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SUMMARY

Twin stripe laser structures show great promise in integrated optics
systems. It has been demonstrated in the recent years that the optical
interaction from such structures produce properties such as beam steering,
pulse generation and bistability. The thesis describes a computer model

of the lateral behaviour of such a device. The model takes into account
current spreading in tﬁe p-type confining layer, the effect of lateral
diffusion of carriers in the active layer and bimolecular and stimulated
radiative recombinations in a self-consistent manner. The device operatings
below threshold becomes a special case and can be analysed without includi-g
the stimulated recombination effect in the full model. The assumptions

made in this model are such that the results show the effect of quasi-Ferrz:
level pinning above threshold due to gain saturation. Results for the
single stripe laser are presented to compare with other existing models
without any extra efforts. The thesis presents results of the optical

field distributions of a twin stripe laser found consistent with the
carrier density and current density distributions under variety of current
injection conditions. The results predict the lateral movement of the
optical field under asymmetric drive conditions which produce asymmetric
variation of the complex dielectric constant of the active layer. The
optical results are accompanied by the corresponding carrier and current
distributions found consistently. The thesis also highlights the influence
of device geometry and carrier diffusion on the optical behaviour of the
device. The effect of stimulated recombination on the current spreading

is also pointed out. The results show that the required modifications of
the dielectric constant of the active layer to produce the near field shif=z

and hence beam steering can be introduced by monitoring the current througx

the two electrodes.
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LIST OF PRINCIPAL SYMBOLS

The principal symbols used in this thesis are given below.

Aev Transition probability of spontaneous emission of an electron
from the conduction band to the valence band

a Unit vector along the x axis

ev Transition probability of stimulated emission of an electron
from the conduction band to the valence band

Bye Transition probability of stimulated absorption of a photon
B Magnetic flux {(vector quantity)

b Normalized propzgation constant
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Damb Ambipolar diffusion constant

2d Thickness of the central layer in a three-layer dielectric
slab waveguide

e Electronic charge

E Electric field intensity (vector quantity)
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Ee Conduction bard edge V

E; Fnergy level within the valence band of a semiconductor

Ey Valence band edge
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Fs Fermi level in thermal equilibriunm
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Quasi-Fermi level relative to the conduction band
Quasi-Fermi level relative to the valence band

Probability of the conduction band level being occupied
by an electron

Probability of the valence band level being occupied by
an electron

Probability of the conduction band level being occupied
by a hole

Probability of the valence band level being occupied by
a hole

Local gain coefficient

Planck's constant

Magnetic field intensity vector

Horizonﬁal step length in a finite difference mesh
Vertical step length in a finite difference mesh
Intensity of light
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Current density vector

Current density magnitude

Complex number v-1

Nominal current density

Dark current in a diode

Hole current density

Electron current density

Wave vector

Wave vector magnitude

Boltzmann constant

Extinction coefficient or imaginary part of a complex
refractive index

Laser cavity length
Diffusion lengths of electrons and holes respectively

Effective masses of electrons and holes respectively
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xi
Refractive index (real quantity)
Complex refractive index
Carrier density

Normalization constant for the carrier density in numerical
calculations

Density of states of the conduction band
Density of states of the valence band
Intrinsic carrier density in the material 1 and 2 respectively

Minority electrons in a lower band gap p-type -semiconductor
in a heterojunction

Majority electrons in a larger band gap n-type semiconductor
in a heterojunction

Thermal equilibrium electron concentrationsin a lower band
gap p-type and a larger band gap n-type semiconductors
respectively

Total optical power

Hole concentrations in a larger band gap n-type arnc a lower
band gap p~type semiconductors in a heterojuncticn

Hole concentrations under thermal equilibrium in =2 larger
band gap n-type and a lower band gap p-type semiccrductors
in a heterojunction

Density of photons of energy E’

Position vector
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CHAPTER I

INTRODUCTION



1.1 Introdﬁctory Remarks

There has been tremendous growth in the development of optical fibre
communications systems since 1970 following the invention of the laser
light source in 1958 (1), the semiconductor laser (2 - 4) and the
development of low loss optical fibres (5). As part of these developments
there is now considerable interest being shown in novel semiconductor
lasers which have optical properties such as bistability (6 - 9), short
optical pulse generation (10) and beam steering (11). Optical amplification,
and optical coupling are also being actively researched. In particular,
multi-stripe lasers have been found to exhibit many of the properties
listed above. However, the geometry of the multi-stripe laser‘plays an
important part in the ultimate application of the device, and the lateral
mode behaviour of the laser is so sensitive to changes in geometry that

it becomes essential to develop a ccmputer model of the device in order

to fully appreciate its behaviour. This allows a wide range of contrciling
parameters to be changed systematically to show their relative importence
in controlling the modal behaviour of the device, and this allows the
design to be optimised in a more efficient way than by the fabrication

of a wide range of multi-stripe lasers.

The work reported in this thesis is concerned with the development of

a computer model which describes the lateral behaviour of the optical
modes of multi-stripe GaAs/AlGaAs double heterostructure lasers. In
particular, the. oxide isolated sirngle-stripe laser and the closely
coupled parallel twin-stripe laser shown in figures (1.1-1) and (1.1-3)
respectively, will be considered. In such devices a narrow active region
where the recombination of carriers takes place is sandwichéd by two
larger band-gap AlGaAs semiconductor layers. This restricted width of
the active layer by the heterojunctions helps to minimise the threshold

current density as shown in figure {1.1-2). A feature of the model is
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that it solves the carrier distribution in the active layer of the laser
in a fully self-consistent way with the interacting optical field, current
spreading and carrier diffusion. Because of this a more realistic model
of the modal behaviour of lasers has been possible. In particular it
has been possible to model the beam steering behaviour of the optical
field of the twin-stripe laser structure, which has been the underlying
aim of this work. Self-consistent solution of the optical field intensity
and carrier density distribution is necessary because the two afe linked
by the stimulated recombination coefficient, such that a high optical
output stimulates a higher level of carrier recombination which in turn

reduces the optical gain producing the radiated field.
In the next section of the chapter the historical developments of optical
communications systems, and in section (1.3) a brief outline of the thesis

will be presented.

1.2 Historical Developments of Optical Systems

The desire to communicate messages over large distances has been of
fundamental importance to Man since the earliest times, and he has
striven to increase both the rate at which messages are transmitted and
the distance over which they are transmitted. To this end, optical
techniques were used for over 2000 years. Initially, this was only for
sending alarms or announcing specific events via a rudimentary line-of-
sight binary channel using beacon fires, the meaning of the signal being
prearranged between the sender and receiver. The Greeks were reputed to
be the first to use this technique as early as 800 BC. However, by 150BC
techniques were being developed to encode the optical signal according
to the alphabet to allow any message to be sent. Refinements on the basic
idea continued until the end of the 19th century with the developient

of Bell's photophone. The optical channel was unreliable however relying
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upon the human eye and atmospheric effects such as fog and rain.

The development of the telegraph by Morse in 1838 marked the start of

a new era in communications - electrical communications, and the widespread
use of a telephone system quickly followed. Wire-less communication

was demonstrated by Marconi in 1895 and this was a major advance, enabling
mobile communications and broadcast communications to be made over wide
areas of coverage. Since then an increasingiy large proportion of the
electromagnetic spectrum has been used for conveying information from

one place to another using the technique of modulation; whereby the message
to be transmitted is superimposed onto a sinusoidally varying electro-
magnetic carrier wave. As the need to transmit information has increased,
great demands have been placed on wire and cable networks and on the
electromagnetic spectrum. Thus, the trend has been to employ progressively
higher frequencies in the spectrum, which has the added benefit of

allowing larger transmission bandwidths and an increased information

capacity.

Since the advent of laser optical sources in the infrared region of
electromagnetic spectrum in 1958 and their subsequent realisation (4,12),
serious interest in optical communication was rekindled. This device
provided highly monochromatic and coherent radiation of a type similar

to the radiation produced by a microwave generator, rather than the

type produced by a fluorescent light source. It thus appeared that this
source capable of handling information over a much wider bandwidth could
be modulated at higher rates and used in much the same way as an electrical
r.f. sources. Early optical systems were based on line-on-sight
communications because of the highly directional nature of the transmitted
light. However, it soon became apparent that-for widespread communication

networks such systems were hopelessly inadequate, and some form of guiding
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structure would remove the constraints placed on the line-on-sight
systems. (Satellite-Satellite and Satellite-Submarine line-on-sight

communication systems are, however, in current development).

Concurrent with these developments was research into optical fibre

guides. Despite the high attenuation of early optical fibres, Kuo and
Hockman (13) were first persons to realise that optical fibre communication
systems were perfectlj feasible if the losses could be reduced to 204B/km.
In 1970 this was achieved by Kapron et 21 (14). Current development of
fibres has further reduced the attenuztion to 0.2dB/km at 1l.55um.However,
to achieve these figures it was necessary to tailor the wavelength of

the laser source to match the ‘window'ecf minimum attenuation of the fibre
material. The semiconductor injection lzser, based on GaAs was developed
after the gas laser in 1963 (2 - 4), kowever the early homojunction lasers
had such high threshold currents as tc zake them impractical for
room-temperature operation. The major treakthrough in optical communications
systems occurred with the development of the GaAs/Aleal_xAs double
heterostructure laser which could be operated at room-temperature at

much reduced threshold current density.

With the development of the practical cdouble heterostructure laser, and
improved fibre technology, the development of optical fibre communications
systems gathered momentum and since ther there have been a great many
significant technological developments in light sources, the fibre and
photodetectors. GaAs is now no longer the only useful material from

which lasers may be fabricated, but devices based on InP/InPGals
heterostructures have been developed which covers the wide range of
wavelengths 0.92um - 1.65um including the wavelength corresponding to

the lowest loss and dispersion region of silica fibre.
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The result has been the.development of a transmission system that has
certain inherent advantages over conventional copper wire systems. Now,
optical fibres have lower transmission losses and for a wider bandwidths
when compared with copper wires. The fibres have a very small cross-section,
light-weight and their very wide bandwidths allow very high information
rates. Furthermore, the fibres have a high immunity to electromagnetic
interference and freedom from electromagnetic pulse problems. They are
also electrically isolated and cross-talk between adjacent fibres is low.
Finally, silica, the principal material, from which high guality fibres

are made, is abundant and inexpensive.

There are now many hundreds of thousands of kilometers of opfical fibre
telephone, cable TV and data systems in service throughout the world.
Nevertheless research into improved optical sources, detectors and fibres
and fibre interconnections is continuing at a high pace. Of current
interest is the development of a wide range of novel optical sources.

Some of these developments have concentrated on producing lasers with

a high degree of optical coherence for single mode coherent modulation
schemes, such as the external cavity laser (15) and thé'distributed feedback
laser (16). However, there is also a growing interest in optically coupled
multi-stripe lasers because of their possible novel applications such

as optically and electrically controlled bistability (6 - 9), ultra-short
optical pulse generation (10), beam steering (11) and coherent combination
of the power of laser arrays (17). Ultimately these developments may

lead toan integrated optics system for optical signal processing, optical

routing of modulated signals and optical logic applicatiocns.

1.3 Outline of the Thesis

A brief introduction to semiconductor injection lasers is presented in

chapter ITI. Here the Einstein coefficients and the necessary conditions
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for lasing are derived. The laser gain and its dependence on the doping
of the semiconductors are also discussed together with the threshold
condition for amplification in a cavity resonator. Heterojunctions, whick
are formed when two semiconductors with different energy gaps are joined
to form a p-n junction, are also introduced in this section and the
various properties of heterojunctions, and their advantages over homo-

junctions are presented

One of the most important aspects in the understanding of the semiconductor
laser is the optical waveguide formed in the active layer which determines
the modal behaviour of the device. This is discussed in chapter III.

In the double heterostructure laser the active layer is quite thin

(0.1pym - 0.3um) and is sandwiched between cladding layers of material
having a lower refractive index, so that a dielectric waveguide is formed
perpendicular to the active layer. The idea of effective dielectric
constant is also introduced in this chapter. In the lateral direction

of the active layer, however, the carriers are free to diffuse laterally.
In this direction the complex dielectric constant of the active layer
varies as a function of the carriér density. It is explained in chapter
ITT how the complex dielectric constant profile provides a weak guidance
of the optical field in the lateral direction. The guidance of the wave

in the lateral direction is very important in determining the stability

of the device.

In chapter IV the past work of multi-stripe geometry lasers is reviewed

and the outline of the model adopted in this thesis is given.

Chapter V presents a simple model of the electrical behaviour of the
twin stripe laser. A summary of this work appears in reference (18).

This chapter emphasises the need to take into account the effect of
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current spreading from the electrodes through the confining layer of
a heterojunction laser to the active layer. Current spreading reduces
the level of the current injected into the active layer quite considerably,
but perhaps more important is the fact that results in a broadening of
the current density distribution. In multi-stripe lasers this broadening
of the injected current density distribution effectively couples the

electrodes, and its effect is particularly important.

The presence of the non-linear heterojunction influences current spreading
in the cladding layer. In this chapter the heterojunction is modelled

by a series of diodes along the active layer and the two dimensional
potential distribution in the cladding layer is found subject to this
boundary condition. The chapter considers the current density distribution
problem of a twin stripe laser, and examines the effect on the distribution
of applied potential, interstripe coupling via the cladding layer and

the geometrical factors of cladding layer thickness, electrode width

and spacing.

Lateral diffusion of the carriers in the active layer and bimolecular
recombination are other important factors in addition to the non-linear
heterojunction. In chapter VI the effect of lateral carrier diffusion

on the carrier density distribution and the current density distribution

is examined. In this chapter the non-linear heterojunction is modelled

using the quasi-Fermi level separation in the active layer to calculate

the carrier density distribution, rather than via a simple diode model.

In this model the current in the cladding layer is coupled to the lateral
diffusion equation in the active layer via the quasi-Fermi level

separation, however, it is clear that the problem must be solved consistently

and the procedure used is outlined in the chapter.
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The results give the distribution of spontaneous radiation. However,
since the effect of stimulated recombination is not included the model
is only valid upto the threshold condition. In chapter VII the effect
of stimulated recombination is included in the diffusion equation. This
requires the solution of the optical waveguide equation in the lateral
direction subject to the condition of a complex dielectric comstant
profile laterally, from this the optical intensity can be calculated.
The optical intensity affects the carrier density which produceé the
gain, and so it is necessary to solve the optical problem.self—consistently
with the carrier density distribution and the current spreading problem.
The chapter highlights the effects of stimulated recombination on the
current spreading and the stability, the effect of gain-guidance and
anti-guidance on the stability of the device. The chapter also considers
the effect of symmetrical and asymmetrical pumping on mode stability

and the shift in the near field of light output.

In the final chapter VIII, the conclusions of the self-consistent model

of the twin stripe laser are presented and suggestions for further work

are made.
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CHAPTER 1II

SEMICONDUCTOR LASER PRINCIPLES
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2.1 Introduction

In this chapter the basic principle of a laser system and the necessary
conditions required for lasing action to occur, are described. In a
simple gas lasing system the gas atoms can be described in two energy
states- the ground state and the excited state. An incident photon of
correct energy can be absorbed causing an atom in the ground state to

go to the excited state. This process is known as stimulated absorption.
The excited atom has a tendency to relax back to the ground state emitting
a quantum of energy equal to the difference between the two energy states.
Emission can occur in two possible ways. Firstly the excited atom can
emit a photon spontaneously. Secondly the exciied atom can interact with
the incident photon and emit the photon of the same frequency and phase
as the incident photon. This is called stimulated emission, All these

three processes in the two energy level syster are shown in figure(2.1).

The laser is an amplifier of stimulated emitted radiation. In thermal
equilibrium, according to Boltzmann statistics, there are more atoms in
the ground state and therefore an incident photon is most probably
absorbed. In order to have net stimulated emisszion in a system it is
essential to have the population of the excited state greater than

that of the ground state. In otherwords, population inversion must exist
and this is one of the necessary conditions for lasing action. In
different lasing systems there are different ways of achieving population
inversion. For instance in a gas laser it can te achieved by passing

an electric discharge through the gas to excite the bound electrons

to the higher level whereas in a semiconductor laser a forward bias

p-n junction produces it by injecting minority carriers into both

p-type and n-type regions. These excess minority carriers recombine

with the majority carriers in each region to produce photons- if the
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Figure 2.1 Three emission processes (a) stimulated absorption, (b)
spontaneous emission and (c¢) stimulated emission are shown
in a two energy level system. A black dot indicates the
state of the atom before and after the transition takes

place.
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recombination process is radiative. Hence, once population inversion is
produced in a given system, multiplication of photons via the mechanism
of stimulated emission take place. Such devices which provide photon
gain are said to be active. In contrast with a passive medium the light

travelling in the active medium is amplified.

In order to produce a highly collimated and monochromatic beam, the

light beam is allowed to travel in the active zedium. Amplification

of 1light travelling a only small distance into the active medium is

small, therefore large amplification is achieved by making the light
travel a large distance through the active region. In the laser this

is achieved by making the light travel many times in the medium by
reflections from two mirrors as shown in figureCLZ-ZX Such an arrangement,
called a cavity resonator, greatly increases the effective distance
travelled by the light in the active medium axnd ensures some coherence

to the light because the cavity ensures that only certain wavelengths

are amplified.

2.2 Semiconductor Lasers

A simple semiconductor laser consists of a direct band gap semiconductor
crystal such as GaAs doped in such a way to give p-type and n-type layers
with a p-n junction at the interface. Both the p-type and n-type regions
are heavily or degenerately doped. This is necessary because it is then
easy to satisfy the lasing condition in the p-n junction under a forward
electrical bias, as will be discussed in the following sections (the
lasing condition states that the separation of quasi-Fermi levels

must be greater than the energy gap of the seziconductor). This condition
is evident in figure (2.2-1b). As the forward bias is applied to the

junction, electrons and holes flow across the junction to exist as
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minority carriers in their respective regions. These injected minority
carriers are out of thermal equilibrium and therefore recombine
radiatively to emit photons. The high density of injected carriers
results in population inversion but because of recombination of the
injected carriers this is only maintained over a narrow junction
region, as shown in the figure (2.2-1b). It is only in this region
that the electromagnetic wave will be amplified as it travels along
the junction. There is no population inversion in either of the
neutral regions of the diode, i.e the p-type or n~type regions away
from the junction, and therefore these regions are essentially
rassive and optically lossy. Unlike gas lasers no external mirrors
are required in semiconductor lasers to form the cavity resonator.
The cavity resonator in a semiconductor laser is made by cleaving the
opposite faces of the p-n junction along the natural crystalline
planes (110) as shown in figure (2.2-2). Because semiconductor materizl
such as GaAs has a high value of refractive index 3.5 then the air/
semiconductor interface produces high reflectivity of typically 0.3.
Furthermore in semiconductor lasers the transitions take place between
the energy bands rather than discrete energy levels as in gas laser
systems and therefore a large optical gain in the semiconductor lasers

is expected.

2.3 Direct/Indirect Band.Gap Semiconductors

It was stated in the previous section that semiconductor lasers are
nade from direct band-gap semiconductor such as GaAs and InAs. In
order to explain this statement the basic semiconductor band diagrams
will be considered in this section. In a semiconductor the band which

at absolute zero temperature entirely filled with electrons is called

the valence band and the next higher band of allowed states, which is
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empty at absolute zero, called the conduction band. The valence and

conduction bands are separated by a forbidden gap E_ as shown in figures

g
(2.3-1). If the semiconductor is at a temperature sufficiently higher
than absolute zero degree, the lattice may impart sufficient energy

to the electrons in the valence band causing thec to be excited to

the conduction band as shown in figures (2.3-1). A thermally generated
electron-hole pair is thus created. The reverse process is also equally
probable in which the electron in the conduction band loses energy to

the lattice and falls back to recormbine with the hole in the valence
band. These transitions require not only energy conservation but also
momentum conservation. In a direct band-gap semiconductor such as GaAs
the maximum of the valence band lies exactly below the minimum of the
conduction band as shown in figure (2.3-1la). Consequently a direct
transition when the recombining electron and hole have the same momentum
(fik,) is most probable in the direct band-gap seciconductors. On the
other hand in indirect band-gap semiconductors such as Si and Ge, the
maximum of the valence band is not located exactly below the minimum

of the conduction band, as shown in figure (2.3-1b), and therefore the
transition of the electron from the conduction band into the hole in

the valence band must be phonon or impurity assisted to conserve the
momentum (1). Dumke (2) has shown that in indirect band-gap semiconductors
the free carriers absorption is expected to increase more rapidly with
high pumping than the optical gain, thus making ret stimulated emission
impossible. In luminescent deviées with a high quantum efficiency such

as lasers, it is desiréd to have a material in which the excess carriers
recombine quickly by a dominant radiative mechanism giving rise to a
high optical gain. In a direct band-gap semiconductor diode the radiative
recombination process is thus dominant when forward bias is applied

(no phonons are involved) and consequently a high luminescent efficiency
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photon has. a very small wave vector. The indirect transition in (b)
involves both a photon and a phonon because the lowest point of the
conduction band is not exactly above the highest point of the valence

band in k, space. Therefore involvement of third particle such as phonon

is essential to conserve momentum (ﬁgc).
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is expected (3). In this thesis, attention is therefore paid to the

direct band-gap semiconductor GaAs for lasing mechanism.

2., The Einstein Relations

The rates of absorption, stimulated emission and spontaneous emissicn
of photons are described by the Einstein relations and these govern
the interaction of the radiation field with free-carriers in a
semiconductor. At thermal equilibrium, the probability of an energy

state, EJ, being occupied in a semiconductor by an electron is given

by Fermi-Dirac relation as below:

£ - 1 (2.4-1)
© " exp((E§ - Fo)/kpT) + 1

where F, is the position of the Fermi level, kp is the Boltzmann constant
and T is the temperature. However if thermal equilibrium condition

does not exist in the material, the occupation probability of electrons
in both the conduction and valence band states can be written in a way

similar to the above expression by using two separate quasi-Fermi

levels as given by:

£ = 1 (2.4-22)
ce ~ exp((EC - Fe)/kgT) + 1

e - 1 (2.4-2b)
Ve ~ exp((By - Fy)/kgT) + 1

where Eé and E; represent energy levels within the conduction and
valence bands respectively and F, and F, are the corresponding quasi-
Fermi levels. The probability that a state is unoccupied by an electron

corresponds to the occupation probability of a hole and can be written

as follows:
fon =1 - fee " (2.4-32)

fyp = 1 - fyve (2.4-3b)
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The spontaneous transition rate from the energy state Eé in fhe
conduction band to the valence band is determined by the number of
electrons available in the conduction band and the number of holes
available in the valence band. The probability for this transition is

represented by Acy, and the spontaneous emission rate is given below:
rsp(E”) = Acyfeefvh (2.4-4)

where the number of electrons and holes in the conduction and valence
bands is expressed in terms of their corresponding probabilities.
When the density of photons of energy E°, P'(E”) is incident, it can
force the electrons from the conduction band to recombine with a hole
in tke valence band emitting a photon in phase. If Bev denotes the

transition probability, the stimulated transition rate is given by:
rstin(E”) = BevfeefynP (E7) (2.4-5)

In acddition to the downward transition, the incident density of
photcns P’(E”) can cause an electron from the valence band to jump to
the conduction band. This is the case of stimulated absorption. The

upward transition probability is denoted by Byc and the transition

rate is given as follows:
Ta’bs (E) = BvcfchfveP'(E’) (2.4-6)

At tkermal equilibrium the total photon generation rate must be equal

to tke total photon absorption rate. Using the above three equations

one gets:
rstin(E”) + Tép(E,) = raps(E”) (2.4=7a)

BevfeefvhP (E”) + Acyfcefvh = BvefchfveP (E”) (2.4-7)
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srney ACV/BCV (2 ; )
d (E ) ) {R’C/Bcv(fchfve)/(?cefvh) - l} o4=Tc

Using equations (2.4-2) - (2.4-3) one can evaluate the expression

(fonfye )/ (foefyn) as below:

(fchfve )/(fcerh )
or

exp{ (B¢ - By)/kpT - (Fc - Fy)/kpT}

"

(fepfye )/ (feefyn) = exp(E°/kgT - AF/kpT) (2.4-8)

where E” = Eé - E; is the energy difference of the states involved in
the transitions and AF = F, - Fy is the quasi-Fermi level separation
which is zero at thermal equilibrium. Substituting AF = 0 in equation

(2.4-8) one gets:

(fenfye )/ (foefyn) = exp(E"/kpT) (2.4-9)

In order to derive the Einstein coefficients A@v, Bey &nd Bye, the

above equation may be used with equation (2.4-7c¢) to write the spectral

density P'(E”) as:

ACV / BCV
(Bye/Bey )exp(E /kpT) - 1 (2.4-10)

P(E’) =

The spectral density at a specific energy E” has the units of the
number of photons per unit volume and unit energy interval. The spectral
density at an energy, E’, following the black body radiation analysis

in a cavity, ignoring the dispersion of the medium is given by (4):

P(E’) = (8m n3E’2/n33) {exp(E%/kBT) Yy ] (2.4-11)

where n is the refractive index of the medium, h is Planck's constant
and ¢ is the velocity of light in a vacuum. On comparing equations

(2.4-10) and (2.4-11) the following Einstein relations can be written:
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I

Bye = Bev (2.4-12a)

(87 n®E’2/h3c?)Bey (2.4-12b)

Acy

The above Einstein relations show that the spontaneous emission
probability Acv is related to the absorption and stimulated emission

probability.

2.4.1 The stimulated emission condition

In order to have net positive stimulated emission the necessary condition
originally derived by Bernard (5) can be written from equations
(2.4-5) and (2.4-6) as follows:

feefvh > fenfve
or

(fonfve/feefvh) < 1 (2.4.1-1)

This inequality ensures that there is net positive stimulated transitioms.

Using the expression (2.4-8) the above inequality reduces to:
exp(E“/kpT) < exp(AF/kgT)
E” < AF (2.4.1-2)

Clearly, the necessary condition for stimulated emission states that
the separation of the quasi-Fermi levels under pumping conditions must
exceed the separation of the states involved. The minimum separation
of the transition states in a semiconductor is equal to the forbidden
gap Eg = Eq - Ey and therefore the quasi-Fermi levels must lie within

the respective bands for stimulated emission to be dominant.
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2.4.2 Relation between the absorption coefficient and spontaneous

and stimulated emission rates

From equations (2.4-5) and (2.4-6) the net rate of stimulated emission

can be calculated as:

rstim(E') = BeyP '(E’){fce(l - fye) - fye(l - feel}
or

rstin(E) = BoyP (B {foe - £y} (2.4.2-1)
In deriving this expression use of expression (2.4-3) is made. By
using equation (2.4-11) for P’(E’) and the Einstein relation (2.4-12b)
the following expression can be written on substituticn, of the
equation (2.4.2-1):

sy Acv(fbe - fbe)
rstim (B ) = exp(E /g T) - 1 (2.4.2-22a)

Defining rst(E') as in equation (2.4.2-2b) below the sbtove equation

becomes:
rst(E ) = Acy(fee - fye) (2.4.2-2b)
rot (E%)
rstin(F) = a (2.4.2-2¢)

exp(E /kgT) - 1

rét(E’) is called the stimulated emission rate which when multiplied
by the number of photons per mode gives the net stimulated emission

rate rstig (E° ). Similarly, the net absorption rate ;HES(E') can be

written as:
Tabs (E) = BoyP (EMf e - £} (2.4.2-3a)

The net absorption rate rabS(E') is equal to the absorption coefficient
multiplied by the photon flux. The photon flux is equal to the spectral
density P’(E”) multiplied by the velocity of light in a medium of

refractive index n. The net rate of absorption ignorirmg any dispersion
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thus becomes:
Taps (E7) = a(E*)P“(E”){c/n} (2.4.2-3Db)

Equating (2.4.2-3a) with equation (2.4.2-3b), the following

expression is obtained:

Bal fue = Fan )
a(E’) = °"{c)’r‘f} ce (2.4.2-4)

By using the Einstein relation (2.4-12b) and equation (2.4.2-2b) it
is readily seen that the numenator in the above equation is simply
- rg1(E”){h3c?/8m n®E"?} which allows the above expression to be

written as follows:
’ _ h302 ’
a(E’) = - [m??]rst(E ) (2.4.2-5)

This shows that the absorption coefficient and rst(E'), the stimulated
emission rate are related by a constant prefactor. Further, it is
possible to relate the absorption coefficient a(E”) with the spontaneous
emission rate. From equations (2.4-5) and (2.4-6), the following

expression can be written:

Tabs (E”) = BoyP (B ) fyefen = feofyn)

. Tabs (B°) = BoyP (B")f £y {8, Fop/Toafn) - 1} (2.4.2-6)
From equation (2.4-8) the above expression can be wfitten as:
Tops (B7) = B P (B)f £, (exp{(E" - AF)/igT} - 1) (2.4.2-7)
Making use of the Einstein relation (2.4-12b) it becomes:
Lps (B7) = {l_;%gs_a’_ers, (E)P(E”) {exp ((E” - AF)/kyT) - 1)
n°E P .

