University of Bath

UNIVERSITY OF

BATH

PHD

On the solution of non linear systems.

Daoud, D. S.

Award date:
1981

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2021


https://researchportal.bath.ac.uk/en/studentthesis/on-the-solution-of-non-linear-systems(527ae067-cb92-4b7f-8ce5-83c65cf77415).html

ON THE SOLUTION OF NONLINEAR SYSTEM

submitted by D.S. Daoud, M.Sc . G.I:M.A,
for the degree of Ph.D.

of the University of Bath

1981

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis
rests with its author. This copy of the thesis has been supplied
on condition that anyone who consults it is understood to recognise
that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without

the prior written consent of the author.

This thesis may be made available for consultation with the
University Library and may be photocopied or lent to other libraries

for the purposes of consultation.

.5

D.S. Daoud



ProQuest Number: U641779

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest U641779
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



UNI'VERSH T

Ligk:

g SEP 198

3F BATH

-

]




To My Parents
With Love and Gratitude

To My Sincere Friend
My Big Brother "Monkith'"

And to ALl of My Sisters
and Brothers



Acknowledgements

It is pleasure to acknowledge the help and encouragement of

my supervisor Mr. F.B. Ellerby.

I am indebted to my supervisor for his help during the early
stages of familiarising myself with earlier work in this field and

his friendly advice.

Also it is pleasure to acknowledge the help and the advice

from the programmers and the operators in the computer centre.



Abstract

We consider here two classes of non-linear systems giving different
degrees of non-linearity. In both cases the systems arise from finite
difference discretisations of non-linear elliptic partial differential

equations.

Our solution methods can also fit into two categories — linearisation
and non-linearisation techniques - and in our studies we have pursued

three main objectives.

1) For mildly non-linear systems we generalise certain iterative
techniques from the solution of linear systems to the solution of non-
linear systems with symmetric Jacobians. We are especially concerned

with the effect of preconditioning of the equations here.

2) We consider the use of bidiagonalisation on non-linear systems,
using preconditioning in two ways and considering both classes of non-

linear problem.

3) We solve the laminar flow problem and assess the effects of

multigrid acceleration on non-linear S.I.P. techniques.



CHAPTER

CHAPTER

CHAPTER

CHAPTER

0

List of Contents

Introduction

Preface
Review of related literature

Introduction to the present work

Matrix Factorization

Introduction
Iterative techniques and matrix factorization
Examples of matrix factorization

Convergence of the S.I.P. method

Solving a System of Nonlinear Equations

Introduction
Mildly nonlinear elliptic equations

Solving the system A(x) = F(x) using S.I.P.

techniques

Convergence

Conjugate Gradient Method

Introduction

Variational iterative methods
Estimate error bounds
Conjugate gradient method
Preconditioning

The preconditioned variational method for

positive definite system

10

10

11

16

22

28

28

31

33

35

42

42

43

47

49

52

56



CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

REFERENCES

Nonlinear variational iterative methods

Nonlinear conjugate gradient method

Numerical Results and Discussions

Introduction
Number of arithmetics
Size of storage

Number of iterations and time

Bidiagonalization Method

Introduction
The bidiagonalization algorithm

The bidiagonalization technique to solve the

linear least squares problem

The preconditioning bidiagonalization

technique

Numerical results and discussions

Multigrid Method

Introduction
Multigrid method

Multigrid method with S.I.P. relexation

technique

Numerical results and discussion

Conclusions and Suggestion¢ for Future Work

58

66

70

70

/el

71

71¢]

111

111

114

117

126

138

159

159

162

167

168

174

180



CHAPTER 0  Introduction

0.1 Preface

In this thesis we consider the numerical solution of nonlinear systems

of equations. F(x) = 0, where F:DC Rn-—-g-Rn, and F'(x) is a large

sparse symmetric (or non symmetric) matrix, generated from the application of

finite difference approximations.

Solving non linear system is unlike solving linear systems, where direct
methods for some problems is feasible, so we must focus on iterative

techniques which can be categorised as follows:

1. Linearization methods

2. Non linearization methods

The use of the linearization method, which includes all the applicable
techniques to linear systems (e.g. conjugate gradient method, S.0.R.
method and A.D.I. method) in solving a system of non linear equations
requires the evaluation of the non linear operator either at a prior
fixed number of iterations or until convergence of the prelinearized

system is achieved (e.g. A.D.I. method, see (Y2)).

But some of the nonlinearization methods require the evaluation of the
Jacobian of the non linear system (e.g. non linear conjugate gradient

method (D2), preconditioned non linear conjugate gradient method (Cl0)).

We investigate the numerical solution of two categories of non linear

operator.

C1 - Ax = F(x) (A is a matrix of constant coefficient and F is non
linear operator)
C. - A(X)x = b (A(x) is a matrix, each component is a non linear

2

operator of the solution vector x)



An example of C1 is the system generated from the approximation of the
mildly non linear equations (H8), and an example of C2 is a laminar

flow problem (Y2).

0.2 Review of related literature
An early work on mildly non linear elliptic problems is due to

Bers, 1953 (B4), who considered a finite difference equation

Au = F(x,y,u,ux,uy)

Bers proved the convergence and uniqueness of the corresponding difference

equation.

Douglas in 1961 (D10) introduced a modification of the usual A.D.I.

method to solve Dirichlet problems for mildly non linear equations.

In 1965 Parter (P6) proved the convergence of the solution of the finite
difference equations arising from an approximation of the mildly non
linear equations, Greenspan and Parter (G7) continued the work considering

another class of iterative technique to solve these problems.

Ortega and Rockoff (03) generalized some linear iterative techniques
which had been considered by Varga (V1) and applied them to solve mildly

non linear elliptic equationms.

In 1975, Hageman and Porsching (H8) solved a mildly non linear elliptic
equation using non linear point (block) Gauss Seidel and non linear point

(block) S.0.R. methods.

Chavette and Stenger (C3) solved a spherically symmetric case of
Au = u - u3, Jain and Kadalbajo (J2) used a method of dynamic programming
to solve a mildly non linear elliptic problem defined over an irregular

region.



In 1979, Noor and Whiteman (N12) used finite elément approximation to
solve mildly non linear elliptic equations and proved the equivalence

in a Hilbert space of variational and weak formulations of these problems.
Meyer-Spasche (M11) proved some theorems concerning the convergence of

the approximation of our problems with Dirichlet boundary conditions.
Newton's method is the most popular technique and it has been widely

used to solve non linear elliptic equations, it can be combined with

any linear iterative technique (as a secondary iteration).

Ortega and Rheinboldt, in 1967 (04), extended the results of Greenspan

and Parter (G7), and incorporated them into a general theory for a

broad class of monotone iterative techniques such as Newton Gauss Seidel
technique. 1In 1971 McAllister (M5) applied Newton's method to solve the
system generated from the application of the finite difference approximation

on uniformly elliptic operator defined over a certain region R.

In 1971, Schryer (S3), applied Newton's method to solve Lu = f(x,u),
where L is a linear elliptic operator and f is a convex monotone
increasing function, and in 1972 Schryer (S4) solved the same system,

when f is a monotone increasing function.

Madson in 1973 (M1) solved non linear equations using Newton's method
adopting the evaluation of the Jacobian in the iteration method.
Dennis and More in 1977 (D7) proposed a successful modification of a
quasi Newton method to a system of non linear equations. In 1978
Sherman (S8) studied the local rates of convergence of Newton's method

in the solution of a system of non linear equations.

The variety of the iterative techniques is a consequence of the variety

of non linear operators, and the problems of error, stability, convergence

and "starting" have been subjects of research. Bramble and Hubbard in



1963 (B12) presented a theorem on error estimation for a certain class
of finite difference approximation applied to approximate second order
uniformly elliptic operator. Freudenstein and Roth (F5) studied the

kind of starting iterative vector to solve non linear equations.

In 1964, Gunn (G8) solved V.avu = f, using a semi explicit A.D.I.
technique, Young and Wheeler (Y2) applied the Peaceman and Rachford
A.D.I. method to the solution of the laminar flow problem. In 1966
McAllister (M4) studied the application of the difference method to
solve the quasilinear uniformly elliptic partial differential equations,
with Dirichlet boundary conditions. Concus in 1967 (C6) solved the
minimal surface equation using point S.0.R. method and in 1969 (C7) he
solved the same problem using block S.0.R. method, proving that block

S.0.R. method converges more rapidly than point S.0.R. method.

Porsching in 1969 (P9) modified non linear Gauss Seidel and Jacobi

methods to solve the Network problem.

In 1971, Brown and Gearhart (B23) studied a certain class of method to
find an additional solution of non linear system, Voigt (V3) considered
the order of convergence of an iterative procedure to find a zero of

non linear function.

Stepleman (S14) considered a class of difference approximations for a
second order quasilinear elliptic operator with mixed derivative and
proved the existence of the solution when the right hand side vector

is bounded.

In 1974 Karachersk and Lyashko (K1) investigated and constructed difference
schemes solving 1lst, 2nd and 3rd boundary value problems for quasilinear

elliptic equations when the coefficients are discontinuous of the 1lst



kind with respect to the independent variables x on hyperplanes parallel to
the coordinates hyperplanes. Keller in 1975 (K2) studied ;he non linear
problems, in the abstract form F(x) = O, and families of approximating
problems in the form Fh(xh), also he studied, briefly, the relation

between "Isolation" and "Stability".

Dey, in 1976 (D8), proposed the use of a perturbed non linear Jacobi

iteration to solve a system of non linear equations.

Moore in 1977 (M13) studied the global convergence of iterative schemes
- _ =i . : .
of the form Kol = X (Pk(xk)) F(xk), with special emphasis on the
Newton's Gauss Seidel method, where F 1is continuously differentiable
n =0
and convex on all of R and Pk 1s a non negative subinverse of F'(x)

. n
for each x in R°. He also generalized some of Varga's results (V1) !

and improved some of Greenspan and Parter's results (G7).

Mittleman in 1977 (M12), solved the Dirichlet problem for a class of
quasilinear elliptic equations approximated by the simplest finite

element method.

Thews, in 1979 (T2) studied the existence and multiplicity question for

non linear elliptic boundary value problems of the type

Lu(x) = P(x,y) for x € G

and u(x) = 0 for x ¢ 3G

where L is a uniformly elliptic formally self adjoint operator of second
order and G is sufficiently smooth bounded domain in R". 1In 1980 Lipitakis
and Evans (L7) presented a new extendable LU sparse factorization solving
non linear elliptic difference equations with applications on non linear

elliptic boundary value problems of 2 and 3 dimensions.



0.3 Introduction to the present work
This thesis can be divided into two parts, corresponding to the case in

which the Jacobian of the non linear system is:

1. Symmetric positive definite

2. Non symmetric

In chapter 1 we describe some preconditioning techniques. Some of these
techniques are derived from other iterative methods like SSOR method
(see Y1) and A.D.I. method (see V1), others from the approximate factor-
ization schemes due to Meijerink and Van der Vorst (M17), Dupont et al

(D14).

We consider in chapter 1 the approximate factorization by H.L. Stone
(815) and its modification to produce a symmetric approximate matrix

factorization by A. Bracha-Barak and P. Saylor (B1O).

In chapter 2, we deal with the finite difference approximation for the
mildly non linear elliptic equation. The approximated system is of the
form Ax = F(x) (of symmetric and positive definite Jacobian). We propose
two iterative techniques to solve the system Ax = F(x), the linearized
S.I.P. and the non linearized S.I.P. techniques. The linearized S.I.P.
technique is the simplest application of S.I.P. which requires the
evaluation of the non linear operator in order to have a linear system

at a prior chosen fixed number of iterations.

The non linearized S.I.P. is a new iterative technique which we propose.
This method adapts the evaluation (or any approximation) of the Jacobian
(compared, say, with Newton's method) and provides a fixed value through-

out the iteration.



In chapter 3 we describe a class of variational iterative methods for
solving symmetric linear systems, here we generalize some of the important
properties (some of those properties have been proved by R. Chandra (C4)
for linear systems) of the system of non linear equations using non

linear conjugate gradient method (D2) and also we obtain general error
bounds for non linear systems. Also we motivate and study the error
bounds of the preconditioned non linear conjugate gradient method (using

the approximate matrix factorization (B10)).

In chapter 4 we present the numerical results from solving three model
problems (mildly non linear elliptic equations of symmetric and positive
definite Jacobian solved by Hageman and Porsching using the non linear
point (block) Gauss Seidel method, the non linear Point (block) S.0.R.
method), also nonlinearized S.I.P., linearized S.I.P., linear (nonlinear)
conjugate gradient and preconditioned non linear conjugate gradient

methods.

We proposed total number of arithmetics, size of storage units, total
number of iterations and time in order to measure computational complexity.
The numerical results show that nonlinearized S.I.P. is an optimal

method, among all of the proposed iterative methods, with regard to the

suggested comparison factors.

We compare the results of using nonlinearized S.I.P. with the results of
using the methods of (H8), it shows that nonlinearized S.I.P. is a more

economical method (with regard to the number of iterations and time).

In chapter 5 we consider the iterative technique "Bidiagonalization
method" (see (P1)) to solve a non linear system, with non symmetric

Jacobian, by linearization.



We solved two model problems, approximated by finite difference aﬁprox—
imations, problem 1 (see Cl0) generates a non linear system of the form
Ax = F(x) where A is a matrix of constant coefficient and F is the non
linear operator and problem 2 (see Y2) generates a non linear system of
the form A(x)x = C, where A(x) is a system each component is a non linear

function of x and C is a constant vector.

The numerical results, from using linearized bidiagonalization show the
inefficiency of this method (with regard to both the time and the number
of iterations). We probosed two preconditioning bidiagonalization
techniques to accelerate the convergence (and consequently reduce the
total number of iterations and time), using the Stone approximate matrix

factorization for non symmetric matrix (S15).

These preconditionings are:

1. Post preconditioned bidiagonalization technique

2. Pre preconditioned bidiagonalization technique

(The prepreconditioned bidiagonalization technique is equivalent to the
technique proposed by Meijerink and Van der Vorst (M8)).

Using post preconditioned and pre preconditioned bidiagonalization
techniques to solve problem 1 and problem 2, the numerical results show
the efficiency of post preconditioned bidiagonalization method, with
respect to the time and total number of iterations compared with the pre

preconditioned bidiagonalization and with the bidiagonalization method.

Also we compare the post preconditioned bidiagonalization technique with
the non linearized S.I.P. method (using Stone approximate factorization
(815)), the numerical results show the efficiency of the nonlinearized

S.I.P. technique.



In chapter 6 we give a comparison of solving the laminar flow problem,
problem 2 (see (Y2)), using a multigrid method with non linearized S.I.P.
as a relaxation technique, we compare with the results of chapter 5,

the numerical results to show that the multigrid method produces 50-607%

reduction in the total number of iterations and time.

Finally, in chapter 7, we summarize the numerical developments in this

thesis and give suggestions for future work.
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1.1 Introduction

Consider the system of linear equations

Ax = b st

where A is an N x N symmetric positive definite matrix. We can scale
the linear system 1.1.1 using non-singular matrix Q and we have the

following equivalent system
A!XV = b' 1.1-2
where

A" =0T, b =qQ ' and x' = QTx

Clearly A' is symmetric and positive definite. One can prove (see A4),when

(2 'Ag;-‘cal
solving 1.1.1 by iterative methods, that the bound on the rate of
convergence is a monotone decreasing function of k(A). Therefore one

way to improve the rate of convergence is to choose Q to decrease the
condition number of the iteration matrix. More precisely, if Q is

chosen such that

k(A') < k(A)

then the algorithm may converge faster asymptotically of the preconditioned
problem 1.1.2 than for 1.1.1. Since Q is non-singular, M = QQT is

positive definite. Conversely, any symmetric positive definite matrix

M can be written as a product QQT, where Q is non-singular (see Y1).

Thus the question of choosing an appropriate non-singular matrix Q is

equivalent to the question of choosing a splitting of the matrix A of

the form
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Most iterative methods are based on that idea.

Associated with this splitting is an iterative method

Mxn+1 =M - A)xn +b = Rxn + b yileid

- =L _
or x .. =x + M (b Axn)

The more M—1 ressembles A—1 the faster the method will converge. On

the other hand we have to solve the equation

MAXx =Db - Ax
n n

during every iteration, so there is a requirement for M to be, in some

cases, ''triangle".

In 1967, D.J. Evans (E3) proved that the asymptotic convergence of many
standard iterative methods for the solution of linear systems depend
inversely on the P-condition number of the coefficient matrix, in
addition to that he showed that calculating a pre-conditioning factor,
to minimize the P-condition number, is computationally feasible and

he discussed the application of this idea to the method of simultaneous

displacements iterative technique.

0. Axelsson, 1974 (A6), proved that for semi iterative method the
number of necessary iterations required to achieve a certain accuracy
is directly proportional to the square root of the spectral condition

number k(A).

1.2 Iterative Techniques and Matrix Factorization

Consider the system of linear equations

Ax = b 1La2e 1

Such a system results from the application of finite difference

approximations to linear self adjoint elliptic boundary value problems
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L(u) =

Il o~10

3%? (ai(x) 3%7 u) + c(x)u = f(x), xeD

i=1 i

and u(x) = g(x), xedD T 28,2

(and also with Neuman and mixed boundary conditions),
where ai(x) are strictly positive functions and c(x) < O.

wethod
. . . . . L .
Solving a system of linear equations by an iterative was extensively

well known through the past sixty years. For instance an important
technique for solving a system of linear equations is the S.0.R.

method (an example of 'fixed point' iteration).

— - - _1 —
X T X w(D - wL) (Axi b) 1.2.3

where A =D - L - U, D is a diagonal matrix, L and U are strictly
lower and upper triangular matrix respectively (see D. Young (Y1),
R. Varga (V1), Ortega and Rheinboldt (04)). The matrix (D - mL)_1
which appears in 1.2.3 in fact reduces k(A) (see (A6), (04), (V1)

and (Y1)).

Another iterative method used to solve a system of linear equations
is a factorized two step method such as the A.D.I. method. The matrix

A can be split as (see (A6), (04), (V1), (W1) and (Y1))

A=B+H + H Le254
X 4

Then an A.D.I. iterative method to solve 1.2.2 is

2+1 2

[
|
o]
"
+
o

(B + Hx)x
=L 0alin2 s o 125

]
|
jas]
»
o
o

Qa'].
B +H X

Unless the set of equations is small, S.0.R. converges rather slowly,
but because its properties are well understood it is reliable and

popular, but the difficulty with A.D.I. is that although the method is
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very fast for a certain class of problems this class is rather small.

For more about the difference between A.D.I. and S.0.R. methods

see (W1).

Because of the inadequacy and difficulties of the A.D.I. and S.O.R.
methods, other methods to solve 1.2.1 have been searched out; one of
such methods is based on approximate factorization, (i.e.) find L and
U, such that LU satisfies LU = A + R. We can view this approach of

course as one 1n which

A=1LU-R 126

where LU is symmetric positive definite and 'close'" to A in some

sense, i.e. R is "small".

Several procedures for approximately factoring A have been suggested,
see (A7), (D13), (K4), (M16) and (W7). If A is the matrix generated
from the application of a 5-point formula for (1.2.2), we find a system

with a coefficient matrix A, in the form

Fig. 1.1

(k is the number of nodes along x—axis)
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Define the position of the elements L and U as follows

2.. =0 if a.. =0 i>j
1 1] 1.2.7

u.. =0 if a.. =0 jl 7
1] 1]

To guarantee the existence of an approximate LU decomposition, L and
U are preserved to lose zeros in off diagonal places which are chosen

in advance. These places (i,j) can be fixed by the set

PPy = {0 |i#3, 1sisVN, 1gijsN] 1.2.8

where PV contains all pairs of indices of off-diagonal matrix entries.
The various algorithms arise by defining these sets PN (see A7, BlO,
D13, D14, G4, J1, J6, K4, M7, M8, Ml6, S1, S15). Some choices for

special matrices will be described in more detail.

The notion of factorization was firstly proposed by Buleev (B24) and
Oliphant (0l). Their technique was the basis of Stone's method (S15).
This method was essentially the basis of the determination of approx-
imate factorizations for the matrix A, whether A is symmetric or
asymmetric. One disadvantage of Stone's factorization was that the
product LU = A + B is an asymmetric matrix, even when A is symmetric,
the non-symmetricity appearing because of the non-symmetricity of B.
To avoid such unsatisfactory behaviour, an improvement was found by
A. Brach-Barak and P. Saylor (B10). The main advantage in producing
symmetric factorization is to reduce the store requirement by about

407.

