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ABSTRACT

Prediction of the atomic geometry of metal surfaces demands a
detailed knowledge of their electronic structure. In this thesis we
have used an ab initio tight binding method to perform calculations on
a variety of materials in which d'électrons make an important contrib-
ution to the bonding. The non-hermitian formulation which we use is
directly based on the local electronic structure concept in which an
atom sees the solid around it only as a perturbation to its free state.
Calculation of bulk and surface states of W, Mo, Cu, Ag, P4, TiN, ZrN,
TiC and ZrC using this method gives results which are in reasonable
agreement with published experimental work. In order to carry out tue
total energy calculations needed to predict displacements of surface
atems an empirical repulsive interaction must be added to the energy
of the one-electron states. The parameters of tnis interaction are
- obtained by constraining the calculated total energy to reproduce the
lattice constant and bulk modulus of the infinite solid correctly.

The relaxations for W and Mo surfaces which this method predicts are
comparable wita those observed experimentally. This same parametrisation
indicates that the well known reconstructions of the W and MoibOl}

surfaces do not lead to a reduction in total energy.



ACKNCOWLEDGEMENT S

It is difficult in writing a thesis to leave any personal mark
anywhere but on the acknowledgements page. And when writing this page
it seems difficult not to be either too gushing or too restrained.
Many people and institutions ( some unknowingly ) have contributed
something to my stay in Bath. I have wriﬁten a list of them below ( it
is of course incomplete ). Their contributions vary in scale and in
sort but all have been important in some way. The order is random
( computer generated! ) save only that I have put my supervisor first
because his has been the greatest contribution to the visible product
of three years. To them all ( and many more unmentioned ) go my

unreserved thanks,

David Bullett, Philip Stone, Aﬁne Dyet, University of Bath Research
Fund, Anne-Marie White, Adrian Cole, British Rail, J. Sainsbury plc,
Steven Hull, Gerald Witchlow, Alan Dunk, Mark Tooley, National
Westminster Bank plc, Sean Williamson, Deborah Harris, Lorna Affleck,
my parents and brotuers, Jennifer Griffin, Robert Draper, Averil

Bleasdale, Sara Horrel, Martin Bathe, Bristol Omnibus Company.

I would also like to thank my new friends and colleagues without
whose encouragement and patience this thesis would never have been
finished.

leicester, January 1984



"You can always count on a murderer for a fancy prose style"

Vladimir Nabokov, Lolita.



CONTENTS



1. IN'I‘RODUCTIGN................;...................................1
2. AB INTTIO LINEAR COMBINATIONS OF ATOMIC ORBITALSeeceeescccsssssed
2.1 IntroductioNssesessessosccsesssassscscsssssasscsscssssncssd

2.2 Local Zlectronic StrUCtUTCecceescescocsccccescscosannssensl

2.3 Tight Binding MetNOdS.eeeeeeeseccecscscscsssesssscasasceesd

2.4 Adams-Gilbert-Anderson Localised Orbital TheOr¥eeceeceoesslO
244.] HisStOTYeeesososasesossccccsssssasssasssscessssseesll

2.4.2 Localised OrbitalS.ceeecocsesosoveoscesssoscacscaell

2.4.3 Non-Hermitian PropertieS.eeccesecsccccessssssseesell

2.4.4 Non-Hermitian Secular EquatiONeeeecscecesoscsscssesld

2.5 CalculationSeeesesesesccccssscccssssosesssssscscnsossscseld
2.5.1 Non-Hermitian MatTiX Deeeceseecccscccsscsssasoceseld

2.5.2 Two Centre IntegralSececeecesscscesssccscnsssssnsel?

2.5.3 Calculation of Two Centre IntegralSeceececsessesseld

2.5.4 Solution of the Secular EquatioN.eececececsscscessel?

2.6 Summary................;................................26

3. ELECTRON STATES AT SCLID 510)383:103 01 T R~ 4
3.1 IntroducCtioNeeececseseessvesessarecsccccosssnscsscccnnsaselB
3.1,1 Definitions and General PropertieSeceieccececscssscseld

3.1.2 Surface ConventionS.eeeeeeesescssccsvesssoscscecssil

3,2 SUrface StTUCLUTC.eeeeccvrecsscosssssssossssssncsossscsnssil
3.2.1 Two Dimensional Crystallograpiyeeessscsessesssssssrl

3.2+s1.1 The Five NetSeeseoesssccssccesscccscssccsacsil

3+42.1.2 Reciprocal Nets and Brillouin ZoneS...eeese32

3,2.,1.3 Point and Space GroUDPSescescscscsscoscsesseld

3.2.2 Notation for Surface StructureS..cececcscsseccesees’’?

3.2.2.1 Matrix Notation..;.........................37

3.2.2.2 Wood's NotatioNeseeseeeesssessvsnvcccocoaeell

3,3 Electron States at SUrfacCeSeecececcecoscsscsssscesoasssonssld

30301 Sllrface Potentialnnoouctloolonalo'ta00-0-0000.000039



3.3.2 Surface States and ResSonanCeS.sesccecssssscsesssssedl
3.3.2.1 Surface Local Density of StateS..eececcesssed0
3.3.2;2 Shockley StateSeescesceesescesccrcsccssscased?
303¢2.3 Tamm StateSeeeseeesascsssssscsssccassnnsassedl
3.3.2.4 General Existence Criteria..icessececcscesesedd

3.3.3 Calculation of Surface Electronic Structur€.ececses.4d

3.4 Important Experimental MetNOdS..ececeesccccsccoscaceacesosedbd
3.4.1 Low Energy Electron DiffTactioNeceeeecssesscseesessd8

3.4.2 Angle Resolved Photoelectron SpectroSCOpyeecceceecess.50

3D SUMMAT Y e eeosossssasecsosessessossssassosassssassssscscsssasedl

4, TYPICAL d-BAND MATERTALS AND THEIR SURFACES...eceveccsossscanesadd
4.1 General IntroduCtioN.ccececececccscecccsssccsscssccsccsssedd

4.2 Tungsten and MolybdenuUMeseessecssssesscsssssssssscscacocsedd

4.2.1 Electronic Structure of W and MOsessecsoesossoasesesdbd

4.,2.2 ﬁow Index Surfaces of Tungsten and Molybdenum......62
4.2.2.1 {001] SUTFACES.eereeercreasasnoscsossnoansssbl
4.2.2.2 {110] SUTFaCES.veeeeeeruerersencscnnraeensss80
4.2.2.3 {111] SUTFACES.vuerrnrnrrrenenesesesnnnnessa82

4,2.3 DiSCUSSiONetesssssrasssorsossssasasccscssssassssasedd

4.3 Cu, Pd and Ag: {001} Surfaces and OVETlayerS...eeesesosss.86

4.3,1 Bulk MaterialSeeeeessssscsascosasecsssescsssncssseeBbd

4.3%.2 Monolayers and Adsorbed MonolayerS.eeeessescesessss88

4.3.3 Summary........................;...................97

4.4 TiN, TiC, ZrN, 2rC - Refractory MaterialS.eeeececesscesess97

4.4.1 Bulk MaterialS.seeessescessssacscescssscescssvsseseed8

4.4.2 {0015 SUTLACES.euraeearennsercesnansseosnocesesssssIB

4.5 OVEIVieW.eesessoessssoasssesrssesssssscssssscvscssscseseeelOd
5. TCTAL ENERGY IN MATERIALS WITY d ELECTRONS.eseevesssnssssssessssl0S

501 IntroduCtion..ootc00.000.'OOIlolu-ollo.‘oootooooooc..oo..los

5.2 Partition and Volume Dependence of Conesive FEnergy.......109



5.3 Calculation of Repulsive ENergYecesssscocessscscssssssssaslll
504 RESULES e ensaensenseeensessennseanesssassnsasasesssnssnnsall3
5¢5 DiSCUSSiONetereaceseesessosssssossscosssorsssosscsscanesceell?
6. SURFACE GZCMETRY CALCULATIONS..iceeescsesascsccesacsonsnassesssl0
6.1 IntroduUCtion.sesseassscssessssssssscsssescssossasessssssslll
6.2 Relaxations of W and MO SUrfaceS..eeccescacsvsvsnssosesssl2l
6.3 W and Mo(001l) ReconstructioNeceecseesessssscccsscsseasesssal?
6.4 Summary and Discussion.........;.........................133
7. SUMMARY AND CONCLUSION.ueereooveascoascasoasseasoscssasosasesesl3b
APPENDIX A. LOW¥ INDEX FCC AND BCC SURFACES.cesessccssscesscesssessldl
APPENDIX B. CCMPUTER PROGRAMS...eeeeeeecscccscsccnasansssacoseesssld?
Bel INtroduCtioNesecsscesescccccecscssossscoccscasacnsosnsesecldB
B.2 Matrix Elements ProOgraMecececcececscsecccccssccscaccccesnssesasldB
B.3 Secular Fquation PrograM.ccccieecccescsccscascscenossssseeeld?

mTCES.....onuoo0.000.0'.00.'.0.00'ooooooooo".o.o'o.o.ot.0000156



CHAPTER ONE

INTRODUCTICN
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The structures and properties associated with the surfaces of
materials are currently the subject of a great deal of interest. Even-

tually it should be possible to understand all the interactions involved
in such complicated surface processes as corrosion and catalysis,
though this is still far off. For the present muca progress can be
made by studying simple, regular systems: clean perfect surfaces or
those with simple structural changes or adsorbates., When these less
complicated systems are well understood then successful investigation
of more intricate processes will be an easier task. The work presented
in this thesis is intended as a contribution to the effort of clar-
ifying the electronic and atomic structure of clean surfaces.

- The atoms at a surface are in an environment very different from
that experienced by atoms in an idealised infinite periodic solid.
We can expect tnerefore that the surface properties will differ from
those of the bulk. We can expect to find, for example, new electron
states with greater amplitude near the surface - these are called
surface states and resonances., It is also poséible that the structure
of the infinite periodic bulk will not continue to the surface layer
but that instead there will be changes in the positions of the atoms
- relaxations and reconstructions, Both of these kinds of surface
specific phenomena are described in this thesis. We perform calcul=-
ations to find surface states on various materials and we attempt to
develop a scheme for calculating the total energy of interaction
between atoms in a simple form. This scheme will be used to attéﬁpt
to predict relaxations and reconstructions.

By their very nature total energy calculations involve a great
deal of computation. It is essential then that any procedure for prod-
ucing them should be both fast and efficient. It is important of
course not to sacrifice too much accuracy for tne sake of speed but

to arrive at a sensible compromise. In chapter two we present a method
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which fulfils these conditions. This method is a tight binding scheme
based on a particular formation of the local electronic structure
concept which is also described in that chapter. The computer programs
neede to set up the non-hermitian matrix involved, and to find its
eigenvalues and eigenvectors, are described in detail in appendix B.

Some general information about surfaces is given in chapter three.
This material is essential for a proper understandimg of the results
which are to be presented in the following chapter. We begin with a
description of the crystallography of two dimensional systems and of
the nomenclature which is used to describe the:istructures of clean and
adsorbate covered surfaces. ( Diagrams showing the relationships bet-
ween the surface and bulk Brillouin zones of the structures considered
in this work can be found in appendix A. ) The second part of chapter
three is concerned with conditions at tne surface of a metal, in part-
icular its effect on the potential, and how these lead to the form-
ation of the various types of surface states whiéh are found. The
chapter ends with a discussion of two experimental methods which
proQide many results described in this thesis - low energy electron
diffraction ( LEED ) and angle resolved photoelectron spectroscopy.

In chapter four we establish confidence in our method of calcul-
ation by investigating the surface electronic structure of a variety
of d-band materials and comparing the results with experiments. Our
tight-binding method, though more sophisticated than many, is still
restricted by the approximations which must be made in order not to
throw away the advantage of simplicity; the use of atomic orbitals as
the best local orbitals is the most important of these approximations,
This means that it works best for materials in which the free electron
like states are relatively unimportant. All the calculations in
chapter four have been performed for materials in which the tightly

bound d-electrons give the greatest contribution to the bonding:
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transition metals and their compounds, and, to a lesser extent, the
noble metals. The intention for most of these materials has not been
to carry out exhaustive investigations but trather to establish trends
and to point out interesting areas for further investigation. The {OOi}
surfaces of W and Mo are covered in much greater detail because it is
on these surfaces that we will work in later chapters.

In order that we can work on the changes of total energy with
structure which are the aim of the thesis we must first have a scheme
for representing those parts of the interaction between nuclei and
electrons which are not included correctly in the band structure one-
electron energies. The method which we use, which is similar to a
method which has previously had some success with semiconductor surf-
aces, is described in chapter five. In that chapter we also show how
the parameters of the necessary empirical interaction are obtained
from established properties of W and Mo.

In chapter six we bring together the sufface states calculations
of chapter four and the energy calculations of chapter five to calc-
ulate the energy changes involved in alterations of surface geometry.
Predictions are made for the relaxations of the {001, {110 and {113
surfaces of W and Mo and the results are compared with experiment. We
attempt there also to calculate the'energy changes involved in two
types of reconstruction of the W(001) surface which have been observed.
The results are summarised and their importance and relevance are ass-—

essed in the final chapter.



CHAPTER TWO

AB INITIO LINEAR COMBINATICNS OF ATOMIC ORBITALS




2.1 INTRODUCTION

bomputational work in solid state physics yields numerical values
for many of tae properties of a systeiu. Band structures, densities of
states and predictions of optical, elastic, electric and magnetic be-
haviour are typical of the sort of information expected from calc-
ulations. Experiment is the final arbiter in physics and so the basic
principles of any theory nust be tested against observation and found
to be as nearly correct as it is possible to measure. But when the
basic principles are accepted and most of the workers in the fiéld are
engaged in sorting out the details - Kuhn's "normal science" ( Kuhn,
1970 ) - the situation may change significantly.

The basic principles of solid state physics are the laws of
quantuﬁ mechanics. To apply these fundamental principles completely
and generally to anytning as complicated as a solid state system is
however almost impossible. Any workable theory or calculation scheme
includes approximations and the amount and style of approximation is
what distinguishes one method from another. In such a situation the
interaction between "tueory" ( or calculation ) and experiment is much
more complicated than one being simply verified or falsified by the
other. Accurate, inaccurate and sometimes even incorrect theories can
all contribute to a growing understanding of a phenomenon or of the
properties of a system; The ideas presented or uncovered by an in-
accurate calculation may be easier to grasp or more directly related
to experimental results. More significantly the results of such
methods may be more rapidly and easily obtained. The utility of a
theoretical method then is not directly related to its paucity of
approximations.

Computational simplicity and hence ease of application to new
systems are important features of the method of calculation used in

this work. The theoretical justification of the method is described
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in detail in this chapter. The next section discusses the concept of
local electronic structure and how this makes possible considerable

simplifications. In section 2.3 we move on to an outline of standard
tight-binding methods. The Adams - Gilbert - Anderson justification

for using a local orbital basis for crystal calculations is the sub-
ject of section 2.4. We conclude in 2.5 with a detailed exposition of

tae mechanics of the calculations described in the rest of this thesis.,

2.2 LOCAL ELECTRONIC STRUCTURE

In the last few years solid state physicists have become in-
creasingly interested in situations in which the textbook three dim-
ensional infinite periodicity is either unimportant or non-existent .
( Heine, 1980 ). Surfaces, which are the main concern of this thesis,
are typical of such systems; others include point defects and impur-
ities and situations in which local properties such as the density of
states are more important than crystal wavefunctions. In such cir-
cumstances it is no surprise that the concept of local electronic
structure has come to the fore.

One aspect of tne local structure concept which has been a useful
tool for many yéars is the chemical bond. Bonds which connect two
atoms are considered to change very little on moveing the pair from
one situation to another. Any small changes which do occur can often
be considered as correction to an idealised bond: chemical bonds
have the property of transferability. In metals the situation is
slightly different; bonds as such do not exist, the electrons are de-
localised throughout tne whole material., At first sight it appears
local concepts might have to be abandoned in favour of calculations
of crystal wavefunctions. Friedel ( 1954 ) pointed out however that
the local density of states, and indeed the whole of the Green fun-

ction ( on whica it depends directly ), is almost independent of the
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boundary conditions which are applied to it.

In fact the Green function is completely unaffected except for
the arts within "a few" electron wavelengths of the imposed boundary.
This wavelength is always of tne order of tne size of an atom and
tnerefore the whole Green function may be perturbed. Nevertheless the
existence of the invariance taeorem means that it is a perturbation;
the atowic Green function ( and all the properties derived from it )
can always be taken as a zeroth order approximation to the Green
function within a system and the effects of the surrounding as
calculable corrections ( Heine, 1980 ).

This near invariance of the Green function and other local prop-
erties has been used as a starting point for several important metnods
in solid state computatioﬁ. The matching Green function method of
Inglesfield ( 1978a, b ) uses the invariaﬁce in the most explicit way
and it is also the basic ingredient of the recursion method ( Haydock,
1980; Kelly, 1980 ). Most importantly for this work the invariance
theorem gives credence to the basic assumptions of tight~binding
methods. If the formation of a solid only perturbs the properties of
a free atom then some properties of the free atom ( the valence
orbitals for examplie ) should be able to form a good description of
the properties of the solid, provided we perturb taem properly. At the
very least some theoretical justification of tight-binding in local
structure terms ought to be possible., In the next section we give a
brief outline of standard tight-binding metaods before going on to

consider this theoretical justification in section 2.4.

2.3 TIGIT-BINDING METHODS

In tight-binding metnods a solid is considered to be a collection -
of atoms in which the overlap of the atomic wave functions is suff-

icient to require corrections to the free atom picture but not so
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much as to make and atomic description entirely wrong ( Ashcroft and
Mermin, 1976 ). Previously there was scant justification for such
methods ( Ziman, 1972 ) but the invariance theorem described in the
last section implies that such an atomic description must be possible
provided we introduce the perturbations in the correct manner. The
Adams - Gilbert - Anderson justification will be described in the next
section. Here we confine ourselves to a brief outline of the prin-
ciples of standard tighb-~binding metaods.

The basic principle of the methods is that the wavefunctions of
a crystal can be represented as a Bloch sum of a combination of atomic
orbitals ( Ziman, 1972 ): RN

QV:( = Z ech"’B; C‘P;(E‘E) (2.1)
The wavefunctions are l%ﬁéiled by i, 1 is a lattice site, j labels
the atomic orbitals ; at site 1 ( we assume there is only one atom
per unit cell, the extension to more atows is simple ), the ( k-
dependent )fg; are expansion coefficients. In many textbooks and
papers the name "tight-binding" is used only for the case where j=1
for all 1l; "linear combinations of atomic orbitals ( LCAO )" is then
used for the general case ( e.g. Ziman, 1972 ). We do not make this
distinction here and the terms are used interchangeabl&.

