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ABSTRACT

This dissertation is concerned with sets of random variables 

connected by relationships which may be interpreted as exact linear 

relations between unobserved ’true* values which are obscured by 

random ’errors* or ’departures’. The great majority of published 

work on this topic relates to two random variables connected by a 

single relation; examples are given here in which it is necessary 

to consider more than two variâtes and more than one relation between 

them. Methods are proposed for representing such relationships between 

an arbitrary number of random variables, and connexions are established 

with other statistical models, in particular factor analysis. After a 

review of methods of estimation proposed for certain cases of varying 

generality, a fairly comprehensive treatment is given of the estimation 

of such relationship by the methods of maximum likelihood and generalized 

least-squares; the large-sample behaviour of the estimators is considered, 

and connexions with the technique of canonical analysis are established.

In the course of this study, some inequalities for matrix traces are 

derived which are of wider mathematical interest. One of the procedures 

developed here is applied to a problem of comparing different instruments 

designed to measure the same property, examining their relative 

calibrations and relative precision. The data are also used to illustrate 

graphical techniques developed for testing the assumptions of the 

calibration model.

(ii)
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1. INTRODUCTION

We are concerned in this dissertation with relationships between 

random variables which have the characteristics (i) that they may be 

expressed as the sum of an unobserved ’true’ or ’underlying* variable 

and a random variable interpretable as an ’error* or ’departure* from 

the true value, and (ii) that the true variables are exactly linearly 

related. If the true variables are random the linear relationships 

are called structural^ if mathematical variables they are funot'Conal 

relationships.

It is usually assumed that the errors are independent of the true 

values and independent between observations, and that their variances 

and covariances are the same for each observation. Also, the true 

values connected by a structural relationship are usually taken to be 

independent and identically distributed for different observations.

The topic must be distinguished from regression and multiple regression, 

in which only one variate is observed with ’error’, and from multivariate 

regression, in which at least one variable is observed without error.

The great majority of the work on this subject is concerned with 

relationship between two variables. After some examples which illustrate 

contexts in which structural and functional relationships arise and the 

problems associated with their estimation, we give various mathematical 

representations of such relationships and go on to consider their estimation 

by maximum likelihood (ML), generalized least-squares (GLS), and other 

methods. We concentrate on the first two methods here since they are 

considered almost exclusively in later chapters. Extensive discussions 

of the various methods are given by Madansky (1959), Kendall and Stuart 

(1967, Ch, 29), and Moran (1971),

1,1 Some examples

(a) The strength and hardness of artillery shells

Madansky (1959) records the measurements of yield strength (Ŷ ) and



hardness (Ŷ ) of steel artillery shells. He assumes a linear relation

ship

between the corresponding ’true* measurements and on each shell.

The true measurements cannot be observed directly, only random variables 

Ŷ , expressible as

1̂ “  ^1 *  1̂ ' ^2 ^  2̂ *  2̂ ' 

where and are error terms resulting from inhomogeneity of the 

steel and errors of measurement. If we take and bo be independently 

and normally distributed with zero means and variances 0^2 respectively,
and suppose that there are n shells with true values of yield strength

(j = 1....n), then the unknown parameters in this functional
relationship model are a, 6, and the ^.

The method of maximum likelihood does not give consistent estimators 

for this model without further assumptions. Indeed, a too-simple analysis 

of the problem led first to the belief that the application of ML gave a 

nonsensical result, and later that there was no such solution. We shall 

consider the theory for this and other functional relationship models 

in Section 1,4,

(b) The comparison of two measures of the impact strength of timber 

Williams (1959, p,200) gives the results of a test of impact 

strength applied to two specimens from each of 109 planks of Northern 

Silver Ash, One specimen from each plank was tested radially, the other 

tangentially to the growth rings, giving readings Y^ and Y^ respectively.

As in the last example, Y^ was considered as being made up of a true 

measurement and a random error e^(i = 1,2), and being linearly 

related and the errors and being independent. It was of interest



to test whether the data were consistent with the relationship

An important difference from the last example is that since the 

two readings were made with the same method of test it is reasonable 

to assume that the error variances and are equal. With this 

assumption, ML gives consistent estimators for the parameters of the 

relationship but not for the common error variance.

(c) The comparative calibration of measuring instruments

The estimation of the functional relationship in the last example 

may be regarded as the calibration of one measurement of a property 

of the wood against another. The idea may be extended to the calibration 

of p()2) instruments for measuring the same property using readings on 
a common group of n specimens. Expressing the true values of the 

remaining p-1 instruments in terms of the first, we have the p-1 linear 
functional relationships

q  - Oi + 6  ̂ q  (i - 2,3.... p); (1.1)

these p-1 equations together define a line in p-space. In Williams’

(1969) representation of the same problem, the line on which the true

measurements lie is defined by expressing each as a linear function of

a hypothetical standard measurement. We observe the associated random

variables Y. which contain errors of measurement E., so that 1 1

Y^ = (i = l,...,p) . (1.2)
If p>2 and we take the to be uncorrelated between different 

specimens and different instruments, and to have mean zero and variances 

(i = l,..o,p), then, in contrast to the case p = 2, we may obtain
consistent estimators for the a., 8. and a...1 1  11



Barnett (1969) also considers a structural-relationship version of 

the same problem; instead of the true measurements being mathematical 

variables, they are taken to be random variables distributed normally 

over the population of possible specimens. If we write them as X.(i=l,...,p) 
then equations (1.1) and (L2) become

Xi = «i + 3̂  X^ (i = 2,3,...,p)

and

= X^ + (i = l,...,p) .

If we take the G^ to be distributed as N(0,CĴ )̂ independently of each

other and of the X., then the parameters to be estimated are the a.1 1
and 3̂  (i = 2,3,...,p), the (i = l,...,p), and the mean y and 

variance of X̂ .

It is not possible to estimate all the parameters of the model 

when there are only two instruments to be compared, but there is a 

ML solution for p>2 which has an explicit form when p = 3.

Barnett applies this model to the comparison of two instruments 

for measuring human lung capacity. The instruments were assessed by 

taking measurements on a common group of 72 patients using two operatives; 

the total of four combinations of instrument and operative makes it possible 

to estimate the relationships consistently. Barnett estimates the para

meters using some consistent moment estimators based on the exact ML 

solution in the case p = 3.

Various methods of representing these calibration models are considered 

in Section 2.3(a). In Chapter 6 the ML estimators for the structural 
case are considered and Barnett’s data are re-analysed.

1.2 Representing the relationships

We give in this Section various notations for structural and



functional relationships, emphasising those which lead to useful

p-variate generalizations; such generalizations are considered in

Sections 2.1 and 2.2.

1.2.1. Structural relationships

We define the vector of observations Y as (Ŷ  Y^)’; the i th

element of Y is assumed to be made up of a ’true’ variate X. and an — 1
’error’ or ’departure’ from the true value Ĝ , so writing X for (X̂  X̂ )' 

and z for (ĝ  Ĝ )̂  we have

Y = X + G ,

The elements of the true variate are taken to be exactly linearly 

related; the usual method of writing this is

X^ = a + 3Xj . (1.3)

Writing for E(X^) (i = 1,2), we have y^ = a + 3 y^, so an alternative

to (1.3) is

%2 - = G(X^-y^). (1.4)

Measuring the X^ from their means has a number of advantages: it leads

to simpler p-variate generalizations, and its symmetry makes estimation 

slightly easier and emphasizes the distinction between the structural 

relationship and regression models; the resemblance has given rise to 

much confusion. Another way of writing (1.4) is

l! = 0, (1.5)
where y = (ŷ  yg)', Y = (ŷ  Y2)' and 3 = ^ere Y is defined

only up to a constant factor; if we wish to define it uniquely then 

the constraint = -1 corresponding to (1.4) is only one of the more 

useful possibilities. Other equivalent conditions with useful generaliza

tions are that the dispersion matrix of X has rank 1 or that we may write

X^ = ŷ  + f (i = 1,2), (1.6)



where f has zero mean and unit variance. The latter follows from 

(1.4) if we write for V(X^), X̂  for gX^ and f for (X^-y^)/X^. The 

symmetry of (1.6) makes it particularly convenient. If X^ and therefore 

Xg are assumed to be normally distributed this is equivalent to f in 

(1.6) having a standard normal distribution.
The error vectors e are usually taken to be independent of the true 

variâtes, and both true variâtes and error vectors corresponding to 

different observations are assumed independent. The dispersion matrix,

T = (0̂ )̂* of E is usually assumed constant. Whether it is also diagonal 

depends on the context: this is the usual assumption if and are

errors of measurement, but if they represent, say, biological variation 

then this is not likely to be appropriate.

1.2.2. Functional relationships

A functional relationship between two variâtes and Y^ is an 

exact linear relationship between their expected values. If we write 

Ç = (Ç̂  Çg)' for the expected value of Y = (Ŷ  Yg)* then the vector £ 

of ’errors* or 'departures’ from Ç is defined by

Y = 5 + e .

Unlike the structural case, we cannot consider the true values corres

ponding to different observations as being a sample from some population;

we must define the functional relationship with respect to the true but

unknown values for our sample of size n. For these n vectors

to be collinear we must have for some a and 3

= ct + 3(ij (j = l,...,n). (1.7)

In this case we have to estimate a,3»Cĵ 2̂f *• • and the parameters

defining the distribution of z. By analogy with (1.4) we may measure

the about their mean, although in this case it must be the ’sample’
—1



-  “ 1mean E = n Z Ç.. We then have - -J

^2j  ̂ 2̂  ̂ (j = l,...,n),

and we have to estimate instead of a. This again is a special case 

of the set of equations

Y'(E- - |) = 0 (j = l,...,n)

in which a constraint has to be applied to y to make it unique.

Equivalent conditions are that the matrix Z has rank 1 or that-J-J
we may write

S. = C + X#. (j = l,...,n),-J - - J
in which case the (J)̂ are subject to the constraint Z(|)j =0. We may

also fix the scale of the (f)j by adding the condition Z(j)j = n.

The vectors of departures have zero means and are usually taken 

to be independent, or at least uncorrelated, with a common dispersion 

matrix Z. The correlation between and is usually taken as zero 

if they represent errors of measurement.

1.3 Maximum likelihood estimation of structural relationships

We consider first a structural-relationship model in which both 

and e are normally distributed. If we use the representation (1.6) then 

the vectors of observations Y^,...,Y^ are independently distributed as 

N2(y,Z+XX'). The problem immediately arises that only five parameters 

are needed to define a bivariate normal distribution, while our model 

contains seven, or, if a 2̂ ” 0, six. It is impossible to estimate the 

parameters of the model without making some extra assumptions, since 

different values of the parameters may give rise to the same dispersion 

matrix for Y; the parameters are said to be non-identifiable in such a 

case.

The usual way out of this difficulty is to suppose that as well as



having = 0 we know the ratio : (̂2 2 * that we have only five 

unknown parameters. If we scale the variâtes so that then

the solution amounts to fitting a line in the direction of the first 

component in a principal component analysis. This is a special case of 

the identifiable situation, with which we deal in Section 4.2.1, in 

which Z is known up to a constant factor. Other identifiable cases in 

which solutions have been found are those in which ” 0 and one or 
both of and are known (see, for example, Moran, 1971). The 

last is included in the case of known Z given in Section 4.2.

Reiers^l (1950) shows that the problem of non-identiflability 

arises from the assumption of normality in the distributions of and 

e, in the sense that if e is normal the slope parameter of the relationship 

is identifiable if and only if X^ is non-normal. Thus it is possible 

in principle to estimate the parameters of the model provided we can be 

sure that X^ is non-normal. A method of Geary which uses non-zero mixed 

cumulants of order greater than 2 is given in Section 1.5.

If the structural relationship is constrained to pass through a 

particular point, which we may take without loss of generality to be the 

origin, then a consistent estimate of the slope is V2^yi* Provided that 

 ̂0. This is not the ML solution; an attempt in Section 4.2.4 to find 

this solution is unsuccessful.

It is of interest to examine whether the problem of non-identifiability 

extends to structural relationships between more than two variâtes. We 

stated in Example 1.1(c) that the parameters are identifiable in the 

important case of p-1 relationships between p variâtes with independent 

errors if p%3. This is because there are 3p independent parameters while 

a p-variate normal distribution is defined by  ̂p(p+3) parameters; the 

difference,  ̂p(p”3), is non-negative when p%3. The ML estimators in the



case of 3 variâtes have been given independently by Teissier (1955),

Lord and Novick (1968, pp.216-219) and Barnett (1969). However, the 

parameters of a single relationship between 3 variâtes with independent 

departures are not identifiable; if we write the relationship as

Xg - Wg = B^Cx^ - ŷ ) + $2 (̂ 2 ” 2̂^ » '

then there are 11 parameters to be estimated (3 means, 3 error variances, 

the variances and covariance of and X2, 3  ̂and but only nine 

parameters are needed to define a trivariate normal distribution. A 

criterion for the identifiability of structural relationships between 

p variâtes with normal distributions and independent departures is given 

in Section 2.4. The estimation of structural relationships between p 

variâtes is considered in detail in Chapter 4.

If there are replicate observations, that is, several observations 

on Y at the same value of X, then there is enough information to estimate 

all the parameters of the model. According to Moran (1971), no ML 

solution has published for this case although various consistent estimators 

have been suggested in the case p = 2. We show in Section 4.2.2 that such 

a solution exists when there are equal numbers of replicates at each value 

of X and E is a general positive-definite matrix, but the problem appears 

to be more difficult if there are unequal numbers of replicates or if E 

is diagonal.

1.4 Maximum likelihood estimation of functional relationships

If we use the representation (1.7) and assume that and E2 are 

normal and independent then there are n+4 parameters: a,3>E]̂ jL* * * * »̂ ln* ^11 
and ^2 2 ’ the data (y^j,y2j) (j = l,...,n), Lindley (1947) equates
to zero the first derivatives of the likelihood with respect to these 

parameters and obtains the remarkable result

^22 = 3"̂ *11. (1.8)



10

This relationship between the estimators of the slope of the line and 

the error variances is quite unacceptable, for there is no reason to 

suppose that the true values of the parameters are related in this way; 

it has been interpreted as a failure of the ML method. However, Solari 

(1969) has shown that the likelihood has two stationary points, both 

giving (1.8) but one having a higher value than the other, and that the 
higher point is not a maximum but a saddle point. She shows also that 

the likelihood tends to infinity if either q^ = E(y^j“Ç^j)^ = 0 and 

tends to zero or qg = = 0 and 0 ^ 2 tends to zero, and that

the likelihood has essential singularities at all points at which either 

= 0 or qg = 0^2 = 0, so no ML solution exists. The problem is 

not confined to a relationship between two variâtes; we show in Section

2.4 that for relationships between any number of variâtes the likelihood 

is unbounded.

Copas (1972) shows that the above arguments are invalid in that they 

assume that the ŷ ĵ and ŷ j are recorded with complete accuracy. The 

likelihood function is a product of probability densities which are only 

approximate in that they ignore the grouping error in the observations; 

the approximation is excellent so long as this grouping error is small 

compared with the standard deviation of the corresponding departure term, 

but invalid near parameter points at which the standard deviation is zero 

(see, for example, Kempthorne, 1966). The singularities found by Solari 

occur at points of just this type. Copas re-analyses the problem assuming 

that ŷ j and ŷ j are both recorded with a grouping interval of length h, 

and shows that as h tends to zero the ML estimator of 3 tends to the slope 

of the regression of y^ on y^ if ^(ygj-ÿ^)^ < E (y^j-y^)^ and the reciprocal 

of the slope of the regression of y^ on y^ if this inequality is reversed; 

in each case the error variance corresponding to the variable treated as



11

the regressor is estimated as zero. This estimator of 3 is not 

consistent if n converges to a finite limit, but it is

clear from the structural case that no solution can be in general, since 

there could be no consistent solution if the were in fact a random 

sample from a normal distribution. However, the limits of y and of the 

sums of squares and products are consistently estimated.

As in the structural case we can obtain a consistent estimator of

3 (in fact, the same estimator) if we assume knowledge of the ratio : ^2 2 *

but even then the estimators of and 0 ^ 2  converge to half their true

values. The problem arises because a new parameter is introduced for

each observation y.. Neyman and Scott (1948) call such parameters,—J
which are specific to the distributions of individual observations, 

’incidental*; parameters which appear in the distributions of all vectors 

of observations are ’structural*. The usual asymptotic properties of ML 

do not apply in the presence of incidental parameters. The general situation 

in which E is known up to a constant factor is treated in Section 5.1.1.

Unlike the structural case, there is no difficulty here in estimating 

relationships through the origin; we simply use raw rather than corrected 

sums of squares and products.

If there are replicate observations then consistent estimators may 

be. constructed by finding the ML estimators given the value of E and 

estimating E using the within-groups sums of squares and products divided 

by their degrees of freedom; this is equivalent to the generalized least- 

squares solution described in the next Section. The full ML solution,given 

in Chapter 5, differs from this; it estimates the parameters of the relation

ships consistently, but whether E is estimated consistently depends on 

the way in which the total number of observations tends to infinity; if

we have only a finite number of replicate observations at each Ç. then—J
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we are again plagued with incidental parameters.

1.5 Other methods of estimation

Because of the difficulties associated with ML estimation, various

more-or-less ad hoc methods of estimation have been suggested which depend

on having various extra pieces of information as well as the n pairs

of observations (ŷ j, y^j) (j = l,...,n).

1.5.1 Generalized least-squares

Sprent’s (1966) generalized least-squares procedure may be regarded

as an extension of the ML solution for a functional relationship for which

the observations are independent with a common known dispersion matrix

E. It has been shown to be equivalent to ML in many cases where the

error variances and covariances are known. We show in Section 5.3 that

a further extension of the procedure to multiple relationships between

any number of variâtes may be seen as a simplification of the ML method

when Z has to be estimated from replicate observations.

Suppose that we postulate a homogeneous functional relationship

. (j = l,...,n) between the elements of the mean vectors J-J —J
of n bivariate observations y.(j = l,...,n) which are uncorrelated with

— J
a common known dispersion matrix E. Sprent observes that the linear

function z = y^ "■ 3y^ has mean zero and variance independent of and

is thus what Williams (1955) has called a ’null variate’. If, for ease

of generalization, we write the relationship as ” 0 (j = l,...,n) J
and define z as yfy, then the generalized least-squares principle is to 

estimate y by minimizing

U = E z? {V(z.)}  ̂= y'By/y'Ey

where B = E ŷ  yj . The minimum of U is ô^^b), the smaller root of the

determinantal equation |b-6 E| = 0, and it is attained when {B - 62(B)E}y = 0,
In this case Sprent (1969, pp.41-42) shows that if the y. are normally—J
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distributed the procedure is equivalent to ML,

He suggests extensions of the method in various directions: if

the yj, instead of being uncorrelated with equal dispersion matrices,

have correlated departures, then the null variâtes also become correlated.

If we write E for the 2n x 2n dispersion matrix of the vector (y!,...,y*)’o —1 —n
then we may partition Ê  into 2 x 2 submatrices

gjj, = C(yj, ,) (j,j* = l,...,n).

The null variâtes z. now have covariances 8.., = Y^E..,y (j = l,...,n);J J] — JJ -
if we write 0 for (9jj,) then the procedure is to estimate 3 by
minimizing .

U = z’ 0 z (1.9)

where z = (ẑ ,..., z^)’. Dolby (1972) has shown that this is also

equivalent to ML for estimating a relationship through the origin.

Relationships not constrained in this way may be estimated by replacing

the Zj in (1.9) by Zj - a(j=l,...,n); the covariances 8jj, are unaffected,

so (1.9) becomes

(z - al)' 0 (z - al) (1.10)
where 1̂ is an n-vector of Is. The minimum of (1.10) with respect to

a for given 3 is

s' 2 - (!' 0 "! z):/l' i ' ^ 1,
attained when a = 1' § z/1' §  ̂1.

The inclusion of the constant term in the relationship may be seen 

as a special case of another extension of the method, that to the estimation 

of a single functional relationship between p variâtes. When the vectors 

of observations are uncorrelated and have equal dispersion matrices the 

solution is a simple extension of that in the case p=2. A further, 

intuitive, extension to more than one relationship (Sprent 1969, p.91) 

is shown in Section 5.3 to be equivalent to ML under the assumption of
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normality.