(2.4.2-8)
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Equating (2.4.4-8) with equation (2.4.2-3b), q%)(E') can be written

as:

’ N 8n 2E'zu(E')
Isp (E°) = B3o2 [eipT(E'—— i) /BT} - 1) (2.4+2-9)

This gives the relation between the spontaneous emission rate and
the absorption coefficient. If the value of a(E’) is substituted
into equation (2.4.2-9) from the equation (2.4.2-4) and rgt (E”) is

used froz equation (2.4.2-2b), the following relation can be obtained:
rg(87) = rép(E')(l - exp{(E’ - AF)/xgT}) (2.4.2-10)

Therefore (2.4.2-9) and (2.4.2-10) can be used to calculate the

spontaneous emission and stimulated emission rates respectively once
the value of absorption coefficient @(E’) is known. It is seen from
equatior (2.4.2-4) that the transition probability B,, must be known

to calculate the absorption coefficient and hence the other emission rates.

In order to evaluate the transition probability the time dependent
perturbation solution of the Schrgdinger equation with the Hamiltonian
given below in equation (2.4.2-11) must bte found. The detailed treatment

can be found in references (6 - 7):

.
m= %+ g° (2.4.2-11)

where Z'is the Hamiltonian in the unperturbed system and Htis the time
dependent perturbation. The transition probability between the states

given bty the wavefinctions, Y,(r,t) and Wv(g,t) after (6) is given by:
* T 2
Bey= (m/2R) |<¥y(z,t) [H |¥o(z,t)>] (2.4.2-12)

where ?i(;,t) is the complex conjugate of the wavefunction corresponding

to the initial state and ¥Y.(r,t) represents the wavefunction of the
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final state. r is a position vector in a 3-dimensional space. The
matrix element representing the interaction of the Hamiltonian between

the initial and final states after (6) is as follows:

|<‘P*(;‘_.t)|HI|'~P (r,t)>|? = wﬁ(_r_,t)HIw (r,t) d°r (2.4.2-13)
v Cc it c

2.5 Absorption Coefficient And Spontaneous And Stimulated Emissions

In Semiconductors

So far the absorption coefficient and its relation with the spontaneous

and stimulated emission rates were derived in a simple case when only

two discrete energy levels Eé and E{ separated by energy E” = hv were

taking part in transitions. In actual practice the situation in a
semiconductor is more complex however, in that carriers taking part in
transitions occupy energy bands rather than discrete energy levels. It

is convenient to assume that the bands of a semiconductor are parabolic.

The density of states for parabolic bands of a semiconductor are derived

in various books (8 - 9) and are plotted in figure (2.5-1). E, and E,
correspond to the conduction band edge and the valence band edge respectively.
The upward transition rate between the valence and conduction bands of

the semiconductor is proportional to the density of states occupied by
electrons in the valence band and the empty, available density of states

in the conduction band. Similarly, the downward transition rate is
prOportionél to the density of states occupied by electrons in the conduction
band and the empty, available density of states in the valence band.

The absorption coefficient which is proportional to the difference between
the upward and downward transition rates as seen in section (2.4.2) must

take into account all of emergy levels of the two bands separated by

the energy of photon E” = hv taking part in the transitions. The expression

for the absorption coefficient therefore becomes:
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©
a(E") = j{scv/(c/n)}nc(Eg)Nv(Eg - B {Eye (BS - EY) - £o0(EQ) JES

- (2.5-1)
where the zero energy reference point is chosen at the conduction band
edge Eg, Eé represents an energy state in the conduction band and
(Eq - E”) is the corresponding state in the valence band separated by
the photon energy E” = hv. It should be noticed that the above absorption
coefficient expression in a semiconductor is much complicated as
compared with the absorption coefficient for the case of two energy levels
given by equation (2.4.2-4). Further, the distribution functions in
equation (2.5-1) given by fye(E; - E) and f,(E;) change as the pumping
rate changes which is due to the shift in the quasi-Fermi levels in
their respective bands. The transition probability B,, can be written
in terms of matrix elements in equation (2.5-1) for the electric field
travelling wave as (10):

m_e?n 2
Bov = [eheaty) ! (2.5-2)

which then reduces equation (2.5-1) to the following expression after
Lasher and Stern (11):

a(E’) = [;ggggﬁz-ﬁ,] I;C(Eé)Nv(Eé - B, (RS - BY) - fee(®}M|” aE]

-=Q0

(2.5-3)

This relation gives the absorption coefficient in the semiconductor
taking into account the transitions between the valence and conduction
bands instead of the two discrete energy levels. Similarly expressions

for spontaneous and stimulated emissions can be written as below:

[ee]

2 ,
rep(E”) = lﬁggfﬁ%zg——]JNc(Eé)Nv(Eé - E")fee (ESM1 - £,,(B] - EN}IM|® dBS

(2.5-4)
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2n’
Ree(2) = (MY ) JNC<EC'>NV<Eg - E){foo(88) - £yo (G - BN} u|® aBg
= (2-5-5)

It should be noted that the band to band recombination time of the
carriers is longer than the relaxation time of the carriers within each
band and therefore quasi-equilibrium in each barnd is assumed which
allows one to write the carrier distribution by Fermi functions in
these expressions. The problem of calculating a(E’), ;sp(Ef) or Rg4(E”)
becomes one of calculating the density of states Nc(Eé) and Ny (E; - E*)
and the matrix element |M|f The density states for the parabolic band

assumption is given by (10 - 11):

Ny (BZ) = (2n2) (2me/n2) (22 (2.5-6a)
Ny (B - E°) = (2n2) Cap/m2)3(5g - 592 (2.5-6b)

In the above equations mg and mp denote the effective masses of electrons
in the conduction band and holes in the valence band respectively.
These simple expressions for the density of states are no longer valid
if the semiconductor is degenerately doped or the injected carrier
density is high. In a heavily or degenerately doped semiconductor the
band edges are not sharply defined and the impurity level merges into
the band, giving rise to a band tail. Kane (12) has treated the effect
of band tailing on the density of states. Kane's model assumes the
fluctuations of periodic potential due to ionized impurities alone and
the carriers are assumed to have low kinetic energy to follow the
fluctuations produced by the ionized impurities. He gives the density

of states in n-type semiconductor as:

mé]

Es - E
Nc(Eé) = (2ﬂc)i[n2 RY) Y[ 2 CJ (2.5-7)
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E; represents the normal parabolic band edge and ng = v2 Vpps » Veps
represents the root mean square potential energy fluctuations. The

function y(x) with x = (E{ - E;)/ne is defined as below:
X

y(x) = 1/v/7 l(x - z)éexp(- z2) dz (2.5-8)

Figure (2.5-2) shows that N, varies parabolically at high energy and
the variation is of Gaussian form exp{- (E; - E¢)?/nc’} at low emergy.
This type of calculation has been performed by several authors, each
using différent assumptions. For example the Kane ﬁodel overestimates
the band tailing unless the carriers possess a large effective mass
which supports the low kinetic energy assumption. Halperin and Lax (13)
modified the Kane model by taking into account the kinetic energy of
the carriers. Figure (2.5-3) shows that the Halperin and Lax model
gives much reduced band tail than the Kane model (after Hwang (14) who
did a comparitive study of the two models). In a further modification,
Casey and Stern (15) approximated the density of states by the Kane
Gaussian function modified to fit the Halperin and Lax results. These

results are shown in figure (2.5-4).

Matrix elements also occur in the integrands of the absorption coefficient
and emission rates (see equations (2.5-3) - (2.5-5) ). If the material

is pure then k selection rule which simply means the conservation of
momentum as seen in section (2.3) rigidly applies in the various
transitions between the bands (16). On the other hand if the material

is heavily doped, carriers undergo elastic collisions with the impurity
atoms and therefore k selection rule is relaxed (11). For the simplest
parabolic band structure in case of no impurities Kane(17) gives the

matrix element as:

2
M =1.
|¥p|" = 1.33 mgE, (2.5-9)
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where m, is the free electron mass and Eg is the energy gap of the
semiconductor. Casey and Panish (18) give the matrix element calculation
for the simplest case of the transition between a shallow acceptor
state and a parabolic conduction band. Casey and Stern (15) have carried
out more complex analysis of the matrix element included the band tailing
effect. Figure (2.5-5) shows the comparison of the absorption coefficient
calculated from the equation (2.5-4) after (15). In their analysis
they observed that the experimental values of the absorption coefficient
in p-type GalAs above the absorption edge exceeded the theoretically
sxpected value by 1.6. They attributed this to Coulomb enhancement (19)
of the optical matrix element. Similar results have been confirmed by

JeFonzo (20) in a semiconductor laser with pure or lightly doped active

iayer.

z.5.1 Gain-curreht'relationship

Tne gain-current relationship in a diode laser is very useful to give
the laser threshold condition. When the absorption coefficient in
equation (2.5-3) is negative, this corresponds to the condition of
sptical gain. Just below threshold for quantum éfficiency unity, all
the injected carriers recombine spontaneously emitting photons. The

rumber of photons per unit volume per second is given by:

[e o]

Rgp = £rsp(E') dE” (2.5.1-1)

issuming that the recombination occurs within a region of thickmess
¢ which is usually taken as unity to define the nominal current density

Jdnome The nominal current density is related to Rgp by the following

gxpression:

Jnom = €Rsp (2.5.1-2)
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Jnom 1s determined by the diode current density per unit thickness of
the recombination region. To relate Jpop to the gain coefficient
g(E’) =-a(E’), Rsp is determined using the expression (2.5-4) to
calculate rsp(E') with the appropriate expressions for density of
states and matrix element. The gain coefficient is obtained from the
expression (2.5-2) using the same density of states function and the

matrix element as used in the determination of rsp(E')

Figure (2.5.1-1) shows a graph of gain coefficient vs energy of the
photons at differsnt values of the nominal current density and temperature
after Stern (21). As the current increases quasi-Fermi levels move

into their respeciive bands.and peak value of the gain coefficient
shifts to higher energy. Furthermore due to the band tailing effect the
band edge is not sharply defined and consequently there is not a sharp
cut-off at Eg iz ~he gain spectrum. Stern (22) has calculated gain vs
nominal current density in a pure material which is close to the
situation in a heterojunction laser diode with a lightly doped active
or recombination region. For undoped GaAs material, the linear
variation of the zain coefficient with nominal current density is
predicted at roox temperature by Stern (22). More recently these
results are confirmed by DeFonzo(20). Figure (2.5.1-2) is reproduced
from the reference (21). The peak gain coefficient varies linearly

with Jp o for 50 € gpay(E”) € 400 cfi'. The zero of gy, (E”) is offset

nom

from J,on = 0. For the low gain region super linear behaviour is

represented by thes following equation (23):
-5
Bmax = 4+7x10 (Jpop - 2x10%)2 (2.5.,1-3)
and for the higher gain region-as below:

gpax = 5.0x10° (Jpop - 4.5%x10%) (2.5.1-4)
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This linear relationship supports the linear dependency of the gain

on the carrier density (23).

2.6 The Cavity Resonator

The lasing condition for a net positive stimulated emission rate was
seen in the the last section. When this condition is satisfied the
absorption coefficient becomes negative which corresponds to net optical
gain. The semiconductor laser oscillator uses the gain of an active
material within a Fabry-Perot etalon or cavity to ?rovide a feedback
cavity oscillator. The cavity is formed by two reflecting cleaved
facets along the crystalline planes (110). An electromagnetic wave
travelling in the cavity undergoes constructive interference after
suffering reflections from the facets and therefore grows in amplitude
because of the optical gain of the active medium. In order to sustain
oscillations in the cavity the growing wave must overcome the various
losses present in the cavity. The plane wave in the cavity can be

described by a complex propagation constant g as below:
E(z) = Egexp(-jBa) (2.6-1)

It will be shown in chapter III that § is related to the complex

refractive index as below:
B = (n- jK)k (2.6-2)

K , called the extinction coefficient, is related to the absorption
coefficient. In the aetive region, however, the net gain (g - o) implies
the growth of the wave as it travels through the medium. a, includes
the losses of the cavity due to free carrier-absorption and scattering
of the radiations into the lossy regions etc. The complex propagation
constant for the active medium thus becomes:

B =1{n+j(g - a)/aklx (2.6-3)
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The growing wave with the above mentioned propagation constant can be

written from equation (2.6-1) as below:

E(z) = Egexp{(g - a)z/2}exp(~ jnkz) (2.6-4)

The field incident on the two facets is partly reflected and partly
transmitted and therefore at the two facets fractions Rl and Ry, of the
incident power are reflected. On reflection at the second facet located

at z = Lo, the field can be written as:

E(Le) = VR Egexp{(g - a)Le/2}exp(— jnkLe) (2.6-5)

where the term Vﬁg-takes into account the emission losses at the second
facet. After reflection from the facet at z = L, the wave travels back
to the first facet at z = 0. Just before reflection at the facet at

z = 0, the field is given by:

E(0) = VRy Egexp{(g - a)Lc}exp(-2jnkLe) (2.6-6)
On reflection at the first facet (z = 0) it reduces to:

E(0) = VR1R; Epexp{(g - a)Lo}exp(-2jnkL,) (2.6-7)

From equation (2.6-1) at z = 0 initially the field was E, which has
now become as given above after travelling a distance 2L, in the cavity.

The wave will be self-sustaining if:
E(0) = E, (2.6-72)
that is true if the following condition is satisfied.
VR1Rp exp{(g - a)Lclexp(-2jnkL,) = 1 ' (2.6-8)

This gives two independent conditions:

- the phase condition which is as follows:
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2nklL, = 27 L L =0,1,2,354c00000
or
L(AMn) = 2L, L =0,1,2,34e000.
(2.6-9)

- the amplitude condition is as below:

VR172 exp{(g - a)L¢} =1
or

g = a+ (1/2Lc)an{1/(RyR2)} (2.6-10)

Assuzing the power reflectances R and Ry of the two facets to be the

same (Rpoge) the above equation (2.6-10) can be further simplified to:
g = a+ (1/L;)2n(1/Rpoge) (2.6-11) -

This condition shows that the gain coefficient must make up for the
losses in the cavity, @ and the transmission of the power through the

facets in order to sustain oscillations in the cavity.

The condition (2.6-9) gives the number of nodes L between the facets

of the cavity of length L, and refractive index n. Because of the
repeated reflections between the partly reflecting facets, part of

the radiation associated with modes determined by the expression (2.6-9)
having the highest optical gain coefficient is retained and amplified

at each pass. Lasing occurs when the gain is sufficient to overcome
losses. The separation between the adjacent 1ongitudnél modes of the
cavity can be obtained from equation (2.6-9) by differentiating and using
dL. = -1 for the adjacent modes as shown below:

- A2
" 2nLe{1 - (W/n) (@n/an)}

ax (2.6-12)

The term in the bracket arises from dispersion along the cavity. The

longitudnal mode separation is inversely proportional to the cavity
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length L,. Because in a semiconductor laser the cavity length is typically
250 uym - 0.8 mm and is much shorter than for a gas laser, the separation
dA between the longitudnal modes in the semiconductor laser is much

larger.

2.7 Heterojunctions

In an ordinary junction called the homojunction discussed in section
(2.2) the injected electrons and holes diffuse to some distance from

the junction depending upon their respective diffusion lengths before
recombining. In the hozojunction structure therefore there is no
mechanism of confining the carriers within the active region to create

a high population inversion for a given injection cﬁrrent and there

is also no satisfactory means of confining the optical field to the
region where the populztion inversion exists., Consequently the threshold
current density in the homostructure laser is very high particularly

at and above room temperature. These problems are overcome successfully

in a double heterostructure laser.

Kroemer (24) and Alferov and Kazarinov (25) first proposed independently
improved operation of zn injection laser by sandwiching a lower band-gap
semiconductor between the two layers of higher band-gap semiconductor.
The main advantages of this strucﬁure are:
(i) The step discontinuity in the dielectric constant at the
interfaces of the lower and higher band-gap semiconductors
forms a waveguide structure which confines the optical field
in the active 1layer.
(i1) The potential barrier at the interface pfovides injected
carrier confinement which increases the optical gain and reduces
the threshold current density.

The formation of a single heterostructure junction requires the growth
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of one type of semiconductor material onto another, yet preserving
crystallinity. This requires that the lattice constant of the two
semiconductor materials is closely matched. Figure (2.7-1) plots
the band-gap energy of several compound semiconductors used in
optoelectronics as a function of their lattice constant. It is seen
from this figure that there is a very good match between GaAs and
(GaAl)As for a wide range of Ga concentrations in the Gaj._xAlyxAs
alloy. This allows quite a wide change in bandgap between active and
confining layers by altering x. Therefore Ga atoms can be replaced by
Al a2toms in a GaAs structure without causing any significant strain
in the structure which could lead to non-radiative recombination

centres such as dislocations.

Two types of heterojunction can be formed. In a double heterojunction
semiconductor laser both isotyze and anisotype junctions are formed

on either side of the active region. If the active region is n-type
doped the heterojunctions are n-N isotype and n-P anisotype. On tke
otherhand in p-type active region the heterojunctions are p-P isotype
and p-N anisotype. P-type or N-type materialscorrespond to a large
band-gap AlxGaj_xAs layer. Detailed analysis of heterojunctions can be
found in references (26 - 28). After Anderson (29) the formation of

the abrupt heterojunction is cescribed in the figufe (2.7-2). In the
figure Xy and X, represent the electron affinities of the two
semiconductors and ¢; and ¢, are corresponding to their work functions.
Electron affinity is defined as the minimum energy required to remove
an electron from the bottom of the conduction band to the vacuum level.
Work function on the other hard is the minimum energy required to

remove an electron from the Fermi level to the vacuum level. After the

two materials are"joined" together forming a junction the Fermi level

must be constant across the junction of the two materials. The electrons
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from the large band-gap N-type material diffuse to the low band-gap
p-type material until equilibrium is established. The resulting berd
diagram is shown in figure (2.7-2). The built-in potential is eVypj = ¢ - d2.
From the figure it can be easily shown that the built-in potential is

given by:
eVpi = (Eg1 + x3 - 81) - (x2 + &2) (2.7-1)

The valence band and conduction band discontinuities of two semicorductors

at the abrupt p-N junction are given by:

The spikes appearing in the energy band diagram (2.7-3) AE, or A=,

can be eliminated by a graded formation of the junction. Figure (2.7-4)
shows that smaller the concentration on either side of the juncticr

larger the graded region (30). The graded isotype junctions behave iike

an ohmic contact. To get some idea of injection efficiency in an arisotype
junction the homojunction analysis can be used. From the analysis ¢f a
simple p-n junction (31 - 32) the density of injected electrons inio

the p-region from the N-region under a forward bias V is given by:
np, = npoexp (eV/kpT) (2.7-3)

Npo represents the thermal equilibrium ﬁinority carriers in the p-region.
A similar expression for the density of holes injected into the X-rsgion

is:
pN = PNOeXP(eV/kBT) (2-7‘4)

Pyo denotes the thermal equilibrium minority carriers in the N-region.
If the widths of the p and N regions are much greater than their

respective minority carrier diffusion lengths and there is no field
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present in them. The ideal diode analysis can be used to solve the
diffusion equation of the carriers in each region separately assuming
the np and Py approaczz to Npo and Pyo respectively at a large distance
from the junction. Tre two diffusion current densities at the edges

of depletion region thus become:

In

-(eDe/Le){n? - npo} (2.7-5)

oy
I

p = (eDp/In) {z; - pyo} | (2.7-6)

Substituting the valze of nj and py from equations (2.7-3) and (2.7-4)

the above equations czan be written as:

D.n
Jy = - eLe po}{exp(eV/kBT) - 1} (2.7-7)
e
elnp
Jp = [——%E—Eg}{exp(eV/kBT) -1} (2.7-8)

The ratio of the twc injected current densities IJn|/|JpI can be

written as below:

190171351 = {(Bezpoln )/ (Dppy le) } (2.7-9)

. . _ 2 _ 2
By using the law of rzass-action NpoPpo = D3] and PyoPyo ~ B2 -

It is also known thzt njjy and ny, are related to the respective band

gaps in the two materials as given below:

, (2 melkBI}% (2 mhlkBT}

ni1 = 2|z ) Tz ] oxP(-Eg1/kpT) (2.7-10)
) (27 meZKE:}% 2T mhngT]%

nig = 2Tz 2 nz ] exp(-Ega/kpT) (2.7-11)

By making use of thsssz expressions the ratio of the two current densities

can be written as:

o
DelEr] ey ~lh : i
salrisyl = (B2 [ Jon(sgo - mdiar) (272
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Clearly (Eg2 - By ) > O , because Eg2 energy gap of N-type material is
greater than that of p-type material and kgT is equal uc 1/40 eV at room
temperature. This shows that even for a small difference of energy gap,
the exponetial term is dominant and [37%] » |jpl. As mentioned earlier,
this gives an advantage of carrier confinement reducing the undesired
carrier injection from the p-region to N-region material. In a double
heterostructure laser shown in the figure (2.7-5) it is thus concluded
that an isotype junction provides a barrier to minority carriers from

the low band-gap semiconductor to the higher band-gap semiconductor
whereas the built-in potential and the band discontinuity at the anisotype
junction provides a barrier to the majority carriers in the central

layer. Joyce and Dixon (33) have described the electrical characterisation
of heterostructure lasers. Figure (2.7-6) shows the variation of the
refractive index with impurity concentration. It is intentant to know

the refractive index variation which is responsible t: form an optical

waveguide in order to confine the field in the active region.

2.8 Conclusions

In this chapter, the basic principle of semiconductor lasers as well
as the necessary condition for stimulated emission have been presented.
The relationships between absorption coefficient, stimulated emission
and spontaneous emission are given. The necessary threshold gain
coefficient for a cavity resonator to sustain oscillami:ns is derived.
Comparison of homojunction and heterojunction lasers is given.
Advantages of heterojunction lasers are given. It is uhus the aim of
this chapter to introduce lasers emphasizing on the properties of
semiconductor lasers, briefly. A list of references given at the end

of this chapter may be useful to expand this chapter in. detail.
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CHAPTER III

OPTICAL WAVEGUIDES
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3.1 Introduction

In this chapter the waveguiding theory of stripe geometry doutle
heterostructure lasers is reviewed, starting with a treatment of an
ordinary three layer dielectric waveguide. This is then exterded further
to explain the waveguiding properties of semiconductor lasers (1 - 9).
The natural starting point is with the basic Maxwell equaticrs from
which the wave equations may be derived. Electromagnetic processes in

a medium are described by the fdllowing set of Maxwell equaticns:

vxH = J + 3D/3t (3.1-1)
vxE = - 3B/dt (3.1-2)
v.D=0p (3.1-3)
v.B=0 (3.1-4)

Equations of state for an isotropic medium are given below:

D= ¢eE (3.1-5)
B=uH (3.1-6)
J = oE (3.1-7)

In these equations E is the electric field intensity vector Zn volt/m,
H is the magnetic field intensity vector in amp/m, D is the =lectric
displacement vector in coulomb/m?, B is the magnetic flux dersity in
tesla, J is the current density in amp/m? andp is the charge 3ensity
in coulomb/m®. £ and p are the dielectric constant and perr=zdility in

farad/m and henry/m respectively. O denotes the conductivity of the

T1
medium in (Qm) . Non-magnetic media are considered here, tkz==sfore u

-

in the equation (3.1-6) can be replaced by its free space vziue Wo

Equations (3.1-6) and (3.1-2) thus become:
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I
I

uoH (3.1-8)

3
&

= - 1, (3H/3t) (3.1-9)

3.2 The Wave Eguation

Operating by curl on both sides of equation (3.1-9) one gets:
UxVxE = - uo{8/9t(VxH)} (3.2-1)

By using the vector identity VxVxE = V(V.E) - V2E one can expand the

left hand side of the above equation to write the following expressicn:
V(V.E) - V2E = - no{d/0t(vxH)} (3.2-2)

Substituting the value of VxH from the equation (3.1-1) and making
use of the relation given by equation (3.1-5) the above expression

can be written as:

V(V.E) - VZE = - 158J/9t - uoed?E/at? (3.2-3)

For a source free medium p = 0, and equation (3.1-3) using the relation

(3.1-5) is given by:

V. (eE)

or

Ve.E + €eV.E =0 (3.2-4)

V.E = - (Ve/e).E (3.2-5)

For a homogeneous medium, if € is uniform, Ve = O and therefore the

above equation becomes:
VE=20 (3.2-6)

Making use of this equation and equation (3.1-7), assuming that the

conductivity is independent of time, equation (3.2-3) reduces to:

V2E - poed?E/3t? - O0ugdE/dt = O (3.2-7)
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This is knowh as a wave equation which governs the electric field vector
in a homogenecus, linear medium in which the charge density is zero.
This equation is applicable whether the medium is conducting or non-
conducting. A similar wave equation can be derived for the magnetic
field intensity H. If harmonic variation of the field E is assumed, E

can be written as:
E(z,t) = E(r)exp(jwt) (3.2-8)

On substituting this expression for E(r,t) in eguation (3.2-7) the

following ecuztion is obtained:

exp (jwt){V2E(r) + wow?eE(r) - jowucE(r)} = 0
or
V2E(r) + i w?eE(z) - jowu E(r) = 0 (3.2-9)

It is pertirez: at this point to discuss some sclutions of the wave

equation unaer special conditions.,

3.2.1 Free stzce propagation

Suppose the medjum in which the field is propagating is empty space so

that 0 =0 and € = €,, the equation (3.2-9) becores:
V2E(r) + upgow?E(zr) = 0 (3.2.1-1)

If the field is polarized in the y direction, the only non-zero component,

of the field is Ey. The wave equation (3.2.1-1) then gives:
d%By /47 + UyEow’Ey = 0 (3.2.1-2)

where z is the direction of propagation. In this equation the expression
oE is relatei to the velocity of light in vacuum by the following

relation:

¢ = 1/VigEq (3.2.1-3)
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By making use of this expression in equation (3.2.1-2) one can write

equation (3.2.1-2) as below:

d%Ey/dz? + (w?/c?)Ey = 0 (3.2.1-4)
The solution of this equation iIs of the following form:

By =Aexp(- jBz) (3.2.1-5)

where B is called the propagaiion constant and is defined as:

B = w/c (3.2.1-6)

The full solution of the fie_ < propagating thus becomes:

E, = A exp{j (wt - Bz)} | (3.2.1-7)

3.2.2 Propagation in a loss-szs medium

3

If now the field is propagatiz:z in a non-conducting dielectric medium,
0 in equation (3.2-9) is sti’® zero but now the cielectric constant is
not €, but €56 = €. € is ca""ed the relative dielectric constant of

the medium. One can write equzzion (3.2-9) as shown below:

(3.2.2-1)

(@]

VZE(r) + w’HoeoerE(r) =

Restricting the solution to = pclarized field in the y direction it

becomes:

(3.2.2-2)

(o]

d%Ey/dz? + w’loEotrEy =

By using the definition of tkhe velocity of light ¢ given in equation

(3.2.1-3) the above equation rzduces to:
d*Ey/dz? + ep(w?/c?)Ey = 0 (3.2.2-3)

The solution of this equatior is similar to that of equation (3.2.1-4)

but B now becomes:
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B = Ve, (w/e) (3.2.2-4)

Defining ve, = n, where n is called the refrzctive index, one sees that
the results are the same as for free space, except the velocity of
propagating wave is now c¢/n instead of c. For a free space the value of

n is unity.

3.2.3 Propagation in a conducting medium

This is a particularly important case for wave propagation in semiconductors,
and it is necessary to derive relationships tetween the optical and
electrical constants of the material. If the ==djium is conducting with

a conductivity O then this term must be retairsd in equation (3.2-9).

The wave equation (3.2-9) for the y-polarizeé “ield is then given as

follows:
d%Ey/dz? + E(wz/cz)Ey =0 (3.2.3-1)

vwhere € is a complex quantity, given below:

€ = gp - j(0/eow) (3.2.3-2)

The solution of the equation (3.2.3-1) is sim®Zar to that of (3.2.2-3)

but the quantity B is complex as given below:
B = vVE(w/ec) | (3.2.3-3)

Defining V€ = n = (n - jK), where n is called —=e complex refractive
index with n and XK as its real and imaginary pz—tis respectively. Equation

(3.2.3-3) can be written as:

e
1]

(m/c){n - jk} (3.2.3-4a)

Re(B) = (w/c)n (3.2.3-4Db)
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In(B) = -(w/e)k (3.2.3-4c)

Prefixes Re and Im stand for real and imaginary parts respectively.

