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SUMMARY

Rat muscle cells v^re grcwn in culture for use as an experimental 
model in which to study the myolytic effects of myasthenic serum in 

vitro. Use was made of a procedure which depends upon the selective 

uptake of tritium-labelled carnitine by cultured myotubes, loss of 
which can be monitored following cytolytic damage. The studies 

demonstrated that heat-inactivated myasthenic serum samples caused 
myotube-specific lysis in a manner that was dependent on the addition 
of complement. The concentration and activity of the complement source 
was shown to be a major factor in detecting myotoxicity. Using 
optimised assay conditions, a myotoxicity study was carried out using 
a range of normal and iryasthenic serum samples. In the presence of 
guinea-pig oomplanent, heat-inactivated serum samples from 9 out of 13 
myasthenic patients shewed dear myotoxicity in contrast to 0 out of 
12 normal controls and 0 out of 6 polymyositis patients. Neither 
heat-inactivated sera alone nor guinea-pig complement alone showed 
myotoxicity. A further study defined new conditions under which 

previously 'non-toxic' myasthenic serum samples demonstrated 

myotoxicity. Removal of anti-AChR antibodies from a myasthenic serum 
sample by affinity absorption led to a loss of complement-fnediated 
myotoxicity. Finally, studies vere carried out in which IgG or IgG 
depleted of subclass 3, was purified from myasthenic serum samples and 

tested for complement-mediated myotoxicity. The IgG fractions caused 
myotoxicity in a similar manner to the vdiole serum.

The studies were extended to human foetal muscle cells 
in culture v^ich være shown to be less mature than the cultured rat 

muscle cells in this study. Attempts vere made to define optimal



growth conditions for the human foetal muscle cells iri vitro but these 
were inconclusive. Comparable ccmplenent-mediated myotoxicity by 
myasthenic serum tovmrds human muscle cultures was not shown. Hovæver, 
manipulation of assay conditions resulted in dear myotoxicity by the 

2 myasthenic serum samples tested, relative to normal controls.
The results gained from this work support the 

suggestion that complement-mediated cell damage, initiated by 
anti-AChR antibodies, may contribute to post-synaptic membrane 
degeneration in myasthenia gravis.
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INTRODUCTION

"Nevertheless, those labouring with a want of spirits, will use these 
spirits for local motions as veil they can; in the morning they are 
able to walk firmly, to fling their arms about hither and thither or 
to take up any heavy thing; before noon the stock of spirits being 
spent, vhich has floved into the muscles, they are scarcely able to 
move hand nor foot. At this time I have under my charge a prudent and 
honest woman who for many years has been obnoxious to this form of 
spurious palsy, not only in her members, but also in her tongue; she 
for sone time can speak freely and readily enough but after she has 
spoke long or hastily or eagerly, she is not able to speak a word, but 
becomes mute as a fish, nor can she recover the use of her voice under 
an hour or two."

Thomas Willis, 1672

The first description of the human disease nyasthenia gravis (MG) was 
probably that above, given by Dr. Thaias Willis in 1672. The disease 

is clinically characterised by v^akness and rapid fatiguability of 
skeletal muscle. The symptoms of MG are often first noticed following 
an infection or at a time of psychological sturess. The disorder may be 
selective for a particular group of muscles (eg. ocular, bulbar, limb) 

or more generalised. Involvement of the respiratory muscles may lead 
to death. It is new generally accepted that MG is an autoimmune 

disease, the autoantigen being the acetylcholine receptor (AChR) of 
the post-synaptic muscle membrane. As a result of antibody-mediated 
responses, the number of functional AChRs is decreased with consequent



effects on neurotransmission (for comprehensive reviews see Lindstrom, 
1979; Vincent, 1980; Newsom-Davis and Vincent, 1982; Harrison and 
Behan, 1986). The increased understanding of the pathogenesis of MG is 

closely linked to increasing knowledge of the synaptic organisation, 

structure, function and turnover of the AChR. Much of this knowledge 
has been aided by the use of tissue-culture systems. Such systems have 
proved to be valuable experimental tools for the study of muscle and 
nerve physiology, biochemistry and immunology.

MG is, in many ways, a model autoimmune disease. 
Elucidation of the humoral and cellular mechanisms involved will no 
doubt contribute greatly to our knowledge of immune mechanisms in 
general and to their breakdown in disease states.

Neurcmuscular transmission
In the majority of mammalian muscles, each muscle fibre has a 

single region of contact with the axon of its controlling motor 
neurone. This region constitutes the neurcmuscular junction (Figure
1). The function of the neurcmuscula r junction is to transfer the 

propagated nerve impulse from the motor nerve ending to the muscle 
fibre resulting ultimately in muscle contraction. A narrow synaptic 
cleft separates the nerve terminal frcm the post-synaptic muscle 
membrane which is thrown up into folds in the region of the end-plate, 

the AChRs being concentrated at the tips of the folds (Ringel et al., 

1975). Impulses are conducted from the nerve cell body along the axon 
by means of action potentials which involve successive waves of 

opening and closing ion channels. The nerve impulses can be initiated 
experimentally by electrical stimulation of the nerve. In the nerve 

ending, acetylcholine (ACh) is stored in vesicles. Depolarisation of



FIGURE 1
SCHEMATIC REPRESENTATION OF THE NEUROMUSCULAR JUNCTION

Glucose

Pyruvatelow affinity uptake 
into glia,neuronal 
perykarya

AXON

Citrate

OAAhigh
affinity
choline
uptake

AcCoA

^  Choline

CoA

ACh/  ACh 
(vesicular) (cytoplasmic)

PREf SYNAPTIC 
TERMINAL

I— choline
SYNAPTIC

CLEFTacetate ^
ACh stimulation-evoked ACh 

release (Ca2+ dependent)

MUSCLE
MEMBRANE

AChE 
(membrane bound)

Nicotinic
AChR

Increased permeability to Na* K*



the nerve terminal membrane results in an influx of calcium ions v^ich 
triggers the release of ACh into the synaptic cleft, probably through 

fusion of vesicles with the pre-synaptic membrane. The binding of ACh 
to AChR in the post-synaptic membrane promotes a conformational change 
v^ich is associated with the brief (1 millisecond) opening of an ion 
channel. This allows the passage of sodium and potassium ions which 
flow down their electrochemical gradients. More sodium ions move in 
than potassium ions move out, resulting in a net influx of positive 
charge and depolarisation of the muscle membrane, producing an 
'end-plate potential' (EPP). If sufficient AChRs are activated, the 
temporal summation of EPP's causes depolarisation to the threshold 
value, thereby initiating an action potential. This is propagated 
along the muscle fibre leading to the activation of the contractile 
mechanism. The action of ACh is terminated hy its dissociation from 
the AChR and subsequent hydrolysis by acetylcholinesterase (AChE).

Normally, the amount of ACh released and the number of 
AChRs activated is much larger than the minimum necessary to exceed 
the threshold value stimulating muscle contraction. This provides a 

large safety factor ensuring effective neuromuscular transmission. In 
the absence of a nerve impulse, spontaneous release of a small amount 
of ACh frcm the nerve ending occurs, generating small depolarisations 
(miniature end-plate potentials - MEPPs) in the post-synaptic 
membrane. By using electrcphysiological techniques, the resting 

membrane potential of muscle, the spontaneous MEPPs and the EPPs can 
all be measured. With the advent of voltage clamp techniques, it is 

possible to determine the actual passage of current through sodium 
channels and the gating currents, which regulate the opening of ion 

channels. In this way, the mechanisms bringing about the initiation of



an action potential have been elucidated (Figure 2).

Characterisation of the AChR
The AChR at the vertebrate neuromuscular junction is 

classified pharmacologically as a nicotinic cholinergic receptor, 
responding to nicotine in a similar manner to ACh. Muscarinic 
cholinergic receptors, responding to muscarine, are found primarily in 
the brain and on smooth muscle cells. The pharmacology of nicotinic 
AChRs has been studied by measurement of the membrane potential or 
conductance changes induced by ACh and AChR activators (agonists) and 
by the inhibition of the cholinergic response caused by AChR 
antagonists which block synaptic transmission. Agonists of the AChR 
include nicotine, carbamylcholine and décaméthonium while 
characteristic antagonists are benzoquinonium and d-tubocurarine.
These ligands resemble A(Zh in having charged quaternary ammonium 
groups (Figure 3). The interactions of AChR with the agonists and 
antagonists mentioned above are readily reversible which precludes 
their use as ligands to label, isolate and purify the AChR.

TWO factors significantly and radically advanced the 
characterisation of the nicotinic A(ZhRs. The first was the 
availability of the c<-neurotoxins from snake venoms, Which bind with 
high affinity and specificity to the AChR; the second was the 

discovery of an abundant source of the receptor in the electric organ 
of several species of electric fishes. The %-neurotoxins were first 
purified by Chang and Lee (1962) who demonstrated that they produce an 

anti-depolarising block of the AChR at the neuromuscular junction in a 

manner similar to that of the cholinergic antagonist d-tubocurarine 

(Lee, 1972). Although very different in structure from ACh analogues.



FIGURE 2 THE INITIATION OF AN ACTION POTENTIAL 
AT A NICOTINIC CHOLINERGIC SYNAPSE
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the c<-neurotoxins bind to AChRs non-covalently but with high affinity 
-11(Kĵ '-v'lO M) and specificity, at or very near to the ACh binding site. 

The cx-neurotoxins are small compact peptides comprising 61-74 amino 
acid residues and have a net positive charge. They have been divided 
into two classes on the basis of their behaviour at the neuromuscular 
junction. Type I toxins have 60-62 amino acid residues, provide a 
reversible neuromuscular block and have therefore been exploited as 
ligands for affinity purification of AChRs (eg. the oc-toxins from Naja 
naja siamensis). Type II toxins have 71-74 eimino acid residues and 
bind almost irreversibly to the AChR. Iheir usefulness as probes for 
the AChR has relied upon the finding that they may be radiolabelled to 
high specific activity with retention of biological activity (eg.

(X-bungarotoxin (œBGT) from Bungarus multicinctus ).
125Radioactive cx-BGT, labelled with [ I] is currently the ligand of 

choice for quantitating the number of AChRs in intact cells, membrane 
fractions and solubilised extracts of A(3hRs.

The electric organs of the electric fish are 
embryonically similar to skeletal muscle but have no contractile 

elements. Ihe two most studied electric organs are those of the eel, 

ELectrophorus electricus, and various species of the Torpedo genus, 
the electric ray. The AChR density in electroplaques, the cells of the 
electric organ, is high, approaching 25% of the total membrane 
protein. This organ is therefore a rich and homogenous source of AChR 

which has been used extensively for biochemical characterisations (see 
Karlin, 1980; Conti-Tronconi and Raftery, 1982 for reviews).

The nicotinic AChR is an integral membrane protein which can 
only be released from the membrane by detergent extraction. Use of 
non-ionic detergent (eg. Triton X-100) results in a soluble form of



FIGURE 3 STRUCTURES OF ACETYLCHOLINE RECEPTOR LIGANDS
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receptor which retains its ability to bind cx-toxins and cholinergic 
ligands. Purification of the Torpedo AChR, after detergent extraction 
from the membrane and affinity chromatography, showed it to be a 
glycoprotein comprising 4 subunits designated and 6", in the

stoichicxnetric ratio of 2:1:1:1. The apparent molecular veights of the 

subunits are 40K, 50K, 60K and 65K respectively. The o(-subunit 
contains the binding site for ACh; these binding sites being on the 

synaptic surface of the AChR (Kistler et al., 1982). The role of the 
other three subunits of the receptor is as yet uncertain. Electron 
microscope studies have revealed that the subunits are very similar in 
overall structure. The AChR is arranged as a highly symnnetrical 
pentagonal structure, (9nM diameter), around the axis of a central 
pit, the presumed ion-conducting pore, (2 nM diaireter) (Brisson and 
Unwin, 1985). The AChR spans the membrane, each subunit being exposed 
on both the cytoplasmic and synaptic surfaces. Identification of the 
messenger RNA (mEtNA) for AChR has allov^ the cloning of the 
complementary DDA (cDbA) vdiich has, in turn, enabled nucleotide 
sequencing for the polypeptide chains of all four subunits (Noda et 

al.,1982, 1983ab). These studies have indicated extensive homology 
between the subunits. Predictions based on the data obtained lave 
suggested a common secondary structure for the portions of the 
subunits inside the lipid bilayer of the membrane. The arrangement of 

the polypeptide chains to give a charge lined pore with alternating 
regions where positive and negative charges predominate (see Stevens, 
1985 for review) has led to the first clear picture of the structure 

of ion channels and of the mechanisms involved in ion translocation.
The experience gained frcm studies with electric fish has 

allovi^ the isolation and characterisation of AChR frcm vertebrate
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skeletal muscle. Hov^ver, this has proved considerably more difficult 
than for the electrcplaque AChR, mainly because of the very low 
content of AChR in muscle membrane and the high proteolysis that 
occurs during purification (see Dolly, 1979 for review). In normal 
adult innervated muscle, the AChR comprises less than 1% of the total 
membrane protein. After denervation of the muscle, however, the number 
of AChRs increases by up to 50-fold providing a useful enriched source 
of receptors which has enabled their purification and partial 
characterisation from a variety of sources. Initial investigations 
suggested that these AChRs had analogous subunit structures to those 
of Torpedo AChR (Stephenson et al., 1981; Lindstrcm et al., 1979). 
Studies in which monoclonal antibodies were raised against individual 
Torpedo AChR subunits have shown that these cross-react with maimalian 
AChR (Tzartos and Lindstrcm, 1980). The additional finding that 
immunisation of rats with any of the Torpedo AChR subunits induced an 
immune response in the rats to their own A(3hR suggested that Torpedo 
and mammalian AChR shared common antigenic sites (Lindstrcm et al., 
1978a). By cloning and sequencing the conplementary or gencmic DN\s, 

Numa and co-workers have elucidated the primary structures of all four 

subunits of calf muscle AQiR (Noda et al.,1983c; Tanabe et al.,1984; 
l^kai et al.,1984; Kubo et al.,1985) and of the cx and Y* subunits of 

the human muscle AChR (Noda et al., 1983c; Shibahara et al., 1985). The 
nucleotide sequences obtained frcm these studies show a large degree 
of sequence homology with the corresponding Torpedo cDbAs, suggesting 
a conservation of the AChR protein between species.
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Tissue culture techniques
The founder of modern tissue culture vas R.G.Harrison whose 

paper "Observations on the Living Developing Nerve Fiber" appeared in 
the ' Proceedings of the 23rd Meeting of the Society for Experimental 

Biology and Medicine' in 1907. Harrison found that explanted fragments 
of frog embryo nervous tissue would survive if placed in drops of 
clotted lynph, and would grew large nerve processes frcm cells within 
the explant. Harrison's techniques vere soon adapted for the culture 
of excitable tissue frcm other species. The first report of cultured 
skeletal muscle, established frcm explants of chick embryo leg muscle, 
was in 1915. These cultures demonstrated spontaneous contractility in 
the absence of nerves (Lewis, 1915). Since that time, and especially 
since the development of dispersed cell culture techniques by 
Konigsberg (1960, 1963), the use of skeletal muscle cultures as a tool 
for studies enoontpassing the entire spectrum of cell biology and 
biochemistry, has flourished.

The four main tissue culture techniques (see Paul, 1975), 
which have been adapted for skeletal muscle cultures are

1) Organ culture in which isolated muscle is maintained intact 
in an artificial environment. In this way, the 
characteristics of muscle iji vivo may be studied under 
conditions m  vitro.

2) Explant cultures in which small pieces of freshly excised 

muscle are placed into culture dishes, usually under 
coverslips, frcm which new cellular outgrowths appear within 

a few days.
3) Cell cultures in which muscle tissue has been enzymatically 

dissociated or mechanically dispersed so as to yield a
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suspension of single cells. These cells are plated onto the 
surface of culture dishes vhefe they can be maintained in a 
uniform environment.

4) Cell lines are a population of cells which have beccxne 
'established' enabling than to be maintained vitro for 

long periods, sometimes indefinitely. One such example is 
the clonal cell line L6 (Yaffe, 1968). Many cell lines have, 
however, properties vhich differ from those of the original 
primary cells.

The use of dissociation techniques to establish monolayer muscle cell 
cultures offers several advantages. The cells grow and develop in a 
synchronous manner and such cultures are particularly appropriate for 
the biochemical analysis of myogenesis. The cells can also be 
maintained under uniformly controlled conditions and may be subjected 
to a wide range of experimental intervention. Successful monolayer 
cultures of muscle cells have been established from many species 
including frog, chick, mouse, rat and human (see Hauschka, 1972;
Yaffe, 1973; Konigsberg, 1979 for reviews).

Hauschka and Konigsberg (1966) established that 
collagen-coated substances promote myogenesis vitro. This classic 
study led to the suggestion that a defined molecule serves to trigger 

or direct muscle differentiation. Hauschka and co-workers v^nt on to 
show that gelatin was as effective in promoting myogenesis m  vitro 

and that collagen acts by enhancing the attachment of myogenic cells 
to the culture substrate (see Hauschka, 1972). They also shov^ that 

myogenic cells require a protein that nediates this attachment and 
that this protein binds both to collagen and to the surfaces of 

nyogenic cells. The mediator protein VBS subsequently shown to be
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fibronectin (Chiquet et al., 1979) which is present in the serum used 
for culturing cells and is possibly also produced by fibroblasts. 

Muscle is not a hornogenous cell type and primary muscle cell cultures 
are inevitably contaminated by the presence of fibroblasts which arise 
from connective tissue.

The culture medium for growing muscle vitro commonly 
consists of a defined medium, a serum and a chick embryo extract. This 
extract has been shown to be required for the successful 
differentiation of avian muscle vitro although it is apparently not 
necessary for the growth and differentiation of mammalian muscle in 
vitro (Hauschka, 1972). Serum has alv^ys been included in growth 
media, but the types used have varied. As there seems to be no 
requirement for homologous serum (see f^ul, 1975), the two types of 
serum most commonly used are from foetal calf and from horse. The 
active corrponents in serum and tissue extracts which support muscle 
growth in culture, have not yet been defined (see "Discussion" section 

1.3).
The most routinely grown muscle cultures in many 

laboratories are those established from embryonic chick or from 

embryonic and neonatal rat. This muscle is readily available and has 
known growth characteristics. The growth of human muscle in culture 

has, hov^ver, proved extremely variable (see Witkowski et al., 1976 
for review of early work). The techniques employed for human muscle 

cultures have largely been adapted from those used for chick or rat 
culture systems. The attraction of cultured human muscle is its 

potential use to investigate muscle diseases such as the muscular 

dystrophies. Many studies have thus aimed to compare normal and 

diseased human muscle in culture (eg. Goyle et al., 1967; Kakulas et
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al., 1968; Bateson et al., 1972; Enery and McGregor, 1977; Merickel et 
al., 1981; Yasin et al., 1983; Blau et al., 1983); these have 
concentrated on differences between normal and abnormal muscle, rather 
than the culture conditions required for successful normal muscle 
growth. Attenpts have been made to standardise the conditions used for 
the growth of explant cultures (Witkowski et al.,1976) and new 
procedures have been published for the growth of monolayer muscle 
cultures from both explant (Askana^s and Engel, 1975) or dissociated 
tissue (Yasin et al.,1977; Blau and Webster, 1981). However, although 
many investigators base their techniques on these published methods, 
modifications have invariably been added and a wide variety of growth 
media used (see "Discussion" Tables 32 and 33). The usual source of 
muscle for human cultures is from biopsy specimens obtained from 
children or adults. There have been relatively few studies carried out 
with foetal human muscle (see "Discussion" Table 32) and this may 
reflect the difficulty in supply. An additional factor, as many 
studies aim to compare normal and diseased muscle, is that foetal 
muscle is of an unknown nature. The use of foetal human muscle tissue 

has the theoretical advantage that relatively large amounts can be 
obtained compared with biopsy material, providing large numbers of 
replicate primary cultures, without recourse to the expertise and time 
required for cloning techniques and the expansion of cell numbers 
(Hauschka, 1974a; Yasin et al.,1981; Blau and Webster, 1981).

Growth of muscle cells in culture

Studies of embryonic skeletal muscle m  vitro have demonstrated 
that many properties of differentiated muscle iu vivo are reproduced 

in cell cultures. In both cases, a proliferating pool of mononucleated
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cells is the precursor of the multi nucleated muscle fibres 
(Konigsberg, 1963; Yaffe, 1969). The properties of the cell membranes 
of muscle fibres iu vivo are known to be strongly influenced by 

interaction with motor neurones (see "Introduction" p.l8 ). 
Nevertheless, in the absence of neurones, anbryonic skeletal muscle 
differentiates spontaneously in cell culture where it develops a 
striated contractile apparatus and can demonstrate spontaneously 
occurring contractions.

The elaboration by chick or rat muscle cultures of the 
membrane-bound AChR has been demonstrated electrophysiologically, by 
sensitivity to iontophoretically applied ACh (Dryden, 1970; F^mbrough 
and Rash, 1971) and by the specific binding of radioactively labelled 

(x-neurotoxins (Patrick et al.,1972; Sytowski et al.,1973; Prives and 
Paterson, 1974; Devreotes and Fambrough, 1975; Prives et al., 1976; 
Spector and Prives, 1977; Shainberg and Brik, 1978). A(ZhE, the enzyme 
which terminates the action of ACh at the neuromuscular junction, has 
also been demonstrated in these cultured muscle cells, appearing 
concurrently with AChR (Prives and ïaterson, 1974; Prives et al.,1976; 
Shainberg and Brik, 1978). As veil as these membrane components of 

skeletal muscle, the cytoplasmic muscle-specific enzyme creatine 
phosphokinase (CHC) has been shown to increase in differentiating 

cultured muscle (Shainberg et al.,1971; Morris and Cole, 1972; 

Shainberg and Brik, 1978). The substrate for this enzyme is 
phosphocreatine, a high energy phosphate compound, generated during 
glycolysis, which is required for contractile activity in muscle 

fibres. The increases in membrane-bound AChR and AChE and cytoplasmic 
CPK proteins are used as markers of muscle differentiation iji vitro.

AChRs have also been detected on cultured human muscle.
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Sensitivity to iontophoret ical ly applied ACh has been demonstrated in 
foetal human muscle cultures established by using explant techniques 
(Harvey et al., 1979) and an indirect immunoperoxidase nethod was used 
by AskanSLs et al. (1977) to detect cx-BGT binding to adult human 
muscle in explant culture. The binding of radioactively labelled (x-BGT 
to human foetal (Adams and Bevan, 1983, 1985) or adult muscle cells in 
culture (Franklin et al.,1980; Blau and Webster, 1981; Blau et al., 

1983) has also been demonstrated. These studies have shown that human 
muscle cells can develop _üi vitro to elaborate AChRs on their surface. 
In addition, an increase in cytoplasmic CPK activity has been observed 
in adult human dissociated muscle cell cultures, appearing 
concurrently with AChR (Blau and Webster, 1981; Blau et al.,1983). 
Hoïæver, there have been few reports of spontaneously occurring 
contractions in cultured human muscle cells. Such contractions have 
been reported in human foetal explant (Harvey et al.,1979) and adult 
dissociated muscle cultures (Yasin et al.,1977; Blau and Webster,
1981; Blau et al.,1983; Bolhuis et al.,1985).

The distribution of AChRs 'in vivo' and 'in vitro'
The distribution of A(3hRs in the menbrane of vertebrate 

skeletal muscle has been analysed electrophysiologically, by 
determining the sensitivity of the membrane to ACh, and by mapping the 

binding of radiolabelled or fluorescently labelled K-BGT in light and 
electron autoradiography or fluorescent microscopy studies 
respectively. At the normal neuromuscular junction, AChRs are highly 

concentrated on the terminal expansions of the post-synaptic folds.
The packing density of these AChRs is 2-6 x 10^ receptors per junction 
(Fambrough, 1979). The enzyme AChE is associated with the muscle
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basement membrane and is localised over the whole surface of the 
post-synaptic membrane (McMahan et al., 1978). Extra junctional 
receptors, which are barely detectable in normal adult innervated 
muscle, show a marked proliferation over the entire surface of the 
muscle fibre following denervation (Axelsson and Thesleff, 1959; 

Miledi, 1960a; Miledi and Potter, 1971; Hartzell and Fambrough, 1972) 
and are thought to result from ̂  novo synthesis and direct 
incorporation into the extra junctional membrane (Chang and Tung,
1974). If denervated muscle is reinnervated, a reversal of this 
process occurs with a reduction in the number of receptors outside the 
end-plate until a normal adult pattern is achieved (Miledi, 1960b).
The AChRs of embryonic muscle appear, as in denervated adult muscle, 
to be evenly distributed over the vhole of the post-synaptic membrane, 
and become concentrated at the end-plate as the animal matures. For 
rat and chick muscle iu vivo, mature neuromuscular junctions are 
formed by approximately 1-2 v^eks after birth (Diamond and Miledi, 
1962; Bevan and Steinbach, 1977; Burden, 1977).

Similar techniques to those described above have been 

used to describe the non-junctional distribution of AChRs in cultured 
muscle cells, which are grown in the absence of nerves. Differentiated 
muscle cells established from embryonic chick (Vogel et al.,1972; 
Fischbach and Cohen, 1973; Sy^wski et al.,1973; Prives et al.,1976), 
rat (Hartzell and Fambrough, 1973; Axelrod et al.,1976; Land et 

al.,1977), mouse (Christian et al.,1978), frog (Anderson et al.,1977) 
and human (Harvey et al.,1979; Askansas et al.,1977; Blau and Webster, 

1981; Adams and Bevan, 1983, 1985) sources have AChRs distributed over 
the entire surface of the cells, in a similar manner to that of 

embryonic or of adult denervated muscle. However, the distribution of
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AChRs is not uniform. latches of aggregated AChRs are interspersed 
with diffusely distributed receptors, the number of these AChR 
clusters increasing with myotube differentiation (Prives et al.,1976; 
Anderson and Cohen, 1977). The average density of receptor sites 

differs between species, being highest in chick (Sytowski et al.,1973) 
and rat embryonic myotubes (Axelrod et al.,1976). These clusters have 
not been observed, however, in human cultured muscle cells (Askansas 
et al.,1977; Harvey et al.,1979; Blau and Vfebster, 1981; Adams and 
Bevan, 1983, 1985), in rat nyogenic cell lines (Vogel et al.,1972;
Land et al.,1977) or in embryonic muscle to vivo (Bevan and Steinbach, 
1977; Burden, 1977).

Junctional and extra junctional AChRs
Biochonical studies on affinity purified AChRs have shown that 

junctional and extra junctional AChRs have the same subunit conposition 
and the and ̂  subunits have identical peptide maps (Nathanson and 
Hall, 1979). The receptors are indistinguishable by gel filtration, 
sucrose gradient sedimentation and reaction with a rabbit antiserum to 

electric eel AChR but have slightly different isoelectric points 

(Brockes and Hall, 1975). However, in the membrane environment, the 
two types of receptor differ in several of their properties. ACh 

induced current fluctuation measurements indicate that both 
conductance and mean channel lifetimes in the junctional region of the 
membrane differ from those of the extra junctional region (Cull-Candy 
et al.,1979, 1982; Schuetze et al., 1985). The two types of receptor 

also show different sensitivities to d-tubocurarine (Brockes and Hall,
1975). The turnover of junctional AChRs in the membrane is much slower 

(T^ ̂  7 days) than that of extra junctional receptors (T^ ̂  10-20 hours)
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(Berg and Hall, 1974; Chang and Huang, 1975). Extrajunctional 
receptors have been shown to react preferentially with some anti-AChR 

antibodies from myasthenic sera (Almon and Appel, 1975; Savage-Marengo 

et al.,1980; Dwyer et al.,1981; Reiness and Hall, 1981) and with 

anti-A(ZhR antibodies raised against purified receptor from denervated 
muscle in experimental animals (Dolly et al., 1983). It has been 
suggested that the observed differences between the two receptor types 
may be due in part to carbohydrate residues (Dwyer et al.,1981; 
Turnbull et al., 1985) or to the degree of phosphorylation (Saitoh and 
Changeux, 1981).

Non-junctional receptors in aneurally cultured chick and 
rat muscle cells have an estimated half-life of 22 hours (Devreotes 
and Fambrou^, 1975) or 17 hours (Axelrod et al.,1976; (Gardner and 
Fhmbrough, 1979), a value similar to that for extra junctional 
receptors in anbryonic or denervated adult muscle. The aggregates of 
AChRs that occur on cultured muscle cells resemble the junctional 
receptors of innervated adult muscle in their concentration and 
limited membrane mobility (Axelrod et al.,1976). In contrast, the 

diffusely distributed, non-clustered receptors on cultured muscle 
cells have a relatively high lateral mobility. However, the diffuse 
and clustered receptors have similar turnover times (Axelrod et 

al.,1976; Schuetze et al.,1978) and ACh induced mean channel lifetimes 
(Schuetze et al.,1978). Cultured muscle cells established from the rat 
or mouse produce two forms of surface receptors, with isoelectric 
points indistinguishable from those of junctional and extrajunctional 

receptors respectively (Sugiyama et al.,1982). This has not, hov^ver, 
been observed with cultured chick muscle AChRs, which have an 

isoelectric point close to that of extra junctional receptors alone.
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The developmental mechanisms involved in the formation of 
junctional AChRs at the post-synaptic membrane to vivo are essentially 

unknown. The mechanisms have been studied to vitro ky using cultured 
muscle cells or co-cultures of differentiated muscle cells and 

neuronal cells. In these co-cultures, clusters of AChRs are observed 
in the muscle membrane areas adjacent to neuronal processes. The 
studies carried out suggest that pre-existing AChRs are redistributed 

to the area of innervation (Anderson and Cohen, 1977; Anderson et al., 
1977; Cohen and Weldon, 1980). Recent evidence has shown that a 
soluble factor released from neurones may be the agent that induces 
the aggregation of AChRs in the post-synaptic manbranes of muscle 
cells. A factor in medium conditioned by cultured neurones has been 
shown to increase the number of AChR clusters in muscle cells in 
culture (Christian et al.,1978; Podleski et al.,1978; Schaffner and 
Daniels, 1982). The release of a soluble factor by neurones could 
therefore be the signal that induces the aggregation of 
extra junctional receptors in muscle cells to vivo to form AChRs of the 
junctional type at the neuronuscular junction.

Maintenance of AChRs at the neuromuscular junction
The factors that maintain AChRs at a high concentration on 

the post-synaptic membrane have been studied by using muscle cells in 
culture. In culture, the synthesis of new receptors occurs at a 
constant rate which somevhat exceeds that of degradation; the two 
processes not being closely coupled (Devreotes and Fambrough, 1975). 

Newly synthesised AChRs are localised in the (Solgi apparatus 
(Fambrough and Devreotes, 1978) and approximately 3 hours are required 

before they appear in the plasma membrane (Devreotes et al.,1977;
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Fambrough and Devreotes, 1978). In the cultured muscle cells, 
approximately 20-30% of the receptors are not exposed on the surface 
membrane (Devreotes and Fambrough, 1975; Devreotes et al.,1977;

trick et al.,1977). Membrane AChRs appear to be selected randomly 
for degradation which occurs by an energy-dependent process involving 

internalisation, proteolysis and the release of degraded amino acid 
residues into the medium (Devreotes and Fambrough, 1975; Merlie et 
al., 1975). The receptors at the intact neuromuscular junction are 
degraded by similar nechanisms (Fumagalli et al.,1982). Cluster 
formation and turnover of AChRs in cultured muscle is thought to 
result from both migration of diffusely distributed AChRs and 
insertion of newly synthesised AChRs (Stya and Axelrod, 1983). Factors 
increasing the degradation rate of AChRs, such as myasthenic anti-AChR 
antibodies (see "Introduction" p.33) or non-immunological complexes 
that exert their effects through cross-linkage of AChRs, have been 
shown to disperse the receptor clusters before internalisation takes 
place (Axelrod, 1980; Bursztajn et al.,1983). These observations would 
indicate that the AChR clusters observed in muscle cultures are not 

structurally fixed into the sub-imembrane cytoskeletal framework as had 
been previously suggested (Prives et al.,1982).

There is some evidence that electrical activity can 
regulate AChR synthesis and/or distribution in cultured muscle. AChR 
levels in chick muscle are decreased by electrical stimulation or 

depolarisation of the muscle membrane (Shainberg et al., 1976; Betz and 
(Zhangeux, 1979 ) and increased by agents such as tetrodotoxin which 

inhibit muscle activity (Shainberg et al.,1976; Birnbaum et al.,1980). 
These effects are thought to be mediated by changes in intracellular 

levels of calcium (Birnbaum et al.,1980; McManaman et al.,1982) and
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cAMP (Betz and Changeux, 1979) which in turn affect AChR synthesis. 
Inhibition of muscle activity in muscle cultures by use of 
tetrodotoxin or high levels of extracellular calcium have also been 
shown to increase the size of receptor clusters in chick (Cohen and 
Punplin, 1979) and rat muscle (Bursztajn et al.,1984) although not the 
final levels of AChR in rat muscle (Bursztajn et al.,1984). This lack 
of effect by tetrodotoxin on AChR synthesis in rat muscle vjas 
suggested by the authors to be a species specific phenomenom.

Naturally occurring dense clusters of immobile ACZhRs on 
cultured rat muscle have been shown to have half lives similar to 

those of the laterally mobile diffuse receptors (Axelrod et al., 1976). 
At the neuromuscular junction to vivo, the junctional receptors are 
much more stable than the non-clustered extrajunctional receptors 
(Berg and Hall, 1974; Chang and Huang, 1975). The nature of the 
factors regulating the maintenance of junctional receptors is 
therefore still in doubt. However, the blockade of muscle activity in 
vivo by use of agents such as tetrodotoxin or cx-BGT has been shown to 
cause the appearance of extra junctional receptors in a similar manner 

to denervation (Lomo and Rosenthal, 1972; Berg and Hall, 1975; 

Pestronk et al.,1976). Also, chronic electrical stimulation has been 
shown to reduce the extra junctional ACh sensitivity of denervated 

muscle to vivo (Lomo and Rosenthal, 1972) or to situ (Hall and 
Reiness, 1977) by mechanisms which inhibited AChR synthesis (Hall and 
Reiness, 1977). It is probable that at the intact neuromuscular 
junction, both electrical and neuronal factors play a part in 

maintaining the level of AChRs at the post-synaptic membrane.
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The basic defect in myasthenia gravis
The elucidation of the precise site of the defect in MG was 

aided by electrophysiologica 1 studies. The muscle of myasthenic 
patients has been shown to have abnormally small EPPs, that are either 
below the threshold required to initiate muscle contraction or rapidly 

become so during repetitive stimulation (Elmqvist et al.,1964). Other 
studies have shown that the action potential generated by the nerve is 
normal, but that the amplitude of MEPPs in myasthenic patients is 
markedly reduced (Elmqvist et al.,1964; Santa et al.,1972; Albuquerque 
et al.,1976a). Myasthenic motor end-plates also show reduced 
sensitivity to iontophoretically applied ACh to vitro (Albuquerque et 
al., 1976a; Rash et al.,1976). The question of whether the 
physiological defect in MG is primarily pre-synaptic or post-synaptic 
was resolved following the availability of the post-^naptically 
acting oc-neurotoxins (see "Introduction p. 5 ). Fambrough et 
al.(1973), using iodinated «-BGT to localise A(3hR, demonstrated 
reduced numbers of ot-BGT binding sites in myasthenic end-plates, 
indicating a reduced number of available A(3hRs. These reductions were 

shown to be as low as 30% of normal. The area of the post-synaptic 

membrane that can bind K-BGT is also reduced (Engel et al.,1977b) 
which reflects a decrease in the content of AChR rather than blocking 
of tx-BGT binding to the receptor by seme other factor (Lindstrcm and 

Lambert, 1978).
Morphological changes at the nyasthenic end-plates 

suggest degeneration and regeneration of the neuromuscular junction 

with flattening and simplification of the post-synaptic folds (Figure 

4). In some regions, the synaptic cleft is widened and in others, the 

post-synaptic membrane lacks any apposing nerve terminal (Engel and
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Santa, 1971; Santa et al.,1972). In contrast, the structure of the 
axon terminals present, has been shown to be retained. Hovæver, the 

terminals have been shown to contain twice the normal concentration of 
ACh (Ito et al.,1976; Cull-Candy et al.,1978, 1980).

The reduction of AChRs and the morphological changes 

c±)served in iryasthenic end-pLates result in decreased efficiency of 
neuromuscular transmission. If this is reduced to a point at which the 
threshold value is not reached, action potentials are not triggered. 
This will ultimately lead to a reduction of muscle power and hence to 
the weakness and susceptibility to fatigue characteristic of MG.

The autoimmune nature of myasthenia gravis
The first suggestions that MG might be of autoimmune origin 

occurred in the late 1950's, following studies by two different groups 
of workers. Simpson (1960) pointed out the association of MG with 
other illnesses thought to be autoimmune (eg. Hashimoto's thyroiditis, 
systemic lupus erythematosus, rheumatoid arthritis). It was suggested 
ty Simpson (1960) that the disease was caused by the presence of 

antibodies to the ACh receptive substance at the motor end-plate. 
Ifestuk and co-workers observed wide variations in serum complement 

levels in myasthenic patients (Nastuk et al.,1960) together with the 
presence of serum complement-fixing antibody binding to vitro to 
skeletal muscle sections (Strauss et al.,1960). The latter study was 
the first demonstration of a circulating tissue specific antibody 
related to MG. These anti-striated muscle antibodies v^re, however, 

later shown to be connected with a tumour of the thymus, and are not 

specific to MG (Oosterhuis et al.,1976; Limburg et al, 1983). Another 

piece of evidence supporting the hypothesis of an autoimmune origin in
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MG was the observation that approximately 75% of patients with MG 
demonstrated structural abnormalities of the thymus (Castleman, 1966), 

a tissue thought to be involved in immune regulation. Histologically, 
the thymus of a myasthenic patient and the thyroid in autoimmune 
Hashimoto's disease appear similar (Simpson, 1960). Surgical removal 

of the thymus from patients with MG is often associated with a marked 
improvement in clinical symptoms (Scadding et al.,1979). Many early 
studies, however, failed to show a serum factor that would block 

neuromuscular transmission (eg. tbstuk et al.,1959; McBbrlin et 
al.,1966). Ihe serendipitous experiment by Patrick and Lindstrcm 
(1973) who immunised rabbits with purified electric eel AChR producing 
severe myasthenia-1 ike symptoms in the animals, that the
hChR was the target of an autoimmune attack in MG. This experiment, 
and those of other workers (Sugiyama et al.,1973; Heilbronn and 
Mattson, 1974) provided an experimental model (experimental autoimmune 
iryasthenia gravis, EAMG), for the study of the human disease.

Antibodies to skeletal muscle nicotinic A(3hRs were 
found in 1973, after a cross-reacting AChR from rat denervated muscle 

v^s purified. Almon et al. (1974) demonstrated that approximately 50% 

of myasthenic sera could inhibit x-B(3T binding to the AChR. They later 
identified the factor as IgG (Almon and Appel, 1975). Shortly after 
this. Bender et al.(1975), using an indirect immunoperoxidase 

labelling technique, showed that ityasthenic sera blocked the binding 
of (X-BGT to the motor end-plates of normal human muscle. The ability 

of a high proportion of myasthenic serum antibodies to fix complement 

in the presence of small quantities of Torpedo AChR vas also 

demonstrated (Aharanov et al.,1975).
A radioimmunoassay for the quantitation of anti-AChR
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antibodies in MG sera soon became a standard diagnostic procedure 
(Lindstrcm et al., 1976a; Lindstrcm, 1977; Monnier and Fulpius, 1977; 

Newscm-Davis et al.,1978; Dwyer et al.,1979; Tindall et al.,1981; 
Carter et al.,1981). The radioimmunoassay procedure, illustrated in 

Figure 5, uses crude detergent extracts of amputated human limb muscle 
as the source of AChR antigen. The detection of positive serum 

anti-AChR antibody levels is specific for the diagnosis of MG, 70-95% 
of patients having elevated levels relative to normal controls 
(Lindstrcm et al.,1976a; Lindstcm, 1977; Mittag et al.,1981, 1984; 
Monnier and Fulpius, 1977; Ito et al.,1978; Lefvert et al.,1978).

Anti-AChR antibody characteristics
The serum anti-AChR antibodies present in MG consist of 

populations belonging to the IgG fraction, although in the early 
stages of MG, antibodies belonging to the IgM type have been reported 
(Lefvert et al.,1978). In individual myasthenic patients, the serum 
anti-AChR antibodies are found in different subclasses of IgG (Vincent 
and Newscm-Davis, 1980; Lefvert et al.,1981; Tindall, 1981; Whiting 

et al.,1983). A low proportion of anti-AChR antibodies in MG have been 
shown to be directed against the <<-BGT binding site (Dwyer et 
al.,1979; Mittag et al.,1981; Vincent and Newscm-Davis, 1979, 1980, 
1982; Whiting et al.,1983). These findings indicate that the 

antibodies are polyclonal, being directed to several determinants on 
the AChR of skeletal muscle. The diversity of anti-AChR antibodies is 
also demonstrated by the variation seen between individual sera in 

their cross-reactivity with AChR preparations from different species 
(Lindstrcm et al.,1978b; Savage-Marengo et al.,1979, 1980; McAdams and 

Roses, 1980; Harrison et al.,1981; Vincent and Newsom-Davis, 1982) and
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FIGURE 5
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also from different muscles of the same species (Almon and Appel,
1975; Weinberg and Hall, 1979; Vincent and Newscm-Davis, 1979, 1982; 
(Zcmpston et al., 1980). Monoclonal antibody studies have confirmed the 

polyclonal nature of myasthenic anti-AChR antibodies. Monoclonal 
antibodies have been produced which bind to a variety of sites on 
AChRs (Tzartos and Lindstrom, 1980). Most of these, however, bind to a 
region on the x-subunit distinct from the cholinergic binding site. 
This region has been termed the main immunogenic region (MIR) of the 
AChR. By competitive binding studies using subunit specific monoclonal 
antibodies versus human MG sera binding to human AChR, it has been 
shown that the majority of human anti-AChR antibodies are directed at 
the MIR. Other myasthenic antibodies are directed against sites on 
other AChR subunits, but only a few have been shown to bind to sites 
on the (\rsubunit outside the MIR (Tzartos et al.,1982, 1983). The 
polyclonal nature of the antibodies in MG is most probably the cause 
of the well documented low correlation between clinical status and 
serum anti-AChR antibody titres (Lindstrcm et al.,1976a; Ito et 
al.,1978; Lefvert et al.,1978); pathogenicity being confined to 

specific subpopulations. However, within an individual patient, there 
appears to be a better correlation between anti-AChR antibody level 
and disease activity (Newscm-Davis et al.,1978, 1979; Carter et 

al.,1980).

