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SUMMARY

The data used by a computer to represent and display a picture 

conventionally requires very large amounts of dedicated storage. As 

the trend continues towards high resolution graphics employing a 

wide range of colours the associated volume of data often expands 

to a point where sophisticated techniques become essential to 

maintain a practical interactive system.

Considerable research has been conducted into coding schemes 

which compress the volume of picture data. These methods are 

clearly of great value in reducing the delay which results from 

transmitting picture data between sites. Codes which also serve 

directly as a source for real-time display are better still.

The quadtree method of picture encoding, which has previously 

been successfully employed in the field of picture processing, is 

shown in this thesis to provide the basis for an integrated 

approach to data compression in the field of computer graphics. The 

display of colour pictures from quadtree code is performed by 

customised hardware which operates in conjunction with a general 

purpose processor. A prototype system is described which provides 

efficient downloading of pictures from a host and rapid display of 

locally stored pictures. The amenability of quadtree code to 

manipulation is demonstrated by incorporating a limited capability 

to pan and zoom on a picture. Application of the method to picture 

archive retrieval is examined.
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Chapter 1 INTRODUCTION

Rapid development in the field of micro—electronic engineering 

has resulted in a proliferation of computing machinery applied to 

an increasing variety of tasks. Moreover, the separation of user 

and machine Which prevailed in the days of batch processing by 

large mainframe computers is fast disappearing with the emergence 

of powerful microprocessor-based systems. These small systems have 

not only decentralised computing facilities but have tended to 

focus attention upon the nature of the man-machine interface. 

Investigation of novel means for interacting with computers has 

become a major branch of confuter science embracing such techniques 

as pattern recognition, voice recognition and speech synthesis. A 

now well established exan^le of this trend is the use of computer 

generated graphics output.

1.1 Counter graphics technology

Throughout the development of computer graphics the cathode 

ray tube (CRT) has played a central role as the display device. The 

earliest systems required fairly elaborate electronics in order to 

trace lines on the screen by direct control of the beam deflection. 

These so-called calligraphic or refresh stroke displays are driven 

by repeated real-time conversion of a display list of line 

coordinates into a sequence of beam deflection signals. 

Consequently, if the drawing becomes too complex the scan 

repetition rate is reduced and flicker becomes annoying. The 

Penetron Tube adds a limited colour capability to calligraphic



displays by employing two layers of screen phosphor. The output 

colour can then be altered by modulating the beam energy. Refresh 

stroke displays provide high resolution images and still find a 

limited application where high quality and/or real-time animation 

of line drawings is required. However, their high cost and 

inflexibility precludes general use.

The introduction of storage tube displays in the early 1970s 

marked the advent of widely available, low cost computer graphics. 

Employing the same random deflection technology as the calligraphic 

displays, the need for repeated conversion of a display list is 

removed by accumulating line data on a screen which remains 

fluorescent indefinitely wherever the beam impinges upon it. ttie 

major disadvantage resulting from this technique is that local 

picture erasure is impossible.

While storage tube displays became increasingly used in a wide 

variety of applications their limitations in fields such as image 

processing encouraged the development of an alternative display 

technique. Based on the principles used in television picture 

generation, raster scan displays build an image as an aurray of 

picture element dots (pixels) scanned line by line across the 

screen. Most commonly the picture information is stored pixel by 

pixel in a dedicated area of memory known as a fraunestore. This 

provides three important advantages over random deflection display 

types. Firstly, images cam be built and modified at the pixel level 

allowing exceptional scope in software. Secondly, the imposition of 

regular scanning brings all the benefits associated with television



technology including the ability to display areas. Thirdly, colour 

is available. Initially, raster scan displays were limited by the 

expense of fraunestore memory and by CRT technology to produce 

images whose resolution rarely exceeded TV quality. However, by the 

late 1970s the cost of semiconductor memory had become sufficiently 

small to make raster scan graphics using framestores a feasible 

proposition in many applications. Together with modern CRTs, which 

may permit as many as 1500 raster lines per fraune, the use of 

raster scan techniques for high resolution display applications is 

now common. An additional boost to the framestore refreshed display 

was introduced by the advent of low cost microprocessors dedicated 

to manipulating pixel values in the fraunestore thus removing this 

burden from the main system processor. The integration of raster 

scan displays into stand-alone and networked computer workstations 

is a logical consequence of this development.

Whilst CRT displays dominate the field of computer graphics 

there are several other types which find a limited application, 

most notably the plasma display. Plasma panel displays comprise 

what is effectively an array of gas discharge cells. They are 

preferred to CRTs in applications where restricted space and 

robustness are major considerations but are more difficult to 

interface and generally limited to a single display colour.

1.1.1 Interactive peripherals

The graphics display is essentially an output device for 

communicating information to the user. However, in many 

applications the display can also provide a useful format for the



input of information to the system and to this end a variety of 

peripherals have been developed. The most common means of 

interacting with a display is through a screen cursor which may be 

positioned by the user manipulating a joystick, mouse, tracker 

ball, light pen or bit pad sensor. Having set the cursor at the 

required position on the display a command may be issued from a 

standard keyboard or customised button box. Interaction of this 

kind is increasingly common in menu-driven computer systems where 

unsophisticated graphics is used to create a "user-friendly" 

interface to the operator. Similar techniques also apply to true 

graphics applications such as drawing systems which allow real-time 

modification of the displayed image. An even more immediate (though 

not particularly precise) means of interacting with a display is 

provided by the touch sensitive screen which simply requires the 

user to point at the relevant spot on the screen.

1.2 Computer graphics applications

In common with many technologies, the growth of applications 

for computer graphics has followed the development and availability 

of hardware. Nowadays graphics are widely used in business and 

industrial applications to present information which would 

previously have been issued in the form of tables of numerical 

data. Operators of process and plant control systems are provided 

with an intelligible overview by graphic monitoring if it is well 

organised and suitably colour coded. In many control applications 

such as power station monitoring and air traffic control the 

systems have become so complex that graphical output must now be



considered indispensible.

Perhaps the most interesting range of applications are those 

which, without computer graphics, would never have evolved. 

Computer aided design (CAD) developed in the late 1960s and was 

initially applied to mechanical engineering problems in the 

automobile and aerospace industries. Using interactive graphics 

facilities designers are able to model components and run 

appropriate test procedures with rapidly available results. A 

natural development of CAD is computer aided manufacture (CAM) 

which controls production of components designed by CAD. More 

recently CAD/CAM has been introduced to the electronics industry, 

initially for printed circuit design and lately for the design of 

very large scale integrated circuits (VLSI).

Computers in general, and graphics in paxticular, have had a 

profound influence on the printing industry in recent years. 

Character font design and page layout are now largely computer 

assisted tasks.

The entertainments and leisure industry has been quick to 

realise the potential of computer graphics. Ranging from the (often 

crude) graphics employed in arcade games to the refined techniques 

afforded by TV advertising and feature films such as "Tron" some 

strikingly novel visual effects have been produced.

Probably the most challenging problem confronting computer 

graphics at present is real-time visual simulation. There axe 

clearly many advantages to be gained by using a simulator for 

training personnel engaged in hazardous occupations. Ideally the



trainee should obtain an entirely realistic experience during 

simulation and the visual aspect is often the most vital. 

Unfortunately the complexity of graphics which can presently be 

generated in an interactive real-time environment is rather limited 

by the excessive amount of computation involved. Several systems 

have been produced which successfully provide night-time flight 

simulation and, since the rate of movement is slower, systems which 

simulate views from a ship's bridge are also practicable. Daytime 

simulators are also available but these demand extensive special 

purpose hardware and are therefore very costly.

1.2.1 Graphics software

Not surprisingly, the booming market in graphics hardware has 

generated its own problems. Through lack of standardisation the 

development of graphics software has been severely limited by the 

need for packages customised to individual machines. Although this 

has, for a considerable time, been recognised by users and 

manufacturers alike as a serious problem little progress on 

standardisation was made until recently. Attempts in the USA to 

promote the ACM CORE standard seem to have failed and the European 

Graphics Kernel System (GKS) now appears to offer the best hope for 

a universally accepted standard.

1.3 The thesis

Raster scan displays refreshed from a fraunestore have become 

firmly established as the norm for computer graphics systems. The 

hardware is now available to produce high resolution graphics with



full tonal colour rendition at a moderate cost. There are. 

furthermore, persuasive software arguments for full frame storage. 

A pixel by pixel representation provides picture data in a form 

which is easy for a programmer to access and manipulate in a most 

general way. Unfortunately there is a severe penalty to be paid for 

this convenience; the size of framestore required to represent a 

high resolution colour image is likely to be a megabyte or more. 

While this may not prove to be a problem in cost terms it certainly 

presents an obstacle to fast system response in many instances. 

Consider, for example, the problem of picture storage and retrieval 

when such large amounts of data are involved. If the mass storage 

unit is closely coupled to the display then data can be downloaded 

to the framestore using a fast DMA interface. In the case of remote 

storage the bandwidth of conventional communication channels limits 

the rate of data transfer to a degree where interactive response 

becomes slow. Indeed, with users accustomed to the increasingly 

rapid response of computing systems in general, excessively slow 

graphics response may be unacceptable.

This thesis addresses the problem of picture display from 

remote digital storage with particular reference to the interactive 

demands normally associated with computer graphics applications.

Chapter 2 discusses a variety of techniques which may used to 

compress the large amount of data associated with 

framestore display. The concept of picture 

representation and its relationship to coding in the 

context of computer graphics is also examined.



Chapter 3 focusses on the quadtree as a suitable structure for 

picture representation. A number of coding variations 

are examined.

Chapter 4 describes the development of a scheme by which pictures 

may be generated in real-time using a form of quadtree 

code as the display source.

Chapter 5 describes the realisation in hardware of the principles 

outlined in the previous chapter. Operation of the more 

crucial parts of the circuitry is described in detail.

Chapter 6 presents details of a prototype picture system which was 

developed to examine and quantify the characteristics of 

quadtree encoding for picture retrieval and display. The 

system includes basic facilities to pan and zoom on a 

displayed picture.

Chapter 7 contains information on system performance. Statistics 

are included which provide a measure of the data 

compression achieved by quadtree encoding and enable 

prediction of quadtree growth as picture resolution is 

increased.

Chapter 8 outlines proposals for two applications in which 

quadtree encoding of pictures is likely to prove 

practical and beneficial. The potential of quadtree 

picture code for mainstream interactive graphics 

applications is also briefly examined.



Chapter 2 PICTURE REPRESENTATION AND CODING

From the previous chapter it is clear that the range of

application for computer graphics is large and, at present, rapidly 

expanding. It is perhaps surprising, therefore, that relatively 

little innovation has occurred in the basic concepts underlying the 

design of raster-scan graphics displays. This chapter describes the 

conventional fully buffered fraune store (bit-mapped) display 

approach and continues with a survey of some alternative strategies 

which have been proposed.

2.1 Digital representation of pictures

In mathematical terms a picture may be regarded as a function 

of two variables

P - f(x,y)

where x,y are bounded spatial coordinates in the picture plane. For 

a monochrome picture, P is a real valued measurement of the image 

intensity and is generally referred to as the grey level; for a 

colour picture P is a triplet of real values (see Appendix 2).

Formulation of a digital representation involves a notional

division of the picture area into a regular array of equal sized

elements (pixels) within each of which P is constant. The two 

dimensional picture function is thereby replaced by a matrix of 

pixel values which, in digital form, are necessarily quantised. 

Given a finite set of pixel values, these may constitute a code 

representing any desired combination of intensity and colour 

characteristic.



2.2 Bit-mapped displays

The conceptual representation described above is made a 

physical reality in a bit-mapped display system by assigning 

computer storage to each pixel in the picture frame. The memory 

thus used is frequently referred to as a frame buffer or 

framestore. This means, for example, that a picture defined to a 

resolution of 512 x 512 pixels requires 256K storage cells each 

with a capacity determined by the colour range. A picture 

containing, for instance, 256 colours or grey levels requires eight 

bits of storage per pixel. The hardware necessary to generate a 

display from this data is uncomplicated but the principal benefit 

of such a scheme lies in its suitability for interactive 

applications. With relatively simple interfacing and software it is 

possible for a user to compose or modify a displayed picture. 

Automatic generation of primitive geometric forms is possible with 

very little computation owing to the simple correspondence which 

can be effected between display coordinates and data storage 

addressing.

Despite the obvious advantages of bit mapping this approach 

suffers from one major drawback, namely the large quantity of data 

required to represent a medium or high resolution picture with a 

large colour range. Furthermore, the situation worsens 

disproportionately as higher and higher resolutions are demanded; a 

doubling in spatial resolution entails a fourfold increase in the 

aunount of data needed to represent the picture. With semiconductor 

memory continuing to become cheaper the cost factor in primary

10



display storage is not so important as it once was, although the 

quantity of secondary storage required for keeping picture files 

remains a problem. But by fax the most serious consequence of using 

such an extensive picture representation is the time consumed in

filling the frame buffer with pixel data when the display needs to

be completely updated. The delay becomes all the more unacceptable

when data has to be fetched from remote storage,

2.3 Pictorial data compression

Information theory provides a useful basis for any data 

compression scheme (see, for example, Hall [1] pp.312-325). 

Consider, as before, a picture defined to a resolution of 512 x 512 

pixels with each pixel value stored as an eight bit code. The 

number of "pictures" which can be realised in this representation 

is therefore 256 raised to the power of 512 x 512. Of these, only a 

fraction are pictures of practical significance. In computer

graphics, for instance, the image commonly contains substantial 

areas of uniform colour. The actual information conveyed by a

meaningful picture is thus considerably less than the potential 

information which may be represented by a full pixel description. 

This information redundancy implies that a picture can be coded so 

that, on average, fewer bits per pixel axe required. Picture 

entropy is a common measure of information content and is generally

expressed as the average number of bits per pixel required to

represent a given image. The aim of picture coding is to devise a 

practical scheme by which the theoretical picture entropy can be 

realised.

11



2.4 Picture coding for television

To a large extent, investigation into picture coding has been 

motivated by the search for an efficient digital transmission 

technique for video signals [1-5]. The benefits of moving away from 

analogue methods include improved noise immunity and simplified 

conversion between different TV standards. In the case of digital 

speech encoding it has been possible to transmit intelligibly over 

surprisingly narrow bandwidths; attempts at picture coding, have, 

as we shall see, proved less rewarding. It is generally accepted 

that by employing eight bit quantisation and a sampling rate of 

around 13 MHz a video signal can be digitised and used to 

reconstruct a picture of more or less TV quality. Real-time 

transmission of this data consequently requires a rate of more than 

100 Mbits per second which, using pulse code modulation, is 

equivalent to a bandwidth of 100 MHz. Compare this with the UK 

analogue bandwidth of 5.5 MHz and it is clear that substantial data 

compression is desirable. Any attempt to decrease the bandwidth by 

reducing either the sampling rate or number of quantisation levels 

leads to unacceptable deterioration of picture quality. 

Undersampling causes a phenomenon known as aliasing and coarse 

quantisation produces an effect called false contouring. These 

effects are nicely illustrated in Hall [1] pp.93,94,98.

TV picture coding techniques fall into two main categories: 

intraframe coding and interframe coding. The second of these 

exploits the similarities which exist between successive frames of 

a TV picture by transmitting only the differences. This class of

12



code will not be discussed further since it is irrelevant to the 

coding of a static image. Intraframe codes are of greater interest

since they exploit coherence within the picture frame and are

therefore, in the first instance, concerned with static images. 

These codes may be further divided into two classes termed

reversible and non-reversible. Reversible encoding allows exact 

reconstruction of the pixel representation but appears to offer

only modest compression ratios of about 2:1 (see Hall [1] p.311). A

greater degree of code efficiency may be achieved by non-reversible 

codes which allow a certain amount of approximation beyond the

initial sampling and quantisation. Study of the psychophysical 

properties of visual perception has resulted in a range of 

approximation techniques which do not substantially affect 

subjective picture quality [6].