Solution of equation (3.2.3-1) therefore is given by:

A exp{j(wt - Bz)}

By
By

A exp{In(B)z}exp{j(wt - Re(B)z)} (3.2.2-5)

Further, from equation (3.2.3-2) and the definition of complex

refractive index one can easily derive the foilowing relations:

Re(€) = €. = n? - K? (3.2.3-6a)
In(€) = o/eqw = 2nK (3.2.2-6b)

It is apparent from equation (3.2.3-6b) that if ¢ > 0; K > 0 and
therefore Im(B), from the relation (3.2.3-4c), is negative. The

solution to equation (3.2.3-5) then represents a decaying travelling
wave. On the other hand if 0 < O the solution to equation (3.2.3-5)
represents a travelling wave which grows instead. In this case tre medium
in which the growing wave is travelling is called active. When tre light
propagates in the z direction in an absorbing medium, the decrezse in

intensity is governed by:
I= IIZ=Oexp(-az) (3.2.3-7)

where a is called the absorption coefficient. Since I is proportional
to |Ey|2 therefore by comparing this equation with (3.2.3-5) tke

following equation is obtained.
2In(B) = -a (3.2.32-8a)

But Im(é) is related to K, called the extinction coefficient, by the

equation (3.2.3-4c). The above equation thus becomes:
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K = a/2k (3.2.3-8b)

where k = 21/)A is called the wave vector in a free space. If the
absorption coefficient is negative, as in an active medium, it is

called gain coefficient g.

3.3 The Three-lLayer Slab Waveguide

The double heterostructure semiconductor injection laser can be treated
as a three-layer dielectric waveguide in the transverse direction

perpendicular to the heterojunctions (4 - 6), as shown in figure (3.3).

3.3.1 The TE mode

The dielectric waveguide shown in figure (3.3) is infinite in the y
direction so that 3/9y = O. Only the TE modes are considered in this
section. By definition therefore the only non-zero component of the

electric field is Ey (Ex = E, = 0) which is coupled with magnetic field

components H, and H, (H 0) in the x-z plane. Therefore E and H for
X z \ly p 2 4

the TE mode can be written as below:

E = Eyh (3-3.1'1&)
H=Hya + Hyc (3.3.1-1b)

where a, b and ¢ are unit vectors along x, y and z directions
respectively. Substituting these E and H fields in the equation

(3.1-9) the following expression is obtained:
-(0Ey/0z)a + (3E;/0x)e = -Ho(dHy/dt)a - uo(3H,/3t)e  (3.3.1-2)

Equating the coefficients of like vectors on both sides of the above

equation one gets:

9B, /32 = uo(3Hy/3t) (3.3.1-3a)
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—p

n3
Confiring Layer (AlGa)As

x=0 o

Activs Layer Gals

n1
= -24d

Confiring Layer (AlGa)As

12
Active layer sandwiched between the confining layers with
refractive indices ns and n3. 2d and nj are the thickness

and refractive index of active layer.
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OEy/3x = -uo(3H,/3t) (3.3.1-3b)

The equations above give relationskips between the two magnetic field
components H, and H; in terms of one transverse electric field component
Ey. If the time variation of the field is assumed to be of the form
exp(jwt) and is propagating in the positive z direction implying a
spatial variation exp(-jBz) z deperdence, one can substitute these

variations in equations (3.3.1-3) to get:

Hy = -(B/uow)Ey (3.3.1-4a)

Hy, (j/uow)aEy/ax (3.3.1-4b)

Hence once the Ey component for the TE mode is found, Hy and H,, the
magnetic field components can be czlculated directly by using the above
relations. Recalling section (3.2.2), the wave equation (3.2.2.1) can

be written using ¢ = 1/VlgEy and v~ = n as follows:
V2E + (w?/c?)n%E = 0 (3.3.1-5)

Dielectric media are generally assuzed to be lossless. Using the
definition of TE mode (3/3y = 0) cme gets from this equation the

following expression:
9%Ey/3x? + 9%By/92% + (w?/c?)n®zy = 0 (3.3.1-6)

It should be remembered here that t=e time variation of the field is
assumed to be of the form exp(jwt) znd the direction of propagation is
the positive z direction. Again if the z dependence of the field is of

the form exp(-jBz) equation (3.3.1-6) can be written as:

82Ey/3x2 + [9%%2 - Bz]Ey =0 (3.3.1-7)
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where the field component E& is given telow:

gy(x,z,t) = Ey(x)exp{j(wt - Bz)} (3.3.1-8)

It has been shown earlier that w/c is the propegation constent in the

free space and this can be written as:
k = w/c = 2n/X (3.3.1-9)

where A is the wavelength of the propagating wave In a free space. If

w/c is replaced by the wave vector in the equatizz (3.3,1-7) then:
9%E,/3x? + (x*n® -8%)E; = 0 (3.3.1-10)

It is possible to proceed.by writing the above sciziion for each

region shown in figure (3.3) with refractive iniZz==s njy, np and n3:

32Ey3/3xz - (B - nﬁkz)Ey3 =0 x 20 )
39%E,1/3x% + (nfk? - B%)E;p = 0 03»x 3 -24 (3.3.1-11)
9%Eyp/ox* - (B% - n3k?)E,p = 0 x ¢ -2

A guided mode is one whose field energy is loczteZ in the central region
and the mode being a propagating wave implies tzz=- the electromagnetic
energy travels along the waveguide. The electro-mzcz=tic enerzy stays
predominantly in the central region of figure (3.2) with the highest
refractive index. In the outer passive regions ¢z =rze other hand, the
field must decay exponentially. For guided modes Zzz field energy must

be confined to the central region (0 > x 3 -2d) tzsrefore this suggests

that:

adk2- g2 > 0 (3.3.1-12)

so that the solution of equation (3.3.1-11) in te central region should

have an oscillatory behaviour. Furthermore, outsiis the central region
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the solution should have an exponential dacaying field suggests that

the following inequalities should hold:
g2 - nlk? > 0 (3.3.1-13)
B2 - n3k? > 0 (3.3.1-12)

If it is assumed that np > nj5, the above conditions can be summed u:r as:
n > ny > n3 (3.3.1-13)

It should be pointed out that similar results can be obtained by usizg

a ray model, From this type of model it is clear that the ceatral r=zzion

is an optically denser medium which is the essential requirement fc=

total internal reflection to take place, so as to confine the light in

the central or active region. Furthermore if (ng = n3) in figure (3.3)

the structure of the waveguide is symmetrical. The solution of the ==t

of equations (3.3.1-11) must be found in such a way that Ey and E,

compontents are continuous at the interfaces x = 0 and x = -2d of tz=

3-layer dielectric waveguide. The solution of the set of equations .3.3.1-11)

~can be written as follows:

(4 exp(-6x) x>0
E; = | A Coskx + B Sinkx 0>x3>-2d
{A Cos(2xa) - B Sin(2ka)}exp{y(x+2d)} x € -2d
\
(3.301':'&
where

§2 = g2 - n%k2
k2 = nfk? - B2 (3.3.1-17)

<
1}

2 -2 _ ngkz

It becomes clear immediately that the solution (3.3.1-16) satisfies the

continuity requirement of E& at the junctions x = 0 and x = -2d. It should
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be noticed that it is still required for the solution (3.3.1-16) to
satisfy the continuity condition of H,. Making use of the relation

(3.3.1-4b) it is possible to write H, from the solution (3.3.1-16) as:

-8A exp(-6x) x 20
Hy = j/(uow) [-k(A Sinkx - B Coskx) 0>x > -2d
v{A Cos(2kd) - B Sin(2xd)}exp{y(x+2d)} x € -2d

(3.3.1-18)
Unlike the solution (3.3.1-16) H, does nct satisfy the continuity
reqguirements at the junctions x = 0 ané x = -2d by itself. On applying

the continuity condition, the following relations are obtained:

At x

03 SA + kB=0 (3.3.1-19a)

At x = -2d; {k Sin(2kd) - Yy Cos(2xdj}a + {k Cos(2xd) + y Sin(2kd)}B = 0

(3.3.1-19b)
For a non-trivial solution of the above two equations, the determinant
of the coefficients of A and B must varish. On substituting the value
of & in terms of B from the equation (3.3.1-19a) into the equation

(3.3.1-19b) the following relaﬁion'is obtained:
Tan(2kd) = {k(§ + v)/(x? - &y)} (3.3.1-20)

This eigenvalue equation gives the allowed values of the propagation
constant B which is reiated to K, Yy and 8§ by the relations (3.3.1-17).

If the frequency w is such that (k = w/ec) kn, = B, the value of y vanishes.
The field solution from the equation (3.3.1-16) thus spreads out into

the region x £ -2d. Hence this corresponds to cut-off condition i.e field

is no longer confined to the central active region.

{cut-off) B = knp (3.3.1-21)
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F(2kd)

4T Tan2kd

2ka

\ F(2xd)
\¥{('

\
\
|
1
!

Figure 3.3.1 Graphicel solution of the transcendental equation (3.3.1-20).
The crossing points of the solid ard dashed lines correspond
to solutions. F(2Kd) can be deterrined from equation

(3.3.1-22) (Ref. 2).
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One can now immediately determine the rropagation constant from the
above given cut-off condition. Grapricz® solution of the transcendental
equation (3.3.1-20) is shown in figure (3.3.1). Points of intersection
of the dotted curve and the solid curve in this figure correspond to
the solutions of the equation (3.3.1-2C). The right hand side of this
equation F(kd) can be represented in ierzs of the refractive indices

ny, np and n3 by using relations (3.3.1-17) as given below:

@({(a2 - n3)(ka)? - (xa)?} + {2 - 03)(a)? - (xa)2}})

F(Kd) = _% ‘}
(kd)? - {(n} - n2)(kd)? - (ka)*}*{(n} - n3)(kd)* - (xd)?}

(3.3.1-22)

If v is the normalized frequency, defir=d as:
v = (n} - né)%kd (3.3.1-23)

one sees that for v < kd, one of the =xtression under the square root
sign becomes negative, therefore F(k3) czurve ends at the point where

v = kd. In figure (3.3.1) , there are Zzur points of intersection which
represent four excited modes. However “~om the equation (3.3.1-23) one
sees that for a narrow active layer, Zcw frequency or small refractive
index difference, v is small and thus t=e éondition v = kKd occurs very

close to the origim which means no guizZ=d mode is possible.

3.3.2 The symmetrical waveguide

As mentioned earlier ny = n3 results - z symmetrical waveguide structure.
Under this condition 8 = y in equaticz {3.3.1-20) which then reduces
to the following expression:
Tan (2kd) = {2xy/(x? - y?)} (3.3.2-1)
This may be written as:

e e
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On simplification the following equation of degree two is obtained:
(y/x)Tan?(kd) + {1 - (y/x)?}Tan(kd) - y/xk = 0 (3.3.2-3)
The roots of this quadratic equation are:

Tan(kd) = yd/kd (3.3.2-4)

Cot(kd) = -yd/xd (3.3.2-5)

Tquations (3.3.2-4) and (3.3.2-5) give even and odd mciss of the
symnmetrical waveguide respectively. Using the relatiozs {(3.3.1-17) one

can write the following relation between y2 and k? :
k2d? + y242 = (nf - n3)k2%d? (3.3.2-6)

Since the field solution must satisfy this equation, iz addition to
(3.3.2-4), for even modes. Zguation (3.3.2-6) represenz:z a circle with
its centre at the origin and radius (n} - n%)%kd. To Tird the graphical
solution for even modes involves finding the intersectiicn, in yd - kd
plane, of the circle and tke curve yd = kdTan(kd).Eack Intersection with
Y > 0 corresponds to the confined mode. Even order mods solutions are
shown in figure (3.3.2-1) for an active layer thickness 2d = 0.2um, 1.0um
and 1.5um. The values of nj, n, and A are 3.59, 3.385 a=d 0.%um
respectively. Similarly one can find the solution for c2d modes. One of
the important differences between the symmetrical and :cn—symmetricai
waveguides is that the lowest order even mode in the sy=zetrical
waveguide is never cut-off as shown in figure (3.3.2-1}. This is valid
for all active layer thicknesses. It is sometimes usefu? to derive the

characteristic equation (3.3.2-1) in terms .of normalize3 frequency v

and normalized propagation constant b. From (3.3.1-17) u is defined below:

u? = (nik2 - B2)d? = k232 (3.3.2-7)
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Figure 3.3.2-1 Graphical solution of the eigenvalue equation (3.3.2-4)

for the even order TE modes(5).

Figure 3.3.2-2 Normalized propagation constant b vs. normalized frequercy
v for symmetric three layer dielectric slab waveguide;

labelling parameters give the value of mode number(l).
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Using the normalized frequency v defined in the equation (3.3.1-23)

and the equation given above, b is defined as below:

2 212
2 B® - n5k 232
= = 15 (3.3.2-8a)

b =1 - = -
(n} - né)k2

(8/k)? - n3
p = — = (3.3.2-8b)
(n - n3) )

On simplification the above expression can also be written as follows:
(B/k)? = tnf + (1 - b)nj (3.3.2-9)

As pointed out earlier, the cut-off condition is given by B = nyk, and
therefore b = 0. The plot of b vs., v is shown in the figure (3.3.2-2).
From this figure it becomes clear that well away from cut-off (b = 0)
the value of normalized propagation constant b approaches unity. Also
there is no cut-off frequency v for the lowest order mode. Using the
expressions (3.3.2-8a) for Y and (3.3.2-7) for K one can write the

following expression for the characteristic equation:

4
Tan(2/T =B v) = (%L] (3.3.2-10a)

or

4
2/T -bv = Ta.ﬁl[g/-ﬂl-—b) ] + Lm (3.3.2-10Db)

1-2b

where L = 0,1,2,35¢000 denbtes the mode number. The cut-off condition

b = 0 gives the cut-off frequency as belowf
Ve = Lm/2

Similar calculations can be repeated for T.M modes in which the non-zero
component of magnetic field is Hy and this is coupled with E, and Ey.

The wave equation for the Hy component of magnetic field intensity is:-
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8%Hyi/ox? + (k’nf - B*)Hy; = 0 i=1,2,3 (3.3.2-11)

and solutions to this equation are obtained in a manner analogous to

the electric field intensity.

3.3.3 Power flow for TE modes

The total power carried by the mode is related to the amplitude A of
the propagating field. The power flow in the z direction is given by

the following Poynting vector:

]
NID—‘

(BxH").c

c (3.3.3-1)

where * denotes the complex conjugate of the field and ¢ is the unit

vector along z direction. As defined for the TE mode E

Eyg and

= Hya + H,c one gets froz the above equation S, as below:

2 = - 3 By (3.3.3-2)

Substituting the value of = from equation (3.3.1-4a) and noting that

the field, = exp{j (wt - 3z)}. S, expression reduces to:

Ey
S, = ==

1z |
PATINN Yy

(3.3.3-3)

The time averaged power carried by the mode is given by integrating the

above expression as shown below:

- §%;§Z|Ey|2 = 2u‘w i ilEylz dx + _2£|Ey| ax + JIE&| )

(3-3-3'4)
From the equation (3.3.1-16) using the appropriate field profile for

each region the above integral expression can be written as shown

below:
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P3 = 2uge | 1B = (30a)zs x20
0
0 r ,
= _L 2 = B A_z K< + 62 Y 8 )
Pl zuow [Eyl dx Lzuow 2 KZ 2d + K2+'Y2 + K2+62 O?‘X>, 2d
-2d
w4 ( 2 (.2 2
- B 2. _ [ B |A%(k2 + 8 )
P2 = 31 IEYI dx (2uow)2Y Y + k2 x<-24
«-00 J
(303.3"5)

It should be mentioned that in deriving the above expression use of

relation (3.3.1-19a) has been made to elirirzate B. The total power P

thus becomes:

P=Pp +Py +P3= [ 5]53[ ~ (3.3.3-6)

2 2
K< + & _
RUow) 2 : ][Zd i

< -
+

ol

~—

The coefficient A from this expression re’ztes to the total power P

as follows:

n
Y

AZ

B? = 4“°“P[( K> J (3.3.3-7)

B8 2d + 1/y + 1/8) (k% + &%)

For a symmetrical waveguide the above expression can be further simplified

by using the relation y = 4.

3.3.4 Confinement factor I

Another parameter of importance in laser cevices is the confinement
factor. It has been calculated in the previous section for various
components‘of the total power in the thres regions of the asymmetrical
waveguide. The components P2 and P3 of the itotal power P spread out in
the passive layers on either side of the azctive layer and therefore are
not available for interaction with the porulation inversion in the
central layer. If I' denotes the fraction of tke total power confined to

the active layer, one has from the last section:

r = (p/P) = [;2Z|Ey|2dxl/1_z|Ey|2dx] (3.3.4-1)
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Using expressions for P and P from section (3.3.3), T can be written

as below:

_{2d + v/ (k% + ¥2) + 8/(k% + 62)}
=83 T +175) (3.3.4-2)

In a symmetrical waveguide (Y = 6) however it becomes:

podd £ /(<2 + vy}

'(d ¥ 1/Y) (3-3-4'33-)
and
1-T-= KZ{éyf_K;/;)YZ)} (3-3-4"3b)

One can easily see from the equations (3.3.3-5) and (3.3.3-4) that (1-T)
is nothing more than P»/P, a fraction of the total power irzvelling ir
the passive layer for a symmetrical case. The mode travel:irz in the
active region spreads out into the passive region and experisnces loss.

Thus the net gain experienced bj the travelling mode is given by:
G = gI‘ - a2(1 - F) (30304-4)

where g is the gain coefficient of the active region and az is the loss
coefficient in the passive layer. The transverse modes ir é semiconductor
laser depend upon the refractive index variation perpendicular to

the junction and the active layer thickness. In a real deviee only the
fundamental transverse mode is excited a condition achieveZ by reducing
the active layer thickness well under lpum. It is clear frc= figure (1.1-2)
as the refractive index step is decreased the degree of raciation
confinement decreases, resulting in an increase in the threshold current
density with decreasing the active layer thickness. The lcwest threshold
is obtained with the active layer thickness 0.lum at An = Z.4

(corresponding to the composition Alo 6Ga0_4As/GaAs/A10 6Gaﬁ As),

4
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3.4 Waveguidinz In The Lateral Direction Of A Slab Waveguide

Unlike the transverse direction perpendicular to the heterojunctions
discussed in section (3.3), there is no built-in step discontinuity

in the refractive index in the lateral direction. Eowever, because of
non-uniform gain in the lateral direction of the active region a waveguide
is formed (10 - 14). This non-uniform gain in the lateral direction is
determined by the amount of population inversion of the carriers beneath
the stripe electrodes due to current injection. The population inversion
within the active region is maintained beyond the stripe edges upto a
few diffusion lengths because of the diffusion of carriers and current
spreading in the passive confining region. Thus a gain region under the
stripe is sandwiched between the lossy regioﬁs. The injected carriers
also perturb the dielectric conétant of the active region as a result

of the change they produce in the spectral distribution of the gain (15).
Tnis effect is governed by the Xramers-Xronig dispersion relations.

From the discussion of section (3.2.3) it was learnt that if the medium
has a negative absorption coefficient which is related to the extinction
coefficient, the medium becomes active and the propagating field grows

instead of attenuating. The corplex refractive index of such a medium

is given by:
n=n+jk (3.4-1)

Also the complex dielectric constant €; for the active layer can be

written as:
g = (ny + jKp)2 (3.4-2)

The analysis of three layer dielectric wa&eguide considered in section
(3.3) is equally valid except that one has to retain the complex
dielectric constant in the analysis. It is demonstrated here for a

sinple step discontinuity of the gain or loss, after Schlosser (12) as,
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Confining:K Layer

E Junction
€ ! Gain €1 ' €y
Lossy !Region *——®x ! Lossy
Region !Active Layer GaAs ! Region .. .
: : sunction
iConfining Layer .
x= -d x=d

Figure (3.4-1)

Gain region in the active layer of a stripe geometry
injection laser surrounded by tae lossy region. The
lateral field is limited by the gain distribution.

El and §2 denote the complex cielectric constants of

the gain region and the lossy rsgion of active layer.
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shown in figure (3.4-1).

Using techniques analogous to the case given in section (3.3) for the

TE mode, the wave equations for each region can be written. The
corresponding dielectric constant for each region is used in this case.
Initially the effect of junction waveguiding (perpendicular to the

active region) in the y direciion is ignored. For convenience a symmetrical
waveguide is considered in the lateral direction x. Analogous to thé

set of equations (3.3.1-17) ezd (3.3.2-8) the following expressions

can be written:
Normalized frequency vZ = 3%k? (&1 - &) )

Normalized propagation constezt b =1 - u?/v? = y232%/v?

and (3.4-3)

~

u2 - dZ(ElkZ - 82) = K2d2

w2 = y%2d%? = wh J

By making use of these relatiocns one can write equations similar to

(3.3.2-4) and (3.3.2-5) giver in section (3.3.2) for even and odd modes as:

Even mode uTan (u)

"
3]

(3.4~4a)

It

0dd mode uCot(u) = -w (3.4-4b)

However it should be poihted cut here that u, v and w all defined by
equations (3.4-3), are complex quantities; On comparing equation (3.4-4a)
with (3.3.2-4) the field in tre lossy regions is given by an expression
of the type exﬁ(—w|xl/d). As the field must decay to zero as |x| + =

_ for the guided modes in the central region then the real part of w must
be positive. Moreover the imeginary part of w must also be positive in

order that phase fronts should have positive curvature in the direction
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of propagation. This restricts any movement of the wavefronts from
infinity towards the guiding structure and represents a wave expanding
about a point (13). Eence both real and imaginary parts on the right
hand side of equation (3.4-4a) are positive. Writing u = (u, + juj)
and w = (wp + jwj) in the equation (3.4-4a) the following expression

is obtained for the left hand side of the equation:
uTan(u) = (up + ju;)Tan(up + jui) : (3.4-5a)

This expression must have both real and'imaginary parts positive because
the right hand side of the equation (3.4-4a) comprises positive real
and imaginary parts. In order to split up this expression into real

and imaginary parts, using the relation
Sin(up + jui) Sin(up)Cosh(u;) + jCos(un)Sinh(uj)

Tan(ur + juy) = =
Cos(u, + ju;) Cos(u,)Cosh(u;) - jSin(u)Sink (us)
T 1 T 1 T 1

and carrying out simplification one gets:

Sin(2up) + jSinh(2u;)
uTan(u) = (up + jus)
2Cos? (u,)Cosh?(u3) + 2Sinh?(us)Sin?(uy)

or

upSin(2uy) - u;Sinh(2u;)
uTan(u) =

2Cos? (up)Cosh?(uj) + 2Sinh2(uj)Sin?(up)

u; 8in(2up) + upSink(2u4)

t
2Cos? (up)Cosh?(uy) + 2Sinh?(u;)Sin?(uy)
(3.4-5b)

The denominator in both real as well as imaginary partsof the above
expression is positive. Therefore in order that uTan(u) should have

both positive real as well as imagirnary parts, the following inegualities

must hold.

u,Sin(2uy.) - uiSinh(2u3) > 0 (3.4-6a)
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u; Sin(2u,.) + unSinh(2u;) > 0 (3.4-6b)

After Adams (13), multiplying (3.4-6a) by u; and (3.4-6b) by u, end

adding together gives:
Sin(2u,) > 0 (3.4-7)

Since u;Sinh(2uj) can never be negative therefore from (3.4-62) and

(3.4-7) one concludes:
u, >0 ‘ {3.4-8a)

The inequality (3.4-6b) can never be satisfied unless uj > C bscause

Sin(2ur) and u, are both positive.

From the equation (3.4-3), w? = y2&2 = (B? - Ezk?)dz, the follcwing

expressions can be written.
u? +w? =v (2.4-9)
In(v2) = 2(upuy + wpwy) (3.4-10)

Im denotes the imaginary part of tke quantity v?. It has beer seen
just above that all u,, uj, wp and wj are positive and hence I=(v?)
After Schlosser (12) condition for guided modes can be derived as

follows using the equation (3.4-3):

In(v?) = 2(n1K] - npKp)k?d? (3.4-11)

> 0.

As seen above in the equation (3.4-10), Im(v2?) > 0 this shows that the

undermentioned inequality must hold.

(n1K1 - n2K2) >0 . (3.4-12)
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From this condition various possiblities for stable conditions can

occur and are given as:

(1)

(11)

(iii)

Ky = K3; the condition for this special case refers to standard
refractive index guided waveguidance i.e n; > ns.

n] = np; the inequality now gives the condition K3 > K G.e the
gain in the central region should be more than the outside regions
which agrees well with the physical intution of the stripe
geometry laser device nacely that under the stripe the gain is
more than outside the puzped region.)

n] = np + An; where An is smell compared with n, but not
necessarily small compared with Ky or K,, the above inequality
(3.4-12) becomes (K; - %5)/K; + Mn/ny > 0. This gives the stability
condition. Under the stripe the region of maximum gain (Kl-K2>O)
corresponds to the lowered refractive index (An<0). Therefore

the gain guidance is oprosed by the antiguidance due to the
central region of lower refractive index. As long as the above

inequality is satisfied there can be a stable mode.

3.4.1 Gain guided modes

To demonstrate this type of guiding behaviour assume that there is no

change in the refractive index of the central region and the outside

regions. In this case the normalized frequency v becomes from (3.4-3)

(nl = ny) as below:

V:

2j (K] - Kp) 3 [Kl - X 3 |
dn |————| = dlm|———| (@ +j) (3.4.1-1)

This shows that the phase angle of v is always 7/4 and independent of

pmaterial parameters. Also from the set of equations (3.4-3) One can

write for b the following equation.
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.
B - 2 (3.4.1-2)

PTG - )

or

(B/k)2 = b&1 + (1 - b)E; (3.441-3)
The characteristic equation (3.4-4a) can be written as:

Vo = V1 - bTan(v/1 - b) (3e4e1-4)

This equation shows the dispersion of the propagation constant as a
function of |v| as shown in figure (3.4.1-1). Froz this figure it is
obvious that as |v|*0, bp*0 (i.e there is no cut-cff frequency for the
lowest order mode). This is identical to the real refractive index case

discussed in section (3.3.2). An approximate form of equation (3.4.1-3) is:
(B/k) = n - byAK + j{Kp(1 - b.) + Kybp} (3.4.1-5)

where b = b, + jb; and AK = Ky - Kp. Since the imeginary part of the
propagation constant B determines the modal gain, as by?0, its value
becomes Ky and the field is no longer confined to the central region.
However as bp*l, the imaginary part of (é/k) approaches Kj and the

field is confined to the central region where the gain is highest.

It has already been mentioned in the beginning of section (3.4) that
the refractive index is also influenced by carrier concentration and
it is important to see its effect on this gain incduced case. In the
central region of maximum gain the réfractive index is lowered by the
presence of the carriers. Consider the case of an arbitrary change in
refractive index An in the central region. Let the refractive index of
the central region be n + An, (An<0) while that of the outside regions

be n. Assuming An , AK<< n one gets:

vZ = {(n + m + jK1 - (n + jKp)2}x2a? (3.4.1-6)
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Figure 3.4.1-1 b vs. |v| for the lowest order even mode {nl = nz}

after Schlosser (12).
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Figure 3.4.1-2 Mode cut-offs for the first six modes of symmetric slab

waveguides of corplex permittivity (16).
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or

v = {2nmn + 2jn(X; - Kg)}édk (344.1-7)

Clearly, unlike the gain induced case the phase angle of v is no
longer /4 and independent of the material paracsters. A plot of (vl
and Arg(v) is shown in figure (3.4.1-2). The exgression (3.4.1-3) now

becomes:
(B/k) = n + fnb, - bjAK + j(Kp + bpAK + byAr] (3.4.1-8)

where AK = K3 - Kp and b = br + jbj. If bjAn is zcsitive from this

equation (12) one sees that the imaginary part c= (B/k) gets an additional
positive term bjAn and therefore the guidance is improved. On the other

hard in the case of a refractive index depressicz in the central region

An is negative and gives rise to antiguidance tc counteract the confinement

provided by the gain., If the depression is suffiziently strong it

completely destroys the confinement of the field ito the central region.

From figure (3.4.1-1) there is no cut-off frequezcy for the zero order

mode., In figure (3.4.1-2) the line Arg(v) =7/2 i: a region where no

guided mode exists and may correspond to invertei structure (n2>n1).