The pathogenicity of anti-AChR antibodies

The question as to whether circulating anti-AChR antibodies 
are pathogenic, or merely represent a secondary response to AChR 

damage caused by some other agent, is critical in understanding the 

pathogenesis of MG. Several lines of evidence support the theory that
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circulating humoral factors act as primary agents in the disease 
process. Plasma exchange of MG patients is associated with temporary 

clinical improvement paralleled by a decrease in the concentration of 

serum anti-AChR antibodies (Pinching et al.,1976; Dau et al.,1977; 
Newsom-Davis et al.,1978). A subsequent deterioration is often 
associated with a sharp rise in antibody titre (Carter et al.,1980). 
Placental transfer of anti-AChR antibodies from a myasthenic mother to 
the foetus can cause transient neonatal MG, with an anti-AChR antibody 
level at birth similar to that of the mother (Keesey et al.,1977). The 
antibody level declines thereafter with a half-life of 8 days, full 

recovery occurring within three v^eks. Toyka et al. (1977) showed that 
the clinical symptoms of MG could be produced in mice by injection of 
myasthenic IgG. These mice showed subsequent reductions in MEPP 
amplitudes and <x.-bGT binding to the motor end-plates, indicating a 
reduction in the number of functional AChRs. Recent studies have also 
shown that the injection of experimental animals with monoclonal 
antibodies directed against the MIR of the AChR, results in the acute 
form of EAMG (see "Introduction" p/41) in the recipient animals 

(Tzartos and Lindstrcm, 1980; Burres et al.,1981; Gcxdbz and Richman, 

1985).
In order to cause synaptic dysfunction, anti-AChR 

antibodies need to leave the vascular syston, diffuse into the 
extra-cellular space, enter the synaptic cleft and reach the AChRs on 
the post-synaptic folds. Zurn and Fulpius (1976) used complexes of 

bi-BCTT covalently coupled to IgG, to show that molecules the size of 
antibodies can reach the AChR situ in the mouse diaphragm.

Following this, localisation of IgG at the motor end-plates in 

myasthenic patients, detected by using peroxidase-labelled
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Staphylococcal protein-A, was reported by Engel et al.(1977a).
These facts strongly support the idea that anti-AChR 

antibodies are the primary agent in the disease process.

Theoretically, the interaction of anti-AChR antibodies with AChRs 
could be pathogenic in one of three ways:-

1) By blocking the ACh binding site on the receptor or 
altering the receptor such that it cannot bind ACh

2) By altering the turnover of AChR in the membrane either 
by increasing the rate of degradation or by decreasing the 
rate of synthesis

3) By causing oonplement-mediated destruction of the 
post-synaptic membrane

Considerable evidence has been produced supporting the involvement of 
A(3hR blockade and altered AChR turnover in MG. Howsver, less data have 
been reported in support of the third mechanism, ccrrplement-mediated 
lysis of the post-synaptic manbrane. The three mechanisms will be 
discussed in turn.

Blockade of AChR function
The early discovery ky Mary Walker (1934) that treatment of 

myasthenic patients with inhibitors of acetylcholinesterase led to a 

rapid improvement in symptoms, strengthened the theory that the 

disease vas due to a 'curare-like' substance which blocked 
neuromuscular transmission. However, there are few reports of direct 

blockade by myasthenic sera of the electrophysiological response of 
AChR. Studies by Albuquerque et al. (1976b) failed to demonstrate the 

inhibition of the ACh response by myasthenic sera in rat or human 

muscle Ü 1 vitro. Subsequent reports have shown that myasthenic serum
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or immunoglobulins could reduce the sensitivity of cultured human 
(Bevan et al.,1977), rat (Anwyl et al.,1977) and chick muscle cells 

(Harvey et al., 1978a) to applied ACh. Hovaver, these effects could 
partly be explained in terms of increased AChR degradation under the 

conditions of the assays used (Bevan et al.,1978). A reduction in the 
anplitude of MEPPs,in response to it^sthenic sera, has been 

dononstrated in human nyasthenic (Sanders et al.,1981) and nornal 

intercostal muscle (Ito et al.,1978) and also in rat (Shibuya et 
al.,1978) and mouse diaphragm (Lerrick et al.,1983). Interestingly, 
the latter two studies reported that the effects of myasthenic sera 
v^re rapid and reversible by washing, and it was subsequently shown by 
Lerrick et al. ( 19 83 ), that the myasthenic serum factor responsible 
for reducing the MEPP amplitudes was heat labile and not IgG. It would 
thus appear that a heat-labile factor can affect the post-synaptic 
AChR independently of antibody.

If blockade of AChR function is an important pathogenic
feature in MG, specific anti-txBGT binding site antibodies or
'anti-site' antibodies would be expected to correlate with clinical

severity of symptoms in myasthenic patients. Immnoglobulins from
125nyasthenic patients are known to block [ I]t\-BGT binding to 

detergent solubilised AChR to a varying extent (Almon and Appel, 1975; 
Dvyer et al.,1979; Mittag et al.,1981; Vincent and Newsom-Davis, 1979, 

1980, 1982; Whiting et al.,1983). These effects have served as a 
method of identifying antibodies directed at or near to the 

cholinergic binding site. Hov^ver, good correlation between 

'anti-site' antibody levels in myasthenic patients and disease 
severity has not been shown (Lefvert et al.,1978; Vincent and 

Newsom-Davis, 1979). Myasthenic immunoglobulins have also been shown
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to inhibit o<-BGT binding to AChRs in cultured chick (Fulpius et 

al.,1980, 1981) and rat muscle cells (Drachman et al.,1982) and it was 
reported that the degree of blockade cx)rrelated with the extent of 

clinical severity of disease in the patients studied. The blocking 

effects of myasthenic immunoglobulins on cultured muscle cells are 
observed independently of complement and under conditions where 
increased degradation of receptor is unlikely. Hovever, the blockade 
may not necessarily reflect that of ACh binding vivo as the small 
molecular \æight of ACh (182 cxxnpared to 8000 for txr-BGT) nay allow 
accessibility to the ACh binding site, even in the presence of 
antibody. Recent studies in which EAMG was passively transferred to 
animals by immunisation with monoclonal antibodies directed at AChR 
antigenic determinants remote from the cholinergic binding site, have 
confirmed that neuromuscular transmission can be impaired in the 
absence of functional AChR blockade (Lennon and Lambert, 1980; Richman 
et al., 1980).

Altered turnover of AChR

AChR degradation has been iteasured in cultured muscle cells
125after labelling the surface AChRs with [ I]tx-BGT (Devreotes and 

Fambrough, 1975). As the labelled receptors undergo degradation, the 
attached [̂ ^̂ I]cxc-BGT is broken down and tyrosine appears in the

culture iredium. The addition of myasthenic immunoglobulins has been 
shown to accelerate the degradation of AChRs in rat (Kao and Drachman, 

1977a; Appel et al.,1977) and human muscle cells in culture (Bevan et 
al.,1977) and in a mouse muscle cell line (Hudgson et al.,1982); the 

rate increasing 2-3 fold above that of normal controls (Kao and 

Drachman, 1977a). Significant acceleration of AChR degradation in rat
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muscle cultures has been observed in 66% (Conti-Tronconi et al.,1981) 
and 90% (Drachman et al.,1982) of myasthenic patients studied. These 
studies also demonstrated a correlation between disease severity and 

the extent of AChR degradation (Conti-Tronconi et al.,1981; Drachman 

et al.,1982). The acceleration of degradation in every case was shown 
to be triggered by immunoglobulins independently of complément. Both 

the normal AChR degradation process and the accelerated degradation 
produced by myasthenic immunoglobulin are temperature dependent (Kao 
and Drachman, 1977a; Appel et al.,1977) and involve energy-dependent 
processes (Appel et al.,1977). Increased degradation is dependent on 
the ability of IgG to cross-link receptors (Drachman et al.,1978a, 
1980) vhich is possible because of its divalent nature (see Figure 
6). Monovalent Fab fragments are inactive, except vhen they are 
cross-bridged by a second antibody (Drachman et al.,1978a, 1980;
Prives et al.,1979; Lindstrcm and Einarson, 1979). Morphological 
studies indicate that such cross-linking causes redistribution of AChR 
in the membrane, follo\æd by enhanced endocytosis. Aggregation of 
AChRs in muscle cultures following the addition of myasthenic serum or 
anti-AChR antiserum raised in experimental animals, has been observed 

by fluorescence microscopy (Lennon, 1978a), autoradiography (Prives et 

al.,1979) and by freeze-fracture electron miscroscope studies (Pumplin 
and Drachman, 1983). Myasthenic antibody-induced increased degradation 
of extra-junctional and junctional AChR in adult muscle situ has 
also been demonstrated (Reiness et al.,1978; Stanley and Drachman, 
1978; Merlie et al.,1979) indicating that this is not purely a feature 
of non-junctional receptors on aneurally cultured muscle cells.

Accelerated degradation of AChRs, in response to specific 

binding by myasthenic IgG in rat cultured muscle cells, has been shown
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FIGURE 6 DIAGRAM SHOWING INTER- AND INTRA
MOLECULAR CROSS-LINKING OF AChR 

BY ANTI-AChR ANTIBODIES

INTER-MOLECULAR 
CROSS-LINKING

INTRA-MOLECULAR 
CROSS-LINKING
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to occur independently of the rate of AChR synthesis, which remains 
unaffected (Drachman et al.,1978b). In contrast to these results, 
studies by Fulpius et al. (1980) indicated that myasthenic IgG 

increased receptor synthesis in chick muscle cell cultures. More 
recently, it has been reported that myasthenic IgG, after passive 
transfer to mice, causes an increase in AChR synthesis which partially 
compensates for the increase in AChR degradation (Wilson et 

al. ,1983ab).
The importance of accelerated degradation as a prinary 

mechanism whereby the number of endplate AChRs is reduced in MG is 
unclear. Studies by Hudgson et al. (1982) demonstrated that myasthenic 
serum from pre- and post-thymectomy patients, who retained similar 
anti-AChR antibody levels in spite of clinical improvement, shewed 
similar effects on AChR degradation in mouse muscle cultures. The 
results suggested that the observed effects were correlated more with 
anti-AChR antibody titre than with clinical symptoms. Berman et al. 
(1981) also shewed that sera from both paralysed and asymptomatic 
inmunised mice could increase the degradation of AChR on cultured 

muscle to the same extent and, moreover, that junctional AChRs from 
paralysed and non-paralysed immunised mice have similar half-lives. 

Studies by Drachman et al. (1982) indicated that a better correlation 
with disease state in MG was given by determining a combined blocking 

and degradation effect of a range of myasthenic sera. Although both of 
these mechanisms could lead to a loss of functional A(3hRs at the 

neuromuscular junction in MG, it is doubtful that they alone would 

account for the gross morphological damage observed at myasthenic 

motor endplates (see "Introduction" p.23). It is possible that the 

combined effects of these mechanisms could be inportant in the early.
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stages of MG and in EAMG when neuromuscular transmission is inpaired 
but in the absence of signs of post-synaptic membrane degeneration 

(Engel et al.,1977a, 1979; Sahashi et al.,1978; Tbyka et al.,1978).

Coiplement-mediated membrane destruction
The conplement system consists of nine protein components 

(numbered 1 to 9) which are present in an inactive form in serum (see 
Alexander and Good, 1977; Lachmann and Peters, 1982 for reviews). 
Several complement components are enzymes which, when activated, act 
in sequence to amplify the effects of a small stimulus. There are two 
recognised pathways of complement activation. The classical pathway 
usually requires an antibody-antigen reaction for activation and is 
initiated by the binding of Clq (one of the components of Cl) to the 
antibody-antigen complex (Figure 7). Activation of the alternative 

pathway does not normally require such a reaction; the first component 
in the pathv^y, C3, being activated by a variety of stimuli such as 
zymosan, cobra venom factor and properdin. However, activation by 
aggregates of has been shown. When (39, the final component of the 

complement system, is activated as a result of the classical or 
alternative pathways, lesions that resemble small holes are produced in 
susceptible membranes. The lesions permit loss of intracellular 
constituents, entrance of extracellular ions and cellular swelling 

until the cell disintegrates. The regulation of complement mechanisms 
is complex. The complement system plays an important role in both 

inflammatory and immune reactions including the opsonisation of target 

cells (eg. bacteria) coated with antibody for clearance by phagocytes 
(as a result of C3 binding) and destruction of such cells by 

complement-mediated lysis (as a result of C5-C9 binding).
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A role for complement in the pathogenesis of MG was first 
suggested by the observation that serum conplement levels fell during 
exacerbation of the disease, and rose to or above normal levels during 
periods of remission. Ifestuk et al. (1960) proposed that complement 

was bound to antigen-antibody complexes on myasthenic muscle, thereby 
reducing levels in serum. There has been little direct evidence for 
the lytic action of myasthenic serum on muscle cells. The study of 
serum complement levels by Nastuk et al. (1960) followed an earlier 
observation that 2 out of 22 myasthenic serum samples showsd cytolytic 
activity towards frog muscle _üi vitro (Nastuk et al.,1959). However, 
cytolytic effects v^re also demonstrated by 1 out of 9 nornal control 
sera, although after a much longer lag time. Studies by Liveson et al. 
(1976) showed that 3 out of 17 myasthenic sera lysed mouse muscle 
cells in culture, as judged by light microscope examination. This 
effect was abolished by heating the sera (thus destroying complement 
activity) but was not restored by the addition of guinea-pig 

complement. There have occasionally been other reports in the 
literature referring to a search for direct evidence that myasthenic 
or EAMG sera can be cytolytic to muscle cells. Harvey et al. (1978b) 
looked for conplement-mediated lysis of chick muscle cells in culture 

by myasthenic sera and anti-Torpedo AChR antiserum raised in rabbits. 
However, the occurrence of natural anti-chick antibodies in these sera 

and in normal control sera hampered any firm conclusions. Lennon 
(1978b) danonstrated that anti-AChR antiserum from rats with EAMG, in 

the presence of fresh rat sera as a source of complement, failed to 
lyse cultured rat muscle cells, despite the fact that IgG and C3 were 

demonstrated by immunofluorescence to be bound to the cells.

Ultrastructural and light microscopic studies by Engel et al. (1977a),
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using peroxidase labelled Stapylococcal protein-A and rabbit 
anti-human C3, showed the presence of IgG and C3 on the muscle 
endplates of myasthenic patients. A continuation of these studies 
(Sahashi et al.,1980) showed, in addition, the presence of C9 on the 

muscle endplates. IgG, C3 and C9 were located on disintegrating 
junctional folds and on debris in the synaptic clefts providing the 
first evidence for antibody-dependent, complement-mediated injury to 
the post-synaptic membrane in MG. This occurrence would readily 
account for the gross morphological damage to the post-synaptic 
membrane observed in MG (Figure 4).

The involvement of C3 in EAMG passively transferred to 
mice by injection of myasthenic immunoglobulins was investigated ky 
Toyka et al. (1977). If the animals v^re first treated with cobra 
venom factor to deplete C3, the reduction in MEPP amplitudes and in 

(x-BGT binding to muscle endplates was less severe than in the control 
animals. C3 depletion was similarly found by HcRi^rd and Sanders (1980) 

to minimise the effects of passive transfer of EAMG by myasthenic 
serum to rats. In contrast to C3, C5 was inferred not to be involved 
in EAMG as genetically C5 deficient mice reacted similarly to normal 
controls when injected with myasthenic iirmunoglobulins (Toyka.et 

al.,1977).
Niemi et al. (1981) examined the involvement of 

complement in EAMG induced by immunisation of rabbits with Torpedo 
AChR. In 7 out of 10 rabbits, the levels of complement-fixing 
antibodies rose immediately before, or coincident with, muscular 
\æakness suggesting an involvonent in the pathogenic process. Serum 

conplement levels frequently, but not always, rose as EAMG developed, 

which contrasts with the results obtained by tfestuk et al. (1960) for
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the human disease. It was also demonstrated by Niemi et al. (1981) 
that serum sairples taken from rabbits with EAMG at the time of onset 

of muscular weakness and then decomplemented, caused a reduction in 
MEPP amplitudes v^en applied to frog muscle fibres vitro. Ihis
reduction was usually accentuated by the addition of guinea-pig 
complement, suggesting again a direct role for complement in impairing 
neurotransmission.

Ihe production of EAMG in Lewis rats, by immunisation 
with purified electric fish AChR in the presence of additional 
adjuvants such as ^  pertussis, produces a unique form of disease in 
the recipient animals. The first or 'acute' phase is characterised by 
an invasion of phagocytic cells into the muscle endplates (Engel et 
al.,1976, 1977b; Lennon et al.,1978). Ihe second or 'chronic' fiiase of 
the disease more closely resembles human MG, demonstrating increased 
levels of anti-AChR antibodies (Lindstrom et al.,1976b), altered 
morphology of muscle endplates (Engel et al.,1976, 1977b) and 
decreased numbers of AChRs in the post-synaptic membranes (Lindstom et 
al.,1976b). The phagocytic invasion of muscle endplates is not 

generally seen in the 'chronic' phase of EAMG (Engel et al.,1976, 
1977b) and has not been implicated as having a role in human MG as the 
presence of phagocytes at muscle endplates has only rarely been 

observed (Santa et al.,1972). The 'acute' phase of EAMG is not 
generally observed in animals iirmunised with AChR without additional 
adjuvants (Lindstrom, 1980; Vincent, 1980). Ultrastructural studies 

similar to those carried out with myasthenic endplates, have 

demonstrated the presence of IgG and C3 on both intact and 

degenerating folds in the synaptic cleft of rats with 'chronic' EAMG 

(Sahashi et al.,1978) but it is not clear why, in this phase of EAMG
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or in human MG, the presence of C3 does not opsonise the muscle 
membrane for phagocytic attack. Injection with EAMG immunoglobulins 
frcan rats in the 'chronic' phase of disease produces the 'acute' phase 

of EAMG in recipient rats (Lindstrom et al.,1976c; Eîngel et al.,1979). 
IgG and C3 v^re detected on the junctional folds of the muscle 
endplates as early as 6 hours after passive transfer of immunogloblins 
(Engel et al.,1979). AChR-rich folds coated with IgG and C3 were shed 
into the synaptic cleft within 24 hours, implying that initial damage 
took place before the later phagocytic invasion of the motor 
endplates. It was subsequently shown by Lennon et al. (1978) in 
similar experiments, that rats depleted of C3 by treatment with cobra 
venom factor before passive transfer with EAMG iimiunoglchulins or 
immunisation with pxarified AChR, showed no clinical signs of EAMG and 
no evidence of phagocytic cells at the muscle end-plates. However, 
over 60% of the AChRs were shown to be bound by antibody indicating 
that these complexes alone were not pathogenic. Later studies showed 
that the passive transfer of 'acute' EAMG by monoclonal antibodies to 
AChR antigenic determinants, was dependent on C3 in rats and C4 in 

guinea-pigs (Lennon and Lambert, 1981). The latter observation would 

suggest that activation of complement via the classical pathway was 
necessary for the production of EAMG in these animals (see Figure 7). 
It was proposed by Lennon and co-workers (1978) that in 'acute' EAMG, 

anti-AChR antibody and C3 act synergistically to opaonise the 
membrane-bound AChR for attack by the inflammatory cells, the 
consequent loss of AChR at the end-plates being the primary factor in 

the impairment of muscular v^akness. However, as there is little 
morphological evidence of a direct cellular attack at the end-plate in 

MG (Santa et al.,1972) the relevance of the 'acute' phase in EAMG is
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questionable.

In contrast to the observed effects of complement 
depletion in EAMG, there is little information concerning complement 
deficiency in myasthenic patients, although one report (Riggs et 

al.,1980) has described a single patient with partial C2 deficiency. 
Another way in which circulating anti-AChR antibodies could be 
pathogenic is by the formation of circulating immune complexes. 
Subsequent deposition of such complexes in tissue can lead to 
conplement activation and tissue damage. The presence of low levels of 
circulating immune complexes in MG has been suggested (Barkas et 
al.,1981) and CLq binding activity in some myasthenic sera has been 
shown (Casali et al.,1976; Barkas et al.,1981). Studies on EAMG in 
rabbits, using Torpedo AChR for immunisation, showed that pretreatment 
of the animals with immune complexes containing receptor and 
anti-receptor antibodies, suppressed the disease process. Antibody 
levels were reduced and synthesis of antibody was terminated (Barkas 
and Siirpson, 1982). However, methods for the detection of immune 
conplexes are largely non-specific, and further information concerning 

their role, if any, in MG must await the development of specific assay 
methods. The presence of nicotinic AChR on mononuclear phagocytes has 

been demonstrated (Whaley et al.,1981), the synthesis of the C2 
component of conplement by these monocytes being stimulated by 

cholinergic agonists. This study demonstrated that such synthesis was 
inhibited in the presence of myasthenic IgG or purified sheep 
anti-Torpedo AQiR antibodies. The biological significance of AChR on 
monocytes ranains to be determined and the relevance of the inhibition 

of C2 synthesis by these cells in MG is, as yet, unclear.
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Lynphocytes and thymocytes in Myasthenia gravis
The mechanisms that trigger the sensitisation to AChR and 

subsequently maintain the levels of circulating anti-AChR antibodies 

are unknown. As in nany other autoimmune diseases, there is interest 

in the possible role of defective immunoregulation in the development 
of the autoantibody and autoimmune reaction. The high incidence of 

thymoma or structural changes in the thymus in patients with MG 
(Castleman, 1966) has drawn attention to the role of the thymus in MG. 
The thymus is responsible for the development of immunocompetent T 
cells, which are involved in both regulatory and effector functions. 
The presence of thymic lymphocytes which express AChR (Fuchs et 
al.,1980) and thymic nyoid cells, which have been shewn to 
differentiate in culture to express AChR (Wekerle et al., 1975; Kao and 
Drachman, 1977b) suggests that these cells could provide the 
initiating stimulus for lymphocyte production of anti-AChR antibodies. 
The recognition of thymic AChR as ' non-self ' could occur as a 
consequence of either an alteration of the antigenic determinants of 
the AChR or defective immunoregula tory mechanisms which would 
otherwise prevent or limit such autosensitisation. Thymic cells from 
patients with MG can spontaneously synthesise anti-AChR antibody in 

culture (Vincent et al.,1978) and can enhance anti-AChR antibody 
production by autologous peripheral blood lymphocytes (Newsom-Davis et 
al.,1981). Recent studies have suggested that this enhancement could 
be mediated by antigen-presenting cells rather than by AChR-specific 
T-helper cells in the thymus (Willcox et al.,1984).

It has been suggested that the relative proportions of 
T-suppressor and T-helper cells, which regulate antibody synthesis by 

B lymphocytes, could be of importance in MG. Studies employing
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monocloml antibodies and indirect immunofluorescence as phenotypic 
markers of T cells have suggested that there are decreased numbers of 

circulating suppressor cells in MG (Bahir et al.,1981; Skolnik et 

al.,1982). Decreased suppressor cell activity has also been inferred 
from the impaired ability of myasthenic T cells, compared to normal 
controls, to inhibit anti-AChR antibody production by nyasthenic 
lymphocytes (Shinomiya and Yata, 1981). However, other studies on 
specific T cell populations or their functioral activity in MG have 
proved inconsistent (see Lisak et al.,1985 for review).

There are several reports of increased vitro 
proliferative responses by myasthenic peripheral lymphocytes, to 
purified electric fish or human AChR (Abramsky et al.,1975; Richman et 
al.,1976; Conti-Tronconi et al.,1977; McQuillen et al.,1983; Hohlfeld 
et al.,1984). This was originally interpreted as suggesting that a 
cellular immune response, acting via delayed hypersensitivity or 
cytotoxic mechanisms, could be important in producing an 
immunopathologic reaction at the endplate in patients with MG (Lisak 
et al.,1985). Early morphological studies reported the presence of 
collections of lymphocytes, termed lymphorrhages, surrounding necrotic 

muscle fibres in approximately 20% of myasthenic muscle biopsies 
(Engel and McBarlin, 1966; Woolf, 1966). However, there is no evidence 
that cell mediated immune mechanisms are directly responsible for the 
end-plate changes seen in MG. It is probable that the enhanced 

proliferative response üi vitro is indicative of an increased number 
and/or activity of specific T helper cells which interact with 

antigen-presenting cells and B cells to produce anti-AChR antibody 
(Lisak et al.,1985).
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Outline and aims of the project
Most of the evidence implicating antibody-dependent 

complement-mediated destruction of the muscle end-plate in MG is 

indirect (see "Introduction" p.37). A major reason for the lack of 
study in this area probably lies in the difficulty of identifying and 
quantifying muscle lysis. Using skeletal muscle cells in culture, such 
studies have hitherto depended upon visual assessment or the release 
of intracellular ^^Cr (see "Discussion" section 4.3). However, visual 

assessment would only detect gross damage, and ^^Cr release has been 
criticised for a lack of specificity (Cambridge and Stern, 1981) in 
that this radiolabel is taken up not only by the cultured imyotubes, 
but also by the fibroblasts which inevitably accompany them. Cambridge 
and Stern (1981) have published a procedure for measuring 
myotube-specific cytotoxicity based upon the use of radiolabelled 
carnitine. This method, designed to assay the myotoxic nature of 
polymyositic lymphocytes, depends upon the selective uptake by 
cultured imyotubes of tritium-labelled carnitine which is subsequently 
released following cell lysis. A major advantage of the procedure is 
the five-fold slower uptake of carnitine by fibroblasts (Cambridge and 

Stern, 1981). This method is therefore directly applicable to the 

study of imyotube specific lysis mediated by antibodies.
Preliminary investigations in the laboratory, using the 

carnitine release method, indicated that myasthenic sera (absorbed 
with minced chicken liver) caused lysis of chick myotubes in culture 
whereas normal sera treated similarly did not (M. Bird - unpublished). 

For the present project, the effects of myasthenic sera on rat 
skeletal muscle cells in culture v^re investigated. A comprehensive 

analysis of the lytic activity of myasthenic sera was carried out and
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the studies extended to include human muscle cells in culture. Human 
cultures proved less amenable to myotoxicity studies and attempts were 

made to improve their growth. The results of the work undertaken are 
divided, for the sake of clarity, into two sections : the first 

section describing studies on the cultured rat muscle system and the 
second being concerned with human muscle cell cultures. The overall 
aim of these studies is to clarify the role of humoral antibodies in 
the pathogenesis of MG.
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MATERIALS

Tissue culture

Dulbecco's modified Eagle's medium (DMEM) and 2.5% (w/v) crude trypsin 
solution in Hank's balanced salt solution, were obtained from Flow 
Laboratories, Irvine, Ayrshire, Scotland.
Donor horse serum (HS) and foetal calf serum (FCS) were obtained from 
Gibco Ltd., Uxbridge, Middlesex, England; and were heat-inactivated 
(56°C, 30 min) before use. New batches of serum were tested for their 
ability to promote good myotube growth before routine use.
Penicillin (5000 U/ml) and streptomycin (5000 pg/ml) solution,
L-glutamine (200 mM), kanamycin (10 mg/ml) and fungizone (amphotericin 
B - 250 pg/ml) were obtained from Gibco Ltd., Uxbridge, Middlesex, 
England.
Deoxyribonuclease, hormones and co-factors were supplied by Sigma 
Chemical Co., Kingston-upon-Thames, England. Glucose and sucrose 
(analytical grade) were obtained from B.D.H. Chemicals Ltd, Poole, 
England. All reagents supplied in a non-sterile form were sterilised 
before use by passage of stock solutions through sterile filters (0.2 
pM) from Sera-Lab, Crawley Down, W. Sussex, England.

24-well tissue culture plates (15.5 itm diameter wells) and all other 
sterile plastic ware used for tissue culture were supplied by Nunc, 
Gibco Ltd., Uxbridge, Middlesex, England.
All tissue culture procedures were carried out in an Intermed 
lathfinder laminar flow cabinet.

The compositions of the tissue culture growth media ((5M) and the 
balanced salt solutions (BSS) used, were as follows:-
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Gonposition of growth media

GMl EMEM supplemented with:

Donor horse serum 10.0% (v/v) 
Glucose 0.15% (w/v)
Glutamine 2.0 mM

Penicillin 100 U/ml
Streptomycin 100 pg/ml

GM2 DMEM supplemented with:
Donor horse serum 2.0% (v/v)
CLucose 0.15% (w/v)
(Glutamine 2.0 irM
Penicillin 100 U/ml
Streptomycin 100 pg/ml

(3M3 DMEM supplemented with:

Foetal calf serum 20.0% (v/v)
Glucose 0.15% (w/v)
Glutamine 2.0 irM
Penicillin 100 U/ml
Streptomycin 100 pg/ml

Growth media were stored at 4°C and used within 4 weeks
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Serum-free medium (SEM)
EMEM supplemented with:

Glucose 0.15% (w/v)
Glutamine 2.0 mM
Penicillin 100 U/ml
Streptomycin 100 pg/ml
Hydrocortisone 0.5 jjiM
Transferrin 5.0 pg/ml
Progesterone 20.0 nM
Putrescine 0.1 mM
Selenite Na 30.0 nM
Thyroxine 3.0 pg/ml
Biotin 1.0 pg/ml
Insulin 0.2 U/ml

Hormones and co-factors were made up as x200 stock solutions and 
stored at -20°C before use. SEM v^s stored at 4°C and used within 3 
weeks.

Composition of balanced salt solutions 
Puck's BSS

mcl 8.0 g
KCl 0.4 g

0.024 g

KHg ^ 4 0.03 g
Glucose 6.0 g
Sucrose 15.0 g

Made up to 1 litre with double distilled H^ O containing 
O.OIM HEPES. Final pH 7.3.
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Dulbecco's phosphate buffered saline
b)aCl 8.0 g

KCl 0.2 g
1.15 g

KH2 PO^ 0.2 g

CaCl^ .2H2 0 0.132 g

MgCl^ .6H2 0 0.1 g

Made up to 1 litre with double distilled H^O 
pH 7.2

* Only included where BSS used for washing cell cultures 

Source of muscle for tissue culture
Rat muscle was dDtained from the thigh tissue of neonatal (1-2 days) 
white CFHB rats.
Human foetal muscle was <±>tained from foetuses (approximate age 8-16 
weeks) supplied by the Royal United Hospital, Bath following pregnancy 
terminations by suction on a vacuum line. As soon as possible after 

operation, the foetal limbs were placed in growth medium and stored at 

4°C for up to 72 h.

Radiochemicals
125carrier-free Na[ I] in dilute NaOH (100 mCi/ml) was from Amer sham 

International (Amersham, Bucks, U.K.) and was stored at room 
temperature for not longer than 3 weeks after its activity reference 

date.
D,L-[Me-^H] carnitine hydrochloride (1 mCi/ml, specific activity 2 

Ci/mmol) and L-[Me-^H] carnitine hydrochloride (1 mCi/ml, specific
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activity 87 Ci/racnol) were purchased from Amersham International, 
Amersham, Bucks, U.K.

Ligands
C/-BGT fron Bungarus multi ci nctus was purchased fron Boehringer Corps, 

Mannheim, W.Germany.
Benzoquinonium chloride was a generous gift from Stirling Winthrop 
Inc., Renssalaer, New York, USA.

Décaméthonium bromide was retained from Sigma Chemical Co.,
Ki ngston-upon-Thames, England.

Serum
Serum samples from normal volunteers were obtained from colleagues in 
the department, l^yasthenic serum samples vere obtained from several 
hospitals in the U.K. as samples received for the routine assay of 
anti-AChR antibodies. Plasma obtained as a result of plasmapheresis of 

two myasthenic patients-MG patient 4, sample (ii), and MG patient 13, 
sample (v) was also obtained from the Royal United Hospital, Bath and 
Southmead Hospital, Bristol. Serum samples w^re frozen and stored at 

-20°C.
Goat anti-human IgG antiserum was prepared in the department by

repeated intramuscular injection of purified human IgG into a goat.
125[ I]-labelled goat anti-human light chain antibodies (l.Spg/ml, 

specific activity IpCi/pg) w^re a generous gift from Dr. Ahmed Jehanli. 

Lyophilised guinea-pig complement serum v^s obtained from Miles 

Laboratories, Elkhart, Indiana, USA (stated activity +ve haemolysis at
0.04 ml when the complement was at a 1:10 dilution) or from Flow 

Laboratories, Irvine, Ayrshire, Scotland (stated activity C H ^ q/ittI =
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250, vbere one is the amount of complement producing 50% lysis
of sensitised sheep red blood cells under stated conditions). The 

serum was reconstituted in the diluent provided and used immediately. 

Rabbit anti-foetal calf AChR anti serum and rabbit anti-rat junctional 
AChR anti serum were the generous gift of Miss Susan Whlsh.
Sheep anti-Torpedo AChR anti serum was the generous gift of Dr. Susan 
WOnnacott.

Normal fresh rat serum and rabbit serum were obtained from white CHFB 
rats or white New Zealand rabbits respectively.

Source of muscle AChR
Human adult muscle was supplied by the Royal United Hospital, Bath and 
the Bristol Royal Infirmary and was obtained from lower limb 
amputations resulting from severe vascular disorders or from road 
traffic accidents. Within 15 min of operation, calf muscle was crudely 
dissected free from fat, tendon and skin, transported in ice, solid 
carbon dioxide or liquid nitrogen and stored at -80°C for up to six 
months.

Chemicals
Standard Laboratory Reagents were from Sigma Chemical Co., 

Kingston-upon-Thames, England or from B.D.H. Chemicals Ltd., Poole, 
England.
Gel filtration reagents were supplied by Pharmacia Ltd., Hounslow,
U.K.
Ion exchange resins, DEAE-cellulose filter discs and GFC glass fibre 

filter discs were from Whatman Lab. Sales Ltd., Maidstone, Kent, 

England.
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Counting instruments 
125[ I] was counted in an LKB Ultrogamma counter.

Tritiim was counted in a tritium-specific channel in a Packard 
Tri-carb scintillation counter (model 3255) for a 2 minute counting 
period. Correction for quenching was made using the channels ratio 
method. The efficiency of tritium counting was 38%.
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METHODS
1. Tissue Culture

1.1 Preparation of tissue culture plates
Tissue culture plates (24-well, see "Materials") were pre-coated 

with photo-polymerised collagen gel as described by Masurovsky and 
Peterson (1973).

Collagen was prepared from rat tails by the method of Ehrmann 
and Gey (1956). A rat’s tail was washed in 70% (v/v) ethanol for 30 
min, the skin was pulled off and the tendons dissected out with bone 
forceps. The tendons v^re washed in sterile distilled water and placed 
in 0.1% (v/v) sterile glacial acetic acid (100 ml) at 4°C for 48h to 
extract the collagen. The resulting solution was centrifuged at 800g 
for 2h at 23°C. The supernatant was diluted with sterile distilled 
water to give a protein concentration of 1 mg/ml and stored at 4°C.

Collagen solution was mixed wnth riboflavin (Flavin 
mononucleotide, 0.05% w/v ) at a ratio of 4:1 (v/v). Samples of this 
mixture (30 pi) w^re spread in the dark over the surface of each tissue 
culture w^ll. The gel was gboto-polymerised by exposure to fluorescent 
light in the laminar flow cabinet for Ih and dried overnight at 37°C. 

The plates ware then washed for 2-3 min with distilled water and 
incubated with the appropriate growth medium for at least 30 min 

before the addition of cells.

1.2 Preparation of rat myotube cultures
Rat myotube cultures were prepared from the thigh muscle of 

newborn rats essentially according to the method of Yaffe (1973). Rats 
(1-2 days old) ware decapitated and the bodies placed in 70% (v/v) 

ethanol for 10 min. Hind limbs vare excised from the bodies and washed 
in Ca^^- and Mg^^-free balanced salt solution (Puck's B.S.S.- see



56

"Materials"). Dissection of limbs was then carried out under a Swift 
binocular viewer at xlO magnification. After removal of the skin, 

tissue surrounding the bone was stripped and placed in a 35rnn plastic 
dish containing Puck's B.S.S. (1 ml). The tissue was minced with a 
pair of fine Iruiectorry scissors to produce a slurry and transferred 

with washing to a sterile plastic tube (final volume 8.5 ml). 

Deoxyribonuclease (1 mg/ml, 0.5 ml) was added to prevent cell clunping 
induced by deoxyribonucleic acids released frcm dead cells. Crude 
trypsin solution (2.5% w/v, 1 ml) m s  then added to give a final 
concentration of 0.25% (w/v). The tissue suspension was incubated at 
37°C for 60 min with intermittent mixing. The suspension was then 

centrifuged at 400g for 5 min, the supernatant was discarded and 
growth medium (5 ml of (]M1, see "Materials") m s  added to the 
resulting pellet. Any residual trypsin action m s  inhibited by the 
serum component of the growth medium. Cells were released frcm the 
tissue fragments by gentle trituration with a glass Pasteur pipette 
(15-20 cycles). The mixture m s  left to stand for 3 min and the 
supernatant, containing free cells, removed for filtering. Further 

growth medium (5 ml) m s  added to the remaining tissue and the 
trituration process m s  repeated. The combined cell suspensions were 
filtered through two layers of nylon bolting doth (53 pm aperture) to 
remove remaining cell aggregates and tissue clurrps. A sairple of the 
filtrate m s  added to an equal volume of trypan blue (0.2% w/v), to 
visualise dead cells, before cell counting in a haenocytcmeter. Cells 
were added to 24-well (15.5 irm) culture plates at a final density of

2.5 X  10^ cells per m i l  (1.3 x  10^ cells/cm^) in GMl (1 ml). (Cultures 

were grown in an atmosphere of 10% CD^Air (later cultures were grown 

in a humidified atmosphere of 5% CO^air). Growth medium m s  replaced
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by fresh, pre-wantied medium every three days. After 3-4 days growth, 
vben fusion of myoblasts was judged morphologically to be complété 

(see "Results" section A 1.2), cytosine arabinoside (10 pM) or 
fluorodeoxyuridine (15 pg/ml) and uridine (35 pg/ml) m r e  added to the 

cultures for 72h. These mitotic inhibitors reduced the growth of 
fibroblasts in the cultures. In routine preparations of rat myotube 
cultures, 6-8 rats m r e  used each time so that dissection, 
dissociation and plating of cells could be achieved within 2-3 h.

1.3 Preparation of human myotube cultures
Human myotube cultures m r e  established by using muscle 

tissue from the arms and legs of 8-16 week foetuses. Single cell 
suspensions m r e  obtained as described for rat neonatal muscle. 
Variations in methodology and in growth media are described in the 
"Results" section.

1.4 Repassaqing of human muscle cell cultures
For some experiments human muscle cells in culture were 

repassaged essentially as described by Konigsberg (1979). Single cell 
suspensions, prepared as described in section 1.3, were incubated in 
non-collagen coated tissue culture flasks (25ml) at a density of 1 x 
10^ cells/flask at 37°C in an atmosphere of 10% OO^/air. The growth 
medium was 013 (see "Materials"). After 3 days, the cells were washed 

with Puck's B.S.S. (see "Materials") and resuspended in Puck's B.S.S. 
containing 0.025% (v/v) trypsin (5 ml). The flasks were gently swirled 
at 23°C and when approximately half of the cells had become detached 

from the surface of the flask (3-5 min), the cell suspension was 

decanted and trypsin action terminated by the addition of growth
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medium (10 ml). After centrifugation at 400g for 5 min, the resulting 
pellet was resuspended in growth medium (5 ml) by gentle trituration. 

The cells were filtered through 2 layers of nylon bolting cloth (53 pm 

aperture) and seeded onto 24-well (15.5 mm) culture plates at a 
density of 2.5 x 10^ cells/well in the appropriate growth medium (1 
ml) (see "Results" section B 1.5).

1.5 Preparation of fibroblast cultures
Fibroblast cultures were established from newborn rat skin or 

from foetal human skin. Single cell suspensions veire prepared as 
described for rat muscle tissue and the cells v^re plated in 24-well
(15.5 mm) culture plates, pre-coated with rat tail collagen, at a

5 5 2density of 1.25 x 10 cells per wall (0.65 x 10 cells/cm ) .The growth
medium used was (^3 containing 20% foetal calf serum (see
"Materials"). After one day in culture, the plates were vrashed with
growth medium to remove dead cells and fresh medium added. This was
subsequently changed every 3 days. A confluent layer of fibroblasts

was obtained after 6-7 days growth.

1.6 Morphological examination of cultures
Myotube cultures were routinely examined under a Zeiss inverted 

phase-contrast microscope before and after all assays so that any 
culture walls where the myotubes had become detached from the surface 
as a result of the washing procedures could be ignored.
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2. lodination of oc-bungarotx>xin

1 952.1 Preparation of [ I]-labelled oo-BGT

c<-BGT was iodinated by the chloramine-T method (Hunter, 1967)
as modified by Urbanicüc et al.(1973). Carrier-free Na[^^^I] (100
mCi/ml) in dilute sodium hydroxide (20pl) was added to tx-BCTT (20 pg, 2.5
nmol) in 0.05M potassium phosphate buffer, pH 7.5 (30pl), followed by
chloramine-T (0.5% w/v) in 0.05M potassium phosphate buffer, pH 7.5
(lOpl). The mixture was stirred for 1 min at 23°C and the reaction was
terminated by the addition of sodium metabisulphite (0.016% w/v) in
0.05M potassium phosfhate buffer (0.7&nl), pH 7.5, follcwed by carrier
potassium iodide (1%, w/v) in 0.05M potassium phosphate buffer (0.2

125ml), 7.5. Labelled (X-BGT was separated frcm free [ I] by passage
through a column of Sephadex (3-25 (25 x 1 cm) previously equilibrated
with O.OlM potassium phosphate buffer, pH 7.5, containing 1% (w/v)
BSA. Fractions (1 ml) were collected and a sample (5 pi) frcm each
fraction was counted for radioactivity. The peak fractions, containing 
125[ I]o<-B(3T, were pooled and the specific radioactivity was

125calculated, assuming 100% recovery of protein. [ I]o<-bg t was stored
at 4°C for not longer than 3 weeks.