P.E. Saylor, 1974 (S1), determined a class of strongly implicit
symmetric factorization methods. Saylor derived this class from the
paper of H. Stone (S15) and T. Dupont et al (D14). D.A.H. Jacobs (J1)

described a generalization of Stone Factorization to factorize the
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matrix generated from the application of 13 points finite difference
formula associated with the biharmonic and similar fourth order

elliptic equations.

The feature of the matrix factorization has been widely applied in
combination with other iterative techniques to solve the system of linear
equations, the main advantage of such a combination is to reduce the
spectral radius of the iterative matrix. Also, such a combination

has been widely applied with conjugate gradient methods (see Chapter 3).

A. Jennings and G.M. Malik, 1977 (J6), proposed a modification of Tuff
and Jennings method, 1973 (T3). Meijerink and Van der Vorst, 1977 (M7),
proposed a class of regular splittings of any matrix which need not be

symmetric M-matrices (for definition of M-matrix see (V1)).

D.S. Kershaw, 1978 (K4), improved the method of Meijerink and Van der
Vorst in the case of positive definite symmetric matrices and further

generalized it to apply to general non-singular matrices as well.

0. Axelsson, 1979 (A7), described matrix factorization for non-self
adjoint problems, and in 1979 K. Meijerink and Van der Vorst (M8)

proposed incomplete decomposition for the following kind of matrices

1. Symmetric M-matrices (for definition see (V1))
2. Symmetric positive definite matrices

3. Non-symmetric matrices
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1.3 Examples of Matrix Factorization

As has been pointed out before, the elements of the matrices L and U

can be determined by using the set P as in 1.2.7 to define the elements
in L and U which will be zero. The resulting matrix from the product LU

is as follows

D
N
F Fig.)3.1.
L =
B
\

'\_ N\ E

L B c‘DJ

I1f we equate the non-zero elements in the ith row of the resulting

matrix LU to the corresponding elements in A we obtain the following

relations
B. = b. N+1g<igNZxN
i i
G1 = 1%1-N+1 N<ig<NxN
C. = c. 2 <ig<NxN
i i
D. =d, + c,e; + b.f. 1<igNxN 1.3.1
i i a1 i1
and
E. = d. .e 2 <1igNxN
i 1=1"3
Hi = Ci—n+1fi Ng<igN=xN

; d._ f.
1. i-n" 1

1.3.1 Meijerink and Van der Vorst Factorization (M7)

If we choose
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we will have the following factorization

d. =D. - C.e. — B.f. 10362

This computational part of Meijerink and Van der Vorst's incomplete
cholesky decomposition, 1977 (M7), is applicable to any kind of matrix;
but when A is symmetric such a factorization can be combined with the
conjugate gradient method. The resulting preconditioned conjugate

gradient method is referred to as ICCG(O).

In general for any matrix real symmetric A, we first compute an
approximate matrix factorization LL , where L is a lower triangular
matrix, to fix the entries which will be forced to be zero in L.

. - ; T
Secondly, we compute an approximate factorization LL~ of A by the
cholesky algorithm so that Lij is set to zero for (i,j)eP, (so the
elements of L of indices corresponding to the indices in P are neither

calculated nor stored).

1.3.2 Dupont, Kendall and Rachford Factorization (see D14)

Dupont et al proposed the following choices for matrix factorization

B. =B., C. =¢C.,D. =D.(1+) - G. - G 1.3.3
s, 1 i A

i+n-1

for a matrix factorization of A where a is a parameter. By this

definition of L and U, we have

(LU)u.. =B G. (
i

5 7 BiiY%ong * G (8na T oY) P Ciuyg * Dy (Tradyy

*E el T -1 Cgen1 T ) P L.3.4
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and

(Au)ij =B 1

e P b I y o DL, o BE s Ul B, « U ‘
lJul—nJ ClJul“lj DlJUIJ 1+1Ju1+lj F1+nJU1+nJ
From the above form of factorization, Dupont et al attempt to reduce

term by subtracting G.u. and the effect of

the effect of the G.u.
1 1-n+l 11

B o1 Uj oy fOTT by subtracting ﬁi+n-1ui (where G and H terms are
appeared from the multiplications of L and U). The parameter a is used
to accelerate the convergence of the algorithm. This is the main diff-
erence from the Meijerink and Van der Vorst algorithm which makes no
attempt to reduce the effect of these extra elements appearing in the

factorization. Therefore we have the following forms of the decomposition

LU of the matrix A.

c. = C.
i >

A
]

Di(1+a) - biei—n+1 - Cifi+n-1 - cjes - bifi 1.3.6

i+l ~ Ei+1/di

fien = Fin/Y

The evaluation of bi’ o di’ SRE fi+n’ can easily be calculated

provided that di #0, 1 <1 < N.

For all values of a, 0 ¢ o < 1, the {di}N are strictly positive and

« < i=1

therefore the resulting matrix LU is positive definite. Dupont (13)

proved that if a = kohz, where h = and ko > 0 1s a constant

P 4
(n+1)
independent of h, and if the coefficients of the self adjoint elliptic

equation are uniformly Lipschitz continuous in each of the directioms,

o S _ =1
X: then condition number of the preconditioned matrix is O(h 7).

35

5
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Dupont extended his algorithm, and he proved facrorizability for the
nine points discrete Laplacian as well as for the discretized self

adjoint Neuman problem.

1.3.3 Stone Matrix Factorization (see S15)
Consider the following self adjoint partial differential equation of

second order

9 du _
3;; (ai(X) 3;;) = f(x) on D 1¥%3. 7

|
I o~12

i=1

with u(x) = g(x) for all xedD.

Where ai(x) > 0, and f(x), g(x) and ai(x) be sufficiently smooth, let
D be a unit square, i.e. D = {(x,y) I O0<x<1land 0gyxg 1}.
Byusing a five point finite difference approximation the approximation
3 du s :
of 5;; (ai(x) S;T) is given by
1 By ny
i [a;(x + 59 {u@) - ux +h)} + a,(x - 59 {u -ulx - h)}]
' 1.3.8

where hi is a mesh size associated with each mesh point, if we take an

equi mesh size, i.e. h = hi for all i, then 1.3.8 can be simplified to

- lj [ai(x + %) {u(x) - u(x + h)} + ai(x - %) {u(x) - u(x - h)}]

=

L 239

By application of the above approximation 1.3.9 on the Dirichlet problem
1.3.7, we find a system of linear equations Au = f, where A has a special
structure; it is a five diagonal matrix, where the associated points are

of the following scheme (i,j), (i-1,3), (i+1,j),(i,j-1) and (i,j+1).
Thus a single equation is given by

Duliy = €55 = Byjugsoy * Pyjugog g * Byqugg * Di+159i+15 * Bijeruijen
1.3.10
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. . 2
5 -1
where Bij az(x1+1h, X, * (] $)h) /h
, . 2
= = - 1 h
Dij al(x1 + (1 3)h, X, + jh)/n 1.3.11
E.. =B.. +D

1] 1] 1] D13+1 * BlJ+1

The idea of Stone is to find an approximate factorization LU for the
matrix A such that A + B = LU, the elements of the matrix B are defined
explicitly from the elements of the matrix A, and the product of L and
U gives the matrix of the following form, where the elements indicated
by the dotted line in fig. 1.3.1 correspond to the grids (j + 1, k - 1)

and (j - 1, k + 1).

DA # B = (G b = Bgm, g % B jeee SV i A0 itk

@y * Bygfrie1 * iRV T Yt
°13fi-15%-1+5 * di3%i5% 5
1 a3 12
Equating LU with A at ij gives the following relations for the unknowns

b.., c.., d.., e.. and f...
1] 1]

b.. = B..

1] 1]

ij%i3-1 7 ©

c = D..

iy 7ij

LB c..e. .. =E.. 1888

1] L gelg—l 1] 1-13 i]

1315 T Pi+1j

45115 = P
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Stone proposed to determine the value of the listed unknowns by

considering the extra diagonals, i.e. (1 + 1, j - 1) and (i - 1, j + 1).
By using the Taylor expansions of ui+1,j-1 and ui-l,j+labOUt uij and by
subtraction of Taylor expansions of ui,j+1’ui—1,j’ ui+1,j and uij—l we
find the following:

u. . = -u,. + u, .. + u.. + O(hz) 1.3.14

1+l j-1 1] 1515 131

u, : = -u., +u, _. + u,, + O(hz) 1.3.15

i-1 j+1 1] 151 13+1

Extra flexibility is given to the method by considering 'partial

cancellation'", in which we use a parameter ae[Q,l].

ETRE T L TR PR TR Fadafl

= a(-u, ) 1.3.17

Yi-1,5+1 © ij T V-1, t a1

By using the following approach, the i-th equation is given by

oo By s + D, K, : L . <. . T (R
BlJ ij-1 DlJ i-1j3 * ElJ 1] * D1+1_] T o1 * B1]+1 ij+1

*Fyy DO pg oG+ Yy * Y50

+ Gij [ui—lj+1 - a(-uij + ui—lj + uij+1)] 1.3.18

.. = ow = Qn ,F a i i e =
where F1J biJelJ_1 and G1J c13f1—13 and by comparing with (A + B) LU

gives the following relations

by = Bij ~ ob;.e;iq = Bij/(l + “eij—l)

Cij = Dij - acijfi_lj = Dij/(l - afi—lj)

iy “Hyy v Byglongey © Eop ¥k eplobage 7 By g

€55 = (Di+1j = abijeij_l)/dij

£.. = (B )/d. . 1.3.19

i T . PR
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With the matrix A + B thus defined, the iterative method is derived by
adding Bx to both sides of the linear system Ax = b and Ax — Ax to the

right hand side to give

(A +B)x = (A + B)x - (Ax -b) 1.3.20

Since A + B is easily factored 1.3.20 provides the basic for an iterative

me thod

(A + B)xi+1 = (A + B)xi - CAxi - b) 13,21

In general values of x for the (i+l)st iterative level can be calculated
from x at the i-th level, and the iteration method defined by 1.3.21 is

called an S.I.P. method.

1.4 Convergence of the S.I.P. method

To solve any large linear system numerically by the application of any
iterative technique, a major problem is to determine how fast iterates
will approach the fixed point of the given problem; in other words, the
principal part of any such iterative technique T is the algorithm

G = G(F) constituting a single iteration step. We can define the input
of G to be {i,x,M}, where 1 is an iteration index, x the current itera-
tive vector and M is a set of memory. Therefore the generic iterative

process T is the following scheme.

t: 1. input {xO,MO}

2 For-dt e=H0515.: 415
3. output X,
4. if X is acceptable - STOP

5. Otherwise, = G{i,xi,Mi} 1.4.1

(%00 Ml
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A stationary one step process G (see Y1) is therefore defined by

X4 T G(xi) i=0,1,...

where Gi:Rn—> Rn L.&.2

is the associated iterative operator. For example in Newton's method

(see 04), G is given by

- ot
Cxi+1 X F (xi)F(xi) 1 .43

The point of attraction of T is any x* ¢ R" for which there exists an open
neighbourhood ScD (where D is the domain of definition) with the property

that if X, € S, the sequence {xi} of (1.4.2) remains in D, and converges

to x*.

In the case of affine space we have the following theorem (see 04, R3,

v1).

Theorem 1.4.1

For an iteration operator G, if Gx = Bx + z, where B is a linear operator,
then the sequence of iteration {Xi} generated by 1.4.2 converges to the
unique fixed point x* of G in Rn, starting from any x* ¢ R" if and only

if B has spectral radius z(B) < 1.

The above theorem 1.4.1 gives necessary and sufficient conditions for
the existence and uniqueness of solution and the convergence of a

starting iterative technique, such as

Kiag = By T Bpyq bl T 0,13 25.0 1.4.4

In the method of simultaneous displacement let
e. =x. —A D L.4.5

Then the error vector can be shown to satisfy the equation

€i+1 = (1 _GA)ei = (I —aA)leo 1.4.6



for any fixed a.

The operator (I - aA) is called the "Error Operator'", and for such an
iterative process the necessary criterion for convergence is that the
spectral radius of (I - oA) is less than unity, a sufficient condition

for which is that

[T - aAl] <1 1.4.7
If we assume that the set of eigenvalues of {Ai}§=1 of A are bounded
by the values of a and b such that
0 < @ Ay, £ Ay snens < A. <$b < 1,48

then the criterion for convergence makes it necessary that

|1—axi[ <1 i=0,1,... 1.4.9

Therefore the permissible range of values of a is

0 < a < % L4010

and the best convergence rate is obtained by choosing a so that the

spectral radius of (I - 0A) is minimized, clearly the best choice of o

is that
1 - aa =- (1 - ab)
Therefore
a =< E 5 1.4.11

The convergence factor for i = 1 (minimum eigenvalue) and i = N

(maximum eigenvalue) 1is

b=a ‘P—-1
|1 - akil i 1.4.12

where p = — is the "P-condition" number of the matrix A.

o
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In general as a matter of comparison between any kind of iterative
process generated a sequence of vectors {Xi} is interested how quickly

the absolute error

e. = ||x; - x*|] for i = 0,1,... 1.4.13
1 ot ©

*

(where x* is a solution vector of Ax = b), remains below any given

tolerance (see R4).

Another question of interest concerns the number of iterations (say n)
required to reduce the relative error in the 2-norm below a given tolerance
(say €), so that

1 - AN/XI n

| ———— | s ¢ 1.4.14
1+ AN/A1
1M 1
Such a value of n is given by n > v 1n - (see A6).
N

But in the case of using a variable parameter, such as {ai}, we want to
minimize the spectral radius of the corresponding iteration matrix

polynomial

Pn(A) = K (1 - aiA) 1.4.15

(Note: for a fixed o, we have the iterative matrix (I - aA) and

P_(4) = (1 ad) ™).

The error iterative matrix polynomial is given in 1.4.15 so the eigen-

values of Pn(A) are given by

Pn(x) =
1

n=s

kL = aik) 1.4.16
0

where Pn(O) = 1.



- 26 -

Let m and M be the extreme eigenvalues of A, then the L2 norm is
2
majorized by M2 = max | I (1 - r.x)|. Since Pn is a polynomial
mg x <M i=l .
of degree, n, which has a maximum and minimum absolute value on Em,Mj

we can write it as

M m + M. -1

el 1.4.17

P (x) = T, ( - I 2X)(Tk(

+
k M-m

where Tk(k) = cos(k arc cos (X)) is the ordinary Tcheydsev polynomial

defined over the interval [—1,1], with k-zeros at cos((2i+1) w/2k) for

Therefore

_ 2
i M+m+ (M- mcos((21 + 1)7/2k)

a i=0,1,...,k-1 1.4.18

Hence to speed up the iteration technique we shall derive a certain
matrix C from A such that Q(C_lA) =1, i.e. the main purpose of pre-
conditioning is to minimize the spectral radius of the associated matrix
over an interval [g,b] covering the spectrum of the preconditioned
matrix C-lA. Many such matrices C exist, for instance there is one for
each particular iteration technique, for example in S.0.R. the matrix

C is given by

C=A+ (1 -wE+F, where A=D+E +F 1.4.19

As a point of interest we can show that the S.0.R. iterative technique
can be formulated in a form essentially equivalent to S.I.P. (see 1.3.21)

where the matrix (A + B) has the form of 1.4.19.

The iterative matrix associated with the S.I.P. is (I - (A + B)-lA) by
the application of theorem 1.4.1, the necessary and sufficient condition
required for the convergence of the iterative technique, we conclude

that
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T(I - T(A + B"HA) < 1 1.4.20
where the generalized S.I.P. to solve the linear system Ax = b is
given by

(A + B)Xi+1 = (A + B)Xi = (Axi - b))

If we assume the eigenvalues of I - t(A + B)_lA are bounded by a and

b, then

o<§sfisi§<oo i=1,2,...,N 1.4.21

Therefore the best choice of T, to speed up the iterative process is

2

a+b

T =

and we have that

[1 - A, <
1

I
IR
|
-

o'| |o|

max

where P

min
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CHAPTER 2  Solving a System of Non-Linear Equations

2.1 Introduction

Let f:R —R be a non-linear operator where R is a space of real
variables. To find an approximate solution for the f(x) = 0, let X,
be an approximation of x*, where f(x*) = 0. Consider the linear

polynomial P which we will use to find an approximate solution of x*,

where f(x*) =0, i.e.

P(x) = a(x - xo) + f(xo) 2.1.1

Then we have the following iterative scheme

-1
X =X - f(x), k = 0,1,... 3,1.2

For a N-dimensional operator F, F:Rn——-»Rn, we have the following

P(x) = A(x - xo) + F(xo) 2.1:3
(where A is a scalar matrix, A = al).

Simplifying 2.1.3 we get the following relation

X =

_1 _
SR T W SO k =0,1,... 2.1.4

2.1.3 can be considered as a generalization of 2.1.1, where 2.1.1 can
be considered at each component of the vector x and of the non-linear

operator.

It has been found that the best choice of a is the slope f'(xo) of
the tangent f at X, (see 04). Similarly in the N-dimensional case
the best choice of A is A = (225 i=0,1,2 where (BE)

e i o (xi) f o A 3% (x.)

is the G-derivative at xi (for definition of G-derivative see (04)).

Therefore at each step of iteration we will have to evaluate (EE)
ax’ (x.)

at each step i of iteration and 2.1.4 can be written as
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oF, -1
X = X

i+l i T (3;)(xi) F(xi) y i=20,1,... 2.1°%5

For l-dimensional operator 2.1.5 can be expressed as

-1
= _ '
X0 xi (f (xi)) f(xi) 2.1.6

The above, of course, is called '"Newton's method".
Each step of Newton's method requires the evaluation of %5 which is

very time consuming.

One way of reducing the work per step required by Newton's method
(which mainly consists of the evaluation of the Jacobian) was proposed
by R.P. Brent, 1973 (B22), who used a class of secant methods to avoid

the evalaution of the Jacobian at each step of the iteration.

Another technique which has been proposed is to apply a difference

. - oF
approximation to each component ajFi of sz-as

=L iy _
ajFi(x) hij (Fi(x < hije ) Fi(x)) 2.1.7

where hij is the given discretization parameter, i.e. the step size,

and e’ is the j-th coordinate vector.

. . . oF .
Let J(x,h) be the difference approximation of T at x, where h is a
constant mesh size, then the Newton iterative scheme has the following
form

1

X =x. - J(x.,h.) F(x.) 2..1:8
i i’ i i

i+l

2.1.8 is called the "Newton Discretized Iterative Formula" (see 04).

Furthermore we could reduce the amount of work required by revaluating

%5 only occasionally. Then the iteration becomes
F ;
X1 T X (ax)p(i) F(xi) 1= 051564 2.1.9
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where p(i) is some integer less than or equal to i. The limiting cases
of 2.1.9 are, of course, p(i) = i, which gives Newton's method, and
p(i) = 0, which gives the simplified Newton's method. Now suppose that
F' is revaluated every m-step. Then if we renumber the iterates, so

that now X denotes the im-th iterate of 2.1.9, the iteration is equiva-

lent to
X, = x ot - @57 pix ) R T
i+l i,m’> i,k i,k-1 ox’1 Jk=1 ’ ’
X =X
i,0 i 2.1 o

which, for instance, when m = 2, may be written as

_ . _ AF -1 _ 3F,-1
X=X (ax>(xi) {FGx) + Fixg (ax)xi F(x))}

2.1.11

The iteration 2.1.11 may be considered as the composition of one Newton's
step with m - 1 simplified Newton's steps (m = 2). One way of utilizing
any kind of iterative method in connection with non-linear equations is
as a means of approximating solutions of the linear systems which must

be solved to carry out Newton's method, for example we could have a
composite Newton-S.0.R. iteration, with Newton's method as the "primary
iteration", and S.0.R. as the secondary iteration' Consider the

Newton's iterative method to solve a non-linear operator F.

9F, -1

X - - ——
41 Xi (BX)(xi) F(xi) 2 sl 12
Then by decomposing the matrix J. = (§£5 as
i oxX (xi)
J. = D. = L. = U. 22118
it i i i

where Di’ Li and Ui are diagonal strictly lower triangular and upper
triangular matrices respectively. Then the one step Newton-S.0.R.

iteration 1is
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- —1 3 -—
X1 T % uui(Di wiLi) F(Xi)’ i=1,2,... 2.1.14

For more about such a combination see (C6,C7) for Jacobi-Newton's
method and Gauss-Seidel-Newton method (see (H8)), and for general
analysis and more about generalization of linear iterative method see

(03, 04).

In general we can consider all the linear iterative techniques as
potential secondary iteration procedures used with Newton's method,

as a primary iteration technique.