2.5 Picture coding for computer graphics

Before proceeding to a survey of coding methods it is worth

examining the significance of digital TV techniques in computer 

graphics applications. Superficially the requirements appear to be 

similar; a picture must be generated in real-time from encoded 

data. Some authors differentiate between "real" images and those 

generated by computer but this distinction seems not to be 

fundamental and is certainly outdated when one considers the 

quality of image which can be synthesised nowadays. Therefore, if 

picture display is the only consideration then digital TV encoding 

methods seem relevant. This, however, ignores a most vital aspect 

of computer graphics, namely its interactive nature. In computer

13



graphies the picture code must fulfil a role Which is absent in TV 

applications : it must serve not only as a source for display

generation but also as a representation of the displayed image. It 

xs difficult to see how approximation coding can be applied in 

these circumstances since graphic entities, although visually well 

defined, are likely to be ill-defined in the data structure.

The following survey therefore includes only those TV 

techniques which preserve the original pixel description together 

with examples of coding which have previously been used in the 

computer generation of images.

2.5.1 Coding of line drawings

Where a picture consists of a limited number of line segments 

drawn against a uniform background it may be efficiently encoded by 

a minimal specification of coordinates and dimensions. A code which 

caters for straight lines, arcs of circles, rectangles and other 

simple geometric shapes is quite feasible and, in effect, provides 

an ordered set of drawing commands. Provision may also be made for 

infilling bounded areas created by previously defined lines. 

Clearly, a code of this kind has very limited graphics application 

which cannot include the portrayal of detailed shaded images.

2.5.2 Block coding

In block coding the picture is divided into rectangular cells 

of m by n pixels and a code is allocated to each of the relevant 

cell configurations. This is the scheme adopted in the majority of 

alphanumeric terminals where a cell of typically 5 x 7 or 7 x 9

14



pixels is used to create the character set. In this case data 

compression is achieved because the characters form a small subset 

of the possible cell configurations. The low resolution graphics 

facility contained in Teletext uses a 2 x 3 cell and sixty four 

codes are therefore needed to represent the entire graphics set. 

These together with an alphanumeric set and various controls 

constitute a 7 bit code. It is worth noting that in this case 

compression is only achieved because the system employs a range of 

eight colours and uses a single control code to prefix a run of 

uniform-colour graphics characters. In a monochromatic system this 

scheme would offer no compression of graphics data.

Jordan and Barrett [7] have described a display which builds 

line drawings using an extension of the block coding technique. 

They use a character generator which provides not only 

alphanumerics but also a set of 108 basic line segment patterns 

drawn within a cell of 8 x 8 pixels. Each display file instruction 

includes, with the pattern code, codes which allow translation, 

reflection and masking of the basic pattern within the cell. 

Combined with various other features this permits the construction 

of complicated figures from cell codes. The authors report 30% data 

compression at limiting picture complexity when 25% of the screen 

is filled with lines.

Further examples of block coding may be found in a recent 

review by Kunt and Johnsen [8].

15



2.5.3 Run-length coding

It is a consequence of the raster scan technique that picture 

coherence is most easily exploited in one dimension only. Run- 

length encoding achieves data compression by inspecting pixel to 

pixel correlation along each raster line, a run of pixels with 

constant colour being coded with a pair of descriptors giving 

colour and run length. Cherry et al. [9] report the generation of 

TV quality pictures using run-length code with an average 3 bits 

per pixel. A major advantage of this coding technique is that it 

may be implemented at low cost with relatively unsophisticated 

hardware [10]. A commercial example is the DEC VT31C [11].

2.5.4 Predictive differential quantisation (PDQ)

Used alone, PDQ is an approximation method which exploits the 

high correlation between neighbouring pixel intensities. However, 

used in conjunction with other schemes it may form part of an exact 

code so the principle is described below. By using some sort of 

averaging function it is possible to formulate a prediction of a 

pixel value in terms of its predecessors. The pixel can therefore 

be encoded as the quantised difference between the predicted and 

the actual value and decoded using the same rule. The bit rate for 

a picture is thereby reduced because the differences may be coded 

with fewer bits than the absolute values. Large difference signals 

are only encountered when significant discontinuities in the image 

are crossed so this strategy inevitably introduces approximation 

unless alternatives exist for this special case. In the simplest 

scheme, known as Delta Modulation, the difference is calculated

16



between the pixel under consideration and its immediate predecessor 

in the scan line. Individual pixel values may therefore be restored 

by a simple integrator. Alternatively, to exploit vertical 

coherence, differences between corresponding pixels on successive 

scan lines may be used, in which case a line buffer must be 

maintained.

Huang [12] has described a PDQ variant which serves as an 

extension of run-length encoding to two dimensions. Together with 

special codes which mark the start and end (in the vertical extent) 

of coherent areas, the picture is encoded as differences between 

the position and length of runs on successive lines.

In a similar but more elaborate scheme Daskalakis et al. 

[13,14] augment the technique of run-length encoding by the use of 

line-to-line correlation. They define a selection of special 

codewords which permit the efficient description of colour 

transitions which occur within three pixels of an identical 

transition on the previous scanline. This refinement is reported to 

give compression ratios which improve upon simple run-length code 

by a factor which varies roughly from two to five depending upon 

the picture type.

2.5.5 Area coding

While schemes which combine point-to-point with line-to-line 

correlation certainly exploit two dimensional image coherence they 

nevertheless differentiate between the dimensions in a quite 

artificial way. This is, of course, a reflection of the raster 

technique of image construction. Considering the logical

17



equivalence of the two dimensions in a picture there are strong 

arguments (2.6) for a strategy which codes areas explicitly.

Schreiber et al. [15] have explored this possibility with a 

contour coding technique which they apply to typescript and to 

continuous tone images. A contour is traced by specifying a

starting point followed by a sequence of three bit words which act 

as incremental vectors. A compression ratio of only 1.6 is quoted 

for a picture using 16 grey levels defined to a resolution of 256 

by 256 pixels.

Kutsuzawa et al. [16], reporting on their "Video Signal

Generator" (VSG), describe a colour graphic display which assembles 

a picture from a number of polygonal areas defined by their

boundaries. The display file consists of a list of records which 

define each edge in terms of its uppermost X and Y coordinates, its 

gradient, its lowermost Y coordinate and the colour lying to the 

right of the edge. Customised hardware performs scan-conversion on 

this data but is limited to processing no more than thirty two

colour transitions per raster line.

Working along similar lines, researchers at the University of 

Sussex [17] have designed a "Zone Management Processor" (ZMP) for 

computer animated images. Their pictures are composed of 

"quadrilateral" zones with sides specified by first, second or 

third degree equations. Unlike the VSG, the ZMP processes data 

records which contain a complete specification of each zone. 

Although this duplicates boundary information it aids recognition 

of coherent picture areas. In practice several 29<Ps are used to

18



process data in parallel and their number defines the complexity of 

the displayed image; the use of sixteen ZMPs limits the display to 

no more than sixteen zones intersected by any raster line.

2.5.6 Bit-plane coding

This technique transforms a picture with 2^n grey levels into 

n separate binary images. It is found in practice that for natural 

images there is considerable coherence in the binary image 

associated with the most significant bit. The complexity of the 

least significant bit plane image is greatest. Having transformed 

the original image in this way the individual binary images may be 

encoded using one of the methods already described. Spencer and 

Huang [18] report a compression ratio of roughly 2:1 for 6 bit 

images with a resolution of 256 x 256 pixels. They obtained optimum 

results by Gray-coding the original image and run-length encoding 

the binary components.

2.5.7 Statistical coding

Many of the coding methods which have been described in this 

section may attain greater efficiency by applying a statistical 

analysis to the code. The object is to reduce the average number of 

bits per codeword by replacing fixed length codes with variable 

length codes. A Huffman code [19] is optimised to represent 

frequently occurring codes with fewer bits than infrequent codes. 

Except for transmission purposes the advantages offered by such a 

scheme to interactive computer graphics are generally outweighed by 

the complications introduced by variable length codes.
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2.6 Conclusion

It is clear that a variety of coding techniques are available 

to tackle the major problem of the amount of data required to 

generate a picture. In order to assess the relative merit of these 

techniques in the context of computer graphics the following 

considerations seem relevant.

a) Data compression must remain a primary objective, particularly 

with regard to picture transmission and storage. It is clearly 

sensible that the amount of data required to represent a picture 

corresponds to the information content of the picture. It appears 

that compression ratios of about 2:1 can be expected for natural 

images with considerably better ratios for stylised computer 

generated images. Furthermore, there is reason to believe that for 

a fixed number of quantisation levels the compression ratio 

achieved by encoding improves as spatial resolution increases [20].

b) A coding scheme cannot be considered fully satisfactory if it 

fails to accommodate a full range of picture types. Naturally the 

efficiency of any particular code is likely to depend upon the 

image it is applied to but that is another matter.

c) The full benefit of data compression is not seen unless the 

compressed code can act as a source for display generation. Of 

course, it is sensible to employ picture coding for efficient 

transmission and storage even when a picture is eventually 

displayed using a conventional framestore design. The ultimate 

goal, however, is to dispense with the need to buffer individual 

pixel data.

20



cl ) The dual role of picture code in the context of computer

graphics has already been remarked upon (2.5) and requires

elaboration here. As we have seen, much of the work on picture 

coding has been orientated towards finding efficient transmission 

formats in which the data structure is only tenuously related to 

the image structure as perceived by the viewer. Thus, the code is 

invariably application-specific and of limited general use. What is 

required in the context of computer graphics is a compression 

technique which preserves the essential structure of the picture 

because this aids interaction with the picture [21]. Suppose the 

user wishes to manipulate or modify a displayed image. Ideally this 

will be achieved by direct manipulation of the picture code but in 

practice it can only be done if the data is structured to form a 

suitable picture representation. If not, then the code must be

expanded into a form suitable for processing and finally

recompressed. The use of compressed code as a display source then 

becomes questionable.

The contention of this thesis is that the only satisfactory 

method of picture coding for general use must exploit area 

coherence in a direct rather than indirect fashion.
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Chapter 3 PICTURES AS QUADTREES

It would appear that many of the techniques previously applied 

to the problem of digital picture representation are unsatisfactory 

in the context of computer graphics, not because they fail to 

achieve a substantial degree of data compression but because they 

generate data which corresponds only indirectly with the observable 

picture structure. Clearly then, there is good reason to move 

attention away from research directed at efficient transmission and 

display generation toward areas of study where the structured 

organisation of picture data is all-important. Workers in several 

fields have employed a representation based on the subdivision of a 

picture by regular decomposition. Knowlton [22] has proposed a 

scheme which progressively resolves the finer detail of a picture 

by recursive division of the picture area into halves. 

Decomposition into quarters is more common and results in a 

structure which is variously referred to as Warnock-type [23], 

pyramid-data [24], segmentation tree [25], decomposition tree [26] 

and quadtree [27-33].

3.1 The quadtree scheme

The quadtree is a heirarchical representation of a picture in 

which the picture area is divided recursively into quadrants until 

the sub-areas so formed are uniform in colour (fig. 3.1). The 

subdivision may proceed to a limit determined by the resolution of 

the device acquiring or displaying the image which, in the case of 

a raster scan display, corresponds to pixel size. A square picture
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Figure 3.1 Recursive division of a picture



is therefore represented as a four-branched tree in which the nodes 

correspond to quadrants and the leaves correspond to square areas 

of uniform colour which will be referred to as quads (fig. 3.2). 

Although this appears to restrict the technique to dealing with 

displays configured as 2^n by 2̂ 'n pixels there are straightforward 

means of adapting the principle to other geometries (see the 

discussion on zoning in Chapter 6),

Interest within the image processing community derives from 

the fact that the quadtree provides an excellent storage structure 

which allows a picture to be represented at progressively finer 

levels of resolution. The quadtree exploits area coherence and at 

the same time preserves spatial information thus enabling the 

creation of efficient picture processing algorithms which can focus 

quickly upon areas of interest.

Given that it appears to serve as an excellent representation 

of pictures, the quadtree method also promises a reasonable degree 

of data compression [34,39]. Before considering its suitability 

from a display point of view it is appropriate to survey the 

various data structures which have been proposed for the storage of 

pictures as quadtrees.

3.2 Quadtree data structures

3.2.1 Linked tree structure

The quad tree representation of a picture is most naturally 

translated into a data structure which retains explicit links 

between tree node records. A minimal structure would consist of 

records with four fields describing the four descendants at each
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node: if the son is a leaf then the field contains colour data: if

not then the field contains a pointer to the descendant node (fig. 

3.3). This type of structure has been favoured for image processing 

because of its flexibility and it is sometimes embellished with 

backpointers to father nodes [30-33], Hunter and Steiglitz [28] 

even incorporate "ropes" which provide links across the tree 

between adjacent nodes to assist identification of connected 

regions. Despite the advantages of a pointer structure there is a 

significant penalty in terms of storage space so data compression 

is diminished. Analysis of several picture trees (Chapter 7) 

indicates that the number of leaves is 75% of the total number of 

nodes. Therefore, even with the minimal requirement, pointers 

comprise 25% of the data. The problem is aggravated by the fact 

that for a reasonably complex picture the field width needed to 

store pointers is likely to equal or exceed 14 bits (spanning a 16K 

address space). Colour information is frequently coded with 8 bits 

or less.

3.2.2 Universal quadtree structure

Woodwark [35,36] has made considerable use of quadtrees in a 

volume modelling system. He has proposed a structure [37] in which 

every possible quadtree node is allocated storage space, thereby 

creating a very sparsely populated structure in which the linkage 

is implicit in the addressing scheme. Although this requires one 

third more storage than a full pixel representation, the structure 

may be rapidly traversed by applying simple Boolean operators to 

node addresses. Despite its extensive storage requirement the
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structure nevertheless allows a picture to be represented with less 

data than the linked tree.

3.2.3 Implicit traversal

Given a quadtree structure there are several obvious ways in 

which it can be logically traversed to visit each node once and 

once only. Therefore it is possible to represent a quadtree without 

using pointers by a list of nodes in which the ordering is 

implicit.

Oliver and Wiseman [38] present a collection of picture 

manipulation algorithms which operate on a linear structure in 

which the nodes are ordered by a depth first traversal (fig. 3.4a). 

Each list record is marked by a single bit field as either a leaf 

or non-leaf node. The remainder of the record is used to code 

colour information: in the leaf case the code represents the quad

colour; in the non-leaf case the code represents the "averaged" 

value of the sub-tree quads (figs. 3.4b, 3.4c). This enables the

construction of a picture at various resolutions with anti-aliasing 

as a built in feature. Whilst averaging may reduce to simple 

arithmetic with a grey-scale picture it poses a considerable 

problem for coloured pictures generated via a look-up table (see 

Appendix 2) and may prove impossible where a small colour range is 

available.

Kawaguchi and Endo [34] employ a similar strategy in their 

representation of binary pictures. Their linear structure (called a 

DF-expression ) employs three symbols ordered by a depth first 

traversal of the picture quadtree. Using "0" to represent white and
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"1" to represent black the sequence of symbols

((00101(101(1100(0001(1010( 11000 
provides an unambiguous representation of a sub-tree where the 

symbol "(" announces the imminent subdivision of a node. The 

completion of each node is easily inferred : to clarify the issue

the sequence is repeated below using redundant ")" symbols.

((0010 )1(101(1100))(0001)( 1010)( 1100)0 )
The authors evaluated three coding schemes for representing their 

three symbol alphabet and compared the results with other 

compression methods applied to identical pictures. They report 

compression factors more than 2.5 times that obtained using run- 

length code and about 1.5 times that using a predictive code.

Woodwark [39] has proposed a modification to the scheme of 

Oliver and Wiseman (above) which replaces the averages held at non­

leaf nodes by special codewords which describe the configuration of 

descendants from the node. The number of colour codes is reduced 

wherever two or more of the descendants are leaves with the same 

colour. Comparison with run-length code for identical pictures 

suggests that this compression method is very nearly as efficient 

in terms of storage. Unlike run-length code it provides a database 

which permits a variety of picture manipulations.

Breadth first traversal (fig. 3.5) appears promising if 

averages are held because reduced resolution images can then be 

constructed from a linear sub-list [38]. In other respects it seems 

less useful.
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3.2.4 Leafcode

In the previously described schemes the size and position of

any leaf quad is made unambiguous by context. Leafcodes provide a

linear data structure in which only leaf nodes are described and 

therefore they require some spatial information to be tagged to the 

colour code of each leaf. Most commonly [38] a field is allocated 

describing the route taken through the tree to reach the quad. This 

leaf coordinate can be given by a string of quarternary codes each 

requiring two bits. For example, by allocating the codes 0,1,2,3 to 

the quadrants NW, NE, SW and SE respectively the shaded quad in 

figure 3.6a is given the coordinate 12. Similarly the quad in 

figure 3.6b is labelled 120. This immediately raises the problem of 

size ambiguity if the labels are stored in a fixed width field. 