A typical elution profile frcm the (3-25 Sephadex column is
shown in Figure 8 . Approximately 91% (range 83.8 - 94.9%) of the 
125[ I] was incorporated into the protein (mean + SD,n = 90.9 + 5.0%, 6 

preparations). The specific radioacivity was in the range 671-782 
Ci/innol with a mean value of 732.7 + 44.2 (6) Ci/mmol (mean + SD,n).
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1952.2 Biological activity of [ I]-labelled(X.-BGT

'Ihe biological activity of -labelled o(-BGT
preparations was determined by measurement of the proportion of
radiolabelled (X-BGT that could be bound by a large molar excess of
purified AChR frcm Torpedo marmorata (kind gift frcm Mr. Ian
Richards). Triplicate samples of Torpedo AChR (30 pnol, lOOpl) in O.OIM
potassium phosphate buffer, pH 7.4 containing 0.1% (w/v) BSA, 1% (v/v)
Triton X-100 and 0.01% (w/v) sodium azide, were incubated with the
test radiolabelled o<-BGT (0.5 prool, 50 pi) for 90 min at 23°C in the

125presence and absence of excess unlabelled Oe^BGT (3 pM). Bound [ I] 
oc-BGT was separated frcm free toxin on DEAE-cellulose filter discs 
essentially as described by Schmidt and Raftery (1973). Each sample 
was applied to 2 DEAE-81 cellulose filter discs (diameter 24 mm) 
premoistened with the above assay buffer and left to stand for 2 min. 
Samples v^re then vacuum filtered in a Millipore filter unit. The 
filters were washed (3 x 1 ml) with the above buffer and counted for 

radioactivity. Biological activity was calculated as follcws:-

Biological activity = Specific cpm bound (sample) x 100 

(%) Total cpm added

195The biological activity of [ I]oc-BGT was in the range 58.5 - 71.9% 
with a mean value of 65.3 + 4.4 % (6), (mean + SD,n).
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FIGURE 8
125GEL FILTRATION OF C l]x-BGT ON SEPHADEX G-25
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1253. [ I](XrBGT binding to myotube cultures

Replicate myotube cultures were washed twice with growth
medium and incubated for 30 min at 23°C in fresh medium with or

without ImM décaméthonium bromide (0.275 ml). An apprcpriate dilution 
125of [ I]<x.-BGT (see "Results" section) was added to the cultures (25pl)

which vfere then incubated for 60 min at 23°C. Each dilution of toxin
was added to 8 replicate culture vælls, 4 of which had been
preincubated with ImM décaméthonium bromide. At the end of the
incubation time, the cultures were washed 3 times with growth medium
(0.75 ml, 2-3 min) followed by 2 brief washes with phosphate buffered 

*saline (0.75 ml) (see "Materials") before solubilisation as described
in section 9. Radioactivity was measured in a LKB Ultrogaima counter 

125and specific [ 1](X-BGT binding to the cultures was calculated from:-

total cpn - non-specific cpm
(-DBr) (4DBr)

specific radioactivity 
125(cpm/pmol [ 1J&C-BC3T)

* Repeated washings of the cultures with balanced salt solutions v^re 
found to detach myotubes from the collagen surface. Cultures were 

therefore routinely washed with growth medium, final washes with 
phosp^te buffered saline being included if the protein content of 
cultures was to be estimated.

4. Determination of creatine phospdiokinase activity
Creatine phosphokinase (CPK : EC 2.7.3.2) activity was 

determined by using a CPK assay kit obtained frcm Sigma Chemical Co.,
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Kingston-upon-Ihaiæs, Surrey, England (procedure no. 45-UV). Culture 
wells (6-12 wells) were washed twice with growth medium (0.75ml, 2-3 

min) and twice with phosphate buffered saline (0.75ml, 2-3 min) before 
scraping the cells off the bottom of the culture wells into a small 
volume of 20mM potassium phosphate buffer, pH 7.4 (0.2 - 0.5ml) by 
using a teflon-coated spatula. The resulting suspension was 
homogenised in a Potter glass homogeniser and stored at -20°C until 
use.

The CPK assay method depends on the reaction scheme : -

CPKADP + phosphocreatine.  > ATP + creatine
h^xolc i riAATP + glucose-------------------> ADP + glucose-6-phosphate
* CfiP OHgluoose-6-phosphate + lADP---------- > 6-phosphogluconate + bADPH

* G6P DH is glucose-6-phosphate dehydrogenase 
When tADP is reduced to t$̂ DPH the A^^^ sharply increases and is 
proportional to the CPK activity.

5. Determination of acetylcholinesterase activity
Acetylcholinesterase (AChE : EC 3.1.1.7) activity was

e.t ai.
determined according to the method of Ellman^( 1961) as modified by 
Wilson et al. (1973). Culture v^lls (12-24 wells) were washed twice 

with growth medium (0.75ml, 2-3 min) and twice with phosphate buffered 
saline (0.75ml, 2-3 min) before scraping the cells off the bottom of 

the culture wells into a small volume of 20mM potassium phosphate 

buffer, pH 7.4 (0.2 - 0.5ml), using a teflon-coated spatula. The 

resulting suspension v^s homogenised in a Potter glass homogeniser and 

stored at -20°C until use. The homogenate m s  diluted (1:1) with 20mM
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potassium phosphate buffer, pH 7.4, containing 0.5% (w/v) Triton X-100 
and left to stand for 30 min at 4°C. After centrifugation at 10,000g 

for 15 min, the supernatant, containing the solubilised enzyme, was 
assayed for AChE activity.

Non-specific cholinesterase activity was determined in the 

presence of the specific AChE inhibitor BW 284C51, and deducted from 
total chol inesterase activity to give a specific value for AChE.

6. Protein measurements
Protein was determined by the method of Lowry et al. (1951) 

using BSA diluted in the appropriate buffer system for the sample as a 
standard. The protein content of cell cultures was determined from 
solubilised extracts (section 9). The protein content of culture wells 
with no added cells was taken as a blank value and deducted fran all 
test values.

7. Determination of uptake of [Me-^H]-carnitine by cultures
EL-[Methyl-^] carnitine hydrochloride (specific activity 2 

Ci/nmol, radioactive concentration 1 mCi/ml) was diluted under sterile 
conditions in growth medium to a final concentration of 10 pM. Further 

dilutions were made as appropriate (see "Results" section) before 
addition of each concentration (0.75 ml) to 4 replicate culture wells. 
After incubation for 18h at 37°C in an atmosphere of 10% the
cultures were mshed 3 times with growth medium (0.75 ml, 2-3 min), 
immediately solubilised in O.lM sodium hydroxide (see section 9) and 
mixed with scintillation fluid (30% Triton X-100 in toluene, 5 gA 
PPO, 5 ml). The radioactivity of each culture well vras determined by 

counting in a îackard liquid scintillation counter.
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Towards t±ie end of this project, the L-iscmer, L-[Methyl-^H] 
carnitine hydrochloride, of high specific activity (87 Ci/ramol, 
radioactive concentration 1 mCi/ml) was used (after dilution in growth 
medium to a final concentration of 0.23 pM).

8. Determination of myotoxicity by serum
^otube cultures vere loaded with [Me-^H]-carnitine as in the 

previous section. After washing, fresh medium was added to each 
culture well followed by addition of test serum in appropriate amounts 
(see "Results" section). The cultures \ære then incubated at 37°C in 
an atmosphere of 10% for the appropriate length of time,
before washing 3 times with growth medium (0.75 ml, 2-3 min) and 
solubilising and counting as before. Control cultures to which no 
additions of test serum ware made (equivalent volumes of growth medium 
alone added) vere run simultaneously. Myotoxicity was expressed as the 
percentage loss of radioactivity compared with controls according to 

the formula : -

CRC - CRT X  100%

CRC

vhere CRC = counts retained in control cultures to vhich no 

additions of test serum were made 
CRT = counts retained in test cultures
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9. Solubilisation of cultures
Cultures were solubilised by incubation with O.lM sodium

hydroxide (0.3 ml) for 30 min at 23°C. The contents of each culture
125well were then transferred to appropriate tubes, (LP3 tubes for [ I]

3counting or scintillation vials for [ H] counting). Each culture well 

was then further incubated with O.lM sodium hydroxide (0.2 ml) for 15 
min at 23°C and the washings transferred to the appropriate tubes for 
counting.

10. Binding of myasthenic serum components to myotube cultures
The binding of myasthenic serum components to myotube

cultures was assessed by 2 different methods.
10.1 Immunoradiometric assay to detect immunoglobulin binding

Replicate myotube cultures vere washed twice with growth
medium (0.75 ml, 2-3 min) and fresh medium was added (0.25 ml). Normal
or rmyasthenic serum (25pl) was added to each of four culture wslls and
incubated for 1 h at 37°C. Cultures wsre then washed 3 times with
growth medium (0.75 ml, 2-3 min) and fresh medium was added (0.25 ml). 
125[ I]-goat anti-human light chain (ŒHL) antibodies (lOpl) were added
to each culture veil and the cultures were incubated for 2 h at 23°C,
v^shed 3 times with growth medium (0.75 ml, 2-3 min) and solubilised

in O.lM sodium hydroxide (0.5 ml) as described in the "Methods"
section 9, before counting in a LKB Ultrogamma counter. Cultures with
no additions of test sera were run simultaneously to determine

125non-specific binding of [ I]-(AHL to the cultures.
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1 9510.2 Loss of [ I]c<-BGT binding

Replicate myotube cultures were vashed twice with growth

medium (0.75 ml, 2-3 min) and fresh medium containing myasthenic or
normal serum (various amounts - see "Results" section) was added to

each of 8 culture vælls. The cultures were incubated for 1 h at 37°C,
washed 3 times with growth medium (0.75 ml, 2-3 min) and assayed for 
125[ I]wc-BGT binding as described in section 3. Control cultures, with

no additions of test serum, were run simultaneously. Results are
125expressed as the percentage [ Iloc-BGT binding sites remaining 

relative to the control.

11. Absorption of sera with rat liver hcmogenate
For some experiments, human serum was absorbed with rat liver 

homogenate in an attempt to remove any non tissue-specific components 
present which could bind to rat muscle cultures. A rat liver was 
washed in phosphate buffered saline, diced and homogenised in an equal 

volume of phosphate buffered saline. After centrifugation at 10,000g 
for 15 min, samples of the pellet (2.5 ml) wsre stirred with serum (5 
ml) for 2h at 23°C. The serum was recovered by centrifugation at 

10,000g for 30 min.

12. Preparation of human AChR
12.1 Preparation of crude muscle extract from human adult muscle

Detergent extracts of muscle wsre prepared frcm human adult 
amputated legs according to the nethod of Stephenson et al. (1981). 

Muscle (200g) was coarsely chopped and homogenised in a Waring blender
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at maximum speed for 1 min in 4 volumes of Buffer A comprising 20mM 

potassium phosphate buffer, pH 7.4, ImM EDIA, O.lmM FMSF, O.lmM 

benzethonium chloride, 2mM benzamidine hydrochloride, bacitracin (500 
pg/ml) and 0.01% (w/v) sodium azide. The homogenate vms centrifuged 
(20,000g, 60 min, 4°C) and the resulting supernatant was decanted and 
discarded. The pellet was resuspended and homogenised as before in 

Buffer A (1 volume) containing additionally 2.5% (v/v) Triton X-100 
(extraction buffer), stirred for 3 h at 23°C and centrifuged 
(100,000g, 60 min, 4°C). The resulting supernatant was filtered 
through glass wool. This crude muscle extract was used in the 
radioimmunoassay (see section 13) for anti-(A(ZhR) antibodies in human 
sera and IgG. It was also used for coupling to Sepharose 4B-a<-BGT 
complexes (see section 14.2).

12.2 Determination of AChR content of muscle extracts
The AChR content of crude detergent extracts of muscle was

determined by a method adapted from that of Meunier et al. (1972).

Triplicate samples of the extract (lOOpl) were incubated with 10 nM

[^^^I]o<rBGT in extraction buffer (50 pi) for 45 min at 23°C. Specific 
125binding of [ I]o<rBGT was blocked by parallel incubations containing

1 mM benzoquinonium chloride. Saturated ammonium sulphate was added to
give a final concentration of 40%. After further incubation for 16 h
at 4°C, the precipitates were collected on Whatman GFC glass fibre
filter discs, washed 3 times with 40% saturated ammonium sulphate (1

ml) by vacuum filtration on a Millipore filter unit and counted for

radioactivity. Serial 2-fold dilutions of the receptor extract were
125assayed to ensure sufficient excess of [ I]tXr-BGT. The AChR content

125of the crude extract was calculated in terms of [ I]cnrBGT binding
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sites as follows

AChR (pnol/ml extract) = specific cpm sample x dilution

specific radioactivity factor 
1 95(cpm/pmol [ I]ck-BGT)

Detergent extraction of human muscle gave yields of 0.45 - 1.3 
125pmol [ IJcKrBGT binding sites / ml extract equivalent to 0.61 - 1.54 

pmol per gram of frozen muscle tissue (1.14+0.48, 4 preparations, 
mean + SD).

13. Radioimmunoassay of anti-(AChR) antibodies
A radioimmunoassay procedure similar to that previously 

described (Lindstrom et al. 1976a; Carter et al. 1981) was used to 
determine the anti-(AChR) antibody content of fractionated serum 

samples. This procedure detects anti-(AChR) antibodies not directed at 

the oc-BGT binding site.
(Crude human muscle extract (0.05 pmol specific oc-BGT binding

125sites) was labelled by incubation with excess [ I](X-B(3T (0.5 pmol)

for 45 min at 23°C. Specific binding of was blocked in
parallel incubations with 1 mM benzoquinonium chloride. The resulting 
solutions wsre incubated in triplicate with serum or serum fractions 
(5 pi) appropriately diluted with normal human serum or IgG for 2 h at 
23°C (or 16 h at 4°C). The labelled A(ChR-Ab complex was precipitated 

by the addition of goat anti-(human IgG) anti serum (35 pi, the volume 

v^s chosen to ensure maximum precipitation of complex) and incubation



70

for 2 h at 23°C (or 16 h at 4°C). The resulting precipitates were
collected by centrifugation (3000g, 10 min) at 4°C and the pellets
were washed twice with 10 mM potassium phosphate buffer, pH 7.4
containing 0.15 M tfeCl, 1% (v/v) Triton X-100 and 0.1% (w/v) sodium

azide (RIA buffer) by alternate suspension and centrifugation and
counted for radioactivity. For each sanple, naximal formation of 
125[ I ] o^BGT-AChR-Ab canplex was ensured by repetition of the assay 

using serial 2-fold dilutions of sample in order to <±>tain a linear 
relationship between the volume of undiluted sample and precipitated 
radioactivity.

The anti-(AChR) antibody titre of serum or serum fractions 
is expressed as moles of specific oC-BGT binding sites 
precipitatedper litre of sample as follows:-

titre = specific cpm sample x dilution
specific radioactivity factor

195(cpm/pmol Ê '̂ Î]ok-BGT)

14. Depletion of anti-(AChR) antibodies from myasthenic serum
14.1 Preparation of the o<-BGT affinity column

oC-BGT (2ng) was covalently linked to cyanogen 
brcxnide-activated Sepharose 4B (March et al., 1974) according to the 
method of Linds tram et al. (1981). Sepharose 4B (50 ml packed beads) 

was washed with 0.1 M sodium chloride (IL), followed by distilled 

water (500 ml). The beads v^re resuspended in cold IM sodium carbonate 
solution (200 ml) and cooled to 4^C. Cÿanogen bromide (2.5 g) 

dissolved in acetonitrile (2 ml) was added to the Sepharose 4B
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solution and stirred for 2 min at 4°C. The mixture was rapidly 
filtered and washed with ice cold distilled water (500 ml). cxrBGT (2 

mg) \^s dissolved in 0.2 M sodium hydrogen carbonate, pH 9.4 (100 ml) 

and added to the activated Sepharose beads. After stirring overnight 
at 4°C, the affinity beads vere collected by filtration and the eluant 
was retained for protein estimation. The beads v^re then washed with 
distilled water (400 ml), resuspended in 2 M glycine, pH 9.0 (200 ml) 
and stirred overnight at 4°C to block unreacted groups. The affinity 
beads were again filtered and washed sequentially with 0.1 M acetate 
buffer, pH 4.0, containing 1 M sodium chloride (150 ml) and 0.1 M 
borate buffer, pH 8.0, containing 1 M sodium chloride (150 ml). This 
washing process was repeated 3 times, after which the beads v^re 
equilibrated in 10 mM potassium phosphate buffer, pH 7.4 before 
coupling to human AChR. The final density of o^-BGT covalently linked 
to activated Sepharose 4B vas calculated to be 0.04 mg/ml beads.

14.2 Coupling of AChR to theoc-BGT-affinity column
Human AChR vas coupled to the o<-BGT affinity column by using

an adaptation of the method of Lang et al. (1982). AChR, prepared as a
crude detergent extract of human leg muscle (see section 12) was

125applied as a batch (49.5 - 210 pmol [ I]ot-BGT binding sites at a 
concentration of 0.45 - 1.3 pmol/ml) to o<-BGT-Sepharose 4B (25 ml 
packed volume) and stirred gently overnight at 4°C. The affinity beads 
were then washed extensively on a scintered glass funnel with 
phosphate buffered saline, pH 7.2, containing an additional 0.5 M 

sodium chloride (500 ml) followed by phosphate buffered saline alone 

(500 ml). The beads were then packed in a column (1.7 x 30 cm) and 

equilibrated with phosphate buffered saline, pH 7.2, before
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application of myasthenic sera. A control column, consisting of 

oC-BGT-sepharose 4B to which no AChR had been coupled, was similarly 
prepared.

14.3 Depletion of anti-AChR antibodies from myasthenic serum
Myasthenic serum (2 ml, containing 84 pmol of anti-AChR 

antibodies) was applied to the AChR-oc-BGT-Sepharose 43 column or to 
the control cx-BGT-sej^rose 4B column at a rate of 30 ml/h, and 
allowed to circulate for 2 h at 23°C. The columns vere then washed 
with phosphate buffered saline, pR 1.2, and fractions (3 ml) 
collected. Fractions showing absorbance at 280 nM wsre pooled and 
concentrated on an Amicon B15 concentrator to the original volume (2 
ml) of applied serum. The anti-AChR antibody content of the serum 
scimples, before and after passage through the affinity columns, was 
determined as described in section 13. Anti-AChR antibody depleted 
serum scinples were stored at -20°C until use.

14.4 Purification of antirAChR antibody
After application of myasthenic serum to the AChR- 

oeBGT-Sepharose 4B column and collection of the effluent, the column 
was washed with phosphate buffered saline, pH 7.2, containing 
additionally 0.5 M sodium chloride (100 ml) followed by phosphate 
buffered saline, pH 7.2, alone (100 ml). The adsorbed antibody was 
eluted with 2 M potassium iodide in phosphate buffered saline, pH 7.2, 

and fractions (1 ml) collected. Fractions showing absorbance at 280 nM 

were pooled and immediately dialysed against phosphate buffered 

saline, pH 7.2, (4 x 4L) for 48 h. The non-dialysable material was
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concentrated on an Amicon B15 concentrator to a final volume of 1 ml 
and the anti-AChR antibody content væis determined as described in 

section 13. Purified antibody was stored at -20°C until use.

15. Preparation of IgG

15.1 Purification of IgG
IgG wa.3 prepared from normal and myasthenic serum by the 

method of Stevenson and Dorrington (1970). A solution of saturated 
ammonium sulphate (6 ml, saturated in 0.2 M TRIS-HCL, pdi 8.0) was 
added dropwise to normal or myasthenic serum (10 ml) with stirring at 
23°C. The solution was stirred for a further 30 min at 23°C and the 

precipitate was sedinented by centrifugation (500 g, 15 min). The 
precipitate was dissolved in 30 mM potassium phosphate buffer, pH 7.3 
(10 ml) and dialysed overnight at 4°C against the same buffer (4L). 
The non-dial ysable material was applied to a column (2.9 x 13.2 cm) of 
DE-52 cellulose pre-equilibrated with 30 mM potassium phosphate 
buffer, pH 7.3. The column was eluted with the same buffer and 

fractions (2 ml) collected. Fractions showing absorbance at 280 nM 
were pooled and concentrated on an Amicon B15 concentrator to the 
original volume of serum (10 ml). The column was washed with 30 mM 
potassium phosphate buffer, pH 7.3, containing 1 M sodium chloride 

before re-use. The anti-AChR antibody content of pjurified IgG was 
determined as described in section 13. Purified IgG was stored at 
-20°C until use.

15.2 Depletion of IgG subclass 3 frcm IgG

Removal of IgG subclass 3 from normal and myasthenic IgG was 

performed by affinity chromatography on protein A-Sepharose 4B, based
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on the method described by Whiting et al. (1983). Purified IgG (5 ml 
containing 8.75 - 20 mg) was applied to a column of reconstituted 

protein A-sepharose 4B (5 ml), pre-equilibrated with 30 nM potassium 
phosphate buffer, pH 7.3. The column was eluted with the same buffer 
and fractions (1 ml) collected. Fractions showing absorbance at 280 nM 
vere pxxoled and concentrated on an Amicon B15 concentrator to a final 
volume of 1 ml. This fraction of IgG consisted of IgG subclass 3. The 
other IgG subclasses (IgG subclasses 1, 2 and 4) were eluted frcm the 
column with 0.1 M citrate, 0.1 M sodium phosphate buffer, pH 3.0 and 
fractions (1 ml) collected. Fractions absorbing at 280 nM were pxx)led 
and dialysed for 24 h at 4 °C against 30 itM pxDtassium phosphate 
buffer, pH 7.3 (2 x 4L). The non-dialysable material was concentrated 
on an Amicon B15 concentrator to a final volume of 5 ml. The protein 
A-Sepharose 4B column was washed with 30 irM pxDtassium phosphate 
buffer, pH 7.3, containing 1 M sodium chloride (100 ml) before re-use. 
The anti-AChR antibody content of the separated fractions was 
determined as described in section 13. The separated fractions ^^re 

stored at -20°C until use.

15.3 Measurement of IgG
IgG was measured in serum or serum fractions by a radial 

immunodiffusion assay using antiserum to human IgG ( Imraunostics RID 

plate, Seward Laboratories, London).
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RESULTS

A. RAT SKELETAL MUSCLE CELLS IN CULTURE
1. Growth and characteristics
1.1 Preparation of cultures

Single cell suspensions were prepared from neonatal rat
muscle as described in the "Methods" section 1.2. In initial
experiments, dissociation of tissue was achieved by incubation with
0.1% (w/v) trypsin for 30 min at 37°C. The yield of cells obtained was
1.63 + 0.22 X 10^ per limb (mean + SD, 7 preparations). Use of 0.25%
(w/v) trypsin for 60 min at 37°C improved dissociation of tissue, as
judged by ease of subsequent trituration, and routinely gave yields of
2.5 - 3.0 X 10^ cells per limb. Cell viability, as judged by exclusion
of trypan blue dye, was greater than 95%.

The optimal plating density for cultures was 2.5 x 10^ cells per
15.5mm culture well (Table 1). Higher plating densities resulted in

125earlier myoblast fusion but similar myotube densities and [ I]c\rBGT
binding, when estimated on the seventh day of culture. Lower plating
densities resulted in a sparser population of myotubes and lower 

125levels of [ I]o<-BGT binding; the total protein content of these
125cultures was not lowered to the same extent as [ IloeBGT binding 

(Table 1) and this may be a reflection of the presence of fibroblasts.

1.2 Morphology of cultures
After several hours in culture, most of the cells were 

attached to the collagen substratum. The mononucleated cells were 

initially round in shape. By 1-2 days in culture, spindle-shaped.



76

TABLE 1

EFFECTS OF INITIAL CELL DENSITY ON SUBSEQUENT RAT MYOTUBE 
GROWTH

Replicate muscle cultures were initiated at increasing 
cell densities and P’̂ ^l]o<-BGT binding (lOnM) determined 
on the 7^^day in culture, as described in the "Methods" 
section 3. Each result is the mean - SD of 4 culture wells

Initial cell [125 l](\-BGT binding

density Total Non-specific Specific Protein
( xlO ^/well) (cpm/well) (cpm/well) ( fmol/well ) (^g/well)

0.50 4263 - 473 341 - 37 5.2 5 5 - 4
1.25 13806 - 978 607 - 57 17.5 8 3 - 5
2.50 31200 i 854 1560 - 163 39.3 92 i 5
3.75 32644 - 957 3984 - 163 38.0 102 - 9
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retractile cells could be distinguished from flat, multi-polar, 
non-retractile cells (Figure 9 A). The morphology of the former is 
typical of that attributed to myoblasts, while that of the latter 
typical of fibroblasts. After 2-3 days in culture, the mononucleated 
cells had increased in number, the myoblasts becoming aligned in an 

end-to-end manner. After this stage, the cultures entered a period of 
rapid cell fusion resulting in the formation of a network of rapidly 
growing multinucleated fibres termed myotubes (Figure 9 B). After 6-7 
days in culture, myotubes covered the surface of the culture v^ll and 
vere often highly branched (Figures 9 C and 10). Many of the myotubes 
could be seen to contract spontaneously in a steady rhythmical 
fashion. These contractions often led to detachment of the myotubes 
frcm the collagen substratum by the ninth day in culture.

1.3 Inhibition of fibroblast growth
After 3-4 days growth, v^en fusion of myoblasts was judged

morphologically to be complete, mitotic inhibitors were added to
restrict fibroblast growth. The effect of fluorodeoxyuridine (15 pg/ml)
and uridine (35 pg/ml) (FDÜ) or of cytosine arabinoside (10 |iM) (Ara C)

125on myotube growth and [ I]at-BGT binding was observed (Table 2). When
no inhibitor was added, the myotube cultures were completely overgrown

with fibroblasts, and this was reflected in the higher protein
content. Addition of either inhibitor checked fibroblast overgrowth 

125but specific [ I]orBGT binding was reduced by 22% (+ FDU) and 17% (+ 

Ara C) respectively. This probably resulted from myoblast fusions not 

being complete on addition of inhibitor. Ara C appeared to be the most 

effective inhibitor of fibroblast growth, as judged by morphological 
examination, and was subsequently used as the inhibitor of choice.



FIGURE 9
LIGHT PHOTOMICROGRAPHS OF RAT MUSCLE CELLS IN CULTURE

A) 1 day after plating the single cell

suspension at 2.5 x 10^ cells/culture well 
(X 80 magnification)

B) The appearance of a 3 day culture after 
the onset of myoblast fusion 
(x 40 magnification)

C) 7 days in culture showing the dense network 

of branched myotubes 

(x 40 magnification)
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FIGURE 10

PHASE CONTRAST PHOTOMICROGRAPHS OF RAT MYOTUBE CULTURES

The appearance of rat muscle cell cultures, 7 days
after plating the single cell suspension at
2.5 X  10^ cells/culture well (x 80 magnification)
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TABLE 2
EFFECTS OF MITOTIC INHIBITORS ON SUBSEQUENT RAT MYOTUBE 
GROWTH

Fluorodeoxyuridine (15^g/ml) and uridine (35pg/ml) (FDU)
or cytosine arabinoside (Ara C , lO^M) were added to

rdreplicate muscle cultures, on the 3 day in culture,
for 72h. On the 7^^ day in culture, c<-BGT binding
(lOnM) was determined as described in the "Methods" 
section 3. Each result is the mean - SD of 4 culture wells

Test
[̂^^l]c<-BGT binding

Protein 
(jag/ well )

Total 
(cpm/well)

Non-specific 

(cpm/ well)

Specific 
( fmol/ well )

No addition 29787 - 2417 2740 - 187 47.3 160 - 14
+ FDU 22773 i 840 1741 i 197 36.8 9 2 - 8
+ Ara C 24318 - 180 1881 - 148 39.2 92 i 4



81

A CŒnmonly employed method of reducing the number of 
fibroblasts, with consequent enrichment of myoblasts, is the 

preplating of initial cell suspensions for 20 min at 37°C in 
non-collagen coated tissue culture flasks (Yaffe, 1968). Fibroblasts 
preferentially adhere to plastic surfaces, and subsequent decanting 
reduces their number in the cell suspension. When this method was 
tested, there was no apparent morphological difference in the myotube 
cultures obtained, with or without preplating, and this procedure vas 

not routinely adopted.

1.4 Growth media
In initial culture preparations, a saline extract of vtiole

chick embryos (kind gift frcm Dr. Ahmed Jehanli) was added to the
growth medium (5% v/v). This extract is an essential component for the
growth of chick muscle cells in culture (Hauschka, 1972) and is added
by many workers to growth media for muscle cells of other species (see

Hauschka, 1972; Yaffe, 1973; Witkcwski et al., 1976). Cultures grown

with or without this extract showed no differences in either the
growth or the number of myotubes present and it was accordingly not
routinely used. The principal factor in growth medium which affected
nyotube growth was the donor horse serum. One batch of serum appeared

to deteriorate in quality, giving rise to poor, less dense myotube
125cultures (e.g. culture C used for equilibrium [ I]pC-BGT binding 

studies - see Figure 13b). Use of a new batch of donor horse serum 

immediately restored the quality of nyotube cultures to that routinely 

expected.
Serum-free chemically defined growth media of various 

compositions have been used in other laboratories for the growth
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and/or fusion of chick, (Kumegawa et al., 1980; Dollenmeier et al.,

1981) rat (Florini and Roberts, 1979) and human muscle cells (Yasin
and van Beers, 1983). Such a medium (see "Materials") is routinely
used in this department for the growth of embryonic rat (Digby et al.,

1985) and foetal human neuronal cells (unpublished) and was therefore
tested on myotube cultures. After 3 days growth in (Ml, cultures were
continued in serum-free medium without addition of mitotic inhibitors.
In comparison to replicate cultures maintained in (Ml, growth was
poor, the myotubes appearing thinner and less branched. Binding of 
125[ I]t>̂ -BGT was considerably reduced (42% of control - Thble 3).

However the cultures vfere remarkably free of fibroblast growth.

1.5 Substrate used for cell attachment
As an alternative to photo-polynerised collagen, 

gelatin (2mg/ml, 30 pl/culture wall) was tested as a substrate for cell 
attachment and myotube growth (Hauschka, 1972). There was no 
morphological difference between cultures grown on either substrate 
but as there was a tendency for myotubes to detach from the gelatin 

surface during the frequent washes required for biochemical analysis, 
photo-polymsrised collagen was routinely used.

1.6 Protein content of cultures

In one representative myotube culture, protein content 
was 94.4 + 7.2 pg/culture well (mean + SD, 24 culture v^lls). Between 
different myotube culture preparations, protein content varied from

84.1 - 123.6 pg/culture well with a mean value of 103.3 + 14.4 pg/culture 

well (19 different preparations) tested on the seventh day in culture.

As cultures origirate from a mixture of cell types giving rise
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TABLE 3
EFFECTS OF SERUM-FREE MEDIUM ON SUBSEQUENT RAT MYOTUBE 
GROWTH

Replicate muscle cultures were grown for 3 days in GMl 
before changing to serum-free medium (see "Materials") 
for a further 4 days growth. At this time ^^]^r\-BGT 
binding (20nM) was determined, as described in the 
"Methods" section 3, and compared to replicate cultures 
maintained in GMl plus Ara C (lOuM). Each result is the 
mean - SD of 4 culture wells.

[125iJtX-BGT binding
Growth medium Total Non-specific Specific Protein

(cpm/well) (cpm/well) (fmol/well) (ug/well)

GMl 54884 - 4898 3820 - 144 77.0 124 - 12

GMl/SFM 23198 - 2115 1694 - 247 32.4 6 3 - 7
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to both myoblast and fibroblast growth, each of which contribute to 
total protein levels, all experimental results are expressed as per 
culture well rather than per mg protein.

1251.7 Time course of the appearance of [ IlxrBGT binding sites in 
cultures

Rat myotube cultures were tested daily over a period of 10 
125days for [ I]ïŝ BGT binding and total protein content (Figure 11).

125Before myoblast fusion (2 days in culture) specific [ X]o<rBGT
binding was discernible (0.62 fimol/culture well). On fusion of the
myoblasts (3 days in culture) this had increased to 17.5 finol/culture
well and thereafter increased daily to a maximum level of 55.4
fmol/culture well on the seventh day in culture. Total protein levels
increased rapidly over the first 4 days of growth. This increase was
halted after addition of mitotic inhibitor to the growth medium. As
culture time increased, progressive detachment of myotubes from the
collagen surface of the culture wells, as a result of vigorous

125spontaneous contractions, led to a loss in [ I]o(rBGT binding sites 
and protein content. Myotube cultures v^re therefore routinely used 
for biochemical assays on the seventh day in culture.

1251.8 Equilibrium binding of [ I]txrB(3T binding to cultures
125After incubation of myotube cultures with [ I]Dt-BGT, 3

washes with growth medium were sufficient to remove all free
radiolabel, (jounting errors (SE) of four replicate culture v^lls v^re

usually less than 5%. Pre-incubation of cultures with décaméthonium
125bromide inhibited [ I]o+BGT binding in a concentration dependent 

manner (Figure 12). Addition of 1 mM decanethonium inhibited toxin
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FIGURE 11
INCREASE OF C ̂ ^^lHvXrBGT BINDING SITES IN RAT MUSCLE 
CELL CULTURES
Replicate muscle cell cultures were tested daily for 
specific C^^^iDc<-BGT binding (20nM) as described in the 
"Methods" section 3. The total protein content of the 
cultures was also determined.

(• •) Specific C ̂^^l2ùL-BGT binding/culture well
Each point is the difference between 
total and non-specific binding, each 
determined from 4 culture wells.

(•------•) Protein content/culture well. Each
point is the mean - SD of 8 culture wells

^ At this time point, many of the myotubes had become 
detached from the surface of the culture wells.
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FIGURE 12
INHIBITION OF C iZk-BGT BINDING TO RAT MYOTUBE 
CULTURES BY DECAMETHONIUM BROMIDE

1 p cThe binding of C lHû^BGT (20nM) to replicate myotube 
cultures (7 days in culture) was determined as described 
in the "Methods" section 3, after pre-incubation of the 
cultures (30 min, 23°C) with increasing concentrations 
of décaméthonium bromide. Each point is the mean - SD 
of 4 culture wells.
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binding by 92%.
125Ihe binding of [ I]cK-BGT to myotube cultures was studied

over a range of toxin concentrations. Representative saturation curves
are shown in Figure 13. Non-specific binding, measured in the presence
of ImM décaméthonium, was linear and accounted for 5-8% of the total
binding. Specific binding approached saturation and described a
rectangular hyperbola. This was used to estimate and B^^(per
culture veil ). Figure 14 shows Scatchard plots c±>tained from the data

125in Figure 13. Different B values (47.2 - 99.3 fmol [ I]«t-BGT  ̂ max
bound per culture well) reflect differences in growth between the 3
cultures tested. Culture C (Figure 13 b) exhibited poor growth, as
judged by final density and spontaneous contractility of myotubes.

125Ihis was reflected in the reduced nimber of [ I]vc-BGT binding sites
per culture veil. Scatchard analysis, however, gave similar values

125for all 3 cultures amounting to 4.03 + 0.56 pnnol [ I]i<-BGT added per
culture veil, mean + SD (3 different cultures), equivalent to 13.4 + 1.9 

125nM [ I]wrBGT in the assay conditions used (see "Methods" section 3).
125Routine determination of [ I].>rBGT binding to different 

myotube cultures gave values in the range 32.1 - 77.0 fmol/culture 
veil, with a mean value of 55.5 + 9.9 finol/culture veil, mean + SD (19 
different cultures, assayed at 20 nM toxin concentration).

1.9 Acetylcholinesterase and creatine phosphokinase activity 
Studies vere carried out on the time course of the appearance of AChE 
and CPK activity in the muscle cultures (Figure 15). Following the 
onset of myoblast fusion (day 3 in culture), there was a rapid 

increase in AChE and CPK activity. AChE activity increased steadily 

from day 4 to day 8 in culture, the level of activity on day 7 being
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FIGURE 13
12 5EQUILIBRIUM BINDING OF C iJk^BGT TO RAT MYOTUBE 

CULTURES
125The binding of E iD^^^BOT to replicate myotube 

cultures (7 days in culture) was determined as described 
in the "Methods" section 3.
a) Binding data from one representative culture showing 

• Binding in the absence of décaméthonium bromide 
(total binding)

O Binding in the presence of ImM décaméthonium 
bromide (non-specific binding)

□ Specific binding 
Each point is the mean - SD of 4 culture wells

b) Specific binding data from 3 different myotube cultures 
assayed as above.

• Culture A Protein = 110 - 9 jig/culture well

O Culture B Protein = 9 6 - 3  jig/culture well

□ Culture C Protein = 84 - 6 jig/culture well

(mean - SD, 8 wells)
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FIGURE 14
SCATCHARD ANALYSIS OF THE BINDING DATA IN FIGURE 13 (b)

Lines were constructed by linear regression by using the 
data from Figure 13 (b).

Culture

• A 14.2 nM 99.3 fmol/well 0.98

O B  14.8 nM 89.8 fmol/well 0.93

D C  11.3 nM 47.2 fmol/well 0.88

Mean = 13.4 nM
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0.23 + 0.06 nmol substrate œnverted/min/culture well (mean + SD, 5 
experiments). CPK activity reached a peak value on day 5 in culture 
after which a plateau was observed. The level of activity on day 7 in 

culture was 18.1 + 2.07 nmol substrate converted/min/culture veil (mean 
+ SD, 5 experiments.

1.10 Uptake of [Me-^H] carnitine
Rat myotube cultures and skin fibroblast cultures vere tested 

(over the 6^  and 7^^ day in culture) for uptake of radioactivity 
after incubation with [Me-^H] carnitine as described in the "Methods" 
section 7. At the end of the incubation time, 3 washes with growth 
medium were sufficient to ronove all free radiolabel. Figure 16 shows 
the uptake of [Me-^H] carnitine by 3 similar dense nyotube cultures. 
Uptake of radioactivity was not saturable over the concentration range 
tested (0.067 -1.33 pM, 0 . 1 - 2  |jCi added). Uptake of radioactivity by 
fibroblasts in culture (Figure 16) was consistently 3 - 4  times lower 
than that observed for myotube cultures.

During the first 2 years of work for this project,
D,L-[Me-^H] carnitine hydrochloride of specific activity 2 Ci/mnol, 1 
mCi/ml was utilised. This product was discontinued by Anersham 

International and later work involved use of the L-isoner, L-[Me-^H] 
carnitine hydrochloride of high specific activity (87 Ci/mnol, 1 
mCi/ml ). Uptake of radioactivity by rat cultures during incubation 
with increasing concentrations of the L-iscmer (1.5 - 15 nM, 0.1 - 1.0 
|iCi added) for 18 h at 37°C was similar to that obtained by using 
D,L-[Me-^H] carnitine. Unless otherwise stated, all results given for 

rat cultures vere obtained by labelling with D,L-[Me-^H] carnitine.
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FIGURE 15
ACETYLCHOLINESTERASE AND CREATINE PHOSPHOKINASE 
ACTIVITY IN RAT MUSCLE CELLS IN CULTURE
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FIGURE 16
UPTAKE OF LMe-^Hl CARNITINE BY RAT CULTURES

The uptake of radioactivity by replicate cultures of 
rat myotubes or rat skin fibroblasts (6 days in culture) 
was determined after incubation with increasing 
concentrations of C Me-^H] carnitine for 18h at 37°C as 
described in the "Methods" section 7.
Each point is the mean - SD of 3 different experiments, 
each of which included 4 culture wells.

#  Myotube cultures :-
C^^^I3oc-BGT binding (20nM) = 58.4 - 3.5

fmol/culture well 
Protein = 115 - 7 ug/culture well

(mean - SD, 3 different cultures)

O  Fibroblast cultures 
17 5[ IJ*^BGT binding (20nM) not detected

Protein = 54 i 3 ug/culture well
(mean - SD, 3 different cultures)
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1.11 Spontaneous release of [Me-^H] carnitine

After being labelled with [Me-^H] carnitine for 18 h at 37°C 
(0.67 pMf 1 |iCi), myotube cultures vere washed and fresh growth medium 

(0.75 ml) was added. The cultures vere again incubated (37^0 and, at 
various time points, 4 replicate culture veils vere washed and their 
contents vere solubilised in 0.1 M sodium hydroxide. After the final 
time point, the solubilised cultures vere counted for retained 
radioactivity. Figure 17 shows the spontaneous loss of radioactivity 
which was essentially linear over the first 8 hours. This represents 
an average release of radioactivity of 6.4%/hour.

Fibroblast cultures labelled vd.th CL- or L- [Me-^H] carnitine 
(0.67pM and 15nM respectively, IpCi added) and myotube cultures labelled 
with L-[Me-^H] carnitine (15nM, IpCi) showsd a similar loss of 
radioactivity when tested under similar conditions over a 3h time 
period.