If we have uncorrelated vectors of observations with a common 

dispersion matrix E, then Sprent suggests estimating E by an appropriate

multiple of the matrix of within-group sums of squares and products.

We show in Section 5.1.2 that under the assumption of normality this 

gives the same estimators of the relationships as ML, although the

estimator of E is not the same.

1.5.2. The method of cumulants

We have seen in Section 1.3 that a structural relationship is 

identifiable if is non-normal. In this case may have a finite 

non-zero cumulant of order greater than 2. Geary (1942, 1943) shows 

that if K (0^,0 )̂ is the bivariate cumulant of y^ and y^ of order c^,C2 
then k(Cĵ ,C2+1) = $K(c^+l,C2), so the ratio of the corresponding 
k-statistics is a consistent estimator of 3 provided that k(c^+1,C2) f 0, 
In the choice of cumulants to be used we have to bear in mind that the 

variance of the estimators increases rapidly with order and that odd- 

order cumulants are zero for a symmetric distribution, so it seems best 

to choose ĉ  = 1, C2 = 2 or ĉ  = 2, = 1. The method breaks down

when the distribution of (y^,y2) is normal because all cumulants of 
order 3 or above are then zero.

1.5.3. Grouping methods

Wald’s (1940) two-group method for estimating a linear relationship 

is very simple in principle. The n observations are divided into two 

equal groups and the line estimated by joining the centroids of the two 

groups. The errors £̂ >̂̂ 2 taken to be independent with finite 

variances and the X̂ j may be random or mathematical. Wald’s first 

condition for the method to be consistent is that, writing X’, X’̂ for 

the means of the X̂ j in the two groups,

lim. inf. |x’ - X’’| > 0
n-x»
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if the X̂ j have fixed values or that the same inequality hold in 

probability if the X̂ j are random variables; the second is that 

points are allocated to the two groups in such a way that the 

distributions of and are unaffected.

The difficulty of the method lies in ensuring that the conditions 

are satisfied. Sometimes there is some extra information available 

for grouping. For example, in growth studies we could group according 

to age, but in this case we might be able to make better use of the 

time variable by regressing the other variables on it.

Bartlett (1949) shows that where it is possible to apply the 

grouping method, its efficiency may be improved by dividing the data 

into three groups and discarding the observations in the centre group.

1.5.4. Instrumental variables

An instrumental variable is some variable U which is known to be 

correlated with the unobservable true value X^ but not with the departures 

Ê  from X^ and X̂ . The estimator

b = Z(y2j - / ^(^Ij ” yi)Uj (1.11)

tends to 3 under these assumptions. The efficiency of the method depends 

on the correlation between U and X̂ ; in the best case U and X^ are 

linearly related and (1.11) is obviously justified as the ratio of the 
regression slopes of and Y^ on U. Geary (1949) assumes a trivariate 

normal distribution for Ŷ , Y^ and U.

The grouping methods may be seen as special cases of (1.11) : Wald’s 

two-group estimator corresponds to U taking the values —1 in equal numbers ; 
Bartlett’s three-group method is obtained when U takes values -1, 0 and 1.

Barnett (1969) points out that if we are considering a structural 

relationship and U is also assumed to have a linear structural relationship 

with Ŷ , then we are in the identifiable case of 3 variâtes and 2 

relationships.



16

2. MULTIVARIATE RELATIONSHIPS

In this chapter we define and provide alternative systems of 

parameters for multiple functional and structural relationships 

between any number of random variables, and go on to give some 

examples, some connexions with other statistical models and a 

review of the methods proposed for estimating such relationships.

The essential features of a set of linear functional or 

structural relationships are that we observe a p-vector of random 

variables Y which may be expressed as the sum of a ’true* p-vector X, 

whose elements are exactly linearly related, and a ’departure’ or 

’error of measurement’ £. The relationships are structural if X is 

regarded as a random vector over some population; if the components 

of X are mathematical variables taking different values for each 

observation (or, with replication, for each group of observations) 

then the relationships are functional.

If the linear relationships between the components of X are 

p-r in number then X is confined to an r-dimensional hyperplane 

which may be defined by specifying one point on the surface and 

either p-r linearly independent vectors orthogonal to the hyperplane 

or r linearly independent vectors parallel to it. (See, for example, 

Sprent,1968,and Kendall,1961,pp. 6-7). To these two ways of specifying 

a hyperplane correspond equivalent representations of functional • 

and structural relationships: the first is the more appropriate to 

the term ’relationships’; the second — because of its symmetry —  is 

more convenient when problems of estimation are to be considered.

The two representations are given below, first for structural and 

then for functional relationships.

2.1 Representing structural relationships

We suppose that the observed vector Y is given by
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Y = X + G, (2.1)
where X is a random p-vector whose distribution is degenerate 

and e is a random p-vector of departures from X, usually taken 

to be independent of X. The vector X is confined to a hyperplane 

of dimension r and its mean vector y must lie in this hyperplane.

The p-r linear structural relationships are p-r independent 

homogeneous linear constraints on X-y. In what we shall call the 

Type I representation the constraints are given by

r ’( X - y ) = 0 ,  (2.2)

where F is a p x (p- r) matrix of full rank. The columns of £ span 

the subspace orthogonal to X-y.
A convenient way to make £ unique is to assume that the first 

r elements of X are linearly independent (this may require some 

reordering) and express the remaining p-r in terms of them. Thus

- Hb - - Ha)' (2-3)
where X^ consists of the first r elements of X and Xy of the

remaining p-r, y is partitioned similarly, and A is a (p-r) x r

matrix. That is, £' is required to have the form

r ’ = (-A I ). (2.4)—  p-r
Equation (2.3) may also be written

Xy = AX^ + a , (2.5)

where a = yy - Ay^; this may be appropriate if there is some 

asymmetry between X^ and Xy .

If the hyperplane is constrained to pass through the origin then 

equations (2.2) and (2.3) become respectively ^’X = 0 and Xy = AX^ ; 

the same relationships apply to y.

In the Type II representation X-y is expressed as a linear 

combination, with random coefficients, of r linearly independent 

p-vectors. That is
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X = E + Af, (2.6)
where is p%r and of full rank and f is an r-vector of linearly 

independent random variables with zero means. The columns of A

span the subspace containing X-p . We may put X in the form (2.6)

if and only if its dispersion matrix has rank r . For if (2.6)

holds the dispersion matrix is AD(f) A' , which has rank r ; conversely, 

if D(X) has rank r it has r linearly independent columns and the 

corresponding r elements of X are linearly independent. The

remaining p - r elements are linear functions of them, so these r

elements minus their means serve as %.

Comparing equations (2.2) and (2.6) and using the linear

independence of the elements of f , we find that the two representations

are related by the equation

r'A = g. (2.7)

If r ' has the form (2.4) and A' is partitioned as (A' Â ) with

A- r X r then —1
à ài " ̂ 2* (2*8)

and this is independent of any postmultiplication of A by a nonsingular 

matrix.

Without loss of generality the components of f in (2.6) may be 

taken to be uncorrelated with unit variances by, say, postmultiplying 

A by the symmetric square root of the dispersion matrix of f . The 

matrix A is then unique up to postmultiplication by an orthogonal 

r X r matrix; the product A A' is unique.

If the ’error* vectors corresponding to each observation

are uncorrelated with zero means and a common positive-definite

dispersion matrix Z , then we may conveniently define a unique A

as follows: let 0 = AA' and let w_, ..., ü) be the nonzero — —  1 r.
roots in descending order of
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|0 - ü)2| ■= 0 . (2.9)

If £ = diag (ü)̂ .üĴ , 0, 0) is pxp then there is

a nonsingular p x p matrix Nq such that

I - S g N | .  0 = NgfiN^ = Ng^O^H^^ (2.10)

where Nq  ̂ consists of the first r columns of Nq and

= diag(o)̂ , cô ) (Rao, 1973, p.41). If the positive roots of

(2.9) are distinct then Nq^ is unique up to changes of sign of its 

columns, and a unique A is given by 

A, - Sgi diag(ü)̂  ̂ 01 j).

With this choice of A we have

A' A = . (2.11)-o — —o —1

Thus we have chosen A so that A' E  ̂ A is a diagonal matrix—o —o ~ —o
whose positive elements are the nonzero roots of (2.9) arranged in 

descending order.

A set of linear structural relationships constrained to pass 

through the origin is given by

X - A £ * .
where is a random r-vector with unit dispersion matrix and

mean V, not necessarily zero. Equivalently, we demand that y in

equation (2.6) lie in the range space of A, that is, that y = A a

for some r-vector a . Since A and A A' have the same range space

(Rao, 1973, p.27) the condition is also that y = 0c for some

p-vector c .

If we wish to assume that X follows a p-variate normal 

distribution then f may be taken to be distributed as N^(0,I).

This is equivalent to the assumption that X has the distribution 

Np(y,0), where 0(=AA') has rank r (Rao, 1973, p.521).

2.2 Representing functional relationships

We again assume that equation (2.1) holds, except that we write
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Ç rather than X for the ’true* values since they are to be

considered as unknown parameters. Rather than refer to a population

of values of Ç we consider the individual (j =1, ..., n)

corresponding to n(>r + 1) observations (or groups of replicate

observations) on Y. The are subject to p - r functional

relationships if there exists a point and a p x (p- r) matrix £

of full rank such that

£'(§j - = 0 (j = 1, ..., n). (2.12)

By analogy with Section 2.1 we shall call this the Tŷ pe I representation

of functional relationships. The point Ç may be anywhere on the—o
hyperplane containing the . For the sake of uniqueness we may—j

“  X •take Ç to be C , the mean of the , defined as n ZÇ. or, if —o — —] —J
there are m. replicate observations at Ç. (j = 1, ..., n), as J -J
Em. Ç./Zm. . (Note that we are assuming an equal number of replications, J — J J
ny, on each component of Y corresponding to Cj) •

As before we may define a unique £ by giving it the form of (2.4) 

(possibly after some re-ordering of the elements of Ç ), so that

Sbj - Ib = A(§aj - ÿ  (i = 1. •••• <2.13)
where C • consists of the first r elements of and C . of the—aj -J -bj
remaining p - r and Ç is partitioned similarly. This may be rewritten

as

Ç . = A  ̂ . + a (j = 1, ..., n), (2.14)—b] — —aj —
where a = - A . For a hyperplane through the origin (2.12) and

(2.13) become respectively £'Ç  ̂= 0 (j = 1, ..., n) and

Sbj = <j = 1' •••' ">•
In the Type II representation of a set of functional relationships

we assume that there exists a point a p x r matrix A of full rank,

and n r-vectors <p. (j = 1, ..., n) such that—J
Ç + A(j). (j = 1, ..., n). (2.15)—J —o — —J
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Corresponding to the linear independence of the elements of f in

(2,6) we here require that there is no vector a such that

a'#. = 0 for all j . Thus the rows of the r x n matrix (0 ... (() )—J —1 —n
must be linearly independent. Comparing equations (2.12) and (2.15)

and using the linear independence of the rows of (<() ... # ) we find— 1 — n
that equations (2.7) and (2.8) are also satisfied for functional 

relationships.

Equation (2.15) is unchanged by the addition of a constant vector,

b say, to each 6. and the subtraction of Ab from Ç . This— j —  — o

redundancy in the parameters may be removed by defining (j) in the

same manner as Ç and setting the former equal to zero, so that C 
—  — o

becomes Ç. Another source of redundancy is that postmultiplication

of A by any nonsingular r x r matrix and premultiplication of each

<f>. by the inverse also leaves (2.15) unchanged. We could, by analogy -J
with the condition D(f) = in the structural case, apply restrictions

to the (b. such as -J
Em. (J). (f>! = Z m. I , (2.16)J -J Zj J -r

so that the arbitrariness is reduced to an orthogonal transformation, 

but this has the disadvantage that A depends on the particular values 

of the (j)j. A particular problem is that if we wished to consider the 

consistency of a set of estimators in an unreplicated case under various
/types of limiting behaviour of the we might assume Z(ĝ  - 5)(Jj ” £)

(which equals A Z (j)j Â  ) to be of order n^ (s > 0) . It would be

better for Z(|). ({>! , a function of the incidental parameters alone, to -J — J
share this behaviour than for A to converge to zero or diverge.

Instead of imposing conditions such as (2.16) on the ^^, we shall 

follow, and make slightly more precise, the development given by Rao 

(1973, p.559), which is mathematically similar to the device used to 

define a unique A in Section 2.1. We again assume that the vectors
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of departures e. are uncorrelated with zero means and common “J
positive-definite dispersion matrix Z . Rao employs a linear

-1transformation X £ Y in order to give the vector of departures 

unit dispersion. However, it is not clear whether the symbol Ẑ  

is intended to denote the symmetric square root of Z or merely a 

matrix N satisfying

Z = NN'; (2.17)

any solution of (2.17) would have the required property. We shall
• • “1 consider generally the transformation to U = N Y and Ç = N Ç

for any solution of (2.17) and then choose a particularly convenient

solution. The Ç. have the same structure as (2.15), say —J
Ç. = C + S (t>. (j = 1, .. n)-J — -J (2.18)

• X ,where S = N A . Without loss of generality we may take the columns

of S to be orthonormal, that is, choose S to satisfy

s's = I . (2.19) -r
For a given N this defines S , and therefore A, to within 

postmultiplication by an orthogonal r x r matrix, and this remaining 

arbitrariness causes little difficulty in estimation since A or

is of more interest than (j)j itself. In terms of _A , equation (2.19)

becomes

. (2.20)
in contrast to (2.11).

If £ is a general positive-definite pxp matrix then it is

convenient, when considering the estimation of A and <j)j , to define

a particular solution of (2.17) in terms of the simultaneous reduction

of Z and the between-groups SSP matrix B defined by

B = Z(y. - y)(y. - y)' (2.21)-J — -J -
or, if there is replication, by

B * Z m. (y. - y)(y. “ y)'. (2.22)J -J - -J -
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Let the equation

Is - 6Ï I =0  (2.23)

have roots ^̂ (B) (i = 1, p) in descending order and let

Ag = diag{6^(B), 5^(3)}; then there exists a solution Ng of

(2.17) which also satisfies

B -N^Ag Ng' . (2.24)

If n>p, then with probability one B is non-singular, the roots are

distinct and Ng is unique up to changes of sign of its columns. The

choice of this solution of (2.17) is convenient because the within-groups

SSP matrix of U is diagonal and because the estimators of A involve Ng.

If the departures from different elements of £ are uncorrelated,

so that £ is diagonal with nonzero elements (i = 1, ..., p), then

an obvious alternative to the above transformation is to use

N^ = diagXc^i, .. , G^). (2.25)
A set of linear relationships through the origin is given by

Ej - A ** (j = 1, .... n). ' (2.26)

with the same condition of linear independence on the <J)* as on the (|).
- J  - J

in (2.15). The same method of defining A to within postmultiplication

by an orthogonal matrix applies here as before, except that B is replaced

by the raw between-groups SSP matrix

B* = Z y. y/ or Z m. y. y/ ; (2.27)
- J  - J  J “ J —J

the condition n > p for B to be nonsingular (a.s.) becomes n^p for B*,

2.3 Some examples of multivariate relationships

We give here some examples of situations in which X, or £, has in

general more than two elements, using our own notation wherever it

conflicts with the authors*. Of the two representations of functional 

and structural relationships given above,Type I is the more appropriate 

when there is some asymmetry among the elements of 2L

(a) Comparative calibration

We return to the problem introduced in Section 1.1 of a calibration



24

experiment in which the same property is measured on each of n 

specimens using p measuring instruments. In Barnett's (1969) 

formulation, each reading is made up of a normally distributed 'true* 

value and an independent error distributed as N(0, a?) (i = 1, ..., p);

all errors are independent and the true measurements on any pair of 

instruments are linearly related. He has

X^ = + 3̂  X̂  (i = 2, 3, ..., p); (2.28)

instruments 2, 3, ..., p are each related to instrument 1 , which may 

be chosen arbitrarily. This is a Type I representation of p - 1 

structural relationships in the form of equation (2.5) with r = 1, 

a = (Og, ...» Op)' and A = (32» •••» 8̂ )'. However, the symmetry of 

the relationships between the instruments may be expressed by supposing 

that each true measurement is a linear function of a hypothetical standard 

measurement f , distributed as N(0, 1) over the population of possible 

specimens. Thus we may write

X * y + X f , (2.29)

where y = E(X) and ^ is a p-vector of unknown 'calibration factors'; 

this is of Type II . The only condition required for the parameters to 

be unique is on the signs of the X̂ ; the model is sensible only if each 

X^ is positive.

Williams' (1969, 1973) functional-relationship version of the 

calibration problem has a Type II representation; his model for the 

vector of measurements on the specimen amounts to

Ç + X<l>- (j = 1, ..., n). (2.30)—J —o J
In the earlier paper the (j)̂ are regarded as the values of an unknown 

standard measurement and are subject to the constraints

Z#. = 0  , Z = 1.J J
The first condition sets Ç equal to Ç and the second is similar to 

(2.16). As in Barnett's model, all errors are taken to be independent.
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those on the instrument being distributed as N(0, a?) (i = 1, ..., p) .

The suggested maximum likelihood solution when the are unknown is

unworkable, as we explain in Section 2.4(a). In the later paper

restrictions are applied to the structural rather than the incidental

parameters. They are

Z X?/a? = 1 , Z X./a? = 0 ,

the first being (2.20) with r = 1.

Taylor (1973) considers a calibration problem in which several

instruments are compared with a standard. One variable, Ŷ , has a

special position and we are interested in the functional relationships,

assumed linear, between each of the others, Y^ (i = 1, ..., q), and Ŷ .

All errors of observation are taken to be independent, and there may be

unequal numbers of replications on the different instruments, a

complication we shall ignore when considering the estimation of

functional relationships.

(b) Homogeneous strain in a glacier

Gleser and Watson (1973) consider a problem in which markers are

placed in a glacier at points y^,...., ŷ . Here the elements of the

3-vector ŷ  are the Cartesian co-ordinates of the marker. The

positions are observed with error and recorded as û , ..., û . A later

survey, using similar techniques, yields measurements v. of the true3
positions 6̂  reached by the markers (j = 1, ..., n). If the

deformation in the meantime is merely a homogeneous strain then

" AYj (j = 1, ...» n), where A is 3x3. This is a Type I

representation of linear functional relationships through the origin

with p = 6, r = 3, = (y.', 6(), and yf = (uî, v'.) ; the other ̂ -3 ~3 “3 -3 -J “3
representation would hardly be appropriate. The authors assume that

u. and V. are independently distributed as N_(y., XT) and -3 - 3  7 3 -J
Ng(0j, XT) respectively, where T is a known positive-definite matrix 

but X is unknown. They state that 'obvious* linear transformations
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-1 -1u -►T u and v -)-T v reduce the problem to the case in which

T = I, but do not say what is meant by the notation T ̂ .

(c) Growth and size allometry

Sprent (1972) defines allometry as the study of differences in

the shape of organisms associated with size. Individual organisms

change their size and shape with time, but there are also differences

between members of a species with the same age. These two aspects

of the subject are known respectively as growth and size allometry.

Suppose that ẑ , ..., ẑ  are measurements of the size of different

parts of an organism. For the study of just two characteristics a

widely-used model is the S'impZe atlometry equation introduced by

Huxley (1924); the measurements ẑ , ẑ  are assumed to satisfy, at

least approximately, the relationship
6

=1 = k =2
or, equivalently.

log ẑ  = log k + 3 log ẑ . (2.31)

Some authors use the term allometry for this relationship. When we 

come to consider all p characteristics simultaneously a problem 

arises as to the appropriate generalization of equation (2.31).

According to Hopkins (1966) it is the set of p - 1 relationships 

log ẑ  = log k^ + $2 2̂ = log Zp'
This is equivalent to

log zy = + X. f (i = 1, ..., p), (2.32)

where 3^ = X^/X^ and f is a general size factor. Thus, apart from 

random biological variation and measurement errors, the logarithms of 

the z^ lie on a line in p dimensions. Hopkins applies this model 

to some size data on the weights of nine organs of rats. He first 

screens the measurements for non-linearity in their bivariate 

relationships and deletes three of them; a structural-relationship 

model with independent departures is found to give an adequate fit to
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the remaining six. However, the method of fitting the line is 

somewhat suspect, in particular because it is not scale-invariant.