Gargantini [40] employs an extra code X to indicate no further 

subdivision, so the quads in figure 3.6 would be labelled 12X and 

120. Unfortunately this necessitates a three bit field instead of 

the previous two for each except the most significant coordinate 

digit. It is generally more efficient to dedicate a separate size 

field. For example, a picture resolved to 256 x 256 pixels requires 

an eight digit coordinate to specify a particular pixel. In 

Gargantini's labelling scheme the coordinate field width is 

therefore 7x3+2 - 23 bits. Alternatively, since there are eight 

possible quad sizes the size can be denoted in a three bit field

and the total requirement is then 8x2+3 = 19 bits.
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To summarise then, a leafcode might typically be structured as 

a list of the form

quad 0: j position code size code colour code {
quad 1 Î 1

etc ! t

and ordered by position code.

The overheads imposed by the storage of position and size 

codes make this structure look fairly unattractive. However, it

does offer some benefits. Firstly, if the image in question can

conveniently be partitioned into subject and background then only 

subject quads need be stored; the background can be inferred.

Secondly, the structure allows rapid random access to any quad

whose screen (x,y) coordinates are given (Appendix 1). Access can 

be made either by binary search or by setting up a hash table 

using, in both cases, position code as a key.

Oliver and Wiseman [41] claim that leafcode provides a

superior data structure for performing translate, scale and rotate 

operations on images represented as quadtrees. Their algorithms

employ squarecode: a generalised leafcode which permits a picture

to be represented by any tesselation of different sized squares. 

In order to maintain complete flexibility they propose a system 

which stores treecode and converts to and from squarecode via 

leafcode whenever this promises greater efficiency.

It is worthwhile to note that a leafcode description which 

includes both position and size codes contains redundant

information which may be exploited by implicit ordering. There is

28



clearly some scope for compression since, given a full list of

position codes the associated size codes can be deduced. The author

has employed a leafcode which dispenses altogether with position 

code retaining only colour and size information. This leafcode, 

named the Display Ordered List, is particularly suited to the task 

of display generation and is described in the next chapter.

3.3 Quadtrees as display structures

The quadtree as a structure for display purposes has received

little attention though Oliver and Wiseman [38] remark upon its

potential for display at varying resolutions, with particular 

reference to animation.

Samet has clearly considered the question of display and 

presents an algorithm for converting from quadtree to raster form 

[30]. His objective, however, (though not specifically stated) is 

undoubtedly to generate data for a frame store rather than to 

perform real-time scan conversion. Kawaguchi and Endo [34] give 

details of a raster to quadtree encoding algorithm which may be 

inverted to perform decoding.

The quadtree method appears to satisfy three of the principal 

criteria previously stipulated (2.6) for a computer graphics coding 

scheme ;

( i) it promises to offer data compression comparable with other 

exact coding schemes,

(ii) it is applicable in principle to any picture type and

(iii) it provides a potentially useful picture representation.
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Two issues remain to be settled. The first is to determine to 

what extent quadtree code (in one form or another ) is suitable as a 

source for display generation. The second is to investigate the 

extent to which a quadtree based display system can be used 

interactively.
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Chapter 4 A SCHEME FOR REAL-TIME DISPLAY

Having discussed a variety of data structures which have 

proved useful in representing pictures stored as quadtrees it now 

becomes appropriate to focus attention upon the practical problems 

associated with real-time display. This chapter describes the 

process which culminated in the current design and thereby arrives 

at a preliminary specification for the hardware which will be 

described in the next chapter.

4.1 Objectives

The design started with the objective of finding a solution 

which would satisfy the following criteria.

a) The system should be capable of generating, in real-time, images 

containing a wide range of colour from compressed picture code. The 

use of a standard data monitor as the output device minimises cost 

but imposes a limit on the image resolution which was chosen to be 

512 X 512 pixels, being a convenient format and close to the 

practical limit.

b) It should be simple and cost effective. Some of the advantages 

offered by the use of compressed code would clearly be nullified by 

the need for elaborate and extensive hardware. In particular, the 

use of high performance integrated circuits should be avoided where 

possible to minimise the cost.

c } It should be robust. Several previous schemes using compressed 

code have depended for their successful operation on limiting 

picture complexity (2.5.5). A strategy which is defeated by
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critical picture types was considered to be unsatisfactory. This 

does not imply, of course, that all picture types can be expected 

to benefit from data compression; simply that the compressed form, 

however inefficient, should always be susceptible to real-time 

decompression.

d ) As a research tool, the system should retain as much flexibility 

as possible to allow the evaluation of different coding strategies.

4.2 Initial Concepts

Adopting a bottom-up approach, the design commenced by 

considering the demand for picture data as the raster scan proceeds 

in the conventional manner from screen top left to bottom right. 

Figure 4.1 is provided as a simple example to illustrate the 

argument.

Starting to scan the first line of a new raster field, the 

display requires data pertaining to quads A,B,C and D; in 

particular the colour of and run length across each area must be 

supplied. Proceeding down the screen successive scan lines require 

identical data and, rather than fetch this repeatedly, it appears 

sensible to buffer the data locally. This necessitates the local 

storage of additional information which will control the entry of 

data associated with quads E and F when the scan reaches the 

appropriate line. Eventually, quads E, F and D will be discarded 

and replaced by G and H.

The preceding analysis suggests two features which will 

simplify operation of a practical system.

a) Given a small cache memory the picture quads need be fetched
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once only from main storage but in an order determined by the 

raster representation of the picture. This will be referred to in 

future as DISPLAY ORDER and corresponds to the order in which the 

picture quads are first encountered in a top left to bottom right 

traversal.

b) The size of cache memory required must be sufficient to buffer 

data for a complete raster line throughout the field. In order to 

satisfy every eventuality and retain simplicity this LINE BUFFER 

should provide 512 locations corresponding to the horizontal pixel 

resolution and should store the COLOUR CODE of each pixel in the 

current raster line. Furthermore, to control the replacement of 

colour data in the buffer as the scan proceeds it is necessary to 

keep a record of the current picture "profile" (Fig.4.lb). This is 

most easily done by associating with each buffer entry a value 

denoting the number of lines for which the stored colour remains 

valid. This value is designated HEIGHT CODE.

A feasible scheme for hardware implementation thus emerges 

which would operate as follows. During a raster line each buffer 

location is examined sequentially at pixel rate and the colour code 

is output. Simultaneously the height code is tested and, if found 

to be non-zero, is decremented in preparation for the next raster 

line. However, detection of a zero height code causes the insertion 

into the line buffer of new colour and height codes associated with 

the next quad in the display order. This is termed the INPUT QUAD. 

Consider, for example, the lifespan in the line buffer of an 8 x 8 

quad which appears on four raster lines of each interlaced field.
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Its colour code is written to eight consecutive buffer locations 

together with an initial height code of 3. At the fourth pass 

through the line buffer each of the eight locations contains a zero 

height code so each must be overwritten with new data. It is thus 

apparent that, in general, the input quad is used to update several 

consecutive line buffer locations as they become invalid so a 

suitable control mechanism is required to permit exactly the 

correct number of insertions. This can be achieved by associating 

with each input quad a WIDTH CODE which is decremented each time 

the quad is used to fill a vacancy in the line buffer. Whenever the 

width code becomes zero the input quad is replaced by its successor 

in the display order. Notice that, although they operate in a

similar fashion, the height and width codes are quite distinct. The

height code is stored in the line buffer and controls requests for 

new data. The width code is held outside the buffer and controls 

updating of the input quad by counting line buffer requests.

The height and width codes introduced in the foregoing 

discussion are both derived from a more general and efficient code 

for representing quad size. This will be described after examining 

some of the other factors which have an influence on the design 

strategy.

4.3 Timing Considerations.

Preliminary analysis of pictures provided by colleagues in the 

School of Engineering at this University revealed that pictures of 

reasonable complexity were likely to be composed of more than ten

thousand quads (Chapter 7). Given a field period of 20ms the
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average time allowed to access each quad in the display order is 

therefore less than 2/ns with transient demand for data more than an 

order of magnitude greater. None of the data structures so far 

described (Chapter 3) is easily traversed in display order so their 

direct use would require both:

a) ultra fast processing far beyond the power of any current

microprocessor and

b ) considerable buffering to even out the demand for quad data by 

the display.

Given these complications and the previously stated 

requirement of relatively straightforward hardware it became clear 

that the quad data should be sorted into display order in advance 

of real-time display. The decision was therefore taken to adopt the 

DISPLAY ORDERED LIST as the central data structure, permitting;

a) simple interfacing to the code decompression system and

b) the investigation of compilation from other data structures 

The structure of the display ordered list is examined later (4.5).

4.4 The Effect of Display Interlace.

Raster interlace is a technique commonly employed in low cost 

display monitors to realise twice the resolution for a given line 

frequency. The current display apparatus incorporates this type of 

monitor and, as a consequence, some of the discussion in the 

previous paragraphs relating to display order needs slight 

qualification. The complication arises from the fact that an 

individual pixel appears on alternate raster fields (fig. 4.2) and 

therefore pixel-sized quads must be treated as a special case when
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defining display order. Bearing in mind that the screen is 

refreshed on every field rather than on every frame two solutions 

are suggested.

a ) The concept of display order defined previously is extended by 

defining separate even field and odd field display orders. Since 

the possibility of real-time ordering from another structure has 

been currently rejected the implication is that two separate 

display ordered lists are needed for the display of a picture 

frame. This would clearly be a very inefficient solution since all 

the quads larger than pixel size would be included in both lists. 

For example, in figure 4.2 :

the even field order would be ABDFG and 

the odd field order would be ACEFG 

A simple calculation based on the statistics presented in Chapter 7 

reveals that since roughly 60% of the quads composing a picture are 

pixel sized and because these divide equally between even and odd 

raster fields the ratio

number of quads per field : number of quads per frame - 70:100

from which it follows that

length of dual field list : length of single frame list = 140:100.

The use of separate display lists therefore requires an extra 40% 

storage and was considered an unsuitable proposal.

b) Referring again to figure 4.2 it is observed that the order 

ABCDEFG includes as subsets the field orders ABDFG and ACEFG. It
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would therefore be possible to use a single frame display ordered 

list defined in this fashion provided the pixels associated with 

different fields could be identified and "filtered" at display 

time. This solution was adopted and the hardware implementation is 

described in the next chapter.

4.5 The Display Ordered List.

Having defined the concept of display order for an interlaced 

raster display it is possible to make detailed proposals for the 

structure of display ordered lists. Each record in the list must 

include information on quad colour and, since it is not implicit in 

this structure, quad size.

The coding of quad size is made particularly efficient by the 

fact that all quads have dimensions which are a power of two. 

Starting with pixel size (2^0 x 2*0), which requires two separate 

codes to differentiate even and odd field, and continuing up to 

full screen (2*9 x 2*9) results in eleven different codes. If quads 

greater than 64 x 64 are disallowed in the scheme the number of 

codes is limited to eight and the size information may be contained 

in a three bit field. The upper limit placed on quad size imposes 

negligible loss of efficiency in coding since the occurrence of 

larger quads is rare and their replacement by several smaller ones 

adds very little to the length of the display list. The designation 

of SIZE CODE is given in table 4.1 together with the translation 

for each quad size into the height and width codes required by the 

line buffer.
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Quad Dimensions Size Height Width
Even field pixel 0 0 0
Odd field pixel I 0 0
2 X 2 pixels 2 0 1
4 X 4 pixels 3 1 3
8 X 8 pixels 4 3 7

16 X 16 pixels 5 7 15
32 X 32 pixels 6 15 31
64 X 64 pixels 7 31 63

Table 4.1 Quad codes

Provision for colour in the display is determined by the 

number of bits used in the colour code; for example, a range of 256 

colours on-screen requires a code of eight bits. The eventual 

choice of colour resolution must of course depend upon the intended 

application but in this system the effect of exploiting area 

coherence should also be considered. Is it, for example, worthwhile 

to implement a colour range greater than the anticipated maximum 

number of quads? The question of colour is examined in some detail 

in Appendix 2 but in relation to the present system it was decided 

to employ a colour code which offered a substantial range within a 

convenient data field. Having reserved 3 bits for the size code the 

use of an 8 bit record for the display list would leave a maximum 

of 5 bits for the colour code. This was considered inadequate so 

the decision was made to use a 12 bit colour code within a 16 bit 

record leaving one bit spare for possible future use. Although this 

may be considered excessive in many applications it leaves scope 

for experimentation in the representation of colour (Appendix 2). 

Yet more flexibility is provided by the inclusion of a hardware
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colour look-up table which maps the 12 bit colour code to a 24 bit 

code consisting of three 8 bit values. These values determine the 

intensity of each of the primary colours (red,green,blue) mixed to 

produce the colour associated with a particular 12 bit code. Thus, 

the present design is capable of displaying a range of 4096 colours 

selected from a total of more than 16 million (2*24).

The display ordered list therefore consists of a sequence of 

16 bit leafcode records structured as; 

bit 15........... .4{3|2 1 0|

colourl
1 1 1 
} {sizelj

colour2 1 {size21
colour3 { |size3|

colourN 1 {sizeNt

Bit 3 is currently unused.

It has already been noted that the length of the display 

ordered list is likely to exceed ten thousand records. The question 

arises what provision should be made in the hardware for storage of 

the list. Wiis may be answered with reference to the degree of 

compression considered acceptable in the system. A frame store with 

the same resolution as the proposed display requires 512 x 512 ie. 

256K words of storage where the word length determines colour 

resolution. Provision in the present system for a 32K record 

display list therefore caters for any picture in which the ratio of 

pixels:quads is better than 8:1.
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Chapter 5 THE SYSTEM HARDWARE

While hinting at some wider aspects, the design considerations 

discussed in the preceding chapter effectively concern only the 

part of the hardware dedicated to real-time display from the 

compressed picture code. The rest of the hardware must, by virtue 

of the research nature of the project, be specified to enable 

maximum flexibility in the investigation of picture coding and 

manipulation.

In connection with a separate project the author had already 

designed hardware for a graphics system employing a full bit-mapped 

framestore. This Z80 based system, supported in the department by 

suitable software and expertise, provided an excellent test-bed for 

a preliminary implementation of the design strategy outlined in 

Chapter 4. Having stripped the system of redundant features, design 

and construction of the picture buffer and decoder commenced. A 

block diagram of the initial prototype is shown in figure 5.1. The 

picture buffer, whose function is to store the display ordered list 

of quads, was limited in this prototype to hold up to 16K quad 

records each with a 4 bit colour code. Operation of the picture 

decoder was tested using geometric patterns whose display lists 

were loaded quad by quad into the picture buffer under the control 

of the system monitor. Lacking a colour map, the 4 bit colour codes 

were fed directly to a single digital to analogue converter (DAC) 

which, in turn, drove a monochrome data monitor producing a sixteen 

level grey-scale image. With the assurance that the decoding 

circuitry was performing to specification it became necessary to
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reappraise the situation. Two major deficiencies in the prototype

system had become apparent, both of them related to the use of the

Z80 as CPU.

(i) In order to extend the colour range as proposed, each quad 

record in the display list would require two bytes of storage with 

provision for a total of 64 Kbytes. Transfer from an 8 bit to a 16

bit processor would clearly make operations on the display list

easier and more rapid.

(ii) The Z80 is constrained to address only 64 Kbytes of 

memory directly. With the display list alone occupying this amount 

of space the need for bank switching and a consequent management 

scheme becomes clear. This too can be avoided by transferring to a 

different CPU.

At about this time a range of 16 bit processors were becoming 

widely available and one in particular was finding use in other

departmental projects. The choice in the subsequent design of the 

Motorola 68000 as system CPU was decided by features which make it 

well suited to the present application viz.

(i ) its 16 bit external data bus and

(ii) its extensive (16 Mbyte) addressing capability.