As is well known the major categories of iteration to solve a system

of non-linear equations are

1. Linearization (which requires the evaluation of the non-
linear operator and the solution of the resulting linear
system by any iterative technique for instance, and then
re-evaluating the non-linear operator by using the last

iterative solution vector).

2. Non-linearization.

2.2 Mildly non-linear elliptic equations

A non-linear partial differential equation of the general form

% Vor 4 Zb ucg F B = EGTs wugrug) 2.2.1

(a2 + b2 + c2 # 0)

defined over the region D, is called "mildly non-linear".

. . o g 2 -
Equation 2.2.1 is elliptic when b~ - ac < 0, and it can be transformed to

a uxx + v uyy = f(X,y,u,uX,uy) , 04, 5 Ve 26202

(for such a transformation see W.F. Ames, 1965 (A4)).
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To obtain the numerical solution to (2.2.2) we reduce the continuous
infinite dimensional problem to a discrete finite dimensional one.
Several techniques are available to do this and we consider the use
of finite difference approximations. (Finite element methods could,
of course, be used). Finite difference approximations for us uy, u
and u are:

yy

u l.. - (

2
- = +
x'1] 2h ui+1,j ui—lJ) o)

1 2
= 4 - u,. 0
uy‘ij 7 P41 T Bpg-r) POED
_1 - 2
iy 77 My T Pt N T 00O
u |.. = L (u,. . = 2u,. +u,., ) + O(kz) 2.2.3
yy'ij k2 1j+1 1.7 =1

where h and k are the mesh size along x and y axes as usual.

Therefore (2.2.3) can be used to approximate equation 2.2.2 as follows

o]

o(u, o= 2u L +u, )+ L
h2 i+1j ij i=13 h2

LT T THE L TRt

For a region such as a square we can use equi-mesh size (i.e. h = k)
and then derive

(u, ., - 2u,, R o = .. .. = » 2.2,
oL i+1] 2 ij * ul-lJ) * Y(U1J+1 zulj a ulJ'l) R flJ ?

In general the resulting system of non-linear equation is of the

following form
Au = F(u) 2.236
where A is a matrix of constant coefficients of 5-diagonal entries
and F is a non-linear operator.
Now if o = y = -1, we have the following problem of the general form
Au = f(u) on D

with  u(x,y) = g(x,y) on 3D 2.2.7
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To approximate the above equation 2.2.6, we replace the differential
operator by a five point difference approximation on a square grid

D , with boundary aDh, where h is the mesh size, we find the equations

h?
WL+, 4w, +u_ . -bu, =h’f(u) for (ih,jh) € D
1=17 19=1 ij+1 i+1] 1] 1] h

2.2.8
and
Uij = gij for (ih,jh) € BDh

We may write 2.2.8 as an N x N system of non-linear equations (where N is

the number of grids along x—axis and along y-axis).

2.3 Solving the system Ax = F(x) using S.I.P. techniques

In order to solve the system of non-linear equations obtained by
application of finite difference approximation on mildly non-linear
elliptic equations, there are two ways of applying S.I.P. techniques

to the non-linear systems namely linearization and non-linearization.

2.3.1 Linearization technique

In order to solve non-linear systems by using the S.I.P. technique,

the simplest way is to solve the "linearized" system, and then re-evaluate
the non-linear operator, by using the last iterative solution vector.

But, with respect to the total number of iterations and total work effort,
this is much more costly than non-linearization technique (as we will

describe in detail in section 2.5).

The general scheme of iteration is as follows

L k
W=, = QO - R,
xl(‘) = 1 2.3.1

Note: the index i is for steps of inmer iterations and k for outer

iterations.
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. . k . ; : .
Where Ri 1s the residual at X and LU is the approximate factorization

,k
for the associated matrix of constant coefficients associated with
the given non-linear system.

In order to stop the iterative scheme 2.3.1, the process is continued

for k > 1 and 1 > 1, until

||xk+1 _ k||m< El
25312
k k
and ||x1+1 = Xillw <&,

where the values of €1 and €, are dependent on the accuracy of the

iterative solution vector, and they are not necessary to be equal.

As is obvious €, is chosen to stop the inner iteration but we can

replace €, by performing a fixed number of inner iterations and then
evaluate the nonlinear operator, which as a matter of fact will reduce
the total amount of work required to solve the non-linear system; in this

case the scheme of iteration is as follows

LU xk = LU x%

i+l D Ri(p),k 2385 3

where 1 ¢ 1(p) and i(p) = i mod p.

2.3.2 Non linearization technique
The S.I.P. non-linearization technique to solve the non linear system
Ax = F(x) (which can be derived from the general Newton technique to

solve non linear operator) has the following scheme

(A + B)i X.

i+l = (A + B)i X = R. 2354

1
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(where Ri is the residual at i-th step and (A + B)i is the approximate

factorization of the evaluated Jacobian at xi).

The calculation of the approximate factorization (A + B)i requires a

good deal of effort, which is nevertheless worthwhile in practice.

To reduce the work required per each iteration we can use the approx-
imate factorization (A + B) of the linearized system of the system of
non-linear equations as a fixed value instead of evaluating the Jacobian

and its approximate factorization at each step.

The scheme of iteration is as follows

(A+ B)x, . = (A+B)x, R i=0,1,2,... 2.3.5

2.4 Convergence

2.4.1 Convergence of S.I.P. linearization technique to solve
non linear system

Consider the scheme of iterations to solve the system of non linear

equations given by
(A + B)x% = (A + B)xk - (AXF - f(xk)) 2:4.1
1+1 1 1

where k is the index of outer iterations and i is the index of inner

iterations).

If we denote the error vector of the outer iteration at level k and
. . . . k ’ y :
level 1 of the inner iteration by e which is given by

egkl xgkl xu(k) DG 2
i i

k. . 0
where x* is the solution vector of Ax = f(xk), x”‘k can be expressed
as A—lf(xk), at the level k of outer iteration.

Therefore the error vector satisfies the relation
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k k k
(A + B)ei+1 = (A + B)ei Aei
_ ko -1, k
eiv1 " ¢ (A + B) A e,
-1 i k
€1 = (I - (A + B) A) e 2.4.3
For simplicity we have
= (@-(+B o 2.4.4
i1 e A,

Relation 2.3.10 holds at any level k of outer iteration by using

theorem 1.4.1 we conclude that the necessary and sufficient condition
for the convergence of the linearized non-linear system at stage k,

the modules of the largest eigenvalues of (I - (A + B)_1 A) must be less
than unity. In other words we conclude that, because we are solving

a linear system (the linearized non-linear system at stage k) the
behaviour will be similar to the linear system, therefore the criterion

for convergence makes it necessary that
1 -A.] <1 2.4.5
i

which implies that

Now we consider the convergence of outer iterations. Let v be the
solution vector of the original system of non-linear equations. Then

by using the formula 2.4.1 we have the following

(A + B)ei+1 = (A + B)ei - Jiei 2.h5%7

= _ =1 _ _ -1 i
e,y = M- (A+B) Jde = (T-(A+B) J) e  2.4.8

Let M = m§n IJil’ (taken over all non-zero elements of Ji)
ik

Therefore

e,  m (T- (& +B) 01 n. g (T= {4+ B>‘1w§e 2.4.9
i+1 i) & ¢ ey
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Note that for any sequence of iterations {xi}, the question of
convergence of the iterations to the associated fixed point is a
question of how quickly the sequence of the absolute error {ei}

a a . . : 2
ei = ||xi = 5% ||, where x 1s a fixed point, will convergence to a

limit zero (see 04).

The above relation 2.4.9 can be considered as

-1 i
e = (1 (A +B) M e 2.4.10

will converge to a limit zero if (I - (A + B)-lM) <1

i.e. |1-xi| <1 i=1,2,...,N
then

0 <A, < 2 i=1;2,...,N 2.4.11

Therefore the generated iterative sequence {xi} will converge to the

point xa, where x* is the solution vector of 2.2.6, if z(I - (A + B)_lM) <, =10

2.4.2 Convergence of S.I.P. to solve non-linear system
by non-linearization

Consider the system of non-linear equations
Au = F(u) 2.4.12

(where A is an N x N matrix generated from the approximation of the non-
linear equation and F is a vector of dimension N corresponding to the
non-linear operator). Assume that F is monotically increasing operator.

Consider now
- Au = - F(u) 2.4.13

Let

Au= -Au and F(u) = =F(u) 2.4.14
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Lemma 2.4.1
If F is a monotically decreasing function, then the function Fu = Au - F(u)

is monotically increasing, where A is a matrix with positive diagonal

entries and aij <0 fori# j, and A is positive definite.

Proof
Since 4 is a matrix with positive diagonal entries and non-positive

off-diagonal terms.

Therefore A—l > 0 (see V1)

Let u, v be any N-dimensional vector, such that u < v.
Therefore F(v) < F(u)

Then S F(u) < - F(v) and - A TF) < - A (v

=1= 1

u=-4 F(u < V-4 F(

Therefore Au - F(u) < 4v - F(v)

which implies that Fu < Fv i.e. F is monotically increasing operator.

Definition 2.4.1 (see 05)
For an N x N real valued matrize., A, B and C, A = B - C is a regular

splitting of A if B is invertible and B-1 270, € = 0.

Definition 2.4.2 (see 05)
For an N x N real valued matrice A, B and C, A = B - C is a weak regular
splitting of the matrix A, if B is invertible B-1 > 0, B-lc > 0 and

¢p 3 0.

Definition 2.4.3 (see 05)
Let A and B be an N x N real valued matrix such that AB < I and BA < I,

then B is called "a subinverse of A" and vice versa.
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Theorem 2.4.1 (see V1)

If A=B - C is a regular splitting of the matrix A and A—1 > 0, then

t® o) < 1

Corollary 2.4.1 (see 05)
If A=B - C is a weak regular splitting of the matrix A then

0<1I-B81la

H.B. Keller (K3) proved the existence of an upper and a lower bound

for the solution of the non-linear system of Ax = F(x). For an
approximate factorization LU of the real valued matrix we have that

LU = A + B which implies that 4 = LU - B. In the original system of
non-linear equations Ax = F(x). Let LU be an approximate factorization

of the matrix 4.

Lot - o - pasF - Bty
LU L - LpsS - Fxt
xk+1 = xk - A4+ B)—lka

We are going to prove that the S.I.P. iterative scheme is convergent

to the solution of Fx = 4x - F(x).

Theorem 2.4.2
Let F:DeR" m——sR" be a non-linear operator, Fx = 0, such that
Fx = Ax - F(x), xeD = [xo,yo], X and y, are the lower and upper bound

respectively.

If Fy - Fx 2> A(y - x), where 4 is a matrix of positive diagonal elements

%

and non positive off-diagonal elements, then the sequence

_1 . »
= - * * =
Yi+1 Y B Fyk is convergent to y* and Fy 0.
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Proof
By lemma 2.4.1 we have that Fx = Ax - F(x) is monotically increasing
operator.

Let x € [xo,yo]

-1 - -1 ) -1,
X B Fx = v, ¥q + B ¥y0+ x - B "Fx = Yl + (x yo) + B " (Fy - Fx)

—-— —-— -— -1 —-—
=y, + -(x yo) B " (Fx Fyo)

(x - yo) - B-l(A(x - yo))

A

]
-

o

_1 -
=y, * T =B Dx-y) =y, - (T-B A, -x

since I - B 4 > O and x <y,
Therefore

x - B Fx gy, - (I-B8 4y, % <y

= Al 0 1
which implies
=l

X9 $ Xg = B Fxy £y

Fyo = Fy; 2 4Gy - vy

- Fy, 2 - Fyy + Alyg - y)

Fy, s Fy, - Ay, - y))

= Fyo + A(y1 = yo)
Because of AB_1 > 0 and FyO >0

= =1
F £ F + =B ) = - 4B <l
vy € Fyg + A= B Fy,) = Fy, o = F
Therefore Fy1 < FyO

Also we conclude that Fy1 > 0, when xo,yo > 0.s
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Therefore we have a sequence of positive vectors, Fyi > 0, {Fyi}
generated from the applications of the monotically decreasing operator
F on the sequence {yi} generated from the iteration

_ - =l
= ¥, B Fyi

Yis1 i

which is bounded below by x, and bounded above by Yo

0

Hence the sequence {yi} generated from

.4
Vis1 = Y3 T B Fy;

is monotically decreasing sequence i.e. for each i, Vi1 €Y.

Therefore Fyi+1 - Fyi Ayi+1 = F(yi+1) - (Ayi - F(yi))

A(yi+1 = yi) = F(yi+1) + F(yi) >0
Therefore Fyi+1 > Fyi (contradiction)

Hence Ay*, which is the convergence point of the sequence {yi}

i.e. lim y. = y*
1>

. =1, =1
lim (yi+1 -yt B Fyi) =B Fy* =0

1>

Therefore Fy* = 0
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CHAPTER 8  Conjugate Gradient Method

3.1 Introduction
In this section we are going to investigate a certain class of
variational methods called '"Conjugate Gradient", to solve a system

of non-linear equations.

It has been mentioned before that there are two main categories of

method to consider:

1. Linearization

2. Non-Linearization

The linearization technique includes all iterative methods to solve

linear systems as inner iterationms.

One well known class of method for linear systems is known as the

"Conjugate Gradient' method. for the solution of Ax = b where A is

positive definite and symmetric.

This was first proposed by Hestenes and Stiefel in 1952 (HlZ), as a
direct method, which would in the absence of round off error, yield

an exact solution of an Nz—system at most Nz—iterative steps. But

even for small system (for example st 100), round off error can seri-
ously contaminate the approximations. Therefore the conjugate gradient

method never became popular as a direct method.

Reid (R1) in 1971 indicated that the conjugate gradient method can be
very accurate and fast for several problems even though rounding errors
cause it to depart significantly from its ideal path, in fact conjugate
gradient methods can be relied upon to converge ultimately and so are
effective if regarded as an iterative, rather than a direct method.

Reid also proved that the conjugate gradient method compared favourably
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with methods like Tchebyshev acceleration and S.0.R. for large sparse

systems.

Attractive features of conjugate gradient methods are that no further
special properties are needed for A, no acceleration parameters have
to be estimated and only three of four vectors need to be held in the
main store in addition to the demands of the operator A. A useful
feature is that the effect of round off error on actual implementation
does not prevent convergence but merely delays it. Subsequently, the
conjugate gradient method has been recognized as a powerful iterative

technique for solving large sparse linear system of equations.

In addition to the 1971 paper by J.K. Reid, in 1972 Reid (R2) has shown
that if the coefficient matrix is two cyclic (i.e. a matrix possessing
"property A", see (V2) or (Y1l)) then the work required for the conjugate
gradient method may be approximately halved with also a small saving

in the storage required.

3.2 Variational iterative methods

Consider the system of linear equations
Ax = b 3:2.1

where A is an N x N real symmetric matrix. For a positive integer u

the functional
Eu<x°‘) = (x - %, A%(x - M) 3.2.2
is called the "Error Functional'. This is the square of the A-norm

a . 2 - : S i a
of (x - x7) and it attains its unique minimum when x = x, therefore

solving (3.2.1) is equivalent to minimizing (3.2.2).

Different values of p yield different methods all belonging to the

same class (see R. Chandra, 1978, C2).
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To approximate x, these methods compute a sequence of iterates
XyrX 5%y,

mizing Eu(x*) along each successive direction.

More precisely, at the i-th step, X
where a; is chosen to minimize Eu(xi+1) and the direction vectors are

chosen by a method based on the Lanczos algorithm (L1).

By this special way of choosing the direction vectors, the uni-
directional minimization corresponds to minimization in the whole
subspace generated by the {Pi} so that the X1 obtained actually
minimizes the error functional on the affine subspace Xq * {PO,Pl,...
Algorithm 3.2.1

The algorithm of Lanczos method

1) Define p_; =0
Choose Po (an initial approximation)

Set 1 =0

2) Iteration 1i:

_ U H
«5. (ADi, A Dl—l)/(pi—l, A Pi_l)

-2
1]

n u
(Ap;, AT ) /(pys ATp))

and

i+l i i1 1

.. by moving along a sequence of directions PosPpsPys mini-

is computed as x. = X. + a.p.
P i+l i iPi’
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Theorem 3.2.1

The vectors {Pi} generated by Lanczos . method are AM - orthogonal

Proof (see C2)

Using algorithm 3.2.1 for generating the direction vectors, we now
consider the following algorithm for computing the approximations

X. to x.
B

Algorithm 3.2.2

The variational method

1) Choose an initial approximation x, to X

0
Compute ro =b - AxO
Po T To
1=0

-1
2) a, = (ri,A” pi)/(pi,Aupi)

~
[

ri - aiApi
§; = (ap;,A%p. ) /(p;_;.A%; )

: 4

_ U u
Y. (Api,A pi)/(pi,A pi)

i+1 T APg T VP T SoBs g

3) If convergence is achieved, STOP

otherwise set i =1 + 1, go to 2.
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Theorem 3.2.2

For the above variational method, the following relations hold

1) Api € {po,Pl,---,Pi+1}

2) ri € {PO,PI,---sPi}

3) {pO’pl""’pi} = {pO’APO""’Alpo} = {rdAro,...,Alro}

u-1 _ . .
4) (ri’A pj) =0 j<i
u—L _ c :
5) (ri,A rj) =0 i# ]
N u-1 _ -1 .
6) (ri,A pj) (rO,A pj) ig3]

7) If r, # 0, then P; #0

Proof: see (C2)

Theorem 3.2.3

For each i, the iterate X,

i+l minimizes Eu(x*)over the affine subspace

Xo + {poipl’ L ’pi} ¢

Proof:
: i
Let x* = x _ + E t.p., where {t.}._ are scalars.
0 .20 i j*3=0
J
i " 1
Then E (x*) = (x-x, - ] t.p., Al(x=-x,- } t.p.))
0 . ’ 0 . ;
i 52 i
= (r, - ) t.Ap., A" “(r, - ) t.Ap.))
O 320 3 7J O 520 174
Since the p's are Au-orthogonal
i u=2 2 H
E (x*) = E(x.) - (2t.(Ap. , A" “r) - t.(p., AT p.))
H 0 J-ZO i o J(pJ P;

The necessary and sufficient conditions for a minimum are that

u=2 _ H i A .
(Apj, A rO) tj(pj’ A pj) =0 j 0, L 5430
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Hence by theorem 2, we have that

=1 u Tl u
t. = (r., A . ., A'p.) = (r., A .) ., A"p.) = a.
i 0’ PJ)/(PJ9 PJ J’ PJ /(PJ: PJ i

Therefore

x* = X, + Y a.p. = x

3.3 Estimated error bounds
From the above variational algorithms, at i-th step the iterative

solution vector is

i~ %i-1 7 %-1Pia

and, by theorem 3.2.3,

= X ¥ By Wi,

where {tj}l

=0 are certain scalars and Pi—l(A) is a polynomial of degree

at most 1 — 1 in A.

Now to obtain the error bounds for our variational method

X=X T X <Xy Pi-l(A)rO

r. =r_ - APi—l(A)rO = (I - APi_l(A))rO

_ u-2
Eu(xi) = (ri, A ri)

u

=2
(Ri(A)rO’ A Ri(A)rO)

where Ri(A) I - APi— (A)

1

_ ‘ . . . R .
Rm {Rm(y)} Rm(y) is a polynomial of degree at most m in y,{ m(O) 1}

_ . p=2
Eu(xi) = min (Ri(A)ro, A Ri(A)rO)
Ri £ Ri
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Since A is symmetric, it has N-orthonormal eigenvectors {vj | 1

i.e.
Avj - Ajvj 35 152554 3N
N .
where {AJ}j=1 are the eigenvalues of A
5 - N
Since 1, = } €.v. for some scalars {t.}._
jog A ik L
N N
we have R.(A)r_ = 2 t.R.(A)v. = f t.R.().)v.
1 0 21 =1 VjE=I i ]
J J
Therefore
N 5 N
B (x) = min (] ER vy, A" Y ER Ovy)
R € Ri J= j=
N N 5
= min ( Z £, R (A8 e 2 t.R. (A )AH v.)
R. € R. j=1 J j=1 J
i
N
= min z E% RZ(A )k 2
R, ¢ R} j=1 J J
N
. 2 22 u—2
< min  (max [R,OADDTCE ENTD
R, ¢ R, lgjsN J j=1 33
2, Y . PR
¢ min  (max [R.ODDTC] tv, ] £ v
R, € R, 1gjsN J j=1 33 j=1 3
, N W
= min  (max [RODDTC] v, A7 ] twv)
R, € R'i 1<jgN J j=1 31 j=1 3 J
2 2 =2
= min ( max IRi(X.)|) (rO, A" ro)
R, e R, 1lgjsN ]
2
- Qi EU(XO)
where
Qi = min max |Ri(kj)|

R. e R, 1gjgN
1 1

Hence we have the following theorem

<

j

<

)
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Theorem 3.3.1

At the i-th iterations step of the variational method satisfy

e =gl <0 =l

where Qi is as has been defined.