Teissier (1955) has also considered the problem of fitting a 

line to the logarithms of the dimensions of organisms. He discusses 

the use of the first principal component as well as a set of p - 1 

structural relationships with independent departures, and decides in 

favour of the latter, deriving an explicit solution when p = 3. As 

an example he applies this model to some data on eight measurements 

of the dimensions of the crab Oxyrhynchid.

The assumptions made by these two authors about the logarithms of 

size measurements are equivalent to those made in Example (a) about 

different measurements of the same property. In the case of biological 

variation, however, it is doubtful whether the hypothesis of independent 

departures between different measurements is appropriate. The assumption 

can be checked when there are replicate observations.

Sprent (1968) agrees with Hopkins that the proper generalization of 

the simple allometry equation is to a line in p dimensions, but considers 

that hyperplanes of higher dimension are also worth studying. In cases 

where Z is known or estimable he recommends testing for p - 1 linear 

relationships, then p - 2, and so on until a significant result is 

obtained. However, he shows that in growth allometry if each characteristic 

has a growth curve which can be expressed as a polynomial of order r in 

time then there will be p - r approximate linear relationships between 

the p characteristics; this justifies the restriction of the simple 

allometry concept to a line rather than merely any hyperplane of dimension 

less than p .

Regarding assumptions about departures from the hyperplane, he argues 

(Sprent,1972) that in growth allometry longitudinal studies involving 

repeated measurements on the same organism may lead to autocorrelated
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departures, so it is advantageous to measure different organisms at

each time. Thus the data he presents in the 1968 paper on the wood

growth, girth increment and reproductive growth of apple trees are

observations on different trees in each of five years. He considers

a functional-relationship model in which the mean vectors for—J
each year are subject to one or two linear constraints, and is able 

to estimate the dispersion matrix of the departures by measuring six 

trees each year. The data are found to be consistent with a single 

linear relationship between the logarithms of the characteristics, 

but not with a simple allometry relationship which would involve a 

second equation. The relationship is estimated by an extension of the 

generalized least-squares method of Section 1.5 to be described in 

Section 2.5. In this analysis the years are used only for grouping 

the data; the precise values taken by the time variable and even their 

order are ignored. Bartlett (1948, 1966) argues that with data of this 

type we should carry out a canonical analysis of the logarithms of the 

characteristics with years, the regressor variables being, for example, 

polynomials in time, and the small canonical roots being relevant to 

any linear functional relationships. If the number of regressor 

variables is given an upper limit then there are no incidental parameters, 

and in the absence of replication the dispersion matrix of the 

departures can be estimated from the residuals after removing the 

systematic variation. Clearly, we should expect Bartlett's analysis 

to be the more efficient since it makes greater use of the available 

data. On the other hand, it depends on being able to represent 

satisfactorily the growth curves of the characteristics with the chosen 

set of regressor variables.

(d) Relations between economic time series

Attempts have been made to determine fundamental relationships
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between economic time series by assuming that linear functional 

relationships exist between sets of economic variables which are 

all subject to random disturbances. The hope is that such 

relationships may be interpreted as, for instance, demand functions, 

supply functions, or production functions (Tintner, 1952, p.121).

Some of the models proposed ignore the order in which observations 

are taken, since they allow neither temporal dependence of the 

'true values' of the variables nor the possibility of autocorrelated 

departures. They are functional relationship models similar 

mathematically to Sprent's model for growth allometry, and the 

criticisms made by Bartlett apply no less forcibly here. Other 

objections are that the dispersion matrix of the departures has to 

be assumed since replication is seldom possible in economic series, 

that lagged relationships between the true values cannot be incorporated, 

and that the assumption of zero autocorrelations may not be realistic. 

Nevertheless, the methods of estimation developed for such models are 

of interest since they apply to functional relationship models 

employed in more appropriate contexts.

Koopmans (1937) applies the method of maximum likelihood to the 

problem of estimating a single functional relationship when the vector 

of departures is normally distributed with dispersion matrix known to 

within a constant factor and there is no replication. As in the 

bivariate case the constant of proportionality is not consistently 

estimated because of the presence of incidental parameters.

Under the title 'weighted regression' Tintner (1945) considers 

the estimation of p - r linear functional relationships when there 

is no replication but the vector of departures is normal with known 

dispersion matrix. The method is applied (Tintner, 1946) in an attempt 

to find a demand and a supply function for agricultural products in
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the United States of America. A curious aspect of the analysis 

is that time is included as one of the variables 'subject to error*.

The error variances are estimated by Tintner*s *variate-difference* 

method.

Bartlett (1948), in criticizing Tintner's approach to the 

analysis of economic time series, draws attention to the ambiguous 

role played by time, which is sometimes brought in as a dependent 

variable but is tacitly assumed to be a regressor variable in the 

variate-difference method. He re-analyses some data on the supply 

and demand for cotton yarn in the years 1924-38 to which Tintner*s 

method had been applied by Lomax (1948), fitting polynomials up to 

the fifth degree in time to represent the systematic variation in 

the four variables considered, and treating the remaining variability 

as error. There is no assumption of independence of errors between 

variables. A canonical analysis of the total and residual CSSP 

matrices yields two non-significant latent roots. Equating to zero 

the corresponding canonical variables gives relationships which, when 

rearranged, may be interpreted as demand and supply equations. The 

series is, however, too short for reliable estimation of the coefficients

2.4 Connexions with other models

Some of the statistical models that have been proposed in the 

field of psychological testing are special cases of the Type II 

representation of functional and structural relationships. When we 

come to consider the estimation of such relationships we shall note 

the connexions between the estimation procedures and the methods of 

canonical analysis and principal component analysis. However, we are 

concerned here with statistical models rather than techniques.

(a) Factor analysis

Equation (2.6) expresses the 'true* values of variâtes connected 

by a set of linear structural relationships as a linear combination
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with random coefficients of r linearly independent p-vectors. If the 

elements of the vector f are assumed to follow, independently, a 

standard normal distribution and the departures are mutually independent, 

then we have the standard model of factor analysis, except that it is 

usual to ignore y and subtract the sample mean from each observation 

(Lawley and Maxwell, 1971, p.6). The columns of A are factor loadings 

and the elements of f represent an individual's score on each factor.

It is usual to assume that replicate observations are not available, 

because in many types of psychological experiment the subject would 

remember what he had done on previous occasions.

A comparison of the numbers of parameters and minimal sufficient 

statistics suggests that the model is identifiable if

(p - r)*  ̂p + r ; (2.33)

there are p(r + 2) parameters in ]i, A and Z subject to &r(r - 1) 

independent conditions given by (2.10), while the number of minimal 

sufficient statistics is ̂  p(p + 3). The method used in Section 2,1 for 

defining a unique A is a generalization to non-diagonal Z of that 

used in factor analysis (Lawley and Maxwell, 1971, pp. 7,8). The 

postmultiplication of A by an orthogonal matrix which condition (2.10) 

excludes corresponds to a rotation of the factors.

Another model of factor analysis which used to be considered takes 

each individual's factor scores to be unknown parameters, and is thus 

equivalent to the Type II representation of a set of functional 

relationships (equation 2.15). Lawley's (1941) Method II of factor 

analysis is an attempt to apply the method of maximum likelihood to this 

model, but he observes that his iterative procedures either do not converge 

or tend to unacceptable solutions in which one or more of the error 

variances vanish. Kendall (1950) questions whether the method is capable 

of giving a satisfactory solution in such cases. In the discussion of
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Kendall's paper, Bartlett (1950) points out the connexion with 

structural and functional relationships and shows that the breakdown 

of Lawley's Method II follows from the failure of maximum likelihood 

in estimating functional relationships without replication. Anderson 

and Rubin (1956) show that the likelihood for this model is unbounded, 

one of the points made by Solari (1969) in the case p = 2. Williams' 

(1969) suggested solution to the problem of comparative calibration 

with unknown error variances (Section 2.3(a)) must be unworkable 

because it is Lawley's Method II restricted to a single common factor.

Madansky (1964) applies the method of instrumental variables to 

factor analysis by rewriting the factor model as a set of structural 

relationships. Lawley and Maxwell (1973) use the factor model in 

carrying out multiple linear regression when there are independent 

errors of measurement in the regressor variables.

(b) Covariance structures

Joreskog (1970, 1973) has applied the method of maximum likelihood 

to sets of independent multivariate normal variables with a very general 

structure. Here we shall follow his notation even where it conflicts 

with our own, because of its complexity and the paucity of the Greek 

Alphabet. He considers an Nxp data matrix X whose rows are 

independently normally distributed with a common dispersion matrix of 

the form

B(A$A'+ %:)B'+ 0̂  , . (2.34)

and whose mean vectors are given by

E(X) = A H P . (2.35)

Here A is an N x g  matrix with g < N and P is an h x p matrix with 

h^p, both being fixed and of full rank. The matrices S, B, A, the 

symmetric matrix £ and the diagonal matrices Y and ^  are parameter 

matrices. Their nonzero elements are allowed to be of three types:
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(i) fixed elements; (ii) constrained parameters that are unknown 

but equal to one or more other parameters; (iii) free parameters that 

are unknown and not constrained to be equal to any other parameter.

There is clearly a great deal of indeterminacy in the general model; 

restrictions must be imposed to make the parameters indentifiable.

Among the many special cases of the model are multivariate 

regression, multivariate analysis of variance and some of its 

generalizations, and factor analysis. It follows that unreplicated 

structural relationships with independent errors may be estimated 

provided that condition (2.33) is fulfilled; replicated structural 

relationships are excluded, since observations corresponding to the 

same value of the 'true* random p-vector X are correlated. Functional 

relationships are also excluded since their mean vectors are not of the 

required form. Despite this, the model is of value to our study for its 

use of constrained parameters. For example, the model for comparative 

calibration given by equation (2.29) corresponds to equations (2.34) 

and (2.35) with g = 1, h = p, A = (1, ..., 1)', Z = y', P “ B * I,

A = X, £ = 1, Y = diag(a^, ..., a^), and 0=0. The hypothesis that 

any pair of instruments has true values differing only by a constant 

corresponds to the constraint that the elements of A are equal. The 

further constraint that the elements of H are equal implies that the 

true values are identical.

A computer program for the analysis of covariance structures by 

maximum likelihood is given by Joreskog et al. (1971); it is based on 

the function-minimization method of Fletcher and Powell (1963).

2.5 Some methods of estimation

Little appears to have been published on the estimation of 

multivariate structural relationships beyond the observation that factor 

analysis techniques can be used when the departures are all independent
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and there is no replication. For the case r = 1, Barnett (1969)

shows that a number of asymptotically unbiased estimators may be

obtained by considering the variâtes three at a time.

In the functional case most of the work on estimation is concerned

with a single relationship and a common dispersion matrix for the

departures known to within at least a constant factor.

Koopmans (1937) considers maximum likelihood (ML) estimation

when the n vectors of observations y_, .., y are independent and—>1 — n
normally distributed with common dispersion matrix Z and mean vectors

, ..., Ç subject to the single relationship y'(Ç. - Ç ) = 0—i —n — —J —o
(j = 1, ..., n). The log-likelihood is

-inlog|Z| - i Z(y. - Ç.)'Z (̂y. - Ç.) , (2.36)j -J ~J -J “J
so maximization with respect to the Ç. and y is equivalent to-J —
minimization of

f <Zj - - ij)- (2.37)

He shows that the ML estimator of y minimizes the ratio

y'By/y'Zy , (2.38)

where B is given by (2.21); the minimum is 6^(3), the smallest root

of (2.23), attained when {B - 5p(B)Z}y = 0; is estimated by 

Zj ” 2Yy'(y'Zy) (̂yj - y). If £ is known to within a constant factor, 

say Z = T T where T is known but t is an unknown scalar, then T is 

estimated by (np) where (J)̂ is the smallest root of |b - (f>T| = 0.

The estimator of y is consistent but that of x tends in probability 

to x/p.

Kendall and Stuart (1967, p.392) give the special case of Koopmans* 

solution when T is diagonal, and extend Geary's (1942, 1943) method of 

cumulants to a single linear relationship between p variâtes, not all 

of which are normally distributed.
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Villegas (1961) extends Koopmans* results for a single relationship

to a situation in which the vectors of observations y. are not-J
independent but are normally distributed with means and covariances

C(yj, yj, ) = Cjj/ Z (j,j' = 1, n), where the Cjj, are known

coefficients and Z is either known or unbiasedly estimable independently

of the . The model is appropriate when the data arise from an (in

general incomplete) block design. The estimators of and y are
- J  —

similar to those of Koopmans, but if we include the block effects as

well as Z among the parameters to be estimated by ML then we obtain

an inconsistent estimator of the latter.

Tintner (1952) generalizes Koopmans * work to p - r linear

relationships, except that he requires £ to be known completely. He

argues that only r(p-r) of the elements of F (equation 2.12) are

independent parameters, since we may express p-r of the variables in

Ç in terms of the remaining r. Thus (p - r)̂  conditions are required

to define F uniquely; of these Hp"r)(p-r + l) are given by

F'Z F = I (2.39)— — — “ p — r
Rather curiously, the remaining J(p - r)(p - r +1) conditions are applied

not to F but to the set of Lagrange multipliers introduced in order to 

maximize the likelihood with respect to the subject to (2.12); the
-3

effect of these constraints is to make F'B F diagonal. He finds that

the ML estimator of for given F satisfies

y. - E. = £ r r'y , (2.40)
“ J “3 “ J

 ̂ _while Ç is given by y. Substituting into (2.37) gives 
— o  —

tr(r^BF) , (2.41)

which he minimizes subject to his two sets of constraints. If ô^(B) , ..

., ôp(B) are the roots in descending order of (2.23) and Ag = diag{6^(B), 

..., gp(B)}, then there exists a pxp matrix K such that

K'SK - I , K'B K = Ag (2-42)
(Rao, 1973, p.41);if K is partitioned as
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K = (K̂  Kg) , (2.43)

where is p x r, then Tintner*s solution is .

f - £2 • (2.44)
A comparison of (2.42) with (2.17) and (2.24) shows that

K ■= (N' )“  ̂- Ng , (2.45)

in the sense that a solution of (2.42) yields a solution of the other 

two equations and conversely. The colums of are the vectors of

coefficients of the last p-r canonical variâtes in a canonical 

analysis in which the elements of the second set of variables denote 

membership or non-membership of the n populations. The p-r 

relationships are thus obtained by equating to zero the canonical 

variâtes corresponding to the p-r smallest roots. If n > p then 

the ô^d) are distinct with probability one, and K is unique apart 

from possible changes of sign of its columns. From (2.40) the estimator 

of gj is given by

£j - Zj - : £2^2 (Zj " ÿ) " Z + 2 (Yj - £) • (2.46)
Sprent*s (1966) generalized least-squares (GLS) procedure for 

estimating a single linear relationship extends immediately from two 

variâtes (Section 1.5) to p if we take y, Ç and y to be p-vectors 

and make corresponding changes in Zjj and Ẑ . Under the assumptions 

made by Villegas (1961), Ẑ  has the form of a Kronecker product C 0 Z  , 

where C = (cjj, ) ; if the ŷ  are uncorrelated with a common known

dispersion matrix Z this becomes I^ 0 Z, and the GLS estimator of y

minimizes

U = y'B y/y'Z y . (2.47)

Since this is the same as (2.38), the minimum of U is 8^(6), attained

when y «C îSp» the final column of K. The condition Y = i makes
%y equal k^ .
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Sprent (1969, p.91) extends his method to p-r relationships 

by arguing that it is reasonable to estimate the coefficients of these 

relationships by the latent vectors corresponding to the p-r smallest 

roots of (2,23); given the value of r * this is the same as Tintner*s 

ML solution for normal populations (equation 2.44). If Z is unknown, 

and uncorrelated replicate observations y^^ (j =1, ..., n ; e = 1, ..., mu) 
are available, then the GLS estimator of Z is

E = (M - n)“  ̂W , (2.48)

where M = Z im. and W is the within-groups SSP matiix given by

H - ! % (Zje ■ Zj)(Zie ■ V '  • (2-49)J e J J J

Unless the number of relationships is specified in our model, we may 

wish to carry out a test of the hypothesis of p-r functional 

relationships against the alternative that there are none; such a test 

may be obtained from a test of the significance of the last p-r roots 

in a canonical analysis. Sprent suggests using that given by Bartlett 

(1947, p.179) when Z is estimated by (2.48).

Gleser and Watson (1973) consider the case in which p = 2r, there 

are r relationships through the origin, and Z = T I with T an unknown 

parameter; they use the Type I representation in the form of (2.4). Their 

ML estimators for gj and A may be deduced from Tintner*s results by 

replacing B by the raw between-groups SSP matrix B* and deleting y in 

(2.46); T is estimated by (np)  ̂ (4̂ ^̂  + ... + (j)̂) where (̂  ̂ is the i^h 

latent root of B*. They give conditions under which A is consistent, 

but show that T tends in probability to t/2 . They find also that the 

same estimator of A may be obtained using what is effectively an extension 

of Sprent*s GLS procedure.

Williams * (1969) model for the problem of comparative calibration 

(Section 2.3(a)) is in our terms a Type II representation of p - 1 linear
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functional relationships with Z a diagonal matrix. We have noted 

already that there is no ML solution when £ is unknown. For the 

case in which Z is known up to a constant factor, Williams shows 

that A is proportional to Zk where k is one of the columns of K 

defined in (2.42). However, he takes it to be k instead of k,.~p -1
The estimator of (f). is proportional to k'(.y. - y) and isJ ~ 1  -J - -J
estimated by y + Z k^k^ (ŷ  - y).

We may summarize the results on functional relationships in this 

section as follows :

(i) One ML estimator for £ is £ = K̂ , and this is consistent in 

some sense when r = p - 1 and when there are p̂ homogeneous 

relationships.

(ii) For relationships through the origin we have

5j - £ %£' y. (2.50)
with defined relative to the raw between-groups SSP matrix;

otherwise  ̂ = y and is given by (2.46).
—o  —  —J

(iii) If Z is given by t T, where T is known, then for r = &p,

T = I and for r = p 1

T = (np) + ••• + *p), (2.51)
where c|)̂ is the i^h root of jfi* - (|>T| = 0 or |B - 4>TI - 0.

1 ^ 1  When r = ip, t tends to ; when r = p-1, t tends to T/p.

(iv) The GLS estimator for £ is the same as the ML estimator when

there is a single relationship; the procedure may be extended to 

the case r = &p and again gives the same estimator as ML.
It therefore seems reasonable to expect that:

(i) The ML estimator of £ is consistent for any number of

relationships, homogeneous or otherwise.

(ii) If Z is known up to a constant factor T then T is given

by (2.51) and tends to x(l-r/p) in probability as n -» oo .

(iii) The GLS procedure may be extended to any number of relationships

and coincides with ML if Z is known up to at least a constant factor,
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3. SOME INEQUALITIES FOR TRACES OF MATRIX PRODUCTS

In this chapter we present some inequalities for the traces of 

products of pairs of symmetric matrices. The final Theorem is applied 

in Chapter 4 to the problem of estimating structural relationships by 

maximum likelihood.

For the basic inequality we require the following notation: let

Ç and D be real symmetric p x p matrices having orthogonal reductions

P' Ç P = Aç, s' D g = Ag,

where A^ = diag {X̂ (C) ,... jX̂ CÇ)} and ^  = diag {Xĵ (D) ,.,, ,X^(D)}, and the

sets of latent roots X^(C), X̂ (D) (i=l,...,p) are each in descending

order. (Thus we may say that the latent vectors of C,D are ordered

with respect to their latent roots.) Let the multiplicities of the roots

X^(C) and X̂ (D) in order of occurrence be respectively m^(C)(g=l,...,c) and

(h=l,... ,d) , so that

c d
Z m (Ç) = E HL (D) = p. 
g=i ® h-i “

The following inequality of Richter (1958) has been given a necessary 

and sufficient condition for equality by Theobald (1975 a):

THEOREM 3.1. With the above notation

tr(CD) < tr(A^^)

or, equivalently,

E X.(CD) S E X.(C)X.(D), (3.1)

with equality if and only if

P* Q = £' H, 

where G, H take the formj,
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and Gg, are orthogonal matrices Of orders m^(C), m^(D) respectively

(g=l,...,c;h=l,...,d). An equivalent condition is that there exists a

common set of latent vectors for C and D which are ordered with respect

to both {X^(C)} and {X^(D)}.