Adoption of the new processor, while leaving the decoder

design unaffected, necessitated considerable redesign elsewhere and 

reconstruction provided the opportunity to rationalise parts of the 

circuitry. The addition of colour facilities and improved

input/output interfacing completed the current hardware development 

whose present configuration is shown in figure 5.2. The remainder
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of this chapter is devoted to an examination of the present system 

hardware. In general, the text is limited to a description in terms 

of functional blocks. However, it is considered appropriate to 

include full details of the picture decoder hardware since these 

are necessary for a complete description of its operation.

5.1 The central processing unit (CPU)

Apart from the real-time code decompression the CPU is 

responsible for all data processing within the system including the 

supervision of input and output of data. The 68000 CPU operates 

with an 8 MHz clock and supports a large and flexible instruction 

set enabling rapid and efficient movement of data. The extensive 

provision of internal registers minimises the use of memory for 

storing transient variables and thus speeds execution of the 

various time-critical routines associated with graphics 

applications.

5.2 Read-only memory ( ROM)

This is an area of non-volatile memory in which the system 

control program resides. Provision is made on the CPU board for 48 

Kbytes of firmware organised as 24K words using type 2732 EPROMs 

with an access time of 350ns. A description of the functions 

currently provided by the control program is given in Chapter 6.

5.3 Random access memory (RAM)

This is an area of read/write memory which is used as 

workspace for the control program and for the local storage of 

compressed picture data. The system RAM currently provides 256
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Kbytes of storage on a single board using type 4164 dynamic memory. 

Owing to the increased vulnerability of this type of memory to

"soft" errors the board is equipped with error detection and

correction (EDC) circuitry. In the present application this is 

particularly beneficial since a single error in the compressed 

picture code is likely to propagate with disastrous effect 

throughout the picture. The use of EDC unfortunately increases the

memory access time to 500ns but this has not proved a serious

drawback. The present memory size allows storage of (typically) ten 

pictures but provision is made in the racking to accommodate a 

second board which will double the capacity.

5.4 Input/Output interface (I/O)

This allows communication between the control program and 

external devices. One of the most important benefits to be gained 

from the use of compressed picture code is efficient transmission 

via a low bandwidth line. Accordingly, the system is provided with 

an RS232 serial port for connection to a host computer or a 

network. In general, the system has been operated in conjunction 

with a simple Z80 microcomputer which manages picture file storage 

on mini floppy disks under the CP/M operating system. In addition 

to the serial line, which operates at speeds up to 19200 baud, a 

parallel interface with the host provides considerably more rapid 

communication. A second RS232 serial interface is used for 

commmunication with a terminal through which system commands are 

issued. Recently the Z80 computer has fulfilled the dual role of 

terminal and file server.
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5.5 Picture buffer
This is an area of RAM used to store the display ordered list 

of the currently displayed picture. During the raster field period 

(20ms) the entire display list held in this memory is accessed 

sequentially by the picture decoder at a rate sufficient to 

maintain its correct operation. In the worst possible case where 

the display list contains a succession of pixel size quads this 

implies access at a rate equal to twice the pixel frequency 

because, as explained in Chapter 4, only half of the data will be 

valid for a given field. With a pixel period of about 70ns, access 

time to the memory is therefore set at 35ns per quad. The design 

of the picture buffer (fig. 5.3) incorporates a parallel fetch of 

data for eight quads thereby satisfying the worst case access time 

of 280ns without the need for costly high speed memory devices. 

Avoiding the complications associated with dynamic memory the 

picture buffer uses type 6116 static RAM configured as 4k x 8 x 16 

bits providing storage for a picture composed of up to 32K quads. 

During decoder access a 12 bit address is supplied to read data 

from a selected block of 8 x 16 bits. Access by the CPU is given 

priority and in this event the lower 3 bits of a 15 bit address 

supplied by the processor select one of a block of eight locations. 

Naturally, any modification of the display ordered list has a 

disastrous effect on the displayed image so blanking is applied to 

the video output on these occasions.

44



picture
buffer
select

_ Ù _

1 of

SEL

TT

R/W

JX

\r-%
7

C:

c=

c

R/W

1
X

3 bits

4K X 16

A. "
V

4K X 16
A

" V  12 bits

68000 address 
AO - A14

:>

:>

data
to
.input
filter

:>

:>

MUX Cfrom
address
counter

Figure 5.3 Picture buffer



5.6 Picture decoder
The function of this block is to generate a real-time sequence 

of pixel colour codes from the compressed picture code stored in 

the picture buffer. The individual elements of the decoder shown in 

figure 5.4 will now be described in detail.

5.6.1 Line buffer

(i ) Functional outline

Tlie principles underlying the operation of the line buffer 

have already been presented in Chapter 4. This section continues 

logically from there by examining the practical implementation of 

those ideas. Recall that the buffer requires 512 locations in which 

are stored the colour and height codes for the current raster line.

As the line is scanned each buffer address is stable for about 70ns

during which time

a ) the colour code must be read and output 

b ) the height code must be read and

(i) if not zero, decremented 

or (ii) if equal to zero, initiate the writing

of new colour and height codes

The execution of a read/decrement/write cycle in the specified time 

proved to be outside the capability of any readily available fast 

memory. Subsequent examination of the benefit of double buffering 

quickly provided a solution which effectively lengthened the cycle 

time to a manageable duration. Under this scheme colour and height 

codes are read from one of the buffers (the R buffer) while the 

other (the W buffer) is written with codes appropriate to the
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subsequent raster line (fig. 5.5). Height code from the R buffer is 

passed to a fast decrement circuit whose output is routed through a 

multiplexer to the W buffer input. The decrement unit is used to 

control the multiplexer so that new height code is fed to the W 

buffer whenever a zero height code is detected.

On alternate raster lines the functions of the R buffer and W 

buffer must clearly be reversed. Figure 5.6 shows how this is 

achieved using the control signal A/B to select which of the 

buffers A and B is designated the R buffer during the current line. 

During the vertical blanking period data for the first raster line 

is written to buffer A. Each display field therefore starts by 

reading from buffer A and writing to buffer B. Notice that

provision is made for copying colour code from buffer A to buffer B 

but not the reverse. This is because new code is only written to 

buffer B in the case of size 1 x 1  and size 2 x 2 quads which

persist for just one raster line.

(ii) Operational details

Line buffer control (fig. 5.7) is synchronised to the main

display clock DCLK running at pixel frequency. XOR gating with

signal A/B generates two antiphased clocks CLKA and CLKB which are 

used to latch column addresses (DA0-DA8) providing two sets of 

addresses for the double line buffer. The advanced address is 

applied to the R buffer while the delayed address is applied to the 

W buffer effectively increasing the cycle time to more than 100ns. 

Gating of DCLK with various condition signals provides a variety of 

write pulses to different parts of the circuit.
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Height code is stored in type 2125 memory with an access time

of 20ns. Data selected from buffers A or B is passed to the fast

decrementer (fig. 5.8) which asserts signal ZERO if the height code 

is zero. This signal is latched during the write phase of the cycle 

providing signal Z which is used to enable height data from either

the decrementer or from the input register . A request NEXT is

issued by the line buffer each time data is written from the input 

register.

Colour code is stored in type 2149 memory with an access time

of 45ns. During the read phase data is clocked into an output

register and, when buffer A is being read, latched in a transfer 

register for copying to buffer B. In the event of signal Z being

asserted colour data is written to the appropriate buffer from the

input register.

5.6.2 Line buffer input control

The use of width code to control updating of the input quad 

has been described in Chapter 4. The practical implementation makes 

use of two 74S169 ICs which form an 8 bit counter wired to operate 

in count-down mode. The line buffer request signal NEXT is used as 

a clock to decrement the counter while the input register data 

remains stable. The counter provides an output which becomes active 

when the count reaches zero and this is fed back to enable new 

width code to be loaded on the next clock pulse. The same output is 

gated with NEXT to generate a signal NEW which loads fresh quad 

data into the input registers.
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5.6.3 Size code expansion

Examination of Table 4.1 which translates from size code to 

width and height codes reveals that the 5 bit height code is a 

binary subset of the 6 bit width code, bit 0 being discarded. 

Figure 5.9 shows how the translation is effected at the expense of 

just one gate delay through fast TTL.

5.6.4 Input filter

(i ) Functional outline

The purpose of the input filter is to deliver quad data, 

accessed in parallel from the picture buffer, to the line buffer 

input removing any data not relevant to the current field. The

parallel to serial conversion therefore requires a selection

procedure which recognises and rejects invalid quads. This is 

implemented in the hardware by an eight to one multiplexer

controlled by a simple finite state machine FSM whose output 

defines the currently active channel (fig. 5.10). Size codes from 

each of the eight channels are fed to comparators which set a flag 

V for each channel holding valid data. These flags together with 

the current machine state determine the next state. With the

foreknowledge that invalid quads occur as single items in the 

display list it is necessary only to examine the validity of the 

immediately next channel

eg. if channel 4 is currently open then the next channel can be 

predicted by examining the validity of data on channel 5 : if it is

valid then channel 5 is opened next; if not then channel 6 is 

opened next. Expressing the states in binary form:
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if S(t) - 100 then if V5 - 1 then S(t+1) = 101

else if V5 ^ 0 then S(t+1) = 110

so in terms of V5 S(t+1) - 1 V5 V5

Table 5.1 presents the results of such an analysis for each machine 

state.

Current state s(t ) Next state S(t+1)
b2 bl bO b2 bl bO
0 0 0 0 vT VI
0 0 1 0 1 V2
0 1 0 V3 V3 V3
0 1 1 1 0 V4
1 0 0 1 V5 V5
1 0 1 1 1 V6
1 1 0 V7 V7 V7
1 1 1 0 0 VO

Table 5.1

A consequence of this strategy is that size data on channels O 

and 1 must be prefetched and available while the machine state is 6 

or 7.

(ii) Operational details

The valid flag V is generated by simple gating of the size 

code with the odd/even field signal 0/E. V is set unless bits 1 and 

2 of the size code are low (indicating a pixel sized quad) and bit 

0 does not match signal 0/Ê.

Figure 5.11 provides details of the FSM. The current machine 

state given by the three bit signal E is fed to a multiplexer which 

selects the appropriate pattern of flags constituting the next 

state. These form an input to a D-type register which is clocked by 

the signal NEW thereby opening a new channel after each updating of
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the line buffer input register.

Further outputs from the FSM are signal QCLK2 which goes high 

when state llx (6 or 7 ) is entered and QCLK6 which goes high when 

state OOx (0 or 1 ) is entered from state llx (6 or 7). QCLK2 is 

used to implement the prefetch on channels O and 1 and QCKL6

latches data for the other channels as well as incrementing the

picture buffer block address. Initialisation of the input filter is 

performed during field blanking by the signals QRST and QPRM whose 

function is described in section 5.6.5. Multiplexing of the eight 

data channels into one is controlled by the state signal E.

5.6.5 Synchronisation

Signals from this block provide synchronisation between all

the activities concerned in the generation and display of the final 

monitor image. The circuitry is built around a type ZNA134 IC which 

provides a variety of video synchronisation signals suitable for

interlaced raster scan display. Control signals for the decoder are 

derived from the outputs of two counters. The first counter is 

clocked at line frequency and divides the field into its display 

and blanking intervals within which are defined the signals A/B, 

LBWR (line buffer write enable), QRST, SETUP, QPRM, and QP2. The 

timing of these is shown in figure 5.12 and their function, if not 

described previously, is dealt with shortly. Each line drive pulse 

initiates the operation of the display dot clock DCLK whose 

frequency is adjustable to allow alteration of the image width and 

thus set the display ratio to the required square geometry. A 

counter driven by DCUC generates the 9 bit column address (DA0-DA8)
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required by the line buffer. Signals derived from these outputs 

define the horizontal display and blanking intervals.

Several of the signals generated in this block are concerned 

with the initialisation of the picture decoder. The input to the

line buffer operates in the fashion of a shift register so the

first phase of initialisation consists in priming the queue so that

the first quad is loaded together with its width code at the line 

buffer input. This is performed by the signals QRST, QPRM and QP2 

as follows. QRST clears the picture buffer address counter, resets 

the input filter to state 0 and latches data on channels 0 and 1 

from the picture buffer. During QPRM the line buffer input counter 

is forced into a load state and the input filter size code 

multiplexer is conditioned to output a zero code. The assertion of 

QPRM also "fakes" a state 7 at the input filter ensuring that the

data present on channels 0 and 1 will be inspected to determine the 

channel opened by the first NEW pulse. QP2 consists of two pulses, 

the first of which occurs while QPRM is active and loads the line 

buffer input register with zero width code. It also propagates as 

NEW thus opening the first channel with valid quad data. The second 

QP2 pulse then loads this data into the line buffer input register 

and opens the next input channel. The system is now primed and 

ready for filling line buffer A with quad data. LBWR is asserted 

for one line period and together with SETUP, which is active 

throughout the initialisation period, ensures that each of the 512 

locations is written to in preparation for reading on the first 

display line.
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5.7 Colour map

This acts as a real-time look-up table which maps colour codes 

to their appropriate red, green and blue video signal eunplitudes. 

The input consists of a stream of 12 bit colour codes issued by the 

picture decoder at pixel rate. This provides an address into an 

area of fast RAM configured as 4K x 3 x 8 bits and employing type 

2147 memory with an access time of 45ns. The output consists of 

three groups of 8 bit values representing the red, green and blue 

component intensities.

Access by the CPU is provided for the initialisation and 

subsequent modification of values within the table.

5.8 Video interface

This unit converts TTL digital signals to the analogue signals 

required by the colour data monitor. The 8 bit value associated 

with each primary colour is input to a digital to analogue 

converter (DAC) type TRW-1016 which directly drives 75 ohm cable 

connected to the monitor ( R,G or B ) input. Negative mixed 

synchronisation pulses generated by the synchronisation block 

(5.6.7) are buffered out to a separate monitor input.
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Chapter 6 THE PICTURE SYSTEM

This chapter deals with operational aspects of the Picture 

System in its current implementation. Following a definition of the 

data structures employed the firmware is analysed by examining the 

processing initiated by system commands issued from the keyboaurd.

6.1 An overview

Throughout this thesis the advantages offered by the use of 

compressed picture code have been emphasised. The system has 

therefore been organised to demonstrate and quantify the benefits 

which result from the implementation of quadtree coding. Adequate 

provision is made for the local storage of several pictures 

(typically ten) in a variety of formats. All requests to display a 

picture derive data locally and therefore initiate downloading from 

the host whenever the local search fails. Experimentation with 

different data structures is aimed at increasing the flexibility of 

the system as regards picture format and image manipulation.

6.2 Local data structures

6.2.1 Display Ordered List

The concept of the Display Ordered List (DOL) has been 

introduced in Chapter 4 and its structure described in 4.5. The DOL 

is the fundamental data structure used as input to the picture 

decoder and is therefore the only valid picture buffer format. The 

same structure also provides the most economical means of local 

storage since it contains just one 16 bit record per picture quad 

and uses no pointers. Furthermore, pictures stored as DOLs are most
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readily put on-screen since all that is required is a block 

movement of data to the picture buffer. The important disadvantage 

of the DOL is that it obscures the picture structure inherent in 

the original quadtree and therefore offers little potential for 

picture processing or manipulation.

6.2.2 Zoned Display Ordered List

The strategy of picture zoning adds a degree of flexibility to 

the DOL. It consists in dividing the screen area into zones each 

with 64 X 64 pixels thereby creating a display matrix of 8 x 8 

zones. While each zone remains an immutable entity the picture as a 

whole can be manipulated by shuffling zones into an appropriate 

order. Therefore, it becomes possible to store a large picture 

composed of m x n zones and rocun around it by selecting any subset 

of 8 x 8  zones for display. The application of zoning frees the 

quadtree technique from the limitation of representing only square 

pictures by allowing m x n branches from the tree root node (fig. 

6 .1 ).

The zoned DOL for a 512 x 512 pixel picture contains sixty 

four separate DOLs with added features to facilitate their merging 

into a single full-frame DOL for display. The zoned DOL is headed 

by a list of 64 offset pointers to the individual DOLs

PICTURE START: offset to zone 01 |
offset to zone 02 | (offsets are in words

...........  I from PICTURE_START)
offset to zone 64 {
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and the DOL for each zone is thus 

ZONE_START: scanline header | 
quad 01 
quad 02

quad n 
scanline header

scanline header 
quad 01 
quad 02

quad n 
end of zone

where the individual entries are: 

quad word: ccccccccccccOsss

scanline header: nnnnnnnkXJüüclOOO

cccccccccccc = colour code 
sss = size code

nnnnnnn •= ( number of quads 
introduced on 
this scanline)-l

kkkkk scanline key

end of zone: 0000000000001111

6.2.3 Zoned Quadtree

In this structure the zoning principle is built on to a linked 

list structure. The structure is entered through a list of sixty- 

four quadrant codewords which act as zone descriptors. These 

quadrant codes may either give the zone colour (if it is uniform) 

or provide an offset to a tree node data cell.