The next step is to construct the matrix elements of the hamil-
tonian in this representation. The Schrodinger equation for the
system then becomes equivalent to a set ?f linear equations:

S (Hgl® - €6)5,)8; =0 (2.2)
so that the eigenvalues Ei are given by the secular equation:
det[H-eS|=0 | (2.3)
S is the overlap matrix of the functions CP; and is a unit matrix for
atomic orbitals. The properties of tne Bloch functions reduce the
dimensions of H to the number of atoms per unit cell but introduce

the k dependence of H and so of E° . ( Ashcroft and Mermin, 1976;
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Bullett, 1980; Ziman, 1972 ). The many variations of tight-binding are
concerned with different ways of obtaining the matrix elements of the
hamiltonian. The methods can be divided into tnree classes according
to how tais is done.

The first class of methods includes those, such as extended Huckel
and the various forms of neglect of differential overlap ( Bullett,
1980 ), in which the matrix elements are concocted from various comb-
inations of ionisation potentials, electron affinities and atomic
numbers, Despite their apparent primitiveness these methods are fairly
successful and have produced useful results.

Empirical schemes form the second important class. In these
methods the matrix elementé are treated as adjustable parameters and
are altered to fit energy bands calculated at high symmetry points by
more accurate methods.( or measured experimentally ). These methods
have also had reasonable success and a more detailed description can
be found in Bullett ( 19680 ).

The method which has been used in this work falls into a third
category -~ ab initio metnods. In tnese the matrix elements are calc-
ulated directly by numerical integration. Before this can be done
of course there must be some prescription for the orbital basis set
and for the potential of the crystal. In the next section we will see
how the Adams - Gilbert - Anderson tueory of ldcalised orbital methods
allows the choice of atomic orbitals for the basis set and of a

superposition of atomic potentials for the crystal potential.

2.4 ADAMS - GILBERT - ANDERSON LOCALISED ORBITAL TIECRY

2.4.1 HISTORY. The original motivation of the theory was to find a

local orbital formulation which was equivalent to the Hartree-Fock
method for a given system ( Adams, 1961 ). Since tnen tne theory has

developed to show not only how to do this but also how to define the
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best possible local orbital basis for any particular situation ( Adams
1962 ). Further developments ( Gilbert, 1964; Anderson, 1968, 1969 )
brought out a formal equivalence to the metal pseudopotential method
used extensively for nearly-free-electron metals ( Austin et al, 1962;
Weeks et al, 1973 ).

The pseudopotential form makes it obvious that the "best set" of
localised ortitals need not be very different frow atomic orbitals
- the effect of tne neighbouring atomic potentials can be "projected
out”", And it is here that the local electronic structure comes to
prominence again; the effect of the environment is small and can be
treated as a correction to the free atom situation. In the more det-
ailed description of the theory presented in the nex? few.subsections
we follow the treatments of Weeks et al ( 1973 ) and Bullett ( 1980 ).

2.4.,2 LOCALISED ORBITALS. We wish to represent the molecular eigen-

functions,‘\+{>;of a systew as a linear combination of local orbitals
IC¥L:>. Purthermore we want the expansion to be exact and the ‘<¥%:> to

be as much as possible localised at the atoms. The projection operator

P = i% \‘K><\« ‘ (2.4)

in which N is the number of orbitals in the system. Obviously it will

of the subspace of lq/i>is:

be possible for the expansion of ‘LP?>111‘(¥%:7to be exact only if the

‘¢,> lie in the same subspace, this gives the first condition:
lCPQ = ’P"ﬁ> (2.5)

Two important properties of'projection operators ( Messiah, 1961 ),

namely:

Pz =P (2.6)

[p, H] =0 (2.7)

enable (2.5) to be written as:

H “P.,& - PHP ""Po(> = O (2.8)

and:
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The second condition, that the\(R:yare as atomic orbital like as
possible, will be satisfied if they obey:

Hal('Pu> = &y IC.P“> . (2.9)
as well as possible, where}{ais the hamiltonian of the neutral free
atom., Since the orbitals must also satisfy (2.5) the condition con-
straining them becomes:

’PHGPI"P(D = g“lcﬁb (2.10)

The atomic orbitals ,q>:>sa.tisfy the equation:

H, l‘P:> = £ | LP:> _ (2.11)
for each value of & there are N solutions ‘CP;>to equation (2,10)
but only the lowest energy one Icp:j>, which we have written.(<¥1:> is
well localised and corresponds to a perturbed [q):>, with EK corres-
ponding to a perturbed E: . This point will be important later when
we consider the elements of the secular equation.

Adding equationé (2.8) and (2.10) we arrive at the Adams ( 1961,
1962 ) equafion for the localised orbitals:

HIOY = P (H-H)P |9y = €|P (2.12)
Defining the operator(AoFE}i"}tfdhich represents the effect the rest
of the system has on the atom at the site a, we can write (2.12) as:

HalcPD‘> B [u“ - PH“P] ‘('Po:} = Ex ‘ CP“> (2.13)
The residual interaction, Ua- Pqumy be considerably smaller than
(la , Small enough to be treated as a standard perturbation tofiaand

0
to allow chlculation of the ‘@u> from the lCP¢>by an iterative
procedure. In order to do this it is necessary to use the fact that

the local orbitals span the band subspace to write:

P=Z ¥ = 2SI, ) <R e
in which: Su{.% = <('P“ l QPB> (2.15)

2.4.3 NON = HERMITIAN PRCPERTIZS. Equation (2.5) means that the

Adams equation, (2.13), can also be written in the non-hermitian form
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Hq l(Po(>+ [ua— Pu;} ('Pu> = ex \CPK> (2.16)

which can be seen to be formally analogous to the pseudopotential

equation of Austin et al ( 1962 ):
[T +V - P,;V]\?(> = ¢ ‘X> (2.17)
The pseudopotential method assumes that V-" P,_V is small so that [x>
are very nearly the plane wave eigenfunctions of the kinetic energy
operator T. In the present theory we assume that Ua - Pua is small
so that the '(Pu> a;r:e very nearly the atomic orbital eigenfunctions
of Ha . There is one important difference. In the pseudopotential
equation Pc. is a projection operator made up from core orbitals which
are assumed to be known. The projection operator P in (2,16) is made
up from the lcp“> , tae orbitals we nope to calculate. For tonis
reason the theory has been called "self-consistentl pseudopotential®
( Weeks et al, 1973 ).
A detailed analysis of the differences between (2.16) and (2.13)
( Weeks et al, 1973 ) turns up several useful facts:
(i) bota equations have exactly the same eigenvalues.
(ii) the eigenfunctions <(Pul of (2.13) are simply the
ad joints of [CP“>.
(iii) the eigenfunctions <CP“| of (2.16) are not simply the
ad joints of ‘CR but have "out of band functions" mixed in
in such a way as to make them even more localised on the
atom than the |CP.> . !
These three facts lead t6 an important computational advantage to
using the non-hermitian equation (2.16). Boys ( 1969 ) has shown plaus-
ibly that the error in the eigenvalues of the molecular orbitals will
be of the orderse, if 5 is the error in left eigenfunctiéns, and €
that of the right. Both hermitian and non-hermitian equations will
give the same eigenvalues ( fact (i) ). The hermitian equation will

2
have O=€ and hence error (€ The non-nerwitian equation will have
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6 <€ and hence will have smaller error (9(56). We expect 5 to be
less than € because the left.eigeni‘unctionso are more localised on the
atoms than the right ( fact (iii) ). The calculation of the molecular
orbitals, ‘w¢> is the subject.of the next section.

2.4.4 NON-HERMITIAN SECULAR EQUATION. We have constructed the best

localised orbitals ‘CPOD go that they lie in the subspace of the mol-

ecular orbitals ‘Wc.> « It must be possible tunen to write:

N{> = Z Coci 'QP‘,D (2.18)

Obviously also the molecular orbitals satisfy:

qu’;> = Ei ‘\H> (2.19)
in which H is the total hamiltonian of the crystal. If we use (2.18)
in (2.19) and tnen premultiply by <Cpﬁ| the result can be written as

the matrix equation:

HC. = ESG (2.20)

(HMB) = <€P°JH‘(P§> (2.21)
(Suﬁ> = <P |9 (2.22)

and L is a column vector of the Cxi . Using H‘:'Ha'l‘ Ua we can write

[H - puo.] icpx> = €y l (P"> (2.23)
H 9 = €. l‘P«> + Pua‘LPx> , | (2.24)

which we write as:

H|PD = Z P> Dex (2.25)

the exact form of the elementsDﬁu depends upon the form of P and we

in which:

(2.16) as:

or

defer discussion of this until the next section. Premultiplying (2.25)
by<cP I we get another matrix eqaat:.on

H=25D or V- (2.26)
But multiplying (2.20) by

SHG =

gives:

s
E. S7SC: (2.27)
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DL =E G

80 the energies E; and expansion coefficients C«L can be found by

which is:

(2.28)

solving the secular equation: .

[D -~ IE;] G=0 (2.29)
The matrix D need not be hermitian, in fact it can be shown from
(2.26) that it will be hermitian only if H and S commute, that is only
if all the atoms have the same environment. The explicit form of D

and the mechanics of solving (2.29) are the subject of section 2.5,

2.5 CALCULATIONS

We have developed the general tneory to the point of producing a
secular equation for the molecular eigenvalues and their expansion in
the set of linear orbitals ( equation 2.29 ). In tnis section we see
how a practical computation scheme can be devised.

2.5.1 NON~-HERMITIAN MATRIX D, The Adams equation shows that most

of the perturbing potential can be screened out and that the best loc-
alised orbitals are very similar to the atomic orbitals. The first
simplifying approximation is to use atomic orbitals as the solutions
to this equation but continue to use its form %o assist in constructing
the secular equation. This effectively means that we use the Adans -
Gilbert - Anderson theory of the last section only as a justification
for atomic orbitals tight-binding calculations. If uQ—Puq is small
then such a calculation ought to work well, if it is not then it will
not, though local orbitals calculated from the Adams equation would
be more successful,

Atomic orbitals used in tais thesis were produced by a standard
non-relativistic Herman and Skillman ( 1963 ) type program. Values of
the radial part of each orbital are output in tabular form at a grid

of radial distances. The program also produces details of the self-
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consistent coulomb and exchange potentials. The non local Hartree-=Fock
exchange potential is represented in the now commonplace Slater -local

density approximation ( Slater, 1965 ) as:

ry = —3xe* | 3p(5)
Vexc\-\( ) 81T (2.30)

in which P(C) is the total density of electrons and (X is a parameter

Iz

(a,g <<y, In all atomic calculations used in tais work X was set
to 0.7. More information about this program is given in appendix B.
Once the local orbitals are defined the form of the matrix elem=-
ents is fairly straightforward. In the description which follows we
confine ourselves to a single molecule, the extension to a periodic
structure is deferred to section 2.5.4. Atomic sites are labelled by
small roman letters and orbitals by small greek letters. With this
new notation (2.24) can be written: '
Hiax) = €., 12> + Plq|ax (2.31)
and the matrix required is D, such that:
Hlawy = Z Digaw IPB> (2.32)
The summation in (2.31) is over all orbitals in the basis set and the
nunber of these orbitals is the dimension of D.
The projection operator for the complete set of ( non-orthogonal ) -
orbitals is ( Lowdin, 1968; Bullett, 1980 )s

P= ZZZZ lcyy Sc 4y <a8| (2.33)

in which ¢ and d a:ce su.mmed over all sites and Y and S over all orb-
}

itals at ¢ and d respectively. ua in (2.31)) represents the perturb-

ation introduced at site a by all the otner atoms. This perturbation

is divided up into contributions from each site €F (O and written:

U = = R (2.34)

e¥a
and (2.3@l) becomes:

Hlaw) = € lay + ZTZTE [ex) &, 45 818 [0

< d ¥ Seda (2.35)
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or: -1 P > \C >
- +35 (23 G 4 aslReland)lcy
HIGK> Ean ‘M‘> ;% eta d & <3,4% (2.36)
- [}
renaming ¢ as b and ¥ asB this can be written in the form (2.3%) if:
-1
= aS| P | ax
DbB,oux €ax SbB,ax ':2&:%26 Sbﬂ,d8< (Rl (2sm
The summation contains terms in which a, b, d, e are all different.
We make the common assumption that three centre integrals are much
smaller than two centre ones ( Slater and Koster, 1954 ) and impose
the restrictions:

b=aore (2. 36a)

d=q ore (2.38b)
This means that the system can be treated two atoms at a time, like a
set of diatomic molecules ( Bullett, 1980 ), and also that a partic-
ularly useful simplification ( devised by Slater and Koster, ( 1954 ) )
can be introduced.

2.5.2 TWO CENTRE INTEGRALS, The spherical harmonic parts of atomic

orbitals can be written in terms of x, y and z. A table of these fun-
ctions for s, p and d orbitals, together with illustrations of the d
orbitals appears in figure 2.1. As we have already mentioned if the
crystal potential is the sum of spherical potentials centred at the
atomic sites and if only two-centre integrals are to be considered
then the interaction between two atoms will be the same as if they

formed a diatomic molecule., All the matrix elements will have the

Evn = {BERIVIRL-R)Y

in which R; ’BJ are atom sites;ce‘ ,(Pmorbitals at those sites and

form: -

V is a potential.

Any atomic orbital in this diatomic molecule can be quantised
with respect to the vectorB{'B.‘, joining the two atoms. Thus any p
function can be expressed as a sum of p@ and pT functions, any d fun-

ction as a sum of d¢, 4T and 48 parts. o, T and & refer to thne



- 18 -

|s) =(1/4m)!?

|py)=(3/4m)" 2 x/r
[p2)=(3/4m) 2 y/r
|ps)=(3/4m)"/2z/r

|d1) = (15/4m)"3(x? — y2)/2r2
|d2) =(15/4m)" 2 xy/r?
|ds) =(15/4n)" 2 xz/r?
|de)=(15/4m)" 2 yz/r?
|ds) = (15/4m)12(322 —r?)2)/3 r?

ol
X/Q

popccn

d, d,

FIGURE 2.1. Table of x, y and z dependent compinations of spherical

harmonics, and illustrations of some of the funcrions.
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component of angular momentum with respect to the axis. Non-vanishing
matrix elements will occur only between components of the same type
(6, Tor &) on the two atoms ( Slater and Koster, 1954 ). These
simple integrals will vary only witn the distance between the two
atoms. They can be named (ssg), (pso), (sps) etc. and there are four-
teen of them if s, p and d orbitals are considered. With a knowledge
of the radial wavefunction.and the simple forms-of the spherical
harmonics these functions can easily be calculated for any potential,
How this is done for the perturbing potential used nere is the subject
of the next section.

The total interaction integrals between orbitals at the two sites
can be obtained from the two centre functions and 1, m, n the dir-
ection cosines of the vectorng‘Ezi. A table of some of the express-
icns needed is given in figure 2.2, Cyclic permutation of x, y, 2 aﬁd
1, m, n gives the other expressions. An example appears in figure 2.3

which shows how the ( p,, d,,) integral can be decomposed into (pdc)

Y

and (pdW) parts. These would then be summed using the expression:

E (px, duy) = V3 Um (pda)+ m (1-3L) (pdm) (2.40)
Sharma ( 1979 ) has shown how the expressions in figure 2.2 can be
obtained by group theoretical methods and gives general expressions
for generating them.

2.95.3 CALCULATION QOF TWO CENTRE INTEGRALS. This section consists

of a brief description of the principles behind the operation of a
computer program which calculatesthe two centre functions (psg) etc.
in the perturbing potential of the neighbouring atom. A more detailed
description of the wecnanism of this program can be found in appendix
B.

As has already been mentioned the atomic orbitals used are prod-
uced by a Herman and Skillman program. The basis set consists of the

valence orbitals at eaca site, though the core orbitals are usually
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included at tnis stage ( see below ). The crystal potential used in
all calculations is made up from atomic potentials confined to Wigner
Seitz spheres centred at each site. The total perturbation ( from its
free atom condition ) that each atom feels can be divided up into a
sum of perturbations from neighbouring atoms. We have to deal with
two atoms - a free atom and a perturbing atom. The perturbing atom

is effectively confined to its Wigner-Seitz cell and within that cell

its contribution to the total perturbation, and hence the perturbing

= ve “Vq (2.41)

( For convenience the atoms have been labelled as in section 2.5.1 )

potential used here is:

The integration is performed simply by addition of small cubes,
The cube size varies, being smallest near the centre of the perturbing
atom e in order to take account of the rapid oscillations of the wave-
functions there. Each orbital is decomposed into its ¢, 1T and ® parts
and all the relevant integrations are carried out in this form. At
the same time the overlap matrix is calculated.

The final staze is premultiplication by the overlap inverse. It
is easier to visualise this process if we continue to label the orb-
itals as though the decomposition to @, T and ® psrts has not taken-
place. We recall equation (2 37):

Dbﬁ,am= eaquB ax T 222 e <°‘5\Pe‘a°‘> (2.37)

What this program calculates iss

S S, <dslR|a i)

bR,AS

(bﬁ, Pe,au) (2.43)

but for the separation into bond angular momenta. The two centre app-

which would be ca.lled

roximation imposes the restrictions that both b and d can be only a
or e, The overlap matrix consists taen of the valence orbitals at

these two sites, The core orbitals of e are temporarily included in
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the basis set in order to nelp project out the deep core potential of
the perturbing atom.

The final output of the program is a table of values of the fun-
ctions (pdo) etc., for various distances between the two atoms. The
two sets of functions - one set where both orbitals are on the per-
turbed atom, the other wnere one is on the perturbing - are kept sep-
arate. This makes easier the construction of the matrix D which is
the subject of the next section. Some of the second type of matrix
element and some of the overlap elements are shown as a function of
interatomic distance in figure 2.4,

2.5.4 SOLUTION OF THE SECULAR EQUATION, The form of D can be made

clear by considering a molecule of two atoms, a and b, each with one

orbital, X and ﬁ respectively. D would then be a 2X2 square matrix:

(%, %) (x,B)
B,x) (8B (2.44)

To form D we would proceed as follows:

(i) wa and eﬁﬁ would be put into the diagonals.

(ii) the distance‘lgb-iga| and direction cosines of'Egb ‘130

would be calculated.

(iii) values of (ps@) etc. for ‘Eb "Ea\ would be obtained by

interpolation from the tables produced by the method of ‘

section 2,5.3.

(iv) the interactions would be calculated using the relevant

expressions from the table in figure 2.2, including the

effects of the other atoms on (Xx) and (fB,B).