The vertical line Arg(v) = O coincides with the + values for mode cut-

off in case of real index guidance,

3.5 Effective Dielectric Constant Method Of Solution In

Active Waveguides

It has been seen in sections (3.3) and (3.4) tha* the field is
vertically confined due to refractive index disccatinuities existing
at the heterojunctions. Lateral confinement, howsver, is due to the
variations of the complex dielectric constant alczmg the junction in
the active region. Following Marcatili's (20) anzlysis two types of
modes supported by such a structure shown in figure (3.5-1) are Eiy

and Eiy. They are TEM types i.e transverse to the direction of propagation.
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The main field components of the first Eiy type are E, and Hy while
those of the second type E%y are By and Hy. The suffix 'xy! with E§y
and Egy hybrid modes are the number of zeros in the x direction and
y direction field distributions. Butler et al (19) hawattempted io
solve the 2-dimensional wave equation for a laser device rigorously.
In real laser devices, however, the active layer is very thin, (typically
0.1 to 0.3um), the electric field is strongly polarized along the
junction plane (17, 18) i.e the x direction; The Eiy mode for this
rectangular structure corresponds to 'fM mode characteristic equatiicn
of a 3-layer dielectric slab waveguide in the x direction with irZinite
extent in y and z directions(17, 20). Similarly Eiy corresponds to> the
TE mode characteristic equation of a 3-layer dielectric waveguics iIn
y direction with infinite extent in x and z directions. The effective
dielectric constant method used by various authors (21 - 25) resul:is
in a one dimensional equation for the lateral field distribution. e
effect of the cladding layers is taken into account by the use of ==
effective dielectric constant. Symmetrical confining layers in fizure
(3.5-1) sandwich the active layer and therefore the structure is
symmetrical w.r.t x = 0 and y = 0 axes as shown in figure (3.5-2).
Rozzi et al (25) have shown that the field is either symmetric or
anti-symmetric w.r.t x and y axes. Consequently it is necessary to
study only the first quadrant in the x-y plane with magnetic or

electric field short circuit at x = 0 and y = O planes.

The section of the active layer extending between -W/2 < x £ W/2 z=as

a complex dielectric constant €1 where the imaginary part of the dislectric
constant determines the gain experienced by the propagating field. The
region of the active layer beyond the stripe edges (Ix| > W/2) ancd

cladding layers are assumed lossless. It should be noted that the zzin

i

region extends beyond the stripe edges due to non-uniform injecticz of
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Figure 3.5-3 Equivalent reduced structure of laser following the analysis

of Rozzi el al (25).
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the current from the stripe electrode and out diffusion of the carriers.
As mentioned earlier for this structure the Egy mode is equivalent to
the TE mode equation of a 3-layer slab waveguide in the y direction
extending infinitely in x and z directions. From section (3.3.2) one
can write the following characteristic equation for even modes in region

I shown in figure (3.5-2) as below:

. Tan(KId) = YI/KI (3-5-1)
where
B2 = Ek? - k} = efk® + v} (3.5-2)

The solution of the above equation gives Ky. The effective dielectric

constant for the region I can therefore be defined as:

eorr = & - (kp/x)? (3.5-3)
Similarly, applying this analysis to region II in figure (3.5-2) the

effective dielectric constant €£%f can be defined as:

este = €5 - (kr1/%)? (3.5-4)

The problem of finding the lateral field distribution then becomes one
of solving for the TM modes in a dielectric slab waveguide in x direction
with dielectric constants séff and Eé%f as shown in figure (3.5-3). The

characteristic equation for a TM mode is given by:

I ‘
EeffY
Tan (KW/2) = —7— (3.5-5)
EeffK
where é propagation constant is related to kK and y by the following

expression:

éz = ngsz - K2 €£§fk2 + Yz (3-5-6)

In real devices egff = eg%f and the above equation (3.5-5) thus becomes:
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Tan (kW/2) = y/k (3.5-7)

where K, Y are complex quantities.

3.5.1 The wave equation for a stripe geometry laser

The form of the wave equation for an electric field ¢ which is

predominantly polarized along the x direction is (17 - 18):

VZo + {k2e(x,y) - B2} =0 (3.5.1-1)
where
Vi = 3%/ox? + 3%/3y?

This assumes that the propagating mc2e has the normal time dependence
and z dependence of the form exp(jw: - sz). Within the active layer
the relative permitivity e(x,y) is cczstant vertically but varies along
the junction in the lateral directicz. After Paoli (21) a solution of

the fbllowing form of the wave equa*ion (3.5.1-1) is sought.
®(x,y) = E(y)F(x) (3.5.1-2)

where E is dependent on y only and r is a function of x alone., Since

the variation of the dielectric constant €(x,y) is very slow in the x
direction (along the junction) when compared with the abrupt step
discontinuity in the dielectric consiznt existing at the junctionms,
therefore the mode fieid E(y) is not zppreciably affected by the
confinement along x. On substituting the solution (3.5.1-2) into equation
(3.5.1-1) neglecting terms dE/dx ard 32?E/dx? (x dependence of E is very

weak) one gets:
(1/F)a®F/dx? + (1/E)d2E/dy? + {k2e(x,y) - B2} = O (3.5.1-3)

Clearly the term {(1/F)d?F/dx?} is a function of x alone thus the above

equation can be written as:

(1/E)a2E/dy? + (k%e(x,y) - {B? - (1/F)a%F/&x2}} = 0 (3.5.1-4)
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This wave equation can be solved at a given x for the taree-layer slab
waveguide in the y direction. It has been seen in section (3.3) from
equation (3.3.1-16) that the solution in the active layer for guided
modes is of the type Sinky or Cosky. K is related to tke propagation
constant and the dielectric constant e(x,y) at x, €,(x) of the active

layer by:
{82 - (1/F)a?F/dx?} = k?{e, (x) - k?/k?} (3.5.1-5)

Also, from section (3.5) it has been seen that the rigzi hand side of
the above equation is the definition of the effective Zielectric constant

and hence the following equation for the lateral fieid orofile is obtained.

(1/x2){B2 - (1/F)a%F/dx?} = egpp(x)

or
d2F/dx? + {k2eepr(x) - B2}F = 0O (3.5.1-6)

Various authors have assumed different pre-known apprcxzimations for the
effective dielectric constant, gqpp(x), to get the soluzion of the wave
equation in a closed form. Authors (21 - 24) used a pzrebolic profile
for the complex effective dielectric constant, €off(x), which gives a
Hermite-Gaussian solution for the field profile. This Zs not a bad
approximation for a broad area stripe geometry laser (26) with stripe
widths greater than 10um. Asbeck et al (27) have reportied a non-Gaussian
field profile in a laser with a stripe width less than 10um. However
this led them to assume a Cosh™? type of dielectric corstant variation.
After Buus (28) if one supposes that €; and €y are the dielectric
constants of the active and passive layers respectively one can write
the expression for the normalized propagation constarnt 5 similar to the

equation (3.3.2-8a) as:

{8? - (1/F)a%F/dx2}/x? - ep(x)

Y 5 Ry %) (3.5.1-7)
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Since {82 - (1/F)d?F/dx?} = eofr(x), therefore the above relation becozss:

b= {egpp(x) - ex(x)}/{g(x) - e5(x)}
or

Eerr(x) = bep(x) + (1 - bley(x) (3.5.1-8)

Far away from the cut-off condition the field is confined to the activs
layer and from figure (3.3.2-2) if €] and €, are real quantities b
approaches unity whereas €err(x) = bej(x). Also from the relation betwszn

b and T which is given as below one gets (28):

1‘=b+%;33%‘/g = b as b > 1

where v is the normalized frequency defined by the equation (3.3.1-23.
The effective dielectric constant from the expression (3.5.1-8) under

this approximation thus becomes:
Eeff(x) = FEl(X) (305-1—9)

An analogous expression, derived by Thompson (29), shows that the

variation of the effective dielectric constant along the junction follzws

the variation of the active layer dielectric constant but reduced by

the confinement factor I'. A similar expression for the complex dielec==ic
constant has been derived by Adams (30). In this case both real as

well as imaginary parts of the effective dielectric constant follow tz=

variation of the central layer reduced by the confinement factor T.

3.5.2 Effective refractive index

So far, it has been stated that the solution of the wave equation (3.3.21-6)
can be written in a closed formed assuming the variation of the

effective dielectric constant to be a parabolic form or Cosh™ 2 form.

It is not the aim of this project to pre-assume the functional vériati:n

of the effeqtive dielectric constant. It is therefore intended to soliws
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the wave equation with the variation of complex dielectric constant
deterzined by the carrier distribution in the active layer. In order
to do this a linear variation of the complex dielectric constant is
assumed in line with other authors (31 - 33). It has been shown in
section (3.2.3) that the imaginary part of the dielectric constant is
related to the gain coefficient of the propagating field and is proportional
to tke inversion population in the active region. After Asbeck et al

(31), the linear variation of the dielectric constant is given by:
Ae{x) = (-R + j)CoN(x) (3.5.2-1)

where = is a coupling parameter between the refractive index guidance

and gain guidance, N(x) is the carrier concentration, C, is a constant.

The velze of R =~ 3.5 - 4.5 (31). (-RCp) corresponds to a depression in

the refractive index due to injected carriers. As mentioned earlier in
section (3.4) the gain and the refractive index are related by the
Kramers-Kronig relations and thus the presence of gain can change the
refractive index. Furthermore, for the case of an injection laser, the
injected carriers change the refractive index due to the plasma resonance
(28). Tmerefore an increase in the gain means an increase in the population
inversicn and decrease in the refractive index. The variation is given

by the change in real part of refractive index (n, - n) and the extinction

coefficient K as:
R = (no - n)/K (3.5.2-2)

where n, is the background effective refractive index which is related
to the real part of refractive index of the cladding layer and the

active layer by the equation given below:

ng = Fni + (1 - F)né (3.5.2-3)
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where nj and ny are the real parts of the refractive indices of the
active layer and the passive layer respectively. The dielectric constant

variation of the active layer is found using equation (3.5.2-1) and is

given as:

Eopp(x) = nd + (-R + j)CoN(x) (3.5.2-4a)
or

Borp(x) = {no + (- + j)(CaN(x)/2n0)} (3.5.2-4D)

Furthermore €eff(x) is the square of the complex effective refractive
index fgep(x) = {n(x) + jK(x)} and K(x) = g(x)/2k so one gets the following

expression for Egpp(x):

2
Fogp ) = [n0o) + 5502] = H2er (o) (3.5.2-40)

Equating the equations {3.5.2-4b) and (3.5.2-4c) the following expressions

are obtained:

ng - R{CoN(x)/2n,} (3.5.2-5a)

n(x)

g(x)/2k = {CoN(x)/2n,} (3.5.2-5b)

Substituting the value of CpoN(x) from the equation (3.5.2-5b) in the

equation (3.5.2-5a) one gets:

n(x) = ny - R{g(x)/2x} (3.5.2-5¢)

The effective complex refractive index nerr(x) = n(x) + -Ei§l therefore
972K

reduces to:

Herr(x) = ng + {(-B + j)g(x)/2k} (3.5.2-6)

Hence the wave equation for the lateral field profile (3.5.1-6) can be

written as:

a?F/dx?® + {k*A2pe(x) - B2}F = 0 (3.5.2-7)
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The local gain ,g(x), given in equation (2.5.2-6), is related to the

local carrier density N(x) by the following linear relation (34, 35):
g(x) = a’N(x) - b’ (3.5.2-8)

where a’ and b’ are constants whose values are given by Asbeck et al (31)
as 300x107!® cm? and 450 cil. A more general discussion of this relation

and its validity is given by Thompson (36).

To calculate the optical intensity of the laser let S, be the number
of photons per unit active volume of the zavity of the laser. The

intensity is defined as:

JIFIzdx = SOJ|w(x)l2dx (3.5.2-9)

The wave equation (3.5.2-7) can therefore be written as below:
a?y/ax? + {k2nZpe(x) - B2lw =0 (3.5.2-10)

The normalized field distribution can be cefined as:

2

¥(x) = aﬁ (x) ' (3.5.2-11)
J|¢(x)lzdx

where W is called scaling factor which czz be chosen as the stripe width
of the laser. From the equation (3.5.2-1C} the following expression can

be written by multiplying the equation by ¥* and carrying out integration:

‘ Jw*(d2W/dx2)dx + szﬁeff(x)lwlzix
B2 = — = © (3.5.2-12)

j|¢|2dx
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On substituting the value of fgpp from the

expression is obtained:

equation (3.5.2-6) the following

@

R + j)nokjg(x)ltlzdx

-00

fw*(dzw/dxz)dx + ngszlwlzdx + (-
-éz = - QD - 00
R

The contribution from the integral containing @V¥/dx? in i*s integrand

is negligible when compared with the integral having multZriication

2,2 : .
factor ngk® therefore one can write the above expression zs:

=2}

-C0

o

( o
nékzj|w|2dx - Rnokfg(x)lwlzdx + jnokfg(X)lwlde

-0

<«

R

-00

(3.5.2-13)

g2 is the square of the propagation constant, which is cczrZex and can

be approximated by the expression:

B2 = {Re(B)}*+2jRe (B)In(R)

{3.5.2-14)

Fquating real and imaginary parts from equations (3.5.2-12) and

(3.5.2-14) one gets:

ngkzjlwlzdx - Rnokjg(x)lwlzdx
{Re(é)}2 = = oy —
f]wlzdx

(o]

0
Again under the approximation ngk2i|w|2dx >> Rngk g(x)[wlzdx the above
-0

expression becomes:

Re(B) = nok

(3.5.2-15)
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Similarly
2 2
nokjg(x)|W| dx Jg(x)|¢| dx
2In(B) = ——— == (3.5.2-16)
Re(é)lelzdx j|¢|2dx

It has been shown already that twice the imagirzry part of the complex
propagating constant é is the modal gain, thus the above equation gives
the modal gain (37). The modal gain must make ur for the various losses

in the cavity discussed in chapter II in order Zor the mode to be sustainez.

3.6 Conclusions

In this chapter thé basic theory of three-layer slab waveguides and its
application to the waveguiding mechanism in doutle heterostructure lasers
have been presented. The relations between the cptical and electrical
constants were also given., The confinement factisr, which is a fraction

of the propagating mode within the active layer, was introduced. The
waveguiding mechanism in the lateral direction =f a stripe geometry
laser which is extremely important for the statility of the device was
also discussed. The idea of effective dielectriz constant was introduced
which reduced the 2-dimensional wave equation (zerpendicular and parallel
to the junctions) to one dimensional wave equation for the calculation

of the field profile in the lateral direction. The relations given in

section (3.5.2) will be used frequently in the _ater part of this thesis.
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CHAPTER IV

MULTIPLE-STRIPE LASERS



-102-
This chapter is devoted to a brief review of the work carried out by

the various authors in the field of multiple-stripe lasers.

4.1 Introducticn

In the past few years there has been a lot of interest in optical
communications, integrated optics, optical signal processing and optiecal
logics. Many tyres of passive device have been developed for use in

these applicatioms based on lithium niobate or GaAs substrate and a
variety of ligzt guiding techniques. These passive devices tend to be
fairly lossy arnd require quite large optical powers from the source.
Active devices, zowever, have inherent gain when appropriately biased

and have immense potential in integrated optics circuits. More importantly
perhaps the aciive device may have externally controllable regions of
optical gain ar2 loss which may be utilized in optical logies and
integrated optics. In particular regions éf loss, or a saturable absorbing
region in an active device can give rise to a wide variety of optical

and temporal irsiabilities such as bistability, bean steering and optical

modulation whicz are useful in the above areas. (1 - 4).

The idea of a bistable laser diode was initially proposed by Lasher (5)
for homojunctic GaAs devices. The important feature of this device was
the division of its broad contact into two electrically isolated sectionms,
as shown in figure (4.1-1), the channel separating the two contacts
parallel to the cleaved facets to form a tandem or split stripe laser.
This device is different from the parallel twin stripe laser discussed

in this thesis, nevertheless both types of laser show bistability. The
current throug: the two contacts can be independently monitored. When

one of the contzcis is biased below threshold while the other is just
above threshold, the two regions act as emitter and saturable absorber

respectively (6). The device is said to be in "off" state. However, if



Figure 4.1-1

p-Type

Emitting f / Bbsorbing
n-Type Region Region X

-103-

Light EmittingContact

%bsorbing Contact

d ’

I I T i d

Reflecting
Side

"
[}
27Ty

(4
Junction Plane \\
Roughened Sides

Negative Lead

Idealised bistable homojunction laser. The light emitting
contact is biased to cause the injection of electrons into
the p-layer directly beneath it and acts as a light emitting
section. The other has a somewhat smaller voltage so tkat
negligible injection current is present in that portion

and acts as the light absorbing section. If a sufficiert
number of conduction band electrons are formed in the zbsorbing
region due to photon absorption, the light from the emitting
region will not be strongly absorbed and some will be
reflected back by the reflecting side. The lasing threshold
will then be reduced and the absorbing region becomes

transparent (5).
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the emitter contact is pumped harder the absorbing region becomes
transparent and the device radiates coherently and the light output may
increase by as much as 30 times. On reducing the current slightly the
passive region remains optically pumped. This type of device was predicted
to show hysteresis in its light/current characteristics. Nathan et al(7)
demonstrated experimentally the bistable operation in this device shortly
after the predicted behaviour had been published. Since the threshold
current density of a homojunction laser diode at room temperature is

very high, it was necessary to cool the device to liguid nitrogen
temperature for its operation. However, since the development of the
practical GaAs/AlXGal_xAs heterostructure lasers, with much reduced
threshold current densities at room temperature, the potential of laser

dicdes for various applications has been realized.

4.2 Survey Of Previous Work

In tke early days considerable efforts went into to producing a coherent
high power laser beam by the expedient of placing two or more stripes
close to each other (8 - 10). The reason for this is that a broad area
single stripe laser produces a light/current characteristic with kinks
as shown in figure (4.2-1). The kink in the light/current characteristic
corresponds to the occurrence of the hole burning umderneath the stripe
~due to high rate of stimulated recombination. This leads to a higher
order lateral mode excitation and results in the instabilities of modal
behaviour of the device and filamentation of the optical output. The
current level at which the kink in the light/current characteristic
appears can be raised by reducing the stripe width (11 - 13).as shown

in figure (4.2-1). Although semiconductor lasers with wide stripe contacts
are capable of generating high power optical pulses by virtue of their
large emitting area, they operate in higher-order lateral modes or in

several independent filaments. In order to overcome this problem a multiple
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Power output vs. injection current density for differszi
stripe widths, W labelled in diagram in the case of =z
single stripe laser. The analytic expression approxirzting
the current spreading in the confining layer of the lzzer

is used (11).
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stripe laser in a phase locked state is used which produces a high power
as shown by Scifres et al (14 - 15). At 300°K, a threshold current density
of 1 KA/cm? for a device with five parallel stripes each with a stripe
width of 3.5 um and separated by 8 um from centre-to-centre is reported
in the reference (14). It is further reported that the emitted power

through one facet is 0.9 watt at 5 times the threshold current.

‘Katz et al (16) reportea that by tailoring the distribution of the currents
through multiple contacts of the laser array a narrow single lobe far-
field pattern can be obtained=— which can be of a great value in optical
communications and optical recording where in addition to increased

power level, stable radiation distributions are required. Recently,

Carlin et al (17) have successfully demonstrated high data rate multi-
channel optical recording using an array of individually addressible

diode laser structure as the source.

White et al (18) experimentally demonstrated the bistability behaviour

in a twin stripe laser with stripe widths of 3 um and a separation between
the stripes of 3 um. They have reported two forms of bistability. One
effect is the waveguiding mechanisms from gain guiding to self focusing.
The second mechanism exhibits a large shift in the near-field distribution
from one side of the laser to the other. In the reference (19) White

et al have shown experimentally that the bistable mecbanism in a symmetrically
pumped twin stripe laser occurs from the central self focused mode to

a diagonal gain guided mode through the application of short (10 ns)
electrical pulses. By adjusting the current into the two stripes of a

twin stripe laser with a sufficient separation between the two stripes,

a dip in the carrier density can be produced. The dip in the carrier
dénsity corresponds to a bump locally in the refractive index and results

in a self focusing of the mode. The near-field and the carrier density
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Figure 4.2-2 Charge carrier concentration (a) and near field (b)
distritutions measured with the twin stripe laser in two
separate bistable states: (—) self-focused mode and (---)

gain-guided mode (Ref. 18).



-108-
distributions, after reference (18), are shown in the figure (4.2-2).
Optically switched bistability actions in a twin stripe laser are

analysed theoretically by Shore (20).

Ultrashort pqlses are of considerable importance for future pulse
modulated high speed optical communication systems (22). Twin stripe
lasers can be used to generate picosecond pulses as short as 20 ps (18).
Also the dependence of the pulse width on the waveguiding structure
which caﬁ be altered by adjusting the ratio of the current through the

two stripes is reported (21).

Scifres et al (23) demonstrated experimentally beam scanning in a twin
stripe laser with the two stripes each of width 2 um having a centre-
to-centre separation 8 um. They have shown laser beam-steering via the
modification of the dielectric constant. The peak of the radiation
pattern was deflected * 14° with respect to the normal to the laser facets
as shown in figure (4.2-3). Since the graded index is induced by the
injected carriers, scanning is obtained by monitoring the pumping currents
through the two stripes. The symmetrically pumped case givesthe lowest
threshold current, which is confirmed by Kumar et al (24). It has been
shown in the reference (23) that in a symmetrically pumped case the

light spreads over 10 um, whereas in asymmetrically pumped case the

light is confined £o the region under the more strongly pumped contact.
The effect of optical injection under one of the stripes in a twin stripe
laser is computed by Shore (25). In his analysis he has pointed out that
although the field rotation by varying the currents through the two
stripes is lérger than by optical means, the modulation of the injection
currents takes time to be conveyed to the optical field. Optical steering
should bring potential gains in speed as well as integrability within

an all optical system.
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Figure 4.2-3 Far-field radiation pattern of twin stripe laser under

five different pumping conditions (22).
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Katz (26) works out theoretically the perturbation of the dielectric
constant required to produce a prescribed beam steering. In his analysis
he pointed out that asymmetrical modification of the dielectric constant
is an essential requirement if the beam deflection is to be obtained.
Further he suggested the major contribution to beam steering is due to
the modification in the imaginary part of the dielectric constant. Since
the imaginary part of the dielectric constant is related to the gain
in the laser medium and the gain is determined by the carrier density
distribution. It can be easily pertﬁrbed by monitoring the current throuza
the two stripes of a twin stripe laser. The results of reference (23)
show that the amount of beam deflection depends upon both the current
ratio and magnitude, a more refined model of the laser is required to

describe the operation of the device.

4.3 Model Outlines

It is noticed in the previous section that there are numerous research
activities currently involving a double heterostructure lasers with

two or more closely coupled stripes. Recently Katz et al (27) derived
theoretically a coupling coefficient in a gain guided twin stripe laser
as a function of interstripe separation and pointed out that the coupling
coefficient which is a complex number has a quadratic exponential decay
as a function of the separation between the stripes. Their derivation

is based upon the assumption of a parabolic variation of the effective
dielectric constant in the active region. However, it has been seen from
the literature (28) on a single stripe laser that the parabolic variatior
of the effective dielectric constant along the length of the active layer
is not valid for a narrow stripe geometry laser. It should be quite
helpful, therefore, to understand the device behaviour if a more refined
model is examined. For example, Shore and ﬁozzi (29) have solved the

multiple stripe model shown in the figure (4.3-1). In their model they
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Figure 4.3-1 Schematic diagram of the twin-stripe-geometry laser (29).
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use a closed form of injected current distribution after Hakki (30).

The current spreading occurring in the top Al,Gaj._xAs layer is derived
in the reference (30) using an ideal diode equation which ignores the
diffusion of carriers in the active layer along the x direction in
figure (4.3-1). Thus the zodel does not take into account the effect

of the lateral diffusior of the carriers on the current spreading in

the top layer. Furthermcre, Paoli et al (31) reported the saturation

of the junction voltage of a stripe geometry laser at the onset of lasing.
This implies that the quasi-Fermi levels are pinned above threshold as

a result of the high stirulated recombination rate. Both these effects
were incorporated by Wilt and Yariv (32) in their self-consistent single
stripe laser model whick zssumed the continuity of quasi;Fermi levels

across the active layer.

The purpose of this pfoject is to extend the model of Wilt and Yariv
for the case of a twin stripe laser. It is believed that no such model
exists to date. The detailed analysis of this model will be discussed

in chapters to follow.

4.4 Conclusions

A brief discussion of the research efforts put into the multiple stripe
geometry lasers by various research workers has been presented in this
chapter. Clearly, the twin stripe laser forms an important component

of integrated optics and trerefore it will be a useful attempt to study

the detailed behaviour of the device.
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CHAPTER V

CURRENT SPREADING AND INTERSTRIPE CCJPLING
IN
A TWIN STRIPE LASER
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5.1 Introduction

The performance of a stripe geometry laser is influenced by the current
spreading taking place in the region between the stripe contact and the
junction. Various authors (1 - 4) have used simple approximations to
get an analytic expression for current spreading which they then used
in their device analysis. Dumke (5), in his analysis, assumed that
beyond the stripe edge equipotezzial lines are normal to the junction
and therefore the resistance of the layer in the normal direction in

a real device is very small wker compared with its resistance in the
lateral direction i.e along the junction in figure (5.1-1). Dumke then
invokes the current continuity ecuation to rélate thg two components

of the current density J, and Jy along the x-axis and y-axis respectively.
Various other authors make use ¢ a similar approach to approximate the

current spreading in their devics analysis.

However Lengyel et al (6), in a recent paper, have pointed out that

such a sheet resistance model is not a true representation of the device.
They further suggested that as lcng as the stripe width to the resistive
layer thickness ratios are relatively large i.e greater than 1.5 such
approximations are permissible. In recent years, however, it has been
seen that the instability of the device corresponding to the kink in

the light/current characteristics shown in figure (4.2-1) can be improved
by making the width of the stripe less than 6éum (3, 9). The reduction

in the stripe width to improve siability of the device breaks down the
sheet resistance model and therefore one must give attention to a 2-
dimensional current spreading problem in the resistive layer. Several
authors, (6 - 8), have attempted to solve the 2-dimensional Laplace
equation in the resistive layer subject to a diode boundary condition
for a single stripe géometry doutle heterostructure laser. In this

chapter a similar boundary problexn is extended to a twin stripe laser
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unction
n-type Substrate

Figure 5.1-1 Geometry of stripe contact laser with an edge of top
contact at x = 0. Only one edge of the contact is

shown (After Dumke (5)).
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so that the current spreading and interstripe coupling of the injected
currents may be considered. While the problem of current spreading is
well studied in a single stripe laser (1 - 12), very little is known
about it in a twin stripe laser. Many novel optical properties havs
been predicted for the twin stripe laser (See chapter IV). These irclude
beam Steering, ultrashort pulse generation and optical bistability and
since these predictions were made, many of these predictions have Zeen

observed in real twin stripe laser devices (13 - 15).

The lateral distribution of the optical output of the device is delermined
by the lateral variation in the carrier density profile and the cczplex
dielectric constant, which themselves are coupled. Pumping each stripe
independently modifies both the carrier density and the refractive Index
profiles. Further because the two stripes are coupled together viz p-type
resistive layer as shown in figure (4.3-1) the conductivity and tkickness
of the p-type layer have a significant effect on the current densizy
distribution actually injected into the active layer and this has =
controlling influence on the gain profile. Scifres et al (13) have reported
earlier that beam scanning in é‘twin stripe laser can be accompalished

by adjusting the current levels between the two stripe contacts.
Asymmetrical injection leads to an asymmetrical variation in the czrrier
density profile (aﬁd hence gain) and the complex dielectric constaxt.

This must,therefore, affect the lateral position of the optical fisld.

A self-consistent solution of the problem is required to determine the
true behaviour of the device. The coupling of the stripes via both the
p-type passive and lateral diffusion of carriers in the active region
interacting with the optical field makes this a more complex task than
for a single stripe laser. In the present chapter the self-consistent

model is not discussed but it is attempted to get some information
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regarding the terminal behaviour of the device as a function of the

injected currents in each stripe. In particular, the effects of electrode

widths, electrode spacing, thickness of p-passive layer and its conductivity

on the current density distributions are examined for the twin stripe

laser.

5.2 The Model

The model used in this analysis does not take into account the top
heavily doped GaAs layer shown in figure (1.1-3c) used to make a good
ohmic contact. Lengyel et al (6) have also reported that it is possible
to make a good ohmic contact without using the heavily doped top layer.
Moreover, in 6rder to achieve interstripe isolation from the neighbouring
electrodes, the top layer (heavily doped) has to be etched away. Further
the substrate and n-type passive'layer in figure (1.1-3) are replaced

by an equipotential contact at the active/n-type passive interface

which is assumed to be at zero potential. This is a valid approximation
because the substrate is heavily doped and has a broad area contact
which implies the current in the n-type passive layer is not constrained
to flow parallel to the active layer. In this analysis therefore current

spreading in the p-type passive region is considered.