PICTURE_START: } zone 01 quadrant 
I zone 02 quadrant

zone 64 quadrant
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Each tree node data cell is composed of four quadrant codewords 

thus :

NODE: NW quadrant 
NE quadrant 
SW quadrant 
SE quadrant

where the quadrant words are in one of two forms ;

either colour code: OOOOcccccccccccc

or offset to another cell: Ixxxxxxxxxxxxxxx

All offsets are in words from PICTURE.START.

The zoned quadtree provides all the advantages mentioned 

previously in connection with zoned DOLs and retains a structure 

which permits more complex picture manipulation such as zooming. 

The penalty paid for this additional flexibility is a lengthier 

compilation of the frame DOL at display time.

6.3 Host picture files

The capture/generation of image data has not been a part of

this project. All the pictures which have been used were generated

by a solid modelling system under development in the School of 

Engineering at the University of Bath [35,36] and employ 8 bit 

colour code. These were made available as full pixel-mapped files 

on a PDPll/23 minicomputer. The first task, therefore, was to 

transport picture data to the intended Picture System host (a North 

Star "Advantage" microcomputer). A Fortran program QTRAN was 

written to translate the source files into a display ordered list 

of quads and these files were subsequently loaded via an RS232
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serial link to the host and held as CP/M disk files on

minifloppies. In order to avoid data corruption at this critical

stage the DOLs were coded in ASCII characters allowing parity

checking on transfer. These files form the basis for the other disk

based data structures which have evolved. Every picture thus exists

as a variety of disk files which, following the CP/M convention,

are designated «PICTURE.*> where PICTURE is a unique picture name

and * represents a three letter extension word denoting the file

type. The various file structures will now be described.

PICTURE.PIC files are the original printable ASCII display ordered

lists and are structured thus:

: nnccsccsccsccs.......ccsccs( CR )( LF )
; nnccsccs ( CR)( LF )

:00

where nn - number of quad records in the line expressed in hex 

cc = 8 bit colour code in hex

3 = 4  bit size code O = even field pixel
8 = odd field pixel
1 = 2 x 2  pixels
2 = 4 x 4
3 = 8 x 8
4 - 16 X 16
5 = 32 X 32
6 = 64 X 64

PICTURE.BPF files are binary translations of the ASCII files with 

two bytes allocated to each quad and a two byte header and EOF 

marker thus :

23 FF cc cs cc cs ..........  cc cs FF FF

Notice the colour code is now allocated twelve bits although only 

eight are used. The four bit size code in these files corresponds
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to that in table 4.1.

PICTURE.ZPF files are binary zoned display ordered lists with the 

format :

zz FF hh hh cc cs cc cs  hh h h  hh hh ....
.......zz FF   zz FF  FF FF

where zz FF is a two byte zone header with zz - zone number

hh hh is a two byte scanline header (as in 6.2.2)

FF FF is the end of file marker.

PICTURE.ZTF files are binary zoned quadtree files with the format :

7F zz XX XX XX XX XX xx ........  xx xx 7F zz ....
........  7F zz   7F zz   7F 00

where 7F zz is a two byte zone header with zz - zone number

7F 00 is a two byte end of file marker

XX XX is a two byte quadrant code (as in 6.2.3)

6.4 Communication with the host

Picture files stored on on mini-floppy disk may be downloaded 

to the display processor via an RS232C serial line or a Centronics 

style parallel link. The host runs a file server program TFS which 

monitors both communication links for file requests and responds by 

transmitting the appropriate file (or "?** if the file is not 

available ).

6.5 The Picture Directory

Access to locally stored pictures is provided by the

maintenance of a picture directory with a maximum of sixteen 

entries. The directory format is as follows :
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DIREASE! file type 
PNl PN2 
PN3 PN4 
PN5 PN6 
PN7 PN8 
PICTURE 
START 

LENGTH

where file type =

PNl-8 
PICTURE.START 

LENGTH

0 indicates a vacant directory entry
1 indicates a display ordered list
2 indicates a zoned display ordered list
3 indicates a zoned quadtree 
ASCII picture name characters 
32 bit pointer to picture file 
16 bit file length in words

6.6 Picture System Firmware

The system firmware is written entirely in 68000 assembly

language and is supported by a simple monitor [42] which provides

various utilities and debugging facilities. All assembled code was 

committed directly to EPROM and debugged in situ with the aid of 

the monitor.

6.7 System commands

The system responds to a variety of commands typed at the 

terminal keyboard. Only the first two letters of each command word 

are significant though the entire word may be used. Some commands

require an argument PICTURE which is a picture name using up to

eight characters, the first of which must be alphabetic. The 

commands are summarised and then individually described below.
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list

clear

erase PICTURE 

mode

load PICTURE 

display PICTURE 

screen 

exit

6.7.1 List

This command causes listing at the terminal of the names of 

pictures held locally by searching the directory for non-zero file 

types.

6.7.2 Clear

This command clears the screen by sending to the picture 

buffer a display list consisting of sixty four 64 x 64 pixel black 

quads.

6.7.3 Erase PICTURE

This command interrogates the picture directory and alters the 

file type of the appropriate entry to zero. There is no attempt at 

a sophisticated memory management scheme and the remaining files 

are simply compacted together so that new files are always loaded 

into the first free space. Since both variants of the DOL demand 

consecutive storage this is by far the most convenient procedure. 

However, in a system using only quadtree files a more complex 

scheme might be considered worthwhile.

60



6.7.4 Mode
Following this command the user is prompted by a sequence of 

messages to select the format of picture data to be loaded from the 

host and to choose whether the serial or parallel link is to be 

activated. The responses are used to set the current mode which is 

stored as the lower four bits of the word )K)DEFLG where:

bit O I serial load { parallel load 
bit 1 { full-frame } zoned
bit 2 I ascii | binary
bit 3 { DOL I quadtree

6.7.5 Load PICTURE

The directory is first inspected to ensure that the file is 

not already loaded and to locate free store. After reading MODEFLG 

to determine format, a file request is issued to the host on the 

appropriate channel. This comprises:

★PICTURE(CR) to request a .PIC file

#PICTURE(CR) to request a .BPF file

5PICTURE(CR) to request a .ZPF file

%PICTURE(CR) to request a .ZTF file.

If found at the host, the file is downloaded and the

appropriate local RAM file is created. If not found a query

character ’? * is returned.

6.7.6 Display PICTURE

The directory is examined to find the file type and start

address of the picture. If the picture is not available locally it
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is downloaded from the host. According to the file type the 

appropriate action is taken to compile a DOL into the picture 

buffer. In every case the display screen is blanked during 

compilation to avoid objectionable noise.

Display of a picture stored as a DOL is very straightforward 

since all that is required is a block move of data to the picture 

buffer.

Display from a zoned DOL involves merging quad data from eight 

of the sixty four zone DOLs at a time, thereby creating the frame 

DOL strip by strip. This is accomplished by using the embedded 

scanline headers and maintaining an array of eight pointers into 

the active set of zone DOLs. The processing of each strip is 

initiated by inspecting, in order, the scanline headers of each 

active zone for quads starting on scanline zero. These quads are 

output to the picture buffer. To minimise processing time there is 

a look-ahead on each pass to determine the scanline key for the 

next pass.

Figure 6.2 shows that the display ordered traversal of a 

quadtree is by no means straightforward. Bearing in mind the fact 

that the majority of quad data lies in the lower levels of the tree 

it is clear that the time spent following pointers must be 

minimised by designing a traversal algorithm which visits each node 

Just once. As will be shown this can be achieved at the expense of 

comparatively modest buffering using a single stack and five 

queues, one corresponding to each level in the tree apart from the 

zone roots and pixel level. The traversal algorithm is presented on
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the following page and may be examined to determine the quantity of 

storage required by the various buffers in the worst case of the 

tree extending in every branch down to pixel level. Queue(6 ) is 

used as buffer storage for size 6 quadrant codes and might need to 

store two words from each of the eight zones active at any time ie. 

16 words. Each of these in turn may generate two words for queue(5 ) 

which therefore requires 32 words and so on down to queue(2 ). 

Accordingly, the amount of storage needed is as follows :

queue(6) 16 words

queue(5) 32 words

queue(4) 64 words 

queue(3) 128 words

queue(2) 256 words

The greatest demand for stack space would occur if the whole of 

queue(2 ) were transferred to it, which including size codes implies 

a maximum storage of 512 words.

6.7.7 Screen

This command was implemented in the latter stages of the 

project to assess the flexibility of the zoned quadtree data 

structure and may only be used when a picture is displayed from 

this structure. In screen mode it is possible to perform a limited 

range of pan and zoom operations under the control of key 

depressions at the terminal. Each zoom-in causes twofold 

magnification and may be continued until a single picture zone 

occupies the whole screen ie. eightfold magnification. In each case 

the zoom acts on picture content at the centre of the screen when
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procedure to compile DOL from zoned quadtree 
begin
clear the buffer counters; 
for strip:= 1 to 8 do 

begin 
size;= 7;
for the first/next 8 words from the list of zone quadrants do 

begin
push quadrant code on to stack; 
push size on to stack 
end; 

repeat
size:= pop stack; 
quadrant code:= pop stack; 
if quadrant code tag indicates a leaf then 

begin
get its colour;
pack it together with the current size code into a 
single leafcode word;
move it to the next picture buffer location 
end

else
begin
(the quadrant code must be an offset so use this to 
access a new node} 
size:* size — 1;
if size=l then (the node quadrants must be pixels} 

begin
send appropriate pixel leafcodes in the correct
order to the picture buffer;
end

else (buffer up the node quadrant codes} 
begin
push NEquadrant code; 
push size;
push mfquadrant code; 
push size;
add SWquadrant code to queue(size); 
add SEquadrant code to queue(size); 
end

end;
if stack is empty then 

begin
starting with queue(2) search the queues for 
quadrant data;
take all the data from the first occupied 
queue and transfer to the stack in reverse 
order together with size values 
end

until the stack is empty 
end (of processing one strip}

end.



possible. In any of the magnified formats it is possible to pan 

vertically or horizontally with the restriction that all displayed 

images must be zone aligned. Figure 6.3 illustrates a sequence of 

operations in screen mode and shows how the displayed image relates 

to the zone matrix. It is important to understand that in the 

present system the "magnified" images are not displayed at the 

resolution of the original; in fact at full zoom each pixel in the 

original has become an 8 x 8 quad so the effective resolution is 

reduced to 64 x 64 ie. the pixel resolution of a single zone. The 

effect is therefore equivalent to zooming by pixel replication in a 

conventional framestore display. In Chapter 8 an extension of the 

principles employed in screen mode are shown to be applicable to a 

display processor which retains full resolution at several levels 

of zoom.

Execution of screen mode operations is made possible by very 

minor modification of the zoned quadtree display algorithm which 

has already been described (6.7.6). To illustrate the principle let 

us consider the display of a 2 x 2 array of zones from the picture 

zone matrix. The picture consists of two strips each with two zones 

so processing of each strip is initialised by pushing the 

appropriate two quadrant codes from the zone list on to the stack. 

Since each zone will now cover an area of 256 x 256 pixels on the 

screen the size must be set equal to 9 instead of 7. The 

possibility now arises that when a leaf quadrant is drawn from the 

stack it may have a size greater than 7. If so, it cannot be sent 

to the picture buffer but must be decomposed into smaller quads.
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Figure 6.3d Zoom in again



The relevant block in the algorithm therefore becomes:

if quadrant code tag indicates a leaf then 
begin
if size > 7 then 

begin
size:= size - 1; 
push quadrant code; 
push size; 
push quadrant code; 
push size;
add quadrant code to queue(size); 
add quadrant code to queue(size) 
end

else generate leafcode and send to picture buffer 
end;

With three stages of zoom provision must be made for extra 

buffering :

queue(9) 2 words

queue(8) 4 words

queue(7) 8 words

6.7.8 Exit

This command returns control to the system monitor for 

debugging purposes. The Picture System may be re-entered with the 

monitor command ”Q".
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Chapter 7 QUADTREE PICTURE STATISTICS AND SYSTEM PERFORMANCE

Analysis of the display ordered list for a picture provides 

information on the distribution of leaves in the quadtree 

representation. It will become clear that there is considerable 

consistency in these distributions throughout the lower levels of 

the tree and this suggests a certain invariance which might have 

important consequences for picture coding. The chapter concludes 

with a summary of the picture system performance which may be 

related to the picture statistics and perceived complexity of the 

displayed pictures (Photographs 1 - 5 ) .

7.1 Quadtree leaf distribution

The quadtree statistics are most easily presented as a binaucy 

tree showing the number of leaves and non-leaf nodes at each level 

in the tree. For example, figure 3.2 would be described by

leaves(Q) non-leaves(P)

1 — root

The statistics for five pictures are presented in table 7.1 

below. It should be remembered that the trees employed in this 

picture system branch sixty-four ways from the root.
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tap lever plug it engine

Q P Q P Q P Q P Q P
64 X 64 31 33 39 25 29 35 15 49 23 41
32 X 32 40 92 16 84 39 101 50 146 29 135
16 X 16 135 233 92 244 121 283 205 379 144 396
8 x 8 438 494 395 581 459 673 661 855 568 1016
4 x 4 1072 904 1198 1126 1310 1382 1808 1612 2028 2036
2 x 2 2334 1282 2898 1606 3531 1997 4217 2231 5282 2862
1 x 1 5128 — 6424 7988 - 8924 11448 —

Totals

Q 9178 11062 13477 15880 19522
P 3038 3666 4471 5272 6486

P+Q 12216 14728 17948 21152 26008
Q/(P+Q) 0.751 0.751 0.751 0.751 0.751
( 1x1)/Q p. 56 0.58 0.59 0.56 0.59
(2x2)/Q 0.25 0.26 0.26 0.27 0.27
(4X4 )/Q 0.12 0.11 0.10 0.11 0.10
(8x8)/Q 0.05 0.04 0.03 0.04 0.03

Table 7.1

Several important features emerge from the table.

a) The proportion of leaf nodes expressed as a fraction of the 

total number of nodes ie. Q/(P+Q) is constant for each picture. 

This supports the contention (3.2.1) that the pointers used to 

construct a minimal linked tree comprise 25% of the picture data.

b) The proportion of leaves at each level in the lower part of the 

tree is reasonably constant for each picture. Unfortunately, 

without analysing quadtree data for other picture types (eg. line 

drawings and text ) it is impossible to say whether the distribution 

is invariant. Oliver and Wiseman [38], whose investigation included 

line drawings, support the value of 75% for Q/(P+Q) so it is 

reasonable to speculate that their other statistics would be 

similar to those presented here.
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c) 93% or more of the picture quads are located in the lowest three 

levels of the quadtree and about 98% are in the lowest four levels. 

These figures justify the decomposition of large quads in the tree; 

indeed it might be feasible to work with picture zones much smaller 

than 64 X 64 pixels. The panning process described in 6.7.7 could 

then be made smoother but the rich connectivity which is a feature 

of the quadtree would be further weakened.

7.2 Generalised quadtree statistics

It has been observed that the distribution of nodes in the 

quadtree representation of several pictures is reasonably constant. 

A brief investigation of this property is worthwhile since it will 

prove helpful in predicting the extent to which a quadtree grows 

when a given picture is displayed at increased resolution.

