di +Di

q £ max(pg + q^ + 12 + 11 D^,

+ d^ + 12 - D̂ ,

Pj + ^2 + + 12 P^ + 11 D^)

We illustrate the above results by considering the structures

V2 = a;

’i2^t = '
1 1 8.4.4

d and D must be chosen so that d = max(l,0,-l) = 1 and D = 1, hence 

= VV^gX^ = (1+B+b2+ +Bll)a^ + (l-B)a^" + (l-B) (l-B^^ '

= (l-BiB-BgBZ  - 81 BlSja^ 8.4.5

The aggregate process is therefore described by a multi-parameter 
integrated moving average model which is not in the general class of 
multiplicative seasonal models. In practice the fitting of an A.R.I.M.A. 
model with 13 moving average parameters would probably never be attempted 
even if one strongly believed a time series to be generated by the 
models (8.1.1) and (8.4.U). Instead we would try to explain the non-zero 
autocorrelations at lags 1 to 13 by a low order autoregressive, moving 
average or mixed model. For example, if is much larger than both

, anda^iif then the A.R.I.M.A. model of order (0,l,l) x (0,1,1)^^
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might provide an adequate approximation. Table 8.1 shows the 
autocorrelation function for the model (8.4.5) when t = 20,

t = ttI = 1 and also the autocorrelation function for the model a a

w^ = (l - 0.36b ) (1 - 0.57Bl2)a^ 8.4.6

with 0% = 63. a
The autocorrelation function for the model (8.4.6) agrees reasonably 

closely with that of the model (8.4.5) since the autocorrelations in 
the latter case are all rather small between lags 2 and 10. In practice 
it would be very difficult to decide whether a sample autocorrelation 
function could be associated with the model (8.4.5) or (8.4.6), in 
which case the simpler model would be assumed.

8.5 Summary
If a time series which includes a deterministic component is reduced 

to stationarity by a differencing operator which removes the deterministic 
part, then we saw in Section 7.2 that for certain error structures the 
resulting A.R.M.A. model may be non-invertible. The situation in which 
a series is assumed to be composed of several independent stochastic 
(as opposed to deterministic) components is rather different. We found 
that for stochastic trend and seasonal components it is always possible 
to select a differencing operator which will produce a series describable 
by a stationary, invertible A.R.M.A. model. Thus the estimation 
difficulties discussed in Chapter 6 will occur less frequently if the 
series in question is generated by several independent stochastic 
processes than if deterministic components are present.

In addition to examining the choice of differencing operator
necessary to produce a stationary, invertible process, this chapter
also demonstrated how a quite complicated A.R.I.M.A. process can be
generated from the sum of several simpler processes. In particular, for

thnon-seasonal models, if the difference of the trend component is a
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vhite noise process and the additional error component another independent 
white noise process then the aggregate series can he represented hy 
the A.R.I.M.A. model of order (0,d^,d^).

Our examination of seasonal processes revealed that in theory the 
aggregate series was generally described not hy a model in the 
multiplicative seasonal class hut hy a multi-parameter A.R.I.M.A. model. 
However, in practice it may prove difficult to decide whether a particular 
sample autocorrelation function is associated with a complex model or a 
much simpler model. In such a case the latter model would he identified.
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CHAPTER 9 

INTERPRETATION OF A.R.I.M.A. MODELS

9»! Introduction
As we have seen in preceeding chapters, the Box-Jenkins 

forecasting procedure essentially involves the fitting of a particular 
A.R.I.M,A. model which adequately describes the series to he forecasted.
On the other hand, the forecasting techniques proposed hy such authors 
as Winters (1960), Brown (1963) and Harrison (1965) assume that the 
series in question can he described locally hy a more traditional trend- 
seasonal model such as that shown in equation (7.2.1). The resulting 
forecasts can then he expressed in terms of exponentially weighted 
moving averages (E.W.M.A.’s).

Generally, in the Box-Jenkins case, it is not immediately obvious 
what the A.R.I.M.A. model is telling us about the data in terms of 
trend and seasonality and hence the interpretation of the derived fore­
casts is not clear. This point has been commented upon hy Chatfield and 
Prothero (1973a). Box and Jenkins (1973) take the view that A.R.I.M.A. 
models "are usually rather easy to understand" and illustrate their 
point hy expressing the forecast generated hy one particular A.R.I.M.A. 
model as an E.W.M.A.

The major part of this chapter consists of an attempt at represen­
ting the general form of the A.R.I.M.A. model in terms of E.W.M.A.'s . 
Expressions for individual models can then he obtained hy substitution 
in the general form.

It is of course a matter of personal opinion whether A.R.I.M.A. 
models are any easier to understand when expressed as E.W.M.A.’s and other 
representations may he preferred. One other alternative approach is 
considered in this chapter: namely that of expressing the A.R.I.M.A.

model directly in terms of trend and seasonality.
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Section 9*2 contains a brief discussion of E.W.M.A.'s and also 
of how they have been adapted for forecasting purposes by Brown (1963) 
The interpretation of A.R.I.M.A. models in terms of E.W.M.A.'s will be 
dealt with in Sections 9*3 (stationary processes), 9*^ (non-stationary 
processes) and 9*5 (seasonal processes). At each stage special cases 
will be examined. In Section 9*6 we shall see how the interpretation 
is affected by the fact that, in practice, series are not infinite 
in extent.

The interpretation of A.R.I.M.A. models will be considered from 
rather a different angle in Section 9.7. It will be shown that by 
solving the difference equation which constitutes the A.R.I.M.A. model, 
a representation in terms of trend and seasonal models can be achieved.

The conclusions arrived at from the results obtained in this 
chapter will be stated in Section 9.8.

9.2 Exponentially Weighted Moving Averages
_(A^)

The first order E.W.M.A. at time t, , of a time series

z^, ^t-2’ *** defined to be

_(A ) «> .
2. = A E (1-A_)J z._. 9 .2 .1
^ ^ j=o J

where the super script (A^) indicates that the data have been smoothed 

once with respect to the smoothing constant A (O < A < l ) .
_ (\) J VSmoothing the series , z^_^ , z^_^ , ... with respect to a

second smoothing constant A^, we obtain the second order E.W.M.A.
-(A ,Ap)1’ 2-

- ^^1 ' 2̂  ̂ / \k -̂ "̂ 1̂(l-Ag) Vkk=o
00 00

= A, A„ I Ï. (1-AJ^d-A ) V  ■ t 9 .2 .2^  ̂j=o k=o ^ 2 t-J-k
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th ..........ai±y, "cne n
defined by

Generally, the m order E.W.M.A. can be

: (A^,Ag,...,A^)  ̂  ̂ ~ ~ . x̂ i,, .
'tz. = A^A^.-.A^ . Z E ... E (1-A^) ^(l-A^)

i.=o i =o i =o 1 2 m

... (1 A j  V i  -i„-...-i1 2  m
9.2.3

In his discussion of exponential smoothing. Brown (1963) assumes 
that the same smoothing constant is employed for all orders of smoothing 
i.e. = Ag = ... = A^ (= A).

Using the method outlined in Section 1.2.2, Brown (1963) shows 
that when a series ẑ  can be described by a polynomial function, the 
resulting forecasts can be expressed in terms of the first m^^ order 
E.W.M.A.'s. The value of m depends on the degree of the polynomial.
If ẑ  can be represented locally by the constant model

Zt = Oq(t) + et 9 .2 .4

where the coefficient a^(t) is to be estimated at time t and e^ is a 
random error, then the optimal one step ahead forecast z^(l) is simply

■  4"
Extending model (9.2.4) to the local linear representation

z^ = a^(t) + a^(t)t + e^ 9.2.5

Brown (1963) shows that the one step ahead forecast is given by

(1) = 2-A
1-A

-(A) _ 1
h  (1-A)
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while for the local quadratic model

aJt)
h  = «„(t) + a^(t)t +   t2 + 9.2.6

the one step ahead forecast is

Z^(l) = A^ - 3A + 3 -(A) ' 3-A
(1-A)% "t ■ (1-A)^

-(A,A)

• W p  'I*'*-*’

More generally. Brown (1963, page 133) goes on to prove that 

if the local model is

n
z = I a.(t)t^ + e

i=o ^ t
9 .2.7

then the one step ahead forecast can be expressed as a linear combina­

tion of the first-(n+l) orders of E.W.M.A.'s.

A comprehensive account of general exponential smoothing is given 

by Brown (1963) while most of the formulae of practical importance are 

quoted by Kendall (1973).

9.3 Stationary Models

This section deals with the interpretation (in terms of E.W.M.A.’s, 

where possible) of autoregressive models, moving average models and 

mixed autoregressive-moving average models. In each case the series 

z^ is assumed to have a zero mean.

9 .3.1 Autoregressive Models
If z is a series described by the autoregressive model of order p, 

defined by equation (2.2.2), then the one step ahead forecast made at 

time t, z^(l) , is given by
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U) = *1 + *2 Vl + ••• + Vp+l 9-3-1
This forecast is therefore a linear combination of the p most 

recent observations and does not involve E.W.M.A.'s* When p = 1

and the forecast is simply a fraction of the value of the most recent 

observation.