Proof . Let R = P*Q. Then R is orthogonal and
P P

tr(CD) = tr(AgRAjjR') = A.(C)r?. X.(D),

where R = (r\j). The matrix whose ij^^ element is r?̂  is doubly

stochastic, so it is sufficient to show that, for any doubly stochastic

matrix S = (s..), ij
P P P
Z Z X.(C)s.. X (D) < E X.(C)X_(D) . (3.3)
i=l j=l I j i-1 1 1

For any pair (ŝ ^,s^^) in which u,v>e and both elements are positive.

let

t̂ )̂ = min (s ,s ) uv ue ev
(e)and consider the operation of adding t to s and s and subtractinguv ee uv

the same amount from s and s . This reduces to zero at least oneue ev
off-diagonal element of S, preserves the doubly stochastic character 

of the matrix, and increases the left-hand side of (3.3) by the non

negative amount

- X„(C)}U^(D) - X^(D)} .

If we clear the off-diagonal elements of the first row and column, then 

the second, and so on, it requires at most (p-1)̂  such operations to 

reduce S to the identity matrix. (There are p(p-l) off-diagonal 

elements, but clearing the final non-zero element in each row also 

clears the coresponding column.)

Equality is attained when

"(AgRAj^R') = tr(Ag^). (3.4)
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It follows from (3.3) that the only products of roots which may appear 

on the left-hand side of (3.4) are those of the pairs (X^(C),X^(D)) (i=l,...,p). 

Thus R represents the combined effect of a rotation G of the columns 

of P which permutes the X^(C) while preserving their order and a similar 

rotation H of the columns of Q. So R = G'H, where G and H satisfy

GAgG- = Ag , H ^ H '  .

The general forms for orthogonal matrices satisfying these conditions are 

given by (3.2).

Let T be an orthogonal matrix whose columns form a common set of 

latent vectors for C and D and are ordered with respect to the roots 

of both C and D. Then

tr(CD) = tr(T A^ T' I Ag T') = Cr(Ag^).

Conversely, if there exist G,H satisfying (3.2), then the columns of PG* 

form the required set of latent vectors of Ç and D. This completes the 

proof.

The inequality (3.1) is the restriction to real symmetric matrices 

of a similar result for Hermitian matrices given by Richter (1958) with

an analytic proof. Mirsky (1959) gives an algebraic proof of the same

result. It may also be derived from an inequality of Marcus (1956), using 

Theorem 368 of Hardy et. al. (1952, p.261). (The latter Theorem is obtained 

if, in (3.3), £ has the form of a permutation matrix.) The above proof 

and the necessary and sufficient conditions for equality are taken from 

Theobald (1975 a). We may deduce the following;

COROLLARY 3.2. If the roots of Ç are distinct then the condition

for equality is that the (unique) ordered set of latent vectors of Ç 

also form an ordered set of latent vectors for D. If D also has distinct 

roots the condition is that the ordered sets of vectors are identical.

COROLLARY 3.3. If D is non-singular then

tr(C d"S i tr (Â  A‘b  = E (3,5)
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with the same condition for equality as before.

The proof is immediate on replacing D by -D .

The final result in this chapter involves the simultaneous reduction

of symmetric matrices to diagonal form. Let D now be positive definite

and let £ be a symmetric pXp matrix. Let the roots in descending order

of the equations

|c - 6 e 1 = 0 , |E - 6 d | = 0 (3.6)

be respectively 6.(C) and 6.(E) (i=l,...,p), and let A be diag1 “ 1 “L
etc. It follows (Rao, 1973, p.41) that there exist 

non-singular pxp matrices N ,N such that

D = Nç , C = N ^ A ^ N ^  , (3.7)

5 - «E 9È ' I = %  %  îiÉ • (3-8)

Any column of N̂ , N which corresponds to a simple root of (3.6)& it
is unique apart from reversal of sign. It is easily verified that

1 •Ng Nç is orthogonal.

From Theobald (1975 b) we take the following;

THEOREM 3.4. With the above notation

tr{C(D+E)"3) & tr{A^(I+^)"’-} = I 6.(C){l+6^(E)r^ ,

with equality if and only if (3.7) and (3.8) have a common solution. 

Proof. We have

tr{C(D+E)"3} = tr Ng Ag

) tr{Ag(I+^)"3}

by Corollary 3.3, since, if R is any pxp orthogonal matrix, R A^ R*
—Ihas the same latent roots as Â . In terms of Theorem 3.1, P = Ng N^, Q = I,

and the condition for equality is that

Sc = Sc . (3-9)
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where Ĝ , have the form of (3.2), the orders of the sub-matrices 

being given by the multiplicities of the roots of (3.6). Equation

(3.9) may be rewritten

N g G ^ - I g l ^ .  (3.10)

But the orthogonal transformations and are

precisely those which leave (3.7) and (3.8) unaffected, since the 

forms G^ and are such as to satisfy

Si Gc - Ac and S; Ag Eg . Ag .
  ............

Thus (3.10) amounts to the statement that (3.7) and (3.8) have a 

common solution.
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4. ESTIMATING STRUCTURAL RELATIONSHIPS

We consider here the maximum likelihood estimation of p - r linear 

structural relationships among the elements of a random p-vector X under 

the following assumptions:

(i) The vector of ’true* values, X, and the vector of departures from 

X, e, are normally distributed independently of each other.

(ii) At each of n values of X there are m replicate observations 

(j =1, ..., n ; 8 = 1, ..., m) on Y ; the corresponding 

vectors of departures are identically distributed as

Np(0,Z), with Z positive definite, and independent, both within 

and between groups.

Note that we assume equal numbers of replicates in each group; the 

likelihood is much more complicated with unequal numbers. We shall 

find it convenient first to maximize the likelihood given the value 

of Z, and then to consider separately different assumptions about Z : 

that it is known up to a constant factor, that it is a general positive- 

definite matrix, and that it is diagonal. We shall indicate those cases 

for which it is necessary to have replication. Tests for the number of 

relationships are given and the asymptotic behaviour of the estimators 

is examined.

4.1 The likelihood

We have shown in Section 2.1 that our assumptions about X amount 

to the hypothesis that it is distributed as Np(p,0) where 0 has rank r . 

For observations in the jth group (2.1) becomes

Y. = X. + e. (j = 1, ..., n ; e = 1, ..., m) ,-je -j -je
so that the vectors Y. are jointly normal with mean p and second-je —
moments given by

D(Yjg) = I + 0 , C(Yjg, ïjg,) - 0 (j - 1. .... n ; e e'),

c(ïjg. X.,p = 0 (j f j') .
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The mp-vectors Tj defined by

I* = (y?i y*_) (j = 1, n) (4.1)J ”J •*- — jni

are therefore independently and normally distributed with common mean

vector 1 ® y and dispersion matrix “m —
D(T) = I 0 Z + J ® 0 ,- -m - -m -

where 1 is an m-vector with all elements equal to unity and J = 1 1 ' .  ~m -m -m-m
For the density function of T̂  we require

1d (T)| = + m 0| (4.2)

(Rao, 1973, p.68). It is straightforward to verify that

d” (̂T) = I 0 - J 0 (Z + m0)”^0Z“  ̂.- -m - -m - - —
The covariance form in T. is-J

(Tj - 1^ ® y)'d' ^ t) (T. - 1^8 y)

- Z (Yjg - y)'E " M) - (%j - y)' (£ + mg) ^0£ (̂̂ j - y)

- Ï (Zje - Zj)' I ̂ (Yje - Zj) + “(Zj - H)' (£ + mg)  ̂(Zj ” H)-
(4.3) O

The log-likelihood is therefore, from (4.2) and (4.3),

L  =-^[^n(m- l ) l o g | z |  +  n log |Z +  m0| + tr(WZ ^ )  +  tr{B(Z +  m0)

+ mn(y - y)'(Z + m0) ^(% - y)j , (4.4)

where B and W are given by (2.22) and (2.49) with m̂  equal to m.

4.2 Maximum likelihood estimation

The following procedure for maximizing the likelihood with respect 

to y and â is an extension of that given by Theobald (1975b).

In (4.4) the final term in the square brackets is positive 

definite, so we have

y = y . (4.5)

Given the value of Z , we have to minimize with respect to 0 

F^ = n(m- 1) log|Z| + n log|Z + m0| + tr(WZ )̂ + tr{B(Z + m0) .

(4.6)
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Now, we have from (2.10), (2.17) and (2.24) that

, 0 = Nq ON^. (4.7)

I = î3gN^ . I = NgAgN^. (4.8)

where 0 is the diagonal matrix of the roots uu of | 0 - oiZj = 0 and 

Ag the diagonal matrix of the roots ô.(B) of | B - 6Z| = 0 .

Theorem 3.4 gives

tr{B(E + m0)"^} Str{Ag(I + mg)"^}

r P
- E 6.(B)/(1 + mcu.) + E 6.(B) (4.9)

.................... i=l ^ ..........*■ i=r+l

since = ... = =0. The minimum of (4.6) with respect to 0

for given Q is thus

r P .1
nm log|ZI + Z {n log(l + moo.) + 6. (B)/(l + moo.)} + Z 5. (B) + tr(^ ) 

i=l  ̂ i-r+1 ’■

since |E + m0| = |E||l + mg| . The 1̂ ®* term in braces is minimized

with respect to oô when 1 + moô  = ô^(B)/n , so oô = {5J[B)/n - l}/m

provided that 6u(B) > n (i = 1, ..., r). Thus if

we have

where

6j.(B) > n (4.10)

Ûl=i(ïï^Bl-ïr)> (4-11)

Ag^ » diag{6^(B), .... 6^(B)} ; (4.12)

if condition (4.10) does not hold for a particular set of data we may

wish to consider a smaller value for r . In (4.9) the condition for

equality is that (4.7) and (4.8) have a common solution; if the 6u(B)

are distinct (as they are almost surely if n > p) then so are the

ü)̂ (i = 1, ..., r), and equality occurs if and only if Nq  ̂= N^^, where

N__ consists of the first r columns of N„ . The ML estimator of 0 is -B1 —B “

§' Ngi0iN'i4Ngi(iAgi-Ir)N 'i

" m {n *̂i(2) - l} Si , (A.13)
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where the are the columns of . A corresponding estimator of A

is any pxr matrix A satisfying M  - 0 , and the unique A^

satisfying (2.11) is estimated by

K  ' %l(è ̂ B1 ■ îr)̂  = {i ®  ■ 4^ =i- 4̂.14)

These estimators are such that the possibility that m = 1 need not

be excluded when E is known.

For the Type I representation of the relationships we require a

p X (p - r) matrix F of full rank which satisfies F A = 0 (equation 2.7);

(4.14) Shows that this is equivalent to F̂ N - = 0. Now, we have fromB1
(2.45) that K'Ng = I, so one solution is

f = Kg , (4.15)

where is defined by (2.43). This is precisely Tintner's ML solution

(2.44) for functional relationships. The general solution is

F = R , (4.16)

where R is any nonsingular (p-r)*(p-r) matrix, for we have

r̂ N_. = R'k ' N_, = 0  ; conversely, if r^N__ = 0 then the columns of  B 1  2 “B1 ~ -- B1 —
2 and both form a basis for the null space of N^^ and may therefore

be expressed in terms of each other, that is, we may write F = K^R with

R nonsingular. Finally, the maximum of the log-likelihood with respect 

to y and 0 for given Z is --j F̂ , where

r p
F„ = nmlog|z| + n Z log{6.(B)/n} + tr(WZ ) + Z 6.(B) + nr

(4.17)

We next consider the minimization of (4.17) under various assumptions 

about the parametric form of Z. 1
4.2.1 Z known up to a constant factor

We suppose that Z may be written as tT where T is a known positive- 

definite matrix and T is unknown. Writing <()̂ for the i^^ root of
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Il ” 4>ï| = 0 we have = T Ô̂ (B) (i = 1, .. ., p), and (4.17) becomes,

apart from terms not involving T ,

n(mp - r)logT + -“{tr(WT ̂ ) + tr(0^)} ,

where

$2 = diag(*^+^, ..., 4>p) , (4.18)

and this is maximized with respect to T at

T = {n(mp - r)}  ̂{tr(WT ̂ ) + tr($2)} . (4.19)

The estimators of 0, and F are unaffected apart from the replacement 

of F by tT . Again the case m = 1 is not excluded. The maximum of 

the log-likelihood is
Y

- 4n {m logljl + E log(*./n) + (mp - r) logT + mp} . (4.20)
 ̂ i=l ^

4.2.2 Z a general positive-definite matrix

To find the stationary points of (equation 4.6) we equate to

zero the matrix of derivatives

3F^/3Z = n(m - 1)Z'^ + n(Z + m0)”^- Z’^WZ”  ̂- (Z + m0)”^B(Z + m0)’ .̂

(4.21)

The matrix derivative used is that of Dwyer (1967) rather than that 

given by, say, Rao (1973, p.72), the distinction being that Dwyer*s 

derivative is defined relative to the position of a matrix element as 

well as its scalar value. From (4.8) and (4.13) we have

 ̂tSubstituting this into (4.21), premultiplying the result by Ng , and 

postmultiplying by Ng gives

'"^1 G\ _ _ A '  Agi
n(m - 1)1 + n 1 = k'w K +

2 As2
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/N -̂1where K'= Ng and

Ag2 = diag{a^+^(B), ..., 6p(B)} , (4.22)

so that we have
( n(m-l)I 0 \

. I
0 - n m l - A  /

K'WK - 1  ̂ I (4.23)
- ” ̂ 2

 ̂ /V ^Thus K diagonalizes W as well as Z and B , which suggests that ^  

and K may be simply expressed in terms of the simultaneous reduction 

of W and B to diagonal form. So let ..., be the roots in

descending order of................................................

I& - $w| = 0 , (4.24)

let

I = diag(^^, ...» ipp), = diag(^^, ..., #^), “ diag(^^+^, ..., tpp),

(4.25)

and let G be any p x p matrix such that

G'WG = I , G'B G = Y . (4.26)

The must also be the roots of |K'B K - i|̂ K̂ WK{ = 0 , that is, using

(2.42) and (4.23), of
/n(m- 1) I 0 \ I

- -B2-

or YJ{Ô. (B) - n(m- 1)%|;}. %% {6.(1) - nmij; + i|̂ 6.(B)} = 0
i=l  ̂ i=r+l  ̂ 1

Thus for some permutation tt of (1, ..., p) we have

6^(B) = n(m-l) (i = 1..r),

6ĵ (B) = nm$,(i)(l + (i = r+1, .... p) ,
(4.27)

subject to condition (4.10) which becomes

(m - 1) > 1 . (4.28)

O
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To find the permutation which maximizes the likelihood we substitute

(4.23) into (4.17) to give

n log (|Z|™ |Aĝ |) + constant terms.

Therefore, since |b | =.|z ||A J , we have to maximize |A ^-B‘ * '-B' '^1'
which may be shown, using (4.27), to be equivalent to choosing it to

maximize

n u  + . (4-29)

Now the function (1 + is increasing if (m- l)ip > 1, and we

have already had to apply this condition to (equation 4.28) and

therefore to (i = 1, ..., r). So, if (as it almost

surely is if n > p), (4.29) is maximized when and only when tt maps the 

set (1, ..., r) onto itself. Equations (4.27) then become

Ag^ = n(m - 1)^^ , Ag2 = nmV^(I +  ̂' (4.30)

while condition (4.28) becomes

(m - l)̂ )p > 1. (4.31)

To obtain K in terms of Y and G, we let H be G K;

(4.23), (4.26) and (4.30) then give

/(m-l)I 0 \
H'H = n I -1 1 » (A. 32)

\ 0 m(I + V

while (4.30) and the second parts of (2.42) and (4.26) lead to

- V g my. (I + yj V
H' y H = A

One solution of (4.32) and (4.33) is

Xm-l)^ I
\ . (4.34)

1 ' -i) •m^i + yp 7
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If J is a p X p matrix satisfying H = J , then (4.32) shows 

that J is orthogonal and (4.33) that J commutes with Y (and 

therefore with Ĥ ) . This implies that if J = (ĵ )̂ then = 0

whenever  ̂ . In particular,if J is partitioned as

. - h '

\-21 -22
with rxr, then are zero, since we have assumed

that It follows that and orthogonal and

commute with and respectively. . Since K = G H = G j and

%  - (K')”  ̂= , we have

” {n(m- 1)}* “ (n«)  ̂Ĝ   ̂ (4.35)

and

Ngi = (n(m-l)}  ̂ = (nm)  ̂ ^22^-'^-2^^* (4.36)

where

G = (Ĝ  Ĝ ) , (4.37)

L = (G')"l = WG = (WG^ W C p  = (L̂  L^) , (4.38)

and G^ and are p xr. Substituting (4.30) and (4.36) into

(4.13), (4.14), and then the first part of (4.8) we have respectively

0 =  {nm(m-l)}  ̂L^{ (m - 1) - 1} , (4.39)

A = {n m(m- 1) }  ̂L {(m - 1) Y - l}̂  , (4.40)—o —1 —1 —
and

I = Jgl Ngi + gg2 Mg2 ' {n(m-l)r^L^.L^ + (nm)"\^(I + Î^L' .
provided that and (4.31) holds; in (4.40) we have to assume

that the ib. are distinct so that J_, = I .1 “11 -

The ML estimator of F is, following (4.16), F = R with R an

arbitrary nonsingular (p- r) x (p- r) matrix, and this becomes
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r = Gg R , (4.42)

since the other terms in the second part of (4.35) can be subsumed

into R . As in the case of known Z the relationships are estimated

by equating to zero the last p - r canonical variâtes; in this case 

the corresponding canonical analysis uses {n(m-1)}  ̂W rather than 

the unknown Z to represent within-group variation. Similarly, (4.39) 

and (4.40) are obtained from (4.13) and (4.14) when Z is replaced by

{n(m-l)}  ̂W , although it is not the ML estimator.

The maximum of the log-likelihood in this case is 

-•“njm{log|w| + log|l + Ŷ l ” P n - (p - r) log m + p} + log|Ŷ |

- r(m- 1) log(m- 1)J . (4,43)

We must obviously have m> 1 in this case.

4.2.3 Z a diagonal matrix

There appears to be no explicit estimator for Z in this case;

maximization of the likelihood must be carried out numerically with

respect to the diagonal elements (i = 1, ..., p). Otherwise the

estimation procedure can be simplified by defining the matrix Ẑ  as

the diagonal square root of Z and Ç as Ẑ  K. It then follows from

(2.42) that Ç is orthogonal and that the 0̂ (B) and the columns of
-1 -iC are respectively the latent roots and vectors of the matrix Z B ̂

The matrix Ng is given by Ẑ  Ç. The columns of C_ may be viewed as the 

vectors of coefficients of the components in a principal component

analysis carried out on the ŷ  if the i element in each ŷ  isith

divided by oK (i = 1, ..., p). From (4.17) the function to be 

minimized with respect to the 0^̂  is

P r p
F. = Z (nmloga.. +w../cr..)+n z log{6. (B)/n} + Z 6*(B) ,
 ̂ i=l i=l  ̂ i=r+l 1

(4.44)
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where W = (ŵ )̂ , and the maximum of the log-likelihood is

-  ! (Fs.min + ' (4.45)

The efficient minimization of (4.44) requires at least the first 

derivatives of ; we therefore note that the derivatives of the 

6u^B) may be obtained from standard perturbation theory for symmetric 

matrices (Bellman, 1970, pp. 61-63).

There is little prospect of finding an explicit solution for the 

ML estimators of the ; none appears to have been found for the factor 

analysis model —  corresponding to m = 1 — despite extensive study.
The connexion with factor analysis also suggests that the parameters of 

the model are identifiable when there is no replication provided that 

condition (2.33) is fulfilled.

4.2.4 Relationships through the origin

So far in this Section we have assumed that the elements of y are 

unconstrained; we now see what progress can be made under the assumption 

that the p - r relationships pass through the origin. We have shown^in 

Section 2.1 that this is equivalent to assuming that jj lies in the range 

space of 0 ; since is of full rank and has the same range space as

0 we may write y = with v an r-vector of independent parameters.