1251.12 Effect of D,L-camitine on [ I]Pt-BGT binding to myotube
cultures

Rat myotube cultures (6 days in culture) vere incubated with
unlabelled D,L-carnitine (0.15 - 1.5 |iM, 18h at 37°C) before vashing

125and then determining the number of [ I]cxeBGT binding sites (at 20nM
toxin concentration) as described in the "Methods" section 3. No

125subsequent reduction in the number of specific [ I]«-BGT binding 
sites after treatment with D,L-carnitine vas observed (Figure 18).
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FIGURE 17
SPONTANEOUS RELEASE O F C Me-^H3 CARNITINE FROM RAT 
MYOTUBE CULTURES

Replicate myotube cultures were labelled with C Me-^H] 
carnitine as described in Section 2.2.1. The cultures 
were washed and fresh growth medium (0.75ml), 
containing no radiolabel, was added. The cultures were 
incubated at 37°C and the retention of radioactivity 
by the cultures was determined at various time points 
as described in Section 1.11. Each point is the 
mean - SD of 3 different experiments, each of which 
included 4 culture wells.
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FIGURE 18 
1 p cc I3K-BGT BINDING TO RAT MYOTUBE CULTURES AFTER 

PRE-INCUBATION WITH INCREASING CONCENTRATIONS OF 
D,L-CARNITINE FOR I8h AT 37°C

80“ 
O) Ilc
y
E 60-

I 40-

8a
W

1-5100 5
D, L“carnitine ()jM)

1 p c
C iDoc-BGT binding was determined (20 nM) 
as described in the "Methods" section 3. 

Each concentration of D ,L-carnitine was 
added to 8 replicate culture wells.
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2. Effects of myasthenic serum on cultures

2.1 Binding of serum components
2.1.1 Binding of serum iirmunoglobulins

Figure 19 illustrates the binding of heat-inactivated normal
125and myasthenic serum immunoglobulins detected by using [ I]-labelled

125goat anti-human light chain antibodies ([ IJ-QVHL) (see "Methods"
125section 10.1). [ I]-(AHL binding in the absence of test serum

represented non-specific binding to the cultures (in the range 1750 -
3000 cpm). This value, obtained in each experiment, was arbitrarily
taken as 100% and the binding in the presence of test serum was
expressed as a relative value to allcw comparison between different 

125cultures. [ Il-QVHL binding after incubation with normal sera gave a
mean value of 205.3 + 21.6% (3 different sera), mean + SD (n). After
incubation with myasthenic sera, 3 out of 4 samples gave values
significantly higher than those obtained for the normal sera. The mean

value was 338.0 + 81.9% (4 different sera), mean + SD (n). Binding of 
125[ IJ-GAHL correlated with the anti-AChR antibody titre of the serum 

samples, the lowest titre serum tested, from patient MG 13, sample 
(iii), giving values similar to those obtained for one of the normal 
serum samples.

1 OCi2.1.2 Loss of [ I]cx-BGT binding sites

Heat-inactivated nornal and myasthenic serum samples were
125tested for their ability to reduce the number of [ I ]o(-BGT binding 

sites in myotube cultures as described in the "Methods" section 10.2. 

Four out of seven nyasthenic sera tested significantly reduced the 

number of available [l^SjjcxrBGT binding sites (Figure 20a). These sera
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FIGURE 19
BINDING OF SERUM IMMUNOGLOBULINS TO RAT MYOTUBE 
CULTURES

The binding of normal and myasthenic serum 
immunoglobulins to myotube cultures (7 days in 
culture) was determined as described in the "Methods" 
section 10.1. The results are expressed as the 
percentage of radioactivity bound to the cultures 
in the absence of test serum (taken as 100%) . The 
heights of the columns represent the mean - SD of 3 
different experiments, each of which included 4 
culture wells.
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FIGURE 20
1 25LOSS OF r I]cx.-BGT BINDING SITES ON RAT MYOTUBE 

CULTURES AFTER TREATMENT WITH MYASTHENIC SERUM

a) Replicate myotube cultures (7 days in culture) were

incubated with heat-inactivated normal or myasthenic
serum (100^1, 20% v/v) for Ih at 37°C. The cultures

— 125were washed and the remaining L l3o(,-BGT binding 

sites were determined as described in the "Methods" 
section 3 (at 20nM toxin). The heights of the columns 
represent the mean - range of 2 different experiments, 
each of which included 8 culture wells.

b) Replicate myotube cultures (7 days in culture) were
incubated for Ih at 37°C with increasing concentrations
(5-100 ^1, 1-20% v/v) of heat-inactivated myasthenic
serum (from patient MG 13, sample viii). The cultures

125were washed and the remaining C 1] ot-BGT binding 
sites determined as described in the "Methods" 
section 3 (at 20nM toxin). The results were gained 
from one experiment in which 8 culture wells were 

tested for each serum concentration.
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represented those with the highest anti-AChR antibody titres, although 
the reduction in available toxin sites was not proportioml to the 

titre. Cultures incubated with test sera at 4^0 showed similar values 

for reduction of available toxin binding sites suggesting that the 
effect of myasthenic sera arose from blockade of binding rather than 
from energy dependent degradation of AChR.

One myasthenic serum sarrple (patient MG 13, sairple viii) was 
125shown to block [ I](X-BGT binding in a concentration-dependent manner 

(Figure 20b), the lowest concentration tested (5 pi, 1% v/v) reducing 
the number of available binding sites by 29%.

2.2 Myotoxicity studies 
2.2.1 Label] 
variability
2.2.1 Labelling of cultures with [Me-^H] carnitine - retention and

For iryotoxicity studies, [Me-^H] carnitine was added to rat 
myotube cultures on the 6^  day in culture and serum myotoxicity was 
estimated on the 7^^ day in culture. Rat myotube cultures were 
routinely labelled with [Me-^H] carnitine (0.67 pM, 1 pCi) for 18 h at 

37°C. This concentration was chosen to give a clear difference between 
myotube and fibroblast uptake (Figure 16), with minimum radiolabel.

Under standard myotoxicity test conditions (3h further 

incubation at 37°C, see section 2.2.6) successful cultures without 
added test serum retained between 10,250 and 19800 cpm (13826 + 2742, 
28 different experiments, mean + SD,n). Less dense myotube cultures, 
initially seeded at a lower plating density or demonstrating poorer 

growth, took up and retained less radioactivity after labelling with 

[Me-^H] carnitine. Except where shewn, these were not used for 

myotoxicity assays.
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Within one preparation of myotube cultures, [Me-^H] carnitine 
retention was tested after incubation with radiolabel (0.67 pM, 1 pCi) 
for 18 h at 37°C follo\æd by further incubation (3 h at 37°C) with

fresh medium (0.66 ml) to which no additions of test serum were made

(control cultures). Within 24 replicate culture wells (1 culture 
plate) retention of radioactivity was in the range 12092 - 16891 cpm, 
with a mean value of 14324 + 1415 (24), mean + SD (n).

Serum myotoxicity assays v^re carried out in quadruplicate on 

replicate culture v^lls. To minimise variation resulting from the 
occasional poor cultures at the ends of the plate (resulting in lower 
uptake of radioactivity), tests v^re spread over the plate as
illustrated in Figure 21. Economical use of cultures was m d e
running one control and five tests per 24-well plate, 'feking as an 
example the 24-well plate tested for variation in retention of 
radioactivity, cotparison between 6 sets of quadruplicates gave a mean 
value of 14324 + 732 cpn, mean + SD, frcm the range 13371 - 15566 cpn. 
Ihe standard error of the mean (SE) for each 'test', carried out in 
quadruplicate, was usually less than 5%.

Later work involved the use of the L-[Me-^H] carnitine (see 
section 1.10). Myotube cultures vere routinely labelled with this 
iscmer (15nM, IpCi) for 18h at 37°C before myotoxicity assays v^re 

carried out.
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FIGURE 21
ARRANGEMENT OF MYOTOXICITY TEST SAMPLES EDR 6 TESTS ON A 24-WELL 
CULTURE ELATE

1 3 5 6 2 4

1 3 5 6 2 4

2 4 6 1 3 5

2 4 6 1 3 5

2.2.2 Reference to experiments using human myotubes in culture
Preliminary myotoxicity studies carried out by using human 

myotube cultures indicated that there was no significant difference 
between the effects of non heat-treated myasthenic or normal sera when 

added to cultures (100 pi, 20% v/v) for 3 h at 37°C. The myotoxicity 
values obtained in these experiments (section B 2.2.2) were 13.1 + 8 .6% 
(9 sera) and 8.9 + 5.0% (7 sera) for myasthenic and normal sera 
respectively. The sera utilised in these studies had been previously 
stored at -20°C for varying lengths of time, conditions under which 
endogenous complement activity might be expected to be decreased or 
destroyed (Whicher, 1978). Consequently, a complement-mediated 
myotoxicity assay on rat myotube cultures vas assessed by using 

initially, fresh human serum from normal donors and finally.
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commercial guinea-pig complement serum (GPC) as a source of complement 
activity. Serum from one myasthenic patient (MG 13) was continually 

assessed in the following studies as, using human myotube cultures, it 
gave the highest myotoxicity value (27.6%) when a non heat-treated 

sample (100 pi, 20% v/v) was incubated with cultures for 3 h at 37°C 
(see section B 2.2.2).

2.2.3 Effect of non heat-treated and heat-treated serum
TWO non heat-treated serum samples from MG 13 gave rise to 

myotoxicity values of 22.0% and 28.7% respectively when incubated with 
cultures for 3 h at 37°C (100 pi serum added, 20% v/v) (Table 4). Serum 
samples from the 5 other myasthenic patients tested caused measured 
myotoxicity of between -3.1 - 17.7%. However, similar treatment of 
nyotube cultures with fresh, non heat-treated serum from normal donors 
(subsequently used as a source of active complement) gave, in several 
cases, similar nyotoxicity to that observed for patient MG 13 (donors 
2,3,4,5 and 7, 22.6 - 29.9%, T^ble 4). As shown in Table 4, 
heat-inactivation of serum for 30 min at 56°C reduced the measured 

myotoxicity of these normal serum samples and of the serum sanples 
from MG 13 to less than 15%. Absorption of 'toxic' fresh normal serum 

on myotube cultures (1 h, 37°C) before use made no difference to the 
subsequent toxicity of the fresh serum when tested alone. Absorption 
with rat liver hcanogenate (see "Methods" section 11) reduced measured 
myotoxicity in a similar way to heat treatment. The mean values 
obtained for heat-treated normal and myasthenic sera were 7.8 + 4.9%

(13 samples) and 5.2 + 7.2% (7 samples) respectively suggesting that 
measured myotoxicity values of up to 15% could be regarded as falling 

within normal values (see also section 2.2.13).
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TABLE 4
MYOTOXICITY OF INDIVIDUAL MYASTHENIC AND NORMAL SERUM 
SAMPLES BEFORE AND AFTER HEAT-TREATMENT

Rat myotube cultures were labelled with [Me-^E^ carnitine 
(section 2 .2 .1 ) and exposed to samples of test serum 
(lOOpl, 20% v/v) for 3h at 37°C. Control cultures to 

which no additions were made were run simultaneously.
At the end of the incubation time, the cultures were 
washed and solubilised for counting. Myotoxicity was 
calculated as described in the "Methods" section 8 by 
comparison with the control cultures. Each serum sample 
was added to 4 replicate culture wells.
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Test serum Donor Anti-AChR 
antibody titre 

(nM)

Myotoxicity
Not heat- 
treated

Heat-
treated

(%) (%)

Normal 1 - 12.3 0.7

(freshly 2*(i) - 9.1 4.7

taken) (ii) - 11.6 10.9

(iii) - 25.4 5.0

( iv) - 23.6 11.2

3*(i) - 15.2 14.2

(ii) - 25.7 8.4

(iii) - 15.2 4.7
4^(i) - 7.1 11.8

(ii) - 22.6 8.8

5 - 24.4 - 0.8
6 - 2.2 6.8

7 - 29.9 14.9

Myasthenia 4^(i) 12.2 3.7 - 6.3

gravis 13®(i) 5.8 28.7 8.2

( vii ) 36.5 22.0 9.9

15 7.8 - 3.1 - 2.6

16 11.0 12.1 14.2

17 19.8 2.0 8.3

18 25.0 17.7 4.5

^ Serial samples taken at different times from the same
donor

^ Heat-treated at 56°C for 30 min
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2.2.4 Effect of human complement
Fresh, non heat-treated serum from normal donors was used as 

a source of active complement. This serum (100 pi, 20% v/v) was 
incubated with myotube cultures for 3 h at 37^C, together with 

heat-inactivated normal or myasthenic serum (100 pi, 20% v/v). Cultures 
to which no additions vere made (control) or to which human complement 
alone or heat-inactivated test serum alone were added, were incubated 

simultaneously. As described in the previous section, some samples of 
human oomplanent tested alone gave rise to relatively high myotoxicity 
values (T^ble 4). The measured myotoxicity caused by addition of these 
samples to heat-inactivated test sera was similar to that of the 
'toxic' samples tested alone (up to 30%).

The measured myotoxicity caused by addition of 'non- toxic' 
human complement (ie. less than 15% when tested alone) to 
heat-inactivated normal serum gave a mean value of 8.2 + 6.4%, mean + 
SD, 6 serum samples (Table 5). The previous measured myotoxicity by 
fresh samples from normal donors 2,3 and 7 (see T^ble 4) did not 

appear to be restored by addition of human complement. The measured 
myotoxicity caused by heat-inactivated myasthenic serum plus 

complement gave a rmean value of 17.0 + 7.4%, mean + SD, 5 serum samples 
(Table 5). In one experiment (see Table 5) the measured myotoxicity by 
serum from MG 13 plus added human complement was 42.3%. However this 
was not substantiated in 2 other experiments using human ccmpleiment 
from different donors.

Use of fresh human serum, previously absorbed with rat liver 

homogenate, as a complement source produced measured myotoxicity 
values of 8.2 + 3.4%, (mean + SD, 3 different experiments) when 

incubated with heat-inactivated serum from MG 13 in the myotoxicity
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assay as described above.

2.2.5 Effects of complement frcm other species
The use of fresh human serum as a source of active 

conplonent was clearly unsatisfactory for two reasons. First, many 
samples were quantitatively toxic when tested alone. Secondly, it was 

possible that complement activity could vary from sample to sample 
thereby explaining the disparity in results obtained for the 
heat-inactivated serum from MG 13 upon addition of different samples 
of fresh normal serum (see Table 5). Thus, heat-inactivated myasthenic 
serum (from patient MG 13) was tested on myotube cultures in the 
presence of fresh serum (as a complement source) from various species 
(Table 6 ). Use of rat complement serum caused measured myotoxicity of 
20%. Rabbit serum was found to be toxic to the cultures (myotoxicity = 
65.2%) when tested by itself and complete disruption of the cell 
monolayer was clearly visible through the light microscope. This 
toxicity was reduced in the presence of normal or myasthenic serum.

The most effective and non-toxic source of complement was that 

obtained from ccniærcial guinea-pig serum (GPC). On addition to the 
heat-inactivated myasthenic serum, a myotoxicity value of 43.4% was 
obtained. A similarly treated heat-inactivated normal serum sample 
gave a value of 7.4% (Table 6).

(jommercial GPC serum was subsequently used as a source of 
active complement. This allowed standardisation of the complement 

source in myotoxicity experiments. Test sera were routinely 
heat-inactivated (56°, 30 min) before use in these experiments.
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TABLE 5
MYOTOXICITY OF INDIVIDUAL MYASTHENIC AND NORMAL SERUM 
SAMPLES IN THE PRESENCE OF HUMAN COMPLEMENT

Rat myotube cultures were labelled with [M e - ^ H ]  carnitine 

(Section 2.2.1) and exposed to samples of heat-inactivated 
test serum (lOOpl, 20% v/v) plus fresh human complement 
serum (lOOpl, 20% v/v) for 3h at 37°C. Cultures to which 
no additions were made (control) or to which human 
complement alone (lOOpl, 20% v/v) were added were run 
simultaneously. At the end of the incubation time, the 
cultures were washed and solubilised for counting. 
Myotoxicity was calculated as described in the "Methods" 
section 8 by comparison with the control cultures. The 
data shown are the measured myotoxicity of heat-inactivated 
test sera plus complement where the results for complement 

alone were less than 15%. Each serum sample was added to 

4 replicate culture wells.
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Test serum Donor Anti-AChR
antibody titre 

(nM)

Myotoxicity

Normal

Myasthenia
gravis

2®(ii) 

(iii) 
( iv) 

3^(ii)

4^(i)
13^(vii)

15
17
18

12.2
36.5

7.8

19.8
25.0

4.7
6.0

—0.9
13.0
17.2
9.1

16.4

20.8
42.3 

19.7
20.1
8.1 

12.9

Complement
alone

8.5 - 4.1 
(mean - SD, 

5 samples)

Serial samples taken at different times from the same 
donor
Results from 3 different experiments
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TABLE 6
MYOTOXICITY OF MYASTHENIC AND NORMAL SERUM IN THE PRESENCE 

OF COMPLEMENT FROM DIFFERENT SOURCES

Rat myotube cultures were labelled with [Me-^H] carnitine 
(section 2 .2 .1 ) and exposed to samples of heat-inactivated 
test serum (lOO^il, 20% v/v) with or without fresh serum 
(100^ 1 , 20%  v/v) from various species, as a source of 
active complement, for 3h at 37°C. Cultures to which no 
additions were made (control) or to which complement 
alone (lOOpl, 20% v/v) was added, were run simultaneously. 
At the end of the incubation time, the cultures were 
washed and solubilised for counting. Myotoxocity was 
calculated as described in the "Methods" section 8 by 
comparison with the control cultures. Each test was 
carried out on 4 replicate culture wells.
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Test
serum

Myotoxicity (%) Complement
sourceHI serum 

alone
Plus added Complement 
complement alone

^Normal 12.3 - 2.2 9.4 - 3.5 9.3 - 2.2 Human
^MG 6.2 - 4.6 27.6 - 12.7

Normal — 0.9 7.7 15.4 Rat
^MG 3.0 20.0

Normal — 0.9 7.4 - 0.3 Guinea-pig
^MG 3.0 43.4 (Miles Labs.

Normal - 0.9 37.1 65.2 Rabbit
^MG 3.0 48.0

data from 3 previous experiments (Tables 4 and 5) 
in which serum from 3 different normal donors were 
tested on the same cultures as serum from MG 13

MG 13 sample (vii) anti-AChR antibody titre = 36.5nM
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2.2.6. Length of incubation time
The loss of radioactivity from myotube cultures labelled 

with [Me-^H] carnitine (section 2.2.1) was followed in replicate 
cultures incubated with heat-inactivated myasthenic or normal serum 
plus added GPC (Figure 22). (Cultures treated with normal serum plus 
GPC lost radioactivity in a similar pattern to that shown by cultures 
to which no additions v^re made. Cultures incubated with myasthenic 
serum plus complement showed an accelerated loss of radioactivity 
typified by the pattern shown in Figure 22.

Figure 23 illustrates the measured myotoxicity hy 2 normal 
and 2 myasthenic serum samples (heat-inactivated) plus GPC at various 
time points. These studies suggested an optimal incubation time of 3h 
for detecting maximum differences in myotoxicity.

2.2.7 Titration of GPC and serum
The effects of increasing concentrations of (3PC (20 - 160 pi,

2.7 - 21.6% v/v) in the presence of a constant concentration of 
heat-inactivated test serum (80 pi, 10.8% v/v) v^re tested on myotube 
cultures labelled with [Me-^H] carnitine (section 2.2.1). The measured 

myotoxicity was found to be dependent on the concentration of GPC 
serum added (Figure 24a). Similar experiments,in the presence of a 
constant amount of GPC (80 pi, 10.8% v/v), showed that the measured 
myotoxicity was dependent on the concentration of myasthenic serum 

added (Figure 24b).
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FIGURE 22
RETENTION OF RADIOACTIVITY BY RAT MYOTUBE CULTURES 
TREATED WITH HEAT-INACTIVATED SERUM AND GPC

Replicate myotube cultures were labelled with C Me-^H 3 
carnitine (Section 2.2.1) and exposed to aliquots 
(BOpl, 12.1% v/v) of heat-inactivated normal ( ■ ) or 
myasthenic ( #  ) serum plus GPC (80pl, 12.1% v/v) at 
37°C for varying lengths of time. Cultures to which 
no additions were made were run simultaneously ( O ). 
At the end of the incubation period, the cultures 
were washed and solubilised for counting. Results are 
expressed as the retention of radiolabel by cultures 
as a percentage of time 0. Each point represents the 
mean - SD of 4 culture wells. The myasthenic serum 
tested was from patient MG 13, sample (vi), anti-AChR 
antibody titre = 28.5 nM.
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FIGURE 23
EFFECTS OF INCUBATION TIME ON MEASURED MYOTOXICITY

Replicate myotube cultures were labelled with C M e - ^ H ] 
carnitine (section 2 .2 .1 ) and exposed to samples of 
heat-inactivated normal or myasthenic serum (80pl,
12.1% v/v) plus GPC (80^1, 12.1% v/v) for varying 
lengths of time at 37° C . Control cultures to which no 
additions were made were run simultaneously. At the end 
of the incubation time, the cultures were washed and 
solubilised for counting. Myotoxicity was calculated as 
described in the "Methods" section 8 by comparison with 
the control cultures at each time point. Each serum was 
tested for each time point on 4 replicate culture wells. 

□ Patient MG 6 Anti-AChR antibody titre = 16.0 nM
(GPC source - Flow laboratories)

■ Patient MG 13 sample (vi)
Anti-AChR antibody titre = 28.5 nM 
(GPC source - Miles laboratories)

O Normal donor 1 (GPC source - Flow laboratories)

• Normal donor 2 (GPC source - Miles laboratories)
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FIGURE 24
MYOTOXICITY OF INCREASING CONCENTRATIONS OF HEAT- 
INACTIVATED MYASTHENIC OR NORMAL SERUM AND GPC
Rat myotube cultures were labelled with L’Me-^H] 
carnitine (Section 2.2.1) and exposed to:- a) samples 
of heat-inactivated myasthenic or normal serum (80pl, 
10.8% v/v) plus increasing concentrations of GPC 
(20-160pl, 2.7-21.6% v/v) or b) samples of G PC (80 pi, 
1 0 .8%  v/v) plus increasing concentrations of heat- 
inactivated myasthenic or normal serum (10- 120pl, 
1.4-16.2% v/v) for 3h at 37^C. Control cultures to 
which no additions were made were run simultaneously. 
At the end of the incubation time, the cultures were 
washed and solubilised for counting. Myotoxicity was 
calculated as described in the "Methods" section 8 
by comparison with the control cultures. The tests 
were as follows

Anti-AChR antibody 
titre (nM)

a)

GPC source

b)

▲ MG 6 16.0 Flow Labs.
□ MG 12 180.0 Flow Labs.
■ MG 13 sample (ii) 12.9 Miles Labs.
• Normal serum - Flow Labs.
o GPC tested alone - Flow Labs.

A MG 4 sample (ii) 42.0 Miles Labs.
■ MG 13 sample (ii) 12.9 Miles Labs.
o MG 13 sample (v) 20.6 Miles Labs.
• Normal serum Miles Labs.

Each point is the a) mean - SD of 3 different experiments 
or b) mean - range of 2 different experiments, each of 
which included 4 replicate culture wells.
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2.2.8 Activity of GPC

IWo sources of GPC serum were used in myotoxicity
experiments. During the course of this project, it became apparent
that GPC supplied by Flow Laboratories (stated activity of C H ^ q/hiI =
250) vrsLS less active than GPC supplied by Miles Laboratories (stated
activity of +ve haemolysis at 0.04 ml when used at a 1:10 dilution). 
This was particularly afparent with test serum samples where maximal 
levels of myotoxicity were not reached using GPC from Flow 
Laboratories, e.g. MG 4 (ii) and MG 6 - see Table 7. In both these 
cases, twice the concentration of Flow Laboratory GPC was necessary to 
effect approximately similar myotoxicity to that observed using Miles 
laboratory GPC tested under similar conditions. Subsequently, GPC 
supplied by Miles Laboratories was routinely used for determination of 
complement-mediated serum myotoxicity, and unless otherwise stated, 
all results v^re obtained using GPC from this source.

2.2.9 Morphological appearance of cultures after treatment with serum 
plus GPC

^^tubes treated with heat-inactivated myasthenic serum and 
GPC, causing measured myotoxicity of greater than approximately 
50-55%, vere clearly grossly damaged when examined by light microscopy 

(Figures 25 and 26). The normal appearance of myotubes was of a 
'plunp' morphology, phase-bright and agranular. After treatment with 

myotoxic myasthenic serum plus GPC, the myotubes appeared shrunken, 
phase-dark and granular showing, in parts, complete fragmentation. 

Where measured myotoxicity was in the range 60-65%, complete 

disruption of the myotube monolayer vas seen, indicating that this
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TABLE 7
COMPARISON OF MYOTOXICITY DETERMINED WITH TWO DIFFERENT 
SOURCES OF GPC

Rat myotube cultures were labelled with [ Me-^H] carnitine 
(section 2 .2 .1 ) and exposed to samples of heat-inactivated 
serum (80^1) plus GPC (80^1 or 160pl) for 3h at 37°C. 
Control cultures to which no additions were made were run 
simultaneously. At the end of the incubation time, the 
cultures were washed and solubilised for counting. 
Myotoxicity was calculated as described in the "Methods" 
section 8 by comparison with the control cultures. Each 
result is the mean - SD of 3 different experiments, each 
of which included quadruplicate culture wells.
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Test Anti-AChR GPC Myotoxicity
serum antibody titre source added (%)

(nM) (ul)

MG 4 42.0 Flow Labs. ^ 80 40.4 i 2.2

sample ^160 46,2 - 5.5

(ii) Miles Labs. ^ 80 54.8 - 2.7

MG 6 16.0 Flow Labs. ^ 80 38.5 - 2.0

^160 50.1 - 2.0

Miles Labs. ^ 80 56.7 - 2.7

MG 12 180.0 Flow Labs. ^ 80 56.0 - 0.8

^160 62.4 i 1.8

Miles Labs. ^ 80 60.3 - 2.9

^ Final concentration of test serum and GPC was 1 0 .8% (v/v)
^ Final concentration of test serum and GPC was 1 0 .8%  (v/v)

and 21 .6%  (v/v) respectively
^ Final concentration of test serum and GPC was 1 2 .1% (v/v)
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FIGURE 25
PHASE CONTRAST PHOTOMICROGRAPHS OF 7-DAY OLD RAT 
MYOTUBE CULTURES

A) Culture treated with heat-inactivated normal 
serum (80 ;al, 12.1% v/v) plus GPC (80 ^1,
12.1% v/v) for 3h at 37°C.
(x 80 magnification)

Measured myotoxicity (see "Methods" section 8 ) 
= 9.0%

B) Culture treated with heat-inactivated 
myasthenic serum (80 ^ 1 , 1 2 .1%  v/v) plus 
GPC (80 nl. 12.1% v/v) for 3h at 37°C.
(x 80 magnification)
Measured myotoxicity (see "Methods" section 8 ) 
= 52.0%
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FIGURE 26
PHASE CONTRAST PHOTOMICROGRAPHS OF 7-DAY OLD RAT 
MYOTUBE CULTURES

A) Culture treated with heat-inactivated normal 
serum (80 p i , 12.1% v/v) plus GPC (80 pi,
12.1% v/v) for 3h at 37°C.
(x 200 magnification)
Measured myotoxicity (see "Methods" section 8 ) 
= 9.0%

B) Culture treated with heat-inactivated 
myasthenic serum (80 pi, 1 2 .1%  v/v) plus 
GPC (80 pi, 12.1% v/v) for 3h at 37°C.

(x 200 magnification)
Measured myotoxicity (see "Methods" section 8 ) 
= 52.0%
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value represented maximum myotoxicity. Where lover levels of 
riFotoxicity were demonstrated (in the range 40-50%) discernible 

patches of damage to individual myotubes could often be observed.

2.2.10 Toxicity of serum plus GPC to fibroblast cultures
Morphologically, the fibroblasts present in myotube cultures 

treated with myotoxic myasthenic serum plus GPC appeared unaffected 
when examined by light microscopy. Fibroblast cultures, prepared as 
described in the "Methods" section 1.5, vere tested alone for the 
effects of heat-inactivated iryasthenic and normal serum plus GPC under 
the same conditions as used for myotube cultures. As shown in Table 8, 
the complement-mediated toxicity by heat-inactivated myasthenic or 
normal serum was less than 17% in contrast to values of 60.5% and 9.1% 
respectively when the same sera were tested on myotube cultures.

1252.2.11 Reduction of [ X]>rBGT binding sites by serum plus GPC
125f^otube cultures were tested for their ability to bind [ I]

X-BGT after treatment with heat-inactivated test serum (80 pi, 12.1%
v/v) for 3h at 37°C, with or without the addition of GPC (80 pi, 12.1%
v/v). Sets of the same cultures were labelled with [Me-^H] carnitine
(section 2.1 .1 ) and tested with the same test serum under the same
conditions for assessment of myotoxicity. Table 9 shows that the

heat-inactivated myasthenic serum sanples MG 4 (ii) and MG 12 tested
alone reduced the number of available toxin binding sites by 55.0% and

64.0% respectively, indicating the blockade or loss of AChR on the

myotubes in culture. No parallel myotoxicity was present. On addition
125of complement, relatively few [ I]»rBGT binding sites were available 

* (76.4% and 89.2% reduction from control respectively) parallelled by
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TABLE 8
TOXICITY OF HEAT-INACTIVATED SERUM PLUS COMPLEMENT TO 
FIBROBLAST CULTURES

Replicate rat skin fibroblast cultures (tested over 6/7 
days in culture) were labelled with [Me-^n] carnitine 
(section 2 .2 .1 ) and exposed to aliquots of heat- 
inactivated normal or myasthenic serum (BOjal, 12.1% v/v) 
plus GPC (SOpl, 12.1% v/v) for 3h at 37°C. Control 
cultures to which no additions were made were run 
simultaneously. At the end of the incubation time, the 
cultures were washed and solubilised for counting.
Toxicity was calculated as described in the "Methods" 
section 8 by comparison with the control cultures. In 
parallel experiments, replicate myotube cultures were used 
to measure complement-mediated serum myotoxicity under 
the same conditions using the same test sera. Each result 
is the mean - SD of 4 replicate culture wells.
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Culture Test cpm retained Myotoxicity
+(mean - SD) (%)

Fibroblast Control

MG serum 
+ GPC

Normal serum 
+ GPC

3654 - 216

3036 - 147

3081 - 204

0

16.9

15.7

Myotube Control 
MG serum 

+ GPC

Normal serum 
+ GPC

12116 - 1110 

4788 - 284

11018 - 216

0
60.5

9.1
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TABLE 9
EFFECT OF HEAT-INACTIVATED SERUM PLUS COMPLEMENT ON THE 
NUMBER OF ["^^^iJ^-BCT BINDING SITES

Rat myotube cultures (7 days in culture) were exposed to 
samples of heat-inactivated myasthenic or normal serum 
(8 ppl, 12.1% v/v) with or without added GPC (80^1, 12.1% 
v/v) for 3h at 37°C. At the end of the incubation time, 
the cultures were washed and the number of remaining 
f-125i^^_gGT binding sites determined as described in the 

"Methods" section 3 (20nM toxin concentration). Results 
are expressed as a percentage of [j^^^l]o<-BGT binding to 
control cultures to which no additions were made.
Parallel experiments were carried out on replicate 
cultures to determine complement-mediated serum myotoxicity 
under the same conditions using the same test sera. Each 
addition of serum - GPC was tested on 4 or 8 replicate 
culture wells for myotoxicity or [ iJx-BGT binding 
experiments respectively.
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Test
serum

Anti-AChR 
antibody titre 

(nM)

GPC

binding 
(% control)

Myotoxicity

(%)

None - - 100 0

Normal - - ^ 86.0 - 3.2 9.3 - 6.7
+ ^ 93.9 - 4.6 6.9 - 4.4

MG 4 ^ (i) 12.2 - 89.0 4.3
+ 87.0 19.5

(ii) 42.0 - 45.0 8.7
+ 23.6 57.5

MG 12 180.0 - 36.0 10.5
+ 10.8 64.3

Results from 3 different experiments
Serial samples taken at different times from the
same patient
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high myotoxicity (57.5% and 64.3% respectively). Treatment with normal
serum or MG 4 (i) serum (of a relatively lower anti-AChR antibody

125titre - Ihble 9) resulted in similar small reductions of [ I]o^BGT 
binding (14.0% and 11.0% respectively) which was not enhanced on 
addition of complement. The measured nyotoxicity of MG 4 (i) in the 

presence of complement showed a small increase to 19.5%.

2.2.12 Effects of culture variation on myotoxicity measurement
ïhe variation in growth within replicate myotube cultures,

125judged morphologically, by [ I]o^BGT binding and by retention of
[Me-^H] carnitine, was small but greater variation could occur between
myotube cultures established at different times (see sections 1.8 and
2.2.1). The effect of variation on measured myotoxicity was tested by
establishing replicate nyotube cultures at varying initial cell
densities (see section 1.1). Table 10 illustrates the results obtained
vAen the effects of normal and myasthenic sera were tested in the
complement-mediated iryotoxicity assay on these cultures. The
myotoxicity values determined from cultures of high or medium density

125(61.2 and 39.0 finol [ I]b(-BGT binding sites respectively) nyotube 
cultures were comparable. However, a low density culture, with sparse 
non-interacting myotubes, gave no measurable evidence of myotoxicity. 
The results confirmed that v^ere a low density of nyotubes was 
present, specific release of radioactivity could not be detected, 
being only a small proportion of the total radioactivity retained by 

the cells in culture (contributed to by the fibroblasts present and 

any non-specific retention of radioactivity).

The precision of measurement of [Me-^H] carnitine retention, 
after treatment with serum, was calculated frcm values ^ined for GPC
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TABLE 10
COMPLEMENT-MEDIATED MYOTOXICITY BY HEAT-INACTIVATED 
SERUM TO RAT MYOTUBE CULTURES INITIATED AT DIFFERENT 

CELL DENSITIES

Rat myotube cultures were established after initiation 
at different cell densities. The cultures were labelled 
with L-^Me-^I^ carnitine (section 2 .2 .1 ) and the 
complement-mediated serum myotoxicity assay carried out 
as described in Table 9. The same heat-inactivated 
myasthenic and normal serum samples were used on each 
type of culture. Each result is the mean - SD of 4 
replicate culture wells, iJo^-BGT binding to the
cultures was determined as described in the "Methods" 
section 3 (at 20nM toxin concentration).
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Cell 
density c<-BGT 

(xlO^/well) bound
(fmol/well)

Test GPC L Me- HD Myotoxicity 
serum carnitine (%)

retained 
(cpm)

2.50 61.2 None - 11530 + 940 0

MG - 10590 + 579 8.2
+ 4555 + 220 60.5

Normal - 9817 + 453 14.9
+ 10739 + 320 6.9

1.25 39.0 None - 7881 + 725 0

MG - 7535 + 1109 4.4
+ 2755 + 115 65.0

Normal - 6683 + 550 15.2
+ 6801 + 332 13.7

0.50 9.8 None - 2818 + 113 0

MG - 3001 + 171 - 6.5
+ 2690 + 235 4.5

Normal - 3143 + 607 -11.5
+ 2733 + 208 3.0
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tested alone in the myotoxicity study (section 2.2.13). Retention of 
radioactivity was in the range 84.9% - 102.2% of replicate cultures to 

which no additions were made (control cultures). The mean value was 
93.0 + 4.6% (12 different experiments)  ̂mean + SD (n).

2.2.13 Myotoxicity study
A standardised myotoxicity assay was used to study the 

effects of a range of normal and myasthenic sera on rat myotube 
cultures labelled with [Me-^H] carnitine (section 2.1.1). For 
economical use of both test serum and GPC, myotube cultures were 
tested in quadruplicate with BOpl heat-inactivated test serum (12.1% 
v/v) with or without added GPC (80 pi, 12.1% v/v) for 3h at 37^C. 
Control cultures, to which no additions v^re made (0.66 ml growth 
medium only), were run simultaneously. Within each experiment, the 
effects of GPC (80pl, 12.1% v/v), added alone, were tested on cultures 
in quadruplicate. The tests were set out on each 24^well culture plate 
as illustrated in Figure 21 and myotoxicity was calculated as 
described in the "Methods" section 8 .

using the conditions described, the complement-mediated 
myotoxicity of serum samples from 12 normal and 13 myasthenic subjects 
was assessed. In addition, serum samples from 6 patients with 

polymyositis (chosen as an example of muscle degenerative disease) 
were tested for complement-mediated myotoxicity as described. GPC 
serum tested alone showed a variation between different muscle 

cultures that fell within the range -2.2 - 15.1% (mean + SD, n, = 7.0 + 
4.6% (12 experiments). Heat-inactivated normal sera, with or without 

added GPC, gave similar myotoxicity values (Table 11 and Figure 27) 

indicating that values of up to 20% could be regarded as falling
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within the normal range. Heat-inactivated myasthenic sera without 
added GPC caused measured myotoxicity well within the normal range. In 
the presence of added complement, heat-inactivated serum sairples from 
the 13 myasthenic patients in the study sho^æd myotoxicity values 

within the range 7.6 - 65.0% with a mean value of 41.9% (Table 11 and 
Figure 27). The data for individual sera are shown in Table 12 where 
it can be seen that 9 out of 13 different myasthenic patients have 
sera with myotoxicity values that are clearly abnormal, as defined 
above. Serum from each of the 6 patients with polynyositis caused 
myotoxicity within the normal range (Tables 11 and 12, Figure 27). 
Statistical comparison of complement-mediated myotoxicity caused by 
different groups of subjects shovæd that the values given by normal or 
polymyositis sera v^re significantly lower than the values obtained 
for myasthenic sera (Mann-Whitney rank sum test, p = 0.01).

The ireasured complement-mediated myotoxicity by myasthenic 
sera did not correlate with the anti-A(ZhR antibody content of the 
serum Scimples. Hov^ver, it was notable that myasthenic serum sanples 
with myotoxicity values within the normal range tended to have 
relatively low anti-AChR antibody titres (i.e. less than 20 nM). 

Nevertheless some serum samples demonstrating high ir^otoxicity also 
had lov^r antibody levels.

2.2.14 Myotoxicity by previously 'non-myotoxic* myasthenic serum
When the standardised complement-mediated myotoxicity assay 

was carried out (see previous section), no significant myotoxicity 

values vere given by five myasthenic serum samples, notably those of 

lower anti-AChR antibody titre (Table 12). Using myotoxic serum 

(values outside normal range) measured myotoxicity was found to be
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TABLE 11
MYOTOXICITY OF MYASTHENIC, POLYMYOSITIS AND NORMAL SERA 
TESTED WITH RAT MYOTUBES IN CULTURE

The myotoxicity of test samples was determined as 
described in section 2.2.13. Unless otherwise stated, 
serum samples were tested with 3 different myotube 

cultures and the mean values taken.

Test serum Number of 
donors

Complement Myotoxicity {%] 

Range Mean
)
+ SD

None 12 + - 2 .2 - 15.1 7.0 + 4.6

Normal 12 - - 0 .3 - 16.4 9.2 + 4.7
12 + 3 .5 - 14.5 10.3 + 3.4

Myasthenia 13 a - - 7 .7 - 11.4 3.8 + 4.6
gravis 13 a + 7 .6 - 65.4 41.9 + 22.4

Polymyositis 6 b + 7 .8 — 19.1 13.5 + 4.6

Multiple samples were taken at different times 
from 3 myasthenic patients (see Table 12). The 
mean values from the multiple samples were taken 
as the value for each patient.
Serum samples from polymyositis patients were 
tested in one (3) or two (3) myotube cultures.
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FIGURE 27
MYOTOXICITY OF NORMAL, MYASTHENIC AND POLYMYOSITIS 
SERA TESTED WITH RAT MYOTUBES IN CULTURE

70-

60-

50-

40-

30-

20-

*##
10 -

m

-1 0
JT

Serum —

GPC +

Normal

+
Myasthenic Polymyositis 

+ +

The data summarised in Table 11 are shown 
graphically for each donor of serum.
The bar lines represent the mean value for 
each group of serum samples tested.
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TABLE 12
MYOTOXICITY OF INDIVIDUAL MYASTHENIC, POLYMYOSITIS AND 
NORMAL SERUM SAMPLES IN THE PRESENCE OF COMPLEMENT

The myotoxicity of test samples was determined as 
described in section 2.2.13 and the results summarised 
in Table 11 and Figure 27.

Test serum Donor Myotoxicity (%)
+(mean - SD)

Anti-AChR 
antibody titre 

(nM)

Myasthenia
gravis

1 7.6 + 6.2 0.8
2 15.7 + 4.2 4.2
3 13.9 + 1.6 9.2
4 a (i) 11.7 + 7.5 12.2

(ii) 54.8 + 2.7 42.0
5 63.9 + 3.2 14.8
6 56.7 + 5.4 16.0
7 10.8 + 0.0 16.3
8 60.3 2.1 24.2
9 a (i) 59.8 + 0.5 25.6

(ii) 38.15 ^ 42.3
10 65.0 + 1.2 72.1
11 58.4 + 0.7 72.5
12 60.3 + 2.9 180.0
13 a (i) 62.3 + 1.9 5.8

(ii) 43.2 + 1.6 12.9
( iv) 65.4 + 2.9 17.2
( v) 47.0 + 3.5 20.6
( vi ) 52.0 + 5.4 28.5
(v i i i ) 30.7 + 0.9 43.8
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Test serum Donor Myotoxicity (%) Anti-AChR
/ + (mean - SD) antibody titre 

(nM)

Polymyositis 1 1 2 .7 ^
2 7.8 - 4.2 c

-

3 12.3 i 5.6 c —

4 19.1 i 1.1 c -
5 18. 7 ^ -

6 1 0 .2 ^ -

Normal 1 11.3 - 6.9 -

2 9.3 - 5.9 -
3 6.9 - 4.4 —
4 6.8 — 6.9 -
5 14.2 i 

+
8.7 -

6 9.5 - 6.0 —
7 9.8 - 1.8 -

8 12.9 - 3.1 -
9 14.2 - 3.2 -

10 3.5 i 7.9 -
11 14.5 - 3.4 -
12 10.5 - 6.7 —

Repeat samples were taken over 17 months (patient 9), 
27 months (patient 4) and 3 years (patient 13).