9 .3.2 Moving Average Models

The interpretation of moving average models is rather more 

difficult than that of autoregressive models. In the former the 

emphasis is on past values of the white noise process while for the 

latter the models are expressed in terms of actual observations. In 

order to examine the interpretation of the moving average model of 

order q (see equation (2.2.3)) it is best to write this model as

= (1-H^B)(1-H2B) --- (l-H^B)a^ 9 .3.2

where |h .| < 1  , for j = l,2,3,...,q, to ensure invertibility.

Theoretically, the H . ’s may be real or any pair of roots H. H.J 1 J
may be complex. For reasons which will become apparent later we

shall confine ourselves to the case when all the Hj's (j = 1,2,3,...,q) 

are real.

Multiplying both sides of equation (9.3.2) by (l-H^B) ^ we get

\ " “q Vl ■ K Va" ---+

9 .3.3

where A = 1 - H .q q
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Now if 0 < H < 1  then 0 < A < 1  and we can write
q q

_(A ) ~ .

J-o

Thus using equation (9*3.3)

H _(A )
\  = V l  + (l-HjBjfl-HgB) ... (1-Ĥ _3_B) 9.3.4

Such a rperesentation is not "possible for negative or complex 
_(A ) _

values of H since is not defined for these values,q t-1
Both sides of equation (9*3.^) can be multiplied by (l-H^_^B) ^

to give, provided 0 < H < 1,

H - (A J  H -(A _ ,A )
^t = - i ^ v r  - r - V V i  " +q-1 q-1 q

... (l-H^_gB)a^ 9.3.5

with A = 1 - H . q-1 q-1
Thus, if 0 < Hj < 1, for j = 1,2,3,...,q, then continuing 

the above operation a further q-2 times the following expression for 

the one step ahead forecast made at time t is arrived at:

H _{A ) H =(A ,A„) H : (A A ...... A )
••• - A^A2..a" ^

9.3.6

where A. = 1 - H .  (j = 1,2,3,...,q).

The one step ahead forecast generated by a q^^ order moving average 

model is therefore a linear combination of the most recent first, 

second, ..., qth order E.W.M.A.’s.

As an example, the one step ahead forecast for a first order 

moving average process is
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i.e. a multiple of the most recent first order E.W.M.A. with 

smoothing constant = 1-8^. This representation is only possible 

for 6^ in the range 0 < 0^ < 1 when the corresponding range for 

- 6^/l-0^ is shown in Figure 9.1.

- 0 1

0
+1

-1

Fig. 9.1. Range of values taken by - 0^/(l-0^)

As 0^ increases in the region 0 to decreases to -1 and

then as 0^ approaches unity —
1

—  tends to - «>. This may seem rather
1 JA^)

surprising but it should be remembered that as 0^ 1 so 0.

9 .3.3 Mixed Autoregressive - Moving Average Models

As for the moving average models dealt with in the previous 

section, it is more convenient to express the autoregressive-moving 

average model of order (p,g), usually defined by equation (2.2.5), in 

the form

" h Vl '*’2 V 2 + + *2 Vp g.

9.3.7
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Multiplying both sides of equation ̂ .3.7) successively by
(1-H^B) ^,.,.,(1-H^B) ^, as in Section 9*3.2, then
provided all the H.’s are real and satisfy 0 < H. <1, the one stepJ 0
ahead forecast z^(l) can be expressed in the form

H1
AiAg.-.A h

A^...A1 2  q
_(A^ ,Ap,. . . ,A ) s-A-ps. . *)A )

+1 * + *2 =t-l ^

_(A ,Ap,...,A ) 
+ =t-p+i ^ 9.3.8

where again A . = 1 - H . ( j = 1,2,3,...,q). J J
Thus z^(l) is a linear combination of the first q^^ order 

E.W.M.A.’s at time t and the q^^ order E.W.M.A.'s for the p most 
recent time periods.

Alternatively, by making use of the relationship

_(A ,Ap,...,A ) _(A ,Ap,...,A^_ )
^  + (l-Ak)

_(Aĵ Ag ». . . ) A^)
t-1

for k = 1,2,3,...,q

recursively, a different form of the equation (9*3.8) can be obtained. 
*If p > q then z^(l) can be expressed as a linear combination of the 

first q^^ order E.W.M.A.’s at time t plus the (p-q) most recent obser­
vations. If q > p, the one step ahead forecast is a linear combina­
tion of just the first q^^ order E.W.M.A.'s at time t.

For the A.R.M.A. model of order (l,l), equation (9*3.8) reduces
to

« -01 _(A^) 1 _(Ai)
=t(i) " I:;: - + izi: +i1

1-0 ,
_(A^)
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As for the first order moving average process, the one step
ahead forecast is some multiple of the most recent first order

_(A ) .
E.W.M.A., although on this occasion the weight given to can be
positive or negative, depending on the value of

9,h Non-stationary Models
The expressions derived in Section 9*3 for stationary models 

will now be extended to cover non-stationary processes. The general 
A.R.I.M.A. model of order (p,d,q) will be dealt with first and then 
several important special cases will be considered.

9 .^ .1 The General A.R.I.M.A. Model
The general A.R.I.M.A. model of order (p,d,q) has been defined by 

equation (2.3.2). Once again the moving average operator is re- 
parameterised in terms of its zeros and it is also advantageous to 
express the stationary autoregressive operator and the differencing 
operator in terms of the non-stationary operator . Thus

-  . . .  -

9 .4.1

and using the notation adopted in equation (9*3.8) the forecast z^(l)
can (for real H. and 0 <. H. < 1 (j = 1,2,3,...,q)) be expressed as J J

H _(A ) H -(A ,Ap) H z(A ,A2,* * *,A )

A^Ap...Â
_(A, ,Ap,.•.,A ) z(A^,Ap,* * *,A )

* + *2 ^

f(A ,A ,...,A ) 
+ + *p+d %tvp-d+l 9.U.2
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The lead time "one forecast made at time t is therefore a linear 
combination of the first order E.W.M.A.’s at time t and the q^^ 
order E.W.M.A.’s for the p+d most recent time periods. Employing the

Aargument used in Section 9*3.3» z^(l) has an alternative representation. 
If p + d > q, then the forecast can be expressed as a linear combination 
of the first q^^ order E.W.M.A.'s at time t and the (p+d-q) most recent 
observations. On the other hand if p + d ̂  q then z^(l) can be 
expressed as a linear combination of the first q^^ order E.W.M.A.'s 
at time t, only.

9*^*2 The A.R.I.M.A. Model of 0rder(0,l,l)
If 0 < 0^ < 1, substitution in the general expression (9*^*2) 

results in

9.4.3

and the one step ahead forecast is simply the most recent first order 
E.W.M.A.. This forecast will be identical to that obtained by 
Brown (1963), when the constant model (9*2.4) is appropriate» provided 
the smoothing constant A = A^ = 1 - 0̂ . Box and Jenkins (1970» pages 
106-108) also refer to this result.

9*4.3 The A.R.I.M.A. Model of Order (0,2,2)
Provided 0 < < 1 (j = 1,2), we see from equation (9*4.2) that

the one step ahead forecast generated by the A.R.I.M..A. model of 
order (0,2,2) is

^ Hf _(A^) Hp 3(A^,Ap) ^ I* -(A^,Ap) -(A^,A2)-|
=t(i) = - =t "t + L 2 =t ' V l  J

9 .4.4
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However

-(a  ,Ap) _(A,) -(a  ,A )
Z4. = A^ + (1-A^) z.

\-i = 0 = 0

2' t-1
-(A ,A ) (A )

-(A^.Ag)
Substituting for z^_^ in equation (9*4.4) and setting

H. = 1 - A. (j = 1,2) results in 0 0

A (l-A,) _(A ) (l-Ap) -(A ,Ap)

A^A^ L
_(A ,Ap) ^

^ t̂ " V Â J
z(A^,Ag) _(A^)

- *2 =t

■ 1 - (l-A^)(l-Ag) ' 2̂ 1
A^d-Ag) J ^ ^ ( l - A g )  J

9.4.5

which is a linear combination of the first and second order E.W.M.A.'s 
at time t. Now if A^ = A^ = A, where A is the smoothing constant
associated with Brown’s method, then

%t(i) =
2-A
l-A

-(A) 1 -(A,A)
(l-A) % 9 .4.6

This is precisely the forecast quoted in Section 9*2 obtained by 
exponential smoothing, when the linear model (9*2.5) is assumed. Thus 
for a linear model, exponential smoothing produces forecasts which 
are identical to those generated by a special case of the A.R.I.M.A. 
model of order (0,2,2) viz. the model in which = 1 - A or
0^ = 2(1-A) and 0^ = (l-A)%.

Similarly, it follows that in the case of the quadratic model
(9 .2 .6), the exponential smoothing forecast given in Section 9.2 is 
the same as that generated by the A.R.I.M.A. model of order (0,3,3)
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in the particular instance when = l-A or 0^ = 3(1~A),
82 = -3(l-A)2 and 8_ = (l-A)^. Again, A is the smoothing constant 
associated with Brown's method.

Box and Jenkins (1970, pages 168-170) give an example where Brown 
(1963) assumed the quadratic model (9.2,6) whereas the appropriate 
A.R.I.M.A. model was of order (0,l,l). The latter model generated 
considerably better forecasts than those obtained using Brown's method, 
simply because the initial choice of model by Brown was a wrong one. 
However, even if a quadratic model had been appropriate, the A.R.I.M.A. 
model of order (0,3,3) would have yielded a mean squared forecast error 
theoretically at least as small as that produced by exponential smoothing, 

So far we have concentrated on the interpretation of A.R.I.M.A. 
models which include,no autoregressive parameters. Let us now look 
at a simple case in which an autoregressive parameter is present.

