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ABSTRACT

Prediction of the atomic geometry of metal surfaces demands a 

detailed knowledge of their electronic structure. In this thesis we 

have used an ah initio tight binding method to perform calculations on 

a variety of materials in which d electrons maJce an important contrib­

ution to the bonding. The non-hermitian formulation which we use is 

directly based on the local electronic structure concept in which an 

atom sees the solid around it only as a perturbation to its free state. 

Calculation of bulk and surface states of W, No, Cu, Ag, Pd, TiN, ZrN, 

Tic and ZrC using this method gives results which are in reasonable 
agreement with published experimental work. In order to carry out the 

total energy calculations needed to predict displacements of surface 

atoms an empirical repulsive interaction must be added to the energy 

of the one-electron states. The parameters of this interaction are 

obtained by constraining the calculated total energy to reproduce the 

lattice constant and bulk modulus of the infinite solid correctly.

The relaxations for W and Ko surfaces which this method predicts are 

comparable with those observed experimentally. This same parametrisation 

indicates that the well known reconstructions of the W and Mo fooî  

surfaces do not lead to a reduction in total energy.
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CHAPTER ONE
INTRODUCTION
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The structures and properties associated with the surfaces of 

materials are currently the subject of a great deal of interest. Even­

tually it should be possible to understand all the interactions involved 

in such complicated surface processes as corrosion and catalysis, 

though this is still far off. For the present much progress can be 

made by studying simple, regular systems; clean perfect surfaces or 

those with simple structural changes or adsorbates. When these less 

complicated systems are well understood then successful investigation 

of more intricate processes will be an easier task. The work presented 

in this thesis is intended as a contribution to the effort of clar­

ifying the electronic and atomic structure of clean surfaces.

- The atoms at a surface are in an environment very different from 

that experienced by atoms in an idealised infinite periodic solid.

We can expect tnerefore that the surface properties will differ from 

those of the bulk. We can expect to find, for example, new electron 

states with greater amplitude near the surface - these are called 

surface states and resonances. It is also possible that the structure 

of the infinite periodic bulk will not continue to the surface layer 

but that instead there will be changes in the positions of the atoms 

- relaxations and reconstructions. Both of these kinds of surface 

specific phenomena are described in this thesis. We perform calcul­

ations to find surface states on various materials and we attempt to 

develop a scheme for calculating the total energy of interaction 

between atoms in a simple form. This scheme will be used to attempt 

to predict relaxations and reconstructions.

By their very nature total energy calculations involve a great 

deal of computation. It is essential then that any procedure for prod­

ucing them should be both fast and efficient. It is important of 

course not to sacrifice too much accuracy for the sake of speed but 

to arrive at a sensible compromise. In chapter two we present a method
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which fulfils these conditions. This method is a tight binding scheme 

based on a particular formation of the local electronic structure 

concept which is also described in that chapter. The computer programs 

neede to set up the non-hermitian matrix involved, and to find its 

eigenvalues and eigenvectors, are described in detail in appendix B.

Some general information about surfaces is given in chapter three. 

This material is essential for a proper understanding of the results 

which are to be presented in the following chapter. We begin with a 

description of the crystallography of two dimensional systems and of 

the nomenclature which is used to describe the structures of clean and 

ad8orbate covered surfaces. ( Diagrams showing the relationships bet­

ween the surface and bulk Brillouin zones of the structures considered 

in this work can be found in appendix A. ) The second part of chapter 

three is concerned with conditions at the surface of a metal, in part­

icular its effect on the potential, and how these lead to the form­

ation of the various types of surface states which are found. The 

chapter ends with a discussion of two experimental methods which 

provide many results described in this thesis - low energy electron 

diffraction ( LEED ) and angle resolved photoelectron spectroscopy.

In chapter four we establish confidence in our method of calcul­

ation by investigating the surface electronic structure of a variety 

of d-band materials and comparing the results with experiments. Our 

tight-binding method, though more sophisticated than many, is still 

restricted by the approximations which must be made in order not to 

throw away the advantage of simplicity; the use of atomic orbitals as 

the best local orbitals is the most important of these approximations. 

This means that it works best for materials in which the free electron 

like states are relatively unimportant. All the calculations in 

chapter four have been performed for materials in which the tightly 

bound d-electrons give the greatest contribution to the bonding;
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transition metals and their compounds, and, to a lesser extent, the 

noble metals. The intention for" most of these materials has not been 

to carry out exhaustive investigations but father to establish trends 

and to point out interesting areas for further investigation. The {"ooi] 

surfaces of W and Mo are covered in much greater detail because it is 

on these surfaces that we will work in later chapters.

In order that we can work on the changes of total energy with 

structure which are the aim of the thesis we must first have a scheme 

for representing those parts of the interaction between nuclei and 

electrons which are not included correctly in the band structure one- 

electron energies. The method which we use, which is similar to a 

method which has previously had some succejss with semiconductor surf­

aces, is described in chapter five. In that chapter we also show how 

the parameters of the necessary empirical interaction are obtained 

from established properties of W and Mo.

In chapter six we bring together the surface states calculations 

of chapter four and the energy calculations of chapter five to calc­

ulate the energy changes involved in alterations of surface geometry. 

Predictions are made for the relaxations of the (OOl^ , £llp] and {lll̂  

surfaces of W and Mo and the results are compared with experiment. We 

attempt there also to calculate the energy changes involved in two 

types of reconstruction of the W(OOl) surface which have been observed. 

The results are summarised and their importance and relevance are ass­

essed in the final chapter.
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2.1 INTRODUCTION

Computational work in solid state physics yields numerical values 

for many of tne properties of a system. Band structures, densities of 

states and predictions of optical, elastic, electric and magnetic be­

haviour are typical of the sort of information expected from calc­

ulations. Experiment is the final arbiter in physics and so the basic 

principles of any theory must be tested against observation and found 

to be as nearly correct as it is possible to measure. But when the 

basic principles are accepted and most of the workers in the field aire 

engaged in sorting out the details - Kuhn's "normal science" ( Kuhn, 
1970 ) - the situation may change significantly.

The basic principles of solid state physics are the laws of 

quantum mechanics. To apply these fundamental principles completely 

and generally to anything as complicated as a solid state system is 

however almost impossible. Any workable theory or calculation scheme 

includes approximations and the amount and style of approximation is 

what distinguishes one method from another. In such a situation the 

interaction between "theory" ( or calculation ) and experiment is much 

more complicated than one being simply verified or falsified by the 

other. Accurate, inaccurate and sometimes even incorrect theories can 

all contribute to a growing understanding of a phenomenon or of the 

properties of a system. The ideas presented or uncovered by an in­

accurate calculation may be easier to grasp or more directly related 

to experimental results. More significantly the results of such 

methods may be more rapidly and easily obtained. The utility of a 

theoretical method then is not directly related to its paucity of 

approximations.

Computational simplicity and hence ease of application to new 

systems are important features of the method of calculation used in 

this work. The theoretical justification of the method is described
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in detail in this chapter. The next section discusses the concept of 

local electronic structure and how this makes possible considerable 

simplifications. In section 2.3 we move on to an outline of standard 

tight-binding methods. The Adams - Gilbert - Anderson justification 

for using a local orbital basis for crystal calculations is the sub­

ject of section 2.4. We conclude in 2.5 with a detailed exposition of 

tne mechanics of the calculations described in the rest of this thesis.

2.2 LOCAL ELECTRONIC STRUCTURE

In the last few years solid state physicists have become in­

creasingly interested in situations in which the textbook three dim­

ensional infinite periodicity is either unimportant or non-existent .

( Heine, 1980 ). Surfaces, which are the main concern of this thesis, 

are typical of such systems; others include point defects and impur­

ities and situations in which local properties such as the density of 

states are more important than crystal wavefunctions. In such cir­

cumstances it is no surprise that the concept of local electronic 

structure has come to the fore.

One aspect of tne local structure concept which has been a useful

tool for many years is the chemical bond. Bonds which connect two

atoms are considered to change very little on moveing the pair from 

one situation to another. Any small changes which do occur can often 

be considered as correction to an idealised bond: chemical bonds 

have the property of transferability. In metals the situation is

slightly different; bonds as such do not exist, the electrons are de­

localised throughout the whole material. At first sight it appears 

local concepts might have to be abandoned in favour of calculations 

of crystal wavefunctions. Friedel ( 1954 ) pointed out however that 

the local density of states, and indeed the whole of the Green fun­

ction ( on which it depends directly ), is almost independent of the
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boundary conditions which are applied to it.

In fact the Green function is completely unaffected except for 

the parts within "a few" electron wavelengths of the imposed boundary. 

This wavelength is always of tne order of the size of an atom and 

tnerefore the whole Green function may be perturbed. Nevertheless the 

existence of the invariance taeorem means that it is a perturbation; 

the atomic Green function ( and all the properties derived from it ) 

can always be taken as a zeroth order approximation to the Green 

function within a system and the effects of the surrounding as 

calculable corrections ( Heine, 1980 ),

This near invariance of the Green function and other local prop­

erties has been used as a starting point for several important metnods 

in solid state computation. The matching Green function method of 

Inglesfield ( 1978a, b ) uses the invariance in the most explicit way 

and it is also the basic ingredient of the recursion method ( Haydock, 

1980; Kelly, 1980 ). Most importantly for this work the invariance 

theorem gives credence to the basic assumptions of tight-binding 

methods. If the formation of a solid only perturbs the properties of 

a free atom then some properties of the free atom ( the valence 

orbitals for example ) should be able to form a good description of 

the properties of the solid, provided we perturb tnem properly. At the 

very least some theoretical justification of tight-binding in local 

structure terms ought to be possible. In the next section we give a 

brief outline of standard tight-binding metnods before going on to 

consider this theoretical justification in section 2.4.

2.3 TIGHT-BINDING METHODS

In tight-binding metnods a solid is considered to be a collection 

of atoms in which the overlap of the atomic wave functions is suff­

icient to require corrections to the free atom picture but not so
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much as to make and atomic description entirely wrong ( Ashcroft and 

Mermin, 1976 ). Previously there was scant justification for such 

methods ( Ziman, 1972 ) but the invariance theorem described in the 

last section implies that such an atomic description must be possible 

provided we introduce the perturbations in the correct manner. The 

Adams - Gilbert - Anderson justification will be described in the next 

section. Here we confine ourselves to a brief outline of the prin­

ciples of standard tight-binding methods!

The basic principle of the methods is that the wavefunctions of 

a crystal can be represented as a Bloch sum of a combination of atomic 

orbitals ( Ziman, 1972 );

I. (2.1)
i  j ^

The wavefunctions are labelled by i, i is a lattice site, j labels 

the atomic orbitals at site ^ ( we assume there is only one atom

per unit cell, the extension to more atoms is simple ), the ( k- 

dependent ) jSj are expansion coefficients. In many textbooks and 

papers the name "tight-binding" is used only for the case where j=l 

for all "linear combinations of atomic orbitals ( LCAO )” is then 

used for the general case ( e.g. Ziman, 1972 ). We do not make this 

distinction here and the terms are used interchangeably.

The next step is to construct the matrix elements of the hamil- 

tonian in this representation. The Schrodinger equation for the 

system then becomes equivalent to a set of linear equations:

e t o s . i s ) i 3 ;  =  o  W .2 )

so that the eigenvalues are given by the secular equation:

deb ( H -  Ê S I = 0  . (2.5)
S is the overlap matrix of the functions and is a unit matrix for

atomic orbitals. The properties of tne Bloch functions reduce the

dimensions of H to the number of atoms per unit cell but introduce 

the k dependence of H and so of 6^. ( Ashcroft and Mermin, 1976;
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Bullett, 1980; Ziman, 1972 )• The many variations of tight-binding are 

concerned with different ways of obtaining the matrix elements of the 

harailtonian. The methods can be divided into three classes according 

to how tnis is done.

The first class of methods includes those, such as extended Huckel 

and the various forms of neglect of differential overlap ( Bullett,

1980 ), in which the matrix elements are concocted from various comb­

inations of ionisation potentials, electron affinities and atomic 

numbers. Despite tneir apparent primitiveness these methods are fairly 

successful and have produced useful results.

Empirical schemes form the second important class. In these 

methods the matrix elements are treated as adjustable parameters and 

are altered to fit energy bands calculated at high symmetry points by 

more accurate methods.( or measured experimentally ). These methods 

have also had reasonable success and a more detailed description can 

be found in Bullett ( I960 ),

The method which has been used in this work falls into a third 

category - ab initio metnods. In these the matrix elements are calc­

ulated directly by numerical integration. Before this can be done 

of course there must be some prescription for the orbital basis set 

and for the potential of the crystal. In the next section we will see 

how the Adams - Gilbert - Anderson theory of localised orbital methods 

allows the choice of atomic orbitals for the basis set and of a 

superposition of atomic potentials for the crystal potential.

2.4 ADAMS - GILBERT - ANDERSON LOCALISED ORBITAL THEORY

2.4.1 HISTORY. The original motivation of the theory was to find a 

local orbital formulation which was equivalent to the Eartree-Foek 

method for a given system ( Adams, 19&1 ). Since tnen the theory has 

developed to show not only how to do this but also how to define the
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best possible local orbital basis for any particular situation ( Adams 

1962 ). Further developments ( Gilbert, 1964; Anderson, 1968, 1969 ) 
brought out a formal equivalence to the metal pseudopotential method 

used extensively for nearly-free-electron metals ( Austin et al, 1962; 

Weeks et al, 1973 )•

The pseudopotential form makes it obvious that the "best set" of 

localised orbitals need not be very different from atomic orbitals 

- the effect of the neighbouring atomic potentials can be "projected 

out". And it is here that the local electronic structure comes to 

prominence again; the effect of the environment is small and can be 

treated as a correction to the free atom situation. In the more det­

ailed description of the theory presented in the next few subsections 

we follow the treatments of Weeks et al ( 1973 ) and Bullett ( 1980 ).

2.4.2 LOCALISED ORBITALS. We wish to represent the molecular eigen­

functions, of a system as a linear combination of local orbitals

Furthermore we want the expansion to be exact and the I to 

be as much as possible localised at the atoms. The projection operator 

of the subspace of I i s :  N  .P=,Z lY.X'f! I
t=l

in which N is the number of orbitals in the system-. Obviously it will 

be possible for the expansion of iH^l^in l^o^to be exact only if the 

lie in the same subspace, this gives the first condition:

(2.5)
Two important properties of projection operators ( Messiah, I96I ), 
namely: = "P (2.6)
and: ^

p  h] =• 0  (2.7)

enable (2.5) to be written as:

H  1 % >  -  P H P 1 ^ c* > =  0  ( 2 . 8 )
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The second condition, that thel are as atomic orbital like as 

possible, will be satisfied if they obey:

H a l T „ ' > =  (2.9)

as well as possible, where is the hamiltonian of the neutral free 

atom. Since the orbitals must also satisfy (2.5) the condition con­

straining them becomes:

(2.10)
The atomic orbitals I satisfy the equation:

. (2.11)

for each value of D( there are N solutions ISPot^to equation (2,10)

but only the lowest energy one I , which we have written I is

well localised and corresponds to a perturbed with 6^ corres-

ponding to a perturbed • This point will be important later when 

we consider the elements of the secular equation.

Adding equations (2.8) and (2.10) we arrive at the Adams ( 1961,

1962 ) equation for the localised orbitals:

H ~  P  ~  (2.12)
Defining the o p e r a t o r < = H “"H^which represents the effect the restA *
of the system has on the atom at the site a, we can write (2.12) as:

H a  1 "  [u. -  P W a P ]  I I (2.13)
The residual interaction, may be considerably smaller than

Uji , small enough to be treated as a standard perturbation to and 

to allow calculation of thel^J^ from thel^oC^by an iterative 

procedure. In order to do this it is necessary to use the fact that 

the local orbitals span the band subspace to write:

i % x s ;  < % |  (..u) ̂ ' (xp / •
in which: 1 (2.15)
2.4.3 NON - HERMITIAN PROPERTIES. Equation (2.5) means that the

Adams equation, (2.15), can also be written in the non-hermitian form
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H a  I ̂  (2.16)
which can be seen to be formally analogous to the pseudopotential 

equation of Austin et al ( 1962 ):[T +  V  -  R  V] 1% ^  =  E I (2.17)

The pseudopotential method assumes that V “* is small so that [X^

axe very nearly the plane wave eigenfunctions of the kinetic energy 

operator T. In the present theory we assume that P U a  is small

so that the are very nearly the atomic orbital eigenfunctions

of H a  • There is one important difference. In the pseudopotential 

equation is a projection operator made up from core orbitals which

are assumed to be known. The projection operator p in (2.16) is made 

up from the I , tne orbitals we hope to calculate. For tnis 

reason the theory has been called "self-consistent pseudopotential"

( Weeks et al, 1973 )•

A detailed analysis of the differences between (2.16) and (2.15)

( Weeks et al, 1973 ) turns up several useful facts;

(i) both equations have exactly the same eigenvalues.

(ii) the eigenfunctions I of (2.15) are simply the 

adjoints of |

(iii) the eigenfunctions | of (2.16) are not simply the 

adjoints of | but have "out of band functions" mixed in 

in such a way as to make them even more localised on the 

atom than the |

These three facts lead to an important computational advantage to 

using the non-hermitian equation (2,16), Boys ( 1969 ) has shown plaus­

ibly that the error in the eigenvalues of the molecular orbitals will 

be of the order56, if S is the error in left eigenfunctions, and 6 

that of the right. Both hermit ian and non-hermitian equations will 

give the same eigenvalues ( fact (i) ). The hermitian equation will 

have 8— 6 and hence error (D ) The non-hermitian equation will have
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5  ̂  ̂  and hence will have smaller error We expect S  to be

less than 6 because the left eigenfunctions» are more localised on the 

atoms than the right ( fact (iii) ). The calculation of the molecular 

orbitals, 1 i s  the subject, of the next section.