^ One assay only
c ^Two assays only - value given is mean - range
All other values represent the mean - SD of 3 different
experiment s .
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dependent on the amount of heat-inactivated serum and GPC added to the 
cultures (see Section 2.2,7). It was therefore apparent that each 
serum saitple could require optiml concentrations of GPC and serum for 

maximum myotoxicity to be observed. Myasthenic sera shown to be 
non-HTtyotoxic under the standard assay conditions (Table 13) være 
therefore tested for ccrrplement-ftediated myotoxicity after increasing 
the amounts of serum and GPC added to the incubation medium (Figure 

28 ). The total volume of growth medium and tests added to each culture 
was increased to 1.5 ml as it was noted that a high concentration of 
added serum (i.e. greater than 40%) caused rnyotubes to become detached 
from the culture plate. At higher added volumes of GPC and serum 
(additions 2 and 3, Figure 28), the treasured myotoxicity increased in 
3 of the 4 myasthenic samples tested. At the highest volume used, 
myotoxicity was evident when viewed through the light microscope. One 
of the myasthenic serum sanples tested, notably of the lowsst 
anti-AChR antibody titre ( from patient MG 19 ), showed no increase in 
measured myotoxicity, renaining within normal values.

Manipulation of nyotoxicity assay conditions as described did 
not alter the measured myotoxicity by normal sera plus GPC (values 
below 18%, see Figure 30) or by normal, myasthenic or GPC serum tested 

alone (all values below 20% - data not shown). The measured 

nyotoxicity by the control nyasthenic serum (MG 13 v) was also not 
altered at the two lov^st additions used (see Table 13 and Figure 28).
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TABLE 13
COMPLEMENT-MEDIATED MYOTOXICITY BY MYASTHENIC SERA 
OF RELATIVELY LOW ANTI-AChR ANTIBODY TITRE

The complement-mediated myotoxicity of heat-inactivated 
myasthenic serum samples of relatively low anti-AChR 
antibody titre was determined by using the standard 
conditions of assay (section 2.2.13). The same serum 
samples were subsequently used in myotoxicity experiments 
in which the conditions of assay were altered (see 
Figure 28).

Test serum Donor Myotoxicity

(%)

Anti-AChR antibody 

titre (nM)

Myasthenia 4 (i) 1.1.7 - 7.5 ® 12.2

gravis 19 9.8 ^ 3.6

20 8.4 b 5.1
21 14.1 ^ 8.4

c 13 ( v) 47.0 - 3.5 ® 20.6

^ mean - SD of 3 different experiments 
b one assay only 

^ serum sample used as a control (see Figure 28 )
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FIGURE 28
COMPLEMENT-MEDIATED MYOTOXICITY BY PREVIOUSLY 
'NON-MYOTOXIC MYASTHENIC SERA

Replicate rat myotube cultures were labelled with 
C Me-^H] carnitine as described in Section 2.2.1. 

Increasing volumes of heat-inactivated myasthenic 
serum (shown to be 'non-myotoxic' when tested under 
standard myotoxicity conditions - see Table 13) plus 
complement were added to the cultures as follows :- 

Addition Tests
Serum added GPC added
(pi) (% v/v) (pi) (% v/v)

1 80 5.3 80 5.3

2 160 10.7 160 10.7
3 240 16.0 240 16.0

cultures were incubated for 3h at 37 . Control

cultures to which no additions of test serum or GPC 
were made (1.5 ml of growth medium only) were run 
simultaneously. At the end of the incubation time, 
the cultures were washed and solubilised for counting. 

Myotoxicity was calculated as described in the "Methods" 

section 8 by comparison with the control cultures.
Each addition of test serum and GPC was tested on 4 
culture wells.
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2.2.15 Effects of anti-AChR antiserum raised against purified AChR in 

animals
The complement-mediated myotoxicity of antiserum raised 

against purified AChR in animals was tested on rat rnyotubes in culture 

by using the experimental conditions described in Section 2.2.13 
(Table 14). Heat-inactivated rabbit anti-foetal calf AChR antiserum 
and rabbit anti-rat junctional AChR antiserum caused a measured 

nyotoxicity of 48.2% and 37.5% respectively in the presence of 
complement. The values obtained for the heat-inactivated antisera 
tested alone were 11.8% and 4.5% respectively. Normal rabbit serum 
tested alone, before and after heat-inactivation, produced nyotoxicity 
of 6.2% and 5.4% respectively. This serum m s  stored at -20°C for over 
a year before use. The nyotoxicity value obtained before 
heat-inactivation, was in sharp contrast to the same serum used fresh 
(as a source of complement) in previous myotoxicity studies v^en the 
serum was clearly toxic (see section 2.2.5). The addition of 
complement to the heat-inactivated serum did not restore the 
previously observed toxicity (nyotoxicity value of 16.4% - Ihble 6 ).

2.3 Depletion of anti-AChR antibodies frcm myasthenic serum

2.3.1 Preparation of affinity columns
125Detergent extracts of human muscle (49.5 - 210 pmol [ IJp^BGT 

binding sites at a concentration of 0.45 - 1.3 pnol/ml extract) were 
applied as a batch to (xrBGT-Sepharose 4B as described in the "Methods" 
section 14.2. The amount of A(3hR coupled to the c<-BGT-Sepharose 4B v^s 

determined fcy assay of the supernatant and washings for AChR content
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TABLE 14
COMPLEMENT-MEDIATED MYOTOXICITY BY ANTISERUM RAISED 
AGAINST PURIFIED AChR IN ANIMALS

Rat myotube cultures were labelled with L-[mc-^h] carnitine 

(section 2 .2 .1 ) and exposed to samples of serum (80pl, 
12.1% v/v) with or without added GPC (80pl, 12.1% v/v) 
for 3h at 37°C. Control cultures to which no additions 
were made were run simultaneously. Myotoxicity was 
calculated as described in the "Methods" section 8 by 
comparison with the control cultures. Each result is the 
mean - range of 2 different experiments, each of which 
included quadruplicate culture wells.

Test serum Anti-AChR 
antibody titre 

(nM)

Treatment GPC Myotoxicity
(%)

Normal rabbit — None — 6.2 + 3.4
HI - 5.4 + 4.6
HI + 16.4 + 3.2

Rabbit anti-foetal 700 ^ HI - 11.8 + 7.7
calf AChR HI + 48.2 + 4.9

Rabbit anti-rat 105 ^ HI - 4.5 + 5.7
junctional AChR HI + 37.5 + 1.8

Sheep anti- 1713 ^ HI - 9.9 + 3.2
Torpedo AChR HI + 5.3 + 7.1
None - None + 6.8 + 7.8

^ Determined using crude detergent extract of foetal calf AChR 
^ Determined using crude detergent extract of rat junctional 

AChR
c Determined using purified Torpedo AChR
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by amnonium sulphate precipitation (see "Methods" section 12.2). The 
highest specific binding obtained was 8.2 pmol AChR/ml affinity beads 
(Table 15).

2.3.2 Depletion of anti-AChR antibodies
Ihe affinity columns vere equilibrated with phosg^ate 

buffered saline (PBS), pfl 7.2, as described in the "Methods" section 
14.2. Use of PBS, pH 7.2, containing 1% (v/v) Triton X-100, to 
equilibrate and wash the affinity column, resulted in the presence of 
Triton X-100 in serum fractions passed through the column. Even after 
extensive dialysis of the resulting serum fractions, the Triton X-100 
present was observed to solubilise the myotube cultures vhen 
subsequent myotoxicity assays v^re carried out.

Heat-inactivated myasthenic serum (MG 4 (ii), 2 ml, containing 
84 pmol of anti-AChR antibody) was applied to the AChR-c<-BGT-Sepharose 
4B column as described in the "Methods" section 14.3. Maximum 
depletion of anti-AChR antibody v^s achieved ty use of the highest 
density AChR-oc-BGT-Sepharose 4B column (column 3, 8.2 pmol AChR/ml 

beads). T^le 16 gives the results obtained, indicating a itaximum 
depletion of 67.9%. Ihe nyasthenic serum vas recirculated through this 
affinity column for 2h at 23°C (see "Methods" section 14.3). After 

collection, a further sanple of the same serum was applied to the 
column and recirculated overnight at 23°C. Further anti-AChR antibody 
depletion was achieved (Table 16) indicating that the AChR on the 

affinity column was not saturated and that a longer application time 
could be beneficial. Passage of the same nyasthenic serum (2 ml) 

through a control txrBGT-sepharose 4 B column with no coupled AChR 

resulted in little loss of anti-AChR antibody (Table 16). The recovery
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TABLE 15
PREPARATION OF AChR - d vBGT - SEPHAROSE 4B AFFINITY COLUMN

Prep. AChR applied ^BGT-Sepharose AChR Specific
(pmol) 4B bound AChR binding

(ml) (%) (pmol/ml beads)

1 49.5 25 100 2.0

2 110.0 25 100 4.1

3 210.0 25 97.1 8.2

^ 0.04 mg (X-BGT / ml Sepharose 4B
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of protein and serum IgG after passage of serum through the affinity 
column 3 and the control column is given in Table 17. Ihe levels of 

IgG vere apparently unchanged.

2.3.3 Purification of anti-AChR antibody

The adsorbed anti-AChR antibody frcm application of 
heat-inactivated nyasthenic serum (4 ml) to the AChR-oc-BGT-Sepharose 
4B column was eluted with 2)1 KI as described in the "Methods" section
14.4 (Figure 29). Measurement of anti-AChR antibody content of the 

pooled and concentrated fractions indicated a recovery of 18.7% (Table 
18).

2.3.4 Myotoxicity by anti-AChR antibody depleted serum
The conplement-mediated myotoxicity of the anti-AChR depleted, 

heat-inactivated serum samples (affinity column 3, Table 16) was 
assessed on rat myotube cultures, labelled with [Me-^H] carnitine 
(section 2.2.1). The effects of increasing concentrations of serum (20 
- 80 pi, 2.7% - 10.8% v/v) in the presence of a constant concentration 
of GPC (Flow Laboratories, 160 pi, 21.6% v/v) ware tested (Figure 30). 
Serum depleted of anti-A(ZhR antibody by 67.9% (final anti-AChR 
antibody titre of 13.5 nM) gave myotoxicity values, for each serum 

concentration, within the normal range expected (i.e. less than 20%, 
see section 2.2.13). The same serum before treatment (anti-AChR 
antibody titre of 42.0 nM) or after treatment with the©<^BGT-Sepharose 
4B column to which no AChR was coupled (anti-AChR antibody titre of 

40.8 nM) gave, at ^ c h  concentration, nyotoxicity values greater than 

40%. The second serum sample applied overnight to the affinity column 

(see Table 16), showing anti-AChR antibody depletion of 31.8% (final
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TABLE 17
RECOVERY OF PROTEIN AND IgG AFTER PASSAGE OF MYASTHENIC 
SERUM THROUGH AFFINITY COLUMN 3

Serum Protein Recovery IgG Recovery
treatment (mg) (%) (mg) (%)

Before column 92.0 - 6.16 -
Application 1 77.4 84.1 6.16 100

Application 2 87.4 95.0 6.16 100

Control column 81 .4 88.5 6.16 100

TABLE 18
PURIFICATION OF ANTI-AChR ANTIBODIES FROM MYASTHENIC
SERUM

Anti-AChR ^ Anti-AChR Anti- AChR eluted ^ IgG
applied bound ^ (pmol) recovery (mg)

(pmo l ) (pmol) (%)

168.0 83.7 15.7 18.7 0.57

see Table 16 mean of 2 separate determinations
^ estimated from A = 14.0 for IgG at 280 nM
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FIGURE 30
COMPLEMENT-MEDIATED MYOTOXICITY BY ANTI-AChR ANTIBODY 
DEPLETED SERUM

Replicate rat myotube cultures were labelled with 
C Me-^HJ] carnitine as described in Section 2.2.1. The 
complement-mediated myotoxicity of heat-inactivated 
myasthenic serum before ( #  ) and after (O  ) anti-AChR 
antibody depletion on an AChR-xBGT-Sepharose 4B 
affinity column (column 3, Table 16) was tested by 
exposing cultures to aliquots of increasing 
concentrations of serum (20-80pl, 2.7-10.8% v/v) in the 
presence of GPC (Flow Labs. 160pl, 21.6% v/v) for 3h 
at 37*^C. Myasthenic serum treated with a control 
tx.BGT-Sepharose 4B column with no coupled AChR ( □ ) or 
c L p p b e d  to  f K e .  c o lu m n . ^  ( ■  )

(see Table 16) were similarly tested. Myotoxicity was 
calculated as described in the "Methods" section 8 by 

comparison to control cultures with no additions run 
simultaneously. Each point is the mean - range of 2 
separate experiments, each of which included 4 replicate 
culture wells.



158

Ü
o

50-

40-

30-

20-

10-

0 10 20 30 40 50 60 70 80

Serum added fjjl)



159

anti-AChR antibody titre of 28.6 nM), demonstrated reduced myotoxicity 
only at the lo\æst concentration of serum tested (Figure 30).

2.3.5 Myotoxicity by purified anti-AChR antibody
Ihe coftplement-mediated myotoxicity of the purified anti-AChR 

antibody, prepared as described in Section 2.3.3, was tested on rat 
myotube cultures. The final anti-AChR antibody titre of the purified 
antibody was 15.7 nM. Addition of purified antibody (80 |jlL, 10.8% v/v) 
and GPC (Flow Laboratories, 160 |il, 21.6% v/v) to cultures for 3h at 
37°C resulted in a measured myotoxicity of 16.3% (mean of 2 separate 

experinents) which fell within the normal range expected (i.e. less 

than 20%).

1252.3.6 Reduction of [ l3oc-BGT binding sites by anti-AChR antibody
depleted serum and purified anti-AChR antibody

Heat-inactivated myasthenic serum, before and after treatment
with the AChR-oc-BST-Sepharose 4B column 3 (Table 16) and the eluted
anti-AChR antibody were tested for their ability to reduce the number 

125of [ I]ot-BGT binding sites on rat myotube cultures. The cultures

were pre-incubated with serum or purified antibody (80 pi, 10.6% v/v)
for 90 min at 37°C before estimation of remaining toxin-binding sites

as described in the "Methods" section 3. Figure 31 shows that
anti-AChR antibody depleted serum samples and purified anti-AChR

125antibody reduced the number of available [ I]o4-BGT binding sites to 

a similar extent as did the non-depleted nyasthenic serum.
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FIGURE 31
IOCLOSS OF C I 3ûc-BGT b i n d i n g  s i t e s  o n  r a t  m y o t u b e  

CULTURES AFTER TREATMENT WITH MYASTHENIC SERUM 
DEPLETED OF ANTI-AChR ANTIBODY AND PURIFIED ANTI-AChR 
ANTIBODY

Replicate myotube cultures (7 days in culture) were
incubated for 90 min at 37°C with heat-inactivated
myasthenic serum (BOjal, 10.6% v/v) before (a) or
after (b,c) treatment with an AChR-oCBGT-Sepharose 4B
affinity column (column 3, Table 16). The cultures

125were then washed and the remaining C IHot-BGT binding
sites determined as described in the "Methods" section
3 (at 20 nM toxin). Cultures preincubated with purified
anti-AChR antibody eluted from the affinity column
(Table 18) 80pl, 10.6% v/v) were similarly tested. The

125heights of the columns represent C IJ«k-BGT binding as 

a percentage of that of control cultures to which no 
additions of test serum or purified antibody were made. 
The results were gained from one experiment in which 
6 replicate culture wells were tested for each serum or 
the antibody sample.
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2.4 Effects of myasthenic IgG
2.4.1 Purification of IgG

The IgG fraction was purified from 2 myasthenic and 1 normal 
heat-inactivated serum samples (10 ml) as described in the "Methods" 
section 15.1. Anti-AChR antibodies were determined in sera before 
purification and in the IgG fraction after purification (see "Methods" 
section 13). The recoveries of specific antibody and IgG are given in 
Thble 19.

2.4.2 Depletion of IgG subclass 3 from IgG
Purified IgG (5 ml containing 8.75 - 20 mg) was applied to a 

protein-A segharose column (see "Methods" section 15.2), and the 
non-bound fractions containing IgG subclass 3 collected. The bound 
IgG, consisting of subclasses 1,2 and 4, was then eluted with 0.1 M 
citrate, 0.1 M phosphate buffer, pH 3 (Figure 32). Anti-AChR 
antibodies vere determined in the IgG fractions, after passage through 
the column. The recoveries of specific antibody and IgG are given in 
Thble 20.

2.4.3 Myotoxicity of IgG and IgG depleted of subclass 3
The complement-mediated myotoxicity of purified IgG and IgG 

depleted of subclass 3, was assessed on rat myotube cultures labelled 
with L-[Me-^H] carnitine (section 2.2.1). The volumes of IgG 

preparations \^re adjusted so that equivalent concentrations of 

anti-AChR antibody to that in each respective serum sample tested, 

lære added to the cultures, F ream Figure 33 it can be seen that the IgG 

depleted of subclass 3 gave agproximately carparable myotoxicity
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TABLE 19
RECOVERIES OF ANTI-AChR ANTIBODY AND IgG FROM SERA

Serum ^ Anti-AChR antibody 
(pmol) in

IgG 
(mg) in

serum IgG 
(% recovery)

serum • IgG 
(% recovery)

Normal N.D. N.D. 115 100
(-) (87.0)

Myasthenic 1 420 - 12 348 - 6 30.8 17.5
(patient 4) (82.9) (56.8)

Myasthenic 2 200 - 8 93 - 5 57.5 30.0
(patient 13) (46.5) (52.2)

N.D. - None detected 

^ Each value is the mean - SD of 3 separate determinations



164

IOu
o
Cn
M -P

c
iH Û)
fO Cn •H
e H -P
u fC
0 o A
% s

# O

ro 
W
B
S W

CQ

<N

"CNM
CMCM

CM
U i

H

E
EDC
C
0

1



165

ro
Ü
H 5̂u

< (U
>K 0O uD G ^ d)O -H pg (N

S ^ ' ^E-i Di H
BÜ 0

cn 0M O HD1Q HHMkMD:D 0
CnHk0

w0
<
CO
CO
<
O4 c ro-H
0< 0w ^
E-I 1 M
k  0 >,<  B <0 P

A 0Ü ^ >tJi 0M ^ u
Tl vj* 0Q 0 P

S rQ CM
^  -H ' ^+) rHCQ fO 00
CQ g (4 HH § Æ

n 0 0!s ij << 0 1U 'H
fï: -p
Æ m c Üu ^ < Di< H1 HH CO

k  A0 WCOCO 1w <
0  HCM p/ Iz; 0

w H CnW > H H
d 0  ^m u 0
< H

pc; A

1— 1 mCM 0 in • 1—1 0

0 1—1 1—1 I— 1 0 1— 1 W
C0
•H
-P0
C
-H c

in 0
in in 0 1—1 0 CO« • • « • « -P CM
0 CM in r- ro r— 1 01—1 in in iH (T> TJ -P00

-P 00 Cn
P ♦p0A p0 0in m ip

0 0• • • CM 0
0 CO in •
CM 1—1 ip0 1—1

a II
0
0 n GB ^  U1—1 rH
0
rC <C
-P

Q ./"—s. rp ID in CM B
1 # • • • W 0

id '— 1—1 0 <—1 ro •H pip
0
p TO
rp 00 -p
> 0

c
0 0

c
•H

• • CO • a\ u -P
Q ---s. 00 • (ji » 0 0]

1 iH ro ro w W
id 1—1 ID CO 0 A

Q
%

in
ID

fC
Io%

1—1 CM -«■-s. C—̂V ro 0
U U i-H 12;•H •H
a -p C 4J 10 c 0 C
rC 0 rC 0 •-p •H -P -H Q
w -P m 4-)0 0 0 0 13>1 A > 1 A

TJ(U
-PU(U
-p
Q)Tl



166

values to those obtained from the respective IgG preparations.

However, the myotoxicity demonstrated by one of the preparations of 
IgG vas considerably reduced when compared to that shown by its 

respective serum sample (Figure 33a). In the above experiments, the 
complement-mediated myotoxicity values for heat-inactivated normal 
serum, IgG and IgG depleted of subclass 3, added at equivalent volumes 
to the highest of those for the nyasthenic 2 fractions (Table 20) were 
16.1%, 4.4% and 16.2% respectively. Ihe purified IgG and IgG depleted 
of subclass 3, \ære stored at -20°C for 1-2 væeks prior to use in the 
myotoxicity assays. A sample of myasthenic 1 IgG (Figure 33a) was 
tested for complanent-mediated myotoxicity after a further 6 weeks of 
storage at -20°C. Measured nyotoxicity was found to be reduced fran 
45.7% to 14.9% indicating deterioration of the stored IgG.

For these experiments, myotube cultures were labelled with 
L-[Me-^H] carnitine. It was noted that the measured nyotoxicity by the 
myasthenic serum sanple 1 (from patient MG 4, sample ii), in the 
presence of complement, was higher (67.2%) than had previously been 

noted when the same volume of serum (80pl) was added to cultures (see 

%ble 12).
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FIGURE 33
COMPLEMENT-MEDIATED MYOTOXICITY OF MYASTHENIC SERUM,
IgG AND IgG DEPLETED OF SUBCLASS 3

Replicate rat myotube cultures were labelled with L- 
C M e - ^ H H  carnitine as described in Section 2.2.1. The 
complement-mediated myotoxicity of heat-inactivated 
myasthenic serum ( •  ), IgG (O  ) or IgG depleted of 
subclass 3 ( ■ ) was tested by exposing cultures to 
increasing concentrations of anti-AChR antibody in 
the serum or serum fractions in the presence of GPC 
(80pl, 8.0% v/v) for 3h at 37°C. Myotoxicity was 
calculated as described in the "Methods" section 8 
by comparison with control cultures to which no 
additions were made. The value for no addition of 
anti-AChR antibody represents that for GPC tested alone 
Each point represents the mean - range of 2 separate 
experiments, each of which included 4 culture wells.

a) Myasthenic serum 1 (from patient MG 4)
b) Myasthenic serum 2 (from patient MG 13)
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B. HUMAN SKELETAL MUSCLE CELLS IN CULTURE
1. Growth and characteristics

1.1 Preparation of cultures

Single cell suspensions were prepared from human foetal limbs 
as described for newborn rat limbs (see "Methods" section 1.2). Cell 
yields ranged from 1.8 - 6.0 x 10^ cells per limb. Dissociation of 
tissue with 0 .2% (w/v) trypsin plus 0 .1% (w/v) collagenase for Ih at 
37°C resulted in similar cell yields to portions of the same tissue 

dissociated in 0.25% (w/v) trypsin alone. The latter procedure was 
therefore routinely used. Cell viability, as judged by exclusion of 
trypan blue dye, was greater than 95% and was not affected by previous 
storage of limbs in growth medium for up to 72h.

Human muscle cultures were more susceptible to bacterial and 
fungal infection than the rat muscle cultures. This may arise fran the 
non-sterile conditions of the foetuses when collected, as infection 
occurred within 2-3 days of culture. Foetal limbs were accordingly 
collected and stored before dissection in growth medium containing 
1000 U/ml penicillin and streptomycin, and fungizone (2.5 |ig/ml). Of 52 
human muscle cultures prepared, 39 produced myotube cultures of 
reasonable density with no apparent infection. In one case of 
suspected infection, a 2-day old culture ves treated overnight with 

kananycin (500 pg/ml), and kananycin (50 pg/ml) was subsequently added 
to the growth medium. This treatment greatly reduced, but did not 
eliminate, the resulting infection and was even less successful with a 

later infected culture.
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1.2 Growth media

The nature and œnœntration of serum components were varied to
test the effects on subsequent myotube growth (see "Materials" for the

resulting media - (341, (3M2 and (3M3). Other media additions tested were
insulin (0.4 U/ml, 1.5 pM), dibutyryl cAMP (dbcAMP - ImM) and
dexamethasone (1 pM). The use of serum-free chemically defined growth
media was also assessed (SFM - see "Materials"). The criteria used to
judge growth were the morphological appearance of nyotubes and the

125extent of fibroblast growth. The level of [ I]o4-BGT binding sites, 
considered to reflect the expression of A(3hR on the surface of the 
rayotubes (Vogel et al.,1972) was also measured. The results are 
summarised in Tables 21,26 and 27, and are discussed in greater detail 
in the following sections.

1.3 Optimal plating density of cells
The optimal plating density of cells was dependent on the

serum content of the growth medium. Initiation of cultures in (3M3
(containing 20% PCS) supported proliferation of cells but myoblast
fusion did not occur. Consequently, cells could be initially plated at

a lov^r density (0.5-1 x 10^ cells per 15.5mm culture veil) and
allo\æd to grew to confluence (5-7 days) before changing to fusion
medium with a lover serum content (C3M1, (342 or SFM). Such a procedure

125yielded myotubes of density and [ I]ot-BGT binding that vere similar 
to those of sister cultures initially plated at higher densities.

The optimal plating density of cells initiated in (341 

(containing 10% HS) was 2.5 x 10^ cells per 15.5mm culture veil.
Higher or lover plating densities gave similar results to those
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observed with rat myotube cultures (see Section A 1.1). Initiation of 
cultures in GM2 (containing 2% HS) or in SFM did not support cell 

growth.

1.4 Morphology of myotube cultures
The attachment of cells to the collagen substratum and the 

subsequent morphology of myoblasts and fibroblasts in the cultures was 
as described for rat cultures (Section A 1.2, Figure 34 A). The time 
and apparent synchrony of myoblast fusion to form multinucleated 
iryotubes was dependent on the serum content of the growth media 
utilised. In cultures initiated in <343 (containing 20% PCS), fusion of 
myoblasts was not observed. After changing to fusion medium (GMl or 
SFM) myoblast fusion oomnnenced and was complete within 2-3 days. Use 
of SFM improved the time of onset and synchrony of nyoblast fusion. 
Cultures initiated and grown in <341 (containing 10% HS) shewed a 
similar period of myoblast fusion beginning spontaneously after 3-4 
days in culture. Again, the time of onset and the synchrony of 
myoblast fusion was improved by reducing the serum content of the 

growth medium «342 or SFM) after 3 days growth.

Myotube formation and growth were promoted by all the 
media tested. Morphologically, the myotubes appeared similar, being 
mainly thin and retractile (an indication of their roundness) with 

flattened, broader, non-retractile areas occurring principally at 
branching points but also occasionally at points along one myotube 
(see Figures 34; 35 A,B and 360. Occasionally, insulin-containing 

growth medium (insulin added throughout the culture peritDd to <341/(342 

or (341/SFM combinations) gave rise to a different type of morphology 

in which all the myotubes present appeared broad, flattened and
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FIGURE 34
LIGHT PHOTOMICROGRAPHS OF HUMAN MUSCLE CELLS IN CULTURE

A) 1 day after plating the single cell suspension 
at 2.5 X 10^ cells/culture well in GMl 
containing 10% H S .
(x 80 magnification)

B) The appearance of a 5 day culture grown in 
GMl containing 10% H S .

(x 40 magnification)

C) 8 days in culture showing a network of 
branched myotubes but also a heavy growth 

of fibroblasts (culture grown in GMl 
containing 10% HS). (x 80 magnification)
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FIGURE 35
PHOTOMICROGRAPHS OF HUMAN MUSCLE CELLS IN CULTURE

A) Light photomicrograph of an 8 day culture 
initiated in G M 3 , containing 20% FCS, and 
switched to G M l , containing 10% H S , after 
3 days growth. The myotubes present are 
almost overgrown by fibroblasts.
(x 40 magnification)

B) Phase contrast photomicrograph of a 7 day 
culture initiated in GMl, containing 10% H S , 
and switched to GM2, containing 2% H S , after 
3 days growth.
(x 40 magnification)

C) Light photomicrograph of a 7 day culture 
initiated in GMl, containing 10% H S , and 
switched to SFM after 3 days growth. Insulin 
(0.4 u / m l , 1.5 pM) was added throughout the 
culture period. The myotubes adopted a broad, 

flattened morphology.
(x 40 magnification)
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FIGURE 36
LIGHT PHOTOMICROGRAPHS OF HUMAN MUSCLE CELLS IN CULTURE

A) The appearance of a 7 day culture initiated in 
GMl, containing 10% H S , and switched to G M 2 , 
containing 2% HS and dbcAMP (1 mM) after 3 

days growth. The myotubes adopted a broad, 
flattened morphology, the myotube membranes 
acquiring a 'wavy' appearance.
(x 80 magnification)

B) A sister culture to that shown in A) which 
was initiated in GMl, containing 10% H S , and 
switched to GM2, containing 2% H S , after 3 
days growth. Insulin was added throughout the 
culture period (0.4 u/ml, 1.5 p M ) .
(X 80 magnification)

C) A.sister culture to those shown above which 
was initiated in GMl, containing 10% H S , and 

switched to GM2, containing 2% H S , after 3 

days growth.

(x 80 magnification)
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non-refractile (Figure 35C and 36B). This morphology was not seen in 
cultures to which no insulin (or in the case of SFM, no additioml 

insulin) was added. A similar morphology was also obtained from 

cultures to which dbcAMP (1 mM) vas added on the onset of nyoblast 
fusion. In addition, the myotube membranes acquired a 'wavy' 

appearance (Figure 36A).
In a series of studies in which replicate cultures were 

grown and maintained in various media combinations, denser and more 
branched populations of myotubes vere obtained from the sequential use 
of GMl (containing 10% HS) /GM2 (containing 2% HS) or GMl/<342 with 
additional insulin (0.4 U/ml, 1.5 pM) added throughout the culture 
period (see also section 1.9). The addition of dexamethasone (IpiM) to 
one culture grown sequentially in (341/(342 made no apparent difference 
to the subsequent morphology of the myotubes.

No spontaneous contractility of myotubes was ever observed 
in human muscle cultures. The lifetime of the cultures was 

approximately 14-17 days, by which time the myotubes had become 
granulated, phase-dark and shrunken, indicative of cell death.

1.5 Inhibition of fibroblast growth
Cultures initiated in (343 (containing 20% FCS) and 

maintained in (341 (containing 10% HS) shoved a heavy overgrowth of 
fibroblasts. This overgrowth v^s greatly reduced by maintaining the 
cultures in SFM or by initiating and maintaining the cultures in (341 

alone. The mitotic inhibitors Ara C and FDU were tested for their 
ability to reduœ numbers of fibroblasts and for their effect on 

iiyotube growth (Table 22). When, one day after the onset of myoblast 

fusion, either inhibitor was included for a period of 72h in cultures
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initiated in GM3 or GMl and maintained in GMl, poor myotube growth
125resulted and was paralleled by low levels of [ I]ûé-BGT binding. As 

noted for the rat myotube cultures (see Section A 1.3), it was 

probable that the mitotic inhibitors interfered with myoblast fusions. 
The poorest growth of human myotubes occurred after treatment with 
FDU. Addition of inhibitor two days after the onset of myoblast 
fusion, made little difference to the fibroblast growth, as this was 
already pronounced by this stage. These mitotic inhibitors v^re not 
routinely added to human myotube cultures.

Reduction in fibroblast growth was greatest with cultures 
initiated in (343 or (341 and switched to SFM to promote myoblast 
fusion, or in cultures initiated in (341 (containing 10% HS) and 
maintained in (342 (containing 2% HS). The clearest background was 
obtained vhen (341 or (343 were changed to fusion medium after 3 days 
growth. In the case of (343, this necessitated using a higher initial 
plating density of 2.5 x 10^ cells/culture v^ll, as lower densities 
did not produce cell confluence within this time, resulting in a less 

dense population of myotubes. Initiating cultures in (343 at a low cell 
density and changing to SFM after confluence was reached, did not 
greatly reduce the extent of fibroblast growth.

The addition of insulin to growth media throughout the 
culture period (0.4 U/ml, 1.5 |jM or in the case of SFM - additional 
insulin to give a final concentration of 0.4 U/ml, 1.5 |oM), promoted 
the growth of fibroblasts in comparison to replicate cultures grown 

in the absence of insulin (or additional insulin in the case of SFM).
Additional procedures tested, to iirprove the purity of 

myoblasts in single cell suspensions, were the preplating of 

suspensions for 20 min at 37°C (see Section A 1.3) or the repassaging
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TABLE 22

EFFECTS OF MITOTIC INHIBITORS ON SUBSEQUENT HUMAN 
MYOTUBE GROWTH

Replicate myotube cultures, initiated in G M 3 , were 
treated after one day's growth in GMl with 

fluorodeoxyuridine ( 15yg/ml ) and uridine (35yig/ml) (FDU) 
or cytosine arabinoside (Ara C, lOjjM) for 72h. After 
5 days growth in GMl, the cultures were tested for 
|-125iJ^__Bg t  binding as described in the "Methods" section 
3 (at 30nM toxin concentration). Each result is the 
mean - SD of 4 culture wells.

[^^^l]cx-BGT binding
Test Total

(cpm/well)
Non-specific 

(cpm/well)
Specific Protein 

(fmol/well)(pg/well)

No addition 12228 - 1204 4832 - 367 13.7 148 i 6

+ FDU 5423 - 504 3411 - 420 3.7 98 - 4

+ Ara C 8145 - 442 3497 - 260 8.6 125 - 6
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of cultures initiated for 3 days in GM3 to promote cell proliferation
(see "Methods" section 1.4). The preplating of suspensions did not

reduce the subsequent growth of fibrcblasts in myotube cultures;
therefore this procedure was not routinely used. The repassaging of
cultures was observed to reduce the overgrowth by fibroblasts of
cultures initiated in (3M3 and changed to 0^1 after 3 days in culture,
and of cultures grown wholly in GMl. In the latter case, myoblast

fusion was observed to commence after 2-3 days in culture as apposed
to 3-4 days in cultures established from the original cell suspension

125and plated at the same initial cell density. Specific [ I]ck-BGT
binding to repassaged cultures was increased when compared to primary
cultures established from the original cell suspension (see Table 23).
The repassaging of cultures made no difference to the fibroblast
growth in cultures switched, after 3 days growth, to GM2 (containing
2% HS) or SFM for fusion. Switching the medium at this stage of growth
was a procedure which in itself reduced fibroblast growth. The
principal disadvantage in using the repassaging procedure as

described, m s  the decreased cell yield obtained when compared to the

original cell suspension i.e. a reduction of 34.5 + 6.1%, mean + SD (3
experiments), resulting in a reduced number of replicate culture wells
available for one experiment. As this procedure did not appear to

125increase the level of [ I]o^BGT binding sites above that obtained 

for cultures grown sequentially in (3Ml/(3M2 (see Section 1.9) it was 
not subsequently used.
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1.6 Foetal age
In most culture preparations, tissues from several foetuses

m r e  pooled in order to increase the number of replicate cultures for
various studies. In one experiment, tissue sanples fron snail foetal
limbs (approximate age 9 meks) and from larger foetal limbs
(approximate age 14-15 wseks) m r e  dissociated and cultured separately
under the same conditions (Initiation in @13 for 3 days before
switching to SBM). On the seventh day in culture, inyotubes originating
from the older foetal tissue appeared morphologically denser and more

125branched than those originating from the younger foetal tissue. [ I]
D^-BGT binding was 65% higher in the former (Table 24). Further

125correlation of morphology and [ I]oeBGT binding with foetal age of 
tissue source was not made, because of the difficulty in supply of the 
foetal tissue.
1.7 Protein content of cultures

The variation in total protein within one myotube culture was 

small i.e. in one representative culture, grown sequentially in 
(3M3/GM1, protein equalled 161.6 + 15.2 pg/culture mil, mean + SD (24 
culture wells), determined after 5 days in @11. The variation in total 

protein content between cultures established at different times and in 
different growth media, determined 4-5 days after onset of myoblast 

fusion, fell in the range 84.6 - 172.4 pg/culture mil. As noted for 
the rat myotube cultures (Section A 1.6), the cultures originate from 

a mixture of cell types giving rise to both myoblast and fibroblast 
growth, each of which contributes to total protein levels. All 

experimental results are therefore expressed as per culture m i l  as 

opposed to per mg protein.
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TABLE 24
EFFECTS OF FOETAL AGE ON SUBSEQUENT HUMAN MYOTUBE 

GROWTH

Myotube cultures were established at the same time 

under the same conditions from foetal tissue of 
different gestational age. Cultures were initiated in 
GM3 and subsequently maintained in SFM for 4 days 
before determining j^^^l]cx.-BGT binding (20nM) as 
described in the "Methods" section 3. Each result is 
the mean - SD of 4 culture wells.

Approximate [_^^^l]oc-BGT binding Protein
age Total Non-specific Specific (ug/well)

(weeks) (cpm/well) (cpm/well) (fmol/well)

14 - 15 8468 - 660 2711 - 281 10.6 104 - 2

9 5141 - 324 1666 - 172 6.4 97 - 4
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1251.8 Time course of the appearance of [ I]o*rBGT binding sites in
cultures

One representative myotube culture, initiated in GM3 and
125maintained in @ 11, was tested over 11 days growth for [ IJOvrBGT

binding and total protein content (Figure 37). When fusion of
myoblasts was complete (2 days in fusion medium, @ 11), specific toxin

binding increased 4-fold to a maximum level of 24.9 finol/culture mil
within 3 days (determined at 30 nM toxin). After this time, toxin
binding decreased. The protein content of cultures increased
consistently over the time period studied, paralleled by the observed
continued growth of fibroblasts in the myotube cultures.

When cultures m r e  grown in alternative growth media 
125(Section 1.2), maximal [ I]Ot-BGT binding always occurred within 4-5 

days of initiation of myoblast fusion (data not shown). Human myotube 
cultures m r e  therefore routinely used for assays at this time.

1251.9 Bguilibrium binding of [ I]Q<rBGT to cultures
125After incubation of cultures with [ I]o^BGT, 3 washes

with growth medium m r e  sufficient to renove free radiolabel. Counting

errors (BE) of 4 replicate culture wells m r e  usually less than 5%.
Pre-incubation of myotube cultures (30 min, 23°C) with décaméthonium

125bromide inhibited [ I]o^BGT binding in a concentration dependent 

manner (Figure 38). Maximum inhibition (50.5%) was achieved by using 1 
mM decaiTBthonium. The inhibition of toxin binding by décaméthonium, in 
different experiments using cultures established in different media, 

represented 46% - 82% of the total tax in binding determined in the 

absence of inhibitor. Experiments in which the use of excess 
unlabelled ot-BGT (IpM) or décaméthonium (lirM) m r e  compared as
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FIGURE 37
INCREASE OF C I]c<-BGT BINDING SITES IN HUMAN MUSCLE 
CELL CULTURES

Replicate muscle cell cultures, grown sequentially in
12 5GM3/GM1, were tested daily for specific C l3o».-BGT 

binding (3OnM) as described in the "Methods" section 3. 
The total protein content of the cultures was also 
determined.

(O---- O) Specific C^^^ID^-BGT binding/culture well
Each point is the difference between 
total and non-specific binding, each 
determined from 4 culture wells.

(#-----#) Protein content/culture well. Each
point is the mean - SD of 8 culture wells
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FIGURE 38
_ I o cINHIBITION G P L  lHo<-BGT BINDING TO HUMAN MYOTUBE 

CULTURES BY DECAMETHONIUM BROMIDE

1 p cThe binding of C Ilt^-BGT ( 3OnM) to replicate myotube 

cultures (8 days in culture, grown sequentially in 
GM3/GM1) was determined as described in the "Methods" 

section 3 after pre-incubation of the cultures (30 m i n , 
23°C) with increasing concentrations of décaméthonium 
bromide. Each point is the mean - SD of 4 culture wells
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TABLE 25
INHIBITION OF [^^^iJoC-BGT BINDING BY DECAMETHONIUM 
BROMIDE AND BY EXCESS UNLABELLED c<-BGT

[ ̂ ^^l]oc-BGT binding ( 3OnM) was determined on replicate 
human myotube cultures in the presence and absence of 
décaméthonium bromide (ImM) or <s><-BGT (IpM) as described 
in the "Methods" section 3. Each result is the mean - SD 
of 4 culture wells treated similarly.

Culture number [ 125^ -j _gQip i^inding Inhibition

Total + oC-BGT + DBr (% total)
( cpm/ well ) ( cpm/ well ) ( cpm/ well ) + oc-BGT + DBr

^ 47 13628 - 1250 7235 - 252 6831 - 635 46.9 49.9

^ 48 17706 - 1789 7754 - 755 9371 - 1255 56.2 47.0

^ 49 23288 - 2148 6661 - 604 11955 - 1048 71.4 48.7

^ Cultures initiated in GMl + insulin (0.4 U/ml, 1.5uM) 

and changed after 3 days growth to SFM + additional 
insulin (final concentration 0.4 u/ml, 1.5 uM)

^ Cultures initiated in GMl + insulin (0.4 U / m l , l.SuM) 
and changed after 3 days growth to GM2 + insulin 
(0.4 U/ml, 1.5uM)
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inhibitors of toxin binding suggested that Uie former was occasionally
125more effective (Table 25). However, non-specific binding of [ I]

c<-BGT was routinely determined in the presence of décaméthonium (ImM).
125The binding of [ I]cx-BGT to myotube cultures was

determined over a range of toxin concentrations. Figure 39 illustrates

binding by a representative culture grown sequentially in 043/C3M1.

Non-specific binding, measured in the presence of décaméthonium (ImM)

accounted for 40-50% of the total binding. Figure 40 illustrates 
125[ IJcXrBGT binding by cultures of which half vtare grown and

mintained wholly in C^l and half changed to Qd2 after 3 days growth.