9 .4.4 The A.R.I.M.A. Model of Order (l,l,l)
For the A.R.I.M.A. model of order (l,l,l), substitution in the 

general expression (9.4.2) gives

. -6 .(A ) _(\) _(A^)
=t + T5;F:T '(1 + - h V i  1

1 + «î̂l “ ^1
1 - 6 ^ 4''"’ - T O T  V l ’ 9.4.T

i.e. the one step ahead forecast is a weighted average of the two most 
recent first order E.W.M.A.'s. Alternatively, making use of the 
relationship

_(A ) _(A )
\  = V t  + (^-4 ) "t-1

_(A,)
= (1-epz^ +

z^(l) can be expressed as
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1 _(a, ) (f>-
+ =t 9.4.8

which is a weighted average of the most recent first order E.W.M.A. 
and the most recent observation. If 0 < 2(p then more weight is

j A p  1 1
attached to than to ẑ  while if 0^ > 2(f>̂ the reverse is true.

Employing Brown's method in the case when the A.R.I.M.A, model of 
order (1,1,1) is appropriate, the constant model (9.2.4) would be assumed 
and the resulting forecast z^\l) = z^^^. Thus the Box-Jenkins forecast 
(9.4.8) is related to Brown's forecast by

A  A-D
Z^(l) = 2^(1) +

and if A = A^ = 1-0^ '

.R *1 r _(A,) 1 z^(l) = z^(l) + —  [ J
(1) + [ z - z^_ (1)] 9.4.9

The forecast generated by the model of order (1,1,1) would 
therefore be Brown's forecast adjusted by a fraction of the error in 
the previous Brown forecast.

9.5  Seasonal Models
In this section we will derive an expression, in terms of 

E.W.M.A.'s., for the general multiplicative seasonal model (2.6.5), 
although for convenience a seasonal period of 12 will be assumed.
The interpretation of the forecasts derived from the four models A, B, 
C and D encountered in Section 3.7 will be dealt with in detail.
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9.5.1 The General Multiplicative Seasonal Model of Order

(P,a,q) .x (P,D,Q)^2
The multiplicative seasonal model defined by equation (2.6.4) 

can be re-stated as

(l_4,pl2 _

= (1 - g^BlZ _ - ... - $pBl2P)

= (1 - JjBlZjfl-JgBlZ) ... (1-J^b 12) 9.5.1

where

Q
(l - CLBlZ - ELB24 - ... - 0 B^ZQ )= n (1-J.BlZ) 

1 2 Q i=l 1

and follows the process

(l - - ... -

= (l - - ^gB^ - ... - <f) B^CL-B)^

= (1 - H^B)(1-H2B) ... (1-H^B) a.̂ 9-5.2

Using equation (9*4.2), remembering that the a^'s are not generally 
uncorrelated, the one step ahead forecast generated by the model 

(9*5.1) is

Ji -(Cl) Jg ztCi'Cg) Jq ifCi.Cg.-'-CQ)
\  "t-11 " C^Cg "t-11 ••• C^Cg.-Cg "t-11

1 r _(c^,Cg,...Cg) _(c^,Cg.....Cq)
+ L ^ î v i i  + "t-23

+ " + Vl2(P+D)+l

• : [“..J 9.5.3
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vhere for example

_(Ci) ” , ,iz. % (1-Cp
1=0t-11

and C. = 1 - J. (j = 1,2,3,...,Q). J J
Again using equation (9.4.2)

H
= - A^ "t A^A^^t

■ _(A^,A2...,A )
 a----  0̂

A. Ag ...A t 1 2  q

A^Ag!..A [ f “
^(A ,Ap... ,A ) _(A^ >Ap,... ,A .)
t ^

— (a ,Ap,...,A ) 
- • • • - ^ptd “t-p-d"i * 9.5.4

with

_(Aj^,A^»... >Aĵ ) _(A^,Ap,.«.»A^)(C^,Cp,...»̂ q )
t-J V 2 * ‘*^Q

_  ( A ^  9 A p  9 . . . 9 A ^ )  ( , Cp , . . . 9^q )
- *l=t-12-j

_(A^, ,Ap,... ,A^) (C^,Op, ..*,0̂
*P+D^t-12(P+D)-j

9.5.5
for k = 1,2,3,...,q, j = 0,1,2,...,p+d-l.

_( A^,Ap,... ,Aĵ ) CCĵ ,Cp,... ,Cq )
The notation . refers to the k ordert-J

E.W.M.A. smoothed a further Q times with respect to the seasonal period. 
For example

l(A )(C ) » il _(Ai)
V j  Vl2i^-j

= " A  V  A  (1-Ci)'"(l-Ai)'" Vl2i -iq-j
1^=0 %2=o 1 2
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The expressions (9*5.3), (9*5.4) and (9.5*5) which define the 
lead time 1 forecast are obviously too involved to interpret in the 
general case. However these expressions are useful in the sense that 
the forecast generated by a particular model can be expressed in 
terms of E.W.M.A.'s by substituting for p,d,q,P,D and Q in the general 
form. This point is illustrated in the following subsections.

9*5*2 The A.R.I.M.A. Model of Order (l,l,0) x (0,l,l)^^
The interpretation of the A.R.I.M.A. model of order (l,l,0)x(0,l,l)^p 

has been discussed by Box and Jenkins (1973), for particular values 
of (j)̂ and 0̂ . We now consider the understanding of this model for 
any values of and 0̂ .̂

Substitution in equations (9*5*3),(9*5*4) and (9*5*5) leads to

Jc^) r _(C^) _(C^)
^t-11 'iiL r 

1 L
- zt-12

,(Cp) _(C^) 1
^t-1 ^t-13At

■ h  [ "t-1 ■

_(Ci) r _(CJ
\ - l l

9*5.6

where = 1 - 0̂  .1 1 .
The forecast for, say, June made in May would therefore be the 

first order yearly E.W.M.A. for the previous June adjusted by a 
weighted average of the differences between the most recent May figure 
and the previous May’s yearly E.W.M.A. and the most recent April figure 
and the previous April’s yearly E.W.M.A.

Thus if an alternative forecasting technique based on the simple 
forecast .

z"(i) = zjc) = c r (i-c)i z
i=o t-ll-12i
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is employed then, provided C = = 1 - 0^, the forecast generated
by the A.R.I.M.A. model of order (1,1,0) x (0,l,l)^p can be regarded 
as the simple forecast adjusted by a weighted average of the two most 
recent forecast errors resulting from the alternative technique.

9 .5.3 The A.R.I.M.A. Model of Order (l,l,0) x (l,l,0)^o
For the A.R.I.M.A. model of order (l,l,0) x (l,l,0)^p

z^(l) = - *1 V l  + (l+*l) "t-11 ■ V 12

+ %t-13 - h  "t-23 + *1(1+*) "t-24

- *1*1 V 25 9.5.7

and so, for example, the forecast made in May for June is a linear combi­
nation of the most recent May and April figures and the June, May and 
April figures for the previous two years. This forecast can be inter­
preted in two ways. If we consider the simple forecast

z^(l) = (1+4^) - (|)̂ z^_^ 9.5.8

Az^(l) can be written as

z. (l) = z^(l) + (l+$T ) [z,  ̂ - zf ,0(1)1

^1  ̂V 23

and the forecast generated by the A.R.I.M.A. model of order
(1 ,1 ,0) X (1 ,1 ,0)^2 is the forecast defined by equation (9-5.8) adjusted
by a weighted average of the errors, resulting from the use of the
simpler forecast, for the corresponding periods one and two years
previously.

On the other hand in terms of the forecast

\(1) = (l+*l) "t-11 " *l"t-23 9.5.9
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we have

2^(1) = Z^(l) + I

- *1 ( Zfi-

and the forecast (9.5*9) is adjusted by a weighted average of the two 
most recent forecast errors.

9 .5.4 The A.R.I.M.A. Model of Order (0,l,l) x (l,l,0)^^

The one step ahead forecast generated by the A.R.I.M.A. model of 
order (0,l,l) x (l,l,0)^p can be expressed as

A _(A^) _(A )
= "t + [ V i i  ■ "t-is'

_(A.)
*1 [^t- 23 V 2J 9 .5.10

with A^ = 1 - 8^
Thus the forecast for June made in May is the first order monthly 

E.W.M.A. for May adjusted by a weighted average of the differences between 
the June figures and the preceeding monthly May E.W.M.A.’s in the 
previous two years. Once 0^ and have been estimated, one step ahead 
forecasts can therefore be generated using simple exponential smoothing 
and then adding to this forecast a weighted average of the simple exponen­
tial smoothing forecast errors for the relevant period one and two years 
previously.

