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Summary.

The development of a microprocessor based digital flight control 

system for a particular R.P.V. is described. The tasks required of 

this system are defined, and thereafter, the hardware circuits and 

the software structure necessary to implement a prototype are 

presented. The autopilot control laws are inferred from z-plane root 

loci, and then confirmed using digital simulations of the de-coupled 

roll and pitch attitude loops. The problems of the finite wordlength 

implementation of the control laws are discussed, and then both 

hybrid simulation pnd actual flight results are used to prove the 

performance of the prototype.

To exploit the adaptive capabilities of a software based system, 

a sliding mode variable structure control law is developed for the 

roll attitude loop. Digital simulations are used to show that signif­

icant improvements in sensitivity reduction can be achieved under some 

conditions. These improvements are lost if a realistic servo-actuator 

model is employed. Another objective, namely the reduction of the 

disturbance error induced by trim imbalance, is maintained provided 

a reduced order switching function is used.
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Chapter 1 Introduction.

1,1 Introduction to Remotely Piloted Vehicles.

Within eleven years of the Wright Brothers* first flight in a powered 

aircraft in 1903, work began to reverse the process and develop 

functional un-manned aircraft. The advent of air warfare compounded 

the risks in what was already a hostile environment, so that in 1914 

the War Office asked Professor A.M.Low to design a remotely 

controlled pilot-less aircraft (1). This was originally intended as a 

flying bomb for use against Zeppelin airships and as such was more of 

a missile than thrat which today is called an R.P.V.(Remotely Piloted 

Vehicle). This particular aircraft was never completed, but later 

projects by Low et al led to the first successful flight of an R.P.V. 

in 1924, and the first mass produced R.P.V. This was known as the 

Queen Bee, of which 420 were built between 1934 and 1943.

Though no rigid nomenclature exists, the term R.P.V. has now come to 

mean a specific type of pilot-less vehicle. In attempting to define a 

modern R.P.V. consideration must be given to the manner in which it 

is controlled, and the purpose for which it is intended. A suitable 

definition might be; that an R.P.V. is an aircraft that is controlled 

directly, but remotely by a human pilot, combining commands received 

at some time during the flight with on-board sensor information to 

achieve varying degrees of automatic control. It is not usually 

considered to be expendable, and so some means of recovery will be 

provided.

The enthusiast’s model aircraft is excluded because it carries no



sensors, as are missiles which clearly are not recoverable. 

Furthermore, if the aircraft is totally autonomous, performing a 

fixed flight routine, it cannot be considered as a true R.P.V. as it 

does not receive commands while in flight. Such a vehicle is called a 

Drone (2),

Most aerial targets, flying bombs and decoys are operated in drone 

form, whereas true R.P.V.s are more commonly used in situations where 

interaction with the operator is required. This usually involves some 

form of reconnaissance. To date, sadly, all R.P.V. development has 

been for military purposes. They are, however suitable for certain 

civil roles being particularly effective for low speed, low altitude 

work. Traffic monitoring, transmission line checking, search 

operations and even crop spraying might be achieved with cost savings 

over a manned light plane.

The aircraft for which this work was carried out is the Stabileye Mk 

3, a mini R.P.V. designed and produced by the R.P.V. Technology 

Group, British Aerospace PLC, This is a general purpose payload 

carrying vehicle as shown in Fig. 1. Stabileye is used to provide an 

airborne platform for customer's electronics in situations where 

conventional aircraft would be unsuitable. It can be operated in a 

variety of modes, ranging from direct pilot command of the control 

surfaces to a completely automatic sequence of manoeuvres. The 

aircraft «will be described in more detail in Chapter 2.

1.2 The application of microprocessors to R.P.V. control.

The purpose of this work was to develop a microprocessor based flight



control system for the R.P.V, All previous Stabileye autopilots have 

employed analogue control loops using a combination of operational 

amplifiers, analogue switches and discrete logic. However the 

transmission systems to and from the ground station, referred to as 

telecommand and telemetry, and the servomotor driving functions, are 

all of a digital nature. Therefore, much of the circuitry was 

required to perform analogue-to-digital and digital-to-analogue 

conversions. While these methods are adequate, they become very 

complex as the number of operational modes increases. Furthermore, 

many of the anticipated developments in R.P.V. technology require 

data storage of some form, such as pre-programmed flight plans, for 

which the conventional system would require considerable 

modification. ,

The advent of low cost microprocessor technology has provided the 

means to produce a digital computer autopilot system, smaller than 

its analogue counterpart, for comparable cost. Such a system would 

require less signal conversion hardware and would have its own data 

storage medium. Of more importance, however, are the advantages to be 

had by defining the control Law in software. The system becomes far 

more flexible, (attractive for a low volume research application), 

less susceptible to variation through aging and temperature effects, 

and more easily repeated from one unit to another. Also, adaptive 

control strategies are much easier to implement.

A microprocessor based system design is dependent on the trade-off of 

hardware circuitry and software programming such that, as a general 

rule ,the more complex one is, the simpler the other becomes. Clearly 

to obtain maximum benefit, the hardware should be as simple as



possible, while maintaining an acceptable margin of safety in the 

percentage usage of c.p.u. time.

In this application, the optimum solution would be one that treated 

the control, telecommand, and telemetry systems as a whole, using 

software methods for all encoding and decoding operations. However, 

the need to maintain low overall development costs required that the 

telecommand, telemetry and sensors should remain unaltered from the 

existing analogue scheme. Hence the equipment described here is 

intended as a first prototype only, to prove the viability of a 

microprocessor based flight controller.

1.3 Development of the control laws.

The development of the control loops first required that the dynamics 

of the aircraft with respect to the control surface deflections be 

defined. The equations of motion are derived from wind tunnel 

measurements, which are simplified using certain assumptions to give 

the decoupled, fixed velocity, short period transfer functions that 

are used in the control analysis.

The digital autopilot is necessarily a sampled data design problem 

which involves, either, digitisation of an existing analogue control 

law or redesign in the discrete domain. The latter method was chosen, 

so the aircraft transfer functions had to be converted to a suitable 

form to allow the gains and compensators to be defined directly. This 

transformation process was carried out, in part, using matrix and 

polynomial solution packages on a mainframe computer system, to give 

the z transforms of the transfer functions and the z plane root loci.



These were used to suggest the type of control, and then the gains 

were confirmed by checking the step responses at various airspeeds in 

digital simulations of the loops. Constraints in the position and 

rate of the controlling member were used at this stage.

The next process was tb prove the controller as a complete unit in 

the presence of system non-linearities and noise sources. This was 

done using a hybrid simulation, whereby the flight control 

electronics were connected to analogue computer models of the 

aircraft transfer functions. In this way, the effect of coefficient 

quantisation and other implementation errors could be examined. The 

final stage in the development of the fixed gain control laws was to 

prove the system in a flight trial.

Parts 1 and 11 of this thesis deal with the development of the 

digital flight control system up to the point where it is flight 

tested with a fixed structure control law. As an extension of this, 

part 111 investigates the possibility of adaptive control. This is 

quite separate from the material in the first two parts, and will not 

be described here. An introduction to the particular form of adaptive 

control used, namely sliding-mode control, is given in Chapter 8.0.



Part I DESCRIPTION OF THE SYSTEM.



Chapter 2 Introduction to the Flight Control System.

2.1 The aircraft.

A general view of the aircraft is given in Fig. 1. The flying 

surfaces are constructed from polystyrene foam with wood veneer skin 

while the fuselage, booms and all necessary strong points are made of 

glass reinforced plastic in various forms. The take-off weight is 

64kg, of which 25kg are attributed to payload or ballast. Thrust is 

provided by a 25 h.p., twin cylinder two-stroke engine driving a 

pusher propeller, and electrical power is provided by batteries. This 

configuration is chosen to allow unobstructed forward view, desirable 

for its primary function as a reconnaissance platform. Typically the 

aircraft will operate with airspeeds between 22 and 50m/s. The stall 

speed is, approximately 17ra/s with a nominal cruise speed of 40m/s.

The payload is located in the forward compartment, while the 

instrumentation pack and fuel tank, which should be at the 

approximate centre of gravity of the aircraft, are placed in the mid 

and rear compartments respectively. The airframe was designed to have 

good natural stability in all planes for satisfactory, unassisted 

pilot control. Elevator and rudder deflections are linear but the 

ailerons have differential action provided mechanically by an offset 

crank.

The aircraft is launched using a pneumatic ram and recovered by 

deploying a parachute. The risk of damage on landing is reduced by 

the use of a cushioning airbag.



2.2 The ground station.

The complete R.P.V. system consists of the ground equipment and one 

or more aircraft. In its simplest form, the ground station is 

composed of a telecommand transmitter, with some form of pilot 

control unit, and a telemetry receiver with a means of displaying 

important information. If the aircraft are operated beyond line of 

sight then a method of pinpointing their position is required. 

Usually, radar tracking is used, but real time video images might be

adequate for this purpose, if the operator is familiar with the area.

The exact configuration of the ground station depends upon the

payload and thç purpose of the mission.

Full details of the telecommand (3) and telemetry (4) systems

are beyond the scope of this report. However a brief description of

their data structures will be given as these are directly related to 

the functions of the flight control system.

The telecommand transmission passes information to the aircraft. 

This will include demands for the control loops, payload manipulation 

and flight mode selection data. Up to 16, 8 bit channels are 

available with the following definitions:

Channel 0 - null, no new data 

Channel 1 - roll data 

Channel 2 - pitch or height data 

Channel 3 - yaw or heading data 

Channel 4 -\throttle or airspeed data 

Channel 9 - payload command word 

Channel 10 - command word



The remaining channels are unspecified and can be configured for 

payload use.

The transmission is continuous with pitch and roll information 

being broadcast alternately, whereas other functions are only 

broadcast when they change in value. As the order of transmission is 

random, an 8 bit address word is required to define the channel 

number and the aircraft for which the information is intended. Each 

command frame of 48 bits is composed of a synchronisation word of 16 

bits, an 8 bit combined vehicle and channel address with its shuffled 

complement, and an 8 bit data word with its shuffled complement. The 

bit rate is 2048 baud so the aircraft receives a new command frame 

approximately 43 times a second. When no new information is available 

or when the pilot control unit has been de-activated, the null 

channel can be broadcast to maintain the link and prevent the flight 

control system initiating a failsafe routine.

Telemetry is the process of returning information to the ground 

station to provide a real time record. This data will include sensor 

measurements, actuator demands and system status. Up to 24 analogue 

and 6 digital channels are catered for, compiled into 32, 8 bit words 

as shown in Fig. 2, (channels 1 and 2 are used as a synchronisation 

word ). These are broadcast in numerical order, the data rate being 

4096 baud, so that the sampling period of any particular channel is 

0.0625s. Full details of the assignment of the telemetry channels for 

this system are given in Appendix A.

2.3 Modes of operation.

There are four modes of flight, each representing a different degree



of R.P.V. autonomy. These are, direct pilot control, autopilot, 

avionics and failsafe, the latter being a fixed sequence of 

manoeuvres performed in the event of loss of the telecommand link.

The flight mode is selected by bits in channel 10, the command word, 

which dictates the interpretation of the information in the pitch, 

roll and yaw channels. The meaning of each bit in the command is 

given in Fig. 3.

In the direct pilot mode, the pitch, roll and yaw information 

commands the position of the control surfaces in the same way as a 

model aircraft. To be of practical use, the R.P.V. must be within 

line of sight. This mode requires a greater level of skill from the 

operator and would only be used if there was reason to doubt the 

performance of the autopilots, such as during preliminary flight 

trials or in the event of instrument failure. Direct pilot command of 

the throttle, parachute deployment, airbag deployment and ignition 

cut facilities are also provided.

Selecting the autopilot mode closes the pitch and roll control 

loops, so that the values in channels 1 and 2 are now interpreted as 

desired attitudes. The elevator and aileron deflections are 

calculated in control laws which use measurements from a dual axis 

attitude gyro to provide feedback information. A choice of algorithms 

is available, fixed gain replicas of the existing analogue control 

laws, and secondly, variable structure routines. The sign conventions 

used are given in Chapter 5.

The third flight mode is the avionics mode which incorporates 

the pitch autopilot described above in a height-lock controller. In 

the height-lock mode, information derived from a barometric sensor is 

used to attempt to maintain the aircraft at a desired height above a



previously defined zero level. The height demand is specified in the 

pitch channel. The throttle is under direct pilot control and must 

first be adjusted to provide adequate thrust to allow the aircraft to 

climb if necessary. The pitch autopilot limits the attitude, so that, 

for a large height error and a fixed throttle setting, a reasonably 

constant rate of climb will be achieved.

The final flight mode is the fully autonomous failsafe mode 

which takes command of the aircraft in the event that the telecommand 

link is lost. An interruption in the link could occur because the 

aircraft has gone out of range, or due to a failure at the 

transmitter or receiver. There may also be interference from external 

r.f. emitters. The receiving unit uses synchronisation bytes and 

shuffled complement bytes to detect errors, but no attempt to correct 

them is made and erroneous data is simply rejected. Under these 

conditions, the aircraft will continue to perform the last command it 

received which means it is effectively out of control. Clearly this 

is undesirable so some automatic recovery scheme is required.

The action of the failsafe procedure is complicated by the 

presence of an analogue back-up flight control system, included until 

the digital system is proven in flight. This back-up has its own 

rudimentary failsafe procedure in addition to that provided by the 

software. The choice of analogue or digital control systems can be 

made via the command word, and, in the event of loss of telecommand, 

each system will provide its own failsafe.

If telecommand loss occurs during operation under analogue 

control, the analogue failsafe will be used. This provides the bare 

minimum of action necessary to bring the aircraft to the ground. When 

the telecommand fails, a delay of 2.5s will occur before the

10



parachute and airbag are deployed and the throttle is closed, thus 

shutting down the engine. The telecommand can resume control at any 

time during the routine. An oscillating bit in the telemetry 

indicates that the analogue failsafe has taken place. This signal, 

which has a period of about 5.0s, is also that used to operate the 

parachute and airbag. The routine will take place at any height and 

so the parachute may not necessarily have time to deploy properly 

when flying at low altitudes.

Alternatively, if the receiver detects loss of r.f. while under 

digital control, a flag is set in the telemetry to inform the ground 

station of the condition, and a software failsafe may be initiated. 

This is more flexible than a hardware based sequence, the only 

limiting factors,being the sensor information available, and the 

amount of programme storage given over to a failsafe routine. In the 

extreme, with navigational data available, the R.P.V. can continue 

with a pre-programmed mission, or return to the ground station before 

landing, thus reverting to the status of a fully autonomous drone.

The failsafe software in this instance duplicates the procedure 

provided by the existing flight control system.

A timing diagram of the software failsafe is given in Fig. 4 and 

a description follows. If a delay of 0.5s has occurred since the last 

command, the autopilot and height lock are selected with a demand of 

1000m, and full throttle is requested. This gives full pitch-up while 

roll and rudder demands are requested to make the aircraft climb in a 

spiral to 100m, This is to maintain the aircraft in approximately the 

position where contact was lost, while achieving a height which 

ensures safe deployment of the parachute. If the aircraft is above 

100m, this phase is omitted. At this height, the roll attitude is set
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to zero and a count of 5.0s is commenced. At any time up to the end 

of this period, the procedure can be halted, thereafter the throttle 

is closed, a further delay of 1.0s is observed, then the parachute 

and airbag are deployed. Any resumption of telecommand will reset the 

failsafe , so, if the link becomes intermittent and a failsafe is 

deemed necessary, the transmitter should be turned off by the 

operator.

While many different modes of control could be used (throttle to 

control height, elevator to control airspeed for example), the above 

were chosen as most of them duplicate facilities already proven with 

Stabileye. It is anticipated that a fully developed system would have 

a wide selection of flight modes from which those most suited to the 

payload could be taken for each individual mission.

2.4 Functions of the Digital Flight Control System, (DFCS).

The airborne electronics, which are based around a microprocessor 

system, are required to receive, interpret and perform commands,

whether derived from the operator or the payload. This will involve

gathering information, making decisions and then providing position 

information for the control surfaces. At all times, the security of 

the system must be maintained so a malfunction must be detected and 

acted upon. The functions of the electronics are thence as follows: 

Receive and decode telecommand data 

Gather information from sensors 

Receive payload commands 

Perform control laws 

Drive control surfaces

12



Operate parachute etc.

Monitor system status for telemetry

Detect errors and take corrective action

Furthermore, as,some of the tasks take place in dedicated 

hardware, and some in software, the correct synchronisation of the 

two is essential. A functional block diagram of the system is given 

in Fig. 5 showing which activities are performed by the processor. 

Each function will now be described more fully with details of 

hardware and software design given in Chapters 3 and 4.

2.4.1 System synchronisation and servomotor driving.

A sequential system, such as any single microprocessor based scheme, 

implies that activities be carried out one at a time, usually within 

a fixed cycle. It is necessary that the timing of the separate 

operations be arranged so as not to interfere with one another, and 

in such an order that all the information for an operation is 

available when required. Some activities must be carried out at a 

constant, predetermined rate, such as sensor measurements in a 

sampled data scheme, while others remain flexible. The timing of this 

system was dictated by the nature of the servomotors. These operate 

on pulse width modulated data provided at a fixed update rate. The 

pulse repitition period is 25ms so this was also chosen as the 

sampled data period. All system timing considerations such as delays, 

lapsed time checks etc. are achieved in software using multiples of 

this period, referred to as the System cycle.

The full range of a servomotor's movement is achieved by
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supplying it with pulse widths varying from 0.9 to 1.9ms. By 

interleaving these pulses into the System cycle as shown in Fig. 6, 

eight servomotors can be driven by one driver circuit, thereby 

reducing the complexity of the hardware and spreading the current 

load. This leads to a sub-division of the System cycle referred to as 

the Servo period (=3.125ms ). It is this period that is actually 

generated by the hardware, using a programmable count-down timer on 

the c.p.u. card, which produces synchronising interrupts, (level 3). 

The timing for the System cycle is determined by counting eight Servo 

periods. Hardware and software details for the servomotor driver are 

given in sections 3.2.3.3 and 4.4.4.1.

The telecommand and telemetry activities are provided by 

separate subsystems, each having their own timing, independent of the 

processor. Telecommand information is received approximately once per 

System cycle, the data being latched until the processor is ready to 

deal with it. Similarly, the telemetry is transmitted at somewhat 

less than once per cycle, so the processor stores the data in 

permanently enabled latches until such time as the telemetry encoder 

requires it.

2.4.2 Receiving and decoding telecommand information.

The receiver carries out serial-to-parallel conversion of the 

telecommand signal, extracts and validates the channel address and 

data, and then presents it at its output for a period of 7us. This 

information is stored until the processor is ready to deal with it. 

"New data ready" is signalled to the system using a low priority 

interrupt which is serviced once per System cycle. The act of reading
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the telecommand port clears the interrupt flag, making it ready for 

the next command frame. All other decoding and data-directing is done 

by software.

The interpretation of this data depends on the state of certain 

bits in the command word which are monitored individually during the 

control routines. Certain functions such as parachute and airbag 

deploy, and ignition cut are confirmed by waiting for a given number 

of active commands before proceeding. Full descriptions of the 

hardware circuitry and software routines are given in sections

3.2.3.6 and 4.4.3.7.

2,4.3 The automatic control loops.

These all require an input demand and a feedback signal in order to

produce some form of error value to drive the servo-actuators. All of

the summing junctions, gains, compensators etc. are performed 

numerically in software, so that the only dedicated hardware 

components are the sensors and the means of reading them. The basic 

complement of instruments is as follows:

A dual axis attitude gyro (pitch and roll )

A rate gyro in the yaw plane (telemetry only)

A barometric altitude sensor

A barometric airspeed sensor (telemetry only)

Further details of these are given in Appendix B,

As most of the sensors produce analogue output signals, they 

have to undergo analogue-to-digital (A/D) conversion before being 

used in the control loops. This is achieved using an eight channel, 

multiplexed input A/D converter under the control of the software.
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The A/D converter itself has a conversion time of 25us, which is fast 

enough to eliminate the need for a sample and hold circuit, and can 

be operated by simply delaying the processor during conversion 

without incurring a large time penalty.

The software routines all use fixed point, two's complement 

arithmetic with rounding and overflow correction where necessary. If 

compensators are required to achieve the desired specifications, 

these are accomplished using software implementations of digital 

filters. A complete description of the design of the sampled data 

control loops is given in part 2 of this thesis, with the software 

routines presented in Chapter 4.

2.4.4 Monitoring of the system status.

In-flight monitoring is used to provide a form of record, and to give 

an indication of the health (calibration and continued functioning) 

of the system. Information implying catastrophic failure of the 

processor is used to select the analogue back-up, which is discussed 

in the next section. Loss of the telecommand link will engage one of 

the automatic failsafe procedures. The remaining error data is 

transmitted to the ground.

The types of information telemetred are as follows:

A) All of the sensor measurements available to the control loops.

B) Control surface demands.

C) System status flags derived from the software, such as whether the 

system has initiated a software failsafe, or is above demanded 

height, etc. These flags concern the status of the software routines 

and the calibration of the circuitry within the digital control unit.
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D) System status flags derived from the hardware, such as active 

analogue failsafe, state of charge of the battery stacks, etc. These 

flags indicate the condition of the system as a whole, and, unlike 

the above, will continue to be meaningful in the event of a processor 

failure.

As the telemetry operates independently of the System cycle, this 

information has to be available throughout the period and so must be 

stored in hardware interface latches. Furthermore, a certain amount 

of signal conversion has to be carried out for some functions, to 

make them compatible with the inputs to the telemetry encoder unit. 

This includes D/A conversion for the software generated analogue 

functions, and voltage level shifting for the bipolar sensor outputs. 

The hardware and software associated with these is given in sections 

3.2.3.7 and 4.4.3.3

2.4.5 Failure detection and the back-up system

In larger systems, usually where life is at stake, the approach to 

this problem is to introduce redundancy in the flight control system. 

In order to reduce the probability of a complete failure to an 

acceptable level ( often of the order of 1 in 10 million flying 

hours), triplex or quadruplex systems are called for, each with their 

own supplies, sensors etc.. These are connected in a majority voting 

scheme so that, if one or more systems give erroneous results, they 

are ignored. Due to the size and mission of the Stabileye aircraft, 

this was not sensible here. The cost and weight of a triple or 

quadruple redundant system would make such a level of security 

prohibitive for a mini R.P.V. Evidently -however, some degree of
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error detection and correction is required.

The types of errors to be catered for are, loss of command link, 

which results in a failsafe procedure, and failure of the processor 

system. This may be caused by conditions such as environmental noise, 

device failure, software errors, power loss etc.. Though some of 

these might only degrade the performance of an analogue autopilot, 

they are all likely to prove catastrophic in a digital system.

Careful design of the software seeks to eliminate the occurrence of 

software errors, but the others require active detection and, if 

possible,, corrective measures. A software latch-up as a result of 

noise or power supply interruption is usually cured by resetting the 

processor, but more permanent failures require the use of a back-up 

system.

This is achieved by relinquishing command of the actuators to a 

basic analogue controller provided by the receiver unit. This gives 

direct pilot command and a rudimentary failsafe routine which will 

continue to function as long as power supplies to the receiver and 

servo-actuators are operational. The back-up system can be selected 

by the pilot via the command word, or automatically in the event that 

the processor malfunctions. The digital and analogue systems are 

interfaced in the controller selection unit which operates on the 

principal of two tri-state buffers driving the actuators, only one of 

which can be enabled at one time. If the analogue system is engaged, 

the digital controller can still be monitored via the telemetry. 

Though this provides redundancy of a sort, it does not incur the cost 

and weight penalties of a true duplex scheme. However it does not 

provide the same degree of protection as that provided by complete 

duplication.
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Battery failures could still prove fatal if used by the back-up 

as well. Duplication of the battery supplies is discounted on the 

grounds of weight, so each supply is composed of a main stack capable 

of 2 hours duration and a reserve with a capacity for 15 minutes. 

These are so connected that a cell failure in one will not harm the 

other. Providing duplicate sensors is unrealistic due to their cost, 

so a failure, which might manifest itself via the telemetry, requires 

that the autopilot be dis-engaged. Servo failure can only be overcome 

by duplication and some form of clutch mechanism. This is not 

realistic here.

An error in the processor system will result in a disturbance of 

some form. Temporary problems, such as corruption of the programmable 

timer data, or the Servo cycle counter, will be restored by the 

software itself, as this re-loads all parameters and pointers at the 

start of the System cycle, A disturbance resulting in latched-up 

software (namely stopped or looping upon itself), or errors due to 

hardware failures will not do this. Hence an independent method of 

checking that the processor is still running is required.

This is achieved using a watch-dog timer. At the start of the 

System cycle the processor accesses a particular memory location.  ̂

This triggers a monostable which has an output pulse duration of 

50ms, or twice the System cycle period. If this device is 

re-triggered before the output pulse duration has lapsed, it will 

begin another 50ms period. When the processor is functioning 

correctly it will set the monostable every 25ms, so that the output, 

designated "Dig'Fail Flag" (see Appendix A) will remain set 

continuously. If the system fails, "Dig Fail Flag" will change state, 

thus initiating a processor reset and automatically engaging the
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back-up controller.

Resetting causes an un-raaskable interrupt which re-starts the 

software and re-loads all of the counts, indexes, etc.. As corruption 

may have occurred, the control surface demands are set to midway and 

the command word defaults to no parachute, no airbag, autopilots 

dis-engaged and the back-up selected. This re-synchronises the 

software to the hardware and should clear any software errors. As the 

programme re-comraences, "Dig Fail Flag" is set, thus engaging the 

digital system once more. The entire action occurs within lOOus but, 

should the error persist beyond this, the reset signal, which is 

generated by the oscillator circuit described in section 3.2.2, is 

repeated. The default command word will operate until new information 

is received from the ground station.

If the problem is due to a c.p.u. card failure the software will 

not run at all, in which case resetting will have no effect and the 

back-up assumes control permenantly.
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Chapter 3 Design of the digital flight control system electronics.

3.1 Overall review of the electronics.

The flight control system would normally be located in the 

electronics bay of the aircraft (see Fig. 1), along with the 

instruments and the battery pack. However, as this system is a 

prototype, and will not be flown with a payload, it was decided to 

site the instruments in their normal locations, but move the digital 

control unit and batteries to the payload bay and nose compartment 

respectively. This was to provide a better weight distribution and to 

take advantage of the greater size of the payload bay to allow easier 

access. A view of the digital flight control system prior to 

installation is shown in Fig. 7.

The main component is the digital control unit, which contains 

the c.p.u. card and all of the circuitry necessary to interface to 

the aircraft system. This is connected by a wiring loom to the other 

equipment, namely the instruments, the power supplies, the 

telecommand and telemetry systems, the controller selection unit and 

the actuators. The interconnection of these is shown in Fig. 8. The 

sub-systems will be described in the following sections with the 

exception of the telecommand and telemetry, which are described 

elsewhere (3,4). When referring to the circuit diagrams, the labels 

I.C 1, I.e.2, etc. correspond to the list of major components given 

in Table 1.

3.2 The digital control unit.

The main components of this unit are the c.p.u. card, a commercial
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item which will be described in section 3.2.2 and the aircraft 

interface card, full details of which will be given in section 3.2.3. 

These are mounted within a custom built aluminium case (which also 

houses the voltage regulator circuits). Interconnections between 

these two boards are made via a backplane bus connected to the 

external systems.

The principal constaints involved in the design of the digital 

control unit are that size and weight should be kept to a minimum. 

Ultimately the size is dictated by the dimensions of the c.p.u. card, 

which was one of the smallest available at the start of the project. 

The low weight requirement gives rise to a restriction of the power 

consumption, as the heaviest component in the system is the battery 

box. Hence low power CMOS devices are used wherever possible.

3.2.1 The choice of the microprocessor.

While a CMOS processor such as the RCA 1802 might have been 

attractive, there are other factors which lead to the adoption of the 

Texas Instruments 9900 (5). To allow sufficient accuracy of internal 

calculations without recourse to double precision arithmetic, a full 

16 bit machine is called for. This rules out many of the first 

generation processors, such as the Zilog Z80 and the Motorola 6800. 

Furthermore, at the initial stages of the project, the TMS 9900 was 

available at military specification, the RCA 1802 was not. Possibly 

the most important consideration was the interrupt structure. A 

processor employed in a stand-alone control application is likely to 

have to accommodate a number of separate interrupts, and so it should 

be flexible and easy to use in this respect. The TMS 9900 uses 

memory-to-memory architecture, with only the minimum of internal
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registers, so that interrupt initiated context switching is 

particularly simple. When used in conjunction with a TMS 9901 

peripheral device (6) it can accept 16 separate , prioritised 

interrupts, each one capable of being enabled, or disabled using 

single I/O instructions. For these reasons, the TMS 9900 was the most 

suitable processor available at the hardware definition stage of the 

project.

3.2.2 Specification of the c.p.u. card.

The option to produce a custom c.p.u. card was not taken because it 

was unlikely to have been significantly different from the chosen 

commercial item. This is a Texas Instruments TM 990-100M (7). A block 

diagram of this card is given in Fig. 9 and a description of the 

relevant details follows:

a) The board has 256x16 bits of random access memory (RAM), 

expandable to 512x16 bits. The RAM is used for all register locations 

for calculations, counts, indexes etc. During software development 

the full 512 words are used for programme storage as well, but no 

more than 256 words are required in flight.

b) It has 1024x16 bits of eraseable, programmable, read only memory 

(EPROM), expandable to 2048 or 4192 words. This is used for programme 

storage due to its non-volatile nature. The on-board monitor 

programme, required during software development, occupies 1024 words.

c) All data, address and control lines are accessible for system 

expansion. »

d) RS232 or 20mA current loop interfaces are available to allow 

connection to a terminal.

e) There are two programmable timers, one of which is used to provide
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the timing signal to synchronise the servomotor driving and sensor 

sampling operations.

f) It supports the TIBUG interactive monitor programme which provides 

a comprehensive range of software development facilities.

3.2.2,1 Modifications to the c.p.u. card.

Additional circuitry has been added to the c.p.u. card primarily to

provide an automatic resetting facility. These modifications are

shown in Figs. 10a and 10b. The I/O buffer circuit is used to buffer

I/O ports PO to P5 from the TMS 9901, which provide the control

signals for the pulsed functions. These are; the camera (if fitted),

ignition cut, parachute deploy, parachute jettison (if fitted) and

airbag deploy systems. Apart from buffering these lines, this circuit

also gives logic inversion. This is necessary to prevent accidental

firing of the actuators during a reset, or power-down situation, when

the I/O ports assume an indeterminate high impedance state. In this

condition the pull-up resistors shown in Fig. 10a tie the inputs of

the CD4049 inverter buffers (I.C.l) HI so that the outputs are all

LO, which will not trigger the ignition cut relay or the explosive

actuators for the parachute and airbag deployment.

Fig. 10b shows the watchdog timer and automatic reset circuit.

The N755 timer device (I.C.2) is configured as a self-starting 
«

astable multivibrator which produces a 5kHz square wave with a

mark-space ratio of approximately 10:1. When applied to the "PRES.B" 

input of the c.p.^. card (7), this initiates a processor reset when 

in the IX) state. The software then has approximately 200us to disable 

the automatic reset procedure by setting the output of the watchdog 

timer monostable before the next occurrence of a reset request. The
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CD4047 monostable (I.C,3) is retriggerable with a pulse duration of 

50ms. During correct operation this is set every 25ms via the

"I/OSELl" address, and so remains in the Q * HI state, thus gating 

out the reset pulses. Alternatively, the automatic reset facility can 

be disabled in favour of a manual reset switch on the c.p.u. card, 

for use during software development.

The software generated system status flags are provided by I/O 

ports P8 to P15. These are not buffered in the same way as the 

actuator driving signals as they would not compromise the integrity 

of the system when left floating during a reset. A list of I/O bit 

usage is given in Table 2.

3.2.3 The aircraft interface card.

3.2.3.1 Physical description.

This is a double eurocard carrying all the circuitry necessary to 

interface the c.p.u. card to the aircraft system. Interconnections 

are via two 64-way edge connectors to the backplane, and a 20-way 

ribbon connector for the height-zero store switches. A block diagram 

of the board is given in Fig, 11 showing the functions performed.

Each part will now be described in terms of its construction and 

operation.

3.2.3.2 Address decoding.

A circuit diagram for the address decoding circuit is given in Fig. 

12. Most data transfer to and from the c.p.u. is achieved by treating 

the external circuitry as a series of locations in the processor
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memory map. Tri-state buffers are used to interface to the data bus, 

controlled by decoded address signals. Hence the processor simply 

reads from, or writes to the required location. The address decoding 

circuit provides 16 lines corresponding to the memory locations 

*C3E0° to °C3FE®, When accessed, each line produces a LO going pulse 

of about 500ns duration.

As this is working at full processor clock speed (3MHz), low 

power Schottky TTL devices are used instead of CMOS, so pull-ups are 

required when the outputs are used to drive CMOS inputs (8). Timing 

diagrams for memory read and memory write cycles for the TMS 9900 are 

given in Fig. 13.

3.2.3.3 Eight channel servomotor driving circuit.

Control surface position is specified in the microprocessor system as 

a number, so a synchronous counter is used to convert this into a 

pulse duration. The servomotors require input pulse-widths between 

0.9 and 1.9ms to give their full range of movement. These pulses are 

composed of a fixed part of 0.9ms, and a variable part ranging from

0.0 to 1.0ms duration. The fixed part is hard-wired in the counter 

output gating which detects when the count corresponds to 0.9ms after 

the zero count. The variable part is generated by loading a positive 

number into the counter stages, and then counting down through zero. 

The sign bit is achieved with the most significant bit of the 

counter, which uses the convention HI = positive, and LO = negative.