In the model described in this chapter the active layer is represented
by spatially separated diodes, one per unit length in. the lateral
direction, as shown in figure (5.2-1). The effect of lateral diffusion

of the carriers is not considered here. Lengyel et al have shown that
for larger values of the resistivity (p > 0.3Q.cm) of the p-type passive
layer, the diffusion problem can be decoupled from the current spreading
problem. However the larger value of resistivity can result in excessive
heat generation in the passive layer due to ohmic voltage drop. In

figure (5.2-1) a and b denote the unit vectors along x and y axes
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Figure 5.2-1 The twin stripe model assumed for the current and

potential distributions. a and b denote the unit vectors

along the x and y axes respectively.
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x axis o V(£,m-1)
hy
V(R,-lgm) V(zym) V(2+1,m)
L _ )
y axis h, by
lhy
V(2,m+1)

Figure 5.2-2 Finite difference model for an interior node (%,m) in the

passive region.

o V(l,m-l)

hy Vpg(&,m)

Vpp(2-1,m) @ e Vpg(2+1,m)

§-Z\I(ﬁ?.,mﬂ)

Figure 5.2-3 Finite difference representation for the node (&,m) lying

on the diode boundary.

* Vig(2,m-1)

by
VIB(Q,m)
V(2-1,m) @ = = = = =4— o V(2+1,m)
hX hy hx
lVIB(R,,mﬂ)

Figure 5.2-4 Finite difference model for the node lying on the insulator

boundary.
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respectively. As the bottom contact is assumed to be grounded, the
voltage appearing across the equivalent diode is the same as the voltage
appearing at the p-type passive/active interface. The problem reduces
to solving the 2-dimensional Laplace's equation in the p-type resistive

region given below:
sz - 0 (5-2_1)

subjec: to the non-linear boundary condition at the p-type passive/active
interfzce. The current density flowing through equivaient diode shown

in fizzre (5.2-1) is given by the following expression (1, 5, 7):
J) = J,(exp{evpg(r,m)/nkgT} - 1) (5.2-2)

where <o is the dark current density of the equivalent GaAs diode,
Vpg(&,n) is the voltage across the g th diode, n takes the value 2 after
Hakk: [2) and J(R) is numerically equal to the current density through
the aciive layer at the ﬂﬂlpoint on the interface. The potential
distritution in the p-type passive layer gives the current density

going Into the active region as below:
J{t) = -of{Wpp(e,n)}.b (5.2-3)

where the suffix 'DB' denotes the diode boundary at the p-type passive/
active interface. Also J(f) is the current density through the diode

giver Ty equation (5.2-2), therefore from equation (5.2-3) one gets:
-o{VWpp(2,m)}.b = I (exp{eVpg(2,m)/nkgT} - 1) (5.2-4)

This rzpresents the non-linear boundary condition corresponding to the
p-typs passive/acive interface. The rest of the boundary conditions are
insulated types of boundary conditions, as shown in figure (5.2-1), and
correszond to zero normal components of the current density..As one

would expect, there is a lot of current crowding near the edges of the
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stripe contacts, and it is not valid to assume that a uniform current
density is ihjected into each stripe. To solve Laplace's equation the
p-type resistive region in figure (5.2-1) is discretized into a
rectangular mesh and fer each interior node, as shown in figure (5.2-2),
one can write Laplace's equation (5.2-1) into a finite difference form,

as given below:

V(R-1,m) - 2V(%,g) + V(2+1,m)
hy

V(2,m-1) + 2V(%,m) + V(&,m+l) _

2
hy

+
(5.2-5)

If the node lies on tne p-type passive/active interface then the diode

equation (5.2-2) must be satisfied. Let (2,m) be the node lying on this

boundary. Consider an imaginary node (%,m+l) below the (R,,m)th node,

as shown in figure (5.2-3). Since the node (%,m+l) lies outside the

domain of the p-type region, it must be eliminated from the finite

difference form of Lzplzce's equation similar to equation (5;2—5), by

using the boundary ccndéition (5.2-4). Writing Laplace's equation similar

to equation (5.2-5) for the boundary node (L,m) one obtains:

Vpg(2-1,m) - 2Vpg(%,z) + Vpp(2+l,m) V(&,m-1) -2Vpg(2,m) + V(Q,m+l1)
+ - =0

X ¥

(5.2-6)

Clearly, VDB(Q,m) is zlso the voltage across the diode, therefore it
must satisfy the diode equation (5.2-2). Equation (5.2-3) representing

current injected into the active layer at node (£,m) can be written as:

-o{b. Wpp(2,m)}

—ofavpp(2,m)/dy} = -o| LLamtl) = V(l,m-l)]

2hy
(502"7)

From this equation substituting the value of -o{b.VVpp(%,m)} in
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equation (5.2-4) one gets:
V(2,m+l) = V(2,n-1) - (2Johy/0)(exp{eVDB(l,m)/ﬂkBT} - 1) (5.2-8)

On substituting the value of V(%,m+l) in equation (5.2-6) the following

expression is obtained:

Vpp(2+1,m) - 2Vpg(L,m) + Vpp(2-1,m) 2V(&,m-1) - 2Vpg(L,m)
+

-2 2

hx hy

2J
- 2 exp{eVpg(2,m)/nkpT} - l] =0

(5-2-9)
For the nodes lying on the insulator boundary the finite difference

form of Laplace's equation is written and the boundary conditiomn is
employed. Let (%,m) fepresents a node lying on the left insulated
boundary, as in figure (5.2-1). Considering an imaginary node (£-1,m)
outside the p-type region and writing the finite difference form of
Laplace's equation for the boundary node, as shown in figure (5.2-4)

the following expression is obtained:

+ =
h3 hJ

0

(5.2-10)
where 'IB' suffix stands for the node lying on the insulated boundary.

In equation (5.2-10) the potential V(R-1,m) corresponds to the node
(8-1,m) lying outside the domain of the p-type region and therefore it

must be eliminated using the boundary condition O{Q.VVIB(R,m)} = 0. Thus:

o{a.Wip(2,m)} = ofdvrg(L,m)/dx} = (o/2h,){V(2+1,m) - V(2-1,m)} = O

or
V(e+l,1) = V(2-1,m) (5.2-11)

Substituting the value of V(2-1,m) from the above relation in equation




-126-

(5.2-10) the following equation is obtained:

2V(8+1,m) - 2Vrp(L,m)  Vyg(L,m-1) - 2Vqp(L,m) + Vyp(L,ml)
+ =0
h2 h2
X v (5.2-12)

Similarly, the algebric equations for nodes lying on the other insulated
boundaries shown in figure (5.2-1) can be derived. The current densit&
going into the active layer may be evaluated either directly from the
diode equation (5.2-2) by using the potential along the p-type passive/

active interface or from the following expression:
J(2) = -o{b.Wpg(2,m)} = -o{avpg(2,n)/dy} (5.2-13)

Similarly, the current density beneath the stripe contacts are calculated

by making use of the relation given below:
J(0) = -o{p.V(&,0)} = -0 {av(L,0)/dy} (5.2-14)

The total current per unit length of the device injected into or out

of each electrode was computed from:
Ig = h,}J(8,0) _ for all values of nodes,% over each electrode

Igs flowing into the electrodes is represented with positive sign while

that flowing out of the electrode is represented by negative sign.

5.3 Solution Technique

An iterative scheme was implemented to solve the system of linear and
non-linear algebric equations obtained in section (5.2) at the various
nodes of the p-type passive region.’It will have been noticed in the
previous section that all equations, except those corresponding to the
nodes lying on the p-type passive/active interface, are linear. For this
system of linear equations the successive-over-relaxation (S.0.R) technique

is used. Initially, the estimation of potential values over the whole



-127-
domain and then new potentials at each node is calculated using the
appropriate finite difference form of Laplace's equation, discussed
earlier. The new corrected value of potential V(%,m) at the (l,m)th

internal node becomes:

v(z,m)lnew = V(2,m) +e{{V(£+1»m)h£,V(2-l:m) + v(g,m+1)h§ v(z,m-l)L/G%E 4 %3]

- V(ipm)]

(5.3-1)

The correction value for (2,m)™ node is given by:
Mgm = v(z,m)lnew - V(%,m) (5.3-2)

In equation (5.3-1) © is over-relaxation parameter whose value can be
optimized between 1 and 2 to obtain the least number of iterations
required to solve the problem within a given accuracy. Equation (5.3-1)
can be modified accordingly for the nodes lying on the insulated boundary.
However, attention must be drawn to the non-linear algebric equations
corresponding to the nodes lying on the p-type passive/active interface.
Here the Newton-Raphson techﬁique has been used to handle this set of
equations. In this technique the values of functions f and f’ are first
calculated and these are then used to get the correction term for the

boundary potential Vpg(%,m).

f = +

h2 hj

— ——

VDB(,Q.-l,m) + VDB(,Q,-I'I,m) - 2v(e,m-1) 2 2
_ - VDB(Q"m)

h; hf
- (ZJO/hyc)exp{eVDB(l,m)/nkBT}

(5.3-4)

The function f” is calculated by differentiating w.r.t Vpg(%,m)
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as given below:

. 208 2 .2
£’ = - |———]exp{eVpg(2,m)/nkpT} - [57 + Er] (5.3-5)
nkpThy G x Ty

Using the Newton-Raphson method the correction Agp term to the potential

Vpp(2,m) becomes:

By = -(£/£7) (5.3-6)
The corrected value Vpg(%,m) is therefore given as:

VDB(l,n)Inew = Vpg(f,m) + Ay (5.3-7)

For the two end nodes along the p-type passive/active interface expression
(5.3-4) can be modified to incorporate the insulated boundary condition
as well, The convergence criterion used in the simulation is the sum of
absolute values of the global error must be less than a set tolerance
value 'TOL'.

Ylagm] < TOL (5.3-8)

2,m

where the summation is taken over all the nodes along the x and y axes.
'TOL' is the specified accuracy, which in this case is 1x10—u. Convergence
is not a problem with this technique. However, because exponential terms
containing the kgT/e (1/40 volts) term in their argument appear in
equation (5.3-4) and (5.3-5) there is a problem of exponential overflow
during the iterations. This difficulty was successfﬁlly overcome by
using a dawping factor which prevents the argument of exponential terms
having a large value. There are several damping factor techniques which

may be used but the one used in this work is as follows:

,Q,anDB(R,m)I -for VDB(»Q"m) 2 4.0

. (503"9)
—2n|Vpp(2,m)| -for Vpg(2,m) 4.0
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These tests are built-in within the program and successfully remove the
possibility of exponential overflow. The check is imposed on the values
of potential Vpg(%,m) at the p-type passive/active interface as the
iteration progresses. If the value of Vpg(4,m) is numerically greater
than or equal to 4.0 volts, the natural logarithm of its asolute value
is taken to get a smaller number as shown in equation (5.3-9). Various
mesh sizes have been tried in solving the problem in order to check the

accuracy of the solution and to optimize the mesh size as discussed in

the following section.

5.4 Results Obtained For The Twin Stripe Laser

The various parameters used in the calculations to follow are shown in
table (5.4-1). As the current density distributions under the stripe
contacts are non-uniform, the only valid assumption made in this model
is that of an equipotential contact. In all the results given here the
use of constant potentials applied to the stripe contacts is made. However,
the current density immediately underneath the each stripe contact is
calculated from the fundamental definition viz J = -0VV, and the injected
electrode current is thus:

Is = ] dhy

stripe

where hy is the step length of the mesh size along the stripe and J

y

is the component of current density normal to the stripe contact.

5.4.1 Optimizing the mesh size

In order to minimize unnecessary computation the mesh size was optimized
in the problem to achieve adequate accuracy without using unnecessarily
small mesh sizes. Different mesh sizes were tried for the case of a
symmetrically pumped twin stripe laser and the results are given in

table (5.4.1-1). In these tabular results the current density going
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Jo = 6 x 107° Am~2 (1)

p-type (AlGa)As resistivity, p = 1/0 = 2.0 x 10-2 ohm m (6)

Stripe width S; = 3.0 um

It
a0

Stripe width S, .0 um
Spacing between stripe electrodes = 3.0 um
(AlGa)As thickness = 2.0 Um

Width of the device along p-n junction = 69.0 um

VS;

VS

1.55V

1.55V

Table 5.4-1 Parameters used in the simulation of the twin stripe laser.



Mesh Size, h, x hy (pm)

0.5 x 1.0

.no.m x O.N

0.3 x 0.2

0.2 x 0.2

0.3 x 0.1

0.3 x 0.2

Current density along
the p-n junction at
centre of stripe 1:

x 10%Am-2

76.57

41,48

40,91

40.75

40.82

40.91

Current density along
the p-n junction at
mid point between
atripon:

x 10%An-2

33.11

33.20

32.16

31.95

32,03

32.16

Current density along
the p-n junction at
centre of stripe 2:

x 10%Am=2
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76.57

41.48

40,91

40.95

40.82

40.91

Net difference between
total input current/
unit length, and total
injected current across
p-n junction/unit length:
Am™?2

7544590
718.620

35.97

498 .888
499.086

-0.198

487.456
487.292
0.164

483.919
483.750

0.169

485.919
485.631

0.288

487.400
487.236
0.164

Table 5.4.1-1 Values of reference current densities of the trial problem as a function of the

mesh size.
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into the points on the p-type passive/active interface lying on the lines
through the midpoints of each electrode and the line tkrough the midpoint
of interelectrodes gap are compared. The current per unit length going
into the device and across the active layer is also compared. It must
be pointed out here that the error in the current density calculated
immediately underneath stripes is attributable to the current crowding
near the stripe edges even though the higher order cenirzl difference
formula is used'to calculate the first order derivative. Clearly, for
the rectangular fine mesh the change in values of currexzti density are
less than 1%. In this chapter the optimized mesh size s with step lengths
hy = 0.3uc and hy = 0.2um in the horizontal and verticaZ directions
respectively. This mesh size provides adequate accuracy without putting
an unnecessary burden on the storage requirements of tzs computer. The
value of over-relaxation paraceter (S.0.R) 8 in the its=z+tion process
is found to be in the range 1.85V1.99 for the least nuzzer of iterationms.
Despite the fact that the model is a crude one, the reszits of the potential
and the injected current density distributions provide wery useful

information for the terminal behaviour of the device.

5.4.2 Variation of applied potential

Figure (5.4.2-1) shows the current density distributions going into the
p-type passive/active interface when one of the electrcdes is kept at a
fixed potential VS; = 1.55 volts while the potential VS; on the other
electrode is varied. It is clear from this figure that tne effect of

VS, on the injected current density is minimal until tke two electrode
potentials are within 150mV. The tabulation of injected currents shows
that the current flowing into the electrodes is reduced zuite considerably
as the potential on the second electrode approaches that of the first
electrode. This is due to the lowering of interstripe lezkage current.

Figure (5.4.2-2) shows the current density distribution just beneath
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thickness = 2.0 un

p-type (AlGa)as conductivity = 500

VSi

(1Six10"Am-1)
1.55v
(2.42)

1.55v
(2.52)

1.55v
(2.62)

1.55v
(2.67)

1.55v
(2.69)

1.55v
(2.71)

1.55v
(2.86)

1.55v
(4.35)

30 33 36 39 42
Distance along the Jjunction (am)

vs”

(182x10=1=
1.557
(2.42'

1.357
(0.75

1.3:7
(0.42.

1.257
(=2.72;

(-3.1'J

Figure 5 .4»2-1 Current density distribution at the GaAs/ (AlGa)As hetero-

junction as a function of the stripe potentials. The currents

injected into each stripe are also given. The thickness and

the conductivity of the (AlGa)As layer are labelled in

diagram.
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Figure 5.4.2-2

Current density distribution of the y componént of the

injected electrode currents calculated at a depth of

0.1 um beneath the electrodes for a range of labelled

voltages.
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Figure 5.4.2-3 Equipotential plot of the twin stripe laser as a function
. of the strive voltage for the case of a 2 um thick

(AlGa)As lsyer with o = 500 (Qm)~?!
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the each electrode for various potential values. Clearly from this figure
there is a lot of current leakage taking place from the electrode S5,
at the higher potential VS; = 1.55 volts, <o the neighbouring electrode
Sy at the lower potential VS, = 1.3 volts or less., Therefore the electrode
Sy draws a lot of current, of which much leaks directly through the low
biased neighbouring electrode, this results in an increase in the threshold
current density of the device. However, when the two electrodes are at
nearly the same potentials, interstripe lezxage is reduced and the current
spreading from the two electrodes contribute to the current density
injected into the p-type passive/active inierface, thus reducing the
thershold current density of the device. Txis is in accordance with the
experimental results (13 - 15). Consequently if the stripe Sy is being
pumped just below threshold (S, open circuit determines the threshold
current density for Sl)’ pumping the stripe Sy, below the threshold value,
due to current spreading from Sy, may bring the injection level of S
above threshold and as a result the most significant change in the optical
output occurs beneath the electrode Sy. This feature has also been observed
experimentally (13 - 15). Figure (5.4.2-3) shows the equipotential plot
for different sets of voltage applied on the two electrodes. The current
density, which is directed normal to the ecuipotential lines, leaks into
the low biased electrode in the case when the two potentials are quite
different. From the above discussion it beccmes apparent that even
neglecting the effect of lateral diffusion of the carriers in the active
region there is a significant interaction of the injected currents between
the electrodes. This is entirely due to the p-type resistive region.
Further, the effect of the p-type region on the interaction is studied

by varying its thickness and conductivity.

5.4.3 Variation of the thickness of the cladding layer

As shown in figure (5.4.3-1), reducing the thickness of the p-type region
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'VSl = V52 = 1.55V
+ P-type (A1Ga)As conductivity = 500 (Q.m)~?

(x108)
701
p (AlGa)As
thickness
60} - 1.0 3.46

18;=1IS, (x10%Am~!)

50
1.6 2.71

40

2.0 2.42

30

3.0 2.01

20

4.0 1.76

10

Injection current density into the junction in A.m™2

—l X  ——

18 21 24 27 30 33 36 39 42 45 48 51 54
Distance along the junction (um)

Figure 5.4.3-1 Current density distribution at the GaAs/(1iGa)As
heterojunction as a function of (AlGa)As ttickness for

the case where VS; = VSp = 1.55V and 0 = 5CC (Q.m)™!
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reduces the overall device resistance, thereby increasing both the current
injected into the electrodes and the level of injection current density
into the p-type passive/active interface. The absolute minimum value of
the valley current density between the electrodes in the symmetrically
pumped case is seen to change very little as the thickness is reduced,
but because of the greater level of injection the parameter of importance
which indicates the reduction in interstripe coupling is an increase
in the maximum to minimum current injection beneath the stripes. Table
(5.4.3-1) shows these ratios for different values of thickness of the
p-type region; The ratio increases from 1.27 to 2.42 as the thickness
of the p-type region is reduced from 2um to lium. However, for a thickness
of the resistive layer of 3im, or more, coupling between the stripes
becomes so strong that separate injection beneath each electrode is
hardly discernible. This is an important design parameter for a practical

twin stripe laser device.

5¢4e4 Variation of the resistivity of the cladding layer

Figure (5.4.4-1) shows the current density distribution injected into
the p-type passive/active interface for varying resistivity values of
the p-type region, while its thickness is kept fixed at 2um and is
symmetrically pumped. The case of a high resistivity value (2Qcm) is
included which Lengyel et al (6) have shown is more reasonable to decouple
the problem of lateral diffusion of carriers in the active region from
the current spreading problem in the p-type passive region. The main
feature of the graph is that the injected current is reduced but there
is little effect on the current>spreading. The ratio of the peak to
valley current density in table (5.4.4-1) shows a slight increase as
the resistivity is increased, indicating that the non-linear boundary
does not have é significant role to play, particularly when the most of

the potential is dropped across the p-type region. If the level of injection
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VSy = VS, = 1,55V

Conductivity of p-type (AlGa)As = 305 (ohm m)~!
thickness peak/trough current ratio
1 ym R.42
1.6 um 1.51
2 um 1.27
3 um 1.04
4 um 0.93

Table 5.4.3-1 Ratio of the peak current to ths trough of the current
between the electrodes for varyizg thickness of the p ~type

(AlGa)As layer.

VS = VS, = 1.55V

p-type (AlGa)As thickness = 2 um

(AlGa)As peak/trough curren: ratio
conductivity .
500 (ohm m)~?! 1.27
200 (ohm m)~?! 1.29
100 (ohm m)~* 1.30
50 (ohm m)~! 1.31
VS) = VS, = 2.5V
100 (ohm m)~? 1.47

Table 5.4.4-1 Ratio of the peak current to the trough of the current
between the electrodes for varying conductivity of the

p-type (AlGa)As layer.
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for the 1lQcm resistivity layer is raised to VS;= VS; = 2.5 volts, in
order to restore the level of injection currezt into the active layer,
it is seen that there is a reduction in the current spreading and an
increase in the peak to valley ratio. Joyce (16) has shown that the
conductivity of the p-type layer has an important role to play in a
single stripe laser as far as stability of the device is concerned.
Thus a primary requirement for a twin stripe Zsvice in the first instance
is a relatively thin low resistivity p-type (GzAl)As layer. The current
density injected into the p-type passive/actives interface is the soufce
of carrier density generation in the active rezion which in turn produces
the optical output. The distribution of the carrier density, and hence
the current density, is important for analysirz the device behaviour.
Because of lateral diffusion the carriers in ize active region will not
follow the current density distribution precis=zly. However, symmetric and
asymmetric injected current density distributicn features will be reflected
in the carrier density distribution, which mezxzs that changes in the
complex dielectric constant and hence optical ield are expected to be

observed. These facts have been confirmed experimentally by Scifres (13).

5.4.5 Variation of the interelectrode spacinc

Figure‘(5.4.5-l) shows the effect of interelecirode spacing on the current
density distributions. As would. be expected, ircreasing the stripe spacing
significantly decreases the stripe coupling dus to the resistive or
passive layer. Moreover, for close spacing of ihe electrodes typically
1.8um or less the coupling via the passive region is very strong which
would give rise to strong interstripe leakage current. To avoid this
leakage of current an extremely thin cladding Zayer should be used.
However, vertical confinement of the optical field may be seriously
affected. One method of reducing interstripe leakage without using an

extremely thin p-type layer is to isolate the Two stripes by proton
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bombardment or etching through the part of the p-type layer in between
~he two stripes. The effect of etching through the confining layer can
also be modelled. Figure (5.4.5-2) shows that as the depth of the notch
is increased, the current confinement under the stripe improves, as
expected. The maximum notch depth considered in a 2um thick resistive
layer was l.2um. Such a notch should not have a significant effect on
the waveguiding properties in the direction perpendicular to the passive/
active interface. This techniquerwould be required for stripe spacings
less than 2um, with electrode widths of 2um or 3um if a high injection
afficiency and isolation of the stripes are to be achieved. The interstripe
resistance can be calculated approximately by assuming a slab representing
+the material between the two stripes. Although the non-linear boundary
a2t the passive/active interface will have some effect on the interstripe
resistance, a linear dependence witk the interstripe spacing is expected.
Suppose L, is the length of the laser cavity and i’ is ﬁhe thickness of
the p-type region. If SS; is the distance between the centres of the
two stripes, one can write down the interstripe resistance approximately

zs given below:

Ris = 0{8182/(Lcd ")} (5.4.5-1)

where p is the resistivity of the p-type region. Alternatively, when

one of the electrodes Sp is kept at zero potential while the othér
stripe S; is maintained at a potential VS;, the current density directly
leaks through the electrode at zero potential. One can work out ISy,

“he current leaking through the electrode S; and therefore Ryg = VSl/Isz.
31g is plotted in figure (5.4.5-3) for different electrode spacings.

is has already been seen in figure (5.4.2-2) there is a lot of current
crowding near the edges of the electrodes and therefore it is unreasonable
to assume a uniform current densify injected into the electrodes. Figure

(5.4.5-4) shows the percentage of the total current injected into the
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junction which remains confined to the electrode width as a function
of the width of the stripe for a single stripe case pumped at VS = 1.55
volts with remaining parameters kept the same as in table (5.4-1). For
electrode widths above 20um the assumption of uniform current density
is reasonably valid as 83% of the current is confined within the electrode
width, however for the 3um stripe width case it is only 49%. This
compares with 71% current confinement for the 6um wide electrode. It
has been seen in a single stripe laser (3, 9) that small electrode ridthé
are important to get the stable behaviour of the device upto a largé
range of injected current thus the uniform current injection assurrziion
gets violated., Further it may be of practical value to have electroie
widths less than 3um so that centre-to-centre spacing between the Iwo
stripes can be minimized in order to improve coupling. Hence the tzickness
of the resistive layer, its resistivity and stripe spacing are impcriant
parameters determining the behaviour of twin stripe lasers and thercsfore

must be carefully tailored.

5.5 Discussion

The chapter has highlighted the problem of interstripe coupling in =
twin stripe laser via the resistive layer. The effect of interstrics
coupling is to increase the threshold current density of an individual
laser when the other is grounded, yet to reduce the the threshold for
the comparitively higher pumped stripe when both stripes are pumped.
The results show that the current density distribution both into tke
p-type passive/active interface and the electrodes cannot be considered
uniform for the case of narrow stripe (< 3um) electrodes. Resistive
coupiing of the two stripes provides a significant level of injecticn
between the stripes. The results also suggest that an aspect ratio of

stripe width to (GaAl)As thickness of 1.5 represents a limit as far as

efficient current injection is concerned (even then only 49% of the
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injected current is confined to the stripe width). Isolation techniques,
however, can significantly improve this and would be considered vital

for electrode spacing 2um or less with equally narrow stripe electrodes.
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CHAPTER VI

SELF-CONSISTENT SOLUTION
OF

IN
BELOW THRESHOLD TWIN STRIPE LASERS
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6.1 Introduction

In the previous chapter the effect of current spreading was considered

in a twin stripe laser device using a simple distributed diode model

to represent the heterojunction. Whilst the model gives a good indicatiom
of the current spreading and coupling via the confining layer, it does
not give any information concerning the lateral diffusion of the carriers
which affects the current spreading and is responsible for the waveguidirg
mechanism in the lateral direction. Also it has been pointed out by WiZi
and Yariv (1) that the approximation of a junction diode does not take
into account the saturation of the diode voltage above lasing thresholz
and the effect of lateral diffusion of carriers in the active region.

In this chapter a more realistic approach to the heterojunctions is
considered. The model includes the effect of spontaneous radiative
recombination (a non-linear process) but the effect of stimulated
recombination is not considered at this stage. Consequently the analysis
is valid upto the point at which the stimulated recombination becomes
dominant. It has been shown in references (2, 3) that electrode widths
of order of 3um are necessary to raise the level of light output at
which the kink (responsible for the instability of the device) in the
light/current characteristic appears. Because of the aspect ratio of

the stripe width to the resistive layer thickness is of the order of

1.5 as mentioned in the previous chapter, it is necessary to use a 2-
dimensional model of Laplace's equation in the resistive layer (4) and
therefore simple sheet resistance models (5, 6) are not valid to estimatie

the current spreading problem.

This chapter attempts to solve the lateral carrier diffusion problem
and the current spreading problem in the p-type resistive layer shown
in figure (6.2-1) simultaneously. The solution technique adopted will

then act as a building block for the fully corsistent model above threstcld
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which will be discussed in the next chapter. In a real double
heterostructure laser device, the thickness of the active layer (0.1-0.3um)
is very mucz smaller than the diffusion length (4 ~ 9um) of the carriers
injected into the active layer. Because of this it is usual to assume
that the quasi-Fermi levels are constant across the active layer in a
direction perpendicular to the junctions (1). As the position of the
quasi-Fermi levels within the energy band diagram dictates the carrier
concentraticn, this too may be assumed constant across the active layer.
However, beczause of both lateral diffusion of carriers and the curreﬁt
spreading iz the confining layers, the separation of the quasi-Fermi
levels determining the voltage across the junction will vary laterally
along thé active layer. It is further assumed that the laser diode has
a broad arez contact with a moderately doped n-type (GaAl)As confining
layer so itrzt the current in the substrate is not constrained to flow
parallel ic the active layer. Joyce (7) has described the type of carrier
transport irn such a device with one kind of carriers diffusing laterally
while the other type of carriers are stationary. In the model considered
in this crartier, electrons are stationary while the holes are diffusing
laterally. This leads to a model in which only one double heterojunction
is considersd as shown in figure (6.2-1) the other being an equipotential
contact. The charge neutrality condition of the lightly doped active
layer is also assumed in this model. To preserve neutrality, electrons
are suppliei by the equipotential contact locally while the holes are
diffusing lsterally. Furthermore, it is assumed that the only significant
injection of carriers will be into the active layer from the large band

gap passive layers.

