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ABSTRACT

'An investigation is carried out into the relation between
impact ionization threshold positions and the detailed band
structure of a number of semiconductors. The band structures of
the semiconductors investigated are reproduced, from the data
published by previous workers, by the Empirical Pseudopotential
Method (EPM). From these detailed band structures, the impact
ionization threshold positions are calculated by a method developed
in the present work, referred to as the Envelope Method, and are
compared with the values calculated by using two different
approximate band structure models.

From the EPM, the plane-wave expansions of the wavefunctions of
the electron states involved in each impact ionization threshold are
then calculated. These Qavefunctions are then used to evaluate the
sizes of the matrix element (overlap integral) of the coulomb
interaction corresponding to each threshold position determined.
The relative significance of the threshold positions, particularly
the lowest threshold positions, are compared with each other to
determine the lowest significant threshold position.

It is shown that it is dangerous to rely on impact ionization
threshold values determined by approximate band structure models,
and that realistic band stfuctures should be used which are in
substantial agreement with experimental data. It is also shown
that it is necessary to consider the sizes of the matrix element
of the coulomb interaction, since many impact ionization threshold
positions have corresponding matrix element sizes which are

insignificant.
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1, INTRODUCTION

Impact ionization by electrons in a semiconductor is the process
by which a high energy, or hot, electron in a conduction band can
interact with an electron in a valence band to produce an electron-
hole pair, If the ionization process does not involve phonons, then
both the energy and wavevector of the electron states involved must
be conserved., Thus, if a hot electron initially in a state H in the
conduction band (see figure 1l.1) is to move to a state I in the same
conduction band, then the second electron involved must have its initial
state somewhere on the broken curve of figure 1.1; that is on the curve
obtained by displacing the conduction band by the vector HI. Since this

displaced curve intersects with the valence band at V. and V,, impact

1 2°
ionization is possible in this case. The second electron is promoted
from the valence band to the conduction band in the process either from
V1 to C1 or from V2 to Cz. Now, instead of one current carrier, the
hot electron, there are three current carriers, two conduction electrons
and one valence hole. Impact ionization by holes is the similar process
involving holes instead of electrons, and producing two valence holes
‘and one conduction electron as current carriers.

Clearly, not all conduction states containing a hot electron can
partake in impact ionization (II), since the excess energy needed must
be at least equal to the energy gap. An electron which is not hot
enough to partake in II may gain sufficient energy from some process
to enable it to move into a state in which II is possible. The
minimum energy at which an electron can partake in II is the threshold
energy, and it is this parameter which is important in semiconductor
theories. There is not just one II threshold energy, but many due to

multiple conduction and valence bands, and multiple conduction band

minima., These other threshold energies, although higher, are no less



important than the lowest threshold energy. Also, for some

conduction bands,-there may be threshold energies beyond the

CONDUCTION BAND

VALENCE BAND

Figure 1.1 A phonon-less impact ionization process showing the
conservation of energy and wave-vector of the electron states
involved.

first after which II processSes are no longer possible, so that finité
11 windqws exist in certain bands.

In the theories of Wolff, Shockley and  Baraff [1-3] concerning
ionization rates and problems related to p—n junctions, and also in the
calculation of ionization rates and avalanche breakdown (4-8], the
threshold energy for II was taken as an adjustable parameter. Calcula-
tions of this parameter, even by using very simplified band structure
models, was not considered. Instead, this parameter was chosen to

enable good agreement to be obtained between experimental evidence and



and the related theories.

The first attempt to calculate II threshold energies was made
by Tewordt [9] whose treatment was later extended and generalized
by Franz [10]. These were not very realistic attempts as they
assumed parabolic energy bands in direct gap semiconductors, but
were better than chosing the threshold energy arbitrarily. A slightly
better attempt was made by Dexter [11], by conside:ing indirect gap
semiconductors, which gave rise to further II thresholds due to inter-
valley transitions. These methods were used by Antoneik, Beattie
and Hodgkinson [12-16] in their investigations of quantum yield, in
which II threshold energies are also important, rather than choose
II threshold values arbitrarily.

Although various values of II threshold energies were given by
the authors of references [9-16], no formulae by which these values
were calculated were explicitly quoted. A formula was first quoted
by Beattie and Landsberg [17], but was for parabolic energy bands and
a direct gap. Hauser {18] and Huldt [19] extended the formula to include
indirect band gaps, again for parabolic energy bands. Camphausen and
Hearn {20] also tried to extend the formula using a Kane [21] band
structure for the conduction bands, but apparently failed to succeed.

The main reasons for using parabolic energy bands instead of
realistic band structures was partly due to simplicity of use, but mainly
due to the lack of knowledge concerning realistic band structures of
semiconductors. It was this lack of knowledge which prevented any
calculations of II threshold energies for realistic band structures. As
a result of this, a wide range of II threshold energies have, in the past,
been used, as can be seen from the review article by Mahadevan et. al [22].

It is this lack of knowledge which prompted this research project. The



main purpose of this work is to investigate the relationship between
II threshold energies and the detailed band structures of various semi-
conductors, considering both the II threshold data and the corresponding
probability of the transitionm.
There are several methods now used to calculate band structures
(see for example, G.C. Fletcher 'The Electron Band Theory of Solids'
p.67£ff. [23]), of which those mainly used are the Augmented Plane-Wave
(A.P.W.) method, the Orthogonalized Plane-Wave (0.P.W.) method, their
variants which includes the Empirical Pseudopotential (E.P.) method, and
the Korringa, Kohn and Rostoker (K.K.R.) variational method. A brief
description of these methods is given in the introduction to Chapter 2,
outlining the reasons for using the E.P. method in the present work to
reproduce the detailed band structures of all the relevant semiconductors.
Since this project originated from interest shown by G.E.C., the semi-
conductors investigated are mainly those in which G.E.C. are interested;
namely Silicon, Germanium, 3C Silicon-Carbide and the III-V compounds.
The method of computing the band structures by the E.P. method is that
as used by Brust [24] and by Cohen and Bergstresser [25], and the band
structures of Silicon and Germanium are reproduced from the data of
Cohen and Bergstresser. The band structures of Gallium-Phosphide and
Gallium-Arsenide are reproduced from the data of Walter and Cohen {26].
Band structure calculations for 3C Silicon-Carbide have recently
been performed by Junginger and van Haeringen [27] and by Hemstreet and
Fong [28, 29]. The calculations of Hemstreet and Fong include an additional
term to the pseudo-Hamiltonian, that of a nonlocal, angular-mbmentumr
dependent, potential term, which at the time of calculation was thought
to be significant. The analysis of the E.P. method is given in Chapter 2,

including the analysis of the nonlocal potential as described by Hemstreet



and Fong {30].

Before any detailed calculations of 3C Silicon-Carbide were
performed, a pilot study was done to determine the effect of the
nonlocal term. The results of this pilot study, which are presented
at the end of Chapter 2, show that the nonlocal term has a negligible
effect, and also revealed a mistake in the work of Hemstreet and Fong.
Since the effect of the nonlocal term is negligible, it is not included
in the full band structure calculations of 3C Silicon-Carbide.

It is necessary to use realistic band structures in order to obtain
accurate calculations of II threshold energies and the associated transi-
tion probabilities. The accuracy required cannot be achieved if
approximate band structure models, such as those used by Tewordt and
Franz, are used. In order to achieve the required accuracy, the method
of determing II threshold energies as described by Franz is further
generalized to take into consideration the detailed band structures.

This method, which has been presented previously [31], is based upon

the conservation of energy and wavevector of all four electron states
involved in an II process, and is presented in detail in Chapter 3. The
method is referred to as the Envelope Method, for which the one dimensional
case only is investigated, but the complete generalization to three
dimensions is, in - principle, straightforward. Also presented in Chapter

3 are formulae for calculating II threshold energies using approximate
band structure models. Included is a discussion of the formula described
by Camphausen and Hearn.

While the method of calculating II threshold energies was being
developed in the present work, Anderson and Crowell [327] were investigating
II thresholds, also taking into consideration realistic band structures.

It was not known that Anderson and Crowell were investigating II thresholds



until the present work was well advanced. A brief description,

together with the advantages and disadvantages, of their method compared
with the method presented in this work, is given in the introduction to
Chapter 3.

The method of determining II threshold energies presented in this
work required analytic expressions of the energy bands being investigated.
The band structure calculations do not give analytic expressions of the
energy bands, but a set of discrete energy levels. To obtain the analytic
expressions of the energy bands, the required expressions have to be
fitted through the appropriate set of discrete energy levels. The method
of curve fitting, and the form of analytic expressions used, is given in
Chapter 4. One dimensional analytic expressions are fitted to the energy
levels concerned in each of the three principal symmetry directions
considered, the ' = X, ' = L and I' = K — X directions.

Associated with every transition there is a probability that the
process will occur. While it is of use to have accurate II threshold
values, it is also useful to know the probability associated with each
threshold. These probabilities depend basically upon three factors:

(1) The probabilities of the initial states being occupied and

the final states being empty.

(2) The transition probability.

(3) The density of states of the energy bands involved in a
transition for hot electron energies just above threshold
energy.

Calculation of the probability of occupation of the initial states
is dependent upon the process by which an electron gains sufficient
energy to enable it to partake in an II process. If the excess energy
is gained through thermal heating, then the probability of occupation

is the Fermi-Dirac probability, which is straightforward to calculate,



being of exponential form which is well known (for details see, for
example, P.T. Landsberg 'Solid State Theory : Methods and Applications'
p.266ff, [33]). If the excess energy is gained through the effect of
an electric field, then the probability of occupation is related to the
probability that the electron will travel the required distance without
an intervening collision with the lattice. The calculation of this
first factor is not considered in the present work.

The second factor, the transition probability, depends on the size
of the matrix element of the coulomb interaction between the states
involved in a transition. Calculations of the matrix elements are made
using the theory developed by Beattie and Landsberg [ 17], which has since
been widely used [34—37]. Their theory for calculating the matrix elements
of the coulomb interaction is based on the states of the crystal involved
in transitions being described by orthonormal, one-electron functions.

Only the electrons which partake in a transition are assumed to have

their states changed, while all other electrons are assumed to be unaffected.
The matrix element is thus obtained as a multiple sum over reciprocal
lattice vectors. This theory also gives reasons why Umklapp processes

can be considered negligible.

It is on the basis of this theory that other workers have always
considered Umklapp processes to be negligible in the past (see for example,
reference [ 16, 18 and 19] ). The present investiation reveals that
Umklapp processes are not necessarily negligible, and that some Umklapp
processes are far more probable than some Normal processes. The analysis
of the matrix elements based on the theory of Beattie and Landsberg is
presented in Chapter 5. Also presented is the calculation of the
coefficients appearing in the quadruple sum over reciprocal lattice
vectors, and a brief discussion on the importance of Umklapp processes.

The third factor is based on the number of states, in each energy
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band involved in a transition, which are able to partake in an
ionization transition for a hot electron just above a threshold energy.
No detailed investigations into this factor have been performed, but
Dexter [11], assuming parabolic energy bands, stated that the transition
probability increases quadratically with increasing energy just above
threshold due to this factor. In the past, it was not known whether this
factor proves significant in the total probability. In Chapter 6, a
simplified calculation of this factor is presented. Near the energies
of all the states involved in a transition, parabolic energy bands are
assumed, and a formula to calculate the number of states in which the
promoted electron, or hole, may lie?which are able to partake in an
impact ionization transition is presented, for a hot electron, or hole,
just above threshold. It is shown that this factor, for Silicon, is
unimportant when it is compared with the differing sizes of the matrix
elements.

Computational details of the calculations of the band structures,
threshold data and matrix elements are presented in Chapter 7. Detailed
results, with discussions, are presented in the following chapters:
Silicon in Chapter 8, Germanium in Chapter 9, 3C Silicon-Carbide in
Chapter 10, Gallium-Phosphide in Chapter 11 and Gallium—-Arsenide in
Chapter 12, The wavevector and energy are given for all states involved,
followed by the matrix elements and the error in energy conservation
associated with each threshold. The ratio between the II threshold
energy and the energy band gap is also given, together with the comparable
ratios calculated from approximate band structure models.

In the chapters on Silicon and Germanium, results from a preliminary
study [31] are also presented. This study investigates the sensitivity
of the various II threshold energies to the precise details of the band

structure. The band structures considered for Silicon are those of Cohen



and Bergstresser [25]) and of Stukel and Euwema [38], and for
Germanium are those of Cohen and Bergstresser and of Stukel [39].
These band structures are reproduced, as accurately as possible,
from the figures presented by the relevant authors.

The conclusions of this project are presented in Chapter 13,

together with some possible ideas for future work in this field.
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2. THE EMPIRICAL PSEUDOPOTENTIAL METHOD

2.1 Introduction

To obtain realistic band structures, the Schrddinger Equation
has, by some method, to be solved to a reasonable degree of accuracy.
The main methods now used to calculate band structures are the
Augmented Plane-Wave (A.P.W.) method, the Orthogonalized Plane-Wave
(0.P.W.) method, their variants which includes the Empirical
Pseudopotential (E.P.) method, and the Korringa, Kohn and Rostoker
(K.K.R.) variational method. While all these methods give reasonable
accuracy, there are advantages and disadvantages associated with them
which makes some of them unsuitable for calculating the band structures
of semiconductors.

The K.K.R. method [40, 41} and the A.P.W. method [42] assume that
the potential energy of the crystal is spherically symmetrical about
the atomic cores within what is termed as muffin-tin (M.T.) spheres,
and constant in the region outside these spheres. While this assumption
proves to be sufficiently accurate for metals, it is not particularly
accurate for semiconductors. For semiconductors with the zinc-blende
type lattice, the assumption of non-overlapping M.T. spheres about
both atoms in the unit cell [43] results in a relatively large volume
of the crystal in which the potential is assumed constant. This relatively
large volume of constant potential results in a loss of accuracy, and is
why the K.K.R. and A.P.W. methods are not used for semiconductors.
Attempts are being made to make these methods suitable for semiconductors
by adopting warped M.T. potentials, but while the convergence of the
methods are fairly rapid, the methods also involve perturbation methods,
which are computationally difficult to handle.

In the 0.P.W. method [44], the wave-functions representing the

valence electrons are approximated by a combination of plane-waves, chosen
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such that they are orthogonal to the wave—-functions representing

the core electrons. While this method is simpler to operate than
the K.K.R. and A.P.W. methods, it is harder to justify theoretically.
For example, it is not at all clear that the orthogonalized plane-
waves are the correct wave-functions for the valence electrons.

In the E.P. method, the complete wave-function is that of the
0.P.W. method, but written in a slightly different form. By substitu-
ting this wave—function into the Schrodinger Equation, it can be
reduced to a combination of plane-waves. In doing this an extra term
is introduced into the Schrodinger Equation which can be regarded as
an extra potential added to the crystal potential. The combination of
the two potentials forms a weak, slowly varying potential, referred to

as a pseudo-potential, for which only a few terms in the expansion of

the wave—function are needed.

Due to the drawbacks of the K.K.R, A,P.W. and O0.P.W. methods,
the E.P. method is used in the present work to calculate the band
structures of all the relevant semiconductors. The E.P. method, which
is based upon the 0.P.W. method proposed by Herring [44]), was introduced
by Phillips and Kleinman [45-47] and has since been developed by various
workers [48, 49]. Accurate band structure calculations for Siliconm,
Germanium and the III-V compounds have recently been obtained using this
method [24-26, 50-52], and some of these band structures have been repro-
duced in the present work. The potential used by the above workers is
spherically symmetric about the atomic cores, and the analysis of the method
of determining the matrix elements of the secular equations is presented
in the next section.

In the calculations of the band structure of 3C Silicon-Carbide by
Hemstreet and Fong {28, 29), the E.P. method is modified to account for

the lack of cancellation of the full crystal potential for p-valence
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states in the carbon cores. This modification takes the form of a
nonlocal, angular-momentum-dependent, repulsive potential, which is
added to the local, spherically symmetric potential, and the analysis
of this nonlocal term is presented in §2.3. The effect of this term

is thought to have a significant effect on the calculations of 3C
Silicon-Carbide [28, 29], since it has a significant effect on the
calculations of Diamond [30] and of Potassium [[53]. A pilot study in
the present work shows that the effect is negligible, and also reveals
a mistake in previous calculations of 3C Silicon-Carbide [28, 29]. The
results of this pilot study are presented in §2.7, and consequently the
nonlocal term is not included in the full band structure calculations.