The extension of this wethod to a periodic solid is simple, the

molecule becomes a unit cell and each orbital in the basis is replaced

by a Bloch sum:

[qu> = 1> exp(i!s_._“) |aBn'°<> (2.45)
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The factor 1/N which tnen appears in the matrix elements disappears,
as usual, when one summation is removed by taking some Bn as a
centre, The number of unit cells overr wnich the summation needs to be
performed is siall because the two centre integrals fall off to zero
rapidly with increasing distance between the sites. The complex phase
factor exp(ik.R) makes the matrix D complex, non-hermitian and k -
dependent.
The secular equation is:

[P(’ﬁ -1E; (Ei} Gty =0 (2.46)
A standard library routine is used to solve this equation for part-
icular k values, this gives Ei and tne vectors (_:; ( made up of the

expansion coefficients of

W;> in the basis ). The matrix D is tran-
sposed and the system solved again in order to obtain the expansion
coefficients of the left eigenvectors.,
The left and rignt eigenveétors are related by:
L R
‘(P > = S lLy > (2.47)
3 - t
where S is the overlap matrix ( Bullett, 1980 ). Each can be expanded
in the basis:
R . L >
4 > = Z Q. [Dk> \k\/ > = 25 \0( (2.48)
¢ (R4 ) ¢ 1. §
-3 %

in which the sets aib( and bi

x are tne right and left eigenvectors

R
of (2.45). We wish to normalise the L /s

(= HIND = 23 dlop B> o
<XIB> = Sxp (2.50)
[ = S 14

this can be written as:

¥
| = % a;, b, (2.51)
and the weight of eigenvector N)‘> on orbitall D<> is equal to a:( b‘,u

This conclusion is based on two assumptions. The first ( which must
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be true ) is that all the Clau'k%u‘are real. The second is that the
electrons are distributed according to the "gross atomic population"”

. L 4
prescription of Mulliken ( 1955a, b ) - the overlap term,aa;“aip <B|D(>
between each pair of orbitals has its weight divided equally between
them. The final product of the secular equation program consists of

the eigenvalues and these "weignts™ of the eigenvectors.

2.6 SUMMARY

The use of simple computation schemes can produce very useful
results., The local electronic structure concept and the invariance
theorem point to the possibility of a simple theory justifying local
orbital calculations. This justification shows that a non-hermitian
matrix, which is equivalent to the hamiltonian, might be particularly
easy to set up. With atomic orbitals and two centre integrals this
matrix can be used to produce k-dependent energy eigenvalues (i.e.
energy bands ). It is also easy to see, from the eigenvectors, how
the electrons will be distributed among the orbitals. This means that
the densities of states and other properties of systems can easily be

calculated as we will demonstrate in later chapters.



CHAPTER THREE

ELECTRON STATES AT SOLID SURFACES
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3.1 INTRODUCTION

Several developments have contributed to the growing interest in
surfaces in the last few years. We have already mentioned in chépter
two the growth in tneoretical interest in local electronic structure
and in situations in wnich it is important. This desire for general
progress in theoretical understanding is intensified by the techno-
logical importance of surfaces. Many of the chemical properties of
materials, corrosion and catalysis are good examples, depend not only
on ihe properties of the periodic bulk but also on the atomic and
electronic structures of the surfaces. Finally the wish to investigate
surfaces has both caused and been strengthened by improvements in
experimental equipment. Harder vacuums, better materials for con-
struction and more sophisticated electronics for control and meas-
urement simplify the investigafion of surfaces or they make it poss-
ible to work on more and more complicated surface systems.

The surface properties which are of interest are the same ones
as are investigated in solids: chemical composition and atomic
arrangement, chemical, mechanical and electronic properties ( Pruttonm,
1975 ). The overall aim of surface science is a complete microscopic
undérstanding of all the properties and processes of surfaces. This
aim is limited of course by the impossibility of applying quantum
mechanics exactly to a large system ( see chapter two ). But this
limitation is still quite far off and at the moment most of the theo-
retical effort is still directed towards an understanding of the
electronic structure of clean surfaces and of simple systems of the
type described in chapter four. Before moving on to surface calc-
ulations we describe in the rest of this chapter some of the general
properties of surfaces and their nomenclature.

In the rest of this section we give definitions of some of the

terms used in surface physics., Section 3.2 is concerned with the
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crystallograpany of two dimensional and diperiodic structures. Surface
states and resonances are described in section 3.3. Many experimental
results will be quoted in the rest of this thesis and section 3.4
summarises the output of two of the most important typres: low energy
electron diffraction and angle resolved photoelectron spectroscopy.

r
3.1.1 DEFINITIONS AND GENERAL PROPERTIES. The two most impokant

terms that will be used are illustrated in figure 3.l. The substrate
or bulk material has three dimensional periodicity. The surface begins
when tais three dimensional periodicity ends. ( The definition of
surface is therefore experiment dependent - in reality of course no
material has any infinite periodicity ). If the surface atoms are not
disturbed frowm their bulk positions then we call the surface a bulk
exposed plane. In fact of course most surfaces can be expected to
change in some way because of the change in the environment of the
atoms. A movement of the entire surface plane of atoms in a direction
perpendicular to the surface is common and is called a reléxation.~
More complicated motions of the atoms at tue surface are called recon-
structions. Any layer involved in relaxations and reconstructions are
called the selvecige ( Wood, 1964 ).

Terraces of perfect surfaces are shown separated by steps in fig.
3.1lb. Steps in the steps are called kinks. ( We note in passing that
because we are concerned here mainly with "perfect" surfaces we often
refer to steps and kinks ‘as defects. On some surfaces they are ex-
pected and regular and a notation exists for them, see for example
Forty ( 1983 ) ). Adatoms appear botn on the terraces and along the
steps. Vacancies in terraces and steps can also occur as can inter-
sections of screw and edge dislocations with the surface.

Surface phonons and plasmons are two excitations whicin are often
prominent - usually because their creation has altered the results of

an experiment. Both are simply the two dimensional cases of the well
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known bulk effects.

There are other surface specific phenomena and nomenclatures.
Particularly important are tnose concerned with the growth and char-
acterisation of adsorbate overlayers. These and other terms will be
introduced througnout chapter four as they are needed.

3.1.2 SURFACE CONVENTIONS. Crystal surfaces are denoted by their

Miller indices. Thus the W(00l) surface is normal to the crystal dir-
ection [ooi]. A set of surfaces which are equivalent because of the
symmetry of the crystal is indicated by braces = {ooi}. Directions
within the surface plane are denoted analogously to three dimensional
crystal directions: [Ol] indicates a particular direction and <Ol>
all the directions which are equivalent by the ( two dimensional )
symmetry of the surface. A full list of the recommended notations for
real and reciprocal space points appears in Wood ( 1964 ). All these

conventions will, as far as possible, be obeyed in tais work.

3.2 SURFACE STRUCTURE

The surfaces of materials are in éeneral diperiodic. That is,
although they have three dimensional structure they have only two
dimensional symmetry ( Jona et al, 1982 ). In section 3.2.1 we deal
with tuis two dimensional crystallography. We have already seen that
surfaces can reconstruct, they can also have overlayers of atoms which
either induce reconstructions or have tnemselves structures which are
different from the bulk exposed plane. The notation used fo£ de~ .
scribing such situations is outlined in section 3.2.2.

3.2.,1 TWO DIMENSIONAL CRYSTALLOGRAPHY. We deal here with an outline

of the real and reciprocal space geometry of strictly two dimensional
structures. Further details will bte brought in as they are needed.

3.2.1.1 The Five Nets. The seven crystal systems of three dim~

ensions are replaced by four systems in two dimensions - oblique,
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rectangular, square and hexagonal ( Kelly and Groves, 1970 ). These
four systems allow the existence of five Bravais lattices or nets as
they are usually called. Each systew has one net, except the rect-
angular which has both a primitive and a centred net. Figure 3.2
illustfates the nets and the properties of their defining vectors.

The two dimensional analogue of the unit cell is called the unit mesh,

3.2.1.2 Reciprocal Nets and Brillouin Zones, The two dimensional

net is characterised by two vectors Q and b « The reciprocal net is
also therefore characterised by two vectors which we call gi'and tz*.
In order to ensure that _a__* and b* lie in the same plane as Q and Q a
third vector, € , is introduced into the definitions of the recip-

rocal vectors. € is perpendicular to the Q@ , b plane and we write:

a* = dm  bxce
a.(bxc) - (3.1)

b* = I cxa

a.(bxg) (3.2)

The magnitude of g is unimportant since it appears in numerator and

denominator in both expressions. These definitions imply conditions

similar to those for three dimensional reciprocal vectors:

9_%9 = .12*.‘2 = QAW | (3.3)
and:

3 ' K

a.b = a.b” = O (3.4)

The reciprocals of four of the nets are illustrated in figure 3.3.
Once the réciprocal net has been defined the construction of the
two dimensional surface Brillouin zone ( SBZ ) is simple. This process
igs illustrated for the low index faces of bcc and fcc structures in
appendix A. The SBZ of a bulk exposed plane can be placed into the
first Brillouin zone of the bulk structure in such a way that its

borderlines lie in the faces of the three dimensional zone ( Willis
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and Christensen, 1978; appendix A ). However a three diwensional zone
which is satisfactory for surface work can be obtained from the SBZ
by erecting a prism on it of height G, where G is the shortest three
dimensional reciprocal lattice vector perpendicular to the surface. A
zone constructed in this manner contains all the k values allowed in
the bulk structure but only has the symmetry of the two dimensional
surface structure ( Willis and Christensen, 1978 ). Throughout this
thesis we deal usually only with the irreducible part of the SBZ. This
is defined in analogy to the bulk irreducible Brillouin zone to be

the smallest part of the zone in which no point is equivalent to an-
other because of the symuwetry of the lattice ( see appendix A ).
3.2.}.3 Point and Space Groups. In two dimensions symmetry oper-

ations must be either reflexions or rotations about a point ( Jona et

al, 1982; Kelly and Groves. 1970 ). Further restricting the rotations
to be one, two, three, four, or six~fold, that is those which can be
found in lattices, leads to the existence of ten possible two dimen-
sional point groups:

1, 2, m, 2mm, 4, 4mm, 3, 3m, 6, 6mm
If these ten point groups are combined with the five nets then seven-
teen possible space groups are found. These are tabulated in figure 3
3.4 and diagrams of their symmetry properties can be found in ( for
example ) Kelly and Groves ( 1970 ). Allowing the inclusion of
symmetry elements which admit the existence of the tuird dimension but
require no periodicity along it, for example a two fold axis in the
surface plane ( Wood, 1964; Jona et al, 1982 ), gives a total of
eighty diperiodic groups ( including the seventeen two dimensional
ones ). Strictly it is impossible that the surface should not belong
to one of the two dimensional groups. It is possible however that the
selvedge taken alone might have approximately the symmetry of one of

the other sixty-three groups ( Wood, 1964 ).
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Space-group symbols Space-

Point group
Svstem and lattice symbol group Fuli Short number
Parallelogram p (primitive) 1 pl pl 1
2 p2il P2 2
Rectangular piml pm 3
p and c (centred) m plgl pg 4
clnl cm S
p2mm pmm 6
2mm p2mg pmg 7
pgg pgg 8
('2""" ocmm 9
Square p 4 pd pa 10
4mm padmm pam 11
pagm pg 12
Triequiangular 3 p3 -p3 13
(Hexagonal) p
3m p3ml p3ml 14
p3tm p3lm 15
6 p6 p6 16
6mm pbmm pém 17

Note. The two distinct space groups p3ml and p3im correspond to different
orientations of the point group relative to the lattice. This does not lead to distinct
groups in any other case.

FIGURE 3.4 Table of the ten two dimensional point groups
and seventeen space groups. The space group numbers

correspond to those of Kelly and Groves.
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3.2,2 NOTATION FOR SURFACE STRUCTURES. In figure 3.5 several

structures which have different selvedge and bulk exposed plane nets
are illustrated. Two methods are used to describe such systems
( though basically they are equivalent ) and we outline tnem below.

3,2.,2.1 Matrix Notation. We wisa to relate the vectors of the

surface net, QS and bs s to those of tne bulk exposed plane, RAp and b_[,.
This can be done most simply by using a matrix M such that ( Prutten,

1975; Jona et al, 1982 ):

s\ . M [ %

m—

b by (3.5)

in which of course:

M = My My _

—' M, Mgy (3.6)

The areas of the two unit meshes,)qsand)Ab, are related then by:
A= A, det M (5.7)
Surface structures are often classified according to the value of
det M ihto toree groups ( Pendry, 1974; Strozier et al, 1975 ):
(1) if det M is an integer then the surface and substrate
aré simply related
(ii) if det M is a rational fraction then the two nets are
rationally related
(iii) if det M is an irrational number then the nets are
irrationally related.
Two examples of the matrii notation are given in figure 3.5.

3.2.2,2 Wood's Notation. wood ( 1964 ) devised a notation in which

the matrix M is replaced by an equivalent rotation and scaling of Qy,
and E?b. The general form of expression used for an overlayer struc-
ture is then:
A{ kU 2] o bl R =B
Igb\ [bbl (3.8)
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A is thne symboi of the substrate material and {hklz is tne surface
under consideration.gs, bs,gb, t-zb are as before and D(ois the rot-
ation needed to bring the bulk vectors into coincidence with the
surface vectors. B is the symbol of any adsorbed atom. If a centred
surface net is used then a "c¢" is put after the surface index. Exam-
ples of the use of this notation are found in figure 3.5 and tarough-

out the thesis.

3.3 ELECTRON STATES AT SURFACES

In this section we are concerned with the extra solutions of the
Schrodinger wave equation which are introduced by tne existence of a
surface. It is usual to divide these surface states into two cat-~
egories according to wnether they arise simply from the termination
of the potential at the surface or if there is in addition a perturb-
ation of the potential in tae surface layers.

3.3.1 SURFACE POTENTIAL. This summary of tne effects of a surface on

the self-consistent potential is based on tﬁat of Appelbaum ( 1975 ).
We give only a brief qualitative summary of his results and defer
until later discussion of the effects of using a non self-consistent
potential. Appelbaun divides the total potential felt by an electron
into three parts:

VX)) = VLB + V(¥) + Ve (® (5.9)
and treats each part separately.

\Qg?% is the excnange and correlation potential caused by the ion
cores, Though it is really a many body effect it is usually represented
as a function of the core electron density ( equation 2.30 ). The core
electrons are highly localised and therefore insensitive to their en-

vironment. The \/

core produced by an atom at tne surface can be ex- -

pected to be the same as tnat it would produce in the bulk.

The second term in (3.9), \ég?) , is the electrostatic potential
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caused by the ion cores and valence electrons. This part of tne pot-
ential ought to solve Poisson's equation for the total charge density.
Appelbaum ( 1975 ) points out two important features of this potential
On going into the solid from tne surface the potential shows oscill-
ations - Priedel oscillations ( Friedel, 1952 ) - because of similar
charge density oscillations. On going outwards from the surface the
potential loses significant variation parallel to the surface ( that
is, it is insensitive to the atom positions ) past a distance approx-
imately equal to the spacing between the rows of atoms in the surface.
vxé)_(.) , the final term in (3.9), is the excanange and correlation
potential produced by the other valence electrons. It too is normally
represented by a density dependent local potential despite its non-
local nature. This potential has much longer range into the vacuum
than \és because at sufficient distance it uust become the classical
image potential. The total potential for a Mo(0Ol) surface ( averaged
parallel to the surface ) is saown in figure 3.6. ( Inglesfield, 1982 )

3.3.,2 SURFACE STATES AND RESCONANCES. The new solutions introduced

by the surface are more or less localised at the surface and make
themselves felt in the local density of states at the surface.

3.3.2.,1 Surface Local Density of States. We define the local

density of states ( LDOS ) on an atom by:

(=] Z lau®l dk 8 (-Ew)

B2 (3.10)

in which | &) are tae orbitals in the basis set at the atom in
question and aiua.re the expansion coefficients of the molecular
orbitals, Surface solutions snow up as peaks in tne LDOS at surface
atoms wnich are not found in bulk atoms. It is customary to divide
tnese sucrface solutions into two groups. Those whicit appear at
energies where tnereare no bulk states of the same ( two dimensional )

symmetry are hignly localised in the surface layer and their wave-
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functions decay rapidly both into and out of the surface. These are
called surface states. Some appear at energies where there are bulk
states and are continuous with them. These are surface resonances.
Both types are illustrated in figure 3.7.

3.3.2.2 Shockley States. States which depend for their existence

only on the termination of the bulk potential are called Shockley
states ( Shockley, 1939; Forstmann, 1978; Inglesfield, 1982 ). The
solution of the Schrodinger equation for the crystal potential plus
vacuum is essentially simple: solutions for the two regions must be
matched at the buundary. At energies where Bloch waves existed "in the
infinite potential a linear combination of Bloch-like waves travell-
ing towards and away from the surface can always be matched to a
decaying exponential in the vacuum. Bloch solutions at energies in
bulk band gaps were not allowed in the infinite crystal because they
had complex wave vectors and hence decaying wavefunctions. At the
surface however they might match onto a decaying exponential outside
the solid and form a surface state provided certain conditions are
met.

Figure 3.7 illustrates the problem. Whether there can be a state
in the gap depends on the imaginary part of the wavevector of states
in the gap ( Inglesfield, 1982 ) or equivalently on the sign of the
FPourier conponent of the potential which causes the gap ( Forstmann,
1978 ). Parts (c) and (d) of figure 3.7 saow the wavefunctions for
increasing energy in the total gap for opposite signs of potential.
Obviously a surface state can only be formed if the situation in 3.7d
obtains, that is if the state at the bottom of the gap has its charge
density concentrated between the atoms ( Shockley, 1939 ). ( The con-
dition is best treated in this fashion Secause the actual sign of the
potential depends on the choice of origin. )

3,3.2.3 Tamm States. States which require changes in the potential
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FIGURE 3.7 Typical wavefunctions of a surface state and a surface
resonance are shown in (a) and (b) respectively. Parts (c) and (d)
illustrate wavefunction matcaing at the surface for energies in a gap
at a Brillouin zone boundary. In each case the full line corresponds
to states at tne bottom of the gap. Spots correspond to atowic
positions ( Forstmann, 1978 ). See text for details.



-44_
or in other parameters at the surface for tneir existence are called
Tamm states ( Tamm, 1932 ). The condition for taeir existence is most
easily seen in a simple one orbital per atom tight binding formulation
( Forstmann, 1978 ). He shows plausibly that the existence of a surface
state is favoured by a small interaction between neighbouring orbitals
and by large changes in the potential at the surface. In particular
if the potential near the surface is less attractive than the bulk
tnen one of the states of a band can, if-the change in potential is
great enough, move upwards in energy out of the band and become loc-
alised at the surface.

3.3.2.4 General Existence Criteria. There have been several att-

empts to generalise the existence criteria described above and several
reviews of the attempts ( for example, Davison and Levine, 1970 ).

One can say for instance that the existence of surface states depends
on changes in various tight-binding integrals at the surface. But so
many integrals can be involved that the number of surface states
which can be produced is large and the question of which changes are
reasonable becomes more inportant than which produce surface states

( Forstmann, 1978 ).