The quadtree growth is best understood by applying some of the 

basic results from the field of stochastic geometry. The proofs of 

these results may be located in most texts on the subject (see for 

example [43]) and will not be repeated here. It may be shown that 

when a square is divided regularly into N by N equal cells and a 

random straight line is drawn through the square, it is expected 

that it will intersect on average N cells. This result can be 

applied with a high degree of accuracy in the lower levels of the 

quadtree since the boundaries between coherent picture areas can be 

approximated to straight line segments over a small region and are 

likely to be randomised in position and orientation. Let us start, 

for example, by assuming that a boundary cuts through a size 16 by 

16 quadrant. On average this will leave two 8 x 8  quads intact and
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intersect two others. These in turn each decompose into two 4 x 4 

quads and so on producing :

Q P
16 X 16 ? 1
8 x 8  2 2
4 x 4  4 4
2 x 2  8 8
1 x 1  32 -

Totals : Q 46
P 15
P+Q - 61

Q/(P+Q) - 0.754
(lxl)/Q = 0.70
(2x2)/Q 0.17
(4x4 )/Q = 0.09
(8x8)/Q 0.04

Comparison with the figures obtained in practice show that the 

ratio Q/(P+Q) is in reasonable agreement. However, the proportion 

of pixel size quads is too high whilst the proportions of the 

larger quads are too small. This discrepancy may be explained by 

examining the tree at its final subdivision. Wherever a boundary 

passes through a 2 x 2 quadrant a decision must be made regarding 

the colouring of each of the four pixels. If an individual pixel 

lies entirely inside one region then it may safely be assigned the 

colour of that region; if, on the other hand, the boundary cuts a 

pixel then its colour may be assigned in one of two ways,

a) The simplest method is to test in which region the centre of the 

pixel lies and then to assign the appropriate colour to that pixel 

( fig.7.1a). This is the strategy which has been adopted in the 

generation of the sample pictures. As a consequence some of the 

"subdivided" 2 x 2  quadrants will end up with all four descendant 

pixels the same colour, in other words, as coherent 2 x 2  areas.
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Figure 7.1 Allocating pixel colour



This has the effect of reducing the proportion of pixels and 

increasing the proportion of 2 x 2 quads. A similar condensation 

occurs at every level in the tree as the decision at pixel level 

propagates upwards. The statistical discrepancy is therefore 

justified in qualitative terms although no quantitative analysis 

has been performed.

b ) A superior method of assigning pixel colour has the benefit of 

removing the jagged edges (aliasing) caused by the previous 

strategy. The distance of each pixel centre from the notional 

boundary can be used to calculate a weighted average of the 

opposing colours (fig.7.lb). This has the effect of providing a 

visually smooth delineation of the separate regions. It may 

therefore be predicted that pictures which have been anti-aliased 

will conform to the statistical model presented earlier in this 

section.

Adopting the simple model of quadtree growth it is easy to 

predict the consequences of increasing the display resolution by a 

factor of two. The tree becomes ;

Q P
'> 1
2 2
4 4
8 8

16 16
64 —

94
31

125

Totals : Q
P

P+Q

and the tree has doubled its size. Notice the ratios remain 

essentially as before.
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7.3 Local picture file statistics
The three varieties of local picture data structure have been 

described in 7.2. Wie storage (in words) required for each of the 

five sample pictures is presented in table 7.2.

DOL zoned DOL { zoned quadtree }
1

tap { 9178 10040 } 12216 {
lever | 11062 11894 Î 14728 1
plug Î 13477 14440 1 17948 1
it } 15880 17170 1 21152 {
engine { 19522 20744 t 26008 ;

Table 7.2

As might be expected the figures for the DOL and the zoned quadtree 

are equal to Q and P+Q respectively so the zoned quadtree files are 

33% longer than the DOLs. The zoned DOLs impose a smaller overhead 

which varies from about 9% for "tap" to about 6% for "engine".

7.4 Loading pictures from the host

Picture data may be downloaded from the host using either the 

serial line (operating at 19200 baud) or the parallel link. The 

load times for each of the five sample pictures in their different 

formats are presented in table 7.3. Wie figures include disk 

latency and are given in seconds to the nearest half second.
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Î serial link t parallel link
t
1 zoned | zoned

1
1 1 zoned i zoned

{ DOL DOL Î quadtree { DOL Î DOL { quadtree

tap
1
Î 19.0

1
19.5 } 23.5

1
{ 5.5

1
1 6.0

1
{ 6.5

lever } 22.5 23.5 { 29.5 Î 6.5 { 7.5 1 8.5 \
plug Î 26.0 28.0 1 35.5 Î 7.5 { 8.5 1 10.5
it Î 31.5 33.5 Î 41.5 Î 9.0 1 10.0 } 12.0
engine \ 39.0 40.5 Î 51.0 1 11.5 1 12.0 1 14.0

Table 7.3

By comparison, a full 12 bit colour pixel representation would 

require

512 X 512 X 12 / 16 = 200 OOO words of storage

which is an order of magnitude greater than quad encoded pictures 

of the complexity illustrated. Wie transmission time for pictures 

in full bit-mapped format would consequently be approximately 400 

seconds under the same conditions of serial transmission.

7.5 Display of locally stored pictures

The delay from requesting a picture to its display on the 

screen depends upon the amount of processing necessitated by the 

local storage format. Table 7.4 quantifies the latency in the 

display from each data structure. Figures were obtained by timing a 

multiple execution of the appropriate display routine.
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DOL zoned DOL 1 zoned quadtree
tap 15ms 75ms 1 250ms
lever 18ms 80ms t 290ms
plug 22ms 100ms 1 350ms
it 26ms 105ms 1 420ms
engine 32ms 120ms { 500ms

Table 7.4

Display from both types of DOL is clearly very rapid. The 

compilation times from the linked quadtree structure indicate an 

average delay of about 26ms per lOOO quads.



Photographs

1. Tap

2. Lever

3. Plug

4. IT

5. Engine





Chapter 8 PROPOSALS FOR APPLICATION AND FUTURE INVESTIGATION

It has been the intention of this thesis to demonstrate that 

quadtree picture code offers considerable potential as a display 

source. Since the present system is essentially a research vehicle 

it is important to consider how it might best be developed. The 

chapter starts by examining the extent to which quadtree code might 

be used for interactive computer graphics. Following this, two 

applications are suggested as a consequence of the results obtained 

during the present work. The first proposal describes a coding 

scheme for the transmission of images. The second application is a 

picture archive system which is a direct development of the current 

display processor.

8.1 Interaction with quad encoded pictures

Quadtree picture code, like other compression strategies, 

suffers a major drawback: it does not easily lend itself to fully

interactive graphics applications. Considering the virtues of 

quadtree code in other respects it appears that further research 

into its interactive potential is worthwhile.

The conceptually simple operation of altering a single pixel 

value expands into a sizeable task when a picture is stored as 

compressed code. One option (which applies to all code types) 

consists in expanding the relevant section of code into a full 

pixel representation, modifying this representation and finally re­

encoding. Since the new code is unlikely to fit neatly into the 

space it originally occupied there is an additional problem of
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memory management. However, a second option is available in the 

case of a picture stored as a linked quadtree. Given the screen 

coordinates of a pixel there is a simple transformation which 

yields the route through the quadtree (Appendix 1). If the target 

pixel is part of a larger quad then that quad must be decomposed 

recursively. Operations on single pixels may therefore be 

accomplished reasonably efficiently but line drawing, though it may 

be regarded as a succession of pixel operations, may prove very 

slow. As the length of line increases there will come a breakeven 

point beyond which it becomes faster to expand a whole zone, draw 

the line and then re-encode.

In contrast to the problems of line drawing, one operation 

that is featured in most computer graphics packages is likely to be 

much faster using quadtree code, namely area fill. The 

identification of connected regions is a very familiar task in 

image processing and the value of quadtrees in this discipline is 

well proven.

8.2 A coding scheme for the transmission of images

The survey of picture coding presented in Chapter 2 mentions 

briefly the use of variable length codewords (2.5.7) for exploiting 

statistical properties of coding schemes. Unfortunately the 

statistics for many coding strategies will vary according to the 

exact nature of the picture. An important feature of quadtree 

coding is that the statistics appear to be invariant over a wide 

range of pictures (see Chapter 7). This suggests that variable 

length code may be effectively applied to the transmission of
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pictures represented as quadtrees.

The following analysis is restricted to images in which it is 

assumed that each colour is equally likely. Limiting the mavimiim 

size of quad to 16 x 16 will not alter the leaf distribution 

significantly so it is assumed that the frequency of codewords 

remains roughly

1 x 1  

2 x 2  

4 x 4  

8 x 8  

16 X 16

58% (codeword Al)

26% (codeword A2)

11% (codeword A3)

4% (codeword A4)

1% (codeword AS)

The source entropy H for this group of codewords is calculated 
by the formula :

p( Ai) log,p(Ai)

' bits per codeword

codes as follows

Al = 0 L(A1) - 1

A2 = 10 L(A2) = 2

A3 = 110 L(A3) - 3

A4 = 1110 L(A4) = 4

A5 = 1111 L(A5) = 4

the average bit length L is calculated as

L ^ ^  P(Ai) L(Ai)
i

“ 1.63 bits per codeword

giving a coding efficiency of about 96%.
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In practice the picture would be transmitted as a display 

ordered list with each size codeword preceding an N bit colour 

code. As a simple example consider the transmission of a binary 

image (N - 1) where white - 0 and black - 1. The display ordered 

list of quads: 4x4 white, 2x2 white, 2x2 black, 1x1 white, 1x1

black would be represented by the bit-stream (1100 ) (100 ) (101 )

(00) (01). The parentheses are included here only to aid

identification of the separate items and are not part of the code. 

It should be noted that the context is always clear if the code is 

transmitted error-free.

Since each quad requires an average of (1.63 + N) bits it is 

possible to determine the compression ratio for pictures of various 

complexity. For example, a picture which decomposes into 10000 

quads at a resolution of 512 x 512 pixels obtains a compression 

ratio of

512 X 512 x N N
------------------  a: 26.2 X ----------
10000 X (1.63 + N) 1.63 + N

This expression evaluates to approximately 10 for N - 1 and has an 

upper limit of about 26 as N approaches infinity. If the resolution 

is increased by a factor of two then the number of quads roughly 

doubles so the compression ratio is increased by a factor of two.

Kawaguchi and Endo [34] report compression ratios obtained 

using a different method of quadtree encoding (3.2.3) for six 

binary images at a resolution of 1024 x 1024 pixels. Fortunately 

their paper includes quad totals for each picture so a comparison 

with the proposed coding scheme is possible. In every case the
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compression ratio predicted for the proposed code is very similar.

8.3 The display of large pictures

The proposal which is outlined in this section is for a 

picture archive system which allows the user to request a picture 

and then zoom into it repeatedly to reveal additional detail. At 

each stage of magnification there will be a facility to roam 

incrementally around the picture. Work on this project has been 

granted support by the Science and Engineering Research Council.

8.3.1 The scheme

The proposed system requires an elaboration of the "screen 

mode" features described in Chapter 6 and demands that the display 

is maintained at full resolution throughout. This necessitates a 

large quadtree or rather, since the picture is zoned, an array of 

quadtrees. Consider, for example, a large picture which is defined 

to a resolution of 4K by 4K pixels. This may be treated as an array 

of 64 X 64 zones each comprising 64 x 64 pixels. The picture can 

therefore be stored as an array of 4096 quadtrees, one for each 

zone (fig. 8.1). It will shortly become clear that the linked 

quadtree which has been described previously (3.2.1 and 6.2.3) is 

inadequate for the proposed scheme since the tree will not be 

examined to its full depth in many instances. A modified structure 

is required in which each node contains an extra data field 

describing the average of its four quadrant colours (fig. 8.2). The 

problem of colour averaging is discussed in Appendix 2, section 7. 

Suppose then, that the entire picture is to be displayed at a
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Figure 8.1 Zoning for a large picture
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resolution of 512 x 512 pixels. All 4096 picture zones are used and 

each one maps to a screen area of 8 x 8 pixels. The quadtree for 

each zone therefore needs to be descended by only three levels for 

the screen resolution to be satisfied. The display processor is 

programmed to access the node average colour whenever it reaches 

screen pixel level and this has the fortunate consequence of

automatic picture anti-aliasing.

Following the first zoom command the display processor selects 

a subset of 1024 zones (windowing a quarter of the picture) and 

follows each quadtree down through four levels because each zone 

now covers 16 x 16 screen pixels. Two further zoom operations can

be performed before the quadtrees are accessed to their greatest

depth. At this point the screen will display a subset of 64 zones.

Roaming across the picture at any stage is achieved by

altering the zone subset window. It is interesting to note that the 

roam increment is one zone regardless of zoom setting. Thus at 

maximum magnification (x8) the perceived movement of the window is 

one-eighth of the screen, at the next setting (x4) it is one- 

sixteenth and so on.

8.3.2 A practical system

It should be clear from the previous section that the display 

at any instant is generated from only a fraction of the complete 

picture data: when the large picture is viewed as a whole the

lowest levels in the quadtrees are not required; when a window on 

the picture is selected only a subset of the 4096 zones are used. 

There is consequently no particular need for the entire data
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structure to be stored in the picture display processor. The 

majority of data may be held in a host database linked to the 

display processor. For ultra-rapid picture retrieval the two 

machines should be closely coupled but for most purposes it is 

likely that a local area network would provide sufficiently fast 

access. This option would not be feasible were it not for the 

structured data compression.

The prototype system which is described in this thesis 

embodies proven hardware and display algorithms so there remains 

one main area of study : management of the local and archive data

structures. This requires considerable research effort but one 

desirable feature can be stated immediately. At any stage in its 

operation the display processor should have cached sufficient data 

to satisfy the next zoom or pan command. Suppose, for instance, 

that the screen view is a window on a sixteenth of the picture area 

(16 X 16 zones). The zone quadtrees will be accessed to a depth of 

five levels. Therefore, to accommodate a zoom-in request the sixth 

(and deepest) level of the central 8 x 8  zone quadtrees should also 

be available for immediate access. In the case of a zoom-out 

request the quadtrees for the surrounding zones should also be 

cached but most of these need only have four levels. Only the zones 

immediately bordering the display area need five levels to 

accommodate a pan operation. These conditions are summarised in 

figure 8.3. Clearly then, each command to the display processor 

invokes compilation of a fresh display ordered list from data which 

is already held locally. Each operation frees some local memory and
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Figure 8.3 Storage requirement at x4 magnification



initiates the downloading of sufficient new data to meet further 

demand.

8.3.3 Storage requirement

To enable a rough estimate of the local storage required by

the large picture display processor it will be assumed that a zone

tree to a depth of three levels requires storage S. The statistical

analysis of section 7.2 suggests that a quadtree doubles in size if

it is extended by one level so it can be assumed that:

quadtree to depth 3 requires storage S 
.... .. ... 4 .... ... 2 S
.... .. ... 5 .... ...
.... .. ... 6 .... ... 8 S

Following the prescription for caching described in section 8.3.2

it is possible to estimate the storage requirement at each stage of

zoom. Consider again the example illustrated in figure 8.3. There

are :

(32x32) - (18x18) = 700 zones at depth 4 
requiring 700 x 25 = 1400S units of storage;

(18x18) - (8x8) = 260 zones at depth 5
requiring 260 x 4S = 1040S units of storage;

8x8 = 64 zones at depth 6
requiring 64 x 85 = 512S units of storage.

Total storage 1400S + 1040S + 512S = 2952S units of storage.

The storage at various levels of zoom is summarised in table 8.I 

following.
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magnification 
of screen 

image

number of zones held at each depth
total

storagedepth 3 depth 4 depth 5 depth 6

X 1 3072 1024 — — 5120 S
X 2 2940 900 256 - 5764 S
X 4 - 700 260 64 2952 S
X 8 - - 156 100 1424 S

Table 8.1

From the figures presented in Chapter 7 a value of S - 70 words

(140 bytes if the colour is a 12 bit code) appears generous for 

pictures of reasonable complexity. The proposed picture system may 

therefore be implemented with one megabyte of storage.