9 .5.5 The A.R.I.M.A. Model of Order (p,l,l) x (0,l,l)■12
In the case of the A.R.I.M.A. model of order (0,l,l) x (0,1,l) 

the one^step ahead forecast zî (l) is
12

_(Gi) _(A ) z(A )(C )
= V î l  + "t - v i a  9.5.11

= I-81’ =1=
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i.e. the forecast for June from May is the sum of the first order 
monthly E.W.M.A. for May and the first order
yearly E.W.M.A. for the previous June, less the first order monthly, 
first order yearly E.W.M.A. for the previous May. The interpretation 
of the term is not obvious and a clearer understanding can be
achieved by re-writing equation (9.5.11) in the form

(CJ (CJl
"t ' "t-i2

so that the one step ahead forecast is the first order yearly E.W.M.A. 
adjusted by the simple E.W.M.A. of the errors obtained from employing
JC^)z as a forecast. By a similar argument the forecast (9.5.11) can be
. . , _(Ai)interpreted in terms of the simple E.W.M.A. z^_^ .

Thus it has been possible to relate the one step ahead forecasts 
generated by various seasonal A.R.I.M.A. models to those based on the 
more familiar E.W.M.A.'s. Although this improves the understanding of 
A.R.I.M.A. models, other means of interpretation may well be more illumi­
nating. One alternative will be examined in Section 9.7. However 
before concluding our discussion of E.W.M.A.’s we will investigate a 
point of practical importance.

9.6 A Practical Consideration
The expressions derived in Sections 9*3, 9.4 and 9.5 are all 

based on the assumption that an infinite amount of data is available.
In practice of course A.R.I.M.A. models are fitted to series which 
are composed of a finite number of observations. We now see how the 
interpretation of the resulting forecasts is affected by the fact 
that series encountered in practice are not infinite in extent.

In Section 9.4.2 we found that for the A.R.I.M.A. model of
Aorder (0,1,l) the one step ahead forecast z^(l) was simply
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( i )  = ^ = (1 -0 J  z e:? . 9 .6 .1
_(AJ

z ' "t t 1 . . 1 t-Jj=o
where A^ = 1-0^

If however the series in question consists of the N observations 
ẑ , ẑ , Zp, ..., z^ (n = N-l), then the forecast generated by the model 

of order (0,1,1) would be

A  ^  ^  T n  n+1 ^
Zn(l) = (l-ep ,2^ %n-j + *1 "o - \  %  9.6.2

A
where a is the estimate of the initial residual.0

Provided 0^ is not close to + 1 (see Chapter 6) then for moderate 
values of n the terms 0^^^ (j > O) will be negligible and so to a good 
approximation the forecast defined by equation (9.6.2) can be written 
as

n-l . 00 _(A )
Z^(i)  = (1- e p  z e j  Z = ( i - o p  z 00 Z = Z^

j=o j=o

Thus, even allowing for the fact that in practice the data will 
be finite in extent, the one step ahead forecast generated by the 
A.R.I.M.A. model of order (0,l,l) can still be generally regarded as 
an E.W.M.A.

As pointed out by Chatfield and Prothero (l9T3b), the same conclu­
sion may not be true for seasonal data. Let us consider the seasonal 
model

(l-B^^) ẑ  = (l-G^BlZ) a^ 9.6.3

Using equation (9.5.3), for 0 < < 1, the one step ahead forecast
is theoretically given by

= v î l  = ®1 Vll-l2j 9.6.4
J -O

where C^ = 1-G^.
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In practice, for a series possessing the N observations
.,ẑ  (n=N-12), in which the seasonal cycle is repeated 

m times (i.e. N=12m), the one step ahead forecast made at time t = n is

A. m-2 . _ ^
z„(i) = (1-0^) 1 0^ Vii-i2j^ ®r "-11- ®i a-iiJ-O

9.6.5

,mUnlike the non-seasonal case, 0^ may not be negligible even for 
series of moderate length and so it will often be necessary to compute

m  ̂• Athe term 0 a .  If the estimate a is set equal to zero then 1 —11 —11
equation (9*6.5) becomes

A m—2 .
Z^(i)  = (1-e^) z 00 + e f  Z

j=0
9 .6.6

and quite considerable weight can be given to the remotest observation
A

z_^^. Alternatively, a can be computed by the technique of back 
forecasting described in Section 2.4.2 and Chapter 6. Employing just 
one iterative cycle, the backward forecast [ w ( w h e r e  w^ = z^-z^_^p) 
is obtained from equation (6.2.13) as '

m-2-i
[''-111 = - ®1 ®1 Vll-12jJ=o

whence, from equation (9*6.3) with ,

 ̂  ̂ m-2-j
-̂11 ' 1 1 *n-ll-12j0=0

m-2= - 01 *=o  ̂ (Vll-12j" Vll-12( j+l)]

Substituting for a_^^ in equation (9*6.5) leads to

ẑ (l) = l-0^+0^ 1 "n-11 + ®l(l-®l) 1+02m-3 n-23

-+ 02(1-0^) l+of^ ^|z + ... + 0^ ^(l-02)z 9.6.71 n-35 1 1 “11
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The weights given to z ,,, z z z whenn-11 n-23 n-35 -11
N = 72 (m = 6) and 0^ = 0.8 are shown in Table 9.1» for the following 
cases:
(a) when an infinite amount of past data is assumed (equation (9.6.4)),

A
(b) when z^(l) is obtained from equation. (9 .6.6), and

A
(c) when z^^l) is obtained from equation (9 .6.7).

Table 9.1. Weights given to past observations when N = 72. 0 = 0.8

Case ^49 ^37 ^25 ^13 =1 :-ll

(a) 0.20 0.16 0.13 0.10 0.08 0.07

(b) 0.20 0.16 0.13 0.10 0.08 0.33
(c) 0.29 0.18 0.16 0.13 0.12 0.12

From the above table it can be seen that an E.W.M.A. (case (a)) 
would assign about 74% of its total weight to the observations 
z^g, Zgy, Zp^, z_^^. The weight given to unknown observations
is therefore by no means negligible. A forecast resulting from equation
(9 .6 .6) (case (b)) would depend heavily on the most remote observation 
z_^^ (about 1/3 of the total weight is given to z_^^). On the other 
hand, when back forecasting is used (case (c)), progressively less 
weight is attached to observations farther in the past although the 
weights do not decrease geometrically. Hence for seasonal models, 
under certain conditions (small m, realtively large 0^), the one step 
ahead forecast is not, in practice, an E.W.M.A.

9 .7  Interpretation in Terms of Classical Time Series Models
Thus far we have considered the interpretation of the forecasts 

generated by A.R.I.M.A. models, solely in terms of E.W.M.A.'s. In 
this section we explore another way in which the A.R.I.M.A. model
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can be more easily understood.
In Chapter 5 (also Section 7.2) we examined the particular 

A.R.I.M.A. models to be expected when the Box-Jenkins forecasting 
procedure was applied to series which included deterministic trend 
and seasonal components. We now look at the reverse procedure, 
viz. solving the difference equation which constitutes the A.R.I.M.A. 
model to obtain a model in terms of trend and seasonal components.

If in the general multiplicative seasonal model of order 
(p,d,q) X (P,D,Q)^p, defined by equation (2.6.4), we introduce the 
operators <})*(b ) of order u(= p+12P+d+12D) and 6*(b ) of order
v(= q+12Q) where

and
e*(B) = 6 (B) Bg(Bl2)

then the model (2.6.4) can be written as

**(B) = 0*(B) a^ 9.7.1

The general solution of equation (9.7.1) can be considered, in 
relation to the time when the process was first observed (t=0), as the sum

^  = " A  "t 9-7-2

where ẑ  is a particular integral and z” the complementary function.
The particular integral represents the component which is unpredictable 
at time t=0 and Box and Jenkins (l970, page ll8) show that for t > v 
the equation (9.7.1) has a particular integral defined by

Ç 0 for t ^ 0 
z' = { 9.7.3

I + *1 ?t-l *2 \ - 2  + ' - + *t-l *1 for t > 0

with the ip weights satisfying the equation
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*(B) = e*(B) â  9.7.4

The complementary function z" represents the component of zt t
already determined at time t = 0 and it is evaluated by solving the 
homogeneous difference equation

= 0 9 .7 .5

Now 4>*(B) can be expressed as

4>*(B) = (l-G^B)(l-GgB)...(l-G^B) 9 .7 .6

and when G^,Gg,...,G^ are distinct z" takes the form

"Ï = “l 4  + “2®2 ^ “u®u 9 .7 .7

where the a^'s (i = l,2,3,...,u) are constants. If however the first 
k roots of <j)*(B) are equal (= G^) and the remaining u-k roots are 
distinct then

. k u .
z" = Cf Z a. t̂  + Z a. G. 9 .7.8
* A = i  0 j=k+i 0 0

If more than one of the Gj’s are repeated then the equation (9*7.8) 
can be modified in an obvious way.

In general therefore the complementary function will consist of 
polynomials and a mixture of damped exponentials and damped sine 
waves (depending whether a root is real or a pair of roots is complex).

It should be stressed that the general solution of equation
(9 .7 .1) can be related to any time K < t. The observation z^ can then 
be expressed as the sum of the component which is unpredictable at 
time t = K (the particular integral) and the component already deter­
mined at time t = K (the complementary function). The coefficients

(i = 1 ,2,3,...,u) in the complementary function change for different 
values of K.



-190-

We now look more closely at the particular forms of the model
(9 .7 .1) previously dealt with in Sections 9*5.5, 9*5*2, 9*5*4 and
9 .5.3 (in that order). In each case K will be taken as zero.