Pendry and Gurman ( 1973, 1975 ) and Kleinman ( 1976 ) have
arrived at useful criteria for situations involving no changes in
parameters at the surface. They have snown the possibility of surface
states in almost all the gaps in the bulk band structure. The only
exceptions appear to be gaps at the zone centre and on zone faces
where, under certain restricted conditions, the existence may still
depend on the sign of a potential matrix element. The situation
remains confused however .and there is a tendency to ignore existence
criteria. Some of the terms described in this section are usually
retained,

Surface states are called Shockley or Tamm states according to
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whether they exist because of a band gap or b;cause of a band gap plus
potential perturbation. True surface states can only be found in gaps,
all other surface localised states are called resonances. The gaps
need not be absolute gaps ( that is energies at which there are no
bulk states ) but may be symmetry gaps ( that is, energies at which
there are no states of a specific surface symmetry ). Surface states
may then exist at energies at wnica there are already bulk states and
tais adds further difficulty, particularly in experimental work, to
an already confusing situation.

343.3 CALCULATION CF SURFACE ELECTRONIC STRUCTURE. It has been found

in general that it is simpler to go ahead and perform a surface calc-
ulation to discover surface states rather than to attempt to establish
whether or not a surface state ought to exist in a particular gap.
This effectively ignores any question about whether particular

methods are able to produce all possible surface states. We leave
discussion of these questions for specific cases in chapter four and
give here a brief outline of surface calculationms.

Many computational metnods have been ayplied to the calculation
of surface electronic structure ( jellium: Lang and Kohn, 1970; wave-
function matching ( n.f.e. ): Appelbaum and Haman, 1972, 1973; moments:
Desjonqueres and Cyrot-lackman, 1975; recursion: Kelly, 1980; linear
augmented plane waves ( LAPW ): Jepsen et al, 1978, Krakauer et al,
1979; matching Green functions: Inglesfield, 1978a, 1978b ). The most
common way to model tﬁe surface is to use a thin slab of material
with two surfaces. ( Though it is possible in some methods to actually
model a semi-infinite structure ). The problems involved in using a
thin slab ( in this thesis seven or nine layers of atoﬁs have been
used ) are well known. The two surfaces are not far apart and may in-
teract and the centre of tne slab is not far enough from either surf-

ace to exactly reproduce bulk behaviour. These difficulties will be
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discussed in detail in the relevant sections of chapter four.

Adaptation of tne method of chapter two to slab calculations is
simple. The turee dimensional»periodicity has been replaced by two
dimensional periodicity so we replace the Bloch sum of equation (2.45)
with one carried out only in two dimensions. The unit cell of the
structure becomes a whole column of atoms through the thickness of
the slab which is repeated along the directions parallel to the sur-
face. ( We note that equation (2.45) assumed only one atom per unit
cell, this is now necessarily untrue but the notation becomes cum-
bersome and unhelpful when extended to cover such cases. )

As we have already seen tne potential at the surface may be
changed and this change may affect the existence of some surface
states. We can introduce into the calculations one important effect
of such a potential change: the change it induces in the self energy
of atomic orbitals ( section 3.3.2.3 ). This has been done, in most
cases only for the valence d orbital, by altering the self energy
until it is consistent with that of a neutral free atom of the same
charge configuration as the surface atom has in the calculation ( Bisi
and Calandra, 1977; Bullett, 1981 ). This change makes it possible
for Tamm states to appear in our calculations. Further discussion of
this point, together with descriptions of the calculations of surface
densities of states and tne identification of surface states is best

carried out with examples and so we leave it until chapter four.

3.4 IMPORTANT EXPERIMENTAL METHODS

In this section we describe briefly two of tne most important
experimental metnods of surface science. Low energy electron diff-
raction ( LEED ) is used to discover the atomic structure of a surface,
Angle resolved photoelectron spectroscopy ( ARPS ) gives information

about the electronic structure of a surface. The major features of
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the two types of investigation are illustrated in figures 3.8 and 3.9.

3.4.1 LOJ ENERGY ELECTRON DIFFRACTION. Any experiment which is

expected to give information about the surface structure of a material
must fulfil two conditions. Whatever the method uses as a probe
( electrons, paotons etc. ) must have a wavelength which is small
enough to resolve atomic dimensions. The probe must also have suffic-
iently strong interactions with matter tnat it produces information
only about the surface atomic layers. Low energy electrons ( 10-50CeV )
satisfy these requirements since they have wavelengths of 0.1-1.0 )K
and penetration depths in most materials of one to ten atomic layers.
In a LEED experiment such electrons are made to srike a crystal
structure. A number of beams of scattered electrons are emitted. It
can easily be shown ( Jona et al, 1982 ) by using the two dimensional
analogue of the Ewald sphere construction that the beam pattern ( fig
3.8b ) is an image of the reciprocal net of the surface structure.
The strong interaction between the electrons and the solid makes
multi-scattering processes important and so complicates the theory.
We will not describe the theory further here but only point out that
more information about the surface structure is contained in the
relative intensities of the beams ( Pendry, 1974; Jona et al, 1982 ).
The experiment, then, must measure the spatial distributions and
intensities of the diffracted beéms. This is done while varying either
the energy or direction of incidence of tne electrons ( see angles in
figure 3.8a ). The usual outcome is a set of intensity versus energy
graphs of "I-V curves". Two typical curves are shown in figure 3.8c.
Though conceptually simple the experiment is actually very difficult
wl -
to perform because of the extremely hard vacuum required ( ‘O - \O
Torr ) and the accuracy with which the angles must be obtained.
Finding the actual structures is complicated by the fact taat going

from LEED information to real crystal structure is not a well defined
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process. Calculated patterns from plausible structures must be comp-
ared with the results and altered accordingly. A description of tais
process and further information about the LEED metnocd can be found in
the review by Jona et al ( 1982 ).

3.4.2 ANGLE RESOLVED PHOTOELECTRON SPECTROSCOPY, ARPS enables the

discovery of information about the energies and orbital symmetries of
the electronic states of a system. Essentially the process involved
is the simple phnotoexcitation process which is part of the history of
quantum mechanics ( Einstein, 1905 ). A photon gives sufficient energy
to an electron for it to be promoted from its initial state to a final
state witn energy above the vacuum energy level; it can then escape
from the crystal. This means that the energy distribution of electrons
will be related in some way to the energy distribution of the initial
states ( figure 3.9b ). Typical photons used in photoemission exper-
iments have energies in the range 10-1000eV, Tue excited electrons
therefore have energies in a similar range and, as we discussed above,
this means that the distance they can travel without scattering is
severely limited ( typically 204& or less ). Photoemission is there-
fore surface sensitive. Some surface sensitivity can also occur be-
cause of the effect of the changing surface potential on the excitation
matrix elements; Ehis process has a much more complicated effect on
the energy distribution of excited electrons. ( Williams ét al, 1980 )
In fact, ;f course, many effects must be taken into account when
trying to arrive at a useful description of the e#periment ( for
example: the form of the final states; scattering and refraction of
escaping electrons; the form of tae interaction between photon and
initial state ). A few simple approximations lead quickly to a Fermi

golden rule type expression for the photoemission cross-section

( Williams et al, 1980 ):

0\6‘ o B~ E v Z ’ Y| pA+A p(‘V>\6(E;-E —ha)3.11)
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v
In which Eifand.ij.are the energy and surface momentum of the final
state\kK§>, Ezzis tne energy of tne initial state\q%:>,{ﬁu)and A are
the photon energy and vector potential of the exciting radiation and
P is tne momentum operator. Calculation of the matrix elements is in
general very difficult but tne well defined symmetry of the operator
P.A+4A.p enables a few simple rules about the symmetries of initial
states to be deduced.

Hermanson ( 1977 ) showed that if the plane defined by the
emission direction and the surface normal ( see figure 3.9a ) passes
through a mirror line of the surface structure then the final states
must be even for reflexion in the plane. This means that for non-
vanishing matrix elements in (3.11) an initial state must have the
same symmetry in the mirror plane as the operator A. Initial state
symmetries can thus be deduced from a knowledge of the angles of in-
cidence and polarisation of the radiation. For normal emission the
initial state sywmetries are even more restricted because the final
state must have the full symmetry of the surface ( see Hermanson,
1977 ). |

It can be seen ( Williams et al, 1980 ) that by varying@ and P
( figure 3.9a ) it is possible to sample states of anyl_\'" value
within thne SBZ. The typical ouput of an experiment is an intensity
versus energy plot for various values of 9 at a specific value of (.,0
( figure 3.9c ). More details about ARPS will appear through the rest

of the thesis.

3.5 SUMMARY

The study of surfaces by many experimental and theoretical
methods is now well established. Some of tne major terms used in surf-
ace science and in this thesis have been defined and described. The

crystallography of two dimensional and diperiodic structures is a
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subset of the normal crystallograpny with only seventeen ( or eighty )
space groups available. The new conditions on the potential and wave-
functions at the surface lead to the appearance of extra solutions of
the Schrodinger equation - surface states. The LCAQ method of chapter
two can easily be applied to calculating these states and other elec-
tronic properties of surfaces. In chapter four we use the principles
described in chapters two and three to investigate some typical surface

systems.



CHAPTER FOUR

TYPICAL d-BAND MATERIALS AND THEIR SURFACES
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4.1 GENERAL INTRODUCTION

In the previous two chapters we have considered the theoretical
basis of the method of calculation and have described some of the
important general properties of surfaces. In this chapter we move on
to the second part of the argument of the thesis. Here we try to dem-
onstrate the ability of this method to produce useful results for the
materials on which we intend to .concentrate. This is particularly
important in order to counter suggestions ( e.g. Arlinghaus et al,
1980 ) that, because of the importance of charge redistribution at
the surface, only self-consistent calculations are able to make quan-
titative descriptions of surface electronic structure.

Tight-binding calculations are most often thought of in connexion
with semiconductors and insulators ( covalent ). This is because they
work best for such systems, those in which all the electrons can be
associated with a particular atom or bond. In the types of materials
with which we are concerned only the d electrons can be considered to
be localised but these play an important part in the structure and
cohesion of the solid ( Friedel. 1969; HYarrison, 1980 ). Frequently
studies have been made of transition and noble metals by treating the
two types of electrons differently: the s and p electrons being con=-
sidred as combinations of plane waves and the d electrons as linear
combinations of atomic orbitals ( e.g; Hodges et al, 1966 ). Another
approach is to use a tight binding method to treat only the 4
electrons. This has been used particularly when trying to investigate
structural energy changes of the sort considered in this thesis ( ece.
Terakura et al, 1981 ). We adopt a taird approach and treat all the
valence electrons in the tight binding formalism developed in
chapter two.

In tais chapter we apply tne method to three different types of

materials with important d electrons. In section 4.2 we deal with two
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typical transition metals, W and Mo. The surfaces of these two mat-
erials have been subjected to a great deal of experimental invest-
igation and we present here the results of surface state calculations
as a preliminary to the total energy work described in chapter six.
Experimental work ( e.g. Smith et al, 1982 ) was also the inspiration
for the calculations of section 4.3. There we. describe the electronic
structure of Ag, Cu and Pd and (001) monolayers and surfaces of these
materials., As well as providing further evidence of the suitability
of tais type of scheme for d-band materials this work also provides
insight into the electronic structure of interesting quasi-two-
dimensional systems. The (001) surfaces of the sodium c@}oride struc-
ture refractory compounds TiN, ZrN, TiC and ZrC are described in
section 4.4. Pinally section 4.5 is a summary of the implications of

the work described in the chapter.

4.2 TUNGSTEN AND MOLYBDENUM

Tungsten .gnd molybdenum are very popula; materials for surface
experimental work. There are several important reasons for this. Both
metals, and indeed those near to them in the periodic table, have ex-
tremely high melting and boiling temperatures ( 2610 C and 5560 C for
Mo, and 3410 C and 5927 C for W ). This is useful because it means for
example that they can be heated to fairly high temperatures for
surface cleaning without risk of damage to the crystal surface. They
are fairly readily available, not prohibitively expensive, and easy to
work with. Clean tungsten surfaces are particularly easy to prepare
and so W(00l) became a sort of reference surface ( Debe and Xing,

1979 ) without any interesting features. All this has now changed of
course, as we discuss later in the chapter, but we begin with the

bulk electronic structure.
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4.2.1 ELECTRONIC STRUCTURE COF W AND Mo. The calculation of the energy

band dispersions is simple. The non-nermitian matrix, as described in
chapter two is set up for the necessary k values ( usually along
symmetry lines of the Brillouin zone ) and solved for the eigenvalues
and eigenvectors. Tne eigenvalues provide the bands; the eigenvectors
indicate where the bands may or may not cross because of symmetry
requirements and are also used to produce densities of states, In
order to do.this it is necessary to carry out a sum over k values
through the irreducible part of the Brillouin zone. For the various
calculations in this thesis we have used two methods to perform this
summation. Most commmonly we have used an evenly distributed grid of
k points with their contributions weighted according to their posit-
ions with respect to the edges and faces of the irreducible zone

( Janak, 19%] ). Occasionally we have tried to make use of the special
points method which, although derived for full bands, must provide a
good sample of k space points when only a few can be used ( Cunningham
1974 ).

Figure 4.1 snows the energy bands of W and Mo along symmetry
lines of the bcc Brillouin zone ( see appendix A ). The densities of
states for the two materials are shown in figure 4.3, As described in
cnapter two the potential is specified by the atomic orbitals, The W
orbitals used here were calculated for a configuration SdS‘lf 6s 0-3

S3>5s(>3

6p°"3 and the Mo for 4d 5p04+ . These wavefunctions were

used unéhanged for all the matrix elements calculations. A major
drawback of tight-binding calculations is the lack of self-consistency;
we have attemted to bring a suall nieasure of it to this work. The
eigenvectors were used to calculate the configuration of the atoms in
the solid. The input orbital energies were then altered to be the

same as those calculated self-consistently for a neutral free atom of

that configuration. This process was carried on iteratively until
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Pigure 4.1 Energy bands along symmetry directions

of the Brillouin zone for: (a) W; (b) Mo.
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Figure 4.5 Densities of states ( smoothed by convolution with

gaussian of width 0.1eV ) for bulk (a) Mo; (b) W.
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starting energies and atomic configuration were consistenf. Pecause
of the behaviour of the s and p charge this process converges rather
slowly and was only carried through completely for bulk tungsten. For
all other systems, including tungsten surfaces a simplified procedure
was used ( Bullett, 1981 ).

Only the energy of the d valence orbital was altered and it was
assumed to vary linearly with occupation. The coefficients were calc-
ulated by fitting to the energies obtained for two configurations. In
the case of Mo, for example, the d-level energies for the configur-

S SO'3 5p0'3 5.5 580-3 SPO'Q

ations 4d 5 and 4d

€4 = 1140,na - 14 69

Using expressions of this sort led to reasonably stable iterations

were approximated by:

for all the systems in this thesis. The input valence orbital energies
and corresponding configurations in solid W and Mo are shown in the

table,

£ (V) [€p(eV)| €aeV)| 0s | e | Na
Kl =5.16 1 =2.91] -4.55] 0.28 | 0.35 | 5.37

Mo | =-5.06 | -2,91| -4.44 ] 0.29 | 0.29]5.40

Comparison of figure 4.1 with the bands produced by self-
consistent calculations ( e.g. Petroff and Viswanathan, 1971; figure
4.2 ) is favourable. The bandwidth for bcc materials is usually taken
to be ( Harrison, 1980 ) Ha's- H,q - Our bands give 9.81eV for W and
8.84eV for Mo for this parameter. Petroff and Viswanathan found 10.5eV
and 9.36eV. The shapes of tne bands also compare well with those found
in the self-consistent work though taere are some discrepancies, For
both W and Mo we find the H‘a and Nl points to have lower energy than
the r: point which should be the absolute minimum of the band structure
This indicates that the atiumic s level is too high in energy relative
to the d level. A more serious defect is the extra band found tetween

'

HRS and H'

in Mo. This is the only "crossing error'" in either band

4
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Figure 4.4 (i) density of states of bulk V; (i) density of
states at centre layer of a seven layer W(0OOl) slab; (iii)
difference between (ii) and (i). Tne fermi 1level is that of a

(00l1) slab and the histograr”s are smoothed as before.
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structuré. If we use Andersen's canonical bands scaeme in one of its
intended roles - to help to analyse bands produced by other methods
( Mackintosh and Andersen, 1980 ) - it is obvious that this band
results from p orbitals. This means that the Mo p level is too low in
energy with respect to the s and d levels. All other errors are above
tne fermi level and so should be unimportant in the type of total
energy calculation which is our aim.

The bulk densities of states ( figure 4.3 ) illustrates a basic
property of bcc materials. The density of states hnas a large dip
towards its centre; filling the material with five electrons causes
the fermi level to be in this gap, dividing the electrons roughly into
bonding and antibonding. This not only causes the bcc structure to be
the most stable for materials with half filled d bands but also means
that it is in bcc metals that it is least inappropriate to speak of
directional bonds between atoms. In such materials our scheme for
calculating total energies ( see chapter five ) is most likely to
succeed. The low temperature electronic specific heat constant ( see
for example Kittel ) can be calculated from the density of states at

-2 -‘
the fermi level. We estinate a value of 3.5n{y|<mole which is of

-2 -\
the correct order of magnitude.( experimental value, 1.3mJ K mole ’
Kittel, 1976 ). We conclude that our calculations of the bulk elec-

ronic structure of W and Mo are successful.

4.2,2 LOW INDEX SURFACES OF TUNGSTZN AND MOLYBDENUM. In this section

we describe the results of calculations on the fOOl}, {ilO} and {}liz
faces of tungsten and molybdenum. Theré has been a great deal of
experimental and theoretical work on these surfaces, particularly
W{bOi} where the interest was intensified by the discovery of the
clean surface reconstruction ( see later ). Because of this over-
whelming amount of information it is not possible to give a complete

review here; further -references may be found in the papers mentioned

below.
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Figure 4.5 Surface density of states minus bulk density of states

smoothed by convolution with a gaussian of width O.leV; (a) W(11l1l);

(b) W(11l0); (c) W(OO1).
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The section is divided into three parts, one devoted to each
surface. In each the results of our calculations are compared with
the available experiuental data. The first part, on {0013 faces, in-
cludes work on the states at reconstructed surfaces. The results pro-
duced for W and Mo are, as expected,.very similar ( compare figures
4.6 and 4.10 ). Therefore, in order to avoid repetition, we make ref-
erence to the Mo results only when they differ considerably or un-
expectedly from those for W.