From (4.4) we have to minimize with respect to v

(y - + m0)  ̂(y - Ng^v) . (4.46)

Equating to zero the derivative with respect to ^ and using (4.7), we

obtain
At _ —1 —
V = % 1  £ Ï.

and the minimum with respect to V of (4.46) is

9^2 - Jr '

But is does not appear possible to proceed beyond this point in the 

manner of (4.9).
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4.3 Tests of the number of relationships

A test of the hypothesis of p - r structural relationships may be 

based on the difference between the maxima of the log-likelihood when 

there are no relationships and when there are p - r . These differences 

are, from (4.17), (4.20) and (4.43): for known E,

P
i E FiS. (B) - n log {6. (B)/n} - nl ;
 ̂i=r+l L  ̂ J

for Z known up to a constant factor,

•J n{(mp - r) log T - (m - 1) p[log{tr(WÏ ̂ )- log{n(m - l)p}] - Z log((j)̂ /n) } ;
i=r+i

and for a general positive-definite Z,

i n Z {m log(l + ijj.) - log ij;.} + (p - r) {(m - l)log(m- 1) - m logm} I.
4 Li-r+l  ̂ J
When Z is diagonal and there are no structural relationships, is

estimated by {n(m-l)} ^w\^ and the difference between the maxima of 

the likelihoods is

Y^n(m-l) Z log + n log ]n b̂ | + n(mp - r) - j «

For this test to be possible we must have m> 1 whatever the value of r .

It follows from standard ML theory that twice each of these 

differences has asymptotically a yj" distribution as n tends to infinity 

under the hypothesis that p - r relationships exist. The degrees of 

freedom are &(p - r)(p - r + 1), since 0 has ip(p + 1) independent 

parameters when its rank is p and {pr - & r(r - 1)} when its rank is r .

4.4 Asymptotic behaviour

If there is replication then the total number of observations 

may tend to infinity in more than one way; we consider here two 

possibilities: (i) that n remains fixed and m tends to infinity, and
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(ii) that m is fixed while n tends to infinity. In neither case

can we apply standard ML theory directly to the since they are

correlated, but in case (ii) we can take the vectors of observations

to be the defined in (4.1); since they are independent and

identically distributed the usual asymptotic properties hold for the

estimators of y, 0, Z and T . This also applies when m = 1 in

those cases in which the parameters are identifiable.

In case (i) we cannot expect y and 0 to be consistent since

we have (indirect) observations on cmly a finite number of values of

the underlying variété X. However, the overall mean T is distributed 
-1 - 1as ^ (m Z + 0)), so that any fixed linear function c'y for

which c'0 = g is consistently estimated. Also, given that X takes

values Xj (j = 1, ..., n), as m tends to infinity (we use the

symbol —► exclusively to denote convergence in probability). So the

unconditional distribution of each Y. tends to become concentrated on-J
the hyperplane containing the x^, suggesting, correctly, that F is 

estimated consistently. The matrix Z is also consistently estimated in 

all cases.

To prove these assertions we first note that W and B are distributed 

as W^(n(m-1),£) and (n - 1, Z + m0) respectively. Let D be

(Nq)  ̂ and partition it as (D̂  D̂ ) with p x r so that, from (4.7),

B'£ B = I , B{ 0 Bi = , B; 0 Bj ‘ 0 • (4.47)

Then Dj B D, ~ W (n-1, 1 + SÎ,) and D' B D. ~ W (n-l,m“  ̂I),- 1-- 1 r — —1 —2 --- 2 p-r —-1 -1 so that, in the limit, m D' B D, and m A„- remain finite and_ 1 ------------- -B1
positive definite almost surely, while

D' B D̂ -*- 0, 2 • (4.48)

Now define P as (K  ̂D)̂  and partition it as

~11 —12P = (P̂  P̂ ) = '
P p(-21 -22
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where is p x r and P^^ is r x r ; P is orthogonal since

K'Z K = D'Z D = I, so K = D P and K = D P . Also, since A_ = K'B K,

we have

Ag2 - K' I = m"^ P^D'B D .

In the limit the left-hand side of this equation is zero, so the right- 

hand side cannot depend on m  ̂D| B D̂ ; we must have 

Therefore, in the limit,

K' e = p'2 s' 2 E2 £22 = a .
because of (4.47). Thus, when I is given, 2 is consistent in the 

sense that, for any solution of (4.16) which remains finite in the limit, 

r'0-»-g . (4.49)

When Z has to be estimated, the consistency of 2 will follow if we

can show that 2 is consistent. We have

(nm)  ̂W— 2 and ^2— , (4.50)

the latter because nm^2 must have the same limiting behaviour as 

^ 2  (equation 4.48). For 2 known up to a constant factor we have 

from (4.19) that

T = (nmp)  ̂x{tr(W 2^) + + o(l) ,

which tends in probability to T because of (4.50) and (4.48). When 2

is a general positive-definite matrix, (4.41) and (4.50) give

2  = (nm)  ̂(k̂ -i -2-2^  ̂o(l) = (nm)  ̂W + o(l) ,
so that 2 is consistent. Finally, when 2 is diagonal we use the fact

that if Tî = m  ̂6 (̂B) ( i = 1, ..., r) then the are almost surely

finite and positive. Minimizing (4.44) is equivalent to minimizing

Z {log a.. + (nma..) ^w..} + TB  ̂Z log(n ^mri.) + (nm)^ Z 6. (B) , 
i=l i=l i=r+l ^

The second and third terms tend to zero in probability as m tends to

infinity (the second because a log a tends to zero with a) while the
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first becomes 
PE (log a.. + a., a , (4.51)° 11 11 oil

where a .. is the true value of O.. (i = 1, .... p). The minimum oil 11
of (4.51) occurs at (i = 1, ..., p), so Z is again

consistent.
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5. ESTIMATING FUNCTIONAL RELATIONSHIPS

We consider in this Chapter the estimation of systems of linear

functional relationships by the methods of maximum likelihood and

generalized least-squares. Our assumptions are that iti each of n

’groups* there are m. vectors of observations Y. , uncorrelated andJ -je'
with a common positive-definite dispersion matrix Z (e=l,...,mj; j=l,...,n), 

that observations in different groups are also uncorrelated, and that 

the mean vectors are all subject to the same set of p-r independent 

linear relationships. When considering ML estimation we also suppose 

that the Y^^ are jointly normally distributed. Our assumptions about 

departures from the *true* values are then similar to those of Chapter 

4, but we find here that it is straightforward to incorporate both 

unequal numbers of replicates and relationships through the origin.

We again maximize the likelihood given the value of Z before considering 

separately different parametric forms for the dispersion matrix. We 

also extend Sprent’s generalized least-squares procedure to p-r relation

ships and show its connexion with maximum likelihood under the assumption 

of normality. As in Chapter 4 we indicate when it is necessary to have 

replicate observations, give tests for the number of relationships, and 

examine the asymptotic behaviour of the estimators. There are many 

similarities with Chapter 4; in particular the ML estimators of the 

relationships are the same as in the structural case when Z is known 

up to a constant factor and when Z is a general, but unknown, positive- 

definite matrix.

5.1 Maximum likelihood estimation

The mean vectors may be viewed as being subject to p-r linear -J
constraints or, equivalently, as lying in a hyperplane defined by a
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vector in the hyperplane and r vectors parallel to it. We shall derive

the ML estimators of the using the first (Type I) representation-J
since it facilitates comparisons with the work on estimation reviewed in 

Section 2.5 and with the extension of the GLS procedure developed in 

Section 5, but we shall also consider briefly the use of the Type II 

representation.

We take the vectors of observations to be distributed independently 

as Np(£j,Z) (e = 1,..., m̂  ; j=l,...,n), so if M = Zm̂  and W is given by

(2.49) the log-likelihood is
m.

- i  { M  loglsl + ”  z' (y.
 ̂ j=l e=l  ̂  ̂  ̂ ^

- - I {M loglsl + tr(WS"^) + Z m (P-S )'S"1(9.-S )} (5.1)^ j J -J -J -J -J

For given Z, the maximization of (5.1) with respect to the is equivalent 

to the minimization of

Z m,(ÿ.-çp's"\ÿ.-ç.). (5.2)j J -J -J -J -J
Following Tintner (1952) we minimize the jth term in (5.2) subject to 

the constraint

£’(?,-£ ) = Q  (j-l,...,n) (5.3)-J -O

by introducing a (p-r)- vector of Lagrange multipliers TTj; the function 

to be differentiated is

(Zj-ij)' ['(Sj-S*) .
and the vector of derivatives is

-2 Z ^(yj-|j) + ZrjTj.

Equating this to zero we have

k ' h  ■ :
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premultiplication by F* gives

r(y.-Ç ) = F'ZF: .—J -o J

Eliminating tt̂  between the last two equations we have

ÿ;-Ê. = £ r(r>£ r)"i r- (ÿ.-£ ), (5.4)-J — J — J -o
and substitution of (5.4) into (5.2) gives

tr{r'Br(r-sr)’h  + z m (ÿ-ç^)'r(r-Er)"^ £'(r§o>«
j

where B is defined by (2.22). The second term is nonnegative definite

in (y-Ç ), so we have
—  — o

io = ÿ (5.5)

unless the hyperplane is constrained to pass through the origin. Thus

we have to minimize with respect to F

tr{r'Br(r'£r)'^}. (5.6)

For a set of relationships through the origin, Ç is zero and B in—o
(5.6) is replaced by the raw between-groups SSP matrix B*; unlike the- 

structural case there is no special difficulty in estimating homogeneous 

relationships. Guessing that the ML solution may be similar to (2.44) 

or (4.16), we define the p x (p-r) matrix Y by F = KV with K given by

(2.42). Equation (5.6) then becomes

tr{Ag V(V'V)‘V }  . (5.7)
The matrix V(V'V) is symmetric, idempotent, and of rank p-r and

so has trace equal to p-r and nonnegative diagonal elements 3 1, so that

the coefficients of the 6 (̂B) in (5.7) are between 0 and 1 and sum to p-r. 

The minimum of (5.7) is therefore 6^^^(B)+...+5̂ (8) or tr^Agg), and if 
6^(B)>6^^^(B) (as it almost surely is if n > p), it is attained if and only

if '  ̂ ^ ' (5.8)
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Postmultiplying by V we have

/ Q \
(5.9)- C DO.-p.

say, where R is (p-r) x (p-r) and nonsingular. It is easily verified 

that (5.9) implies (5.8) for any nonsingular R. It follows from (5.9) 

that, as expected, the ML estimator of £ is

£ = R (5.10)

with R any nonsingular (p-r) x (p-r) matrix. Substituting (5.10) 

and (5.5) into (5.4) we have

= y + Z (Zj-y), (5.11)

or, for relationships through the origin,

ij - 5 Si SI Ej

with K defined relative to B* rather than to B. Thus we have 

extended Tintner*s (1952) result to the case of replicate observations 

without his rather dubious use of constraints on the Lagrange multipliers 

The maximum of (5.1) for given £ is

- J{M loglsl + tr(WS"l) + tr (A )} . (5.12)

The same results may be obtained using the Type II representation:

as we stated in Section 2.2 it is convenient to transform y. and E. to-J -J1 “ “Xu. = N y. and Ç. = N Ç.; this gives (5.2) the simpler form ”J e ~J s -J
Zmj(Uj-Çj)* (Uj-gj), and makes the between-groups SSP matrix of the

Uj equal to the diagonal matrix Ag. This procedure is used by Theobald

(1975b) to minimize (5.2) and obtain (5.11). The hyperplane on which

the Ü 6 is estimated by £ = y + £ K' c, where c is any p-vector,

or, equivalently by  ̂= y + £ a with a an arbitrary r-vector. An

ML estimator of V therefore satisfies P' Z K. = r'N„, = 0, the general— — — —1  B1 —
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solution of which we have shown in Section 4.2 to be given by (5.10),

5.1.1. E known up to a constant factor

As in Section 4.2.1, we suppose that E has the form xT , with

T unknown, and write <j)̂ for the ith root of |b-(̂ )T | = 0 s o  that

= T 6 (̂B) (i=l,..o,p). Apart from terms not involving T, (5.12) 

becomes

- ) [wp log T + T ^{tr(WT )̂ + tr($2)}] , 
and this is maximized with respect to T at

X = (Mp)“^{tr(WT“^  + tr($2)}. (5.13)

It is immaterial whether we substitute xT for E in (5.10) and 

(5.11) or define K with E and Ag replaced by T and $ respectively. 

Replication is not essential in this case. The maximum of the log- 

likelihood is

- i M(log I X I + p log X + p). (5.14)

5.1.2 E a general positive-definite matrix

To find the stationary points of (5.1) with respect to variation 

in E we equate to zero the matrix of derivatives,which equals

- S [ m  - E"1{W + E mAÿ - ÇJ(ÿ.-Ç.)'} E‘ ]̂ ,j J “J “J -J -J »

to obtain

M E = W + E m. (y.-Ç.)(y -Ç )» . (5.15)j J -J -J “J -J

It follows from (5.11) that

Zj-ij = (i-£ sp(Zj-z) = : %2 (Zji).

so the second term on the right-hand side of (5.15) is

(S') C
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If we substitute this into (5.15), premultiply by K', and post- 

multiply by K, we obtain

/S
K' W K = M I -f 1. (5.16)(: U

As in Section 4.2.2, K diagonalizes W as well as Z and B, so 

we try to express K and Ag in terms of the simultaneous reduction of 

W and B to diagonal form. It follows from (5.16) that the defined 

in (4.24) are in this case the roots of

|A - I % \}| = 0 .......
 V  W  ........

r p
n {5.(B) - M n {6. (B) - M + 6. (B) ip} = 0,
i=l  ̂ i=r+l  ̂ ^

so that for some permutation p of (l,...,p) we have

6l(B) = M (i=l,...,r).

6 (̂B) =  ̂ (i=r+l,...,p)  ̂ 1 (5.17)

We cannot immediately put p(i) = i since it may happen that 

-1ipg > ^p(l+^p) even though s>r. But substituting (5.15) into (5.1)

gives -  ̂M(log|Z| + p), so that we have to minimize |Z| or, since 

U! = III I Agi, to maximize

Û J  = mP . tp(i)) .

If \p̂ > then this is achieved if and only if p maps the set

(r+l,...,p) onto itself; we are then able to write

= M , Âg2 . M 1^(1 + Yg)-! . (5.18)
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^  -1 *To obtain K in terms of Y and G we define H as G K and rewrite

(4.26) as

G' W G = I , G' B G = Y . (5.19)

Substitution of the first part of (5.19) and the second part of

(5.18) into (5.16) gives

- - ” "*(0 • (5.20)

and from the second parts of (2.42) and (5.19) we have

B' l a  = Ag = M| " I (5.21)

Our argument then follows the same lines as that of Section 4.2.2; 

the general solution of (5.20) and (5.21) is

H = M^| 1 . (5.22)
V »  /

where and are orthogonal matrices which commute with Y^ and

A
Y^ respectively; since K = G H we have

£1 = . Kg = M* Gg Jggd+ïg)"^ , (5.23)
^ A.

The ML estimator of F is, following (5.10), F = R, which becomes

F = Gg R (5.24)

when the remaining terms in the second part of (5.23) are subsumed 

into R. As in the case of known E, the estimators of F are the same 

for functional as for structural relationships when there are equal 

numbers of replicates. For the estimator of E we have from (5.22) 

and (4.38)

i ” (K K')"l = (G H H' G')“  ̂- {W + L p  . (5.25)
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The estimator of is, following (5.11), y + F K- K' ( y . - y ) ,—J — — i i — J —

which becomes

= y + K %  G* (ŷ  - y) . (5.26)

or

Cj = Zj - M §2 G> (ÿ. - y) . (5.27)

For relationships through the origin we delete y in these two equations

and define G relative to B* rather than B.........................

The maximum of the log-likelihood is

, , P
- i M{log|w| + E log(l+^.) + p - p log M) . (5.28)

i»r+l

It is essential to have replicate observations in this case.

5.1.3 E a diagonal matrix

Most of Section 4.2.3 on the corresponding structural relationship 

problem applies equally here. The only exceptions are that — as we 

showed in Section 2.4(a) — it is essential to have replication for all

values of r, and that the log-likelihood is, from (5.12), - & F̂ , where
P P

F = E (M log a.. + w../a..) + E 6.(B) . (5.29)
i=r+l ^

5.2 Tests of the number of relationships

As in Section 4.3, we may base a test of the hypothesis of p-r 

functional relationships on the difference between the maxima of the 

log-likelihood when there are no relationships and when there are p-r.

In this case the differences are, from (5.12), (5.14), (5.28)and (5.29);

for known E,
P

i Z ô.(B) ; (5.30)
i=r+l
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for E known up to a constant factor

p -1.J Mp log{l + E /tr(Hl"^)} ; 
i=r+l

for a general positive-definite E,

P
J M E log(l+^.) ; (5.31)

i=r+l ^

and for E diagonal,

P
{̂M( E log a.. + p) ^ F , min}.

i=l 4

Twice each of these differences is distributed asymptotically as

under the null hypothesis of p-r relationships. Since the

asymptotic results of ML theory do not apply in the presence of

incidental parameters, we mean by 'asymptotically* that n is fixed

and each m. tends to infinity. For relationships through the origin 
J Ï

the degrees of freedom are (p-r)(n-r), since the number of conditions 

applied to the Cj by writing E’Çj “ Q (j=l,...,n) is reduced from 

n(p-r) to zero when there are no relationships, while the number of 

independent parameters in T is reduced from r(p-r) to zero. Relationships 

not constrained in this way may be written with only p-r extra parameters 

as r*gj + g = 0 (j=l,...,n), so the degrees of freedom are (p-r)(n-r-1). 

The test based on (5.30) is due to Fisher (1938),and a refinement of 

(5.31) is Bartlett's (1947, p.179) test of the significance of the last 

p-r roots in a canonical analysis; M in (5.31) is replaced by 

{M-l-5(p+n)} to give a better approximation to the distribution.

5.3 Generalized least-squares estimation

We have seen in Section 2.5 that Sprent's generalized least-squares 

(GLS) procedure for estimating a single linear functional relationship 

may be extended from two to p variâtes and, when p is even, from one



67

relationship to p̂, and that it coincides with the ML procedure for

estimating £ in these cases if normality is assumed and £ is known.

We give below a formal justification for Sprent's intuitive extension

of the method to any number of relationships, and show its equivalence

to ML under the assumption of normality when £ is either known to within

a constant factor or is a general positive-definite matrix estimated

from replicate observations. In Section 5.5 we give, inter alia,

sufficient conditions, not including normality, for the method to be

consistent........................................................

Instead of the scalar null variate z. = y' y. of Section 1.5 weJ - -J
define a (p-r)- vector of null variâtes by z. = £' y^(j+1,... ,n), the

y. being measured from y unless the relationships are constrained to 
-J -
pass through the origin, The z. are uncorrelated with zero mean and

—1dispersion matrix m̂  £'££. Instead of (2.47) we have to minimize

U = E zf {D(z .)}  ̂z.
j

Since this is the same as (5.6), the GLS estimator of £ when £ is known 

up to a constant factor is given by (5.10). When £ is a general positive-

definite matrix and has to be estimated from replicate observations its

GLS estimator is W/(M-n), so that in (5.10) is replaced by G^ and we 

have (5.24). In both cases the relationships are estimated by equating 

to zero the last p-r canonical variâtes in a canonical analysis using 

'within' and 'between' SSP matrices.

5.4 Asymptotic behaviour

The presence of incidental parameters prevents us from appealing 

to the usual asymptotic properties of ML. As in Chapter 4, we consider
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two ways in which the total number of observations may tend to infinity;

in this case they are (i) that M/n tends to infinity (which includes

the possibility that n remains finite), and (ii) that M/n tends to a

finite limit m)l. We have also to make some assumption about the

behaviour of the g. : in the case of two variâtes and no replication

Kendall and Stuart (1967, p.387) assume that the have a finite

'variance', that is that n has a finite positive limit.

To extend this idea to p variâtes, p-r functional relationships,

and replicate obseryatipne, we eupppse that the.mntri% M ,Zm.(C«"^)(C^”C)̂
J - j  -  “ J ”

has a finite limit E of rank r, and that each (Ç.-Ç) is in the range
- J  -

space of E; this is bound to be true in case (i) if n remains finite

and the m̂  are equal. For relationships through the origin g is omitted.