6.2 Theoretical Analysis

The model used in this numerical analysis is given in figure (6.2-1)

together with the boundary conditions used. In this figure a and b are
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unit vectors in the x and y directions respectively. The heterojunction

under consideration exists at y = d” and the active layer has a thickness

t.

In common with other authors (4, 7, 8) the effect of the p-type GaAs
layer which is normally grown to facilitate ccntacting has not been
considered. The reason for this is that this layer is relatively highly
doped. In order to achieve any form of intersiripe isolation as pointed
out in the previous chapte?, it is necessary to either, (i) etch away
the GaAs from around the stripes, or (ii) use semi-insulating GaAs with
Jocalized stripe regions of heavily doped Zn Ziffusions, as shown in
figure (1.1-3). In all cases the p-type GaAs under the stripes should
have negligible resistance in the transverse direction, compared with
the (GaAl)As regions beyond the stripes, and will not contribute to the

lateral current spreading.

In reference (9) it was shown that the current density injected into

3um wide electrodes was not uniform due to current spreading, and that

the only valid boundary condition on the electrodés should be a constant
potential. In this chapter the same boundary condition is adopted. However,
it is appreciated that it is the terminal current which is the most useful
parameter in describing laser behaviour, particularly so in the case

of the twin stripe structure. The electrode currents are thus calculated
from the final solution to Laplace's equation and are quoted together

with the electrode potential. In this way it is possible to establish
exactly how the working point of one stripe is modified by a change in

the operating conditions of the other stripe, or by a change in geometry.

Considering first the confining layer; because the region is assumed

to be passive and homogeneous, the potential distribution may be found
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by a solution to the 2-dimensional Laplace's equation:
Vzv = 0 (6.2-1)

under the boundary conditions shown in figure (6.2-1). Solving equation
(6.2-1) subject to these boundary conditions then enables the current

density to be calculated using:
I(x,y) = -oW(x,y) (6.2-2)

where O is the conductivity of the p-type (GaAl)As region and V(x,y)
is the potential distribution calculated from equation (6.2-2;. It is
particularly important to calculate the current injected intc the
heterojunction at y = d’. This couples the diffusion equatior for the'
carriers in the active layer to Laplace's equation for the resistive

region. Using equation (6.2-2) the y component of current dezszity becomes:
Iy g = -o(W)y (6.2-3)

where suffix y denotes the y component of (VV). The total current
injected into the (GaAl)As region from the stripe electrodes zay now

be obtained from:

Istripe = I J(x)|y=0 dx (6.2-4)
stripe

In the model of the heterojunction it is assumed that the Gals active

layer is very thin (very much less than the diffusion length cf injected
holes and electrons). It may therefore be assumed, in keeping with other
authors (1, 4) a constant carrier density across the active lzyer, which

may be determined from the one dimensional diffusion equation:

J(X)l ’
d2n =d
Danb g7~ BV = = (6.2-5)

where D, , is the ambipolar diffusion coefficient, BN? is the bimolecular
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(radiative) recombination term, t is the active layer thickness and e
is the electronic charge. Joyce (7) has shown that for the geometry of
the DH structure considered here the effective diffusion coefficient
is the same as the ambiploar diffusion coefficient, Dgpp. This reduces
the problem to that of solving one diffusion equation only. The potential
difference appearing across the active layer will vary laterally because
of current spreading and carrier diffusion. This potential difference,
at any point, x, along the junction can be related to the Fermi levels,
as shown in figure (6.2-2), which in turn dictates the carrier density

at that point, such that the electron and hole densities are respectively:

ch(X) - Ec(X)

N(x) = NeF, K57 (6.2-6)
(B, (x) - Fy(x)

N(x) = NVF% A =y v ] (6.2-7)

(Both electron and hole concentrations are the same under charge neutrality

assumption of the active region)

o2}

where Fé(g) = %# J
0

vz dc
1 +exp(z -C7)

(6.2-8)

is the Fermi integral. F;, Fy, E; and Ey are defined in figure (6.2-2).
Fe and Fy are fhe quasi-Fermi levels of electrons and holes respectively,
Ec and E, are the conduction and valence band edges of the active layer
and Ne and Ny are the conduction and valence band density of states in
the active layer. The potential drop across the active layer at x is
just equal to Fy(x) - Fy(x) eV. For fhe purpose of numerical analysis
Joyce (10) has suggested an approximate solution of the Fermi integrals
of the form:

Fo - Ee 2 3 4
Vg = |——=—] = m(N/N;) + Ky (8/Nc) + Kp(N/Ne)® + K3(N/Ne)™ + K, (N/N¢g)™ + ...
kgT

(6.2-9)
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Similarly, assuzming charge neutrality of the active region U} may be

expressed as:

- F
o = [EkaT V} = n(N/Ny) + Ky (N/Ny) + Ky (N/NG)? + K5 (N/Ny)® + K, (N/NG)*+ ...

(6.2-10)

where Ky = 3.53553x167%, K, = -4.95009x107°

K3 = 2.48386x107%, K, = -4.42563x107°

and Eg = E, - =y 1s the energy gap of the active region in eV. From
equations (6.2-2) and (6.2-10) one can write the potential difference

across the aciive region in the form:

Fo - Eo(x) EBy(x) - Fy(x) E
{Fe - Fy(x)} = 23T - kBTc -t kgT - ¥ kiT
or
{Fe - Fy(x)} = kpT{g (x) + Yy (x) + Ey/kpT} (6.2-11)

Finally the pctisntial difference across the active layer in volts is

given by:
V(X)|y=d' - V5y=i’+t = V(x)|y=d; - 0 = (kpT/e){Ue(x) + Yy(x) + Eg/(kBT)}

(6.2-12)
The problem trus reduces to solving equation (6.2-1) subject to the
boundary conditions shown in figure (6.2-1) consistent with equation
(6.2-5) using eguations (6.2-3) and (6.2-12). The technique may be readily
applied to the case where the n-type confining layer and substrate have
finite resistszecs, but the computational requirements increase significantly

for little imrrovement in accuracy.

6.3 Solution Technigue

The finite difference method is used to solve both Laplace's equation
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and the diffusion equation self consistently. The solution may be broken

into two main steps.

Step 1 - The resistive region

The resistive p-type (GaAl)As region is discretized into a rectangular
mesh. At each internal node of the mesh the 2-dimensional Laplace's

equation:
32V/ox2 + 32V/ay? = 0 (6.3-1)

can be written in finite difference form:

V(2-1,m) -2V(%,m) + V(241,m) V(Z2,m-1) - 2V(L,m) + V(2,m+1)
¥ =0

hZ hJ
(6.3-2)

according to figure (6.2-1). At the boundary nodes, equation (6.3-2) can

be modified to include the boundary condition as in ref. (9)., In this

way, equation (6.3-1) reduces to a set of linear algebric equations
corresponding to the nodes in the resistive region, which may be solved
using a successive-over-relaxation technique (S.0.R) optimized to the
probiem. Initially, an estimate of the potential distribution along the
heterojunction (y = d”) is made, V(R)g4t, and Laplace's equation solved
using S.0.R technique. J(x)'y=d' is solved numerically using the appropriate
difference form of equation (6.2-3). These calculated values of J(x)ly=d'

are used in the second step to determine the carrier concentration.

Step 2 - The heterojunction

The distribution of nodes along the heterojunction y = d” in the previous
step becomes the desired discretization for solving the diffusion equation.
The diffusion equation (6.2-5) appropriate to this region can be writien

in finite difference form:
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N(R-1) - 2N(R) + N(2+1) ) J()
Damb n2 - BN%2(R) = - ”

(6.3-3)

where J(&) = J(x)|y=d' at the node % on the junction. The carrier
concentration is generally a large quantity and czn cause instability
in the simulation through truncation errors and "exponential overload".
To avoid this problem the carrier density is normzlized by the factor
Nj (the intrinsic carrier density) so that the normalized diffusion

equation becomes:

(6.3-4)

N(2-1)/N; - 2N(R)/N; + N(£+l)/Ni] (N(JL)}2 J(2)
Dazb - BNj

This equation is valid for all the nodes along the Zeterojunction except
the end nodes, As it is not feasible to model an irZinitely wide device,
approximations must be made at the two end nodes. = the simulation the
device is truncated 36éum from the outer edge of ezcz stripe electrode.

At such a distance (approximately six times the difZusion lengths of
injected carriers) one can make several assumptions regarding the carrier
density distribution. The validity of these boundz=; conditions are

considered in section (6.4).
A set of non-linear algebric equations is thus obizined which can be
solved by the Newton-Raphson over-relaxation methoc which is described

in the appendix (A).

6.4 Boundary Conditions at the End Nodes

The following alternative boundary conditions were considered:

i) ¥() =0, N(0) = 0, (aN/ax)| _, * (dN/dx)lX=L + 0

Asbeck et al (11) have suggested that this is not such a good approximation

since the carrier density can be significant well away from the stripe.
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ii) N(L) = 0, N(0) *+ O, (dN/dx)lx=0 = (dN/ax)| _; = 0
This may be put into an appropriate finite difference form also. Beczuse
of the shape of the diffusion tail well beyond the stripe, this is
generally considered as a reasonable approximation. This is the boundary

condition which is used for all the results presented in this chapter.

iii) An alternative to the boundary condition at x = L may be obtaired
by means of an analytic extrapolation of N(x) from x = L to x > =, I3
is reasonable to assume that the current density is approximately zero

at 36um, and beyond, from the stripe edge:
J() =J(L) =0 (6.4-1)

However, it does not follow that the carrier density is also zero &t

the end nodes. The two boundary conditions are:

N(-) = N(w) = 0 and (aN/dx)| __, = (aN/ax)| __ = © (6.4-2}

Using equation (6.4-1), equation (6.2-5) may be written as:
d2N/dx? = (B/Dgpp N2 for - <x <0and L <x <w {6.4-3)

Considering the region L < x < « for convenience, equation (6.4-3) mey

be integrated to give:

2 o o]
d_[aN _ 2B 28N 2
de[de dx JN oo dx | (6e4-43
L

(6.4~3)

Similarly for region -o < x < 0 the solution is:

an(o) _ #.,y(2B 3 _
) - o) (22— (6.4-6)
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These may be put into finite difference form to yield the boundary
condition for the end nodes N(L) and N(0), in terms of the imaginary

nodes N(L + 1) and N(O - 1), such as:

N(L) - N‘}(L)hx[zB ]i

N(L +1) =
( ) 3Damb
% (6.4-7)
_ 3 [23 ]
N(0 - 1) = N(0) - N*(0)hy ET—
' 28 )13 3
where hy is the step length along the junction. If [55_—;J N*(L)hy << N(L)
. am

the boundary condition reduces to N(L + 1) = N(L) i.e {aN(L)/dx} = o.
Similarly for x = 0., The above boundary conditions may be normalized by

dividing throughout by N; as appropriate.

To test the validity of boundary conditions (ii) and (iii), a trial

twin stripe problem was set up using_the different boundary conditions.
Details of the problem are outlined in the next section. The results

are shown in figures (6.4-la) and (6.4-1b). It is clear that the boundary
conditions plotted give consistent results for J(x) and N(x) under the
stripe, although there is considerable difference at the boundaries,

as might be expected.

6.5 Single Stripe Solution

A single stripe laser just below threshold was initially considered,

primarily for comparison with other, existing, solution techniques and

r to determine the required mesh size for the analysis. The parameters
k used for the simulation are shown in table (6.5). To reduce computational
effort the device is modelled using a line of symmetry about the centre

of the stripe electrode.
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p-type (GaAl)As resistivity, p = 2.0 x 10”? ohm.nm

ambipolar diffusion coefficient of carriers
in active layer D,

)= 40 cm?/s

thickness of p-type (GaAl)As layer = 2.0 um

thickness of active layer, t = 0.1 Um
stripe widtk of electrode S; = 3.0 um
stripe widtk of electrode Sp = 3.0 um

spacing between electrodes = 3,0 um
Vsy = VS, = .60V
band gap of zctive region material GaAs = 1.43 eV

density of siztes of conduction band of

= 17 =3
active layer material, Nc) = 4.7 x 107 cm

density of states of valence band of

= 18 -3
active layer material, Nv) 7.0 x 1077 cm

bimolecular recombination coefficient, B = 9.7 x 10~ 1lem3/s

Table 6.5 Parameters used in the simulation of the twin stripe and

single stripe laser, unless otherwise stated.
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6.5.1 Effect of stripe width and diffusion coefficient on the single

stripe solution

Figures (6.5.1-1la) and (6.5.1-1b) show the distributions of J(x) and N(x)
along the active layer junction for several electrode widths. The voltage
applied to the stripe was constant at 1.60 V, which gives a value of
peak current density and carrier density which is just below that required
to give significant population inversion. A striking feature of figure
(6.5.1-1a) is the dip in the current density distributior about the
centre of devices with relatively wide electrodes (stripe width > 6 uﬁ)
which is absent from narrow stripe devices. These current density
distributions confirm the results of Lengyel et al (4) wto were the
first to point out the dip in current density distributicms, but using

a completely different method of solution. However, it szould be pointed
out here that these dips in current density are not acccrcanied by a
corresponding dip in the carrier density distribution shcwn in figure
(6.5.1-1b) a fact which, it is believed, has not been presented before.
Before discussing these results further it is useful to examine the
effect of the ambipolar diffusion coefficient on the injected current
density distribution and the carrier density distributior in the active
layer. Figure (6.5.1-2a) shows the current density distritution at the
active layer interface for VS = 1.60 V as a function of tze diffusion
coefficient Dypy in the range 20-60 cm?/s for a 9 um wide electrode.

The immediate effect of increasing the diffusion .coefficisnt is to
increase the peak value of current density beneath the stripe electrode,
by a small amount, and to increase the dip in the current density
distribution. The effect of the diffusion coefficient on the injected
current from the supply into the device is small. Figure (6.5.1-2b)

shows that increasing Dg;p causes a small reduction in carrier density

beneath the electrode, as might be expected.
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Lengyel et al (4) have reported that the mechanism of the dip in the
current density distribution is due to the non-linear boundary at the
confining layer/active layer interface. Almost certainly this hes an
effect, however the results of figures(6.5.1-2a) and (6.5.1-2b) show

that diffusion plays an egually important role in determining the current
density and carrier density distributions since the dip in the current
density distribution alwest disappears as Dy + 0. It is clear from
figure (6.5.1-2b) that as the diffusion coefficient is reduced the
curvafure on the carrier censity distribution near the electrode centre
is reduced. As Dypp * O itkez carrier density distribution and the current
density distribution terd <o the same general distribution, as would

be expected. The carrier Zz=nsity distribution in the active layer cannot
be considered uniform. Further, it is shown in figure (6.5.1-1b) that
increasing the stripe wiZi: does NOT result in a proportionate broadening
of the carrier density dis:ributioﬁ. Conversely for the case of narrow
electrodes (not shown) tzes distribution is also little altered. The
thickness and resistivity of the p-type (GaAl)As layer play an important
role in determining the exzct carrier density and current density
distributions but it will e seen that electrode widths of 5-6 Qm represent
an "optimum" from the peoint of achieving maximum confinement of the
carrier density beneath tns electrode with maximum injection efficiency.
Figure (6.5.1-2b) shows ikat there is also a small degree of broadening
of the.carrier density cistribution, as Dyyp increases, analogous to
increasing the stripe electirode width. This can cause a destabilising
effect on the solution ito the optical field (12 - 14). It is clear from
these results that the izgcrtance of diffusion is likely to be greater

for narrow electrode devices, where (dN/dx) is largest.
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6.6 Twin Stripe Solution

One of the principal geometric factors of the twin stripe laser is the
spacing between the stripe centres. This, in turn, places some constraint

on the width of each electrode. It has been suggested (15) that a twin
stripe structure displaying beam steering characteristics should consist

of 2-3 um wide electrodes separated by approximately 3-5 um, and this

has been used as a starting point in the presented model. In this section
the effect of electrode width, spacing between electrodes and the applied
electrode potential on the current density and carrier density distributions

are considered. The general parameters used are given in table (6.5).

6.6.1 Variation of the stripe potentials

Figures (6.6.1-1la) and (6.6.1-1b) show the current density and carrier
density distributions of a twin stripe laser as a function of the electrode
potentials. In this section the potential applied to electrode 1, VS;

was kept constant at 1.70 volts and potential VS; varied over a range

from 1.50 volts to 1.70 volts. Figure (6.6.1-1a) shows the effect of

the relatively low resistivity of the p-type (GaAl)As confining layer

and lateral diffusion on the current density distribution at the junction.
It is clear that the second stripe has little effect on the current
density distribution until > 1.6 volts, which corresponds to the beginning
of the region where beam steering has been observed experimentally (16)..
For the case of VSy = VS, the current density distribution is symmetrical.
The effect of current spreading in the (GaAl)As confining layer and
lateral diffusion of carriers in the active layer cause a significant
level of current to be injected into the active region between the pumped
stripe electrodes. However, figure (6.6.1-1b) shows that the carrier
distribution is very unlike that of the current distribution. Despite

a large dip in current density between the electrodes strong lateral

diffusion of the carriers ensures that no such dip exists in the carrier
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density for relatively narrow stripe spacings (here 3 um).

In fact, the effect of diffusion on the carrier concentration is extremely
important where the stripe spacing is less than the carrier diffusion
length. This is illustrated in figures (6.6.1-2a) and (6.6.1-2b) for

the case where VS] = VSp = 1.60 volts, Figure (6.6.1-2a) shows the

effect of diffusion coefficient, Dy, on the current density distribution
and figure (6.6.1-2b) shows the corresponding carriervconcentrations.

It is clear from figure a that increasing the diffusion coefficient
significantly deepens the dip in the current density profile between

the stripes yet at the same time causes a dramatic reduction in the dip

in carrier concentration (shown in figure 6.6.1-2b). This case might

be viewed as an extreme case of the broad stripe laser (stripe width > 6um)
with the dip in current density enhanced due to the unpumped region
between the stripes. The results of figure (6.6.1-2a) reinforce statements
made in an earlier paper (9) regarding the accuracy of the terminal
behaviour of the device model when diffusion is neglected. It is clear
that diffusion has a large effect on the carrier concentration in the
unpumped region between the electrodes and this has a strong influence

on the optical behaviour of the device. However, the peak current
densities in the pumped regions are not significantly altered and this
results in a change in the total current injected into each stripe of

less than 5% for a change in D,y from 1 to 60 cm?/s.

6.6.,2 Variation of electrode spacing

Figures (6.6.2-1a) and (6.6.2-1b) show that the effect of electrode
spacing on the current density and carrier density distributions
respectively, for the condition VS = VS, = 1.60 volts. For very close
spacings, current spreading and lateral carrier diffusion conspire to

eliminate the dip in carrier density, as figure (6.6.2-1b) shows, and
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and the dip in the carrier density between the stripes is small. Obviously
the relative stripe potentials will have some effect on the exact
position of the carrier maximum. As pointed out in (9) the penalty of
using very narrow electrode spacings to maximize stripe coupling is the
very low value of interstripe resistance. This results in an increase
in the threshold current of the individual laser devices. One method
of attempting to increase the interstripe resistance is to reduce the
current spfeading component either by reducing the thickness of the p-type
(GaAl)As layer or by increasing the resistivity of the p-type (GaAl)As
layer, however this enhances hole burning effects above threshold (17).
The important criterion is to maximize the interstripe carrier coupling
via diffusion, yet at the same time minimize injection current leakagé.
In the following sections the effect of varying these parameters according
to this criterion will be considered. For the case of closely coupled,
e.g. (3 um - 4 um separation) symmétrically pucped twin stripe laser,
the slight dip in carrier density in the centre, between the two stripes
results in a local maximum in the refractive indesx and a local minimum
in the gain; a situation not dissimilar to that of broad area device.
Varying the stripe potential slightly would change the distribution,
and hence the optical field. With reference to zn earlier statement,

one might expect the region of stability on the current/light characteristics

to be small.

For narrow stripe spacings ( < 3 um), symmetrically pumped, the dip in
carrier density disappears and the result is a carrier density profile

similar to a single stripe laser.

As the interstripe spacing is increased it is clear from the carrier
density distribution of figure (6.6.2-1b) that the two electrodes become

increasingly decoupled. For the case of a 9 um spacing ( between electrode
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edges) the carrier density between stripes is only 15% of the peak value.
This should be compared with 76% of the peak value when the electrodes
have a 3 um spacing between them. This result shows clearly the large
fall in gain to be expected in the region between the electrodes as the
spacing is increased. Although the refractive index is highest between
the electrodes for the wide spaced structure, the low value of gain in

this region would make self focusing of the beam in this central region

difficult.

6.6.3 Variation of the thickness of the p-type (GaAl)As confining layer

Figures (6.6.3-1la) and (6.6.3-1b) show the effect of the thickness of
the p-type (GaAl)As confining layer on the injected current density
distribution and carrier density distribution respectively. Because the
p-type confining layer effectively controls the terminal resistance of
the device when the heterojunction is conducting, modifying the thickmess
is expected to have a significant effect on the current injected into
each electrode. This is certainly seen to be true. However, the graph

of carrier density in the active region shows how increased spreading
resistance in the thicker confining layers has the effect of removing
the dip in carrier density, which would be expected to affect the
stability of the laser output. This result is analogous to that obtained
for hole burning in a single stripe laser examined by Joyce (17). It

is also worth noting that although the injected current density has

over 200% fluctuation because of a modification of the confining layer

thickness by 300%, the variation in peak carrier density is only 27%.

6.6.4 Variation of the conductivity of the p-type (GaAl)As confining layer

This is effectively a dual of the effect of the confining layer thickness.

Again it is clear from figures (6.6.4-1a) and (6.6.4-1b) that a low

confining layer conductivity causes coupling of the carriers between
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the electrodes via an ohmic conduction process rather than by diffusion
in the active layer. Clearly a low confining layer concductivity is an
advantage, however this has the disadvantage that it increases the effect

of hole burning above threshold (17).

6.6.5 Variation of the electrode width

The effect of electrode width on the injected carrier density distribution
is shown in figure (6.6.5-1b). It is clear that increesing electrode
width, for the case of a fixed 3 Wm spacing causes a weakening of the
coupling between the stripes. The peak carrier density is also increased
by a relatively small amount, corresponding to a lower threshold current
density for each stripe when calculated on the basis of an equivalent
electrode area. It is clear from this graph perhaps mcre than any other,
that because of the effect of diffusion and current sprreading it is the
distance between electrode centres rather than the gap between the
electrode, which is the controlling factor of a twin siripe laser. Further,
it is clearly not correct to simply assume a 5 region model for the device
in which uniform current injection occurs beneath eack electrode as is
sometimes the case. At best an equivalent width narrower than the original
may be used. It is interesting to note that a dip in tze current density
distribution shown in figure (6.6.5-1la) occurs beneath each electrode,

as well as in the region between the stripes, and this can give rise

to a complicated profile for the refractive index.

6.7 Conclusions

In this chapter a numerical solution of the non-linear problem of lateral
carrier diffusion in the active layer consistent with current spreading
in the (GaAl)As layer was presented. By appropriate choice of under

and over-relaxation factors a staﬁle solution was always found. However,

the choice of the boundary condition (dN/dx) = O for the end nodes
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significantly simplified the problem without a large sacrifice in
accuracy or computational speed, unlike the analytic boundary condition
which required careful tailoring of the under-relaxation parameter for

stability of the numerical solution.

The solution to the single stripe laser problem was in close agreement

with solutions from other authors using different techniques, and illustrated
the importaﬁce of carrier diffusion in wide stripe lasers, It was further
shown that dips in the current density are not matched by dips in the
carrier density distribution. Diffusion in the active layer, as well as

the non-linear boundary are seen as the main reasons for the dip in the

injected current density distribution.

The main thrust of the chapter, however, was to show the effect of currez:
spreading and carrier diffusion in fhe twin stripe laser. In particular
it was found that the p-type (GaAl)As layer coupled the carrier densities
beneath the stripes, and that a low confining layer resistivity or a
thick confining layer produced much the same effect on the carrier densi:y
distribution. Three classes of twin stripe lasers are identified.‘
i) Very closeiy coupied lasers in which no local minimum is observez
in the carrier demsity distribution
ii) Closely coupled lasers (gap = 3-4 um) in which a local minimum
is observed between the stripes
iii) Weakly coupled, where a large local minimum is observed between

the electrodes, which effectively decouples the electrodes.

Stripe potential also has an effect on the carrier density distribution.
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CHAPTER VII

SELF-CONSISTENT SOLUTZIZXH
OF
CURRENT SPREADING, CARRIER DIFFUSION AND Z:TERAL, FIELD DISTRIBUTION
IN

ABOVE THRESHOLD TWIN STRIF= LASERS
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7.1 Introduction

In the last chapter the carrier distribution in the active layer and
the current distribution in the active layer and passive layer of a
twin stripe laser were found using a consistent procedure for currents
below threshold. In order to study the operation of a device above
threshold it is essential to study the optical field and its influence
on the carrier distribution in the active layer, which in turn affects
the current distribution in the passive layer of tﬁe device shown in
figure (6.2-1). This inter-coupling of the various effects therefore
demands a self-consistent solution of the Laplace's equation in the
passive layer with the diffusion equation in the active layer and the
wave equation. The technique used to achieve this will be described

in this chapter.

It is believed that a solution of this kind has not been ceveloped

for a twin stripe laser. The only current model of a twin stripe laser,
reported by Shore and Rozzi (11), does not solve for current spreading
consistently with the diffusion of carriers in the presence of the
interacting optical field. It was learnt in the chapter on optical
waveguides that there is a confinement of both carriers as well as optical
field in the direction perpendicular to junction. This occurs because
at the heterojunctions potential barriers exist which prevent flow of
carriers from the active region to the passive region of large energy
gaps. Moreover, the heterojunctions represent the interfaces of the
materials of different dielectric constants forming a slab waveguide
which has been discussed at length in chapter (III). In the lateral
direction, however, there is no such well defined guiding structure and
weak waveguiding is provided by the lateral variation of the complex
refractive index due to the spatial variation of the carrier density

which influences the dielectric constant of the active layer. Maximum
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gain in the laser corresponds to the region of highest pumping, i.e.
beneath the electrodes, but the lateral variation of the complex dielectric
constant dictates whether guiding is predominantly gain-guiding or index-
guiding. Thus, by controlling the injected currents into the two stripes

the carrier density distribution and hence the lateral waveguiding may

be affected.

For the single stripe laser itlhas been seen that the lateral waveguiding
is a very important mechaﬁism deciding the stability of the device (1 - 10).
Single mode operation and a kink free light/current characteristic upto
relatively a large light ouiput without affecting the stability demands

a good waveguidance in the iateral direction. On the other hand a large
light output is quite damaging for the reflecting mirrors which can be
avoided if the lateral modes zre allowed to spread out rather than very
narrowly confined. Thus a coczrromise must be achieved 5etween the lateral
mode guidance and the light output. It has been shown in the last chapter
that in a small single stripe laser the gradient of gain near the edge

of the stripe is very steep and therefore it produces strong gain guidance.
As the intensity maximum exists underneath the stripe, there appears a

dip in the carrier concentration under the stripe. This effect is due to
strong stimulated recombination caused by optical interaction with the
carriers and is often called khole burning. The local exhaustion of carriérs
thus results in a local increzse in the refractive index near the centre

of the electrode and therefore causes self focusing of the mode, which

reinforces the gain guiding action.

Prior to the work reported in this thesis there were only two full self-
consistent models (9, 10) of & single stripe laser which take into
consideration current spreadirng in the passive layer and the diffusion

of carriers interacting with the optical field in the active layer.
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It was pointed out by Wilt and Yariv (10) that the representation of
p-n junction by an ordinary diode equation is incorrect. The use of
this relationship does not show the saturation of the carrier populations
associated with the lasing threshold (10). Since the active layer is
very narrow and is sandwiched between the passive layers of large energy
gaps, it is reasonable to assume that the carrier density is constant
across the active layer. This assumption leads to the argument that the
quasi-Ferﬁi levels are continuous across the active layer. It has been
discﬁssed in the last chapter how this assumption can be incorporated
in the model of the laser. The solution technique of the previous chapter
forms a building block of the solution technique which is discussed v

here.