4.2.2.1 {COI} Surfaces. The first structure to be identified as a

metal surface state was discovered by Swanson and Crouser ( 1966 ) in
a field emission experiment. They interpreted it as being caused by
the bulk band structure. It was later ( Plummer and Gadzuk, 1970 )
found to be sensitive to surface contamination and so identified as a
surface state. This discovery stimulated inferest in the surface -and
tae arrival.of angle resolved photoelectron spectroscopy brought
several sets of experimental observations. In this section we will
refer mainly to three of these: Weng et al, 1978; Campuzano et al,
1981; Holmes and Gustaffson. 1981,

The bee {OOI} surface structure has 4mm space group. This group,
the positions of the atoms at the surface, and the surface Brillouin
zone are described briefly in appendix A. In figure 4.5¢ we display
the difference between the {ooi} surface density of states and the
W bulk density of states. The negative excursions between =8.0eV
and -3.0eV indicate the expected narrowing of d bands at the surface
caused by the reduction in number of nearest neighbours. ( Heine,
1980 ). This change in numbers of neighbours is also responsible
for the redistribution of electrons bstween s/p and d orbitals. Ye

5:56
find the surface atows to be in a @& configuration compared with

. 5-38 S40
dS'S? and CA .) In

this and all other slab calculations the d levels nave been =zdjusted

for the bulk. ( The values for Mo are (i
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according to the "self-consistent' prescription of the previous
section, For surface work the d levels of the surface atoms are allowed
to be different from those of the other atoms. The final values found
for the tungsten slab were -4,05eV for surface atoms and -4.79eV for
others. ( =3.86eV and -4.41eV for Mo. ) It should be noted that in both
cases the overall charge shift to the surface is small ( Watson et al,
1982 ), the increase in d charge being compensated by a redistribution
of s and p electrons. This movement of nearly free electrons is very
difficulat for our tight binding calculations to deal with correctly
and is the cause of problems ( see later ). Most of the surface states
described below contribute to the broad peak in the difference density
of states centred at -1.0eV; other prominent surface peaks can be
seen at the fermi energy and at -2.0eV and -3.0eV.

Figures 4.6 to 4.10 iﬁclusive show the states more than 50% loc-
alised in the surface layer of the slab for various geometries of W
and Mo. Most of the calculations of surface states used a nine layer
slab and 50% localisation is a sufficient criterion for taese. When
seven layer slabs were used ( for the reconstructed surfaces ) 65%
was used. Throughout this section and most of the other results we
use the termn surface state ( SS ) to_refer indiscriminately to both
true surface states and resonances ( see chapter three ). We describe
a surface state in teris of: its energy relative to the fermi energy;
its localisation in the surface layer; and the atomic orbitals of
which it is constructed. This last of course depends on the choice of
X, y and 2z axes. Usually we choose z perpendicular to the surface in
question and x along a symmetry direction of the surface structure;
any variations will be noted. We nave tried to assign states to symm-
etry groups ( see appendix A4 ) - z2long the surface symmetry lines
this simply means odd or even with respect to reflexion. The inter-

action between the surfice of the slab occasionally causes states to
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split into two which can make this assignment difficult.

We will describe in detail only the results for the primitive
( i.e. undisplaced from bulk structure ) w{boi} surface which are
shown in figure 4.6. The results in figures 4.7 to 4.10 are suffic-
iently similar that only differences need be noted. Figure 4.7 incl-
udes a 6% contraction of the surface to second layer distance. This
is now a widely accepted size for the relaxation ( Walker et al, 1981 )
taough it is not the value which we calcilate ( chapter six ). In
figures 4.8 and 4.9 we have included uniform displacements of all the
surface layer atoms in [li] and [id] directions respectively. Such a
movement was postulated as part of the explanation of LEED results on
the reconstructive phase transition ( Walker et al, 1981; chapter sii )
As the two figures show such displacements have little effect on the
surface states. The last of this set of diagrams, figure 4.10, shows
the surface states for primitive Mo(00l). Some of these results have
been published ( Stephenson and Bullett, 1984 ).

At g in the SBZ states (a) and (c¢) ( figure 4.6 ) are of fﬂ
symmetry ( s/pa /diz orbitals ) and can therefore be identified with
experimentally observed states. We find them at -0.5eV and =3.40eV
for W ( -0.85eV and -2.75eV for Mo ); these values agree well with
the observed -0,3eV and -4.2eV for W and -0.2eV and -3.3eV for Mo
( Weng et al, 1978 ). These experiments and others ( e.g. Holmes and
Gustaffson, 1981 ) show that both (a) and (c) give rise to ;E} states

( even with respect to reflexion in the 2. mirror plane ) which dis-
perse upwards along :E . Both (a) and (c) have this behaviour and (a)
rises to cross tne fermi level at k“ 2 OS,& ,l tais compares well with
the experimental value of 20.69 /3"( Yolmes and Gustaffson, 1981 ). In
all cases but the uniforw [Nﬂ displacements ( figure 4.9 ) we find

another ZE; state dispersing downwards from F‘ y this has not been

found in experiments.
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The doublet of states (d) and (e) ( Z' and Zz symmetry respect-
ively ) can be identified with that reported in experiments ( Holmes
and Gustaffson, 1981 ) and found in self-consistent calculations
( Posternal et al, 1980 ). These states are very important because
they form the basis of one of the proposed mechanisms for the recon=-
struction ( see later ). This is particularly true of the Zastate
which consists of orbitals whicn connect surface nearest neighbours.

!
This state rises in energy along z and crosses E_. at 0.89)8\ which

E

comgares with the experimental value of 1,2 A-‘( Holmes and Gustaffson
1981 ) and 0.7 /&.;equired for the fermi surface coupling mechanism
to be described later. ( The crossing point is also 2 0.9 A“for Mo ).
The energy contours for this state through the irreducible SEZ are
shown in figure 4.11. Its role in the reconstruction will be discussed
later. State (f), which consists of orbitals comnecting surface second
neighbours, has not been reported in previéus theoretical work al-
though its energy at M ( =3.0eV compared with -2.8eV ) and dispersion
agree with those of an experimentally observed state ( Campuzano et
al, 1981 ).

Along the Z edge of the SPZ state (g) is continuous with the l-'?
state at -C.SeV and its dispersion is comparable with that found ex-
perimentally ( Campuzano et al, 1961 ) and in self consistent calc-
ulations ( Posternak et al, 1980 ). It rises to cross Ep at k> 0.4/&-\
compared with 0.5 A-‘ and O.BA-‘ respectively in the experimental and
theoretical work. State (i), which consists mainly of dz" orbitals
is continuous along Z in both experimental and taeoretical work.

(n) and (j) have not been observed in photoemission though (h), which
is even with respect to reflexion in the Z mirror plane,umight be id-
entified wita one of tne states found by Posternak et al ( 1980 ).

—

They found a pair of states, one A, one A, dispersing downwards

S

towards X .



=

g
X

Figure 4.11 Energy contours for state (e) of figure
4.5 in those parts of the irreducible zone where
it is;> 60% localised in the surface layer. The

contours are marked in eV,
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Along the ;% edge of the SBEZ there is less obvious agreement with

experiment. ( Note that this edge is called \’ or A by some authors ).

Z" state found along tae A edge but con-

sists of orbitals confined to the surface plane and is odd with

respect to reflexion in the Z nirror plane., A d%'- state is found

State (k) is not the lower d

( (m) ) but it appears only very close to XA . The state (o) is also
confined to the surface plane but unlike (k) it is even in the MP and
consists of orbitals which join surface nearest neighbours. It appears
that none of the states found along this edge may be matched with ex-
perimentallly observed states ( Campuzano et al, 1980 ). Possible
reasons for this will be discussed in section 4.2.3.

The reconstruction of the clean w(boi} surface to the structure
of p2mg space group shown in figure 4.12b is now a well established
experimental fact ( Debe and King, 1979 ). The evidence for this will
be examined in section 6.3 where we will also discuss possible mech-
anisms, here we confine ourselves to a description of the éurface
states found on the reconstructed surface. Contamination of the sur-
face with hydrogen causes switching to a structure in which the
surface atoms form pairs along”(Oi) directions ( figure 4.12c ). This
structure has the same unit mesh as the clean surface structure but
has space group c2mm. We also describe the surface states of this
structure. The surface Brillouin zones for both of these structures
are shown in figure 4.13. The difference density of states shown in
figure 4.14 illustrates the expected splitting of states at the zone
boundary, particularly near the fermi level,

In figures 4.15 and 4.16 we have plotted, for both p2mg and c2mm
structures, states which are localised more than 65% in the surface
layer. In each case the atoms were displaced 0.213 to produce the
reconstructions. The figures show the dispersions along the edges of

the irreducible zones which are, of course, different for the two
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Figure 4.14 Surface density of states for W(00l): (a) before and
(b) after the p2mg reconstruction. The difference (b) - (a) is

shown in (c).
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structures. We have tried to indicate the states in such a way that
their relationships to those present before the reconstruction is ob-
vious., On the whole states are unchanged, the major exception is of

course at the new zone boundary edges ( x. and, for the p2mg structure
SE' ). Here coupling of states by the new reciprocal lattice vectors
causes splitting. This is most obvious for state (e) which was a
surface plane state joining ( surface ) nearest neighbours. This state
splits approximately into "bonding" and Mantibonding" parts ( figures
4.15a and 4.16b ). The two parts are separated by ~ 1.0eV for the

p2ng structure and by ~ 0.8eV for the c2mm. The two directions ﬁ;‘(

and F'Y(' are not equivalent ( figure 4.13 ) and the split (e) state
has different behaviour along them. With |<n parallel to the chains of
atoms the two parts are pinned tpgether at the zone boundary ( figure
4.15¢ ). The effects of the reconstructions on other surface states

are unimportant. A discussion of the energy chnanges will be found in

chapter six.

4.2.2.2 {1103 Surfaces. The centred rectangular c2mm structure of
the body centred cubic {110} surface is pictured in appendix A. The
close packed nature of this surface and the corresponding small change
in number of neighbours with respect to the bulk make the difference
density of states much smaller than for the open {001} surface ( fig-
ure 4.5b ). Figure 4.17 shows the k space distribution and dispersion
of states more than 60% localised in the surface layer.

The results for this surface are strangely at variance with
those of experiments ( Holmes et al, 1979; Holmes and King, 1981 ).
We will discuss this disagreement later; in this section we confine
ourselves to a description of the stateé shown in figure 4.17. State
(a), of fi symmetry, is about 60% localised and appears at the uprer

edge ( -2.0eV ) of a bulk band gap for states of this symmetry. A

similar state is found at the lower edge of this gap ( -5.0eV ) but
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with less localisation. In Mo both tnese states nhave equal weight and

appear at -1.7eV and -4.0eV. ilong both & and 2 state (a) picks up
other components of B, and Z, ( even ) symmetry. Another Z, state, of
mainly dz’- orbitals, is found between =4.0eV and -5.0eV near the zone
boundary. The only significant Z; state is the highly dispersive (c)
which is 70-80% localised in the surface. State (d) has the correct
energy range and symmetry to be identified with the experimentally
observed state, but it is found over a much smaller region of the SEZ
( figure 4.17c ). All the states we have described though highly
localised are confined to small regions of the SEZ and hence make
little contribution to the peaks in the density of states. These peaks
( see figure 4.5b ), which occur at -0.8eV, -1.5eV, -2.5eV and -3.5eV,
are made up from more weakly localised states distributed over larger

areas of the zone.

4.2.2.3 {111] Surfaces.  The results for the {111] surfaces are as

difficult to reconcile with the ( sparse ) experimental data ( Cerrina
et al, 1982 ) as those for the {110} surfaces. Details of the surface
atomi;: geometry and Brillouin zone can be found in appendix A. Here,
as before, we confine ourselves to a brief description of the results
shown in figure 4.18 with discussion delayed until later. The most
prominent state (a) is 90% localised at the surface at r.' , where it
has energy =-0.45eV, and it dispei‘ses upwards along ﬁﬁ and F‘Z .
State (b), which has energy -1.3eV at ﬁ is made up from d 21 orbitals
and orbitals in the plane whj;ch are even with respect to reflexion in

the Z mirror plane. The experiuments indicate the existence of a

state with tne same symmetry with energy -1.0eV at M and extending
for a considerable distance towards M ( Cerrina et al, 1982). This
leads us to consider the possibility that (d) is continuous with (b)

and that the combination can be identified with the experimental state.

(c¢) which has energy -1.15eV and P; symmetry gives rise to azz band
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dispersing upwards. This compares well with a theoretical state found
previously with energy -l.6eV at ﬁ but the corresponding experimental
state occurs only at f? ( Cerrina et al, 1982 ). Many other states are
found along the remaining two edges of the SEZ ( figure 4.18b and ¢ )
as in the theoretical work in Cerrina et al ( 1982 ) but it is diff-
icult to identify the symmetry of these states and there is little

available experimental data for comparison.

4.2.,3 DISCUSSION If the calculation of structural energies to be

described in cnapter six is to be convincing then it is important
that the calculation of states on the surfaces involved is seen to be
moderately successful. At the worst non-success should be systematic;
that is, it is should be possible to say under wnhat circumstances the
method will not work or to understand the errors involved. One of the
most likely sources of error is the redistribution of charges at sur-
faces. The magnitude and nature of this redistribution is still a
subject of contention. Watson et al ( 1982 ) showed that the total
charge movement to the surface atoms is likely to be small. Kleinman
( 1982 ) showed that in self-consistent calculations for a Cu slab
there was a movement of electrons from the d orbitals of the surface
atoms to the s and p. He believed that this should be the case for
transition netals as well as noble metals. Tersoff and Falicov ('1982
maintained that the fact that the d orbitals are an essential part of
the bonding in transition metals should cause the opposite = a
movement from s/p to & - as they had previously found in LCAC work on
Ni. We have always found a shift from s/p into d orbitals. Our method
of shifting the surface d level introduces a small amount of self-
consistency in that it prevents this charge movement from becoming
too large.

The results for tne {001} surface are the most successful in

that they have the greatest resemblence to experimental results.
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Almost all the discrepancies are only in the relative energies of
states. Chapter six is concerned mostly with the reconstructions of
the W{OOl} surface and the results presented above make it justifiable
to expect successful calculation of the energy changes involved. It
is important however to give some consideration to the possible causes
of the lack of success on the {llQ} and {lll}surfaces.

Consideration of the changes in numbers of nearest neighbours
leads to and expected order for tne magnitudes of d charge changes.
ANg(110) <ANG(001) < BNY(111), Though we find HAA(001)D ANL(110) we have
Any(111)~ ANG(001) (AN4(001)=0.49; ANA(110)=0.15; A0 (111)=0.36 )
and this could be significant for the {lll} surface ( the combination
of successful results for {001} and the small size of the N\d change
for {ilQ}make it unlikely that this is the cause of discrepancies for
the {110} surface ). A possible explanation of the peculiar charge
change ( as well as the complexity of the {1113 slab results ) is the
small interlayer spacing for tnis structure. The interlayer distances
for {0013,{110] and {113 slabs are 2.99au ( a/2 ), 4.2%au (a/V3 )
and 1.73au (A/3[3 ) respectively. The {lll} spacing is such that not
only are the two surfaces of the slab close together but adjacent lay-
ers intrude into one another - the "surface layer" may consist not of
the first layer but of the first two layers. Add to thnis the expected
large relaxation of the {ill} surface ( chapter six ) and it is not
difficult to see that the W{lli} surface may be very different from
the simple structure used here. None of these considerations apply to
the {ilo] surface: the interlayer spacing is large; the predicted rel-
axation is small; and a postulated reconstruction ( Bourdin et al,
1983 ) is unlikely to be energetically favourable but would not greatly
affect the surface states if it was.

We conclude this section by noting some of the important points,

As we have already stated the {OOl} results are successful enough to
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Justify total energy calculations. We hope that further calculations
for different structures and materials might make clearer the reas-
ons for the variable amount of success, Finally we note that there is
only a small amount of experimental information available for {ilO} ‘
and {lli} surfaces but a vast literature of the {bOi} surface. Further

experiments might well clarify the situation in the future.

4.3 Cu, Pd AND Ag: {001} SURFACES AND OVERIAYERS

Over the last few years tanere has been a growing interest in low
dimensional systems of one kind or another. This interest has been
inspired by several possibilities which they provide. Firstly their
structure is necessarily simpler and this may make it possible to get
more insight into the nature of tne bonding in the material. In
addition low dimensional structures such as overlayers may have prop-
erites which differ ‘considerably from those of the normal material.
and may prove to be of considerable technologicalvinterest.

In this section we present the results of work on fcc metals Cu,
Pd and Ag; on free monolayers of these metals; on their (001) surfaces
and on monolayers adsorbed on these surfaces, The three substances
have very different 4 energy levels, this means very little inter-
action between surface and adsorbed monolayer. The monolayer might be
expected to behave very much as though they were unsupported - we test
this possibility. We also make a brief discussion in the light of
experimental work on these systems ( e.g. Smith et al, 1982 ).

4.3,1 BOLK MATERIALS. The lattice constants of the fcc structure

for the three metals are 3.61& for Cu, 3.89A for Pd and 4.09,& for
Ag. The energy bands along the Ln and l" X directions of the bulk
Brillouin zone for all three materials are snown in figure 4.19. ( The
fec Brillouin zone is illustrated in appendix A. ) Notice that the Cu

and Ag bands are typical of noble metals - narrow d bands crossing
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through the wide free electron like s and p bands. In Pd the 4 bahnds
are much wider and more hybridised with the s and p. The same self-
consistent raising and lowering of the d level was used for Mo and W.
The summation over the irreducible zone was done with a ten point
sample for Cu and Ag and with a sixty point sample for Pd. The final

d energy levels and occupations were:

Cu Ag Pd

ng | 9.92 | 9.92°| 9.68
Ed(ev) -7090 '9032 "'6.33

The bands for Cu and Ag compare well with those found by other non-
relativistic calculations ( see for example Harrison, 1980 ). It is
interesting to note differences between the Cu bands in figure 4.19a
and those published earlier ( Bullett, 198f ) which were computed by
the same method. The major cause of these differences is the slightly
different N4 / £d relations used. Also important is the qualitative
difference between the bands of the noble metals Cu and Ag and those
of the transition metal Pd.

4.3,2 MONOLAYERS AND ADSCRBED MONOLAYERS. Calculations on free

monolayers are particularly simple to deal with. The structure repeats
only in two dimensions and with the simple fcc monolayers considered
here we need only have one atom per unit cell., Adsorbed monolayers of
course can be treated in the same way as other surfaces. The results
of the work on monolayers are presented in figures 4.20 to 4.25. We
show the energy bands for a monolayer of each material at each of the
three lattice constants ( figures 4.20, 4.22 and 4.2l ) and also the
states which remain localised in the monolayers when they form epi-
taxial overlayers ( figures 4.21, 4.23 and 4.25 ). By displaying the
results in this way we hope to bring out clearly those effects in
which we are particularly interested: (i) the effect of changing the

interatomic distance on the energy bands of a monolayer; (ii) the
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effects of being adsorbed onto substrates where varying amounts of
interaction with the bulk d bands are possible. ( The amount of inter-
action should depend upon the difference in energy between the atomic
d levels. ) ( Smith et al, 1982 )

The bands of the copper monolayers ( figure 4.24 ) show perfectly
the expected behaviour. Narrow d bands cross the broad s/p bands. As
the lattice size is reduced ( moving from right to left in the figure )
the s/p and d bands broaden and the minimum (fi ) point moves steadily
downwards. In Ag the d bands appear completely detached and interact
with the s/p only when compressed to the Cu lattice size. Much more
interaction between the bands ( as expected ) is seen in the Pd
results in figure 4.20., The Cu results compare very well with those
of Arlinghaus et al ( 1979 ) ( illustrated in figure 4.26 ) who used
a self-consistent method. It is particularly significant that we agree
with several other authors ( e.g. Gurman, 1975 ) in locating the fermi
level well above the top of the 4 bands. Comparison of the Pd results
with those of Noffke and Fritshe ( 1981 ) is more difficult because
their calculations are relativistic. Nevertheless the overall impress-
ion is favourable.