The circuit'.diagram is shown in Fig. 14. CMOS is used 

throughout, except for the input buffers (I.C.13,14) which are 

74C374*s. These belong to a logic family which uses CMOS cell 

construction techniques, but are capable of driving one low power
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Schottky TTL input without modification. The counter (I.C15,16,17) 

runs off a 1:1 mark-space ratio, 1.5MHz square wave, derived from the 

3MHz processor clock. This dictates the number of bits required by 

the counter. The maximum value for the variable part of the 

servomotor drive pulpe is 1ms, or approximately 1515 counter clock 

periods. Expressed in binary, this requires 11 bits, with one extra 

for the sign, making 12 in all. (This means the quantisation effect 

inherent in the servomotor driver signals is much smaller than the 

expected mechanical errors due to stiction and linkage backlash.)

The output from the counter gating, a CD4078 (I.C18), eight 

input NOR, is connected to one of eight servomotor lines using a 

CD4724 (I.C.20) addressable latch.

Operation of the circuit is as follows. On receiving the servo 

interrupt signal, the processor writes a number to the input latches 

located at °C3F0°, composed of address and data bits. The 11 least 

significant bits (D15 to D5) are loaded assynchronously into the 

counter, along with a sign bit which is hardwired to a logic HI. The 

3 address bits (D3,D2,D1) select the required servomotor channel. 

Gating at the output goes LO setting the selected servomotor driving 

line to a HI, and releasing the clock enable. The counter decrements 

(through zero) until the state corresponding to -0.9ms is reached, 

(contents = 0010 1010 1100) whereupon the gate output goes HI again, 

clearing the selected servomotor channel and disabling the counter 

clock. The circuit remains in this state until next accessed by the 

processor. Finally, the output of channel 7 is used to generate the 

servo check interrupt signal, which confirms calibration of the 

counter.
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3.2.3.4 Sensor input buffer circuits.

As stated previously, the sensor outputs and other voltage levels are 

measured using a 12 )Dit A/D converter in conjunction with an analogue 

multiplexor. The software for the control loops uses fixed point 

arithmetic, so some scaling standard has to be chosen for each loop. 

This must be a compromise between the possibility of overflow and 

loss of precision due to quantisation (23,25). In general the maximum 

value is taken to be about twice the largest possible demand. Hence 

the sensor output voltages are amplified by operational amplifier 

buffers to match this chosen limit to the A/D converter input range.

A circuit diagram of these buffers is given in Fig. 15.

Roll information is derived from one axis of a dual axis 

attitude gyroscope configured to provide +/-5.0V output at 

+/-1.396rad of roll. The maximum demanded roll attitude is 

+/-1.047rad but this would not be encountered in normal use. Hence 

the roll loop is scaled to +/-1.396rad maximum, so that a simple 

unity gain voltage follower is all that is required here. Feedback 

resistor R1 matches the impedance of the potentiometer at the 

gyroscope pick-off, and R2 is included to tie the input to ground in 

the event that it is left open circuit. This prevents the 

indeterminate operational amplifier output damaging the analogue 

multiplexor.

Pitch information is derived from the other axis of the 

gyroscope, which arranged to give +/-12.0V for +/-0.698rad 

attitude. The demand range of the pitch channel is +/-0.140rad so the 

software is scaled to a maximum of +/-0.291rad. This allowed the use 

of a unity gain voltage follower with input protection as before. The
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zener diodes ZNl and ZN2 are to limit the voltage seen by the 

analogue multiplexor to the range +/-5.0V. If the pitch attitude 

exceeds +/-0.291rad the output of the operational amplifier buffer 

will attempt to exceed this range, the voltage difference is then 

dropped across the output resistor of the operational amplifier, (250 

ohms for the TL084 used).

Yaw rate is measured using a rate gyroscope giving 

3.438mV/rad/s, with a maximum output of +/-6.0V. The yaw rate is 

expected to be in the range +/-0.140rad/s. By employing an 

operational amplifier buffer with a gain of 4.167 the voltage 

presented to the analogue multiplexor, and thus used to scale the 

software, is calibrated to give +/-5.0V for yaw rate = +/-0.349rad/s. 

Resistors R3 and,R4 give this value of gain, while resistor R5 and 

diodes ZN3 and ZN4 are included for the same reasons as those in the 

pitch buffer.

The aircraft height is deduced by measurements taken from a 

barometric pressure sensor, which is an absolute sensor and must be 

referenced to the pressure at the ground. Unlike the other sensors, 

this device is permanently installed, so no provision need be made 

for the open circuit case. The expected range of sensor voltages 

during flight conditions is subject to:

a) The pressure/voltage characteristics of the transducer, (a 

National Semiconductor LS1601A, see Appendix B).

b) Variation of ambient sea level pressure, (980.0 to 1040.0millibars 

is accommodated).

c) Pressure/altitude gradient of a standard atmosphere.

d) The height above sea level of the ground station, (0.0 to 300.0m 

allowed).

e) The height of the aircraft above the ground station, (0.0 to
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1000.Om allowed).

The highest pressure will occur when the aircraft is at sea level 

with maximum ambient pressure, giving 10.7V from the transducer used. 

The lowest pressure will occur with the aircraft at 1300.0m above sea 

level with the minimum ambient value. This gives a voltage of 6.1V 

with this device.

The height input buffer is required to convert this to a form 

compatible with the A/D converter, hence an offset must be included. 

This is achieved using the circuit shown in Fig, 15. Resistors R6, R7 

and R8 are dictated by the relationship:

V(out) = -( R8 V(transducer) + R8 V(offset) )

R6 R7

where

V(offset) = -12.0V.

R9 is the parallel combination of these to minimise input offset 

effects. Hence, the input/output relationship is arranged so that for 

V(transducer) = 6.1V, V(out) = 4.58V, and for V(transducer) =10.7V, 

V(out) = -4.62V. This satisfies the range requirements for the 

analogue multiplexor and defines the scaling so that a height 

difference of 1000.0m, under given ambient conditions, gives a 

voltage difference of 5.0V.

The airspeed indicator includes its own offset and calibration 

circuit, and is arranged to provide a voltage output between 0.5V and 

4.5V for airspeeds approximately equal to 20 and 50m/s. Precise 

details are given in Appendix B. Hence, all that is required here is 

a voltage followed, with input and output protection as before.

Finally the calibration of the A/D converter is checked by 

measuring a fixed voltage reference of 4.3V, provided by a zener 

diode voltage reference circuit.
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3.2.3.5 Analogue multiplexor and A/D converter circuit.

The analogue multiplexor and A/D converter (9) control circuit is 

shown in Fig. 16. As configured, the analogue input range of this 

device is +/-5.0V, while the digital output is in 12 bit, 

complementary, two's complement format. Conversion is started by a 

"CONVERT COMMAND" signal, and takes approximately 25us, whereupon a 

flag, referred to as "STATUS", is set, and the output data becomes 

available. The analogue multiplexor device (I.C.25), an RCA 4051, 

directs one of eight channels to its output according to the state of 

three select inputs or, alternatively, can be set to a high impedance 

state using an inhibit input.

The operation of the circuit is as follows. The channel number 

and inhibit flag (inactive) are loaded into the address latch 

(I.C.24) by writing to the 4 most significant bits of memory location 

°C3F4°. This sets up the control inputs for the analogue multiplexor 

and connects the required input channel to the A/D converter. Writing 

to °C3F6° then generates the "CONVERT COMMAND" signal which starts 

the A/D conversion. On completion the "STATUS" flag goes HI, loading 

the 12 bit output from the A/D converter into two octal latches 

(I.C.26,27). The processor, which has been delayed for 30us after 

initiating the conversion, reads the contents of these latches by 

accessing memory location °C3E2°.

3.2.3.6 The telecommand port.

The circuit diagram for the telecommand port, which interfaces the
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receiver to the microprocessor system is shown in Fig, 17. When new 

telecommand data is available it is presented at the output of the 

receiver for approximately 7us, along with a flag called "NEW DATA 

READY", which goes HI for this period. This flag is delayed for lus 

to allow the outputs, of the receiver to settle, and then used to load 

the address and data words into two octal buffers (I.C.30,31), at the

same time setting a d-type latch (I.C.32) which generates the INT4 

interrupt. This signals to the processor that there is new data 

available which will be read when the interrupt mask is set to the 

appropriate level. The processor accesses the port by reading the 

contents of memory location *C3E0°, which also clears the interrupt 

generating d-type latch.

3.2.3.7 Telemetry data conditioning.

Analogue inputs to the telemetry encoder must be in the range O.OV to

+5.0V. This is suitable for some functions (such as "RESET"), but 

bipolar signals from the sensors require an offset and a gain 

adjusting circuit as shown in Fig. 18. The gains, and hence the 

resistors are chosen to match each signal to the correct range.

Due to the predominance of analogue telemetry channels, and also 

to reduce the number of lines in the aircraft wiring loom, the 

servomotor demands and height information functions, which are 

generated in the software, are presented to the telemetry encoder as 

analogue signals. This requires digital to analogue (D/A) conversion 

as shown in Fig. T9. A total of six AD7524, eight bit latchable D/A 

converters (I.C.34-39) with the necessary addressing and output 

buffering are used. These are arranged as three 16 bit words, loaded 

using memory-write operations. Throttle demand (THR DEM) and aileron
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demand (AIL DEM) occupy the lower and upper bytes of location *C3F2*. 

Absolute height (HT ABS) and height error (HT ERR) are located in the 

lower and upper bytes of location ®C3F8® and rudder demand (RUD DEM) 

and elevator demand (EL DEM) are located in the lower and upper bytes 

of location °C3FE*. ,

The digital telemetry information does not need any form of 

conditioning. The software based system status flags are generated in 

the microprocessor's I/O field on the c.p.u. card, and the hardware 

based flags are simple logic outputs.

3.2.4 The voltage regulator circuits.

The electronics and instrumentation are all supplied with voltage 

rails derived from voltage regulators (10) located within the digital 

control unit. The circuit diagram is given in Fig. 20. All regulators 

and smoothing capacitors are mounted on one board on the side panel, 

with the exception of the +5.0V regulator. To aid heat dissipation 

this is mounted on, though electrically isolated from, the aluminium 

panel forming the base of the unit. The regulators are rated to have 

at least twice the current handling capacity of the expected 

requirements, and the unregulated input voltage should be at least 

2.5V greater than the nominal output voltage for correct operation.

The +/-5.0V and +/-12.0V rails are provided by fixed output 

devices, for which no external components other than smoothing 

capacitors are needed. The +/-6.0V rails, which supply the rate 

gyroscope and the', analogue multiplexor chip, are provided by variable 

voltage regulators. These require two resistors each (Rl, R2, Rla, 

R2a) to set up the output voltage level, given by:

V(out) = 1.25V(1.0 + R2)
Rl
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The current rating of the regulators, along with a breakdown of the 

supply requirements for each voltage rail are given in Table 2.

3.3 The height-zero storage.

The barometric pressure reading corresponding to the zero height has 

to be programmed by the operator prior to flight. As this information 

is used in the failsafe routine it must be stored in a non-volatile 

medium, hence a bank of switches , mounted on the fuselage side are 

used. The circuitry involved in the height-zero store is shown in 

Fig. 21. At some stage during the pre-flight procedure the operator

depresses the "HEIGHT ZERO SET" push button, signalling the software 

to write the 8 most significant bits of the pressure sensor reading 

to a bank of l.e.d's, also situated on the fuselage side. The 

operator then sets the switches according to which bits are 

illuminated.

When not used for this purpose the l.e.d's can display a 

combination of hardware and software based, aircraft status flags for 

checkout use. In order to reduce power consumption the display can be 

disabled prior to launch.

A 74LS240 octal inverting buffer (I.C.32) is used to drive the

l.e.d's. The inputs to this are either provided by the I/O ports P8 

to PI5 on the c.p.u. card, or in the case of the three most 

significant bits, by hardware outside the digital control unit. These 

three inputs are multiplexed using a 74LS157, quad 2-to-l line device 

(I.C.43). This multiplexor is controlled by the "HEIGHT ZERO SET" 

button, which is also used to drive I/O port P7 to select the 

height-zero set software.
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The switches drive the inputs of an octal tri-state buffer 

(I.C.44), the contents of which are accessed by reading memory 

location ®C3E2®. This action also loads the buffer with the switch 

data, and so the operation must be performed at least twice when 

altering the height reference. In practice this does not pose a 

problem as the switches are read many times per second while the

"HEIGHT ZERO SET" button is held down.

3.4 The controller selection and actuator driving unit.

This unit serves the dual purpose of interfacing the digital and 

analogue control systems, and providing the driving circuits for the 

explosive actuators which operate the parachute and airbag 

deployment. The circuit diagrams for both functions are shown in Fig. 

22. The two control systems are interfaced using 74C374 octal 

tri-state buffers (I.C.47,48). Hence the actuator inputs are treated 

as a data bus, with only one of the two sources having access at any 

one time. The selection of the control system takes into account the 

continued functioning of the digital system, and the relevant bits in 

the command word. This is accomplished using the descrete logic shown 

in Fig. 22, which also provides buffered versions of "DIG/AN SELECT", 

"DIG FAIL FLAG" and "SQUELCH" for telemetry purposes.

The parachute and airbag deployment systems use explosive 

actuators to release mechanical catches. These actuators require 

electrical pulses of 1.0s duration and will draw approximately 0.5A 

during detonatiod. The timing of the pulses is provided by software 

means, or, in the case of the analogue back-up system, a square wave 

of 5.0s period, derived from circuitry within the receiver, is used. 

These two systems are interfaced in the same way as the servomotor
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driving signals. The relevant outputs from the tri-state buffers are 

used to drive the base inputs of LM295 ultra reliable power 

transistors (I.C.49,50,51). These devices have integral base input 

resistors which enable them to be driven directly off CMOS or TTL 

logic levels. They also possess output current control so that they 

can sink the relatively high, but short duration, current level 

required during firing, without sustaining damage.

The explosive actuators are connected between the servomotor 

supply rail and the transistor collectors so, when energised, they 

see a low impedance path to ground. They can be disarmed using a 

switch which removes them from circuit, and connects an l.e.d. and 

resistor in their place. This facilitates testing without detonating 

an actuator. An ’/ARMED" status flag is provided for telemetry 

purposes. Note that the actuator arming switch, testing indicators, 

and "ARMED" status flag are all located in the battery supply control 

unit, which will be discussed in section 3.5.2, and is shown in Fig. 

25. The zener diode in the "ARMED" status flag circuit is included to 

limit the level of the telemetry input to 5.0V, as the fully charged 

level of the servomotor battery supply is 7.2V. They have been 

described here for continuity.

The ignition cut actuator is a relay as shown in Fig. 23. This is 

mounted in the engine compartment ,but the control signal, 

"IGCUT(GUT)" is derived from the controller selection unit. It is 

desirable that the ignition is not cut in the event that the digital 

system fails, so the "IGCUT(OUT)" line is tied to ground when 

operating under tAe analogue back-up.
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3.5 The power supplies.

All electrical power for the DFCS is supplied by nickel-cadmium 

rechargeable cells. As described previously in section 3.2.4, the 

electronics and instrumentation are powered by regulated voltage 

rails. These are all supplied with a main and reserve source to 

reduce the risk of ppwer failure. The battery system is divided into 

two parts, the cells themselves, located in the nose where they are

easily removed for charging, and the control unit which is situated

in the mid compartment. Conventional noise minimisation techniques, 

such as extensive use of decoupling capacitors and separate supply 

lines using heavy guage wire are used throughout.

3.5.1 The battery box.

The battery stacks are shown in Fig. 24. As can be seen there are 

four different sections, namely an 8.4V supply, two 15.6V supplies 

and a 7,2V supply. These voltages refer to nominal values assuming 

one nickel-cadmium cell produces 1.2V, but in practice, fully 

charged, no-load voltages are about 10% higher than this. These 

sections provide the +8.4V, the +15.6V and the -15.6V supplies for 

the regulator circuits, and the +7.2V supply for the servomotors. The 

"GND" terminals are not connected at this point so the cells can be 

re-charged from a single polarity source.

A section supplying a regulator circuit has to be at least 2.75V 

in excess of the regulated output voltage. This is accounted for by a 

forward biassed Schottky diode connected in series with the stacks 

(approximately 0.%5V), and the regulators, which require a margin of 

2.5V to ensure correct operation.The +8.4V section supplies the +5.0V 

regulated rail for the DFCS. This provides approximately l.OA in 

flight configuration, (the amount of RAM installed in the c.p.u. card
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effects this, only 256 words are used in flight), so the main stack , 

which is designed to operate for two hours, has 2.0Ah capacity. The 

reserve, which is intended to provide 15 minutes running, to allow a 

software failsafe to take place, consists of two, llOmAh, 8.4V 

batteries connected in parallel.

Similarly the +15.6V rail, which gives +12.OV regulated, 

supplies 0.35A for the electronics and 0.5A for the attitude 

gyroscope, and so has a capacity of 2.0Ah. As before, the reserve is 

composed of two, llOmAh, 16.8V stacks connected in parallel. The 

-15.6V rail (-12.OV regulated) provides approximately 0.15A and so 

main and reserve capacities of 0.45Ah and O.lAh respectively, are 

used.

The +7.2V section, which is used to supply the servomotors and 

explosive actuators without regulation, is composed of two identical 

stacks, each capable of maintaining the supply for 2.0 hours. These 

have a capacity of 1.2Ah each.

The interconnection, monitoring and control of these stacks is 

provided by the battery supply control unit.

3.5.2 The battery supply control unit.

This unit provides for the control and distribution of the battery 

supplies throughout the system, including the DFCS-on/off control and 

the interfacing of the main and reserve stacks. The circuit diagram 

is as shown in Fig. 25. The unit is mounted so that the switches and 

the test indicators, described in section 3.4, are accessible. The 

purpose of the battery reserve changeover circuit, as shown in Fig. 

26, is to check the voltages of the main stacks , and engage the 

reserves if they fall below a given level. When any one of the
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reserves is engaged a telemetry flag, referred to as "BATOK", is 

cleared, informing the operator that there is only 15 minutes of 

electrical power remaining.

The output of a nickel-cadmium cell supplying a constant current 

is as shown in Fig.,27. As can be seen the voltage remains reasonably 

constant, until such time as a threshold level is reached, whereupon 

it falls off rapidly. This value corresponds to the nominal voltage 

of the stack (see 3.5.1), and is the reference level used for 

comparison purposes. The operation of the +15.6V section of the 

circuit is as follows:

The output of the main stack is reduced via a resistor divider, 

which is arranged to give +5.0V at the changeover voltage. This is 

checked against a +5.0V reference, obtained from a precision 

regulated source, using an LM339 voltage comparator (I.C.52).

Positive feedback is provided using a 1.0 mega-ohm resistor to give a 

certain amount of hysteresis, and so prevent ringing at the 

changeover condition. The output voltage excursion of the operational 

amplifier is modified using the resistor and zener diode combination 

shown, to be compatible with a 5.0V CMOS logic input. This is to 

buffer the signal, before driving a discrete transistor base input, 

and to allow the use of combinational logic to generate the "BATOK" 

flag. At the changeover point, a BC184C, transistor is used to close 

the contacts of a miniature relay and connect the +15.6V reserve 

stack in circuit. The main stack is still connected, so there is no 

power supply drop-out as the relay changes over. The diodes in series 

with the battery ‘,̂ tacks are included to prevent a fault in one 

interfering with the output of the other. Schottky diodes are used as 

these have a lower forward bias voltage drop. The operation of the 

+8.4V, and the -15.6V comparator circuits is similar to the above.
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The DFCS-on/off switch is used to disconnect all power from the 

aircraft, with the exception of the battery reserve changeover 

circuit, which must be supplied with power rails whenever the battery 

box is installed. This prevents the possibility of the sense inputs 

from the main stacks*, which are always present when the battery box 

is connected, being energised while the supplies to the comparators 

are not. The telemetry switch is used to disable the transmitter 

until required. This is because the aircraft is usually checked prior 

to launch by observing the output of the telemetry encoder directly.

A duration test was carried out on the battery supplies with all 

the aircraft systems connected. This was achieved by fully charging 

the battery stacks, then observing the main, reserve and aircraft 

voltage rails, at 5 minute intervals, while continuously excersising 

the controls. The objective of two hours duration was realised, as 

the changeover took place after 120 minutes. The digital system 

continued to operate for a further 30 minutes, whereupon the +8.4V 

rail failed completely. The analogue back-up, which does not use this 

supply, was still operational at this stage.
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4.0 The design of the system software.

4.1 Description of the software development technique.

The software is written in assembler code, a process which takes 

longer than using a high level language, but results in more 

economical use of the EPROM storage. The editting and assembly stages 

were performed on a PDP-11/34 minicomputer (11) to provide the 

machine code and a listing. This code was then installed in the 

memory space of the c.p.u. card and checked under the control of the 

TIBUG monitor programme (12). An example of the listing is provided 

in Appendix C.

4.2 Brief review of the TMS 9900 microprocessor.

The reasons for choosing the TMS 9900 were given in section 3.2.1.

Its main feature, from a software standpoint, is its use of 

memory-to-memory architecture, so that it does not appear to have 

accumulators. Instead it specifies a workspace, which is a file of 16 

words, anywhere in the RAM. These are referred to as registers 

(0-15), and can all be used for arithmetic and bit manipulation 

purposes. Each particular activity can have its own workspace, making 

context switches (e.g. interrupts) a simple process. This is 

controlled by three internal hardware registers; the programme 

counter, which indicates the location of the next instruction, the 

status register, ühich is set according to the result of the previous 

operation, and the workspace pointer, which contains the address of 

the current workspace. The interrupt context switch causes the 

programme counter and the workspace pointer to be replaced by new
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values from memory, and the old internal registers to be stored in 

R13, R14 and R15 of the new workspace. Hence interrupts can be 

nested, provided they do not share the same workspace.

Each interrupt has a priority level, 0 being the highest and 

15, the lowest. If t,he incoming interrupt has a higher priority than 

the prevailing condition, as indicated by a mask in the status 

register, it is acknowledged, otherwise no action takes place. This 

mask can be loaded directly by software instruction, and is 

automatically set to the next highest priority on acceptance of an 

interrupt.

4.3 The structure of the system software.

4.3.1 Timing and synchronisation.

The software is synchronised through interrupts. One master clock is 

used, with all activities, excepting telecommand reading, performed 

relative to this. The timing of the System and Servo cycles has been 

described previously in section 2.4.1. These are generated using 

interrupt level 3, referred to as the servo interrupt and derived 

from the programmable timer. Two of the remaining interrupts, namely, 

telecommand (level 4) and servo check (level 6) are only enabled at 

given periods during the System cycle. This is to prevent the 

possibility of corruption due to nesting, as they share the same 

workspace. The overall timing diagram of the software is shown in 

Fig. 28.
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4.3.2 Structure.

The software is arranged on a foreground/background basis. The 

foreground operations are all time-critical, such as servomotor 

driving and sensor reading. These are initiated by the highest 

priority interrupt in general use, so that they are always performed 

immediately. The background software deals with the functions that 

are not synchronised to the programmable clock, such as telecommand 

reading, telemetry and house-keeping activities. These are performed 

once per System cycle, during the periods when the foreground 

routines do not require the processor.

Fig. 29 gives the overall flow diagram of the foreground 

software. The servo interrupt routine forms the basis of this 

structure by directing the programme flow to the required section, 

according to the value of the Servo cycle counter. The calculation of 

each new servomotor position by the relevant control law, is 

performed in the period immediately prior to its own Servo cycle.

This minimises the delay between sensor reading and servomotor update 

for a particular loop. On completion, control is returned to the next 

location in the background software, using the stored programme 

counter. During the eighth Servo cycle the return vectors are 

modified to point to the start of the background software once again. 

The role of the servo interrupt routine in the software structure is 

described in more detail in section 4.4.4.1.

The background is not structured, with the routines being 

performed in the'order shown in Fig. 30.
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4.3.3 Workspaces and the transfer of information.

Most sections have their own dedicated workspace, which is used 

exclusively for a particular activity. Some means of transferring 

data between workspaces is required, and this is achieved by the use 

of symbolic (or label) addressing. That is, certain workspace 

registers are given labels which allow them to be accessed from any 

part of the software. A complete list of the functions and labels of 

each workspace register is given in Appendix D.

4.4 Description of the routines.

4.4.1 Types of routine.

There are three types of routines; those in the foreground, which 

calculate the next servomotor values, the background, which performs 

all of the non-time-critical system activities, and the utility 

programmes which can be called as subroutines from anywhere in the 

software,

4.4.2 Utility subroutines.

These can be called from any part of the software using the 

branch-and-link instruction, which stores the return address in Rll, 

before jumping to the start of the subroutine. These use the same 

workspace as the'calling routine, so input data can be set up in 

registers before use.
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4.4.2.1 Multiply routine (MULT).

A discussion of the number system used, and the treatment of 

multiplication is given in Chapter 6. The multiply instruction for 

the c.p.u. multiplies two unsigned, 16 bit numbers to give a 32 bit 

result. This is not compatible with the fixed point, two's complement 

number system employed in the control loops. The multiplicand in R8 

is multiplied by the coefficient, or multiplier, stored at a location 

pointed to by R12. This latter part is a 16 bit positive binary 

fraction, with the binary point to the left of the most significant 

bit. This means that the most significant word of the 32 bit result 

will be specified in the same fixed point standard as was the 

multiplicand. Thp routine will also carry out a left shift, N times, 

where N is specified in RIO.

There is no provision for a sign bit in the multiplier, so 

negative coefficients must be accommodated by negation of the result 

in the calling progreimme. The routine will cater for a negative 

multiplicand, by actively negating R8 before and after the multiply 

instruction, if necessary. Overflow, arising from the left-shifting 

process is detected, whereupon the result is replaced by the maximum 

positive, or negative value allowed. The most significant word of the 

result is returned in R8, having first been rounded to 16 bits 

according to the state of the least significant word at R9. The 

coefficient pointer in R12 is incremented to point to the next 

location if required.

The flow diagram is shown in Fig, 31. As there is no simple 

means of shifting the 32 bit result as a single word, this process is 

performed first, provided it does not lead to overflow. The 

multiplicand in R8 is stored temporarily in R9, then RIO is checked
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to see if shifting is required. If so, R9 is shifted once and checked 

for overflow. If no overflow occurs, R8 is shifted as well, and RIO, 

the shift count, is decremented. This is repeated until RIO is zero, 

or until overflow does occur, whereupon R8 and R9 are left as they 

were before the shift that caused the overflow in R9. The negative 

data flag, R13, is set if necessary, then the multiplication of the 

absolute contents of R8, and the coefficient pointed to by R12, is 

carried out. The result is negated if the negative flag is set and, 

if the shift count in RIO is zero, control returns to the location 

pointed to by Rll. If RIO is not zero, it is possible that the result 

can now be shifted without overflow, if the product of the multiplier 

and the multiplicand is less than 0.5. The remaining shifts are 

performed, using saturation in the event that the overflow persists, 

prior to returning via Rll.

4.4.2.2 Sensor reading routine (SENS).

This includes the ability to read the specified channel several 

times, accumulating the result to reduce the effect of high frequency 

noise at the analogue input. The A/D converter device produces a 12 

bit, complementary, two's complement number, which must be converted 

to the 16 bit standard of the software. The flow diagram is given in 

Fig. 32.

The accumulator, R12, is cleared, then the channel required, 

which is specified in the four most significant bits of RIO, is 

set-up, and a shdft delay is observed to allow the channel to settle. 

Conversion is started, and a further delay of about 30us occurs, 

achieved by a temporary count in R9, before the result is read into 

R9. This is inverted to give 12 bit , two's complement data, then
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shifted four bit-places to the left, followed by three bit-places to 

the right, using arithmetic type shifts. These two operations have 

the effect of multiplying the number by two, and filling the four 

most significant bits of the result with the original sign bit. This 

value is added to the accumulator, then R8, which specifies the 

number of times the channel is to be read, is decremented. The 

process is repeated while R8 is greater than zero, then control 

returns to the address pointed to by Rll. (Note that if R8 was set to 

zero before calling the routine, the specified channel is read once 

only).

4.4.2.3 Saturation adding routine (SATAD).

The flow diagram is given in Fig. 33. This adds the two's complement 

numbers in R7 and R8, and returns the result in R8, while R7 remains 

unchanged. If overflow occurs, the result is replaced by the maximum 

positive, or negative number allowed (°7FFF® or °8001°). If the 

difference between R7 and R8 is required, one of the registers is 

negated prior to calling SATAD. Control is returned via Rll.

4.4.2.4 Pilot mode output scaling routine (SCALE).

The pilot commands are specified as 8 bit words with a range of *00° 

to °FF®, while the servomotor driver requires a number in the range 

°0000° to °05EB°, (see section 3.2.3.3). This multiplication is 

carried out using\a shift and add routine as shown in Fig. 34. SCALE 

takes less time than using MULT, and only corrupts R13 and R14 of the 

calling workspace. The error due to the approximation (0.06% at full 

range) is not significant for the pilot mode.
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4.4.3 The background software routines.

4.4.3.1 Telecommand interrupt enable.

The flow diagram is given in Fig. 35. The servo check routine, and 

the eighth cycle routine have re-directed the programme to the start 

point, where the interrupt mask is set to 3 and the processor is put 

into an idle state (see section 4.4.3.6). On receiving the next level 

3 interrupt, the processor performs the servo routine, and then 

returns to the instruction following the idle. This is the start of 

the background software.

The telemetry workspace is loaded and the interrupt mask is set 

to 4, so that if a new command is available, the previously disabled 

telecommand interrupt routine will now be performed (see section 

4.4.3.7). A counter, referred to as TCKNT (see Appendix D), is 

incremented to give a measure of the time since the last command, 

which, if in excess of 0.5s, will initiate the failsafe routine and 

set the software failsafe flag in the telemetry. Otherwise the 

programme moves directly to the end of the failsafe section where it 

re-triggers the "DIG FAIL FLAG" monostable, and procédés to the 

telemetry routine.

4.4.3.2 The software failsafe routine.

The failsafe procedure is as shown in Fig. 4, and has been described 

in section 2.3. The flow diagram is as shown in Fig. 36. On entering 

the failsafe condition, the command word is over-written to select 

autopilot and height lock only. Similarly the height and rudder
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demands are set to the maximum, and middle position respectively. The 

timing counter in R5 is checked, and if less than 5.0s, which 

signifies phase 1 or phase 2, the throttle is set to maximum. The 

aircraft height is compared with a safe height of 100m, and if it is 

below this height, a bank angle of 0.174rad is loaded into the roll 

demand to perform the spiral climb of phase 1. This is repeated until 

a height of 100m is reached (phase 2), whereupon the roll demand is 

set to zero, and the timer counter is incremented. Phase 3 is 

initiated after 5.0s. This clears the throttle demand and activates 

the ignition cut, airbag and parachute bits in the command word. The 

1.0s delay before deploying the parachute and airbag are provided in 

the oneshot routines, see section 4.4.3.4.

If at any time new telecommand information is received, the 

failsafe routine is omitted and TCKNT and the failsafe timer counter 

are cleared, thus resetting the system. Finally, the "DIG FAIL FLAG" 

monostable is set by writing to location °C3F6° irrespective of the 

state of the failsafe condition.

4.4.3.3 The telemetry preparation routine.

This section monitors the calibration of the A/D converter and then 

combines all of the telemetry information, (which is generated at 

various points throughout the software), into a series of bytes, 

before presenting them to the telemetry conditioning hardware. The 

flow diagram is shown in Fig. 37. The telemetry workspace is used, 

with TLPORT, the‘software generated flags, occupying the least 

significant byte of R4. The throttle and aileron demands occupy R2, 

and the elevator and rudder demands use R7.

TLPORT is dealt with first. The three most significant bits are
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set according to the state of the autopilot, height lock and heading 

hold selects in the command word, and then the calibration of the A/D 

converter is checked. This is done by measuring a 4.3V reference 

voltage and ensuring the A/D converter gives a result within 1% of 

the correct value. The A/D error bit in TLPORT, is set if it exceeds 

this tolerance. At this stage the interrupt mask is set to 3 and the 

telecommand interrupt input is disabled to prevent the possibility of 

corruption later in the System cycle. The servomotor driver 

calibration check bit is then set depending on the state of a flag 

manipulated within its own interrupt handling routine. The last 

remaining bit is the overflow flag, which may have been set by the 

arithmetic procedures, MULT and SATAD, during the previous cycle, and 

does not need any handling here.

The servomotor demands have to be rescaled to the correct range, 

and are then stored in individual bytes at R2 and R7. Presenting the 

telemetry data is achieved by moving the contents of these registers 

to locations °C3F2° and °C3FE°, while TLPORT is loaded into I/O ports 

P7 to P15 using a multiple bit CRU instruction (5). This latter 

activity is omitted in the height-zero set mode. Finally, the 

overflow bit is cleared in preparation for the next cycle.

4.4.3.4 The oneshot routines.

The ignition cut, airbag and parachute deploy functions can only be 

performed once, and are irreversible, hence they are referred to as 

the oneshots. Demanding the parachute will also deploy the airbag and 

cut the ignition, the reverse, however, is not true. The pulses and 

voltage levels required to trigger the actuators are produced by 

manipulating bits in the I/O field (see Table 2). Timing is achieved
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by counting System cycles. The flow diagram is shown in Fig. 38.

The software checks if the parachute deploy bit is active, and 

if so, increments a counter in Rl. Further activity is not commenced 

until ten consecutive, active commands are received. If at any time 

the parachute deploy bit is inactive, Rl is cleared and the procedure 

is re-started. Once accepted, flags (RO, and bit 5 of R6) are set to 

inform the throttle, and ignition cut routines respectively. A delay 

of 1.0s is observed by waiting until the count.in Rl reaches *32°, 

whereupon I/O bits °12* and *14° are cleared, thus triggering the 

explosive actuators. These bits are reset to ones when Rl has reached 

®5A°, giving 1.0s pulses, and signifying the completion of the 

parachute deployment routine. If this stage is reached, the remaining 

oneshot routine^ are omitted, as they will have been fired 

previously.