Once the matrix elements of the secular equations have been
determined, the eigenvalues and corresponding eigenvectors then have
to be calculated. To obtain the degree of accuracy required, the size
of the matrix will be very large. As electronic digital computers
are used to evaluate the eigenvalues and corresponding eigenvectors,
the size of the matrix is restricted by the capacity of the computer
used, and also by the time consumption. Taking these factors into
consideration, it is necessary to reduce the size of the matrix while
retaining the accuracy obtained by the large matrix. This is done
by means of a form of perturbation theory introduced by Lowdin [54]
and used frequently in band structure calculations [ 24-26, 28—30].

The method is presented in §2.4, which includes the method of retrieving
the coefficients of the eigenvectors of the original matrix.

Several methods of calculating the eigenvalues and corresponding
eigenvectors of the secular equations are available, and the method
used in this work is presented in §2.5. While sections 2.2 to 2.4
are completely general, particular forms have to be chosen to reproduce

the band structure calculations of previous workers. These forms,
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together with some other computational considerations are presented
in §2,6.

As calculations of accurate band structures have been carried
out previously, and the methdd used in this work is a reproduction
of the efforts of previous workers, no account of the problems of
convergence or of accuracy at this stage of the calculations are
considered. The accuracy of the calculations are the same as those
of the results being reproduced.

2.2  Local Pseudopotential Analysis

The Schrodinger Equation can be written in the form

VZ oy o+ {E - V(r)} Y =0 (in atomic units) 2.2.1
where P are the wave—functions,
V? the kinetic energy,
V(r) the crystal potential
and E the energy levels.
In the O0.P.W. method, the wave-function is expanded in terms

of plane-waves, from which is subtracted a number of Block sums;

that is

V) = Za () 2.2.2
where wkm(r) = eikm°' - g o o bsk(r) 2.2.3
and ky = k + 2T K Ky 2 reciprocal lattice vector.

If ¢S(r) is an atomic wave-function, then the Block sum

bsk(r) =N e ¢S(r Rn) 2.2.4

where N 1is the number of unit cells in the crystal and R,

the positions of the atomic cores.

Combining equations 2.2.3 and 2.2.4, and rewriting them gives
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Y(r) = o(r) - % % a o Sk(r) 2.2.5
where ®(r) = I a e m' 2.2.6
If P(r) satisfies the Schrodinger Equation, then

V2y(r) +{E - V(r)} Y(r) =0 . 2.2.7
Using the result that

2 _ =

% ¢s+ {ES V(r)} ¢S =0
then, after some algebra, equation 2.2.1 can be written as

V2o +{E - V(r) - Vp(r,k)} & =0 2.2.8
where Vo (r,k) & =% (B-E_)b_ () f@ (¥) b. (r') ar' 2.2.9

R s s’ sk sk ) T

The quantity VR(r) can be regarded as an extra, positive
potential added to the crystal potential V(r). It thus reduces the
potential V(r), and consequently, in the region where V(r) is
rapidly varying, the cancellation is almost complete. This leaves a

small, slowly varying potential

Vp(r,k) = V(r) + VR(r,k) 2.2.10
which is known as the pseudo-potential.
This potential can be expanded in terms of a sum of local,
sphericallysymmetric terms VL(r) plus a nonlocal, angular-momentum-—

dependent term VNL(r); that is

(r) 2.2.11

Vp(r,k) = VL(r) + VNL

N
j=1.i§1 V. (r—Rj -T) . 2.2.12

where VL(r) =
The sum of local terms ri(r) is over the number of atoms per unit
cell, L, and over the number of unit cells in the crystal, N.

Rj + T is the position of the iTH atom (of L) in the jTH unit cell

(of N).
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Equation 2.2.8 can now be written

e1km.r ikp.r

V2 % a =0 . 2.2.13
m

. +{E—VL(r) —VNL(r)}%ame

The nonlocal potential term, VNL(r), is not considered here, as it
is analysed in the next section.

Consider then, the kinetic energy term and the local potential
term. Let the crystal have volume {2, and a unit cell of the crystal
have volume QO. Consider the matrix element of the secular equations
between the plane-waves with reciprocal lattice vectors k, =k+|(n
and knl==k+ Km7 and denote all terms between these reciprocal lattice
vectors by the suffices nm.

The matrix element of the secular equations for the kinetic

energy term of 2.2,13 is

T o= <k+K_ |V2|k+Km>

which becomes, after performing the differentiation and using the
orthogonality property of the plane-waves,

= 2
Ton= lk*+K [268 2.2.14

where anm is the Kronecker delta.
Consider now the local potential of equation 2.2.12. This can
be expanded in terms of reciprocal lattice vectors, K, by taking the

Fourier Transform, that is
_N.L -iK.r
v, (K) = QfQ v.(r) e dr . 2.2.15
Taking the unit cell in which Rj = 0, this can be written

L _ -iK. (r= T3) -iK. T;
vi (K) = 5; 15 Vi(r Ti) e 17 dr e 1

and by taking the inverse Fourier Transform,

L
= _]; _iK- T: iK.r
v, (r) = E{L ;L v;(K) e 1} e . 2.2.16
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Thus the matrix element of the potential of 2.2.16 is

= < >
Van k + Knle(r)|k+ Ky

which, by substituting 2.2.16 for VL(r), interchanging the order of
summation and integration, and by using the orthogonality property
of the plane-waves, gives

1L “i(K "K )T
Vg~ L if1 Vil TKy) e T Twl

[

om 2.2.17.

Combining equations 2.2.14 and 2,2.17 gives the matrix element

of the secular equation for the local pseudopotential, namely

2 1 T “ik K ). T
B o= e |28+ ) v k) e TR’ 202,18,
The form is left completely general here, but is expanded in §2.6

for the particular case used in this work.

2.3 Nonlocal Pseudopotential Analysis

The pseudopotential can be written, as was discribed in the
previous section, as a sum of local, spherically symmetric potentials

plus a nonlocal, angular-momentum-dependent potential, namely

Vp(r,k) Ve (r) + VNL( )
Since the nonlocal term is assumed to operate only on p states in

the core regions, it is chosen to have the form
Vi () = E{ z: PQ U (r-1. D P } 2.3.1.
. . ~ . . . . A*

The projection operator Pg and its hermitian conjugate P2 operate
only on the RTH spherical harmonic component around Ti. Ul(]r_Til)
is the corresponding core potential associated with the 2TH spherical
harmonic, and is assumed to be spherically symmetric about the atom
centred at Ti.

The matrix element of the secular equations for this nonlocal

potential term is then



\ =< Kk +K IV (r)|k+ K >
NL NL
2 f  QTi(kia) '{ 53 Py (- 1, )P, et (Kn) -1 g
2 Ja g Upllr Pese -
o o 2 i=1
L
A . - * _.
- Lo s {Pgel(k+Kn)'(r Ti)} KD T3 gy (e,
o 280 i=1
>({£q,el(k+xm)'('"'i)} LUK Ty g,
and hence
' 1 -i(K_-K ).T, A :
\ = = L X e n m i 1(k+K Der.)*
NL__ Q0 i _g{Pz e n 1} v (Jr;
o L
X{P el("“‘m)"i}dr. 2.3.2.
) 1

where r,o=r- Ti’ and the spherically symmetric potentials are

non—overlapping.

Now expanding the exponentials as an infinite sum of Bessel.

Functions, namely

©

el(k+K)‘r = 4T QEO ji.z(i)J jz(lk+Klr)YZj(eK’¢K)Y2j(e’¢)

where jg(r) is the spherical Bessel function of order £
and Ylj(e’¢) is the spherical surface harmonic,

A 2 .
then B, et KT _un v () 5, (kK| DY, (6,001, . (8,)
% | jE-g g 25 et ¥g 5 9o

and so, substituting 2.3:4 into 2.3.2 gives

1 Zi(k ~K ).T.

v == 7 e n m i

Nan Qo L1 450
' 2

L
z
=1

X{lm g (i) j2(|k+Kn|ri)YQlj(GKH,¢KH)Yzj(9,¢)}U2(|l"il)
i=2 |

L .
X{r & @ (R ER VAN CHIC VIR AN CIS] T
J==

2.3.3.

2‘3.4.

2.3.5

Separating the integral over -the unit cell centred on Ti into 1its
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radial and angular component, and rearranging the terms slightly

gives
L . R o
_ (4my? S KT f e : 2
Yy T g Dafpe momid 3g et [r )3 g w200, (] rDx} ar,
o £ _
L 2 x 2T . T 4 6
X Z T Y Gty Cpotiy) ) Jo Va3 @01y 00
=L k==2
X sin 6d6d¢ ) 2.3.6.

where Rc is the maximum radius around the atoms for which the potential
is non-zero.

Two properties of spherical surface harmonics can now be used,

namely
2T LT %
.l: .lr Ylj(e’¢)Y2'j'(6’¢) sin 6d6d¢ = Gll'djj‘ 2.3.7.
. \

% 22+1

4 :
and * . _

20+1 -
= ( I ) Pz(cos GKK,) | 2.3.8.

where Pz(cose) is the Legendre Polynomial of order £ and 6 ,

KK
is the angle between the reciprocal lattice vectors k+K and k+K'.
Using 2.3.7. in equation 2.3.6 reduces the double sum, over j and k,
to a single sum, over j, and then using 2.3.8. eliminates this single
sum to give, after slight rearrangement,

b
V. [ &= L (22+1)P, (cosH
NLpp & o 2

L
-i (Kn_Km) . Ti
KnKm) iil ¢ ><

Re | _
)gé. jz(|k+Kn|ri)j2(|k+Km|ri)U2(|ﬁindri 2.3.9

Again, the form is left completely general here, but is expanded

in §2.6 for the particular case used in this work. Combining equation
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2.3.9 with equation 2.2.18 gives the complete matrix element of the

secular equations, namely

L
_ 2 1 _ ~1(K ~Ky) . T
Hnm - lk+Km| snm * fhlzl ri(Kn Km) e " P

L

4m -i(K.-K_).T:
+ 5= 3 (241) Py (cos O g ) I e nomitid X
o X i=1
}
X 5yl e, iy 200, vy D22 ag 2.3.10
o
2.4 Perturbation Theory

The perturbation theory due to Lowdin [54] is based on the
variational principle. It is assumed that the wave-function can be
formed by a linear combination of known, orthonormal functions

N
(o)
= X G .
Y 5% v
The matrix element of the total hermitian operator H between the states

represented by the wave-functions Wé°> and wéo) is

- (o)* (o)
Hnm - f lPn me dt *

The coefficients Cm can be determined by the variational principle,

which gives the system of linear equations

(H_ -E§ )C =0 . 2.4.1.
m  om’ m

The condition for the existence of a non-trivial solution is that the
determinant of the matrix (HnmeGnm) is zero. To satisfy this condition,
the values of E must be the eigenvalues of the ﬁatrix Hnm’ and the
coefficients are then the corresponding eigenvectors.,

Now, let it be assumed that the linear combination of functions
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forming the wave-function can be divided into two distinct classes
A and B. Let the main interest lie in the states in class A, and
attempt to derive a formula by treating the states in class B as a

perturbation. Equation 2.4.1. can be written as

A ,
(BkH )C = ¥ H' C + % H' ¢C 2.4.2
nn n - nm m m nm m
where u' H (1-8 )
nm = nm nm

and the first sum being over the states in class A and the second sum
being over the states of class B.

Using the notation

hnm = Hnm/(E-Hnn) 2.4.3

equation 2.4,2 can be written as
A B

C_=rh' C +Zh' C . 2.4.4
m nm m nm

n m
The states in class B can now be eliminated by a process of iteration.
The coefficients Cm occurring in the sum over the states in class B in

equation 2.4.4 can be expressed by equation 2,4.4 itself, giving

aQ
[

A B A B
—Zh'C+Zh'{Zh'.C.+Zh'.C.}
m nm m m nm\ 1 ml 1 1 mnmi 1

A AB B B
=Ih' C +ZIR' _h'.C,+I:rh'h'.C. . 2.4.5
m nm m im nm ml 1 mi nmml 1

Repeating this process for equation 2.4,5, and subsequently by repeated

use, gives the formal expansion

B
A ] A B ' ) 1 ) ]
C =X h_ C + Z-{Z h.,h, + Z h.,h,.h, + ... }C 2.4.6
n nm m . ni im .., ni ij jm m
m m i i,]

Using equation 2.4.3, and introducing the notation



_.21_

B 1 1 1 1 1
H®. H. . H.. H,
U =H +1Z nl'Hlm + g Hnl HlJ HJm + 2.4.7
e T T “. (E-H..)(E-H,.) o
ii , ii 3]
equation 2.4.6 becomes
A Unm—Hnm 6nm
= P ———————————— 2..
Cn % E-H Cm 4.8
nn

For the two cases of n in A or B, there are the two corresponding

basic formulae

A

Z (U -E§ )YC =0 for n in A 2.4.9
nm nm’ m

m
A U o C

C =1 B for n in B 2.4.10

n E-H
m nn

The problem of determining the eigenvalues and corresponding
eigenvectors of the matrix in equation 2.4.1 is now reduced to deter-
mining the eiéenvalues and corresponding eigenvectors of the matrix in
equation 2.4.9. This now gives fewer eigenvalues and truncated eigén—
vectors, but the coefficients of the corresponding original eigenvectors
can be determined from equation 2.4.10.

2.5 Method of Solution of the Secular Equations

This work is primarily concerned in the investigation of impact
ionization threshold data, and not in investigating the calculation of
eigenvalues and eigenvectors of matrices. For this reason the method used
is chosen purely on grounds of convenience and reliability. There are
many methods available for calculating eigenvalues and eigenvectors of
matrices, of which most are programmed for use on an electronic digital
computer, Some of these methods are for use with general matrices, while
a few are for use only with symmetric or hermitian matrices. Since the
matrix here is hermitian, one of these latter methods is used, since they
are quicker and more accurate than the methods for use with general matrices.

In trying to find a method which has already been programmed for a

digital computer, it was discovered that most of these methods are programmed
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in computer languages other than the one used here. Since translation

is a lengthy procedure, these methods had to be rejected. There are

only a few methods available which are programmed in the correct computer
language. Of these, some are methods for use with general matrices, and
some are methods which do not include the calculation of the eigenvectors,
all of which are not suitable.

Of the very few methods remaining, the computer program available
for one of the methods is known to be unreliable, which virtually restricted
the choice to one method. The method used reduces the symmetric or
hermitian matrix into tri-diagonal form by the procedure due to Householder,
followed by the QR algorithm for determining the eigenvalues and eigenvectors
of a tri~diagonal matrix (see for example, J.H. Wilkinson 'The Algebraic
Eigenvalue Problem' pp 290-299, pp 515—521.[55]). All the eigenvalues of
a matrix are calculated using this method, and the eigenvectors can be
determined with very little extra effort.

However, this method, as programmed for the digital computer, requires
that the matrix is symmetric, and not hermitian. This presents no difficulty,
as a hermitian matrix can easily be transformed into a symmetric matrix.

This is done by writing the hermitian matrix as a sum of its real and

imaginary parts, that is

H=A+1i8B 2.5.1
where A 1is real and symmetric, and B 1is real and skew-symmetric.
If the eigenvalues of H are Kj with corresponding eigenvectors

W, = U, +1iV., then
J J J

and from 2.5.1

(A+1iB)W. = A. W. 2.5.2
i T3
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which can be written as

AW, - B(-iW.) = A, W. 2.5.3
J J J ]

Multiplying equation 2.5.2 throughout by (-i) gives
(B-1AW =-1 . W,
] J ]
which can be written as
BW, + A(i1W.) = A.(-iw. . 2.5.4
L+ ACIW) = A (W)

Thus, combining 2.5.3. and 2.5.4. gives

A -B)l[w W.

J = A | 3 2.5.5
B Al L-iw, Il -iw,

] j

This is now a symmetric matrix, twice the size of the hermitian
matrix, and thus having twice the number of eigenvalues and eigenvectors,
with the eigenvectors containing twice the number of elements. The
eigenvalues and eigenvectors occur in pairs of complex conjugates,
so instead of one eigenvalue Aj with corresponding eigenvector MG,
there is now two eigenvalues Xj and Xj with corresponding eigenvectors
W., -iw,} and {W.,iW.}.