We shall not require the to be normal but, as in Section 5.3, take

them to be uncorrelated with a common dispersion matrix Z. If we then

assume that either the are independent or that the variâtes

Y.. Y . (e=l,...,m. ; j=l,...,n; i,h=l,...,p) have finite variance—ije —hje J
independent of j and e and zero covariance between replicates and between 

groups, then in case (i)

MT^ W-+ Z and B-> E, (5.32)— -o —
and in case (ii)

M~^ W-» (1 - m"^)Z^ and m"^ B-» E + m“  ̂Ẑ  , (5.33)

where Z^ denotes the true (or known) value of Z. Let (E) , . . . (E) 

be the nonzero roots in descending order of |e - U) Ẑ | = 0, ^  the

pxp matrix diag {oĵ (E),..., w^(E), 0...0}, the matrix

diag{w^(E),...,w^(E)}, F a pXp matrix satisfying

1 = 1 . E'EE = %  , (5.34)
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and P the pXp matrix (K  ̂F)'; P is orthogonal since 

K' E K * F̂  Z F = I, If we partition F as (F̂  F̂ ) with F^ 

pxp then 2̂ - -2 " -

I'o (C. - I) = 0 (j=l,...,n) . (5.35)
^  - J  —

To demonstrate the consistency of F when Z is known we have 

to show that as M tends to infinity Kj E K^— 0. In case (i) it 

follows from the second parts of (5.32) and (2.42) that M  ̂F/ B F-*- ̂

and .
P Ag P'-+ . (5.36)

Since the latent roots of a matrix are continuous functions of its 

elements we also have

^  . (5.37)

Thus if we write

p Ag P' = P P' + P(m '̂  Ag - Qg)P' , (5.38)

then the second term on the right-hand side tends to zero. Combining 

(5.36) and (5.38) we have P[^P'-+^ or

Pf^ - f^P-^ . (5.39)

So if P is partitioned as

- “ -̂1 -2^ I I , (5.40)
/ “II “12\

\  21 - 1 1 )

with P^ p X r and P^^ r x r, we must have P^^ 0 and £21̂ *

Since K = F P, we have = F P^ and, using the second part of (5.34),

K; E K, = p; «E p, = pfz Bci P12-+ a (5.*1)
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as M tends to infinity. In case (ii) we have M  ̂P P'->-
mm 2^  + m I and

m"̂  6 ^  + I, (5.42)

but (5.39) and (5.41) are unaffected.

Only minor alterations are required to show that F is also 

consistent when Z is known up to a constant factor. In case (i)

we have from (5.32) and (5.37) that M  ̂tr(WT )̂-*" Tp and
-1 . . .  ^M tr(4^)^0; substitution into (5.13) shows that T is consistent.

However, in case (ii), (5.33) and (5.42) give M ^tr(WT Tp(l-mT^)
-1and M tr(0̂)-*- T(p-r)/m, so that

T -► T{l-r(mp)“h . (5.43)

The special case of this result with mj = 1 was noted in Section 2.5.

When Z is a general, unknown, positive-definite matrix its GLS 

estimator W/(M-n) is consistent in both cases, so the estimators of 

F are also consistent. The ML estimators of Z and F are consistent in 

case (i) since (5.32) and (5.25) imply that Q and Z—► Ẑ . In case

(ii) the tend in probability to the roots of

ll + - i|)(l - m"̂ )Ẑ | = 0,
that is, using (5.34), to the roots of

|n% + I - 4i(l - m“ )̂ l| = 0,
so we have

Y + (m-1)"̂  (mgg + I). (5.44)

If 2 “ {(1 - m )̂ M} G  ̂F then the first parts of each of (5.19), 

(5.33) and (5.34) show that in the limit Q is orthogonal. Similarly, 

equations (5.34) and (5.44) and the second parts of (5.19) and (5.33) 

show that in the limit Q commutes with m ^  + I, so if Q is partitioned
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in the same way as P (equation 5.40) then Q and Since

is given by {(1-m ^)M>  ̂ (F̂  + F^ 9 ^2  ̂> and E F^ = 0, it

follows that M G^ E Ĝ -*- 0 and therefore, using (5.23), that
y\ Ai

2̂ E -*■ 0, so that F is consistent. Also, since (5.44) implies 

that ^2"̂  (m-1)  ̂I, the limit of M Ĝ  G^ is m  ̂F^ F'.

Thus from (5.25) and (5.33)

: = m"^{W + W G, Ĝ  W}-> 2̂ ?o ' (5'4S)
so that in this case Z is not consistent.

. . . When Z is diagonal we have to minimize with respect to the

'’ii

Z {log a.. + w../(M a..)} + tr(6_,). (5.46)• m XX XX XX1=1

—1In case (i) (5.32) and (5.37) show that M w^^ tends to the true
-1value and that M 2» in the limit (5.46) becomes

P , -1Z (log a.. + a .. a..) ,. 1 11 oil 111=1
Ai Ai

and, since this is minimized at = 0^^^(i=l,...,p), Z is again 
consistent. In case (ii) (5.33) and (5.42) show that (5.46) tends to

Z {log a.. + (1 - m )̂ a .. + (p-r)/m ,• m XX OXX XXX=1
which is minimized at a.. = (1 - m ) a ... Thus Z tends in probability11 oil -
to ( 1 - m  )Z^. Since in both cases the limit of Z is a multiple of Z^
the estimator of F is also consistent.

A^

Finally, we examine the consistency of Ç., which is estimated by-J
y . -Z K_ K' (y.-y) when Z is known and by y. ~ E K„ (y. - y) when—J “Z z -J — —J z z —J —
Z is unknown. Since F is consistent, we have E Q or E Q
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and therefore, since each (Ç.-1) is in the range space of g,-J - 6 -J -
A, _

or K^(gj-g) 0 (j=l,...,n). The mean vector and dispersion matrix

of Ÿ are C and M while those of Y. are Ç. and m.^E, so Y tends to- - -J ^ -J J -
E and, if m. tends to infinity, Y. and Ç. both tend to Ç.. For relation-- J J -J -J
ships through the origin we just delete ^ and f in the above.

In summary, we have shown that the GLS estimators of F and E are

consistent in cases (i) and (ii). The ML estimators of F are consistent 

in both cases, but those of E have this property only in case (i). For 

those groups in which m̂  tends to infinity, gj is also consistent.
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6. COMPARATIVE CALIBRATION

In this Chapter we consider in detail the structural-relationship 

model for the comparative calibration of p measuring instruments which 

was introduced in Section 2,3, and re-analyse the data on the measurement 

of human lung capacity given by Barnett (1969). Some residual analyses 

and probability plots are suggested for indicating departures from the 

assumptions of the model, and are illustrated on these data.

6.1 The calibration model

Our model for the comparative calibration of p instruments used to 

measure the same property is that on the jth specimen to be measured.

the p-vector Y. of observations is the sum of a vector X. of true -J -J
values, distributed normally over the population of possible specimens, 

and an independent vector of errors Ej , the elements of which are 

independently distributed as N(0, a?) (i = 1, ..., p), the not

depending on j . The n vectors Ŷ  are independent, and the

distribution of the is confined to a line. The degeneracy is

conveniently expressed as

X = ]J + X f , (6.1)

where JJ = E(X) , X is a p-vector of unknown 'calibration factors' 

and f is a hypothetical standard measurement distributed as N(0, 1) 

over the population. The Ŷ  are thus distributed as Np(ji, E + X V) ,

where E is diag(a^ , ..., 0̂ ).

The elimination of f from (6.1) shows that the true values of any 

two instruments h and i are related by

%h = '

and therefore vary in the ratio X, :X. . When X, = X. the trueh i  h i
measurements differ by a simple additive bias; if also the

true measurements are the same. If a linear calibration model of the 

above type is thought appropriate and the instruments are to be compared
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for their precision as well as their relative calibration, then an 

obvious index of this property is the ratio of the variances of the 

i^h observed measurement and the corresponding error term, that is,

1 + . So we formally define the ‘pveQ'is'ton of the i^h

instrument to be ; the vector ][ = (tt̂ , ..., is given by

s •= A .
We may therefore be interested in testing whether the are equal,

or the X., or the X. and the y. .I l l
6.2 Maximum likelihood estimation

Our model is equivalent to a factor model with a single common 

factor; the criterion (2.33) for such a model to be identifiable becomes, 

with r equal to one, p  ̂3 . Thus the parameters of the model may be 

estimated using a program for carrying out factor analysis by ML, for 

example that of Joreskog (1966). When p = 3 the numbers of minimal- 

sufficient statistics and independent parameters are equal, and equating 

sample and population moments gives the ML solution

Pi = ÿj . = =12 S13/S23 ' K  ' hi ~
etc., where

S = (s .) = n ^ B = n ^ E  (y. - y)(y, - y)' . ni j —J “ -J —

As Moran (1971) has pointed out, equating moments may not always give

a solution; in any sensible application of the method all the elements
• • 2 of S will be positive and so therefore will be the expressions for X̂  ,

but if one of the a? is very small there is a danger that its estimator

will be negative.

As we noted in Section 2.4(b), our model leads to a particular case

of Joreskog*s 'covariance structures ' . The special cases in which the

TT., the X. or the y. are taken to be equal are also included in this 1 1 1
general formulation, so we could carry out estimation in all these cases
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using the program for ML estimation given by Joreskog et al. (1971). 

Nevertheless, to illustrate the procedure derived in Chapter 4 we 

consider the estimation of the basic model, with no constraints, in 

some detail.
-1 -1We define the matrix S as E  ̂S E and write Y* for"~0 — — — 1

n  ̂du(B); since 6 (̂B) is the i^^ root of |b - 6E| = 0, is

the i^^ latent root of . We have shown in Section 4.2.3 that if C 

is the pxp matrix whose columns are the latent vectors of S^ then,

for given E , N^ = Ê  Ç . Since m = r = 1, we have from (4.14)

A = - 1)̂  %  »

yv  ̂ iwhere n_ is the first column of N_ = E C. Thus—1 —S - —
As 1 ^  1 As ^  As 1 y\

A = - 1) E ĉ  and TT = (x̂  “ D  ,

while the are the sample means. The diagonal elements of E are

the values of 0\ (i = 1, ..., p) minimizing (4.17), which in this case 

equals

F4 = nj Ê  (log a? + s^^ aT^) + log x% - + l}' (6-2)

In order to use a gradient method for this minimization we require the 

first derivatives of . Bellman (1970, pp.61-63) shows that if a 

symmetric p x p matrix A = (â )̂ has a simple latent root a with 

corresponding latent vector x = (x̂ , ..., x̂ )' then 9a/3a^^ = xĵ  and

9a/8a^^ = 2 x̂  x^ (s,t = 1, ..., p ; s f t). Applying this result to Ŝ  

and x^ have

^  P !u!ii  ̂ (A ..1..... p)
3a| Cj’ i=l a.

where ĉ  = (ĉ ,̂ ..., c^^)', so the derivatives of (6.2) are given by

9F/ n , s.p \
— 7 " ""7 I (%1 " 1) ^/l  ̂" T "  ( (& = 1...... p) " (6'3)
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The maximum of the log-likelihood is - 4 F, . .* * 4,nan
As we have seen already in the case of three instruments, the

derivatives (6.3) may vanish at a point outside the region in which

all the a? are positive, so that the likelihood attains its maximum

at a boundary point of the parameter space, that is, where one of the

is zero. Lawley and Maxwell (1971, p.32) report that such improper

solutions occur quite frequently in factor analysis. Only one of the

may be estimated as zero since any greater number would make the

estimated dispersion matrix of Y singular. If it is, say, then

the ML solution amounts to regressing the readings of the remaining

instruments on those of the q̂ h.

For the asymptotic dispersion matrix of the ML estimators we require

the second derivatives of the log-likelibood with respect to the

parameters and (i = 1, ..., p). Let n̂ » 0^ denote

single parameters or vectors of parameters, and write dCn^, Ĥ ) for

the value of E{- 8/9r| (9L/9y )} at the likelihood maximum. If h and it s
are in the range (1, . .., p), h f i, b^^ = n(x^G^ ) and

(6.4)

ii - "(Xl
-1

9 then we have

d ( u , y ) =  ̂ /\ As — 1n(5 + XX')

d ( p ,  n ) = 0 if n is not in y  ,

d(X^,X.) = •’ii^X^CXj - 1) + (2 - Xj) }
d(X.,X.) n 1 = \ i  \  \  (2 - Xi> .
d ( X ^ , a ^ ) = 2 b£i \ (Xj - ) ,
d ( X ^ , a p = \ i  \  \  '
d ( a ^ , a ^ ) = 2 b. .(xi - .

d(ah»ai) = 2 b, . TT/ TT. . hi h 1

(6.5)

We next consider, in less detail, ML estimation in some situations 

in which parameters are constrained to be equal. If the X̂  have a
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common value X then y is estimated by the sample mean and we have

X- = - 1)/Z a.  ̂ , (6.6)
i ^

h i  : 1.

and the maximum of the log-likelihood for given a. (i = 1, p) is1

- i n {Z (log cr/ + ŝ .̂ + log^- # + 1} .

If the y^ also have a common value y then
* —2 **2 

y = Z y. a. /Z a. , . 1 1  1 1 1
while X is again given by (6.6). The conditional maximum of the 

log-likelihood is

-  &n{Z (log o / +  s.. a. + y/a. ^) - (Z y. a. ^)^/Z a. + log ((> - # + 1}. 1 11 1 1 1  . 1 1  * 11 1 1
Under the constraint that the tt. have a common value tt the ML estimators1
of y and tt are given by

y = and 7T̂ = (ŝ  - l)/p ,

where

= z Ç :n 1

the conditional maximum of the log-likelihood is

- i n {Z (log + s^^ )̂ + log - ŝ  + 1} .

6.3 Barnett's data on human lung capacity

Barnett (1969) reports the results of a medical study of the

relative merits of two instruments used for measuring human lung capacity, 

the first being a standard type and the second a newer design and more 

portable, easier to operate, and cheaper. Since it was claimed that the

standard instrument required some skill to operate, the two instruments

were used by both a skilled and an unskilled operator on the common group 

of 72 patients. Barnett assumes a linear structural model relating the
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four instrument-operative combinations which is equivalent to the 

model of Section 6.1 with p equal to 4. He estimates the parameters 

of his model using some asymptotically unbiased moment estimators 

based on the exact ML solution in the case p = 3. The data are given 

in an Appendix, the order being ; standard instrument/skilied operative, 

standard/unskilled, new/skilled, new/unskilled. We shall refer loosely 

to 'instruments' 1 to 4 for these instrument-operative combinations but 

use the terms 'standard' and 'new' instrument when necessary.

The sample mean vector is 

y = (2246 2176 2149 2102)' ,

and the sample dispersion matrix (with divisor 72) is 

584290 573373 631330 596894

618838 672753 637204
S =

787937 726598

721495

The high degree of linearity in the bivariate relationships is shown by

the correlation matrix

1 .954 .931 .919

1 .963 .954R  =  I I (6.7)
1 .964

Figure 6.1 gives scatter diagrams for two pairs of instruments. They 

appear not to contradict the hypotheses of linearity and homoscedasticity, 

but do suggest that the distribution of the hypothetical 'standard 

measurement' f may be positively skewed.

The ML estimates are given in Table 6.2 ; the estimates of the 

calibration factors are in the ratios 1 : 1.06 : 1.19 : 1.13 . These 

ratios in particular, and most of the other estimates, are similar to 

those that would be obtained by transferring Barnett's estimates to our
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Figure 6.1. Scatter diagram for two pairs of instruments
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Table 6.2 Maximum likelihood estimates for Barnett’s data

Instrument

i

Mean

^i

Calibration
factor
X.1

Standard
deviation

a.1

Precision

TT.1
1 2246 730.8 224.2 3.260
2 2176 774.4 138.4 5.596
3 2149 871.0 171.0 5.094
4 2102 826.2 197.1 4.192

representation of the model. The major exception is that his estimate 

af ^ 2  is 85.5, a strange result in that it relates to the .icnsk'iVie.d .

operative using the standard instrument, the one which is supposed to 

require a certain skill in its operation. The anomaly is less marked 

with the ML estimates, but because of it the estimates of precision in 

Table 6.2 are of limited usefulness to the choice of instrument beyond 

showing that, at any rate, the new instrument is not much worse than the 

standard in this respect. Another slightly curious aspect of these results 

is that the ratios : X^ and X^ : X̂  are respectively greater than 

and less than 1 . But we shall show below that the difference is not 

significant in the sense that the data are consistent with the hypothesis 

that X̂  = X̂  and X^ = X̂ .

The estimate of the asymptotic dispersion matrix of the is.

from (6.4),

—  (S + X A') =
8115 7860 8841 8386

8595 9368 8886
10943 9995

10021

so that the standard errors are respectively 90, 93, 105 and 100. The 

estimate for the remaining parameters in the order X̂ , ..., X̂ , â , ..., 

is found by inverting the matrix defined in (6.5) and is
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4417 3929
4438

4420 4193 -34 8 6 3
4681 4441 5 -41 17 9
5685 4996 4 19 -49 7

5290 2 12 8 -40
459 -27 -19 -10

361 -95 -50
451 -34

440

One advantage of our choice of parameters is that the correlations 

between the estimates of the are fairly low and those between the
 ̂ /s

and the are very low. The standard errors are respectively

66, 67, 75, 73, 21.4, 19.0, 21.2 and 21.0.
We next consider whether the data are consistent with certain 

restricted models in which equality constraints are imposed on some of 

the parameters. The first has X̂  = X^ and X^ = X^ , which implies that 

the ’true' values for the skilled and unskilled operators on each of the 

standard and new instruments differ by a simple additive bias. The second, 

and more interesting, hypothesis adds the further restrictions that = y^ 

and y^ = y^ so that on each of the two instruments the true values for 

the operatives are the same. In other words we have two replicate 

observations on each of the two instruments, but the variances of the 

replicates are unequal. The ML estimators in these two cases are given 

in Tables 6.3 and 6.4 respectively.

Table 6.3 Maximum likelihood estimates with X. = X„ and X_ = X,

Instrument
i

Mean

^i

Calibration
factor
X.1

Standard
deviation

*i

Precision
TT.1

1 2246 762.3 225.2 3.384
2 2176 762.3 139.7 5.455
3 2149 851.2 174.5 4.877
4 2102 851.2 197.9 4.300
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Table 6.4 Maximum likelihood estimates with , X^ = X^,

U l _ ^ 2 — £ 2 ^ 3 - L Ü 4

Instrument
i

Mean

^i

Calibration
factor
X.1

Standard
deviation

a.1
Precision

TT.1

1 2195 762.0 233.0 3.271
2 2195 762.0 143.2 5.320
3 2128 851.5 174.7 4.875
4 2128 851.5 198.9 4.281

In the first case they were calculated by maximizing the likelihood 

numerically as a function of X̂ , X^ and the o. ; in the second 

case and y^ were also included. The maxima of the log-likelihoods

are in the first case -2.004 and in the second -5.575 ; here and elsewhere 

the zero point of the log-likelihood is taken as its maximum in the basic, 

unconstrained model. To test the hypotheses expressed by these two sets 

of constraints we could take minus twice each of these maxima as being 

distributed approximately as on 2 and 4 degrees of freedom under the

respective null hypotheses. With this approximation, the first null 

hypothesis is accepted and the second is rejected at the .05 level but not 

at the .01 level. In an alternative 'likelihood* approach, preferred by 

the author, the reduction in the maximum of the log-likelihood resulting 

from restrictions on the parameters is compared directly with the number 

of constraints ; if we adopt Edwards' (1972, p.200) tentative suggestion 

of accepting a null hypothesis unless the reduction in the log-likelihood 

exceeds twice the number of constraints, then we shall be ready to accept 

the second of our null hypotheses and assume that the true measurements 

of the two operatives on each of the two instruments are the same. A 

comparison of Tables 6.2 and 6.4. shows that the anomaly of the unskilled 

operative taking the most precise measurements persists under this 

assumption, although it is slightly less marked.



83

The estimates of and y^ in Table 6.4 have asymptotic

dispersion matrix estimated by

8270 9011 \
10310 / ’

the remaining estimates, in the order X̂ , â , ..., â , are
(

asymptotically independent of the y^ with dispersion matrix estimated 

by

4503 -7 -27 13 9
5279 4 15 -23 -16

503 -26 -21 -14
359 -82 -51

447 -38
471

As before, there are low correlations between estimates apart from that

between the X. .1
Next we test whether the data are consistent with any of the three 

sets of restrictions suggested at the end of Section 6.2. If we constrain 

the calibration factors X̂  to be equal then the maximum of the log- 

likelihood is -9.603 ; if also the means are equal, so that all four 

instruments have the same true measurements, the maximum is -17.295.