The other oneshot procedures are similar to the above, without 

the complication of actuating all three functions. Ignition cut 

counts ten active commands using R2, before clearing I/O bit *11° to 

energise a relay. Airbag deploy uses R3 as a timer counter, and 

generates firing pulses as in the parachute routine.

4.4.3.5 Height data preparation routine.

This section provides all the necessary operations for the height 

loop. These are, setting-up the height-zero, referring subsequent 

readings to this value to give the relative height, preparing HTERR 

and HTABS for teïemetry, and finally performing the control law for 

the outer loop of the height lock. A flow diagram for this section is 

given in Fig. 39.

The height workspace is installed, and then the present output

51



from the barometric sensor is measured, and stored in R7. The 

height-zero set mode is signalled to the processor, by depressing the

"HEIGHT-ZERO SET" push button, which clears I/O bit P8. If the 

height-zero set mode is active, the 16 bit sensor reading is reduced 

to 8 bits, and then,written to the l.e.d.s on the front panel. (So 

that the operator can set the switches.) The height reference is read 

from these switches, and restored to the correctly scaled 16 bit 

format, before being subtracted from the latest sensor measurement to 

give the referenced height. This is rescaled and stored in the most 

significant byte of R3 as HTABS, which is an 8 bit telemetry 

function.

The software checks if the height lock is active, and if so, 

fetches the height demand, which is transmitted via the pitch 

channel. This is re-scaled to the convention of the referenced height 

signal, and then the height error is determined. The forward gain of 

the height lock is arranged so that an error of +/- 20.0m will demand 

the maximum pitch attitude (+/-0.140rad). This is performed, along 

with the necessary re-scaling gain and offset, to produce a function 

that is compatible with the original pitch demand convention. This 

value is checked against the allowable limits, and then stored at RO, 

to be accessed by the pitch autopilot routine later in the cycle. It 

is also loaded into the least significant byte of R3 as the telemetry 

function HTERR. The height routine is completed by writing R3 to 

location *C3F8°, thus presenting these two telemetry functions.

4.4.3.6 The idle'condition.

Once the background software has been completed the processor is put 

into an idle state until the start of the next System cycle. In this
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State, the processor disables its data and address busses, and waits 

until an interrupt occurs, whereupon control will pass directly to 

the interrupt handling routine. Once this is completed, the programme 

will return to the address immediately following that of the idle 

instruction, which causes a jump back to return to the idle mode. 

Hence the background software will not be restarted until the eighth 

cycle section of the servo interrupt routine is performed. This part 

modifies the return vectors and will prevent a return to the idle 

loop.

4.4.3.7 The telecommand interrupt routine

This is the only interrupt that operates in the background, it has 

priority level 4, and uses the telemetry workspace. It is not used by 

the foreground software, so there is no possibility of the higher 

priority servo interrupt routine corrupting the return registers. The 

flow diagram is given in Fig. 40. R12, the bus read count is cleared, 

then the telecommand port is read into registers RO and Rl. These are 

compared to check for any intermittent bus errors. If a fault is 

high-lighted, the routine will repeat up to five times, (incrementing 

R12) before aborting. In this condition, TCKNT (R3), which indicates 

the time since the last telecommand, is not cleared, and no data is 

transferred. If the read operation is valid the channel address is 

extracted from the four least significant bits of Rl and then checked 

to ensure it is less than °B°. This is multiplied by two to 

accommodate word'addressing, and then used to direct the data 

contained in bits 4 to 11 of RO to the correct location in the 

command workspace. On completion, TCKNT is cleared, interrupt 4 is 

disabled and programme control returns via the stored vectors to the
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background software.

4.4.4 The foreground software.

4.4.4.1 The servo interrupt routine.

The programme direction necessary to achieve the foreground software 

structure is provided by the servo interrupt routine. A flow diagram 

is given in Fig. 41.

On receiving the level 3 interrupt, which is always enabled, 

the routine fetches the next output value using the Servo cycle 

counter, R8, as a pointer. This value is checked against the required 

range, (0 to 1515), and limited if necessary. The address portion of 

the output, contained in the four most significant bits, is set-up 

using R8 and then the complete word is written to the servomotor 

driving circuit at location ®C3F0®, thus initiating the next 

servomotor pulse. The new cycle flag, in RIO, is checked. If this is 

not zero it indicates that the System cycle has restarted, whereupon 

the programmable timer, used to generate the Servo period, is 

reloaded using a multiple bit CRU instruction. This avoids the 

possibility of a corrupted programmable timer going unchecked by the 

failure detection circuit, for more than one System cycle. RIO is 

then cleared, and the clock mode of the programmable timer is 

re-enabled.

The programme then deals with directing control to the part of 

the software that.will calculate the next servomotor value. R8, the 

Servo cycle counter, is checked to ensure that it has not been 

corrupted, and then is used as an index to jump to the relevant 

branch instruction, which, in turn, routes the software to one of the
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control routines. These are independent, having their own workspaces, 

but they can only return to the background software via the return 

vectors stored in the servo workspace. Hence when completed, this 

workspace is restored, and a simple branch is used to return to the 

servo interrupt routine, which then increments the cycle counter and 

returns to the next location in the background software. The 

procedure to clear the cycle counter, and restart the System cycle is 

described in the next section.

4.4.4.2 The eighth cycle routine.

The flow diagram is shown in Fig. 42. When the Servo cycle count 

reaches 8, or is corrupted to show a value not in the range 0 to 7, 

programme control passes to this routine, in order to re-start the 

System cycle. It does this by altering the stored vectors in the 

servo workspace to effect a return to the start of the background 

software on completion. The cycle count is cleared at this stage, and 

the new cycle flag, in RIO, is set (see section 4.4.4.1)

This section also sets up the necessary conditions to allow the 

servo check interrupt (level 6) to take place. First, the telecommand 

interrupt is disabled, as these use the same workspace, and so must 

not be allowed to occur together. The servo check interrupt is 

enabled, and the interrupt mask in the stored status register in R15, 

is set to 6. Hence, on returning to the background software, the 

programme counter points to the System cycle start, and the interrupt 

mask will allow d,level 6 interrupt to be serviced.
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4.4.4.3 The servo check interrupt routine.

This is used to check the calibration of the servomotor driving 

circuit by measuring the duration of a known pulse width against the 

programmable timer on the c.p.u. card. The flow diagram is shown in 

Fig. 43. The interrupt routine is initiated by the falling edge of 

the servomotor driving pulse. Channel 7, which is unused, is set to 

give the minimum pulse width duration (0.9ms). On receiving this 

interrupt, the routine temporarily disables the programmable clock 

(6), and reads the contents of its counter into R6. This is 

subtracted from the expected value, and a flag, also in R6, is set if 

the error exceeds the acceptable tolerance of one programmable 

counter clock pçriod (21.3us). This flag is used by the telemetry 

routine in the background software to inform the operator of the 

fault condition. As in the eighth cycle routine, the stored return 

vectors are modified to point to the start of the background 

software, but the interrupt mask is now set to 3, thus disabling 

further servo check interrupts.

4.4.5 The control routines.

The control routines form part of the foreground software. Their 

function is to calculate the duration of the servomotor driving 

pulses, a process that includes the control laws for pitch and roll. 

Chapter 5 deals with selecting these laws, while Chapter 6 is 

concerned with aspects of microprocessor implementation. Hence the 

following will be confined to a description of the software logic.
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4.4.5.1 The throttle routine.

The flow diagram is given in Fig. 44. This is always under manual 

control, except during an active parachute deploy condition. The 

command workspace is loaded, then PFLAG is checked to see if the 

parachute is to be deployed. If so, the servomotor output register is 

altered to close the throttle. Otherwise, the SCALE utility routine 

is used to convert the throttle command in R4 into a form suitable 

for the output register (R6 in the servo workspace). Programme 

control returns to the background, via the Servo interrupt routine.

4.4.5.2 The aileron routine.

The aileron is controlled either manually, or via the roll autopilot. 

The control laws are always carried out, irrespective of the flight 

mode. This is because they may include digital filter-type 

compensators, which rely on previous information to formulate the 

output at any given time. Hence, the discontinuities when changing 

flight modes are reduced by effectively pre-starting the filter, 

which is most easily achieved by performing the control laws 

continuously, and then overwriting the output when in the pilot mode.

The aileron routine, which is shown in Fig. 45, loads the roll 

workspace, reads the roll attitude sensor and then performs the 

necessary operations to carry out the control law. This involves 

scaling the input demand, subtracting the feedback value, and 

multiplying by the desired forward gain and scaling coefficient. The 

calculated output is then written to the aileron register (R3) in the 

servo workspace, having first been converted to the required data 

format. The command workspace is installed, and then, if the pilot
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mode is active, the SCALE utility routine is used to modify this 

previously calculated value, using the contents of Rl as the direct 

pilot demand. Programme control then returns as for the throttle 

routine.

4.4.5.3 The rudder routine.

The rudder is operated manually, though subsequent systems may 

include yaw control. Hence a rate gyroscope has been included in the 

instrumentation, but the software only caters for the pilot mode. The 

yaw and heading workspaces are unused at present, as the rudder 

routine operates in the command workspace. SCALE is used to convert 

the pilot demand in R3 to the servomotor output format. The result is 

placed in R4 of the servo workspace. The flow diagram is shown in 

Fig. 46.

4.4.5.4 The elevator routine.

This uses the pitch workspace, and is shown in Fig. 47. The routine 

first checks for the height loop, which, if active, will have 

prepared a pitch attitude demand in the height data preparation 

routine (section 4.4.3.5). Otherwise the demand is fetched from the 

command workspace and converted to the signed, fixed point standard 

used in the control law. The attitude sensor is read using SENS, then 

the digital filter routine is performed, using the sensor reading as 

its input, which\places the compensator in the feedback path. The 

result, referred to as the modified feedback, is subtracted from the 

re-scaled demand and multiplied by the forward gain and scaling 

coefficient. The structure of the software implementation of the

58



filter is discussed in section 6.5. The output value is stored in R5 

of the servo workspace, then the routine checks for the pilot mode.

As before, if this is active, the servomotor demand is re-calculated, 

using SCALE with R2 as the input.
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Part II DESIGN OF THE FIXED GAIN CONTROL SYSTEM.



Chapter 5 The design of the fixed gain autopilot 
control laws.

5.1 Summary of previous work.

This project was started at a time when the Stabileye programme 

was undergoing a period of considerable development and change.

This process culminated in the design of a new airframe (referred 

to as the Mk.3), and the definition of a new analogue flight con­

trol system. Prior to this, the control electronics had been 

haphazard, both in their design and execution. This was mainly due 

to attempts to use low-cost sensors (13), which had proved to be 

too unreliable for practical purposes. Thus the new analogue 

controller used conventional aircraft-standard sensors, notably a 

dual-axis attitude gyroscope for pitch and roll. At the same 

time, the autopilot configuration was defined as;

Active roll attitude control via the ailerons.

Active pitch attitude control via the elevators.

Active height control via pitch attitude.

Experience with the Mk.l airframe had suggested that active yaw 

control would not be necessary. The design of these later control 

laws is given elsewhere (14).

Originally the DECS was installed in an earlier Mk.l airframe, but 

difficulties surrounding the deployment of this increasingly 

obsolete aircraft caused successive postponements of its first 

flight throughout 19'81. So in mid-1982 it was decided to 

reconfigure the system for the Mk.3 airframe. By this time the 

analogue controller described above was well-established, and it
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was apparent that the fixed gain version of the DECS should 

attempt to mimic this.

5.2 Representation of the aircraft dynamics.

A full treatment of this topic, as presented in texts on aero­

dynamics (15), would not be relevant here. Eor the purposes of 

this study, the dynamics of the aircraft have been reduced to the 

de-coupled, fixed velocity, short period transfer functions, 

relating roll rate to aileron deflection, pitch rate to elevator 

deflection and height to pitch attitude. These have been derived 

from estimates of the stability derivatives based on wind tunnel 

measurements, (16). The transfer functions were evaluated at 22, 

40 and 50 m/s, to give the results shown in Table 4. These are 

similar, but not identical, to those used in the analogue auto­

pilot design (14) as subsequent work has led to revised estimates 

of certain derivatives. The particular airspeeds chosen represent 

the slowest safe operating speed, a typical cruising speed, and 

the maximum speed of the aircraft. These are somewhat arbitrary, 

and depend upon the trim condition, weight and engine installation 

employed for a particular flight.

The transfer functions all have negative steady state gain. This 

is due to the sign conventions adopted for the control surfaces, 

and the resulting movements of the aircraft. Eig.48 shows the 

positive senses of the control surface deflections, the Body axes 

and the Body rates.\ The Body axes form a right-handed set, with 

their origin at the centre of mass, and OX aligned with the 

direction of motion. The Body rates (p, q and r) describe the
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components of angular velocity with respect to inertial space, 

taken along the instantaneous directions of the OX, OY and OZ 

axes. These are the quantities that would be measured by suitably 

aligned rate gyroscopes mounted in the aircraft.

The analysis assumes that the aircraft is initially in an un­

accelerated, steady state condition, with wings level and no 

sideslip. After a disturbance the Body axes will assume different 

positions. The relation of these to the steady state can be 

derived by three rotations:

Through , an angle of pitch; 0

through , an angle of bank; ())

and through , an angle of yaw. i);

The aircraft has angular velocities 0,  ̂ and $. Strictly 

speaking these are not equal to p, q and r as they are not the 

components about OX, OY and OZ. However, for small distrubances 

as assumed in the following analysis, this discrepancy can be 

ignored. Thus, the relationships of control surface deflections 

to aircraft attitudes can be derived from the expressions in 

Table 4, by integration, with zero initial conditions.

While taking these transfer functions as representative, it is 

prudent to consider the assumptions made in obtaining them. These 

are:

- The mass of the aircraft is constant during any particular 

dynamic analysis.

- The aircraft is a rigid structure.
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- The earth is the inertial reference, and the atmosphere 

is fixed to this.

- OX and OY lie in a plane of symmetry, so that the products

of inertia, I and I , are zero, xy yz'

- Motion is restricted to small deviations from the initial 

steady-state.

This last condition has the effect of linearising and de-coupling 

the equations of motion, so that the design process can deal with 

the roll and pitch loops separately.

5.3 The design objectives.

The objective was to obtain a system which gave an acceptable 

combination of handling qualities and relative stability. The 

former being a compromise of the speed of response and the degree 

of oscillation involved. The best available guideline was the 

intended step responses of the continuous analogue system ((14), 

Figs. 5 and 8), which are reproduced in Figs. 49 and 50. It will 

be shown that these were obtained using an unrealistic model of 

the control surface and servomotor. Therefore they should not be 

taken as necessarily achievable, but they do serve to illustrate 

the required level of damping.

In the light of this, the design criteria were;

- to use a gain dess than one third of that which causes 

instability.

- to reproduce the percentage overshoot of Figs. 49 and 50,
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at the cruise speed of 40 m/s.

- to ensure that the step responses at 22 and 50 m/s are 

acceptable, albeit less so than the cruise speed case.

5.4 Z-plane analysis of the roll and pitch loops.

5.4.1 Deriving a consistent mathematical representation.

A sampled data control system is one in which some, but not all 

of the signals appear as a sequence of numbers. This presents 

difficulties to Laplace transform methods, as it does not result 

in rational functions of s. A mathematical tool developed for 

the analysis of such systems, is the z-transform (17) (18). The 

role of the z-transform in discrete systems is similar to that of 

the Laplace transform in continuous systems. Briefly, F(z), the 

z-transform of f(t) is given by;

IfF(z) Z f (kT) z 5.1
k=0

sTwhere z = e , and T=the sampling period.

This is an infinite series and requires additional effort to 

obtain the closed form. For this reason, it is usually more con­

venient to obtain F(z), for a given f(t) or F(s), by consulting 

tables of transforms (17) (18) (19). The following example 

discusses the z-transform treatment of the roll or pitch loop.

Fig.51 shows an autçpilot loop as configured in the DFCS. Note 

here the distinction between a discrete and continuous time 

variable, and likewise, an analogue or digital signal. This must
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be reduced to its mathematically significant operations, to allow 

the use of sampled data theory. These are shown in Pig.52.

It has been assumed that the sensors have constant gain, and band- 

widths very much greater than those of the control loops. Thus 

they have no significant effect, beyond the need for suitable 

re-scaling.

The digital computations use at least 12 bits, so the quantization 

errors resulting from digital representations of analogue signals 

are insignificant, and the action of the ADC and the DAG need not 

consider this particular aspect. Therefore the ADC is reduced to 

a sampler, with a sampling aperture that is very small compared 

with the time constants involved with the system. This can be 

represented by a switch, which closes and opens instantaneously, 

giving the following model;

e(t) ---------------  f(kT) 5.2

where f(kT) = e(t)
t=kT

The digital computer operates on the number sequence, f(kT), to 

provide another number sequence, g(kT). It is the relationship of 

these two that the design process is attempting to determine. The 

control law could be a simple gain or a series of difference 

equations forming a digital filter (compensator). Either may be 

expressed as a discrete transfer function D(z), so the conç)uter is 

described by; \

G(z) = D(z) F(z) 5.3
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where G(z) is the z-transform of the output sequence, 

and F(z) is the z-transform of the input sequence.

The DAG and zero-order hold require special treatment, namely the 

use of impulse sampling (17) (18). The zero-order hold is des­

cribed by the following;

g(t)
g(kT)

z.o.h. - h(t) 5.4

where h(kT) + t ) = g(kT) , for 0 2= T T.

This can be shown to be equivalent to; 

g(t)_ g*(t) 1 - e-sT
s

_  h(t) 5.5

where g*(t) = Z g(t) 6 (t - kT) 
k — — 00

This is a sequence of weighted Dirac delta (impulse) functions, 

separated by T-second intervals, and is not physically realisable. 

Its importance is that it replaces the hybrid zero-order hold with 

the continuous transfer function T(s), where:

T(s) = 1 - e -sT 5.6

Thus the roll loop can now be represented as shown in Fig.53. The 

transfer functions describing this system are;

F(z) = D(z)
E(z)

and E(z) = R(z) - F(z).

(1- (C%(s)) (Cgy(s))
5.7

Applying the shifting theorem (17) (18), these can be reduced to:
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F(z) = D(z) (1 - z“^) 
B(z) z (Cĵ (s)) (Cĝ (s))

5.8

and E(z) = R(z) - F(z).

The z-transform of the 'function of s in equation 5.8 can be 

obtained by reference to tables, to give:

F(z) = 
E(z)

D(z) Gj^gy(z)
5.9

and E(z) = R(z) - F(z).

This is now composed entirely of functions of the complex variable 

z, and can be treated by one of several design techniques. The 

z-plane root locus '(17) was chosen, as this can be carried out 

directly from equation 5.9, whereas frequency domain methods 

require a further transformation.

The root locus was used to suggest the form of the controller.

That is, whether a simple gain was adequate, or if a compensator 

was necessary. If so, the type of compensation could be deduced. 

Following this, simulations of the roll and pitch loops were 

prepared to confirm the results (see Section 5.6).

5.4.2 Obtaining the z-plane root loci.

5.4.2.1 Z-transformation of the aircraft transfer functions.

Again, consider the 'roll loop design. This requires the evalu­

ation of :

W " > (part of 5.9).
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7 1 (Cgy(s)) (CJ^(S)

s
5.10

Cj^(s) is the aerodynamic transfer function between the control 

surface deflection and the Body rate, given in Table 4. Cg^(s) is 

the transfer function of the servomotor and control surface sub­

system. This was taken as; (see Section 5.6.2)

The expression in equation 5.10 has a fourth order denominator, in 

the case of the roll loop, and fifth order for pitch. It is 

therefore unlikely that they could be found in tables of 

z-transforms, in this form. Now, in general, it is not possible 

to take z-transforms of each factor of s in the expression in 5.10,

as:

(z) 0^(2) 5.12

where G^(z) = -f |C, (s)j etc.

So, it is necessary to subdivide the expression using partial 

fraction e^qjansion. This gives a sum of first and second order 

functions of s, that can be transformed more reqdily using tables. 

The result (a sum of similar functions of z), is not as useful as 

would be a corresponding product of factors. This latter form 

would allow cascade implementation of the discrete transfer 

function at the simulation stage. Hence the sum has to be reduced 

to a single quotient, and then factorised.
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This procedure had to be performed a number of times. It is 

cumbersome, and includes calculations that exceed the accuracy 

capabilities of a hand calculator. A computer programme was 

developed, which handled the algebraic manipulations described 

above, using a numerical analysis package (El). The programme is 

called ZTRANS.FORTRAN, and is listed in Appendix E, along with 

details of its use. The results produced are given in Table 5.

5.4.2.2 Constructing the loci.

Now, the characteristic equation of the system in Fig. 53 is given 

by;

1.0 + D(z) d - z " ^ )  G^g^(z) = 0 5.13

The expression (1 - z ^) Gj^^^(z) has been evaluated by ZTRANS.FORTRAN, 

and D(z) is the discrete transfer function of the digital 

computer control law. Until the nature of the control action is 

determined, D(z) is taken to be a simple gain, K. Hence the root 

locus is obtained by repeated solution of:

1.0 + K (l-z“^) G^g^(z) = 0 5.14 

as K varies.

An approximate locus could be constructed using the same rules as 

those for a continuous system, but this would not indicate the 

precise value of K for a particular set of pole positions. For 

this reason, another^ computer programme making use of the numeri­

cal analysis package (El ) was developed, to provide the roots of 

equation 5.14. This programme, GENLOC.FORTRAN, is presented in
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Appendix E, along with details of its use. The results were

produced in tabular form, allowing the root loci to be drawn.

5.4.2.3 Results for the roll controller.

The root locus for the roll loop, using the 40 m/s airframe trans­

fer function, and the first order model for the control surface 

subsystem, is given in Fig.54. Root positions for certain 

significant values of gain, as produced by GENLOC.FORTRAN, are 

given in the Fig, The following points can be observed:

- The response will be dominated by the roots of the branch 

of the locus associated with the open loop poles at z = 1.0 

and z = 0.6125.

- These roots are complex for K >  0.35.

- The stability boundary is crossed in the region 3.0 < K  <  

4.0, (so the design objective requires that K <  1.0).

- Assuming that a damping ratio of approximately 0.8 is 

required, indicates that the forward gain, K, should be

0.45. Compensation will not be necessary.

5.4.2.4 Results for the pitch controller.

The root loCus for the pitch controller with a single forward 

gain, K, and a first order control surface model, is given in 

Fig.55. From this it can be seen that:

- The response will be dominated by the contributions of a 

slow, real pole and a complex pole pair, for which the
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damping ratio is always less than 0.35

-The stability boundary is crossed for K> 2.0

-If the gain is increased to reduce the time constant of 

the real pole, the oscillations due to the complex pair 

will be unacceptable. Clearly some form of compensation 

is required.

5.5 Choice of the pitch compensator.

It was decided to use the equivalent of the compensator used in 

the continuous analogue scheme (14). This relies on pole-zero 

cancellation to reduce the contributions of the undesired open 

loop roots. Inexact cancellation is inevitable, especially at 

22 and 50 m/s. This may lead to unacceptable step responses, 

or even instability, but these will be examined at the digital 

simulation stage.

The transfer function of the compensator is given below, as a 

function of s and then as the equivalent function of z:

C^(s) = 2.02(s^ + 8.0s + 80.0)

(s + 4.0)(s + 39.6)

and : 5.15

G^(z) = 1.3272(1.0 - 1.7736z“  ̂+ 0.8187z"^)

(1.0 - 0.9048Z ^)(1.0 - 0.3714z"^)

An equivalent function could have been achieved by a number of 

discretization methods, such as z-transformation with, or with­

out a hold, bilinear transformation or root matching (20). The
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different techniques would produce varying results, as each mk 

method preserves some, but not all, of the analogue original.

A comparison of these is given in the references (23); the latter

method was chosen. Root matching maps the poles and zeroes of

C^(s) on the s-plane'to equivalent positions on the z-plane.

As pole-zero cancellation is the object, this is the most 

suitable approach.

Discretisation is as follows:
-aT -1a) Replace factors of the form (s + a) with (1.0 - e z ).

b) Replace factors of the form (s+a jb) with

(1.0 - 2.0e ^^cos(bT)z  ̂ + e ^^^z ^).

c) Re-scale the steady state gain.

The poles and zeroes of the pitch compensator are shown on the 

root locus diagram in Fig. 55. Note that a similar pole-zero 

cancellation compensator could have been derived directly by 

inspection of this z-plane root locus. The intention to 

reproduce the analogue scheme control law exactly, deterred 

this.

5.6 Discrete simulation of the roll and pitch loops.

5.6.1 The simulation method.

The control surface and servomotor subsystem will be referred to as

the actuator. The model of this actuator, used in the estimation

of the root loci,Was a linear, first order transfer function (see

equation 5.11). This will be shown to be inadequate for other than

small deflections. The purpose of the discrete simulation was to

confirm the control laws suggested by the root loci, at 22, 40 and

50 m/s, using a more representative actuator model. So, the
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actuator dynamics, previously embedded in the continuous part of 

the system in Fig.53, must now be separated from the aerodynamic 

transfer function.

The simulation method was to precede each separate continuous 

section of the loop with a sanple and hold block. In this way, 

they can be represented as discrete transfer functions in a 

digital computer programme (17). For example, the functional 

block diagram of the simulation of the roll loop is given in 

Fig.56. (The treatment of the pitch loop was similar.) Z-trans­

formation was achieved, as before, using ZTRANS.FORTRAN (see 

Section 5.4.2.1). The actuator model will be considered first.

5.6.2 The rate-limited actuator model.

5.6.2.1 Earlier actuator models for Stabileye.

Previous autopilot design studies for Stabileye have used a 

second order linear model for the actuator, of the form:

Output position =
Demand + 2 Ç w ^  s 5.16

This type of model arises by measuring the frequency response of 

an unloaded servomotor. Results of this nature were obtained, 

which suggested that = 19.0 rad/s and Ç =0.65, (Ref.(14) used 

ü)^=20.0 rad/s, C =0.5).

When considering the unit step response of this type of model, it 

becomes clear that it is not representative. In particular, the 

percentage overshoot suggested by 5.16 is given by:
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/ - n ; \100.0 X exp I - 1 5.17
V ' T T ^ /

(For C =0.5, overshoot = 16.3%)

However, practical e:q)erimentation reveals that the servomotor does 

not exhibit any noticeable overshoot. It was therefore decided to 

carry out a more thorough investigation of the actuator, with 

special attention to loading and rate limiting effects.

5.6.2.2 Servomotor loading.

The most significant loading effects will be due to aerodynamic 

forces, as the control surfaces are lightweight structures, with 

low hinge-friction. This type of loading has been measured for 

Stabileye, and was found to be dependent on incidence and air­

speed (21). The maximum values were recorded with the control 

surfaces at their full deflection. They were;

0.105 Nm for the elevator (24 m/s),

and 0.18 Nm for the aileron (30 m/s).

These airspeeds are lower than would be expected under normal 

flight conditions, but there is no other data available.

The mechanical advantage of the linkages must also be considered.

As driven by the DFCS, the servomotor outputs will move through 

1.798 rad. The desired elevator travel is 0.524 rad, the aileron 

0.349 rad, so the linkages afford mechanical advantages of:

3.43 : 1 for the elevators,

and 5.15 : 1 for the ailerons.

74



The maximum load, under which the Skyleader SRC4BB servomotor can 

move, is 0.34 Nm (22). Thus the *worst case* conditions quoted 

above provide only 9% and 10.2% of the stalling load. Hence 

loading effects need not be included in the actuator model, as 

typical working loads are much less severe than these.

5.6.2.3 Rate-limiting and deadband.

Rate-limiting, however, is significant. This is confirmed by 

Fig.57, which shows the response of a servomotor to step changes 

of input demand. (More specifically, to changes in the duration 

of the periodic driving pulses.) Increments of more than 0.125 ms 

give responses that are clearly dominated by fixed rate regions. 

This particular servomotor shows a limit of 4.014 rad/s, while the 

specified output rate limit is 3.490 rad/s (22). To be meaningful 

this must be related to the geometry of the control surfaces. 

Taking into account the reduction due to the linkages, and using 

the specified rate of 3.490 rad/s, the limits are;

0.678 rad/s for the elevator, 

and 1.018 rad/s for the aileron.

The 0.0625 ms step shown in Fig.57 is more reminiscent of a linear 

system. This is expanded in Fig.58, which shows the responses to 

smaller changes of input pulse duration. These can be adequately 

described by a first order lag, with a time constant of 0.05 s. 

(Hence the linearised, small deviation model used in the root 

locus analyses.)
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The smallest step in Fig, 58 is uncertain, and does not reach the 

demanded position. Subjecting the servomotor to changes in demand 

that were smaller than this did not result in any output movement at 

all. This is due to stiction in the mechanism and backlash in the 

drive gears, giving rise to a deadband region.

5.6.2.4 Description of the non-linear actuator model.

The form of the state equations necessary to model the actuator and 

aircraft dynamics will be as described in section 5.6.3. Sections

5.6.2.2 and 5.6.2.3 have shown that servo-actuator loading effects 

are not significant, but position and rate limiting and deadband are. 

It is therefore necessary to modify the state equation corresponding 

to the actuator, (as shown in Fig. 60 for the roll loop). Deadband is 

simulated by modifying the servo-actuator demand function. If the 

absolute value of the difference between the latest and the previous 

servo-actuator demands is less than the specified deadband level, the 

latest demand is replaced by the previous demand.

The model then checks for rate limiting. If the difference 

between the latest servo-actuator position (designated XS) and the 

previous position (XSO), is such that it exceeded the rate limit in 

order to achieve this change, then the value of XS is altered to:

XS = XSO +/- (Rate limit)(Iteration interval) 5.18

The next process is to ensure that the servo-actuator position, as 

calculated by the state equation corresponding to the actuator, or as
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modified by equation 5.18, does not exceed the position limit. If it

does, it is replaced by that value.

The model can mimic the extent of the non-linear effects shown

in Figs. 57 and 58, or be set to represent the ideal actuator. The

measured values of position and rate limits were:

Aileron, position = +/-0.175 rad, rate = +/-0.678 rad/s
5.19

Elevator, position = +/-0.262 rad, rate = +/-1.018 rad/s

Deadband was set so as not to respond to less than 2 bits change at 

the input demand, i.e. the deadband value was:

(Total actuator travel)/128 rad 5.20

5.6.3 Computer implementation of discrete transfer functions.

The general roll and pitch transfer functions for attitude, without 

the actuator dynamics are: (as provided by ZTRANS.FORTRAN)

G„(z) = K(z + a) and Gp(z) = K(z + a)(z + b)
^  ̂   5.21

(z - 1.0)(z + b) (z - 1.0)(z^ + dz + e)

These lend themselves to cascade implementation of simple first and 

second order components. So that:

Gp(z) = (K)/l.O \ /z + a'^ ' I 5.22
- 1.0/ \z + b
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Gp(z) « (K)^ 1.0 \[(2, + a)(z + bj^ 5.22 (cont.)
z - 1.0/ \(z^ + dz + e)

For physical interpretation these must be expressed as functions of

z  ̂which is equivalent to a delay of one sample period. So;

Gp(z“ >̂ = (K) \ /1.0 - az”^

1.0 - z"^/\ 1.0 - bz"l  ̂ ^̂ 23

Gp(z = (K) /z  ^ \ /1.0 + (a+b)z  ̂+ abz ̂

1.0 - z / I 1.0 + dz  ̂+ ez ^

The computer programme realisations can be inferred directly from these 

equations(23), or/by first drawing the state diagrams(17). The deriv­

ation of the difference equations for the roll loop will be described 

here as an example. The block diagram is given in Fig. 56, (for later 

work, in part 111, a fixed disturbance input was added at the output 

of the actuator). The state diagram for the forward path of the roll 

loop simulation is given in Fig. 59, showing the servo-actuator and 

disturbance inputs and the error, rate and acceleration outputs.

The labels in this diagram correspond to the names used in the 

difference equations in the simulation programme. The values of these 

coefficients can be derived from Tables 5, or 5a, in the rows marked 

Gp(z) and Ggy(z). (There is a requirement for two sets of coefficients 

because the simulation was later repeated with a much higher sampling 

rate than 40.0Hz).

Fig. 60 shows'the difference equations taken from the programme 

listing. The states XS,XE1,XE2 etc. are at the outputs of the paths 

marked z  ̂in the state diagram. The one sample period delay is effected 

by calculating the next value of the state XSl, XEll, XE21 etc. and
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storing that value until the next iteration, wherein it is passed to 

the current value of the state.

5.6.4 Notes on the simulation programmes.

Separate simulations for the pitch and roll loops were produced.

These were titled ZROLL.FORTRAN and ZWORKS.FORTRAN, and are run 

interactively on a PDPll/34 minicomputer. A sample listing of 

ZROLL.FORTRAN is given in Appendix F. Many of the options included 

are only necessary for the adaptive autopilot to be investigated in 

part 111. This accounts for the need to simulate the rate and 

acceleration functions for roll, as shown in Fig. 56. (These are fed 

back via switched gains in the adaptive scheme.) Both programmes have 

definition, simulation and output stages. The first allows the 

operator to define a switching surface (see part 111), set-up the 

servo-actuator parameters, select "true" or "estimated" rate (the 

latter includes measurement noise and is derived from a digital 

filter), and set-up the gains and compensator coefficients. The 

simulation stage generates the step response over a 4.0s period, with 

either zero initial conditions and a non-zero demand, or vice versa. 