J J J J

Since the eigenvalues of a symmetric matrix are all real, A. = Xj
and the eigenvalues are repeated. The corresponding eigenvectors can
be identified by comparing the top half of the vector with the bottom
half. If the top half of one vector is (i) times the bottom half, then

it corresponds to the first of the repeated eigenvalues. If the eigen-

vectors determined are real, then since

W. u. + 1iv.
J = J J
-iW, V. iu,
J J - J

this gives {Uj,VE} as the eigenvector, from which the original eigen-
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vector is the top half of the vector plus (i) times the bottom half.,

2.6 Some Computational Considerations

All the cubic semiconducting materials investigated in the present
work are of the diamond or zinc-blende type lattice, which have the
Face Centred Cubic structure with two atoms per unit cell. That is,
in sections 2,2 and 2.3

L = 2-601

S

and Q a’ 2,6.2
o}
where a 1is the length of the unit cube.

If the origin of the co-ordinate system is taken midway between the two

atoms, as in reference [24], then

a
Tl =3 (1,1,1) = ¢
2.6.3
= - = =t
and T2 Tl
and the potential can be written as a sum of a symmetric plus an
antisymmetric potential, namely
1
Ve Ky = vy Ky v, (kyk)!
1 2.6.4-
and V, (K"K ) = —Z-{VZ(kn-Km) - vl(Kn-Km)}

In the nonlocal potential term used by Hemstreet and Fong [28,29],
the core potential associated with the first spherical harmonic only

is allowed to be non-zero, for which the Legendre Polynomial
Pl(COS eKnKm) = COSs eanm 2.6.5

and the potential is of the form

A, r, e i for r, < R
u(r ) =¢ " * ¢ 2.6.6
0 for r, > R
i c
where, for silicon—carbide, A, = A and A, = O 2,6.7

1 2



Introducing the notation

R
Inm =’/Z ¢ j1(|k+kh|r)jl(lk+Kﬁ|r)r3 e Mar 2.6,8

and using equatioms 2.6.1 to 2.6,8 in equation 2.3.10 gives, after

rearrangement of the terms,

Bom = lk+kﬁ|26nm * {VS(Kn—Km)COS[(Kn_Km)J] 4-iVA(Kn;Km)Sin[(Kn—Kﬁ)JJ }

LN AInm cos GKnKm{cos[(Kn—Km) .f] - i sin[(Kn—km) .f] } 2.6.9

a3

This is the form of the matrix elements used in the present calcula-
tions. The perturbation theory used assumes that the plane-waves,

oLktK)r

, used in the calculations have been ordered such that for

n>m, |[k+K |2 > |k+K |?. Writing K_= EE-G , the matrix elements
n m n a n

representing the states in class A are formed from those reciprocal

lattice vectors Gn such that

.-

k+6 |2<E .
n 1

The matrix elements representing the states in class B are formed from

those reciprocal lattice vectors Gn such that
< |k+ 2 <8, .
E, < |k+6 |2 <z,

The effect of all other reciprocal lattice vectors is neglected. The

values of E1 and E2 are taken as those used by previous workers, which

for Silicon, Germanium and the III-V compounds (references [25,26])the
values E1 = 7 and E2 = 21 are taken, and for 3C Silicon-Carbide (references

[28,29]) the values E, = 10 and E, = 27 are taken,
The perturbation to the matrix elements representing the states in
class A takes the form of an infinite series of sums over the matrix elements

between the classes A and B. This series is truncated by Brust [ 24] after

the first two terms, to enable the calculations to be feasible. Thus
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equation 2.4.7 reduces to

B H'i H&m

= o1 im
Unm - Hnm * ? E-H.. 2.6.10

i ii

which is then used in equations 2.4.9 and 2.4.10 to determine the
eigenvalues and the original expansion of the corresponding eigenvectors,
The lowest four eigenvalues represent the valence states, while
the higher eigenvalues represent the conduction states. Since the
interest is in the valence and lower conduction states, the lowest eight
eigenvalues and corresponding eigenvectors only are produced. To enable
all the eigenvalues to be calculated at the same time, the eigenvalue
dependence of the matrix elements in equation 2.6.10 is removed. If
this is not done, the eigenvalues have to be determined individually by
an iterative proceedure. The dependence is removed by making the sub-
stitutions made by Brust {24], namely;

Off the diagonal:

E is replaced by E, an average of the lowest eight energy levels
at each point in the first Brillouin zome. The value E = 2 is used, as
is used by Brust,

On the diagonal:

E is replaced by E = Hnn = |k+KnI2’ essentially the kinetic energy
of the principal plane-wave in the expansion of the wave—function.

This gives the equations 2.4.9 and 2.4.10 as

] 14

A B Mni Fip
2{31_1 + 7 IEF_"H———z" E (Snm} Cm =0 2.6,11
w(nm ii
A B H', H! l c
_ ni im m 2.,6.12
and Cn =z 3Hnm * ; E-H.. s E-H
m i il nn
- 2 if n#m
vhere E );Ik > if n=m . 2.6.13

The first seven of the reciprocal lattice vectors have squared
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magnitudes O, 3, 4, 8, 11, 12 and 16, and only these are allowed

to have non-zero potentials. The symmetric structure factors for
|G|2 = 4 and |G|2 = 12 are zero, and so the corresponding potentials
need not be considered. However, to be consistent with the work of
Hemstreet, Fong and Cohen [30] in their calculations of diamond, the
symmetric structure factor for |G|? = 12 is set to unity. The antit
symmetric structure factors for |6|%2 =0, |G|2 = 8 and |G6|% = 16 are
zero, and again the corresponding potentials need not be considered.
The symmetric potential VS(IGI2 = 0) is made zero since it merely adds
a constant to all energy levels, Hence there are only five symmetric
and four antisymmetric form factors to be considered, namely

VS([G|2 = 3), V_(8), V_(11), V_(12), V_(16), V,(3), V,(4), V,(11) and
VA(12).

These nine local form factors, together with the three nonlocal
parameters, the lattice constant, and the values of El and E2 are the
only parameters required to perform band structure calculations. The
nonlocal parameters are A and o, for which the product A.l/G roughly

a .
represents the 'strength' of the nonlocal potential, and R,s the free
ion core radius.

All the details presented in this section are included in the computer
program written to calculate the band structures of cubic semiconductors
with the diamond or zinc-blende type lattice. Further computational

details are given in Chapter 7.

2.7 Results of the Pilot Study on the Nonlocal Potential Term

The nonlocal potential term, added to the local potential and kinetic

energy terms, as presented in sections 2,3 and 2.6, is

v = —— AInm cosenm{cos[(Kn—Km) .t] -i sin[(Kn-km).f] } 2.7.1
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where enm is the angle between the reciprocal lattice vectors

k +Kn and Kk + Km, and

=or

R
c . . 3
Inm =./: Jl(lk+Kn|r)J1(]k+Km|r) r’ e dr 2.7.2

where A, 0 and Rc are the nonlocal parameters.
In this pilot study to determine the effect of the nonlocal potential
on the band structure of Silicon-Carbide, the data of Hemstreet and
Fong [29] is used.

For 3C SiC, the lattice constant a = 4.352, and the local form
factors used are; VS(|G|2 = 3) = -0.419, V_(8) = 0.101,
Vs(ll) = 0,118, VA(3) = 0,001, VA(4) = 0,080 and VA(ll) = 0,051, all
expressed in Rydbergs, and all other form factors being zero. The non-
local parameters used are; Rc = 0.22, approximately equal to the free

~0.128 Ryd. and a = 1.028° %, The number

ion core radius of carbon, A
of plane-waves being treated exactly and through perturbation are
determined by the values E1 = 10 and E2 = 27, described in section 2.6.
These values are used in the computer program to calculate the
energy eigenvalues at selected symmetry points within the first Brillouin
zone. For this pilot study, the energy eigenvalues are calculated at
the symmetry points 'y X and L, and the key energy gaps are then determined.
These energy gaps are in disagreement with the energy gaps calculated by
Hemstreet and Fong, both with and without the effect of the nonlocal
potential, The energy gaps calculated here are'tabulated, together with
those calculated by Hemstreet and Fong, in Table 2.1.
Since there is disagreement in the values where there should be
agreement, the energy eigenvalues at I, X and L are calculated again,

but this time without the nonlocal potential (that is, with A = 0 in

equation 2.7.2). The energy gaps determined from the calculations, both
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with and without the nonlocal potential, are in very close agreement.
The maximum difference between the energy eigenvalues at the three

symmetry points considered are; at I, 0.000045eV: at X, 0.000045eV:
and at L, 0,000044eV, This apparent insignificance of the effect of

the nonlocal potential is consequently investigated.

Table 2,1

Key energy gaps of 3C SiC at I', X and L points (expressed in eV's)

Ti57T1 [T1s7 s kg7l | byl X57% | X5~ X5 T 71y | T 57X

Present

. 5.95 6.50 6.03] 9.19] 6.37f 9.41}) 4.39 2.36
calculations

Hemstreet and
Fong with

VNL

5,90 |.6.47 5.97]1 9.08] 6.13] 9.21] 4.39 2.33

Hemstreet and

Fong Without| 5.92 6.49 6.02] 9.18) 6.37| 9.40] 4.38 | 2.35

VNL

This is done by investigating the size of the matrix elements,
both with and without the nonlocal potential term included. Since the
effect of the nonlocal term, as calculated in reference C29], is reported
to be greatest at the point X, the energy eigenvalues at that point are
investigated. This is done both manually and by using the digital computer.
With the values of E1 and E2 given above, at the point X, 40 plane-waves
are treated exactly, and a further 110 plane-waves are treated through
perturbation theory.

All the matrix elements are obtained from the digital computer by
slightly modifying the computer program. The size of the integrals occurring

in the nonlocal potential terms are also obtained. Since the matrix is

of size 40 x 40, all the matrix elements cannot be obtained manually,
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Instead, only two matrix elements are fully investigated, one diagonal
and one off-diagonal element. The two matrix elements are also fully
investigated by using the digital computer. The diagonal matrix
element corresponds to the plane-wave having reciprocal lattice vector
(k+K._), where k= 2n (1,0,0) and K, = Zi (1, -1, -1). The off-

177 a >T 17 a 7’ ’
diagonal matrix element corresponds to the plane-waves having reciprocal
where K

lattice vectors (k+ K17) and (k+K = -2-2- (-2,2,0).

11)’ 11
From the computer results, it is seen that all the values of the

integral of equation 2.7.2 are small, and are in the range 2.05 x 10_6

Ryd to 1.83 x 10_5 Ryd. When the values of the integral are multiplied
by the appropriate constant and structure factors, a few of the nonlocal
potential terms become zero. The non-zero terms, of which there are many,
have values in the range 4.4 x 10—7 Ryd to 4.3 x 10“6 Ryd. These values
are computed to an accuracy of 10 decimal places. The values of the two
matrix elements calculated manually are calculated to an accuracy of 8
decimal places, and to within this accuracy are in agreement with the
computer calculations., The values of the integral, the nonlocal potential

term and the local potential term for both the matrix elements investi=-

gated are tabulated in Table 2.2

Table 2,2

Values of Matrix Elements (expressed in Rydbergs)

Plane-Wave §
.. numbers, n,m | Inm VNan o Han
n= 1/ 1.156 x 10 > | =-2.711 x 10 ° 3.4217
m= 17
_E‘:_iz _ 1.062 x 107> | (1+i) 1.291x10°° | 0.0

The size of the nonlocal potential terms are much too small to
have any significant effect on the energy eigenvalues as calculated

without the nonlocal potential, Correspondence with Professor Hemstreet
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was then entered into, explaining the results of this pilot study,
and asking for his reasons for the discrepancies between the two
sets of results. The ensuing correspondence has revealed that an
error in his calculation of the integral of equation 2.7.2 has now
been discovered.

The method by which Professor Hemstreet calculated this integral

was to calculate the two integrals

II(II]I-I) =./o jl(|k+Kn|r)j1(]k+lgnlr)r3 e_ardr

(2) f * . . 3 _—Or
and I 7 = . Jl(lk+-Kn|r)Jl(|k+km|r)r e dr
c

(1) (2)

and the required integral was the determined via I =1 -1 .
nm nm nm

The method of evaluating the above two integrals was by Gauss-Laguerre

quadrature. The accuracy of this method had previously been checked

for several representative matrix elements, but on further checks it

was discovered that the integrals I(l) and I(Z)

were very sensitive to
nm nm

|k+Kn| and Ik*-KnJ » the arguments of the Spherical Bessel Functions.
For larger values of h<+kn| and |k+Km|, the method of quadrature was
less accurate, thereby introducing significant errors into the value
of the integral Inm.
The values of some of the nonlocal potential terms were thought
to be as large as 0,001 Ryd., but were, in effect, the result of the
inaccuracies of the method used for computing the integrals. Hence,
Professor Hemstreet concludes that the nonlocal term probably does not
have any effect on the band structure of 3C SiC, and accepts the results
of this pilot study as probably being correct. Consequently, the

nonlocal potential term will not be included in the full band structure

calculations of 3C SiC,
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3. THE ENVELOPE METHOD FOR DETERMINING IMPACT IONIZATION
THRESHOLD ENERGIES

3.1 Introduction

Until recently, very little work has been done to determine

accurate impact ionization (II) threshold energies, E for realistic

T’
band structures. Previous calculations either assumed model band
structures, or used parabolic band approximations to the energy band
structures in the regions of the energy band extrema. These approxi-
mations are usually made by using suitable effective masses at the
conduction band minimum and the valence band maximum.

A graphical method of calculating values of ET has been provided
by Tewordt [9], which has been extended and generalized by Franz {10].
This method, while considering the detailed band structure for the
valence bands, assumes a parabolic conduction band based on the con-
duction band minimum. It was reasonable to make such approximations
at the time, since not much was known about the detailed band structures
of semiconductors. These approximations are no longer reasonable, as
the knowledge of the detailed band structures of a number of semiconductors
has become more extensive in the past few years,

Recent calculations of II threshold values have taken into
consideration the detail of realistic band structures. The method
developed in the present work is a generalization of the method developed
by Franz, for which the Franz parabolic construction is a special,
simplified case. This method is based on the conservation of energy
and wavevector of all four states involved in an II process, and is
presented in detail in sections 3.2 and 3.3 for electron II .processes.
The method applies equally as well for hole II processes.

When the present theory was in an advanced state of development,

it was learnt that other workers had also been considering the same
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problem., Anderson and Crowell [32] have developed a step-by-step
graphical procedure based on two separate criteria, Firstly, they
use the fact that the group velocities of three of the four states
involved in an II process must be identical at threshold. Secondly,
they invoke the conservation of energy and wavevector of all four
states involved in the process. Using this procedure, they have
obtained the first reliable estimates of B values for realistic band
structures of a number of semiconductors,

The accuracy associated with their results (} 0.2eV for each
value of ET) however, is not very great. The reason for this is
probably due to their using a simple graphical technique, as opposed
to applying the procedure to a digital computer, which could give
much greater accuracy. The method presented here, while also being
basically a graphical procedure is programmed for use on a digital
computer, and so the results obtained are more accurate than those of
Anderson and Crowell,

The method developed and presénted here, which has been ﬁresented
previously [31], is an alternative to the method developed by Anderson
and Crowell. It has some advantages over the method developed by
Anderson and Crowell, but it also has some disadvantages. Since both
methods are basically graphical, the associated errors are of the same
magnitude. Programming the method for use on a digital computer gives
greater accuracy, and will apply to both methods. However, an advantage
of the method developed here is that it is apparently simpler to program
for use on a digital computer,

In numerical calculations, analytic representations of the energy
bands are required for both methods. While good accuracy can be achieved

in curve fitting, it is well known that large errors may occur in the
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derivatives of such curves. The method developed by Anderson
and Crowell depends upon the derivatives of the energy bands, and
consequently may be subject to large errors in their threshold values.
In fact, threshold values which do not really exist may be found due
to errors in the derivatives‘of the energy bands. The method developed
here, while making use of the derivatives of the energy bands, does
not depend upon them to the same extent as does the method developed
by Anderson and Crowell, and is therefore not subject to the associated
errors to the same extent. This is another slight advantage of the
method developed here over the method developed by Anderson and Crowell.
The method developed here restricts the final states involved in
the II process to lie in the same energy band, although the method can
be further generalized to lift this restriction, but the method developed
by Anderson and Crowell does not have this restriction. Also, Anderson
and Crowell allow for the inclusion of the emission or absorbtion of
phonons in their method, which is not considered'in the method developed
here. These are two disadvantages of the method developed here over
the method developed by Anderson and Crowell, However, in the results
obtained by Anderson and Crowell, they have assumed the final states
involved in the II processes to lie in the same energy band, and have
not considered the emission or absorbtion of phonons in the process,
While reliable estimates of the value ET for realistic band structures

are calculated, values of E,, corresponding to approximate band structure

T
models are also calculated. The approximations made, and the approximate
formulae, are presented in section 3.4, which includes the parabolic

band approximation applied to indirect gap semiconductors, Some

computational considerations of the programming of the method developed

here for use on a digital computer are presented in section 3.5.
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Camphausen and Hearn [20] have also developed a method of
obtaining II threshold values. Their method is based upon a Kane
[21] band structure, but the formulae they quote do not appear to be
correct., These are investigated further in section 3.6, and a
simplified correct version of the formulae is presented.