2.4.4 NON-HERMITIAN SECULAR EQUATION. We have constructed the best

localised orbitals so that they lie in the subspace of the mol­

ecular orbitals I . It must be possible then to write;

Obviously also the molecular orbitals satisfy;

E i l T i )  (2.19)

in which H is the total hamiltonian of the crystal. If we use (2.18) 

in (2.19) and tnen premultiply by the result can be written as

the matrix equation;

HCi = Ei S G (2.20)
in which;

(2.21)

( S « & )  =  (2-22)
and Cl is a column vector of the • Using H — we can write

(2.16) as:

[H —  P U a ] l T « ^ =  6 ^ 1 ^ ^  (2.23)

H K > =  £ « K > +  P U a l 4 ' K >  , (2.24)

which we write as;

(2.25)

the exact form of the elementsT^^ depends upon the form of P and we 

defer discussion of this until the next section. Premultiplying (2.25) 

by^ïy I we get another matrix equation;

H  = S  P  or ? =  S  * H  (2.26)
But multiplying (2.20) by ^  gives:

S  *H Ç; =  E; S  S C i  (2.27)
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which is;

=  E ; Ç  (2.2a)

SO the energies El and expansion coefficients Cç(i, can be found by- 

solving the secular equation:

[ p  - 1  E j ]  Q  -  0  ( 2. 29)

The matrix D need not be hermitian, in fact it can be shown from

(2.26) that it will be hermit ian only if H and ^ commute, that is only 
if all the atoms have the same environment. The explicit form of D 

and the raeciianics of solving (2,29) are the subject of section 2.3.

2.3 CALCULATIONS
We have developed the general theory to the point of producing a 

secular equation for the molecular eigenvalues and their expansion in 

the set of linear orbitals ( equation 2.29 )• In this section we see 

how a practical computation scheme can be devised.

2.3.1 NON-HERMITIAN MATRIX D. The Adams equation shows that most 

of the perturbing potential can be screened out and that the best loc­

alised orbitals are very similar to the atomic orbitals. The first 

simplifying approximation is to use atomic orbitals as the solutions 

to this equation but continue to use its form to assist in constructing 

the secular equation. This effectively means that we use the Adams - 

Gilbert - Anderson theory of the last section only as a justification 

for atomic orbitals tight-binding calculations. If small

then such a calculation ought to work well, if it is not then it will 

not, though local orbitals calculated from the Adams equation would 

be more successful.

Atomic orbitals used in tnis thesis were produced by a standard 

non-relativistic Herman and Skillman ( 19&3 ) type program. Values of 

the radial part of each orbital are output in tabular form at a grid 

of radial distances. The program also produces details of the self-
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consistent coulomb and exchange potentials. The non local Hartree-Fock 

exchange potential is represented in the now commonplace Slater local 

density approximation ( Slater, I965 ) as;
ll/s

Zpiz)
8 tt (2.30)excW

in which p(C) is the total density of electrons and CK is a parameter

( I ), In all atomic calculations used in this work ̂  was set

to 0.7. More information about this program is given in appendix B.
Once the local orbitals are defined the form of the matrix elem­

ents is fairly straightforward. In the description which follows we 

confine ourselves to a single molecule, the extension to a periodic 

structure is deferred to section 2.5*4. Atomic sites are labelled by 

small roman letters and orbitals by small greek letters. With this 

new notation (2.24) can be written:

H | a « >  =  |aix> +  (2.31)
and the matrix required is D, such that:

P  l o w >  =  2  (2.52)

The summation in (2,51) is over all orbitals in the basis set and the

number of these orbitals is the dimension of D.

The projection operator for the complete set of ( non-orthogonal )

orbitals is ( Lowdin, I968; Bullett, I98O ):
p =  z z z x  < c *s i  ( « »

c d r  ̂ Ç
in which c and d are summed over all sites and y and o over all orb­
itals at c and d respectively. in (2.5$) represents the perturb­

ation introduced at site a by all the other atoms. This perturbation 

is divided up into contributions from each site and written:

U a  “  2! (2.54)
e+a

and (2.5̂ 1) becomes:
6a, 1“ “)  + Z Z Z Z Z  1“ *^^

^ cl V Î. eta (2. ; , )
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H|a«>= 6., K> + II Cii I I
renaming c as b and y as ̂  this can be written in the form (2.5Z) if;+121 S'^ <dh\Pe | (XX> (2.37)
The summation contains terms in which a, b, d, e are all different.

We make the common assumption that three centre integrals are much 

smaller than two centre ones ( Slater and Koster, 1954 ) and impose 

the restrictions:
b = a o r e  (2.38a)

d = Q or e (2.58b)
This means that the system can be treated two atoms at a time, like a 

set of diatomic molecules ( Bullett, 1980 ), and also that a partic­

ularly useful simplification ( devised by Slater and Koster, ( 1954 ) ) 

can be introduced.

2.5.2 TWO CENTRE INTEGRALS. The spherical harmonic parts of atomic 

orbitals can be written in terras of x, y and z. A table of these fun­

ctions for s, p and d orbitals, together with illustrations of the d 

orbitals appears in figure 2.1. As we have already mentioned if the 

crystal potential is the sum of spherical potentials centred at the 

atomic sites and if only two-centre integrals are to be considered 

then the interaction between two atoms will be the same as if they

formed a diatomic molecule. All the matrix elements will have the

in which "Ri » "Rj atom sites; ̂  ,4^orbitals at those sites and 

V is a potential.

Any atomic orbital in this diatomic molecule can be quantised 

with respect to the v e c t o r j o i n i n g  the two atoms. Thus any p 

function can be expressed as a sum of p(f and pTTfunctions, any d fun­

ction as a sum of dCJ*, dTT and d& parts. O', TT and S refer to the
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| 5 > = (  1 /4 7 1 ) 1/2

| P i )  =  (3/471)
|p2) = (3/47r)̂ /̂ y/r 
|p3)=(3/47r)̂ /̂ 2/r

\di) ={\5/4nŷ \x̂  -ŷ)/2r̂
\cÎ2) = {l5/4nŸ̂ x̂y/r̂
1̂ 3) = (15/47:)* ̂ .̂xz/r̂
|ii4) = (15/47:)*̂  ̂V2/r̂
jfis) =  (15/47:)*^^ (3z^ -r^ )/2 [/3  r

d

I d

FIGURE 2.1. Table of x, y and z dependent combinations of spherical 
harmonics, and illustrations of some of the functions.
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component of angular momentum with respect to the axis. Non-vanishing 

matrix elements will occur only between components of the same t)-pe 

(^, TTor S  ) on the two atoms ( Slater and Koster, 1954 ). These 

simple integrals will vaxy only with the distance between the two 

atoms. They can be named (ssa), (pso), (spo) etc, and there are four­

teen of them if s, p and d orbitals are considered. With a knowledge 

of the radial wavefunction-, and the simple forms'of the spherical 

harmonics these functions can easily be calculated for any potential. 

How this is done for the perturbing potential used here is the subject 

of the next section.

The total interaction integrals between orbitals at the two sites 

can be obtained from the two centre functions and 1, m, n the dir­

ection cosines of the vector A table of some of the express­

ions needed is given in figure 2,2, Cyclic permutation of x, y, z and 

1, m, n gives the other expressions. An example appears in figure 2.5 

which shows how the ( p^, dy^) integral can be decomposed into (pda) 

and (pdir) parts. These would then be summed using the expression:

E(px,<Axy) = >/s Cm ( p d a ) + m  ( i - 5 t * ) (p d iT )  (2.40)
Sharraa ( 1979 ) has shown how the expressions in figure 2,2 can be 

obtained by group theoretical methods and gives general expressions 

for generating them,

2,3.3 CALCULATION OF CENTRE INTEGRALS. This section consists

of a brief description of the principles behind the operation of a 

computer program which calculatesthe two centre functions (psor) etc, 

in the perturbing potential of the neighbouring atom. A more detailed 

description of the mechanism of this program can be found in appendix 

B.

- As has already been mentioned the atomic orbitals used are prod­

uced by a Herman and Skillraan program. The basis set consists of the 

valence orbitals at each site, though the core orbitals are usually
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included at tais stage ( see below ). The crystal potential used in 

all calculations is inade up from atomic potentials confined to Wigner 

Seitz spheres centred at each site. The total perturbation ( from its 

free atom condition ) that each atom feels can be divided up into a 

sum of perturbations from neighbouring atoms, yfe have to deal with 

two atoms - a free atom and a perturbing atom. The perturbing atom 

is effectively confined to its Wigner-Seitz cell and within that cell 

its contribution to the total perturbation, and hence the perturbing 

potential used here is:
P =  Ve

( For convenience the atoms have been labelled as in section 2.5.1 ) 

The integration is performed simply by addition of small cubes. 

The cube size varies, being smallest near the centre of the perturbing 

atom e in order to take account of the rapid oscillations of the wave- 

functions there. Each orbital is decomposed into its C", TT and S parts 

and all the relevant integrations are carried out in this form. At 

the same time the overlap matrix is calculated.

The final stage is premultiplication by the overlap inverse. It 

is easier to visualise this process if we continue to label the orb­

itals as though the decomposition to C ,  TT and S parts has not taken- 
place. We recall equation (2.57):

+  I I I  ( 2 . 5 7 )

What this program calculates is:

^  (2.42)

which would be called:

Î, (2.43)

but for the separation into bond angular momenta. The two centre app­

roximation imposes the restrictions that both b and d can be only a. 

or e. The overlap matrix consists then of the valence orbitals at 

these two sites. The core orbitals of e are temporarily included in
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the basis set in order to help project out the deep core potential of 

the perturbing atom.

The final output of the program is a table of values of the fun­

ctions (pdO*) etc.; for various distances between the two atoms. The 

two sets of functions - one set where both orbitals are on the per­

turbed atom, the other where one is on the perturbing - axe kept sep­

arate. This makes easier the construction of the matrix D which is 

the subject of the next section. Some of the second type of matrix 

element and some of the overlap elements are shown as a function of 

interatomic distance in figure 2.4.

2.5.4 SOLUTION OF THE SECULAR EQUATION. The form of D can be made 

clear by considering a molecule of two atoms, a and b, each with one 

orbital, andjS respectively. D would then be a 2X2 square matrix:

U(3,«) (e,3)J (2.44)
To form 2 ve would proceed as follows:

(i) and would be put into the diagonals.

(ii) the distance|^^ | and direction cosines of

would be calculated.

(iii) values of (psg) etc. for 1^^ 1 would be obtained by 
interpolation from the tables produced by the method of 

section 2.5.5.

(iv) the interactions would be calculated using the relevant 

expressions from the table in figure 2.2, including the 

effects of the other atoms on (d<,cx) and

The extension of tnis method to a periodic solid is simple, the 

molecule becomes a unit cell and each orbital in the basis is replaced 

by a Bloch sum:

J N  “
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The factor l/N which then appears in the matrix elements disappears, 

as usual, when one summation is removed by taking some as a 

centre. The number of unit cells over which the summation needs to be 

performed is small because the two centre integrals fall off to zero 

rapidly with increasing distance between the sites. The complex phase 

factor exp(ik.R) makes the matrix D complex, non-hermitian and k - 

dependent.

The secular equation is:

[p(k) - 1  E.(b)| Ç ‘ih) =  0  (2.46)
A standard library routine is used to solve this equation for part­

icular k values, this gives and tne vectors C [ ( made up of the

expansion coefficients of j in the basis ). The matrix D is tran­

sposed and the system solved again in order to obtain the expansion 

coefficients of the left eigenvectors.

The left and right eigenvectors are related by:

| Y . ' )  =  S  1 % ' ' }  (2.47)
where ^  is the overlap matrix ( Bullett, 1980 ). Each can be expanded 

in the basis:

I ^
in which the sets and are the right and left eigenvectors

of (2.45). We wish to normalise the I
I = = % %  Clt dip <«IP> (2-49)

ec p
but since :

<CcXl3)>= Sx/I (2.50)

and

I â I (2.47)
this can be written as:

I =  Z  (2.51)
and the weight of eigenvector on orbital] is equal to ĵ.
This conclusion is based on two assumptions. The first ( which must
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^  Lbe true ) is that all the Cl*^ D-^ are real. The second is that the 

electrons are distributed according to the "gross atomic population” 

prescription of liken ( 1955a, b ) - the overlap term, I
between each pair of orbitals has its weight divided equally between 

them. The final product of the secular equation program consists of 

the eigenvalues and these "weights" of the eigenvectors.

2.6 SUMMARY

The use of simple computation schemes can produce very useful 

results. The local electronic structure concept and the invariance 

theorem point to the possibility of a simple theory justifying local 

orbital calculations. This justification shows that a non-hermitian 

matrix, which is equivalent to the harailtonian, might be particularly 

easy to set up. With atomic orbitals and two centre integrals this 

matrix can be used to produce k-dependent energy eigenvalues ( i.e. 

energy bands ). It is also easy to see, from the eigenvectors, how 

the electrons will be distributed among the orbitals. This means that 

the% densities of states and other properties of systems can easily be 

calculated as we will demonstrate in later chapters.



CHA.FTER THREE

ELECTRON STATES AT SOLID SURFACES
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3.1 INTRODUCTION

Several developments have contributed to the growing interest in 

surfaces in the last few years. We have already mentioned in chapter 

two the growth in tneoretical interest in local electronic structure 

and in situations in which it is important. This desire for general 

progress in theoretical understanding is intensified by the techno­

logical importance of surfaces. Many of the chemical properties of 

materials, corrosion and catalysis are good examples, depend not only 

on the properties of the periodic bulk but also on the atomic and 

electronic structures of the surfaces. Finally the wish to investigate 

surfaces has both caused and been strengthened by improvements in 

experimental equipment. Harder vacuums, better materials for con­

struction, and more sophisticated electronics for control and meas­

urement simplify the investigation of surfaces or they make it poss­

ible to work on more and more complicated surface systems.

The surface properties which are of interest are the same ones 

as are investigated in solids: chemical composition and atomic 

arrangement, chemical, mechanical and electronic properties ( Prutton, 

1975 )• The overall aim of surface science is a complete microscopic 
understanding of all the properties and processes of surfaces. This 

aim is limited of course by the impossibility of applying quantum 

mechanics exactly to a large system ( see chapter two ). But this 

limitation is still quite far off and at the moment most of the theo­

retical effort is still directed towards an understanding of the 

electronic structure of clean surfaces and of simple systems of the 

type described in chapter four. Before moving on to surface calc­

ulations we describe in the rest of this chapter some of the general 

properties of surfaces and their nomenclature.

In the rest of this section we give definitions of some of the 

terms used in surface physics. Section 3*2 is concerned with the
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crystallography of two dimensional and diperiodic structures. Surface

states and resonances are described in section 3*5« Many experimental

results will be quoted in the rest of this thesis and section 3«4

summarises the output of two of the most important types; low energy

electron diffraction and angle resolved photoelectron spectroscopy,
r

3.1.1 DEFINITIONS AND GENERAL PROPERTIES. The two most impotantA
terms that will be used are illustrated in figure 3.1. The substrate 

or bulk material has three dimensional periodicity. The surface begins 

when this three dimensional periodicity ends. ( The definition of 

surface is therefore experiment dependent - in reality of course no 

material has any infinite periodicity ). If the surface atoms are not 

disturbed from their bulk positions then we call the surface a bulk 

exposed plane. In fact of course most surfaces can be expected to 

change in some way because of the change in the environment of the 

atoms. A movement of the entire surface plane of atoms in a direction 

perpendicular to the surface is common and is called a relaxation.

More complicated motions of the atoms àt tne surface are called recon­

structions. Any layer involved in relaxations and reconstructions are 

called the selvedge ( Wood, I964 ).
Terraces of perfect surfaces are shown separated by steps in fig. 

3.1b. Steps in the steps are called kinks. ( We note in passing that 

because we are concerned here mainly with "perfect” surfaces we often 

refer to steps and kinks as defects. On some surfaces they are ex­

pected and regular and a notation exists for them, see for example 

Forty ( 1983 ) ). Adatoms appear both on the terraces and along the 
steps. Vacancies in terraces and steps can also occur as can inter­

sections of screw and edge dislocations with the surface.

Surface phonons and plasmons are two excitations which are often 

prominent - usually because their creation has altered the results of 

an experiment. Both are simply the two dimensional cases of the well
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known bulk effects.

There axe other surface specific phenomena and nomenclatures. 

Particularly important are those concerned with the growth and char­

acterisation of adsorbate overlayers. These and other terras will be 

introduced throughout chapter four as they are needed,

3»1,2 SURFACE CONTENTIONS, Crystal surfaces are denoted by their 

Miller indices. Thus the W(OOl) surface is normal to the crystal dir­

ection foO]̂  , A set of surfaces which are equivalent because of the 

symmetry of the crystal is indicated by braces - (OOÎ  , Directions 

within the surface plane are denoted analogously to three dimensional 

crystal directions; [oij indicates a particular direction and ̂ 01^ 

all the directions which are equivalent by the ( two dimensional ) 

symmetry of the surface, A full list of the recommended notations for 

real and reciprocal space points appears in Wood ( 1964 ). All these 

conventions will, as far as possible, be obeyed in tnis work,

3.2 SUBFACE STRUCTURE

The surfaces of materials are in general diperiodic. That is, 

although they have three dimensional structure they have only two 

dimensional symmetry ( Jona et al, 1982 ). In section 3*2,1 we deal 

with tnis two dimensional crystallography. We have already seen that 

surfaces can reconstruct, they can also have overlayers of atoms which 

either induce reconstructions or have themselves structures which are 

different from the bulk exposed plane. The notation used for de- . 

scribing such situations is outlined in section 3.2,2.

3.2.1 TWO DIMENSIONAL CRYSTALLOGRAPHY. We deal here with an outline 

of the real and reciprocal space geometry of strictly two dimensional 

structures. Further details will be brought in as they are needed,

3.2.1.1 The Five Nets, The seven crystal systems of three dim­

ensions are replaced by four systems in two dimensions - oblique.
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rectangular, square and hexagonal ( Kelly and Groves, 1970 ). These 

four systems allow the existence of five Bravais lattices or nets as 

they are usually called. Each system has one net, except the rect­

angular which has both a primitive and a centred net. Figure 3.2 

illustrates the nets and the properties of their defining vectors.

The two dimensional analogue of the unit cell is called the unit mesh.