9 .7.1 The A.R.I.M.A. Model of Order (0,1,1) x (0,1,l) 12
The A.R.I.M.A. model of order (0,l,l) x (0,1,1)^^ has a particular 

integral (for t > 13) given by equation (9*7*3) where the rp weights 
satisfy

(1-B)(l-Bl2) ip (B) a^ = (l-8^B)(l-0^Bl2) a^

The complementary function z” obtained using equation (9*7*8) is

-i2ïït -i4nt
12 12 

^t ' ^1 ^ ^2^ ^ °̂ 3̂  + e
-i22ïït 

_ 12

= a. + agt'+ (-1 )̂
' il 2lTVt , , . 2lTVtc C O S  - +  d  s i nV 12 V 12

= «1 + Upt + s^ 9 .7.9

27TVt . , . 2 ï ïV tc cos ■ , + d sin
V 12 V 12

t 5where s = (-1) j —  + E
 ̂ L^ v=l

12
and s = s _ E s = 0. The term s thus represents the seasonal

Ü V -Lc-

variation in the series ẑ  and so the complementary function (9*7.9) 
consists of a linear trend and an additive seasonal component.

It is of interest to compare the complementary function of the 
above model with those associated with the models examined in Sections
9 .5.2 to 9.5,4, For this reason, the function
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is plotted in Figure 9*2, for = 2.00, = 0.01, = 0.10,
Sp = -0.05, = -0.15, = -0.30, = -0.35, = -0 .25, = -0.10,
Sg = 0 .05, = 0.20, = 0.30, =0.35 and s^p = 0.20.

9 .7.2  The A.R.I.M.A. Model of Order (l,l,0) x (0,l,l)^p 
The general solution of the A.R.I.M.A. model of order

(1,1 ,0) X (0,l,l)^p is, using equations (9.7.3) and (9.7-8),

%t = "1 + “2^ + «3 *1 + "t

\ *1 V l  *2 V 2 Vl \ 9.7.10
for t > 12. s^ is as defined in Section 9.7.1 and the ip weights satisfy

(1-(J)̂ B)(1-B)Ci-b 12) = (l-O^BlZ) a^

The complementary function is composed of the linear trend and 
seasonal components present in the expression (9 .7 .9) plus 
the term Unless (j)̂ is very close to + 1, the effect of (fî
diminishes rapidly as t increases and the deterministic component is
soon identical to that shown in Figure 9*2 for the model of order 
(0,1 ,1) X (0,l,l)^p when the values of a^, and ŝ  (j = 1,2,3,...,12) 
quoted in Section 9.7.1 are employed.

9 .7.3  The A.R.I.M.A. Model of Ordef (0,1,1) x (l,l,0)^_
The A.R.I.M.A. model of order (0,l,l) x (l,l,0)^p has the general

solution.

+ %t + *1 V l  + *2 *t-2 + ••• + *t-l ^1 9.7.11

for t > 1. Again, ŝ  is as defined in Section 9.7-1 while ŝ  is 
given hy



-192-

OJ

oVD

CO-et

\D
CO

-e tOJ

OJ

CM

ONIM
P>H

COiH
e
orC

-P

f:p>•H
•o<u
•HOO
to(0
c3
toCo• H
-P0
1
ct5

e
(U 

I—I

&o
o

tp
0

to0>
rH1

pq
C DI
H

N

CNJ

IrH
PQI
rH

PQ
OI
rH

-P

PQ
I—I

0
1

PQ
C DI
rH

PQI

PQ
[

O

CO
o
CM

O

iH



-193-

= (-1)^ [■# + \  ^12^ + sin ̂ ] |V, v=l

The 4> weights satisfy the equation

(l-*^Bl2)(i_B)(l-Bl2) iJj(B) a^ = (l-8^B) a^

The complementary function for this model thus contains the
terms and ŝ  over and above the linear trend and
additive seasonal components.' The, term will generally decay
rather slowly, even for values of 0^ not particularly close to + 1,
while s^ represents a similarly decaying seasonal variation.
The effect of the expressions I I a n d  s^ obviously
depends on the values of and sj (j = 1,2,3,;..,12) but one possible
behaviour is illustrated in Figure 9*2 where the complementary function
is plotted for the values of a^, and sj (j = 1,2,3,...,12) employed
for the model of order (0,l,l) x (0,1,l)^^ .̂nd = 0.1, 4)̂ = 5,
si = s. (j = 1,2,3,...,12). The complementary function is seen to J J
possess a seasonal component, the amplitude of which decreases as t 
increases, eventually settling down to the pattern followed by the 
complementary function of the model of order (0,1,l) x (0,1,l)^^.

9 .7.4 The A.R.I.M.A. Model of Order (l,l,0) x (1,1,0)̂ ^
In the case of the A.R.I.M.A. model of order (l,l,0) x (1,1,O)^^, 

the general solution for t > 0 is

= *1 + V  + *3 + “1, + St +

+ + *1 V l  + »2 ^t-2 + + *t-l ^1 9 .T.I2

where s. and si have been defined previously and the ij; weights satisfy " t t

(1-*]B)(1-4^B12)(1-B)(l-Bl2) ilj (B)a^ =

As in Section 9*7*2, the effect of the term 4*̂ soon dies out
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as t increases and apart from the first few values of t, the comple­
mentary function is the same as that for the model of order 
(0,1 ,1) X (1 ,1 ,0)^2, an example of which is given in Figure 9.2.

9.7.5 General Comments
In cases where the influence of the random component is small, 

the complementary function will tend to dominate the general solution 
of the model in question. When this occurs, models associated with 
almost the same complementary function would he expected to behave 
in a similar manner. Thus for example the models discussed in 
Sections (9 .7 .1) and (9.7.2) would generate forecasts which agree 
closely with each other, while the models of order (0,l,l) x (0,1,l)12
(0 ,1 ,1) X (1 ,1 ,0)^2 :üay well produce quite different forecasts since 
as we see from Figure 9.2 the complementary functions can differ quite 
considerably. Reference to Section 3.7 emphasises this point.

When the random component possesses a high variation compared 
with the other components in the model, the particular integral will 
dominate the general solution and as t increases the observations 
will diverge quite quickly from the path predicted by the complemen­
tary function evaluated at time t = 0.

9.8  Conclusions
The main object of this chapter has been to gain a better under­

standing of A.R.I.M.A. models by expressing them in a form which is 
generally more familiar to most statisticians. We have considered 
the interpretation of the forecasts generated by A.R.I.M.A. models 
in terms of E.W.M.A.'s and also the representation of A.R.I.M.A. 
processes by trend and seasonal models.

In Sections 9-3, 9*4 and 9.5 we found that provided the moving 
average operator in an A.R.I.M.A. model possessed real roots Hj
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lying in the region 0 < < 1, then it was possible to express
the generated forecasts as E.W.M.A.'s. The complexity of these 
expressions depended on a number of factors. For non-seasonal 
models the one step ahead forecasts could be described by a quite 
elegant combination of various orders of E.W.M.A.’s, even in 
the general case. When the model under consideration included few 
parameters, the one step ahead forecasts were related to the forecasts 
produced by techniques based on exponential smoothing. In particular 
the forecasts resulting from the A.R.I.M.A. models of order (0,l,l), 
(0 ,2,2) and (0 ,3,3) were found to be more general forms of those arrived 
at by Brown's method, when the local models were respectively constant 
linear and quadratic. However for A.R.I.M.A. models which included 
many parameters, the interpretation of higher order E.W.M.A.’s was 
in itself rather difficult and so the understanding was not improved.

The one step ahead forecast derived from the general multiplica­
tive seasonal model was an unwieldy combination of various orders 
of E.W.M.A.’s. The forecasts for simpler seasonal models were 
however arrived at by substituting in the general expression and it 
was then possible to relate these forecasts to those involving more 
familiar arguments.

It may be rather misleading to say that the forecasts generated 
by A.R.I.M.A. models can sometimes be expressed as E.W.M.A.’s. The 
latter assume an infinite amount of data and although a finite approxi­
mation is generally satisfactory for non seasonal models, the same may 
not be true in the case of seasonal models with moving average seasonal 
parameters, even for moderate length series.

An alternative interpretation of A.R.I.M.A. models was achieved 
by solving the difference equations which constitute the models.
The general solution consisted of a deterministic component (the 
complementary function) and an unpredictable component (a particular
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integral) . For seasonal models based on the differencing operator 
the complementary function always included a linear trend and 

an additive seasonal component described by damped sine waves. The 
other deterministic terns depended on the autoregressive parameters 
present in the A.R.I.M.A. model, while the effect of these terms was 
more pronounced for seasonal parameters than non-seasonal parameters 
The complementary function tended to dominate the general solution 
when there was little random variation and the particular integral 
when the random variation was high.
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CHAPTER 10

FURTHER EXPERIENCE WITH THE BOX-JEHKINS PROCEDURE

10.1 Introduction
It would be unfair to judge the success or failure of the Box- 

Jenkins forecasting procedure solely on the basis of the single case 
study described in Chapters3 and k and without taking into account 
the performance of other forecasting techniques on the same data. In 
order to gain more experience with the Box-Jenkins procedure it was 
applied to a further 4 seasonal time series. A summary of these 
analyses will be given in Section 10.2 with particular attention being 
paid to some of the points raised in preceeding chapters.