The difference equations for actuator and aircraft dynamics 

originally used a 40.GHz sampling rate. This was considered adequate 

after comparing results with those from a 4th order Runge-Kutta 

algorithm with a 0.01s iteration interval* The difference was not 

significant, and by using this sampling rate the servomotor update 

rate would be simulated directly. However, in later work where high 

frequency switched gains were used, it was found that the transport
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delay of the z-transfer function models interfered with the 

performance. Hence the roll simulation only was repeated with a 

320.0Hz sampling rate for the dynamics, but with the control signal 

still updated at 40.0Hz. This is very much faster than the dynamics 

of the system and resulted in z-transfer function coefficients that 

were close to 1.0. The accuracy of the minicomputer arithmetic was 

considered adequate to accommodate this problem. The actuator and 

roll z-transfer functions at this higher rate are given in Table 5a.

The output stage allows the operator to display the attitude, 

the servo-actuator displacement or the switching function. It also 

provides the option to change any of the of the previously defined 

parameters, before repeating the simulation stage.

5.6.5 The roll attitude simulation results.

The gain of 0.45 suggested by the root locus was reduced to 0.4, as 

this gave better results. These are shown in Figs. 61 to 66, which 

depict the attitude and actuator movement for a step demand of 0.5 

rad, at 40, 22 and 50 m/s. The desired shape of response at 40 m/s 

has been achieved. The appearance of overshoot in Fig. 61 is caused 

by the actuator deadband condition. This gives rise to a small, 

non-zero steady state value, which results in a certain amount of 

attitude drift. The other non-linear servomotor aspects are clearly 

seen, and have a significant effect on the transient behaviour of the 

attitude. The step responses at 22 and 50 m/s are acceptable, so the 

only remaining design objective concerns the relative stability. This 

was checked by examining the performance with a forward gain
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three times as large as the chosen value. The step response and

the aileron results for the worst case of 50 m/s are shown in Figs.

67 and 68. These are still convergent.

A simulation using the linearised second order actuator model of 

equation 5.16 was also developed, to illustrate its inadequate 

behaviour. The results for the same step demand, with a gain of

0.4, are shown in Figs. 69 and 70. The response is ‘faster* and 

does not exhibit any steady state error. This explains the 

apparently superior performance of the analogue controller 

in Fig.49. However, when the actuator displacement, as shown in 

Fig.70, is examined it is seen to be unrealistic, with a maximum 

deviation of 0.3 rad and a maximum rate of 2.5 rad/s.

5.6.6 The pitch attitude simulation results.

The second order compensator suggested in Section 5.4.2.4 was 

tried in both the forward and feedback paths. It was found that 

while both were subject to similar degradation in performance at 

22 and 50 m/s, the feedback compensation gave generally shorter 

transient periods. The difference in the two configurations is 

confined to the closed loop zeros. Using forward path compensation 

these are the zeros of the plant and the compensator. With feed­

back compensation, they are given by the plant zeros, but the 

compensator poles. Being faster in its responses, the latter con­

figuration was chosen, along with a forward gain of 0.86.

The attitude response, and actuator displacements at 40, 22 and 

50 m/s, for a 0.14 rad step demand, are given in Figs. 71 to.76.
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The transient shape of the 40 m/s case is similar to the objective 

shown in Fig,50. The performance at 22 and 50 m/s shows the 

effects of inexact cancellation. However, when the amount by 

which the plant parameters change is considered, the responses at 

the extremes of the range are not unacceptable, provided the 

relative stability is not impaired. This was examined at all 

three airspeed values. The worst case, at 50 m/s, is shown in 

Fig.77. Though this suffers almost 100% overshoot, it settles to 

a steady state in 1.5 s, and is stable.

Actuator excursions are smaller than for the roll simulation, so 

position and rate limiting are not encountered. This does mean 

that the deadband effect is worsened, as it constitutes a more 

significant proportion of the working range of the actuator.

5.7 Treatment of the height loop design.

The continuous autopilots had shown that the height loop was 

acceptable without compensation. As the sampling period is 

very much shorter than the time constants involved, it was 

decided that the conversion to a sampled-data scheme would have

no effect on its performance.

Had the height loop required discrete compensation, this approach 

could not have been used. This is because compensator time 

constants that are much longer than the sampling period, result 

in z-plane poles and zeroes that are close to z = 1.0. When

this happens, the errors arising from fixed point quantisation

noise lead to instability.
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The gain chosen was:

= 0.1939

This corresponds to a linear range of _+ 20.0m with respect to 

the desired height. Beyond this the pitch attitude loop 

saturates, so that the aircraft performs a fixed rate of ascent 

or descent.
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Chapter 6 Microprocessor implementation of the control laws.

6.1 Choosing the finite wordlength notation.

The design process in Chapter 5 has defined the gains and compen­

sation that will give the desired performance. These have been 

implemented in the digital simulation and must now be transferred 

to the simpler arithmetic of the microprocessor system. This 

entails choosing the finite wordlength, and the manner by which 

values should be represented. The former is intimately related to 

the hardware, so this aspect was considered during the selection 

of the c.p.u. and the A/D converter, which are 16, and 12 bit 

devices respectively.

The next step is to select the number system. The choice is

between fixed and floating point notation (23, 25). The latter

requires that each value be expressed by a mantissa and an exponent, 

and must complicate the software. As the amount of c.p.u. time 

available for the control algorithms was not known, it was decided 

to use fixed point notation which would be more straightforward.

6.2 Hazards of fixed point arithmetic.

The principal drawback of this system is its limited dynamic range.

This can cause difficulties due to quantisation noise, if the 

wordlength is not adequate. Alternatively, if the result of a 

calculation exceeds the permitted range of values, a condition 

known as 'overflow' will occur.

It is clear that the likelihood of these problems will depend on 

how the arithmetic is scaled. Providing the 12 and 16 bits of the
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hardware are used carefully, it was felt that quantisation errors 

would not be significant. Their effect was examined empirically 

by the use of a hybrid simulation, to be described in Chapter 7. 

Overflow is more serious as it gives rise to completely incorrect 

results, and so should be dealt with actively. This was done by 

checking after each addition, or multiplication, and replacing an 

erroneous result with the maximum positive or negative number 

allowed. Using this method, referred to as saturation (25), over­

flow is still undesirable, but less likely to be catastrophic.

6.3 Treatment of multiplication.

In fixed point arithmetic, the product of two 16 bit numbers is a

32 bit wordlength. This must be expressed as a 16 bit result by

truncation, or better still, rounding off. It is necessary to 

ensure that the abbreviated result is scaled to the same standard 

as the multiplicand. To achieve this, the multiplier is prepared

in floating point notation, i.e. as;

K X 2” 6.1

where K is a positive 16 bit binary fraction, and n is a positive 

exponent, used to pre-shift the multiplicand. The multiplication 

process itself would not normally cause overflow; it is this 

shifting procedure that might. The routine accommodates negative 

numbers by performing two * s complement negation of the result.

6.4 Scaling.

While the possibility of overflow could have been avoided entirely 

by cautious scaling, it was felt that the attendant loss of accuracy
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in the calculations would be a greater problem. As the effect of 

overflow is actively catered for in the software, it might be 

allowed to occur during extreme manoeuvres in flight. The same 

reasoning was applied to the adjustment of the sensor outputs to 

the A/D converter input, and so the hardware scaling was duplicated 

in the software.

The standard for each loop is obtained by equating the full scale 

sensor output, to the maximum value returned by the SENS sub­

routine. Now, SENS multiplies the 12 bit ADC output by sixteen, so 

these maximum values are;

± 2047 X 16 = ± 32752 6.2

Thus the scaling standards for the control law calculations are as 

follows:

Roll, ± 1.396 rad = ± 32752

Pitch, ± 0.291 rad = ± 32752 6.3

Height, ± 1000m = ± 32752

The demands are all expressed as 8 bit numbers, as they occupy a 

byte in the telecommand frame. So, initially they are scaled to:

Roll demand, 0 to 255 = -1.047 rad to +1.047 rad

Pitch demand, 0 to 255 = -0.140 rad to +0.140 rad

Height demand, 0 to 255 = 0 to 1000m 6.4

These must be adjusted to the sensor standards of expression 6.3, 

before they can be used in the control laws.
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The outputs of the roll and pitch calculations are control surface 

deflections. Because of the dissimilar geometry of the aileron 

and elevator linkages, these require different scaling factors, 

to provide the numbers expected by the servomotor driving circuit

(see Section 3.2.3.3). The output scaling standards are;

Aileron servomotor, 0 to 1515 = -0.175 rad to +0.175 rad

Elevator servomotor, 0 to 1515 = -0.262 rad to +0.262 rad

6.5

The output for the height loop is converted to the pitch demand 

scaling given above.

With the information in expressions 6.3, 6.4 and 6.5, it is 

possible to assemble the multiplication factors used in the fixed 

point routines. These are the coefficients referred to in the flow 

charts in Figs. 45, 46, 47. An example will be given to illust­

rate how they are derived. Consider the pitch loop forward gain,

which is labelled PFGSC in the software. The specified gain is

0.86, but this must also accommodate the re-scaling necessary for 

the output standard. The result of the pitch summing junction will 

be scaled to;

± 0.291 rad = ± 32752 6.6

The output standard is;

± 0.262 rad = ± 757.5 6.7

So the overall multiplication coefficient will be:
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0.86 X 757.5 x 0.291
0.262 32752

6.80= 0.022105 X 2

= ®05A8® , expressed as a binary fraction.

The derivations of all the control algorithm coefficients are 

given in Table 6.

6.5 Structure of the pitch compensator.

The only remaining part of the control loops requiring explanation 

is the structure of the pitch compensator. This was given in 

equation 5.15 as:

Gc(Z) = 1.3272 (1.0 - 1.7736Z"! + 0.8187z” )̂

(1.0 - 0.9047Z"1)(1.0 - 0.3715Z"^)

6.9

This can be re-arranged to the form:

G_(Z) = GN (1.0 + AIZ"^ + A2Z"^) _
^    6.10

(1.0 + B1Z“  ̂ + B2Z” )̂

The software implementation of this follows the method used to pro­

duce discrete transfer functions in the digital simulation,

(Section 5.6.3). The state diagram is shown in Fig. 78, and the 

calculations for the (i+ l)th iteration are given below.

88



X^(i+ 1) = GN R(i) - ̂ 1 Xi(i) - B2 X2(i)

X2(i+1) = Xi(i) 6.11

The output equation is:

C(i) = GN R(i) + (Al-Bl)Xi(i) + (A2-B2)X2(i)

where R(i) is the pitch attitude input, and C(i) is 

the modified feedback.

A listing of the assembler software is given in Appendix C, and the 

values of the multiplier coefficients SSGN, PCGBl, PCGB2, PCGABl 

PCGAB2 are shown in Table 6. These are stored contiguously in mem­

ory so that it is only necessary to load the multiplier pointer in 

R12 at the start of the routine. Thereafter, the pointer is 

incremented automatically, each time that MULT is called. The last 

stage of the compensator routine moves the newly calculated states 

Xj^d+l) and X^fi* 1), to the Xi and X2 register stores in readiness 
for the next iteration.
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Chapter 7 The fixed-gain autopilot results.

7.1 Hybrid simulation.

7.1.1 The method.

Hybrid simulation is a technique where the DFCS is operated in closed 

loop with an analogue computer model of the aircraft dynamics. It 

offers the opportunity to study the performance of the hardware 

system at first hand, with the hope of eliminating implementation 

errors before flight trials. These errors fall into three categories;

1) Noise problems, including quantization. The analysis in Chapter 5 

examined the effect of using a discrete-time control system, but 

ignored the quantization of signal levels. By using the actual 

input/output systems of the DFCS, representative levels of 

measurement noise are introduced.

2) Faulty logic in the micro-code. Corrected by editting and 

re-assembling the software. This exploits the inherent versatility of 

a processor-based system.

3) Hardware errors of the integrated system. These are typically 

interconnection faults which were not discovered during individual 

bench testing of the circuitry.

These tests were carried out during the design of the DFCS for 

the Mk 1 Stabileye. Having verified its performance, and eliminated 

all of the above errors, it was not felt necessary to repeat this 

stage when the Mk‘3 Stabileye control laws were introduced. Therefore 

the material given here corresponds to the earlier autopilot 

configuration.

The most complete hybrid simulation would be one that excercised
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the entire airborne DFCS. For practical reasons, certain parts of the 

hardware could only be simulated, as shown in the block diagram in 

Fig. 79. A brief description follows, with a more comprehensive 

treatment of the analogue computer modelling of the aircraft transfer 

function given in Appendix G.

The sensors were omitted as there was no means of moving the 

gyroscope, or providing a barometric input. Therefore the analogue 

computer models were scaled to produce outputs which duplicated those 

of the instruments. It was also necessary to replace the telecommand 

receiver with a test set which simulated the receiver's output. This 

unit allowed the operator to generate precise step demands for the 

pitch and roll loops. The deflection of the actuator was measured by 

driving a potentiometer, the output of which was used to stimulate 

the analogue computer model. (This arrangement was used for the 

actuator rate-limiting investigation in section 5.6.2.3)

7.1.2 Hybrid simulation results.

Fig. 80 shows the hybrid simulation results for the Mk 1 Stabileye 

roll controller. This aircraft operated at much slower airspeeds than 

the Mk 3 version, so the aircraft transfer functions for 22 and 30m/s 

were used. Also shown in Fig. 80c, is the corresponding digital 

simulation. The latter features a rate-limited actuator model, but 

the deadband effect has been omitted for clarity. Similarly, Figs. 

81a,b and c show the results for the pitch controller. This is of 

greater interest‘because, like the Mk 3, the earlier pitch autopilot 

employed a digital compensator.

Clearly the quantization of the signal levels has not 

de-stabilised the control loops, and the results are generally as
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predicted by the digital simulations. The shape of the transients are 

correct, though those for the pitch loop are masked by the more 

severe deadband effect. This is shown in Fig. 82, which depicts the 

roll and pitch attitude under steady state conditions. The extent of 

the oscillations compares with the digital simulations of the later 

autopilot in Figs. 61 and 71, which do include deadband modelling.

7.2 Flight results.

7.2.1 Summary of the flight.

The DFCS was flown for the first time on the 18th October 1983, from 

a Ministry of Defence range. The flight lasted 16 minutes, during 

which time the operator satisfied himself that the system was 

performing as required. The autopilot and height-lock modes were 

used, with recovery achieved by parachute deployment. Momentary 

breaks in telecommand transmission, induced at the ground station, 

resulted in brief periods of failsafe command. A full account of the 

flight is given in the references (26), so the analysis here will be 

confined to the performance of the controllers.

7.2.2 Observations on the flight results.

The primary observation is that the DFCS performed in a similar 

manner to the existing analogue flight control system. In this, the 

desired objective was realised. To make a qualitative comparison with 

the results of a previous flight would not be instructive. This is 

because the performance depends on many factors, including the state 

of trim, weight and thrust available. Stabileye no.43 was used to
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test a larger, more powerful engine installation, which resulted in a 

heavier aircraft. Furthermore, it is standard practice when flying a 

new airframe, as was no.43, to use the first flight to assess the 

state of trim. Therefore the performance must be considered in 

isolation.

The results are provided by the real time record, which include 

both the telecommand and telemetry histories. As such, they are 

subject to errors in the encoding, decoding and display systems.

7.2.2.1 State of trim.

The type of control law used, and the nature of the pre-flight 

adjustments mean that the aircraft must be trimmed. This is 

especially so for roll attitude, as no provision to balance the 

aircraft about the OX axis is made during the pre-flight checks. The 

mean attitudes achieved for zero demands were as follows;

Roll +0.0785 rad (to port)

Pitch +0.0140 rad (up)

7.2.2.2 The roll step response.

The roll attitude controller performed as expected, with good demand 

following if the effect of the trim error is taken into account. This 

is illustrated by'.Fig. 83 which shows a sequence of negative and 

positive roll excursions. The first manouvre is a close approximation 

to a step demand, with 41.0 m/s indicated airspeed. If this is 

compared with the digital simulation response at 40m/s, in Fig. 61,
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it is seen that the rise time, level of damping and steady state 

variation are as predicted.

7.2.2.3 The pitch step response.

The pitch attitude controller gave acceptable results for positive 

demands ("pitch-up"), in terms of speed of response, level of damping 

and steady state variation. This is shown in Fig. 84, which also 

shows a negative pitch excursion. As can be seen, the demand 

following for this case is poor. There are several possible reasons 

why this occurred. First, it may have been due, in part, to the trim 

condition of the aircraft, but this is unlikely to have been entirely 

responsible. Secondly, The controller may have been malfunctioning, 

but there are indications that this was not so. That is to say, the 

controller is capable of achieving a positive pitch attitude demand, 

and also, the system was checked prior to flight by inclining the 

aircraft on a moving platform, and observing the deflection of the 

control surfaces. This process had given satisfactory results for 

both the roll and pitch axes. The most likely explanation is that the 

simplified aircraft transfer function is not valid at large negative 

pitch attitudes.

7.2.2.4 The height-lock performance.

Fig. 85 shows the climb to height from launch. The climb rate is 

virtually constant; at 2.5m/s until the height error is less than 20m.

At this stage the loop enters its linear region, and the rate of 

climb reduces to zero. Once the demanded height of 300m is reached, 

the HTERR function indicates that the steady state variation is +/- 4.0m.
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Part III DESIGN OF AN ADAPTIVE ROLL ATTITUDE CONTROLLER,



Chapter 8 Introduction to part III

Following the successful conclusion of the flight trials with the 

fixed gain DFCS, attention was turned to the use of different 

coiitrol strategies to take advantage of the flexible nature of the 

software. It was hinted in section 5.3 that there were no hard-and- 

fast guidelines to follow in designing the fixed gain autopilot, and 

so it is sensible to re-assess the design criteria at this stage. It 

is not a particularly complex control problem compared with aircraft 

which must accommodate a broader flight envelope, and in many respects 

a fixed gain autopilot provides an adequate solution. Furthermore, the 

level of complexity that must be included in a manned aircraft is 

difficult to justify for a low cost R.P.V., so the case for developing 

an adaptive autopilot is questionable.

There is one aspect in which the fixed gain controller fares 

poorly - the trim error problem apparent in the flight results. This 

is due to misalignment and imbalance of the airframe, and misalignment 

of the servoactuators, which act as a disturbance in the closed loop. 

They would normally be eliminated by adding corrections to the 

attitude commands at the ground station, or by the application of 

trim tabs to the airframe after an initial proving flight. Such 

procedures are acceptable for a research vehicle, but they are out 

of the question for a production R.P.V., (which should exhibit mimimum 

trim error without operator intervention). The solution must lie with 

the autopilot cont,rol law. Using an integrator in the forward path 

to overcome the steady state error would be unwise, as it creates a 

double pole at the s-plane origin and de-stabilises the system. An
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attractive alternative is to reduce, not eliminate the offset, by 

increasing the loop gain. For significant improvement the increase 

should be at least twofold, which will lead to unacceptable levels 

of overshoot. The desired solution is a control law that will apply 

larger gains for controlled intervals only, so as to reduce the 

disturbance error and avoid excessive overshoot. If compensation 

is used to suppress the gain during the transient period, the order 

of the system will be increased, which is not generally desirable.

The other option is to use a variable gain, as part of a variable 

structure system (V.S.S.).

The particular type of structure change investigated here is 

the use of a sliding mode, as developed by Emelyanov et. al. (27-37) 

in the I960's. A useful introduction to the subject is provided by 

Utkin (35), and a review of its relation with other control strategies 

is given by Maslen (38). More comprehensive treatments are to be 

found in Itkis (36) and Utkin (37). Recent work by White (39,40) 

has led to a more workable design technique, and a valuable means 

of system design when states are unavailable.

The structure, (usually just a gain), is varied in such a way 

as to force the output to follow an implied model. The choice of this 

model is not free, in earlier work it was of one order less than 

the plant, but White has shown that viable systems can be designed 

with lower order models than this. Obviously it is selected to have 

some desired property. For Stabileye, a monotonie response is 

attractive, especially when the payload includes real-time T.V. 

monitoring equipment, so the model can be chosen with this in mind.

Most adaptive autopilot schemes (41-45) require more knowledge 

about the system state than a fixed gain design. Sliding mode V.S.S.
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ideally requires all of the derivatives of error up to (n-1), 

where n is the order of the plant. This is acutely difficult for a 

low cost R.P.V. which must use the least number of sensors on the 

grounds of minimal cost, weight and complexity. Hence it is necessary 

that these derivatives shall be generated by some artificial means.

Part III of this thesis is confined to a theoretical design 

study only. This is because the Stabileye project ran into difficult­

ies throughout 1984, and was eventually cancelled at the end of that 

year, so flight trials of a V.S.S. autopilot were not possible. The 

purpose of this investigation is to indicate by simulation the sort 

of improvements that can be achieved, but how these can be negated 

by the effects of the physical constraints of a real system. The 

roll autopilot only has been studied; This is because the pitch 

autopilot exhibits the same sort of difficulties, but these are 

compounded by its being of higher order. This is not a problem in 

itself, if it can be assumed that additional sensor information is 

available. As it stands however, the prospect of developing a 

variable structure pitch autopilot using measured attitude only is 

an unrealistic undertaking.

The hybrid simulation stage will not be performed for this work. 

Its most useful role is in proving the proper working of the practical 

implementation of the DFCS. As this has already been shown to be so, 

there is little point in repeating the excercise.
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Chapter 9 Theory of variable structure systems.

9.1 Sliding modes.

A variable structure system is one in which the structure is changed 

during the transient process in accordance with the current value 

of the error and its derivatives. These changes can include altering 

gains, adding or removing feedback paths, or switching the type 

of compensation. Other more obscure examples are; the inclusion of 

a multiplicative mode, where the gain is made a multiple of the error 

(46), the use of a strategy of fixed control increments where the 

next increment is determined by the sign and magnitude of the error 

and error rate (47), or by switching between a type I and a type II 

system (48). The possibilities are endless, and they can all be 

achieved without specialised hardware, when using a software-based 

controller. Many of the methods are difficult to analyse. Having 

been designed (say by trial and error) for one set of plant dynamics, 

they could give unpredictable results as the plant changes. The use 

of a sliding mode avoids these problems.

If the structure is switched on a surface in state space, a 

sliding mode will occur if, in the vicinity of the surface, the state 

trajectories of the prevailing structures are directed towards this 

surface. Consequently once this discontinuity surface has been reached, 

the system will rapidly switch from one structure to another as it 

crosses, and re-crosses the boundary. Hence it will remain within 

a very small region of the surface, and will slide along it in state 

space until it reaches an equilibrium condition. The motion of the 

controlled system at this time will depend on the equation of the 

switching surface alone.
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This is attractive for the following reasons;

The controlled response is independent of the plant and can 

be made insensitive to parameter changes.

If the system to be controlled is of order n, the equation of 

the switching surface will be of order (n-1).

The constituent structures need not be well behaved, and may even

be unstable.

The concept can be illustrated by a simple example. Consider the 

time invariant plant whose motion is described by;

XI = X2

X2 = -&2 X2 -a^x^ + u 9.1

where x̂  is the error, â  and a2 are the constant 

parameters, and u is the control signal.

Let u be a piecewise linear function of xj, so;

u = - liJXj 9.2

where can have the values a and -a .

If plant coefficient a2 is negative, and the value of a is chosen

so that the system with ip = a has complex eigenvalues, and with

^ = -a has real eigenvalues, the state trajectories will be as shown 

in Figs’. 86 a and b. Both structures are unstable.

Now the system structure is switched on the surfaces described

by:

xq = 0 , and o = c^x^ + X2 = 0 9.3

Here, c^> 0, is constant, and is selectedso that the straight line 

0 = 0  occupies the position shown on Fig. 86b.
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If the law of structure change is:

ip = a , if xjO > 0

9.4
and \p = - a , if x^o < 0

then the state trajectory will be as shown in Fig. 8 6 c. As can be 

seen the trajectory reaches the surface 0 = 0  from any initial 

condition, and then slides down the surface to the origin. The 

motion of the controlled system in the sliding mode is described 

by the equation for the switching surface, i.e.

CfXf + X2 = 0

9.5
or cjXj + xj = 0

This is a first order differential equation which is stable as 

c^> 0 , and has been produced from two unstable structures.

Notice that if the plant parameters â  and 8 2  vary over a 

known range, then the stable asymptote in Fig. 8 6 b will also lie 

within a known sector of the phase plane. If the switching surface, 

0 = 0 , is chosen so that it lies between X2 = 0  and the sector 

covering the possible stable asymptotes, then sliding will always 

occur. So the response of the system will be predictable over a 

range of plant parameter values, and once the switching surface 

is reached, the motion will be insensitive to changes in the plant.

9.2 Sliding mode control for n-th order plants.

The controller design can now be resolved into three tasks: 

Selecting a suitable switching function.
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Ensuring that a sliding regime will occur.

Ensuring that the state will approach the surface from any initial 

condition in state space.

The example güven previously was second order so it was possible 

to do these intuitltively by inspection of the phase plane. Higher 

order systems require a design method to assist in finding a suitable 

switching function, and the structures necessary to achieve sliding. 

The earlier work, as summarised by Itkis (36) revolves around finding 

sets of inequalities to relate the plant parameters, the equation 

for the switching surface and the gains to be used. As expected, 

these inequalities severely restrict the choice of a. For example, 

consider those developed for the control of an n-th order plant with 

varying parameters (36).

The plant to be controlled is described by:

9.6
= x^+i (i = l....n-l)

Xn = - z ai(t)Xi + b(t)ui=l

where x̂  is:the error, a^min  ̂â (̂t)  ̂a^max, 

and bmin  ̂b(t) S bmax are the varying plant 

parameters, and u is the control.

In order to achieve insensitivity to all plant parameter changes 

over the bounded ranges, it is necessary that x̂  and all (n-1 ) 

derivatives of xj be fedback via switched gains. So the control 

function is given by:

n
u = — Z ^jX^ 9.7

i=l  ̂^
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The switching function is;

n0 = 1  CjXj ,c_ = 1 9.8
i=l

and the law of structure change is;

ipi = if x^o > 0

(i = 1__n) 9.9
if x^o < 0

For a sliding mode to occur on a = 0 it is necessary that:

Lim ( 6  o s 0) 9.10
o 0

Inequalities are derived that satisfy the broader condition:

Ô o < 0 9.11

These are:

 ̂max 1 - a^(t))
 ̂ bCt)

(i = 1___ n) 9.12
Bi = min (Ci_i - ai(t))

bâ)

We see that these are always satisfied if b(t)oi b(t)g^ are 

made sufficiently large, (positive and negative respectively).

As they satisfy eqn. 9.11 the state will reach 0 = 0  for any set 

of initial conditions, and motion will then be stable provided the 

coefficients forming the switching surface equation satisfy the 

Routh-Hurwitz conditions. The restrictions imposed by eqn. 9.12 

do not appear too stringent, but it must be considered that the 

control strategy described by eqns. 9.7,9. 8 and 9.9 is complete.
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If the strategy does not switch all of the derivatives, then extra 

inequalities must be satisfied to ensure sliding.

The method developed by White (39) is attractive because it 

provides a more immediate impression of the allowable switching 

functions for a given system with a given control strategy. It also 

gives information about the motion of the state about the switching 

surface, which is valuable when x̂  is not available to form a . The 

method is outlined as follows:

Consider the control of an n-th order plant using, first of all, 

fixed state feedback. The system to be controlled is as given in 

eqn, 9.6 but with fixed parameters. This can be expressed in companion 

form as:

X = Ax  + bu

A  =

0 0 0 
-ao -32

0
0
0
0
1

-*n-l

b = 0 
0 
0 
0 
0 
1

9.13

The switching function is described by:

a = Ê 
1=1

(i = 1 . . n) 9.14

This can be written in scalar product form:

o = m X 9.15

where m ̂  = (mg m̂  . . . m̂ _i) , = 1
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 ̂is considered as a linear operator in n-th order vector space.

This has an (n-l)th order null space, and a first order range space.

We have already seen in section 9.1 that in second order state space, 

the null space of the switching function is first order, and is given 

by eqn. 9.5.

The object with a fixed structure is to select a control signal 

u = - K ̂ X 9.16

that will force the system onto the null space, and then remain there. 

This is achieved by placing (n-1) eigenvectors in the null space using 

state feedback design, and ensuring that the remaining eigenvector 

is stable and fast compared with the null space dynamics. Now, if K  ̂

is chosen to place (n-1 ) eigenvectors in the null space, the range 

space dynamics can be shown to be:

6 = Xn a 9.17

where Xn the eigenvalue associated with the 

eigenvector not placed in the null space.

If Xn slow or unstable, the gain vector can be augmented to improve 

the range space dynamics. The modified control signal can be written 

as:

U = -( + a Kt)x 9.18

where K is as defined before.

Now the range space dynamics with this augmented control can be shown 

to be:

Ô = X̂ cr - A K^x 9.19
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Note that if a K^ is chosen as:

A K ̂ = B m  ̂ , B is constant. 9.20

then this gain augmentation has no effect in the null space, where 

B nî x = 0, but the "range space dynamics will be:

0 = ( X n ” 6)o 9.21

which can be made as fast and stable as required by appropriate 

selection of 3 . This is an alternative interpretation of state feedback 

design, and is only given here to illustrate the relationship of 

V.S.S. control to that technique.

Now consider a variable structure system, which will occur if 

the gain augmentation vector is switched. The state will remain in 

the null space if:

sgn (a 0  ) = - 1 9 . 2 2

In the region of o = 0 , eqn. 9.19 reduces to:

o = - A K ^ x  9.23

Therefore sliding motion will occur if the law of structure change 

is chosen to satisfy:

sgn (AKĵ Xĵ o) = 1 (i = 1 . . . n) 9.24

This is full state switching as proposed in eqn. 9.9, but the inequal­

ities in eqn. 9.12 have been avoided. This is because the relationship 

of the gains, the'plant parameters and the switching coefficients 

are already defined by selecting the fixed part of the gain vector 

to place (n-1) eigenvectors into the null space. This can also cope 

with varying parameters by making the switched gain vector adequate
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to compensate for changes in necessary to do this as the plant, 

and hence the eigenvectors vary.

Eqns. 9.23 and 9.24 do not apply for all state space, so reach­

ability conditions have to be found. These usually require that the 

dominant modes of the response are second order and oscillatory, but 

not necessarily stable, when AKĵ  > 0 .

9.3 Practical difficulties with the application to real systems.

Any non-linearities, whether noise or delay can be interpreted as 

functions of time that are added to the true switching function, 

causing the system to change structure at some point other than the 

correct instant. Hence, a "measured” switching point can be envisaged 

as part of a certain variable surface, passing through the origin, 

which is constrained to move in some neighbourhood of the ideal 

switching plane. (For second order state space this measured surface 

will occupy a sector about the straight line, 0=0). Itkis (36) 

develops conditions which ensure stability in these quasi-sliding 

modes, and make them similar in their action to motion in a sliding 

mode proper. As a result the advantages of V.S.S. are preserved in a 

real system.

The specific problems treated by Itkis will only be described here 

in terms of their effect on this particular application. These effects 

will be illustrated in Chapter 10 by the digital simulation results.

The one aspect that Itkis does not cater for, that is the design of 

the system with a'reduced order switching function, will be investigated 

by examining the range space dynamics as shown by White (39).
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9.3.1 Non-infinite switching rate, and limited gains.

To remain within an infinitely small region of the switching surface 

the system must be capable of changing structures at an infinite 

frequency. This is not possible, and in practice the state spends 

a finite time either side of the null space. Hence it will penetrate 

each region before returning, thus performing periodic oscillations 

about 0 = 0 .  These will decay as the error decreases. The implication 

for a sampled data system is clear. The magnitude of these oscillations 

will depend on the sampling rate and the size of d . The latter is 

proportional to the switched gain vector when in the region of the 

switching surface, so the combination of high gains and low sampling 

rate is to be avoided. This combination could eventually lead to the 

state passing through a switching region between sampling instants, 

and not changing structure. This will give an unpredictable response 

and even instabil’ty if an unstable structure is allowed to persist.

For this application, the maximum switching rate will be constrained 

by the servomotor update rate (40.0Hz), and also by the rate limit 

in the actuator itself.

There are other reasons for limiting the switched gain component. 

Eqn. 9.19 suggests that faster range space dynamics can be achieved 

by increasing gains. Furthermore, the inequalities in eqn. 9.12 can 

always be’met with an adequately large gain. This is not wise as any 

real system will be represented by a model which ignores high frequency 

roots. As the gain, and hence the bandwidth, is increased these will 

become significant, so that the model is no longer valid.

For the DFCS, the position limit of the actuator presents a physical 

restriction on the gain. This means that any scheme which relies on
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high gains to maintain stability must be discounted. However it also 

provides a method of limiting the gain during the transient period 

only. This fortuitous condition is an advantage when the object is 

to reduce the steady state trim error, but it should only be exploited 

with extreme caution,

9.3.2 Unavailable states.

The requirement that all of the derivatives of error up to Xĵ be 

available, imposes serious difficulties. One solution would be to use 

dedicated sensors. This is only practical for systems which can be 

represented by low-order models. Stabileye, like many other control 

design specifications, is required to use the minimum number of sensors, 

so computed approximations must be used. The literature cites the use 

of continuous filters (36,29) and continuous differences (30) to 

simulate differentiation. Clearly this application would use a sampled 

data method. These all introduce elements of noise and delay which 

degrade the quality of the control. By reducing the delay (or phase 

lag) the approximation to pure differentiation is improved, but the 

accuracy of the measuring device must be increased. The compromise 

reached will be dictated by the capabilities of the A/D converter.

The problem of unavailable states falls into two categories, 

namely states missing from the switching structure, and states missing 

from the formulation of O. These will be discussed separately.