3.2.1.2 Reciprocal Nets and Brillouin Zones. The two dimensional 

net is characterised by two vectors Q and b . The reciprocal net is
* I *also therefore characterised by two vectors which we call 0 and D  , 

In order to ensure that 0^ and b  lie in the same plane as g  and b a 

third vector, C , is introduced into the definitions of the recip­

rocal vectors. C is perpendicular to the 3  ,b plane and we write;

a* = Stt fe X &

and;
a . ( b x c )  (3-1)

b *  = 5-n £ X a

a . ( b x c )  (5.2)
The magnitude of C is unimportant since it appears in numerator and

denominator in both expressions. These definitions imply conditions

similar to those for three dimensional reciprocal vectors;
_  I *a.a = b. b = 5 tt (j.j)

and;

^  b  =  q . b *  =  O  (3.4)

The reciprocals of four of the nets are illustrated in figure 3*3*

Once the reciprocal net has been defined the construction of the 

two dimensional surface Brillouin zone ( SBZ ) is simple. This process 

is illustrated for the low index faces of bcc and fee structures in 

appendix A. The SBZ of a bulk exposed plane can be placed into the 

first Brillouin zone of the bulk structure in such a way that its 

borderlines lie in the faces of the three dimensional zone ( Willis
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and Christensen, 1978» appendix A ). However a three dimensional zone 

which is satisfactory for surface work can be obtained from the SBZ 

by erecting a prism on it of height G, where G is the shortest three 

dimensional reciprocal lattice vector perpendicular to the surface. A 

zone constructed in this manner contains all the k values allowed in 

the bulk structure but only has the symmetry of the two dimensional 

surface structure ( Willis and Christensen, 1978 )• Throughout this 

thesis we deal usually only with the irreducible part of the SBZ. This 

is defined in analogy to the bulk irreducible Brillouin zone to be 

the smallest part of the zone in which no point is equivalent to an­

other because of the symmetry of the lattice ( see appendix A ).

5.2.I.5 Point and Space Groups. In two dimensions symmetry oper­

ations must be either reflexions or rotations about a point ( Jona et 

al, 1982; Kelly and Groves. 1970 ). Further restricting the rotations 

to be one, two, three, four, or six-fold, that is those which can be 

found in lattices, leads to the existence of ten possible two dimen­

sional point groups:

1, 2, m, 2mm, 4» 4mm, 5» 5m, 6, 6mm 

If these ten point groups are combined with the five nets then seven­

teen possible space groups are found. These are tabulated in figure 5

5.4 and diagrams of their symmetry properties can be found in ( for 

example ) Kelly and Groves ( 1970 ). Allowing the inclusion of 

symmetry elements which admit the existence of the taird dimension but 

require no periodicity along it, for example a two fold axis in the 

surface plane ( Wood, I964» Jona et al, 1982 ), gives a total of 
eighty diperiodic groups ( including the seventeen two dimensional 

ones ). Strictly it is impossible that the surface should not belong 

to one of the two dimensional groups. It is possible however that the 

selvedge taken alone might have approximately the symmetry of one of 

the other sixty-three groups ( Wood, 19&4 ).
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System and lattice symbol
Point
group

Space-group symbols Space-
group
numberFull Short

Parallelogram p (prim itive) 1 pi !

2 p 2 II ■ p2 2

Rectangular pi ml pm 3
p and c (centred) m P.? 4

c l/n l cm 5

p2mm pmm 6
2mm p2m^ pmg 7

Pgg 8
cl/fUfI cmm 9

Square p 4 p4 p4 10

4mm p4mm p4m 11
p4gm P^g 12

Triequiangular 3 P3 p3 13
(Hexagonal) p

3m p3ml p3m\ 14
p3lm p3\m 15

6 p6 p6 16
6mm p6mm p6m 17

Note. The two distinct space 
orientations o f the point group  
groups in any other case.

groups p3m\ and p3im  correspond to different 
relative to the lattice. This does not lead to distinct

FIGURE 3.4 Table of the ten two dimensional point groups 
and seventeen space groups. The space group numbers 
correspond to those of Kelly and Groves.



- 37 -

3.2.2 NOTATION FOR SURFACE STRUCTURES. In figure 3.5 several 

structures which have different selvedge and bulk exposed plane nets 

are illustrated. Two methods are used to describe such systems 

( though basically they are equivalent ) and we outline them below.

3.2.2.1 Matrix Notation. We wish to relate the vectors of the 

surface net, and 65 , to those of the bulk exposed plane, (\ ̂  and 
This can be done most simply by using a matrix M such that ( Prutton, 

1975; Jona et al, 1982 );

3 s \ ,  M l  a , '

b j  I B l  (5-5)
in which of course;

M  =

\rn»i (3-6)
The areas of the two unit meshes,/^^andare related then by;

/As = /3b defc M (5-7)
Surface structures are often classified according to the value of 

det M into three groups ( Pendry, 1974; Strozier et al, 1975 ):

(i) if det M is an integer then the surface and substrate 

are simply related

(ii) if det M is a rational fraction then the two nets are 

rationally related

(iii) if det M is an irrational number then the nets are 

irrationally related.

Two examples of the matrix notation are given in figure 3*5.

3.2.2.2 Wood's Notation. Wood ( I964 ) devised a notation in which 
the matrix M is replaced by an equivalent rotation and scaling of 

and . The general form of expression used for an overlayer struc­

ture is then:

A (hklj X ^
lÊkl I k J /  (5-®)
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A is the symbol of the substrate material and ^hkl^ is the surface 

under consideration. are as before and 0( is the rot-ATA as ViA'TnT'A anfi f\

ation needed to bring the bulk vectors into coincidence with the

surface vectors. B is the symbol of any adsorbed atom. If a centred 

surface net is used then a "c" is put after the surface index. Exam­

ples of the use of this notation are found in figure 3*5 and through­

out the thesis.

3,3 ELECTRON STATES AT SURFACES

In this section we are concerned with the extra solutions of the 

Schrodinger wave equation which are introduced by the existence of a 

surface. It is usual to divide these surface states into two cat­

egories according to waether they arise simply from the termination 

of the potential at the surface or if there is in addition a perturb­

ation of the potential in the surface layers1

3.3,1 SURFACE POTENTIAL. This summary of the effects of a surface on 

the self-consistent potential is based on that of Appelbaum ( 1975 )•

We give only a brief qualitative summary of his results and defer 

until later discussion of the effects of using a non self-consistent 

potential. Appelbaura divides the total potential felt by an electron 

into three parts:

V(2<) = +  V J X )  -t- (5-9)
and treats each part separately.

V  (25) is the excflange and correlation potential caused by the ion
core

cores, Though it is really a many body effect it is usually represented 

as a function of the core electron density ( equation 2.30 ), The core 

electrons are highly localised and therefore insensitive to their en­

vironment. The produced by an atom at the surface can be ex— *

pected to be the same as tnat it would produce in the bulk.

The second term in (3*9)» » is the electrostatic potential
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caused by the ion cores and valence electrons. This part of the pot­

ential ought to solve Poisson’s equation for the total charge density. 

Appelbaum ( 1975 ) points out two important features of this potential 

On going into the solid from the surface the potential shows oscill­

ations - Priedel oscillations ( Friedel, 1952 ) - because of similar 

charge density oscillations. On going outwards from the surface the 

potential loses significant variation parallel to the surface ( that 

is, it is insensitive to the atom positions ) past a distance approx­

imately equal to the spacing between the rows of atoms in the surface.

, the final term in (5.9), is the exchange and correlation 

potential produced by the other valence electrons. It too is normally 

represented by a density dependent local potential despite its non­

local nature. This potential has much longer range into the vacuum 

than because at sufficient distance it must become the classical

image potential. The total potential for a Mo(OOl) surface ( averaged 

parallel to the surface ) is snown in figure 5.6. ( Inglesfield, 1982 )

5.5.2 SURFACE STATES AND RESONANCES. The new solutions introduced 

by the surface are more or less localised at the surface and make 

themselves felt in the local density of states at the surface.

5.5.2.1 Surface Local Density of States. We define the local

density of states ( LDOS ) on an atom by;

n(E) = 2  Z  luu(ls)l (Ak S(E-Ei(ls)')
*' (3*10)

in which \ are the orbitals in the basis set at the atom in 

question and Gl^^are the expansion coefficients of the molecular 

orbitals. Surface solutions snow up as peaks in the LDOS at surface 

atoms which are not found in bulk atoms. It is customary to divide 

these surface solutions into two groups. Those which appear at 

energies where tnergare no bulk states of the same ( two dimensional ) 

symmetry are hignly localised in the surface layer and their wave-
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functions decay rapidly both into and out of the surface. These are 

called surface states. Some appear at energies where there are bulk 

states and are continuous with them. These are surface resonances.

Both types are illustrated in figure 3.7.

3.3.2.2 Shockley States. States which depend for their existence 

only on the termination of the bulk potential are called Shockley 

states ( Shockley, 1939» Porstraann, 1978; Inglesfield, 1982 ). The 

solution of the Schrodinger equation for the crystal potential plus 

vacuum is essentially simple; solutions for the two regions must be 

matched at the boundary. At energies where Bloch waves existed ’in the

infinite potential a linear combination of Bloch-like waves travell­

ing towards and away from the surface can always be matched to a 

decaying exponential in the vacuum. Bloch solutions at energies in 

bulk band gaps were not allowed in the infinite crystal because they 

had complex wave vectors and hence decaying wave functions. At the 

surface however they might match onto a decaying exponential outside 

the solid and form a surface state provided certain conditions are 

met.

Figure 3.7 illustrates the problem. Whether there can be a state 

in the gap depends on the" imaginary part of the wavevector of states 

in the gap ( Inglesfield, 1982 ) or equivalently on the sign of the 

Fourier component of the potential which causes the gap ( Porstraann, 

1978 ). Parts (c) and (d) of figure 3.7 saow the wavefunctions for 

increasing energy in the total gap for opposite signs of potential. 

Obviously a surface state can only be formed if the situation in 3.7d 

obtains, that is if the state at the bottom of the gap has its charge 

density concentrated between the atoms ( Shockley, 1959 ). ( The con­

dition is best treated in this fashion because the actual sign of the 

potential depends on the choice of origin. )

3.3.2.3 Tamm States. States which require changes in the potential
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(a)

(b)

FIGURE 3*7 Typical wavefunctions of a surface state and a surface 
resonance are shown in (a) and (b) respectively. Parts (c) and (d) 
illustrate wavefunction matcning at the surface for energies in a gap 
at a Brillouin zone boundary. In each case the full line corresponds 
to states at the bottom of the gap. Spots correspond to atomic 
positions ( Forstmann, 1978 )• See text for details.
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or in other parameters at the surface for their existence are called 

Tamm states ( Tamm, 1932 ). The condition for taeir existence is most 

easily seen in a simple one orbital per atom tight binding formulation 

( Porstmann, 1978 )• He shows plausibly that the existence of a surface 

state is favoured by a small interaction between neighbouring orbitals 

and by large changes in the potential at the surface. In particular 

if the potential near the surface is less attractive than the bulk 

then one of the states of a band can, if -the change in potential is 

great enough, move upwards in energy out of the band and become loc­

alised at the surface,

3.3«2.4 General Existence Criteria. There have been several att­

empts to generalise the existence criteria described above and several 

reviews of the attempts ( for example, Davison and Levine, 1970 ).

One can say for instance that the existence of surface states depends 

on changes in various tight-binding integrals at the surface. But so 

many integrals can be involved that the number of surface states 

which can be produced is Isirge and the question of which changes are 

reasonable becomes more inportant than which produce surface states 

( Porstraann, 1978 ).

Pendry and Gurraan ( 1973» 1975 ) and Kleinraan ( 1976 ) have 

arrived at useful criteria for situations involving no changes in 

parameters at the surface. They have shown the possibility of surface 

states in almost all the gaps in the bulk band structure. The only 

exceptions appear to be gaps at the zone centre and on zone faces 

where, under certain restricted conditions, the existence may still 

depend on the sign of a potential matrix element. The situation 

remains confused however.and there is a tendency to ignore existence 

criteria. Some of the terms described in this section are usually 

retained.

Surface states are called Shockley or Tamm states according to
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whether they exist because of a band gap or because of a band gap plus 

potential perturbation. True surface states can only be found in gaps, 

all other surface localised states are called resonances. The gaps 

need not be absolute gaps ( that is energies at which there are no 

bulk states ) but may be symmetry gaps ( that is, energies at which 

there are no states of a specific surface symmetry ). Surface states 

may then exist at energies at wnich there are already bulk states and 

this adds further difficulty, particularly in experimental work, to 

an already confusing situation.

3.3.3 CALCULATION OF SURFACE ELECTRONIC STRUCTURE. It has been found 

in general that it is simpler to go ahead and perform a surface calc­

ulation to discover surface states rather than to attempt to establish 

whether or not a surface state ought to exist in a particular gap.

This effectively ignores any question about whether particular 

methods are able to produce all possible surface states. We leave 

discussion of these questions for specific cases in chapter four and 

give here a brief outline of surface calculations.

Many computational methods have been applied to the calculation 

of surface electronic structure ( jellium: Lang and Kohn, 1970; wave- 

function matching ( n.f.e. ); Appelbaum and Haman, 1972, 1973; moments: 

Desjonqueres and Cyrot-Lackman, 1975; recursion: Kelly, 1980; linear 

augmented plane waves ( LAFW ): Jepsen et al, 1978, Krakauer et al, 

1979; matching Green functions: Inglesfield, 1973a, 1978b ). The most 

common way to model the surface is to use a thin slab of material 

with two surfaces. ( Though it is possible in some methods to actually 

model a semi-infinite structure ), The problems involved in using a 

thin slab ( in this thesis seven or nine layers of atoms have been 

used ) are well known. The two surfaces are not far apart and may in­

teract and the centre of tne slab is not far enough from either surf­

ace to exactly reproduce bulk behaviour. These difficulties will be
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discussed in detail in the relevant sections of chapter four.

Adaptation of the method of chapter two to slab calculations is 

simple. The three dimensional periodicity has been replaced by two 

dimensional periodicity so we replace the Bloch sum of equation (2.45) 

with one carried out only in two dimensions. The unit cell of the 

structure becomes a whole column of atoms through the thickness of 

the slab which is repeated along the directions parallel to the sur­

face. ( We note that equation (2.45) assumed only one atom per unit 

cell, this is now necessarily untrue but the notation becomes cum­

bersome and unhelpful when extended to cover such cases. )

As we have already seen the potential at the surface may be 

changed and this change may affect the existence of some surface 

states. We can introduce into the calculations one important effect 

of such a potential change; the change it induces in the self energy 

of atomic orbitals ( section 3.3.2.3 ). This has been done, in most 

cases only for the valence d orbital, by altering the self energy 

until it is consistent with that of a neutral free atom of the same 

charge configuration as the surface atom has in the calculation ( Bisi 

and Calandra, 1977» Bullett, 1981 ). This change makes it possible 

for Tamm states to appear in our calculations. Further discussion of 

this point, together with descriptions of the calculations of surface 

densities of states and tne identification of surface states is best 

carried out with examples and so we leave it until chapter four.

3.4 IMPORTANT EXPERIMENTAL METHODS

In this section we describe briefly two of tne most important 

experimental methods of surface science. Low energy electron diff­

raction ( LEED ) is used to discover the atomic structure of a surface. 

Angle resolved photoelectron spectroscopy ( ARPS ) gives information 

about the electronic structure of a surface. The major features of
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the two types of investigation are illustrated in figures 3*8 and 3*9*

3.4.1 LCW EaÆRGY ELECTRON DIFFRACTION, Any experiment which is 

expected to give information about the surface structure of a material 

must fulfil two conditions. Whatever the method uses as a probe 

( electrons, pnotons etc. ) must have a wavelength which is small 

enough to resolve atomic dimensions. The probe must also have suffic­

iently strong interactions with matter that it produces information 

only about the surface atomic layers. Low energy electrons ( 10-500eV ) 

satisfy these requirements since they have wavelengths of 0,1-1.0 ^ 
and penetration depths in most materials of one to ten atomic layers.

In a LEED experiment such electrons are made to srike a crystal 

structure. A number of beams of scattered electrons are emitted. It 

can easily be shown ( Jona et al, 1982 ) by using the two dimensional 

analogue of the Ewald sphere construction that the beam pattern ( fig 

3.8b ) is an image of the reciprocal net of the surface structure.

The strong interaction between the electrons and the solid makes 

multi-scattering processes important and so complicates the theory.

We will not describe the theory further here but only point out that 

more information about the surface structure is contained in the 

relative intensities of the beams ( Pendry, 1974; Jona et al, 1982 ).

The experiment, then, must measure the spatial distributions and

intensities of the diffracted beamis. This is done while varying either

the energy or direction of incidence of the electrons ( see angles in

figure 3.8a ). The usual outcome is a set of intensity versus energy

graphs of "I-V curves”. Two typical curves are shown in figure 3.8c.

Though conceptually simple the experiment is actually very difficult
—fl H3

to perform because of the extremely hard vacuum required ( |0 “* lO
Torr ) and the accuracy with which the angles must be obtained.

Finding the actual structures is complicated by the fact that going 

from T.EED information to real crystal structure is not a well defined
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process. Calculated patterns from plausible structures must be comp­

ared with the results and altered accordingly. A description of tais 

process and further information about the LEED method can be found in 

the review by Jona et al ( 1982 ).

3.4.2 AITGLE RESOLVED PHOTOELECTRON SPECTROSCOPY, ARPS enables the 

discovery of information about the energies and orbital symmetries of 

the electronic states of a system. Essentially the process involved 

is the simple photoexcitation process which is part of the history of 

quantum mechanics ( Einstein, 1905 )* A photon gives sufficient energy 

to an electron for it to be promoted from its initial state to a final 

state with energy above the vacuum energy level; it can then escape 

from the crystal. This means that the energy distribution of electrons 

will be related in some way to the energy distribution of the initial 

states ( figure 3-9b ). Typical photons used in photoemission exper­

iments have energies in the range lO-lOOOeV. The excited electrons 

therefore have energies in a similar range and, as we discussed above, 

this means that the distance they can travel without scattering is 

severely limited ( typically 2 0 or less ). Photoemission is there­

fore surface sensitive. Some surface sensitivity can also occur be­

cause of the effect of the changing surface potential on the excitation 

matrix elements; this process has a much more complicated effect on 

the energy distribution of excited electrons. ( Williams et al, 1980 ) 

In fact, of course, many effects must be taken into account when 

trying to arrive at a useful description of the experiment ( for 

example: the form of the final states; scattering and refraction of 

escaping electrons; the form of the interaction between photon and 

initial state ). A few simple approximations lead quickly to a Fermi 

golden rule type expression for the photoemission cross-section 

( Williams et al, 1980 ):A :  I  I < % \ p..^+
d i l
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In which ^  and Kj. are the energy and surface momentum of the final 

state E* is the energy of the initial state and A are

the photon energy and vector potential of the exciting radiation and 

2 is the momentum operator. Calculation of the matrix elements is in 

general very difficult but the well defined symmetry of the operator 

2.A+A.2 enables a few simple rules about the symmetries of initial 

states to be deduced.