Corollary 3.3.1
If r, has non-zero components along only k < N eigenvectors of A
corresponding to only m < k distinct eigenvalues, then the methods

converge in at most m iterations to the unique solution of Ax = f.

3.4 Conjugate gradient method
To solve the linear system

Ax = b 3.4.1

where A is an N x N symmetric positive definite matrix. In section 2
we studied a certain class of variational method for solving symmetric
linear systems. Now we are going to consider the case when the associated

matrix is positive definite as well as symmetric.

In section 2 we defined a certain kind of polynomial, Ri(x) of degree i
of least deviation from zero on the eigenvalue spectrum of A, such that
Ri(O) = 1. For general eigenvalue distributions we cannot exactly find
the minimum polynomial, and cannot evaluate Qi’ but we can obtain upper

bounds for Qi'

For a positive definite A, let [?,ﬁ], 0 < a < b, be an interval known
to contain all the eigenvalues of A, choose Ri,Ri(A) to be the unique
polynomial in R;(X) that minimizes the deviation from zero on [?,b].

Therefore the normalized Tchybshev polynomial on {},b]



-2A + a +b
Ly

b + a
T.G—2

)

Ri(k)

where Ti(z) cos(i arc cos z) is the i-th Tchybshev polynomial in z.

1 - Vo.i .
Therefore Ql < 2(1—T7&‘) for 1 > O

where o = a/b. Noting that k(A) = b/a, therefore we have the following

theorem.

Theorem 3.4.1 (see C2)

The iterates X i > 0, satisfy

1 - Va.i

|[X-Xi||Au § Qg™ {ae XOHALl

where a = 1/k(A).

Axelsson (A6) obtains bounds on Qi by assuming that the eigenvalues of

A are distributed over two intervals on the positive real axis.

Now we are going to consider the alternative form of the variational
method to solve the system of linear equations, when A is asymmetric

and positive definite system.

Algorithm 3.4.1 (see C2)

The variational method for positive definite coefficient matrices

1. Choose an initial approximation x.0 to x

ry = b - AXO
PO = Iy
1 =0

2. Iteration 1

_ u-1 H =L 1
a; = (rg A7 )/ (g, ATpg) ot (a; = (rp, AT /(p, A%p))
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ri+1 =r, —a,Ap

_ u-1 =1
bl (ri+1, A ri+1)/(ri’ A ri)
and
Piv1 © i+l * bipl

3. If convergence is achieved (STOP)

otherwise set 1 = 1 + 1 and go to 2.

The conjugate gradient technique can now be derived form the above
algorithm by setting u = 1. Here we present the algorithm as proposed

by Reid (R1).

Algorithm 3.4.2

Conjugate Gradient Algorithm

1. Choose x.,, an initial approximation

0
Iy = b = AxO
Po = %o
1 =0

2, Iteration 1
a; =(pi,ri)/(pi,Api)
or

= (r;r)/(py,Ap )

i+l i s
ri+1 =r, —a, Ap
or
=b - Axi+1
bi = (_ri"'].’ Api)/(pisAPi)
or

= (ri+1,ri+1)/(ri,ri)
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3. If r, or p, are below any certain tolerance (STOP)

otherwise set i = i + 1, and go to 2.

In the above algorithm the different choices of a;, I, and bi are

equivalent (for proof see (Rl1)). The inner product (x,y) = XTAuy,
u =0,1,2,..., as has been mentioned before will produce different
algorithms for different values of u (see Rl). All the previous

theorems for estimating the error bounds are valid when we solve a

linear system by conjugate gradient method and the related techniques.

3.5 Preconditioning

Consider the linear system
Ax = b 3u5al

where A is an N x N symmetric and positive definite matrix. For any
non-singular Q, we could scale the linear system (3.5.1) and solve

instead the equivalent linear system

A'x' = b'
where A' = Q! a QT p' = Q lp 3.5.2
and x' = QTx

It is clear that the resulting matrix A' is symmetric and positive

definite.

As has been shown before, for the linear syétem, a lower bound on the
rate of convergence is a monotone decreasing function of k(A), and, as
in S.I.P., one way to (possibly) improve the rate of convergence is to
choose Q to decrease the condition number of the iteration matrix. More
precisely Q could be chosen so that

k(A') < k(A) 353
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Then by using the previous algorithm, the conjugate gradiént me thod

will hopefully converge faster for the preconditioned problem 3.5.2

than for 3.5.1. Since the matrix Q is non-singular, M = QQT is symmetric
positive definite, conversely any symmetric positive definite matrix M
can be written as a product of QQT, where Q is non-singular (see (Y1)).
Thus the question of choosing an appropriate non-singular Q for scaling
the associated matrix A, is equivalent to the question of choosing a
splitting of the matrix A of the form A = C - R, where C is an N x N
symmetric positive definite matrix, such that different splittings
correspond to different preconditionings which will produce different
rate of convergence according to the relation c(C-lA) = 1, where C is

a certain approximation for the matrix A, which can easily be inverted,

and the best choice of C is C = A.

One point to consider, before applying any preconditioning, is that for
the preconditioning to be effective, the additional cost of applying it

must be sufficiently small.

If for some reason the resulting matrix C does not have the same sparsity
pattern as A, then we may need more storage for C and more effort in
producing "matrix by vector" products and the overall work per iteration
may go up, possibly, substantially. In that case the saving in the

total number of iterations for convergence may possibly not compensate

for the increased storage and work requirements.
As we will see later the only additional work, to the original technique,
is in the solution of the system

Cu=v R

where C is an approximation for the matrix A and u is the required

vector.
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As was pointed out before, the resulting matrix C may not necessarily
have the same sparsity pattern as the matrix A. In order to avoid fill
in, during the factorization of large sparse matrix problems, it is well
known that we can use incomplete factorization and accelerate the method

by using such a preconditioning (see A6, A7, T3 and M7).

In 1973, D. Jacobs (J1) proposed an S.I.P. technique to factorize a matrix
generated from the application of 13-point finite difference approximation
to approximate a fourth order partial differential equation and a com-
parison was made by Jacobs to show the efficiency of the S.I.P.

technique.

In 1979 Y.S. Wong (W7) defined a certain factorization to solve a
fourth order elliptic partial differential equations by preconditioned

conjugate gradients.

Any kind of matrix factorization (for a symmetric system) can be
combined with conjugate gradients to produce a more rapid convergence,
the rate of convergence depending on how close the matrix C_lA to the
identity matrix I, and the efficiency of the technique essentially
determined by how easy it is to solve Cu = v. As has been remarked by
Axelsson (A8), "An infinity of choices of M exists'" (M means a matrix
factorization of a certain iterative matrix A). We are going briefly

to consider some of them.

3.5.1 The generalized SSOR method (see A5)
Let A=D + L + U, where D is (block) diagonal, L and U are the (block)

triangular lower and upper parts of A, the matrix C derived from A is

* *_1 %
(D + L)D 1(D + U), where D is a suitably chosen diagonal matrix,

% D, O < w < 2, i.e. we have the classical block SSOR method.

o
1
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The advantage of this choice is that one does not have to construct

. : *
any new entries apart from those in D.

3.5.2 Incomplete factorization (see M7)

A method which avoids fill in during factorization is described in a
general context by Meijerink and Van der Vorst (M7). In this technique
fill in entries are neglected during the factorization. Only fill in of
certain positions (chosen in advance) is accepted, so the extent of fill is

controlled. (See chapter 1).

As is pointed out by Axelsson (A7), by using such a method the number

of operations per unknown in the ICCG method grows as O(h_l), h > o, in
second order positive definite problems. The only problem with incomplete
factorization is that the resulting factorized matrix may be unstable since
the pivot entries may become negative even if A is positive definite,

but Meijerink and V. der Vorst (M7) proved that their factorization is
always stable for positive definite and self adjoint problems. A certain
remedy has been proposed by Axelsson (A7) to remove the instability in

some other cases.

A modification to the incomplete factorization and dynamic fill in has been
taken by Munksgard(M16) and Axelsson (A7), that in order to get an
arbitrarily accurate incomplete factorization one may allow for dynamic
storage of accepted fill in entries, that is, one does not have to
prescribe the locations in advance in addition one may also combine the

two methods, that is, allow for fill in certain positions and in addition

allow fill in entries which are above a certain tolerance or tolerances.
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3.6 The preconditioned variational method for positive definite system
Let M be an approximate preconditioning for the matrix A, the algorithm

to solve the linear system
Ax = b 30641
where A is an N x N matrix, by preconditioned variational method to
solve 2.4.5 is as
Algorithm 3.6.1 (C2)

1. Choose x

0
Compute = b - Ax.O
Solve MzO = ro
B =%
1=0

2. Iteration i

a, = (7Y )/ a0 ) )

Al 1 171
Tl - % T a.Ap
Solve Mzi+1 = ri+1 (or zi+1 = z, - ai M—lApi)
by = (s 00 ey /gL 0 O )
and
Pisl T %in1 * blpl

3. If convergence is achieved (STOP)

otherwise set 1 =i + 1, go to 2.
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Theorem 3.6.1 (C2)
The iterates X i > 0, of the preconditioned variational method

satisfy

IR I 1 = | P |
LA a)¢ « AM A

where a = 1/k (Q_lAQ-T).

- : : : S, =1 =1
At the i-th step of iteration, the iterates X, minimizes the A(M ~A)Y

norm of the error among all approximations of the form

X, xO B Pi—l(M A)M TA(x xo)

There are several choices for splitting the matrix A into A = M - R, in

association this kind of splitting with the linear stationary iterative

method
Mx = Rx. + b
1+1 1
or
! ~1
X = M in + M p 3.6.2

simply we can prove that

_ -1, 1,
T Pi—l(M A)M TA(x xO)

The necessary and sufficient condition for the convergence of the
. . . ; = =] =T
stationary iterative technique that z(M 1R) < 1 and k(Q "AQ ") < k(A)

where M = QQT.

Theorem 3.6.2 (C2)
If C(M-IR) <1, where A = M - R, then the iterates x; of the preconditioned

method satisfy

2/ 1 - ;(M’lR)

/1« ;(M’lk) M g c(M—lR)i

| |x - x. || s 2¢1 =

A tayrt
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3.6.1 The preconditioned conjugate gradient method
The preconditioned conjugate gradient is a resulting method from the

preconditioned variational method takes on its form when u = 1.
Algorithm 3.6.2 (C2)
The preconditioned conjugate gradient algorithm

1. Choose X,

Solve Mzo =Ty

2. Iteration 1

a, = (ri,zi)/(pi,Api)

i
iv1 * 3Py

iy =" a.Ap

Solve Mzi+1 =Tia

bi = (Fja102a?/(r502y)
and

Pivi T % * blpl

3. If the convergence is achieved, STOP

otherwise set i = 1 + 1, and go to 2

3.7 Non linear variational iterative methods

In solving the non linear operator F:Rn———'-Rn, F(x) = 0, by an iterative
method, we try to find an approximate solution i by interpreting the
error functional, and to be in conformity with the linear Ax = b. Thus

the error functional according to non linear system is as follows

E (X = (x - %, Jex -5 3.7.1
u X
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(where u is a positive integer constant, and we restrict p to be even
when the Jacobian J§ is indefinite).

The method minimizes Eu(§) over a subspace of increasing dimension while

at the i-th step x; is computed as x. ., = X, +ap., where a; is

+1 a1 B

chosen to minimize the Eu(xi ), and the direction vectors are chosen

+1
by a method based on the Lanczos method for generation of orthogonal

vectors.

Algorithm 3.7.1
The variational method for non-linear operator F(x) = O, the associated

Jacobian Ji = J(xi) at the i-th steep of iteration.

1. Choose an initial approximation x_. to X

0
= F
Ty = Flxy)
Po ™ %o
1 =0

2. Iteration i

_ u-1 u
a. (ri’Ji pi)/(pi’Jipi)

- F(Xi+1

)

r. = r, + ak g Pk 3
1 1 1p1 ( 1]

_ H M
8; = (Jypdypy 1)/ (py 4430 0;)

- H H
Yy = ypyadipg) /(g dipy)

Pisy = JiP5 ~ Ygpp ~ $ipi

3. 1If convergence is achieved (STOP)

otherwise set 1 = 1 + 1 and go to 2.
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Theorem 3.7.1
The following relations hold for the variational method for non-linear

operator (Algorithm 3.7.1).
Ly P ® {Jopo’J1p1""’Ji+1pi+1}

2. r. e {JOpO,lel,...,Jipi}

1
1
3. {JOpO,lel,...,Jipi} = {JOpO,JlJopo,---,(kzo 309}
i
= {3r0s 31 TgTgr o oo T )t}
k=0
4., (r., Jy—lp.) =0 j<1i
i’ 73 f3
L (ri, J?-lpj) = (ro, JE_lpj) i< ]

6. If T, # 0, then P; #0

Proof
By algorithm (3.7.1), (1) follows directly
to prove 2, 3 and 4 we proved by induction

since Py =T therefore 2, 3 and 4 hold for i = O

0’
Assume for 2, 3 and 4 they hold for i < k

Now consider rk+1 e rk + akapk and Jkpk £ {po,pl,...,pk+1}
therefore we have that Trel € {po,pl,...,pk+1}
thus 2 holds for i =k + 1

Now to prove 3

k+l
e syg V1
we have that Pyl € {JOpO,JlJOpO, ’m=0 Jmpo}
k+1
therefore we have that {po,pl,...,pi+1}gz {JOPO’JlJOPO"°"mEO Jmpo}

and because the p's are Ju—orthogonal

hence {po,pl,...,pk+1} = {JOpO,JlJOpO,..., mn J po}
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m=k+1 m=k+1
and {JOrO,JlJOrO,..., Eo ero} = {JOpO,JlJOpO,..., mEO Jmpo}
To prove 4
u-1 p-1 1=
J M= ; s) = s .
. =i p T
If j = k, then (rk+1,J? pj) = 0, by using the definition of a s

therefore for j < k we have that (ri,JH_lpj) =0 for j<i

To prove 5

Since A ) a.J.p.

By the orthogonality of Jipi to Jg-lpj, therefore 5 holds

To prove 6, assume r. # 0 and p; = 0
since ri € {pO’pl""’pi-l} and
i

nJr, e {J
k=0 ¥ 1

i-1
oPo’J1’oPo> v T 320t & {pgopys-eopy g}

Therefore (JHr.,r.) = (Jl.l—1
Ja 9, i

r.,J.r.) = 0 which implies r. = 0 C!
1’711 i
Corollary 3.7.1
At the i-th step of the iteration we have
k=1+1 i+l
{JOpO,JlJOpO,..., kzo Jpr}C_:{JOpO,...,JO po}
Theorem 3.7.2

For each 1, X,

P41 minimizes Eu(g) over the affine set

XO + {PO,Pl,---:Pi]'

*
Let x = x_ + ELipl.
0 -Z P4

1=0
In solving the linear system Ax = b i.e. to find an approximate solution

¥ for the system such that to minimize the error functional
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E“(;) = Ex =~ 3, Altx - ) = € - %, A VlA% ~ Ag)) = (x ~ x, A° -

*
(Ax - b - (Ax - b)))
Therefore by interpreting the above error functional, the error functional
according to non-linear system F(x) = O is as follows

B = -k 0 oo - FD))

1. for y=1
* * * * i
E () = (x-x% F() - F(), x =%, + jzo s;ps
E® = (x-x, - f s.p., F(x) - F(x, - f s.J.p.))
H 0 j=0 33 0 je0 3 37J
- g
= (x - %, F(x) - F(x,)) -jzo {ZSj(pj,ro) + sj(pj,Jij)}
% 2
< Eu(xo) - jzo {2sj(pj‘rj) +Sj(pj,ijj)}

Therefore Eu(xi) is bounded below and it attains its minimum value

when s. =(r.,p.)/(p.,J.p.) = a.
J J pJ) (pJ JpJ) )
i
Hence the minimum point is X = x_. + Z a.p. = X
P o . iPj i+l
3=0
2. foru>1
* * u-1 * . Tiwd
E () = (x-% J& FG -FE) =(x - x - jzo S,P5 T
i
(F(x) - F(xO + Y s.p.)))
j=0 .] J
i -1 i
= (x - x. - X 8.DJs J.g (F(x} —~ Blx)) - z s.J.p.)))
0 jag 14 X 0 5=0 R
u-1 * u-1
= (x = %y T (FGO = Flxp)) = 1 125,(p 103 1 Flxy))

j=0
2 u-1
+ s.(p.,J J.p.)
J(PJ <* JPJ }
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i

=il 2 u=1
=E (x) - 2s.(p.,J" + s5(p.,J" "J.p.
wo jzo T R A e
i =1 2 u—1
=E (x.) - 2s.(p.,J r.) + s.(p.,J J.p.
uo jZo 128, (o Tyury) + 83(p5 T L

Therefore for minimization we have

=1 -1
s. = (p.,J ., r)/(p.,J . J.p.) = a.
i Pyodxx T3/ /1APyoyx 5P j

. . . . *
Hence the minimum point 1s x = X + z a.p. = X

o~ L
J—

Therefore, using the minimization theorem, we have that

1=1 i
X. = x  + s.J.r
1 0 2u) ] 0O
= P . .
Xy * i_1(J0)r0 BT o2
p ; .
where {Sj}j=0 are scalars and i—l(JO) is a polynomial of degree at
most i - 1 in J..

0

Thus since the above methods defined in the preceding section minimize

Eu, over all iterative vectors, we have the following:

. _ P
Since X X, + i—l(JO)rO

- = - - P
X X. X X i—l(JO)rO

1 0
i-1 ;
- = P
X =% ¢ .Z s:96%0 = % * F1-190Te
3=0
= - P & - P
r. =1, i_l(JO)ro (1 i_1(JO))r0

F(x) - F(xi)

and E (%) = (x = x5 Jy(x = x)) = (x = x;, (5= » LR BN 4,
= (r., Jg— r.)
_ u=2
= (Ri(A)rO’ Ji Ri(A)rO)
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R.(A) =1 - P, _(A)
1

where Ri(A) belongs to the set of polynomials satisfying Rm(O) = 1.
Therefore these methods choose the particular polynomial Ri € R;, that

minimizes the functional, i.e.

_ . =2
Eu(xi) min (Ri(Ji)rO’ Ji Ri(Ji)rO)
Ri € Ri

Since A is symmetric, it has N-orthonormal eigenvectors {Vj|1 <] g N}

where Av., = )\.v. j =1,2,...,N
] a2
and where {Xj}?=1 are the eigenvalues of A
. N
Since r, = z t.v. for some scalars {t.}._
0 .27 13 3'3=1
]
N N
we have that R.(A)r. = t.R.(A)v. = t.R.(2.)v.
T ) 0 .Z ] 1 ] .Z J1 31 3]
i=1 i=1
Therefore
N -2 N
E(x) = min (] tROIv.,, 37 ] ROV
H Ri ¢ R} j=1 J J 3] j=1 ] 3 3]

N N -
min  (§ t.R.(A)v., J t.R ()N v.)
R, eR, j=1 J* 1 J 35 12 12 3 ]
2 | 1
N
min  (J t2RZ()A7Y
R, ¢ R, j=1 I3

N
< min (max |[R.OIDZCT e247d
R. e R, 1gjsN  * J j=1 1
1 1
2 N N u-2
s min (max [RODDTCY t.ve, Ytk “w.)
R, ¢ R, 1lgjsN J j=1 13 3= 33D

[

g N -5 O
min  (max [R, ()T v, 0V ) t.v)
R, € R, 1sjsN 8 i=1 T

u-2r )

. 2
min ( max |Ri(kj)|) (rO,J 0

R. ¢ R. 1gjsN
i all

2
Qi Eu(xo)
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where Q. = min max |Ri(k.)|
Ri € Ri 1<jgN J

Theorem 3.7.3
At the i-th step of the iterations, the iterative variational method
satisfies
= - = ] s l]x - x|
RN Lo 0" g
i i
Corollary 3.7.2

If has a non-zero component only for k ¢ N eigenvectors of Ji

r
0
corresponding to m ¢ k distinct eigenvalues, then the methods converge

in at most m—iterations to the unique solution of F(x) = O.