3.2 The Basis of the Envelope Method

Impact ionization processes not involving phonons must conserve
the energy and wavevector of the initial and final electron states.
Thus, if a hot electron initially in a state, represented by the point
H, on a conduction band (see figure 3.1(a)) is to move to a state,
represented by the point I, in a second conduction band, not necessarily
the same conduction band, then the second electron involved, to move
to a state in the second conduction band, must have its initial state
somewhere on the dotted curve of figure 3.1(a). That is, on the curve
in E-k space obtained by displacing the whole of the second conduction band
by the vector ﬁ&. Since the displaced conduction band in figure 3.1(a)

intersects the valence band at the states V., and VZ’ impact ionization

1
is possible in this case. The second electron is promoted from the
valence band to the second conduction band in the ionization process
either from V1 to C1 or from V2 to C2'

For a fixed position of H, suppose that the final state of the
hot electron at I is allowed to vary within the second conduction band.
The displaced conduction bands corresponding to the different positions
of I then generate the shaded region of E-k space shown in figure
3.1(a). All states in the valence band lying within this region (that
is between V3 and VA) can therefore partake in impact ionization processes

with a hot electron initially at H.

The shaded region in figure 3.1(b) corresponds to a different,



Figure 3.1(a) The simple envelope generated by displaced conduction
bands, showing the position of the hot electron, H, above” threshold.
The dotted curve shows the conduction band displaced by HI.



i

Figure 3.1(b) The simple envelope generated by displaced conduction
bands, showing the position of the hot electron, H, at threshold.
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but important, position of H. As the position of H is varied,

the region covered by the displaced conduction bands moves relative

to the first‘conduction band, but its shape remains unchanged. Figures
3.1(a) and 3.1(b) illustrate this fact., They also show that when H
moves to lower energies, the minimum of the shaded region moves to
higher energies, and fewer states in the valence band are available

for impact ionization. Ultimately a position is reached when the lower
boundary of the shaded region just touches the valence band at one
point. This situation provides a threshold of the type being sought,
since a further reduction in the energy of the initial position of the
hot electron will not allow impact ionization to take place. The

threshold situation, determining the value of E is illustrated in

T?
figure 3.1(b). The lower boundary of the shaded region is tangential"

to the valence band at V, It is also noted that the final states after
ionization are both at I, and that the gradient of the second conduction
band at I is equal to that of the valence band at V. This is the first
criteria used by Anderson and Crowell,

The problem of finding thresholds is thus reduced to that of
determining the shape and position of the lower edge of the shaded region
for any initial position, H, of the hot electron. The independence
of the shape of this curve of the position of H greatly simplifies this
problem, The curve is just the envelope of a family of displaced con-
duction bands, and may be calculated for any known band structure. The
analysis presented here is for a one~dimensional band structure; the
generalization to a higher number of k-space dimensions is, in principle,
straightforward.

Let the energy-wavevector relation for the first conduction band in

which the hot electron is initially be given by
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E = ¢, (k) 3.2.1

Let the energy-wavevector relation for the second conduction band
in which both electrons are finally be given by

E = ¢,(k) 3.2.2
The displaced conduction band of figure 3.1(a) has the equation
E = ¢,0{k;=ky b) + 0,0, = ¢ (k) 3.2.3

where ki and kh are the k coordinates of the points I and H respectively.

The required envelope is obtained by finding, for any fixed k and k

h’
the minimum value taken by E in 3.2.3 as ki is varied. This will
be when BE/Bki = 0, that is when
' - L - -
¢y (k) = ) (k={k. -k, }) 3.2.4

Solving 3.2.4 for ki and substituting into 3.2.3 gives the equation
of the required envelope.

One obvious solution of 3.2.4 is always given when the arguments
are equal, that is when

1
ki = E(k + kh) 3.2.5

and the equation of the envelope is then given by

E=20, Gk +k ] -0 (k) . 3.2.6

272 h 1"h

This formula should be regarded as an E-k relationship in which the
coordinates of H appear as variable parameters. It shows that the
envelope is merely a magnified and translated version of the second
conduction band, to which it corresponds. This property can be seen
in figure 3.1. It can also be seen from the figure that the states
on this envelope may be found by joining the state H to states in
the second conduction band, and then doubling the displacement. That

is, by applying the displacement HI to each state I of the second
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conduction band. Equation 3.2.6 may be used to verify this fact,

It should be noted that the state H can lie in any conduction
band. It has been taken to lie in a different conduction band to
that in which both the final states of the electrons lie after
ionization, The state H could, for example,lie in the same conduction
band, that is on E = ¢2(k). The shape of the envelope of E = ¢2(k)
is not affected by the position of H, providing that both the final
states after ionization lie on E = ¢2(k), that is in the same conduc-
tion band. Thresholds involving interband transitions of this type
are thus within the framework of the envelope method. The extension
of the analysis to include more complicated interband tramsitions is
not considered in the present work.

Let the initial state of the hot electron be taken to lie in the
same conduction band as the final states of the electrons, that is
¢1(k) = ¢2(k). If a parabolic relation with a suitable effective
mass, m_, is appropriate for ¢2(k), namely

2

0" N2
E zmc (k km) + Em 3.2.7

with Em the minimum energy and km the corresponding wavevector, then
3.2.6 gives the envelope in this case as

2

= X - = 2 -
E T (k-{2k -k })? + 2E -E_ 2.3.8

where Eh is the initial energy of the hot electron. This is just
the "half-slope" parabola given by the Franz construction [10].

For more general band structures, there may exist solutiéns of
3.2.4 other than the obvious one given in 3.2.5. This is not the
case if ¢E(k) is a monatonic function of k. Thus, for a simple energy
band without inflexions, 3.2.5 gives the only solution, as in the

case illustrated in figure 3.1. This type of envelope is referred to
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as a Simple Envelope (SE), to distinguish it from other possible
solutions of 3.2.4 which are investigated in the next section.

These solutions in no way affect the basis of the method, which is
to vary the position of H until the shaded region becomes tangential
to the valence band. They merely make the lower boundary of the
shaded region more complicated.

3.3 The Envelope Method for Realistic Energy Bands

Careful examination of the minimization procedure covered in
equations 3.2.3 to 3.2.6, shows that the curvature of the second
conduction band is an important factor in the determination of
thresholds by the envelope method., To determine whether the solution
given by 3.2.6 is a minimum solution, it is necessary to consider the

curvature of the simple envelope. That is by considering

3%E 1 ., ,1
ST =5 % Gkt b 3.3.1

A minimum solution can only be given when this is positive. Thus
it is seen that the envelope given in 3.2.6 can only give a lower
boundary to the region of displaced conduction bands when ¢;(ki)
is positive.

Corresponding to any position of I in the conduction band given
by E = ¢2(k), there is always a simple envelope solution at a displace-
ment Zﬁi from H. This solution however, is of little consequence when
the curvature at I is negative. The lower boundary curve must be
provided by another solution, or solutions, of 3.2.4 in this case,

Any realistic conduction band will have points of inflexion, unlike

the simple case considered in figure 3.1. The analysis of the previous
section must therefore be extended, to consider the envelopes provided
by these other solutions.

Suppose a solution of 3.2.4 exists at a value of ki given by
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_1

where K 1is non-zero. Inserting this solution into 3.2.4 gives

¢§(—é—{k+kh} +K) = ¢;(-21-{k+kh} -K . 3.3.3

It is therefore seen that another solution of 3.2.4 also exists

for
= 1 -

Using either 3.3.2 or 3.3.4 in 3.2.3, it is seen that for both
these solutions, the envelope is given by

E = ¢2(-§- {k+kh} + K) + cbz(%{kﬂch} - K -6 (k). 3.3.5

This type of envelope is referred to as a Double Envelope (DE),
since each point on it is generated twice, for the two different
values of ki' Let these values of ki given in 3.3.2 and 3.3.4 be

denoted by ki and ki2 respectively. For each such pair of states,

1

I1 and 12, on the second conduction band with equal gradients, there
is a point on the double envelope given by 3.3.5. Relative to the

position of H, the coordinates of this double envelope point, V say,

are

By = 6,00) + 650k 5)

K 3.3.6

It
s
+
o

Vv il i2
It is seen that V is a vertex of the parallelogram H1112V. This
gives a simple geometrical method for locating double envelopes,
which is illustrated in figure 3.2,

This figure shows the shaded region of displaced conduction
bands together with all envelope solutions. The shape of the shaded

region is again independent of the position of H. The simple envelope



is again seen as a magnified version of the conduction band. As
expected, it does not provide the lower boundary of the shaded region
at all its points. Double envelopes are not generated continuously,

but are seen to terminate, by merging

Conduction band

DE

SE
DE SE

Figure 3.2 The simple envelope (SE) and double envelopes (DE)
generated by a conduction band with inflexions.

into the simple envelope, at points of inflexion of the latter. This
is to be expected from the previous remarks concerning the curvature.
The parallelogram shows that if V is a state in the

valence band, then there are two possible interpretations of the

ionization process. The hot electron at H can move to the state

or , while the valence electron at V is promoted to the state or_
respectively. The gradient of the double envelope at V is the same

as that of the conduction band at and . Thus for thresholds

arising from double envelopes, the group velocities of three out of

the four states involved are again identical. The example illustrated
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in figure3,2corresponds to an intervalley transition.

It is seen in figure 3.2 that there is a section of the
lower boundary of the region of displaced conduction bands which
does not correspond to either a simple envelope solution or a double
envelope solution, This is due to the finite length of the conduction
band being considered, and does not occur when the length of the
conduction band is assumed to be infinite, For the envelope method
to include Umklapp-type processes, it is necessary to consider energy
bands in an extended zone scheme. Band structures in the directions
of symmetry in K—space are periodic in such a scheme. In the principal
symmetry directions, the bands are also symmetric about the centre
of the first Brillouin zone.

Let the conduction bands represented by E = ¢2(k) be periodic
with period p and symmetric about k = 0,
That is,

b, (kD) = ¢, (k) 3.3.7

¢, (k) = ¢, (k) 3.3.8
Using 3.3.7 and 3.3.8, it is seen that the envelope solutions given
by 3.2.6 and 3.3.5 are periodic with period 2p, and symmetric about
k = O relative to the k coordinate of H, However, by replacing k
by k+p in 3.2.4 by using 3.3.7, it is seen that the solutions 3.2.5,

3.3.2 and 3.3.4 become

1
' = wwe
for S.E.'s ki 2(k+kh+p) 3.3.9
for D.E.'s k., = l{k+k +p) Tk 3.3.10
L] . i 2 h —-— L] L]

Substituting these values of ki in 3.2.3, the envelope solutions

3.2.6 and 3.3.5 become

E = 2, -i"—{k+kh+p}) - ¢, () 3.3.11



for simple envelopes, and
E = *2(7 |k+k*+p} +K) + *2(]4k+kh+p}-K)-*i(k*) 3.3.12

for double envlopes. Thus, it is seen that there are twice as
many envelope solutions as before, and when 3.2.6 is combined with
3.3.11, and 3.3.5 is combined with 3.3.12, the complete envelope

pattern is given by

E = 24~ (1%k+k*+np}) - 4~ (k") n=20,1 3.3.13
for simple envelopes, and

E = 4% (**k+k*+np}+K) + **(*-{k+k*+np} -K) - n =20,1 3.3.14

for double envelopes. By use of 3.3.7 and 3.3.8 it is seen that
the complete envelope pattern given by 3.3.13 and 3.3.14 has the
same periodicity and symmetry properties as the conduction band

E = (p*k). This is illustrated in figure 3.3

SE
DE

Figure 3.3 The envelope pattern generated by a conduction band
having period p, and symmetric about k = 0. The simple envelope
(SE) solutions are given by 3.3.13 and the double envelope (DE)
solutions by 3.3.14.
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3.4 Approximate Band Structure Models

While reliable estimates of impact ionization threshold energies,
ET’ for realistic band structures are calculated by the method

described in the two previous sections, corresponding values of ET

using approximate band structure models are also calculated., This is
done in order to obtain a comparison between the different values of
ET calculated, and so to determine the reliability of earlier estimates
of the threshold energy. Two approximate band structure models are
therefore considered.

The first approximate band structure model considered is that
for which the conduction band is assumed to be parabolic, of the form
given in 3.2.7, and the valence bands are treated exactly. The envelope
method then simplifies, and reduces to the method developed by Tewordt
and extended by Franz. This approximation is referred to as the Franz
construction, The method of determining the values of Ex by this method
is the same as that for the envelope method before simplification, and
is outlined in the next section.

The second approximate band structure model considered is that

of the effective mass approximation., Let the conduction band on which

the hot electron lies initially be approximated by the parabola

E _ B2 (k=k )% + E 3.4.1
1 2mCl n n

and the conduction band on which both electrons lie finally be
approximated by the parabola

2
= b7 ok )2

Here, (kn, En) and (km, Em) are the coordinates of the first and
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second conduction band minima respectively, with corresponding

effective masses m , and m

. Further, let the valence band be
cl c2

approximated by the parabola

E = ——~> k? 3.4.3
v

where m,; is taken to be positive.
Using 3.4.1 and 3.4.2 in the simple envelope equation, given by
3.2.6, for the energy bands ¢1(k) and ¢2(k) respectively, gives the

simple envelope in this case as
E__ (k) = L (k+k, =2k )2
nv 4mc2_ h “Tm

+ 2E -E 3.4.4
m

h
where (kh,Eh) are the coordinates of the initial position of the hot
electron., The condition for a threshold situation is when the envelope

just touches the valence band. That is when

Env(k) = Ev(k) 3.4.5
and 5 3
pn Env(k) = T Ev(k) 3.4.6

Substituting 3.4.3 and 3.4.4 into 3.4.5 and 3.4.6 gives

L6 (k+k, =2k )2 + 2E -E, = 2B e 3.4.7
4m h "m m h 2m e
c2 v
2 +2
and —E—- (k+k, =2k: ) = E_ k 3.4.8
2m h m m
c2 v
respectively, where Eh is given by
+2 2
Eh = "2"nT- (kh—kn) + En 304.9

cl
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Rearranging 3.4.8 to obtain an explicit equation for k, and then

substituting into 3.4.7 gives, after some simplification,

h2 (2 -k
m

2 _ -
h) - Z(mv+2mc2) (Eh 2Em) . 3.4- 10

Now rearranging 3.4.9 to obtain kh in terms of Eh’ and then substitu-

ting into 3,4.10 gives

2 _ - 2m _ 2 _ _
‘h {(ka kn) + v/_:ﬁ_‘z{l (Eh En)} = 2(mv+2m(:2)(Etl ZEm)

which, upon expanding the left hand side, and rearranging the terms,

gives

1
+ 2 _ _ 2 1y _ 2 _ _
)/ zmcl’ﬁ (2k -k ) (E -E) =5 ! (2k =k )% + m_; (B -E )

- (mv+2mcz)(Eh-2Em) 3.4.11

Introducing, for ease of writing and clarity, the notation

X = (ka - kn)
3.4,12
and M= (mv + 2mc2)
equation 3,4.11 becomes, upon squaring,
2 o = liw o2 2 o Vo -
2m (h*(E,-E )X = —h' x* + h%{m_ (B -E )-M(E -2E )} X +
— — — 53 2
+ {mcl(Eh E_)- M(E, 2EI.n)} 3.4.13

By expanding the square on the right hand side, and rearranging
the terms, 3.4.13 can be written in the form of a quadratic equation in

Eh which has the form

aEfl— 2bE, + c =0 3.4,14
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where a (M-m

2
cl)

1y
B= Mm_)(2ME -m _E )- =4 (M+m _)X
cl m cln 2 cl 3.4.15

(@]
[}

o2 2 1y o2
(2ME_-m E )? + H (ME_+m_E ) X + 7 ht x

Equation 3,4,14 then has the two solutions given by
b b2 c
E, = [—] * [-] - [—] 3.4.16
h al - a a

Substituting the values of a, b and ¢ given by 3.4.15 into 3.4.16,
the two values of the hot electron energy, ET’ corresponding to a
threshold situation are then given, after a little algebra and by

substituting back for the notation of 3.4.12, by the equation

m . (2E -E ) H2(2k_-k )?
cl m n m n +
E.=E-E =E + —~ + — 2| (m +m _+2m ,) _
T h m m (mv mc1+2mC2) 2(mv mc1+2mc2) v ¢l c2
1
2(m -m__+2m ) (2E -E ))?
v cl c2 m n 3.4,17
t 2/ m ) (@m +2m ) { L+ FTok % )°

Hence, when the conduction and valence bands are approximated

by parabolae, the values of E,, can be easily calculated from the

T
expression given by 3.4.17. It should be noted that the expression

gives two values of E_ for a given set of parabolic bands. The smaller

T
value corresponds to a threshold value of the type being sought, that is
the onset of impact ionization processes, while the larger value corres-
ponds to an anti-threshold value of the type described by Anderson and
Crowell. For hot electron energies greater than this larger value, impact
ionization processes are no longer possible; thus it is seen that for

parabolic energy bands, a "pair-production window'" exists as described

by Camphausen and Hearn.
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The expression given by 3.4.17 allows for two conduction bands
to be considered, but if only one conduction band is allowed for, as
is more often the case, equation 3.4.,17 can be simplified slightly.
By writing mg,=m, =m, Em = En and km = kn’ substituting into

m
3.4.17, and introducing the familiar notation U = c/mv, 3.4.17 can

then be written

A he? . , om (1+1)E_ )}
= (1+21) m +oop? (142u)? e O 3.4.18
Er =@ Bt 2m_ (1) ? (a3 - 217 (12 h2 k2
m

Since most approximate band structure models assume just one conduction
band based on the minimum, the expression given by 3.4.18 is used in

determing the values of ET.