Hermanson ( 1977 ) showed that if the plane defined by the 

emission direction and the surface normal ( see figure 3.9a ) passes 

through a mirror line of the surface structure then the final states 

must be even for reflexion in the plane. This means that for non­

vanishing matrix elements in (3.11) an initial state must have the 

same symmetry in the mirror plane as the operator A. Initial state 

symmetries can thus be deduced from a knowledge of the. angles of in­

cidence and polarisation of the radiation. For normal emission the 

initial state symmetries are even more restricted because the final 

state must have the full symmetry of the surface ( see Hermanson,

1977 ).

It can be seen ( Williams et al, 1980 ) that by varying^ suidSP 

( figure 3.9a ) it is possible to sample states of any K value 

within the SBZ. The typical ouput of an experiment is an intensity 

versus energy plot for various values of ̂  at a specific value of 

( figure 3.9c ). More details about ARPS will appear through the rest 

of the thesis.

3.5 SUmJ^Y

The study of surfaces by many experimental and theoretical 

methods is now well established. Some of the major terms used in surf­

ace science and in this thesis have been defined and described. The 

crystallography of two dimensional and diperiodic structures is a



- 52 -
subset of the noririal crystallography with only seventeen ( or eighty ) 

space groups available. The new conditions on the potential and wave- 

functions at the surface lead to tne appearance of extra solutions of 

the Schrodinger equation - surface states. The LCAO method of chapter 

two can easily be applied to calculating these states and other elec­

tronic properties of surfaces. In chapter four we use the principles 

described in chapters two and three to investigate some typical surface 

systems.



CHAPTER FOUR

TYPICAL d-BAND MATERIALS AHD THEIR SURFACES
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4.1 GENERAL BfTRODUCTION

In the previous two chapters we have considered the theoretical 

basis of the method of calculation and have described some of the 

important general properties of surfaces. In this chapter we move on 

to the second part of the argument of the thesis. Here we try to dem­

onstrate the ability of this method to produce useful results for the 

materials on which we intend to concentrate. This is particularly 

important in order to counter suggestions ( e.g. Arlinghaus et al,

I960 ) that, because of the importance of charge redistribution at 

the surface, only self-consistent calculations are able to make quan­

titative descriptions of surface electronic structure.

Tight-binding calculations are most often thought of in connexion 

with semiconductors and insulators ( covalent ). This is because they 

work best for such systems, those in which all the electrons can be 

associated with a particular atom or bond. In the types of materials 

with which we are concerned only the d electrons csin be considered to 

be localised but these play an important part in the structure and 

cohesion of the solid ( Friedel. I969; Harrison, I98O ). Frequently 
studies have been made of transition and noble metals by treating the 

two types of electrons differently: the s and p electrons being con- 

sidred as combinations of plane waves and the d electrons as linear 

combinations of atomic orbitals ( e.g. Hodges et al, I966 ). Another 
approach is to use a tight binding method to treat only the d 
electrons. This has been used particularly when trying to investigate 

structural energy changes of the sort considered in this thesis ( e.'g. 

Terakura et al, 1981 ). We adopt a tnird approach and treat all the 

valence electrons in the tight binding formalism developed in 

chapter two.

In this chapter we apply the method to three different types of 

materials with important d electrons. In section 4.2 we deal with two
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typical transition metals, W and Mo, The surfaces of these two mat­

erials have been subjected to a great deal of experimental invest­

igation and we present here the results of surface state calculations 

as a preliminary to the total energy work described in chapter six. 

Experimental work ( e.g. Smith et al, 1982 ) was also the inspiration 

for the calculations of section 4.5. There we. describe the electronic 

structure of Ag, Cu and Pd and (OOl) monolayers and surfaces of these 

materials. As well as providing further evidence of the suitability 

of tnis type of scheme for d-band materials this work also provides 

insight into the electronic structure of interesting quasi-two- 

dimensional systems. The (OOl) surfaces of the sodium chloride struc­

ture refractory compounds TiN, 2rN, TiC and ZrC are described in 

section 4.4. Finally section 4.5 is a summary of the implications of 

the work described in the chapter,

4.2 TUHGSTET AND MOLYBDENUM

Tungsten ahd molybdenum are very popular materials for surface 

experimental work. There are several important reasons for this. Both 

metals, and indeed those near to them in the periodic table, have ex­

tremely high melting and boiling temperatures ( 2610 C and 55^0 C for 

Mo, and 3410 0 and 5927 C for W ). This is useful because it means for 

example that they can be heated to fairly high temperatures for 

surface cleaning without risk of damage to the crystal surface". They 

are fairly readily available, not prohibitively expensive, and easy to 

work with. Clean tungsten surfaces are particularly easy to prepare 

and so V(OOl) became a sort of reference surface ( Debe and King,

1979 ) without any interesting features. All this has now changed of 

course, as we discuss later in the chapter, but we begin with the 

bulk electronic structure.
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4.2.1 ELECTRONIC STRUCTURE OF W AM) Mo. The calculation of the energy 

band dispersions is simple. The non-hermitian matrix, as described in 

chapter two is set up for the necessary k values ( usually along 

symmetry lines of the Brillouin zone ) and solved for the eigenvalues 

and eigenvectors. The eigenvalues provide the bands; the eigenvectors 

indicate where the bands may or may not cross because of symmetry 

requirements and are also used to produce densities of states. In 

order to do this it is necessary to carry out a sum over k. values 

through the irreducible part of the Brillouin zone. For the various 

calculations in this thesis we have used two methods to perform this 

summation. Most commuionly we have used an evenly distributed grid of 

k points with their contributions weighted according to their posit­

ions with respect to the edges and faces of the irreducible zone 

( Janak, 19?-l ). Occasionally we have tried to make use of the special 

points method which, although derived for full bands, must provide a 

good sample of k space points when only a few can be used ( Cunningham 

1974 ).

Figure 4.1 shows the energy bands of W and Mo along symmetry 

lines of the bcc Brillouin zone ( see appendix A ). The densities of 

states for the two materials are shown in figure 4.3. As described in 

chapter two the potential is specified by the atomic orbitals. The W
5-U 0*3orbitals used here were calculated for a configuration 5<i 6s 

6p^^ and the Mo for 4d ̂  ̂  5s^^ ^  . These wavef unctions were

used unchanged for all the matrix elements calculations. A major 

drawback of tight-binding calculations is the lack of self-consistency; 

we have attemted to bring a small measure of it to this work. The 

eigenvectors were used to calculate the configuration of the atoms in 

the solid. The input orbital energies were then altered to be the 

same as those calculated self-consistently for a neutral free atom of 

that configuration. This process was carried on iteratively until
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Figure 4.1 Energy bands along symmetry directions 
of the Brillouin zone for: (a) W; (b) Mo.
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(a)
-7 0 -6 0 -5 0 -40 -30 (eV) - 2 0  - 1 0

(b)
m I

-70 -60 -S'O -4'0 -3-0 -2*0 -ro E.(eV) f
Figure 4.5 Densities of states ( smoothed by convolution with 
gaussian of width O.leV ) for bulk (a) Mo; (b) W.
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starting energies and atomic configuration were consistent. Because 

of the behaviour of the s and p charge this process converges rather 

slowly and was only carried through completely for bulk tungsten. For 

all other systems, including tungsten surfaces a simplified procedure 

was used ( Bullett, 1981 ).

Only the energy of the d valence orbital was altered and it was 

assumed to vary linearly with occupation. The coefficients were calc­

ulated by fitting to the energies obtained for two configurations. In 

the case of Mo, for example, the d-level energies for the configur­

ations 4d^ ̂  ^ 5p^ ̂  and 4d^ ̂  5s^ ̂  ^  were approximated by:

Ea = 14Qna -
Using expressions of this sort led to reasonably stable iterations 

for all the systems in this thesis. The input valence orbital energies 

and corresponding configurations in solid W and Mo are shown in the 

table.

£» (eV) €p(€V) 5i(eV) Os Op
w -5.16 I -2.91 -4.55 0.28 0.55 5.37
Mo -5.06 -2.91 -4.44 0.29 0.29 5.40

Comparison of figure 4.1 with the bands produced by self- 

consistent calculations ( e.g. Petroff and Tiswanathan, 1971; figure

4.2 ) is favourable. The bandwidth for bcc materials is usually taken 

to be ( Harrison, I960 ) . Our bands give 9.81eV for W and

8.84eV for Mo for this parameter. Petroff and Viswanathan found lO.^eV 

and 9*36eV, The shapes of the bands also compare well with those found 

in the self-consistent work though there are some discrepancies. For 

both W and Mo we find the and Nj points to have lower energy than 

the P| point which should be the absolute minimum of the band structure 

This indicates that the atomic s level is too high in energy relative 

to the d level. A more serious defect is the extra band found between

and in Mo. This is the only "crossing error" in either band
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Figure 4.4 (i) density of states of bulk V; (i) density of 
states at centre layer of a seven layer W(OOl) slab; (iii) 
difference between (ii) and (i). Tne fermi level is that of a 
(OOl) slab and the histograr^s are smoothed as before.
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structure. If we use Andersen’s canonical bands scheme in one of its 

intended roles - to help to analyse bands produced by other methods 

( Mackintosh and Andersen, 1980 ) - it is obvious that this band 

results from p orbitals. This means that the Ko p level is too low in 

energy with respect to the s and d levels. All other errors are above 

the ferrai level and so should be unimportant in the type of total 

energy calculation which is our aim.

The bulk densities of states ( figure 4.5 ) illustrates a basic 

property of bcc materials. The density of states has a large dip 

towards its centre; filling the material with five electrons causes 

the ferrai level to be in this gap, dividing the electrons roughly into 

bonding and antibonding. This not only causes the bcc structure to be 

the most stable for materials with half filled d bands but also means 

that it is in bcc metals that it is least inappropriate to speak of 

directional bonds between atoms. In such materials our scheme for 

calculating total energies ( see chapter five ) is most likely to 

succeed. The low temperature electronic specific heat constant ( see 

for excunple Kittel ) can be calculated from the density of states at 

the fermi level. We estimate a value of 5.5rhTKmole which is of 

the correct order of magnitude. ( experimental value, 1 . 3 m T K  mole ' , 

Kittel, 1976 ). We conclude that our calculations of the bulk elec- 
ronic structure of W and Mo are successful.

4.2.2 LOW HTDSX SURFACES OF TUNGSTEN AND MOLYBDENUM. In this section 

we describe the results of calculations on the {oOl] , {lio] and ^lllj 

faces of tungsten and molybdenum. There has been a great deal of 

experimental and theoretical work on these surfaces, particularly 

w{p0lj where the interest was intensified by the discovery of the 

clean surface reconstruction ( see later ). Because of this over­

whelming amount of inforiiiation it is not possible to give a complete 

review here; further references may be found in the papers mentioned 
below.
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Figure 4.5 Surface density of states minus bulk density of states 
smoothed by convolution with a gaussian of width O.leV; (a) W(lll); 
(b) W(llO); (c) W(OOl).
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The section is divided into three parts, one devoted to each 

surface. In each the results of our calculations are compared with 

the available experimental data. The first part, on ^001^ faces, in­

cludes work on the states at reconstructed surfaces. The results pro­

duced for W and Mo are, as expected, very similar ( compare figures

4.6 and 4.10 ). Therefore, in order to avoid repetition, we make ref­

erence to the Mo results only when they differ considerably or un­

expectedly from those for W.

4.2.2.1 fooil Surfaces. The first structure to be identified as a 

metal surface state was discovered by Swanson and Grouser ( 1966 ) in 

a field emission experiment. They interpreted it as being caused by 

the bulk band structure. It was later ( Plummer and Gadzuk, 1970 ) 

found to be sensitive to surface contamination and so identified as a 

surface state. This discovery stimulated interest in the surface and 

the arrival of angle resolved photoelectron spectroscopy brought 

several sets of experimental observations. In this section we will 

refer mainly to three of these; Weng et al, 1978; Canpuzano et al, 

1981; Holmes and Gustaffson. 1981.

The bcc {oOl] surface structure has 4mm space group. This group,

the positions of the atoms at the surface, and the surface Brillouin

zone are described briefly in appendix A. In figure 4.5c we display

the difference between the ^001^ surface density of states and the

W bulk density of states. The negative excursions between -8,0eV

and -5.0eV indicate the expected narrowing of d bands at the surface

caused by the reduction in number of nearest neighbours. ( Heine,

1980 ). This change in numbers of neighbours is also responsible

for the redistribution of electrons between s/p and d orbitals. We
, S 'St)find the surface atoms to be in a (A configuration compai-ed with

, .5*^8 .S'M-O
C\ for the bulk. ( The values for Mo are and Ca .) In

this and all other slab calculations the d levels have been adjusted
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according to the ""self-consistent" prescription of the previous 

section. For surface work the d levels of the surface atoms axe allowed 

to he different from those of the other atoms. The final values found 

for the tungsten slab were -4.05eV for surface atoms and -4.79e7 for 

others. ( -5.86eV and -4.41eV for Mo. ) It should be noted that in both 

cases the overall charge shift to the surface is small ( Watson et al, 

1982 ), the inciease in d charge being compensated by a. redistribution

of s and p electrons. This movement of nearly free electrons is very

difficulat for our tight binding calculations to deal with correctly 

and is the cause of problems ( see later ), Most of the surface states 

described below contribute to the broad peak in the difference density 

of states centred at -l.OeY; other prominent surface peaks can be 

seen at the fermi energy and at -2.0eV and -3.0eV.

Figures 4.6 to 4.10 inclusive show the states more than 50^ loc­

alised in the surface layer of the slab for various geometries of W 

and Mo. Most of the calculations of surface states used a nine layer 

slab and 50% localisation is a sufficient criterion for taese. When 

seven layer slabs were used ( for the reconstructed surfaces ) 65?̂  

was used. Throughout this section and most of the other results we 

use the term surface state ( SS ) to refer indiscriminately to both 

true surface states and resonances ( see chapter three ). We describe 

a surface state in terms of; its energy relative to the fermi energy; 

its localisation in the surface layer; and the atomic orbitals of 

which it is constructed. This last of course depends on the choice of 

X, y and z axes. Usually we choose z perpendicular to the surface in 
question and x along a symmetry direction of the surface structure; 

any variations will be noted. We have tried to assign states to symm­

etry groups ( see appendix A ) - along the surface symmetry lines 

this simply means odd or even with respect to reflexion. The inter­

action between the surface of the slab occasionally causes states to
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split into two which can make this assignment difficult.

We will describe in detail only the results for the primitive 

( i.e. undisplaced from bulk structure ) w{001^ surface which are 

shown in figure 4.6, The results in figures 4.7 to 4.10 are suffic­

iently similar that only differences need be noted. Figure 4.7 incl­

udes a 6% contraction of the surface to second layer distance. This 
is now a widely accepted size for the relaxation ( Walker et al, 1981 ) 

though it is not the value which we calculate ( chapter six ). In 

figures 4.8 and 4.9 we have included uniform displacements of all the 

surface layer atoms in [ll] and (lo] directions respectively. Such a 
movement was postulated as part of the explanation of LESD results on 

the reconstructive phase transition ( Walker et al, 1981; chapter six ) 

As the two figures show such displacements have little effect on the 

surface states. The last of this set of diagrams, figure 4.10, shows 

the surface states for primitive Mo(OOl). Some of these results have 

been published ( Stephenson and Bullett, 1984 ).

At P in the SBZ states (a) and (c) ( figure 4.6 ) are of Pj 

symmetry ( s/^/d^t orbitals ) and can therefore be identified with 

experimentally observed states. We find them at -0.5eV and -3.40eV 

for W ( -0.85eV and -2,75eV for Mo ); these values agree well with 

the observed -0.3eV and -4.2eV for W and -0.2eV and -3.3eV for Mo 

( Weng et al, 1978 ). These experiments and others ( e.g. Holmes and 

Gustaffson, 1981 ) show that both (a) and (c) give rise to 2T| states 

( even with respect to reflexion in the 21 mirror plane ) which dis­

perse upwards along %  • Both (a) and (c) have this behaviour and (a)
—“I

rises to cross the fermi level at — O'Sy^ , this compares well with 

the experimental value of Ü 0 , 6 9 (  Holmes and Gustaffson, 1981 ). In 

all cases but the uniform flĈ  displacements ( figure 4.9 ) we find 

another 2!, state dispersing downwards from P  , this has not been 

found in experiments.
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The doublet of states (d) and (e) ( 2, and symmetry respect­

ively ) can be identified with that reported in experiments ( Holmes 

and Gustaffson, 1981 ) and found in self-consistent calculations 

( Posternal et al, 1980 ). These states are very important because 

they form the basis of one of the proposed mechanisms for the recon­

struction ( see later ). This is particularly true of the state 

which consists of orbitals which connect surface nearest neighbours. 

This state rises in energy along ^  and crosses E^at 0.89 A  which 

compares with the experimental value of 1.2 A  ( Holmes and Gustaffson 

1981 ) and -0.7 A  required for the fermi surface coupling mechanism 

to be described later. ( The crossing point is also — 0.9 A  for Mo )• 

The energy contours for this state through the irreducible SEZ are 

shown in figure 4.11. Its role in the reconstruction will be discussed 

later. State (f), which consists of orbitals connecting surface second 

neighbours, has not been reported in previous theoretical work al­

though its energy at M  ( -3.0eV compared with -2.8eV ) and dispersion 

agree with those of an experimentally observed state ( Campuzano et 

al, 1981 ).

Along the A  edge of the SEZ state (g) is continuous with the 1*̂ 

state at -0,5eV and its dispersion is comparable with that found ex­

perimentally ( Campuzano et al, 1981 ) and in self consistent calc­

ulations ( Posternak et al, 1980 ). It rises to cross Ep at 0.4 A  

compared with 0.5 A and 0.3 A respectively in the experimental and 

theoretical work. State (i), which consists mainly of d ̂  orbitals 

is continuous along ^  in both experimental and theoretical work.

(h) and (j) have not been observed in photoemission though (h), which 

is even with respect to reflexion in the A  mirror plane,might be id­

entified with one of the states found by Posternak et al ( 1980 ).