Proof

Assume that r, has non-zero components only along the eigenvectors

of Ji,then

VisVoseesVy
& k
r. = t.v. for some scalars {t.f}.
0 -Zl 3] { J}J=1
J
[|x - x.|| <Q. ||x- x| , where Q. = min_, max R.(}.)
S L a5 ' R. e R. 1gjsN
i i i i
afxb'\
Assume that the eigenvalues Al,...,kk only Al’ xz,...,xm are distinct,
then
Qi = min_ = max |Ri(kj)|
R. € R, 1gjsN :
i i
m y - A, .
The polynomial Rm(y) = I (——X——JQ belongs to Rm. Moreover it vanishes
i=1 j
m
thus = i i i
at {Aj}j=1 Qm 0 which implies that

| [x - xi|| x " 0O for some i < m

i
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3.8 Non linear conjugate gradient method

In the last section we studied a class of variational methods for
solving non-linear problems with symmetric jacobians. Here we are going
to consider the solution of non-linear operator with symmetric and

positive definite jacobians.

In the last section we defined Ri(x) as the polynomial of degree i of
least deviation from zero on the eigenvalue spectrum of Ji normalized

so that Ri(O) = 1.

For general eigenvalue distributions we cannot find a minimum polynomial

and cannot evaluate Qi’ but the upper bounds on Qi can be obtained.

Let [a,b], a,b > 0 be an inverval known to contain all the eigenvalues
of Jf choose Ri(x) to be the unique polynomial in Ri(x) that minimizes
the deviation from zero on [é,b], then the normalized Tchebyshev poly-

nomial on [a,b], i.e.

-2X + a +b
Ti ( b-a )
R.(}) = 3.8.1
1 T (b + a)
i'b-a

where Ti(z) = cos( arc cos z) is the i-th Tchybshev polymonial in z,

therefore
1 - Vo,i .
Qi < 2(1_:7730 for 1 > 0

where a a/b, k(Ji)= b/a

Theorem 3.8.1

At i-th step of iteration, i > O

1 - Vo,i 1
Hz- x|l | s 267—) ||x - x || ., where a =
100 1 + Vo 0 ¥ k(I%

i i
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By following the same policy as above we can interpret the results as
has been proposed by Axelsson (A6) to obtain bound on Qi by assuming
that the eigenvalues of Ji (of A in Axelsson, to solve Ax = b) are

distributed over two intervals on the positive real axis.

One of the methods which can be generated from the variational methods is

the "conjugate gradient method" to solve the non-linear operator F(x) = O,
which is one of the variational scheme when p = 1 and here we present

the original algorithm presented by J.W. Daniel (D2), which is the version

of variational method when p = 1.

Algorithm 3.8.1

Non-linear conjugate gradient to solve F(x) = O

1. Choose xO

T, =“F(x0)

2. ai = (pl ,rl)/(Pi,JiPi)

Xj41 % T 24P

i - - PO gd

Pist ™ Fiap © %P

By =7 i TP/ (Pya 5 0Py

3. 1if convergence achieved (STOP)

otherwise set 1 = i + 1 and go to 2

(See Note on p.69)
As has been proved before the rate of convergence of the iterative var-
iational method is a monotone decreasing function of k(Ji)(in linear
case k(A)). Hence we want to improve the rate by decreasing the condition
number of the iteration matrix s.t. k(4') < k(4) where A is a certain

iterative matrix.
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As has been described there are several ways of reducing the condition
number of the iterative matrix (in solving the non-linear system the cor-
responding iterative matrix is the Jacobian of the system) one can use
all the mentioned splitting of the matrix which has been described before

to reduce the condition number.

Algorithm 3.8.2

The Preconditioned Variational Method

1. Choose x

0
Compute ry = F(XO)
Solve MO zy = T,
Po T %

2. Iteration 1

_ -1 -l -1 \u-1
a. (ri,(Mi Ji) zi)/(pi’Ji(Mi Ji) pi)

i
: = 4 &r +P
X1+1 xl alpl‘
= = +a.J.p.
Ti+1 F(xi+1) Ty allel

i+1 ~ Ti+l

o
|

=1 -1 -1 =1
- (ri+1’(Mi Ji) zi+1)/(ri’(Mi Ji) zi)

Piag = %3 * PP

3. 1if convergence achieved (STOP)

otherwise set 1 = 1 + 1 and go to 2

Similarly to theorem 3.6.1 we have the following theorem for the

error bound

Theorem 3.8.2

At the i-th iterative step, we have the following
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- Vo.i

1
-1 § 2G5 x|

[z = Xill 5 =1 u-1
Ji(Mi Ji) Ji(Mi Ji)

The preconditioned conjugate gradient method takes its simplest form by
taking u = 1, which will produce the algorithm presented by P. Concus,

H. Goluband, P. O'Leary (C9), the algorithm is as follows

Algorithm 3.8.3

Non-linear Preconditioned Conjugate Gradient

1. Choose XO

Compute r, = F(xo)

Solve MOZO 0

I
al

Po T To

2. a. = (ri’zi)/(pi’Jipi)

i
S B SR
Fiap T FRgyg) =t agdpg
solve Mi+lzi+1 = ri+1
by = (ry4p0230)/(xy02))
Piv1 T %341 T bi+1pi
3L 1 X is of desired accuracy, STOP

otherwise set i = 1 + 1 and go to 2
(See Note below)

P. Concus et al (C9) used different kind of preconditioned.
In the application of algorithm 3.8.3 to solve the system of linear
equations generated from the discretization of mildly non-linear elliptic

equations, we used the modified Stone factorization (B1O).

Note: The evaluation of the Jacobian is time consuming if it is not
simply diagonal. The evaluation can be avoided by differences of

successive residuals.



The starting vectors were derived by generating various numbers for
each component of the initial vectors, each in the range [b.OS, Pﬂ
where M is the maximum boundary value of the problem. The same
starting vector was used for different methods applied to any given

problem.
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CHAPTER 4  Numerical Results and Discussions

4.1 TIntroduction

Complexity is defined as a measure of cost, bearing on costs depending

on the model under analysis.

In this Chapter we present results of numerical experiments comparing

the performance of the following algorithms.

1. S.I.P. (Linearized technique)
2. Non-Linearized S.I.P.

3. Linear Conjugate Gradient

4. Non-Linear Conjugate Gradient

5. Preconditioned non-linear conjugate gradient

On the following problems (see H8)

problem 1: u__ + u Exp (W), u & Ry B.C.% "m

x + 2y, (x,y) £ 3R

XX yy
problem 2: E uyy - ,ueR, B.C.: u-=x+ 2y, (x,y) € 3R
problem 3: uxx + uyy = ,ueR, B.C.: u =0, (x,y) € 3R
The domain R is:
R={(x,y) | 0sxg1,05ycsl}

With regard to the following cost factors

1. Number of arithmetics

2. Size of storage required

3. Number of total iterations required for acceptable convergence
4. Time required (Time in seconds, using ICL 2980, operating system

VME/B, version 5 x 32 and main store 4 Mbytes)



- 71 -

4.2 Number of arithmetics

Number of arithmetics is defined, the number of multiplications required
to perform one iterative step. To make a decision on the efficiency of
a certain algorithm is to consider the total number of arithmetics

required to solve the model problem.

To be precise, we suggest the following classification

1. Information Arithmetics: In general this includes all the
arithmetics required to generate the system of non-linear equations.
But in some techniques, for instance S.I.P., we require also a matrix

factorization LU to be calculated.

2. Linearization Arithmetics: Solving a system of non-linear
equations by any linearization technique requires an evaluation of the

non-linear operator.

An extra work might be essential in some techniques, for instance in
linear conjugate gradient the current residual is required at the first

step of the algorithm.

3. Algorithm Arithmetics: This is the most important factor - how

many arithmetics are required in just one step of the algorithm?

In table 4.1 we list all the arithmetics required by different algorithms.

4.3 Size of storage

This is also an important factor in making a decision on the efficiency

of any algorithm.

The total size of storage can be considered with regard to the various

stages of operating any algorithm as:
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1. The information storage: This includes the store units

required for the information vectors which includes

1-a The system of non-linear equations generated from
the application of the finite difference approxi-
mations.

1-b In some methods for instance S.I.P. and pre-
conditioned non-linear conjugate gradient is
required an approximate factorization for the
linearized system or the approximate factorization
of the Jacobian of the non-linear system and some
extra storage for the residual or the directional

vector is required as well.

2. The algorithm store: which includes all the storage by the

application of a certain algorithm.

3. The convergence store: Any extra storage might be required

for convergence checking.

In Table 4.2 we list all the storage required by each algorithm.

4.4 Number of iterations and time
Problems 1, 2 and 3 have been solved by non-linearized S.I.P. and various
semblances of linearized S.I.P., figures 4.1-9 show the variation in

number of iterations and a(a € [Q,]J).

Tables 4.3-9 show the time and number of iterations required to solve
problems 1, 2 and 3 by using the following convergence checking

< g, € = 10-S

(=

%0y - %01

=5
2. [[xi+1 - xillw/llxi+1|l°° < ey, &= 10
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Solving the system of non-linear equations by non-linearized S.I.P.

(with \|Xi+1 = Xi||w < €, for convergence checking) requires less

iterations and less time than any semblance of linearized S.I.P.

Also ]\xi+1 = xi"m/llxi+1llm < £ is more useful convergence criteria

than ||x. - x. ||

" - -
i+l i €, provided lei+1|lm 1s not too close to zero,

because it consumes less iterations and time than using the convergence

criteria ||x -x. || < e.
y (o]

1+1
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No of iterations

Fig. 4.1

The variation in the number of iterations with
respect to a € [0,1] to solve problem 1 by non-

linearized S.I.P.

1. TYor a system of dimension = 16
2. For a system of dimension = 900
3. For a system of dimension = 1600
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Fig. 4.4

The variations in the number of iteration to‘solv§-
problem 2 with respect to a € [O,i] by non-linearized
S.I.P.

1. Yor a system of dimension = 16
2. For a system of dimension = 900
3. For a system of dimension = 1600
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Index of tables 4.3-4.8

A Linearized S.I.P. and to restart the outer iteration at the

time the convergence of the linearized system is achieved

B Linearized S.I.P. and to restart the outer iteration

every 5 iterations

C Linearized S.I.P. and to restart the outer iterations

every 10 iterations

D Non linearized S.I.P.
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Dimension | A | P | ¢ | 0®
81 63 | 21 | 20 | 14
100 68 | 21 | 38 | 15
400 132 | 24 | 38 | 29
900 190 | 47 | 44 | 53

Table 4.3 Number of iterations required

to solve problem 1 by methods
A, B, C and D (with 5

||xi+1 = xillm < e,e =10 7,

convergence criteria)

pimension | A | B | ¢ |0
81 84 24 39 13
100 58 23 48 15
400 176 22 52 28
900 X 311 43 53 48
Table 4.4 Number of iterations required

to solve problem 2 by methods
A, B, C and D (with the
convergence criteria

Hx.+ . x.ll°° <e, e =10
i+l 1

7

ol
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Dinension | A | B | ¢ | D
81 6 | 12 | 17 | 13
100 7| 13| 16 | 14
400 12 | 20 | 29 | 29
900 18 | s1 | 51 | st

Table 4.5 Number of iterations required

to solve problem 3 by methods
A, B, C and D (with the
convergence criterion

-5

I]xi+1 = xill°° <e, e =10 7)
Problem Problem 1 Problem 2

Dimension

C D c D
81 19 13 29 12
100 29 12 38 14
400 37 25 40 25
900 36 43 39 42

Table 4.6 Number of iterations to solve

problems 1 and 2 by methods
C and D (with the convergence
criteria

llxi+1 E xillm/llxi+1llm <e, e=10

)
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Problem
dimension | A B (& D
81 0.35411 0.11121 | 0.13022 | 0.10242
100 0.49575 0.13667 | 0.20793 | 0.13358
400 2.82292 0.59688 | 0.93538 | 0.98827
900 8.53240 2.60457 | 2.31439 | 3.98541
Table 4.7 Time required to solve problem 1
by methods A, B, C and D (with
the convergence criteria
=5
| x. -x.|| <e, e =10"7)
i+l 1''e
Problem
dimension A B C D
81 0.45276 0.18458 | 0.16728 | 0.18458
100 0.36199 0.22540 0.25126 0.22540
400 3.6656 0.50705 | 1.04246 | 0.50705
900 14,09351 | 2.19119 | 2.63280 | 2.19119

Table 4.8 Time required to solve problem 2
by methods A, B, C and D (with
convergence criteria

Tx,,

- x|

1

|, <€, ¢

= 10

_5)
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Problem 1 Problem 2
S.I.P. (non- S.I.P. (Qin- S.I.P. (non- S.I.P. (1in-
linearization) earization linearization) earization
Problem
. . and restart and restart
Dimension
every every
10 iterations 10 iterations
81 0.09487 0.09518 0.06493 0.13609
100 0.11898 0. X7537 0.09205 0.21706
400 0.85274 0.86243 0.61987 0.84073
900 3.350585 1.90170 2.30357 1.95442

Table 4.9 The time required to solve problems 1 and 2
C and D (with convergence

by methods

criteria

g = %o/ Hxp 1, < o0 e = 10

=
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From the performance of linear conjugate gradient method and non linear
conjugate gradient method (with various specified fixed number of
iterations for Jacobian evaluation) to solve problems 1, 2 and 3 with

the convergence criteria ||xi+1 = Xi|!w < g, €= 10—5 (see tables 4.10-
13), using non linear conjugate gradient with evaluating the Jacobian
every 5-iterations require less iterations and time than the other

guises of non linear conjugate gradient method. Specifically in a non
linear conjugate gradient with evaluating the Jacobian every 10-iterations,

requires more iterations and time, produces directional vectors {pi}

some of which deviate "significantly" from the correct direction.

The same behaviour occurred in non linear conjugate gradient technique
with the convergence criteria ||Ri!|2 < e (Ri as the current residual,

€ = 10—5).

Also, in linear conjugate gradient method, ‘IRi||2 < ¢ 1s a more useful

convergence criteria than ||xi+ = x.||w < ¢ (see tables 4.14-17)

1 i
because it consumes less iterations and time than non linear conjugate

gradient method (and other relevant forms of non linear conjugate

gradient method.

Problems 1, 2 and 3 have been solved by preconditioned non linear
conjugate gradient (see tables 4.18, 19 and 20) with factorizing the

Jacobian at every iteration, 5-iterations and every lO-iterations.

Refactorizing the evaluated Jacobian at these different levels did not
reduce the number of iterations but it reduced the total time required,
for instance, refactorizing the Jacobian at every l0-iterations consumes

less time than refactorizing at every iteration and 5-iterationms.
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Comparatively with the other techniques, preconditioned non linear
conjugate gradient method requires less iterations than linear (non
linear) conjugate gradient method and linearized (non linearized)

S.I.P.

But the time consumed by nonlinearized S.I.P. is less than the time
consumed by preconditioned non linear conjugate gradient method,
which consumes less time than linear (non linear) conjugate gradient

method.

Eventually, considering the storage and arithmetics required, the
total work required by preconditioned non linear conjugate gradient

method is more than the non linearized S.I.P.
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The variation in the number of iterations to solve problem 1 by:

1. Non linear
Jacobian

conjugate gradient method (evaluating the
every iteration)

2. Non linear
Jacobian

conjugate gradient method (evaluating the
every 10 iterations)

conjugate gradient method (evaluating the
every 5 iterations)

3. Non linear
Jacobian

4. Linear conjugate gradient method

5

(with the convergence criteria [|x. - x.|| <10 7)
i+ il e

1
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Time required to solve problem2 by preconditioned non
linear conjugate gradient method, factorizing the
Jacobian at:

1. Every iteration
2. Every 5-iterations

3. Every l0O-iterations
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With reference to (H8), problems 1, 2 and 3 are solved by the following

iterative techniques:

1. Non linear point Gauss Seidel method (NPGS)
2. Non linear point S.0.R. method (NPSOR)
3. Non linear block Gauss Seidel method (NBGS)

4. Non linear block S.0.R. method (NPSOR)

To facilitate the comparison with the results of Hageman and Porsching,
we used the same convergence criteria to solve problems 1, 2 and 3 using

non linearized S.I.P.

The numerical results from the application of NPGS, NPSOR, NBGS, NBSOR
and nonlinearized S.I.P. are listed in Table 4.21, which shows that
using nonlinearized S.I.P. required less iterations than Hageman and

Porsching's results.
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Problem NPGS NPSOR NBGS NBSOR Nonlinearized S.I.P.
1 401 83 218 74 43
2 87 208 69 38
3 487 98 264 75 45
Table 4.21

The number of iterations to solve problems 1, 2

and 3 with h = 0.05
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CHAPTER &  Bidiagonalization Method

5.1 Introduction
In Chapter 3 we studied the numerical solution of a system of non-linear
equations by using '"Linear and Non Linear Conjugate Method'" and "Pre-

conditioned Non Linear Conjugate Gradient Method'.

As has been explained before the non-linear conjugate gradient method
is a generalization of the linear conjugate gradient method, both having

the following attractive properties, when used as iterative procedures.

1) No requirement an estimation of parameters

2) Advantage taken of the distribution of eigenvalues of the

iteration operator.

3) Fewer restrictions placed on the matrix A for optimal behaviour
than in the case with other methods such as successive ovew

relaxation.

But the main restriction in solving the system
Ax = b Sl

(where A is an m x n - matrix, m > n, and an m-vector b) by use of
"Conjugate Gradient Method" or '"Preconditioned Conjugate Gradient Method"
is that conjugate gradient methods are not directly applicable if A is

non-symmetric.
We can avoid this problem by solving the normal equations
aTax = aTp 5.1.2

If the matrix A is of rank (A) = n, ATA is non-singular, and this implies
that ATA is positive definite and we can use the conjugate gradient method

to solve 5.1.2 in a least square sense (see (A7), (B6); (B7), (D5), (G5),
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(P5)and (P7)). One of the techniques used to solve 5.1.1 is the "Linear
Least Squares', i.e. we determine r so that:

r+ Ax = b, A'r = 0 5.1.3

This is equivalent to solving the symmetric indefinite system of linear

equations

Ax

I
o'

5.1.4

where

>
]
o
]
o)
=]
(a W
54 2
[

It is clear that A is (m + n) x (m + n), and x and b are vectors of

length (m + n), see (L7) and (P4).

P. Concus and G.H. Golub in 1975 (P4) proposed a technique to solve

the system 5.1.1.

The technique is summarised by defining a symmetric part derived from the

MT = (A + AT)/2, where M is called the symmetric part of A,

I

matrix A as M

and N = —NT = -(A - AT)/2 is the negative of its skew part.

The scheme of iteration is as follows

k+1 k-1 k X(k--l)

X = x -+ wk+1(akzk + x - )
IRCORINGS
r(k) =b - (M- N)xk =b - Axk

Implicitly solving a system of linear equations by any variational method
e.g. conjugate gradients includes the estimation of the eigenvalues of

a certain matrix.
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Such a variational method to evaluate eigenvalues of a certain matrix
concentrates on reducing the main matrix to an equivalent form such as

a tridiagonal matrix, where eigenvalues can easily be calculated. Such
a transformation can be performed by a sequence of transformations which
for their performance require the calculation of orthogonal vectors

generated throughout the iterative process.

Lanczos (1950) (L1) proposed such a technique to find the eigenvalues
of any matrix by reducing the matrix to tridiagonal form, the Lanczos

process is as follows:

Choose v, # 0 and Bl =0

a; = ngvi/vai 5.1.6
%41%541 T AV5 T %V T ByVig

(ai+1 is a normalizing factor)

R RV A AT LAY A

The vectors v, generated by the Lanczos algorithm are orthogonal so

that the resulting matrix form is given by
AV = VT SeAET

T is a tridiagonal and every eigenvalue of T is also an eigenvalue of A.

Butrin the computation of the Lanczos' process, cancallation in the
vector subtraction step leads to loss of orthogonality in the vectors
VisVosees and the process usually does not finitely terminate. This
behaviour led Lanczos to suggest re-orthogonalization and to the wide-

spread disregard of the method in its natural state.



- 114 -

Paige's comment in 1972 (P3) about the Lanczos algorithm was:

"Although others have suspected that the Lanczos process
could still be useful, no-one seemed to be aware that the
most popular algorithm does not necessarily converge, and
that even when it does, it gives poor results for those

eigenvalues'".

In 1965 Golub and Khan suggested a numerically stable and fairly fast
method for reducing a general matrix A to bidiagonal form in such a

way that eigenvalues of A are the same as those of the bidiagonal form.

This method is related to the Lanczos method of minimized iterations for
tridiagonalizing asymmetric matrix, as we will see in the next section

and like that method is ideally suited for large sparse matrices.

In section 3 is given a full description for the bidiagonalization
technique which is based on the Golub and Khan technique to solve the

system
Ax = b 5%1:8

where A is an m x n matrix and b is an mvector.