9.3.2.1 States missing from the switching structure.

By switching all of the higher derivatives according to eqn. 9.24
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(or 9.9) the system will suffer from reduced noise immunity. Hence 

it may be desirable to switch only ( 1 - k 3 n-1 ) even if the

states are available. This will reduce the choice of switching surfaces, 

and total parameter insensitivity will be lost. The choice of O 

will be further reduced if the state is not fedback via a fixed gain 

path either. This is analogous to state feedback design, where complete 

freedom of choice of controlled performance is only possible if all 

the states are available. It has been shown (40) also that constraints 

are imposed upon the constituent structures (and hence the gains), 

to ensure reachability with reduced switching vectors. These constraints 

are avoided if the range space dynamics are stable.

9.3.2.2 States missing from the formulation of O.

To consider the effect of omitting from the formulation of O, 

it is necessary to examine the dynamic behaviour of O about the null 

space. For the full state case the range space dynamics are given by;

à = Xn^ ~ 9.19 repeated

If it is assumed that for small changes ô = 0, AK^X can be considered 

to be fixed, then the trajectory can be approximated by a straight 

line, passing through:

0 = 0, o = A K^x 9.25
Xn

From eqn. 9.24 the signs of AK and O are the same, so the line 

will be as shown in Fig. 87 a,b for stable and unstable X^ respectively. 

(From Fig. 87b it can be seen that the stationary point must be larger
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than 0  for the unstable ) The switching structure is arranged 

so that as o goes through zero, the gain vector changes sign, so the 

stationary point switches to the opposite half of the 0 * 0  axis.

The trajectory now follows a new straight line, as shown in Fig. 8 8 .

This new locus returns the state to the O > 0 region to repeat the 

process, but the stationary point will be nearer the origin as the 

magnitude of x will have reduced. The complete action can be summarised 

as follows. On reaching the switching surface, the trajectory jumps 

rapidly between two limits either side of Ô = 0 , which shrink toward 

the origin. Theoretically the trajectories do not penetrate into the 

range space, though in practice this is not possible.

This conctruction can also be applied to the reduced 0  case. If 

Xjj is not included in the formulation of 0 , the linear operator 

will be ;

= (mo m2 . . “n-2  ̂ 9.26

The null space is constrained to include the x^ axis. K ̂  is chosen 
to provide the desired eigenvectors, but only (n-2 ) may lie in the 

null space, so the range space dynamics become second order, j is 

no longer proportional to o, and does not include a term in AK 

Hence the existence conditions for sliding motion, (eqn. 9.22), 

cannot be satisfied. However quasi-sliding conditions can be achieved, 

which approximate to a full state sliding motion. It can be shown 

that; (34)

*0 = (Xn + Xn-l)0 - (XnXn-l)a - AK^x 9.27

Using the same approximation as before, the stationary point can be
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given by:

(5*0 , 0  = -A K^x 9.28
\An-l

This switches position as the sign of a changes, causing the sign 

of a K^x to change. The approximate trajectories will not be straight 

lines as for the full state case. There are now several possibilities 

for the shapes of the loci depending onX ̂  and , which can be 

real, complex, stable or unstable. The only combination that will not 

converge on to the switching surface is when both roots are real 

and unstable.

An example is given in Fig. 89 of theraqge space trajectories 

associated with real, stable eigenvalues. Significant excursions either 

side of 0  = 0 noŵ  occur. The extent of these depends on the magnitude 

of aK^x , which must be limited if the oscillation is not to be 
apparent at the output. This, in turn, limits the range of parameter 

variation that a reduced 0  system can cope with. The quality of control 

is less than that of the full state case, but this is still a valuable 

result in its own right. It provides a design method for the very likely 

situation where the highest derivative of error is not available, and 

cannot be sensibly estimated.

9.3.3 Forced motion.

All of the foregoing refers to the free motion of the system, and is 

attempting to force the error states to zero. Many control systems 

have a reference input that is to be followed, and this can cause 

problems for a sliding mode controller. Essentially the forcing function 

, or a disturbance, will push the trajectory off the switching surface
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as the steady state is approached. The literature suggests methods 

to overcome this. These include the use of switched actuator feedback 

(37), which strives to make the actuator appear as an integrator, or 

the addition of a fixed amplitude relay signal (49). In the presence 

of a reference input the following general control strategy is proposed:

u = - (K^i + AK^i)% + ( K^2 AK^2) ̂ + y(sgn(o)) 9.29

where r is the reference input expressed as a vector»

and y(sgn(o)) is a relay component.

It has been shown (50) that for certain combinations of input and 

system type this reduces to standard unity feedback of the form:

u = Kt(r, - X )  + AKt(r -  x ) 9.30

This simplification can be made if the system would exhibit zero steady 

state error using only the fixed gain vector. The aircraft transfer 

function is type 1 and the reference input is a step, so a control 

signal of the form shown in eqn. 9.30 will maintain sliding as the 

steady state is approached.
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Chapter 10 Use of a V.S.S. to reduce the trim error in the roll 

controller.

10.1 Nature of the disturbance.

The flight results show a roll attitude offset of + 0.0785 rad. This 

is typical of an airframe that has not been trimmed, and is caused 

by misalignment of the flying surfaces. These can be assumed to be 

fixed, so the disturbance can be represented by a constant offset 

added to the servo-actuator output. For comparison purposes, the size 

of this input will be calculated to give a 0 . 1  rad. attitude error 

at steady state for the fixed gain autipilot. A type 1 system with 

unity feedback will have a disturbance error of:

xj(ss) = f 1 0 . 1

K
where f is the disturbance, K is the forward gain.

As the fixed gain autopilot's value of K was 0.4, the simulated

disturbance input will be 0.04 rad.

10.2 Design of a V.S.S. roll controller with a full state switching 

function.

Initially it will be assumed that:

all of the states are available to form O . 

there is no disturbance.

the linearised, first order servo-actuator model is adequate.

As for the fixed gain autopilot design in Chapter 5, the digital

simulation will be used to confirm the step responses. In order to
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simplify the analysis the sampled nature of the control signal will 

be ignored, (its effect is included in the simulation) so the block 

diagram for the plant will be;

Cr (s)

Control
signal.

Actuator
position.

Roll
attitude.

Where Cgv(s) “ 20.0
s + 2 0 . 0 s(s + a)

and Kp and a vary according to the data in Table 4. 

(The negative sign associated with in Table 4 is 

to be included in the equation for the control signal

This can be described as:

s(s + a)^= K̂ u^

ui = Yi

(s + 2 0 )ŷ  = 2 0 u 

Expressing this in state variable form, with x^as the output:

% 1 = y 

h =  %2

10.2

10.3

X2 = X3

\ X3 = —(20 + a)xg — (2 0 a)x2 + 20Kĵ u 

This is a reference following system, so the control signal should
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be of the form:

u = K^( r -  X ) + A |(t( r -  X ) 10.4

where r^*(rf*f) , f = r = 0

Without loss of generality the step response can be studied with 

r = 0  and non-zero initial conditions for xj, so that:

u = -(Kt + ÛK t)x 10.5

The option to include all ; of the states in the switching structure 

will not be taken. This is because it reduces the noise immunity, 

and as the practical implementation of the controller must use 

artificially generated rate and acceleration, the states will be 

"noisy". Therefore only feedback of the output state will be used, so:

u = -(K + 10.6

The plant parameters for the 40.0 m/s case were selected, and using 

the results from the z-plane root locus, (presented in Chapter 5), 

it is seen that the gain:

K = 0.3 10.7

gives the following closed loop pole positions:

« ẑ  = 0.917, Z2 = 0.7935, zg = 0.512 10.8

The equivalent s-plane roots of the characteristic equation are:

(s + 3.698)(s + 9.252)(s + 26.78) = 0 10.9
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The fixed gain vector in eqn. 10.7 places (n-1) eigenvectors into 

the null space if is chosen as;

mt . (34.21 12.95 1.0) 10.10

The range space eigenvalue is stable and fast compared with the null 

space, which will have a response of the type required. As the range 

space eigenvalue is stable, there are no special reachability conditions 

to be applied to the choice of A K.

Fig. 90 compares the step responses at 40.0 m/s for this system 

with u = -(0.3 ± 1.0)xi and u = -(0.3)xĵ , (The latter is the fixed 

state feedback control necessary to force the state onto the null 

space with a fast range space eigenvalue.) This shows that once the 

switching surface 'is reached the state does follow the dynamics of 

the surface exactly. Note that the switched scheme is faster because 

it reaches 0 = 0  before the fixed version. Fig. 91 shows the time 

response of O for this system, which does not remain within a small 

region of O = 0 in the sliding mode. The effectof the sampled nature 

of the control signal is plainly evident. The structures do not change 

at the instant the switching surface is reached, but instead they 

change at fixed intervals, 0,025s apart. The oscillations produced are 

too fast to be visible at the output, and ultimately decay to zero.

The overall performance has the appearance of true sliding motion.

Fig. 92 shows the step responses at 22.0 and 50.0 m/s. These 

can be compared with the fixed gain autopilot results in Chapter 5,

(u = -(0.4)xj)» reproduced in Fig. 93. The reduction in sensitivity 

to plant parametercîianges is considerable, but it is clear that total 

invariance has not been achieved. Apart from the different lengths 

of time each system takes to reach the surface, motion in the quasi-
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sliding mode is also different. This is for two reasons. The non­

infinite switching rate means that neither system state remains within 

a small region of o = 0. This was not troublesome for the 40 m/s 

case, but it results in a mean offset to one side of the surface 

for the 22 and 50 m/s transients. Secondly the switched gain vector 

is inadequate to place (n-1 ) eigenvectors into the null space of 

(given by eqn. 10.10) as both and a vary. To do this a complete 

switching structure would be necessary, feeding back the error rate 

via a switched gain as well.

10.2J. Introducing the disturbance.

The effect of the disturbance on the full state o system is shown 

by examining the range space. The equations describing the system 

in eqn. 10.3 are modified to include:

u,= f + ŷ  1 0 . 1 1

so:

x^ = - ( 2 0  + a)x^ -(2 0 a)x2 + 2 0K^u + 2 0 K^f + K^f 1 0 . 1 2

as f is a fixed disturbance, f = 0 .

For a full state switching function with output feedback only:

O = m^Xg + *3

= -20KgKx^ + (m̂  - 20a)x^ + (m̂  - (20 + a))x^ + 20K^f - 20K^Kx^ 10.13

Now K has been chosen to satisfy the following:

s^ + (20 + a)s^ + 20as + 20K^K = (s^ + m2 S + m^)(s - X̂ ) 10.14
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and by equating coefficients in the above it can be shown that eqn. 

10.13 reduces to;

0  = X^cr- 20Kĵ AKXj + 20K^f 10.15

Using the straight line approximations given in section 9.3.2.2, the 

the trajectories will be as shown in Fig. 94. Sliding will break 

down when the state trajectory no longer crosses the the 0 = 0  axis.

As a first approximation this occurs when one of the offset stationary 

points coincides with the origin., i.e. when;

0 = 0 , 2 0 Kĵ (AKxj - f) = 0  10.16

so Xj = f

ak

Equation 10.16 and Fig. 94 reveal that, for positive 

or negative disturbance, this will always occur when:

sgn (Xjo) = 1 » so AK > 0 10.17

Provided the system is stable with a fixed gain of (K + AK), and does 

not re-cross a switching boundary, the steady state value will be:

x^(ss) = f 10.18

K + ak

which shows an improvement on the fixed gain case in eqn. 10.1. Hence 

the desired mechanism in the presence of a disturbance is for the 

sliding mode to modulate the gain during the transient, thus prev-
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enting overshoot. As the steady state is approached, sliding should 

break down to the structure corresponding to the large positive gain.

The simulation results for the full state system with a disturbance 

are shown in Figs. 95 and 96. They are not as predicted by the analysis. 

The variable structure system achieves a similar steady state error 

as would a fixed gain controller with the same value of K. The reason 

for this is evident from Fig. 96, which shows that the switching 

function enters a limit cycle before the point at which sliding breaks 

down. The limit cycle is caused by the fixed interval between structure 

changes which, when combined with the disturbance offset, prevents 

the range space oscillations from decaying to zero. These oscillations 

are too fast to be apparent at the output, which settles at an indeter­

minate value.

It is possible that increasing the sampling rate will allow the 

system to behave as expected, resulting in a breakdown in the sliding 

mode. However, the 40.0 Hz servomotor update rate represents a physical 

limit that cannot be exceeded, and so this would be an un-realistic 

course of action. It is suggested that a strategy that relies on 

rapid structure switching is unsuitable for this application, hence 

full state switching function schemes will be abandoned in favour of 

reduced order switching.

10.3 Design of a V.S.S. roll controller with a reduced state 

switching function.

This is more attractive than the former for a number of reasons.

It does not require that the second derivative of error be available, 

which makes practical implementation more realistic. The rate of 

structure switching is much slower, and less likely to be impeded
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by the sampling rate of the control system. Furthermore, a gain K 

exists that places (n-2 ) eigenvectors in the null space, for the 

22, 40 and 50 m/s dynamics. (This was not so for the second order 

null space of the previous example.) Unfortunately the large values 

of AK desirable to reduce the steady state disturbance error, will 

almost certainly give rise to visible ripple at the output.

As before the fixed gain K is chosen as 0.3, but the switching 

function is reduced to :

= (3.698, 1 .0 , 0 .0 ) 10.19

The range space eigenvalues are both stable (see eqn. 10.9), but one 

of them is not fast compared with the null space. This is especially 

so at 22 m/s where Â , A2 would be -21.7 and -5.178. This is only 

just faster than the null space, but in practice proves to be adequate. 

After experimentation the switched gain component was reduced from 

that value used in the full state example, as it lead to excessive 

output ripple.

Fig. 97 compares the responses at 40 m/s with u = -(0.3 - 0.6)x^ 

and u = -(0.484x^ +0.05096x2 + 1.3377 10 ^x^), which is the fixed 

state feedback necessary to give the desired null space with fast, 

stable range space dynamics (Â  = A2 = -20.0). The latter represents 

motion according to the null space equation, once the range space 

contributions have decayed, ( say after t = 0.25s). The switched system 

follows the null space well, but the expected ripple is evident, though 

not obtrusive. Fig. 98 shows the time response of O, with damped 

oscillation and a ntpch slower switching rate than the full state case. 

The reduced sensitivity to plant parameter changes is shown in Fig.99, 

which gives the responses at 22 and 50 m/s. It is seen that once the 

two transients have reached the switching surface they follow the null
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space well. It is only dissimilar range space dynamics, evident by

the different frequency and amplitude of the ripple, that distinguishes

them.

10.211 Introducing the disturbance.

The effect of the disturbance on the range space is similar to the

full state case. For the reduced switching function:

a = m^Xg + x^ 10.20

= —20K^Kx^ — 20ax2 + (m̂  — (20 + a))Xg + 20K^f — 20KpAKx^

K has been shown to satisfy:

ŝ  + (20 + a)s^ + 20as + 20K^K = (s + m^)(s -A 2 )(s - A^) 10.21

and so it can be shown that eqn. 1 0 . 2 0  reduces to:

C=(A2 + ^2 )0 - ( ̂ A^)o - 20Kĵ AKXj + 20K^f 10.22

The state trajectories will be as shown in Fig. 89, but with an offset 

in the positions of the stationary points. As before, sliding will 

break down when the trajectory no longer crosses the 0 = 0  axis.

The analysis is equivalent to that in section 10.2.1.

The simulation results for the reduced state switching function 

in the presence of a disturbance are given in Figs. 100 and 101. The

latter shows that, from t = 1 .0 s onwards, O does not change sign and

settles at a positive steady state value. The final value of x̂  is

0.044 rad, which is 44% of the offset that would be given by the fixed

gain scheme. This could be reduced further if a greater amount of ripple 

could be tolerated during the transient period. The point at which 

sliding breaks down is also predicted by the analysis.
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10.4 The effects of the non-linear servo-actuator.

One of the advantages of using the digital simulation is the ability 

to examine the effect of the non-linear servo-actuator. It is found 

that the sensitivity reduction achieved in tihe:previous section is 

overwhelmed when a realistic model is used. This particular applic­

ation's objective of reducing trim error, which could be regarded 

as a by-product of V.S.S, is not effected. Section 10.2 concluded that 

the very rapid full state switching was unsuitable due to the sampling 

effect, so these results have been confined to the reduced state 

configuration.

Fig. 102 shows the step responses for 22 and 50 m/s with no 

disturbance input. The dominating feature is the constant rate period 

in the slow response, corresponding to a fixed (limited) actuator 

position. This does occur in the 50 m/s transient, but to a lesser 

extent. If these responses are compared with those for the fixed gain 

autopilot (u= - 0.4x̂ ), also shown in Fig. 102, it is seen that the 

V.S.S. still shows some improvement. However the difference is so small 

that the reduction in plant parameter sensitivity could no longer be 

justified as a reason for implementing a V.S.S. control law. The only 

significant quality remaining is that the faster V.S.S. transient is 

monotonie, while the fixed gain controller response is not.

All three aspects of actuator non-linearity are seen in Fig. 103, 

while the effect on the switching function time response is shown in 

Fig. 104. This should be compared with Fig. 98. Apart from the position 

limiting effect, where both the output and switching function exhibit 

a constant rate, there is also a period where the rate limit impairs 

the range space dynamics. The problem extends beyond the negation of 

the improvement in sensitivity reduction, it is possible there are
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sets of initial conditions that will lead to instability when the 

movement of the controlling member is limited. This has been shown 

(51) for a situation where a variable structure control system is 

used to control an otherwise unstable plant (a < 0). As this roll 

system is third order and features rate as well as position limiting, 

the graphical techniques of (51) cannot be used here. Empirical 

solution using digital or hybrid simulation may be the only satis­

factory method of indicating system stability. (That is with the 

simplified aircraft transfer functions, whereas actual system stability 

could only be shown with a flight trial.)

Fig. 105 shows the step responses for the 22 and 50 m/s cases 

in the presence of a disturbance. The steady state error is similar 

to that achieved with the linear servo-actuator model, and therefore 

much better than the fixed gain result. This is because the actuator 

tends towards the linear model as the steady state is approached.

It was stated in section 9.3.1 that the actuator limits provide 

an artificial means of reducing the gain during the transient period, 

and that this might be exploited. These results show less ripple than 

those for the linear actuator, so it is possible that AK could be 

increased. This was tried using u = -(0.3 - 1.0)x^ with no ill-efects, 

and the expected improvement in the trim error. As there is some 

doubt regarding the stability of the system with a limited actuator, 

this approach would be unpredictable, and would require practical 

trials confirmation.

10.5 Ihe effect of estimating the rate.

The z-transfer function used to model the roll rate in the simulation 

is an estimate itself. As it is sampled at a much higher rate (320.0Hz)
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than the plant dynamics, and uses double precision arithmetic, it can 

assumed to represent the true rate fairly well. If the rate is not 

available it can be estimated from the error data. The method chosen 

was a finite impulse response filter of the form: (24)

Rate(n) = l(agerror(n) + a^error(n-l) ) 10.23

T

to simulate the derivative. If the number of terms in this algorithm 

is too great, its bandwidth will be excessive and the system noise 

will be amplified. It is therefore attractive to use the minimum number 

of terms that are necessary. The bandwidth is also related to the 

sampling rate, which for simplicity, remains the same as the servo­

motor update rate . After experimentation, a three-point algorithm 

of the form: (24)

Rate (n) = 40.0*(1.5*ERR0R(n) - 2.0*ERR0R(n-l) + 0.5*ERR0R(n-2))
10.24

was found to be adequate. This was made more representative by 

quantising the error measurement to the equivalent of a 12 bit A/D 

converter, thus adding noise to the signal.

Fig. 106 compares the switching function formed using the 

z-transform model of the"true"rate, sampled at 320.0 Hz, with that 

formed with the"estimated" rate. There is very little difference 

throughout most of the transient, with the latter showing a very small 

delay, and a magnitude increase of approximately 20%. For this period 

there are no perceptible differences in the instants when the switching 

function changes sign. As the steady state is approached the quantisation 

noise becomes more significant, causing the structure to change at 

the wrong times. This does not effect the output response. Fig.107, 

which is indistinguishable from that formed with the"true"rate. This 

similarity extends to the step responses at all three airspeeds, with
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or without a disturbance, and using an ideal or non-ideal actuator 

model. Figs. 108 and 109 show the output and switching function 

responses for the 40 m/s case with a non-linear actuator model and 

a disturbance input. The significance of these is that the simulated 

controller is realisable, and so the reduction in trim error could 

be achieved by the DFCS with the measured roll attitude only.

The ease of estimating the rate does not suggest that a full state 

switching function using estimated acceleration could be used. (Nor 

that the pitch controller, which would require acceleration for a 

reduced order switching function, is viable.) Estimated rate and 

acceleration using three point algorithms were tried with the roll 

controller but met with little success. The albeit limited switching 

rate of the full order switching function in section 10.2, could not 

be matched, and in fact the switching function was reminiscent of 

the reduced order example in section 10.3. The 40.0 Hz sampling rate 

is inadequate for the bandwidth of the acceleration signal.
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Chapter 11 Conclusions.

11.1 Conclusions on the practical implementation of the DFCS.

The development of the DFCS was hindered to an extent by the smallness 

of the R.P.V. Research dept, at British Aerospace. Stabileye was 

always a low budget project, not to be compared with far bigger 

enterprises such as NASA's Himat (52) or any of the Teledyne Ryan 

R.P.V.'s (53). This was manifest in the early years by the lack of 

established information regarding an autopilot specification, or 

even the transfer functions to be used. Through no lack of profess­

ionalism, more a lack of personnel and opportunity, the development 

of the flight control systems has been dictated by a "fly it and see" 

policy. This goes some way to explaining the paucity of flight data 

included in this thesis, as the quality of the data-logging equipment 

was not what might be expected in a controlled experimental environ­

ment. Attempting to perform flight step responses was difficult; the 

allocated area for the flight trials is small, and the operator was 

unable to input, and maintain, a 0.5 rad. bank command without 

having to break-off to prevent going beyond a safety boundary. 

Therefore it should be stressed that the greater part of results 

taken during the flight trials revolve around the operator's observ­

ations rather than the telemetry record. In this case the primary 

observation was that the DFCS performed in the same manner as the 

existing analogue controller, which was the objective. It was also 

noted that the DFCS was easier to set-up.

Another important historical point is the requirement to 

perform flight trials at a Ministry of Defence range. This made them 

expensive, and few and far between, so that flight testing of fee-
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- paying customers* payloads had to take precedence. This led to 

the cancellation of a flight of the DFCS in the Mk 1 airframe at 

a much earlier stage of the project than the eventual date. In fact 

all of the installation and control design work was originally 

carried for the Mk 1 airframe, which caused some delay when it had 

to be repeated later.

Specific conclusions about the practical implementation of the 

DFCS are as follows:

The use of the microprocessor-based flight control system has 

been shown to be feasible for a mini-R.P.V. It is comparable in 

terms of size, cost and weight with the analogue controller, with 

the exception of the battery supply, which is much larger. Any 

production version would include an engine-driven alternator to 

extend the range anyway, so this is not a real issue. This concl­

usion has been overtaken by the events in the electronics industry 

over the recent years. The microprocessor has achieved a dominant 

position in all process control, and the autopilot is no exception. 

This is particularly so for R.P.V.*s where the ability to store 

flight programmes is invaluable if combined with some form of 

inertial navigation system.

The hardware and software have been shown to operate correctly, 

and so form a basis for subsequent development. Two factors indicate 

how this development should procédé. Firstly the percentage usage 

of the Cip.u. time was between 30-35% suggesting that the software 

was under-utilised. Secondly the advances in V.L.S.I. design, 

especially in the field of c.p.u. peripheral devices, make it 

possible to develop a more flexible system occupying less volume.

It can be concluded that the DFCS does not take enough advantage
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of the programmable system at Its core. This is because at the 

hardware/software definition stage it was not possible to determine 

accurately what the percentage c.p.u. time usage would be. It was 

necessary to design to conservative estimates to ensure that there 

was enough time available to perform the required tasks.

Another factor contributing to the over-reliance on the hardware 

was the requirement to use existing, separate, telecommand decoding 

and telemetry encoding systems. This has led to a bulky, over­

complex system with too many inter-connections in the aircraft loom. 

As most of the signals required for telemetry exist in software as 

part of the control process, it is sensible to compile the telemetry 

frame by software also. Similarly, as the interpretation of the 

telecommand data is performed by the telecommand interrupt routine, 

it is a short step to perform the byte-recognition and manipulative 

techniques used in the dedicated receiver/decoder. This would lead 

to system where interfacing to the telecommand receiver and telemetry 

encoder would be at the serial data level. The advantages in terms 

of reducing the complexity, and so improving the reliability are 

obvious, but there is also the attraction of being able to re­

configure these structures for different formats.

It is suggested that the system should tend towards a single 

board computer with mostly re-configurable V.L.S.I. devices. The 

system should then be defined by the software, treating all of the 

flight control system tasks as an integrated whole. This precludes 

the use of an analogue back-up as configured here. Again, for a 

production vehicle, the inclusion of a pilot-mode-only back-up 

would be of limited operational use anyway, so is omissiom would 

not be critical.
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A development of the DFCS using the improvements described 

here has been produced in subsequent work at Britsh Aerospace. A 

full description is given in a report (54), which provides an 

alternative follow-on to parts I and II of this thesis.

11.2 Conclusions on the fixed and variable structure control laws.

The original fixed gain autopilot objectives; to repeat the 

simulated step responses of the analogue autopilot design, were 

shown to be unrealistic due to the inadequacy of previous servo- 

actuator models. A new, more representative model was produced, 

featuring measured values of position and rate limiting. The digital 

simulation was adapted, and then used to confirm the responses in 

the presence of this non-linear element. The hybrid simulation 

results, (only performed for the Mk 1 airframe controller, as its 

main purpose of de-bugging the hardware and software was unnecessary 

for subsequent systems), corresponded to those of the digital 

simulation, proving the new actuator model. However the trim error 

and the apparent incorrectness of the pitch transfer function for 

negative attitudes, as shown by the flight results, illustrated 

the hazards of exclusive use of simulations rather than trials.

The aforementioned difficulties in obtaining flight data left 

little option in this respect.

The successful flight of the DFCS with a fixed gain autopilot 

represented the completion of the requirements for the R.P.V. 

Research dept., British Aerospace P.L.C. Attention was turned to 

an investigation of sliding mode control. Motion in a sliding 

mode promises total parameter insensitivity, which leads to ideas
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of a "Universal autopilot", to be applied to a range of R.P.V,'s 

without modification. The literature on adaptive autopilot schemes 

for manned aircraft (41-44), suggests that this is neither achiev­

able or desirable. The pilot, who represents an extremely capable 

adaptive controller, does not require the aircraft to behave 

identically across the flight envelope. The position for R.P.V.*s 

is somewhat different. There are roles where the use of V.S.S. laws 

could be useful to R.P.V. control. The trim error reduction 

described here is one, especially if the desired motion is a very 

slow response. (This could be attractive for a "reconnaissance" 

mode where rapid movement of the T.V. camera platform can be 

confusing.) The fixed structure necessary to achieve a slow response 

would require a low gain, that would lead to excessive disturbance 

errors. However a V.S.S. controller could use larger gains but 

switch about a surface whose equation corresponds to the required 

damped motion. Another attractive usage would be to convert the 

third order pitch dynamics into a more acceptable second order 

response. Clearly any reduction in sensitivity to plant parameter 

changes would be welcome. However it is not necessarily true that 

the "cost" of implementing a V.S.S. controller would be justi­

fiable. This "cost" is the requirement for additional sensors with 

the inherent reduction in system reliability that increased 

complexity brings about. Also to be considered is the extra effort 

required to design and prove the new controller. Design time is 

a significant expenditure in low volume projects such as this.

So the prospect of the "Universal autopilot" is not sensible 

because it requires that all of the system states be available, 

and also that the bounded ranges of the plant parameters be known.

In short, it would need to know more about the plant rather than
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less. Even if all the sensors could be provided, or the deriv­

atives simulated, it is not guaranteed that a sliding mode would 

be formed. This is because the larger gains encountered in a V.S.S. 

tend to invalidate the linearised plant model, and the infinitely 

fast switching raté for true sliding cannot be achieved. Applying 

these points to the specific case of an R.P.V. is not encouraging.

It is likely that the linearised transfer functions will not be 

completely representative, as time spent in wind tunnels, again, 

is costly for such a project. What is more,large actuator excursions 

induce high levels of drag, which would alter the performance from 

that of the model, even if it was accurate. The problem of the 

switching rate relates to the actuator and the controller. Most 

aircraft actuators will have a discrete-time input, as noise 

considerations usually prevent the possibility of continuous 

analogue driving signals. This, and the inevitably constrained rate 

will place an upper limit on the structure switching rate. To 

increase the limit would require faster servo-actuators. Penalties 

would have to be paid in terms of increased size, weight, cost 

and power consumption for each item, all serious for an aircraft 

application. There is also a potential problem for microprocessor- 

based controllers. While their flexibility ensures that the 

variable gains are simply implemented, they are inherently 

sequential. This means that they also impose a limit on the structure 

switching rate, but its likely to be adequate for all but bhe most 

stringent applications.

Turning to the specific conclusions to be drawn from the 

results in Chapter 10, there are three main points. Firstly 

a V.S.S. controller might be successful in reducing the roll trim
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error experienced by the fixed design, without additional sensors.

The simulation shows that this could be done, but there is a clear 

requirement for confirmatory flight trials. These would be to 

establish whether the doubts stated in the previous paragraph are 

justified, and to determine the stability of the system with arbitrary 

initial conditions. The extent to which the switched gain component 

, AK, could be increased, and hence the trim error reduced, also 

remains to be shown by a practical trial. If the simulation results 

can be taken as representative, then an improvement of greater than 

50 % can be expected. The breakdown in the sliding mode is important 

here, as it implies a stationary steady state. The methods suggested 

by the literature for eliminating, not merely reducing, disturbance 

error involve a 'dynamic steady state. That is to say that both the 

switched actuator feedback and the use of a relay component result 

in a limit cycle, which would rapidly damage the actuator.

Secondly the use of a reduced order switching function has been 

shown to be more effective than the full state case. This is because 

it does not rely on very rapid structure switching and is not so 

perturbed by the sampled nature of the control signal. Also, as it 

features a lower order null space, it reqiresa less complicated 

switched gain structure to follow this space as the plant parameters 

vary. Its most obvious advantage is that it does not require that 

the highest derivative be available. The penalty paid for these 

relaxed conditions is the presence of ripple at the output.

Finally, despite the lack of success in this particular 

application, the reduction in sensitivity to plant parameter changes 

is appreciable under the right conditions. These are;

The availability of the system states, though artificial generation
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and reduced order switching functions go some way to relax this 

requirement.

The existence of an adequate actuator that complies with a linear 

model at frequencies up to and beyond those of the range space 

dynamics. If it receives its input information at discrete intervals , 

the update rate should be high enough to avoid disrupting the proper 

working of the quasi-sliding mode.

The plant should be of a type that is faithfully represented by a 

low order model, even when included in a high gain closed loop.

In general, mini R.P.V.'s with low cost requirements for 

actuators and sensors do not satisfy these conditions.
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TABLES.



Table 1

The major Integrated circuits used in the DFCS,

Unless otherwise stated, the designation and manufacturer of the 

device corresponds to the following key:

74LS... Low power, Schottky T.T.L. (Texas Inst. Inc.)

74C... CMOS with T.T.L. pin-outs, (National Semiconductor)

CD4... CMOS, (National Semiconductor)

AD... Analogue/digital hybrid, (Analog Devices)

LM... Linear, (National Semiconductor)

No. Device description

I.C.l CD4049 Hex Buffer (inverter)

2 N555 Timer

3 CD4047 Retriggerable monostable/astable

4 74LS32 Quad, 2 input positive NOR

5 74LS30 8  input, positive NAND

6 ti

7 74LS04 Hex inverter

8 74LS138 3 to 8  line decoder

9 tt

1 0 74LS02 Quad, 2 input, positive NOR

1 1 It

1 2 74LS00 Quad, 2 input, positive NAND

13 74C374 Octal, D-type, flip-flop

14 It
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Table 1 cont.

No. Device Description

15 CD4029 Presettable up/down counter

16 t t

17 t t

18 CD4078 8  input NOR/OR

19 CD4013 Dual, D-type, flip-flop

2 0 CD4724 8  bit, addressable latch

2 1 CD4050 Hex buffer (non-inverter)

2 2 TL084 Quad operational amplifier, with output

protection, (Texas Inst.)

23 tt

24 CD4042 Quad, clocked, D-type, latch

25 CD4051 Analogue multiplexor

26 74C374 Octal, D-type, flip-flop

27 tt

28 ADC80AGZ 12 bit, 25us, Analogue to Digital conv­

erter, (Burr Brown)

29 74LS04 Hex inverter

30 74C374 Octal, D-type, flip-flop

31 tt

32 CD4013 Dual, D-type, flip-flop

33 LM224 Quad operational amplifier

34 Ad7524 8 \bit, buffered, multiplying DAC

35 tt

36 tt -

37 t t
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Table 1 cont.

No. Device Description

38 AD7524 8 bit, buffered, multiplying DAC

39 II

40 LM224 Quad operational amplifier

41 II

42 74C373 Octal, D-type, latch

43 74LS157 Quad, 2 to 1 line data selector

44 74LS244 Octal buffer

45 CD4049 Hex buffer (inverter)

46 CD4075 Triple, 3 input OR

47 74C373 Octal, D-type, latch

48 II

49 LM295 Ultra reliable power transistor

50 II

51 II

52 LM339 Quad, voltage comparator

53 CD4025 Triple, 3 input NOR
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Table 2

Definition of bits in the microprocessor I/O field.

These are all managed.by the TMS 9901 Programmable Systems Interface 

device (6 ). Each bit has two functions, depending on whether the 

processor is performing a C.R.U read, or write instruction. The base 

address for the TMS 9901 is °0080°.

C.R.U READ.