Under the hypothesis that the four instruments are equally precise the 

maximum is -7.069. All three hypotheses are rejected in approximate 

tests, the first two at the .001 level, the third at the .01 level ; 
an enthusiast for the likelihood approach might be prepared to accept the 

third hypothesis, particularly in view of the anomalous nature of the 

differences in precision. The estimates in this case are given in 

Table 6.5.
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Table 6.5 Maximum likelihood estimates with common precision

Instrument
i

Mean

%i

Calibration
factor
X.1

Standard
deviation

^i :

Precision
IT.1

1 2246 750.9 176.9 4.244
2 2176 760.6 179.2 4.244
3 2149 860.8 202.8 4.244
4 2102 827.8 195.1 4.244

Finally, we return an observation made earlier in this Section that 

the scatter diagrams in Figure 6.1 Suggést that the distribution bf the 

true measurements appears to be positively skewed, and investigate whether 

a better fit to the data might be obtained by applying a common 

transformation to the four observed measurements. The transformation we 

consider assumes that the model of Section 6.1 is appropriate for some 

value of to the variâtes defined by

= Y. (i = 1, ...,4;0<i|^<l).

In order to compare the maxima of the log-likelihoods for different values

of ij; we require the Jacobian, J, of the transformation ŷ j -► y\j(^)

(i = 1, ..., p ; j = 1, ..., n) (we give it in terms of p and n for the 

sake of generality). We have

J = IT I dy. . (i|;)/dy.. I = IT (#. )̂ = IT  ̂ ,
i.j i.j

SO for the purpose of comparison we have to add 

log J = np log^ + (̂1 - 1) Z logy..
i.j

to the maximum of the log-likelihood obtained using the ŷ j (i|̂) • The 

maximized log-likelihoods for a series of values of ip are given in 

Table 6.6. A plot of these maxima shows that they are roughly quadratic in 

ip with a maximum near 0,8 ; a parabola fitted at the points 0.7, 0.8, 0.9 

takes its maximum value of 1.747 at \p = .79. The improvement in the fit
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Table 6.6 Likelihood maxima for five power transformations

Transformation i|; 1 0.9 0.8 0.7 0.6 0.5

Likelihood maximum 0 1.251 1.740 1.462 0.415 -1.398

of the model is therefore not significant. Nevertheless, we give in
0 8Table 6.7 estimates of the parameters for the transformation y 

since we shall use this transformation for illustrative purposes in the 

next Section. A comparison of the correlation matrix for the transformed 

data.

^.8

1 .952 .929 .915
1 .962 .953

1 .961
1

with that of the raw observations (equation 6.7) shows that each of the

off-diagonal terms is reduced. Thus the transformation intended to make
0. 8Table 6.7 Maximum likelihood estimates for the transformation y

Instrument
i

Mean Calibration
factor
X.1

Standard
deviation

a.1
Precision

TT.1

1 475.5 124.2 38.5 3.226
2 463.1 131.8 23.2 5.681
3 456.8 149.3 30.8 4.843
4 449.2 142.1 35.2 4.039

the true measurements more nearly normal tends to produce non-linearity 

in the calibration relationships. This leads us to relax the hypothesis 

of normality for the true measurements while tentatively retaining the 

assumptions of linearity, homoscedasticity and normal errors. We can 

argue that our estimators are still consistent as follows: the ML estimators 

are functions of the data through y and S only ; if these statistics 

have the same limiting behaviour under some relaxed set of assumptions



86

then the estimators are still consistent. Sufficient conditions for

y and S to tend in probability to y and 2 + XX' in a linear

calibration model with homoscedastic errors are (i) that the Y. areJ
independent or (ii) that the Ŷ  are uncorrelated and the quantities

Yĵ j Ŷ j (i,h = 1, ..., p ; j = 1, ..., n) have finite variance

independent of j and are uncorrelated between specimens. By the same

argument, either of these conditions is sufficient for the ML estimators

derived for the structural case to be consistent for the structural

parameters E and X in the functional case, provided that the

matrix n  ̂E E.C» has a limit with rank one, which we write as XX' . ..........-J-J......................................... --
We shall consider in the next Section techniques for detecting departures 

from the assumptions of the model.

The computer programs required for this Section were written and run 

by Dr. J.R. Mallinson. The method of function minimization used was that 

of Davidon, Fletcher and Powell (Fletcher and Powell, 1963).

6.4 Residual analyses and probability plots

In the belief that one should check against the data the assumptions 

made in a statistical analysis, we give in this Section some suggestions 

for residual analyses and probability plots for models of comparative 

calibration. The intention here is to provide graphical techniques to 

indicate failure of the assumptions, rather than tests for specific types 

of departure, although evidence of failure may lead us to formulate 

hypotheses which require to be tested, as in the case of the apparently 

skew distribution of true measurements in the previous Section. The 

techniques are illustrated on the data presented in that Section.

We begin with procedures for detecting departures from multivariate 

normality of the vector of observations Y . Healy (1968) suggests a 

plotting procedure based on the fact that if a random p-vector U follows 

the distribution Np(y,D) its covariance form (U - y)̂ D ^(U - y) has a 

distribution on p degrees of freedom. The quadratic form
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d. = (y. - y)' S (̂y. - y) (6.8)J -J - -J —
therefore has approximately the same distribution, and plotting the

ordered dj against the quantiles of provides us with an overall

indication of departure from multivariate normality and a method for

detecting outliers before estimating the parameters of the model.

Figure 6.8 gives the plots for the raw data of the previous Section
0.8and for the transformation y * (alternate points only are shown up to

the 40th). The first does give some indication of non-normality, though

it is difficult to say in what direction ; the second suggests that the

transformation does give some improvement in the fit of the distribution.

Having estimated the parameters of the model, we may replace S in

(6.8) by the estimated dispersion matrix E + XX; the resulting plot

should give a better indication of departures from the model, since it

assumes not a general dispersion matrix for Y but one which is the sum

of a diagonal and a rank-one matrix.

The plots for the raw and transformed data are given in Figure 6.9.

The curvature in these plots is more pronounced than in Figure 6.8; the
kink at d = 2 suggests that there are too many observations close to the

mean. But generally we conjecture that this type of plot is more useful

for detecting that a roughly symmetric distribution for the true

measurements has long tails than the skewness we suspect here.

Other univariate views of the data are obtainable from the

measurements y. on individual instruments and from linear combinations 1
of the y^ . If the are reasonably large, say greater than 3 , then

the marginal distributions should be very similar, since all but a proportion 

(1 + ÏÏ?)  ̂ of the variance of y^ is accounted for by variation in the 

true measurement. It therefore seems worthwhile to investigate the 

distribution of the true measurement more directly by estimating the 

values corresponding to the n specimens. Since they are not parameters 

in our model we need some ad hoc method of estimation; the obvious one
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(a) raw data

Ordered
covariance
forms

10

XX

6 8 10 12 142 40
Quantiles of

(b) transformed data : y0.8

Ordered
covariance
forms

16

14

12

10

8

6

4

2

0
62 4 8 10 12 140

Quantiles of

Figure 6.8. Chi-square probability plots of the covariance form d.
using sample dispersion matrix ^
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(a) raw data

Ordered
covariance
forms

4 10 12 146 820
Quantiles of

(b) transformed data : y

Ordered
covariance
forms

0.8
14

12

10

8

6

4

2

0
42 6 8 10 12 140

Quantiles of

Figure 6.9. Chi-square probability plots of the covariance form d.
using estimated dispersion matrix ^
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seems to be the following:

divide each by the standard error of the corresponding
* 1 * X 0error term. If we write ^  for (â  X̂ , ..., X̂ ) and

define and y^ similàrly then our model (6.1) becomes

= Ha +
with a spherically symmetric distribution for the errors. So

estimate the vector of standardized true measurements X .-GJ
corresponding to the vector of observations ŷ  by the

orthogonal projection of the standardized vector ŷ  ̂ onto the

. . line g =y^,+H.4> . (4* real). This gives

. = y + TT Î. or = y + X f. ,-Oj -0 - J -J - - J
where the tilde denotes an ad hoc estimate and the fitted value 

of the standard measurement is given by

f. = Z'Cy^- - yj/l'x (j = 1, .., n). (6.9)J —u J —u
Essentially the same problem arises in factor analysis under the heading

of the 'estimation of factor scores'; Lawley and Maxwell (1971, ch.8)
give two methods. The above procedure corresponds to that of Bartlett

(1937, 1938) whose principle of estimation is to minimize with respect

to fj the sum of squares of the standardized 'residuals', that is

(ŷ . - y - TT f.)'(y . - y - tt f.). Another method, due to Thomson (1951), -oj -a J -aj -o J
%is to choose the linear combination f. of the y .. - y. which minimizesJ ij 1

the variance of - f̂  ; this is the same as (6.9) apart from having 

1 + TT̂TT as its denominator, a change which makes no difference when 

examining for departures from normality in f and very little otherwise 

if the TT̂  are at all large. The ŷ , tt̂  and in (6.9) have to be 

estimated, so we shall use as our fitted value

g- = n'i ^(y- - y)/ii'ir j = i, •••» n).J -J -
If the assumptions of our model are correct we should expect the gj to

A/  ̂ ^
have roughly the properties of the fj, that is to be distributed
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“1independently as N(0, 1 + (tt'tt) ). So we may use a normal probability 

plot of the gj to examine for departures from the assumption of 

normality for the true measurements.

For the data of the previous Section, normal probability plots on

the four measurements show similar patterns indicating positive

skewness. Plots using various power transformations show that better

fits are obtained by taking cube roots of each measurement; to take

logarithms would be an over-transformation. Our estimates of the

indicate that more than 90% of the variance of each measurement is

accounted for by the true measurement» so the four plots of the marginal

distributions are similar to that of the fitted values of the standard

measurement g. given in Figure 6.10. The evidence of skewness is only
0 8slightly reduced in the plot for the best-fitting transformation y ’ .

f\jNow that we have a vector of standardized fitted values X̂ j we 

can define a vector of standardized residuals as

r. = Z *(y.-y) -E.g. = {I - (ïï'ïï) I ̂ (y.-y). (6.10)J - J - J -J - '
Under the assumptions of our model the r̂  should be roughly independent 

with the degenerate distribution Np(0,I - (tt̂ tt)  ̂tt tt̂ ) . If the true 

measurements are not normal this should have little effect oh the

distribution of the r̂  , since, in the limit as n tends to infinity,

(6.10) becomes

{I - (tt'tt) ]̂][T[̂ (Trf. + X * Ç.) , 

from which f̂  disappears. So a normal probability plot of the i^^ 

elements of the r̂  should give some indication of departure from 

normality of the i^^ error term. Also, plotting the i*-̂  elements of the

tj against gj can indicate heteroscedasticity and non-linearity in

the dependence of the y^ on f. Of course scatter diagrams of the y^ 

in pairs provide evidence of departures from linearity and homoscedasticity, 

but their number increases as the square of p. If we suspect the same
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(a) raw data

Ordered 
fitted 
values of 
standard 
measurement 0.5

-0.5

X*-1.5

-2.5 -1.5 -0.5 0.5 1.5 2.5
Standard normal quantiles

(b) transformed data : y0.8

Ordered 
fitted 
values of 
standard 
measurement

5

5

0.5

-0.5

-1.5

2.51.50.5-0.5-1.5-2.5
Standard normal quantiles

Figure 6.10. Normal probability plot of fitted values of standard
measurement
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type of departure from homoscedasticity in each of the instruments, 

for example error variance increasing with true measurement, we may 

combine the elements of r̂  by calculating the length ê  of the 

residual vector defined by

ej = Ij'rj = (yj - y)'£ ^(y^ - y) - - y)}^ ,

and plot Oj against gj . Another possible use of the residual vector 

is in detecting outliers where they have not already been thrown up in 

the chi-square plots of the covariance form dj .

Normal probability plots of the four elements of the residual 

vector r̂  are given in Figure 6.11. There is no consistent pattern 

of departure from normality and only the fourth plot is markedly non

linear. In search of an explanation for this departure from linearity, 

we plot the residuals r̂ j against the fitted values of the standard 

measurement (Figure 6.12) but it indicates nothing as simple as, say, 

increasing or decreasing variance or non-linear dependence of y^ on f.

A plot of the length of the residual vector against the fitted measurement 

(Figure 6.13) also gives no indication of changing variance.

We conclude that there is little evidence against the hypotheses 

of linearity and homoscedasticity, but that there is a strong suggestion 

of non-normality and positive skewness in the distribution of the standard 

measurement f which is not removed when a power transformation is applied 

to the data. There is also some evidence of non-normality in the error 

variâtes. In principle we should perhaps attempt to fit some other 

distribution to the standard measurement; this would presumably require 

numerical maximization of the likelihood with respect to all 12 parameters 

of the model. But we prefer to take comfort from the facts that the 

consistency of our estimators does not depend on the normality of the 

true measurements, and that the calibration equations do not depend on the 

distribution of f. We have to admit, though, that our tests of the fit 

of the various restricted models are not valid.
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Figure 6.11. Normal probability plots of the residuals r̂ j
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Residual

% %

-1
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1.5 2.5-0.5 0.5-1.5
Fitted value of standard measurement

Figure 6.12. Plot of residual r,. against fitted value g. of standard
 ̂ measurement ^

Length of
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vector X

^  X  X  
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X  X X  X

X  X *  X  X  *
X

JL

X
X

XX

-1.5 -0.5 0.5 1.5 2.5
Fitted value of standard measurement

Figure 6.13. Plot of length e. of residual vector against fitted
 ̂ value gj of standard measurement
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7. CONCLUSIONS

We have been concerned in this dissertation mainly with the 

representation and estimation of multiple functional and structural 

relationships between an arbitrary number p of random variables; 

the examples in Section 2.3 demonstrate that it is necessary to consider 

more than two variâtes and more than one relationship.

On the question of representing the relationships, there are clear 

advantages in methods which are symmetrical in the p variâtes rather 

than the regression-like methods usually employed for two variâtes. The 

symmetry emphasises the distinction between.functional and structural. . 

relationships and regression relationships and also simplifies mathematical 

derivations. We have had to adopt a thoroughgoing matrix approach to the 

subject and this has shown the importance to our study of the idea of 

the simultaneous reduction to diagonal form of a pair of symmetric 

matrices. This has provided the clue to obtaining ML estimators for 

general p and r in cases for which no such solution had been found for 

two variâtes, for example in a structural-relationship model where the 

departures have a general unknown positive-definite dispersion matrix 

and there are equal numbers of replicates in each group.

It is of interest to examine the extent to which the well-known 

problems of estimating one relationship between two variâtes recur in 

higher dimensions. To begin with unreplicated cases, we noted in 

Sections 1.3 and 1.4 that knowledge of the first and second moments is 

not sufficient for estimating a relationship between two variâtes. The 

parameters of p-r structural relationships are identifiable for 

sufficiently small r if the departure terms corresponding to the p 

elements of Y are independent and p > 2 ; such models are equivalent to 

factor models and include the important case (considered in Chapter 6) 

of true values lying on a line in p dimensions.
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Our analysis of unreplicated functional relationships is 

inadequate; we have shown only that if we ignore the inevitable 

grouping of the data then the unboundedness of the likelihood noted 

by Solari in the case p = 2 occurs for all values of p and r . This 

is enough to show why Lawley's Method II of factor analysis did not 

work and why Williams* suggested solution for the functional-relationship 

version of the problem of comparative calibration with unknown variances 

could not work. But a proper study of the problem would take account of 

the grouping of the data and thus extend the results of Copas (1972) to 

relationships between mote than two variâtes, Fof values pf r fpr . , .

which the corresponding structural model is identifiable, we may extend 

the argument at the end of Section 6.3 to a set of functional relationships 

with uncorrelated departures and assert that the parameters of the 

relationships and the variances are estimated consistently by the estimators 

appropriate to the corresponding structural model, provided that either 

of the conditions on the ŷ  ̂ given there applies and that the 'sample 

dispersion* matrix of the has a finite limit of rank r .

Another difficulty with unreplicated functional relationships between 

two variâtes is that when the dispersion matrix of the departures is 

known up to a constant factor the proportional constant is not estimated 

consistently by ML. This lack of consistency recurs in higher dimensions, 

but may be removed by multiplying the estimator by the ratio of the 

number of variâtes to the number of relationships.

When there are replicate observations,both functional and structural 

relationships are estimated consistently by ML and GLS, but in the 

functional case the presence of incidental parameters still leads to 

ML estimators of E which are not consistent if the number of replicates 

in each group is bounded. A consistent estimator may always be found; 
for example, if E is a general positive-definite matrix we may use the
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within-groups CSSP matrix divided by its degrees of freedom, which 

is also the GLS estimator. Since the corresponding estimators of the 

relationships coincide we may view the GLS procedure in this case as 

a necessary correction to the ML solution. For structural models we 

cannot expect to obtain consistent estimators of the mean and dispersion 

matrix of the vector of true variâtes if the number of groups is bounded, 

although the relationships and the dispersion matrix of the departures 

are consistently estimated by ML.

The striking features of the ML and GLS estimators obtained in 

Cha.pters A and 5 are their close similarity .and their connexion with . 

canonical analysis: when E is known to within a constant factor the 

p-r linear relationships are estimated by equating to zero the last 

p-r canonical variâtes in a canonical analysis involving E and the 

between-groups CSSP matrix; when E is a general positive-definite

matrix which has to be estimated from replication the relationships are

estimated using a similar analysis in which E is replaced by the within- 

groups CSSP matrix. Thus we equate to zero the linear functions of X 

or Ç corresponding to the p-r linear combinations of the y^ which 

have the smallest ratios of between-group variation to within-group 

variance subject to their within-group covariances being zero.

The main point to be made on the design of experiments for 

estimating functional and structural relationships is the need for 

replication, since, apart from those structural models which are equivalent 

to factor models, we require for estimation either replicate observations 

or some further information such as the values taken by an instrumental 

variate or the knowledge that the dispersion matrix is proportional to a

given matrix. If replication is possible then it is best in the

structural case to have equal numbers in each group,as it appears to be 

much more difficult to maximize the likelihood if the numbers are unequal; 

this is not an important consideration for functional relationships.
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In Chapter 6 we have applied the ML procedure for estimating 

unreplicated structural relationships to a problem which concerns 

the comparative calibration of measuring instruments and involves 

p - 1 structural relationships between p variâtes. As well as testing 

certain hypotheses about the values of parameters in the.model, we 

have been able to develop and illustrate procedures for testing the 

assumptions of linearity, homoscedasticity and normality in the model. 

The methods as proposed apply only when the true measurements are 

confined to a line in p dimensions, and their generalizations to other 

cases are not immediate. The suggested overall tests of normality are 

not affected, but the other procedures involve the fitted true value gj 

which would in general become an r-vector. The plotting procedures for 

testing the normality of the true variâtes and the homoscedasticity of 

the departures would inevitably become more complicated.
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APPENDIX

Barnett’s (1969) data, giving readings of a measure of human 

lung capacity for 72 patients on 4 instrument-operative combinations 

these data are re-analysed in Section 6.3.