7.2 Theoretical Analysis

In the fully self-consistent model of the laser it is necessary to
include the interaction of the optical field with the carriers in the
active layer via the stimulated recombination coefficient in the
continuity equation for the carriers. The optical field can be found
by solving the one dimesional scalar wave equation along the acfive
layer using the effective dielectric constant method which takes into
account the field confinement in the transverse direction (perpendicular
to the heterojunctions). However, in the lateral direction the one-
dimensional wave equation must be solved simultaneously with Laplace's
equation, defining current spreading in the passive layers, and the
continuity equation describing the density of carriers in the active

layer.
The DH structure of lasers allows several approximations to be made:

i) The active layer is generally very thin (0.2-0.3 um) and very
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much less than the diffusion length of the carriers. It is
reasonable to assume that the transverse variation of the
carriers is uniform across the active layer. This assumption
leads to the argument that the quasi-Fermi levels are continuous
across the active layer (10).

ii) Under the strong pumping requirements of the semiconductor laser,
drift conduction in the active layer, which is lightly doped, is
negligible as compared with diffusion. (However, Joyce (12) has
shown that the drift term may be lumped together with the diffusion
term if greater accuracy is required).

iii) The highly doped n-type substrate and the n-type confining layer
do not contribute significantly to current spreading or excess
resistance due to their effective broad contact areas.

iv) The highly doped p* GaAs capping layer does not contribute to
curreht spreading because of electrode isolation techniques
such as:

a) proton isolation, b) mesa etching or c) stripe contact

isolation of p? doped GaAs electrodes in semi-insulating GaAs (13).

7.2.1 The current spreading and carrier density problem

This aspect of the problem has been considered in detail in the previous
chapters and references (13, 14). The 2-dimesional potential distribution
in the p-type (AlGa)As confining layer may be found by a solution to

the 2-dimensional Laplace's equation:

V2v = 0 (7.2-1-1)

subject to the boundary conditions shown in figure (6.2-1). From this
potential distribution thus obtained the current density at a point (x,y)

within the passive layer may be calculated as:



-188-

J(x,y) = -oW(x,y) (7.2.1-2)

where O is the conductivity of the p-type (A1Ca)As passive layer and
V(x,y) is the potential at (x,y) calculated from equation (7.2.1-1).
The current density injected into the active layer may be found from

equation (7.2.1-2) by setting y = d” as:

TGN g = oGO 4o (7.2.1-3)

The current injected into the (AlGa)As regior from the stripe electrodes

may be obtained from:

Istripe = J J(X)lyzo dx (7.2.1-4)

stripe
width

The current injected into the active layer acts as the source of injected
carriers and it may be equated with the carrisrs in the active layer,

N(x), via l-dimensional continuity equation given by:

Dypp1d2N (x)/dx2} -BN?(x) - (e/ng)g(x)S,¥(x) = -{J(x)|y=d,/et}

(7-2.1-5)
where Dgypy is the ambipolar diffusion coefficient which is equivalent

to the effective diffusion coefficient for the considered structure as
shown by Joyce (12). BN? is the bimolecular recombination term, c is

the velocity of light in vacuum, ng is the refractive index of the active
layer, g(x) is the local optical gain in the lzteral direction of the
device, S, represents the number of stimulated photons per unit cavity
volume, ¥(x) is the normalised optical intensity distribution and t is

the thickness of active layer.

The carrier density along the active layer, N(x), is also related to

the potential difference appearing across the p-n junction by the
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quasi-Fermi level separation (Fc - Fv) such that the potential difference

at any position, x, along the active layer is given by:
kgT Eg
Vix) = —lde(x) + ¥ (x) + kg7 (7.2.1-6)

where Eg is the energy gap of the GaAs active layer and

Fo - Ec] N N )2 (v’
we = -—I?B—T—- = 2.!1 I-\I: + Kl fq‘; + K2 I\I—; + K3 N—c + ese e (7.2-1‘7)

and

E, - Fy N N v )? Ny’
%2 —k;r-— =2'nl?;; +K1N—v +K2‘ﬁ; +K3N_v +.--. (7-2.1-8)

assuming the quasi-neutrality of the active layer as defined in the
previous chapter after Joyce (15). N, and Ny denote the density of states

of the conduction and valence bands respectively.

Simultaneous solution of these equations has been detailed in chapter (VI)
for the condition where Sy = 0 and ¥(x) = 0 to yield the current density
distribution J(x)[y=d' and the carrier density distribﬁtion, N(x). The
purpose of this chapter is to consider the case where ¥(x) # 0. The local

optical gain g(x), is related to the carrier concentration by:
g(x) = a'N(x) - b’ (7.2.1-9)

where a’ and b’ are constants. The continuity equation in the active

layer (7.2.1-5) thus becomes:

4N (x) c c ECON
Damb - BN?(x) - —S,¥(x)a'N(x) + —S ¥(x)b’ = - —L==5
dx? ng ne et

(7.2.1-10)
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7.2.2 The lateral optical field problem

In order to calculate the normalised optical intensity ¥(x) it is necessary

to solve the one dimensional scalar wave equation given below:
d2y/dx? + {k?Eerr(x) - B2}Y = 0O (7.2.2-1)

where k is the free space wave vector, Eeff is the complex effective
dielectric constant of the active layer andéiﬁ the complex propagation
constant, Eeff(x) may be expressed by the following expression as
described in chapter (III):

nog (x)
k

€opp(x) = n2 + (-R + j) (7.2.2-2)

where R denotes the ratio of the change in the real and imaginary parts
of the complex dielectric constant due to the carrier concentration.

Thus the term:

nyg (x)
pe = (<R +j) — (7.2.2-3)

gives the variation in the complex dielectric constant due to the
carrier concentration. R is often taken to be constant, with a value

ranging from 4 to 6.

Thus, once an estimate of N(x) is known (assuming ¥(x)=0) it is

possiblé to estimate the local gain profile, g(x) and hence the effective
complex dielectric consfant, €off(x), using equation (7.2.2-2). The

wave equation may then be solved to calculate the field profile and the
propagation constant. The normalised optical intensity may be obtained
from the field profile Y(x) using:

¥(x) = Kyt 4 (7.2.2-4)

7 0(x) |*ax

-0




-191-

where W is a scaling factor.

Clearly, for an excited mode in the laser cavity to be sustained it is
necessary for the modal gain to compensate for the various cavity losses.

The modal gain is related to the imaginary part of é, and this leads

to the condition:

where ap 4. is the internal mode loss, L, is the cavity length and Rp

and Ry, are the reflectances of the cavity mirrors for the mode under
consideration. It is assumed that spontaneous emissions into the mode
are negligible. The modal gain is related to the local gain profile and

the field intensity by the following approximate expression:
o)
2
et w61 o
2In(B) = =— (7.2.2-6)
flw(x)lz dx
@

and so there are two means of calculating modal gain offered by solutions
to equation (7.2.2-1) and (7.2.2-6). Equations (7.2.2.1) to (7.2.2-6)
summarise the relavent equations for the solution of the optical field
once N(x) is known. However, as ¥(x) is necessary to calculate N(x),

the carrier density profile above threshold, then the current spreading
and- the optical field profile must be solved simultaneously. The solution

techniques adopted are outlined in the next section.

7.3 Solution Technique

A numerical solution technique has been used for the simultaneous solution
of the above differential equations using the finite difference method.
This technique has been detailed for the special case where ¥(x) = 0

in previous chapter (VI) and will not be reiterated. For the case where
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¥(x) # 0 the continuity equation (7.2.1-10) for the active layer becomes:

D (Y1) 2N(L)  N(e41) L) S .., @)
am N - N, + Ny - BhyNj T - a hiSoa N, ¥(L)
c S , J(2)n
P ooy, YT = -
(7.3-1)

where Nj 1s the intrinsic carrier density in tke active layer, and is

used for normalisation, hy is the horizontal step length and 2 represents
the node number along the junction. A similar eguation may be written

for each node along the junction. At a distance of 5 - 6 diffusion

lengths from the outer edge of each electrode the boundary conditién
(dN/dx) = O is imposed (14). A set of non-linear equations is thus obtained

which are solved by the Newton-Raphson successive-over-relaxation £echnique.

The solution procedure can be described in the following steps.

Step 1

Potentials VS; and VS, are applied to the stripe electrodes Sy and 52

as known boundary conditions. Initially it is assumed that there is no
field interaction i.e. ¥(x) = O which means no stimulated recombination
term is included in equation (7.3-1). This equation is then no different
to the one solved simultaneously with the Laplace's equation in the
previous chapter. It has been shown in chapter {VI) how the consistent
solution of the carrier density distribution along the junction in the
active layer and the current distribution in passive layer can be obtained.
Solutions to these equations provide an estimate of the carrier demsity, N(x),
in the active layer consistent with the current density profile, J(x),
injected into the active layer. Estimates of the currents injected into

each electrode can also be calculated at this stage.
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Step 2
In order to evaluate the lateral field profile ¥(x) and the propagation
constant, B, €efr(x) must be calculated using the estimate of carrier
density N(x) found in step 1. This is achieved by calculating the
local gain, g(x) using equation (7.2.1-9), which is substituted into
equation (7.2.2-3). Although many techniques are available, the wave
equation (7.,2.2-1) was also solved using a finite difference technique,
however, in the first instance the mesh used is very coarse (typically 1 um).
The finite difference form of the l-dimensional wave equation may be

written as:

Y(R-1) - 2p(R) + P(a+1)

~ + k2Eopp (R)V(R) = B2u(k) (7.3-2)
hX

where h; is the coarse mesh step length. An eqﬁati:n of this form may
be written for each node. For the optical solution it is expected that
the field will die away at a distance of one or twc times the diffusion
length from the electrode edges where the boundary condition dy/dx = O
is applicable, however, symmetry of w(x)‘is not assumed. The system

of equations, thus formed, results in an élgebric eigenvalue problem.
This problem can be solved by an L-R decomposition technique (16 - 18)
for 211 values of R2satisfying equation (7.3-2). Tke value of B2 with
the largest positive imaginary value of B correspords to the dominant-
lateral mode. At this stage the value of B? and the corresponding field
distribution Y of the dominant lateral mode can be obtained in a refined
form using a much finer mesh, by applying an efficient shooting method,

described in Appendix B.

Step 3
Once EZ has been calculated the modal gain can be found. This is defined

as being twice the value of the imaginary part of B. If the modal gain
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of the dominant lateral mode is less than the set cavity loss given

by equation (7.2.2-5) the device is operating below threshold and the
calculations are repeated with increased applied potentials on the
electrodes from step 1. The value of cavity loss is clearly an important
parameter which in practical terms depend on carrier absorption, facet
reflectance and cavity length. In this work a typical value of cavity
loss of 60 cm™! has been used. If the modal gain is greater than the
cavity loss the calculations are continued further using the accurate,
but as yet, first estimate of the field profile Y(x) calculated in

step 2.

Step 4
The normalised optical intensity ¥(x) is calculated from Y(x) using

equation (7.2.2-4) and simple numerical integration of:

Tl&l}(x)lz ax

but over limits confined to the assumed extent of the optical field of

1 - 2 diffusion lengths.

Step 5>

Assuming a value for the photon density, S,, appropriate to the cavity
volume, together with the normalised optical intensity distribution,

¥(x), the stimulated recombination term in the continuity equation can

be calculated. It is now possible to re-solve the continuity equation
under the condition of stimulated recombination, which gives a new estimate
of N(x). The quasi-Fermi levels are not recalculated for this new value

of N(x) however and Laplace's equation is not re-solved at this stage

either. With this new estimate of N(x), g(x) may be recalculated, and from

this the modal gain may be re-estimated using the approximate expression
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(7.2.2-6) rather than from a solution to equation (7.3-2). The use of
equation (7.3-2) to estimate B is necessary in the first iteration to
"cold start" the problem and achieve the initial estimate of the field

profile P(x).

This value of modal gain obtained from equation (7.2.2-6) is compared
with the cavity loss. If the modal gain is not equal to the cavity loss
within a tolerance error then the value of Sy is adjusted, as explained
in Appendix C, and all the calculations in step 5 are repeated Qith this

rew value of S, until the lasing condition (equation 7.2.2-5) is satisfied.

Steo 6

Step 5 ignores the effect that the new estimate of N(x) has on the
corplex dielectric constant, €gpp(x). The new estimate of N(x) is used

to calculate a new set of values of Eeff(x) which then allows to

eveiuate ¥’(x) and hence ¥’(x) from equations (7.3-2) and (7.2.2-4)
respectively. The calculations are thus repeated from step 2 missing

step 3 completely. If ¥ (x) evaluated in step 4 is not within a tolerable
error of ¥(x) then step 5 is repeated successively. If, however, consistent
solutions of the carrier density and the field profiles are obtained

ther the new value of carrier density profile is used in equations
(7.2.1-6, 7.2.1-7 and 7.2.1-8) and Laplace's equation re-solved to take
into account the change in quasi-Fermi levels and carrier density due

to stimulated recombination because of the optical field interaction.

Stet 7

Laplace's equation, the quasi-Fermi level separation and the continuity
equation, together with ¥(x) and S, found on successful completion of the
above steps, are then re-solved self comsistently according to step 1

which further modifies the carrier demsity distribution N(x). All
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the steps of calculation from step 2 to step 7 are then repeated, skipping
step 3, to recalculate a stable optical field, ¥(x), for this new value
of N(x). Step 3 is not necessary after the first pass because B is

re-estimated in step 6.

An iterative scheme is thus developed in which the optical field modifies
the carrier profile directly. This perturbs the heterojunction voltage

and current spreading which enhances this change‘in carrier density
profile. The optical modes to this new condition are recalculated and

the stimulated output is recomputed. The process is continued until
convergence is achieved, i.e. when V(x,y), N(x), and the optical intensity

profile, ¥(x), are all within a tolerable global error of the previous

iteration values.

This complex iteration scheme may not always achieve convergence however

due to several competing reasons.

i) Above threshold the stimulated recombination effect may perturb

the carrier distribution so that the original lateral mode can
no longer be supported. It is thus vital to keep constant track
of the modes which can be supported at each stage of the iteration,
and to select only the mode with the largest modal gain above
the condition given by equation (7.2.2-5).

ii) Well above threshold it is possible that several modes compete
for the same gain such that having recalculated the propagation
constant and modal gain at each step of the iterative process
oscillation between two dominant modes occurs every alternate

iterative cycle.
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conductivity of p-type (AlGa)As confining layer = 500 (ohm.m)~!

thickness of p-type (AlGa)As confining layer = 2.0 um

width of electrode S 3.0 um

width of electrode Sp; = 3.0 um

spacing between the electrodes = 3.0 um

ambipolar diffusion coefficient of carriers in active layer = 68 cm?/s
thickness of active layer = 0.3 um

bimolecular recombination coefficient 'B' = 9.7x10"!! cm®/s

energy gap of the active layer material GaAs = 1.43 eV

density of states of conduction band 'No' = 4.7x10'7 cm™?

density of states of valence band 'N,! = 7.0x10*® cn™3?

background refractive index of active layer 'ng' = 3.5

parameter a’ in gain relation 300x10-lscm2

parameter b  in gain relation = 450 cm !
cavity loss Cyogq = 60 cn™?

anti-guidance and gain-guidance coupling parameter R = 4

Table 7.4 Material parameters listed above are used in the computer

simulation unless otherwise specified in figures.
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Using the above procedure a computer program was developed which
provided self-consistent solutions for N(x), J(x) and ¥(x) within a
very fine tolerance level over a wide range of electrical and geometrical

conditions.

Table(7.4) lists the main parameters used in the computer simulation
results unless otherwise stated. At every stage of the solution extensive
checksrwere made to ensure that the mesh size was sufficiently small

té provide adequate accuracy, but not so small that excessive demands
were placed on the storage requirements of the computer. In the case

of the solution to the optical waveguide problem the =mesh size was

made adaptive, controlled by the allowable global error for ¥(x) and

the tolerance error for E.

7.4 Numerical Results of a Single Stripe Laser

In the first instance the device with electrode width 12um is examined,
which although relatively wide and sufficient to allcw =odal instability,
is used in practical (AlGa)As laser, and is useful in iilustrating the
various effects. An important difference between experizentai conditions
and those which have been imposed by the electrode boundary conditions
for the theoretical model must be stressed. In practice, it is common

to drive lasers from constant current sources, correspording to the case
of a constant generation rate of carriers. However, tze only valid
boundary condition which may be imposed in the theoretical model is

that of constant electrode voltage. Stimulated recombinztion reduces

the carrier density in the active layer and the heterojumction potential
varies as a consequence. With a fixed electrode potentizl this means
that generation rate which is dependent on the current drawn by the
electrode; can vary. In the results which follow the electrode current

is calculated from the solution to Laplace's equation and equation
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Injected current density into the

active layer (x10* A.m"2)
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Fig. 7.4-1la Effect of electrode current on the injection current density
into active layer of a 12um single stripe laser above threshold
when current spreading, carrier diffusion and stimulated

recombination are all taken into account.
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Carrier density in the active layer (x10%*m~3)
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Figure 7.4-1b Carrier density distribution of a 12um single stripe

laser corresponding to the injected current density

distribution shown in Fig. 7.4-la.
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Optical field intensity (arb. scale)
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Figure 7.4-1lc Intensity distribution of a 12um single stripe laser
corresponding to fhe current density and the carrier
density distributions shown in figures 7.4-la and 7.4-1b

respectively.
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(7.2.1-4) to show the movement of the working point as the various

device parameters are modified.

Figures (7.4-1a), (7.4-1b) and (7.4-1lc) show the current density
distribution injected into the active layer, the carrier density
distribution in the active layer and the optical intensity distribution
for the laser with the above characteristies at three different values
of stripe current. In each case the dominant laferal mode was the
fundamental mode whose distributions are shown in figure (7.4-1lc).
The injection current density distribution into the active layer, shown
in figure (7.4-la), illustrates the effect of stimulated recombination
and lateral carrier diffusion. At low current, just above threshold,
the current density injected into the active layer shows a pronounced
dip underneath the stripe. This is due to the non-linear boundary
provided by the heterojunction and lateral carrier diffusion, as detailed
in reference (14) and initially presented by Lengyel et al (19). This
effect is most marked for relatively wide electrodes. As the level of
pumping is increased the local minimum in current density is replaced
by a shallow hump, and an associated dip in the carrier density. Similar
results have been reported by Shore (20). The reason for this effect
is stimulated recombination. The increased recombination rate due to
stimulated recombination locally depletes the carriers beneath the
electrode, as shown in figure (7.4-1b). This is known as hole burning
effect and gives rise to the modal instabilities of the device. Moreover,
because of the constant potential boundary condition the current must
increase to establish a new steady state as the increased recombination
of carriers occur due to stimulated recombination. This corresponds to
the excess stimulated recombination current. Figure (7.4-1b) also
shows that the carrier density distribution, and ﬂence the quasi-Fermi

levels, become pinned above threshold. This does not happen if a simple
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diode of the heterojunction is used, and considerable distortion of the
carrier and intensity distributions result. Although the symmetrical
boundary condition was not assumed, the method of solution adopted here
prevents certain types of solutions such as near field shift (1) from
being observed. However, as the pumping current is increased the peaks
of the radiation intensity and the carrier density get displaced. The
carriers tend to accumulate more to the region where the laser radiation
is less while the beam has a tendency to move to the region of accumulated
carriers with a large.gain producing there a depletion of carriers. In

this way oscillations set in and no stable solution was obtained.

Similar set of results of a 3um wide stripe geometry laser with all
other parameters as above are shown in figures (7.4-2a), (7.4-2b) and
(7.4-2¢). The applied voltage to the electrode has_to be increased as
compared with the above case due to increased spreadihg resistance of
the device. The dip in current density is now absent,and carrier diffusion
and current spreading become dominant features of the characteristics,
and this increases the threshold current density which becomes clear

on comparing the peak values of current density in figures {7.4-2a) and
(7.4-1a). The carrier and, hence gain saturation above threshold is
evident in figure (7.4-2b). Also the gradient of carrier distribution
underneath the stripe is very steep which leads to an improved gain
guidance in the lateral direction. On comparing figure (7.4-3) with
(7.4.1-2) shown in the next section, it appears that this device can

be pumped upto a higher value of light output without any problem of
modal instability. On the other hand the I-L characteristies shown in
figure (7.4.1-2) are not perfectly linear but kink very slightly at

a relatively lower light output , as one might expect in practice

for a 12um wide electrode.
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Injected current density into the

active layer (x10* A.m~2)
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Injected current density distribution in a 3um single

Figure 7.4-2a

stripe laser under four different values of pumping current

in figure.
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Carrier density in the active layer (x102“m=3)
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Figure 7.4-2c

-206-

Optical field intensity (arb. scale)
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Light output (arb. units)
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Figure 7.4-3 Light/Current chracteristic of a 3um single stripe laser.

The total current per unit device length injected into

active layer is labelled in figure 7.4-2a corresponding

to each pumping condition.
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7.4.1 Effect of the resistivity of the p-type confining layer on

the device behaviour

The effect of the resistive confining layer is important because it
controls the current spreading effect and acts as a series resistance

to the voltage source driving the laser. A similar result may be obtained
by maintaining the resistivity and increasing the thickness of the

confining layer, however in this case current spreading is also worsened.

The results of the device with the resistivity of the p-type confining
layer increased from 0.2 ohm.cm (G = 500 (ohm.m)™!) to 1 ohm.cm

(6 = 100 (ohm.m)~!) and thickness reduced from 2um to 1.2um are computed.
On comparing the current distributions of the two devices (i.e Figures
7.4-1la and 7.4.1-1la ) current spreading beyond the electrode edge of

the stripe is significantly reduced. However, the increased resistivity
of the layer has raised the threshold voltage from approximately 1.54V
to 1.70V due to excessive ohmic drop in the resistive layer. There is
also a pronounced dip in the current distributions just above threshold
which changes to a slight hump well above threshold, as in the previous
case. However, it is also seen from figure (7.4.1-1b) that the gradient
of the carrier demsity beneath the stripe just above laser threshold

is steeper than that in figure (7.4-1b). It is also clear that hole
burning effects are more apparent in the carrier distribution of (7.4.1-1b)
than (7.4-1b) for the case of much higher light levels which is analogous
to the predictions made by Joyce (21). Optical confinement of this device
is also good. Consequently, thin relatively high resistivity confining
layers can raise the level of light output shown in figure (7.4.1-2)

at which hole burning effects appear and are more apparent. Therefore

the stability of the device is improved but at the cost of excessive

heat dissipation due to ohmic loss in the resistive layer. The cptical
intensity distributions of the device for three current values are shown

in figure (70401‘10)
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Injected current density into the

active layer (x10* A.m~2)
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Figure 7.4.1-1la Current density distribution injected into the active
layer of a 12um single stripe laser with conductivity
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are shown in figures 7.4.1-1b and 7.4.1-1lc respectively.
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Carrier density in the active layer (x10%“m~3)

12 um

o =100(Qm)~?

diffusion coeff.= 68 cm?/s

p-type (GaAl)As(thickness=1,2um
confining layer

7 14 21 28

e s R R s s R A EAR R LS RARARSASEAEREARRSRASE RLARLAAELE RARIARIILE BRI

35 42 49
Distence along the junction (um)

TYTY T r YT YT YT T

56

TV YTy

63

70

Figure 7.4.1-1b Carrier density distribution in the active layer of a

12um single stripe laser with 100 (ohm.m)~! conductivity

of the confining layer, 1l.2um thick.
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Optical field intensity

(arb. - scale)
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Light output (arb. units)
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Figure 7.4.1-2 Comparison of I-L characteristics of a 12um single stripe
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7.4.2 The effect of stimulated recombination on current spreading

If the calculations are terminated at step 6 without solving Laplace's
equation in section (7.3) the current density distribution J(x) is

NOT consistent with the carrier density and the optical intensity
distributions. The effective generation rate determined by J(x) distributions
is fixed and is unaffected by the stimulated recombination of carriers.
Therefore the generation rate term given by the right hand side of _
equation (7.2.1-10) is fixed. By including the stimulated recombinaticn
term this implies less contribution from the diffusion term, or the
effective diffusion length of carriers becomes less and the dips in tke
carrier density becomes more noticeable. An increase in recombination
of.the carriers results in an increase in the injected current density
J(x) if it is found consistently with the rest of the solution and

will therefore compensate to some extent the local depletion of carriers
underneath the stripe (due to strong stimulated recombination) by

increasing the generation rate.

Figures (7.4.2-1a) and (7.4.2-1b) show the increase in current density
in a 12um stripe laser when the optical interaction occurs. The graphs
are drawn for two different pumping currents above threshold. The dip
in current density when stimulated recombination is ignored (14) is
largely removed by the inereased carrier generation needed to overcoms
the stimulated recombination. The excess current in this latter case
represents the conversion of carriers to photons via stimulated
recombination and is called stimulated recombination current. As the
current level is increased, strong stimulated recombination removes the
&ip in the current density profile beneath the stripe entirely, aﬁd

replaces it by a small huwmp in the current density.

In this section the results of the computer simulation in the case
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Figure 7.4.2-1 The effect of the interaction of stimulated recombination
on the current density distribution.of.a 12um single
stripe laser with pumﬁing current per unit device length
(a) 301 A.m~?

(b) 349 A.m™?
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of single stripe laser were presented. Although this problem has been
solved in a self-consistent manner by Asbeck et al (9) and Wilt and
Yariv (10) the results presented here have highlighted important aspects
which have not been presented before using a self-consistent model.
These include the effect of stimulated recombination on the current
spreading within the device and the effect of confining layer parameters

on the optical output anéd modal stability.

7.5 Results of Computer Simulation of a Twin Stripe Laser

In the work by Scifres et al (22) near field beam steering was observed
in twin stripe lasers with a stripe electrode width of 2um and a stripe
spacing between electrode centres of 6um. Other, more recent work (23)
has used devices with 3u= wide electrodes and éum spacing between centres
and this geometry has been used as a starting point for the simulated
results. As in the previcus case the electrode potential is used as a
known boundary condition from which the electrode current is calculated.
The following results are representative of results obtained with the
computer model. To show the effect of changing parameters, the electrode
currents are calculated using equation (7.2.1-4) and tabulated in the

respective diagrams.

7.5.1 Effect of electrode potential on the lateral field distribution

In this section the consistent solution of the current demsity, carrier
density and field distritution is presented when the applied potentials

on the electrodes Sy and S, are varied.

Figures (7.5.1-1a), (7.5.1-1b) and (7.5.1-1lc) show the distributions
of injected current demsity, the carrier density in the active layer
and the lateral optical field intensity distribution for different sets

of electrode potentials VS3 and VS;. Although the injected current density
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Injected current density into the

active layer (x10* A.m~2)
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Figure 7.5.1-1a Current density distribution injected into the active
layer of a twin stripe laser as the electrode potentials
VS] and VS2 are varied. The stripe currents IS) and ISp
per unit device length are listed in figure. Each stripe
width is 3um with a spacing 3um in between them. The
corresponding carrier density and intensity distributions

are shown in figures 7.5.1-1b and 7.5.1-1c respectively.
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Carrier density injected into the active layer (x102%m~3)
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Optical field intensity (arb. scale)
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is highly asymmetric except for the symmetrical pumped case V8] = VS2
(L.57V and 1.59V), strong carrier diffusion in the acnive layer results
in a much lower asymmetry for the carriers. Nevertheless, the asymmetry
is sufficient to perturb the complex dielectric constant. It is seen that
the field profile, under a wide range of pumping conditions remains as
the fundamental lateral mode and is symmetrical in nhe main lcbe and
only slightly asymmetric in the tails. It is also seen that the beam
position moves as V8] is increased. Initially the field is located closer
to the stripe S2 at VS2 = 1.59V for VS$ = 1.54V because contribution
to the carrier density from V5] is negligible and nhe device behaviour

approaches that of a single stripe laser. As VS% and 1S] increase the

net number of carriers increase, however it is clear from figure (7.5.1-1Db)
that the carrier density in the active region remains largely constant

i.e the gain,g(x), has saturated, and so the total flx': increases to
maintain carrier-flux conservation. There is no tendency for higher
lateral modes to be supported. However, the beam does shift from S2

to S as V8] becomes greater than VS2. At these inlecuion levels there

was no tendency for bistability. Under symmetrical pumping the beam

is fundamental mode and is confined to the region c-etween the electrodes.
In the case of a large diffusion coefficient and relamively narrow

spacing between the electrodes, there is no observable dip in carrier
concentration in the region between the electrodes and thus no local
maxima in the real part of the refractive index. Under the conditions

of narrow stripe spacing and diffusion, as above, it is clear from figure
(7.5.1-1c) that the intensity does not decrease when beam movement occurs.
This is due to the very broad gain distribution, g(x;, relative to the
intensity distribution, Y(x), which ensures that adequate gain is available,
given that the injected current has been forced to increase in order

to move the beam position in the first place.
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Figures (7.5.1-2a), (7.5.1-2b) and (7.5.1-2c) show the current density,
carrier density and intensity distributions of the same device, but V33
is now fixed at 1.55V while VS is varied from 1.58V to 1.65V. The
total current per unit device length injected into the active layer is
also tabulated in figure (7.5.1-2a) and is used to plot I/L characteristics
in figure (7.5.1-3). From these results it is seen that the field is
nearer to the more heavily pumped electrode. As the potential VS; is
reduced beam movement occurs towards the gap between the electrodes.
However under symmetrical conditions (VS; = VSQ) it was not found poz:zible
to stabilise the solution upto a high value of pumping current. Under
symmetrical conditions as the applied potential (VS = V52) is incre=z==4
it is likely that the significant dip in the carrier distribution betwsen
the electrodes and stimulated recombination tend to favour higher ori:=r
modes. The case is very similar to the strongly pumped broad-area sirzle
stripe laser. The kink in the I/L characteristics has been observed
experimentally by White et al (23) at a relatively low light output =:r

the symmetrically pumped case.