For a direct band gap, km = 0 and Em = EG’ and then 3.4.18 reduces

to the well known form

T _ 1+2u

EG 1+p

E
L 3.4.19

It should be noted that for indirect band gaps, Em is only equal to

E, in the appropriate k direction.

3.5 Some Computational Considerations

In the analysis of the envelope method presented in sections 3.2
and 3.3, it is required that the final states of both electrons involved in
the ionization process lie in the same conduction band. In the computer
program written to calculate the impact ionization threshold values, the
final states of both electrons are taken to lie in the lowest-lying
conduction band. This assumption is also made in the calculations-—of
Anderson and Crowell. The initial state of the hot electron is, however,
allowed to lie in any conduction band, and all possible bands are investi-

gated to determine threshold values in addition to the absolute minimum
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threshold value.

The computer program is also used to determine impact ionization
threshold values by hot holes, which is done by simply reversing the
roles of the conduction and valence bands throughout. The final states
of both holes are then taken to lie in the highest-lying valence band.

The program is also capable of determing some anti-threshold values,

and hence some "pair-production windows'. The anti-threshold values
correspond to the situations where a valence band just touches the
uppermost envelope of the shaded region. The calculation of these anti-
threshold values, and hence pair-production windows, is not considered
in detail here, although a few anti-threshold values are determined.

To be able to apply the envelope method, analytic expressions of
all the relevant energy bands are required. These are determined by
the method described in Chapter 4, and are of the form of even Fourier
series. The computer program has been written to accept these Fourier
series, and also to accept parabolic expressions. This is done to allow
calculations to be performed of threshold values corresponding to the
Franz construction and to the effective mass approximation. However,
it is quicker, and easier, to calculate the threshold values corresponding
to the effective mass approximation by using a programmable, desk—-top
calculator, for which a simple program has been written to evaluate
equation 3,4.18,

The computer program operates in a chosen symmetry direction in
k-space, and makes full use of the periodicity and all symmetry properties
associated with that particular direction. The three principal symmetry
directions I'-A-X, I'-A -L and I'-2X-K-S-X only are investigated. The threshold

values are then determined by using an iterative procedure based on the

variation of kh. The energy bands in which the initiating and promoted
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particles lie are provided as data, together with a sensible first

iterate for kh’ as described in Chapter 4, The program then automatically
investigates the intersection of the envelope with the appropriate energy
band until a threshold situation is obtained. At each stage of the
iteration the program only calculates those parts of the envelope which
are appropriate.

The coordinates of any point on the envelope are determined through
equations 3.3.13 and 3.3.14., Points on the simple envelope with n = 0
are obtained by using the 'double displacement' property discussed in
relation to 3.2.6. Points on the double envelope with n = O are obtained
from the parallelogram vertex given by 3.3.6, using positions of equal
gradient on the appropriate energy band which are separated by less than
the distance p. The envelopes for n = 1 are calculated by a displacement
of those for mn = O through a distance p. Further computational details
are given in Chapter 7.

3.6 A Discussion of the Short Note by Camphausen and Hearn

In the short note by Camphausen and Hearn [[20], two equations are
derived by which impact ionization threshold values may be determined.
The derivation is based An a Kane [21] band structure for the conduction
band with the inclusion of arbitrary spin-orbit coupling energy. The

equations thus derived are

' 2 _ ' 2 _
k(Et){uk (Ft)} k(Ft){1+2pk (Ft)} 0
1 3.6.1
= - ' -2

E, = 1+2F_+ k(F)) u {k.(Ft)}
where all energies are measured in terms of the band gap, the function
k(E) gives the modulus of the wavevector of an electron of energy E in
the conduction band, the prime denoting differentiation, and Yy is the

ratio of effective masses mc/mv . In terms of absolute energies,
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where Eh and Ef are the initial and final energies of the hot electron
respectively.
It is claimed that for a parabolic conduction band, equations 3.6.1

give the familiar result

_ 1+2u
t 1+u

E

For a parabolic conduction band, the wavevector - energy relation

is given by
kE) = / —S-L E° 3.6.2

where E is measured in terms of the band gap.

Differentiating gives
1 e e -1
k'(E) =.2_ _...._...2........ E 3.6.3

Substituting 3.6.2 and 3.6.3 into the equations 3.6.1 and introducing

the notation

A=+2m E_/h2
c G

gives
i
3.2, 32
AHE ) -hy2
.Z~Fz— AFt {1+uAFt } =0
3.6'4.
o pagp, e SE
By = vk, LA

From work by Beattie and Landsberg [17] it has been shown that
for parabolic energy bands of the type being used here, in the same

notation,

1+2u and F u2

Be = T ¢ (L) (1+20)
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Substituting these values into equations 3.6.4 gives, after some

simplification, the equations

A% (1+p) 2 (1+2p) 3~ 4u{1+A(1+U)%(1+2U)%}2 =0

3.6.5
4
A= e
(1+1) * (1+20)
By substituting the second of these equations into the first equation
to eliminate A, and after a little algebra to simplify the equation,
an equation in U is obtained, namely
4u(l+2m)? (1+n) = (L+40)?% =0
This is a quartic equation in U, and can be written more explicitly
as
16p* + 32u% + 4p% - 4u -1 =0 3.6.6

Thus, for equations 3,6.1 to be consistent with each other for
parabolic energy bands, equation 3,6.6 must be satisfied., This is true
for only one positive real value of u (y = 0.37), and not for any positive
real value of Y as is required. It follows that since 3.6.6 is not
satisfied for all values of |, except just one value, then equations3.6.1
must be inconsistent. If they are inconsistent, and hence incorrept,
for the simplified case of parabolic energy bands, they must also be
incorrect for the Kane band structure considered.

To try to determine in what way the equations 3,6.1 are incorrect,
equivalent equations are derived using a slightly simpler band structure.
Instead of using a Kane band structure, the final states of the electrons
are assumed to lie in a parabolic energy band given by 3.6.2. The initial
state of the hot electron, however, is not restricted to lie in any

particular form of energy band. In the same notation as that of Camphausen
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and Hearn, the equations governing the conservation of energy and

wavevector are

k) = 2k(F ) - k(E ) = 0

3.6.7
Et =1 + 2Ft + Ev

To eliminate the dependence of the valence band from these equatioms,
the fact that the group velocity of the promoted electron remains

unaltered is used., This is equivalent to
' = 1!
K'E) = k' (F)

which, from 3.6.3 gives

and from 3.6.2 gives

—1
k(E) = 2k'(EE =20 k'(F)F,

Also, from 3,6.2 and 3.6.3, it is seen that

n

F

1 , -1
¢ = RED|K Gtu

and hence that

E = %-k(Ft){uk'(Ft)}_l
3.6.8

kE) = 1 k(E)

Thus, substituting equations 3.6.8 into equations 3.6.7 and rearrang-
ing the terms slightly, give the equations

Wk(E,) - k(Ft){1+2u}= 0
3.6.9

_ -1y -1
E, = L+2F +k(F )u {2k' (F )}
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Equations 3.6.9 are the equivalent equations to those given by
Camphausen and Hearn, but clearly are not in agreement with them.
Also, if parabolic energy bands are used throughout, it can be
verified that equations 3.6.9 are consistent and reduce to the well
known result of

= 1+2y
t 1+u
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4, CURVE FITTING TECHNIQUES AS USED FOR THE ENERGY BANDS

4.1 Introduction

The Empirical Pseudopotential Method, as described in Chapter 2,
is used to obtain the realistic band structures of the semiconductors
being investigated. A band structure is given as a set of discrete
energy levels, the eigenvalues of the secular equations, at as many
discrete points within the first Brillouin zone as is required. Thus,
for each energy band to be investigated there corresponds energy levels
at a set of discrete points in k-space. However, the method of determining
the impact ionization threshold values, as presented in the previous
chapter, requires analytic expressions for the energy bands being investigated.
Two different types of ekpressions can be obtained, using two different
methods of approach.

The first method which can be used is that by which simple inter-
polation schemes are employed to approximate to the energy of a particular
energy band. This method requires several different schemes to be fitted
to the available data points in order to obtain the energy values to
sufficient accuracy. More than one scheme is necessary because schemes
which are valid at intermediate points mnear the middle of the range of
data points are different from schemes which are valid at intermediate
points near the end of the range of data points. Thus, given a set of
data points, this method requires a test to be made to determine the
position of the point, at which the energy value is to be calculated,
in relation to the set of data points, Once this position is determined,
and the appropriate interpolation scheme is selected, tests have to be
made to determine which data points are to be used in the scheme, After
all these tests have been performed, the energy value on the required
energy band can then be calculated., It is seen that this method is a

lengthy and complicated procedure, and since it will be necessary to
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calculate the energy, on a given band, at a large number of points,
it is considered to be impracticable.

The second method which can be used is that by which one analytic
expression is fitted to each energy band, and which is valid over the
whole range of data points, This is done by first selecting a suitable
analytic expression, and then employing a suitable curve-fitting routine
by which a good approximation to the data points is obtained. Once a
sufficiently accurate analytic expression is determined, the calculation
of the energy, on any energy band, at any point within the range of data
points becomes a simple task of evaluating the appropriate analytic expression,
The method of determining the analytic expressions used in curve-fitting is
more complicated than that of the interpolation schemes, but interpolation
schemes are more complicated to use in order to calculate the required
energy of a given energy band than is the single analytic expression,

Since the analytic expression chosen will be used to calculate the energy
on a given energy band a iarge number of times, the method of curve-fitting
is chosen to approximate to the energy bands.

In a curve-fitting problem, there are several different methods by
which an analytic expression can be fitted to a set of data points, and
there are many different analytic expressions which can be used. The
method selected by which the analytic expressions are fitted to a set of
data points, is that of multiple regression, and the analysis of this
method is described in the next section, The particular form of analytic
expression to use is subject to an investigation between two possible
alternatives; a polynomial consisting of even powers only, and a Fourier
series consisting of cosine terms only. The results of this investigation
are presented in section 4.3, from which the even Fourier series is chosen
as the analytic expression to be used in the curve-fitting routine.

A curve-fitting routine can only ensure that the values of the analytic

expressions used are in good agreement with the data points used, but
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cannot ensure that they are in good agreement elsewhere, The classic
example of this arises when the number of coefficients in the analytic
expression is the same as the number of data points., A curve-fitting
routine is then able to fit the analytic expression to the data points
exactly, but it is most likely to be rapidly oscillating between the
data points, so giving a meaningless expression. This situation does
not arise in the multiple regression routine, as there has to be fewer
coefficients in the.analytic expression than there are data points.
However, to ensure no large deviations from the expected shape of the
energy bands occur, the resulting analytic expressions of the energy
bands are drawn by using a graph plotter attached to a digital computer,
A computer program is written to obtain the graphs of the analytic
expressions fitted to the energy bands, and also to draw three additiomal
graphs, which are used in conjunction with the method of determining
the impact ionization threshold values. The first of these additional
graphs dra&s the energy bands in an extended zone scheme together with
the reflection of the conduction band about the conduction band minimum,
and of the valence band about the valence band maximum. The othér two
additional graphs draw the envelopes of the conduction and valence bands
respectively, using the appropriate equations for the envelopes as presented
in the previous chapter. These additional graphs provide an approximate
graphical technique of determining impact ionization threshold values,
and is described in section 4.4, Some computational considerations required
in using the multiple régression routine are presented in section 4.5,
together with some considerations of the computer program written to draw

the graphs of the energy bands.

4.2 ‘Multiple Regression Routine
Multiple regression has several uses in statistics, of which one

that is widely used is as a method of fitting analytic expressions to
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sets of data points., The method employed expresses a dependent
variable, Y, as a linear combination of a number of linearly independent
variables, x, (i=1 to n), which are thought to influence the behaviour
of Y. This gives an approximation to Y given by the equation

n

» = b + Z b. X. 4.2.1
Y o . 1 1
1=1

A
where Y is the estimate of the dependent variable, and the bi are

the regression coefficients., These coefficients are estimated by

minimizing the expression

¥, - Y.)2 4.2.2.

m
T
=1l 7] h|

j
where the sum extends over all the observations, or data points, of
the dependent variable. The estimate of the regression coefficients
are just the least squares estimates.
When this method is applied to curve fitting, the analytic
expression of the curve being fitted is required to be in the form of
equation 4.2.1. This is achievéd if the analytic expression is naturally

of that form, or if it is in a form which can be reduced to that of

"4,2.1 by transformations. Thus, if the analytic expression of the curve

is a polynomial given by

n
y=b + I b, oz 4.2.3
i=1

. i, .
then the transformations X, =z (i=1 to n) are performed to give the

regression equation identical to 4.,2,1. Similarly, if the analytic

expression of the curve is an .even Fourier series given by

n
y=b + I

b. cos(imz) 4.2.4
° i=1 *

then the transformations X, = cos (imz) are performed to give the required

form of equation 4.2.1,
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Before the multiple regression calculations are performed,
various preliminary statistical calculations have to be performed.
Let it be assumed that tﬁere are n independent variables, or terms
allowed in the analytic expression of the curve, and let there be p
dependent variables, or energy bands, which are being considered. For
each variable let there be m observations, that is distinct points
within the first Brillouin zone at which energy values are calculated
on each energy band being considered. Then, using the notation that
xij is the jTH observation (of m) of the iTH variable (of n + p), the
preliminary statistical calculations can be performed.

The first statistical quantity calculated is the sample mean,

;i’ of each variable s s and is given by the equation

=

T ox (i=1ton+p) 4.2.5

. 2 . . . .
The sample variance, Si’ of each variable measuring the dispersion

of the observations about the mean is then calculated by

= re——— -— - 2 i =
Si ) jzl(xij xj) (1=1ton + p) 4,2.6

from which the sample standard deviationm, Si’ of each variable is
given., The next quantity calculated is the matrix of the sums of
squares and cross products about the mean, This matrix is given by
A = ja., wh r‘
foy,] vhere
m

aij = kEl(xik-xi)(xjk-xj) (i,j=1ton + p) 4,2.7

where the diagonal elements, 2y of the matrix contain the sums of
squares of the observations corresponding to the variable X, and the
off-diagonal elements, aij’ contain the cross products between the
variables s and xj, summed over the observations.