In the latter case, non-specific binding accounted for only 18-20% of
the total radioactivity, as opposed to 25-35% in the former case. This
may well reflect the reduced fibroblast growth and subsequent lower
total protein content of cultures grown sequentially in (3M1/(M2. As
discussed in Section 1.4, initiating myotube cultures in GMl and
changing to (^2 after 3 days growth improved the density and
morphology of nyotubes in these cultures. This was reflected in an

125increase in specific [ I]cxrBGT binding (Figure 40).
125In each binding experiment, specific [ I]ot-BGT binding 

approached saturation (Figures 39 and 40). Scatchard analysis (Figure 
41) of the binding data gave values in the range 29.6 - 42.0 
finol/culture well and values in the range 4.42 - 5.71 pmol/culture 

well equivalent to 16.6 + 2.2 nM in the assay conditions used (see 

"Methods" section 3).
In a series of studies in which replicate cultures were grown 

and maintained in various media combinations, cultures grown 
sequentially in (^/GM2 or in C^1/(3M2 with additional insulin (0.4 

U/ml, 1.5 mM) added throughout the culture period, gave the highest
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FIGURE 39
1 ? 8EQUILIBRIUM BINDING OF fl lÜoc-BGT TO HUMAN MYOTUBE 

CULTURES GROWN SEQUENTIALLY IN GM3/GM1

125The binding of increasing concentrations of C I.3«x-BGT 
to replicate myotube cultures (8 days in culture) was 
determined as described in the "Methods" section 3.
The binding data from one representative culture 
shows :-

• Binding in the absence of décaméthonium bromide 
(total binding)

O  Binding in the presence of ImM décaméthonium 
bromide (non-specific binding)

□ Specific binding

Each point is the mean t- SD of 4 culture wells. 
Protein content = 162 - 15 pg/culture well (mean - SD,

8 culture wells)

Inset - Specific binding expressed as
fmol C^^^lDx-BGT binding/culture well.
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FIGURE 40
EQUILIBRIUM BINDING OF C iQcx-BGT TO HUMAN MYOTUBE 
CULTURES GROWN IN GMl OR SEQUENTIALLY IN GM1/GM2

125The binding of increasing concentrations of C I^oc-BGT 
to replicate myotube cultures grown and maintained 
wholly in GMl (a) or switched to GM2 after 3 days growth 
in GMl (b) was determined after 8 days in culture as 
described in the "Methods" section 3.

• Binding in the absence of décaméthonium 
bromide (total binding)

O  Binding in the presence of ImM décaméthonium 
bromide (non-specific binding)

□ Specific binding 
Each point is the mean - SD of 4 culture wells.
Protein content = a) 149 - 10 pg/culture well

b) 9 4 - 3  pg/culture well 
(mean - SD, 8 wells)

Insets - specific binding expressed as
125fmol [ I]<\-BGT bound/culture well
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FIGURE 41
SCATCHARD ANALYSIS OF THE BINDING DATA IN FIGURES 39 & 40

Lines were constructed by linear regression by using the 
data from Figures 39 and 40.

Culture 2

medium

• GM3/GM1 14.8 nM 29.6 fmol/well 0.99

O GMl 16.0 nM 30.9 fmol/well 0.99

□ GM1/GM2 19.1 nM 42.0 fmol/well 1.00

Mean = 16.6 nM
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125relative specific [ I]cwrBGT binding, determined at 30 nM
concentration after 7-8 days in culture (Tables 26 and 27). However

the growth of human myotubes in culture, judged morphologically and by 
125[ I](X-BGT binding, was very variable in all serum compositions of 

growth media. %ble 28 summarises the results obtained for toxin 
binding in these experiments.

1.10 Acetylcholinesterase and creatine pdiosF^okinase activity 
AChE activity in human myotube cultures, grown sequentially in 
(^1/012, was 0.15 + 0.03 imol substrate converted/min/culture well 
(mean + SD, 3 experiments) determined on the 8^^ day in culture. CPK 
activity, determined on the same day, was 7.7 + 2.5 nmol substrate 
converted/min/culture well (mean + SD, 3 experiments ).It was not 
possible to study the time course of the appearance of AChE and CPK 
activity in human cultures because of the large number of replicate 
cultures that would be needed for each experiment. These could not be 
obtained with the limited amount of foetal tissue available.

1.11 Uptake of [Me-^H] carnitine

Human myotube cultures (grcwn sequentially in (3M3/CM.) and skin 
fibroblast cultures ^ære tested, over the 7^^ and 8^  day in culture, 
for uptake of radioactivity after incubation with [Me-^H] carnitine as 

described in the "Methods" section 7. Figure 42 illustrates, as noted 
with the rat cultures (Section A 1.10), that uptake of radiolabel was 
not saturating over the concentration range tested (0.067 - 1.33 pM, 

0 . 1 - 2  pCi). The myotube cultures took up apprcxinately 6 times more 
radioactivity than the confluent fibroblast cultures. The 2 myotube 

cultures tested were of similar morphology and expressed similar
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TABLE 28
SUMMARY OF [ BINDING BY HUMAN MYOTUBE CULTURES

Human myotube cultures were initiated and maintained 
in growth media with different serum compositions.
The binding of C^^^l]tsj-BGT (30nM) was determined after 

4 or 5 days in fusion medium as described in the 
"Methods" section 3. The results given do not include 
cultures grown in medium with hormonal or dbcAMP additions

Serum composition Specific C^^^lJx-BGT binding N o . of
of growth media (fmol/well) range cultures
Initiation Fusion mean - SD (fmol/well)

PCS 20% HS 10% ^ 16.5 - 6.3 8.4 - 26.1 12

HS 10% HS 10% b 14.5 Î 5.4 7.4 - 20.4 7

HS 10% HS 2% 18.5 - 7.4 8.4 - 30.3 8

PCS 20% or 
HS 10%

SPM 12.0 - 2.8 8.1 - 15.2 6

^ Results include two or ^ one repassaged culture
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FIGURE 42
UPTAKE O F C M e - ^ H j  CARNITINE BY HUMAN CULTURES

The uptake of radioactivity by human myotube cultures 
(grown sequentially in GM3/GM1) or human skin 

fibroblasts (7 days in culture) was determined after 
incubation with increasing concentrations of CMe-^H] 
carnitine for I8h at 37°C as described in the "Methods" 

section 7. Each point is the mean of 2 different 
experiments, each of which included 4 culture wells.

• Myotube cultures :-
C ^^I]*-BGT binding (30nM) = 1 6 . 8  and 18.2 
fmol/culture well respectively 
Protein = 156 and 138 pg/culture well 

respectively

O  Fibroblast cultures :- 
125C Uoc-BGT binding (30nM) not detected 

Protein = 48 and 50 ug/culture well 
respectively
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1[ !]<<-BGT binding (16.8 and 18.2 fmol/culture well respectively).

As explained in Section A 1.10, use was made of L-[Me-^H] 
carnitine in later studies for this project. Uptake of radioactivity 
by human myotubes in culture during incubation with L-[Me-^H] 
carnitine for 18 h at 37°C, was observed to be higher than that seen 

after incubation with D,L-[Me-^H] carnitine (Table 29). Similar 
results were obtained after incubation of fibroblast cultures with 
L-[Me-^H] carnitine under the same conditions, but uptake by these 
cultures ronained approximately 5-6 times lower than that for the 
myotube cultures tested in parallel. Unless otherwise stated, results 
given for human iryotubes in culture were obtained after labelling with 
D,L-[Me-^] carnitine.

1.12 Spontaneous release of [Me-^H] carnitine
^^otube cultures (7 days in culture) were labelled with 

[Me-^H] carnitine (0.67 pM, 1 \iCi) for 18h at 37° C, washed and fresh 
growth medium was added (0.75 ml). The retention of radioactivity by 
the cultures after further incubation at 37°C was calculated as 
described for rat myotube cultures in Section A 1.11. Figure 43 
illustrates the spontaneous release of radioactivity with increasing 
time of incubation. This was essentially linear over the tine follov^ 
(5 h), indicating an average release of 4.8%/h. Equivalent experiments 
with cultures preincubated with L-[Me-^H] carnitine (7.5 nM, 0.5 pCi) 
and further incubated for 3 h at 37°C in fresh growth medium, gave 

rise to similar values for the spontaneous release of radiolabel 
(4.2%/h). Fibroblast cultures labelled with D,L (0.67|iM, IpCi) or 
L-[Me-^H] carnitine (7.5 nM, 0.5pCi) and tested for the spontaneous 

release of radiolabel as described above gave similar results.



203

TABLE 29
UPTAKE OF DIFFERENT ISOMERS OF CARNITINE

BY HUMAN MYOTUBES IN CULTURE

Myotube cultures, grown sequentially in GM3/GM1, were 
incubated with [Me-^H] carnitine for 18h at 37°C and 
the uptake of radioactivity determined as described in 
the "Methods" section 7. The cultures were tested over 
the 7^^ and 8^^ day of growth. Each result is the 
mean of 2 separate experiments. Each culture tested 
demonstrated C^^^iDd<-BGT binding of 13.4 and 18.2 
fmol/culture well respectively.

Isomer [Me-^Hj carnitine added Uptake of radioactivity
nM ;aCi (cpm)

^ L 15.0 1.0 43134

7.5 0.5 23025

b
DL 670 1.0 22474

335 0.5 13167

^ Specific activity 87 Ci/mmol 
^ Specific activity 2 Ci/mmol
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FIGURE 43
SPONTANEOUS RELEASE OF [I M e - 3 CARNITINE FROM HUMAN 
MYOTUBE CULTURES

%C
‘CC
0

No

g

2 0

^ 5 3 é ^
Incubation time (hours)

Replicate myotube cultures, grown sequentially in 
GMS/GMI, were labelled with C Me-^H] carnitine as 
described in Section 2.2.1. The cultures were washed 
and fresh growth medium (0.75ml) containing no 
radiolabel was added. The retention of radioactivity 
by the cultures was determined after 3h and 5h 
further incubation at 37°C. Each point is the 
mean - SD of 3 different experiments, each of which 
included 4 culture wells.
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1251.13 Effect of D,L-camitine on [ Ijt^-BGT binding to crude detergent 
extracts of humn muscle

125Crude detergent extract of adult human muscle (0.9 nM [ I]
£Xi-BGT binding sites) was incubated in the presence and absence of
benzoquinonium chloride (2mM) or in the presence of increasing
concentrations of unlabelled D,L-carnitine for 30 min at 23°C. The

125mixtures v^re then further incubated with [ I]£xr*BGT (1 nM, 60 min at
23^0 before determination of toxin binding to the crude extract by
ammonium sulphate precipitation on (3FC glass filters as described in

125the "Methods" section 12.2. No inhibition of [ I]û<rBGT binding ky
-2 -6D,L-carnitine in the concentration range 10 - 10 M was observed

(Figure 44). Inhibition of toxin binding to the crude extract by 
benzoquinonium chloride was 62.6%.

2. Effects of iryasthenic serum on cultures
2.1 Binding of serum immunoglobulins 

125[ I] -labelled goat anti-human light chain antibodies
125([ I]-G^HL) v^re used to detect the binding of serum immunoglobulins

to myotube cultures (8 days in culture) as described in the "Methods"
125section 10.1. Non-specific binding of [ I]-G&HL to the cultures in 

the absence of test serum was in the range 1850 - 2500 cpm. This 
value, obtained in each experiment, was arbitrarily taken as 100% and 

the binding in the presence of test serum expressed as a relative 
value to allow comparison between different cultures. 3 out of 4 

myasthenic serum samples tested gave binding values significantly 
higher than those obtained for normal sera (Figure 45). The values 

obtained were 131.0 + 11.0% (3 serum samples) and 318.9 + 124.5% (4
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FIGURE 44
_ 1 pc_ ID cx-BGT b i n d i n g  t o  DETERGENT EXTRACTS OF ADULT 
HUMAN MUSCLE AChR AFTER PRE-INCUBATION WITH 
D,L-CARNITINE FOR 30 MIN AT 37°C
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Each point is the mean of 2 different 
experiments each carried out in quadruplicate.
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serum sarrples), mean + SD,n, for normal and myasthenic sera 

respectively. As noted with rat myotube cultures (Section A 2.1.1), 
the reactive sera were of relatively higher anti-AC!hR antibody titre, 

the binding of these myasthenic immunoglobulins appearing prcportioral 
to the anti-AChR antibody content of the respective sera (Figure 45 ).

Myotoxicity studies

2.2.1 Labelling of cultures with [Me-^H] carnitine - retention and 
variability

For myotoxicity studies, [Me-^H] carnitine ves added to 
human myotube cultures on the 7 ^  day in culture and serum myotoxicity 
was estimated on the 8^  day in culture. Human myotube cultures vere 
routinely labelled with D,L-[Me-^H] carnitine (0.67 pM, IpCi) for 18h at 
37°C. This concentration was chosen so as to give a clear difference 
between myotube and fibroblast uptake (Figure 42). Under standard 
myotcBcicity assay conditions (3h further incubation at 37°C, see 
Section A 2.2.6), successful cultures without added test serum 

retained between 15299 - 23064 cpm (19023 + 2458, 8 different 
experiments, mean + SD,n). For later myotoxicity studies, myotube 
cultures være routinely labelled with L-[Me-^H] carnitine (7.5 nM, 0.5 

pCi) for 18h at 37°C. Under the standard myotoxicity conditions 

described above, these cultures retained between 21660 - 26427 cpm 
(24037 + 1814, 5 different experiments, mean + SD,n).

Within one preparation of myotube cultures, the retention of 

radiolabel was tested after incubation with D,L-[Me-^H] carnitine 
(0.67pM, IpCi) for 18h at 37°C, followed by further incubation (3h at 

37°C) with fresh medium (0.66 ml) to which no additions of test serum
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FIGURE 45
BINDING OF SERUM IMMUNOGLOBULINS TO HUMAN MYOTUBE 
CULTURES

The binding of normal and myasthenic serum 
immunoglobulins to myotube cultures grown sequentially 
in GM3/GM1 (8 days in culture) was determined as 
described in the "Methods" section 10.1. The results 
are expressed as the percentage of radioactivity 
bound to the cultures in the absence of test serum 
(taken as 100%). The heights of the columns represent 
the mean - SD of 3 different experiments, each of 
which included 4 culture wells.
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lære made (control cultures). Within 24 replicate culture wells (1 

culture plate), retention of radioactivity was in the range 14886 - 
18157 cpm per culture well, with a mean value of 17109 + 1188 cpm (24), 
mean + SD (n). Serum myotoxicity assays vere carried out in 
quadruplicate as described for rat myotube cultures in Section A 
2.2.1. Dividing one 24-well culture plate into 6 groups of 'tests' 
gave values in the range 16205 - 18073 cpm per test (17109 + 705 cpm, 6 
tests, mean + SD, n) in the example cited above. The standard error of 
the mean (SE) for each 'test', carried out in quadruplicate, was 
usually less than 5%.

2.2.2 Effect of non heat-treated serum
Preliminary myotoxicity studies observed the effects of non 

heat-treated normal and myasthenic serum sarrples (both stored before 
use at -20°C for varying lengths of time) on human myotubes in 
culture. All iryotube cultures v^re labelled with [Me-^H] carnitine as 
described in Section 2.2.1 before use in the iryotoxicity assays. The 

myotube cultures v^re incubated with normal or myasthenic serum (100 
pi, 20% v/v) for 3h at 37°C and myotoxicity was measured as described 
in the "Methods" section 8. The measured iryotoxicities given by normal 
serum samples v^re in the range 1.0 - 14.4% (8.9 + 5.0%, mean + SD, 7 
sera ). Corresponding values given by myasthenic serum samples v^re in 

the range -1.0 - 27.6% (13.1 + 8.6%, mean + SD, 9 sera). The results for 
each individual serum sample are shown in Table 30. Only one 

myasthenic serum (from patient MG 13) gave higher myotoxicity values, 
in each of 2 experiments, than the highest value noted for a normal 
serum (from donor 2, 17.1% in one experiment). Statistical treatment 

of the data obtained, showed that there vas no significant difference
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TABLE 30
MYOTOXICITY OF NON HEAT-TREATED MYASTHENIC AND NORMAL 
SERUM SAMPLES

Human myotube cultures, grown sequentially in GM3/GM1, 

were labelled with LMe-^H^ carnitine (section 2.2.1) and 
exposed to samples of test serum (lOOpl, 20% v/v) for 
3h at 37*^C. Control cultures to which no additions were 
made were run simultaneously. At the end of the incubation 
time, the cultures were washed and solubilised for counting 
Myotoxicity was calculated as described in the "Methods" 
section 8 by comparison with the control cultures.
Each result is the mean - range of 2 different experiments 
in each of which were included 4 culture wells.
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Test serum Donor Anti-AChR 
antibody titre 

( nM)

Myotoxicity
(%)

Normal

Myasthenia
gravis

1 _ 6.7 + 5.0
2 - 14.4 -f- 2.7
3 - 9.7 3.5
4 - 1.0 + 0.9
5 - 4.7 + 0.9
6 - 12.5 + 0.9
7 - 13.6 + 1.5

1 0.8 15.3 + 2.4
6 16.0 - 3.7 + 4.1
8 24.2 ^ 12.8
13^(vii) 36.5 27.6 + 2.6
14 81.3 20.4 4- 4.2
22 76.2 ^ - 1.0
23 100.0 13 .8 + 4.5
24 24.1 8.6 + 10.5
25 32.6 17.1 + 1.8

Serial samples taken from one patient at different 
times
One assay only
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between the two groups of sera (Mann-Whitney rank sum test, p =

0.025). No culture treated with serum appeared morphologically damaged 
vhen viewed by light microscopy.

2.2.3 Effect of heat-treated serum
Heat-inactivation (56°C, 30 min) of the sera used in the 

above experiments, resulted in myotoxicity values in the range 1 - 18% 
for both normal and myasthenic sera. This indicated that values within 
this range are probably not significant. The only marked difference in 
myotoxicity after heat-inactivation, was observed with serum from 
patient MG13 (Table 30), heat-inactivation of vhich reduced measured 
myotoxicity from 27.6% to 12.8% (mean of 2 experiments).

2.2.4 Effect of guinea-pig complement
The standardised conditions used to test the 

complement-mediated myotoxicity of heat-inactivated serum to rat 
myotubes in culture (Section A 2.2.13) were used to carry out 

equivalent experiments on human myotubes in culture (Table 31). Of the 
7 myasthenic sera tested, 6 had previously been shown to be myotoxic 
to rat myotubes in culture vhen tested under the same conditions 
(resulting myotoxicity values between 38.6% and 60.3% - see Table 12). 
However, this myotoxicity was not repeated with human cultures, all 
values falling under 20%.

Using rat myotubes in culture, previously 'non-nyotoxic' 

myasthenic serum was shown to became myo toxic when volumes of test 
serum and GPC added to the cultures \ære increased (see Section A 

2.2.14). Similar experiments \ære carried out with human myotubes in 

culture by increasing the volumes of test serum and GPC added in the
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TABLE 31
COMPLEMENT-MEDIATED MYOTOXICITY BY HEAT-INACTIVATED 
MYASTHENIC AND NORMAL SERUM SAMPLES TO HUMAN MYOTUBE 
CULTURES

Myotube cultures, grown sequentially in GM3/GM1 or 
wholly in G M l , were labelled with L-[Me-^H3 carnitine 
(section 2.2.1). The cultures were exposed to samples 
of heat-inactivated test serum (80pl, 12.1% v/v) in 
the presence or absence of GPC (Miles Labs., 80pl, 
12.1% v/v) for 3h at 37^C. Control cultures to which 
no additions were made and cultures to which GPC alone 
was added were run simultaneously. Myotoxicity was 
calculated as described in the "Methods" section 8 by 
comparison with the control cultures. Each serum was 
tested on 4 replicate culture wells.

The final column gives the 

myotoxicity values obtained when 

the same myasthenic serum samples 

were tested on rat myotube cultures 

in the presence of GPC using the same 

conditions as above (see Table 12).
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Test serum Donor Anti-AChR 
antibody titre heat-

(nM) inactivated

Myotoxicity (%)
+GPC

-J-)
•H

0
c

•H w
rO Q)
-M U
A 0
0 -P

rH
CO P
CÜ U

H -P
d fd

> u

Normal 14.1
4.0 
5.3
4.0

0.4
16.9 
8.0

18.9

Myasthenia 4 (i)
gravis (ii)

9 ^ (i)

GPC tested 
alone

(ii)
12
13 (v)

12.2
42.0
16.0
25.6 
42.3

180.0
20.6

3.3
6.3
7.0
5.0 

12.5
4.7

16.1

16.4 111.7
9.8 54.8

10.5 156.7
14.4 [59.8
17.2 38.6
1 . 8  160.3 

18-0 I4 7 .O

+11.2 - 7.5 
(mean - SD,
3 experiments)

Serial samples taken from the same patient at 

different times
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myotoxicity assay. Figure 46 illustrates the myotoxicity results 
obtained after replicate human myotube cultures \ære incubated with 
each addition for 3h at 37°C. The myasthenic serum (anti-AChR antibody 
titre of 42.0 nM) gave a n^otoxicity value of 34.9% with the highest 
addition tested. The same serum tested on rat iryotube cultures under 
standard myotoxicity test conditions gave a value of 54.8% (see Table 
12).

Human myotube cultures were subsequently incubated with 
increasing concentrations of heat-inactivated serum (50 - 300 |jlL, 3.3 - 
20% v/v) in the presence of a constant concentration of GPC (300 \j1,
20% v/v), or alternatively with increasing concentrations of GPC (50 - 
300 pi, 3.3 - 20% v/v) in the presence of a constant concentration of 
test serum (300 pi, 20% v/v) to determine if there vas an optimal level 
of either addition for the routine measurement of myotoxicity. From 
Figure 47 it can be seen that large additions of both test serum and 
GPC (200 - 300 pi for the 2 myasthenic sera tested) v^re necessary to 
cause myotoxicity values of greater than 20.0%. In these experiments, 

no damage to the iryotubes in culture was observed when they vare 
examined by light microscopy.
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FIGURE 46
COMPLEMENT-MEDIATED MYOTOXICITY BY MYASTHENIC SERUM 
PREVIOUSLY SHOWN TO BE 'NON-MYOTOXIC' UNDER STANDARD 
MYOTOXICITY ASSAY CONDITIONS

Replicate human myotube cultures (grown in GMl) were 
labelled with L-[Me-^H] carnitine as described in 
Section 2.2.1. Increasing volumes of heat-inactivated 
myasthenic serum (shown to be 'non-myotoxic' when 
tested under standard myotoxicity conditions - see 
Table 31) plus complement were added to the cultures 
as follows:-

Addition Tests
Serum added GPC added
(pi) (% v / v ) (pi) (% v / v )

1 80 5.3 80 5.3
2 120 8.0 120 8.0
3 160 10.7 160 10.7
4 240 16.0 240 16.0
5 300 20.0 300 20.0

The cultures were incubated for 3h at 37 C. Control 
cultures to which no additions of test serum or GPC were 
made (1.5 ml of growth medium only) were run 
simultaneously. At the end of the incubation time, the 
cultures were washed and solubilised for counting. 
Myotoxicity was calculated as described in the "Methods" 
section 8 by comparison with the control cultures.
Each addition of test serum was tested on 4 culture wells
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FIGURE 47
MYOTOXICITY OF INCREASING CONCENTRATIONS OF HEAT- 
INACTIVATED MYASTHENIC OR NORMAL SERUM AND GPC

Human myotube cultures (grown sequentially in GM1/GM2) 
were labelled with L-CMe-^H] carnitine as described 
in Section 2.2.1. The cultures were exposed to:- 
a ) aliquots of heat-inactivated myasthenic or normal 
serum (300pl, 20% v/v) plus increasing concentrations 
of G PC (50-300pl, 3.3-20.0% v/v) or b) aliquots of GPC 
(300pl, 20% v/v) plus increasing concentrations of heat- 
inactivated myasthenic or normal serum (50-300^1,
3.3-20.0% v/v) for 3h at 37°C. Control cultures to which 
no additions were made were run simultaneously. At 
the end of the incubation time, the cultures were washed 
and solubilised for counting. Myotoxicity was calculated
as described in the "Methods" section 8 by comparison with
the control cultures. The tests were as follows:-

•  Normal serum 1
O  Normal serum 2
□ MG 13 sample (v) Anti-AChR antibody titre = 20.6nM 
■ MG 4 sample (ii) Anti-AChR antibody titre = 42.OnM 

Each concentration was tested on 4 replicate culture wells.
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DISCUSSION

Ihe basic defect in MG is a reduction in the number of AChRs at 
neuromuscular junctions which accounts for the impairment of 
neuromuscular transmission. Although the mechanisms initiating this 
disease remain unknown, it is \æll established that the humoral immune 
systan, via anti-AChR antibodies, plays a central role in the 
pathogenesis of MG (for reviews see Linds tram, 1979; Vincent, 1980; 
Newsom-Davis and Vincent, 1982; Harrison and Behan, 1986). One 
suggested mechanism for the pathogenicity of anti-ACliR antibodies is 
complement-mediated destruction of the post-synaptic membrane. The 
possibility that these antibodies could initiate such a mechanism was 
studied by using a mammalian tissue-culture system. Rat muscle cells 
in culture were initially used because of their ready availability and 
known differentiation characteristics. These studies were extended to 
foetal human muscle cells in culture.

1. Growth of rat muscle cells in culture
1.1 Growth and differentiation

(Cultures of rat skeletal muscle cells were successfully 
established; their growth and maturation _ni vitro following the 
expected pattern. Mononucleated cells settled on the collagen 
substratum and proliferated for 2-3 days. After this time, the 
spontaneous fusion of myoblasts occurred; the resulting myotubes 

continuing to grow to form a dense network of branched, spontaneously 

contracting nyotubes. Well differentiated myotube cultures were thus 

obtained within a culture time of 7 days. With the onset of fusion, a 

marked increase in CPK and AChE activity occurred. The number of
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125AChRs, as judged by the binding of [ I]x-BGT, also increased rapidly
after the onset of fusion. This increase in muscle specific proteins

following the fusion of myoblasts, is veil documented for both rat and
chick muscle cultures and is consequently used as a marker of
differentiation (Shainberg et al.,1971; trick et al.,1972; Morris
and Cole, 1972; Sytpwski et al.,1973; Prives and fôterson, 1974;
Devreotes and Fambrough, 1975; Prives et al.,1976; Spector and Prives,
1977; Oh and Markelonis, 1978; Shainberg and Brik, 1978).

125The specific binding of [ I]ot*BGT to the cultured rat muscle
AChR was demonstrated by the use of décaméthonium bromide, an ACh
agonist that shows a high specificity for the AChR at the

125neuromuscular junction. This agonist inhibited [ I]o6BGT binding in
a concentration-dependent manner; maximum inhibition of greater than
90% being achieved at a ImM concentration of agonist. Equilibrium
binding studies of [ I]ot-BGT indicated a of 13.4 nM under the
conditions of this assay systen. Saturating conditions \ære not used

125in routine determinations of [ I]e»e-BGT binding because of the large
amounts of iodinated toxin that would be necessary.

During the experiments designed to determine optimal
plating densities, it was noticed that high initial cell densities
resulted in earlier myoblast fusion. The biochemical events involved
in the fusion process are not well understood. The timing of the onset

of fusion is known to be dependent upon growth medium composition and
to be influenced to some extent also by the initial cell density.

2+Myoblast fusion is Ca dependent; low concentrations in growth media

allowing cell proliferation but inhibiting any subsequent fusion. The
2+onset of fusion is accelerated by restoring optimal Ca 

concentrations in the culture medium (Shainberg et al.,1969; Fambrough
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and Rash, 1971). This procedure has proved useful in experiments 
designed to examine fusion as a synchronous process. Media 

supplemented with high concentrations of serum also inhibit the fusion 
process, which is accelerated by subsequent serum depletion (Yaffe, 
1971; Hauschka, 1974a). This procedure has proved useful in cloning 
techniques for expansion of muscle cell populations without fusion 
taking place. As already mentioned, the onset of spontaneous myoblast 
fusion is also dependent on cell density, a high cell density 
accelerating the fusion process (Konigsberg, 1971; Morris and Cole, 
1972; Hauschka, 1974a). These observations would suggest that the 
onset of spontaneous fusion results from the production of fusion 
stimulating factors or fran the depletion of grcwth-prcmoting factors 
and requires optimal levels of calcium (approximately 1.4mM). It is 
currently thought that the fusion process is stimulated by activation 
of a putative receptor that results in the breakdown of manbrane 
inositol g^sgjiolipids, the formtion of prostaglandins and a 
subsequent increase in cAMP and protein synthesis (see Wakelam, 1985 
for review).

The fusion of myoblasts is thought to trigger the 
production of many muscle-specific proteins, including the cholinergic 

receptors. Electrophysiological measurements of A(2h sensitivity
125(Dryden, 1970; Ehmbrough and Rash, 1971) and determinations of [ I]

od-BGT binding (Patrick et al.,1972; Sytowski et al.,1973; Prives and
Paterson, 1974) have revealed few, if any, AChRs on the myoblast

surface before fusion with a subsequent rapid increase in levels
thereafter. Myoblasts appear to be, however, capable of

differentiation in the absence of fusion. If fusion is inhibited by 
2+lowering the Ca concentration in the growth medium of chick muscle
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cultures, the myoblasts differentiate in the absence of fusion with a 
subsequent increase in surface AChR and AChE (Paterson and Prives, 
1973; Shainberg and Brik, 1978) and cytoplasmic CPK (Turner et 
al.,1976; Shainberg and Brik, 1978). It has been suggested, however, 

that these observations are indicative of a species specific 
phenomenon; in rat muscle cultures, the appearance of AChR, AChE and 
CPK depends on cell fusion. The increase in surface AChR on rat 
myotubes has been shown (Shainberg and Brik, 1978) to result from 

synthesis ^  novo in response to fusion, as apposed to the presence of 
a pool of pre-existing AChRs inside the myoblasts. The latter proposal 
has been suggested by the observation that chick myoblasts contain 
relatively high levels of intracellular, as opposed to surface, AChR 
(Teng and Fiszman, 1976).

1.2 Reduction of fibroblast growth
Primary cell cultures prepared from muscle are mixtures of 

both myoblasts and fibroblasts although other cell types, such as 
smooth muscle cells from vascular walls, could also be present. The 

contaminating fibroblasts usually overgrow the myotubes in culture 
unless their growth is minimised. The fibroblasts present can obscure 

the visual assessment of myotube growth and may affect this growth by 
competition for nutrients. Their presence can also make the design and 
interpretation of m n y  experiments difficult. In the context of the 
work carried out for this project, minimal fibroblast contamination is 

also desirable because of the contribution by fibroblasts to total 
[Me-^H] carnitine uptake by the cultures.

Several methods have been reported whereby the number of 

fibroblasts present in cultures can be reduced. These include the
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pre-plating of the primary cell suspension (Yaffe, 1968), the exposure 
0)f cells in primary suspensions to X-irradiation (Friedlander et 

ail., 1978) and the use of cytotoxic drugs to inhibit fibroblast cell 
(division (Fischbach, 1972; Wood, 1976). In the present studies, 
pre-plating was found not to reduce fibroblast growth effectively and 
was not routinely used. It vas also found moreover, that some of the 
supposed fibroblasts affixed to the pre-plates, when maintained in 
growth medium, developed into spontaneously contracting myotubes 
suggesting the additional removal of myogenic cells. These myotubes 
developed in the absence of a collagen-coated surface, probably as a 
result of fibronectins being produced by the fibroblasts present 
(Chiquet et al.,1979).

Fibroblast growth in the rat muscle cultures prepared for
this project, was routinely minimised by the addition of
fluorodeoxyuridine (FDÜ) or cytosine arabinoside (Ara C). FDU and Ara
C are mitotic inhibitors which exert their effects by inhibiting
synthesis and the replicative DbA polymerases respectively
(Cozzarelli, 1977). It has been reported that FDU can also prevent the

fusion of myoblasts in culture (Fambrough and Rash, 1971) which could
125explain the reduction in' the number of [ I]ot-BGT binding sites seen 

in the cultures treated with these drugs (see Table 2). It is also 
possible that the drugs v^re cytotoxic to some of the iryogenic cells 

(Cozzarelli, 1977). Despite these possible disadvantages, the 
effectiveness of FDU and Ara C in minimising the fibroblast 
contamination was felt to varrant their use.

A factor to be considered vben interpreting experimental 

results obtained from muscle cultures, is the contribution of 

fibroblasts to the parameters being determined. It is coninon practice
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bo present comparative data with respect to the total protein content
of the culture, the percentage of total nuclei present in myotubes or
to the total DbA present. These factors could only be relevant if the
contribution by fibroblasts to each count was negligible as thfêse
cells contribute protein, nuclei and continued DtA synthesis in the
cultures under examination. For this reason, it can be difficult to

compare results as culture conditions for the preparation and growth
of muscle cells are not standardised between laboratories. An example
of using such criteria could be demonstrated by using the experimental
results obtained after treatment of the rat muscle cultures with

125cytotoxic drugs. The number of [ I]oeBGT binding sites in the 
control, FDU and Ara C treated cultures would be 295.6 , 400.0 and
426.1 fmol per mg protein respectively (see Thble 2) as apposed to the 
presented result of 47.3, 36.8 and 39.2 fmol per culture veil 
respectively. The former result would clearly indicate a stimulatory 
effect of the drugs. Therefore, as many experinents were of a 
comparative nature, all results for this project are presented as per 

culture well.

1.3 Serum composition of growth medium
125There was little variation in growth, as judged by [ I] 

o^BGT binding, carnitine uptake and total protein content, between 
cultures established from the same primary cell suspension. The 
greater variability vhich v^s observed between cultures prepared at 
different times could result from a number of factors including mixed 
cell types in the original cell suspension, differing plating 
efficiencies and the composition of the particular serum batch used to 

supplement growth media. It is not easy to identify fibroblasts and
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myoblasts in cell suspensions as they are morphologically similar. The 

development of monoclonal antibodies specific for myoblasts (Walsh and 
Ritter, 1981) will help in this respect. The plating efficiencies of 

the cultured muscle cells were not determined as the high cell 
densities used made these determinations impracticable.

The composition of serum added to growth medium can vary

frcxn batch to batch. The components of serum include hormones,
vitamins, lipids and trace metals, variations in all of which may
significantly affect cultures (see Hauschka, 1972; Paul, 1975;
(Sospodarowicz and Moran, 1976; Sato and Reid, 1978; for reviews). Ekch
batch of serum was routinely pre-tested for its ability to promote
muscle cell growth. One particular serum batch apparently
deteriorated, giving rise to relatively poor cultures with lower

125myotube densities and reduced levels of [ I](XrBGT binding (for an 
exanple see Figure 13b, culture C).

The serum factors promoting muscle cell growth have still not 
been defined but are thought to be mainly hormonal (see Sato and Reid, 
1978 for review). Attempts have been made to clarify these factors 

with the use of serum-free chemically defined media which allow more 
detailed analyses of the influence of environmental factors on muscle 
differentiation, changes in membrane components and identification of 
components secreted by cells during different stages of development. A 

further aim is to produce reproducibly differentiated muscle cells. 
Several investigators have described defined serum-free media which 
support both growth and differentiation of primary rat and the L6 cell 

line (Florini and Roberts, 1979) and chick muscle cells (Kumegawa et 

al.,1980; Dollermeier et al.,1981). The medium described by Florini 

and Roberts (1979) was based on the addition of fetuin, insulin and
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dexamethasone. Kurægawa et al. (1980) defined a medium with added 
insulin and thyroxine vhile Dollenmeier et al. (1981) used a complex 
composition of hormones, vitamins and growth factors which again 
included insulin. A serum-free chanically defined medium is routinely 
used in this department for the growth of neuronal cells in culture 
after initial cell attachment has taken place in serum containing 
medium (Digby et al.,1985 - see "Materials" p.50 . The use of this
medium to promote rat muscle growth in culture was not successful;

125only poor growth, as judged by light microscopy and levels of [ I] 
(Xr-BGT binding, being demonstrated. The cultures grown in SFM were, 
however, ranarkably free of fibroblast contamination, a consequence 
also noted by Florini and Roberts (1979) and Dollenmeier et al.
(1981).

2. Growth of humn muscle cells in culture
There have been relatively few reports of human foetal muscle 

cells in culture; a fact reflecting the difficulty in supply. Table 32 
lists studies in which the successful growth of human foetal muscle 

cells was reported and vhich gave details of the conditions used for 
growth. As can be seen, a wide variety of growth medium compositions 

has been used. Although many of these studies based their techniques 
on those described by Yasin et al. (1977) for the growth of 
dissociated adult human tissue, or on those described by AskanSLs and 
Engel (1975) and Witkowski et al. (1976) for the growth of adult human 
explant cultures, inevitably each group has added modifications. Table 
33 lists similar details for adult human muscle cultures prepared by 

dissociation of tissue. In many cases, these studies do not give 

details describing the morphology or differentiation of the muscle



229

% WH C0CO •H
P
P ■HW 73 > w wu 73 \ w w0 > CJ uwp P ^  3̂
o 0 m inCO rC cn CM

P
O A

p 0<
Eh

0)
u
c
Q)U
0)
Q)

-P

Ir4Qi
u
(Dtn

•H
0)
eI
Ü

Q)
&
•HI
0)
-P
0U
b
-p
r-H
b
u

O
00 00 1— 1 p

(Ti r- 00 p
<T> P cn rn cn p cn in

00 1—1 00 1—1 00 1—1 CO
ID - (T\ - m 00 '' - cn - cn
CT» f> P 1—1 C P w P
1—1 <T> 0 - 0 cn P p -
- cn P cn • P 0 • 0 q• P - 0 P r- - P P 0 0

1—1 - « p 0 cn • CO 0 m >
0 o • P O 1—1 P 0

P 0 u P 0 P c PQ
P CTt 0 s 0 0 0
0 1—1 P 0 P 0 >

P 0 0 rX 0 tn c
w - 0 P rC 73 0 t̂î 0
0 0 >1 >i 0 U C •H B Ê
1— 1 •H C 0 p 0 Ui 0 p rS c 0
0 P 0 > 0 S :3 > A 0 •H 73

P > P 0 0 H p W <
0 0 0 H œ m 0 p 0
x: U CQ K u CO >H

w

ro

W
S
W 
073 Ch 
O

ro ro

O O

-P
gf—\I

§
rH

p0
-P
4-1
0
CO

CO U  CO OK k U k
in
<N

CM

C
O
-H
W
b4-1

W

ffi

w
+)fH
0

C
•H
X
o

O 0 M W P qW H W W 0
0 0 w w U u 0 •H
P 0 u u P 0

1—1 1 1 1 0 q
e p CO CO 1—1 p
q 0 in CM • • 0
•H w 1—1 p rC p
u Ü 0
P 73 q p
0 0 0 f—1
u A •H e

U 0 \■H q cn
P p q
q 73 o
w q 0 q p in

0 U 0 0
q •H p

w CO CO w w 73 0 CO CO
u u u q CO u u 0 q ÇQ u P U
k pL| k 0 k k P p m k X k

0 CO p
o in O q in o o u 0 o ID CO o
p P P p P p p k p p P p

P CM p CM I—1 CM

§
fd

s  a
k -H CĴ
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cultures obtained.

2.1 Conditions for growth

The human foetal muscle cultures established in this study 
showed a similar growth pattern to that observed for rat muscle cells 
in culture. Mononucleated cells settled on the collagen substratum and 
proliferated; the onset of fusion occurring spontaneously after 3-4 
days in culture, approximately one day later than noted in the rat 
cultures. The resulting myotubes continued to grow, as judged by light 
microscopy, but not to the same extent as rat myotubes in culture, 
being generally thinner, not as long, less dense and less branched. No 
spontaneous contractions were ever seen in the human cultures.

Use of media supplemented with 20% PCS stimulated the 
proliferation of cells and inhibited myoblast fusion as described by 
Hauschka (1974a) and by Yaffe (1971). This technique allowed lower 
initial cell densities to be used, fusion being initiated by serum 

depletion at cell confluence. The resulting myotubes \ære, however, 
heavily contaminated with fibroblasts and it is probable that this 
procedure would only prove useful where the percentage of fibroblasts 
in the initial cell suspension is low. This technique is used to 

promote human myoblast proliferation in cloning techniques (Blau and 
Webster, 1981; Yasin et al.,1981, 1982) or where human muscle cells 
are obtained fran one or more repassaging procedures (Neville et 
al.,1983; Yasin and van Beers, 1983; Graham et al.,1984; Bolhuis et 

al.,1985). Repassaging procedures \ære recommended by Konigsberg 

(1979) as yielding purer populations of cells, the fibroblasts tending 

to adhere to a plastic surface following the trypsinisation of primary 

muscle cultures. The repassaging procedure carried out in this work
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resulted in less fibroblast contamination in the secondary cultures
125and an increase in the number of [ I]cxrBGT binding sites per culture 

veil when coirpared to the primary culture (see Table 23). This 
indicated that a purer population of muscle cells was present in the 

secondary culture. Although the final cell yield was reduced on 
repassaging, this procedure may be worth pursuing. The growth of cells 
to confluence from a smaller initial cell density than used in this 
study, and subsequent repassaging of cultures, perhaps 2-3 times, 
could result in a purer population of muscle cells and an increased 
cell number. The problems encountered with fibroblast contamination in 
this study vere probably also contributed to by the difficulty in 
dissecting av^y all the foetal skin from the muscle pieces.

The addition of FDU or Ara C to restrict fibroblast growth in
human muscle cultures resulted in a sparse myotube population which

125was reflected in the reduced number of [ IJo^BGT binding sites 
(Table 22). The deleterious effects of FDU and Ara C probably arose 

fran inhibition of iryoblast fusion (Fambrough and Rash, 1971) and 
possibly from the cytotoxic effects of the drugs (Cozzarelli, 1977). 

The time over vhich human myoblasts fused to form myotubes was longer 
than that observed for rat myoblasts when fusion took place in GMl 
(containing 10% HS). This could explain the more severe effects on 
growth when human, as opposed to rat, muscle cultures wsre treated 

with these drugs.
The use of serum-free, chemically defined media (see 

"Materials" p.5C) supported the fusion of myoblasts in a similar 

manner to that of control cultures maintained in media supplemented 
with 10% HS, although not as veil as cultures maintained in media 

supplemented with 2% HS. These judgements vere made on the basis of
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125morphology and final numbers of [ I]o<rBGT binding sites (Tables 21 & 

26). SFM did not, however, support initial cell proliferation and 

growth although some cell attachment to the collagen substratum took 
place. This is in agreement with the observation of Yasin and van 
Beers (1983) who tested the effects of SFM on adult and foetal human 
muscle cell growth in culture. These workers used defined growth media 
with added fetuin, insulin and dexamethasone or alternatively with 
added insulin and thyroxine. Their SFM's also failed to support 
initial cell attachment and growth. When used at a later stage to 
promote myoblast fusion, both types of SFM supported myotube growth 
but to a lesser extent than did serum supplemented medium. Yasin and 
van Beers (1983), however, judged the differentiation of the myotubes 
present, based on morphological appearance and CPK levels, to be 
improved, particularly in the case of adult human muscle. The same 
workers also noted that fibroblast contamination was considerably 
reduced. The lack of cell adhesion and growth in the presence of SFM, 
both in this study and in that of Yasin and van Beers (1983), probably 

reflects the lack of fibronectin (Chiquet et al.,1979). The small 
amount of cell attachment seen in the presence of SFM probably arose 
from the presence of serum in the initial cell suspension, which was 
subsequently diluted in SFM. The experiments carried out with rat 
muscle cultures grown in SFM (see "Discussion" section 1.3) indicated 
that a deficiency of serum components resulted in poor growth and 
development. This was not the case with the human muscle cells 

suggesting that a better medium for the growth of human muscle in 
culture nay exist.