?1 ?2 ?3 ?4
3450 3530 4030 3720
1310 1320 1610 1600
3820 3720 4150 3700
2110 2880 2740 2520
1860 1420 1540 1690
1940 1780 2020 1800
2360 2260 2430 2350
2880 2920 2650 2860
1980 1720 1800 1660
3120 3180 3250 3040
1760 1630 1390 1200
1480 1760 1700 1640
1840 1660 1400 1650
3580 3480 3680 3960
1880 2000 2090 2070
2400 2320 2550 2480
2220 2120 2290 2270
2540 2500 2620 1960
920 1200 640 1030
2240 2160 2300 2300
2240 2130 2030 2140
2260 2510 2400 2450
3860 4180 3980 3680
2780 2100 1890 2000
2220 1400 1840 1360
1880 1820 1900 1840
940 960 1060 1000
2480 2220 2150 2150
1660 1780 1760 1800
4040 4180 4000 3770
2540 2560 2080 2250
1780 1700 1390 1200
1280 1300 800 1130
1940 2060 2030 1880
1760 2000 1860 1860
2040 1660 1470 1160

?1 ?2 ?3 ?4

1060 1000 850 600
2000 1800 1270 1700
2280 2280 2380 2350
1940 1800 1670 1580
2580 2700 2850 2110
1400 1440 1680 1480
1260 1100 1000 1030
2320 2420 2360 2360
2000 1940 1980 1980
2400 1900 1470 1740
2880 2980 3240 3140
3420 3150 3200 3200
1000 1130 650 840
1400 1400 1350 1380
1880 1710 1600 1350
1280 1260 1160 1330
3120 3000 3110 3250
3770 3340 3900 3700
3420 3220 3120 3290
2740 2880 2850 2880
2840 2920 2710 2750
3800 3740 3440 3400
2100 1680 1650 1930
1820 1400 1060 1050
1400 1320 1350 1100
2200 1680 1640 1110
1940 1900 1820 1270
3260 3200 3250 3270
1960 1940 1890 1920
1320 1260 1140 1000
2840 3060 3650 3510
2060 1840 1720 1780
2200 1970 1900 2270
1260 1150 860 1150
3040 2840 2850 2670
2140 2180 2560 2720
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Let B be real symmetric n x n  matrices having orthogonal reductions

P^AP = A^, Q^BQ = A^,

where A^ = d ia g (A i(A ),A „ (^ )) and Ag = d iag(A i(B ),A „(B )), and the sets of 
latent roots {A (̂A)}”=i, {A (̂B)}f=i are each in descending order. (Thus we may say that 
the latent vectors o îA ^B  are ordered with respect to {Â  (A )}f=a, (A (̂B)}|Li respectively. ) 
Let the multiplicities of the roots {A^(^)}|Li and {AfB)}f^i in order of occurrence be 
respectively and so that

0=1 h=l

Theoeem. With the above notation,

tv A B  ^ tr A^Ag
or, equivalently,

with equality i f  and only i f  

where 0 , H  take the form

n n
s  U ^ B )  < S  U^)UB).
%=\ i=l

P^Q = O^H,

\ IH,
0 = 1  , H = l  I (1)

GJ \ S,
and {Cr̂ }J=i, orthogonal matrices of orders {^a(-S)}a=i respectively.

A n  equivalent condition is that there exists a common set of latent vectors for A  and B  
which are ordered with respect to both {XfA)}^^-^ and {X^{B)}i^^.

Proof. Let R  = P^Q. Then R  is orthogonal and
n n

t iA B  = tv A ^ R A sR J  = 2 2  X^{A)r%XAB),
i= \ 3 = l

where R  = {r f̂). The matrix whose ijth. element is is doubly stochastic (that is, each 
element is non-negative and each row and column sum is unity), so it is sufficient to  
show that, for any doubly stochastic matrix S  = (ĝ )̂, i

n n n
S  S  < 2  XU)MB). (2)
i = l 3=1 i=l
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For any pair in which u,v > e and both elements are positive, let

iS  = m in (5^ ,5j

and consider the operation of adding to and and subtracting the same amount 
from and This reduces to zero at least one off-diagonal element, preserves the 
doubly stochastic character of S, and increases the left-hand side of (2) by the non
negative amount

) ~  )}
If we clear the off-diagonal elements of the first row and column, then the second, and 
so on, it requires at most {n—lY  such operations to reduce jS to the identity matrix. 
(There are n{n— l) off-diagonal elements, but the operation on the final non-zero 
element in each row also clears the corresponding column.)

Equality is attained when
tr A j^R A ^R ^ = tr A^A^. (3)

It follows from equation (2) that the only products of roots which may appear on the 
left-hand side of (3) are those of the pairs {(A,g(X), A^(B))}f=i. Thus R  represents the 
combined effect of a rotation G  of the columns of P  which permutes the (Â (A )}|Li while 
preserving their order and a similar rotation H  of the columns of Ç. So = G^H, where 
G  and H  satisfy

GAj^CT =  A^, H A ^H ^  =  A ^.
The general forms for orthogonal matrices satisfying these conditions are given by (1).

Let N  be an orthogonal matrix whose columns form a common set of latent vectors 
for A and B and are ordered with respect to the roots of both A and B. Then

trAB = trAA^iV^AA^iV^ = tr A^A^.

Conversely, if there exist G, H  satisfying (1), then the columns of PG^  form the 
required set of latent vectors of A and B. This completes the proof.

If the roots of A are distinct then the condition for equality is that the (unique) 
ordered set of latent vectors for A also forms an ordered set of latent vectors for B. 
If B also has distinct roots the condition is that the ordered sets of vectors are identical.

We obtain theorem 368 of Hardy et al. ((l), p. 261) if, in (2), S  has the form of a 
permutation matrix.

A special case of this inequality with n  equal to 3 has been given by Hill (2) as a 
property of the inner product of two symmetric tensors. The method of proof, he 
indicates, involves showing that the stationary points of tr AB occur where the latent 
vectors coincide, that is, where

tiAB = 2 A,(A)A„(,,(B)
t'=i

and 7r{i) is a permutation of the numbers 1 to 3, He then inspects the six possibilities.
One application of the above result is to be found in the theory of multivariate 

statistical analysis: Maximum likelihood estimation of the dispersion matrix of a 
y?-variate normal distribution involves the minimization with respect to the positive 
definite matrix S of the function

log |2 |-f-tr^S-^
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where is a given positive definite matrix. The standard method of carrying out this 
minimization is to difierentiate with respect to each element of 2  ((3), p. 47). The 
theorem shows that the minimum value of the function, for fixed {Â (2)}f=i, is

2  (logA,(2) + A,(6f)/A,(2)},
i=l

and this occurs when S  and 2  have a common set of ordered latent vectors. The ith  
term in this sum takes its smallest value when A (̂2) =  so the minimum is
attained at 2 =  >S.

Note added in proof 21 October 1974. Since this paper was accepted for publica
tion it has been found that the above inequality is but a special case of a similar 
result for hermitian matrices proved by Richter (4) and Mirsky(5). It may also be 
derived from an inequality of Marcus(6), using theorem 368 of Hardy et at, ((l), 
p. 261). However, no condition for equality is given in any of these references. Also 
the proof given above is somewhat simpler than those appearing previously and may 
be generalised to apply to hermitian matrices with only minor alterations, for 
example, writing ‘unitary’ for ‘orthogonal’.

REFERENCES
(1) Habdy, Gt. H., Littlewood, J. E. and Pôlya, G. Inequalities, 2nd edition {Cambridge

University Press, 1952).
(2) Hill, R. On constitutive inequalities for simple materials, 1. J. Mech. FJiys. Solids, 16 (1968),

229-242.
(3) Anderson, T. W. A n  Introduxition to M ultivariate Statistical A nalysis (Wiley: New York,

1958).
(4) Richter, H. Zur Abschatzimg von Matrizennormen. Math. Nachr., 18 (1958), 178-187.
(5) Mirsky, L. On the trace of matrix products. Math. Nachr., 20 (1959), 171-174.
(6) Marcus, M. An eigenvalue inequality for the product of normal matrices. Amer. M ath.

Monthly, 63 (1956), 173-174.



Biometrika (1975), 62, 2, p. 461 461
Printed in  Great Britain

An inequality with application to multivariate analysis
B y  C. M. THEOBALD*

School of Mathematics, University of Bath, Avon

Su m m a r y
An inequality for the trace of the product of two symmetric matrices can be used to 

simplify the proofs of a number of results in multivariate analysis. This is illustrated on two 
problems: estimating the parameters of a multivariate normal population, and estimating 
a system of linear functional relationships between the mean vectors of k multivariate 
normal populations with the same dispersion matrix. A new result is proved for the corre
sponding structural relationship problem.

Some key words; Inequality; Linear functional relationship; Linear structural relationship; Matrix 
trace ; Maximum likelihood estimation ; Multivariate normal distribution.

1. I n t r o d u c t io n

There are several instances in multivariate normal theory in which the likelihood of a 
set of observations involves the trace of the product of two symmetric matrices. Richter 
(1958) has proved an inequality for such matrix traces and Theobald (1975) has given an 
alternative proof and a necessary and sufficient condition for equality; these results are 
stated here as Theorem 1. It is shown in the present paper that other inequalities may be 
deduced which simplify the proofs of some previously known results on maximum likelihood 
estimation and facilitate the derivation of new results.

For the basic inequality we require the following notation: let C  and D  be real symmetric 
m y.m  matrices with latent roots XfC) and XJD) and corresponding latent vectors and 
respectively (t = We may assume that the sequences {Â ((7)}, {Â (D)} are non-
increasing, in which case we may say that the latent vectors of C  and D  are ordered with 
respect to the latent roots. In what follows we shall use the same notation for the latent roots 
of any square matrix. In matrix terms we have C  = PAqP‘ and D  — QAj)Q\ where 
Aq = diag{Ai((7),..., A„̂ ((7)}, P  = (p̂ , etc. Let the multiplicities of the roots XfC)
and A^D) in order of occurrence be, respectively, mg{G) {g — 1,..., c) and m̂ (Z)) {h = !,...,<?), 
so that

2  rng{G) = 2  nijfD) = m. 'flf=l A=1
The following inequality of Richter (1958) has been given a necessary and sufficient 

condition for equality by Theobald (1975).

T h e o r e m  1. With the above notation,

tr {GD) ^ tr (A  ̂Ap)

* Now at Department of Statistics, University of Warwick, Coventry.
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or, equivalently,

m m
2  X,{CD) ^  2  X,{G)X,{D),i=l t=l

with equality i f  and only i f  P'Q = G'H, where G and H  take the form

G = d i a g G c ) ,  H = diag(Hi, (1)
with G g and being orthogonal matrices of orders mg{G) and m^D), respectively {g = 1, 
h=  i,...,d ). An equivalent condition is that there exists a common set of latent vectors for G and 
D which are ordered with respect to both XffJ) and XfJ)).

Corollary. I f  D is nonsingular then

tr (CD-I) ^ tr (Ac A^ )̂, 

with the same condition for equality as before.

The proof is immediate if we replace D by — D~^.
The next result involves the simultaneous reduction of symmetric matrices. Let D be 

positive-definite and let C7 be a symmetric m x m  matrix. Let the roots in descending order 
of the equations

|C-^D| = 0, \U-<pD\^0 (2)
be, respectively,

A(C), d>i{U) (t = l,...,m),

and let = diag{^i(C),..., 0„j(C)}, etc. It follows (Rao, 1973, p. 41) that there exist non
singular m x m  matrices Nq andN^j such that

D  = NaN'c, G^Na^cNc, (3)
D — NijNu, Ü = (4)

Any column of Nq and which corresponds to a simple root of (2) is unique apart from 
reversal of sign. It is easily verified that N^^Nq is orthogonal.

Theorem 2. With the above notation

tr{C(D+[/)-!} ^ tr{0c(4 + 0^)-i}, 

with equality i f  and only i f  (3) and (4) have a common solution.

Proof. We have

tr {C(D-f C7)-i} = tr [{ÆE?:Â 0c%(^u)-"} (4 +
^ tr (0c (^  +

since, if J  is any m x m  orthogonal matrix, has the same latent roots as 0^. In terms
of Theorem 1, P = N^^Nq, Q = I, and the condition for equality is that

Nû^Na = HuGc, (5)
where Gq and Hjj have the form of (1), the orders of the submatrices being given by the 
multiplicities of the roots of (2), Equation (5) may be rewritten

NcG'c = N^H[j. (6)
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But the orthogonal transformations Nq NqGc and Nq -> NqH q are precisely those which
leave (3) and (4) unaffected, since the forms ofC^ and are such as to satisfy = 0^
and Hq ̂ qHq = 0%̂. Thus (6) amounts to the statement that (3) and (4) have a common 
solution.

In §§ 2 and 3 we give examples in which the above Theorems are useful for simphfying the 
derivation of known results in maximum likehhood estimation; in §4 a new result is 
obtained.

2. M ultivariate normal population
Suppose that n independent observations are taken on ap-variate normal random variable 

with mean vector /t and dispersion matrix S, both unknown. If we ignore a term in p  which 
reduces to zero at the sample mean, maximization of the likelihood amounts to minimization 
with respect to S of

wlog|S|+tr(/SS~i), (7)

where S  is the matrix of corrected sums of squares and products, assumed to be nonsingular.
We may now use the Corollary to Theorem 1 to show that the minimum value of (7) for 

fixed Ai(S) {I = 1, ...,p) is

(8)

and this occurs when S  and S have a common set of ordered latent vectors. The Zth term in (8) 
takes its smallest value when Aj(E) = Xi{S)ln, so that the minimum is attained at'L = Sfn.

Another algebraic proof of the same result is given by Watson (1964), who applies to 
the result that for any square matrix A, \A\ ^ exp {tr {A—I)}.

3. Linear eunctional relationships
Let there be p-variate normal populations 2 ),..., 2) with a common

nonsingular dispersion matrix. Rao (1973, pp. 556-60) considers the problem of examining 
whether the mean vectors are confined to an /-dimensional hyperplane (/ < Jc — 1), that is, 
whether they may be expressed as

F's ~ /̂O "t" ~ 1 » • • • > ̂)>
where /Iq is an unknown fixed vector in the hyperplane, E  is an unknown fixed p x r  matrix 
of full rank and cCg is an unknown /-vector. Equivalently, if F  is a p x (p — /) matrix of full 
rank satisfying F'E  = 0, then the components of Pg are subject to [p — /) functional relation
ships expressible as

I ' = 9 (5 = 1, (9)

Rao calls (9) a structural relationship, but functional relationship corresponds to the more 
usual terminology of Kendall & Stuart (1967, pp. 375-8).

Suppose that Ug observations are taken from N^ijig, S) and that Xg is the sample mean 
{s = \,... ,k ) .  Then, for fixed S, the likelihood is where

t = 2  rig{Xg-pgYi:-'^{Xg-pg). (10)
S =  1
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Let X = 'LngXgl'Zug be the overall mean,

^ = 2  ng{Xg-x){Xg-xY 
8 =  1

the matrix of between groups corrected sums of squares and products, and ÿj {I = 1, ...,p) 
the roots of |D — 0S| = 0 in descending order. I f  k > p, then with probability one B  is non
singular and the roots are distinct. In deriving the likelihood ratio test for the hypothesis Hq 
that the {/«J lie on an /-dimensional hyperplane, Rao shows that

k
min 2  ng{Xg-pgY'^~H^s-/^s) = Ç^r+i+-*-+0p- (H)
Ho 8 =  1

He proceeds by transforming Xg to 2-^^, although it is not clear whether the symbol 24 is 
intended to denote the symmetric square root of 2  or merely a matrix L  satisfying 2  = LL'. 
We can simplify the proof of (11), and also derive the maximum likehhood estimator of Pg, 
if we define this transformation more precisely and then use Theorem 1, as follows.

There exists a nonsingular p x p  matrix M  such that

2  = MM', B  = M ^M ',

where 0  = diag (0^,..., 0^). If the are distinct then M  is unique, apart from multiphcation 
of any subset of its columns by ( — 1). Let Zg = and ĝ = M~^pg, so that the between-
groups matrix for the transformed observations is M~^B{M')~^ = 0 , and (10) becomes

Ug{Zg—^gY {Zg — ̂ g), (12)
8 =  1

The hypothesis Hq apphes equally to and amounts to the assumption that there exists 
a point 0̂ in the hyperplane, a p x /  matrix R  with orthonormal columns, and a set of 
/-vectors Cg{s = i,... ,k )  such that

~ (  ̂~  l,...,k ). (13)

The columns of R  are chosen to form an orthonormal basis for the /-dimensional subspace 
containing (a = l,...,k ) . Apart from the factor rig, the 5th term in (12) is

î s i ŝ ~^0~  ' (f4)
Minimization with respect to Cg amounts to regressing ^  The minimum of (14) is
the residual sum of squares which, for fixed and R, is

i^s~^oY (f^)
since R'R = h, and this is attained when

Cs=̂  B ’iZg-^o), (16)

The expression to be minimized with respect to ĝ, R  is from (12) and (15),

tr I 2  Ug{Zg — ̂ g) {Zg — ̂ qY {Ip — jBD')| = tr |0 -f  ̂2  ̂ (̂  ~  io) ~  ̂ o)'j “  ̂ B']

Since Ip — RR' is positive semi-definite, this is a minimum with respect to ĝ when ĝ = z. 
We now use Theorem 1 to minimize tr {0(^  — DD')}, or to maximize tr[0{ — (7p — DD')}], with
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respect to R. The roots of Ip — RR' are zero, with multiplicity /, and unity, with multiplicity 
(p — r), so that the minimum under Hq of (10) is + ... + as required. The columns of R
form a set of latent vectors corresponding to the zero roots of — {Ip — RR'), so the condition 
for equality is that R' = {H'̂ , 0), where is /  x /  and orthogonal. Substituting in (16) and 
(13), we have

In terms of the original variables (17) becomes

fig = x + M f,M -W {Xs-^, (18)

where consists of the first r columns of M  and {M~ )̂  ̂of the first r rows of M~^. The matrix 
M  is given h jM  = 2Æ, where the columns of K  are solutions of

{B~~(j){ïi)ki = 0,

scaled so that B{Zki = 1 (( = 1, ...,p). It is not in fact necessary to carry out this scaling in 
calculating (18). As Rao points out, 2  may be estimated from the matrix of within-groups 
corrected sums of squares and products, although this is not the maximum likelihood 
procedure.

4. Linear structural relationships
As in § 3, we assume that there are k, p-variate normal populations with a common 

nonsingular dispersion matrix 2. In this case, however, the mean vectors, instead of being 
fixed but unknowm, are independent reahzations of a degenerate random p-vector X  
distributed as Np{p, 0), where p  and 0  are unknowm. The rank of 0  is taken to be r < p, 
which imphes that there are (p — r) linear relationships between the components of X, which 
may be expressed as F'(X—p) = 0, where F is any p x (p — /) matrix of fuU rank satisfying 
F'0 = 0. We shall consider the problem of estimating p and 0  given 2 and a single observa
tion Xg on each population.

The k observations are independently distributed as Np{p, 2  -|- 0), so that the log likeli
hood is

-  log 12 -f- 01 + tr {T(2 + 0)-̂ } -f- ktjc - p)' (2 -f 0)-  ̂(z-p )],

where T  is the matrix of corrected sums of squares and products. As in § 2 the maximum with 
respect to p occurs at p = We have to minimize with respect to 0

^log |24-0 | 4-tr{T(2-f-0)-^}. (19)

In accordance with the notation introduced before Theorem 2, let 0j(7^)^iid0j(0) (? = 1, ,..,p) 
be the roots in descending order of ^

IT  — çi21 = 0, 10 — 021 = 0,
respectively, Oy = diag{0i(T),..., (j>p{T)}, etc., and Ay and 'Nq be matrices satisfying

2 = A^Ay, T  = Ay0yAy, T i =  N q N 'q , B  =  N q ^ q N 'q . (20)
Since 0  has rank r, 0r+i(0) = ... = 0^(0) = 0 and (19) becomes

A;log|2 | -kA; 2  log(1 -K0,(0 )} + tr{T(2 4- 0)- }̂. (21)
1 =  1
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Theorem 2 shows that, for fixed 0@, (21) is minimized by

A;log|2 |+& 2  log{l + 0i(®)}+l î‘{Oy(/+O0)-̂ }
1=1

r
— A: log 2 + 2 z=i + 2  A(T), (22)î=r+l

the condition for equality being that (20) have a common solution. The ?th term in (22) 
takes its smallest value when 0j(0 ) = {0,(T)/Æ}—1, and this is the maximum likelihood 
estimator provided that 0y(T) > k. This condition must hold in order for the estimators 
of the 0j(0 ) {I = 1, . . . , /) all to be positive, since the estimator of 0 must be nonnegative- 
definite. If it does not hold for a particular set of data we may wish to consider a smaller 
value for /.

l f k > p  then with probability one the <f>i{T) are distinct, Ay is unique and the condition 
for equality is that the first r columns of Nq equal the corresponding columns of Ay. Thus if 
0y(T) > k and k > p w e  have, following the notation of (18)

0 = (Ay)i(Oy/̂-/j,)(Ay)̂.
As in § 3, it is possible to estimate 2  if we have more than one observation on each population. 
Observations on the same population are correlated, but, if the numbers of replications are 
equal, the method of estimating 0 is a straightforward generalization of that given above.
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