From this cross products matrix, the covariance matrix is calculated,
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for which an element, cij’ gives a measure of the coherence between
the variables X, and x.. When i = j the covariance becomes the variance

'of the variable X5 and the matrix is given by ¢ = [cij] where

Gij = aij/(m—l) (i,j=1ton+p). 4.2.8

The covariance between two variables can be related to the standard

deviations of those two variables by the inequality

- 8.5, €£¢c,. £ 8,85, 4,2.9
1] 1] 1]

By dividing cij by Sisj the covariance is transformed into the:unit
quantity known as the correlation coefficient of the variables x, and
xj. This coefficient must have a value in the range E—l, +I], and
is insensitive to the scales of measurement of the variables. The
correlation coefficients can be interpreted as being a measure of the

strength of the linear relationship between the two variables, and is

given by R = [rijI where

.C-- . -a"'
R R L] i,ij=1ton+ 4.2.10
T TR T aa P)
1] i1 3]

The last preliminary statistical calculation to be performed is
a simple regression of every variable, X onto every other variable,
xj, for which a corresponding simple regression coefficient matrix is

given by G = [gij] where
.. = a,./a.. i,j =1 ton+ 4,2,11
83 157253 (1,] p)

This gives the matrix of simple regression coefficients of rows on

columns, for which there is a similar matrix of ', simple regression

coefficients of columms on rows which is given by H = Ehijj where

h., = a (i,j =1 ton + p) 4,2.,12

../a..
ij ij’ ii
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The matrix H is just the transpose of the matrix G, since it is
seen from 4.2.7 that the matrix A is symmetric. These calculations
form the basis of the multiple regression method, from which the
multiple regression coefficients are calculated in a manner similar
to that described by Efroymson [56].

| This method considers one dependent variable at a time, and the
calculation of the regression coefficients is performed by a stepwise
procedure in which one independent variable at a time is either rejected
from or accepted to the regression equation. At any step in this
procedure, to determine whether an independent variable is rejected
from or accepted to the regression equation, a vector is calculated

from the equation

Vi = dildli/dii (1 =1 ton) 4.2.13

where £ is the subscript of the dependent variable. The matrix

D = B%jl is the correlation matrix whose rows and columns correspond
to the independent variables included in the regression equation by all
previous steps of the procedure. The vector, V, contains the change in
the cross products between all the independent variables, X:s and the
dependent variable, X5 being considered. A value Vi is negative if

the variable X, is in the regression equation and positive if the
variable is not in the regression equation.

The procedure first seeks to reject a variable, X; 5 from the regression
equation, which is done if the corresponding value of Vi is negative and
sufficiently small in modulus. Only if a variable is not rejected does
the procedure seek to accept a variable x; to the regression equation,
which is done if the corresponding value of Vi is positive and sufficiently
large. That is, a variable rejected from the regression equation causes

the least increase in the variance, while a variable accepted to the
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regression equation causes the greatest decrease in the variance.

The measure by which the values of Vi for the rejection or
acceptance of a variable in the regréssion are considered to be
sufficiently small or.large is known as the F-distribution. This
distribution, as used in multiple regression, is a measure of the ratio
of the variances of two different regression equations, or a measure
of the change in variance between tﬁo different regression equations.
The F-distribution is a basic statistical quantity (see for example,
G.B. Wetherill, 'Elementary Statistical Methods', pp 150-152.[57]).

Two different values of the F-distribution are used, one as a level

for rejecting a variable from the regression equation which has an
insignificant effect on the regression, and the other as a level for
accepting a variable to the régression equation which has a significant
effect on the regression. If these two values are denoted by Fr and

Fa respectively, then variables are rejected from or accepted to the
regression equation when IViI < Fr or Vi > Fa respectively, where the
Vi are given by 4.2.13.

When no independent variables are rejected from or accepted to
the regression equation by the above procedure, the current regression
equation gives the best approximation to the observations for the given
values of the F-distribution. The stepwise procedure is terminated at
this stage, and the regression coefficients are then calculated from

the equation

bi = izsﬁ/si (i =71 to k) 4.2.14

where k 1is the number of independent variables included in the
regression equation, excluding the regression constant. The regression

constant is then calculated from the equation
k

b =%, - T b, x. 4.2.15
o A . i1
i=1
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and hence the estimated value of the dependent variable, X
is given, for any values of the independent variables, by
substituting the values of bi’ as given by equations 4.2.14 and
4,2,15, into equation 4.2.1,

Once the regression coefficients are determined, other statistical
quantities can be calculated, most of which are not required for the

purposes of curve-fitting., The quantities of importance in curve-

fitting include the residual mean square error given by

_ .ol 2
RMS = —=== 57 d . 4.2.16
the regression estimates at each observation given by
A k
Xx,. = b + Z b, x.. (G =1 tom 4,2,17
23 o ., 1 1j
i=1
and the residual error at each observation given by
€. = X,. = X,. j =1 tom 4,2,18
] 23 23 s )

where % is the subscript of the dependent variable. The residual
error gives a guide to the accuracy of the regression equation, and
is kept as small as possible.

When the regression equation corresponding to one dependent
variable has been determined, together with all the associated
calculations, the multiple regression procedure then considers the
next dependent variable., Since all the preliminary calculations
are performed before the start of the multiple regression procedure,
they need not be repeated, and the procedure is repeated starting
from equation 4.2.13. When all dependent variables have been considered
and their corresponding regression equations determined, the procedure
is terminated.

4.3 Investigation of the type of Analytic Expressions Considered

There are two possible analytic expressions which are considered,

for use in the multiple regression routine, to be fitted to the energy
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bands; a polynomial consisting of even powers only, and a Fourier

series consisting of cosine terms only. Thus the polynomial is

given by
o 2n
y=a + ¥ a X Ogxgl) 4,3.1
o n
n=1
and the Fourier series is given by
o nmx
= z ——— S e Je
y=a * z a cos [ T ] 0<xg1l) 4,3.2

n=1
where £ 1is half the period of the curve being considered, which
for realistic energy bands can take the values £ =1 or 2 = 2,
In the curve-fitting routine, it is required to approximate to the
true curve as accurately as possible, and also to approximate to the
first and second derivatives of the true curve accurately. This is
done in order to obtain accurate threshold values as calculated by
the Envelope Method presented in the previous chapter, éince the
Envelope Method makes use of the derivatives of the energy bands.
The accuracy of the two analytic expressions considered, given
by 4.3.1 and 4.3.2, is investigated before deciding which one to use.
This is done by comparing the values, first and second derivatives

of the approximating equations with those of the curve given by
y = X sin(nmx) 0O<xg1l) 4,3.3

The first case considered is with n = 1 in 4.3.3, which corresponds
to simple forms of energy bands having at most two extrema values
and one point of inflexion. In order to fit the analytic expressions
given by 4.3.1 and by 4.,3.2 (with 2=2) to the function given by
4,3,3, eleven equi-spaced data points are taken for use in the multiple
regression routine described in the previous section.

The graphs of the resulting regression equations are shown in

figure 4.1(a), and both the graphs of the analytic expressions are
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seen to be in excellent agreement with the true curve. The graphs
of the first and second derivatives of the regression equations and
the true-function are shown in figures 4.1(5) and 4.1(c) respectively,
as good agreement is also required in these quantities, Indeed, it
is seén that the agreement between both analytic expressions and the
true function is very good. Thus, for energy bands having this sort
of shape, either of the two analytic expressions considered will
appfoximate accurately the true energy band, its first and second
derivatives.

The next case to consider is with n = 2 in equation 4.3.3,

which corresponds to a more realistic

Figure 4,1(a) Plot of curves fitted to the function

f(x) = x sin(mx), with 11 equi~spaced points between O

and 1,
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Figure 4,1(b) Plot of first derivatives of curves fitted

to the function f(x) = x sin(mx), with 11 equi-spaced points

between 0 and 1.

£

Figure 4.1(c) Plot of second derivatives of curves fitted

to the function f(x) = x sin(mx), with 11 equi-spaced points

between O and 1.
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shape for an energy band, having three extrema values and ét
least two points of inflexion. Again, eleven equi-spaced data
points are used in order to fit the analytic expressions given by
4,3.1 and 4.3.2 (again with 2 - 2) to the function given by 4.3.3.
The graphs of the resulting regression equations are drawn, togethef
with that of the true function, and dlso the graphs of the first and
second derivatives, corresponding to all three analytic expressions,
are drawn. These are shown in figures 4.2(a), (b).and (c) respectively,
.and it is seen that the results for the first two graphs are similar
to those of the first case; that is excellent agreement ié obtained
between the values of the functiomns, and very.good agreement between
" the corresponding first derivatives.

However, for the second derivatives, there is excellent agreement
between the Fourier series and the true function, but the agreement with
the polynomial is not particularly good. While it is in good agreement

over the smaller values in the

Figure 4.2(a) Plot of curves fitted to the function

f(x) = x sin(2mx), with 11 equi-spaced points between O and

1.
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Figure 4.2(b) Plot of first derivatives of curves fitted to

the function f£(x) = x sin(27x), with 11 equi-spaced points

between 0 and 1.

Figure 4.2(c) Plot of second derivatives of curves fitted

to the function f£(x) = x sin(2mx), with 11 equi-spaced points

between O and 1.
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range of values of the -graph, it is a bad approximation at the
higher values in the range. This seems to suggest that the
polynomial expression is not very good to use as the approximation
to the energy bands, but the Fourier series is an excellent approxi-
mation.

With only eleven data points being uséd, the multiple regression
routine allows at most nine terms to be taken in the analytic expression;
the constant, a s and terms up to and including m = 8 in equations
4,3.1 and 4.3.2., The accuracy of the polynomial expression may
increase if more data points are taken for use in the multiple
regression routine, and hence the number of terms allowed to be taken
in the analytic expressions. By taking 21 data points for use in the
multiple regression routine, the number of terms allowed in the analytic
expressions is at most 19. However, further restrictions in the
multiple regression routine allow at most 16 terms to be taken in the
Fourier series, and so the same number of terms is also taken in the
polynomial expansion.

The third case considered is thus that with n = 2 in equation
4.3.3, as in the previous case, but with 21 equi-spaced data points
used in the multiple regression routine. The procedure followed in
the first two cases is thus repeated for this case, and the resulting
graphs of function values, first and second derivatives are drawn for
all three analytic expressions, and are shown in figures 4.3(a), (b)
and (c) respectively. Once more, the curves corresponding to the
Fourier series are in excellent agreement with those corresponding
to the true function.

The curves corresponding to the polynomial
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Figure 4.3(a) Plot of curves fitted to the function

f(x) = x sin(2mx), with 21 equi-spaced points between

0O and 1.

Figure 4.3(b) Plot of first derivatives of curves fitted

to the function f(x) = x sin(27mx), with 21 equi-spaced

points between O and 1.
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Figure 4.3(c) Plot of second derivatives of curves fitted

to the function f(x) = x sin(2mx), with 21 equi-spaced points

between O and 1.

expression however, are in worse agreement with those corresponding
to the true function than in the previous case when only 11 data
points were used. The approximation is still good over the smaller
values.in the range of values of the graphs, but is not at all good
at the higher values in the range. rThus, by taking more data points,
and hence more terms in the polynomial expansion than were taken
previously, the resulting approximation to the true function is worse,
not better, than before .

Hence, from all three cases in which the Fourier series of 4.3.2
(with £ = 2) is used to approximate the function given by 4.3.3,
excellent agreement is achieved in the values of the fﬁnction, first

and second derivatives. The polynomial expression only gives excellent
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agreement in the values of the function, first and second derivatives
for the first case, and for each successive case the polynomial
approximation becomes worse. Thus, from these results, it is seen
that the type of analytic expression to use in approximating the
energy bands is a Fourier series, and the form given by equation
4,3.2 will be used in the multiple regression routine.

4,4 Graphical Method of Approximating the Impact Ionization
Threshold Values

When analytic expressions are used to approximate the energy
bands using a set of discrete data points, errors are certain to
occur. While these errors can be minimized at the data point, the
errors at intermediate points cannot be guaranteed to be as small,
There is a possibility that, while good agreement is achieved at
the data points, large variations may occur between the data points.
To ensure this sort of situation does not remain unnoticed, a graph
of the energy bands, together with all the data points, is drawn
using a graph plotter attached to a digital computer. If an analytic
expression is seen to draw an energy band which is not in agreement
with the energy band produced by the calculations of the author whose
work is being reproduced, then the analytic expression is rejected
and a new one calculated.

Once the analytic expressions approximating the energy bands
are obtained to sufficient accuracy, the calculation of the impact
ionization threshold positions can be performéd. The computer program
written to calculate the impact ionization threshold values, as
described briefly in the previous chapter, requires as input data, an
approximation to the initial k coordinates of the hot and promoted
electrons, or holes. These positions are provided by a graphical

technique, for which a computer program is written to draw the required
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graphs. This program also includes the procedure for drawing
the energy bands and data points which show whether the analytic
expfessions being used are sufficiently accurate.

The graphical technique requires three graphs to be drawn,
two of which are the envelope patterns of the conduction and valence
bands. The third graph is of the energy bands in an extended zone
scheme, extending over two complete zones, and additionally, a second
set of curves which do not occur in practice, These additional curves
correspond to the reflection of the conduction bands about the conduction
band minimum, and to the reflection of the valence bands about the
valence band maximum. These curves are the equivalent constructions,
in one dimension, to the reflected paraboloid constructed by Franz
Dﬁﬂ, and are constructed in a similar manner.

If a hot electron is initially at a point H in a conduction band
with coordinates (kh, Eh)’ then the lowest possible position that the
envelope, of the lowest lying conduction band, can take is given by
displacing the point on the envelope corresponding to the conduction
band minimum by the vector ﬁﬁ, where M is the position of the conduction
band minimum, from the conduction band minimum, If the coordinates of
the conduction band minimum are (km,‘Em), then for every point H in a
conduction band, there exists a point A, displaced from M by the vector

HM, with coordinates (ka-k 2Em-Eh) on which the minimum of the

h’
envelope is centred. The curve traced by all such points is the reflection
of the corresponding conduction band about the conduction band minimum.

The same procedure applies to a hot hole initially in a valence band,

for which the curves aré the reflections of the corresponding valence

bands about the valence band maximum,

The method of determining approximate positions of impact ionization

thresholds, as described by Franz, can now be employed. This method
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involves moving the minimum of the envelope around the reflected
conduction bands until a point on the envelope just touches a point

on a valence band. When this situation arises, the initial position

of the hot electron corresponds to a threshold position. The k
coordinates of the envelope minimum and the point at which the envelope
and valence band just touch are then read off the graph, from which

the initial k coordinates of the hot and promoted electrons are
determined. Once this is done, the same procedure is repeated for
another threshold situation, and is repeated until all possible thres-
hold situations have been determined. When all such threshold positions
have been determined, the values are used as input data to the computer
program which then calculates the positions more accurately.

4,5 Some Computational Considerations

A computer program to perform the multiple regression calculations
described in section 4.2 is provided as a standard program by I.C.L .
[}8] for use on their Systems 4 computers, and is therefore used in the
present work., The program is written in a manner in which the operations
required to be performed are specified by submitting the appropriate
data input., In addition to the basic multiple regression calculations,
other connected calculations are included, if specified, and the amount
of results produced is varied depending upon the data input. The two
main parts of the data input are the observations of the dependent
variables and the independent variables, and the required regression
equations,

The independent variable is the coordinate of the point in the
first Brillouin zone at which the energy values are calculated, and
is scaled to be the proportional distance from the centre of the zone
to the edge of the zone. That is, all values of the independent variable

lie between O and 1, and are chosen to be equi-spaced along the chosen
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symmetry direction in k-space. The dependent variables are the
energy values at these points in k—-space corresponding to the
energy Eands being investigated. The regression equation is supplied
as data by means of a series of transformations of the independent
variable., The number of terms allowed in the regression equation is
limited by the number of observations, but is limited even more by
the number of transformations the computer.program allows.

For the Fourier series given by 4.3.2, two transformations for
each- term are required to obtain the required equation., The first
transformation multiplies the value of the independent variable, x,

by the appropriate constant to obtain the new variable
u, = (1 =1 ton) 4,5.1

where £ takes the value of either 1 or 2. The cosine of this
transformed variable is then taken as the second transformation
to obtain another new variable

Zi = cos(ui) (1 =1 ton) 4.5.2.

from which the regression equation is given by

The number of terms allowed in the regression equation, due to the
restriction on the number of transformations allowed, is 16, that
is the regression constant plus 15 cosine terms.