The use of nutrient deprivation to stimulate myoblast fusion in 

human muscle cultures has been reported by several groups of workers
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(Cambridge and Stern, 1981; Blau and Webster, 1981; Neville et
al.,1983; Graham et al.,1984; Bolhuis et al.,1985). This procedure was
subsequently used in the present investigations and it was observed
that the use of GM2 (containing 2% HS) resulted in an inproved
synchrony of fusion and an apparent increase in the extent of the
fusion process. The latter observation was suggested by the increased

125nyotube densities achieved and by the increased levels of [ I]o<-BGT 
binding when compared to control cultures maintained in @11 

(containing 10% HS). Nutrient deprivation also reduced the level of 
fibroblast contamination. Minimal proliferation of fibroblasts after 
nutrient deprivation of human muscle cultures has also been noted by 
other investigators (Harvey et al.,1979; Neville et al.,1983; Bolhuis 
et al.,1985). In this study, the use of (Ml followed by GM2, to 
stimulate myoblast fusion, was considered to be the most successful 
growth medium combination to be used for the growth of human foetal 

muscle cell cultures.

2.2 Addition of hormones or growth activators
The addition of cholera toxin or dbcAMP to growth media has 

been reported to stimulate fusion in cultured rat muscle (Stygall and 

Mirsky, 1980), and cholera toxin was included in the growth medium by 

one set of workers to increase the degree of fusion in foetal human 
muscle cells in culture (Adams and Bevan, 1985). Reports on the 
effects of adding dbcAMP to myoblasts in culture are variable. Stygall 

and Mirsky (1980) suggested that stimulation of myoblast fusion only 
occurs if the intracellular levels of cAMP are ' sub-optimal '. The 

addition of dboAMP to cultured foetal human muscle cells in this study 

did not appear to increase greatly the extent of myoblast fusion, as
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1 pqjudged by final levels of [ I]o^BGT binding sites (Table 27).
Dexamethasone, a steroid hormone, has been shown to stimulate

cell proliferation in rat muscle cultures (Florini and Roberts, 1979)
and has been included in the growth medium, together with insulin, to
promote myoblast fusion in m s s  cultures of humn muscle clonal cells
(Kedes et al., 1984). In the present study, the addition of
dexamethasone to humn muscle cells resulted in a 25% increase in 

125final levels of [ I](k-BGT binding sites (Table 27). This result was
obtained frcxn only one experiment in relatively poor cultures. It
could, however, be profitable to consider the addition of
dexamethasone to growth medium in future studies.

Insulin is a known growth promoter (see Froesch et al.,1985;
Kahn, 1985 for reviews) and has been shown to stimulate muscle cell
growth (Mandel and Pearson, 1974; Florini and Roberts, 1979; Kumegawa
et al.,1980) and fusion in culture (de la Haba et al.,1966; Mandel and
Pearson, 1974; Kumegawa et al.,1980). In this study, insulin did not
increase the extent of fusion of humn myoblasts but did appear to

increase cell proliferation. Addition of insulin to the growth medium
throughout the culture period resulted in an average 19% increase in

125the final numbers of [ I]o(-BGT binding sites (Table 27). No increase 

in toxin binding sites was observed if insulin was added at a later 
stage to promote myoblast fusion. Unfortunately, the early addition of 

insulin resulted in increased fibroblast contamination, which was 
reflected in increased total protein levels.

The addition of dbcAMP and on occasion, also of insulin to 
the growth medium resulted in an altered morphology of the resulting 

myotubes. These appeared broad and flat, and in the case of added 

dbcAMP acquired a 'wavy' membrane appearance. Clonal studies carried
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out by Hauschka (1974b) demonstrated that the morj^ology of human 

foetal myotubes altered with increasing age of the foetal tissue.
Young foetal tissue gave narrow myotubes in culture v^ereas older 

tissue ("^17 v^eks) resulted in broad, flat myotubes. A later study by 
Harvey et al. ( 1979 ) showed that the morphology of myotubes arising 
from human foetal explant cultures, changed with time in culture. The 
first nyotubes to appear v^re broad and flat, subsequently giving rise 
to long, narrow retractile myotubes. With increasing time in culture, 
broad flat myotubes v^re again apparent, and after 11 weeks, the 
narrow retractile form had become flattened and adopted a 'wavy' 
appearance. Both types of nyotube were observed to contract but the 
narrow retractile form exhibited greater responsiveness to 
iontophoretically applied ACh. It would appear from the studies of 
Harvey et al. (1979) that the narrow retractile form of myotube is the 
more developed but the significance of human myotube morphology in 
culture is unclear. The broad, flat myotubes in cultures treated with 
dboAMP or insulin could suggest that these cultures had 'aged'.

A recent report’by AskanZLs et al. (1984) described the 
effects of adding insulin, epidermal growth factor and fibroblast 

growth factor to adult human muscle in explant culture. These workers 
reported stimulated and extended nyoblast fusion in these cultures and 
increased development, as judged by CPK activity and the number of 
AChRs, at an earlier age. The effects of these additives on 
dissociated human foetal muscle in culture would therefore be worth 

investigating.
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2.3 Variation between cultures
The variation between human foetal muscle cultures prepared

from the same primary cell suspension was small, as judged by light
125microscopy, carnitine uptake and the number of [ I]c<rBGT binding 

sites. The greater variability between cultures established at 
different times was possibly attributable to the reasons outlined for 
rat muscle cultures (see "Discussion" section 1.3) but could also 
arise from the age of the foetal tissue used. In the experiment 
carried out comparing the growth of 9 week and 14 week foetal muscle 
under identical conditions, the older tissue gave denser, more 
branched myotube cultures but otherwise the morphology of the nyotubes 
appeared similar. The latter observation is in contrast to those of 
Hauschka (1974b) (discussed in the previous section). Hauschka (1974b) 
also demonstrated that the proportion of cells in the human foetal 
limb which could form muscle colonies rose from 15% at 40 days to over 
90% at 14 weeks.

2.4 Differentiation of human muscle cultures
The extent of differentiation in the human foetal muscle

125cultures was investigated by determining the number of [ I]«-BGT
binding sites present in culture. Décaméthonium bromide, an ACh

125agonist, inhibited [ I]o<-BC3T binding in a concentration-dependent 
manner, naximum inhibition being achieved at ImM décaméthonium. The 
degree of inhibition achieved by using this agonist was dependent on 
the extent of fibroblast growth in the cultures. High levels of 

fibroblast contamination led to relatively high levels of non-specific
1 p qbinding of [ I]«-BGT to the cultures. The use of unlabelled cx-BGT to 

detect non-specific binding was observed in two experiments to
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125increase the apparent specific binding of [ I]£x-bGT (Table 25). 
However, this procedure was considered to be less reliable and was not 
routinely used (Lunt, 1985).

125The specific binding of [ I](X.-BGT to the foetal human muscle
cultures was observed to increase rapidly after the onset of myoblast
fusion, reaching a peak within 4-5 days. Similar observations were
made by Franklin et al. (1980) and Blau and co-workers (1981, 1983)
for adult human muscle cultures prepared from dissociated tissue or
from pooled clonal cells respectively. In accordance with the
observations of Blau and co-workers (1981, 1983) it was observed that 

125the number of [ I]cx-BGT binding sites decreased after a peak value 
was obtained. These results are also in agreement with the findings of 
Prives et al. (1976) for cultured chick muscle cells. In the latter 
case, however, there is a suggestion that loss of surface AChRs 
results from muscle contractions (Shainberg et al.,1976; Birnbaum et 
al.,1980). The cultured human muscle in this study never showed 

spontaneous contractility. It is possible that a neural factor is 
necessary to stabilise or increase the AChRs on the surface of the 

myotubes (Christian et al.,1978; Podleski et al.,1978; Schaffner and 
Daniels, 1982; Salpeter et al.,1982; Buc-Caron et al.,1983).

The presence of occasioral spontaneous contractions of adult 
human myotubes in dissociated cultures has been observed by Yasin et 

al. (1977), Blau and co-workers (1981, 1983) and Bolhuis et al.
(1985). They have also been observed in foetal muscle explant culture 
(Harvey et al.,1979) but not in foetal muscle cultures prepared from 

dissociation of explant outgrowths (Meola et al.,1983). Other reports 
have given no details concerning the observation of spontaneous 

contractions.
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It vas not possible to correlate the CPK and AChE activities
of foetal human muscle cultures with time in this study because of the
number of replicate cultures that would be necessary. These activities

were determined on 7-day cultures, and found to be lew compared to
those of rat muscle cultures. The human rryotube cultures established
in the investigations carried out for this project generally appeared
imnature v^en compared to the rat myotube cultures. Although the two

125types of muscle AChR were shown to have similar affinities for [ I]
oc-BGT, the number of binding sites expressed and the enzyme activities
measured per culture were far lower in the human cultures (Table 34).
One contribution to these factors is the lower myotube densities
achieved in the human cultures. However, the rat nyotube cultures had

125similar or much higher levels of [ I]o<rBGT binding per culture v^en 
initiated at low cell densities (giving rise to sparse or low density 
myotubes) and assayed at lower concentrations of iodinated toxin. 
Therfore it is safe to assume that the human nyotubes v^re each 

expressing lower numbers of AChRs.

2.5 Maturity of cultures
A similar lack of naturation in human muscle cultures, to that 

described above, has been indicated in other studies. Using the 
measuranent of muscle specific proteins and other biochemical 

parameters of cell metabolism as criteria for the differentiation of 
human adult muscle in culture, relative lack of maturity has been 

noted by lannaccone et al. (1982) and Bolhuis et al. (1985). Both 
groups of workers used techniques based on the trypsinisation of 

explant outgrowths. lannaccone et al. (1982) noted that early 

myogenesis, as judged by CPK and pyruvate kinase activity and myosin
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synthesis, was similar to that observed with chick muscle culture. 
However, the degree of differentiation observed in chick cultures 
after 7-10 days growth was not equalled by the hunan cultures after 36 

days growth. Using similar parameters, Bolhuis et al. (1985) concluded 
that only an early differentiation phase has been reached by the human 
muscle cultures although spontaneous contractions were occasionally 

observed.
Franklin et al. (1980) found that the levels of AChRs expressed

in adult human dissociated muscle cultures were 5-fold lower than
those expressed by neonatal mouse muscle cultures established under
similar conditions. Determinations of ACh activated channel currents

125and autoradiographic analysis of [ I](X-BGT binding to human foetal 
dissociated muscle cultures have shown a very low density of AChRs to 
be present on the myotubes (Adams and Bevan, 1983, 1985) when compared 
to other species (Table 35). Askan^js et al. (1977), using an indirect 
immunoperoxidase method for bound AChR, noted only faint staining of 
adult human myotubes in culture in contrast to the heavy staining 
obtained with rat and chick cultured myotubes. No basal laminar 
membrane was observed in the human cultures (Askan-a-s et al.,1977) and 
there m s  negligible histochonical staining for AChE (Kctoayashi and 
Askanaus, 1985). Later studies involving oo-cultures of human muscle 
and foetal rat spinal cord (Kobayashi and Askana_s, 1985) found 
increased levels of AChR and AChE forming at the synaptic junctions, 
and the partial appearance of a basement nembrane. Recently, in this 

department, successful co-cultures of human foetal muscle and human 

neuronal cells has been achieved. The myotubes present appeared 

morphologically to attain a higher degree of maturity than noted vhen 

cultured aneurally. Many of the neurones appeared to be in functional
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TABLE 34
COMPARISON OF RAT AND HUMAN MUSCLE CELLS IN CULTURE 
(THIS STUDY)

1 p c
1 ) Specific E I IcxrBGT binding

( fmol/culture well ) Protein Source
( ]ig/culture well )

13.4 nM 
16.6 nM

+55.5 - 9.9 (19)
+15.4 - 5.3 (33)

103.3 - 14.4 Rat
124.3 - 26.0 Human

2) CPK activity nmol substrate converted/min/culture well
18.1 - 2.1 (5) Rat 
7.7 - 2.5 (4) Human

3) AChE activity nmol substrate hydrolysed/min/culture well
0.23 i 0.06 (5) Rat 
0.15 - 0.03 (3) Human

All results are the mean - SD (number of preparations)

TABLE 35
DENSITY OF ACETYLCHOLINE RECEPTORS ON CULTURED MUSCLE CELLS

Muscle source Receptor density Reference2(sites/\im )
Chick embryo (cluster) 9000 Sytowski et a l .,1973

(diffuse) 900
Rat embryo (cluster) 8000 Axelrod et a l .,1976

(diffuse) 2000

(cluster) 3000-4000 Land et a l .,1977
(diffuse) 54-900

Rat L-6 cell line 5-400 Land et a l .,1977
Human foetal 1 - 4 Adams & Bevan,

1983, 1985
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contact with the myotubes and after two weeks of growth, ireny of the 
myotubes were observed to contract spontaneously. These studies 
indicate that neural factors could be necessary for further 
development of cultured human muscle to take place.

Investigations by Harvey and co-workers (1979, 1980) have 
indicated that a long maturation time was necessary for aneurally 
cultured human muscle, prepared from explants, to attain fully 
differentiated membrane characteristics. These studies (Harvey et 
al.,1979, 1980) are the only reports for foetal human muscle 
correlating growth with any but morphological criteria. After the 
first appearance of myotubes, sensitivity to applied ACh and resting 
membrane potentials increased with time in culture. Although the 
myotubes appeared morphologically well differentiated after 4-6 veeks 
growth, having cross-striations and some spontaneous contractions, ACh 
sensitivity did not reach maximal levels until 8-10 weeks growth. The 
long development time of these cultures contrasts sharply with those 
observed for rat or chick muscle cultures (Harvey, 1984). The need for 
a long maturation period for fully differentiated aneurally cultured 

human muscle could reflect the long development period of muscle in 

vivo (Minguetti and Mair, 1981). Maintenance of dissociated cell 
cultures for such long periods would appear to be difficult and the 
human muscle cultures tested in this work deteriorated after 
approximately two weeks in culture. This could reflect the high cell 

densities used, the lack of suitable growth medium or the nature of 
the dissociation techniques used to establish muscle cells. These 

techniques would appear to result in the more rapid growth of cultured 
muscle when compared to the time taken for outgrowths of explant 
tissue to mature (eg. Askans-s et al.,1977; Bevan et al.,1978; Harvey
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et al.,1979; Blau and Webster, 1981; lannaccone et al.,1982).

3. Uptake of [Me-^H] carnitine by muscle cultures

Carnitine ({T-atnino-jghydroxy-butyric acid. 3-methyl-betaine) 
is found in a T\umber of cell types; its concentration in muscle cells 
is particularly high (Greville and Tubbs, 1968). Both cardiac and 

skeletal muscle cells depend upon carnitine produced by the liver for 
their supply, which they take up by means of a membrane-associated 
active transport system (Rebouche, 1977). Itie role of carnitine is to 
promote the oxidation of fatty acids by facilitating their transfer 
across the inner mitochondrial membrane (Fritz and Marquis, 1965).

Carnitine is a structural analogue of choline and its 
0-ester, acetylcarnitine, is an analogue of acetylcholine. From the 
structural similarity of carnitine to choline, and acetylcarnitine to 
acetylcholine (see Figure 48); it has accordingly been assumed that 
acetylcarnitine could play a role in cholinergic neurotransmission 
(Sass and Werness, 1973). L-Acetylcarnitine, the naturally occurring 
form in the (3NS, is effective in increasing the spontaneous activity 

and potentiating cholinergic and serotonergic responses of brainstem 

neurones in the rat (Tenpesta et al.,1985). Acetylcarnitine has been 

shown to have a specific nicotinic action on the neuromuscular 
junction, blocking transmission in the cat anterior tibialis muscle by 
depolarisation, and augmenting the effects of other depolarising 

blockers (Blum et al.,1971). Ihe same study dononstrated the 
depolarising effects of carnitine and acetylcarnitine on isolated frog 
muscle. These effects vere less potent than those of acetylcholine, 

more closely resembling those of choline. Acetylcarnitine was 
nevertheless shown to be acting on the same receptor sites as



244

acetylcholine. Both the L- and D- isomers showed nicotinic effects.
The suggestion that there is a competitive action between

carnitine and acetylcholine on neuromuscular junctional receptors is
interesting in the context of MG. The administration of D,L-camitine
to uraemic patients on haanodialysis ( in order to lower levels of

endogenous triglycerides) was shown to produce a myasthenic like
syndrome in 3 out of 30 patients, which resulted in altered
electromyograms and decreased muscle action potentials (Bazzato et
al., 1981). The syndrome was prevented by use of L-carnitine at similar
dosages. The myasthenic effects of treatment with D,L-carnitine were
also noted in a later study (Clair et al.,1984), one patient
developing muscle fatiguability, diplopia and difficulty in chewing
and swallowing. In view of these reports, the effects of D,L-camitine

125on the binding of [ I]dc-BGT to human crude muscle extracts or to rat
myotube cultures (see "Results" sections B 1.13 and A 1.12
respectively) vere studied. In the former case, incubation of

detergent-solubilised AChR with D,L-carnitine (10 ^ - 10 ^) for 30
min at 23°C did not inhibit the subsequent binding of [̂ ^̂ I]cXe-BGT. In

the latter case, incubation of myotube cultures with D,L-carnitine

(0.15 - 1.5pM) for 18h at 37°C, followed by washing (conditions under
which myotoxicity assays vere carried out) had no effect on the number 

125of [ I]b<-BC?r binding sites expressed. It was concluded that, under 
the conditions used, D,L-carnitine did not affect the function of 
AChRs.

In order to study the nyolytic effects of myasthenic serum, 
use was made of a quantitative assay for muscle lysis originally 

developed by Cambridge and Stern (1981) to study cell-mediated 
myotoxicity in polymyositis. The method depends upon the preferential
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uptake by cultured myotubes of [Me-^H] carnitine, loss of which can be 
monitored following cytolytic damage. A major advantage of this 
procedure was reported to be the very much slower uptake of carnitine 
by fibroblasts, which, as extensively discussed earlier, contaminate 

myotube cultures (Cambridge and Stern, 1981). Carnitine uptake by 
cultured human foetal myotubes was shown by these authors to be 
five-fold higher than by cultured human skin fibroblasts. A study of 
carnitine uptake and loss by human myocardial cells and mouse 
fibroblast cells frc*n established cell lines (Bohmer et al.,1977) 
demonstrated a 3-10 fold higher uptake of [Me-^H] carnitine by the 
muscle cells than by the fibroblasts. In the present study carnitine 
uptake by human muscle cells was approximately six times higher than 
that by fibroblasts; the corresponding figure for rat myotubes was 3-4 
fold. Loss of radiolabelled carnitine from the muscle cells in the 
study of Bohmer et al. (1977) was 7% per hour; a figure similar to 
those obtained in the present work for rat myotube cultures (6.4%/h) 
and human myotube cultures (4-5%/h). The human myotube cultures 

retained similar or greater amounts of radioactivity than the rat 
myotube cultures, when labelled with D,L-[Me-^H] carnitine under the 
same conditions. This was unexpected in view of the greater density 
and differentiation of the rat cultures. Differences between carnitine 
uptake of human and rat cultures was greatest with the L-isomer of 

carnitine; the human cultures appearing to take up approximately twice 
that of the rat cultures. It is not clear Whether these results 
reflect species differences or different states of differentiation. It 

has been reported that cultured human foetal muscle cells, as is the 

case with adult human muscle, have a higher oxidative than glycolytic 

metabolism (Meola et al.,1983) which the authors suggested was a
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species-specific phenomena.

4. Effects of myasthenic serum on muscle cells in culture
4.1 Binding of serum iirmunoglobulins to muscle cultures

The cross-reactivity of myasthenic iirmunoglobulins with rat
muscle cells in culture was determined for 4 serum samples covering a
range of anti-AChR antibody titres. Binding was detected by using 
125[ I] goat anti-human light chain antibodies. Under the conditions

used, normal serum gave a mean binding value of 205% relative to
cultures to which no additions of serum were made. The binding by
myasthenic serum gave a mean value of 338%, indicating the specific
binding of myasthenic immunoglobulins to cultured rat muscle antigens.
Equivalent experiments, using the same normal and myasthenic serum
samples, were carried out with human muscle cells in culture. The
binding demonstrated by normal and myasthenic serum samples gave mean
values of 131% and 319% respectively. The higher binding of normal
human iirmunoglobulins to rat muscle cultures as compared with human

cultures could indicate specific binding to antigens on rat muscle
cultures or alternatively, simply reflect a generally higher

non-specific level of binding to these cultures. Overall, it would
appear that, as expected, myasthenic serum immunoglobulins showed a

higher degree of reactivity with human muscle cultures (2.4 x mean
normal levels) than with rat muscle cultures (1.7 x mean normal
levels). Although the number of myasthenic sera tested was small, it

125appeared that myasthenic serum binding, as detected by [ I] goat 
anti-human light chain antibodies, was correlated with anti-AChR 

antibody titre (Figures 19 and 45). The results also suggested that 

the binding of myasthenic serum of relatively low anti-AChR antibody
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ttitres (ie. less than 16.2rM) would not be detected by this method.

125<4.2 Reduction of [ I]o<c-BGT binding sites by myasthenic serum
125The reduction in the number of [ I]c<-BGT binding sites on

irat myotube cultures by myasthenic serum samples ves measured by
(determining the number of sites remaining after pre-incubation of the
rmuscle cultures with myasthenic serum. Significant reductions,
irelative to normal serum controls, were shown by 4 out of 7 myasthenic
fserum samples tested. These effects were independent of complement as
ithe sera vrere heat-inactivated before use. A reduction in the number
(of toxin binding sites was not observed after incubation of the
(cultures with 3 myasthenic serum samples of relatively low anti-AChR
antibody titre (ie. less than 14.8nM). Overall, however, the
(correlation between anti-AChR antibody titre and site reduction was

125poor. The loss of [ I]t>4-BGT binding sites was dependent on serum
(concentration for one particular sample. Pre-incubation of rat muscle
(cultures with serum samples at 4°C, gave similar results, suggesting
that the effect arose from direct blcokade of the o<-B(3T binding site
rather than from increased energy-dependent receptor degradation. It
should be noted, however, that the serum samples tested were added at
roc*n temperature before transferral to a 4°C environment and 

125subseiquent [ I]Ok-BGT binding assays were curried out at room 

temperature. It is therefore possible that degradation of the AChR 

played a part in the effects of myasthenic sera.
Drachman et al. (1982) recommended a procedure by which 

une(quivocal blockade of cultured rat muscle A(2hR was demonstrated.

This involved the addition and incubation of myasthenic 
immunoglobulins to rat muscle cultures for 18h at 4°C, before
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subsequent saturation of the cultures with cx-toxin for 4h at 4°C. In 
this way, degradation was eliminated and possible dissociation of 
antibody was minimised. Using this procedure, Drachman et al. (1981, 

1982) reported that despite potential cross-reactivity problems, 88% 
of the 48 myasthenic serum samples tested produced significant 
blockade of AChRs and furthermore, that the extent of blockade 
correlated with the clinical status of the patient. The studies 
described in the present work suggest that, under the conditions used, 
significant differences in binding of myasthenic immunoglobulins and 
in blockade of toxin binding were only observed at higher levels of 
anti-AChR antibody content. It could be that the use of purified 
iitmunoglobulin or IgG would increase the sensitivity of the assay 
methods used v^ich could be complicated by the non-specific binding of 
serum proteins. Hcwever, cross-reactivity between cultured rat muscle 
AChR and myasthenic serum anti-AC!hR antibodies was clearly indicated.

Theoretically, it is possible that antibodies could produce 
blockade of AChRs by binding directly at, or near to the active sites 
of the receptors, thereby sterically hindering access to the sites, or 
by aliosterically interfering with cx-BGT binding (see Figure 49). It 
has been reported that only a relatively small fraction of antibodies 
to the AChR in myasthenic patients bind directly to the cxr-BGT binding 
site itself (Dwyer et al.,1979; Mittag et al.,1981; Vincent and 

Newsom-Davis 1979, 1980, 1982; Whiting et al.,1983) although in other 
studies using chick muscle cells in culture (Fulpius et al.,1981) 
nearly half the patients had some antibody capable of binding to the 
site. Hcwever, as pointed out in the "Introduction" (p. 33), the 

ability of antibodies to block binding of o<-BGT may not necessarily 
parallel their ability to interfere with ACh binding at the
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FTCURE 49

Schematic representation of possible sites of 
attachment of anti-AChR antibody causing 'blockade' 
of receptor. In 1) the antibody attaches to the ACh 
combining site. In 2) antibody attaches near the ACh 
binding site and sterically hinders the binding of ACh 
and ÙC-BGT. In 3) the antibody does not directly 
interfere with the ACh binding site, but alters the 
AChR molecule thus inhibiting the ACh or CX-BGT binding.
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neurcmuscular junction.

4.3 The myotoxicity of myasthenic serum to rat muscle cells in culture 
The myolytic effects of myasthénie serum were tested using the 

[Me-^H] carnitine release method of Cambridge and Stern (1981).

Initial experiments tested the effects of normal and myasthenic serum 
samples vAich had not been subjected to heat treatment. Some of the 

fresh normal serum samples caused an increased release of 
radioactivity from the myotube cultures, comparable to that observed 
by some samples of myasthenic serum (up to 30% myotoxicity). The 
myolytic effects of these sera were reduced by heat-treatment of the 
sera for 30 min at 56°C and restored in the case of myasthenic sera 
but not of normal sera, by the subsequent addition of guinea-pig 
complement. The measured myotoxicity of the fresh normal sera was also 
reduced by absorption with rat liver homogenate which would suggest 
that these sera contain non-tissue specific components which være 
toxic to the rat muscle cultures. The observation, however, that 
toxicity was not restored, after heat-treatment, by subsequent 
addition of GPC would suggest that the factor responsible v^s not an 

antibody directed against rat muscle antigens. In this context, the 

high toxicity to rat muscle cultures demonstrated by a fresh rabbit 
serum sample was interesting (see "Results" section A 2.2.5). This 
toxicity was reduced to normal levels (less than 20% under the assay 

conditions used) after storage at -20°C for over a year. As noted for 
the normal human samples, this toxicity was not restored by the 

addition of complement under the conditions used to demonstrate the 

complement-mediated myotoxicity of myasthenic sera. It is known that 
some serum batches used to supplement growth media in tissue culture
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studies can be toxic to cultured cells (see Paul, 1975) and for this 
reason all such sera are routinely heat-treated before use. Other 
workers have also noted the heat-labile toxicity of some normal human 
serum samples v^en added to rat muscle cells in culture (Obata et 
al., 1976). The mechanism of this toxicity remains unclear but appears 

to differ from that shown by normal human sera to chick muscle 
cultures; t±is is associated with the widespread occurence of 
anti-chick tissue antibodies (Harvey et al.,1978b). In order to avoid 
complications arising from this labile, toxic factor, and also to 
obviate variations arising from the lability of endogenous complement, 
all serum samples subsequently tested for myotoxicity were routinely 
heat-inactivated before use. Heat-inactivated serum samples tested 
alone, in the absence of complément, caused a measured myotoxicity of 
less than 20%. Myotoxicity measurements falling belcw this value were 
therefore taken as lying within normal limits.

The myotoxic effects of myasthenic sera in the presence of 
complement are consistent with antibody-initiated lysis of the rat 
myotube manbranes. Specificity of the lytic action v^s shown by the 
observation that a highly myolytic myasthenic serum was not toxic to 

rat fibroblast cultures, in the presence of GPC, when these cultures 

were tested in parallel with muscle cultures under the same conditions 
(Table 8). The myotoxicity demonstrated by myasthenic serum samples in 

the presence of GPC was dependent on the amount of GPC added (Figure 
24a) and on the activity of the GPC source tested. Complement is 
commonly assayed in terms of its activity expressed by the degree of 
lysis of a standard suspension of antibody-coated sheep red blood 
cells. The volume of complement added correlates with the degree of 
lysis attained (Lachmann and Hcbart, 1978). Fresh human or rat sera
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were generally ineffective as sources of complement. These results are
consistent with the lack of complement-mediated myotoxicity shown by
myasthenic sera in other studies where fresh rat serum (Lennon, 1978b)

or low amounts of GPC (5% v/v, total volume unstated, Liveson et
al.,1976) vere added as a source of complement.

Drachman et al. (1980) tested the effects of fresh human
serum, as a source of complement, on myasthenic immunoglobulin-induced
loss of AChRs on cultured rat muscle. This study failed to show
enhancement by complement iu vitro even though the passive transfer of
these immunoglobulins to mice resulted in complement-dependent EAMG.
In the present work, a similar iu vitro study using rat muscle
cultures, showed that rryasthenic serum sanples reduced the numbers of 
125[ IJo^BGT binding sites independently of GPC and in the absence of

myotoxic effects. Hcwever, the addition of complement greatly enhanced 
125the loss of [ I]c<-B(jr binding sites v^ich was paralleled by the 

increased measured myotoxicity (Table 9). One myasthenic serum (from 
patient MG 4, sample i) failed to reduce the number of available toxin 
binding sites relative to controls or to cause myotoxicity either with 
or without added ccxrplement. This serum had a relatively low anti-AChR 
antibody titre (12.2nM). Another serum sample from the same patient 

(anti-AChR antibody titre = 42.0nM) however, both blocked toxin 
binding and showed myotoxicity. These results would suggest that under 
the conditions used, the toxicity depends on the titre of 
cross-reacting antibodies.

The degree of complement-mediated myotoxicity produced by 
myasthenic sera did not appear to be affected by variations in the 
density of nyotubes, as judged morphologically and by the number of 
[ Ilo^BGT binding sites (see Table 10). It is possible that, in the
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experiments carried out, optimal conditions for maximum lysis were 
achieved at the highest myotube density tested which would therefore 
also be optimal where a lower number of myotubes were present. For 

this reason, cultures demonstrating similar myotube densities were 
used for all myotoxicity studies, and studies of a comparative nature 

were carried out on replicate muscle cultures. High density muscle 
cultures would appear to be required for the myotoxicity assay, to 
optimise the differences in [Me-^H] carnitine uptake by myotubes and 
fibroblasts present in the cultures. Throughout the course of 
myotoxicity studies in this project, it was observed that where 
myasthenic serum samples demonstrated high myotoxicity values, damage 
to myotubes was clearly visible in the light microscope thus 
supporting the implications of the quantitative assay procedure used.

A myotoxicity study, using optimised conditions for assay, 
was carried out to determine the complement-mediated effects of a 
range of myasthenic and normal serum samples. Under the conditions 
used, serum samples from 9 out of 13 myasthenic donors caused 

accelerated loss, relative to normal serum controls, of labelled 
carnitine from rat myotubes. In every case, the observed myotoxicity 

was dependent on the addition of complement. The myotoxicity values 
given by the normal, myasthenic or complement sera tested alone, and 
by the normal sera in the presence of complement, were all belcw 20% 
(Table 11 and Figure 27).

Serum samples from patients with polymyositis were also 
tested for ccwplement-mediated myotoxicity. These patients were chosen 
as an example of muscle degenerative disease also possibly of 

autoimmune origin (Currie, 1970; Currie et al.,1971). It has recently 
been shown that the neurcxnuscular junctions of these patients have
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reduced numbers of AChRs and that polymyositic sera or IgG could 
increase the degradation of AChR vitro in a similar way, but to a 
lesser extent, to that of myasthenic sera (Pestronk and Drachman, 
1985). The same study, however, demonstrated only a very low (<1.2nM) 
or non-detectable level of anti-AChR antibodies in these sera.
Patients with polymyositis are known to have serum antibodies directed 
against cytoplasmic elanents of skeletal muscle, such as myosin (Wada 
et al.,1983) but the observed damage to muscle vhich occurs in this 
disease is principally thought to be mediated by lyirphocytotoxic 
mechanisms (Currie, 1970; Currie et al.,1971; Kakulas et al.,1971; 
Dawkins and Mastaglia, 1973; (Cambridge and Stern, 1981). In the study 
by Davkins and Mastaglia (1973), addition of heat-inactivated 
polymyositic serum (100^1, 10% v/v) in the presence of GPC (50pl, 5% 
v/v) was not found to be toxic to chick muscle cells in culture, as 
judged by release of ^^Cr from the muscle cells. In the myotoxicity 
study carried out for this project, serum from polymyositis patients 

did not cause ccmplement^nnediated myotoxicity of rat myotubes in 

culture, relative to the normal controls, when tested under the same 
conditions as sera from myasthenic patients (Table 11 and Figure 27). 
It would thus appear that, under the conditions used for the study, 

the observed myotoxicity is specific for MG.
In the myotoxicity study, all the myasthenic serum samples 

tested contained anti-AChR antibodies, the involvement of which in the 
lytic process accordingly seems likely. Although correlation of 
anti-AChR antibody titre with myotoxicity values is not good, it does 
seem that myasthenic serum samples with myotoxicity values within the 

normal range tend to have relatively lew anti-A(3hR antibody titres 

(ie. less than 20nM). Nevertheless, some samples with high myotoxicity
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also had lower antibody titres (Table 12) and it may be that, in such 
cases, the percentage of the anti-AChR antibodies present which 
cross-react with rat muscle ACZhR and/or which can effectively activate 
coiplement is higher. It was obvious from the experiments carried out 

to determine optimal levels of added nyasthenic serum and GPC to 
detect myotoxicity (Figure 24) that each serum demonstrated different 
characteristics which probably reflects a difference in ability of the 
antibodies present to both bind to muscle conponents and to activate 
coirplement.

That most myasthenic serum samples can cause 
conplement-mediated myotoxicity in rat muscle cultures was further 
indicated by experiments where the conditions used for assay were 
adapted in order to detect myotoxicity by sera of relatively lew 
anti-A(ZhR antibody titre (see "Results" section A 2.2.14). Under these 
conditions, in which larger amounts of serum and GPC were added to the 
myotube cultures, an accelerated loss, when compared to normal serum 
controls, of radiolabelled carnitine was detected in 3 of the 4 sera 
tested. The myasthenic serum demonstrating no relative myotoxicity was 
of the lowest anti-A(2hR antibody titre tested (3.6nM) and it is 
probable that in this case, optimal requirements for myotoxicity were 

still not reached.
The ability of antibodies to muscle membrane surface antigens 

to cause damage to muscle cells in culture in the presence of 
complement, has been demonstrated in studies unrelated to M3. Chick 

muscle cells in culture treated with antisera to chick-specific 
antigens demonstrate characteristic staining of the muscle membrane 
after detection of bound antibodies by an indirect immunofluorescence 

technique (DaWcins and Holborcw, 1972). No staining was present on
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chick muscle cultures when these were treated with antisera directed 

against intracellular muscle antigens. In the same study, it was 

danonstrated that the antibodies to surface antigens of chick muscle, 
but not antibodies directed at intracellular components, caused 
cytotoxicity in the presence of GPC when detected by a ^^Cr release 

method. The degree of cytotoxicity attained also correlated with the 
intensity of fluorescent staining achieved (Davdcins and Holborcw, 
1972). The cytotoxicity conditions used by these workers involved the 
incubation of the muscle cultures for 18 hours with antiserum and GPC 
added at equal concentrations (50pl, 5% v/v).

A later study by Stephens and Henkart (1979) showed lysis of 
cultured rat muscle by GPC after trinitrcphenol (TNP) modification of 
the muscle membrane with 2,4,6-trinitrobenzenesulphonate and addition 
of rabbit anti-TNP serum (10% v/v) and complement (final dilution 1:2 
to 1:4). Lysis was judged morphologically by failure to exclude trypan 
blue dye from the muscle cells. These authors showed that w^ile low 
concentrations of added GPC affected the electrical properties of the 
muscle membranes, lysis was only achieved by addition of high 
concentrations of GPC and occurred within one hour of incubation. The 
effects on the electrical membrane properties, in response to antibody 
and complement, was reversible by washing the cells shortly after 

depolarisation or if low concentrations of GPC were used. These 
studies suggested that while muscle cells coated with antibody could 
bind ccmplement with the subsequent formation of the membrane attack 
complex (C5 - C9) and the influx of extracellular ions, the muscle 
cells possessed an efficient repair mechanism that could reverse the 

effects of membrane damage. The effectiveness of these mechanisms vas 

overccxre, hcwever, in the sustained presence of large amounts of added
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conplement. The studies by Stephens and Henkart (1979) oould readily 

explain the results of Lennon (1978b) who incubated EAMG serum with 
rat muscle cells in the presence of rat serum as a source of 
conplement. No lysis was detected despite the presence of IgG and C3 
on the rat cells.

In the myotoxicity experiments carried out for this project, 
it seemed probable that the antibodies responsible for the observed 
lysis were directed at the AChR on rat muscle membranes. Hcwever, in 
addition to antibodies to the AChR, patients with MG have circulating 
antibodies to various other skeletal muscle antigens and these should 

be considered. The occurrence of anti-striational antibodies, directed 
against cytoplasmic elements of the contractile apparatus, is well 
documented in MG (see Newscm-Davis and Vincent, 1982). The presence of 
these antibodies was demonstrated before that of specific anti-AChR 
antibodies was known (Strauss et al., 1960; Van der Geld et al.,1963; 
Beutner et al.,1966). It has been shown that while approximately only 
45% of all myasthenic patients have circulating anti-striational 
antibodies, almost all patients with a thymoma have these antibodies 
(Oosterhuis et al.,1976). Hov^ver, the presence of these antibodies is 

not specific for MG as 25% of patients with a thymoma not associated 
with MG also have circulating anti-striational antibodies (Oosterhuis 
et al.,1976; Limburg et al.,1983). These antibodies interact with 
intracellular antigens hence it is unlikely in the tissue culture 
system used for myotoxicity studies, that the antibodies giving rise 

to complement-mediated lysis are directed at any but surface antigens.
Other studies have demonstrated the presence of antibodies to 

a citric acid extract of skeletal muscle which again can be detected 

in nearly all myasthenic sera from patients with a thymoma, but not at



259

all or in a low incidence, in serum from myasthenic patients with no 

associated thymoma (Aarli et al.,1981; Gilhus et al.,1983a,b). The 
antibodies to citric acid extract have been shown by 
immunofluorescence techniques, to bind near the surface of striated 

muscle cells and to be directed at antigens not associated with the 
AChR (Gilhus et al. ,1983a,b). The presence of these antibodies in the 
myasthenic serum samples used for the myotoxicity studies cannot be 
discounted although it is known that where clinical details v^re 
available for a few of the myolytic samples, the donors had no 
associated thymoma (personal communication Drs. Wallington, (Z^npbell 
and Wakefield). Hcwever, as described in the next section, attempts 
were made to define the specificity of the myotoxic components of 
myasthenic sera.

4.4 Anti-AChR antibody-dependent myotoxicity
Experiments designed to determine the specificity of the 

antibody-dependent complement-mediated myotoxicity to rat muscle A(3hR 

were carried out by using two different approaches. These experiments 
utilised antisera raised in animals to purified A(3hR or human 
jryasthenic serum from v^ich anti-AChR antibodies were specifically 

removed.
The use of rabbit anti-foetal calf AChR and rabbit 

anti-junctional rat AChR antisera both produced accelerated loss, 
relative to the normal rabbit serum control, of radiolabelled 
carnitine from rat muscle cells when used in the complement-mediated 

lyotoxicity assay. The conditions for assay v^re the same as used in 

the myotoxicity study to detect the lytic activity of myasthenic sera, 

îhe antiserum to rat junctional AChR only gave a myotoxicity value of
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37.5% in the presence of ccmplement even though it had a high 
anti-AChR antibody titre (105 nM) when tested against crude muscle 
extracts of rat junctional AChR. It is possible that this antisera 
contained a low proportion of complement-fixing anti-AChR antibodies. 

Sheep anti-Torpedo AChR antiserum did not cause myotoxicity in the 
presence of conploment. It is known that anti-AChR antibodies can 
differ in their cross-reactivity with AChR from different species 

(Lindstrcm et al.,1978b; McAdams and Roses, 1980; Savage-Marengo et 
al.,1979, 1980; Harrison et al.,1981; Vincent and Newsom-Davis, 1982) 
and that anti-Torpedo AChR antisera in particular have limited 
cross-reactivity with mammalian AChR (Lindstrom et al.,1978b). 
Nevertheless, the demonstration of conplement-mediated myotoxicity by 
rabbit anti-foetal calf and anti-rat junctional AChR antisera would 
indicate that antibodies specific for the AChR can cause 
conplement-msdiated myotoxicity in a similar manner to that observed 
for human myasthenic sera.

Evidence that anti-AChR antibodies are the major factor 

in mediating myotoxicity in the assay system used, was provided by the 
consequence of their specific immunoabsorption from human myasthenic 
serum. AChR bound to toxin-agarose affinity columns has been used in 
several studies to purify anti-AChR antibodies directed at Torpedo 
(Schwartz et al.,1979; Hinman et al.,1985) and human AChR (Lang et 

al.,1982; Whiting et al.,1983).
Lang et al. (1982) coupled human A(ZhR to a covalently 

linked o(.-BGT-Sepharose 4B matrix through the ot-BGT binding site. They 
showed that the column was capable of adsorbing over 90% of the 
anti-AChR antibodies w^en limiting concentrations were applied to the 

col<imn. However, when excess antibody wes applied, different amounts



261

of anti-AChR antibody were adsorbed, the molar ratios of IgG to AChR 

varying from 1:1 to 1:20 for the 3 myasthenic sera tested. In the 

present project, maximum removal of antibody was 67.9% (Table 16) when 
the molar ratio of antibody to AChR on the column was approximately 
1:4. Application of a second sample of the myasthenic serum to the 
same affinity column resulted in further removal of antibody 
indicating that the AChR on the column was not saturated. This could 
indicate that a longer period than 2 h was necessary to effectively 
remove a maximum amount of antibody. Alternatively, the affinity 
column could have separated sub-populations of antibody based upon 
their specificity for different antigenic determinants on the AChR.