In section 4 we propose a reduction in the number of iterations required
to solve 5.1.8 by using “tone factorization (for symmetric and non-

symmetric matrices, see (S15)).

5.2 The bidiagonalization algorithm
The bidiagonalization algorith suggested by Golub and Khan for bidiagonal-
ization has been described in detail by Paige (P4). Here we will give

just the main points.
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For a given m X n matrix A, m > n, and an initial vector us such that

|]u1|| = 1, the method generates m-dimensional vectors u,,u,,... and
n-dimensional vector VisVosees such that for i = 1,2,...
a.v. = ATu - B.v Bv. =0
11 1 ii-1°2 10
Bi+1ui+1 = Avi - acu Sie 2 vl
where ai, 8i+1 are real scalars chosen to be non-negative and such that,

||ui+1l| = |Ivi[] =1, for non-zero . and Bl where 1 = 1,2,...,k then
5.2.1 is fully defined for k-steps, and 5.2.1 may be re—written as

T T T
=V =
AU Li AV UL + Bk+1uk+1ek 5in2 o2

where U = [ul,uz,...,uk], vV = [vl,vz,...,vk] and

= 5.2.3

where e is the k—th unit vector so that

T T T T T
= = 5. .
U AV U'UL + Bk+1U 418K LV'V 2.4

If a4 18 also a non-zero and i = k+l, with U = [U,uk+1]

I = [LT,Bk+1ek]T » then

AU =it va v er . AV = 0L 5.2.5
Therefore

viaTo = Vit o, ViV el = LT0D 5.2.6
By induction, we have that

vl = vlv = 1, 5.2.7

(for the proof see Paige (P4))
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The orthogonality of the generated vectors ensures that the process

will be limited for some k, given by

k ¢ min {m,n} 5.2.8

such that either B = 0 in 5.2.4 or «

= 0 in 5.2.5.

k+1Yk+1 k+1'k+1

Therefore we have two possible final forms of the Bidiagonalization

algorithm

1. When L/ isak x k-matrix

ATU = VLT, AV = UL, UTU = VTV = Ik 5.2.9
2. When L isa(k + 1) x k-matrix

T.. T ~

Aty = vil, av = @i, oF

T
Ly VY= L

f]:
(For more about the Bidiagonalization technique see Golub and Khan (G6)

and Paige (P4)).

The matrix form of the bidiagonalization algorithm is equivalent to
the application of the Lanczo's algorithm on the matrix
0 A

AT 0

such that the orthogonal vector is given by

w = (wl’w2""’w2k)

-b - o=
oy 0 82
T =
82 0\a2
\\\\ ;\\\s
a k
i k i



NI

Therefore 5.2.9 is equivalent to

BW = WT + B e WW=1
k+

T
b 13 =
1 Yok+1 ©2k ke T Ve T O

which is the result of applying 2k-steps of the Lanczos process to B,

using as initial vector w,, the first column of W.

2)

5.3 The bidiagonalization technique to solve the linear least
squares problem

For an m x n matrix A and an m-vector b, the problem is

minimize ||Ax - b]]| 5.3.1
Or equivalently find x and r such that
T
r + Ax =b, Ar=0 5¢3.2

Any such x is called "

a Least Squares'" solution, and the x which also
minimizes ||x|| is called the minimum least squares solution. (The
minimum least squares solution is the unique solution orthogonal to N(A)), so

x will have the form x = ATy. Thus if y is any solution of

AT A ATy = aTp 5.3.3

Then x = ATy is the minimum least squares solution.

Paige (P4) defined the convenient choice of u in the bidiagonalization
algorithm in such a way as to produce an iterative solution vector X,

such that such a representation x = ATy is possible.

Equations in the form 5.3.1 or 5.3.2 can be separated into two possible
classes with corresponding slightly different methods of solution. First
if the linear equation Ax = b is "compatible" (i.e. if r = 0) then

b € R(A) and so u, € R(A), (see P4).

1

The second class is when the linear system is "Incompatible', i.e.

(r # 0)(see (P4)).
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Finally the algorithm for compatible and [acompatible system is as

follows

Algorithm 5.3.1

1 T = il Wy 0’ n, = -1, vz = 0, vw = O
Blu1 =b
~ T
By ¥y = Ay
set 1 = 1
2. Iteration 1
ngo=-ne g Bi/ai vz = vz + ;v
g = kEL g - B gdiey WS vy
Bie1%ier T AV T Y
If Bi+1 = 0, then (solution = vz, residual = 0O, STOP)
T3 " Tt %/
= 4T _
iVisl T A Y T BpaYy
If @ = 0, then

Gy = Bi+lni/(8i+1wi = Ti), solution = vz - yvw, STOP)

3. Seti=1+1, go to 2

Note: From the numerical applications of algorithm 5.3.1 to solve a
system of non linear equations, we found it is more reliable to use UFPeY
as a convergence criteria rather than Bi+1°
Remark: With some problems, the stopping criteria appearing in the above
algorithm would be almost useless, and in fact, it could happen that no

a, or Bi is even small, so we use instead n; and w; as a stopping

criteria.
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Theorem 5.3.1

At the i-th iteration, we have the following relations

T 1 T
1(a) A Avi € {vl’v2""’vi+1f 1(b) AA uy e{ul,uz,...,ui+1}
T
2 A ri € {Vl’VZ""’Vi+1}
T
3(a) Avi € {ul,uz,...,ui+1} 3(b) A u; € {vl’VZ""’Vi+1}
4 r. e {ul,uz,...,ui+1}
T T,1i+1
5 {ul,uz,...,ui+1} = {ul,AA ul,...,(AA ) ul}
_ T T,i+1
= {ro, AA ro,...,(AA ) ro}
T T, .1+1
6 {VI’VZ""’Vi+1} = {vl,A Avl,...,(A A) vl}
Proof
To prove 1(a)
From algorithm 4.3.1 we have
Bi+1ui+1 = Avi - agu 95:3.4
v = AT - B v 5.3.:5
%i+17i+1 Ui+l i+l'i o
Therefore
o.
1 T T
o Vs = A Av. - A"u. - B. .V.
i+l i+l i+l 1 i+l i i+l 1
o o.B
1 T 3 1
= A"Av, - a.v, - _ain=a B W
Bi+1 1 i+l 11 Bi+1 3=l 1+l "1
Hence we conclude that
B. .a. V. = ATAv. - (ag + B? )v. - B.a.v.
1+1 1+1 i+l i 1 i+l 1 =1

The proof of 1(b) is similar to 1l(a).
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To prove 2

The residual at the i-th iteration is given by

r. =

= B Yy

_ T
= = BrangA W

and from algorithm 5.3.1 we have

ATu

Therefore

ATr.
i

Therefore

. 0. .V.
1+1 i+1 i+1

+ B

. LV,
1+1TEn

== B @Vt BigYy)
= -8 T
i+1M %i+1Vi+1 i+1"iVi

T
A ri € {Vl’VZ”"’vi+1}

3(a) and 3(b) follows from the algorithm 5.3.1 directly.

To prove 4

T; = BT
Therefore ri € {ul,uz,...,ui+1}
To prove 5 (The proof of 6 is similar to 5)

The proof

satisfied.

Therefore

(=
[

{ul,uz,...,ui+1} = {ul,AATul,...,(AAT)1+1u

is by induction, it is clear that for i

for i = 2, from the algorithm we have
Av1 - u
L AATu = u

1!

1 the relation is



- 121 -
Therefore {u,,u } = {u ATy }
1’72 1’ 1

Assume that the relation is satisfied for i =k - 1
p T T.k
i.e. {ul,uz,...,uk} = {ul,AA ul,...,(AA ) ul}
For 1 =k +1

R u = Av, - a uk

k+1 k+1 k k
Therefore by 3(a) it follows that

_ T T, k+1

{ul,uz,...,uk+1} = {ul,AA ul,...,(AA ) ul}

since ri = - Bi+1niui+1

T T,1+1
Therefore {ul,uz,...,ui+1} = {ul,AA ul,...,(AA ) ul}

{ro, AATr .,(AAT)1+1rO}

0’""

Theorem 5.3.2

At the i-th step of iteration we have
E(ri) < Pi E(ro)
(where E(ri) is the error in the residual get it at the i-th iteration)

Pi =1 - AATPi_l(AAT); Pi is a polynomial of degree i in AAT

Proof

From the bidiagonalization algorithm we have

5
= + = -+
X: xi—l nivi X, .2 njvj
i=1
i
r. =r - Z n.Av,
1 o i=1 J 3]

By theorem 5.3.1 and algotithm 5.3.1
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Y. = . —
1 0

I O

T, ]
nj(AA ) r,

j=1

g |
]

T T T
{T-Piaan} ry = {1 -aa'p._ (aAD)} 1)

R, (aah) =1 - aa'p,_ aah

Ri is a polynomial of degree i, s.t. Ri(O) =1

E(ri) = gin ||Ri(AAT)r0[|§ = min(Ri(AAT)ro, Ri(AAT)rO)
o1
m

Since AAT is symmetric, therefore it has m—orthonormal eigenvector {wj}j=1.

Hence
T m . T
AA"w. = )\.w., where {x.}._ are the eigenvalues of AA
J 1] 3°3=1
m
r. =) s.w. s.t are any constants
0 jil 373 { J} v
T -, T =
R.(AA")r = s.R.(AA)w, = s.R.().)w,
1 0 .Zl 1] ] -Zl J1 1]
] J
m m
E(r.) = min ( X s.R.(A.)w., 2 s.R.(A.)w.)
1 Ri j=1 J1r 3 1 j=1 J1r J 3
v 2.2
= min z s R.(A.) (by the orthonormality of w.)
R, 2y Ji73 j
. ]
i
m
< min ( max lRi(k.)|)2 2 82
Ri 1<j<m J j=1 J
, m m
= min ( max [Ri(A.)|) () s.w., ) s.w.)
Ri 1<j<m j=1 3] j=1 13

¢ 2
min ( max lRi(Aj)I) (ryrTq)
Ri 1<j<m

Let P, = min ( max |R O)])
t Ri 1<jgm J

Therefore E(r.) < P. E(r.)
1 1 0
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Theorem 5.3.3

If has non-zero components for k < n (for k-eigenvalues of AAT) cor-

o
responding to only m < k distinct eigenvalues of AAT then the method

converges in at most m-iterations to a unique solution of Ax = b.

Proof

Assume that T, has non zero components only along the eigenvectors

of AAT, then

Wl’w2""’wk
j
r. = s.wW
O g 13
Therefore
E(ri) < PiE(rO) Pi = min max IRi(Aj)I

Ri 1<jgk

Therefore for Al’ Az,...,km distinct eigenvalues of AAT from the

k-eigenvalues.

Therefore P. = min max |[R.(}.)]|
i ‘ i7]
Ri l<jgm

Y= A
G————~l) satisfies R (A.) = 0.
1 Aj m ]

n=sg

Therefore the polynomial Rm(y) =
j

Therefore E(ri) =0, for 1 ¢ m.

Theorem 5.3.2 and 5.3.3 do not give a minimum bound for the polynomial
Ri(AAT) and we cannot evaluate Pi as well. But by using the normalized

chybshev polynomial we can find the upper bound on Pi'

; T . 205 o i . . ol e
Since AA" is a positive definite matrix, let [a,b] be an interval containing

all the eigenvalues of AAT, 0 < a < b.

To obtain a bound on Pi’ choose Ri(x) to be the unique polynomial in
Ri(x), that minimizes the deviation from zero on [a,b], and the normalized

chybshev polynomial on [a,b]
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=2k +a#+b
Ti( b-a

b + a
Ti (b - a)

)

R. ()

where Tj(x) cos(j cos—lx) is the j-th chybshev polynomial in x.

Therefore
p,oc 2= 550
1+ /p
_ 1 T< - e T
where p = T , k(AA') is the condition number of AA".
k(AAY)

Theorem 5.3.4
At the i-th iteration, we have

E(r.) < 2(1;/5)%:@0)
1 1 + /;

Theorem 5.3.5

If AAT is positive definite matrix, then

1. O(m logm) iterations are required to reduce the 2-norm of the

(oo -
initial error by a factor m ', a > O.

2. The rate of convergence R is given by R o 7h.

Proof

By theorem 4

E(r.) < 2 /{<AAT> (1—‘—1—5) E(r.)
1 1 + /5 0

2,32/ g q
where p = c1/m , "k(AA ) = com, and C1s Cyo q > 0, are constants and
are independent of m.

Suppose that it takes j—iterations to reduce the error bound by factor

-a
of m , a >0, then

1 -c./m.
q I 3 _ 1
2e o (1 - cl/m) %

=]
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b}
1 - cl/m)

Because of that the log function is monotically increasing on [l,w).

Therefore

1 +c,/m

. 1
j 2 (c3 logm) /log (1

- cllm)

where Cy is a constant independent of m

and since ¢, < m, therefore
1+ cllm 2c

1 - cllm) I

1

log ¢

Hence

O(m logm) iterations are sufficient.

Let p = ﬂ2h2/4, where h is the mesh size, h = - i 1
Then

1 - /5 = i : ﬂg;g ~n1l—-mh, as h — 0

1+ /p " '

And the rate of convergence R is given by

R==-10og (1 = 7h) v7h as h —=0

The work required to solve any system of linear equations (with a symmetric
and positive definite coefficient matrix) by the bidiagonalization technique
is twice the amount required to solve such a system by using the conjugate

gradient technique.

As has been explained in chapter 3 an improvement (acceleration) to the
conjugate gradient has been proposed by using an approximate factorization
for the associated matrix. With respect to the bidiagonalization technique,
there are two ways to improve the convergence, by using an approximate

factorization C of the matrix A in 5.1.1, in the next section we introduce
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a full description of what we call "post-preconditioned bidiagonalization

technique' and ''pre-preconditioned bidiagonalization technique'.

5.4 The preconditioning bidiagonalization technique
As has been explained before the rate of convergence of the bidiagonal-
ization technique depends on k(ATA), which is therefore a relatively

expensive way to solve a system of linear equations. 5.1.1

Let C be any approximate factorization for the matrix A, then there are
two least squares problems generated from 5.1.1 by associating the

approximate factorizations C for the matrix A.

5.4.1 Post-preconditioning bidiagonalization technique
The linear least squares me#hed to solve 5.1.1 is

1

minimize ||AC "z - b|| ; Cx = z Siaile 11

were C is any approximate factorization for the n x n matrix A, or to

find z(x) and r such that r + AC-lz = b,C-TATr = 0-Any such z(x) is

called "least square solution".

The minimum least square solution is the unique solution orthogonal to

-T,T

N(AC_I), and it will have the form Cx = z C Aly.

T 1 =T T

So, if y is a solution of € TATAC ¢ "A'y = C "A'b

then z = Cx = C—TATy is the minimum least square solution.

Suppose AC_1V = UL Cx =z=Vy, x = C—lz = C-1Vy

and since rTAC_IV rTUL

0, L is non-singular, UTr =0

1

b=t + AC 'z =% + AL Yy == + Uiy
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Therefore x and y can be found from

Ly = UTb

Hence we conclude that z = Vy and x = C—1Vy

Now to show that for a special choice of u,, such a representation

1’

of x is possible, when the linear system is compatible (i.e. r = 0).

Therefore with respect to the equation AC—lz = b, b ¢ R(A)
Let u; =b/g;, 8, = [[b]],

€ R(AC-l) and AC—lz =b = B,u

Therefore u 1%

1

& Tty = VL :and AC ¥ = TL

1

Let z=Cx=Vy+w; x=C 2z = c Vy + C_lw, where VTw =0

which implies that

Toa=l10 0
Ly + UAC 'w = Blul

Therefore

T _
Ly + LV w = Blu1

But since VTw = 0, therefore

Ly = Blel’ and thus AC-lw = 0 and z = Vy where x is given by x = Cz.

The elements of y are given by Ly = Blel’

i.e. ny =8,/0) and ng ;= - (B, /0, )0,
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The second possibility to be examined now is the one when the linear system

is "uncompatible" (i.e. r # 0), so that u, = b/B1 e R(A), therefore the

1

problem is to solve:

r+AC 'z =b = Bu, ATr =0, Cx = 2 5.4.2

where C JATD = VLY, AC v = OL

= T

i T
= | I : - 2
where U |U,uk d s L |L . Bk 1el| (see Paige (P4))

I Ty = I

-.T~
such that U'U k+1 K

]

Assume that z = Vy + w with VTw =0

Therefore r + ﬁiy + AC-lw = Blul’ but ﬁTAC—lw = iVTw

so iy = Ble1 - ﬁTr

Hence we conclude that

r + AC-lw = fite

T T

ATAC-lw = ||AC-1wH2 = wT =%

Thus wTC-TA r + wTC— c ATﬁﬁTr =0

Thus AC—lw = 0, and a smaller solution is obtained by taking z = Vy, which

implies that the solution vector x is given by x = C—IVy
Therefore the algorithm for both cases, r is close to zero (compatible)

and r is not close to zero (incompatible).

Algorithm 5.4.1

The post—preconditioned bidiagonalization method

1. t,=1,u,=0,n5=-1,vz=0, w =0
61u1 =b
T T -T. T
*: * =
solve C u¥ A uy for uj (ul C A ul)

= *
“1ti T Y1
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2. Iteration 1

n. = -n. -B./a. vz = vz + 1n.vV.
1 r‘1-1 171 11
w. = (7. - B.w. .)/a. VW = VW + W.V.
1 11 11-1 i 11
solve v. = Cv¥ for v%
1 1 1

B. _u. Av¥ - a.u.
i1+]1 1+l 1 11

If 8i+1 = 0, then (solution = vz, residual = 0, STOP)
T T T
solve ATU. = CTU* for wu*
i+l i+l i+l
— -
% 41¥ie1 = Tia T BiaVs
If ai+1 = 0, then
(v = Bi+1ni/(si+lwi - Ti)’ solution = vz - yvw  STOP)

3. Otherwise set i = i + 1, and go to 2

Theorem 5.4.1

At the i-th iteration, we have the following

1(a) C—TATAC—lvi € {VI’VZ""’vi+1}
1(b) AC-IC_TATui € {ul’UZ""’ui+1}
2 C_TATri € {VI’VZ""’Vi+1}
3(a) Ae Ly, o {u;uyseee,u, o}
i 1132 i+l
3(b) C_TATui € {Vl’VZ""’Vi+1}
4 r; e {u,uy,.,u ]
5 fupuyeeug, b= fu, accTA Ty, (acTi A My )
= {rO,AC—lc-TATrO,...,(AC_IC—TAT)i+1ro}
6 {vl,vz,...,vi+1} = {Vl’ C-TATAC_lvl,...,(C—TATAC_1)1+1V1}
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Proof

To prove 1(a)

_ -1
Bigr¥ieg =A% Wy - By
%ipi%iel T © B Wit BingYs
Therefore
(o I
SRS S T T S
1+]1 1+1 B. 1 - 1
1+1 1+1
o.
=L C-TATAC-lv. - L (a.v.) -
BE i B. 11
i+l 1+1
Hence we conclude that
P s e | a 2 2
Bis1%i41%41 =€ AAC w; = fmy ok By )Y
=T.T, ~1
Therefore C "AAC v. € {VI’VZ""’Vi+1}

The proof of 1(b) is similar to 1l(a)

To prove 2

The residual at the i-th iteration is given by

B L

_ -T.T
C Ar. = Bi+1nic A ui+1

From algorithm 5.5.1 we have

-T,T ~
C ANy =G VO B ¥y
Therefore
-T, T _ _
C Ar; =B (0 Vi T BiaYy)
= -8 o = 82 v
= % Via i+1"i %1

. V.
141 9

8i+1 i=1

= B.0.Vs
p M T 1

. .V,
1+l 1
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Therefore

-T,T
C A r. € {vl,vz,...,vi+1}

3(a) and 3(b) follow from the algorithm 4.5.1

To prove 4

Since r. = =B
i

. e
i+1Mi 1+1

Therefore r. € {ul,uz,...,ui+1}

To prove 5, the proof is by induction.

For i = 2, from the algorithm 5.4.1 we have

Y T
u, = AC vy uy

=L acle L% - n

al 1 1

Therefore {ul,uz} = {ul,AC-lc—TATul}

Assume that the relation is satisfied for i = k

. -1 -T. T =1 =-T.T.k
i.e. {ul,uz,...,uk} - {ul,AC C A ul,...,(AC C "AY) ul}

For i =k + 1

P
Preatesy = A Y oA n

Therefore by 3(a), it follows that

1 -T

=] =Tl o | T.k+1
{ul’UZ""’uk+1} = {ul,AC C A ul,...,(AC C ul}

A7)

The proof of 6 is similar to 5.