They found a pair of states, one A, one Aj dispersing downwards 

towards X
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Figure 4.11 Energy contours for state (e) of figure 
4*5 in those parts of the irreducible zone where 
it is ̂  60% localised in the surface layer. The 
contours are marked in eV,
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Along the 3* edge of the S!K there is less obvious agreement with 

experiment. ( Note that this edge is called Y or A by some authors ). 
State (k) is not the lower d^% state found along the A edge but con­
sists of orbitals confined to the surface plane and is odd with 

respect to reflexion in the 2 mirror plane. A d^*-state is found 

( (m) ) but it appears only very close to X  , The state (o) is also 

confined to the surface plane but unlike (k) it is even in the MP and 

consists of orbitals which join surface nearest neighbours. It appears 

that none of the states found along this edge may be matched with ex- 

perimentallly observed states ( Campuzano et al, I960 ). Possible 

reasons for this will be discussed in section 4.2.5*

The reconstruction of the clean w{p01^ surface to the structure 

of p2mg space group shown in figure 4.12b is now a well established 

experimental fact ( De be and King, 1979 ). The evidence for this will 

be examined in section 6.5 where we will also discuss possible mech­

anisms, here we confine ourselves to a description of the surface 

states found on the reconstructed surface. Contamination of the sur­

face with hydrogen causes switching to a structure in which the 

surface atoms form pairs along ̂ 01^ directions ( figure 4.11c ). This 

structure has the same unit mesh as the clean surface structure but 

has space group c2mra. We also describe the surface states of this 

structure. The surface Brillouin zones for both of these structures 

are shown- in figure 4.15. The difference density of states shown in 

figure 4.14 illustrates the expected splitting of states at the zone 

boundary, particularly near the fermi level.

In figures 4.15 and 4.16 we have plotted, for both p2rag and c2rara 

structures,- states which are localised more than 65% in the surface 

layer. In each case the atoms were displaced 0.2 ̂  to produce the 

reconstructions. The figures show the dispersions along the edges of 

the irreducible zones which are, of course, different for the two
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a
...... r..  " r ---- r 1

(eV) - 5 0  - 3 0 20

c

Figure 4.14 Surface density of states for W(OOl): (a) before and 
(b) after the p2mg reconstruction. The difference (b) - (a) is 
shown in (c).
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structures. We have tried to indicate the states in such a way that 

their relationships to those present before the reconstruction is ob­

vious. On the whole states are unchanged, the major exception is of 

course at the new zone boundary edges ( X and, for the p2mg structure 

X ). Here coupling of states by the new reciprocal lattice vectors 

causes splitting. This is most obvious for state (e) which was a 

surface plane state joining ( surface ) nearest neighbours. This state 

splits approximately into "bonding" and "antibonding" parts ( figures 

4.15a and 4.16b ). The two parts are separated by'v- l.OeT for the 
p2mg structure and by ̂  0.8eV for the c2mm. The two directions PX 
and P X  are not equivalent ( figure 4.15 ) and the split (e) state 

has different behaviour along them. With Kq parallel to the chains of 

atoms the two parts are pinned together at the zone boundary ( figure 

4.15c ). The effects of the reconstructions on other surface states 
are unimportant. A discussion of the energy changes will be found in 

chapter six.

4.2.2.2 flio] Surfaces. The centred rectangular c2mra structure of 

the body centred cubic {lio] surface is pictured in appendix A. The 

close paoked nature of this surface and the corresponding small change 

in number of neighbours with respect to the bulk make the difference 

density of states much smaller than for the open (OOI^ surface ( fig­

ure 4.5% ). Figure 4.17 shows the k space distribution and dispersion 

of states more than 60^ localised in the surface layer.

The results for this surface are strangely at variance with 

those of experiments ( Holmes et al, 1979» Holmes and King, 1981 ).

We will discuss this disagreement later; in this section we confine 

ourselves to a description of the states shown in figure 4.17. State 

(a), of P, symmetry, is about 60^ localised and appears at the upper 

edge ( -2.0eV ) of a bulk band gap for states of this symmetry. A 

similar state is found at the lower edge gf this gap ( -5.0eV ) but
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with less localisation. In Mo both these states have equal weight and 

appear at •1,'JeY and -4.0e7. Along both A  and Z  state (a) picks up 

other components of 5, and ^  ( even ) symmetry. Another A» state, of 

mainly d ^  orbitals, is found between -4.OeT and -5.0eV near the zone 

boundary. The only significant A% state is the highly dispersive (c) 

which is 70-80% localised in the surface. State (d) has the correct 

energy range and symmetry to be identified with the experimentally 

observed state, but it is found over a much smaller region of the SEZ 

( figure 4.17c ). All the states we have described though highly 

localised are confined to small regions of the SE  and hence make 

little contribution to the peaks in the density of states. These peaks 

( see figure 4.5% ), which occur at -O.SeV, -1.5eV, -2.5eV and -5.5eV, 

are made up from more weakly localised states distributed over larger 

areas of the zone.

4.2.2.5 fill) Surfaces. The results for the fill] surfaces are as 

difficult to reconcile with the ( sparse ) experimental data ( Cerrina 

et al, 1982 ) as those for the {lio] surfaces. Details of the surface 

atomic geometry and Brillouin zone can be found in appendix A. Here, 

as before, we confine ourselves to a brief description of the results 

shown in figure 4.18 with discussion delayed until later. The most 

prominent state (a) is 90% localised at the surface at P  , where it 

has energy -0.45eV, and it disperses upwards along ^M and PK , 

State (b), which has energy -1.5eV at P is made up from d orbitals 

orbitals in the plane which are even with respect to reflexion in 

the Z  mirror plane. The experiments indicate the existence of a 

state with tae same symmetry with energy -l.OeV at P and extending 

for a considerable distance towards M  ( Cerrina et al, 1982), This 

leads us to consider the possibility that (d) is continuous with (b) 

and that the combination can be identified with the experimental state, 

(c) which has energy -1.15eV and P3 symmetry gives rise to a band



— 85 “

CD

O O O
O

lU

(U>-lco
en
OJu
cou

en

<u
ü
co
W3en

0)
JZ
u a
ew XO •H

"Ven ce euo a.
4J a
CO co
(U «4-1ü ocoew mM3 (Uen M3eu âû
JZ •1-t*j U-l
C 0)o <uen•o0>en

•r-l <ucco oO N
o d)
JZo •H

vO U3
c "Oco <u

mC u
4-t u

•H<u
(Uoe 4J

en U-40) o
4-1co eu
4-1 <30en-Oeu
(U
u -Cco <J

C4-I co
M lU3
en eio

c00 o
I— t

co
"O

• a>
4-14-1
O

•Hk o.



— 84 “
dispersing upwards. This compares well with a theoretical state found 

previously with energy -1.6eV at T but the corresponding experimental 

state occurs only at H  ( Cerrina et al, 1982 ). Many other states are 

found along the remaining two edges of the ( figure 4.18b and c ) 

as in the theoretical work in Cerrina et al ( 1982 ) but it is diff­

icult to identify the symmetry of these states and there is little 

available experimental data for comparison.

4.2.5 DISCUSSION If the calculation of"structural energies to be 

described in chapter six is to be convincing then it is important 

that the calculation of states on the surfaces involved is seen to be 

moderately successful. At the worst non-success should be systematic; 

that is, it is should be possible to say under what circumstances the 

method will not work or to understand the errors involved. One of the 

most likely sources of error is the redistribution of charges at sur­

faces. The magnitude and*nature of this redistribution is still a 

subject of contention. Watson et al ( 1982 ) showed that the total 

charge movement to the surface atoms is likely to be small. Kleinman 

( 1982 ) showed that in self-consistent calculations for a Cu slab 

there was a movement of electrons from the d orbitals of the surface 

atoms to the s and p. He believed that this should be the case for 

transition metals as well as noble metals. Tersoff and Falicov ( 1982 ) 

maintained that the fact that the d orbitals are an essential part of 

the bonding in transition metals should cause the opposite - a 

movement from s/p to d - as they had previously found in LCAO work on 

Hi. We have always found a shift from s/p into d orbitals. Our method 

of shifting the surface d level introduces a small amount of self- 

consistency in that it prevents this charge movement from becoming 

too large.

The results for the ^OOlj surface are the most successful in 

that they have the greatest resemblance to experimental results.
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Almost all the discrepancies are only in the relative energies of 

states. Chapter six is concerned mostly with the reconstructions of 

the WjoOl] surface and the results presented above make it justifiable 

to expect successful calculation of the energy changes involved. It 

is important however to give some consideration to the possible causes 

of the lack of success on the fnoj and fill] surfaces.

Consideration of the changes in numbers of nearest neighbours 

leads to and expected order for the magnitudes of d charge changes. 

^^4(110) <An<{(00l)</X\^(lll). Though we find ̂ (U(001)>/S^>A(H0) we have 

^nj^(lll)^ 004(001) (/^na(001)=0.49;6n4(110)=0.15;AO4(lll)=0.56 ) 
and this could be significant for the fill] surface ( the combination 

of successful results for foOl] and the small size of the f\4 change 
for flicjmake it unlikely that this is the cause of discrepancies for 

the flio] surface ). A possible explanation of the peculiar charge

change (. as well as the complexity of the fill] slab results ) is the

small interlayer spacing for this structure. The interlayer distances 

for foOl],{lloj and fill] slabs are 2.99au ( a/2 ), 4.23au ((%//%) 
and 1.75au ((X/AI% ) respectively. The -fill] spacing is such that not 

only are the two surfaces of the slab close together but adjacent lay­

ers intrude into one another - the "surface layer" may consist not of 

the first layer but of the first two layers. Add to this the expected

large relaxation of the f̂ lll] surface ( chapter six ) and it is not

difficult to see that the wflll] surface may be very different from 

the simple structure used here. None of these considerations apply to 

the flio] surface: the interlayer spacing is large; the predicted rel­

axation is small; and a postulated reconstruction ( Bourdin et al,

1985 ) is unlikely to be energetically favourable but would not greatly 
affect the surface states if it was.

We conclude this section by noting some of the important points.

As we have already stated the foOl] results are successful enough to
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justify total energy calculations. We hope that further calculations 

for different structures and materials might make clearer the reas­

ons for the variable aiuount of success. Finally we note that there is 

only a small amount of experimental information available for flio] 

and {ill] surfaces but a vast literature of the {o O l] surface. Further 

experiments might well clarify the situation in the future.

4.3 (hit Pd AND Ag; fOOl] SUBFACES AND OVERLAYERS

Over the last few years there has been a growing interest in low 

dimensional systems of one kind or another. This interest has been 

inspired by several possibilities which they provide. Firstly their 

structure is necessarily simpler and this may make it possible to get 

more insight into the nature of the bonding in the material. In 

addition low dimensional structures such as overlayers may have prop- 

erites which differ considerably from those of the normal material. 

and may prove to be of considerable technological interest.

In this section we present the results of work on fee metals Cu,

Pd and Ag; on free monolayers of these metals; on their (001) surfaces 

and on monolayers adsorbed on these surfaces. The three substances 

have very different d energy levels, this means very little inter­

action between surface and adsorbed monolayer. The monolayer might be 

expected to behave very much as though they were unsupported - we test 

this possibility. We also make a brief discussion in the light of 

experimental work on these systems ( e.g. Smith et al, 1982 ).

4.3.1 BULK MATERIALS. The lattice constants of the fee structure 

for the three metals are 5.61 A  for Cu, 5.89 A  for Pd and 4.09 Â  for 

Ag. The energy bands along the LP and P X  directions of the bulk 

Brillouin zone for all three materials are shown in figure 4.19* ( The 

fee Brillouin zone is illustrated in appendix A. ) Notice that the Cu 

and Ag bands are typical of noble metals - narrow d bands crossing
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through the wide free electron like s and p hands. In Pd the d hands 

are much wider and more hybridised with the s and p. The same self- 

consistent raising and lowering of the d level was used for Mo and W, 

The summation over the irreducible zone was done with a ten point 

sample for Cu and Ag and with a sixty point sample for Pd. The final 

d energy levels and occupations were;

Cu Ag Pd

9.92 9.92' 9.68

-7.90 -9.32 -6.33

The hands for Cu and Ag compare well with those found by other non- 

relativistic calculations ( see for example Harrison, 1980 ). It is 

interesting to note differences between the Cu bands in figure 4.19a- 

and those published earlier ( Bullett, 1981 ) which were computed by 

the same method. The major cause of these differences is the slightly 

different Hi/Sdl relations used. Also important is the qualitative 

difference between the bands of the noble metals Cu and Ag and those 

of the transition metal Pd.

4.3.2 MONOLAYERS AND ADSORBED KONOLAYSRS. Calculations on free 

monolayers are particularly simple to deal with. The structure repeats 

only in two dimensions and with the simple fee monolayers considered 

here we need only have one atom per unit cell. Adsorbed monolayers of 

course can be treated in the same way as other surfaces. The results 

of the work on monolayers are presented in figures 4.20 to 4.25. We 

show the energy bands for a monolayer of each material at each of the 

three lattice constants ( figures 4.20, 4.22 and 4.21̂ . ) and also the 

states which remain localised in the monolayers when they form epi­

taxial overlayers ( figures 4.21, 4.25 and 4.25 ). By displaying the 

results in this way we hope to bring out clearly those effects in 

which we are particularly interested: (i) the effect of changing the 

interatomic distance on the energy bands of a monolayer; (ii) the
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effects of being adsorbed onto substrates where varying amounts of

interaction with the bulk d bands are possible, ( The amount of inter­

action should depend upon the difference in energy between the atomic 

d levels. ) ( Smith et al, 1982 )

The bands of the copper monolayers ( figure 4.24 ) show perfectly 

the expected behaviour. Narrow d bands cross the broad s/p bands. As 

the lattice size is reduced ( moving from right to left in the figure )

the s/p and d bands broaden and the minimum ( H, ) point moves steadily

downwards. In Ag the d bands appear completely detached and interact 

with the s/p only when compressed to the Cu lattice size. Much more 

interaction between the bands ( as expected ) is seen in the Pd 

results in figure 4.20. The Cu results compare very well with those 

of Arlinghaus et al ( 1979 ) ( illustrated in figure 4.26 ) who used 

a self-consistent method. It is particularly significant that we agree 

with several other authors ( e.g. Gurman, 1975 ) iu locating the fermi 

level well above the top of the d bands. Comparison of the Pd results 

with those of Noffke and Fritshe ( 1981 ) is more difficult because 

their calculations are relativistic. Nevertheless the overall impress­

ion is favourable.

When the monolayers are adsorbed onto the surfaces interpretation 

becomes more difficult. We expect that the greater the interaction 

with the substrate the greater the difference between free and adsorbed 

monolayer. This is confirmed in figures 4.21b, 4.23c and 4.25a where 

each material simply forms a (001 ) surface. The Cu(OOl) results are 

essentially ( though not exactly ) the same as those of Bullett ( 1981 ). 

The Ag(OOl) surface is similar but the states found on Pd(OOl) are 

more complicated. It is not our intention to describe surface states 

in detail since our main interest is trends of behaviour. Experimental 

work is available on Pd/Cu(00l) and Pd/Ag(00l) ( Smith et al, 1982;

Binns et al, 1983; an example appears in figure 4.26 ) and theoretical
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work has been carried out on the Pd on Ag(OOl) system ( Bisi and 

Calandra, 1977 )• It is immediately apparent that the Pd on Ag(OOl) 

differs little from the unsupported Pd monolayer. This was indeed the 

conclusion reached by Smith et al ( 1982 ). Peaks were observed in the 

photoemission corresponding to states l,2eV and 2.4eV below the fermi 

level at P  . Bisi and Calandra expected these peaks at O.BeV and 

-2,5eV, A similar lack of interaction is of course predicted for the 

Ag on Pd(OOl) system ( figures 4.22b, 4.23b ).

4.3.3 SUMMARY. We havecarried out a preliminary investigation of 

these metals and quasi-two-dimensional systems formed from them. A more 

intensive investigation is undoubtedly required and would produce more 

useful and interesting data, Nevertheless the results presented in this 

section bring out several important properties. They confirm that our 

calculation scheme is able to deal sensibly with noble metals. The mono­

layer results and particularly their variation with lattice constant 

show up clearly the properties of tight-binding bands. We believe how­

ever that the most important aspect is that, as expected, the supported

monolay ers appear to behave in a very similar way to the theoretical

free monolayers. Further experimental and theoretical investigation of 

these systems will be very fruitful.

4.4 TiN, Tie, ZrN, ZrC - REFRACTORY MATERIALS

Transition metal carbides and nitrides have the high melting and 

boiling temperatures and hardness characteristic of covalent materials 

and yet have metallic conductivity ( Inglesfield et al, 1982 ), In 

addition there is an ionic contribution to the bonding caused by a 

transfer of electrons from the metal to the non-metal atoms ( Neckel 

et al, 1976 ). This combination of properties and the observation of 
a surface state on the TiN(OOl) face make TiN, ZrN, TiC and ZrC an 

interesting third class of materials with d electrons for our study
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of surface electronic structure.

4.4.1 Bulk Materials. All four materials crystallise in the sodium 

chloride structure in which each atom has six nearest neighbours, all 

of the other atom type. The lattice constants are : TiN - 4.24 A  ; TiC 

4.32^ ; ZrN - 4.57^ » ZrC - 4.70 A. The bulk bands along the LP andPX 
directions of the Brillouin zone are shown in figures 4.27 and 4.28. 

These bands compare well with the results of other calculations ( e.g. 

Callenas et al, 1983; Johansson et al,.1981 ), though our lowest band 

( formed from the s orbitals of the non-metal ) is in all cases lower. 

The distributions of the valence electrons between the atoms is:

metal nd non-metal Op metal 0 non-metal 0 charges

TiN 2.26 4.91 2.20 6.80

ZrN 2.15 5.04 2.21 6.79

TiC 2.51 3.66 2.68 5.32 T*

ZrC 2.06 4.17 2.16 5.84

In all cases electrons move from the transition metal d level to the 

non-metal p level. This ionic nature has important consequences for 

the surface potential and hence for the surface states.