When the monolayers are adsorbed onto the surfaces interpretation
becomes more difficult. We expect that the greater the interaction
with the substrate the greater the difference between free and adsorbed
monolayer. This is confirmed in figures 4.21b, 4.23c and 4.25a whére
each material simply forms a (001) surface. The Cu(00l) results are
essentially ( though not exactly ) the same as those of Bullett ( 1981 ).
The Ag(001) surface is similar but the states found on Pd(001) are
more complicated. It is not our intention to describe surface states
in detail since our main interest is trends of behaviour. Experimental
work is available on Pd/Cu(00l) and Pd/Ag(001) ( Smith et al, 1982;

Binns et al, 1983; an example appears in figure 4.26 ) and theoretical
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work has been carried out on the Pd on Ag(00l) system ( Bisi and
Calandra, 1977 ). It is immediately apparent that the Pd on Ag(001)
differs little from the unsupported Pd monolayer. This was indeed the
conclusion reached by Smitn et al ( 1982 ). Peaks were obsérved in the
photoemission corresponding to states 1.2eV and 2.4eV below the fermi
level at f; . Bisi and Calandra expected these peaks at 0.8eV and
-2.5eV. A similar lack of interaction is of course predicted for the -

Ag on Pa(001) system ( figures 4.22b, 4.23b ).

4.3.3 SUMMARY. We havecarried out a preliminary investigation of

tnese metals and-quasi-two-dimensional systems formed from them. A more
intensive investigation is undoubtedly required and would produce more
useful and interesting data. Nevertheless the results presented in this
section bring out several important properties. They confirm that our
calculation scheme is able to deal sensibly with noble metals. The mono--
layer results and particularly their variation with lattice constant
show up clearly the properties of tight-binding bands. We believe how-
ever that the most important aspect is that, as expected, the supported
monolay ers appear to behave in a very similar way to the theoretical
free monolayers. Further experimental and theoretical investigation of

these systems will be very fruitful.

4.4 TiN, TiC, ZrN, ZrC - REFRACTCRY MATERIALS

Transition metal carbides and nitrides have the high melting and
boiling temperatures and hardness characteristic of covalent materials
and yet have metallic conductivity ( Inglesfield et al, 1982 ). In
addition there is an ionic contribution to the bonding caused by a
transfer of electrons from the metal to the non-metal atoms ( Neckel
et al, 1976 ). This combination of properties and the observation of
a surface state on the TiN(00l) face make TiN, ZrN, TiC and ZrC an

interesting tnird class of materials with d electrons for our study
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of surface electronic structure.

4.4,1 Bulk Materials. All four materials crystallise in the sodium

cinloride structure in wnich each atom has six nearest neighbours, all
of the other atom type. The lattice constants are: TiN - 4.24}&; TiC
4.32R ; 7ow - 4.57R ; 2x¢ - 4.70 K. The bulk bands along the LT anda "X
directions of the Brillouin zone are shown in figures 4.27 and 4.28.
These bands compare well with the results of other calculations ( e.g.
Callenas et al, 1983; Johansson et al, 1981 ), though our lowest band

( formed from the s orbitals of the non-metal ) is in all cases lower.

The distributions of tne valence electrons between the atoms is:

metal Nng |non-metal ﬂp metal N\ |non-metaln charges
iy | 2.26 4.91 2.20 6.0 [T, N
zrN | 2.15 5.04 2.21 6.79 |2c TN
ric | 2.51 3.66 2.68 5.32 | "R
zrc | 2.06 4.17 2,16 5.84  [ECOYC Y

In all cases electrons move from the transition metal d level to the
non-metal p level. This ionic nature has important consequences for
the surface potential and hence for the surface states.

4.4.2 iboi] Surfaces. The states more than 70% localised in the

surface layer of the four layer slab for TiN, ZrN, TiC and ZrC{bOl}
surfaces are shown in figures 4.29 and 4.30. ( The thinness of the
slab makes it necessary to have such a strong localisation as the
criterion. ) The transition metal d level energy was altered in the
self consistent way described before but tae bulk values were retained
for the non-metal levels. These energies and the changes in them at
the surface are shown in the table on the next page. The most impor-
tant features are similar for all four materials. The lowest surface
band ( at™-16.0eV for TiN/ZrN and A~ =10.0eV for TiC/ZrC ) is made

up from the s orbitals of the non-metal atoms. The nitrogen or carbon
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p orbitals ( the effect is.more pronounced in the nitrides ) form a
second band of states which appears between -2.0eV and -4.0eV in TiN
and between -4.0eV and -6.CeV in ZrN. The bands with very little dis-
persion found near the fermi energy are in all cases made up from

metal d orbitals in the surface plane.

metal non-metal
materiall bulk €4 | surface gy| surface fg | surface n surface O
TiN -5.04 -4.86 2.23 2.23 6.93
ZrN -4.64 =4.39 2.10 2.19 - T7.03
TiC -4.38 -4.53 2.47 2.66 5.60
ZrC -4.59 -4.47 2.09 2.21 6.05

Table of the energies and occupations of surface orbitals.

4,4.,3 DISCUSSION, All of these materials are non-stoichiometric

when prepared normally and it is important to take this into account
when comparing the results of caléulations and experiment. The normal
compositions for the Ti compounds are TiNO-BS and TiCn g3« 2rN is
normally Zi‘N 0-83 + We note however that Hochst et al ( 1982 ) obtained
results both for these compositions and for almost stoichiometric
crystals prepared under special conditions. An ICAO fit to APW calc-
ulations gave charges of Ti+l.5 N-1.5, in agreement with our values
of Ti+l.8 N-1.8, though the original APW work indicated much smaller
movements of A~ 0.5 electrons ( Neckel et al, 1976; Inglesfield
et al, 1982 ). No values have been reported for the changes in these
charges at the surfaces. We expect our values for these changes to
be less accurate than the corresponding results for metal surfaces.
The non-metal p orbitals, whose energy we did not alter, are very im-
portant in determining this charge distribution.

The surface state found on TiN(001) ( Inglésfield et al, 1982;
Johansson et al, 1981; Johansson and Callenfs, 1982 ) is a Tamm state

pulled from a bulk band by the change in electrostatic potential at
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the surface. NO change in ionicity would be needed at the surface to
produce such a change. The surface bands we find without alteration
of the Ti d levels are indeed very similar to those saown in figure
4.29. The experimental surface state on TiN(0Ol) consists of N px/p5

orbitals and is observed at -2.9eV below EF;at n ( Johansson and

Callenas, 1982 ). Qur N gx/p state appears at -2.2eV at . A

similar state has been reporiLd for ZrN but for TiC surface states
have only been identified on the ( polar.) (111) surface. Most of the
photoemission peaks for these carbides and nitrides nave been ident-
ified with features of the bulk density of states. In summary, then
our method has successfully predicted the existence and energy of a

surface state on the TiN and ZrN (00l) surfaces, and has predicted

sensible values for the ionicities of TiN, ZrN, TiC and ZrC.

4.5 OVERVIEW

In this chapter we have applied the method of chapter two to
various systems. The most important study was of W and Mo and of their
surfaces, For these materials we found a great deal of agreement with
experimental results, This is particularly true for the bulk bands and
{boi} surféces. Results for tne other surfaces are less pleasing, partly
because of the more limited experimental data. The success of the
bulk calculations promises success in the total energy work to be
described in cnapter five. This, taken together with the close agree-
ment between our {0012 surface results and the results of photoemission
experiments on those surfaces indicate the possibility of success in
the surface geometry calculations to be carried out in chapter six.

The other work in the chapter was something of an aside., Its pur-
pose was to give increased confidence in the ability of the method to
- give good results for a variety of systems and to point the way for

further work. In this we believe it succeeds admirably.



CHAPTER FIVK

TOTAL ENERGY IN MATERIALS WITH d-ELECTRONS
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5.1 INTRODUCTION

The formation of a solid from a group of originally well separ-
ated and non-interacting atoms must obviously be a process which leads
to a reduction of energy. This energy change is often defined as the
cohesive energy: the energy required to separate the solid into its
constituent atoms ( e.g. Harrison, 1980 ). It is a goal of work on
any solid to understand the origins and magnitudes of the various
contributions to the cohesive energy. 'rhese contributions can be
grouped together in several ways ( Kelly, 1980 ) and it is one of the
concerns of this chapter to give-an account of one particular part-
itioning whicn is well suited to our tight-binding calculations.

There is a major difficulty associated with the calculation of
cohesive energies and indeed all the similar structural energies to
be caiculated in the next chapter. They are all the relatively small
difference between two enormous energies. it is well known that the
difference between two almost equal large numbers can become very im-
precise, even if the two numbers are themselves known with small frgc-
tional error. When approximations are likely to introduce substantial
errors the problem becomes acute. It is normal in these circumstances
to try to arrange calculations so that poorly known energies are
never needed ( Heine, 1980 ).

The various sources of the cohesive energy of a solid are often
obscured by the mathematical intricacy of the metnod of calculation,
We describe these sources in basic physical terms before going on to
indicate where tney fit into our scheme for total energy calculation.
Throughout all this work we make two impoftant and well known ass-
umptions. The first of tnese is the Born-Oppenheimer approximation.
In general this means that the motion of ions and electrons can be
treated separately. Here it is important as the basis of our sep-

aration of the total energy. We nave also assumed a "frozen core'.
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In this approximation the core electrons in each atom take no part in
interactions with other electrons and are not perturbed by any change
in structure. They do, of course, contribute to the charge density
and hence to the crystal potential. The interactions which operate
within the crystal are mainly electrostatic in origin. The repulsive
nucleus-nucleus and electron-electron interactions are counterbalanced
by the attractive nucleus-electron interactions. The kinetic energy
of the electrons ( which depends on how ihey are constrained to move
within the crystal ) must also be taken into account ( The kinetic
energy of the nuclei is ignored. ) ( Harrison, 1980 ). In principle a
cohesive energy calculation would sum all of these interactions for
the solid and for the set of free atoms. This process would give the
two "enormous numbers' referred to above. We are principally inter-
ested in the difference between the atomic energies and the solid gae
energy. We need only be concerned therefore with how the interactions
change when the solid is formed. And in particular we are concerned
with further changes brought about by alterations in the crystal
structure., It is important to see how these changes in interactions
come about and where they fit into the method adopted.

The renormalised atom concept ( Hodges et al, 1972; Gelatt et al
1977 ) provides a useful analysis of the conesive énergy of transition
metals. In this method an atom is prepared for the sgolid by cutting
off the wavefunctions at tne Wigner-~Seitz ra&ius. Each atomic wave-
function F{:f@N) becomes:

ak
{Rn{_(r) N“L 'Rn(.@) r é- Rws

o O t > Res G-
in which: ‘ Rws N 2

— = {'R“LQ”) rdr

an o (5.2)

and 72,5, is the Wigner-Seitz radius. Witnin this scneme the cohesive
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energy can be seen to be made up of three contributions: (i) the
energy required to take the free atom to the configuration found in
the solid; (ii) the energy change on renormalising this excited atom;
(iii) the change in one-electron energy per unit cell brought about

by the formation of bands from the renormalised atom levels. Gelatt

et al ( 1977 ) were able to break down the third term into three parts
because tney used a free electron band for conduction electrons. It
consists of: the difference between the average energy of the free
electron band and that of the atomic s-level; the cnange of energy
caused by the formation of the d-band; and the change in energy caused
by hybridisation of the conduction and d-bands.

Gelatt et al ( 1977 ) showed that the promotion energy is small
because of cancellation of electron-electron terms. The largest con-
tribution to the cohesive energy comes froﬁ the "broadening of d-band”
term. This d-band contribution can be modelled in the usual way

( Priedel, 1969 ) for an approximately rectangular d density of states

A By () = ;—% na (10~ na) 5.5

and is largest for half filled 4 bands. The contributions are inter-

of width W:s

related. This strong d-band contribution for W and Mo reduces the
interatomic distance. This compresses the conduction electrons, thus
raising their energy and reducing their contribution to the bonding
for these metals at the centres of transition series. The equilibrium
lattice size depends largely on competition between these two effects
( Bullett, 1980 ). We will describe this competition in greater detail
in the next section where we will discuss how each contribution is
taken into account in our metanod of calculation and consider the

effect of uniform compression on the cohesive energy.
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5.2 PARTITION ANL VOLUME DEPENDENCE QOF COHESIVE ENERCY

In tnis section we begin by showing how the total energy of a
solid can be split conveniently into two parts. We then describe how
these two parts are related to the various contributions described
above, The section ends with a description of how the cohesive energy
of the system changes with its volume and how this cnange is re~
presented within our model. Note that throughout tanis work we use the
terms "cohesive energy" and "total energy" interchangeably. This is
simply because we follow the normal practice of subtracting out those
parts of the total energy which are unchanged by the structural alter-
atioﬁs with which we are concerned.

Following Chadi ( 1978 ) and Heine ( 1980 ) we express the total
energy of the system of ions and electrons as the sum of two terms:

El:ok = Ebs + W (5.4)

in which Ebs is the one electron or "band structure" energy -

| Eve, = = Ea (5.5)
where EE“ are the energy levels. U is a term which includes everything
else, Often U has been called the "electrostatic energy" but, as

Heine ( 1980 ) has pointed out, this is a misnomer. Heine writes U
u_g 22 27Z __i_ ﬁp(r)p(r') A'e dic' | Uy

+U R lc-c | (5.6)

The first term is the coulomb repulsion between the ions, the factor

# corrects for the double counting which would otherwise occur in the

z Z . e Term:
e et ) p(0) d3r d3c
— (5.7)
le -l

is the total electrostatic energy of the total charge density fD(r)
( T, gfrange throughout tne system ). One half of this needs to be
subtracted because each electron pair was counted twice in the band
structure energy. The same is true of the exchange energy U__. Heine

XC

then goes on to snow that U is essentially a saort range repulsive
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interaction which contains the intraatomic electron-electron coulomb
and exchange energies, the screened interatomic ion-ion interaction
and the interatomic exchange energy. Né follow a sligntly aifferent
course here because we wisih to understand in detail now tne various
parts of the renormalised atom description of conesive energy nave
been aistributed between the two terms Ebs and U,

The extent to which the various contributions have been included
in]BbSdepends upon the prescription used in constructing the crystal
potential and on the way interactions between the orbitals are treated
In our calculations the potential is specified as being caused by a
set of overlapping atomic charge densities. These charge densities
are in turn specified by the atomic wavefunctions output by the Herman
and Skillman program ( see appendix B ). This means that the potential
which‘an electron N"sees" consists of three parts. Firstly the elec-
trostatic interaction with atomic nuclei is included. The second
term is the electrostatic interaction with all the electrons ( the
charge distribution is spherically averaged around each atom ).
Finally there is a density dependent exchange term ( equation 2.30 ).
This term also removes the interaction of each electron wiht itself
which was included in the second term. All electron-electron inter-
actions are counted twice ( once when each electron "sees" the charge
density and once when it is part of it ).

The major difference between the renormalised atom potential and
a potential construpted from overlapping atomic charge densities
becomes obvious when the interatomic distance is reduced. Renormalising
for smaller and smaller Wigner-Seitz cells involves forcing more and
more cnarge into the sphere. This conduction charge ig excluded from
the core region because of the orthogonality constraint on the wave-
functions ( Pettifor, 19773, 1977b, 1978 ) and its energy increases

rapidly with decreasing interatomic distance. The s-band formation
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term becomes repulsive ( Gelatt et al, 1977 ). In an overlapping-
charge-densities potential this extra charge can only be taken into
account if the charge from neighbouring atoms which intrudes into an
atomic cell is added to the charge within that cell. This process can
preserve the charge neutrality of the cells only if all of the atoms
are considered simultaneously. If the matrix elements are calculated,
as ours are, by considering only two atoms at a time this is clearly
impossible. The compression of charge and consequent increase of
energy are not included in the band structure energy and must there-
fore be added to U. Our band structure energy contains then: (i) the
energy difference between the free atom d levels and the solid 4 bands
(ii) the sp - d hybridisation energy; (iii) part of the energy of ]
formation of the sp bands. The other contributions to U are more in-
tricate,

Since the calculations are not self-consistent it is very diff-
icult to take proper account of the effects of redistribution of
valence charge between s/p and d levels. In principle this would mean
a change of the promotion energy with contraction of the crystal. This
change must become part of U. Finally the double cocunting errors
which were included in the band structure energy must be removed. -
These too must be included in U. These more complicated contributions
are expected to be quite small and it remains a reasonable approx-
imation to use a short range repulsive exponential for U. In the next

section we describe how this was done.

5.3 CALCULATION OF REPULSIVE ENERGY

Because we expect the repulsive interszction to be both short
range and largely dependent on intraatomic effects we also expect
that it will depend only on the types of atoms involved and on the

distance between them. We are reasonably confident then that it should
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be possible to represent the total interaction as a simple sum of in-
teractions between pairs of atoms. This has already been tried, with
some success, for structural calculations in semiconductors ( Chadi,
1978, 1983 ). We assume that the pair interaction is transferable from
situation to situation in the way that chemical bonds are. We have
tried two different functional forms for Upaﬁ*

Upair © = c exp (—dr) (5.8)
and: .
Ueair(®) = pr (5.9)
in which ¢, d, p and n are parameters to be fitted with the aid of
calculated band structure energies and experimental results,

The first stage in obtaining the parameters is to calculate the
variation of the band structure energy with lattice constant. This was
done by summing the one electron eigenvalues over an irreducible
Brillouin zone for two ( or more ) lattice sizes, taking care to en-
sure that the same number of atoms were involved each time. The total
energy is then written in the form:

E(:ot(a) = Ebs(a) + % upo.ir(Ea) (5.10)
in which a is the lattice constant and __aincludes nearest and second
nearest neighbours. ( Because of the short range nature of the repul-
sive pair interaction it is not necessary to include any other neigh-
bours. ) The parameters can then easily be determined by forcing the
total energy obtained to fulfil the following conditions:

r .
Bkl = O

da (5.11)
) a=0,

f@i_EL-ot = qaa'B
| oal 8| (5.12)

A=0Go
in which B is the experimental bulk modulus ( Kittel, 1976 ) of the

and:

material and a, is the equilibriunm lattice constant. ( The second
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condition can easily be derived from the usual definition of the bulk
modulus ( Ashcroft and Mermin, 1976 ):

B= v 2Bt

O vt (5.13)

in which v is the volume per atom, by substituting for v its value in
3
becec crystals which is(xfél. ) The results of applying this method to

calculations for W and Mo are described in the next section.