The Holt-Winters method (see Winters (196O), Coutie et al {196k) 
and Section 1.2.2) was also applied to the series mentioned above 
and to the Company X data. The forecasts generated by this method were 
compared with those resulting from the Box-Jenkins procedure and the 
relative performance of the two techniques will be reported in Section 
1 0.3. These results will be related to the conclusions arrived at
by Reid (1969).

The contents of this chapter will be summarised in Section 10.U.

10.2 A Summary of Some Further Box-Jenkins Analyses
We begin this section by briefly describing the k seasonal time 

series on which the Box-Jenkins procedure was employed. These series 
will be referred to as series I, 11, III and IV.
SERIES I

This series is composed of the 4-weekly sales figures of a food 
product. The 57 observations available are given in Appendix I and 
plotted in Figure 10.1. A high seasonal variation (period 13) is
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apparent while a slight downward trend can he detected.
SERIES II

This series consists of the monthly retail passenger car sales in 
the U.S.A. The data have been tabulated by Makridakis and Wheelwright 
(1972) who also give the results (without details) of a Box-Jenkins 
analysis. The series, which is shown in Figure 10.2, is influenced by 
strong seasonal and cyclical factors and is composed of 84 observations. 
SERIES III

This series is a scaled* approximation to the telephone time series 
analysed by Tomasek (1972). The data, composed of IO8 monthly 
observations (tabulated in Appendix I and graphed in Figure 10.3), 
possess an extremely high seasonal variation and a significant upward 
trend.
SERIES IV

Series IV consists of quarterly despatch figures in the footwear 
industry. The series shows a fairly high seasonal variation and a 
cyclical factor. The 48 observations which make up the series are 
tabulated in Appendix I and plotted in Figure 10.4.

In applying the Box-Jenkins procedure, each series was divided 
into two parts. The first part was used for fitting the appropriate 
A.R.I.M.A. model and the second part for examining the forecasting 
performance of the fitted model. Obviously it was necessary for both 
the fitting and forecasting periods to be of a reasonable length.
Table 10.1 gives the length of these periods chosen for the series I 
to IV.

* Unfortunately the author does not tabulate the data and a graph of 
the series does not include any scale. Hence series III was obtained 
by a suitable choice of scale.
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Table 10.1 Fitting periods and forecasting periods for series I to IV

Series Total
Length

Fitting
Period

Forecasting
Period

I 57 39 18

II Qk 60 2k

III 108 72 36
IV U8 36 12

Using the iterative process of identification, estimation and 
diagnostic checking described in Chapter 2, the following fitted
models were selected to describe the series I to IV.

SERIES I

. ^t = V^^X^ = (1 - 0.95Bl3)a^ - 4.62 10.2.1

and = 205.9

SERIES II

= = (1 - 0.69B) (1 - 0.94Bl2)a 10.2.2

and ol = 3179

SERIES III

= VV^2%^ = (1 - O.U7B - 0.49Bf)a 10.2.3

and 0^ = 217.6

SERIES IV -

= VV^X^ = (1 - 0.14b ) (1 - 0.96B4)a 10.2.4

and ^ 8863719

/'
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In each case denotes the untransformed observation at time t.
Throughout the model fitting procedures a number of the points 

raised by the analysis of the Company X data were again encountered.
These will now be discussed.

It is recalled from Chapters 3 and 4 that a non-linear transformation 
was applied to the Company X data prior to the Box-Jenkins analysis. The 
monthly growth rates for the series I to IV are much smaller than that 
associated with the Company X data making it less important whether a 
model with additive or multiplicative seasonal effects is assumed. After 
inspecting the Figures 10.1 to 10.4 we decided to analyse the untrans­
formed observations in each case and thus the extra problems involved 
in estimating the transformation parameter (see Section 4.4) were 
avoided.

The importance of the role played by the differencing operator in 
the A.R.I.M.A. model (discussed in Chapter 5) was emphasised during the 
fitting of the four models (10.2.1) to (10.2.4). Table 10.2 quotes 
the estimated variances of the original observations X^, the differenced 
series w^ and the residuals a^ resulting from the fitted models (10.2.1) 
to (10.2.4). All estimates were computed over the fitting period.

Table 10.2 Estimated variances of X,, w. and â  ---------------------------------- 1 3—"t------b

Series 4 *w

I 4,620 432.3 205.9

II 8,885 7488 3179

III 11,949 278.4 217.6

IV 27,600,000 12,167,948 8,863,719
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If the percentage of the total variation unexplained hy each fitted 
model is taken to he ^a/c^ % 100, the percentage variation accounted for
by the differencing operation to be (l - w/a^) x 100 and the percentage
variation explained by fitting the A.R.M.A, model to w. to be

x 100, then the results given in Table 10.2 are best 
interpreted in the manner shown below.

Table 10.3 Variation explained by differencing and fitting the A.R.M.A. Model

Series
Percentage of Total Variation Explained

Differencing
By fitting the 
A.R.M.A. Model Unexplained

I 90.6 4,9 4.5
II 15.7 48.5 35.8
III 97.7 0.5 1.8
IV 55.9 12.0 32.1

For the two series I and III,the percentage of the total variation 
unexplained by the fitted models (10.2.1) and (10.2.3) is very small 
compared with other variations in the series (i.e. due to trend and 
seasonality) and in both instances most of the total variation is 
explained by the differencing operation. In contrast, the fitting 
of the A.R.M.A. model to the stationary series accounts for only a
small percentage of the total variation, thus supporting the view of

\

Akaike (l9T3). The variation unexplained by the models (10.2.2) and 
(10.2.4) when fitted to the series II and IV represents a much higher 
percentage of the total variation in these series. In the case of 
series IV, the effectiveness of the A.R.I.M.A. model is again 
determined mainly by the differencing operation but for series II 
the fitting of the A.R.M.A. model explains much more of the total 
variation than the differencing operation,

As we can see from equations (l0.2.l), (10.2.2) and (10.2.4),
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the A.R.I.M.A. models fitted to the series I, II and IV all included 
a moving average seasonal parameter close to unity. Hence, for the 
reasons given in Chapter 6, one iterative cycle was not sufficient when 
computing the unconditional sum of squares corresponding to the estimates 
of these parameters. In fact, we found that at least 4 iterations 
were necessary in all three cases. Although not immediately obvious, 
the fitted model (10.2.3) is also close to the non-invertibility boundary 
since the moving average operator can be expressed as

(1 - 0.4TB - 0.49B2)a^ = (1 - 0.9TB) (l + 0.50B)a^ 10.2.5

However in this case one iterative cycle was sufficient because 
the parameter in question is non-seasonal and also the fitting period 
for the series III is of moderate length.

As in the analysis of the Company X data, we discovered that it 
was possible to fit several models to each set of data without any 
inadequacies being detected by the diagnostic checks. For example, 
no discrepancies were revealed when the model

'"t “ ?13%t " %  ■ 10-2-6

was fitted to the series I, although the model (10.2.1) was chosen because
it gave rise to a much smaller estimate for â . It was however oftena
difficult to decide whether one model fitted the data significantly 
better than some alternative model. The fact that our series were 
rather on the short side undoubtedly contributed towards this problem 
but nevertheless it serves to emphasise that one can never be absolutely 
sure that any one particular model is appropriate.

Forecasts were generated by the model (l0.2>l) (up to lead time 13), 
models (10.22) and(l0.2.3) (up to lead time 12) and model (10.2.4) (up 
to lead time 4), over the second part of the series in question. The
one step ahead forecasts in each case are plotted in Figures 10.1 to
10.4. Although some bias is present in the forecast errors it was
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not found to be statistically significant for any of the four series.
The mean squared forecast errors (S.M.S.E (&)) for the lead times 

mentioned above were computed and are given in Table 10.4. Also 
tabulated are the corresponding theoretical mean squared errors 
(T.M.S.E (&)) obtained using the formula (5*5.6).

It can be seen that the agreement between the two quantities is
quite reasonable for the mdoels (l0.2.l) and (10.2.3), fitted to the
Series I and III which exhibited small random variations, but not so good 
for the other two fitted models. However, in the case of the series IV, 
the forecasting period is so short (only 12 observations) that the 
results are bound to be rather unreliable.

We concluded in Chapter 9 that the one step ahead forecasts
generated by seasonal A.R.I.M.A. models can be expressed in terms of 
E.W.M.A.’s, provided the roots Ĥ  and of the moving average operator 
are real and satisfy 0 < <1, 0 < J ^ < 1 .  The expressions for the
fitted models (10.2.2) and (10.2.4) are arrived at by substituting 
A^ = 1-8^ = 0.31, C^ = 1-0^ = 0.06 and A^ = 0.86, C^ = 0.04 respectively 
in equation (9.5.11), remembering that in the latter case the seasonal 
period is 4 and not 12. The one step ahead forecast derived from the 
fitted model (10.2.1) is apart from a constant, simply the yearly 
E.W.M.A. However the interpretation of each of the three
models mentioned above is affected by the practical consideration 
discussed in Section 9*6. It is not possible to represent the forecast 
generated by the fitted model (10.2.3) entirely in terms of E.W.M.A.’s 
since one of the roots ^ is negative (see equation.(10.2.5)).