4.4.2 fool] Surfaces. The states more than 709̂  localised in the 

surface layer of the four layer slab for TiN, ZrN, TiC and Zrc£oOlJ 

surfaces are shown in figures 4.29 and 4.30. ( The thinness of the 

slab makes it necessary to have such a strong localisation as the 

criterion. ) The transition metal d level energy was altered in the 

self consistent way described before but tne bulk values were retained 

for the non-metal levels. These energies and the changes in them at 

the surface are shown in the table on the next page. The most impor­

tant features are similar for all four materials. The lowest surface 

band ( at^-l6.0eV for TiN/ZrN and A. -IQ.OeV for TiC/ZrC ) is made 

up from the s orbitals of the non-metal atoms. The nitrogen or carbon
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p orbitals ( the effect is more pronounced in the nitrides ) form a 

second band of states which appears between -2.0eV and -4.0eV in TiN 

and between -4.0eV and -6.0eV in ZrN. The bands with very little dis­

persion found near the fermi energy are in all cases made up from 

metal d orbitals in the surface plane.

material bulk GJl surface ̂ . surface T\A
metal 
surface n

non-metal
surface

TiN -5.04 -4.86 2.25 2.25 6.95

ZrN -4.64 -4.59 2.10 2.19 7.05

TiC -4.38 -4.55 2.47 2.66 5.60

ZrC -4.59 -4.47 2.09 2.21 6.05

Table of the energies and occupations of surface orbitals.

4.4.5 DISCUSSION. All of these materials are non-stoichiometric 

when prepared normally and it is important to take this into account 

when comparing the results of calculations and experiment. The normal 

compositions for the Ti compounds are TiNQ.^^and TiCg . ZrN is 

normally ZrN note however that Hochst et al ( 1982 ) obtained

results both for these compositions and for almost stoichiometric 

crystals prepared under special conditions. An LCAO fit to AfW calc­

ulations gave charges of Ti+1.5 N-1.5» in agreement with our values 

of Ti*tl.8 N-1.6, though the original APW work indicated much smaller 

movements of^0.9 electrons ( Neckel et a.l, 1976; Inglesfield

et al, 1982 ). No values have been reported for the changes in these 

charges at the surfaces. We expect our values for these changes to 

be less accurate than the corresponding results for metal surfaces.

The non-metal p orbitals, whose energy we did not alter, are very im­

portant in determining this charge distribution.

The surface state found on TiN(OOl) ( Inglesfield et al, 1982; 

Johansson et al, 1981; Johansson and CallenSs, 1982 ) is a Tamm state 

pulled from a bulk band by the change in electrostatic potential at
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the surface. No change in ionicity would be needed at the surface to

produce such a change. The surface bands we find without alteration

of the Ti d levels are indeed very similar to those snown in figure

4.29. The experimental surface state on TiN(OOl) consists of N p^/p^
orbitals and is observed at -2.9eV below Epat H ( Johansson and

Callenas, 1982 ), Our N p /p state appears at -2.2eV at P  • A
 ̂ J

similar state has been reported for ZrN but for TiC surface states 

have only been identified on the ( polar.) (ill) surface. Most of the 

photoemission peaks for these carbides and nitrides have been ident­

ified with features of the bulk density of states. In summary, then 

our method has successfully predicted the existence and energy of a 

surface state on the TiN and ZrN (001 ) surfaces, and has predicted 

sensible values for the ionicities of TiN, ZrN, TiC and ZrC.

4.5 OVERVIEW

In this chapter we have applied the method of chapter two to 

various systems. The most important study was of W and Mo and of their 

surfaces. For these materials we found a great deal of agreement with 

experimental results. This is particularly true for the bulk bands and 

{*00lJ surfaces. Results for the other surfaces are less pleasing, partly 

because of the more limited experimental data. The success of the 

bulk calculations promises success in the total energy work to be 

described in chapter five. This, taken together with the close agree­

ment between our ^00ij surface results and the results of photoemission 

experiments on those surfaces indicate the possibility of success in 

the surface geometry calculations to be carried out in chapter six.

The other work in the chapter was something of an aside. Its pur­

pose was to give increased confidence in the ability of the method to 

give good results for a variety of systems and to point the way for 

further work. In this we believe it succeeds admirably.



CHAPTER FIVE

TOTAL ENERGY IN MATERIALS WITH d-ELECTRONS
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5.1 m'KQDUCTIQN

The formation of a solid from a group of originally well separ­

ated and non-interacting atoms must obviously be a process which leads 

to a reduction of energy. This energy change is often defined as the 

cohesive energy; the energy required to separate the solid into its 

constituent atoms ( e.g. Harrison, I960 j. It is a goal of work on 

any solid to understand the origins and magnitudes of the various 

contributions to the cohesive energy. These contributions can be 

grouped together in several ways ( îfelly, 1980 } and it is one of the 
concerns of this chapter to give an account of one particular part­

itioning which is well suited to our tight-binding calculations.

There is a major difficulty associated with the calculation of 

cohesive energies and indeed all the similar structural energies to 

be calculated in the next chapter. They are all the relatively small 

difference between two enormous energies. It is well known that the 

difference between two almost equal large numbers can become very im­

precise, even if the two numbers are themselves known with small frac­

tional error. When approximations are likely to introduce substantial 

errors the problem becomes acute. It is normal in these circumstances 

to try to arrange calculations so that poorly known energies are 

never needed ( Heine, I98O ).
The various sources of the cohesive energy of a solid are often 

obscured by the mathematical intricacy of the method of calculation.

We describe these sources in basic physical terms before going on to 

indicate where they fit into our scheme for total energy calculation. 

Throughout all this work we make two important and well known ass­

umptions. The first of these is the Born-Oppenheimer approximation.

In general this means that the motion of ions and electrons can be 

treated separately. Here it is important as the basis of our sep­

aration of the total energy. We have also assumed a "frozen core".
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In this approximation the core electrons in each atom take no part in 

interactions with other electrons and are not perturbed by any change 

in structure. They do, of course, contribute to the charge density 

and hence to the crystal potential. The interactions which operate 

within the crystal are mainly electrostatic in origin. The repulsive 

nucleus-nucleus and electron-electron interactions are counterbalanced 

by the attractive nucleus-electron interactions. The kinetic energy 

of the electrons ( which depends on how they are constrained to move 

within the crystal ) must also be taken into account ( The kinetic 
energy of the nuclei is ignored. ) ( Harrison, I960 ), In principle a 
cohesive energy calculation would sum all of these interactions for 

the solid and for the set of free atoms. This process would give the 

two "enormous numbers" referred to above. We are principally inter­
ested in the difference between the atomic energies and the solid 

energy. We need only be concerned therefore with how the interactions 

change when the solid is formed. And in particular we are concerned 

with further changes brought about by alterations in the crystal 

structure. It is important to see how these changes in interactions 

come about and where they fit into the method adopted.

The renormalised atom concept ( Hodges et al, 1972; Gelâtt et al 

1977 ) provides a useful analysis of the coaesive energy of transition 
metals. In this method an atom is prepared for the solid by cutting 

off the wavefunctions at the Wigner-Seitz radius. Each atomic wave- 

function  ̂ becomes:

' R . f  '  - (5.1)
in which; r at

'R
f\l

dr
(5.2)

and i\ws is the Wigner-Seitz radius. Wit'nin this scneme the cohesive



— 108 —

energy can be seen to be made up of three contributions; (i) the 

energy required to take the free atom to the configuration found in 

the solid; (ii) the energy change on renormalising this excited atom; 

(iii) the change in one-electron energy per unit cell brought about 

by the formation of bands from the renormalised atom levels. Gelatt 

et al ( 1977 ) were able to break down the third terra into three parts 
because they used a free electron band for conduction electrons. It 

consists of; the difference between the average energy of the free 

electron band and that of the atomic s-level; the change of energy 

caused by the formation of the d-band; and the change in energy caused 

by hybridisation of the conduction and d-bands.

Gelatt et al ( 1977 ) showed that the promotion energy is small 

because of cancellation of electron-electron terms. The largest con­

tribution to the cohesive energy comes from the "broadening of d-band" 

term. This d-band contribution can be modelled in the usual way 

( Priedel, 19&9 ) for an approximately rectangular d density of states 
of width Wi % , / \— na (10-na) (5,,)
and is largest for half filled d bands. The contributions are inter­

related. This strong d-band contribution for W and Mo reduces the 

interatomic distance. This compresses the conduction electrons, thus 

raising their energy and reducing their contribution to the bonding 

for these metals at the centres of transition series. The equilibrium 

lattice size depends largely on competition between these two effects 

( Bullett, I98O ). We will describe this competition in greater detail 
in the next section where we will discuss how each contribution is 

taken into account in our method of calculation and consider the 

effect of uniform compression on the cohesive energy.
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5.2 partition ANU VOLUME DEPENDENCE OF COHESIVE ETÆRGY

In this section we begin by showing how the total energy of a 

solid can be split conveniently into two parts. We then describe how 

these two parts are related to the various contributions described 

above. The section ends with a description of how the cohesive energy 

of the system changes with its volume and how this change is re­

presented within our model. Note that throughout tnis work we use the 

terras "cohesive energy" and "total energy" interchangeably. This is 

simply because we follow the normal practice of subtracting out those 

parts of the total energy which are unchanged by the structural alter­

ations with which we are concerned.

Following Chadi ( 1978 ) and Heine ( 1980 ) we express the total 

energy of the system of ions and electrons as the sum of two terms:

in which is the one electron or "band structure" energy -

Ebs ^  Ç
where Ey\ are the energy levels. U is a term which includes everything 

else. Often U has been called the "electrostatic energy" but, as 

Heine ( 1980 ) has pointed out, this is a misnomer, Heine writes U

“ ‘( 1 - 1  Z Z  2tli’ - i f f f ptne n d Y d V ^
^ 3L 1*1' 'R,̂. a r  (r-r'l J(5.6)

The first term is the coulomb repulsion between the ions, the factor 

^ corrects for the double counting which would otherwise occur in the

JJ ii-r'l
is the total electrostatic energy of the total charge density p 
( r, r* range throughout tne system ). One half of this needs to be 

subtracted because each electron pair was counted twice in the band 

structure energy. The same is true of the exchange energy . Heine 

then goes on to snow that U is essentially a snort range repulsive
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interaction which contains the intraatomic electron-electron coulomb 

and exchange energies, the screened interatomic ion-ion interaction 

and the interatomic exchange energy. We follow a slightly aifferent 

course here because we wish to understand in detail how tne various 

parts of the renormalised atom description of coaesive energy nave 

been aistributed between the two terms E and U.

The extent to which the various contributions have been included 

in E depends upon the prescription used in constructing the crystal 

potential and on the way interactions between the orbitals are treated 

In our calculations the potential is specified as being caused by a 

set of overlapping atomic charge densities. These charge densities 

are in turn specified by the atomic wavefunctions output by the Herman 

and Skillman program ( see appendix B ). This means that the potential 

which an electron Hsees" consists of three parts. Firstly the elec­

trostatic interaction with atomic nuclei is included. The second 

term is the electrostatic interaction with all the electrons ( the 

charge distribution is spherically averaged around each atom ).

Finally there is a density dependent exchange term ( equation 2.50 ). 

This term also removes the interaction of each electron wiht itself 

which was included in the second term. All electron-electron inter­

actions are counted twice ( once when each electron "sees" the charge 

density and once when it is part of it ).

The major difference between the renormalised atom potential- and 

a potential constructed from overlapping atomic charge densities 

becomes obvious when the interatomic distance is reduced. Renormalising 

for smaller and smaller Wigner-Seitz cells involves forcing more and 

more charge into the sphere. This conduction charge is excluded from 

the core region because of the orthogonality constraint on the wave­

functions ( Pettifor, 1977a, 1977b, 1979 ) and its energy increases 

rapidly with decreasing interatomic distance. The s-band formation
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term becomes repulsive ( Gelatt et al, 1977 ). In an overlapping- 

cbarge-densities potential this extra charge can only be taken into 

account if the charge from neighbouring atoms which intrudes into an 

atomic cell is added to the charge within that cell. This process can 

preserve the charge neutrality of the cells only if all of the atoms 

are considered simultaneously. If the matrix elements are calculated, 

as ours are, by considering only two atoms at a time this is clearly 

impossible. The compression of charge and consequent increase of 

energy are not included in the band structure energy and must there­

fore be added to U. Our band structure energy contains then: (i) the 

energy difference between the free atom d levels and the solid d bands 

(ii) the sp - d hybridisation energy; (iii) part of the energy of 

formation of the sp bands. The other contributions to U are more in­

tricate .

Since the calculations are not self-consistent it is very diff­

icult to take proper account of the effects of redistribution of 

valence charge between s/p and d levels. In principle this would mean 

a change of the promotion energy with contraction of the crystal. This 

change must become part of U. Finally the double counting errors 

which were included in the band structure energy must be removed. • 

These too must be included in U. These more complicated contributions 

are expected to be quite small and it remains a reasonable approx­

imation to use a short range repulsive exponential for U. In the next 

section we describe how this was done,

5.3 CALCULATION OF REPULSIVE ENERGY

Because we expect the repulsive interaction to be both short 

range and largely dependent on intraatomic effects we also expect 

that it will depend only on the types of atoms involved and on the 

distance between them. We are reasonably confident then that it should
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be possible to represent the total interaction as a simple sum of in­

teractions between pairs of atoms. This has already been tried, with 

some success, for structural calculations in semiconductors ( Chadi, 

1978, 1993 )♦ We assume that the pair interaction is transferable from 
situation to situation in the way that chemical bonds are. We have

tried two different functional forms for

and;

Upcuf (T) = c exp ( - d r )

U  eairO') ~  P  r

(5.8)

paiTV y -  p r  (5.9)
in which c, d, p and n are parameters to be fitted with the aid of 

calculated band structure energies and experimental results.

The first stage in obtaining the parameters is to calculate the 

variation of the band structure energy with lattice constant. This was 

done by summing the one electron eigenvalues over an irreducible 

Brillouin zone for two ( or more ) lattice sizes, taking care to en­

sure that the same number of atoms were involved each time. The total

energy is then written in the form:

E W — Eu.W + dpalr(Hft)bs (5.10)
in which a is the lattice constant and includes nearest and second 

nearest neighbours. ( Because of the short range nature of the repul­

sive pair interaction it is not necessary to include any other neigh­

bours. ) The parameters can then easily be determined by forcing the 

total energy obtained to fulfil the following conditions:

cind :
da a=a.

=  0  

_  S q o B

(5.11)

in which B is the experimental bulk modulus ( Kittel, 1976 ) of the

material and a- is the equilibrium lattice constant. ( The second
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condition can easily be derived from the usual definition of the bulk 

modulus ( Ashcroft and Mermin, 1976 ):

3= V d^tob
(5.13)

in which v is the volume per atom, by substituting for v its value in 

bcc crystals which is ̂  . ) The results of applying this method to

calculations for W and Mo are described in the next section.

3.4 RESULTS

Figures 5«la and 5*2a show the variations with lattice size ( as 

defined by the lattice constant ) of the band structure energy per 

atom for W and Mo respectively. In both cases ( and indeed in all 

energy calculations ) the same matrix elements were used throughout - 

those obtained using the equilibrium Wigner-Seitz radius. This means 

that the distortion of atoms on making the crystal smaller is not 

taken into account and therefore the analysis of section 5.2 is more 

directly applicable. It is also a sensible choice in view of the fact 

that we will later be concerned with surfaces where the Wigner-Seitz 

sphere will be not only ill-defined but also different for each atom.

-The variations of the effective occupations of the valence s, p and d 

orbitals were also calculated and are shown in figures 5*lb and 5*2b. 

The energies plotted in the diagram sure in fact obtained by sub­

tracting from the total band structure energy the quantity

in which €̂ fY\̂ are the energy of the atomic s orbital and the 
final projected s occupation respectively. It was hoped in this way to 

take some account of the effect on the total energy of the redist­

ribution of valence electrons caused by the structural change ( see 

discussion and chapter six ). Table 5.1 shows the complete results 

for W and Mo.

In both cases the final total energy was assumed to be a quad-
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ratio function around the equilibrium lattice constant; i.e. we 

assumed: ai . v
EfeW = tx Ca-a.) + (a -a .) + ^

The values obtained for 0(, ^ and y together with the resulting 

values of c, d, p and n are shown in table 5.2. Also displayed there 

are the experimental and calculated cohesive energies. The calculated 

values have been obtained by adding on the aaa© values of the repul­

sive interactions and are in agreement with the experimental values. 

Finally figures 5«le and 5»2c show the variations of the cohesive 

energy of solid W and Mo with uniform compression or expansion.

5.5 DISCUSSION

Heine ( I960 ) concluded that it was possible to ignore the non 

band structure part of the total energy when working on "monovalent 

or quasi-monovalent systems or when comparing energies in two struc­

tures with the same interatomic spacing". Obviously this is very 

restricting and it would be useful to have a reliable method of app­

roximating U. Chadi ( 1978 ) and his collaborators were the first to 

use a method of the type we describe for structural calculations.

They use a simple tight-binding method with parameters to calculate 

the band structure energy and a polynomial Upatr* This method has 

been fairly successful in its applications to semiconductor surfaces 

( e.g. Si, Ge, GaAs, see for example Chadi, 1983 )• Two similar 

methods have been applied to transition metal surfaces ( mainly W )

( Terakura et al, 1981; Treglia et al, 1983 )• The results of their 

structural calculations are compared with ours in the next ccapter. 

Here we confine ourselves to a comparison of the three methods.

Both the Treglia and Terakura methods involve only the d bands 

and are simply LCAO methods in which the hopping integrals are taken 

to vary exponentially with interactomic distance, though they use
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different expressions for the variation. Both methods also have a 

Born-Mayer type exponential repulsive energy ( i.e. the same as our 

equation 5*9 )• However since they have different values for the tight 

binding integrals and use different procedures to constrain the repul­

sive energy they arrive at different values for the parameters.

( Treglia et al fitted the repulsive interaction using the equilibrium 

lattice constant and cohesive energy whereas Terakura et al used the

lattice constant and bulk modulus as we did. ) The value of the

repulsive interaction at nearset neighbour distance provides a useful 

way to compare the three methods. For W we have 0.15eT, Treglia et al 

have 0.68eV and Terakura et al 0.84eV. The considerable differences 

between these values indicate corresponding differences in the band 

structure energies since all three calculations reproduce tne cohesive 

energy well. These differences in band structure energy can be att­

ributed to differences in the matrix elements and more significantly 

to differences in their variation with interatomic distance. There 

will be further discussion of this point in the next chapter.