5.4 RESULTS

Figures 5.la and 5.2a show the variations with lattice size ( as
defined by the lattice constant ) of the band structure energy ﬁer
atom for W and Mo respectively. In both cases ( and indeed in all
energy calculations ) the same matrix elements were used throughout -
those obtained using the equilibrium Wigner-Seitz radius. This means
that the distortion of atoms on making the crystal smaller is not
taken into account and thuerefore the analysis of section 5.2 is more
directly applicable. It is also a sensible choice in view of the fact
that we will later be concerned with surfaces where the Wigner-Seitz
sphere will be not only ill-defined but also different for each atom.

-The variations of the effective occupations of the valence s, p and 4
orbitals were also calculated and are shown in figures 5.1b and 5.2b,
The energies plotted in the diagram are in fact obtained by sub-
tracting from the total band structure energy the quantity (€sVs- EPV\P

+€,Ny) in which €, s are the energy of the atomic s orbital and the
final projected s occupation respectivel&. It was hoped in this way to
take some account of the effect on the total energy of the redist-
ribution of valence electrons caused by the structural change ( see
discussion and chapter six ). Table 5.1 shows the complete results
for W and Mo.

In both cases the final total energy was assumed to be a quad-
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ratic function around the equilibrium lattice constant; i.e. we

assumed:

Ep® = & (@-00) + B(a-a0) + ¥

The values obtained for X, B and b’ together with the resulting

(5.14)

values of ¢, d, p and n are shown in table 5.2. Also disﬁlayed there

are the experimental and calculated cohesive energies. The calculated
values have been obtained by adding on the a=zag values of the repul-

sive interactions and are in agreement with the experimental values,

Pinally figures 5.lc and 5.2c show the variations of the cohesive

energy of solid W and Mo with uniform compression or expansion.

5.5. DISCUSSION

Heine ( 1980 ) concluded that it was possible to ignore the non
band structure part of the total energy when working on "monovalent
or quasi-monovalent systems or when comparing energies in two struc-
tures with the same interatomic sﬁacing". Obviously this is very
restricting and it would be useful to have a reliable metnod of app-
roximating U. Chadi ( 1978 ) and his collaborators were the first to
use a method of the type we describe for structural calculations.
They use a simple tight-binding method with parameters to calculate
the band structure energj and a polynomial Upair' This method has
been fairly successful in its applications to semiconductor surfaces
( e.g. Si, Ge, GaAs, see for example Chadi, 1983 ). Two similar
meth§ds have been applied to transition metal surfaces ( mainly W )
( Terakura et al, 1981; Treglia et al, 1983 ). The results of their
structural calculations are compared with ours in the next caapter.
Here we confine ourselves to a comparison of the three methods.

Both the Treglia and Terakura methods involve only the d bands
and are simply LCAO methods in waich the hopping integrals are taken

to vary exponentially with interactomic distance, though they use
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different expressions for the variation. Both methods also have a
Born-Mayer type exponential repulsive energy ( i.e. the same as our
equation 5.9 ). However since tney have different values for the tight
binding integrals and use different procedures %o constrain the repul-
sive energy they arrive at different values for the parameters,

( Treglia et al fitted the repulsive interaction using the equilibrium
lattice constant and cohesive energy whereas Terakura et al used the
lattice constant and bulk modulus as we did. ) The value of the
repulsive interaction at nearset neignbour distance provides a useful
way to compare the three methods. For W we have 0.15eV, Treglia et al
have 0.68eV and Terakura et al 0.84eV., The considerable differences
between these values indicate corresponding differences in the band
structure energies since all three calculations reproduce tne cohesive
energy well. These differences in band structure energy can be att-
rivuted to differences in the matrix elements and more significantly
to differences in their variation with interatomic distance. There
will be further discussion of this point in the next chapter.

In summary then we can say that we have arrived at sensible val-
ues for a repulsive interaction to represent the écreened internuclear
repulsion, the electron kinetic energy, the double counting correction
and any other effects not taken into account in the band structure
energy. We are confident that this interaction should be a reasonable
approximation for materials in whicia 4 orbitals make the greatest
contribution to bonding. In chapter six we test this confidence on W

and Mo surfaces.,



CHAPTER SIX

SURFACE GEOMETRY CALCULATIONS
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6.1 INTRODUCTION

The major aim of this thesis as set out in chapter one was to be
able to predict reliably and accurately changes in the surface
geometry of transition metals. In this chapter we take our final step
towards this goal by bringing together the surface states calculations
of chapter four and the total energy calculations of chapter five.
Similar calculations have been done in the past on semiconductor surf-
aces ( e.g. Chadi, 1978 ) with some succéss. There has also been work
on W and Mo surfaces ( Terakura et al, 1981; Treglia et al, 1983 ),
though using a much more basic method than ours. This will be dis-
cussed in the course of the chapter.

In section 6.2 we give a brief history of experimental work on W
and Mo relaxations before describing the method and results of our
calculations. Section 6.3 treats the reconstructions in a similar way
but also includes a description of the various mechanisms which have
been suggested. The final section discusses our results and compares

them with those of similar calculations.,

6.2 RELAXATIONS OF W AND Mo SURFACES

It has always been expected that the change in the number of
nearest neighbours would cause a relaxation of the surface atonic
layer of bcc transition metals, This relaxation has been observed by
several metaods on the (001) surfaces of W and Mo. We start with a
brief survey of the results for W(00l) before going on to describe
our calculations,

Most of the values for relaxation were obtained by studying LEED
I-V curves ( see chapter three ). Their results vary from an 11% con-
traction found by Lee et al ( 1977 ) to only 4.5% found by Debe et al
( 1977 ). RBecause of all these varied results Read and Russell ( 1979 )

concluded that at best it could be said that the contraction was in
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the range 0-15%. ( More details of the experiments involved can be
found in Read and ‘Russell. ) Using relativistic LEED theory and rot-
ation diagrams ( i.e. intensity of beam versus azimuthal angle CP at
fixed polar angle Y and constant energy ) Kirshner and Feder ( 1979 )
arrived at a value of 5.5% Feldman et al ( 1977 ) used the back-
scattering of He ions in their work which placed an upper limit of 6%
on the relaxation., This was the value used in the surface states cal-
culations of chapter four. At present no reason has been found wny the
results should vary so much.

We have calculated the energy changes caused by the relaxations
for the (001), (110) and (111) surfaces of both W and Mo. The proce~
dure followed was simple. A slab of seven atomic layers was used for
relaxation calculations and the first stage was to calculated the
total band structure energy per slab unit cell ( i.e. seven atoms ).
Proceediﬁg in this manner reduces the errors caused by redistribution
of electrons among the layers, The surface layer atoms were then
moved to positions corresponding to a relaxed structure and the unit
cell energy was recalculated, The energy change found in this way
was taken to be the change in band structure energy for two atoms.

It was originally intended that the band structure energy change
would be calculated for 1% steps, the repulsive energy change would
then be added on and the relaxation increased until an- energy minimum
was found. This was in fact carried through completely for W(00l1) and
the results are shown in table 6,1. |

It was obvious from these results however that the band structure
energy change is linear in the size of relaxation., For all other
surfaces then this energy change was obtained by a linear fit to the
band structure energies calculated for 0 and 5% contractions. In fact
for W(00l) both procedures were used. The results of table 6.1 using

1% steps give an energy minimum in the 10-12% region ( by extrapolation ).
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Reloxation Bow |oBso | 8B sBx | aBwr | oFwr
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IS - — " H3I5| 388 — -o-aau#

- Table 6.1 Energy Cha;nges caused by Relaxation of w(ooi). _

AEbS(_l) is the calculated band structure energy change. Atb:,@)

is the energy change obtained by a linear fit ( see text ).

R
AE o
AEbs

values were obtained using AE—R and both values of

. The results in the final colwmn are displayed in figure 6.la.
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Table 6.2 shows all the results obtained using the linear fit method
where the W(00l) energy minimum occurs in the 9-11% range. The results
of the two methods do not differ significantly and the reduction in
computer time obtained by using the linear fit is enormous. Using the
power law form ( equation 5.9 ) of the repulsive interaction rather
than the expcnential form ( equation 5.8 ) does not change the results
sufficiently to warrant separate display.

Note that tue scales are different in different parts of the
figures. We expect the predicted relaxation to be greatest for the
(111) surfaces and least for the (110) surfaces. This is because we
expect the relaxation to be greatest where the change in the envir-
onment of the atoms is the greatest. This expectation is fulfilled
both for W and Mo, though the (001) - (111) difference for Mo is much
less than for W. Indeed the energy change for Mo(lll) seems anomalous.

Further discussion of the results can be found in section 6.4.

6.3 W AND Mo(001) RECONSTRUCTION

While investigating structures formed by the adsorption of hyd-
rogen onto W(001) Yonehara and Schmidt ( 1971 ) observed an unexpected
splitting of the LEED spots from a surface which was apparently
almost clean ( i.e. hydrogen free ). It was already clear that hydrogen
adsorption on W(001) produced a c(2X2) structure indicated by half
.order LEED beams ( see chapter three ), These new results indicated
that at low temperatures ( 78X in this case ) similar half order spots
were produced even though only hundredths of monolayers of desorbable
gas were present. They suggested that this reconstruction was also
due to hydrogen, tut dissolved in the tungsten. This hydrogen could
migrate to the surface when cooled and bring about the reconstruction.
On neating it would return to solution rather than be desorbed. There

was however little experimental evidence either in favour of or
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Figure 6.1 Calculated total energy change versus relaxation for W
surfaces: (a) {0013; (b) {llO}; (c) {lll}. Note the different scales

of the three parts of the figure.
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Figure 6.2 Calculated total energy change versus relaxation for Mo
surfaces: (a) {0013; (b) {110}; (c){lli} Note the different scales of

the three parts of the figure.
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against this hypothesis.

Debe and King ( 1977ab) used Auger spectroscopy and other arg-
uments to snow that the high temperature H induced structure and the
low temperature structure are not similar and concluded that hydrogen
from the bulk was not responsible for the reconstruction, It was also
discovered ( Felter et al, 1977 ) that a similar change takes place
on Mo(001). They ascribed the changed LEED patterns to periodic disp-
lacements of the surface atoms. These diéplacements were to have wave-:
lengths of 2a for W and 2.2a for Mo, a being the lattice comstant.
Finally Debe and King ( 1979 ) demonstrated that the half order beams
fell into two groups and that the structure consisted of two rotation-
ally equivalent domains of space group p2mg.

At the same time Debe and King proposed a possible structure for
the reconstruction which could be obtained by lateral displacements of
aéoms in the {Jf} and ET{] directions ( figure 4.12 ). Felter et al
( 1977 ) on the other hand suggested that the LEED pattern might be
caused by alternate vertical movements of atoms. In both cases the
extra spot splitting of Mo was thought to be the result of an in=-
commensurate wavevector of displacement. ( The other possibility is a

Alocally commensurate structure with anti-phase boundaries spaced to
give the correct average wavevector ( Inglesfield, 1981; Mcmillan,
1976 ). ) Since these two structures were proposed there has been a
great deal of controversy. _

Stensgaard et al ( 1979 ) concluded that the vertical displace-
ments model is incorrect. They also maintained, however, that at most
60% of the surface layer atoms participate in the reconstruction. It
had already bteen observed that the reconstruction is inhibited near
to steps. A sufficient density of steps, therefore, could easily
account for the discrepancy. In the work of Jeilman et al ( 1979 ) a

vertical displacement in domains approximately 60/& in diameter at
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250X was indicated. Using FIM ( Field Ion Microscopy ), Tsong and
sweeney ( 1979 ) placed an upper limit of O.lSA on any lateral atomic
displacements. Melmed et al ( 1979 ), also using PIM favoured a recon-
struction caused by vertical displacements but could not rule out the
possiblilty of lateral movement. Recently Tung et al ( 1982 ) have
concluded that tane surface is reconstructed throughout the range 15-
580K and that the displacements are vertical with some possibility ofA
lateral motion. Finally Woodruff ( 1982 ) has shown that the p2mg
space group of the reconstructed surface ( for which there is over-
whelming evidence ) excludes the possibility of vertical displacements
unless the reconstructive change involves more than only the surface
layer of atoms.

In addition to this experimental work there have been several
theoretical investigations. These have attempted to provide a mech-
anism for the reconstructive phase transition and at the same time to
exrlain the obvious differences between W and Mo. The role which
surface states play in the transition has been of particular interest.
One important suggestion was that the transition is driven by a
charge density wave instability. In such a mecnanism the two dimen-
sional fermi s;rface has flattened regions., A reconstruction with a
a wave vector which spans the fermi surface in such a way that an
energy gap is opened up along the flattened part can lead to a consid-
erable reduction of energy. Self-consistent calculations of W and Mo
(001) surface states ( Posternak et al, 1980; Kerker et al, 1978 ) had
shown a pair of surface states crossing the fermi energy at approxim-
ately half way along the if symmetry line. ( See section 4.2.2.1 and
figures 4.6 and 4.11 ) Since this is where the new SEZ boundary appears
in the reconstruction ( figure 4.13a ) coupling the equivalent state
at {_(“-'-'- (TJT—, "l.)could stabilise the reconstruction provided the gap

da  Qa

is opened along a sufficient length of the fermi surface. This mechanism
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is particularly appealling because movement of the surface state fermi
energy crossing point slightly further from f? would change the re-
quired spanning vector and lead to an incommensurate reconstruction as
found for Mo.

Inglesfield ( 1978¢,1979 ) found ( for Mo ) that the energy con=-
tours of the important states were indeed perpendicular to Sf at the
half way point. Later experimental work ( Campuzano et al, 1981 )
attempted to follow the contours thnrough.-the irreducible SPZ and found
the fermi surface to be highly curved in the relevant region. They
concluded that insufficient electrons would be involved in the
splitting to lower the energy significantly. Our calculations indicate
that the energy contours are perpendicular to fi for a_considerable
distance into the SEZ ( figure 4.11 ). It is not possible to say
whether splitting of this state is the major contribution to the change
in band structure energy calculated below.

More recently interest has focussed on other possible mecnanisms.
It was already obvious that the changes in density of states brought
about by the reconstruction would give a reduction in energy. Indeed
Inglesfield ( 1979 ) calculated a value of 0.0009au ( 0.25eV ) for
this energy change. Heine and McConnell ( 1981 ) and Heine and Samson
( 1983 ) have shown that the formation of a two fold superlattice of
gome form is a general effect for half-filled d bands which results
from the electronic structure as a whole; fermi surface efiects play
no special role. The superlattice might take the form of some struc-
tural change or some sort of magnetic ordering ( as in Cr for example )
In bulk W and Mo the energy gain made possible by such a change in
structure is counterbalanced by the increasing repulsive interaction
waich it must also cause. The extra freedom caused by the removal of

neighbours at the surface may allow sucn a transition at the W and Mo

(001) faces. The exact nature of the reconstruction, the Mo in-
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commensurability for example, may still depend on surface states since
the relative energies and interactions of various displacement modes
must depend on them. It has already been suggested that the incommen=- -
surate reconstruction of Mo may be caused by interaction of Fﬁ, ( ver-
tical ) and Fas( in-plane ) displacements away from the symmetry
point leading to an absolute energy minimum for a displacement wave=-
vector along Ei ( Tosatti, 1978; Inglesfield, 1981; Heine and Samson,
1983 ). Further information on this point may well come from work on
the H induced W(00l) reconstruction. At low hydrogen coverages this
reconstruction is commensurate and is caused by pairing of W atoms
along {10) directions. ( Fasolino et al, 1980; see figure 4.12c ). At
higher H coverages this becomes an incommensurate structure. A model
of tne mechanism for this has recently been presented ( Didham and
Willis, 1983; Hinch et al, 1983; Didnam et al, 1984 ). This model
involves similar interaction between two displacement modes, one in
plane and one perpendicular, but producing a final displacement vector
along the Eg edge of the irreducible SEZ ( they call this edge A ,
see appendix 4 ).

We have performed calculations of the energy changes involved
in both the <|t> displacement reccnstruction found on the clean surface
and the <l0> displacement type on the hydrogen covered surface., In
both cases the possibility of a combination of relaxation and recon-
struction was considered. Jowever we did not allow any vertical com-
ponent to the reconstructive displacement. The energy changes caused
by the reconstructions were calculated in a similar fashion to those
for relaxations. The band structure encrgy was calculated directly
for various combinations of relaxation and reconstructive displace-
ment. The change in this energy was found to depend linearly on the

relaxation and quadratically on the reconstruction. After the co-

efficients of these variations were calculated tae repulsive inter-
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- 133 -

actions were added. The resulting contour plots of the total energy
change are shown in figure 6.3. Tae results for the <I\? recon-
struction ( figure 6.3a ) include an extra contribution to the band
structure energy from the promotion energy. This was obtained by
calculating the total ( self-consistent ) energy for an atom on going
from the configuration found at zero reconstruction to that found at
0.213 reconstructive displacement. This extra contribution has not
qualitatively affected the results. In both cases ( and indeed for Mo )
the absolute minimum of energy occurs for zero reconstruction and the
appropriate relaxation. These negative results are considered and com-

pared with the results of other work in the next section.

6.4 SUMMARY AND DISCUSSION

In summary we can say that our scheme has successfully predicted
the relaxations of W and Yo {001, {110} and {1113 surfaces. It also
indicates however that the energy of the surface is lowered neither
by the Debe and King <|f> displacements reconstruction nor by the
pairing movement found in the presence of hydrogen ( note that our
calculations did not actually include hydrogen atoms ). Two previous
attempts have been made to calculate the W clean surface reconstruction
with methods similar to ours: Terakura et al ( 1981 ) and Treglia et
al ( 1983 ). The methods used by these two groups have been discussed
in chapter five. Terakura et al ( TTH ) find relaxations of 3% for W
and 4% for Mo, these values are comparable with those of the other
group ( Desjonqueres, 1979 ) but are much smaller than our values. TTﬁ
found an energy minimum for reconstruction in the Debe and King
manner with atomic movements of 0.2513 at fixed relaxation of 3%
Treglia et al ( TDS ) found that any reconstructive displacement caused
an increase in energy. TTH allowed both the size and direction of the

displacement to vary but fixed the relaxation at the value which gave
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the minimum energy for zero reconstruction. They calculated bhoth band
structure and repulsive energy changes to fourth order in the disp-
lacement., They determined a reconstruction of 0.234 A in the <l\>
direction for a 3% relaxed surface. Note that though our band structure
energies were effectively forced to be second order in the size of the
displacement our repulsive energy changes were calculated "exactly".
The fourth order contributions of TTH appear to be less than 5% of the
total energy changes. TDS simply determined the variation of energy
with relaxation for two sizes of reconstruction 0.0Q /X\and 0.0SA in
order to determine the trend. They did not obtain coefficients for the
variation with reconstruction. The TTH coefficients indicate a change
in band structure energy of -0.5eV per atom ( W ) for O.Z;Kndisplace-
ment, we_find v -0.4eV at 0% relaxation. For the change in repulsive
energy at this displacement they find ™~ 0.49eV, our value is 0,35eV.
Both metqus produce energy changes of approximately the same size,
( Note that fhe energy change indicated for our calculations for a
fixed relaxation of 3% is considerably smaller than the zero relaxe
ation values quoted. TDS, tnough taey find similar energy changes for
the reconstructive displacements, find rmuch larger energy changes for
the relaxation., They find a reduction of 1.88eV per atom to the zero
reconstruction minimum buta reconstruction of 0.08/3 only introduces
an increase of 0.0leV in the energy. This group has also tried to in-
troduce the effects of correlation using a simple Hubbard hamiltonian
within the d band. All the results quoted above are for zero correl-
ation. Introducing the correlation does not affect the major conclusions.
The treatment of the charge redistribution at tne surface and
particularly how this redistribution changes as the structure is
changed is anY area in which the three metnods differ considerably.
TP and TDS have used considerably fewer d electrons ( 4.4 and 4.6 re-

spectively ) than the 5.4 which we have found. TTH determine the
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changes required to keep the surface and second layer d occupation
unchanged from the bulk value for the unrelaxed and unreconstructed
surface. These shifts are then used throughout the rest of the calc~
ulations unchanged. In our calculations the energy changes found for
the primitive surface were also used throughout. Qur criterion for
deternining the shifts was nowever not neutrality but "self-consistency"
( see chapter four ). TDS include a term which takes into account the
changes in these shifts as the surface atoms move. They claim that
this is the important difference between their calculations and those
of TTH and is the cause of their contradictory results. We would point
out however that we arrived at the same conclusion as TDS without in-
cluding this contribution.