8.3.4 System response

In order to evaluate the response times which might be 

expected from the proposed system it will be assumed that the 

display processor is connected to a network with a 1 Megabit/s 

point-to-point capacity. This is equivalent to about 1000 S per 

second. The user can therefore expect to wait for about five 

seconds when a full picture is first called for display. However, 

if picture data is fetched width first, it will be possible to 

display a low resolution image almost immediately and with this 

facility the transmission may be aborted if the requested picture 

proves to be of no interest to the user. Thereafter, response times 

can be expected to measure fractions of a second since data will 

always be locally available. Bearing in mind that data is 

prefetched in anticipation of further action, the natural interval 

between commands should generally prove adequate for downloading.
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8.4 Conclusion
This thesis has demonstrated the feasibility and value of quad 

encoding as the basis of an integrated approach to the problems of 

picture storage, transmission and display. The structure imposed by 

quadtree picture decomposition has been shown to facilitate pan and 

zoom operations and is well suited to anticipatory caching in the 

case of large pictures. The scheme promises advantages in the 

display of high resolution colour pictures where the considerable 

data compression is a particular virtue in networking.
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Appendix 1 LEAFCODE - SCREEN POSITION TRANSFORMATION

A leaf of a quadtree encoded picture may be conveniently 

represented by a string of quarternary digits describing the route 

taken through the tree (3.2.4). For example, in a picture resolved 

to 512 X 512 pixels a nine digit string is sufficient to specify an 

individual pixel. By associating the codes 0,1,2,3 with the 

quadrants NW, NE, SW, SE respectively it is a simple matter to 

translate the successive quarterings into separate binary divisions 

of the horizontal and vertical extent. If the quarternary digits 

are each expressed as two bits then the least significant bit is 

associated with the horizontal (x) position and the most 

significant bit with the vertical (y ) position. Tims, the pixel 

with a leafcode :

132021132 or ( 01 )( 11 )( 10 )( 00 )( 10 )( 01 )( 01 )( 11 )( 10 )

has coordinates:

X = 110001110 binary - 398 decimal 

y = 011010011 binary = 211 decimal 

with the origin at the top left hand corner of the picture. 

Conversely, the route through a quadtree can be obtained by merging 

the screen (x,y) coordinates.
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Appendix 2 CODING FOR COLOUR

The use of colour in computer graphics has become common in 

recent years. It is probably true to say that this development was 

mainly product-led with graphics users tempted by decreasing cost 

to experiment with colour in applications where it would previously 

have been thought inappropriate. The result is that colour, in many 

instances, is used as a discriminator to enhance the readability of 

displayed information and one is concerned mainly with the psycho­

visual effects of various colour combinations. Used in this way, 

colour is a parameter which presents no particular coding problems; 

the colour range required is generally small enough to allocate 

different codes to different colours in a quite arbitrary way. In 

contrast, the display of pictures is likely to employ a much wider 

range of colours and this invites the use of a coding scheme which 

treats colour in a more systematic manner. An elaborate and 

extensive colour capabilty can only be of general use if it relates 

at some point to the way in which humans organise their perception 

of colour.

1. Colour perception

When called upon to describe a particular colour an observer 

is likely to use words like "reddish" or perhaps "bluey-green". 

This attribute of colour, known as hue, is clearly not sufficient 

for a full specification. Qualifying words such as "dark" or 

"bright" might be used and these refer to the relative luminance 

(or intensity) of the light source. A further attribute, known as
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saturation, is used to describe the purity of the colour, or more 

exactly, the extent to which it differs from a grey colour with the 

same luminance. For example, a particular pink colour may be 

thought of as a low saturation red. These colour attributes are 

most easily represented on a diagram (fig. la) using cylindrical 

polar coordinates. The axis of the cylinder represents all the grey 

shades from black at the bottom to white at the top. On the surface 

of the cylinder are distributed all the "pure" colours.

Modern theories of colour vision [44,45] are based on a 

tristimulus model first postulated by Thomas Young in 1802 [46].

This model assumes that the eye contains three distinct types of 

photosensitive receptor, each with a frequency response over a 

limited section of the visible spectrum. Recent experimental 

evidence suggests that signals from these three receptors are 

combined to yield three signals A, Cl and C2. The achromatic 

response A is the only one of the three which alters when the 

intensity of a coloured light is varied. The chromaticity signals 

Cl and C2 are related to our perception of hue and saturation. By 

using A, Cl and C2 as coordinates it would therefore be possible 

(in principle) to define a colour space, similar to the one already 

described, which corresponds closely to the way in which colour is 

perceived ( fig. lb).

The intuitive colour solid described above, while serving as a 

useful model, lacks any potential for quantitative measurement. The 

development of colorimetry is described in [47] and some of the 

most relevant aspects are summarised below. Application to the
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problem of CRT display is discussed in the sections which follow.

2. Colorimetry

The tristimulus theory is confirmed by colour matching 

experiments which show that any colour can be matched by a mixture

of no more than three coloured lights (primaries). This may be

written as

C = a(Pl) + b(P2) + c(P3) 

where a,b,c are the quantities of each primary required to obtain a 

match with colour C. The range of matchable colours iS/ however, 

limited if only positive quantities of each primary are allowed. 

The significance of a negative value in the colour match may be

understood from the following example. Suppose that a quantity of 

primary PI needs to be added to colour C in order to give a match 

with a mixture of the remaining primaries P2 and P3, 

ie. C + f(Pl) = g(P2) + h(P3) where f,g,h > 0

then C = -f(Pl) + g(P2) + h(P3)

This problem may be circumvented by defining a set of artificial

primaries which allow a linear transformation of the set of 

triplets (a,b,c) to a set (a’,b’,c') which are positive for all

colour matches.

In 1931 the Commission Internationale de l'Eclairage (CIE)

adopted a coordinate system for colorimetry based upon three

artificial primaries X, Y and Z. Thus, any colour can be 

represented by the equation

C ^ a(X) + b(Y) + c(Z) where a,b,c > 0
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or more simply

C = X + Y + Z

Normalised coordinates are defined by

X
X  -----------

X + Y + Z 

Y

X + Y + Z 

% = 1 - X - y

Figure 2 is a chromaticity diagram based on the CIE X—Y-Z 

primaries. The full range of natural colours is bounded by a locus 

which represents the monochromatic spectral colours. The shaded 

triangle represents the range of colours which may be obtained by 

additive mixing of the real primaries R (red), G (green) and B 

(blue) represented by the vertices of the triangle. If the x,y 

coordinates of the R,G,B primaries are known then a linear 

transformation may be applied to translate any x,y into the 

coordinate system of the real primaries.

3. R-G-B colour mixing

The colour image produced by a CRT is generated by the 

excitation of a matrix of phosphor dots (or strips) deposited on 

the screen. Three suitably chosen phosphor types allow the display 

of a wide colour range according to the colour mixing principles 

outlined above. Hence, the output stages of any colour display 

system are inevitably R-G-B orientated; indeed the specification of 

colour throughout the majority of display systems is in terms of
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R-G-B mixes. Let us consider the consequences imposed by such an 

organisation assuming that the monitor is set to display white for 

equal R, G, B signal inputs. The most elementary colour code 

requires one bit for each primary and could display eight colours :

R G B
0 0 0 black
1 0  0 red
0 1 0  green
0 0 1 blue
1 1 0  yellow
1 0  1 magenta
0 1 1  cyan
1 1 1  white

Figure 3 shows how these colours would be placed on an intensity, 

hue, saturation (IHS) diagraun. It has been assumed that the single 

blue, green and red primary colours are ranked equally luminous 

although this is unlikely to be true. If the number of bits per 

primary is increased the colour space becomes more densely 

populated and occupies a volume which approximates to a double cone 

structure (fig. 4). There will be no saturated colours near the top 

of the solid because the brightest colours must have all non-zero 

R, G and B components ie. a grey component. A double cone model of 

this type, named the Ostwald Colour Solid [48], has recently been 

revived by Tektronix [49,50] as the basis of a colour standard for 

their graphics systems. Their vertical aixis is named Lightness and 

the other variables are Hue and Saturation. It is important to 

understand the relationship (illustrated in figure 5) between this 

HLS model and the cylindrical IHS model. It seems to this author 

that the lower conical shape is the result of a (quite reasonable) 

distortion of the cylinder which reduces the black point (I-Ir^O) to
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a singularity. All the points on the surface of this theoretically 

infinite cone represent fully saturated colours. The significance 

of the upper cone may be appreciated from two viewpoints. In the 

context of R-G-B colour mixing it is simply the result of each 

primary having an upper limit. This is the only reason why it is 

not possible to represent red (for example) at the same intensity 

as brightest white. Alternatively, the double cone may be regarded 

as a representation of the range of observable colours when a non- 

luminous object is illuminated by a white reference source. The 

white point is the result of 100% relection of the incident light : 

all other colours are the result of components of the incident 

light being absorbed. In either case it seems misconceived to refer 

( as does Tektronix) to all colours on the surface of the upper cone 

as having 100% saturation.

4. The organisation of colour for computer graphics

In the previous section it was shown how a 3 bit colour code 

could be used to generate a range of eight colours by associating 

one bit with each of the RGB outputs. A greater flexibility of 

coding can be obtained by the inclusion of a hardware colour look­

up table (CLT) which maps each of the colour codes to a prescribed 

mixture of R-G-B components (fig. 6 ). The number of colours in the

palette remains limited by the bit length of the colour code but 

the specification of each colour in the palette becomes a function

of the number of bits allocated to each of the R-G-B primary

outputs. One of the many advantages which a CLT offers is the

ability to alter values in the map and thus remix the colours
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available to the user.

From the graphics user's point of view the R-G-B system is 

unnatural and consequently difficult to manipulate. This problem 

has been discussed by several authors [51-53] who advocate a colour 

model more closely aligned to the perceptual parameters of 

intensity, hue and saturation. This suggests an application of the 

CLT as a translator from IHS to RGB in which the colour code would 

be divided into separate I,H and S fields. Buchanan and Pendergrass 

[52] have suggested that 6 bits for intensity, 5 bits for hue and 3 

bits for saturation are sufficient for TV monitor display. However, 

their colour plates reveal that this degree of resolution is not 

adequate to produce visually smooth colour transitions. The most 

compelling argument against the use of such a code is its extreme 

inefficiency. This is a consequence of the geometry of the 

perceptual colour space which (in line with common sense ) predicts 

that more HS combinations are required as intensity increases and 

that discrimination between hues must be improved as saturation 

increases. The use of fixed width IHS fields to represent non­

independant parameters is clearly wasteful and an alternative 

method must be sought for ordering the colour code. This will be 

dealt with in section 7.

Assuming the colour code can be sensibly ordered it must next 

be considered how best to fill the CLT with RGB component values.

5. Uniform colour spaces

The organisation of colours into a perceptual space resembling 

a double cone shape is an established practice which, as has been
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shown, corresponds conveniently to the generation of colour by RGB 

colour mixing. Given a system with the ability to display a fixed 

number of colours a method is required which distributes these 

colours evenly throughout perceptual colour space. This demands a 

quantitative colour space within which just noticeably different 

colours are equally spaced.

Investigation into the ability of subjects to detect small 

colour differences reveals a substantial perceptual non-linearity 

in the CIE (1931) chromaticity diagram [54]. The shaded areas in 

figure 7 each contain approximately the same number of discernable 

colours and illustrate the fact that individuals discriminate 

poorly in the red part of the diagreun compared with the blue and 

least effectively in the green.

A number of systems have been proposed for transforming the 

CIE (1931) diagram to provide a uniform chromaticity scale (UCS). 

The simplest of these is the CIE (1976 ) UCS which is the result of 

a linear transformation of the X-Y-Z coordinates according to the 

formulae ;

4X
u' *     (1)

X + 15Y + 3Z

9Y
V ' = -------------- ------ ( 2 )

X + 15Y + 3Z

When experimental colour difference thresholds are replotted 

using these coordinates the linearity is significantly improved 

[54]. The CIE (1976) L*-u*-v* system is a formulation of a three 

dimensional colour space based upon the u',v* chromaticity scale

97



y

1.0

0.9

0.8

0.7

green0.6

0.5

0.4

red0.3

0.2
blue

0.1

1.0 X0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

Figure 7 Perceptual non-linearity in the
CIE (1931) chromaticity diagram



with

L* “ 25 Y - 16   (3)

u* = 13L*(u’-Uo • )   (4)

V* = 13L*( V - V q ’ )   (5)

where X o,Yq ,Zq and Uq ’^Vq ’ are the coordinates of reference white 

normalised so that Yg *= 100. A diagram showing the form of the 

L*-u*-v* space is given in [55] p.331. The irregular shape 

resembles the empirically derived Munsell colour solid [56].

6. Derivation of an evenly graded colour look-up table

Assuming that the CIE (1976) L*-u*-v* coordinate system

provides a good approximation to a uniform colour space it is 

reasonably simple to calculate the R,G,B coordinates of evenly 

distributed colours. Equations (1 )-(5) above may be rewritten to 

express X,Y,Z in terms of L*,u*,v* as follows :

u*
from ( 4 ) u ' =  + Ug' ............ ( 6 )

13L*

V*
from ( 5 ) V ' =  + vq * ...........  ( 7 )

13L*

/ L* + 16\*
from ( 3 ) Y = j--------- j ...................... (8)

\  25 I

Solving (1) and ( 2) gives

9u’Y
X — ------ ----- ------ ( 9 )

4 V

(12 - 20v* - 3u')Y
Z = --------------------- ---  (10)

4v ’
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The relationship between the CIE (1931) X-Y-Z coordinates and 

the R,G,B coordinates depends upon the exact specification of the 

display phosphors. Thus

/x\ Ixg "“ b\ I'']
Y '"g “^b G --- (11)

\z/ U x r ""g [̂J
r \
G = 

i B / ,o)
we find k

r /

so that for

The constants k,l,m may be determined by the condition

for reference white
X\
Y = 
Z

which means solving

^ g ^ b \ f ^ \ /Xo\

^ g 7 b
1 Xo

" g ' ^ h j [ ^ o j

may now be written

/x\ /*r :h * b \

Y
h ? b c

\2r ' U /

(12)

etc.

and the inverse matrix M can be calculated which provides the 

transformation

% e r e  is one more factor which must be considered before the 

CLT may be assigned RGB values and this relates to the non- 

linearity of the CRT display. The intensity of light P generated by
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a CRT primary phosophor is related to the input signal voltage Vp 

by the formula

P = k Vp

Signal voltages are proportional to the values stored in the CLT so 

these values (r,g,b) may be calculated from

r = R X n g * G  x n  b = B x n

where n is the value corresponding to R or G or B - 1. For example, 

if each primary is represented by an 8 bit value then n-255.

A preliminary trial has been conducted by the author using the 

method described above. A set of 1850 r,g,b triplets were obtained 

by translating values based on a cubic grid of spacing 10 units in 

L*-u*-v* space. These fall within an L*-u*-v* subspace limited by 

the represention of the primaries red, green, blue and the 

secondaries yellow, magenta, cyan as shown in figure 8. When 

colours of constant L* are displayed on the monitor the transitions 

between adjacent u*,v* colours are almost imperceptible. However, 

when L* is varied for constant u*,v* the transitions are very 

noticeable; a not surprising result since the grid allows only 

eleven intensity levels from l * = O to L* - 100. Further

investigation is planned and it appears that the constant 13 which 

appears in equations (4) and (5) may need to be reduced to provide 

equal perceptual spacing in the L* direction and the u*,v* plane.

7. Using the colour table

Following the previous discussion it is proposed that the CLT 

should contain r,g,b values associated with each of the colour 

codes and that they should be ordered according to their L*,u*,v*
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designation. An auxilliary table must exist which makes these 

L*,u*,v* values explicit.

Colour code Active CLT Auxilliary table

0 rO gO bO L*0 u*0 v*0
1 rl gl bl L*1 u*l v*l

n rn gn bn L*n u*n v*n

The auxilliary table allows sensible colour calculations to be 

performed. For example, the average of two colours may be found by 

averaging their L*,u*,v* components. If the result is rounded to 

the nearest interval then the colour code of the average cam be 

located by searching the auxilliary table for an L*,u*,v* match. 