I/O bit 9901 bit def’n Function

°80° Control bit When set, 9901 is in clock mode

°81°-°8E°

(Cont=0)

(Cont=l)

INTs 1-14 

CK bits 1-14

Processor interrupts 

CK bits, (event timer)
OQpO

(Cont=0)

(Cont=l)

INT 15 

INTREQ Signals active INT to c.p.u.

<>90®-°94° P0-P4 inputs -
0 9 5 0 P5 input Sys/Mon select

*96* P6 input -

*97* P7 input Height Zero set-up select

098®-®9F® P8-P15 inputs -
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Table 2 cont.

C.R.U. WRITE.

I/O bit 9901 bit def'n Function

*80° Control bit

°81°-°8E°

(Cont=0)

(Cont=l)

Mask bits 1-14 

CK bits 1-14

Interrupt mask bits 

CK bits, (load new value)

*8 F°

(Cont=0)

(Cont=l)

Mask 15 

RST 2 , Software generated reset

*90° PO output Camera

*91* PI output Ignition cut

°92* P2 output Parachute deploy
0 9 3 0 P3 output Parachute jettison

*94* P4 output Airbag deploy
®95°_®97® P5-P7 outputs -

*98* P8 output (TLPORT) Soft, fail flag
0 9 9 0 P9 output (TLPORT) Above set height

*9A* PIO output (TLPORT) Overflow flag

°9B* Pli output (TLPORT) S/V error

°9C* P12 output (TLPORT) A/D error

°9D* P13 output (TLPORT) Auto engaged

°9E* P14 output (TLPORT) Height lock
°9FO P15 output (TLPORT) Heading hold
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Table 3

Regulated Power Supply Requirements.

This depends on the configuration of the system. The figures quoted 

are for an installation with 4K of EPROM, 256 bytes of RAM, front 

panel display disabled and all instruments installed.

Regulated

voltage

Source

volts

Average

current

Regulator

type

Rated

capacity

+1 2 v +15.6V 0.35A LM340T12 l.OA

+1 2 V(gyro) +15.6V 0.5A LM340T12 l.OA

+6 V +15.6V O.IA LM217 1.5A

+5V +8.4V 1.05 A LM323K 3.0A

-5V -15.6V O.IA LM120H 0.2A

-6 V -15.6V O.IA LM237 1.5A

-12V -15.6V 0.15A uA7912 l.OA

In addition to this there is the servomotor supply, which is 

un-regulated, operating directly of 7.2V, 1.2AH battery stacks.
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Fig, 1 General view of Stabileye inklll



SI 32 A1 A2 A3 A4 A5, A6 01 02 A7 A8 A9

X

AlO All A12 03 04 A13 A14 A15 A16 A17 A18 05 06

(Ccnplete frame is from X to X, = 0.0625s)

A19 A20 A21 A22 A23 A24 SI S2 A1 A2 1

Fig. 2 The 32-byte Telemetry frame.

Msb. 8 7 6 5 4 3 2 1

SP A/B F/V IG P/0 H/H H/L A/P

cu&_
(O
CL
GO

. -P 5̂ "D CUU 3 o u 00o CU O O o (T3
CL _c 00CL cu c CU oo cCU (/I o "D -p <u*o c _c

00 CU T- 00(/) XJ ofO c (O QJ43L. CO 00 4=O <v
zn. 3C

Q.> (0 O<C
T3CUX
Ll_

LfOo_
+J3<

Note: all functions are active-true.

Fig. 3 The Teleccmnand status word.



0.5s 5.0s 1.0s

Activities:
A - Receiver loses telecommand synch.
B - After loss of synch, for period greater than 0.5s, the software 
failsafe routine is started:

Height lock engaged, full height demand (1000m).
Full throttle demanded.
Roll demand set to 10 degrees.

Gives spiral climb to 100m, (this phase is omitted if the aircraft is 
above 100m at start). Then :

Roll demand set to 0 degrees.
5 second count started.

C - After 5s delay:
Pitch demand set to 0 degrees.
Ignition cut.
Throttle closed.

D - After further Is delay :
Parachute deployed.
Airbag deployed.

Note : Spiral climb can be omitted if not required.

Fig. 4 The Software Failsafe procedure.



Payload

AU7DPIL0T LAWS

Forward gain, 
coipensation

Actuators 
and airframeDrive actuators

Feedback gain, 
compensation

SensorsRead sensors

PROCESSOR BASED FUNCTIONS 
FUNCTIONS EXTERNAL 10 
THE DIGITAL CONTROLLER

Prepare
Telemetry

Read
Teleccmnand

Encode
Telemetry

Ground Station

Fig. 5 Functional block diagram of the flight control system.



System cycle, 25ms.

=— > Servo cycle, 3.125ms.

Aileron

Rudder

Elevator

Throttle

5V

OV

I
I
"b
B

I

Fig. 6 Interleaving the Servomotor channels





hi M  9

s a

tsv

II
AS TU20VH1 «AS saooaH AS*Sa£VAai3 
"AS eiotcnzvS.OAHaS

J .sru iivs*3ia
,'SS*XM03•HTisncs



g

ilw

CQ Ib k O

g

I
<N

z
H en
g ^
en 2 w o
2  M
o  en

I
3
Q.
U
I

•I-5
8S
<T«
oâ



*1^01.26

qqoi.22

qqoi

qqoi.37

I
s v

A-K7

II

1 %
10

.2, ^

I
y r

S K 3 . i t

fllRBAB DEPLOY 

S K 3 .3

PARACHUTECU.T

J K 3 .2

PARACHU.TEDEPLOY 

3K3. f

IGlMITlONCUr

FIÛ.IOA
TH E 1.0. BUFFER CCt

AUTO. RESET h/AVEFORM.

OV
OSCILLRTOR

PRES.B
SK3.Ô
RE5ET(TEL.)
S’KS.̂

■"■O ̂  O  " '
MAWCIAL OVERRIDE.

DIG,. FAIL FLAG.

m 2

RETRIfiEEKABLE
MONOSTABLE.

FI 6 . 1 OB

TH E WATCHDOG TIMERI.0.SEL1
AND AUTOMATIC RESET CIRCUIT.

I . C . l



iHH
S
<

CO
gMEhUI

§

Uz
g
Q
gU

î M X2
2<SU 2C00

C)<
FhwH o2M

C)\Eh

A

QMtJ
§

I

Eh
2

CO
0Îo 2H « Mo u , I 1
g >o M O> « ------>« Q «wCO •  CO

Eh2

Fig. 11 Block diagram 
of the aircraft 
interface card.



X.C.7

A Z — L

A 3 — È[>
0 ^

A 5—

n£MEJ¥

5 v 1.C.10

An —
AI3 -  

--

1
z
3
4.
5 Ü ®
6 H
(1
13. 7

I lb IS
Z «V

'Iov

vJv
16

A12-
A I3-
A14--

10

<3
tz

Ov

A C 3 F 0 SERWO. DRIVER

B C 3 F Z TLFORT + AlUEM

"c" C3F4- A.D. ADDRES5 LOAD

“d '‘ C3F6 COWVERT COMmWI)

"E" C3FB SEPARE

“F* C3FE RUDPEM + ELD EM

"g T G 3E 0 T C . PORT READ

*» »/ 
H C 3 E 4 AD.RELAD

II t/

I C 3E 6 JPARE

FIG. 12 ADDKE5J DECODING CCT.

ws. •3>

1
We

we-

We-

Wl

X.C .II

13

I.C .IZ

'A*

*6 *

» n 
E

-V"

DftN la /

JiBlN lO__

J0 IN z y



c

c
c

c
c

c
c
c

c
c

c
c

c

q

_  L

X

X

X

X

z  u

00c•HE•H
OT3

Xi
>>
OE0)E
8o\o\
;
co

00•H



C3F0

ov

Di5---- 3 ll2
4. 6

--- 7 6
---- 8 !! ^

13 Ü
---- 14. H

17 16
J>8 — 19 M

lo|
ov JV

ov

3>o

3 ‘
4- 5

6
8 'H M
13 O 12
(4. H 16
17 16
(8
lo| ;b
Ov 5v 

INPtiT LATCH

ov ov
CLOCK
JIVmER

A

4. 10 6
IZ w U
IS M
3

15
7 •O

Jv

3 5 1
4- 6
13 U IL
3 H

15
1 lO

1ov
6v

9 5 1
4-
12 N 6

IS 14.u
M

15
lo

COUNTER
ov

5v
16
I 4
2. 5
3 0 6

7
O 3
H to

12
8

5 <0 13

LS MHz.

CHANNEL 
SElECr. ov

3 Z
5 47 G
i io
11 V IZ
14-H IS

8
BUFFER

OV

ENn)OFCOUNT
DETCCr.

iSERVO
3RWE
PULSES.
AIL.
El£V.
RUD.
THROI
SPARE.
SPARE.

3ERV0
INTEKRUFT

FIG. IL. EIGHT CHANNEL SERVOMOTOR J)RIVER CCT



0RRMP5. ARE 1.C.22. I.C.Z3

+/-5V.

O V

+A5y

ROLL PITCH

■+/— 5v

ZNZ4-

+yA/*2 \/,

(or=f=sKr) R7

IIK R.9

Ov o v o v

YAW

5 k

HEIBHT

5 k

170 R.

-I2 v

ov

^ . 6  V

Z N 6

AXED REF.

ZM 1.Z.3.A-.6.7. ARE 4V7.

ZN a  16 LY3.

FIG. 15 5ENS0R INPUT BUFFER OKCUnS.

AJJ.



C3Fi»..

"c 3F6*

)4..

DU-
'C3E4.1

J)ia-

3)15-

6v

16

Do 4. ^  Z
D i -------- 7 N 10
D 2 -------- 8  J  II
J>3--------- 14. H  1

5 v -------- 6 5 8

ADDRESS 
ov latch.

St O v

l o lo
2 3
5 4

7
8
0

i s " 14
16 17
lA 18

2 3
5 4-

7
H U e

M

2d to

3 \f Ov

+ 6v -6v 
7

16 13
14

6 in 15
A fi H
10 o 5
(I H I

2
3 4

18 13

I N P U T  C H A N N E L S .

PITCH.
ROLL.
HEIGHT.
V R W .

SPARE.
FIXED REF. 

SPARE.
SPARE.

8
o v

ANALOGUE
WULTIfLEXOR.

5v A  J ) .  C O N V E R T E R .

M 1 0 2 1 11a
4.
3
Z.
1
32
31
30
2 1
Z8
2.7

00
N
ÜH

15

17
7
A
10
22

25 -12V
-rz- 4 O v  (AN)

■■ r  +1 2.V

= i vfV
OV̂ D«a.)

4 n 7 p

STATUS.
Ov

DATA
LATCHES.

FIG. 16 ANALOGUE MUUIALEXOR AND A.D. COWVERTHR CCT.



1>¥

DJI

D\Z‘

3>i5-

C3E0

DATA
VflLCD.

13

TP
2. 5
5 4-
6 0 7
9 m g
12 O (3
15 M 14.
16 17
M 18

to
OV

Sv
do It

2. 3
5 4
6  _  7
 ̂ <0 8o
H

IO
Ov

\SL

X.C.Z3 

II

luS  DELAY

MSB MTfl.

LSBPBTA.

I
MSBADDRE3& Ot!

LSB ADDKE33.

S sf 

1 1 1
14. II 4
10

N*0
-O
M

8
7

3 n 3 F

- O v

D-TYPE
LATCH.

TNT 4.

ov

PTÛ.I7 THE TELECOMMAMD INTERFACE POFTT.



2IP0LAR CENSOR 
SIGNALS.

3 3K

ROLL.

ÛPR5ET.

I.C 3 3

YAW KATE.

UNIPOLAR TElIWETKy 
SIGNALS. (O -S v )

r o l l ( t ).

PITCH {t}.

YAW RATE. ( t ).

F IG . 18 ANALOGUE TELEMETRY EDGNAL COMDITTON1NÛ.

+5v -5 v

12 3

We
C5

OV

X.C.’S 3L-3A

UNIPOlflR TELEMETRY 
SiaiNRLS. (0 -.5 v )

FIG. n  D. R. TELEMETRY CONVERôfON CCT.



ov

l^ F

OV

O .l^ F

O V

-l^.6 V
ie K r )

O V

ov

F IG . ZO THE VOLTAGE KEGtiLflTOK CCT5.



5v Ov

. 5 V

Q
w
I -I

(4. M 19

IO
OV

LSB

MICROPROCESSOR
])ATA3U0.

2 .F.E

6QUEICH

Pll-
pa-
Pl3.
PlL*
Pl5-

HEI&HT
ZERO.

KSPIAY
Or̂ OFP

OV

nov

r
Ov

P7

2 0

Sv

z 19
4 16
6 .i 14
8 IZ
II o 9
IS H 7
15 5
17 3
M IO

Ov

I50R «A
IAAVs

FRONT PANEL 
INnrCflTQR L.EJ)’5.

FIG. 21 THE HEiaiT ZERO JTDRHÛE.
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53^H,
RELAY

(C0NTRCT3 NÛWmyOPEN).

__IL.

Ov
RET ( VN IOKm).

IfiCUT

Ov

IGNITEOIM 15 INHIBITED WHEN RELAY CONTACTS ARE CLOSED.

FIG. 2 3 . THE IG N IT IO N  CUT ACTUATOR.



A

6

C

8.LV 
2 . 0  AH.

8.44/
llOmflH.

8.4-V
llOmRH

T
a

' g
>= a

«0

15.6V 

2 . 0  AH.

168V
IIOmAH.

16.8V
llOmRH.

G

H

J 3
i
i

3
k
CO

M

£

15.6 V 
A-SOmAH.

15.6V
lûOmAH.

I

7 .Z V
1.2.AH. U

7 .Z V
I .2 A H .

FIG. 24  THE BATTERY 6TACK5.
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INT 3

'^WHAT IS ^ 
CYCLE COUNT

RUDDER 
ROUTINE 
(YAW DAMPER)

RETURN TO 
BACKGROUND

SPARE THROTTLE
ROUTINE

AILERON 
ROUTINE 
(ROLL AUTO)

ELEVATOR 
ROUTINE 

(PITCH AUTO)

INCCY INCREMENT 
CYCLE COUNT

SYNCH INTERRUPT ROUTINE 
(STARTS CURRENT SERVO 

PULSE)

EIGHTH CYCLE ROUTINE 
(PREPARES BACKGROUND 
RESTART, CLEARS

CYCLE COUNT)

PARTS WITHIN DOTTED LINES 

ARE SERVO INTERRUPT ROUTINE,

FIG. 29 FLOW DIAGRAM OF THE FOREGROUND SOFTWARE.



INTO

INT3

START UP 
ROUTINE

ONESHOT
ROUTINE

JUMP TO 
IDLE

IDLE AWAITING 
RESTART

IDLE TO SYNCHRONISE HW + SW

TELECOMMAND INTERRUPT 
ENABLE

TELEMETRY PREPARATION 
ROUTINE

HEIGHT DATA 
PREPARATION 

ROUTINE

SOFTWARE FAILSAFE ROUTINE 
(PERFORMED IF NO TELECOMMAND)

FIG.30 FLOW DIAGRAM OF THE BACKGROUND SOFTWARE.



MULT
R8 is Multiplicand, RIO is shift count, Rll is return reg. 
R12 is Multiplier pointer

START

CHECK SHIFT
COUNT R10=0

NO

YES
OVERFLOW

NO

YES
NEGATIVE

NO

32 BIT RESULT IS IN 
R8 AND R9 L S WORD

FIG. 31 MULTIPLY ROUTINE
CONTINUED OVER.SHEET 1 OF 2.

CLEAR NEG FLAG R13

SET NEG FLAG R13

DECREMENT RIG

STORE R8 IN R9

SHIFT R9 ONE 
PLACE LEFT

SHIFT R9 ONE 
PLACE LEFT.

SHIFT R8 ONE 
PLACE LEFT.

GET ABSOLUTE VALUE 
OF MULTIPLICAND R8

MULTIPLY R8 BY MULTIPLIER 
POINTED TO BY R12. INCRE­
MENT R12.



CHECK
CARRY

INCREMENT R8

NEGATE RESULT IN R8

CHECK SHIFT 
COUNT RIO

DECREMENT SHIFT 
COUNT RIO

<C000>

SHIFT RESULT R8 
ONE PLACE LEFT

OVERFLOW

CORRECT OVERFLOW 
CONDITION

MULT CONTINUED,

EXIT VIA Rll

FIG.31 MULTIPLY ROUTINE.
SHEET 2 OF 2



SENS
R8 contains the no. of times the channel is to be read 
RIO contains the channel to be measured.

NO
R9=0

YES

NO
R8=0

YES FIG. 32 SENSOR MEASUREMENT
ROUTINE.EXIT VIA R1

ADD TO ACCUMULATOR

DECREMENT R9

START CONVERSION

LOAD 4 INTO R9

DECREMENT R8

CLEAR ACCUMULATOR R12

READ A/D INTO R9 
AND INVERT

SET UP A/D CHANNEL 
DELAY FOR 6 psec. 
TO ALLOW SETTLING

CONVERT TO 16BIT 
2's COMP, AND 
MULTIPLY BY 2



SATAD

Add two's complement no.s in R7 and R8 SCALE Data in R13

START

YES
OVERFLOW

NO
EXIT VIA Rll

ADD R7 TO R8 
RESULT IN R8

CORRECT OVERFLOW 
CONDITION

FIG. 33 SATURATION ADDING ROUTINE.

DATA IN R13 Ç START ^
SCALE

EXIT VIA Rll

SHIFT R13 SIX PLACES RIGHT

SHIFT R13 ONE PLACE LEFT

ADD R13 TO R14 
RESULT IN R14

SUBTRACT R13 FROM R14 
RESULT IN R14

SHIFT R13 ONE PLACE 
LEFT. STORE IN Rl4

FIG. 34 PILOT MODE OUTPUT SCALING ROUTINE,



START

NOYES TCKNT
>0.5s

GO TO FAILSAFE 
ROUTINE

GO TO TELEMETRY 
ROUTINE

INCREMENT TCKNT R3

LOAD TELEMETRY WORKSPACE

RETRIGGER WATCHDOG 
MONOSTABLE

SET INTERRUPT 
MASK TO 4

ENABLE TELECOMMAND 
INTERRUPT (4)

CLEAR SOFTWARE 
FAILSAFE TELEM­
ETRY BIT

SET SOFTWARE 
FAILSAFE TELEM­
ETRY BIT

CLEAR FAILSAFE 
TIMER/COUNTER 

R5

FIG. 35 TELECOMMAND INTERRUPT ENABLE ROUTINE



START

YES
5s BEYOND 
SAFE HEIGHT

NO

YESABOVE SAFE 
HEIGHT

NO

GO TO TELEMETRY 
ROUTINE

SET FULL THROTTLE

SET ROLL TO 0

INCREMENT FAILSAFE 
5sec COUNT

RETRIGGER WATCHDOG 
MONOSTABLE

SET MAX HEIGHT 
ZERO RUDDER

SHUT THROTTLE, 
INITIATE PARA­
CHUTE DEPLOY

SET ROLL TO 10 
AND PERFORM 
SPIRAL CLIMB

INSTALL COMMAND WORD 
TO ENGAGE AUTOPILOT 
AND HEIGHT-LOCK

FIG.36 SOFTWARE FAILSAFE ROUTINE.



START

LOAD TELEMETRY .WORKSPACE

SET A/P,H/H,H/L BITS 
IN TLPORT AS FOR 
COMMAND WORD

CLEAR A/D ERROR 
BIT IN TLPORT

READ A/D FIXED VALUE 
USING SENS

SUBTRACT EXPECTED 
READING,RESULT 

IN R12

TAKE ABSOLUTE 
VALUE OF R12

R12 > 
TOLERANCE

LOAD ONESHOT WORKSPACE

SET A/D ERROR 
BIT IN TLPORT

DISABLE TELECOMMAND 
INTERRUPT

FIG. 37 TELEMETRY SET INTERRUPT 
MASK TO 3

PREPARATION ROUTINE.

YESSHEET 1 OF 2. ^ / S E R V O  ERRORX. SET SERVO ERRORCONTINUED OVER. FLAG SET R6 BIT IN TLPORT

NO
1 A W ----



FIG. 37 TELEMETRY 
PREPARATION ROUTINE. 

SHEET 2 OF 2.

YES
HTSET PUSH 
BUTTON SET

NO

GO TO 
ONESHOT ROUTINE

STORE TLPORT IN 
L.S.BYTE OF R4

CLEAR OVERFLOW 
BIT IN TLPORT

WRITE TLPORT TO I/O 
PORTS P7 TO P15

RESCALE THRDEM, AND 
STORE IN L.S.BYTE OF R2

RESCALE ELDEM, AND 
STORE IN M.S.BYTE OF R7

RESCALE RUDDEM, AND 
STORE IN L.S.BYTE OF R7

RESCALE AILDEM, AND 
STORE IN M.S.BYTE OF R2

WRITE R2 TO 
LATCHED D/A's 
AT <C3F2>

WRITE R7 TO 
LATCHED D/A's 
AT <C3FE>



SHEET 1 OF 2
CONTINUED
OVER.

^  START ^

LOAD ONESHOT WORKSPACE

IS 's. NO 
P/DEP ACTIV

10 
ACTIVE 

COMMAND

CLEAR PFLAG, RO 
CLEAR P/D COUNT,R1 
SET I/O BIT 12 

TO ONE

SET PFLAG, RO, AS 
NOTICE TO THE 
THROTTLE ROUTINE

SET IGNITION CUT BIT 
IN COMMAND WORD

ACTIVE COMMANDS 
(1 sec delay

90 
ACTIVE 

COMMANDS (Isec 
del.+pulse)

INCREMENT 
P/D COUNT,R1

SET I/O BITS 12,14 
TO ONES

FIG. 38
THE ONESHOT r GO TO A
ROUTINES. I HTPREP ROUTINE/

IGNITION CUT ROUTINE



NO
IGCUT
ACTIVECLEAR IG COUNT R2

YES
SET I/O BIT 11 TO 

ONE /  1 0 ^  
ACTIVE 

COMMANDS

YES
INCREMENT 
IG COUNT,R2

NO
SET I/O BIT 11 TO 
ZERO (CUT IGNITION)

NO A/B DEP 
ACTIVECLEAR AB COUNT R3

YES

10 ^  

ACTIVE 
OMMANDS

NO

YES

NO SET I/O BIT 14 TO 
ZERO. (FIRE A/B 

METRON)

50 ^
ACTIVE 

COMMANDS

YES

SET I/O BIT 14 TO 
ONE

INCREMENT 
AB COUNT R3

 ̂ GO TO 
HTPREP ROUTINE

FIG. 38 THE ONESHOT ROUTINE. SHEET 2 OF 2.



START

NO

YES

STORE REFERENCED HEIGHT IN R5

HTSET 
PUSH BUTTON 
. SET

LOAD HEIGHT WORKSPACE

REDUCE R7 TO 8 BITS, AND 
WRITE TO FRONT PANEL LEDS

SWPB R8, AND MASK OFF THE 
L.S. BYTE

READ FRONT PANEL SWITCHES 
RESULT IN R8

SUBTRACT REFERENCE, R8 
FROM READING, R7

PREPARE HTABS, STORE 
IN M.S. BYTE R3

READ HEIGHT USING SENS 
RESULT IN R7

FIG. 39 HEIGHT DATA PREPARATION ROUTINE.

SHEET 1 OF 2. CONTINUED OVER.



(HDMSC)

(HFGSC;

NOH/L
ACTIV]

YES

SUBTRACT HEIGHT FEEDBACK

RESCALE HEIGHT DEMAND

PREPARE NEW PITDEM 
STORE IN RO

WRITE R3 TO D/A's 
AT <C3F8>

PUT C.P.U.
IN IDLE CONDITION

FETCH HEIGHT 
DEMAND, PITDEM

PREPARE HTERR 
STORE IN L.S. 
BYTE OF R3

MULTIPLY BY HEIGHT LOOP 
FORWARD GAIN, AND RESCALE 

AS PITCH DEMAND

FIG. 39 HEIGHT DATA PREPARATION ROUTINE.

SHEET 2 OF 2.



(INSTALLS TELEMETRY WORKSPACE)START

YES

NO

NO R12>5

YES YES ADDRESS
>A

NO

RETURN TO 
BACKGROUND

/  ARE X. 
R1,R2 EQUAL-

CLEAR T/C COUNT R3

READ T/C PORT IN TO Rl

READ T/C PORT IN TO R

MASK-OFF UNWANTED BITS IN R1,R2

CLEAR BUS READ COUNT, R12

INCREMENT BUS READ COUNT,Rl2

SET UP DATA IN 
L.S.BYTE OF Rl

EXTRACT ADDRESS 
FROM R2

SHIFT R2 ONE 
PLACE LEFT

WRITE DATA TO REL­
EVANT COMMAND REG­

ISTERS IN WP2
DISABLE T/C INTERRUPT 
SET STORED INTERRUPT 

MASK TO 3

FIG. 40 INT4, THE TELECOMMAND INTERRUPT ROUTINE,



cSTART

INSTALLS SERVO 
WORKSPACE.
R8 IS CYCLE 
COUNT.

FETCH NEXT SERVO OUTPUT VALUE 
USING R8 AS A POINTER

WITHIN
RANGE

INSTALL VALUE IN R9

LIMIT THE VALUE 
TO RANGE 0,1515

SET UP CHANNEL SELECT ADD­
RESS IN 4 M.S.BITS OF R9

MOVE WORD TO SERVO DRIVER CCT 
INITIATING SERVO PULSE

CHECK 
"NEW CYCLE FLAG"

GO TO EIGHTH 
CYCLE R'TINE

RELOAD PROG. TIMER 
WITH VALUE TO GIVE 

3.125ms PERIOD

CLEAR RIO
IS

R8 IN RANG 
0-6

JUMP USING R8 AS POINTER 
TO CONTROL ROUTINE

0,1,6 TO SPARE
2 TO AILN
3 TO ELEV
4 TO RUDR
5 TO THROT

ALL CONTROL ROUTINES RETURN TO INCCY, 

EIGHTH CYCLE ROUTINE RETURNS DIRECTLY 

TO BACKGROUND (THE IDLE CONDITION)

1
INCCY, INCREMENT 
CYCLE COUNT, R8

RETURN TO BACK 
-GROUND >

FIG. 41 THE SERVO 

INTERRUPT ROUTINE,



START

CLEAR SERVO 
CYCLE COUNT, R8

SET "NEW CYCLE FLAG 
,R10, TO ONE

SET STORED INTERRUPT 
MASK TO 6

DISABLE THE TELECOMMAND 
INTERRUPT,INT4

SET STORED PROG. COUNTER 
TO START OF BACKGROUND

SET STORED WSP. POINTER 
TO SERVO WORKSPACE

ENABLE THE SERVO 
CHECK INTERRUPT 

INT6

RETURN TO START OF 
BACKGROUND, AND 
AWAIT SERVO CHECK 

INTERRUPT.

FIG. 42 THE EIGHTH CYCLE ROUTINE.



START

RESULT > 
TOLERANCE

YES

NO

LOAD CRU BASE FOR 9901

DISABLE INTERRUPT MODE

RE-ENABLE INTERRUPT MODE

RETURN TO START 
OF BACKGROUND

CLEAR FLAG TO TELEM­
ETRY ROUTINE, R6

SUBTRACT EXPECTED 
VALUE(CKDAT) FROM R6

SET STORED INTERRUPT 
MASK TO 3

READ CONTENTS OF PROG­
RAMMABLE TIMER INTO R6

SET STORED WSP. POINTER 
TO SERVO WORKSPACE

SET STORED PROG. COUNTER 
TO START OF BACKGROUND

NON-ZERO VALUE 
IN R6 ACTS AS 
FLAG TO TELEM­
ETRY ROUTINE.

FIG. 43 INT6, THE SERVO CHECK INTERRUPT ROUTINE.



START

NOIS 
PFLAG 
 ̂SET

YES

LOAD COMMAND 
WORKSPACE WP2

RETURN TO SERVO 
ROUTINE, AT INCCY

CLEAR THROTTLE 
SERVO REGISTER 

WP06

ADJUST THRDEM (R4) TO 
SERVO DRIVER SCALING 

USING SENS

LOAD THROTTLE SERVO 
REGISTER WP06 WITH RES­

ULT FROM SENS

FIG. 44 THE THROTTLE ROUTINE.



COEFF IS
RDMSC

CONTROL LOOP
SUMMING JUNG.

COEFF IS
RFGSC

YES
FIG. 45 THE AILERON

ROUTINE
NO

AUTOPILOT 
. ENGAGED

ADD OFFSET FF80 TO ROLDEM

LOAD COMMAND WORKSPACE

STORE IN SERVO REGISTER R3

LOAD ROLL WORKSPACE

SUBTRACT R7 FROM R8, USING SATAD

RETURN TO SERVO
INTERRUPT ROUTINE

ADD OUTPUT OFFSET 02F6, AND 
STORE IN SERVO REGISTER R3

FETCH ROLDEM FROM COMM­
AND REGISTERS

FORWARD GAIN AND OUTPUT RE­
SCALING USING MULT

READ ROLL ATTITUDE SENSOR
USING SENS,(INTO R7)

RESCALE ROLL DEMAND USING
MULT, (RESULT IN R8)

SCALE ROLDEN (Rl) TO SERVO
DRIVER SCALING USING SCALE



LOAD COMMAND WORKSPACE

STORE IN SERVO REGISTER R4

RETURN TO SERVO INTERRUPT ROUTINE

DRIVER SCALING USING SCALE
SCALE RUDDEM (R3) TO SERVO

FIG. 46 THE RUDDER ROUTINE, (PILOT MODE CONTROL ONLY)

NOHEIGHT LOCK 
ENGAGED ^

YES

COEFF IS
PDMSC

FIG. 47 THE ELEVATOR

ROUTINE. (SHEET 1 OF 2)

FETCH PITDEM

LOAD PITCH WORKSPACE

READ PITCH ATTITUDE USING SENS

ADD OFFSET FF80 TO PITCH DEM

FETCH HEIGHT LOOP DERIVED
PITCH DEMAND (HTPIT)

MULT, STORE TEMPORARILY
RESCALE PITCH DEMAND USING



COEFFS ARE
SSGN
PCGBl
PCGB2
PCGABl
PCGAB2

CONTROL LOOP
SUMMING JUNG

COEFF IS
PFGKS

YESAUTOPILOT
ENGAGED

NO

STORE IN SERVO REGISTER RO

LOAD COMMAND WORKSPACE

SUBTRACT R8 FROM R7 USING SATAD

RETURN TO SERVO INTERRUPT ROUTINE

ADD OUTPUT OFFSET 02F6 AND
STORE IN SERVO REGISTER RO

FORWARD GAIN AND OUTPUT RE­
SCALING USING MULT

SCALE PITDEM (R2) TO SERVO
DRIVER SCALING USING SCALE

PERFORM 2nd ORDER DIGITAL FILTER TYPE COMPENSATOR, USING 
PITCH ATTITUDE SENSOR MEASUREMENT AS INPUT. STATES XI
AND X2 STORED IN R4 and R5, MODIFIED FEEDBACK IN R8 

PITCH DEMAND RESTORED TO R7

FIG. 47 THE ELEVATOR ROUTINE. (SHEET 2 OF 2).
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1.25

•Scl-l 0.75-

I
• H

m
0.50-

I 0.25

1.120.960.800.48 0.840.16 0.32
Time (seconds)

Fig. 49 Roll step response guideline (reproduced from (14))

0.75-

I 0.50 -•H
n
I•H 0.25 -a

1.120.80 0.960.16 0.540.32 0.48
Time (seconds)

Fig. 50 Pitch step response guideline (reproduced from (14))
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A 0.5m$ (0.89 rads) 
6 0.25ms 
C 0.125ms 
D 0.0625ms

A 100%

Output movement B 49.5%

D 12.8%

Time (seconds)
—T—
0.1 0.2 0.3 0.4

—
0.5

— I—  
0.6

— I I
0.7 0.8

Fig. 57 Response of Skyleader SRC44B servomotor to step changes of input demand, (large
differences),

0 12.8%
0 0.0625ms (0.111 rad)^/‘
E 0.03125ms //
F 0.015625ms //
G 0.0078125ms /

Output movemen

Time (seconds)

y

y
— r- 
0.1

— I—  
0.2

— r—
0.3

E 4.30%

F 1.89% 

G 0.226%

0.4 0.5 0.6
— I—
0.7

— I
0.8

Fig. 58 Response of Skyleader SRC44B servomotor to step changes of input demand, (small
differences).
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ROLL STEP RESPONSE
S.2SE-01

4.SOE-01

3.7SE-01

3, OOE-Oi

2.25E-01

1. SOE-01

7.SOE-02

S. OOE-01 2. SO 3. 501. 50
0. 0 3. 001. 00 2. 00 4. 00

TIME. SEC.
Fig. 61 Simulated roll attitude aiep reaponae, 40 m/a, gain > 0.4

SERVO DISPLACEMENT
1.BOE-01

1. BOE-01

1. 40E-01

1.20E-01

1.OOE-01

B. OOE-02

6. OOE-02

4.OOE-02

2.OOE-02

-2. OOE-O^-I 3. 00 4. 002. 001. 00 3. 502. SO1. 505. OOE-01 TIME SEC
Fig. 62 Simulated aileron displacement, 40 m/s, gain - 0.4