A further means of interpreting A.R.I.M.A. models, dealt with in 
Chapter 9, involves the solution of the appropriate difference equation. 
On applying this approach to the models (l0.2.l) to (10.2.4) we find that 
the complementary functions consist of a linear trend and an additive 
seasonal component, except for the model (l0.2.l) when no linear term 
is present. Thus as we saw in Section 7*2, the models could have
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arisen from the sum of a deterministic component and a non-stationary 
error term. For example, since the moving average seasonal parameter 
in the model (10.2.2) is close to unity the series could have been 
generated by

X^ = a + 3t + s^ + n^

where Vn. = a. - 0a.  ̂t t t-1

and a, 3 and ŝ  (j = 1,2,3,...,12) are constants with s^ = s^_^g.
However, since there is no physical reason for assuming that a 

totally deterministic component is present in any of the series I to 
IV it is perhaps more likely that the models (10.2.1) to (10.2.4)
result from processes of the type examined in Chapter 8.

10.3 Comparison with the Holt-Winters Method
The Holt-Winters method described by Winters (1960) was applied

to the series I to IV and also to the Company X data. For the series 
I to IV the fitting and forecasting periods employed were the same as 
those for the Box-Jenkins analyses (see Table 10.1) while for the 
Company X data the fitting and forecasting periods were composed of 
60 and 17 observations respectively. The fitting periods were used 
for estimating smoothing constants and starting values for the trend 
and seasonal factors. Forecasts were then generated over the second 
part of each series.

The forecasting performances of the Box-Jenkins and Holt-Winters 
procedures were compared on the basis of the mean absolute forecast 
errors over the second part of the series under consideration. The 
use of this statistic assumes a cost of error function of the form

C(e) = a|e| for a > 0

which differs from the quadratic cost of error function employed by
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Reid (1969, 1971) and Newbold and Granger (1974). However, since our 
interest was in the comparative performance of two forecasting techniques 
the choice of cost function is not a crucial one (see Granger and 
Newbold (1973)). In fact our conclusions would have been exactly the 
same had a quadratic cost of error function been assumed, as remarked by
Reid (1971).

Table 10.5 gives the mean absolute one step ahead forecast errors 
arising from the use of the Box-Jenkins and Holt-Winters techniques.

Table 10.5 Mean absolute one step ahead forecast errors

Series
Mean Absolute 
Forecast Errors

Box-Jenkins Holt-Winters
I 25.5 20.9

II 73.3 73.5

III 11.3 10 .3

IV 2481 2522

Company X 50.9 44.9

It should be pointed out that the A.R.I.M.A. model fitted to the 
Company X data was the model (4.3.1) and the mean absolute forecast 
error was computed after re-transforming the forecasts.

From Table 10.5 we see that Box-Jenkins produced the smaller 
mean absolute forecast errors for series II and IV and Holt-Winters 
for series I, III and the Company X series. Using Reid’s decision 
tree (see Kendall (1973, page 127)) one would have expected Box-Jenkins 
to have performed better than Holt-Winters on the series II, III and 
Company X (all with fitting period > 50 observations) with Holt-Winters 
doing better on the series I and IV (j< 50 observations). Of course 
Reid’s diagram is based on generalisations from a finite sample and as 
he admits "a good deal of "hunch"” is embodied in the diagram.
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It is of interest to note that for the two series II and IV in 
which Box-Jenkins does better than Holt-Winters, we see from Table 10.3 
that the random (unpredictable) component possesses a high variance 
compared with other variability in these series.

We now look briefly at the mean absolute errors resulting from 
forecasts for higher lead times. Table 10.6 quotes the mean absolute 
lead time 6 forecast errors for the series I to III and Company X and 
the mean absolute lead time 4 forecast errors for series IV.

Table 10.6 Mean absolute lead time 6 forecast errors, series Î  II 
II and Company X, mean absolute lead time 4 forecast 
errors, series IV

Series
Mean Absolute 
Forecast Errors

Box-Jenkins Holt-Winters
I .24.9 17.9
II 110.3 111.4
III l4.0 11.8
IV 3227 3117

Company X 77.3 52.3

The only series for which Box-Jenkins performs better than Holt- 
Winters is series II. In fact it would appear that Holt-Winters 
compares more favourably with Box-Jenkins for higher lead times than 
for the lead time 1 forecasts.

10.4 Summary
In this chapter, the Box-Jenkins forecasting procedure has been applied 

to a further 4 seasonal time series. A number of the points raised by 
the analysis of the Company X data and dealt with in Chapters 5 to 9
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were again apparent. These included the importance of the choice of 
differencing operator, the possibility of several A.R.I.M.A. models 
fitting the data almost equally well, the estimation of moving average 
seasonal parameters and the interpretation of A.R.I.M.A. models and 
the forecasts generated by such models. However, since non-linear 
transformations of the data were not deemed to be necessary, the 
problems of estimating a transformaticnparameter by the methods 
described in Chapter 4 were not encountered.

The performance of the Box-Jenkins procedure was compared with 
that of the Holt-Winters method on the 4 series introduced in Section 10.2 
and also on the Company X data. Overall, the Holt-Winters method 
compared most favourably with the Box-Jenkins procedure for both lead 
time .1 forecasts and forecasts for higher lead times. However, it would 
be unwise to attempt to draw any general conclusions on the basis of 
these results, for the following reasons ;

(1) The comparison was performed on a sample of only 5 series.
The conclusions arrived at from the comprehensive studies conducted by 
Reid (1969) and Newbold and Granger (19T4) (see Section 1.4) suggest 
that the Box-Jenkins procedure generally performs better than the 
Holt-Winters method, even on seasonal data.

(2 ) The fitting and forecasting periods (series III apart) were 
rather short.

(3) The number of subjective decisions involved in the Box-Jenkins 
procedure makes it extremely likely that different practitioners would 
fit different A.R.I.M.A, models. It is therefore possible that someone 
more experienced with the Box-Jenkins procedure could have improved 
upon the Box-Jenkins results given in Tables 10.5 and 10.6.
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CHAPTER 11

SUMMARY, CONCLUSIONS AND FURTHER RESEARCH

11.1 Summary and Conclusions
This thesis has been concerned with an examination of various 

practical problems related to the use of the forecasting procedure 
proposed by Box and Jenkins (l9T0). The emphasis has been placed 
on the application of this procedure in the particular area of 
seasonal forecasting.

We began our examination of the Box-Jenkins procedure by applying 
it to a seasonal series consisting of the monthly sales figures of 
an engineered product. The forecasts generated during this analysis 
were intuitively very poor while in addition other more general 
features of the procedure were considered to be worthy of more detailed 
attention. These points provided the stimulus for the topics examined 
in Chapters 4 to 9.

The employment of non-linear transformations in time series 
analyses was considered in Chapter 4. It was shown that for a series 
which possesses an approximate linear trend and multiplicative seasonal 
variation (e.g. the Company X data), a logarithmic trnasformation can 
be justified as long as the monthly growth rate is small. When this 
is not the case one approach is to assume a general non-linear 
transformation of the kind discussed by Box and Cox (1964). However, 
the estimation of the transformation parameter is a long, complicated 
exercise which requires the prior identification of an A.R.I.M.A. model. 
Further it may be necessary to perform this estimation procedure at 
frequent intervals since we saw that the value of the transformation 
parameter can change quite significantly over short periods of time.
In view of this possibility it would seem advisable to avoid a non-linear
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transformation wherever possible by applying a suitable differencing 
operator to the untransformed observations.

Chapter 5 dealt with the important problem of selecting the 
degree of differencing which reduces a non-stationary series to some 
stationary process. It was proposed that the decomposition of a 
series into trend, seasonal and error components and the theoretical 
behaviour of the variance of a stationary series could both be used, 
in addition to the sample autocorrelation function, when identifying 
the differencing operator. We illustrated just how crucial this 
identification can be by quoting an example in which two A.R.I.M.A. 
models based on different degrees of differencing fitted the transformed 
Company X data almost equally well, yet the two sets of tolerance 
limits associated with the generated point forecasts differed considerably, 
particularly for higher lead times. However, in general, for short 
or even moderate length series it is often impossible to decide which 
of two models, fitting the data equally well yet forecasting quite 
differently, is"appropriate.

The estimation stage of the model fitting process in the Box-Jenkins 
procedure was investigated in Chapter 6. When analysing seasonal 
(especially monthly) data we discovered that an already complicated 
estimation procedure can become even more involved when the identified 
model includes a moving average seasonal parameter close to the 
non-invertibility boundary. In such a case several iterative cycles 
are usually necessary in computing the unconditional sum of squares for 
parameter values in the neighbourhood of the estimated value, even for 
moderate length series. A similar problem may also occur when estimating 
moving average parameters for short non-seasonal series.

In Chapter 7 we showed that the estimation situation discussed in 
Chapter 6 can occur when fitting A.R.I.M.A. models to series which 
include deterministic components. This theory was confirmed when the
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Box-Jenkins procedure was applied to a short generated series possessing 
a deterministic linear trend. During this analysis we found that when 
fitting an A.R.M.A. model to the stationary series which had a non-zero 
mean, it was important to estimate this parameter hy least squares.
A simple linear regression on time was also performed on the generated 
series and on the basis of the two analyses we concluded that although 
the Box-Jenkins procedure produced the slightly better forecasts, the 
use of the latter could not be justified in preference to the less 
expensive linear regression approach.