The two different values of £ which are used in 4.5.1, provide
the choice of three different series which can be used to approximate
a given energy band. If the energy band has a minimum at the zone
boundary, then the series with £ = 1 is chosen to ensure that the
minimum is reproduced, and all values if 1 between 1 and 15 are

included. When the gradient of the energy band at the zone edge is
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not zero, then one of the series with £ = 2 is chosen. The two
possible series correspond to the choice of the values of i
which are taken, one series having all values of i between 1 and
15, and the other having only odd values of i between 1 and 29,

Once the regression equation has been calculated by the computer
program, the regression coefficients and the residual errors at each
observation are printed out. By studying the residual errors, a
guide to the expected accuracy is obtained, and a regression equation
is accepted as being sufficiently accurate at this stage of the
calculations if all the residual errors are less than about 0,01leV,
Further details of the multiple regression procedure are given in
Chapter 12 of reference [58], which includes some of the options
available for the computer program, All other options, including
the permissible transformations, are given in Chapter 2 of reference
[58], and in Chapter 1 is described how to run the program,

A computer program is written to draw the energy bands and the
other curves related to the calculation of the approximate positions
of impact ionization thresholds. This program requires as input data,
all the observations used in the multiple regression program, together
with the regression coefficients of the Fourier series corresponding
to all the energy bands being considered. Options are available to
specify which graphs are to be drawn by the program. Further computa-

tional details are given in Chépter 7.
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5. THE COULOMB INTERACTION MATRIX ELEMENTS

5.1 Introduction

Associated with every collision process in semiconductors,
there is a proﬁability of that collision occurring. One of the
factors occurring in the probability is the matrix element governed
by the states of the particles involved in the collision. For impact
ionization collisions, both by electrons and by holes, the matrix
element is that of the coulomb interaction between the initial and
final states involved. For the impact ionization thresholds determined
by the method presented in Chapter 3, the sizes of the corresponding
matrix elements are calculated by the method presented here,

The method used to perform these calculations comes from the
theory by Beattie and Landsberg [17] which has been widely used
(34-37]). In the analysis of the matrix element, which is based on
a one—-electron approximation to the wave-function, a quadruple sum
over reciprocal lattice vectors is obtained. By the reasons given by
Beattie and Landsberg, this quadruple sum can be reduced to the product
of two double sums, and Umklapp processes can be neglected. The
analysis of this method is presented in the next section, together with
a discussion of the conclusions reached by Beattie and Landsberg
concerning the importance of Umklapp processes. Some computational
considerations are presented in section 5.3, which include the simplifi-
cation made by Beattie and Landsberg.

In Chapter 2, the analysis of the method of calculating the
energy eigenvalues and corresponding eigenvectors, of any cubic semi-
conductor, at any point within the first Brillouin zone, was presented.
This analysis included the recovery of the original expansion of the

eigenvectors from just the basis expansion, which was done through the



perturbation theory develqped by Lﬁwdin [54]f The differences in
using the original full expansion of the eigenvectors and the basis
expansion is investigated in a pilot study. The results of this
pilot study are presented in section 5.4, giving the comparisons
between the two expansions used. The computational time required
for each expansion is also investigated, and ‘it is shown that the
original expansion of the eigenvectors can be neglected. On the
results of this pilot study, bhe matrix elements associated with

all impact ionization thresholds will be calculated by using the
basis expansion of the eigenvectors only.

5.2 Analysis of the Coulomb Interaction Matrix Elements

The method used in the present work to determine the size of the
matrix element corresponding to an impact ionization threshold transi-
tion, is that developed by Beattie and Landsberg [17], and later
reiterated by Landsberg [35]. The theory is based on the states of
the crystal involved in the transition being described by orthonormal
one-electron functions. Only the electrons which partake in the

transition are assumed to have their states altered, while all other

electron states are assumed to be unaffected. The perturbation operator,

U, can then have a non-zero matrix element only for the term involving
the coulomb interation. That is,

2
U(ry,r,) = ° exP{—AlrlfrZI}

€ l'1" 72

502.1.

where A~! is the screening radius, € is the dielectric constant
(equal to the square of the refractive index), and r and r, are the
initial positions (in real space) of the electrons involved in the

collision.

The matrix element, after summation over spin variables, can
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then be written as
* * . _ * *
Uis =j]'{w1(q)¢2(5)A21 l1'2('1)"’1('2)[&129(

XUCr, e b, (e, () d d,

M1 A21 - M2 A12 5.2.2.

where wl(r) and wz(r) are the states of the hot and promoted
electrons respectively before the collision, ¢3(r) and w4(r) are the
states of the hot and promoted electrons respectively after the
collision. Here, A21 and A12 are the spin variables, the possible
assignments for which are given in Table 5.1, using the convention
of Landsberg [35], that the initial state of the hot electron always
refers to "spin up".

Table 5.1

Spin assignments

Initial States Final States A21 Alz Uif
1 2 3 4
+ 4 4 4 1 1 Ml-M2 Like spins
4 ¥ 4 ¥ 1 0 M1
Unlike
4 ¥ ¥ + 0 1 M2 spins
4 other assignments 0 0 0

If the electron states are represented by a sum of plane-waves,

namely

| 1
Yo(r) =viza eo(kKun)er n=1,2,3,4. 5.2.3
n o DLm

where '<m is a reciprocal lattice vector and kK is a reciprocal lattice
vector within the first Brillouin zone, then the first integral of

the matrix element given by 5.2.2. can be written
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2 * -i(k,+K:). ¥ * -1 LT
M = E%sz{f S mitkeHKy) e ? ay . e i(ka+K;) 21X

_Alrl_rzl ) )
)(i;rt:?_r_ {z a , el(k3+Kz).f1 5 a el(k4+Km)'r2}d 4, 5.2
1 2 9] 3’ m 4,m

Performing a fourier analysis on the coulomb potential, that is

E;Ar _ 4 : e1k.r
r vV ok k2412

substituting into 5.2.4 and using the orthogonality property of

plane-waves, gives
* *
. 2 1,i%,3%3,2%,m

i9j ’Q‘sm lkl_k3+Ki_K,Q,|2+>\2

_ 4me?

M1 eV

o 8Ckyrhymkyk +K +Ky KK ) 5.2.5

Thus the matrix element is determined from a quadruple sum over
reciprocal lattice vectors and involving the coefficients of the plane-
wave representations of the electron states involved in the collision.
The terms in this sum can be rearranged in the fashion used by Beattie

and Landsberg, and written as the sum of three summations, namely

M =M, +M + M 5.2.6

where

for Mla Ki = K,Q,’ K: = Km
for Mlb Ki +KJ = KQ’ + Km’ Ki # Kz 5.2.7.

for MlC Ki + KJ # K,Q, +Km’ Ki #Kz
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Also, introducing the notation

*

Fi3= f 3,i #3,1
5.2.8
F, = I a,
26 7§ 8,i%,i
it is seen that the first sum of 5.2.6, Mla’ can be written
| F . F
_ 4me? T13 24 v
Mla = =V Ikl—kal"")\z 6(k1+k2 k3 k4) . 5.2.9

A completely similar argument can be applied to the second integral,
MZ’ of the matrix element, giving equations similar to 5.2.5, 5.2.8

and 5.2.9, namely

* Tk
. 2 . a, ., .8, .. .84, o.4
M, = Ll Zal 2R 6 krky gk, KKK
i,3,0m [k —k+K-K [ + A2 ]
5.2.10
F, =31 a
14 - % %1i %%,
1
5.2.11
F..=13a
23 7 2 %1 23,4
1
F T
_ 4me? 14 23 b
Mza = EV . 6(k1+k2 k3 k4) 502o12

L 12442
[k, k4| +\

where the terms in the sum M2 are rearranged in exactly the same

manner as those of Ml'

An approximation to the quadruple sum of 5.2.5 is thus obtained,
provided it can be shown that the sums M1b and M1c are negligible.
Beattie and Landsberg [17] give reasons why these sums can be neglected,
and Landsberg [35] gives the same reasons. The sum M1b can be neglected
because the denominator of 5.2.5 is then of the form |k1-k3+L]2, where

L is a non-zero reciprocal lattice vector, and is thus smaller than

M1a by several powers of 10, The sum Mlc’ which corresponds to Umklapp
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processes, can be neglected because of the same reason, and also
because, in direct gap semiconductors, the initial and final states
involved are pushed far from the band edge, and so are weighted with
very small Fermi-Dirac probabilities.

The assumptions concerning the sums Mlb and Mlc are made without

concerning the numerator of 5.2.5, namely the product of the plane-wave
coefficients a; .(1 =1,2,3,4)., If the coefficients corresponding to
’

the terms occurring in the sum M. are smaller than those corresponding

la

to the terms occurring in the sums Mlb and Mlc’

sums may not be negligible. In this case, the sums M1b and M1c may be

or may even be larger. Also,

then the latter two

of comparable sizes with the sum Mla’

there are many more terms in the sums M1b and M1C than there are in the

sum Mla’ and even if the coefficients corresponding to the three sums

are all of comparable size, then again the sums Mlb and Mlc may be of

comparable sizes with the sum M It is therefore erromeous to neglect

la’
these two sums purely on the grounds of a large denominator in all the
terms.,

The assumption that very small Fermi-Dirac probabilities occur in
the sum Mlc may be true for direct gap semiconductors with a parabolic
conduction band, but is not true for indirect gap semiconductors, or
for some direct gap semiconductors where the detailed band structure
is taken into consideration. In indirect gap semiconductors, the lowest
impact ionization threshold usually corresponds to an Umklapp process,
as can be seen from the results of Anderson and Crowell [32], and as
will be seen from the results presented later in this work. Also,
Umklapp processes are often interlaced with normal processes when the

threshold energies are ordered in ascending order of magnitude, even in

direct gap semiconductors. It is therefore erroneous to neglect the
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sum Mlc’ and also Umklapp processes in general, on the grounds of
being weighted with very small Fermi-Dirac probabilities. The most
important threshold energies are the lowest ones, and possibly those,
if any, which are close to the lowest threshold energy, irrespective
of whether they are Umklapp or normal processes.,

_ For these reasons, the sizes of the matrix elements as calculated
from 5.2.5. and 5.2.9 are investigated in a pilot study, the results
of which are presented in section 5.4. Consequently, the size of the
matrix element is calculated, for all impact ionization thresholds
determined, by both the equations, 5.2.5 and 5.2.9. A continual
comparison between the sizes of the matrix element, as calculated by

these two equation, is thus obtained,

5.3 Some Computational Considerations

In the analysis of the pseudopotential method presented in
Chapter 2, the one—electron approximation to the wave-function was made.
That is, the wave-function, wn(r), to an electron state with an energy
En is represented by a sum of plane-waves,
Wn(') “ V2 3 an’mei(k+Km).r
m
The pseudopotential method requires a system of secular equations to
be solved, for which the energies, En’ are given by the eigenvalues of
the resulting secular determinant. The corresponding eigenvectors
are then the coefficients of the plane-waves used in the approximation
to the wave-function. The same one-electron approximation to the wave-
function is also made in the analysis of the matrix element of the
coulomb interaction presented in the previous section., The coefficients,
an,m; appearing in the summations given by 5.2.5, 5.2.8 and 5.2.9 are

thus the eigenvectors, corresponding to the appropriate eigenvalues,
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as calculated by the pseudopotential method.

However, the analysis of Chapter 2 gives two possible expansions
of the wave—-functions which are used in calculating the size of the
matrix element. The first is just the expansion of eigenvectors
obtained from the basis matrix; which are the coefficients of the
plane-waves treated exactly in the pseudopotential method. The second
is the original expansion of eigenvectors obtained by applying the
perturbation theory developed by Lowdin as presented in section 2.4;
which are the coefficients of the plane-waves treated both exactly and
through the perturbation theory.

With many more plane~waves involved in the original expansion
than in the basis expansion of the wave-function, the corresponding
calculation of the matrix element of the coulomb interaction is a much
more lengthy process, The improved accuracy obtained by using the
original expansion is therefore investigated, for a few impact ioniza-
tion thresholds, in a pilot study. The results of this pilot study
are presented in the next section, which show that the increased accuracy
is not significant, and the resulting saving of computer time is wvast.

In the computer program written to calculate the size of the matrix
element of the coulomb interaction, only the first integral of 5.2.2. is
considered, and the calculation is performed in the two ways as given
by 5.2.5 and 5'2'9f These values are printed out, for comparison, together
with the values of F13 and F24 as given by equation 5.2.8. The electron
states involved in some transitions will be degenerate, so providing
more than one matrix element for that transition. When one, or more,
of the electron states involved is degenerate, all possible combinations
of individual states are investigated, This gives a range of sizes of

the matrix element of the coulomb interaction, corresponding to the
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different states in which the electrons lie. Further computational
details are given in Chapter 7.

5.4 Results of the Pilot Study

To obtain the size of the matrix element of the coulomb inter-
action corresponding to an impact ionization threshold, the plane-
wave coefficients forming the approximation to the wave-functions of
the electron states involved are first calculated by the method described
in Chapter 2. The original expansion of the eigenvectors is obtained,
from which the size of the matrix element is calculated by the two
methods described previously. Also, the coefficients corresponding
to the basis expansion of the eigenvectors are extracted from the
original expansion, and the size of the matrix element is calculated
by the same two methods as before. Since the original expansion of
eigenvectors is automatically normalized, the basis expansion, there-
fore, is not, but is normalized manually. The sizes of the matrix
elements calculated are presented in Table 5,2, indicating the type
of threshold investigated.

It is seen that the sizes of the matrix element corresponding
to the threshold in Silicon, as calculated by 5.2.5, are in agreement
to the same order of magnitude, while the sizes of the matrix elements
corresponding to the thresholds in Germanium, as calculated by 5.2.5,
are in excellent agreement. The threshold in Silicon is an Umklapp
process, for which the calculation of the size of the matrix element
by 5.2.9 gives a value of zero. This clearly is not in agreement
with the finite size of the matrix element given by 5.2.5 which is
of the same order of magnitude as the sizes of the matrix elements
for the thresholds in Germanium, Also, this matrix element éorresponds

to the lowest impact ionization threshold in Silicon, and is therefore
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weighted with a Fermi-Dirac probability which is larger than for
any other threshold.

In the calculations of Germanium, the first threshold investi-
gated is the lowest threshold corresponding to a normal process.

It is seen that the size of the matrix element given by 5.2.9 is not
in agreement with that given by 5.2.5, both in the original expansion
and in the basis expansion calculations, However, in the calculations
of the second threshold in Germainium, the sizes of the matrix element
given by 5.2.9 are in excellent agreement with those given by 5.2.5.
For all the results, it is seen that the agreement of the original
expansion calculations with the basis expansion calculations is
excellent.

The calculations of this pilot study are performed on an I.C.L.
System 4-50 and 4-70 computer., For the matrix element coresponding
to the threshold in Silic&n, the time taken for the basis expansion
calculations is between 2 and 3 minutes on a 4-50, while the time
taken for the original expansion calculations is about 14 hours on a
4-50 plus about 7 hours on a 4-70, which is the equivalent to nearly
70 hours on a 4-50. The computer program written to perform these
calculations, however, is inefficient, and is slightly modified to
improve the efficiency as much as possible. Even with the improved
efficiency obtained, the times taken for the two basis expansion
calculations and the two original expansion calculations of Germanium
are about 1 minute, 3 minutes, 37 hours and 45 hours respectively on
a 4-50. These differences in computer time are not unexpected, as
the number of terms summed by 5.2.5 is of the order of (20)4 for the
basis expansion calculations, and (110)4 for the original expansion

calculations.
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Cleérly, with the accuracy obtained by using the hasis
expansion, together with the vast saving in computer time, the
basis expansion of the eigenvectors only need be considered.
Therefore, on the basis of this pilot study, the sizes of the matrix
element, for all impact ionization thresholds determined, will be
calculated using the basis expansion of the eigenvectors, Also, it is
seen that the assumptions made by Beattie and Landsberg in deriving
the equation 5.2.,9 are not necessarily valid. It is seen that the
contribution to the size of the matrix element, M, of the two sums
My and M1c is not negligible for the first two thresholds investigated,
but is in fact dominant. Consequently, the sizes of the matrix
element, for all thresholds determined, will be calculated by using
the equation 5.2.5, as the values given by 5.2.9 are unreliable,
However, calculations by equation 5.2.9 are also performed to give

a continual comparison of the sizes of the matrix elements as calculated

by the two equations,
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6. THE INCREASE IN THE TRANSITION PROBABILITY JUST ABOVE
THRE SHOLD

6.1 Introduction

Another factor on which the probability of an impact ionization
threshold depends, is the number of states which are able to partake
in an ionization transition for a hot electron, or hole, just above
the threshold energy. This factor determines the rate of increase of
the transition probability as a hot electron increases its energy from
that at threshold, to an energy just above the threshold energy. No
detailed investigations into this factor have been performed, but Dexter
[11] has stated that, if parabolic energy bands are assumed, then the
transition probability increases quadratically with increasing energy
just above threshold.