The unbound fractions from the affinity column were 
concentrated to the original volume of serum and subsequently used in 
the myotoxicity assay. The complement-iiediated myotoxicity of the 
myasthenic serum fell from over 40% to values within the normal range 
(less than 20%) when the maximally depleted serum was tested. It is of 
interest that immunoabsorption lowered the anti-AChR antibody titre 
from 42.0 nM to a value (13.5 nM) comparable with that (12.2 nM) of a 

sample obtained from the sane patient at a different time which showed 
a myotoxicity value (11.7%) also well within the normal range (patient 
MG 4, T^ble 12). Reduction of the anti-AChR antibody titre to 28.6 nM 
frcan 42.0 nM only reduced myotoxicity at low^r levels of added serum 
(Figure 30). These results indicated that in the myasthenic serum 
sample tested, the extent of anti-AChR antibody removal could be
correlated with its ability to cause complement-mediated myotoxicity.

125The reduction in the number of [ I]cXr-BGT binding sites on 

rat myotube cultures by myasthenic serum, before and after anti-AChR 

antibody depletion, was measured by determining the number of sites
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remaining after pre-incubation of the muscle cultures with the

myasthenic serum sanples. Anti-AChR antibody depleted serum reduced
the number of toxin binding sites in a similar manner to that of the
non-depleted sample. This was in contrast to the effects of another
sample of serum from the same patient which showed a similar anti-AChR

antibody titre to the depleted sample (12.2 and 13.5 nM respectively -
see Figure 20a). It is not clear, because of the assay conditions

125used, whether the reduction in [ I]ot-BGT binding sites is a result 
of direct blockade or accelerated degradation of the AChRs. However, 
it would appear that both the anti-AChR antibody depleted sample and 
the sample taken from the same patient at a different time but showing 
a similar antibody titre, contain antibodies with different 
characteristics.

The bound anti-AChR antibody on the affinity column was 
eluted with 2M KI with a final recovery of 18.7%. Yields of greater 
than 50% were obtained by Lang et al. (1982) and Whiting et al. (1983) 
using 3M potassium thiocyanate v^ich was reported by these workers to 

be the most effective elution reagent. These workers also covalently 
cross-linked the AChR to the affinity column to prevent any subsequent 

elution of AChR with the purified antibody. It is therefore possible 
that the eluted antibody fraction contained AChR. The IgG content of 
this fraction was high (0.57 mg) suggesting that antibodies other than 
anti-AChR antibody were bound by the affinity column. This observation 

was also made by Lang et al. (1982).
The purified antibody fraction was concentrated to give a 

similar anti-AChR antibody content (15.7 nM) to the serum sample 

maximally depleted of specific antibody. The purified antibody was 

able to reduce the number of available o^BGT binding sites after



263

incubation with rat muscle cultures (Figure 31) but also did not show 
any ccHtplernent-mediated myotoxicity under the conditions used, the 
value obtained (16.3%) being within the normal range. These results 

would again suggest, as discussed for the anti-AChR antibody depleted 
serum, that although antibody could bind to the rat muscle cultures, 
complement was not being activated in sufficient amounts to effect 
lysis. It is possible that this is related to specific sub-populations 
of antibody or alternatively, that the Fc portion of the antibody 
which binds complement, was damaged during the elution procedure or 
during the subsequent dialysis, concentration and storage.

4.5 ^^otoxic effects of myasthenic IgG and IgG depleted of subclass 3 
The demonstration of a direct myolytic role for myasthenic sera 

raises the question as to whether particular anti-AChR antibody 
sub-populations are especially active in this respect and whether the 

titres of such antibody sub-populations could correlate with clinical 
state. Studies of IgG subclasses in myasthenic sera have produced 
conflicting results. Lefvert and co-workers (Lefvert and Bergstrom, 
1978; Lefvert et al.,1981) have stressed the predominance of IgG3 in 
anti-AChR antibodies v^ereas other groups of workers have reported 
only low proportions of IgG3 (Tindall, 1981; Vincent and Newsom-Davis, 
1982; Whiting et al.,1983) with predominance of IgGl and IgG2 (Vincent 
and Bilkhu, 1982; Vincent and Newsom-Davis, 1982). The possible 
predominance of IgGl and IgG3 is of especial interest in that these 
subclasses bind complement with high affinity (Burton, 1985). Use m s  

made of a protein-A Sepharose column to separate purified IgG into 

subclasses IgGl,2 and 4 and subclass IgG3. The interaction between 

Staphylococcal protein-A and IgG subclasses represents a selective
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biological activity. IgG subclasses 1,2 and 4 bind to protein-A via 
their Fc regions whereas IgG3 does not (Kronvall and Williams, 1969). 
IgG was prepared by ammonium sulphate precipitation and ion-exchange 

chromatography. This procedure is reported as leaving only traces of 
IgG4 in the purified IgG samples (Skvaril and Morel1, 1970). As a 
consequence, the IgG eluted from the protein-A Sepharose column 
probably consisted of only IgG subclasses 1 and 2. The recovery of 
IgG3 in the unbound fractions of the normal and one of the myasthenic 
IgG samples was low (1.0% of initial IgG - Table 20). The normal level 
of IgG3 in human serum is approximately 4-7% of total IgG (Stanworth 
and Turner, 1978). The reasons for this relatively low recovery are 
probably related to the known susceptibility of IgG3 to proteolytic 
digestion (Michaelson and îfetvig, 1974), a point to be noted in the 

context of storage and assay of myasthenic serum samples (Fulpius et 
al.,1981; Lefvert et al.,1981). Subsequent myotoxicity experiments 
demonstrated that IgG depleted of subclass 3 was as effective in 
producing complément-mediated lysis in cultured muscle cells as the 

IgG fraction (Figure 33). However, both of these fractions appeared 
less effective, when added at similar anti-AChR antibody 
concentrations, to the original serum samples. A subsequent IgG 

sample, stored for a longer period at -20°C, proved ineffective in 
producing complement-mediated lysis. These results would suggest that 

purified IgG or IgG subclasses are susceptible to degradation on 
storage and should be stored in a lyophilised form to avoid this 

complication. In complement studies, it is particularly important that 
the Fc region of the antibody, which binds complement, remains 
functionally intact. An alternative explanation for the reduced 

effects of purified TgG in promoting myotoxicity, which was
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particularly apparent in one preparation (Figure 33a) could be that 
some lytic anti-A(3hR antibodies were of the IgM class.

In these latter experiments, use was made of L-[Me-^H] 
carnitine to label rat muscle cultures. It was noted that serum from 
patient MG 4, sample (ii), gave a higher myotoxicity value than 

previously noted when muscle cultures were labelled with D,L-[Me-^H] 
carnitine. Subsequent experiments (not showm) showed that the 
non-specific uptake of radiolabelled carnitine in the presence of a 
high concentration of unlabelled carnitine (ImM) was higher in the 
case of D,L- as opposed to L-carnitine (approxinately 35% and 12% of 
total radioactivity respectively). Thus, it would be expected that the 
maximum myotoxicity obtainable would be higher in cultures labelled 
with L- as opposed to D,L-[Me-^H] carnitine. In further experiments, 
designed to assess the contribution of non-specific radioactivity to 
spontaneous release of radiolabel or measured myotoxicity, the 
percentage of total radioactivity contributed to by non-specific 
radioactivity was found to remain constant.

4.6 The myotoxicity of myasthenic serum to human muscle cells in 
culture

Preliminary experiments tested the effects of non heat-treated 
myasthenic and normal serum samples w^en added to human muscle cells 

in culture. With the exception of one myasthenic serum sample, which 
gave a mean myotoxicity value of 27.6% (Table 30), the myasthenic sera 

tested caused myotoxicity of similar values to tdiose obtained for 
normal sera. In subsequent experiments, all sera were heat-inactivated 

before use and a known amount of GPC serum was added as a standardised 

source of complement. Howevt^r, using t±e same conditions under which
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high myotoxicity was shown towards rat muscle cells in culture, no 
equivalent myotoxicity was evident towards human muscle cells in 
culture (Table 31). Manipulation of assay conditions, in a similar 
manner to that by which myotoxicity towards rat muscle cells was 

demonstrated by previously 'non-toxic' sera, resulted in a myotoxicity 
value for the myasthenic serum tested of 34.9% (Figure 46). Subsequent 
experiments demonstrated that the myotoxic effects of myasthenic serum 
v^re dependent on the amount of complement added and dependent on the 
amount of myasthenic serum added (Figure 47). No damage to the human 
myotubes was observed wtien examined by light microscopy, as high 
myotoxicity levels (ie.> 50%) were not reached. These myotoxicity 
results indicated, as described for rat myotubes, that the effects 
could be explained in terms of antibody-mediated lysis of the human 
myotube membranes.

The results gained from studies in which the binding of 
myasthenic immunoglobulin to human muscle cultures was estimated, 
suggested that these immunoglobulins bound as well, if not better, to 
the human cultures than to the rat cultures (see "Discussion" section 

4.1). One of the myasthenic serum samples used in the latter stu(ty 
(from patient MG4, sample ii) was subsequently used in the myotoxicity 

studies on human cultures. However, under the conditions used to 
detect myotoxicity in rat cultures, no myotoxicity was observed in 

human cultures. Myotoxicity was only apparent when the volume of sera 
and GPC added to cultures were each increased 3-4 fold. The reasons 

for the differences observed with rat and human muscle cultures are 
not immediately clear. The factors responsible could include:-

1) Different sub-populations of antibody are binding to the human 

cultures which are not so effective at activating GPC
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2) The different nature of the antigenic sites on the human 

myotube membranes
3) The stability or recovery aptitude of the humn myotube 

membranes
4) The immaturity of the human myotubes in culture 

or a combination of these factors.
Assuming that the classical pathway of complement activation is 
involved in the nryolytic process, then the initial component, the Clq 
molecule, has 6 binding sites for attachment to antibody-antigen 
ccxnplexes. An essential requirenent for stable binding is that at 
least 2 of the sites are involved. When IgG is bound to antigen, Clq 
binds to 2 separate IgG molecules through their Fc regions. These IgG 
molecules must lie within 30-40 rm of each other, this being the 
maximum distance that Clq can span (Hu^es-Jones et al., 1984;
Burton,1985). In studies by Dcwsr and Segal (1981), it m s  shown that 
in the case of Clq binding to antibody coated cells where the antibody 
is bound to a membrane mobile antigen, the multivalent Clq will bind 

preferentially to the region of highest antibody concentration. 
However, for low cell-surface densities, free IgG would serve as a 
potent inhibitor of Clq binding and may therefore modulate complement 
activation on cells bearing low levels of antibody. In effect, these 

studies showed that aggregated IgG has a greater affinity for Clq than 
monomeric IgG. Hence, a possible explanation for the difference in 
myotoxic effects on rat and human muscle cultures could lie in the 

number and distribution of surface antigens. In the case of rat muscle 
cultures, it has been shown that the density of AChRs on the surface 
membrane is high and that clusters or aggregates of receptors occur on 

the membrane (see %ble 35). However,.it has been demonstrated that
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only a sparse distribution of AChRs is present on human foetal myotube
2membranes at a density of 1-4 receptors per pm and no clusters of 

receptors have been observed (Adams and Bevan, 1983, 1985). It is 

therefore possible that at lower added concentrations of myasthenic 
serum to human myotube cultures, although antibody effectively binds 
to receptor, the anti body-receptor ccxnplexes are too far apart to 

activate Clq. High levels of added antibody could perhaps effectively 
bind enough receptor so that Clq can bind, but in addition, high 
levels of unbound IgG could inhibit maximum binding of Clq.

An alternative or additional factor to be considered 
concerning the human myotube cultures is the apparent immaturity of 
these cultures with respect to cultured muscle of other species (see 
"Discussion" section 2.5). It is possible that because of the immature 
physiological properties of the human foetal myotube membranes (Harvey 
et al., 1979) that these membranes would be less susceptible to 
cxxiplement-mediated attack.

Conclusions and Prospects
Use vas made in this study of a quantitative assay for muscle 

lysis m  vitro based on the selective uptake of tritium-labelled 
carnitine by myotubes in a tissue culture system (Cambridge and Stern, 
1981). The studies carried out demonstrated that treatment of rat 
muscle cultures with myasthenic serum caused specific myotube damage 
in a manner that vas dependent upon the concentration and activity of 

added complement. All the myasthenic sera tested had elevated levels 
of anti-AChR antibodies. The involvement of such antibodies in the 

observed muscle lysis vas suggested by their demonstrated 

cross-reactivity with rat muscle ACZhR, by the loss of myolytic
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activity following their depletion in serum and by the dennonstrated 

ccxrplement-dependent myolytic effects of antisera to AChR raised in 
rabbits.

The demonstration of a direct myolytic role for myasthenic 
sera vitro, raises the question of the significance of this effect 
in vivo. The ability of nyasthenic sera or IgG to promote the lysis of 
post-synaptic membrane bearing junctional AChRs would be of more 
relevance to the disease state m  vivo. In this context, the addition 
of neuronal factors to muscle cells iu vitro to promote aggregation of 
AChRs or the use of nerve-muscle co-cultures in the myotoxicity assay 
would be interesting.

Complanent undoubtedly plays a role in disturbing neuromuscular 
transmission in animals with EAMG (see "Introduction" p. 3 "̂ and severe 
damage to muscle endplates, associated with the presence of IgG and 
the lytic component of complement (Sahashi et al.,1980), in the human 
disease has been observed. Destruction of the synaptic folds or of 
those segments of the folds that bear AChR represents a very obvious 

mechanism of AChR loss. Activation of the lytic phase of the 

conplement reaction sequence by bound anti-AChR antibody, could result 
in the formation of trans-membrane ion channels made up of the C5-C9 

membrane attack complex. The insertion of such channels into the 
post-synaptic membrane would be likely to cause an uncontrolled flux 

of extracellular ions, focal calcium excess (Campbell et al.,1979), 
protease activation and disruption of cytoskeletal elements within the 

folds. The subsequent shedding of damaged segments of the folds 

bearing AChR, IgG and the membrane attack complex could be the outcome 
of disturbed membrane dynamics and impaired cytoskeletal support 

(Engel and Fumagalli, 1982). The post-synaptic iiembrane would then
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reseal itself over the junctional folds which would be shorter and 
bear fewer AChRs than the pre-existing folds.

It would be interesting to speculate about the role of 
complement in patients with less severe disease. It is possible that 

the complement sequence does not alvmys go to complet ion because of 
efficient regulatory mechanisms such as circulating serum complement 
inactivators. Alternatively, a low concentration of active complement 
could lead to impaired muscle function, but not in sufficient quantity 
to overcome the reversible repair mechanisms of the muscle membrane 
(Stephens and Henkart, 197^). It is also possible that the activation 
of Clq by bound anti-AChR antibodies, could lead to enhanced receptor 
degradation by cross-linking previously non-interacting IgG-AChR 
ccxrplexes on the post-synaptic membrane. It could thus be hypothesised 
that the severity of MG is related to both the levels of active 
circulating complement and the levels of specific populations of 
anti-AChR antibodies which are capable of fixing and thus activating 
complement. In this context, it is interesting that the disease is 

often exacerbated as a result of viral or bacterial infections (Grob, 

1981), conditions in which the levels of the acute phase proteins of 
inflammation, including complement, are known to increase (Whicher, 

1978).
A myotoxicity assay that is able to quantitate the damaging 

effects of antibody to muscle cells could have an important role in 
the investigations of the pathogenesis of MG. Thus, this assay could 
be used to examine the anti-AChR antibody subclass patterns of highly 

lytic myasthenic serum samples. It could well be that low amounts of 

particular subclasses, such as IgGl or IgG3 or low amounts of IgM with 

high complement-fixing ability play a major role in muscle lysis;
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therefore correlations could be sought between subclass profile and 

lytic activity. Such studies, together with the determination of 
complement levels in freshly obtained myasthenic serum samples could 
then be correlated with clinical state. Hopefully, this could lead to 
serum assays of greater diagnostic significance than is the case for 
determination of total anti-AChR antibody levels and also help to 

clarify the role of complement-mediated lysis in the pathogenesis of 

MG.
The human muscle cells in culture, established frcrni foetal 

tissue, demonstrated a lack of differentiation vhen compared to the 
cultured rat muscle cells. Myotoxicity by the myasthenic sera tested, 
was only demonstrated at high levels of added serum and GPC. These 
observations could be directly related to the immaturity of these 
cells vitro. Human muscle in culture is increasingly being used as 
an experimental model for the study of human muscle differentiation 
and metabolism and for the further investigation of human disease. It 
would therefore be of great benefit to establish optimal, standardised 

conditions for growth ^  vitro vhich would result in a muscle system 

of more relevance to that vivo and enable comparable investigations 

to be carried out in different laboratories.



APPENDIX
In the myotoxicity study (Section A 2.2.13), heat-inactivated 
serum samples from 9 out of 13 myasthenic patients showed 
clear complement-mediated myotoxicity towards rat myotubes in 
culture, in contrast to 0 out of 12 normal controls. The 
myotoxicity values obtained did not show a correlation with 
the clinical severity of disease in each patient (Table 36) 
and were not associated with the occurrence of a thymoma 
(Table 36) or on the presence of anti-striated muscle anti
bodies (Table 37). Anti-AChR antibodies were present in all 
the myasthenic serum samples tested, including a patient 
severely afflicted with myasthenic symptoms following 
D-penicillamine therapy (MG 6 , Table 36). It is possible that 
the myotoxic nature of the myasthenic sera, or where tested, 
the myasthenic IgG is due to the presence of these antibodies 
but further work is needed to confirm this. Experiments 
utilising purified anti-AChR antibodies or monoclonal anti
bodies directed against AChRs would prove useful in this respect. 
As outlined in the Discussion, differences in the observed 
myotoxicity values could reflect varying antigenic cross
reactivities between rat and human AChRs. However, the 
myotoxicity values obtained from multiple serum samples from 
two patients did not correlate with the anti-rat AChR antibody 
titre (Table 37). Alternatively, the differences could be 
due to the importance of subpopulations of anti-human AChR 
antibodies, such as IgG subclasses which differ in their 

ability to activate complement (Burton, 1985).
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TABLE 37 SERUM ANTI-AChR AND ANTI-STRIATED MUSCLE
ANTIBODIES IN MYASTHENIC PATIENTS USED FOR 
THE MYOTOXICITY STUDY (see Section A 2.2.13)

Patient
Number

Anti-AChR antibody titre (nM) Anti-striated
muscle antibodyHuman Rat

Junctional Extra- 
junctional

Myotoxicity
(96)

1
2

3
4

5
6
7
8 
9

10
11
12
13

(i)
(ii)

(i)
(ii)

(i)
(ii) 
( iv) 
(v)
( vi )

0.8
4.2
9.2 

12.2
42.0
14.8
16.0 
16.3
24.2 
25.6
42.3
72.1
72.5 

180.0
5.8

12.9
17.2
20.6 
28.5

(viii) 43.8

nt
nt
nt

0.24
0.96
nt
nt
nt
nt
nt
nt
nt
nt
nt

0.10
0.09
0.13
0.34
0.47
0.73

nt
nt
nt

1.48
4.22
nt
nt
nt
nt
nt
nt
nt
nt
nt

0.34
0.81
0.77

ND
nt
nt
nt
nt
nt
ND
nt
ND
ND
ND
nt
nt
nt
nt
nt
ND

1.22 Weak positive 
1.68 Weak positive 
2.59 ND

7.6
15.7 
13.9
11.7
54.8
63.9
56.7
10.8
60.3 
59.8
38.6
65.0
58.4
60.3
62.3 
43.2
65.4
47.0
52.0
30.7

Anti-AChR antibody titres determined using crude extracts of 
^human or ^rat leg muscle. Rat titres courtesy of Dr. Helen 
Lotwick. ^Anti-striated muscle antibodies determined courtesy 
of the Bristol Royal Infirmary and Bath Royal United Hospital. 
*^Serial samples taken at different times from the same patient, 
nt - not tested ND - none detected



TABLE 38 DETAILS OF NORMAL CONTROLS USED IN THE
MYOTOXICITY STUDY (see Section A 2.2.13)

Donor Number Age (years) Sex Associated diseases

1 32 F None
2 24 M None
3 44 M None
4 42 M None
5 33 F None
6 30 M None
7 25 F None
8 23 M None
9 28 M None

10 22 M None
11 25 F None
12 26 F None
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Summary
The toxicity of myasthenic sera to rat myotubes in monolayer culture was 

examined by measuring the release of [Me-^H]camitine from pre-loaded cells. In the 
presence of guinea pig complement, heat-inactivated serum samples from 9 out of 13 
myasthenic patients showed clear myotoxicity, in contrast to 0 out of 11 normal 
controls and 0 out of 6 polymyositis patients. Neither heat-inactivated sera alone nor 
guinea pig complement sera alone showed myotoxicity. Removal of anti-acetylcho
line receptor (anti-AChR) antibodies from a myasthenic serum sample by affinity 
absorption led to loss of myotoxicity. Myotoxicity of myasthenic sera could, in most 
cases, be confirmed by light microscopy.

These results support the idea that complement-mediated cell damage, initiated 
by anti-AChR antibodies, contributes to post-synaptic membrane degeneration in 
myasthenia gravis.

Keywords: Anti-acetylcholine receptor antibodies -  [Me-^H]Carnitine -  Comple
ment-mediated cell damage -  Muscle cells -  Myasthenia gravis -  
Myotoxicity

Introduction
It is now generally accepted that myasthenia gravis is an autoimmune disorder in 

which the autoantigen is the nicotinic acetylcholine receptor (AChR) of the post-syn-
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aptic muscle membrane (for reviews see Vincent 1980; Harrison and Behan, in 
press). Neuromuscular transmission is accordingly impaired largely as a loss of 
functional AChR’s. Elevated levels of circulating anti-AChR antibodies are present 
in approximately 90% of clinically diagnosed myasthenic patients and there is 
considerable evidence that these antibodies constitute the primary agents causing 
loss of AChR activity. The means by which such loss occurs are still unclear and 
three antibody-mediated mechanisms have been suggested (Drachman et al. 1981). 
These are:

(1) Direct blockade of access of the neurotransmitter to its binding site;
(2) Accelerated degradation of the membrane-bound receptor;
(3) Complement-mediated lysis of the post-synaptic membrane.
Although considerable experimental evidence has been produced supporting 

intermediacy of the first two of these mechanisms in the disease process, the extent 
of their involvement remains in doubt (Harrison and Behan, in press). Less data 
have been reported in support of the third proposed mechanism of receptor loss, 
complement-mediated lysis. Probably the most convincing evidence for this mecha
nism is indirect, involving ultramicroscopic demonstration of IgG, C-3 and C-9 on 
disintegrating junctional folds and on debris in the synaptic clefts of myasthenic 
patients (Engel et al. 1977; Sahashi et al. 1980). Little direct evidence for lytic action 
of myasthenic sera on muscle cells has been reported, however, and the publication 
of a procedure (Cambridge and Stem 1981) for quantifying myotube-specific cyto
toxicity prompted us to apply this to such sera. The method, developed for 
measuring cell-mediated myotoxicity in polymyositis, depends upon the selective 
uptake by cultured myotubes of [Me-^H]camitine, loss of which can be monitored 
following cytolytic damage. A major advantage of the procedure is the very much 
slower uptake of carnitine by fibroblasts, which commonly contaminate myotube 
cultures.

Materials and Methods
Tissue culture

Myotube cultures were prepared from the thigh muscles of 1-2-day-old neonate 
white CFHB rats, essentially according to the method of Yaffe (1973). A single cell 
suspension was obtained from minced tissue by trypsinisation (0.2% trypsin) for 1 h 
at 37° C in Ca "̂ -̂ and Mg^^-free balanced salt solution. After centrifugation at 
400 X g for 10 min, the tissue pellet was resuspended in growth medium (Dulbecco’s 
Modified Eagles Medium supplemented with 10% Donor Horse semm, 0.15% 
glucose, 100 U /m l penicillin and 100 jug/ml streptomycin). The cell suspension was 
filtered through two layers of nylon bolting cloth (53 jam aperture) and plated 
(2.5 X 10^ cells/culture well) in 24-well culture plates (Linbro, Flow Laboratories, 
Irvine, Ayrshire, Scotland) precoated with rat tail collagen (Masurovsky and Peter
son 1973). The cultures were grown at 37°C in an atmosphere of 10% carbon dioxide 
in air, the growth medium being replaced every 3 days. Myoblasts began to fuse, 
forming myotubes, after 3 days of growth. The number of fibroblasts present was 
minimised by treating 3-day-old cultures with fluorodeoxyuridine (15 jag/ml) for 72
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h. For all experiments, myotube cultures were used after 7 days growth, at which 
time maximum expression of AChR’s, as judged by binding of [^^^I]a-bungarotoxin 
(Vogel et al. 1972) was achieved.

Fibroblast cultures were prepared from neonatal rat endothelial tissue as de
scribed above for myotube cultures except that Donor Horse serum was replaced by 
foetal calf serum. A confluent layer of fibroblasts was formed within 7 days and 
used to assay uptake of tritiated carnitine at this stage.

Labelling with [Me-^H]carnitine
[Me-^H]Carnitine hydrochloride, specific activity 2 Ci/mmol (Amersham Inter

national pic, Amersham, Bucks., U.K.) was diluted in growth medium to a final 
concentration of 10 ja mol/1. This solution (50 jal, 1 jaCi) was added to growth 
medium (0.7 ml) in each culture well and incubated at 37°C, under an atmosphere of 
10% carbon dioxide in air, for 18 h. Uptake of labelled carnitine at this stage was 
determined by washing the cultures 3 times with growth medium, harvesting and 
counting for radioactivity as described below.

Serum
Blood samples were obtained from 13 patients with clinically confirmed 

myasthenia gravis. A further 6 blood samples were obtained from patients with 
polymyositis, chosen as an example of muscle degenerative disease. Eleven control 
samples were obtained from members of the laboratory staff. Serum was removed 
from clotted blood and stored at -  20°C until use. Radioimmunoassays for anti- 
AChR antibodies were carried out as described by Carter et al. (1981). Before 
measuring complement-mediated myotoxicity, all sera were incubated at 56°C for 30 
min prior to use. Lyophilised guinea pig complement serum (Miles Laboratories, 
Stoke Poges, Bucks., U.K., stated activity of 4-ve haemolysis at 0.04 ml when used at 
1 /lO  dilution) was reconstituted with commercial diluent (1 ml) at the time of use.

Myotoxicity assays
Monolayer cultures of rat myotubes were incubated with [Me-^H]camitine as 

described above. The cultures were washed 3 times with growth medium and fresh 
medium (0.5 ml) was added to each culture well. Sera were tested by addition of a 
sample (0.08 ml) to each of 8 replicate culture wells. Guinea pig complement serum 
(0.08 ml) was added to 4 of these wells and the same volume of growth medium to 
the remaining 4 wells. Growth medium alone (0.16 ml) was added to each of a 
further 4 control wells. For each myotube culture an additional 4 wells containing 
complement (0.08 ml) but no serum (0.08 ml growth medium instead) were included. 
The cultures were incubated at 37°C for 3 h (except in time studies) in an 
atmosphere of 10% carbon dioxide in air. At the end of the incubation time, the 
cultures were washed 3 times with growth medium, harvested and counted for 
radioactivity as described below. The value of radioactive counts retained was, in 
each case, taken as the mean of those from each of the 4 replicate wells.

Myotoxicity was expressed as the percentage loss of radioactivity compared with
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controls according to the formula 

CRC -  CRT
CRC

X 100%

where CRC = counts retained in the control containing neither serum nor comple
ment and CRT = counts retained in the test sample. Each test sample was assayed in 
3 different myotube cultures to give the quoted mean value for myotoxicity.

Harvesting of carnitine-labelled cultures
Monolayer cultures were harvested for counting by incubation with 0.1 M sodium 

hydroxide (0.3 ml) for 30 min at room temperature. The contents of each culture 
well were transferred to scintillation vials. Each well was then washed with 0.1 M 
sodium hydroxide (0.2 ml) for 15 min and the washings transferred to the ap
propriate scintillation vials. Scintillation fluid (30% Triton X-100 in toluene, 5 g/1 
PPO, 5 ml) was added to each vial, the contents mixed on a vortex mixer and the 
radioactivity of each vial counted in a Packard Liquid Scintillation counter.

Depletion of anti-AChR antibodies from myasthenic serum
Anti-AChR antibodies were removed from a myasthenic serum sample [Patient 4 

(ii)] by affinity absorption.
Human AChR was coupled to a-bungarotoxin-Sepharose 4B by using an adapta

tion of the method of Lang et al. (1982). a-Bungarotoxin (2 mg) was covalently 
linked to cyanogen bromide-activated Sepharose 4B (March et al. 1974) (50 ml 
packed volume) according to the method of Lindstrom et al. (1981). The final 
density of a-bungarotoxin was 0.04 mg/ml beads. AChR was prepared as a crude 
detergent extract of human leg muscle and its a-bungarotoxin binding activity was 
determined by ammonium sulphate precipitation assay (Stephenson et al. 1981). The 
detergent extract of AChR (200 ml, 210 pmol a-toxin binding sites) was applied as a 
batch to a-bungarotoxin-Sepharose 4B (25 ml) and stirred gently overnight at 4°C. 
The beads were then washed extensively with 0.5 M NaCl in phosphate-buffered 
saline (PBS) followed by PBS alone. Assay of the supernatant and washings showed 
that 97% of the applied AChR was bound to the beads giving a final density of 8.2 
pmol AChR/ml beads. The beads were then packed in a column (1.7 cm X 30 cm) 
and equilibrated with PBS at a flow rate of 30 m l/h. A control column containing 
a-bungarotoxin-Sepharose 4B, to which no AChR had been attached, was similarly 
prepared.

Myasthenic serum (2 ml, containing 84 pmol of anti-AChR antibodies) was 
applied to each column and circulated at 30 m l/h  for 2 h at 23°C. The columns were 
then washed with PBS (75 ml) and fractions (3 ml) collected. Fractions showing 
absorption at 280 nm were pooled and concentrated on an Amicon B15 concentrator 
to the original volume (2 ml) of applied serum. Serum IgG was measured by a radial 
immunodiffusion assay using antiserum to human IgG (Immunostics RID plate, 
Seward laboratories, London). Anti-AChR antibody content and complement-medi
ated myotoxicity were assayed as described above.
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Results
Seven-day-old rat myotube cultures incubated with [Me-^H]carnitine routinely 

took up 10-20 X 10^ cpm, representing 1-2% of the total carnitine of the culture 
medium. Variation between replicate cultures was less than 10%. The corresponding 
uptake of radioactivity by fibroblast cultures was 3-4 times lower than that of the 
myotubes.

Loss of radioactivity from labelled myotubes incubated with growth medium in 
the absence of serum and complement followed a time course typified by that shown 
in Fig. 1. Myotubes incubated with heat-inactivated normal human serum plus 
complement showed a very similar pattern. Cells incubated with heat-inactivated 
myasthenic sera together with complement, generally showed an accelerated loss of 
radioactivity. Initial studies indicated that this loss, relative to controls, was greatest 
after 3 h incubation (Fig. 1) and all subsequent experiments accordingly used these 
conditions.

The measured myotoxicity caused by the addition of guinea pig complement 
serum alone showed a variation between different myotube cultures that fell within 
the range -2 .2  to 15.1% (mean ± SD 7.0 ± 4.6) (Table 1). Heat-inactivated normal 
human sera, with or without guinea pig complement, gave similar myotoxicities 
(Table 1) and values of up to 20% in our system can be regarded as falling within the 
normal range. Cultures showing such myotoxicity values never showed any evidence 
of cell damage when examined microscopically.
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Fig. 1. Retention of [^HJcamitine by myotube cultures after incubation with heat-inactivated serum and 
complement. Replicate myotube cultures were labelled with [^H]camitine (Materials and Methods 
section) and exposed to aliquots (0.08 ml) of heat-inactivated normal (#) or myasthenic (■) sera plus 
guinea pig complement (0.08 ml) at 37°C for varying lengths of time. Cultures to which no additions were 
made were run simultaneously (O). At the end of each incubation period, the cultures were washed and 
harvested for counting. Results are expressed as the retention of radiolabel by cultures as a percentage of 
time 0. Each point represents the mean ±  SD of 4 replicate cultures.
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TABLE 1

MYOTOXICITY OF MYASTHENIC, POLYMYOSITIS AND NORMAL HUMAN SERA TESTED 
WITH RAT MYOTUBES IN CULTURE

Myotoxicity of test samples was determined as described in the Materials and Methods section. Unless 
otherwise stated, serum samples were tested with 3 different myotube cultures and the mean values taken.

Test serum Number of 
donors

Complement Myotoxicity (%) 

Range Mean ± SD

None 12 + -2 .2 -15 .1 7.0 ±4.6
Normal 11 - -0 .3 -1 6 .4 9.3±4.8
Normal 11 + 3.5-14.5 10.3 ±3.4
Myasthenia gravis 13 = - -7 .7 -1 1 .4 3.8±4.6
Myasthenia gravis 13 = + 7.6-65.0 41.5 ±21.7
Polymyositis 6*’ + 7.8-19.1 13.5 ±4.2

® Multiple samples were taken at different times from 3 myasthenic patients (see Table 2); the mean 
values from the multiple samples were taken as the value for each patient.
 ̂Serum samples from polymyositis patients were tested in one (3) or two (3) myotube cultures.

Heat-inactivated myasthenic sera in the absence of added guinea-pig complement 
gave myotoxicity values well within the normal range. In the presence of added 
complement, on the other hand, heat-inactivated serum samples from 13 myasthenic 
patients showed myotoxicity values ranging from 7.6% to 65%, with a mean value of

TABLE 2

MYOTOXICITY OF INDIVIDUAL MYASTHENIC SERUM SAMPLES IN THE PRESENCE OF 
COMPLEMENT

Patient Myotoxicity (%) 
(M ean±SD)

Anti-AChR antibody titre 
(X 10“ ’° M)

1 7.6 ±6.2 8.2
2 15.7 ±4.2 41.8
3 13.9 ±1.6 91.6
4 = (i) 11.7 ±7.5 121.6

(ii) 43.2 ±0.8 420.5
5 63.9 ±3.2 147.7
6 56.7 ±5.4 159.7
7 10.8 ±0.0 162.6
8 60.3 ±2.1 242.0
9 = (i) 59.8 ±0.5 255.7

(ii) 38.6*’ 422.7
10 65.0 ±1.2 721.3
11 58.4 ±0.7 725.4
12 60.3 ±2.9 1800.0
13 = (i) 62.3 ±1.9 58.2

(ii) 43.2 ±1.6 129.0
(iii) 65.4 ±2.9 172.4
(iv) 52.0 ±5.4 285.1
(V) 30.7 ±0.9 438.2

Repeat samples were taken over 17 months (patient 9), 27 months (patient 4) and 3 years (patient 13).
One assay only; all other values represent means of 3 separate experiments.
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Fig. 2. Phase contrast photomicrographs of 7-day-old rat myotube culture. A, B: Cultures treated with 
heat-inactivated normal serum plus complement; C, D: Cultures treated with heat-inactivated myasthenic 
serum plus complement. Magnifications: x80  (A, C); X200 (B, D).
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TABLE 3
EFFECT ON MYOTOXICITY OF MYASTHENIC SERUM SAMPLE 4 (ii) OF DEPLETION OF 
ANTI-AChR ANTIBODIES

Treatment Anti-AChR antibody titre 
(X lO “ °̂ M)

IgG
(m g/ml)

Myotoxicity
(%)

None 420.5 3.08 43.2
AChR-affinity column 134.8 3.08 14.6
Control column 408.2 3.08 40.0

41.5% (Table 1). The data for myasthenic sera are shown in detail in Table 2, where 
it can be seen that 9 out of the 13 different patients have sera with myotoxicity 
values that are clearly abnormal, as defined above. Sera from each of 6 patients with 
polymyositis gave myotoxicity values within the normal range (Table 1).

In the cases of sera having myotoxicities greater than 50%, damage to the 
myotubes was clearly visible under the light microscope. Myotubes incubated with 
serum samples from normal (myotoxicity 9.0%) and myasthenic (myotoxicity 52.0%) 
donors are compared in the phase-contrast micrographs of Figs. 2A, B and 2C, D, 
respectively. Whereas myotubes treated with normal serum plus complement appear 
plump, phase-bright and agranular, those treated with myasthenic serum plus 
complement are shrunken, phase-dark and granular, showing, in parts, complete 
fragmentation. The background layer of fibroblast cells always appeared to be 
unaffected by either control of myasthenic serum.

A sample of myasthenic serum [patient 4 (ii)] having myotoxicity 43.2% was 
depleted of anti-AChR antibodies by affinity absorption on an AChR-a-bungarotox- 
in-Sepharose 4B column (Materials and Methods section). Table 3 shows that 
depletion of the anti-AChR antibody titre from 420.5 X 10“ ®̂ M to 134.8 X 10"^° 
M was paralleled by a fall in myotoxicity from 43.2 to 14.6%. Total IgG levels were 
apparently unchanged.

Discussion
A role for complement in the pathogenesis of myasthenia gravis was first 

suggested by Nastuk et al. (1960) following their observations that complement 
activity fell during exacerbation of the disease and rose to, or above, normal levels 
during periods of remission. Similar fluctuations were not, however, subsequently 
found by the same workers (Niemi et al. 1981) in experimental myasthenia in 
rabbits. In fact, as already mentioned, the strongest experimental evidence for 
complement-mediated lysis in myasthenia gravis is the presence of IgG and comple
ment components on post-synaptic membrane fragments (Engel et al. 1977; Sahashi 
et al. 1980) and direct demonstrations of muscle cell lysis by myasthenic sera have 
hitherto been few. Nastuk et al. (1959), in studying the effects of myasthenic serum 
samples on frog sciatic nerve-sartorius muscle preparations in vitro, observed that 
two out of 22 such sera caused a rapid and irreversible reduction in twitch tension; a 
phenomenon which coincided with low resting potentials and apparent disintegra
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tion of many surface muscle fibres. However, similar effects were also shown by one 
of 9 normal sera tested, albeit after a much longer delay time. Liveson et al. (1976) 
described lysis, detected by light microscopy, of mouse somite cultures incubated 
with 3 out of 17 myasthenic serum samples. In one serum sample so tested, myolytic 
activity was shown to be destroyed by heating and not to be restored by subsequent 
addition of guinea pig complement.

Initial experiments (data not shown) indicated that both myasthenic and normal 
human control sera could sometimes cause release of carnitine from cultured 
myotubes (up to 30%); an effect that was destroyed by treatment of the sera at 56°C 
for 30 min and restored, in the case of myasthenic but not of normal sera, by the 
subsequent addition of guinea pig complement. Restoration of these properties in 
myasthenic sera was found to be dependent on the amount of complement added, 
which could explain the difference between our findings and that of Liveson et al. 
(1976). In order to obviate variations arising from the lability of endogenous 
complement and to standardise, as far as possible, the conditions of our assay 
system, all serum samples subsequently tested were heat-inactivated and a fixed 
amount of guinea pig complement was added at the time of testing. The procedure 
also avoids complications resulting from the heat-labile factor in some normal 
human sera, the nature of which is not clear.

Under the above conditions, serum samples from 9 out of 13 myasthenic donors 
caused accelerated loss, relative to normal controls, of labelled carnitine from rat 
myotubes. This effect was dependent on complement and can be readily explained in 
terms of antibody-initiated lysis of the myotube membranes. As is most commonly 
the case, all myasthenic serum samples tested contained anti-AChR antibodies, the 
involvement of which in the lytic process accordingly seems likely. Other autoanti
bodies directed against skeletal muscle membrane (Gilhus et al. 1983a,b; Mehl and 
Lang 1984) also occur in myasthenic serum, however, and must be considered. 
Evidence that anti-AChR antibodies are the major factor in mediating myotoxicity 
in our system, however, is provided by the consequence of their specific immunoab- 
sorption from myasthenic serum. Following affinity chromatography on bound 
AChR, the myotoxicity of a myasthenic serum sample fell from 43% to a value (15%) 
well within the range characteristic of normal control sera. It is of interest that 
immunoabsorption lowered the anti-AChR antibody titre from 420 X 10“ °̂ M to a 
value (135 X 10“ °̂ M) comparable with that (122 X 10“ ®̂ M) of a sample [4 (i), 
Table 2] obtained 27 months later from the same patient; the later sample also 
showed a myotoxicity value (12%) well within the normal range. Although detailed 
correlation of anti-AChR antibody titre with myotoxicity values is not good, it does 
seem that serum samples with myotoxicity values within the normal range tend to 
have relatively low anti-AChR antibody titres (e.g. less than 200 X 10"^^ M). 
Nevertheless, some samples with high myotoxicity also had lower antibody titres and 
it may be that, in such cases, complement fixation is affected by relatively high 
proportions of particular antibody subclasses, which are known to differ in their 
ability to activate complement.

In the case of serum samples with higher myotoxicity values, damage to myotubes 
was clearly visible in the light microscope, supporting the implications of our
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quantitative assay procedure. Overall, it does appear that higher myotoxicity values 
are confined to myasthenic patients and are not given either by normal controls or 
by patients with polymyositis; chosen as an example of muscle degenerative disease.

We have preliminary evidence from experiments not reported in detail here that 
myasthenic sera have very similar effects on human myotubes in culture. Our 
findings provide further evidence for the possibihty that complement-mediated lysis 
is an important factor in the pathogenesis of myasthenia gravis. Our observations 
that myotoxicity may depend upon factors other than anti-AChR antibody titre, as 
commonly assayed, suggest that levels of such factors, e.g. complement and possibly 
particular antibody subclasses, could profitably be considered in future studies on 
the correlations of biochemical parameters with disease state in myasthenia gravis.
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