Figure (7.5.1-3) shows the I/L characteristics of the stimulated lig== vs.
total current per unit device length injected into the active layer t-th
for the symmetrical and the asymmetrical pumping conditions. It is cZzar
from these graphs that although the two characteristics are close to

each other in the beginning they move apart as the injected current
increases. This is due to the fact that in the beginning VS, = 1.58V :s
not far too different from VSy; = 1.55V and the device behaviour is rc:
very different from the symmetrical case. However, if the pumping cu-=ent
is increased by increasing VS to 1.65V the asymmetry becomes strong
resulting in a significant departure from the symmetrical case and t&=
device approaches in its behaviour to that of a nafrow single stripe

laser. Thus it is possible to achieve relatively more light output iz
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7 Injected current density into the

active layer (x10* A.m~2)
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Figure 7.5.1-2a Current density distribution injected into active layer
when the applied potential on electrode 82__ of a twin stripe
laser is fixed at VSp=1,55V while VS; is varied.The total
current per unit device length due to both electrodes injected

into the active layer is also listed in figure.
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Carrier density in the active layer (x102* m~?3)
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Light output (arb. units)
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in the asymmetrical case as compared with the symmetrical one without

facing any modal instability problem.

7.5.2 Effect of electrode spacing

Electrode spacing is clearly an important parameter as it controls the
electrical interaction between the two stripes. To illustrate the effect
of stripe spacing asymmetric pumping was employed such that VSy = 1.65V
and VS, = 1.55V. Figures (7.5.2-1a), (7.5.2-1b) and (7.5.2-1c) show the
injection current density, carrier density and field intensity distributicss
as a function of electrode spacing in the range 4um - 9um (between
electrode centres). It is clear that as the spacing is increased and

the électrodes become increasingly decoupled and the dip in current and
carrier density distributions increases. The peak value of flux is closer
to the strongly pumped electrode. The peak value of intensity is lower

for wide electrode spacing due to increased losses (or lower gain)
between the electrodes. This results in a lower stimulated recombination
term in the continuity equation and the peak value of carrier density

is higher as result. There is a small reduction in peak current density

" to match the reduced photon flux. Figure (7.5.2-2) shows the excess currer:
in the case of 6um electrode spacing (between electrode centres)
representing the conversion of carriers to photons via stimulated
recombination. It is seen from these graphs that strong coupling in

the narrow electrode spacing effectively centres the peak intensity
between the electrodes even with asymmetric pumping, but as the electrode:s
become decoupled the field prefers to remain gain guided close to the

more heavily pumped stripe, albeit with a reduced flux. There is a greater
téndency for modal instability with wider electrode spacing because

the two spatially separate regions of high gain will favour the support
of higher order modes such as the 1lst order mode and both the zero ordér

mode and first order mode will compete for the same gain., It will be
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Injected current density into the

active region (x10*A.m~2)
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Figure 7.5.2-1la The effect of electrode spacing on current density injected

into the active layer of an asymmetrically pumped twin

stripe laser.
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Carrier density in the active region (x102“m-3)
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Optical fi=1d intensity (arb. scale)
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Injected current density into the

active layer (x10 A.m"~ )
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further worsened if the device is symmetrically pumped.

7.5.3 Effect of the carrier diffusion coefficient

Figures (7.5.3-1a), (7.5.3-1b) and (7.5.3-1lc) show the current density,
carrier density and lateral field intepsity distributions for the
symmetrically pumped twin stripe laser with the standard value of diffusion
cofficient, Dypp = 68 cm?/s,used throughout this section. Similar set
of results are shown in figures (7.5.3-2a), (7.5.3-2b) and (7.5.3-2c)
when the diffusion coefficient is reduced to 20 cm?/s. Figure (7.5.3-3)
compares the light output vs. total injected current per unit device
Zength characteristics for the two values of diffusion coefficient,
Dapp = 68 cm?/s and Dgpp = 20 cm?/s. It is immediately seen from this
figure that the lower value of diffusion coefficient produces a lower
value of threshold current. However, the region of the I/L characteristic
over which the stable solutions are obtained is much smaller for the
lower value of diffusion coefficient. The pumping conditions are indicated
in figures (7.5.3-1a) and (7.5.3-2a). Instability in program occurs when
the gain for the higher order mode approaches that of the fundamental
mode. The reason for this is as follows. At low values of diffusion
coefficient carrier spreading laterally in the active layer is low, and
this also has an effect on current spreading. The net result is that
the local gain g(x) is increased for the same value of stripe voltage
as a device with a high diffusion coefficient, and therefore threshold
occurs at a lower current. However, the increased gain ensures that
modal instability will also occur at a lower current. It is seen that
Dymp a@cts as a stabilising influence. The reason for this is that a
large value of Dgpp allows carriers to be replenished in a local region
of exhaustion to a greater extent than with a small D,up, as shown in
figures (7.5.3-1b) and (7.5.3-2b). In other words, the carrier density

dip in between the electrodes is less for high value of Dp}, and this
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Injected current density into the
active layer (x10*A.m~2)
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Carrier density in the active layer (x102“m~?)
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Optical field intensity (arb. scale)
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Injected current density into the

active layer (x10*A.m~?)
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Carrier density in the active layer (x102“m~3)
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Optical field intensity (arb. scale)
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Light output (zrb. units)
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helps to prevent higher order modes from being generated due to the

favourable carrier density distribution.

7.5.4 Effect of R

R has been defined in section (7.2.2) as the ratio of ikte change in

the real part of the refractive index to the change ir imaginary part

of the refractive index. The solution Y(x) is very semsitive to the
value of R (2,24,25) and largely determines the étability of a laser
device because it sets the point at which gﬁin guidance is dominated

by index anti-guidance. R is commonly taken as a consiz=t quantity
varying from 0 (pure gain guidance) to 6. R can vary with carrier density
and wavelength, but in a somewhat complex manner (24). Tigures (7.5.4-1Db)
and (7.5.4-1lc) show the effect of R on the carrier dezsity distribution
and intensity distribution for R = 2 and R = 6 under sy—metrical pumping
resulting in a symmetrical injected current distributicn shown in figuré
(7.5.4~1a). When R = 6 the negative dependence of the rsal part of the
refractive index on the carrier density is higher and izerefore the dip
in the carrier concentration gives rise to a larger pezx in the real
part of the refractive index relative to R = 2. This gives rise to a
stronger self-focussing for the case when R = 6 and tris is clearly

seen by the field narrowing in figure (7.5.4-lc). This strong self-
focussing leads to trapped radiation which produces strorg hole burning
at high flux values as shown in the carrier density distribution of
figure (7.5.4-1b) and this destabilises the problem. It was found that
the larger value of R resulted in the solution becomirz unstable at

a much lower value of current than for R = 2,

7.5.5 Effect of passive layer resistivity

Figures 7.5.5-1a,b,c show the injected current density distribution,

the carrier density distribution and the field intensity distribution
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Injected current density into the

active layer (x10“A.m™2)

() W
- (@)
u o
. ) \N]
& laa )
o]
! <
o o e
n
.—l-
w ® i
& ‘ <
=] T
o I\
] .
. 0
o w
= o -
o .
& 3
N <
S ®
@ s
[ P
E n
e .
R
S |g=
y oo
ot .9
=] \ ITE)D
S
[\]
@
[eRe]
S &
- <
9 5%
l-l-
e} 5
% g
e
o EE
-b S~
©
- H &
—
] a o
> e =
- 0O ST NIRRT
Q4 \ono
o ¥ =3
] o
—~
J 16)]
(o} 29
« “ ~ N
1
® .-5

Figure 7.5.4-1la Effect of the coupling parameter R between index-guidancse
and gain-guidance, on the injected current density
distribution under symmetrical pumping of a twin stripe

laser.



=240~

Carrier density in the active layer (x102* m™?)
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. Optical field intensity (arb. scale)
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Injected currer: density into the

active layer (x10“ A.m™2)
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Carrier density in the active layer (x102* m~?)
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Optical field intensity (arb. scale)
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for the symmetrically pumped twin stripe laser with the (AlGa)As
confining layer resistivity as 0.6 ohm.cm (or 0 = 1666.6 ohm~'.m™?!)
for three different values of pumping current. Similar set of graphs
are shown in figures 7.5.5-2a,b,c when the resistivity of the confining
layer is increased to 0.6 ohm.cm (0 = 166.6 ohm™!.m"!). Analogous to
the single stripe case discussed in section (7.4.1), the threshold
voltage increases from VS1=VS3=1.49V to VS1=VS,=1.79V as the resistivity is
increased due io excessive ohmic voltage drop in the confining layer.
It becomes clszr from figure (7.5.5-3a) that the current spreading beyond
- the stripe eczs:z is reduced when the resistivity of the confining layer
is increased. iz seen in section (7.4.1) of the single stripe laser, the
gradient of ca~rier concentration near the stripe edges is relatively
steep when tke resistivity of the confining layer is high as shown in
figure (7.5.5-2%t), and thus the lateral field guidance is improved.
Consequently, z=z_though one gains in stability of the device by increasing
the resistivicy of the confining layer it happens at the cost of excessive

heat generaticr in the resistive layer due to ohmic loss.

7.6 Conclusicns

The chapter kzs outlined a numerical technique fof the self-consistent
modelling of si=gle and twin stripe laser devices. The results have

shown that beaz-steering of the optical near field results when the
electrodes ars ctumped asymmetrically. The results show that under strong
pumping conditicns it is not possible to steer the beam past the centre

of the device {tetween the electrodes) when the electrodes are symmetrically
pumped because cf modal instability. It is believed that the computer

instability is credicting bistability, which requires further investigations.

The diffusion ccefficient has also been shown to play an important role

in determining the stability of the device. Unlike a single stripe laser,
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Injected current density into the
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Figure 7.5.5-2a Current density distribution injected into the active layer
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Carrier density in the active layer (x10%2* m=?)
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Injected current density into the

active layer (x10* A.m~2)
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Carrier density in the active layer (x102%m~?)
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there exists a dip in the carrier density distribﬁtion corresponding
to the gap in between the two electrodes. If the diffusion coefficient
is low the threshold current is lower because of reduced current
spreading and improved lateral carrier confinement. However, the dip
in the carrier density distribution is quite significant and helps to
destabilise the solution at a lower value of pumping current than for

large values of diffusion coefficient.

If the device is pumped symmetrically and the spacing between the two
electrodes is increased the dip in carrier density worsens and causes
modal instability to occur at much reduced pumping current. However,

if the device is pumped asymmetrically with the increased spacing between
the electrodes the stability situation improves while the coupling

between the electrodes weakens due to reduced injection of carriers froz
the low pumped electrode. It is also shown that the‘resistivity of the
confining layer not only affects the current spreading in the confining
layer but also plays an important role in stabilising the device behavicur.

The parameter R is also seen to have an important effect on stability.
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8.1 Introduction

In chapter (V) the problem of coupling the electrodes of a twin stripe
laser via the p-type (GaAl)As confining layer was considered for the

case when lateral diffusion of carriers in the active layer was absent.
The model was used to give an efficient, reasonably accurate, estimate

of the terminal behaviour of the device, and estimates of the current
density distributions in the active layer. It was observed that symmetrical
pumping of the two electrodes lowered the threshold current density of

the device. It was further seen how the electrical coupling between the
electrodes was affected by the interstripe spacing, thickness and
conductivity of the p-type (GaAl)As confining layer. The aspect ratio

of the electrode width to the thickness of the p-type (GaAl)As layer

was also found to be an important parameter affecting current confinement.
In particular, it was shown that only 49% of the current injected into

the electrode remained confined to the electrode width at (GaAl)As/GaAs
heterojunction when the aspect ratio was 1.5, for a (GaAl)As thickness

of 2 um. The model also gave the potential distributions in the confining
layer for the single and twin stripe lasers which confirmed strong current
crowding at the edges of the electrodes and lateral current spreading.
Current density distributions of current injected into the electrodes

were also calculated which showed a highly non-uniform current density

distribution.

It was apparent from this relatively simple model that the assumption

of uniform current injection into the active layer beneath each electrode
was not realistic and that because of the coupling of the electrodes

via the resistive (GaAl)As layer considerable current was injected into

the active layer between the electrodes.
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In chapter (VI) the model of the twin stripe laser was refined to obtain
the solution of the carrier density distribution in the active layer
consistently with the current spreading in the confining layer. In this
model, lateral diffusion of carriers was assumed to occur, and the density
of carriers in active layer was controlled by the separation of the
quasi-Fermi levels in the active layer. This was used as the link between
the solution to Laplace's equation in the confining layer and the diffusion
equation. It was found, froﬁ this model, that the carrier density
distribution and injecfed current density distribution were now considerably

different, tecause of the effect of lateral diffusion.

The effects of interstripe gap, thickness of the confining layer, diffusion
coefficient and resistivity of the confining layer were exarined. It

was found tkat the effects of carrier diffusion and current spreading
conspired to give extremely high levels of carriers in the zctive layer
between the electrodes. Although the effect of aiffusion had only a

little effect on the current density distribution and the level of current
injected into the electrodes, relatively large céips in the current density
distribution between the electrodes were not matched by similar dips in

the carrier density. In the case of high diffusion coefficients dips in

the carrier density between the electrodes were found to be absent. This

corresponds to the region of maximum local gain.

A feature of the analysis concerned the current density distribution

of a single stripe laser. Here, dips were found in the injected current
density distribution for relatively wide electrodes (relative to the
thickness of the confining layer) and high values of diffusion coefficient.
It was found that this dip in current density increased as the electrode
width increased, and also as_the diffusion coefficient was allowed to

increase. The reason for this dip is due to several reasons —
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i) current crowding giving a non-uniform current distribution at the
electrode, and also at the active layer, ii) non-linearities along the

heterojunction and iii) carrier diffusion.

This refined model was found to give an accurate estimate of current
density and carrier density distributions of the laser upto threshold,
where the density of stimulated photons is small. Above threshold, however,
the interaction of the optical field with the carriers in the active

layer must be included. This can be inculded in the diffusion equation
describing the carriers in the active layer via a stimulated recombinatior

term.

The fully self-consistent model of the lateral behaviour of the optical
modes of a twin stripe laser was presented in chapter (VII). In this
chapter it was seen that under a wide variety of conditions of a
symmetrically pumped twin stripe laser the optical field was strongly
confined to the region between the electrodes, and of zero order
fundamental mode. For the case of a single stripe laser the maximum
optical intensity is directly beneath the centre of the electrode, and
again for a wide range of conditions the optical field has a zero order
fundamental modal shape. In this case gain guiding was seen to be a
predominant wave guiding mechanism. However, although gain guiding is
also a strong mechanism in the twin stripe laser, the shallow dips in
carrier density corresponding to the interstripe gap — reinforced by
stimulated recombination — also gave a self-focussed mode. It was seen
that as the stripes were driven asymmetrically beam steering of the
optical near field was observed. The optical field remained zefo ordered
throughout the beam movement. Under some conditions the beam was seen
to move-over a wide lateral distance between the electrodes. However,

if the electrode potential VS) was varied keeping the potential VS, fixed
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just at threshold, it was not possible to move the beam beyond the
symmetrical position. For the case where VS, = VSp where injected current
was well above threshold the zero order mode became progressively less
stable as the the injected current increased due to the competing higher
order mode. It was found that as the electrode spacing was increased
relatively large dips in the carrier density were observed. This led
to less stable fundamental mode solution and favourable conditions for

higher order mode.

A well known kink in the light/current characteristic was seen to occur
at a higher level of light output in a device with a larger resistivity
of the confining layer but this occurred at the cost of increased ohmic
loss in the confining layer. In contrast to the consistent solution of
carrier and field distributions for a fixed.generation rate (the solution
corresponding to a fixed injected current density distribution which

was responsible for the generation of carriers) the injected current
density was found to increase above threshold in this model due to the
stimulated recombination and therefore generation rate would increase
which would raise the level of the light output at which the kink in

light/current characteristic should appear.

8.2 Further Suggestions

Currently, many research workers are engaged in the research of multiple
stripe lasers (1 - 6). It will be worth a while therefore to extend the
model further to extract useful informations. Cne obvious extension of
the static steady state state consistent model is to analyse the dynamic
behaviour of the twin stripe laser which is believed to give a valueable
information of the device behaviour. Recently Shore (7) has reported

the effect of optical injection under one of tke stripes for different

injection currents. He has shown the rotation in the far field of the
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device by the optical injection. He has used in his analysis closed
form expressions for the injection current distrioutions based upcn the
approximations for the current spreading in the confining layer. It may
be useful to analyse this effect fully consistently, allowing the injection
of 1light into the active layer as a further controlling parameter. One
of the obvious advantages of tke beam scanning by optical injection over
that of electronic injection wcild be the fast response of the device.
Further research interests in tte development of high power phase-locked
laser arrays become evident frc= the recent publications (8 - 11).
Levine et al (3) had investigzzed experimentally the interaction between
only two lasers where each laser had its separate contact. The coupling
between the two lasers was decczstrated by them ty the formation cf
optical fringes produced by tke interference of radiating modes. Xapon
et al (6) have reported similar interference patterns between the two
adjacent gain-guided lasers due to the interferernce of radiating rcodes.
They have further pointed out tzat these effects are less important in
the case of index-guided laser due to negligible curvature in the wavefront
of the lateral radiating modes of the two adjacent lasers. Kapon et al (5)
have used Cosh™? gain distribution to calculate the near field of each
individual laser element of tkhe coupled array. It may be useful to extend
the consistent model of the twin stripe laser to that of an array of

laser elements.

Further work which néeds to be done is the extension of the model to
include thevpossibility of allowing two modes to coexist stably by
including the effect of stimulated radiation and a more sophisticated
solution to the optical problexm. The model could also be extended to
include the time dependent solution of the optical field so that a
detailed investigation of modal instability can be made for a wide range

of operating conditions.



-261-

References

9.

D.R. Scifres, R.D. Burnham and W, Streifer: "High power coupled

mltiple stripe quantum well injection lasers", Appl. Phys. Lett.,

42(2), pp.118-120, 1982.

D.R. Scifres, R.D. Burnham,C. Lindstrom, W. Streifer and T.L. Paoli:

"Phase-locked (GaAl)As laser emitting 1.5W cw per mirror", Appl.

Phys. Lett., 42(8), pp.645-647, 1983,

B.F. Levine, R.A. Logan, W.T. Tsang, C.G. Bethea and F.R. Merritt:

~ "Optically integrated coherently coupled Al Ga,_,As lasers",

E.

Appl. Phys. Lett., 42(4), pp.339-341, 1983.

Kapon, J. Katz, S, Margalit and A. Yariv: "Longitudnal-mode
control in integrated semiconductor laser phased arrays by phase
velocity matching", Appl. Phys. Lett., 44(2), pp.157-159, 1984.
Kapon, J. Katz, S. Margalit and A. Yariv: "Controlled fundamental
supermode operation of phase-locked arrays of gain-guided diode
lasers", Appl. Phys. Lett., 45(6), pp.600-602, 1984.

Kapon, C. Lindsey, J. Katz, S. Margalit and A. Yariv: "Coupling
mechanism of gain-guided integrated semiconductor laser arrays",

Appl. Phys. Lett., 44(4), pp.389-391, 198i.

K.A. Shore: "Radiation patterns for optically steered semiconductor

laser-beam scanner", Appl. Opt., Vol.23, pp.1386-1390, 1984.

D.R. Scifres, W. Streifer and R.D. Burnham: "High-power coupled-

multiple~-stripe phase-locked injection lasers", Appl. Phys. Lett.,
34(4), pp.259-261, 1979.

D.E. Ackley: "High power multiple-stripe injection lasers with

channel guides", IZEE J. Quantum Electron., Vol. QE-18, pp.1910-
1917, 1982.



-262-

10. J. Katz, E. ‘Kapcn, C. Lindsey, S. Margalit and A. Yariv: "Far-field
distributions of semiconductor phase-locked arrays with multiple
contacts", Zlectron. Lett., Vol.1l9, pp.660-662, 1983,

11, J. Katz, E. Kapon, C. Lindsey, S. Margalit, U. Shreter and A. Yariv:
"Phase-locked semiconductor laser array with separate contacts",

Appl. Phys. Lett., 43(6), pp.521-523, 1983.



-263-

APPENDICES



-264~-

Appendix A

The finite difference technique was used to solve the non-linear diffusion
equation in chapter (VI). The set of non-linear algebric equations obtained
was solved using the Newton-Raphson over-relaxation method. In this
iterative technique, consider a set of non-linear equations fy(N) = 0.
Representing equation (6.3-4) for each node, the solution for the carrier

density; N , is found using:

i
,Nifl =.Ni.-.ef] : fl(N : J

S A (A-1)
afy (1) /3N

where 68 denotes the over-relaxation parameter, whose value can be .
adjusted between 1 and 2 in order to optimize the number of iterations.
The actual value of §° is dependent to a large extent on the degree of
non-linearity in the problem. If 6° is equal to 1 it becomes an ordinary
Newton-Raphson technique. 1 represénts the ith iteration and % represents

the node number along the junction.

Equation (A-1) is solved iteratively for each node until an acceptably
small error (4 = 10™"*) is achieved for the absolute global change

between successive iterations.

Having determined the carrier density at the heterojunction using this
technique, equation (6.2-12) is used to find the potential distribution
along the heterojunction, V(R)Inew. This potential is then compared with
the estimated potential distribution found in step 1 (chapter VI). The
estimated potential at each node along the junction is now modified to

form a new estimate using the relationship:

VW= V@, ¢ V(L) o, (a-2)
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where O is the under-relaxation paraceter whose value is adjusted between
0.5-0.6 in order to obtain a stable numerical solution. With the improved
estimates of potential along the junction steps 1 and 2 (chapter VI)
are repeated to obtain the self consistent solution. This process is
repeated until the estimates of both N(&) and V(%,m) differ by only an
allowed small error between successive complete iteration cycles,

for all the nodes. The iterations are finally stopped when the following

stringent criterion is met:

2L s i+l

LIV gy = VW | 22 » - (a-3)
2=0
where &, is the acceptable error, typically 1x10™* or less, and i is

the ith iteration. Double precision computation was used throughout.

The choice of the allowable global error between iterations only shows
that the solutions are accurate enough for the mesh size chosen. Prior
to presenting a full set of soluticns to the twin stripe problem a trial
problem was solved repeatedly as a function of the mesh size to check
the accuracy of the technique. It was found from this preliminary check
that a mesh size of hy = 0.3 um and hy = 0.1 ym provided an accurate

solution, without placing unnecessary burdens on the storage requirements

of the computer.
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Appendix B

The "shooting method" of solution applied to boundary value problems

The optical model of the laser requires a solution to the second order

differential equation.
d?W/ax? + {KPEepp(x) - BPlw =0 (B-1)

subject to the boundary condition dy/dx = O at each end nodes of the
region under consideration. The problem is a standard eigenvalue problem
which results in a set of solutions Uy (x), Uy(x), U3(x) etc. representing
the lateral distributions of the optical modes corresponding to the
discrete values of B for which the solution is valid. In the technique

an initial value solution technique, using the boundary conditions at

one edge of the region as an initial condition, is applied iteratively

until the solution at the other boundary satisfies thazt boundary condition.

Let the region of interest, O € x € hy(M - 1) be discretised into (M - 1)
elements each of length h,. At the boundary nodes it is assumed that the

boundary conditions:

(@v/ax)], g = (@b/ax)] ) (qq) =0 (B-2)

exist.

In this problem it is also reasonable to assume that the optical field
has also decayed to a small value at the initial node corresponding to
x = 0 i.e. Y = 1073,

. - _th th .
If the solution of the m ~ mode at the £ node is kncwm or may be assumed
to have a value, Y (%), then the solution of the nt? rode at the next node

along, £ + 1 may be obtained to a first approximation by:
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U (2 + 1) = ¢ (2) + by (R) (B-3)

where (%) = {duy(2)/dx}

Equation (B-3) may be applied to each node in turn. However, it is
necessary to know Yy(L) at each node. This may be evaluated from a

difference version of the wave equation (B-1) as follows:

a2y, Ay up(a+1) - p(R)
& dx h,

= {K2Epp (241) - B2 hp(241) (B-4)

-

: where.émo is the initial guess of the value of B appropriate to the m™

mode. Thus Y (2+1) may be calculated as:
Ur(241) = Yp(R) = {k28pp(R41) - B2}y (R+1)hy (B-5)

The problem is started at the first node £ = 1 (i.e. x = 0). The bounizry
condition assumed is that $;(1) = 0 and Yy(1) = 1x1073(say). E,pp(2)

can be calculated from expression (7.2.2-2). As a consequence Yy (2) meyr
be calculated from equation (B-3) and 11){1(2) may be calculated from
expression (B-5). This is required to calculate y (3) from equation (3-3).
This interpolation procedure is carried out for each node. In this way

at the other end node, £ = M (i.e x = (M-1)h,), the calculated value

of w;(M) becomes:
) = g (1) - {kBore (M) - B2 b ()R, (B-6)

which may then be compared with the known boundary condition at this
point, namely yy(M) = 0. This is the second of the two boundary conditicnms

required to solve the second order differential equation.

If calculated boundary condition does not agree within the acceptable
tolerance a new value of E is chosen, Bml’ and the set of calculations

repeated. If Yy(M) does not satisfy the boundary condition for this new
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value of B then a further estimate of B is made using the following

strategy:

AWIE(M) ‘1’1;(”) lé:émo = wn;(“) IB=§ml
AB Bmo - Bml

(B-7)

wﬂ(M)I§=§ml
B2 = Bul - ~ : (B-8)
" {aus 0 /aB)

From this point the new estimate_of E is made automatigally by expression
(B-8) and the entire set of calculations for Yy (x) are repeated until

the boundary condition at node M is satisfied. Clearly only discrete
values of B allow a solution for Y(x). The technique is insensitive to
the boundary locations and is efficient. It is necessary, however, to
ensure that h, is small relative to any perturbations in ¥(x) to ensure
that compounding computational errors are small at the end node relative

to the allowable tolerance.

The technique is applied to each mode in turn. The value of Bmo and

éml required for initial conditions are estimated from the corresponding
eigenvalue in the eigen spectrum of the finite difference solution
discussed in section (7.3) expression (7.3-2). The modes of interest

are the modes with the positive imaginary parts occuring in a decreasing

order. Further, only excited modes where 2Im(8) = cavity loss, survive

and these, obviously, are the ones of interest.
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Appendix C

The strategy for adjustine Sn to achieve the threshold condition

In section (7.2.2) it was described how the optical model of the laser
couples to the continuity equation in the active layer via the stimulated

recombination term. However, optical modes are only supported if the

modal gain is equal to the total cavity loss for that mode. A critical

parameter in coupling of the two equations is the photon demsity, S,.

If the initial guess of the photon density gives value for the considered
modal gain larger than the cavity loss then expression (7.2.2-6) suggests
that the local gain, g(x), and hence carrier density must be reduced in
order that condition (7.2.2-5) is satisfied. To achieve this the value

of the initial estimated photon density must be increased further so

that the carrier density (and hence modal gain) is depressed by stimulated
recombination. Similarly if the initial guess for Sé gives a modal gain
less than the cavity loss then a new gueés below the initial value must
be chosen to reduce the stimulated recombination term. If the two separate
guesses of photon density are S, and Sé and result in modal gains G,

and GJ respectively then the new estimate for photon density S° can

be determined using the following strategy:

ASg S - 8§

- (c-1)
AGo  Go - G5
The new estimate of the photon density thus becomes:
., ASq
877 = 85 - = x (Go - Ciogs) (C-2)
AGo

where Cj,55 is the cavity loss.
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Thus all that is necessary to automate the correct selection of the value
So is to supply two initial estimates of the photon density and calculate
the two corresponding modal gains from which expression (C-2) may be
applied in an iterative form until the estimates of Sy relax to within

a specified tolerance and Gy * Cj,44-