Fasolino et al ( 1980 ) constructed a hypothetical pair potential
between tungsten atoms from the bulk phonon spectrum. They obtained
force constants for first and second neighbour interactions and
tested the surface stability by varying these constants between surf-
ace atoms and calculating the resulting surface phonon fregquencies.
Where these frequencies became imaginary a lattice instabiiity, and
hence a possible reconstruction, was indicated. They found a range of
values for the force constants led to a range.of expected recon-
structions. The Debe and Xing reconstruction was indicated if the
interaction between atoms is more attractive at the surface than in
the bulk.

All this suggests that perhaps the environment at the surface is
sufficiently different to affect the interaction between atoms. The
greatest contribution to such a change must surely come from the s and
p electrons and so further investigation of the role they play in the
interactions and how they are affected by the surface is likely to be

fruitful.



CHAPTER SEVEN

SUMMARY AND CONCLUSION
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We intend this brief summary chapter to serve two purposes.
FPirstly we attempt to give a critical review of the work described in
the thesis and to state our conclusions. In particular we try to point
out the relevance of tais work to current major interests in solid
state physics. In the second part of the chapter we outline ways in
which this area of research might be extended and its results might
be improved.

From the outset we have made it clear that it is not the role of
tight-binding calculations of the sort presented here to produce exact
"answers". Rather their purpose is to produce reasonably correct
numerical results and at the same time contribute to the understanding
of the physical effects which are significant in a system. Our review
of the results presented in the tnesis must therefore give consider-
ation to their contribution to understanding as well as to their num-
erical accuracy.

In chapter one we described how the work in the thesis was to be
divided into two major parts. We wanted to give evidence of the util-
ity of this sort of calculation in investigations of surface eleét-
ronic structure. This first part was to consist of computations on the
surfaces of a variety of types of material. These were described in
chapter four. Our_second purpose was to develop a scheme for calcu-
lating the changes in energy brought about by changes in structure.
This scheme was then to be applied to predict or at least to help to
explain surface relaxations and reconstructions. The parficular ex=-
amples we chose to workion were relaxations of the {0013, {1103 and
{1113 surfaces of W and Mo and the reconstructive phase change
observed on the {b013 surface of these materials. This second part
was described in chapters five and six.

It is well established that even primitive tight-binding methods

produce good results for infinite periodic crystals of many materials.
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It is not surprising therefore tnat our less basic calculations on the
three types of materials which were the concern of chapter four were
able to produce results for bulk properties in substantial agreement
with those of more sophisticated self-consistent work. The bulk energy
band structure of W and the charge transfer in TiN are good examples
of this success. A discrepancy which did occur ( in the bulk bands of
Mo ( see section 4.2.1 ) ) could have been removed by altering the
relative energies of the atomic orbitals. This provides us with some
insight into the role played by the neglected three centre integrals.
Changing the energy levels is, at least in part, an ad hoc correction
for this neglect. The three centre iptegrals can be seen as perturb-
ations to the other matrix elements and can be expectéd to have the
greatest effect on the diagonal elements where the overlap is greatest.
It is much more difficult to assess the success of our surface
states work. The results of experiments and the various tyres of cal-
culations seem to be more in agreement on some surfaces than on others.
It has frequently been claimed that the redistribution of charge at
metal surfaces is complicated and that only self-consistent methods
can correctly reproduce the effects this has on surface states. While
it does seem that the great variation in the success of our results
frow surface to surface could be explained away by sensitivity to
charge redistribution this cannot be the whole story. As we nave
already discussed the success of the various W surfaces was not prop-
ortional to the expected charge movement. Furthermore our surface
states were rarely altered significantly by our "self-consistency"
scheme involving alterations to the surface d levels. It must be
pointed out of course that our potential remains unchanged by this
process, it merely changes some of the matrix elements involving sur-
face atoms and so makes it possible for Tamm type surface states to

appear. We cannot of course expect tnis method to deal correctly with
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the free electron like s and p charge which is less well modelled by
our choice of atomic orbitals as the basis set. Nevertheless we can
conclude that, in view of the ease and rapidity with which these calc-
ulations can be carried out, our work on surface states has met with
considerable success.,

As we have already mentioned in various places in the text there
are several groups working at present on total energies in transition
metals and other materials. Much of this work is being applied to
surface geometries because of the current importance of surface
physics, The type of method we described in chapter five would be
particularly helpful in elucidating surface structures because of its
simplicicty. Such methods have already been applied with some success
to semiconductor surfaces, but in those materials the repulsive part
of the interaction is often very small. The differences that we find
when comparing the parameters of our repulsive interaction with those
of the other work on W and Mo indicate the considerable differences
between their simple empirical tight binding schemes and our ab initio
method. That all the methods seem to agree on the values of the bulk
modulus, conesive energy and equilibrium lattice constant is encour-
aging. ( Of course each method uses experimental values for some of
these properties. )

The calculations presented in chapter six are the central purpose
of the thesis. But as withn the surface states calculation the success
seems variable. Thus the predictions for the relaxations of the W and
Mo surfaces are very pleasing but the results for the reconstructions
seem totally at variance with experiment. The relaxations involve
changes only in the interactions between atoms at the surface and
undisturbed atoms within the material. The reconstructions on the
other hand involve changes in the interactions among the surface atoms.

In our calculations we assume an unchanged interaction between atoms
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at the surface. If this assumption was not true then only the work on
reconstructions would be greatly affected; the relaxations might still
be predicted. Since this is what has happened it seems reascnable to
suggest that further investigations of the changes in environment at
surfaces may provide fruitful results and may lead to a model for the
repulsive interaction which can cope with these surface reconstructions.

We end thne chapter and the thesis with a few other suggestions
for possible future extensions and impro#ements. Calculations of the
surface electronic structure of many more materials of varying types
would provide further examples of surfaces for which the method works
well and those for whica it is less successful, This would surely
bring about a better understanding'of the effect of the surface elec-
tron distribution on surface states. Further improvements in this area
might be made by actually calculating the best set of localised orb-
itals. Tanis would allow better treatment of the s and p electrons but
any advantage gained may be outweighed by the increased computer time
involved. Since the total energy parametrisation scheme seems to work
well in the infinite periodic solid it could be used to investigate
elastic constants and pnonon dispersion curves and other such tﬁings.
If a useful description of the change in interaction caused by the
surface could be obtained then it would become possible to fulfil the
original intentions of this work - to calculate the changes in struc-

ture often observed at surfaces.
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Tnis appendix consists of diagrams of the real and reciprocal
space structures of bece {0011 ’ {1103 and {1113 surfaces and the fcc
[0013 surface. Each diagram has three sections. Part (a) shows the
relationship between the bulk and surface Brillouin zones. The symmetry
labels which are commonly used for points in both bulk and surface
zones are also shown. Labels for the SRZ have a bar above them. The
direction of the surface normal is also shown., Part (b) of each
dié.gram shows the positions of the surface atoms. Open circles indicate
first layer atoms and filled circles second layer atoms. For the bcec
flll} surface a third layer of atoms is also shown. The third part of
each diagram shows the surface Brillouin zone more clearly. The cross-
hatched region is the irreducible part. The labels for points and lines
shown on these diagrams have been used throughout this work though

some authors prefer others.
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Figure A.1 BCC fO0l1l* Surface. See text for details
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Surface.

See text for details
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Figure A.5 3CG fill] Surface. See text for details
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IX

Figure A.4 FCC (001l] Surface. See text for details
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B.1 INTRODUCTION

In this appendix we give a brief description of each of the
computer prdgrams used. This consists only of a description of the
input, an outline of the operation ( for comparison with the theory in
chapter two ) and finally an example of typical output., Complete
listings of the programs are not given because they are too lengthy
and complicated to be of value here.

Three programs were used to produce-the '"raw" results: a Herman
and Skillman atomic orbitals program; a program to produce the
matrix elements in the perturbing potential ( see equation 2.42 );
and finally a program to set up and solve the secular equation 2.46.
The atomic orbitals program was a standard implementation of the
scheme detailed by Herman and Skillman ( 1963 ) and needs no further
description. Its output, tabulated radial wavefunctions and potentials
is described with the matrix elements program. The other two programs
were both written by D.W. Bullett and we have made only minor modif-
ications, mostly to the input and output.

A1l the calculations in this thesis were performed running these
programs { and several minor programs concerned mainly with BZ summ-
ations ) on two computer systems. The larger and more time consuming
jobs were done by the ICL 2980 of the South Western Universities'
Regional Computer Centre at Bath. Smaller jobs and most of the minor
calculations were carried out on the Honeywell 68 Dual Processor

System of the Avon Universities' Computer Centre in Bristoi.

B,2 MATRIX ELEMENTS PROGRAM

The physical principles behind the operation of this program
were described in section 2.5.3. The major difficulty with its impl-
ementation as a FORTRAN program is caused by oscillations in the

wavefunctions close to the centre of the perturbing atom. In the form
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used here the program was able to calculate matrix elements for three
atoms simultaneously. The items of input are listed in the table
Below.

Items 2 to 8 inclusive, which are given for each of the atoms
involved, are the output of the atomic orbitals program. Item 4 sgec-
ifies the number of points on the Herman and Skillman grid of radii
at which wavefunction and potentials are specified. For all the calc-

ulations in this thesis a 441 point mesh was used in the atomic

program
l' number of types of atom
2 not used
3 atomic number
4 number of radial mesh points
5 radius values
6 (a) coulomb potential, (b) exchange potential,

(¢) valence orbitals

7 number of core orbitals
8 core orbitals
9 Wigner-Seitz radii

and 40 of these points were used in the output table ( distances are
in atomic units, 1 a.u. 0.5294& ), these forty points are given as
item 5. The atomic orbitals program also produces an effective one
electron coulomb potential -and an exchange potential using a local
density approximation. The value of (X was set ét 0.7 in all calc-
ulations unless otherwise specified. The valence orbitals appear sep-
arately from the core orbitals because tney are to be treated differ-
ently from them by the matrix elements program. All the wave-
functions are given as the value of an(r) =r?,\xa.nd are normalised so
© 2
that L P'dsr=1|. The final information needed, item 9, is the

Wigner-Seitz radius for each material. This was taken simply to be
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the radius of the sphere of volume equal to the volume per atom in °
the material. For compounds the Wigner-Seitz radii of the components
were required to have the same ratio as their atomic radii.

The basic structure of the program is shown schematically in
figure B.1l and we will give here a briet description of the operations
performed in each section. The results are produced as a table of
matrix elements versus interatomic distance ( see figure 2.4 ); the
first loop is concerned with setting this distance - values between 2
and 10 atomic units have usually been used. Loops two and three ensure
that each possible pair of atom types is considered ( the two sites
are not equivalent - see chapter two ). Inside the inner atom type
loop ( loop 3 ) all the storage for the matrix elements and overlaps
is zeroed. The next three levels of the program are concerned with
dividing the volume of integration ( a square prism with the two atoms
along its height ) into small cubes. Whether one ( or bota ) of the
second and third cube loops is used depends on the distance to the
perturbing atom. The volume unit must be smaller near to the centre
of this atom in order to take account of the rapidly varying wave-
functions. The direction cosines from the two atoms to the centre of
of the incremental cube are then used, together with the-usual x, y, z
representations of atomic orbitals, to calculate the values of the
relevant wavefunctions at the cube. The potential is calculated from
the tabulated input potentials according to the prescriptions des-
cribéd in section 2.5.3. The increments to the potential matrix
elements and overlap are then calculated and added to the correct
store. All loops but the outermost end here. The final stage is to
premultiply by the inverted overlap matrix. ( The inversion is carried
out by a NAG subroutine. ) The output of tais program is illustrated

in chapter two.
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LOOP ONE: Interatomic distances

LOOP TWO: Atom Type at Site A

LOOP THREE: Atom Type at Site B

First Cubes

Second Cubes

Third Cubes

i) direction cosines

1
(1) direction cost e

(i1) wavefunctions for A

]

I (iii) wavefunctions for B W

_— e —— — - —_———
1 (iv) potential

:(v) increments

1

Premultiplication by inverted overlap matrix

Assign to correct place in output table

Figure B.l Schematic Diagram of the Structure of the Matrix Elements
Program.
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B.3 SECULAR EQUATION PROGRAM

The purpose of tnis second program is to use the tabulated matrix
elements produced by the first program to set up and solve the secular
equation for the band structure problem ( equation 2.46 ). This pro-
cess is conceptually simple but is made intricate by the need to corr-
ectly position contributions to matrix elementé within the two arrays
representing _D_‘IE. ( Cne array is used for the real parts, the other
for the imaginary parts. ) The indices réquired become particularly
tiresome if there is more than one type of atom present. A brief out-
line of the program is shown in figure B.2.

The first stage is to read in the necessary data. This is carried
out in two parts. The first part is concerned with information about
the structure of the material and instructions for operation; unit
cell dimensions, positions of atoms within unit cells, self-energies
of atomic orbitals, grpaints at which the eigenvalues and vectors are
to be calculated. The second part of the input is the table of "matrix
elements" produced by the previous program. ( We will use the term
"matrix elements" to refer to the quantities of equation 2.42 and
matrix elements to refer to the elements of D - major purpose of this
program is then to build the matrix elements from the "matrix elements", )
The next stage is carried out for each k point required. The self
energies of the atomic orbitals are placed along the diagonal of the
matrix D. The program then loops through all possible pairs of atoms
within the unit cell and in all cells ( within a suitable cut-off
distance ) in three directions around the central cell. ( For surface
calculations the unit cell is a column of atoms which goes through the
slab and the sum over unit cells is carried out only in two dimensions. )
Por each pair of atoms the magnitude and direction cosines of the dis-
tance betweeg them are calculated and using these and the appropriate

"matrix elements", ‘Bloch phase factor ( exp(-ik.R) ) and Slater and
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Input of Structural Details

Input of "Matrix Elements”

Loop over all k points input

Self Energies along Diagonal of D

Loops over all Atoms in Unit Cell

Loops over unit cells in 1, 2, of 3 directions

distance and direction cosines

Y ——- —- - . G .. — I . . S S— __ —  C—— —  e— e

Bloch phase factor

use "Matrix Elements",

direction cosines,
I distances,
I Slater and Koster expressions,

| to obtain matrix elements

t— e

I position real and imaginary parts of

[ matrix elements in D

|

Solve D for Right Eigenvectors

Solve D for Left Eigenvectors

Normalise Eigenvectors

-

Figure B.,2 Schematic Diagram of the Secular Equation Program
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fLLTL 0 129 0,069 0,015 0,024 5,019 <0041
=N,132 =0 1Nt =n,107 =0.151 =012 =5,.10, =0, 04

0J132 0,165 0,166 0,151 0,109 9,105 0,033

0,077 0,092 12,086 0,374 0,062 0,050 0,039
-0.,219 =-0,206 =0,159 =0.1106 =N ,N31 «0,056 =0_038

0,279 0,154 N_937 93,950 0,029 0,017 0,010
=0,756 =0,075 0,390 0,595 0,222 0.114 0,051
-0,219 0,008 0,498 0,552 0.322 0.197 0,102
-0,053 -0,095 0,107 0.182 0,134 0,087 0,047

0,039 -0,006 0,292 0,311 0,215 0,160 0,095

0,104 0.254 0,171 20.101 0,056 0,035 0,020

5.310 0.386 =0,445 =0,.388 -0,176 =0,091 =0,038
-0,094 0,015 0,010 =0,015 =0,030 =0,021 =0,.011

1.883 0,394 =0,052 =0.156 =0,114 0,068 =0,034

0.105 0,056 0,009 =0,032 «0,043 «0,035 «0,022
-1.825 -0,888 =0,308 =0,114 =0,045 =0,019 =0,008
-0.151 =0,108 =0,077 =0,044 -0,024 «0,013 -0.,007

0.566 0,138 0,017 0,017 0,031 0,018 0,009

0.883 0,307 0,127 0,048 0,019 9,008 0,003

0,187 0,044 0,014 0,004 0,001 0.000 0,000

Figure B.3 Jutout of the matrix elements nrogram. Interatomic

distance increases from ieft ( 3au ) to right ( 9au ). Each

line shows the variazation of one element. The matrix elements in

. . - . /
vart (a) involve orbitals on two atoms and those in vart {c)

orbitals on only one atom. Part (b) shows the corresponding

overlap integrals.

In each case the order of the elements isce

$5T, SPS, psG, PP, PPT, sds, dso, pdo, dpo, pd T, dpT,

dds, ddmw, ddé.
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Koster expressions ( figure 2.2 ) the matrix elements can be calc-
ulated. The final part of this stage ensures that the real and imag-
inary parts of the matrix element are correctly placed in the two
arrays representinglg. This is not always a trivial task if there are
several types of atoms and several atoms per unit cell. A NAG library
routine is used to find the right eigenvectors of the complex D. D is
then turned into its Hermitian conjugate and the same routine is used
to find its left eigenvectors. Once both.\q}fz>and {W,_> are known it -
is a simple matter to normalise as in equation 2.49 and produce the
coefficientsClZZ béx.( equation 2.51 ). The optional final part sums
the eigenvectors over weighted k points so that quantities such as .
the density of states, projected orbital occupations and fermi energy
can be found. For most of the calculations in this work this final

stage was carried out in separate programs.
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