In summary then we can say that we have arrived at sensible val­

ues for a repulsive interaction to represent the screened internuclear 

repulsion, the electron kinetic energy, the double counting correction 

and any other effects not taken into account in the band structure 

energy. We are confident that this interaction should be a reasonable 

approximation for materials in which d orbitals make the greatest 

contribution to bonding. In chapter six we test this confidence on W 

and Mo surfaces.



CHAPTER SIX

SURFACE GEOMETRY CALCULATIONS
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6.1 INTRODUCTION

The major aim of this thesis as set out in chapter one was to be 

able to predict reliably and accurately changes in the surface 

geometry of transition metals. In this chapter we take our final step 

towards this goal by bringing together the surface states calculations 

of chapter four and the total energy calculations of chapter five. 

Similar calculations have been done in the past on semiconductor surf­

aces ( e.g. Chadi, 1978 ) with some success. There has also been work 

on W and Mo surfaces ( Terakura et al, 1981; Treglia et al, 1983 ), 

though using a much more basic method than ours. This will be dis­

cussed in the course of the chapter.

In section 6.2 we give a brief history of experimental work on W 

and Mo relaxations before describing the method and results of our 

calculations. Section 6.3 treats the reconstructions in a similar way 

but also includes a description of the various mechanisms which have 

been suggested. The final section discusses our results and compares 

them with those of similar calculations.

6.2 RELAXATIONS OF W AND Mo SURFACES

It has always been expected that the change in the number of 

nearest neighbours would cause a relaxation of the surface atomic 

layer of bcc transition metals. This relaxation has been observed by 

several metnods on the (001 ) surfaces of W and Mo. We start with a 

brief survey of the results for W(OOl) before going on to describe " 

our calculations.

Most of the values for relaxation were obtained by studying LEED 

I-V curves ( see chapter three ). Their results vary from an 11% con­
traction found by Lee et al ( 1977 ) to only 4.5% found by Debe et al 

( 1977 ). Because of all these varied results Read and Russell ( 1979 ) 

concluded that at best it could be said that the contraction was in
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the range 0-15%. ( More details of the experiments involved can be 

found in Read and’Russell. ) Using relativistic LEED theory and rot­

ation diagrams ( i.e. intensity of beam versus azimuthal angle ?  at 

fixed polar angle ^  and constant energy ) Kirshner and Feder ( 1979 ) 

arrived at a value of 5.5%. Feldman et al ( 1977 ) used the back- 

scattering of He ions in their work which placed an upper limit of 6% 

on the relaxation. This was the value used in the surface states cal­

culations of chapter four. At present no reason has been found why the 

results should vary so much.

We have calculated the energy changes caused by the relaxations 

for the (001), (110) and (ill) surfaces of both W and Mo. The proce­

dure followed was simple. A slab of seven atomic layers was used for 

relaxation calculations and the first stage was to calculated the 

total band structure energy per slab unit cell ( i.e. seven atoms ). 

Proceeding in this manner reduces the errors caused by redistribution 

of electrons among the layers. The surface layer atoms were then 

moved to positions corresponding to a relaxed structure and the unit 

cell energy was recalculated. The energy change found in this way 

was taken to be the change in band structure energy for two atoms.

It was originally intended that the band structure energy change 

would be calculated for 1% steps, the repulsive energy change would 

then be added on and the relaxation increased until an* energy minimum 

was found. This was in fact carried through completely for W(OOl) and 

the results are shown in table 6.1.

It was obvious from these results however that the band structure 

energy change is linear in the size of relaxation. For all other 

surfaces then this energy change was obtained by a linear fit to the 

band structure energies calculated for 0 and 5% contractions. In fact 

for W(OOl) both procedures were used. The results of table 6.1 using 

1% steps give an energy minimum in the 10-12% region ( by extrapolation ).
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Reloxofcloo
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13 — — -a-3Sl9- a-0W)3 — -0-18Sif
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IS — — -a-9-135 — -0-33. If9

Table 6.1 Energy Changes caused by Relaxation of W(OOl).
^^bSÜ) calculated band structure energy change.
is the energy change obtained by a linear fit ( see text ).

values were obtained using and both values of
. The results in the final column are displayed in figure 6.1a.
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Table 6.2 shows all the results obtained using the linear fit method 

where the W(OOl) energy minimum occurs in the 9-11% range. The results 

of the two methods do not differ significantly and the reduction in 

computer time obtained by using the linear fit is enormous. Using the 

power law form ( equation 5.9 ) of the repulsive interaction rather 

than the exponential form ( equation 5.8 ) does not change the results 

sufficiently to warrant separate display.

Note that the scales are different in different parts of the 

figures. We expect the predicted relaxation to be greatest for the 

(ill) surfaces and least for the (llO) surfaces. This is because we 

expect the relaxation to be greatest where the change in the envir­

onment of the atoms is the greatest. This expectation is fulfilled 

both for W and Mo, though the (001) - (ill) difference for Mo is much 

less than for W. Indeed the energy change for Mo(lll) seems anomalous. 

Further discussion of the results can be found in section 6.4.

6.5 W AND Mo(001) RECONSTRUCTION

While investigating structures formed by the adsorption of hyd­

rogen onto W(OOl) Yonehara and Schmidt ( 1971 ) observed an unexpected 

splitting of the LEED spots from a surface which was apparently 

almost clean ( i.e. hydrogen free ), It was already clear that hydrogen 

adsorption on W(OOl) produced a c(2X2) structure indicated by half 

order LEED beams ( see chapter three ). These new results indicated 

tha.t at low temperatures ( 78K in this case ) similar half order spots 

were produced even though only hundredths of monolayers of desorbable 

gas were present. They suggested that this reconstruction was also 

due to hydrogen, but dissolved in the tungsten. This hydrogen could 

migrate to the surface when cooled and bring about the reconstruction. 

On heating it would return to solution rather than be desorbed. There 

was however little experimental evidence either in favour of or
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Figure 6.1 Calculated total energy change versus relaxation for W 

surfaces: (a) foOlj ; (b) ^lio]; (c) {ill]. Note the different scales 

of the three parts of the figure.
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Figure 6.2 Calculated total energy change versus relaxation for Mo 

surfaces: (a) {OOl]; (b) £llo]; (c)[lll^ Note the different scales of 

the three parts of the figure.
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against this hypothesis,

Debe and King ( 1977â b) used Auger spectroscopy and other arg­

uments to show that the high temperature H induced structure and the 

low temperature structure are not similar and concluded that hydrogen 

from the bulk was not responsible for the reconstruction. It was also 

discovered ( Felter et al, 1977 ) tha.t a similar change takes place 

on Ko(OOl), They ascribed the changed LEED patterns to periodic disp­

lacements of the surface atoms. These displacements were to have wave­

lengths of 2a for W and 2,2a for Mo, a being the lattice ccnstsuit. 

Finally Debe and King ( 1979 ) demonstrated that the half order beams

fell into two groups and that the structure consisted of two rotation- 

ally equivalent domains of space group p2mg.

At the same time Debe and King proposed a possible structure for 

the reconstruction which could be obtained by lateral displacements of 

atoms in the (.111 and [ll*] directions ( figure 4.12 ), Felter et al 

( 1977 ) on the other hand suggested that the LEED pattern might be 
caused by alternate vertical movements of atoms. In both cases the 

extra spot splitting of Mo was thought to be the result of an in­

commensurate wavevector of displacement, ( The other possibility is a 

locally commensurate structure with anti-phase boundaries spaced to 

give the correct average wavevector ( Inglesfield, 1981; Mcmillan,

1976 )• ) Since these two structures were proposed there has been a 

great deal of controversy,

Stensgaard et al ( 1979 ) concluded that the vertical displace­

ments model is incorrect. They also maintained, however, that at most 

609̂  of the surface layer atoms participate in the reconstruction. It 
had already been observed that the reconstruction is inhibited near 

to steps, A sufficient density of steps, therefore, could easily 

account for the discrepancy. In the work of Heilman et al ( 1979 ) a. 

vertical displacement in domains approximately 60/^ in diameter at
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250K was indicated. Using FIM ( Field Ion Microscopy ), Tsong and 

Sweeney ( 1979 ) placed an upper limit of 0.15A on any lateral atomic 

displacements. Helmed et al ( 1979 )> also using FIN favoured a recon­

struction caused by vertical displacements but could not rule out the 

possibility of lateral movement. Recently Tung et al ( 1982 ) have 

concluded that tiie surface is reconstructed throughout the range I5- 
58OK and that the displacements are vertical with some possibility of 
lateral motion. Finally Woodruff ( 1982 ) has shown that the p2mg 

space group of the reconstructed surface ( for which there is over­

whelming evidence ) excludes the possibility of vertical displacements 

unless the reconstructive change involves more than only the surface 

layer of atoms.

In addition to this experimental work there have been several 

theoretical investigations. These have attempted to provide a mech­

anism for the reconstructive phase transition and at the same time to 

explain the obvious differences between W and Mo, The role which 

surface states play in the transition has been of particular interest. 

One important suggestion was that the transition is driven by a 

charge density wave instability. In such a mechanism the two dimen­

sional fermi surface has flattened regions, A reconstruction with a 

a wave vector which spans the fermi surface in such a way that an 

energy gap is opened up along the flattened part can lead to a consid­

erable reduction of energy. Self-consistent calculations of W and Mo 

(001) surface states ( Posternak et al, I98O; Kerker et al, 1978 ) had 
shown a pair of surface states crossing the fermi energy at approxim­

ately half way along the ^  symmetry line, ( See section 4.2,2,1 and 

figures 4.6 and 4.11 ) Since this is where the new SEZ boundary appears 

in the reconstruction ( figure 4.13a- ) coupling the equivalent state 

at kn —  I j "l3L.)could stabilise the reconstruction provided the gap
-  V aa a a /

is opened along a sufficient length of the fermi surface. This mechanism
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is particularly appealling because movement of the surface state fermi 

energy crossing point slightly further from P would change the re­

quired spanning vector and lead to an incommensurate reconstruction as 

found for Mo.

Inglesfield ( 1978c, 1979 ) found ( for Mo ) that the energy con­

tours of the important states were indeed perpendicular to %  at the 

half way point. Later experimental work ( Campuzano et al, 1981 ) 

attempted to follow the contours through-the irreducible SE and found

the fermi surface to be highly curved in the relevant region. They

concluded that insufficient electrons would be involved in the 

splitting to lower the energy significantly. Our calculations indicate 

that the energy contours are perpendicular to %  for a considerable 

distance into the SE ( figure 4.11 ). It is not possible to say

whether splitting of this state is the major contribution to the change

in band structure energy calculated below.

More recently interest has focussed on other possible mechanisms. 

It was already obvious that the changes in density of states brought 

about by the reconstruction would give a reduction in energy. Indeed 

Inglesfield ( 1979 ) calculated a value of 0.0009au ( 0.25eV ) for 

this energy change. Heine and McConnell ( 1981 ) and Heine and Samson 

( 1985 ) have shown that the formation of a two fold superlattice of 
some form is a general effect for half-filled d bands which results 

from the electronic structure as a whole; fermi surface effects play 

no special role. The superlattice might take the form of some struc­

tural change or some sort of magnetic ordering ( as in Cr for example ) 

In bulk W and Mo the energy gain iiade possible by such a change in 

structure is counterbalanced by the increasing repulsive interaction 

which it must also cause. The extra freedom caused by the removal of 

neighbours at the surface may allow such a transition at the W and Mo 

(001) faces. The exact nature of the reconstruction, the Mo in-
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commensurability for example, may still depend on surface states since 

the relative energies and interactions of various displacement modes 

must depend on them. It has already been suggested that the incommen­

surate reconstruction of Mo may be caused by interaction of t̂ | ( ver­

tical ) and in-plane ) displacements away from the symmetry

point leading to an absolute energy minimum for a displacement wave­

vector along X  ( Tosatti, 1978; Inglesfield, 1981; Heine and Samson, 

1983 )• Further information on this point may well come from work on 

the H induced W(OOl) reconstruction. At low hydrogen coverages this 

reconstruction is commensurate and is caused by pairing of W atoms 

alongdirections, ( Fasolino et al, 1980; see figure 4.12c ), At 

higher H coverages this becomes an incommensurate structure, A model 

of the mechanism for this has recently been presented ( Didham and 

Willis, 1983; Hinch et al, 1983» Didham et al, 1984 ). This model 

involves similar interaction between two displacement modes, one in 

plane and one perpendicular, but producing a final displacement vector 

along the 2 edge of the irreducible S E  ( they call this edge A , 
see appendix A ),

We have performed calculations of the energy clianges involved 

in both the displacement reconstruction found on the clean surface

and the ^10^ displacement type on the hydrogen covered surface. In 

both cases the possibility of a combination of relaxation and recon­

struction was considered. However we did not allow any vertical com­

ponent to the reconstructive displacement. The energy changes caused 

by the reconstructions were calculated in a similar fashion to those 

for relaxations. The band structure energy was calculated directly 

for various combinations of relaxation and reconstructive displace­

ment. The change in this energy was found to depend linearly on the 

relaxation and quadratically on the reconstruction. After the co­

efficients of these variations were calculated the repulsive inter-
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Figure 6.3 Contour map of the energy changes caused by 

relaxation and; (a)<Cll3>; (b)<.10> ; reconstructive disp­

lacement on W{001^ . The reconstruction axis represents 

displacement in A  along the relevant direction. Tne contours 

are marked in eV and spaced O.leV apart.
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actions were added. The resulting contour plots of the total energy 

change are shown in figure 6.3. The results for the ^11^ recon­

struction ( figure 6.3a ) include an extra contribution to the band 

structure energy from the promotion energy. This was obtained by 

calculating the total ( self-consistent ) energy for an atom on going 

from the configuration found at zero reconstruction to that found at

0.2 A  reconstructive displacement. This extra contribution has not 

qualitatively affected the results. In both cases ( and indeed for No ) 

the absolute minimum of energy occurs for zero reconstruction and the 

appropriate relaxation. These negative results are considered and com­

pared with the results of other work in the next section.

6.4 SÜNNARY AND DISCUSSION

In summary we can say that our scheme has successfully predicted 

the relaxations of V and No foOl], L̂io] and ^111^ surfaces. It also 

indicates however that the energy of the surface is lowered neither 

by the Debe and King displacements reconstruction nor by the

pairing movement found in the presence of hydrogen ( note that our 

calculations did not actually include hydrogen atoms ). Two previous 

attempts have been made to calculate the W clean surface reconstruction 

with methods similar to ours; Terakura et al ( 1981 ) and Treglia et 

al ( 1983 )• The methods used by these two groups have been discussed 
in chapter five. Terakura et al ( TTÏÏ ) find relaxations of 3% for W 
and 4% for No, these values are comparable with those of the other 
group ( Desjonqueres, 1979 ) but are much smaller than our values. TTH 

found an energy minimum for reconstruction in the Debe and King 

manner with atomic movements of 0,25 A  at fixed relaxation of 3/"̂. 

Treglia et al ( TDS ) found that any reconstructive displacement caused 

an increase in energy, TTH allowed both the size and direction of the 

displacement to vary but fixed the relaxation at the value which gave
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the minimum energy for zero reconstruction. They calculated both band 

structure and repulsive energy changes to fourth order in the disp­

lacement. They determined a reconstruction of 0.234 A  in the 

direction for a 3% relaxed surface. Note that though our band structure 
energies were effectively forced to be second order in the size of the 

displacement our repulsive energy changes were calculated "exactly".

The fourth order contributions of TTH appear to be less than 3% of the 
total energy changes. TDS simply determined the variation of energy 

with relaxation for two sizes of reconstruction 0.00Aand 0.08A  in 

order to determine the trend. They did not obtain coefficients for the 

variation with reconstruction. The TTH coefficients indicate a change 

in band structure energy of -0.5eV per atom ( V ) for 0.2 A  displace­

ment, wê  find -0.4eV at 0% relaxation. For the charge in repulsive 
energy at this displacement they find ̂  0.49eV, our value is 0.35eV.

Both methods produce energy changes of approximately the same size.

( Note that the energy change indicated for our calculations for a 

fixed relaxation of 3% is considerably smaller than the zero relaxc- 
ation values quoted, TDS, though taey find similar energy changes for 

the reconstructive displacements, find much larger energy changes for 

the relaxation. They find a reduction of 1.88eV per atom to the zero 

reconstruction minimum buta reconstruction of 0.08A  only introduces 

an increase of O.OleV in the energy. This group has also tried to in­

troduce the effects of correlation using a simple Hubbard hamiltonian 

within the d band. All the results quoted above are for zero correl­

ation. Introducing the correlation does not affect the major conclusions.

The treatment of the c'aaxge redistribution at the surface and 

particularly how this redistribution changes as the structure is 

changed is an^ area in which the three methods differ considerably.

TTH and TDS have used considerably fewer d electrons ( 4.4 and 4.6 re­

spectively ) than the 5«4 which we have found. TTH determine the



- 155 -
changes required to keep the surface and second layer d occupation 

unchanged from the bulk value for the unrelaxed and unreconstructed 

surface. These shifts are then used throughout the rest of the calc­

ulations unchanged. In our calculations the energy changes found for 

the primitive surface were also used throughout. Our criterion for 

determining the shifts was however not neutrality but "self-consistency" 

( see chapter four ). TDS include a term which takes into account the 

changes in these shifts as the surface atoms move. They claim that 

this is the important difference between their calculations and those 

of TTH and is the cause of their contradictory results. We would point 

out however that we arrived at the same conclusion as TDS without in­

cluding this contribution.

Fasolino et al ( 1980 ) constructed a hypothetical pair potential 

between tungsten atoms from the bulk phonon spectrum. They obtained 

force constants for first and second neighbour interactions and 

tested the surfa.ce stability by varying these constants between surf­

ace atoms and calculating the resulting surface phonon frequencies.

Where these frequencies became imaginary a lattice instability, and 

hence a possible reconstruction, was indicated. They found a range of 

values for the force constants led to a range of expected recon­

structions. The Debe and King reconstruction was indicated if the 

interaction between atoms is more attractive at the surface than in 

the bulk.

All this suggests that perhaps the environment at the surface is 

sufficiently different to affect the interaction between atoms. The 

greatest contribution to such a change must surely come from the s and 

p electrons and so further investigation of the role they play in the 

interactions and how they are affected by the surface is likely to be 

fruitful.