ROLL STEP RESPONSE
5. 2SE-011

4.SOE-01

3.7SE-01

3. OOE-01

2.2SE-01

1.SOE-01■

7. SOE-02

2. 001. 00 3. 00 4. 00
5. OOE-01 1. 50 2. SO 3. 50

TIME. SEC.
Fig. 63 Simulated roll attitude step response, 22 m/s, gain - 0.4

SERVO DISPLRCEMENT
1. BOE-01

1.EOE-01

1.40E-01

1.20E-01

1.OOE-01

B.OOE-02

5. OOE-02

4.OOE-02

2.OOE-02

-2.OOE-02 3. SO2. 501. SO5. OOE-01
4. 003. 002. 001. 000. 0

TIME SEC
Fig. 64 Simulated aileron displacement, 22 m/s, gain « 0.4



ROLL STEP RESPONSE
5.40E-01

4.B O E-01

4.20E-01

3.EOE-Oi

2.40E-01

1.B O E-01

1.20E-01

G. O O E-02

5. OOE-01 1. 50 2. 50 3. 50
0. 0 1. 00 2 00 3. 00 4. 00TIME. 5EC.

Fig. 65 Simulated rull attitude alcp reaponae, 50 m/a, gain ■ 0.4

SERVO DISPLACEMENT
1. B O E-01

1.40E-01

1.20E-01

1.O O E-01

B. O O E-02

5.O O E-02

4.O O E-02

-2. OOE-O^-I 4. 003. 002. 001. 00 3. 502.501. 505. OOE-01
TIME 5EC

Fig. 66 Simulated aileron displacement, 50 m/a, gain -0.4



ROLL STEP RESPONSE
B. OOE-Oi

7. OOE-01

6. OOE-01

S. OOE-01

4.OOE-Oi

3. OOE-01

2.OOE-01

1. OOE-Oi

5. OOE-Oi i. 50 2. 50 3. 50
0. 0 i. 00 2. 00 3. 00 4. 00

TIME. SEC.
Fig. 67 Simulated rull attitude alep reapunae, 5U m/s, gain » 1.2

SERVO DISPLPCEMENT
i.BOE-Oi n
1.20E-0i

-B.OOE-02

-i.20E-0i

4. 003. 00i. 00 2. 00
3. SO1. 50 2. 50

TIME 3EC

Fig. 68 Simulated servo-actuator displacement, 50 m/s, gain =1.2



ROLL STEP RESPONSE
5.OOE-OI

5.OOE-OI

4.OOE-OI

3. OOE-OI

2.OOE-OI

1.OOE-OI

5. OOk-01 3.̂ 01. bo0. 0 1. 00 2. 00 3. 00 4. 00
TIME. SEC.

Fig. 69 Simulated roll attitude step responae, 40 iii/s, gain - 0.4, linearised actuator

SERVO DISPLRCEMENT
3.50E-01

3. OOE-OI

2.50E-01

2.OOE-OI

1. 50E-01

1. OOE-OI

5. OOE-02

-S.OOE- 1. 00 2. 00 3. 00 4. 00
S. OOE-OI 1. 50 2. 50 3. 50

TIME SEC
Fig. 70 Simulated aileron displacement, 40 m/s, gain - 0.4, linearised actuator



PITCH STEP RESPONSE
1. EOE-Oi

1. 40E-01

1. 20E-01

1. OOE-OI

B. OOE-02

6. OOE-OZ

4. OOE-OZ

2.OOE-OZ

4. 003. 002 001. 00 3. 502. 501. 505. OOE-OI TIME. 5EC
Fig. 71 Simulated pitch attitude atep response, 40 m/s, gain - Q.b6

SERVO DISPLRCEMENT
1.20E-01

1. OOE-OI

B. OOE-02

5. OOE-02

4.OOE-OZ

2 OOE-OZ

-2 OOE-02 3. 505. OOE-Oi 2. 50i. 50
3. 00 4. 000. 0 i. 00 2 . 00

TIME. SEC
Fig. 72 Simulated elevator displacement, 40 m/s, gain - 0.86



PITCH STEP HE5PQN5E
1. SOE-Oi

1.25E-01

1. OOE-Oi

7. 50E-02

5.OOE-OZ

2.50E-02

1. bo 2 bo 3. bo5. Ook-01
0. 0 3. 00 4. 001. 00 2 00

TIME. SEC
Fig. 73 Simulated pitch attitude alep reapunae, 22 m/a, gain - 0.86

SERVO DISPLRCEMENT
1. 20E-01

1. OOE-OI '

a. OOE-02

6. OOE-02

4.OOE-02

2. OOE-02

4. 003. 002 . 001. 00
3. SO2. SO1. 505. OOE-Oi

TIME. SEC
Fig. 74 Simulated elevator diaplaucment, 22 in/s, gain - 0.86



PITCH STEP HE5P0N5E
1. GOE-01

1.40E-01

1.20E-01

1.OOE-OI

B. OOE-OZ

5. OOE-OZ

4.OOE-OZ

Z.OOE-OZ

4. 003. 00Z 001. 00 3. SO2. 501. 505. OOE-OI
TIME. SEC

t'ig. 75 Simulated pitch attitude bte|i reaponae, 50 m/s, gain - 0,86

SERVO DISPLACEMENT
1.ZOE-01

1 . OOE-OI

B. OOE-OZ

6.OOE-OZ

4.OOE-OZ

Z OOE-OZ

0

-Z OOE-OZ 5. OOE-OI 1. 50 Z 50 3. 50
0. 0 1. 00 2. 00 3. 00 4. 00

TIME. SEC
Fig. 76 Simulated elevator Jiaplacemciit, 50 m/a, gain • 0.86



PITCH STEP HE5PC3N5E

2. SOE-01

2 OOE-Oi

1. SOE-01

1. OOE-OI

5.OOE-OZ■

i.bo 3 bo2. boOOE-Oi
0. 0 1. 00 2. 00 3. 00 4. 00

TIME. SEC
Fig. 77 Simulated pitch attitude step response, 50 m/a, gain - 2.58
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FIG. 78 The state diagram for the pitch compensator.
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FIG. 79 Block diagram of the hybrid simulation,
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Fig. 83a Flight results: Roll command.
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Fig. 83b Flight results: Roll response.
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Fig. 84b Flight results: Pitch response.
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of system in eqns. 9.1 
and 9.2, with $ = a.

Fig, 8 6 b Phase plane of system in eqns. 9.1 and 9.2 with ^ = -a,

Fig. 8 6 c Phase plane of variable structure system based on eqns 

9.1, 9.2, 9.3, 9.4.



Fig. 87a Straight line approximation of full order O range 

space trajectory, stable.

AK^x/A

Fig. 87b As for 87a, but with A unstable. (Ak^x/^ must be  ̂ •



X

Penetration either side of O = 0 is very small, and depends 
only on the time taken to switch structures.
Fig. 8 8  Straight line approximation of range space trajectory 
for full order 0 , showing convergence on origin.

-A K x/X X , n n- 1

Fig, 89 Hyperbolic approximations of range space trajectories 
for reduced order O with two real, stable eigenvalues, showing 
convergence on origin.



ROLL STEP RESPONSE
1.25

1. 00
-(0.3 +/- 1.0)x
(34.21,12.95,1.0)

7. SOE-01

Faster" trace is V.S.S
5.OOE-Oi

2.50E-01

-2.50E-0 3. 00 4. 001. 00 2 00
2. 50 3. 505. OOE-01 1. 50

TIME. SEC.
Fig. 90 Simulated step response at 40 m/s, showing quality of null space following.

SICMR
40. 00

30. 00 -(0.3 +/- 1.0)x
(34.21,12.95,1.0)

20. 00

10. 00

0

10. 00

- 20.00

-30.00 3. 505. OOE-01 1. 50 2. 50
4. 002. 00 3. 000. 0 1. 00

TIME SEC

Fig. 91 Simulated full order switching function, showing effect of sampled control 
signal.



ROLL STEP RESPONSE
1.25

1. 00 -(0.3 +/- 1.0)x

(34.21,12.95,1.0)
7. 50E-01

5. OOE-01

22 m/s

50 m/s

-2.SOE-01 2. 50 3. 505. OOE-01 i. 50
0. 0 4. 002. 001. 00

TIME. SEC.
Fig. 92 Simulated step responses at 22 and 50 m/s with full order switching function 

,(but not full state switching structure).

ROLL STEP RESPONSE
1. 25

-(0.3)x1. 00

7. 50E-01

5. OOE-01

22 m/s
2. 50E-01

50 m/s

-2.SOE-01 5. OOE-01 1. SO 2. 50 3. SO
0. 0 1. 00 2. 00 3. 00 4. 00

TIME. SEC.

Fig. 93 Simulated step responses at 22 and 50 m/s with a fixed gain, (0.4).



s.p. = 2 0 K (AKx̂ -f)

Penetration either side of 0  = 0 is very small, and depends 

only on the time it takes to switch structures.

Fig, 94 Straight line approximation of range space trajectories 

for full order O, with offset stationary points.



ROLL STEP RESPONSE
1. 25

1. 00 -(0.3 +/- 1.0)x
(34.21,12.95,1.0)

7. 50E-01

S. OOE-Oi

1. 00 4. 002. 00 3. 00
5. OOE-OI 1. 50 3. SO2. 50

TIME. SEC.

Fig. 95 Simulated step response at 40 m/s with full order switching function, 
and a disturbance input, (0.04 rad.).

SICMR
40. 00

30. 00

20. 00

10. 00

0. 0

- 10.00

-20.Ç0

-30 00

u » -(0.3 +/- 1.0)x.
m*̂ - (34.21,12.95,1.0)

5.OOE-OI 1. 50 2. 50
1. 00 4. 002. 00 3. 00

TIME SEC

Fig. 96 Simulated full order switching function in presence (0.04rad.), showing 
the effect of the sampled control signal.



ROLL 8TER RESPONSE
1. 25

1. 00 —(0«3 +/— 0«6)x
(3.698,1.0,0.0)

end7. SOE-01
-(0.48AX, + 0.05096x^ +1.341 10 x-)

5. OOE-OI

fixed

2.50E-01

V.S.S

-2, 50E-01 5. OOE-OI 1. SO 2. SO
4. 000. 0 2. 00 a. 001. 00

TIME. SEC.

Fig. 97 Simulated step response at 40 m/s showing quality of null space following 
, for reduced order switching function.

SICMR
4. 00

3. 00

2. 00

1. 00

0. 0

-1. 00

2. 00

-(0.3 +/- 0.6)Xj 
. (3.698,1.0,0.0)

4. 000 1. 00 2. 00 a. 00
a. so1. so 2. SOS. OOE-Oi

TIME SEC

Fig. 98 Simulated reduced order switching function at 40n/s.



ROLL STEP RESPONSE
1.25

u • -(0.3 +/- 0.6)x1. 00
(3.698,1.0,0.0)

S.OOE-OI

22 m/s

2 50E-01

50 m/s

-2.SOE-OJH 1. 00 2. 00 3. 00 4. 00
S.OOE-OI 9. 501. 50 2. SO

TIME. SEC.

Fig. 99 Simulated step responses at 22 and 50 m/s with a reduced order switching function.

ROLL STEP RESPONSE
1.25

-(0.3 +/— 0.6)Xj 
. (3.698,1,0,0.0)

1. 00

2.50E-01
Steady state error of fixed gain autopilot

-2 50E-0 4. 002. 001. 00
2. 501. 505. OOE-OI

TIME. SEC.
Fig. 100 Simulated step response at 40 m/s with a reduced order switching function 

and a disturbance input (0.04rad.).



9I0Mm
4.00

u • —(0«3 +/— 0»6)x3 00
(3.698,1.0,0.0)

3.00
Switching breaks down

1. 00

0

-1. 00

-3. 00 3. SO3. 501. 505. OOE-OI 4. 003. 003. 001. 000. 0
TIME SEC

Fig. 101 Simulated reduced order switching function at 40 m/s with a disturbance 
input (0.04rad.).

ROLL STEP RESPONSE
1.35

—(0.3 +/— 0.6)%2 
. (3.698,1.0,0.0)

1. 00

and urn- (0.4)x
7. 50E-01

5.OOE-OI

3.50E-01
ixed

V.S.S

fixed

3.'so 3.501. 505. OOE-OI
4. 003. 00 3. 000. 0 1. 00

TIME. SEC.

Fig. 102 Simulated step responses at 22 and 50 m/s for variable and fixed gain 
systems with a non-linear actuator model.



SERVO DISPLACEMENT

2.OOE-02

a.OOE-02
-(0.3 +/- 0.6)xj 
. (3.698,1.0,0.0)

8. OOE-02

1. OQE-01

-1.20E-01

1.40E-01

-1.BOE-01 9. 502. SO1, 505. OOE-OI 4. 002. 001. 000. 0 TIME SEC

Fig. 103 Simulated servo-actuator displacement at 40 m/s for a non-linear actuator.

SICMR
4. 00

S. 50
—(0.3 +/— 0.6)x

S. 00 (3.698,1.0,0.0)

2.50

2. 00

1. SO

1. 00

5. OOE-OI

-S. OOE 4. 002 001. 00
s. 501.50 2 505. OOE-OI TIME SEC

Fig. 104 Simulated reduced order switching function at 40 m/s showing effects of

a non-linear actuator.



ROLL STEP RESPONSE
1.2S

—(0.3 +/— 0.6)x1. 00
(3.698,1.0,0.0)

7. SOE-01

S.OOE-OI

2. SOE-01
Steady state error of fixed gain

-2.50E-0J 4. 00S. 002. 001. 00 3. SO2 SOS. OOE-OI 1. SO
TIME. SEC.

Fig. 105 Simulated step responses at 22 and 50 m/s with a reduced order switching 
/ function, non-linear servo-actuator, and a disturbance input (O.OArad.).

SICMR
4. 00

3. 00 —(0.3 +/— 0.6)x
(3.698,1.0,0.0)

2. 00

1. 00 Estimated
True

0

-1. 00

- 2 . 00 4. 003. 002 . 001. 00 3. SO2. SOS. OOE-OI . 1. SO
TIME SEC

Fig. 106 Simulated reduced order switching function at 40 m/s using "true" and 
"estimated" rate.



ROLL STEP RESPONSE
1.35

1. 00

—(0*3 +/— 0*6)x
(3.698,1.0,0.0)7. SOE-Oi

S.OOE-OI

3. SOE-Ol
(Responses are indistinguishable.)

-3. 50E-0J-» 3. bo1. 00 S. 00 4. 00
5, OOE-OI 1. 50 3 50 S. 50

TIME. SEC.

Fig. 107 Simulated step responses at 40 m/s using "true" and "estimated" rate in 
the switching function.

ROLL STEP RESPONSE
i. 25

-(0.3 +/- 0.6)x1. 00
(3.698 ,1.0,0.0)

7. SOE-Oi

S. OOE-Oi

2. SOE-Oi

-2. SOE-OJ 4. 00a. 002. 00i. 00
a. so2. so5. OOE-Oi i. so

TIME. SEC.

Fig. 108 Simulated step response at 40 m/s with a disturbance input and realisable controller.



aïoîm
4. 00

3. 00 u m -(0.3 +/- 0.6)%

(3.698,1.0,0,0)

2. 00

1. 00

0

- 1. 00 3. 502. 505. OOE-0 1. 50 4. 000. 0 3. 001. 00 2. 00

Fig. 109 Simulated reduced order switching function for step response at 40 m/s, with a 

realisable controller.
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Appendix A,

Definition of Telemetry Channels for the DFCS.

There are 32 telemetry channels, 24 analogue, 6  digital and 2 are 
used for synchronisation of the receiver* Of these, approximately 
half are left free for payload use.

The analogue channels accept analogue input signals in the range 
0,0 to 5 ,0 V, and are specified as follows: (The upper case letters 
used in the function names indicate abbreviations by which the 
function may also be called).

Channel Function Status

An. 1 Matron ARMED 0V=safe, 5V=armed.

An. 3 Fuel warning Not used.

An. 5 AIL’n DEM'd 0V=st'bd. up, 5V=st'bd. dn.

An. 7 Airspeed 0.625V=17m/s, 4.375V=53m/s.

An, 9 Yaw rate OV=st'bd 0,8726 rad/s, 5V=pt 0.8726 rad/s

An. 11 Roll OV=pt 1.3961 rad, 5V=st*bd 1.3961 rad.

An. 13 Pitch OV=dn 0.6981 rad, 5V=up 0,6981 rad.

An. 15 HT ERRor 0V=7.5m low, 5V-7.5m high.

An. 17 HT. ABS*te 0V=1000.0m, 5V=0.0m,

An. 19 THR’le DEMd . 0V=open, 5V=closed.

An, 21 RUD’r DEM*d OV=st*bd yaw, 5V=pt yaw.

An. 23 EL’r DEM’d OV*=up el*tor, dn el’tor.

A1



The digital channels are specified as follows:

DIG. 1 R.P.M.

The output from the r.p.m. counter. This is callibrated as 0» 0
r.p.m. 255» 10 000 r.p.m.

DIG. 2 TLPORT

The software generated status flags.

MSB bit 7 Heading Hold (1= engaged) 
bit 6 Height Lock (1= engaged) 
bit 5 Autopilot Engaged (1= engaged) 
bit 4 A/D Error (1= error) 
bit 3 Servo Error (1= error) 
bit 2 Overflow Error (1= error) 
bit 1 Above Height (1= above demanded height) 
bit 0 Software Fail Flag (1= failsafe active)

DIG. 3 ACFLAGS

The hardware generated status flags.

MSB bit 7 HI 
bit 6  HI
bit 5 BATOK (1= battery mains valid)
bit 4 Reset (0= reset condition)
bit 3 Squelch (1= signal present)
bit 2 Controller Select (1= digital)
bit 1 Fail Flag (0 = no analogue fail)
bit 0 DIG FAIL FLAG (0= digital system error)

A2



APPENDIX B.
EXAMPLE OF THE ASSEMBLER LISTING; THE PITCH COMPENSATOR ROUTINE.

This is an example of the output of the MICT99 assembler programme. The 
machine code is that which is loaded into the microprocessor's memory. 
The assembler code is a convenient, recognisable representation of this.

MACHINE CODE. ASSEMBLER CODE. COMMENT FIELD.
0592 0730 020C LI R12,SSGN LOAD OOEFF POINTER

0732 085C'
0593 0734 020A LI RIO,>1 SET UP SHIFT COUNT

0736 0 0 0 1
0594 0738 06A0 BL ©MULT PERFORM STEADY STATE GAIN

073A 04FA'
0595 073C COGS MOV R 8 F R 3 TEMP STORE
0596 073E C1C3 MOV R 8 f R7 R7 = GN*FB
0597 0740 C204 MOV R4, R8 FETCH XI
0598 0742 020A LI RIOf >1 SET UP SHIFT COUNT

0744 0 0 0 1
0599 0746 06A0 BL ©MULT R 8 = -B1*X1 AS B1 IS NEGATIVE

0748 04FA'
0600 074A 06A0 BL ©SATAD R8  = GN*FB - B1*X1

074C 054E''
0601 074E C1C3 MOV R8 f R7 TEMP STORE
0602 0750 0205 MOV R5f R 8 FETCH X2
0603 0752 020A LI RIO,>0 SET SHIFT COUNT

0754 0 0 0 0
0604 0756 06A0 BL ©MULT R8 = B2*X2

0758 04FA'
0605 075A 0508 NEG R8 R 8 = -B2*X2
0606 075C 06A0 BL ©SATAD R 8 = GN*FB -B1*X1 -2*X2

075E 054E'
0607 0760 0008 MOV R8,R0 TEMP STORE XI1
0608 0762 0103 MOV R3, R7 FETCH GN*FB
0609 0764 0204 MOV R4, R 8 FETCH XI
0610 0766 020A LI RIO,>0 SET UP SHIFT COUNT

0768 0 0 0 0
0611 076A 06A0 BL ©MULT R8  = -(A1-B1)*X1

076C 04FA'
0612 076E 0508 NEG R8 R8  = (A1-B1)*X1
0613 0770 06A0 BL ©SATAD R3 = GN*FB +(A1-B1)*X1

0772 054E'
0614 0774. 0108 MOV R8 , R7 TEMP STORE
0615 0776 0205 MOV R5, R 8 FETCH X2
0616 0778 020A LI RIO,>0 SET UP SHIFT COUNT

077A 0 0 0 0
0617 077C 06A0 BL ©MULT R8  = (A2-B2)*X2

077E 04FA'
0618 0780 06A0 ' BL ©SATAD R 8 = GN*FB +(A1-B1)*X1 +(A2-B2)*X

0782 054E'
0619 0784 0144 MOV R4, R5 X21 BECOMES X2
0620 0786 0 1 0 0 MOV RO, R4 XI1 BECOMES XI
0621 0788 0508 NEG R8 R3 = -(MODIFIED FEEDBACK)
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Appendix C

Sensors used in the Flight Control System.

1) Humphrey vertical axis gyroscope. VG24 04211.
A dual axis, attitude sensing gyroscope used for pitch and roll 
measurement, (about OX and OY).
Range:
Mechanical, +/-40 degrees (min) pitch, +/-80 degrees (min) roll.
Electrical, +/-40 (+/-2) degrees pitch, +/-80 (+/-2) degrees roll.
Electrical requirements;
+12 V, 500 mA running, (1.4 A starting current) for the motor. Output 
potentiometers (5k.ohm) supplied with +/-5 V for roll, and +/-12 V 
for pitch.
Performance:
Resolution = 0.2% of full scale.
Linearity = +/-1% of full scale.
Vertical accuracy = +/- 0.5 degrees.
Time to erect to within 1.5 degrees = 9 minutes.

2) Smiths Instruments rate gyroscope. 900 series.
Rate gyroscope used to measure rate of rotation about the aircraft OZ 
axis.
Range:
Mechanical, +/-50 degrees/s.
Electrical, 60, (+/-10) mV/deg/s.
Electrical requirements:
+ / - 6  V, 50 mA for the motor, supplies for the output signal derived 
from this.
Performance:
Resolution = 0.01% of full scale.
Linearity = 2% of full scale.
Time to erect = 2 0  aeconds.

3) National Semiconductor absolute pressure sensor. LX1601A. 
Provides a measure of the absolute atmospheric pressure, which is
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then compared with a stored zero to Indicate height.
Range:
Pressure, 10 to 20 p.s.i. (Standard atmosphere approx. 14 p.s.i.) 
Electrical output, 1.0 V/p.s.i., offset at 10 p.s.i. » 2.5 V. 
Electrical requirements:
+12 V, 50 mA.
Performance:
Output scaling 1.0 V/p.s.i.
Linearity = +/-0.05 p.s.i. over full range.

4) Rosemount Indicated airspeed transducer. 1 2 2 1 D.
Gives indication of airspeed for telemetry purposes only. Pitot 
static tube and ASI mounted in the starboard wing.
Range:
Airspeed, 30 to 130 knots, (15.4 to 66.9m/s).
Expected output range, 0 to +5V.
Electrical requirements:
+/-15 V, 25 mA.
Performance:
Output scaling = 50 mV/knot.
Relative accuracy, error = 0.13% of actual at 30 knots.
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Appendix D.

Definition of Registers in System software. 

WPO Servo workspace.

Reg. Label. Function.
RO WPO Spare servo register.
R1 WPOl Spare servo register.
R2 WP02 Spare servo register.
R3 WP03 Aileron servo register.
R4 WP04 Rudder servo register.
R5 WP05 Elevator servo register.
R6 WP06 Throttle servo register.
R7 WP07 Check servo register.
R8 — . Servo cycle counter.
R9 — Next servo output value.
RIO WPOA New cycle flag.
Rll — —
R12 — C.R.U. base address.
R13 — Stores WP during context
R14 — Stores ST during context
R15 — Stores PC during context

V/Pl Oneshot workspace.

Reg. Label. Function.
RO WPO,PFLAG Parachute request accepted.
R1 —  Timer/counter for P. Dep. routine.
R2 —  Timer/counter for Ig. cut routine.
R3 —  Timer/counter for airbag routine.
R4 —  P. Deploy procedure complete.
R5 —  %imer/counter for P. Jet. routine.
R6 —  Command word (temporary store).
R7 —  —
R8 —  —
R9 —  —
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RIO —— —
Rll — —
R12 — C.R.U. base address.
R13 — Stores WP during context switch.
R14 — Stores ST during context switch.
R15 — Stores PC during context switch.

WP2 Command workspace.

Reg. Label. Function.
RO WP2 Null command.
R1 ROLDEM Aileron demand, and calcs.
R2 PITDEM Elevator demand.
R3 YAWDEM Rudder demand.
R4 THRDEM Throttle demand.
R5 — Spare demand.
R6 — ^Spare demand.
R7 - Spare demand.
R8 — Calcs.
R9 — Calcs.
RIO COMMD Command word (permanent).
Rll — Return register.
R12 - C.R.U. base address.
R13 - —
R14 - —
R15 — —

WP3 Telemetry workspace.

Reg,, Label. Function.
RO WP3 • Calcs for T/C routine.
R1 - Calcs for T/C routine.
R2 TLP6 (M.s 

TLP5 (L.s
.b.) Aileron demand for telemetry, 
•b.) Throttle demand for telemetry.

R3 TCKNT Telecommand delay counter.
R4 TLP2,TLP1 TLPORT, software generated flags.
R5 FCOUNT Timer/counter for failsafe routine
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R6  —  Servo check routine flag.
R7 TLP4 (M.s.b.) Elevator demand for telemetry.

TLP3 (L.s.b.) Rudder demand for telemetry.
R8  —  Calcs.
R9 —  Calcs.
RIO —  Calcs.
Rll —  Return register.
R12 —  C.R.U. base address.
R13 —  Stores WP during context switch.
R14 —  Stores ST during context switch.
R15 —  Stores PC during context switch.

WPR Roll workspace.

Reg. Label.
RO WPR 
R1 —
R2 —

Function.
Calcs.
(K-l)th error. 
(K)th error.

R3 to R5 unused.
R6  —  Command word (temporary store).
R7 to RIO used for calculations.
Rll —  Return register.
R12 —  Calcs.
R13 —  Negative flag.
R14 —  —
R15 —  —

WPY Yaw workspace.

Reg. Label. Function.
RO WPY , —
R1 to R5 unused.
R6  —  Command word (temporary store).
R7 to RIO used for calculations.
Rll —  Return register.
R12 —  Calcs.
R13 —  Negative flag.
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R14 —  —
R15 —  ■“

WPP Pitch workspace.

Reg. Label. Function.
RO WPP Digital filter state(Xll).
R1 —  (K-l)th error.
R2 —  (X-2)th error.
R3 —  (X)th error.
R4 —  Digital filter state (XI).
R5 —  Digital filter state (X2).
R6  —  Temporary Command register.
R7 to RIO used for calculations.
Rll —  Return register.
R12 —  Calcs.
R13 —  Negative flag.
R14 —  —
R15 -- —

WPH Height workspace.

Reg. Label. Function.
RO WPHjHTPIT Autopilot derived height demand.
R1 —  Height zero store.
R2 —  Shuffled complement of above.
R3 —  (M.s.b.) Height error for telemetry.

TLP7 (M.s.b.) Height absolute for telemetry. 
R4 —  —
R5 HTFB Height feedback.
R6  —  . Command word (temporary store).
R7 to RIO used for calculations.
Rll —  Return register.
R12 —  Çalcs.
R13 —  Negative flag.
R14 —  —
R15 —  —  -
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APPENDIX E

PROGRAMMES USED AS ARITHMETIC AIDS IN THE Z-TRANSFORMATION 

OF THE AIRCRAFT TRANSFER FUNCTIONS.

E.l SUMMARY.
Both programmes run on the mainframe computing facility at 
Bath University. This is so that they can make use of a suite 
of numerical algorithms, designed to be called as subroutines 
from the user's programme. ZTRAN.FORTRAN calls F04ATF, which 
solves a set of simultaneous equations presented in matrix 
form, and C02AEF which finds the roots of a real polynomial 
equation. GENLOC.FORTRAN only calls C02AEF. Full details of 
these are given in reference (El). Listings of ZTRAN.FORTRAN 
and GENLOC.FORTRAN are given in sections E.4 and E.5.

E.2 ZTRAN.FORTRAN, the z-transformation routine.

It must be noted that this is only intended as an aid to cal­
culation. In order to obtain the correct result, the input 
must be entered in a given manner, which dictates the nature 
of the output. The presence of a zero-order-hold is auto­
matically assumed, so the input takes the form:

(z-1) ' 7 N(s)
El

sD(s)

N(s) is a polynomial in s, of order < 6, and sD(s) is 
one of three different types of function, as follows:

2 2 2 2 2 TYPE 1 sD(s) = s ((s+b) + c )((s+d) + e )
2 2 2 TYPE 2 -sD(s) = s (s+b)(s+c)((s+d) + e )
2TYPE 3 sD(s) = s (s+b)(s+c)(s+d)(s+e)

These are the only functions that will be accepted, so the input 
must be arranged to comply. If the order of the denominator is 
less than 6, the function must be expanded by introducing extra 
factors to the numerator and denominator alike. An example of
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this method will be given later.
The treatment of the input types differs in detail, but 

the general process is the same, so consider a type 1 input. The 
function to be transformed is:

F(s) = N(s) , so F(s) =

sD(s)

N(0) + N(l)s + N(2)s^ + N(3)s^ + N(4)s^ + N(5)s^ E2
2 2 2 2 2 s ((s+b) + c )( (s+d) + e )

If the function has non-unity forward gain K, this is intro­
duced as a common factor in N(0),N(1)...N(5). Furthermore, if 
the order of the numerator is less than 5, N(5),N(4) etc. must 
be entered as 0.0.

The first stage is to separate this into partial fractions, 
in order that the z-transformation can be carried out:

So, F(s) = L + M + Ps+Q + Rs+S
~  ~ 2  2 2 2 2 s s ((s+b) + c ) ((s+d) + e )

Equating the expressions in E2 and E3, and multiplying throughout 
by D(s) gives:

Ls((s+b)^ + c^)((s+d)^ + e^) + M((s+b)^ + c^)((s+d) + e^) +
(Ps+Q)s^((s+d)^ + e^) + (Rs+S)s^((s+b)^ + c^) = E4

N(0) + N(l)s + N(2)s^ + N(3)s^ + N(4)s^ + N(5)s^

By gathering the terms in s^,s^,s^,s^,s^ and s^, a set of 
simultaneous equations can be formed, which can be written in 
matrix form, to give:

A x  = b E5
where x^'= (L,M,P,Q,R,s)
and b^ = (N (0) ,N (1 ) ,N (2) ,N (3) ,N (4) ,N (5) )
and A is a sixth order matrix, whose elements are
functions of b,c,d and e.
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The first activity of the programme is to establish the A matrix 
for the particular input function. There are three configurations 
of A depending on the type of denominator. The subroutine F04ATF 
is then called to solve equation E5, and evaluate L,M,P,Q,R 
and S. Knowing these, the individual transformations of the 
functions in E3, can be carried out, to give:

(z-1) rj. (F(s))= z-1 Lz + MTz + Pz(z+f) ^ Rz(z+j)
2 2 2 z z (z-1) (z-1) z +gz+h z +kz+m

where T is the sampling period,
and f,g,h and j,k,m are obtainable from tables.

As explained in the main text (section 5.4.2.1), this result 
is more useful when expressed as a product of factors, rather 
than a sum of parts. This requires that the function in E6 
be re-arranged to give:

(z-1) 2  (F(s))= H(z) E7
2 2 (z-1)(z +gz+h)(z +kz+m)

By the reverse process of that described earlier, H(z) is 
derived as:

2 3 4 5H(z) = P(0) + P(l)z + P(2)z + P(3)z + P(4)z + P(5)z E8

where P(0), P(1)....P(5) are functions of the constants L,M,P 
Q,R,S and f,g,h,j,k,m.

The programme evaluates P(0)...P(5) and then calls the 
subroutine C02AEF to find the roots of the polynomial in E8. 
The results of the transformation process are presented in 
two parts; the numerator is given as a gain, K, in conjunction 
with the roots of H(z), and the denominator can have one of 
three forms, depending on the type of input. These are:

2 2 TYPE 1 (z-1)(z +gz+h)(z +kz+m)
TYPE 2 (z-1)(z+g)(z+h)(z^+kz+m)
TYPE 3 (z-1)(z+g)(z+h)(z+k)(z+m)
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An example will be given to illustrate the use of ZTRAN.FORTRAN 
Consider the z-transformation of the 40m/s roll transfer function 
with a zero-order-hold:

Ĝ {z) = (z-1)^ -152.8 ) gg

s^(s+19.61)

This does not have one of the necessary denominator types, so 
the numerator and denominator are given extra, identical factors 
to suit. These cancel each other out in the calculations and do 
not effect the result. To facilitate this, the programme checks 
the values returned by subroutine F04ATF, and if they are less

Q
than 1x10 , they are set to zero. This takes care of in-exact 
cancellation caused by lack of precision in the algorithm. So 
the equation in E9 is re-arranged to give a type 2 input, as 
follows:

Gg(z) =(z-l)'^ ̂ (-152.8(s+l) ((s+2)^+ 3^)) ^

s^ (s+19.61) (s+1) ( (s+2) 3̂)j

then.

Gg(z) = (z-1) *~7 (-)/l986.4+2597.6s+764.0s^+152.8s^+0.0s^+0.0s^\ Ell(z-1) *~7 (-)/l986.

T t  (— ^(s+19.61)(s+1)((s+2)^+ 3^)

This is entered into the programme in the following manner;

PROMPT ENTER DENOMINATOR TYPE 1,2 OR 3 
INPUT  ̂ 2
PROMPT ENTER b,c,d,e 
INPUT 19.61,1.0,2.0,3.0
PROMPT ENTER NUMERATOR N (0),N(1),N (2),N(3),N(4),N(5)
INPUT 1986.4,2597.6,764.0,152.8,0.0,0.0 
PROMPT ENTER SAMPLING INTERVAL 
INPUT 0.025
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The result of the transformation is given as follows;

Z TRANSFORM IS K*N(Z)/D(Z), WHERE K = 0.408166 D-01 
ROOTS OF NUMERATOR ARE:
REAL PART = -0.8495 DOO IMAG PART =0. 0  DOO
REAL PART = 0.0 D0.0 I MAG PART = 0.0 DOO
THE DENOMINATOR IS =
(Z-1)(Z-0.6125 DOO)(Z-0.0 DOO)(Z**2 + 0.0 DOOZ + 0.0 DOO)

E.3 GENLOC.FORTRAN, the root locus routine.