Theorem 5.4.2
At the i-th step of iteration we have

1

_ ~1 ~T.7 rb ~T.T
E(r;) s P.E(ry), P, =T - AC C AP, ,(AC 'C A)

(E(ri) is the error in the residual at the i-th iteration.)
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Proof:

From the post preconditioned bidiagonalization technique we have

it
z. = z. + N.v. = z_ + z n.vj (where AC 12 = b)

By theorem 5.4.1 and algorithm 5.4.1

i .
_ _ =1 _~TrT. ]
B =T, 'Z ”j (AC "C "A) .
i=1
T - -1-T,T  [v _ ae-1.-T,T -1,-T,T
r, ={I-P.(aCcC A)}r, = {I-AC C AP _ (AC C A Mt
Ri(AC_lc_TAT) =1 - AC_lc—TATPi_l(AC_IC_TAT)

where Ri is a polynomial of degree i, such that Ri(O) =1

E(ri) = min ||Ri(AC_1C_TAT)r

R.
1

2
ol 12

- min  (R.GAC Y0 TAD ., R.(ACEC TADL)
R 1 0 1 0

1

Since AC—IC_TAT is symmetric matrix, therefore it has m-orthonormal

eigenvector {w.}?

i7i=1
such that:
AC—1C-TATwj = kjwj, where {Aj}?=1 are the eigenvalues of AC—-IC—TAT
m
r. = ) s.w., {s.} are any constants
0 .2 173 ]
J
-1 -T,T T -1 -T,T
R.(AC 'C A)r, = ) s.R.(AC C A)w.
i o .z, 11 J
j=1
m
= z s.R.(0.)w.
jap 31737

m m
E(r.) =min ( }) s.R.(A)w,, ¥ s.R.(A.)w.)
i R, -1 LA A I A A
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m
= min ( 2 s?R?(A.) by the orthonormality of w.
fo J1r ] ]
R. j=1
i
m
< min ( max ]Ri(A.)I)2 ) g2
Ri 1<jgm J j=1
, W m
= min ( max [Ri(k.)|) ( E S.W., z s.w.)
Ri 1<j<m J j=1 J ] j=1 i =J

- 2
=min ( max |R.,(A.)])"(xr,,r,)
R. 1<j<m 3 o0

Let P, = min ( max |R.()\.)!)2
18 R. 1 ]

5 1<j<m

Therefore E(ri) < Pi E(ro)

Theorem 5.4.3

If ry has non-zero components along k < m, (for k-eigenvalues of

AC_IC—TAT) corresponding to only m < k, distinct eigenvalues of AC—1C-TAT,

then the method converges in at most m-iterations to a unique solution

of Ax = b.

Proof

Assume that r, has non-zero components only along the eigenvectors

W sWos e sWy of AC—1C_TAT, then

k
r. = 2 S.W.
O 5 31

Therefore

E(ri) < Pi E(ro), Pi = min max |Ri(kj)|
Ri 1<k

1

Therefore for Al’ Az,...,km distinct eigenvalues of AC C—TAT from the

k-eigenvalues

P. = min max |R,(}.)]
i ; i
Ri 1<j<m
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n=s:

y - A,
Therefore the polynomial Rm(y) = (——7——1) satisfy Rm(Aj) =0
=1
which implies that E(ri) =0, for i < m.

A similar result we will have to theorem 5.3.4 as a result of applying the

post-preconditioned conjugate gradient method as follows.

Theorem 5.4.4

At the i-th iteration we have

1 - /p,i _ 1
E(ri) < Z(T—ZTTE? E(ro) y B = ;zE:T;T;E:T)

5.4.2 Pre-preconditioned bidiagonalization technique
The second possible way to solve the system of linear equations 5.1.1 by
using an approximate matrix factorization C for the matrix A, thus the

linear least squares to solve 5.1.1 is
S =il =]l
minimize ||C Ax = C bll 5.4.2

where C is any approximate factorization for the n x n matrix A, or so

=1 T =T
T

find x and r such that r + C—le =C b, AC = 0, any such x is called

"least squares solution'".

Where the minimum least square solution is the unique solution orthogonal

to N(C—lA), and the iteration will be for x itself.

=1 T

So if y is a solution of ATC-TC AATC_Ty = A C-Tb, then x = ATC—Ty is

the minimum least squares solution.

Suppose that

C_lAV = UL and the representation x = Vy holds,

and since rTC_lAV = rT UL = 0, where L is non singular,

Therefore UTr =0
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Hence C_lb =r + C_le =Rrat C—lAVy = r+ULy

Therefore x and y can be found from
T
Ly =Ub, x =Vy

Now to show that for a special choice of u., such a representation of

1’
X is possible, when the residual r is compatible (i.e. r is close to

zero).

Therefore with respect to the equation C_le==C—1b, C—lb € R(C_lA)

solve Cb* = b, for b*, such that b* = C 'b
Let u, =Db*/g, 8, = ||b*|]2
-1 -1 -1
Therefore u € R(C "A), and C "Ax = C b = b* = Blul

AT = viT and clav = ww

where UUT = VVT =1

Let x = Vy + w; where VTw =0

Then C lAx = ULy + C ‘Aw = By,

which implies that

T ~1 _
Ly + UC Aw = Blu1

Hence Ly + LVTw = Blu1

But since VTw = 0, therefore Ly = Blel’ and this implies that

C_lAw = 0, and the solution has the form x = Vy

The elements of y are given by Ly = Ble1 Give. iy = Bl/al, and

/a.

N3 N i+1

i+l - (Bi+1 )ni)

The second possibility to be examined now is the one when the residual

r is non-zero (Incompatible).
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Solve Cb*

]
o

so that u

’ e R(C 1A)

*
b /81, where u,

Thus the problem is to solve, for x and r

. C_lA =1 T =T

]
a
o'

[

™
c

Tﬁ = =1

]
€
>
<

[}
(]
e

where ATC_

- s _ T T 3

U -[pl,uk+1], L=[r", 8,.e] (see Paige (P4))
such that DU = I =
v k+1’ k

Now assume that x = Vy + w; with VTw =0

Therefore r + ULy + e B u;» but tTc taw = tvly
- -T
So Ly = Ble1 U'r
Hence we conclude that
r + C_lAw = ﬁﬁTr
Thus wiA'C 't + wATC 1C LAw = ||C-1Aw||§ = wiaTc Tc AT = 0

Thug © s = O, which implies that x = Vy

Algorithm 5.4.2

The pre-preconditioning bidiagonalization technique

1. 7.=1, w,. =0, n, =-1, vz =0, vw = 0

0

solve Cb* = b, for b*

= h*
Blul b
solve CTu* =u for u¥*
1 12 1
T
- *
alvl A u1

2. Iteration 1

ng T TN B./a. vz

vz + n.v.
171 i1

~
)
Q
g
]

vw + w.V.
1
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solve for Cv*¥ = Av., for v¥
i i i

= T e
i+1Yi+1 Vi T %%
If Bi+1 = 0, then (solution = vz, residual = 0, STOP)
T3 T T B
Solve for CTu* =u for u.
i+1 i+1’ i+l
T
= x -
%ia1¥isr T AU T By
If @ T 0, then (y = 8i+1ni/(8i+1wi - Ti)), solution = vz - yvw

3. Otherwise, set i =1 + 1, go to 2

By following the same policy which has been used to prove the theorems

5.4.1, 5.4.2, 5.4.3 and 5.4.4, we can prove the following theorems.

Theorem 5.4.5

At the i-th iteration, we have the following

i B e

1(a) AC C Avi € {vl’VZ""’Vi+1}

L C—lAATC—Tui e {upsuyseeu )

2 ATC-Tri = {Vl’vz""’vi+1}

3(a) C_lAvi € {ul,uz,...,ui+1}

3(b) ATb'Tui € {Vl’vz""’vi+1}

4 r; € {ul,Uzs---’Ui+1}

5 {ul,uz,..;ui+1} = {ul,C—lAATC—Tul,...,(C_lAATC-T)i+1u1}
= {r,, C_IAATc’Tul’...,(c'lAATc'T)i+1ro}

=1:. T =T -1 T -T,i+l
6 {Vl’v2""’vi+1} = {vl, C "AA°C vi,...,(C AATC 7) vl}



= 138 -

Theorem 5.4.6
At the i-th step of iteration we have

1 T

= T =T -1 T =
E(ri) g PiE(rO), Pi = T C AAC Pi-l(c AATC )

where E(ri) is the error in the residual at the i-th iteration.

Theorem 5.4.7

If has non-zero components along k ¢ m (for k-eigenvalues of

o
SIS AT =T - 5 o :
C "AA'C ") corresponding to only m < k, distinct eigenvalues of

1

- =Tt . : .
c AATC , then the method converges in at most m—iterations to

solution of Ax = b (or C—le = C—lb).

Theorem 5.4.8

At the i-th iteration, we have

i 1

k(A'C

= /p
E(r)) s 237
1 1+ Vp TC-IA)

5.5 Numerical results and discussion

a unique

In this section we are going to study the numerical solution and the

computational complexity of two non linear elliptic equations.

Problem 1 (see C10)

=5

—uw -—d +@Q-eHe'=1 5.5.1

XX yy
Equation 5.5.1 is to be solved on
R={(x,y) |0sxs1,0s5ycs1}
with boundary conditions
u(x,y) =0 on x =0
u(x,y) =1 on x=1

uy(x,y) =0 on y=0 and
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uy(x,y) =0 for O0<xgac<}
u(x,y) = {(u(x,y) =-1 for a<x<1l=-a} ony-=1

uY(x,y) =0 for 1 -agx<1

In 5.5.1 the value of a was taken as a = 5/16
Problem 5.5.1 has been approximated by using five points finite difference

approximation. At (i,j) 5.5.1 the approximation is

1
5 (-u,. - u. .. + 4u..

=5%;
- oo + 1 - 1 . =
ij-1 i-1j i3~ Ui+1j u1J+1) ( ¢ ) exp(uiJ) L

=

506 52
(where h is the mesh size).

The system generated from the application of finite difference

approximations is
Au = Flu) S

where A is an n X n nonsymmetric matrix and F(u) is a non linear operator.

Problem 2
The second problem is the problem of determining the laminar flow of

a viscous fluid in a square duct, the problem is (see Y2)

f.R
5 u, . 3 Ju e _
e (w 3;) + 3y (w 5;) == 0
2 2 =18 /2
w = [(ux) + (uy) ](n )/ 5.5.4

1 1
f / u(x,y) dxdy =1
(o] o -

defined on R = {(x,y) | 0 s x £ 1, 0 gy < 1}
with boundary condition
u(x,y) =0

The range of the value n in 5.5.4 is O < n g 1, in the case n = 1 we

will have a linear system.
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We solved 5.5.4 with f.Re/Z = 1 and because of the symmetricity of 5.5.4
(see Y2) it is sufficient to solve 5.5.4 in the square bounded by
0.5 x<1 and 0.5 5y <1
The symmetricity of the region provides the additional boundary conditions

ili =b— =
°x (0.5,y) 3y (x,0.5) 0 5%5s5

We used the same criteria of approximating 5.5.3 as in (Y2). The
generated system from the application of five points finite difference

to approximate (5.5.4) with (5.5.5) is as

A(u).u = ¢ 5546
where A(u) is a matrix, each component is a function of the solution
vector u, and C is a constant vector (when n = 1, we have A.u = C
where A is a matrix of constant coefficients).

The numerical methods used to solve problems 1 and 2 are

1. Non linearized S.I.P.

(calculating the matrix factorization every iteration for problem 2)

2. Linearized S.I.P. for every S5-iterations

(calculating the matrix factorization every 5 iterations for problem 2)

3. Linearized S.I.P. for every lO-iterations

(calculating the matrix factorization every 10 iterations for problem 2)
4., Bidigonalization technique =
5. Post-preconditioned bidiagonalization technique
6. Pre-preconditioned bidiagonalization technique

(Note: In the techniques 1, 2, 3,5 and 6 we used the original Stone
factorization for symmetric and non symmetric factorization). The
comparison between the above methods have been considered with regard

to the following factors, just as before,
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1. Number of arithmetics
2. Size of storage
3. Number of iterations

4. Time required

5.5.1 Number of arithmetics

As it has been described in chapter 4, the number of arithmetics is

be considered as

1. Information number of arithmetics
2. Linearization number of arithmetics

3. Algorithm number of arithmetics

Table 5.1 gives a complete list for the total number of arithmetics

required by each algorithm.

5.5.2 Size of storage

This, we also again, consider with regard to

1. Information store units
2. Linearization store units
3. Algorithm store units

4. Convergence store unit

5. Outer iteration convergence unit

Table 5.2 gives a full description of the store units required for

each algorithm.

to
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5.5.3 Number of iterations and time required

Table 5.3 shows the variation in the time and the number of iterations
required to solve the first problem by non linear S.I.P., linearized
S.I.P. at every 5-iterations and linearized S.I.P. at every lO-iterations
respectively at the optimal value of o. From table 5.3 we conclude that
the linearized S.I.P. requires less time and more iterations than the
nonlinearized S.I.P. and the linearized S.I.P. at every 5-iterations.

The difference in the time was because of the evaluation of the non

linear operator.

Problem 2has been solved by using the same technique (see table 5.4).
Table 5.4 shows the difference between the degree of nonlinearity (the
n-value in 5.5.4) with respect to the time required and the number
of iterations to solve a system of nonlinear equations of the same
dimension but different nonlinearity power (i.e. n = 1.0 (linear), 0.7

and 0.5 (non linear)).

On the other hand table 5.4 shows the variation in the number of iterations
and the time required to solve a certain system by using non linear S.I.P.

technique, linearized S.I.P. at every 5-iteration and linearized S.I.P. at

every lO-iteration, where the last technique required less iteration and

less time than the first two techniques.

Figures 5.1, 2 and 3 shows the variation in the number of iterations
and a(a € [0,1}) to solve the first problem by methods 1, 2 and 3, also
they show the location of the optimai value of a. Also figures 5.4, 5
and 6 shows the variation in the number of iterations and a, to solve
the second problem by methods 1, 2 and 3. We solved the first problem
by didiagonalization, post—-preconditioned bidiagonalization technique
and pre-preconditioned bidiagonalization technique, table 5.5 shows

that, post-preconditioned bidiagonalization required less iteration than
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the bidiagonalization and pre-preconditioned bidiagonalization technique,
but more than using non linearized S.I.P. technique (figure 5.7 shows

the variation in the number of iterations required to solve the first
problem by different techniques). An example for the variation in the

time and number of iteration required to solve problem 2 (see table 5.6)

it shows that post preconditioned bidiagonalization technique required

less time and iteration than using bidiagonalization and pre preconditioned

bidiagonalization.

Figures 5.8 and 5.9 show the variation in the number of iterations and

a(a € [0,1]) (by using the original Stone's factorization for symmetric

and non symmetric system) by the applications of post preconditioned and

pre preconditioned bidiagonalization techniques respectively to solve

problem 2. Therefore we can strongly prefer post preconditioned
bidiagonalization technique to solve non symmetric linear or (non-

symmetric Jacobian) non linear system of equations rather than pre-
preconditioned bidiagonalization technique. But the post—preconditioned
bidiagonalization technique requires more time than linearized S.I.P. at every

10 iterations.

Eventually the total arithmetics required by psot-preconditioned bidiagon-

alization is more than even the linearized S.I.P. at every 10 iteratioms.

Hence, the final conclusion, we would prefer linearized S.I.P. rather

than post preconditioned bidiagonalization technique.
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Matrix Method 1 | Method 2 | Method 3 | Method 4 | Method 5 | Method 6
Dimension
72 11 15 18 372 42 90
90 12 15 19 468 36 102
40 14 17 20 686 39 121
240 23 20 30 1771 60 2.7
| 420 7 34 32 34 2982 54 307

Table 5.5 The final table to show the variation in the

number of iterations to solve problem 1 by methods

1=6.

-1 Method 4 Method 5 Method 6
h “/n-value [Ng of . No of . No of g
. Time . Time . Time
l1ter. i1ter. 1Ler.
20/1.0 147 0.99384 25 0.35479 | 31 0.37776
20/0.7 14389 | 96.19554 141 | 2.40188 | 181 | 2.61438
20/0.5 24912 | 162.17800 | 238 | 3.87708 | 286 | 3.96856
40/1.0 975 22.39710 45 2.09375 | 71 2.77129
40/0.7 % . 217 | 12.3375 | 404 | 17.2286
40/0.5 % * 400 | 21.7505 | 680 | 28.333

Table 5.6 The number of iterations and the time required to

solve problem 2 by methods 4, 5 and 6

(* No convergence achieved after 300 seconds)
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With reference to (Y2), problem 2 has been solved using A.D.I. method,

with a fixed number of inner iterations and using the following convergence

checking

(k) l =4

max | w - w £ 10 5.5.7

for outer iteration.
To facilitate a comparison with the results of Young and Wheeler we
used the following starting approximation vector
0 5 :
x = sin 7xX sin Ty 5.548
and their convergence criterion for outer iteration (5.5.7). (See footnote)

Table 5.6 gives the number of iterations required by methods 1, 2 and 3

to satisfy 5.5.7. Also we included some results of Young and Wheeler.

h—l/n—value method 1 method 2 method 3 Young and
Wheeler
20/1.0 8 8 18 8
20/0.7 20 19 20 36
20/0.5 26 28 28 64

Table 5.6 Number of iterations for problem 2 by methods
1, 2 and 3 and A.D.I.
The obvious observation on these results, that method 1 requires less
iteration than A.D.I. method to solve the laminar flow problem. And
overall no requirement for extra work in S.I.P. technique for an

accelerated parameter as in A.D.I. method.

Note: For problem 1 the starting vector was that used by Concus et al

in Cl0.
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Fig. 5.8

The variation in the number of iterations with
respect to a(a € [Q,l]) to solve problem 2 by
post-preconditioned bidiagonalization techniaque

1. For a system with h_1 =20 and n = 1.0
2. For a system with h_1 = 20 and n = 0.7
3. For a system with h—1 = 20 and n = 0.5
4. For a system with h-1 =40 and n = 1.0
5. For a system with hn1 = 40 and n = 0.7
6. For a system with h_1 = 40 and = 0.5
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CHAPTER 6  Multigrid Method

6.1 Introduction

In most numerical techniques for solving partial differential equations,
the first step is to discretize the problem, choosing approximating
algebraic equations on a finite dimensional approximation space, and

then is devised a numerical process to solve (approximately) this system
of discrete equations. The accuracy of the approximated solutions depends

of course on the kind of the numerical technique.

In most numerical techniques there is no ''real" interplay allowed between
discretization and solution processes. This usually results in enormous
waste. The discretization process being unable to predict the proper
solution, and the order of approximation at each level being such as to
produce a mesh which is too fine. Thus the algebraic system becomes

unnecessarily large in size, while accuracy usually remains rather low.

On the other hand the solution process fails to take advantage of the
fact that the algebraic system to be solved does not stand by itself

but is actually an approximation to continuous equation. Thus, producing
a numerical technique avoiding the above points is to study how to inter-
mix discretization and solution process. Such a technique exists and

is often called the "Multi Grid Method". This method is an iterative
method that solves a system of discrete equations on a given grid by
interactions between coarse and fine grids by taking advantage of the

relation between different levels of discretized continuous problem.

The multigrid method can be viewed in two ways:

1) Consider the coarse grids as correction grids, accelerating
the convergence of a relaxation scheme on the finest grid by

liquidating smooth error components.
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2) Regard finer grids as the correction grids improving

accuracy on coarser grids.

The idea of using auxiliary systems of difference equations corresponding
to coarser grids has been firstly described by Fedorenko (Fl), in 1961.
Since then this idea has only been revived by A. Brandt (B13), 1973,

in what is called "Multi Level Adaptive Technique". He studied the
application of multigrid method on discretized boundary value problems,

obtained by 5-point formula, defined over different regions.

In 1976, W. Hackbush (H1) discussed the application of multigrid method
for solving poisson equations defined on different regions. J.C. South
and A. Brandt in 1976 (S12), studied the application of a multigrid
method as a possible means of accelerating convergence in relaxation

technique for a transonic flow.

Multigrid method has been applied to solve the system generated from

the application of finite element method. For instance R.A. Nicolaides
in 1975 (N4) studied the minimization of the positive quadratic form
a(u,u) - 2(u,f), by means of finite element methods, also he generalized

the results in 1978 (N6) to cover the indefinite case.

W. Hackbush (H2) studied the application of multigrid method to a general
linear elliptic equation which is subject to arbitrary boundary conditions
defined on a rectangular region and also demonstrated that non-linear
bo;nAary value éroblem can be treated by a combination of multigrid

iteration and Newton's method.