The theoretical A.R.I.M.A. models resulting from the aggregate 
of stochastic processes representing trend, seasonal and extraneous 
error components were derived in Chapter 8. We found that even when 
the individual components were described by quite simple A.R.I.M.A. 
models the aggregate process generally involved many parameters 
although it was shown that in practice it may be possible to approximate
by ̂  less complicated model, depending on the relative sizes of the
variances of the white noise processes associated with each component.

In Chapter 9 we discussed the interpretation of the forecasts 
generated by A.R.I.M.A. models, in terms of E.W.M.A.’s. Such an 
interpretation is generally possible provided the roots of the moving 
average operators (both seasonal and non-seasonal) are real and positive. 
The expressions for the one step ahead forecasts are quite simple for 
models with few parameters but for multi-parameter models (particularly 
seasonal) we' reach the stage where the E.W.M.A.’s are themselves 
difficult to interpret. One point of practical importance is that 
for short or moderate length series, the expressions for the forecasts
generated by seasonal models will bear little resemblance to E.W.M.A.’s
when the model in question includes a moving average seasonal parameter 
close to the non-invertibility boundary.

An alternative means of interpreting A.R.I.M.A. models was also 
investigated in Chapter 9. The difference equation form of the
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A.R.I.M.A. model was solved in terms of a deterministic component, 
representing trend and seasonality, and an unpredictable component.
The deterministic component consists of polynomials and cyclical 
terms (arising from the differencing operator in the A.R.I.M.A. 
model) and damped exponentials and damped sine waves (arising from 
the stationary autoregressive operators).

The application of the Box-Jenkins procedure to a further 4 
seasonal time series was described in Chapter 10. Many of the 
points raised by the analysis of Chapter 3 and dealt with in Chapters 
4 to 9 were again encountered. In addition, the performance of the 
Box-Jenkins procedure was compared with that of the Holt-Winters 
method on the 4 series mentioned above and also on the Company X 
data. The latter method compared most favourably with the Box-Jenkins 
procedure although it would be unwise to draw any general conclusions 
on the basis of 5 rather short series. However this comparison did 
support the view of several authors (e.g. Reid (1969, 1971), Chatfield 
and Prothero (1973 a), Newbold and Granger (1974)) that the main 
disadvantage of the Box-Jenkins procedure compared with most other 
uiivariate techniques are

i) the expense involved in fitting an initial model 
ii) it can only be used effectively by an experienced skillful 

statistician
and iii) it requires rather more data than are often available.

The Box-Jenkins procedure certainly proved more expensive in terms 
of computing time than the Holt-Winters method and this was especially 
true in the case of the Company X data when a non-linear transformation 
was performed for the Box-Jenkins analysis whereas no such transformation 
was necessary when applying the Holt-Winters technique. The need for 
experience and skill in the Box-Jenkins procedure is brought about 
mainly by the number of subjective decisions involved in the identification 
of an A.R.I.M.A. model although as we saw in Chapter 4 the aforementioned
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qualities are equally essential in deciding whether any transformation 
should he applied to the data. Again, until a more general understanding 
of A.R.I.M.A. models is achieved it may he necessary to relate these 
models to the more familiar concepts of trend and seasonality, an 
operation which, as demonstrated in Chapter 9, can itself he quite 
complicated. The point that the Box-Jenkins procedure requires rather 
more data than are often available was emphasised by the■* problems arising 
when short series were analysed. In such cases the tools employed in 
the identification process are unreliable, the estimation situation 
discussed in Chapter 6 is more likely to occur while the diagnostic 
checks become rather insensitive, making it often impossible to decide 
between two or more A.R.I.M.A. models which apparently fit the data 
equally well yet forecast quite differently.

Against these practical difficulties, the results of Reid (1969, 
1971) and Newbold and Granger (1974) suggest that when used by an 
experienced practitioner, the Box-Jenkins procedure generally 
outperforms the other invariate forecasting techniques reviewed in 
Chapter 1. This is perhaps not surprising in view of the statement 
of Box and Jenkins (1973) that"the alternative and traditional
commonsense forecasting methods .....  are for most part special cases of
the A.R.I.M.A. model". However this statement should not be taken to 
mean that other forecasting methods should never be used. The 
important point is whether the extra complication and expense involved 
in the Box-Jenkins procedure can be justified. Reid (1971) suggests 
that the additional expense may be justified for macro-economic series 
but not for sales forecasting when a large number of individual items 
are involved. In the latter case the fully automatic method of Holt- 
Winters would probably be preferred (see Chatfield and Prothero (1973 a))

Only experience in the form of more comparative studies, similar 
to those performed by Reid (1969) and Newbold and Granger (1974), 
will reveal the conditions under which the models assumed by automatic
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forecasting methods are a good enough approximation to the "true" 
underlying process. For the 5 seasonal series considered in 
Chapter 10, the extra cost and complexity of the Box-Jenkins procedure 
could not he justified in preference to the method of Holt-Winters.

11.2 Further Research
Throughout this thesis we have concentrated on the performance 

of the Box-Jenkins procedure when generating forecasts based solely 
on past values of the variable to be forecasted (i.e. used as a 
univariate procedure). This procedure can however be extended to 
produce forecasts based not only on past values of the series being 
forecasted but also on past values of other related series (i.e. a 
multivariate procedure). Box and Jenkins (1970, Part III) have 
introduced a class of models, called transfer function models, which 
relate on "output", variable to one or more "input" variables. These 
modéls can be expressed in a similar notation to the A.R.I.M.A. models 
encountered throughout this thesis but the model fitting process is 
naturally much more involved than in the univariate case. The generation 
of forecasts employing such models is termed "forecasting using leading 
indicators". Apart from the additional complications associated with 
fitting a transfer function model, there is also the problem of 
selecting suitable related variables. Occasionally the choice may 
be obvious (e.g. in the case of series IV introduced in Chapter 10, 
a "stocks" series was supplied together with the "despatches" series, 
so that the former could be used in forecasting the latter) but 
generally the input variables need to be carefully selected.

It would be an interesting exercise to seek variables which 
are related to the series analysed in Chapters 3 and 10 and then to 
use the Box-Jenkins multivariate procedure for generating forecasts.
These forecasts could then be compared with the univariate forecasts 
already computed. For the series in which only a small percentage
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of the total variation remains unexplained hy an A.R.I.M.A. model 
the employment of other variables could not be expected to greatly 
improve the accuracy of the forecasts, but when a high percentage 
of the total variation is unexplained by an A.R.I.M.A. model there 
is certainly room for improvement. However, the Box-Jenkins 
multivariate procedure is relatively untried and practical improvements 
are still being investigated (see e.g. Newbold (1973 b)j. As yet, 
apart from the examples given in Box and Jenkins (1970), few case 
studies appear in the literature and it would seem that much 
experience is necessary with the univariate procedure before embarking 
on the multivariate procedure.
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APPENDIX I

1 2 3 4 ■ 5 6 7 8 ' 9 10 11 12 13
153 189 221 215 302 223 201 173 121 106 86 87 108

l4 15 16 17 18 19 20 21 22 ' 23 24 25 26

133 177 241 228 283 255 238 164 128 108 87 74 95

27 28 29 30 31 32 33 34 35 36 37 38 39
145 200 187 201 292 220 233 172 119 81 65 76 74

40 4l 42 43 44 45 46 47 48 49 50 51 52

111 170 243 178 248 202 163 139 120 96 95 53 94

53 54 55 56 57
104 135 224 203 210

SERIES II

Jan Feb Mar Apr May- Jun Jul Aug Sept Oct Nov Dec
1965 695 684 817 800 773 807 712 610 499 842 801 722

1966 684 668 854 765 692 751 635 608 501 794 746 678

1967 564 509 670 710 745 780 627 517 547 665 618 615

1968 630 624 767 729 811 781 737 635 563 885 785 679

1969 645 662 722 754 795 798 662 555 709 817 706 639

1970 539 598 646 691 699 800 64l 526 489 630 436 425
1971 586 637 756 737 748

... 798 668 566 756 934 848 649
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Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
1961 75 65 85 230 385 120 110 115 160 130 110 80

1962 85 75 105 270 430 135 115 130 160 155 120 85

1963 85 80 95 270 445 135 135 145 165 160 135 95
1964 85 90 110 280 465 130 120 120 170 145 . 120 95
1965 85 90 115 315 520 150 155 145 190 175 150 125

1966 95 105 120 345 590 165 155 165 200 190 155 130

1967 110 95 125 380 615 175 185 200 215 200 170 135
1968 120 115 125 370 605 190 165 170 205 200 160 115

1969 115 110 135 370 590 185
1

170 j 170 235 210 155 130

series IV

1st Quarter 2nd Quarter 3rd Quarter 4th Quarter
1-4 57461 52558 49452 48062

5-8 53440 46963 48672 50454

9-12 53194 51547 54812 58626

13-16 62814 62073 59406 54932

17-20 59253 55530 55456 57343

21-24 64193 57327 55984 52816

25-28 62657 56583 54271 57484
29-32 68617 6ll48 60504 59856

33-36 70051 57702 56861 55181

37-40 63931 57200 55550 58300

4i-44 65552 62428 59217 57467
45-48 70194 57111 57924 . 53911