This programme is used to solve:

2 3 41.0 + KK' (a + bz + cz + dz + ez ) =0.0 E12
2 3 4 5,(r + sz + tz + uz + vz + wz )

as K varies, making use of the subroutine C02AEF, as in 
ZTRAN.FORTRAN. An example will be given to illustrate the use 
of GENLOC.FORTRAN. Consider the 40m/s roll aircraft transfer 
function, with the small deviation linear servo model. This 
has been transformed using ZTRAN.FORTRAN to give:

Gr s v (z ) = 0.625 10”^(z^ + 3.138Z + 0.60944)

z + (-2.219)z^ +1.5905Z + (-0.3715)

It is necessary that the numerator and denominator be multiplied 
2by z to avoid division by zero in the calculations. The data is 

entered in the order:
K',a,b,c,d,e,r,s,t,u,v,w
Therefore the input for this example will be:

0.625 lO"^,0.0,.0.0,0.60944,3.138,1.0,0.0,0.0,0.0,-0.3715, 
1.5905,-2.219,1*0

The operator then types the desired value of K, whereupon the 
routine evaluates and displays the roots. The next operator input

E5



is an integer switch, which is interpreted by the programme 
as :

0, stop
1, read new value of K and repeat.

E.4 Listing of ZTRAH.FORTRAN.

r e a l * #  0 , 1 0 ) , b < 10)  ( 1 0 ) 2 , 1  2 ) , w H  8 > ,)•'{ 1 8 i . c; ; , cc
reâT4:ÿ d i V e s z ' y , z h / p b l ; f  f , / / C S ) : p f , f .ôT 

r e m i t s  x 0 2 a 3 f , r A ( 5 ) , i m ( 5 ) , d 1 , d 2 y d l , d ^ , I i n , b z , c z , d % ; e :  
i n 1 9 ge r  i A , n , i a a , i f a i l , i f a l , n n , i l y p 9  
w r i t e  ( 6 , 6 0 0 )

600 formai t  ( 1 h . ' s y s t e m  i s  n ( s ) / d ( s ) ,  o r d e r  o f  n(  s ) < 6  . o r d e r  d ( s  ) =6 )
w r i t e  ( 6 , 6 0 1 )

•601 f o r m a t  d h  , t y p e  1 d ( s ) = s t * 2 (  ( s + b ) * * 2 + c * * 2 )  ( {s  + d ) * * 2 + e t t 2  ) ' )
w r i t e  ( 6 , 6 0 2 )

602  f o r m a t  ( 1 h , / t y p e  2 d ( s ) = s * * 2 ( s + b ) ( s + c ) ( ( s + d ) t t 2 + e * t 2 ) ' )
w r i t e  ( 6 , 6 0 3 )

603 ’f o r ma t  ( 1 h , t y p e  3 d ( s ) =s*4: 2( s + b ) ( s+c ) ( s+d ) ( s+c ) ' )
w r i t e  ( 6 ' , 6 0 4 )

604  f o r ma t  ( 1 h , ' e n t e r  d e n o m i n a t o r  t y p e  1 , 2  o r  . 1' )
r ead  ( 5 ,  ) i t y p e
w r i t e  ( 6 , 6 0 5 )

605  f o r ma t  ( 1 h , e n t e r  b , c . d , e ' )
read  ( 5 ,  ) b s , r s , d s , e s
do 100 j = 1 , 6  
h ( j ) = O . O d O  
do 110 k = 1 , 6  
a ( j , k ) = 0 , 0 d 0

110 c o n t i n u e
100 c o n t i n u e

w r i t e  ( 6 , 6 0 6 )
606 f o r ma t  d h  , ' e n t e r  n u me r a t o r  n ( 0 )  n d )  n ( 2 )  n ( 3 )  n ( 4) n ( 5 ) ' )

r ead  ( 5 ,  ) b d ) , b ( 2 ) , b ( 3 ) , b ( 4 ) , b ( 5 ) , b ( 6 )
i f ( i t y p e . n e . 1)  go t o  120
d 2 = ( b s t » 2 + c s * t 2 )
d1= 2 . OdO*bs
d 4 = ( d s * * 2 + e s * * 2 )
d 3 = 2 . OdO*ds
a ( 6 , 5 ) = 1 , O d O
a ( 5 , 6 ) = 1 .OdO
a ( 5 , 5 ) =d1
a ( 5 , 4 ) = l , O d O
a f 5 , 3 ) = d 3
a ( 4  ̂6 ) = >11 V

a ( 4 , 5 ) = d 2  '
a f 4 ^ 4 ) = d 3
a f 4 , 3 ) = d 4

a ( 3 , 6 ) = d 2
g{ .3 , 4 ) =d4
go t o 140

120 i f ( i t y p e , r e , 2)  on t o  130
d2 = b<i:r;
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ZTRAN.FORTRAN Listing cont. 
d 1= hs +r s
,-( 4  = f d s  *  *  3  + 3  <  1 1 3  )

•■13=3. 0i10*>is 
a ( 6 , 5 ) = 1 . O d O  
a ( 6 , 4 ) = 1 . O d O  
a ( 5 , 6 ) = 1 . O d O  
a ( 5 , 5 ) = d 1  
a ( 5 , 4 ) = b s + d 3  
a ( 5 , 3 ) = c s - t d 3  
a ( 4 , 6 ) = d l  
a ( 4 , 5 ) = d 2  
5 ( 4 , 4 )  = d 4 + h ; t i i 3  

a(  4 , 3  ) =d4 + cs* '13  
a ( 3 , 6 ) = ' t 3  
a ( 3 ; 4 ) =bs f iyi  
a (3,3)=cs+d4 
go t-o 1 40 

I 30 i f f : t y p e . n e  , 3 ) go t o  150
d3=bst: ' :s 
d1=bs+cs  
d3=' is + es 
d4 = ds * e s  
a ( 6 , 4 ) = 1 . O d O  
a ( 6 , 5 ) = 1  .O'dO 
a(6,4)=l.OdO 
a ( 5 , 6 ) = d 1 + d i  
af  5 , 5 ' ' = d l i - e s  
3 ( 5 , 4 ) = bs f d3  
a ( 5 , 3 ) = c ; + d 3  
a(4,6 ) =i-i1 td s+d2 
a i' 4 , 5  ) =d1 t e s  + d'2 
a ( 4 , 4 ) =h ;^d3-i->'i 4 
a ( 4 , 3 ) = c s T d 3 + d 4 
a ( 3 , 6 )  =dsj :d2 
a ( 3 , 5 ) = e ; f d 2  
a ( 3 , 4  ) = h t . H 4  
a ( 3 , 3  ) =•: ; t d4  

140 a ( A ^ 3 ) = 1 . 0 d O
3 ( 6 , 1 ) =1 . OdO  
a ( 5 , 2 ) = 1 , O d O  
a ( 3 . 1 ) = d1 +d3  
a ( 4 , 2 ) =d1+d3  
a ( 4 , 1  ) =d2 + d4-fd1 i d  3 
a ( 3 . , 2 ) = d 2 + d 4 + d 1 t d 3  
a ( 3 , 1  ) = d1 * d4  + d 3 * d 2  
a ( 2 , 2 ) = d 1  t d4+d3: t d2  
a ( 2 , 1  ) =d2 + d4 
a d  , 2 ) = d 2 * d 4
n-6 
i a = 1 0 

aa = 1 2
I f a i l = T

r a i l  f 0 4 a t f  ( a ,  i a , b , n , r , an ,  T s n . u ,  i f a i  1)  
i f ( 1 f a i 1 . e n . 0 )  go t o  160  
w r i t e  ( 6 , 6 0 7 )  i f a i l
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ZTRAN.FORTRAN Listing cont.
6 07  f o r m a t  d h  , " i f a i l  = " , i 1 )

s t o p
160 w r i t e  ( 6 , 6 0 8 )  r ( 1 ) , c ( 2 )
6 0 8  f o r m a t  ( î h  , ' l = ' , d 1 3 . 6 , ' M = ' , d 1 3 . 6 )

w r i t e  ( 6 , 6 0 9 )  c ( 3 ) , c ( 4 ) , c ( 5 ) , c ( 6 )
609  f o r m a t  d h  , ' p = ' , d 1 3 . 6 , ' q = ' , d 1 3 . 6 , ' r = ' , d 1 3 . 6 , ' s = ' , d 1 3 . & )

l i m = 0 . 1 d - 0 7
w r i t e  ( 6 , 6 1 0 )

61 0  f o r m a t  d h  , " e n t e r  s a m p l i n g  i n t e r v a l  T " )
r e a d  ( 5 ,  ) t
i f ( d a b s ( c ( 2 ) ) , l e , l i m )  c ( 2 ) = 0 . 0 d 0  
c ( 2 ) = t * c ( 2 )
i f ( i t y p e . n e . 1)  go t o  170  
i f ( d a b s ( r ( 3 ) ) , l è , l i m )  go t o  180 
p h i = d a t a n ( ( b s - c ( 4 ) / c ( 3 ) ) / e s )
z f  = -1 . OdOi de: <p( -1 . OdO$bs t t  ) t ( d c o s ( c s : t t - n h i  ) ) / dco- a( phi  ) 
z g = - 2 , OdO* ( d e x p ( - 1 . O d O * b s * t ) ) t d c o s ( c s * t ) 
z h = d e x p ( - 2 . 0 d 0 * b s * t ) 
go to 190  

180 r ( . 3 ) = 0 . 0 d 0
zf =O. OdO  
zg=O.OdO 
z h = 0 , 0 d 0

190 i f ( d a b s ( p ( 5 ) ) . l e . l i m )  g o t o  200
t h e t a = d a t a n  ( ( d s - c  ( 6 ) /  c ( 5 ) ) /ces )
z j  = -1 , OdO*dexp ( - 1 ,  O d O * d s * t  ) : * (dcos ( e s * t -  the ta  ) ) / d c o < (  t het e t )  
zk = - 2 . OdO* ( d e x p ( - 1 , O d O * d s * t ) ) * d c o s ( e s * t )
ZM=dexp( - 2 . O d O * d s * t ) 
gn t o 210  

20 0  c ( 5 ) = 0 . 0 d 0
z j = 0 . 0 d 0  
z k = 0 . OdO 
zm=0 , 0d0  
go t o 210

170 i f ( d a b s ( r ( 3 ) ) . l e . l i m ) g o  t o  220
b z = d e x p ( - 1 , O d O * h s * t ) 
go t o 230  

220  r ( 3 ) = O . O d O
h 7 - 0 , OdO

230  i f  ( dab< ( r  : 4 ) ) , 1 g . 1 i;% )gn t o  24 0
7 = d a X p ( -  ' , 0  d 0 *  c s *  t  ) 

go to 250  
2 40 r ( 4 ) = O . O d O

r 7 = 0 , OdO
25 0  z f  = - 1 . OdO* ( C ( 3 ) * c z * c ( 4 ) * bz  ) / ( c ( 3 ) ' 4 ) )

c ( 3 ) = c ( 3 ) + c (4 ) 
z g = - 1 , O d O * ( b z T c z )  
zh = b z * r  z
i f ( i t y p e . e n , 2 )  go t o  190  
i f ; d a h s ( r f c ) ‘ . l e , 1 i m ) go t o  260
i lz' -da:;p ; -1 . O d O * d ÿ * t  )
go t o  270  

260 r ( 5 ) = 0 . 0 d 0
dz"-0,  OdO

2.70 i f  ( d.abs ( 0 ( 6 ) ) .  l e  , 1 im)  go t a  280
e z = d e x p ( - 1 , 0 d 0 * e s * t )
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ZTRAN.FORTRAN Listing cont.
go t o 290  

28 0  r ( 6 ) = 0 , 0 d 0
ez=O.OdO

2 90  z j  = - t . 0 d 0 * ( c ( 5 ) * e z + c ( 6 ) M z ) /  ( c ( 5 ) * c ( 6 ) )
c ( 5 ) = c ( 5 )  + i : ( 6 )  
z k = - l . O d O* { d z + e z )  
z m= d z t e z  

210 p ( 1 ) = c d  ) + , : < 3 ) + c ( 5 )
p f 2 ) =c ( n  *  f zg+zk - 1 .  OdO ) +c ( 2 î +c ( 3 ) M  zl< - 2 .  OdO+zf  ) +c ( 5 ) * ( zg-2. OdO+;z j  ) 
p ( 3 ) = r .  { 1 ) * {  z h+z m+z g* z k . - z g“ z k . ) + c ( 2 ) * ( z g + z k  ; 
p ( 3 ) = p ( 3 ) + ( c ( 3 ) * ( z « + 1 . 0 d 0 - 2 . 0 d 0 * z k + z f * z k - 2 . 0 d 0 * z f ) )  
pf  3)  = p ( 3 )  + (c { 5 )  * (  zh+1 . 0 d 0 - 2 . 0 d 0 * z g + z j * z g - 2 .  OdO*;zj  ) ) 
p ( 4 ) =c f 1 ) * ( zm*zg+ zk * z h - z h - z « - z g * z k ) + r ( 2 ) * ( z h + z m + z g * z b ) 
p ( 4 ) = p ( 4 ) + ( r ( 3 ) * f z k - 2 , O d O * z m + z f * z « + z f - 2 , O d O * z k * 7 f ) »  

p ( 4 ) =p {4 ) + ( r f 5 )  * (  z g - 2 , OdOi 'zh + z j * z h  + z j - 2 , O d O * z g * z j  ) ) 
p ( 5 ) = c ( 1 ) * ( z h * z m - z r t * z g - z k * z h ) + r { 2 ) * ( z m * z g + z k * z h )  
p {5 ) = p {5 ) + c ( 3 )  * { z « + z f  * z k - 2 . OdO*zf  * z m) + >: { 5 ) * (  zh+z  j t z g - 2  . OdO *z j * z b  )
p ( 6 ) = ç ( 1 ) * ( - 1 . OdO* z h* ZM) +c f 2 ) * z h * z « + c ( 3 ) * z f * z « + c  t 5 ) * z j  * zn 
V(1 > = 1 . OdO 

v ( 2 ) = p ( 3 ) / p ( 2 )  
v ( 3 ) = p ( 4 ) / p f 2 )  
v ( 4 ) = n f 5 ) / p ( 2 )  
v ( 5 ) = p ( 6 ; / p f 2 )  
p i = 0 . 1 d 0 
t n l = v 0 2 a a f ( P I )
\ f  a 1 = 0 
n n -  5

ca l l .  cO^aof  { V ; nr. , rp , i «  , t .ol  , i f  a l  » 
i f  ( i f a l . 9 0 . 0 )  en t o  300  
w r i t e  ( 6 , 6 2 0 )  i f  a l  

620  f o r m a t  (1 h , " i f a l  = " , 1 1 )
s t o p

200 w r i t e  ( 6 , 6 1 2 )  p ( 2 )
612  f o r m a t  d h  , ''z t r a n s f o r m  i s  K * n ( z ) / d ( z ) ,  u h e r a  K = , d 1 3 , 6 )

w r i t e  ( 6 , 6 1 3 )
6.13 f o r m a t  d h  , ' Root s o f  t he  n u me r a t o r  a r e = ' )

do 310 i = 1 , 4
w r i t e  ( 6 , 6 1 4 )  r e ( i ) , i m ( i )

614 f o r m a t  ( 1 h , ' Rea l  p a r t  = ' n 1 3 . 6 ,  '' Imag par  t = " ,  d 1 3 , 6  )
310 con t  i ni:e

w r i t e  ( 6 , 6 1 5 )
61.5 f o r m a t  d h  , ' The d e n o m i n a t o r  i s  = ' )

i f ( i t y p e , n e , 1 ) go to 320  

w r i t e  ( 6 , 6 1 6 )  z g , z h , z k , z m
616 f o r m a t  d h  , d  z - 1 ) (  z * * 2 +  d d  . 4 / z +  ' , d d  . 4 ,  d  ( z * * 2 +  '  , d 1 1 . 4 ,  %  , i 11 . 4 ,  ) d

go t o  150
3 20  i f ( i t y p e , n e . 2 )  go t o  330

w r i t e  ( 6 , 6 1 7 )  h z , r z , z k , Z M
617 f o r m a t  d a  , d  z - 1 ) ( Z-  " , d1 1 . 4 , " ) ( Z-  , d 11 . 4 /  ( Z * * 2 +  ' , d d  . 4 , ' , d11 . 4 ,  d

g0 t n  150 
330 u r i t e  ( 6 , 6 1 8 )  b z , c z , d z , ez
61R f o r m a t  d h  , " ( z - f  ) ( z - d  d 11 . 4 ,  d  ( z - " ,  d d  , 4 ,  " ) ( z - " ,  d d  , 4 , d  ( z - %  d d  . 4 ,  d  d

150 s t o p
end
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E.5 Listing of GENLOC.FORTRAN.

c .

£IT
a

c.a

z.
IT C .
ijr; a-

C .

IT
,K ai 3 C O -— - o o

jC 3 O II «T c .
3 3 — V—

rr 3 .— . rc z z
Z en _ c fC J Z C IX C c

c . Z .p: c . C -
iT O - a iT a a p—

IT » O i j2 IT c — ) O c
' C 44 44 .. o a ft o a cja ■-

jC x : J Z J C J C J T c a' a 4 - II
CL IP V 1," ir IT vr t~ ir
C. (T ft ft IV ft It IX fi O .— •» c O
», » . T T T T ■cr C . • < o IV IV

-at .as Jat Jit 4* o - o ai o C T c r o 4-
- C C » 4P 4 r 44 o _ 7 :: 7 3 a' c ■w— 4 3 J Z a a 43 *.-1

t :- -at Ji' -% .at ft II o O it » II O
fT o + + 4 - 4 - 4 - o It •— a CL 4 3 a c i.r r: 4 3 — '

t- Ü 3 U t • > rr i.r r-j o O rr o o i r c =
o r a' — o O II II II K C fv IX 4—

cr- II II 1 i II II It X V C -—. •p.) pl"4. <4- a iT - r~ it
r— ■ ai — -— o II — > C 7 3 4 . Z C v
1- ft ft r.i r : « f U " II c iT 4 3 — • p- tz iT £. c
1 c ai CL y 13 c a' C c Çp. II IT <v- C C c a 4- 4 - O
£- G. ft it ft ft rc C . s- U ‘ 3 4 - u î- ■Ta 3 L*

c: C; oo r-
T-

Reference .
(El) Nag fortran library manual: F04ATF Nagflib 1200/646 mklO 2nd Nov 82

C02AEF " 1271/728 mklO 2nd Feb 83
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Appendix F.

The digital simulation routines.

F.l Summary

These are interactive simulations run on a PDF 11 minicomputer. They 

are based on z-transforms of the roll or pitch attitude loops, and 

use a series of difference equations to implement the z-transfer 

functions. The roll simulation will be described, and a listing given. 

The pitch simulation differs in detail, but follows the same principles.

F.2 Structure of ZROLL.FTN

There are three stages, being definition, simulation and output , 

perfomed one after the other. The former allows the operator to specify 

the switching function, the servomotor parameters, the rate type (i.e. 

derived from a 320.0Hz z-transfer function and considered to be "true", 

or from a 40.0Hz, 3 point FIR algorithm with 12 bit quantisation, and 

considered to be "estimated"), and the gains. A 40m/s A.T.F, is assumed 

for the first run, but this can be changed to 22 or 50m/s from the out­

put menu, and then re-run.

The simulation stage simulates a 4 second period, with initial 

steady state conditions of error = l.Orad. The demanded attitude is 

O.Orad. The routine evaluates the switching function, and then deter­

mines the gains to *be used in order to generate the servo demand. These 

activities are performed once every 8  iterations, simulating the 40.0Hz 

sampling rate of the DFCS. The rest of the simulation is performed 

every iteration. This includes determining the servo-actuator position
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and rate limits, and then evaluating the state and output difference 

equations.

The output stage presents the operator with an option menu which 

includes changing the airspeed, the gains or the switching function, 

and re-running the simulation, or displaying the attitude, the servo- 

actuator displacement or the switching function. Hard copies can be 
produced.

F.3 Listing of ZROLL.FORTRAN.

R E A L f 4 T I M E ( 1 6 0 ) , R O L L ( 1 6 0 ) , S I G M A ( 1 6 0 ) , G A I N S ( 1 6 0 )

R E A L ^ 4  S E R V O ( 1 6 0 )
L O G I C A L K l  T E R M ( 6 )

C
C A S S I G N  T H E  T E R M I N A L
C

W R I T E  ( 5 , 5 5 4 )
5 5 4  F O R M A T  ( I H  , " O U T P U T  TO '? ' )

R E A D  ( 5 , 5 1 0 )  < T E R M ( I ) y I - l  , 6 )
5 1 0  F O R M A T ( 6 A 1 )

C A L L  A S S I G N d  y T E R M )
C
C A S S I G N  T H E  O P E R A T O R  n
C
1 0 0  W R I T E  ( 5 , 5 2 0 )
5 2 0  F O R M A T  ( I H  , " E N T E R  M O , M 1 , M 2 ' )

R E A D  ( 5 , 5 3 0 )  S I  G O , S I G 1 , S I G 2
5 3 0  F O R M A T  ( F , F , F )
C
C A S S I G N  T H E  S E R V O  T Y P E
C

W R I T E  ( 5 , 5 2 1 )
5 2 1  F O R M A T  ( I H  , " E N T E R  D E A D B A N D ,  P O S N L I M I T   ̂ R A T E  L I M I T , P O L E , D I S

R E A D  ( 5 , 5 2 2 )  D E A D , P O S L I M , R A  T L I M  y F 0  L E , D I S  T
5 2 2  F O R M A T  ( F , F , F F  , F )

R A T L I  M = 0  . 0 0 3 1  2 5  *  R A T L I  M
C =  - . l  • 0 * E X P  ( - 0  . 0 0 3 1 2 5 * P O L E  >
G N S = 1 . 0 + 0

C
C A S S I G N  T H E  R A T E  T Y P E
C

W R I T E  ( 5 , ^ 5 0 )
5 5 0  F O R M A T  ( I H  , ' 1 = E S T I M A T E D  R A T E , 0 = T R U E " )

R E A D  ( 5 , 5 5 1 )  I S W I C H
5 5 1  F O R M A T  ( I I )
C
C A S S I G N  T H E  G A I N S
C
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ZROLL.FORTRAN Listing cont.
104 WRITE (5,532)
532 FORMAT (IH ,'ENTER K, DELTA K,FIXED PART')

READ (5,531 ) FIXKl , F IXK2 , FI XK3 , DELT A 1 , DEL T 4 2 , £i£ LT A3 , F IXK 
531 FORMAT (F ,F ,F ,F ,F ,F ,F )
C
C SET UP STORED VALUES, AND INSTALL 40M/S PARAMETERS
C

GNE=0.000731193 
A=0,979513 '
B=-0.940559 
GNR=0.4631608 
GNA=152.8 
XE l 1=0.030028 
XE1=0.030028 
XE21=0.505]747 
XE2=0.5051747

105 XS 1=0.0 
XS=0.0 
XS0=0.0 
XR1=0.0 
X R = 0 .0 
XA1=0,0 
XA=0.0
s v o = o . o
ER 1-1.0 ,
ER2=1.0 
ERROR =1 .0 
RATE ;:-0 . 0 
ACCEL ::=() V 0 
1=8 
J = 0

c
c START OF SIMULAI ION
C

DO 110 K = 1 '1280
IF(I.NE.8) GO TO 126
J = J+1

C
C EVALUATE SIGMA
C

IERR0R = 20̂ . 84: ERROR 
QERROR=IERRÜR/2048.0
ERATE=40.04(1.54QERRÜR-2.04ER1+0.54ER2>
IF (ISWICH.EO.O) ERATE=RATE
SIGMA ( J ) = S I G 2 :T A 0 C E L. T S 10 14 E R A T E + SIG 0 4 E R R 0 R
ER2=ER1
ER1=QERR0R

C
C THE SWITCHING LOGIC
C

IF ( ( SIGMA ('J ) :4ERR0R ) . GE . 0 . 0 ) GO TO 111 
GAIN1=FIXK1-DELTAl 
GO TO 112

111 GA IN 1=FIXK1 +DELTA 1
112 IF((SIGMA(J)4RATE).GE.0.0) GO 10 113

GAIN2=FIXK2-DELTA2
GO TO 114
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ZROLL.FORTRAN Listing cont.

1 1 3  G A I N 2  = F I X K 2  + DEI  T A 2
1 1 4  I F (  ( S I G M A  ( J ) * A C C E L )  . G E . 0 . 0 )  Gll 1 0  1 1 5  

G A I N 3 = F I X K 3 - D E L T A 3
GO TO 1 1 6

1 1 5  G A I N 3 = F I X K 3 f D E L T A 3
1 1 6  I F ( ( S I G M A ( J ) * E R R O R ) . G E . 0 . 0 )  GO TO 1 3 0  

G A I N S ( J ) = F I X K
GO TO 1 3 1

1 3 0  G A I N S ( J ) = - l . 0 4 F I X K
1 3 1  S V D E M  = G A I N l * E R R 0 R  + G A I N 2 * R A T E t G A I N 3 * A C C E L - (  G A I N S (  J )  

I F ( A B S ( S V B E M - S V C ) ♦ L T . D E A D ) S V D E M - S V O  
S V O = S V D E M

C
C T H E  NON L I N E A R  S E R V O  M O D E L
C
1 2 6  I F  ( A B S ( X S - X S O ) . L T . R A T L I M )  GO TO 1 2 7  

S I G N = 1 . 0
I F  ( ( X S - X S O ) .LT.0.0) S I G N  =  - 1 , 0  
XS  = X S 0 f  R A T'L I M 4 S I  G N

1 2 7  I F  ( A B S ( X S ) . G T . P O S L I M )  X S = P O S L I M $ X S / ( A B S ( X S > )
x so = xs

c
C T H E  STATE," E Q U A T I O N S
C

X S 1 = G N S * S V D E M - C * X S
XEl 1=GNE4(XS +BIST)fXEl 
XE21=XE1-B4XE2 
XR1=GNR*(XS + DI 3T ) -B4XR 
X A 1=0NAM(XS + D I S ) )-B4XA

C
C T H E  O U T P U T  E Q U A T I O N S
C

E R R 0 R = X E 1 f < A - B ) 4 X E 2  
R A T E = X R
A C C E L  = G N A 4 X S -  ( I . 0  + D ) * X A  
I F  ( I . N E . 8 )  GO TO 1 2 3  
S E R V O ( J ) = X S  
R O L L ( J ) = E R R O R  
R O L O O K  J ) = R A T E  
T I M E ( J ) = ( K / 3 2 0 , 0 ) - 0 . 0 0 3 1 2 5

1 2 8  X S = X S 1  
X E 1 = X E 1 1 
X E 2 - X E 2 1  
X R = X R 1  
X A = X A 1
j: = I  + .1.
IF(I.EQ,9) 1=1

1 1 0  C O N T I N U E
R O L L ( 1 6 0 ) ^ - 0 . 2  
R O L L ( 1 5 9 ) = 1 . 2
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c
c
c

1 1 7
5 7 0

5 3 0

540

lis

1 1  9  

1 2 0

124

1 2 5  

1 0 1

ZROLL.FORTRAN Listing cont.

O P T I O N  ME N U

CALL SETBAS
W R I T E  ( 5 70)
FORMAT (IH ,'0:M0-M1 1 :22M/S 2Î50M/S 31 ROLL 4 : SERVO") 
WRITE (5,580)
FORMAT (IH , '5:K,DELTA 6 1 SIGMA 7 : STOP S:SIGP^ANE 9:SAVE")
R E A D  (5 ,540 ) ‘ I  AM! !5
F O R M A T (11)
I F (IANS . EQ .0)G0 TO 100
I F ( I A N S .EQ. 1)60 TO 101
I F ( IANS .EC. 2 )  GO TO 102
I F ( I A N S .EQ. 3 ) GO TO 1 1 8
IF <IANS . E Q  . 4 )G0 10 1 2 4
IF(IANS . E Q . 5 )G0 ro 1 0 4
I F (  IANS . E Q . 6)00 ro 119
IF(IANS . E Q  . 7  )GU T O 121
IF(IANS . E Q . 8 )G0 TO 12 " )
IF(IANS . EQ . 9 )  GO TO i ̂ \ X
GO TO 1 2 1

1 2 1

CALL PLOT(TIME y R O L L ,160,1, , .TRUE. , .TRUE. , .FALSE. , 
"ROLL STEP RESPONSE 'TIME. SEC.1 ,
"OUTPUT. RAD.$")
GO TO 117'
CALL PLOT(TIME,SIGMA,160,1,,.TRUE.,.TRUE.;.FALSE.y 
"SIGMA $ ", "TIME SEC $" , "SIGMA $")
GO TO 117
CALL PLOT(TIME,GAI N S ,160,1 y ? .TRUE. , .TRUE, > • FALSE> ? 
"(RATE $","TIME SEC $ " , "RATE $ ' )
GO TO 117
CALL PLOT(TIME,SERVO,160,1,,.TRUE.,.TRUE.y .FALSE.y 
"SERVO DISPLACEMENT $","TIME SEC $","RAD 1";
GO TO 117 
CALL SAVE 
GO TO 117 
GNE=0.000220375 
A=0.9879341 
B=-0.967297 
GNR=0.1401864 
G N A - 4 5 .61 
X EI1=0.0164507 
XEl-XEl 1 
XE21=0.5030347 
XE2-XE21 
GO 103 
GNE = 0.0011 31.41 
A = 0 .9745825 
B="0.926614 
GHR = 0.7 1490.4 2 
GNA=237.6 '
X E l 1=0.03?1653 
XE1=XE11 
XE21=0.5064361 
XE2=XE21 
GO TO 105 
S TOP 
EM D
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APPENDIX G

ANALOGUE COMPUTER MODELLING OF THE AIRCRAFT TRANSFER FUNCTIONS.

The hybrid simulation results presented in Chapter 7 are for 
Stabileye Mk 1. This is now obsolete so the material given here 
will be for the later Mk 3 airframe. The calculations follow the 
method suggested in reference (Gl) . The A.T.F's for 50m/s will 
be used as an example, with the potentiometer settings for 
37.5m/s and 25m/s provided without their derivation.

G.l PITCH.

The aircraft transfer function in s, is

0 = -109.56(s + 5.173)
26e s(s + 10.827s + 162.83) 

Introducing the,dummy variable, z gives: 

-0 = 10.956s + 56.573 and z = 10.0
3 26e s + 10.827s + 162.83s

(Note, this is not the complex variable z, used in the 
sampled data analysis.)

Taking inverse transforms gives:

and
*z* + 10.82? "z + 162.83 z = 10.0 6e 
-0 = 10.956 z + 56.673 z

So the un-scaled flow diagram, drawn by composing the highest 
derivative is:

-Z
•e —
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The decomposed equations are:

1) -d (-Z) = 10.0 6e - 10.827 z - 162.83 z 

dt
2) -d (z) = - *z

3) -d (-z) = z 

dt
4) -(-G) = 10.956 z + 56.673 z

Physical scaling: The elevator is limited to +/- 15°, or
+/- 0.26 rad. The pitch attitude is limited to +/-8° , or 
+/- 0.1396 rad. The scaling is arranged so that the output 
from the model mimics that of the gyroscope, i.e. 16.67°= 5.0 V,
so 33.3° = 10.0 V (0.582 rad). Therefore the physical scaling
is chosen as: ,

6 e , 9 , z , z , *z*

0.3 0.582 0.01 0.02 0.1

Hence the scaled equations are:

1) -d (- *z) = 10.0 X  0.3 (6e ) - 10.827 x 0.1 ( z )

dt 0.1 0.1 0.3 0.1 0.1

-162.83 X 0.02 ( z )

0.1 0.02

2) -d ( z ) = -0.1 ( *z ) 3) -d (-Z ) = 0.02 ( z )

dt 0.02 0.02 0.1 dt 0.01 0.01 0.02

4) -( -8 ) = 10.966 X 0.02 ( z ) + 56.673 x 0.01 ( z ) 

0.582 0.582 0.02 0.582 0.01
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The machine equations are: (Note that the no. 10 outside the 
square parentheses inplies a "nose" gain of 10 on the integrator 
block.)

1) -d (-Z ) = 10 (0.30) 10 (6e) - 10 (0.108) 10 ( *z )

dt 0.1 ’ 0.3 0.1

-10 (0.326) 10 ( z )

0.02

2) -d ( z ) = -(0.50) 10 ( *z) 3) -d (-z ) = (0.20) 10 ( z )

dt 0.02 0.1 dt 0.01 0.02

4) -( -e ) = (0.376) ( z ) + (0.974) ( z )

0.582 0.02 0.01

The machine diagram is :

0.3
0.108
0.326
0.5
0.2
0.376
0.974

0.3
0.812(1)
0.183
0.5
0.2
0.212
0.406

0-

25m/sThe coefficients are: 50m/s 37.5m/s
0.3
0.541(1)
0.145
0.5
0.2
0.094
0.122
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G.2 ROLL.

The aircraft transfer function in s, is; 

Çf = -237.6

6a s(s +24.39)

Physical scaling: The aileron is limited to +/- 10®, or +/- 
0.1745 rad. The gyroscope produces +/- 5.0 V = +/- 80®, so 
+/- 10.0 V = +/- 160®, or +/- 2.79 rad. Therefore the physical 
scaling is chosen as:

P , 6a , z , z 

2.79 0.2 0.1 0.2

By the same process as for the pitch transfer functions, 
the machine diagram can be derived as :

110
—

The coefficients are 
a 
b 
c

< b )V 10r lU

50m/s
0.244
0.2
0.852

< £ >

37.5m/s 
0.182 
0.2 
0.476

25m/s
0.122
0.2
0.209
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