Colours may be modified interactively using intensity, hue and 

saturation as parameters. For example, to locate colours with the 

same intensity and hue as a given colour it is merely necessary to 

calculate the ratio k - u*/v* and then, depending on the value k, 

select from the table the set of colours kv*,v* or u*,u*/k.
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Appendix 3 QUAD ENCODED DISPLAY

This paper has been accepted for publication in 

IEE Proceedings-*E, Computers and Digital Techniques
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In tro d u c tio n

\  traditional view oi'pictonai data aomprsssior. is that it ib 
a heiptui means of making mil use of limited capacity 
transmission channels. It is necessary to express the picture 
in Its full form once it has oeen -ecened. in particular 
before it can receive any I'urther processing. In this sense 
compression is only an intermediate, although very usei'ui. 
process which can largeiv -̂ e treated as a pair of black 
boxes. One box sits at tne source end .'f ihe transmission 
channel and perlorms encoding, and the second box is 
attached at the receiving end and decodes The use of this 
idealised system is not concerned with the transmission 
format or the nature ef the black boxes. This model 
applies to data compression in general and not just to the 
transmission of pictures. However image-uke pictures are 
very demanding of bandwidth and storage, more so than 
most transmitted data, and sO there is special interest in 
this [1 -3 ]. By image-like. we mean I'ramestore pictures 
which are created at the pixel level, as distinct I'rom calli­
graphic. i.e. those which are readily expressed as a series of 
plotter-iike movements of a hypothetical pen ,oaded with 
coloured ink. Framestores may certainly be used tor calli­
graphic applications, and the command sequence needed 
to realise the picture would normally be a very compact 
representation in itself. However, the image is a more gen­
erally useful form because it represents the oicture directly, 
pixel by pixel, and so is readily shared with other users 
without presuming some application-specific underlying 
data structure [4, 5]. Unfortunately it is also the most 
demanding in terms of data, a typical framestore for 
image-like applications will require at least 256 kbytes of 
storage lor each picture. If the image has been captured, 
rather than synthesised, this requirement may be tripled, 
corresponding to 512 '  512 resolution with 24-bit direct 
colour The prospect of |024 x 1024 displays becoming 
standard in the near future pushes this requirement four 
times lurther to 3 Mbytes tor everv image.

Image manipulation is also a task which is greatly 
impeded by the large quantities of data. Indeed it is only in 
the last two years or so that it has been possible to buy 
microprocessors with a large enough memory space to be 
able to address complete pictures of the sizes just men­
tioned. without recourse to overlavs or .jther inconvenient 
techniques. Image processing on the conventional sense of 
feature extraction etc.i has thus tended to oe a mainl'rame

P'jDcr -M-'Ctc C l  C5i rirsi recc’ vca :Znd AuiuM  :nd i  orm  in t i
F<oruarv WK4
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task and has certainly been batch onented except where 
expensive, specialised hardware has been available. Image 
.manipulation in the wider sense as a means of inter«acting 
with pictures! has not been feasible with other than very 
•ow resolution representations, and consequently users of 
images have been well advised not to use computing 
-esources shared with others The rapidity with which 
images can nil a disc or overload a network is a well 
known hazard, while the interchange of pictonal informa­
tion oy readi'y available inexpensive ser.al interfaces is a 
very tedious process, and prone to mishap.

Clearly, encoding overcomes the maior problem of the 
amount of data, although it must always be recognised 
that coding may impose limitations on the nature of pic­
tures which can satisfactorily be compressed. W hat is 
required for transmission and storage is a technique which 
gives good compression. What is required when manipu­
lating such pictures can also, with great advantage, be a 
compressed form, provided also that the structure of the 
image is maintained explicitly. By the structure of the 
image we do not mean an underlying data structure such 
as might be used to represent, for example, a technical 
drawing Rather, we mean the physical structure as seen on 
the display adjacent areas must still be identifiable, as 
vhould regions of constant colour in this way the encod­
ing IS in a form which the user can understand directly by 
reviewing the picture We suggest that, while there may be 
several ways of implementing it. this approach is the only 
satisfactorily general way of coding images. It is not being 
suggested that other approaches to coding are invalid. On 
the contrary -hey are frequently the most useful form. 
However, we are claiming that such techniques are appli­
cation specific or are largely meaningless to the viewer. 
The most general approach to image manipulation is 
clearly to use the pixel form, where every item corresponds 
directly to what is seen. O ur approach is to maintain this 
direct correspondence with what is on screen, rather than 
with what It represents, while introducing compression. It 
has proved possible to construct a display based on this 
approach. The encoding method will now be introduced, 
then the display will be described in detail.

2 R e p re s e n ta tio n  o f p ic tu re s

2 '  Q uaa rree
To identify a form of compression to meet the require­
ments implied in the previous paragraph, it seemed reason­
able to study the image-processing literature. ,A technique 
which h a s  t'ound acceptance is the use of a quad tree 
[6 -1 1 ]. Unuer this scheme the picture area is divided
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areas of uniform colour, termed 'auaUs' iFig. Z.Ai. A quad 
may be encoded by its size lalways a power of twoi and its 
colour. The tree thus exploits area colour coherence to 
represent the picture, while maintaining spatial informa­
tion in the branches. As will be seen, this representation 
also results in data compression. Indeed, while it may be 
defeated las may other coding schemesi by constructing 
pathological pictures in which every pixel differs from its 
neighbours, the fact that it has already found independent 
use in representing digitised images is certainly a rec­
ommendation f S l
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2  2  Q uae ‘isr
The quad tree is a most aset'ui representation, but a related 
idrm IS also of vaiue and is central to the working of the 
display system described shortly. This form is the quad list. 
In essence it is a list of quads in scan order. Scan order 
.means the sequence :n which the quads are rirst met by a 
conventional raster >can this order is indicated by the 
numbering in Fig. 2B The quad list thus very closely 
defines the on--,creen picture, but spatial information is 
now implicit rather than explicit.

3 Q uad-list display processor

The displav system to be described uses the technique of 
quad encoding to achieve data compression, enabling etfi- 
cient transmission and storage of high resolution colour 
pictures A picture is decoded from a quad list by dedi­
cated real-time hardware avoiding the necessity for a full 
bit-mapped display memory We will later describe how. at 
no extra hardware cost, the display may be used to roam  
over large pictures and to zoom in to reveal finer detail.

3  7 P x tu re  fo rm at
The present system displays pictures at 512 % 512 spatial 
resolution, with, for any single picture, upto 4096 colours 
chosen Torn a palette of over 16 million Pictures are 
transmitted and stored in the form of a quad list, each 
element of which describes the colour and size of one quad. 
The colour is held as a 12-bit code and. because the quad 
size IS always a power of two. the size may be held as a 
3-bit code Table 11. Differentiation of odd and even field

T a b le  1 Q u a d  c o d e s

Quad d'm ens<ons S'Ze ‘- 'e ig n t W id th

Evan field pmei 0 0 0
Odd fie ld  p ixe l 0 0

2 0 1
a ■ a pixels 3 3
3 ■ 8 pixels a 3 7

'6  « 1 6  pixels 5 15
32 ■ 32 pixels 6 15 31
6a ■ 6a pixeis 7 31 63

pixels eases the problem posed by raster interlace for the 
decoding hardware. The upper limit of 64 x 64 placed on 
quad size imposes negligible loss of efficiency in coding 
since the occurrence of larger quads is rare and their rep­
resentation as several smaller ones adds very little to the 
length of the display list Ordering of quads within the 
display list IS defined by the order in which each quad is 
first encountered in the conventional top left to bottom  
right raster scan iFig. 2Bl There is one exception to this 
scan ordenng which, again, is imposed to overcome inter­
lace problems Pixel-size quads are displayed only on alter­
nate raster fields so. for reasons which will be given later, 
these quads are placed in the display list as even-field odd- 
field pairs i Fig 5i
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3 .2  O ve rv iew  o f : re  o isp iav  m p ie m e r'ta tio r
The dispiav Fig J' a  managed ov j  Motorola hhtftk)
In-bit processor whicn 'ans a modest operating system

3CV
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F ig  4  P is p id l : .

stored in R O M  Display lists ate loaded from a host 
machine into RA M  whose present capacity of 2fn spy tes 
permits local storage of itypicallyi ten pictures. Once 
loaded, a picture may be disnayeu virtually instantane­
ously by moving the relevant display list to the picture 
butfer where it is accessed by the uecodmg .la row are The 
Use of compressed picture data removes the necessitv 'or a 
closely coupled parallel inter'ace to the host, "ecause pic­
tures may oe loaded sufficiently rapidly using a conven­
tional serial line operating at 1920<) baud.

The picture butfer is dedicated to sci-een refresh anc 
may hold a display list of up to 32 k quads, allowing rea­
sonably complex pictures to be presented Ever;, .tern in 
the display list is accessed once per field scan and decoded 
in real time oy the subsequent hardware, T..s meet ihe 
speed requirements and to avoid using fast .memorv. quads 
are read in parallel, eight at a time, from the picture buffer

3  3  P ic tu re  decoaer
The first stage of the decoder i Fig pi copes with the 
problem of display interlace by rejecting those quads of 
pixel size which are not required in the current field. 
Exactly half of the pixel quads will have to be rejected in 
the complete field. W ithout some form of control on the 
distribution of these, there would be occasions when all 
eight of the parallel-read quads are pixels not required on 
the current held Hence they would all be rejected and the 
parallel read would have failed to produce any quads for 
the display. Indeed, there might be long sequences of such 
parallel reads because there could he complete scan lines 
consisting only of pixel quads Hence the display hardware

. iul not he constructed to deliver picture information in 
'eu,-time synchrt'nism with the raster scan. It is 'or this 
reason that the display ist holds quads of pixel v'ze in 
even-rieid ood-rield pairs, thus ensunng at least four valid 
data items on each parallel fetch. With this scheme the 
îHOrtest time between reads of the picture buffer will be 
four pixel periods, i.e. four times "0 ns. The memory used 
has an access time of 2W  ns. giving a generous margin.

3 3  t S o rting  the in p u t code  iF ig . 6) Parallel data I'rom 
the picture ouffer is applied to an eight to one channel 
«elector. This is controlled by a simple finite state machine 
w hose state describes the currently active channel. The size 
codes from each channel are tested to isolate those quads 
of pixel size -which are not needed for the current field. A 
flag is set for each channel holding a valid quad. These 
tfags. together -with the current state, determine the next 
active channel The look-ahead implied in this system

clc.-'es
3 c h a n n e l

F ig  6 Derouer .npui >ot
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-eouires a preietcn on ;nanneb u and 1 x n-ncver states n 
-T ■ are entered.

A.l quads nave a size which is a puwer ■'i two and there­
to re I t  ;s the exponent rather than the actaai size which is 
stored m the compressed form oi' the picture. As the quaa 
moves downstream, the .'-bit «ize code thus nas to be 
expanded iTabie 11 to a width and to a height code .v htch 
are used to control data entry to the line buffer in a 
manner wnich will now ne exp.ained.
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3  3  2  Line b u ffe r (F ig  7) The function of the line buffer 
is to hold information about the pixels on the current 
raster line. It comprises 512 locations icorresponding to 
the horizontal display resolution! each storing 

Id! a 12-bit pixel colour code 
I hi the 5-bit height code

The colour code corresponds directly to data which would 
occupy a pixel location in a conventional framestore The 
12-bit colour code coming from the line buffer is passed to 
a look-up table where it generates a 2-i-bit output, i-bits 
each to three digital-to-analogue convertors. These 
produce separate red. green and blue video signals vvhich 
drive the colour monitor. The look-up table is random- 
access memory loadable by the local processor and so a 
wide colour range is displayable.

The height code determines the numoer of scan lines for 
which a particular line buffer entry remains valid and is 
used in the following manner During a raster line each 
line butfer location is examined sequentially at pixel rate, 
and the colour code is .jutput. If the height code is founo 
to be zero, a request is issued lor fresh quad data to be 
written to the line butfer from an input register Otherwise 
the colour code remains unchanged, but the height code is 
decremented by one and written back. For example, a 
quad of size S < S contains pixels on tour scan lines in 
either tield. If its height code is initially written as three, 
then at the tburth reading it will be zero and the relevant 
buffer locations will be filled with new data. The 5-bit code 
can therefore accommodate quads up to size 64 x 64

With a pixel period of about '0  ns. practical consiaer- 
Jtions rule out a read decrement write cycle at a buffer 
location. The problem is resolved by double buffenng each 
location, reading r'rom one and writing to the other, with 
butfers ^witching function on alternate scan lines. The 
cycle time .s e.Tectiveiy extended by delayed addressing of 
the write buffer.

The width code is of particular importance in tilling the 
line buffer Requests from the line buffer for fresh data 
must be counted so that the input register is updated at 
appropriate intervals. For example, if the current input 
quad IS size % ■ S then the input register should be read 
eight times as requests are issued by eight consecutive 
empty hnc-bulfer locations. This I'unction is controlled by 
the wiath code which Is heid in a counter and decremented 
at each iine-butfer request If the comt is zero when a 
request is received then, immediately after being read, the 
input register is reloaded with new colour and height 
codes, and the counter is loaded with new width code.

4 P e r fo rm a n c e  o f th e  d isp la y

A number of pictures have been obtained by using a 
volume modeller developed by colleagues in the School of 
Engineering [11] These vary in complexity from lOOOO to 
25 (XX) quads, and re,present engineering components. 
Figs. X-lO illustrate part of this range, with, respectively, 
1 5 4 '-, 13-14 and 19516 quads being used. The pictures 
are coded with 12-bit colour, as described earlier, although 
the entire colour range is not used. Flence each quad 
requires two bytes of data and the times required to trans- 
.mit this data down an asynchronous line at 19 200 baud

F ig .  S Phjd
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are 26. 27 and 39 s. These figures include some disk latency 
m retrieving the pictures. There is adequate memory local 
to the display to hold typically ten such pictures. Any one 
can then be displayed immediately the time required to 
replace the picture locally is approximately 0.1 s. making 
this system very attractive for displaying large amounts of 
pictorial data at high colour resolution. This type of per­
formance greatly exceeds that of a conventional framestore 
which would not in any case be able to store such large 
amounts of pictorial data economically Naturally there is 
no need to limit the interface to a low-speed senal line; we 
have also implemented a simple parallel interlace with 
consequent speed-up of transmission time. A network 
interface to a remote filestore is also feasible without 
picture transmission overloading the network. All the pic­
tures shown here are held on floppy discs attached to a 
simple CP \ I  ZSO system, adequate demonstration that 
sophisticated retrieval and interfacing is not needed.

The overall compression achieved in these pictures is 
approximately one order of magnitude, comparable to 
simple run-length encoding, but not as great as some 
variants. We attribute this to the gains yielded by rep­
resenting areas being olTset by the lower likelihood of the 
extended coherence needed by quads However, as we have 
been at pains to point out. compression is not the only 
measure of such a sy stem It is also desirable to be able to 
manipulate the picture and this requires the tree form. We

have .ivcordingiy experimented with transmitting quad 
trees as well as the quad lists used oy the special display 
hardware The results are very encouraging. First, it is pos­
sible to represent the tree vvith only one third more storage 
than neeaed tor the iist. so this is still a compact form of 
the picture Secondly, using the local display processor, it 
IS possible to compile trees into quad lists in approx­
imately 5, this being the time tor pictures of the same 
compiexifv as those shown here. Thirdly, the display soft­
ware can easily prune the tree prior to compilation, allow­
ing the viewer to be selective in what is displayed. 
Specifically, the viewer can roam over large pictures and 
zoom-in to reveal further detail. Both of these are possible 
because the quad tree retains explicit spatial information: 
roaming requires pruning the width of the tree, and zoom 
requires pruning the depth. In practice, the pruning is 
readily incorporated in the compilation process and so the 
tree structure is let't intact. A further benefit is that no extra 
hardware is needed to do this.

The quantity of hardware required to implement the 
display IS modest: the entire system only partly occupies a 
standard card frame of double Euro size, the cards are 
mainly wire wrapped and not densely occupied. T T L  is 
usea tor all logical operations and cooling is entirely by 
natural ventilation The cost of the display is thus that of 
an intelligent terminal rather than that of a framestore, 
ensuring that accessing a pictorial archive would not be 
limited by cost to users at the archive location. It is there­
fore «ensibie to think of remote access of pictures in the 
way we currently think of remote access to textual docu­
ments. via dial-up rather than by journeying to some 
highly specialised central equipment.

5 F u tu re  d e v e lo p m e n t

All our work to date points to the value of compression in 
output only applications. The virtues of quad trees for 
image processing have been extolled by others and will not 
be repeated here. The particular value that we put on this 
form of compression is that it is readily amenable to 
coding pictures of greater than screen size. Coupled with 
the capacity of our display to hold several picture frames 
locally, instantly viewable, it seems that it fills ancbvious 
niche in the retrieval of pictures from a pictorial data base, 
especially when it is necessary to roam over large pictures 
at vanous levels of detail. This is an interesting develop­
ment: quad trees were originally put to use for processing 
pictures and we are now proposing a return to their ear­
liest application as a method of picture representation, but 
in the context of picture retrieval rather than image pro­
cessing.
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