Two excellent papers appeared by A. Brandt in 1977 (B14) and (B15).
In (Bl4) Brandt studied the solution of the boundary value problems,

a full description of the multi-level adaptive technique has been given
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together with the application to solve a non-linear equation. In (B15)
Brandt gave an excellent survey of solution techniques which simul-
taneously use a sequence of increasing finer discretizations (finite
element or finite difference) for the same continuous problem, also a
flexible and economic multigrid data structure is presented together
with the software developed to support grid manipulations in general,

and multi-level adaptive technique in particular.

W. Hackbush in 1978 (H5) studied the multigrid method of second kind as

a fast numerical algorithm for solving problems that can be represented to
second kind elliptic boundary value problems formally as second kind
freedholm integral equations, in 1979, Hackbush (H4) represented the
application of multigrid method to solve an elliptic control problem

with a quadratic cost function which require the solution a system of

two elliptic boundary value problems.

In (H3) Hackbush applied multigrid method to solve Helmholtz's equation
in a general region and to a differential equation with variable
coefficients subject to arbitrary boundary conditions. In 1979 Hackbush
(H6) demonstrated the application of multigrid method of second kind to
elliptic boundary value problems and studied the treatment of non-linear

boundary value problems.

In the same year another work appeared by Brandt (B16), was mainly
concentrated the application of multi-level adaptive technique to solve
a singular perturbation problem, and in the same year Brandt (B17)
surveyed the state of art emphasizing steady state fluid dynamics
applications, from slow viscous flows to transonic ones and various new

techniques have been discussed including multi-level adaptive technique.
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Wesseling in 1979 (W3) studied the rate of convergence and the computa-

tional complexity of multigrid method, a full description and explanation

has been given by R.A. Nicolaides (N10) of a simple multigrid algorithm

for solving finite element system.

In 1979 another excellent paper appeared by A. Brandt and N. Dinar (B19)@here in
and Yewewed

studied"various concepts of ellipticity of finite difference approxim-

ations to general elliptic partial systems

rules are given, as well, for the construction of stable scheme with

high approximation orders, even for singular perturbations problems,

fast multigrid solvers for these discrete schemes are described.

A sequel to Brandt (B19) in (B18) Brandt defined and discussed the
numerical stability of difference approximations to general boundary
value problem regular as well as singular perturbation and non-elliptic
problems. He proved that stability to be necessary and sufficient for

fast multigrid solutions.

In 1980 Hackbush (H7) presented criteria of convergence that apply to
general difference schemes for boundary value problems in Lipschitzian
regions and convergence is proved for the multigrid algorithm with Gauss-—

Seidel's as smoothing procedure.

Hemker (H10) in 1980 considered the combination of incomplete LU-
decomposition as a relaxation method in multigrid technique. Fuchs (F6)
solved two transonic model equations by a combined multigrid method with
Newton's method as a relaxation technique.

6.2 Multigrid method

The multigrid method is a systematic method of mixing relaxation sweeps
with approximate solution of residual equations on coarser grids. The

residual are in turn also solved by combining relaxation sweeps with
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corrections through still coarser grids etc.

Suppose that the differential problem of the form

]

Au F in Q@

Bu C in 9% 62,1

and this problem has been approximated by difference equations of the

form
Akuk = Fk for x € Qk
and Bkuk = Ck for x € an 6.2.2
where QO, Ql,...,QM are the sequence of approximating the domain Q with
corresponding mesh sizes ho > h1 > see hM such that hk+1:hk = 1:2.

Our target is to solve the discretized problem on the finest grid QM,

the main idea of multigrid method is to exploit the fact that the discrete

problem on a coarser grid Qk, for example, approximates the same differ-

ential problem and hence can be used as a certain approximation to the

QM problem, the application of this fact is by solving the problem on Qk,

and then interpolate the solution from Qk to QM, a more advanced technique
k

was to use a still coarser grid in a similar manner when solving the Q

problem, and so on (see (Bl4)).

Also, in the multigrid method, the role of relaxation is not to reduce
error but to smooth it out i.e. to reduce the high frequency components

of the error for more about smoothing the error (see (B14) .

The main point in multigrid method is the "cycling' operations between

the levels, or interpolation, for example from level k to k' will

. . k . . ]
generally be denoted by Ik That is, if u 1is a function defined on

K
. . . k'
the gr1dyw1th mesh size hk then Ik u
: + ;
on the grid with mesh size hk" In particular It 1 will denote an

. : . k .
is an approximation to u defined



.= 164 -

interpolation polynomial from Qk into Qk+1’ defined as (see H3)

k+1
Ik . Qk_—-—> Qk+1
+1
k+1 _ 2k
(I Wy 5= 2’E=_1 455 Uiep, 5ok 6.2.3
00 _ £1,0 , 0,+¢1, _ 1 #1,#1 _ 1 .
where ¢ij =1, ¢ij (¢ij ) = > ¢ij = in the regular region.

But if ((i + 2)h,jh) or (ih,(j + 2)h) € Q, then ¢ij =0
And in the irregular region if ((i + s)h,jh) € 2, then ¢130 = (s - 1)/s.
The fine to coarse transfers Ii_l is made by some local averaging i.e.

k-1 - ; :
Ik u(xk) 1s some weighted average of values vk at several points

- k
xk . close to x .

In the technique, the discretized system on coarser grids will be

modified by changing their right hand side where in the correction scheme
u 1is designed to be an approximate correction to uk+1, hence the modified
right hand side will be

k _ _k _k+l

f = Ik+1r 6.2.4
where rk+1 = Fk+1 = Akuk is the residual function of the current
. ; k+1 .
approximation u at the finer level.
The difference
& = 25 ~ ¥ 6.2.5

gives an estimate for the local truncation error on level k, i.e. it is

an approximation to
§ =F -Awu 6.2.6
The multigrid method unlike cycling algorithms, work themselves up from

the coarsest level 1 to the finest level M, at each stage we will denote

by 2 the "currently finest" level.
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1. Set & =1, compute an approximate solution ul to the coarse grid
equations, by relaxation or by some direct method (i.e. non iterative
methods). If the system is non-linear the direct method means a few
Newton iterations, where the linear system at each iteration is solved

directly.

2. Increase £ by 1 (if 2 = M, the algorithm is terminated).
Introduce, as the first approximations for the new finest level, the

interpolation

u =1 u 6.2.7

. 2 : s
Then improve u by one relaxation sweep, if the convergence at the current
operation level has been achieved, then

L. 1 S TR TR
Uew = Yowp * Tgo. (W 7 Ip . uorp) 6.2.8

and then start the process again

Otherwise we should do some more relaxation sweep, but in the case when
the convergence rate is slow and £ > 1, then decrease & by 1.
Introduce, as the first approximation for the new (coarser) level the
iterative

ul _ IR uQ,+1
L+1

6:.2.9

and then go to step 2 and start the same process.

The above technique was the main "Multi Grid" technique used by Brandt

(for example, see (B19)).
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Now we are going to consider the "Multi Grid'" technique proposed by Hackbush

(see H3).

Algorithm 6.2.1

Assume that the multigrid iteration is defined on the level k - 1 and

k :
let u. € @ be a starting vector.

~ H

Iteration 1 + 1

=8

Nl

= A i
() + £

u .
R, =

+

Nl

il "
- A (112 -
k(uk ) fk e Q

I:_le (R is the current residual)

7

€ Qk, be the solution of

13
|

-4
-1 = -1 -1 Ry

We approximate w, 1 by two iterations of multi grid algorithm on the

k_
level k = 1, starting with w(o) = .
’ k-1~ k-1

Denote the result by wézi,

i+l _ i+) k-1 (2) _
W e o N Ry

we obtain the next iterate of u by

A comprehensive alteration has been introduced by Brandt (B19) to produce
what he called "Full Multi Grid" method to solve any system of equations
(linear or non-linear) such that, prespecified tolerance is introduced

to switch to the coarser level & - 1 with respect to the "Current Residual'.

Also he proposed another criteria to switch to the coarser level & - 1,
when a pre-assigned number of relaxation sweeps on level 2 has been com-
pleted, similarly the switch to finer level 2 + 1 may be made as soon as
a pre-assigned number of relaxation sweeps has been made on the level %

since the last visit to the finer level.
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6.3 Multigrid method with S.I.P. relaxation technique

We consider the S.I.P. method as a relaxation method for one with multi
grid algorithm to solve a sparse linear system (problem 2, at n = 1.0 ,
see chapter 5) and a sparse (Jacobian of) non-linear system (problem 2

at n = 0.7 and 0.5, see chapter 5).

The multigrid algorithm with S.I.P. method at level k to solve problem 2,

where the generated system is A(u)u = C.

Algorithm 6.3.1
Assume that the multigrid iteration is defined on level k - 1, and let

i k :
uk € Q@ be a starting vector.

1. Iteration 1 +1

(A + B). ui+% =+ B, ui - (A(ui) u; - ¢

1

Rer = Tp R

Let w, _, ¢ ?“ be the solution of

A ) Wiy = G g * R

We approximate W1 by two (or three) iterations of multigrid algorithm

B .. () _
on the level k 1, starting with Wil T Yeopt

The next iterate of W is

i#l _ i+ k-1 B
W Ty T T (g T uy)

2. If the convergence achieved, STOP, otherwise set 1 =i + 1, and go to 1.

(Note: In algorithm 6.3.1 the matrix (A + B)i is the product of the Stone's

factorization(s) Li and Ui of the matrix A(ui).
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Also we can solve the mildly non-linear equations (see chapter 4) by
using multigrid algorithm with S.I.P. technique by using A. Bracha-Barak

and P. Saylor (B10) factorization of symmetric matrix.

But in this work we preferred to consider a nonsymmetric matrix rather
than symmetric for a general conclusion from the application of multi

grid with S.I.P. as a relaxation procedure.

6.4 Numerical results and discussion
We consider the numerical solution of problems 2 (see chapter 5) by

using multi grid algorithm with the following relaxation technique

1) Non-linearize S.I.P. technique
2) Linearized S.I.P. at every 5-iteration

3) Linearized S.I.P. at every lO-iteration

The multi grid algorithm has been performed for 3 levels i.e. M = 3 and

the solution vector at each coarser grid has been produced with a full

accuracy.

6.4.1 Number of arithmetics

With respect to the total number of arithmetics, because we are using

the same smoothing technique, this can be viewed through the total number
of iterations (including the number of iterations at each coarser grid)
to solve the system at level M, plus the arithmetics required to perform
the prolongation and restriction operations (the prolongation and

restriction required 5N2

. " 2N2 - multiplications, where 2 is the index

of the finer level).

6.4.2 Storage units
Using multi grid method, to solve linear or non-linear system of equations,
with any of the above relaxation techniques, require more store than using

the relaxation technique as an iterative method to solve a system of linear

(non-linear) equations.
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6.4.3 Number of iterations and time required
We have considered the number of iteration and time required to solve
a system of linear equations (problem 2, n = 1.0) and a system of

non-linear equations (problem 2, n = 0.7 and 0.5).

The results from the numerical application of multigrid method to solve
problem 2 are presented in Table 6.1, by using non linearized S.I.P.
(method 1), linearized S.I.P. at every 5 iteration (method 2) and linearized
S.I.P. at every 10 iteration (method 3) as relaxation techniques and
comparatively with the result from the numerical application of method 1,
method 2 and method 3 as an iterative technique, it shows that by using
multigrid method to solve a linear system (n = 1.0) the reduction in

the number of iteration was about 707% but the reduction in the time
wasn't that impressive. But from solving the non-linear system when
n=0.7, the reduction in the number of iteration was 507 at least,

and with regard to the time, using method 1 (i.e. non linearized S.I.P.)

provides saving of 237%.

As the degree of nonlinearity increases (i.e. n —=0, with respect to
problem 2, the reduction in time and the reduction in the number of

iterations increases (with respect to each relaxation technique).

At n = 0.5 for instance the result shows average 75-947 reduction in

the number of iteration and 50-867% reduction in the time.

Figures 6.1 and 6.2 show the variation in the number of iterations, to
solve problem 2, by using multigrid method (with methods 1, 2 and 3 as
a relaxation technique) and methods 1, 2 and 3 as an iterative technique

respectively.



= 170 —

Eventually in addition to the total number of iterations required to
solve any given problem, by multigrid method there is an implicit
iteration to be performed, at the auxiliary levels, which should also be

taken into consideration.

But the final judgement on the efficiency of a method concerns the size of
storage required, the number of iterations required, and the total

time taken.

Hence from the above comparison multigrid technique is found to be "cheap"
to use, but difficult to programme, especially if we have an irregular

region.
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h—l/n—value

MG + Method 1

MG + Method 2

MG + Method 3

No of Time No of Time No of Time
1ter. iter. iter.
(26) * (26)* (26) =

40/1.0 48 10.31689 48 4.49583 48 3.66057
(60)* (47)* (65)*

40/0.7 35 29.64655 59 | 11.01685} 54 7.71167
(35)* (72)* (100)*

40/0.5 53 28.93850 38 9.34351 52 9.48560

Table 6.1

The number of iterations and time required to solve problem 2
by multigrid method (with methods 1, 2 and 3 as a relaxation

technique).

* (the total number of iterations at the coarser levels)

Method 1 Method 2 Method 3
b~ /n-val
n-value No of Time No of Time No of Time
iter. iter. iter.
40/1.0 69 11.4662 69 4.60464 69 3.72627
40/0.7 94 38.69199 99 11.57924 106 8.52697
40/0.5 149 61.50597 159 18.55301 876 69.95485
Table 6.2

The number of iterations and time required to solve problem 2

by the iterative methods 1, 2 and 3.
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SUOTIBADIT JO ON

Fig. 6.1

The difference in number of iterations to solve
laminar flow problem by multigrid method
1,4-40/0.5 by MG + method 2 and method 2
2,5-40/0.7 by MG + method 2 and method 2
3,6-40/1.0 by MG + method 2 and method 2
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Alpha

0.4

.2
The difference in number of iterations to solve

laminar flow problem by multigrid method
1,4-40/0.5 by MG + method 3 and method 3
2,5-40/0.7 by MG + method 3 and method 3
3,6-40/1.0 by MG + method 3 and method 3

Fig. 6.2
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CHAPTER 7  Conclusions and Suggestions for Future Work

In this thesis we have used several numerical techniques to solve a
system of non-linear equations, generated from the discretization of
non-linear elliptic partial differential equations using finite

difference approximations.

The iterative techniques which have been used to solve the systems are

as follows:

1. Linearization Techniques

2. Non-linearization Technique

The numerical results contained in this thesis may be summarized as

follows:

1. S.I.P. technique which has been proposed by H.L. Stone (S15)
to solve a system of linear equations (using Stone approximate matrix
factorization or its development by Bracha-Barak and Saylor (B10)).
We succeeded in generalising this scheme to solve a system of non-linear
equations, provided the starting iterative vector is chosen within an
interval bounded by the minimum and the maximum values of the boundary

condition(s), to what we called"mon-linearized S.I.P.".

2. A generalization to the preconditioned linear conjugate gradient
method has been proposed by P. Concus et al (C1l0), to what he called
the "Preconditioned Non Linear Conjugate Gradient Method'". We present
the application of this technique using the improved Stone approximate
matrix factorization (B10), to solve systems of nonlinear equations

with symmetric and positive definite Jacobian.
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3. A comparison between several iterative techniques (e.g. Non Linear-
ized S.I.P., Linearized S.I.P., Linear Conjugate Gradient Method, Non
Linear Conjugate Gradient Method and Preconditioned Non Linear Conjugate
Gradient Method) has been studied with regard to the solution of mildly

non linear elliptic equations.

The number of arithmetics, storage units, total number of iterations and
time required to achieve the convergence are factors of comparison

between the above iterative techniques.

We solved three models of mildly non linear elliptic equations (which

have been earlier solved by Hageman and Porsching (H8), using non linear
point (block) Gauss Seidel and non linear point (block) S.0.R. iterative
techniques), the numerical results show that the most efficient iterative

technique is non linearized S.I.P. technique.

Also compared with the numerical results of (H8), the nonlinearized S.I.P.
method requires less iterations than nonlinear point (block) Gauss

Seidel and non linear point (block) S.0.R. methods.

4. Non symmetricity is one of the problems in solving linear or
non linear system. Paige proposed the "Bidiagonalization Technique'
to solve a linear system Ax = b (where A is m x n - matrix, m > n)
(see P1). Numerical experiments on non linear and linear systems of
equations on two model problems (problem 1 (see Cl0) , problem 2 (see Y2))
show the inefficiency of the bidiagonalization technique (see Chapter 5)
with respect to the total number of iterations and time required to

achieve the convergence.

We suggested two preconditioning techniques, to accelerate the convergence

of the bidiagonalization technique, using Stone's approximate matrix
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factorization (S15), these preconditioning are:

1) Post preconditioned bidiagonalization technique

2) Pre preconditioned bidiagonalization technique

We solved the two model problems (C10 and Y2) using nonlinearized S.I.P.,
bidiagonalization, post preconditioned bidiagonalization and pre precond-

itioned bidiagonalization techniques.

From the numerical results, post preconditioned bidiagonalization

technique required less time and iterations than bidiagonalization and

pre preconditioned bidiagonalization technique. But the nonlinearized
S.I.P. technique required less time and iterations than post preconditioned

bidiagonalization technique.

5. In the early 70's a new iterative technique was proposed by A. Brandt
called multilevel adaptive technique or multigrid method, and developed
by several authors (e.g. Hackbush (H1)) using different iterative
techniques as a relaxation method (e.g. incomplete LU-decomposition

(H10), Newton's method (F6)).

In Chapter 6 we solved a laminar flow problem (as an example of unsymmetric
linear or non linear system) using a nonlinearized S.I.P. technique

as a relaxation method with multigrid acceleration. Numerical results
show, compared with the results in Chapter 5, that solving linear or

non linear system using multigrid method with nonlinearized S.I.P. as a
relaxation technique, requires less time and iterations than the

iterative technique nonlinearized S.I.P.

Several suggestions for the development of the work in this thesis can

be performed, for instance:
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1) 1In the field of the approximate matrix factorization, several
factorizations have been proposed, so it is worthwhile to make a complete
survey and comparative study on the performance and the efficiency of
different approximate matrix factorization to solve a system of non
linear equations using nonlinearized S.I.P. and preconditioned non linear

conjugate gradient method.

2) Bidiagonalization technique can be generalized to solve a system of

non linear equations, and the suggested algorithm is as follows:

Non Linearized Bidiagonalization Algorithm

1. Ty = 1ne Wy = 075 no = -1, v2=0, vw = 0
Blu1 = R (R is the current residual)
a,v, = qul
2. Iteration i
g = T onjpBifey vz = vzt
w, = (15, - Bimi_l)/ai Ve = Ve + eV,
Bie1%iel T JiVy T %Y
If Bi+1 = 0, then (solution = vz, residual = 0, STOP)
T3 T "% /B
Vi 7 305 8
If @i = 0, then (y = Bi+1ni/(8i+1wi - Ti), solution = vz - yvw, STOP)

3. Otherwise, set i =i + 1, and go to 2
(Ji is the Jacobian of the non linear system at the i-th step of

iteration)
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3) Also it is possible to generalize the '"Post Preconditioned
Biadiagonalization Technique" to solve a system of non linear equations

and to prove the performance of the following technique.

Non Linearized Post Preconditioned Bidiagonalization Algorithm

1. 7.=1, . =0, n. =1, vz=0, vw = 0

0 0

B = R (R is the current residual)

11
T T
* =
solve Clu1 Jlu1

- *
V1 T Y

2. Iteration 1

solve C.v¥ = v
11

B

= J.v¥ - q.u.
i1

SR I
1+1 1i+1 11

If Bi+1 = 0, then (solution = vz, residual = 0, STOP)

R L L
solve C?u* = J?u.
1 1+l 1 1+l
= ik =~
%41V T Yie T Piet¥
If A = 0, then (y = Bi+1ni /(Bi+1wi - Ti), solution = vz - yvw, STOP)

3, Otherwise, set 1 =1 + 1, and go to 2
(Ji is the Jacobian of the system of the non linear equations, and
Ci is the approximate Jacobian factorization, at the i-th step

of iteration).

As it has been pointed out that the post preconditioned bidiagonalization

technique is to solve the non symmetric linear (or non linear) system
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of equations, it is worthwhile to make a survey on the performance of
different approximate non symmetrix approximate matrix factorization

using non linear post preconditioned bidiagonalization technique.

4 . To study theoretically and analytically different iterative
techniques (e.g. preconditioned non linear conjugate gradient method,
post preconditioned bidiagonalization technique) as a relaxation technique

in multigrid method).
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