CHAPTER SEVEN

SUMMARY AND CONCLUSION
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We intend this brief summary chapter to serve two purposes. 

Firstly we attempt to give a critical review of the work described in 

the thesis and to state our conclusions. In particular we try to point 

out the relevance of tnis work to current major interests in solid 

state physics. In the second part of the chapter we outline ways in 

which this area of research might be extended and its results might 

be improved.

From the outset we have made it clear that it is not the role of 

tight-binding calculations of the sort presented here to produce exact 

"answers". Rather their purpose is to produce reasonably correct 

numerical results and at the same time contribute to the understanding 

of the physical effects which are significant in a system. Our review 

of the results presented in the tnesis must therefore give consider­

ation to their contribution to understanding as well as to their num­

erical accuracy.

In chapter one we described how the work in the thesis was to be 

divided into two major parts. We wanted to give evidence of the util­

ity of this sort of calculation in investigations of surface elect­

ronic structure. This first part was to consist of computations on the 

surfaces of a variety of types of material. These were described in 

chapter four. Our second purpose was to develop a scheme for calcu­

lating the changes in energy brought about by changes in structure. 

This scheme was then to be applied to predict or at least to help to 

explain surface relaxations and reconstructions. The particular ex­

amples we chose to work on were relaxations of the ("oOl], ^10^ and 

fill] surfaces of W and No and the reconstructive phase change 

observed on the foOl] surface of these materials. This second part 

was described in chapters five and six.

It is well established that even primitive tight-binding methods 

produce good results for infinite periodic crystals of many materials.
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It is not surprising therefore that our less basic calculations on the 

three types of materials which were the concern of chapter four were 

able to produce results for bulk properties in substantial agreement 

with those of more sophisticated self-consistent work. The bulk energy 

band structure of W and the charge transfer in TiN are good examples 

of this success. A discrepancy which did occur ( in the bulk bands of 

Mo ( see section 4.2.1 ) ) could have been removed by altering the 

relative energies of the atomic orbitals. This provides us with some 

insight into the role played by the neglected three centre integrals. 

Changing the energy levels is, at least in part, an ad hoc correction 

for this neglect. The three centre integrals can be seen as perturb­

ations to the other matrix elements and can be expected to have the 

greatest effect on the diagonal elements where the overlap is greatest.

It is much more difficult to assess the success of our surface 

states work. The results of experiments and the various types of cal­

culations seem to be more in agreement on some surfaces than on others. 

It has frequently been claimed that the redistribution of charge at 

metal surfaces is complicated and that only self-consistent methods 

can correctly reproduce the effects this has on surface states. While 

it does seem that the great variation in the success of our results 

from surface to surface could be explained away by sensitivity to 

charge redistribution this cannot be the whole story. As we have 

already discussed the success of the various W surfaces was not prop­

ortional to the expected charge movement; Furthermore our surface 

states were rarely altered significantly by our "self-consistency" 

scheme involving alterations to the surface d levels. It must be 

pointed out of course that our potential remains unchanged by this 

process, it merely changes some of the matrix elements involving sur­

face atoms and so makes it possible for Tamm type surface states to 

appear. We cannot of course expect this method to deal correctly with
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the free electron like s and p charge which is less well modelled by 

our choice of atomic orbitals as the basis set. Nevertheless we can 

conclude that, in view of the ease and rapidity with which these calc­

ulations can be carried out, our work on surface states has met with 

considerable success.

As we have already mentioned in various places in the text there 

are several groups working at present on total energies in transition 

metals and other materials. Much of this-work is being applied to 

surface geometries because of the current importance of surface 

physics. The type of method we described in chapter five would be 

particularly helpful in elucidating surface structures because of its 

simplicicty. Such methods have already been applied with some success 

to semiconductor surfaces, but in those materials the repulsive part 

of the interaction is often very small. The differences that we find 

when comparing the parameters of our repulsive interaction with those 

of the other work on W and Mo indicate the considerable differences 

between their simple empirical tight binding schemes and our ab initio 

method. That all the methods seem to agree on the values of the bulk 

modulus, cohesive energy and equilibrium lattice constant is encour­

aging. ( Of course each method uses experimental values for some of 

these properties. )

The calculations presented in chapter six are the central purpose 

of the thesis. But as with the surface states calculation the success 

seems variable. Thus the predictions for the relaxations of the W and 

Mo surfaces are very pleasing but the results for the reconstructions 

seem totally at variance with experiment. The relaxations involve 

changes only in the interactions between atoms at the surface and 

undisturbed atoms within the material. The reconstructions on the 

other hand involve changes in the interactions among the surface atoms. 

In our calculations we assume an unchanged interaction between atoms
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at the surface. If this assumption was not true then only the work on 

reconstructions would be greatly affected; the relaxations might still 

be predicted. Since this is what has happened it seems reasonable to 

suggest that further investigations of the changes in environment at 

surfaces may provide fruitful results and may lead to a model for the 

repulsive interaction which can cope with these surface reconstructions.

We end the chapter and the thesis with a few other suggestions 

for possible future extensions and improvements. Calculations of the 

surface electronic structure of many more materials of varying types 

would provide further examples of surfaces for which the method works 

well and those for which it is less successful. This would surely 

bring about a better understanding of the effect of the surface elec­

tron distribution on surface states. Further improvements in this area 

might be made by actually calculating the best set of localised orb­

itals. This would allow better treatment of the s and p electrons but 

any advantage gained may be outweighed by the increased computer time 

involved. Since the total energy parametrisation scheme seems to work 

well in the infinite periodic solid it could be used to investigate 

elastic constants and phonon dispersion curves and other such things.

If a useful description of the change in interaction caused by the 

surface could be obtained then it would become possible to fulfil the 

original intentions of this work - to calculate the changes in struc­

ture often observed at surfaces.
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This appendix consists of diagrams of the real and reciprocal 

space structures of bcc foOl̂  , {llO^ and {lll^ surfaces and the fee 

fooi] surface. Each diagram has three sections. Part (a) shows the 

relationship between the bulk and surface Brillouin zones. The symmetry 

labels which are commonly used for points in both bulk and surface 

zones are also shown. Labels for the SEZ have a bar above them. The 

direction of the surface normal is also shown. Part (b) of each 

diagram shows the positions of the surface atoms. Open circles indicate 

first layer atoms and filled circles second layer atoms. For the bcc 
ClllJ surface a third layer of atoms is also shown. The third part of 

each diagram shows the surface Brillouin zone more clearly. The cross- 

hatched region is the irreducible part. The labels for points and lines 

shown on these diagrams have been used throughout this work though 

some authors prefer others.
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B.l INTRODUCTION

In this appendix we give a brief description of each of the 

computer programs used. This consists only of a description of the 

input, an outline of the operation ( for comparison with the theory in 

chapter two ) and finally an example of typical output. Complete 

listings of the programs are not given because they are too lengthy 

and complicated to be of value here.

Three programs were used to produce the "raw" results; a Herman 

and Skillman atomic orbitals program; a program to produce the 

matrix elements in the perturbing potential ( see equation 2.42 ); 

and finally a program to set up and solve the secular equation 2.46. 

The atomic orbitals program was a standard implementation of the 

scheme detailed by Herman and Skillman ( 1963 ) and needs no further 

description. Its output, tabulated radial wavefunctions and potentials 

is described with the matrix elements program. The other two programs 

were both written by D.W. Bullett and we have made only minor modif­

ications, mostly to the input and output.

All the calculations in this thesis were performed running these 

programs ( and several minor programs concerned mainly with EZ summ­

ations ) on two computer systems. The larger and more time consuming 

jobs were done by the ICL 2980 of the South Western Universities' 

Regional Computer Centre at Bath. Smaller jobs and most of the minor 

calculations were carried out on the Honeywell 68 Dual Processor 

System of the Avon Universities' Computer Centre in Bristol.

B.2 MATRIX ELEMENTS PROGRAM

The physical principles behind the operation of this program 

were described in section 2.5*3. The major difficulty with its impl­

ementation as a FORTRAN program is caused by oscillations in the 

wavefunctions close to the centre of the perturbing atom. In the form
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used here the program was able to calculate matrix elements for three 

atoms simultaneously. The items of input are listed in the table 

below.

Items 2 to 8 inclusive, which are given for each of the atoms 

involved, are the output of the atomic orbitals program. Item 4 spec­

ifies the' number of points on the Herman and Skillman grid of radii 

at which wavefunction and potentials are specified. For all the calc­

ulations in this thesis a 441 point mesh'was used in the atomic 

program

1 number of types of atom

2 not used

5 atomic number

4 number of radial mesh points

5 radius values

6 (a) coulomb potential, (b) exchange potential, 

(c) valence orbitals

7 number of core orbitals

8 core orbitals

9 Wigner-Seitz radii

and 40 of these points were used in the output table ( distances are 

in atomic units, 1 a.u. 0.529 A  ), these forty points are given as 
item 5. The atomic orbitals program also produces an effective one 

electron coulomb potential and an exchange potential using a local 

density approximation. The value of OC was set at 0.7 in all calc­

ulations unless otherwise specified. The valence orbitals appear sep­

arately from the core orbitals because they are to be treated differ­

ently from them by the matrix elements program. All the wave­

functions are given as the value l̂ ^̂ ĵ and are normalised so

that ^ P  cLr—  I. The final information needed, item 9» is the 

Wigner-Seitz radius for each material. This was taken simply to be
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the radius of the sphere of volume equal to the volume per atom in 

the material. For compounds the Wigner-Seitz radii of the components 

were required to have the same ratio as their atomic radii.

The basic structure of the program is shown schematically in 

figure B.l and we will give here a brief description of the operations 

performed in each section. The results are produced as a table of 

matrix elements versus interatomic distance ( see figure 2,4 ); the 

first loop is concerned with setting this distance - values between 2 

and 10 atomic units have usually been used. Loops two and three ensure 

that each possible pair of atom types is considered ( the two sites 

are not equivalent - see chapter two ). Inside the inner atom type 

loop ( loop 3 ) all the storage for the matrix elements and overlaps 

is zeroed. The next three levels of the program are concerned with 

dividing the volume of integration ( a square prism with the two atoms 

along its height ) into small cubes. Whether one ( or both ) of the 

second and third cube loops is used depends on the distance to the 

perturbing atom. The volume unit must be smaller near to the centre 

of this atom in order to take account of the rapidly varying wave­

functions. The direction cosines from the two atoms to the centre of 

of the incremental cube are then used, together with the-usual x, y, z 

representations of atomic orbitals, to calculate the values of the 

relevant wavefunctions at the cube. The potential is calculated from 

the tabulated input potentials according to the prescriptions des­

cribed in section 2.5.3. The increments to the potential matrix 

elements and overlap are then calculated and added to the correct 

store. All loops but the outermost end here. The final stage is to 

premultiply by the inverted overlap matrix. ( The inversion is carried 

out by a NAG subroutine. ) The output of this program is illustrated 

in chapter two.
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LOOP ONE: Interatomic distances

LOOP TWO: Atom Type at Site A

LOOP THREE: Atom Type at Site B

First Cubes

Second Cubes

Third Cubes

(i) direction cosines

l(ii) wavefunctions for A 

I(iii) wavefunctions for B
w  W  •  M M V  —  mmm ■ matm m m »  M M

I(iv) potential 

• (v) increments

Premultiplication by inverted overlap matrix

Assign to correct place in output table

Figure B.l Schematic Diagram of the Structure of the Matrix Elements 
Program.
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B. 3 SECULAR EQUATION PROGRAM

The purpose of this second program is to use the tabulated matrix 

elements produced by the first program to set up and solve the secular 

equation for the band structure problem ( equation 2,46 ). This pro­

cess is conceptually simple but is made intricate by the need to corr­

ectly position contributions to matrix elements within the two arrays 

representing D—IE . ( One array is used for the real parts, the other 

for the imaginary parts. ) The indices required become particularly 

tiresome if there is more than one type of atom present. A brief out­

line of the program is shown in figure B.2.

The first stage is to read in the necessary data. This is carried 

out in two parts. The first part is concerned with information about 

the structure of the material and instructions for operation; unit 

cell dimensions, positions of atoms within unit cells, self-energies 

of atomic orbitals, k-points at which the eigenvalues and vectors are 

to be calculated. The second part of the input is the table of "matrix 

elements" produced by the previous program. ( We will use the terra 

"matrix elements" to refer to the quantities of equation 2.42 and 

matrix elements to refer to the elements of D - major purpose of this 

program is then to build the matrix elements from the "matrix elements". ) 

The next stage is carried out for each k point required. The self 

energies of the atomic orbitals are placed along the diagonal of the 

matrix D. The program then loops through all possible pairs of atoms 

within the unit cell and in all cells ( within a suitable cut-off 

distance ) in three directions around the central cell. ( For surface 

calculations the unit cell is a column of atoms which goes through the 

slab and the sura over unit cells is carried out only in two dimensions. ) 

For each pair of atoms the magnitude and direction cosines of the dis­

tance between them are calculated and using these and the appropriate 

"matrix elements", IBloch phase factor ( exp(-ik.R) ) and Slater and



- 153 -

Input of Structural Details

Input of "Matrix. Elements"

Loop over all k points input

Self Energies along Diagonal of D

Loops over all Atoms in Unit Cell

Loops over unit cells in 1, 2, of 3 directions

distance and direction cosines 

Bloch phase factor
mmÊmm - « m m m  -- « m m m

use "Matrix Elements",

 ̂ direction cosines,

I distances,

I Slater and Koster expressions,

I to obtain matrix elements 

I position real and imaginary parts of 

I matrix elements in D

Solve D for Right Eigenvectors

Solve D for Left Eigenvectors

Normalise'Eigenvectors

Figure B.2 Schematic Diagram of the Secular Equation Program
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0 631 -0.210 -0 614 - 0 588 -0 325 -0.186 -0.091
-0 099 -0.426 -0 «51 -0 941 -0 551 — 0.384 -0.211
-0 S79 -0.153 0 l6l 3 249 0 178 0.111 0,062
-0 178 -0.157 0 134 0 292 0 237 0.182 0.122
-0 105 -0.236 -0 152 -0 092 -0 055 -0.047 -0.036
— 6 168 -0.536 0 503 0 507 0 255 0.134 0.060
-I 546 -0.081 0 398 0 436 0 312 0.184 0.110
2 263 0.448 -0 176 -0 250 -0 153 -0.087 -0.045

-1 369 -0.469 0 028 0 328 0 299 0.196 0.146
1 188 0.696 0 247 0 095 0 040 0.022 0.012

-0 069 -0.535 -0 506 -0 384 -0 278 -0.195 -0.136
-2 531 -1.961 -1 222 -0 6«1 -0 374 -0.193 -O.ioi225 2.338 1 057 0 490 0 245 0.123 0,064
-1 o;j5 -0.729 -0 276 -0 110 -0 051 -0.024 -0.0 12
0 737 0.655 0 565 0 472 0 379 0.295 0.224
0 424 0.506 0 554 0 560 0 546 0.500 0.439

-0 424 -0.507 -0 552 -0 564 -0 541 -0.496 -0.438
0 609 0.420 0 202 0 028 -0 122 -0.233 -0.301
0 824 0.756 0 657 0 582 0 496 0.414 0.341
0 062 -0.034 -0 092 -0 113 -0 112 -0.098 -0.081
0 061 -0.035 -0 091 -0 112 -0 111 -0.098 -0.081

-f) 170 -0.128 -0 0 69 -0 016 0 024 0.047 0 .060n 171 0. 129 0 069 Ü 015 -0 0 24 -0.049 -0.061- 0 132 - 0.166 -0 lo7 -0 151 -n 12^ -3.1^^ - O . 0 ;; U
0 132 0. 163 0 166 0 151 0 129 U.105 0.033
0 077 0.092 0 086 0 0 74 0 062 0,050 0.039

-0 219 -0.206 -0 159 - 0 116 -0 no I -0,056 -O.038
0 279 0.154 n 037 0 050 0 029 0.017 0.010

-0 )j6 -0.073 0 39 0 0 39j 0 222 0.114 0.051
-0 219 0.008 0 458 0 552 0 322 0.197 0,102
-0 033 -0.095 0 107 0 182 0 134 0.087 0.047
0 039 -0.006 0 202 0 311 0 215 0.160 0.095
0 104 0.254 0 171 0 101 0 056 0.035 0.020
5 310 0.386 -0 4 45 -0 388 -0 196 -0.091 -0.038

-0 094 0.015 0 010 -0 015 -0 030 -0.021 -0.011
I 883 0.394 -0 052 -0 156 -0 114 -0.068 -0.034
0 105 0.056 0 009 -0 032 -0 043 -0.035 -0.022

-1 825 -0.888 -0 308 -0 114 -0 045 -0.019 —0.0 08
-0 151 -0.108 -0 077 — 0 0 44 -0 024 -0.013 -0.007
0 566 0.138 0 017 0 017 0 031 0.018 0.009
0 «83 0.307 0 127 0 048 0 0 19 0.008 0.003
0 137 0.044 0 014 0 004 0 00 1 0.000 0.000

C a)

cto

«)

Figure B,3 Output of the matrix elements ■.■'rogra.m, Interatomic 
distance increases from left ( 3au ) to right ( 9au ). Each 
line shows the variation of one element. The matrix elements in 
part (a) involve orbitals on two atoms and those in part (c) 
orbitals on only one atom. Part (b) shows the corresponding 
overlap integrals. In each case the order of the elements is:-
ss(T, spy, pso-, pp(T, ppiT, sd(T, dsff, pda, pdiT, dpïï, 
ddo’,cÛïï, dd6.
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Koster expressions ( figure 2.2 ) the matrix elements can he calc­

ulated. The final part of this stage ensures that the real and imag­

inary parts of the matrix element are correctly placed in the two 

arrays representing D. This is not always a trivial task if there are 

several types of atoms and several atoms per unit cell. A NAG library 

routine is used to find the right eigenvectors of the complex D. D is 

then turned into its Hermitian conjugate and the sarnie routine is used 

to find its left eigenvectors. Once both jSV^and are known it '

is a simple matter to normalise as in equation 2.49 a-nd produce the 
*  Uc o e f f i c i e n t s ( equation 2.51 ). The optional final part sums 

the eigenvectors over weighted k points so that quantities such as v 

the density of states, projected orbital occupations and fermi energy 

can be found. For most of the calculations in this work this final 

stage was carried out in separate programs.
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