In the past, it was not known whether this factor proves signifi-
cant in the total probability of an impact ionization threshold transi-
tion. For example, if two different threshold situations have almost
equal energies and almost equal matrix elements, then the threshold
for which the rate of increase of the transition probability is the
greater is more probable to occur than the other threshold. Since
there is this uncertainty in the importance of this factor on the total
probability, it is therefore investigated in the present work.

A simplified calculation of the rate of increase of the number of
valence states able to partake in impact ionization transitions for a
hot electron just above threshold is performed, the analysis of which is
presented in the next section. These calculations are based upon the
assumption that the energy bands are approximated by parabolae in the
regions centred on the states involved in the impact ionization threshold
transition. The parabolae are obtained from Taylor series expansions

of the energy bands involved in the transition. A formula is thus obtained
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by which the number of valence states able to partake in impact
ionization for a hot electron just above threshold can be calculated.
This formula is programmed for use on the digital computer, and
used to obtain graphs of the excess energy above threshold versus the
number of valence states able to partake in impact ionization. One
graph is thus obtained for each impact ionization threshold, and is
compared with the graphs corresponding to all the other thresholds.
Some computational considerations are presented in section 6.3, and
the results of this investigation for silicon are presented in section
6.4. From these results, it is seen that the rate of increase in the
number of valence states able to partake in impact ionization does not
vary greatly between thresholds. The small variation is thus considered
to be insignificant when compared with the variation in the sizes of the
matrix elements of the coulomb interaction. Since this factor in the
total probability of a threshold transition is insignificant in silicon,
it will not be calculated for the thresholds of the other semiconductors
being investigated.

6.2 Analysis of the Number of States able to partake in Impact
Tonization just above Threshold

Analytic expreséions in the form of even Fourier series are used
to represent the erergy bands in the calculations of the impact ionization
thresholds by the envelope method, as presented in Chapter 3. Once an
impact ionization threshold position has been determined by this method,
Taylor series expansions about each of the four states involved in the
transition can be easily obtained by evaluating the coordinates of the
states, and the respective first and second derivatives, Thus, for a
hot electron initially in a state with wavevector—energy coordinates
(kh,Eh), the first and second derivatives, E! and Eﬂ respectively, can

h

be easily calculated from the appropriate Fourier series used to represent
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the energy band. The Taylor series expansion about the hot electron

state, truncated after the quadratic term, is then given by
_l " - 2 1 -
Eih(k) > Eh(k kh) + Eh(k kh) + Eh 6.2.1

Similar Taylor series expansions are obtained for the final state
of the hot electron, and the initial and final states of the promoted
electron. Thus, if the coordinates, first and second derivatives of
the final state of the hot electron are (kl,El,Ei,EI) respectively,
and those of the initial and final states of the promoted electron are
(kv,Ev,E;,Ez) and (kz,Ez,Eé,Eg) respectively, then the corresponding

Taylor series are given by

L oonop 32 ' (e

th(k) > El(k kl) + El(k kl) + E1 6.2.2
= 1 v 2 " (o=

Eiv(k) 5 Ev(k kv) + Ev(k kv) + EV 6.2.3
=_1_n_2 L 2T

Efv(k) 5 E2(k kz) + Ez(k k2) + E2 6.2.4

Now, in any transition which does not involve interactions with
phonons or photons, the energy and wavevector of the states involved

must be conserved, that is

Eh + Ev = E1 + E2 6.2.5

]
P
+
=

kh + kv 1 2 6.2.6

Also, as was shown in the envelope method, the group velocities of
three of the four states involved in the transition must be identical
at threshold. Since the group velocity of an electron state is just

the first derivative of the energy-wavevector curve, this gives

'V 2! = ! L2,
E E1 E2 6.2.7



_94_

With the Taylor series approximations about the states
involved in an impact ionization threshold transition given above,
the equation for the double envelope, as presented in Chapter 3,

becomes

1 1
E (k) = th(i-[k+kh] +K) + Efvfzi['k+kh] “K) - E; (k) 6.2.8

where K 1is given by

Ef, %-[k+kh] + K) = E%V(%{k+kh] -K) 6.2.9

The double envelope given by 6.2.8 touches the valence band at the

point (kV,EV); that is

]
(@)

Eiv(kv) - Env(kv)
6.2.10

1
(@]

E} (k) - E!' (k)

By increasing the energy of the hot electron by a small amount,
SE, the position of the lower boundary of the double envelope is lowered
by the same amount. This causes the double envelope to intersect the

valence band in two points, k . and kv2’ which gives

vl

E. (k )-Env(kvl) = E. (kv2) - Env(kvz) =0 6.2.11

iv vl iv

The states in the proportion of the valence band lying above the envelope,

between the points kV and kV are now able to partake in impact ioniza-—

1 2

tion transitions. The number of states, N, involved is directly propor-
tional to the amount of wavevector space of the valence band lying above

the envelope; that is

Nk =k, 6.2.12

The value of Ik » and hence of the number of valence states

vl kv2|
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able to partake in impact ionization, can be obtained in terms of

the known parameters, (k, E, E', E"), of the electron states involved
at threshold, and the increase in energy, OE, above threshold of the
hot electron.

When the initial hot electron energy is increased by the small
amount 8E, its initial position moves to the new state with coordinates
(kh+6k,Eh+6E) in the conduction band given by 6.2.1. The double envelope,
given by equation 6.2.8, moves its position by the same amount, and its

equation then becomes

- 1 1 -X) -
E &) =E, G [k+kh+6k] +K) +E G [k+kh+6k] K) Eih(kh+6k) 6.2.13

where the relation between 8k and SE is determined from equation 6.2.1

and is given by
___1_ " 2 '
SE = 7 Ep Sk* + B} Sk 6.2.14

By using equation 6.2.9 with (kh+6k) in place of kh, K is eliminated
from equation 6.2.13. Thus, differentiating equations 6.2.2 and 6.2.4,

and substituting into the modified equation 6.2.9, gives

n]- — |__.|l_]_-_ - !
Elfi{k+kh+6k] + K kl) + Ej Ez(z [k+kh+5k] K kl) + E)

But since Ei = Eé, this equation reduces to the explicit expression

for K given:by

- "no_ " _1__ "no_ oan "Ny gn
K —[klEl k,Ey + 5 (k+k +8k) (B} El)]/(E1+E2) 6.2.15

Substituting this value of K into equation 6.2.13 gives

" "o o_ n
k+kh+<8k] Ey + kE] - kE)
E " " +
fh (E1 + E2)

"n_ " "
. s k+kh+6k.]E1 klEl+k2E2 s e +61)
fv (E; + Eg) ih h

Env(k) =
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Using equations 6.2.1, 6.2.2 and 6.2.4 in the above equation, and

invoking : the conservation of energy and wavevector

and the equal

group velocities as given by equations 6.2.5, 6.2.6 and 6.2.7, gives,

after simplification

npn _ 2
E1E2[k+6k ka

E_ (k) = oot
nv 2(E1+E2)

2 'h

Now, to determine the number of valence states lying above this

envelope, the values of kV and kV

1 2

determined from equation 6.2.11. Thus, employing equations 6.2.3
and 6.2.16 in equation 6.2.11, an equation is obtained which, after

simplification, can be written in the form of a quadratic equation

in (k-kv), which has the form

- 2 - =
a(k kv) + 2b(k kv) +c=0

1] "
)

[1] 1"
El + E2

where a

E" E" Sk
p o L2
- T LT ]
El + E2

E" E"
1 "2 - " 2 @t
-—-—E.l. 7 EE Ey Sk* + 2(E1 Eh) Sk

and c

Equation 6.2.17 has the two solutions given by

oo = [ /R

where a, b and ¢ are given by equations 6.2.18.

These two solutions correspond to the values kV

therefore the difference between the two solutions [k

given by

' - __:_]'_ll 2
+ E1[k+6k kV]+ E - 5 Ep Sk

- E'S8k

1

h

and k
v

-k

vl v2|

used in equation 6.2.12 are

2’

is

6.2.16

6.2.17
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ko 7k ol = 2[[%]2 - [-g-]]z 6.2.19

Thus, by substituting the values of a, b and ¢, given by equations
6.2.18, into the equation 6.2.19, after a little algebra and

simplification, and by using equation 6.2.14, gives the equation

8(E"+E"> [EIEE(E;_'_EH) E"E"(E"‘FE")]
lk -k I TR (RV+E" "TEVE'-E" (E"+E" SE -
vl “v2 [EEE +E)] E[EEE +E)]
E"E"E"E'
1 2vh
[ [E"E" E" "+E")]+ E! ] Sk 6.2.20

But, by equation 6.2.14, 8k can be eliminated from equation 6.2.20,
since

- 1
! 1\ 2 " 2
E, + [®)* + 28} SE]

[
B

Sk = 6.2.21

Taking the root which gives the smaller increase in k for a

corresponding increase in E, that is taking the positive square

1

h

if Eé is negative, and substituting into equation 6.2.20, gives

root sign if E' is positive, and the negative square root sign
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This equation gives the value of lkvl-k for any value

v2|
of OE above the threshold energy. That is, the proportion of
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wavevector space of the valence band able to partake in impact
ionization transitions corresponding to . any increase in energy

of the hot electron above threshold. 1In the derivation of the
equation, it was assumed that the impact ionization threshold

was given by a double envelope. However, if the threshold is

given by a simple envelope, equation 6.2.22 can be simplified
slightly. For a simple envelope, the final electron states
coincide, and thus th(k) = Efv(k) which gives, in equation 6.2.22,

E; = E;. Substituting this into equation 6.2.22 and simplifying

gives
E"E"E'
- 2=______l__6___ W el ety _apliph 1'vh
[k o17kgs E"(E"-ZE")Z{[EI(Eh+Ev) 2E;ECIOE 4|
h'1 v -h
] "_ " 1 ] 1y2 n é
+ El(El ZEV{][Eh 31gn(Eh)[(Eh) +2Eh5E] ]} 6.2.23

6.3 Some Computational Considerations

A computer program is written to draw the graphs of the excess
energy above threshold versus the proportion of wavevector space of
the valence band able to partake in impact ionization, as determined
by equation 6.2.22. Thus, one graph is drawn for each impact
ionization threshold initiated by a hot electron. The computer program
is also used to draw the equivalent graphs for each impact ionization
threshold initiated by a hot hole, which is done by simply reversing
the roles of the valence and conduction bands throughout. The graphs
drawn are then of the excess energy above thrésholhversus the propor-
tion of wavevector space of the conduction band able to partake in
impact ionization.

In order to obtain an easy comparison between the different rates

of increase in the proportion of wavevector space able to partake in
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impact ionization just above threshold, more than one graph is drawn
in the same figure. The graphs corresponding to all the thresholds
determined, initiated both by electrons and by holes, in one symmetry
direction in reciprocal lattice space, are drawn in the same figure.
Thus, since three symmetry directions are being investigated, the
I-A-X, I'=A-L, and I'-I-K-S-X directions, three figures are produced,
each containing as many graphs as there are thresholds in that
symmetry direction.

The formula derived in the previous section, by which these graphs
are drawn, is approximate, and only valid for small values of GE. The
errors involved will be small for sufficiently small values of SE, and
will increase as OE increases. While the formula derived is intended
as an approximation to the rate of increase in the total probability
above threshold, it is desirable to keep the errors to a minimum. Thus,
the range of values of OE over which the graphs are drawn is kept reason-
ably small., However, errors are incurred in determining the impact
ionization threshold data, and if the values of SE are restricted too
much, then the errors in the threshold data may dominate. The range of
values of SE over which the graphs are drawn, must therefore be sufficiently
large to overcome the errors associated with the threshold data. Hence,
to obtain a set of reliable graphs which show the behaviour of the rate
of increase in the total probability above threshold, the range of values
of 6E is chosen to be 0<8E<0,25eV. Further computational details are
given in Chapter 7.

6.4 Results for Silicon

The impact ionization threshold values are determined by the
envelope method, as presented in Chapter 3, and the sizes of the matrix

elements of the coulomb interaction between the electron states involved
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by the method as described in Chapter 5. The energy and wavevector
coordinates, the first and second derivatives are calculated, for
each threshold determined, for use in the equation 6.2.22 to enable
the graphs of the rate of increase in the total probaBility to be
drawn. The threshold values for silicon are thus determined and the
corresponding graphs then dréwn. The threshold values and matrix
elements are presented in detail in Chapter 8, but a summary is
presented in Table 6.1 below, giving the ratio between the threshold

energy above the energy band gap

Rates of Increase in the Total Pr&bability

Symmetry | Graph Initiating | Ratio lkvl—kvzl Largest value of

direction | number particle ET/EG' for Matrix Element
R §E = 0.25
r-A-X 3 Electron 1.05 0.233 1.3 x 10712
: 1 Electron 1.06 | 0.175 | 9.5 x1072
; 4 Electron 1.47 | 0.275 6.1 x 10710
; 2 Electron ~ | 1.49 0.203 1.6 x 1011
8 Hole 1.82 0.387 2.2 x 1072 .
7 Hole 2,18 | 0.363 7.4 x 1072
6 Hole 2.51 | 0.30 1.6 x 10711
5 Hole 3.26 | 0.316 7.6 x 1072
r-A-L 5 Hole 2,90 | 0.500 5.1 x 1073
4 Electron 3.55 | 0.337 2,5 x 102
1 Electron 3.59 0.142 1.5 x 10710
6 Electron | 4.03 | 0.716 7.6 x 1073
: 2 Electron | 4.07 | 0.226 | 4.5 x 10712
3 Hole 4.52 | 0.320 1.6 x 102
r-r-k-sx | 11 Hole 1.64 | 0.427 7.2 x 10714
1 Hole 1.73 0.114 | 2.0 x107%3
10 | Electron | 2.08 | 0.281 2.1 x 10717
8 Hole 2.28 0.246 2.6 x 10713
7 Electron | 2.46 | 0.205 | 5.7 x 1072
5 Electron 2.52 0.137 2.3 x 1073
9 | Hole 2.60 0.270 1.7 x 1072
' 3 Hole 2.62 | o0.121 8.8 x 102
2 Hole 3.01 0.115 4.5 x 10712
12 Electron 3.15 0.436 1.5 x 10713
6 Electron 3.96 | o0.188 9.9 x 1072
x 1071

4 Electron 4.09 0.122 3.4
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and the energy band gap.

For the F-A-X symmetry direction, eight thresholds are determined,
four being initiated by a hot electron, and four by a hot hole. The
graphs corresponding to each threshold are then drawn (see figure 6.1)
and labelled in ascending order of rates of increase in the total
probability. The proportion of wavevector space able to contain the
promoted particle in an ionization process is calculated for a hot
electron, or hole, initially at an energy of 0.25eV above threshold,
and these values are presented in Table 6.1. It is seen that, for
the r-A-X direction, the difference between the smallest and largest

increases in rates is a factor of nearly 2]|.

Figure 6,1 Plot of proportion of valence states able to partake
in impact ionization versus excess energy above Threshold, for

thresholds along the F-A-X axis.

However, the difference between the increases in rates corresponding
to thresholds having approximately equal energies is a factor of
less than 1]. These small variations, taken on their own, indicate
that the rate of increase in the total probability above threshold
is not significant.

The same procedure of determining the threshold values and the

graphs of the rates of increase in the total probability is applied
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to the other two symmetry directions being investigated, the
I'-A-L and I'-I-K-S-X directions., For the I'-A~L direction, it is
seen from Table 6.1 and figure 6.2 that the difference between the
bsmallest'and largest increases in rates is a factor of just.over 5, while
the differencercorresponding to thresholds having approximately equal
'energies is a factor of less than 3f. For the I'-I-K-S-X directien,
it is seen from Table 6.1 and figure 6.3.that the corresponding
differences are a factor of nearly 4 and nearly 2} respectively.
These variations, while still small, are larger than those in the
[-A-X direction, and it is herder to justify their insignificance in
the total probability,

‘To do this, the sizes of the matrix element of the coulomb inter-
action between the electron states involved in a threshold transition
must be considered. The matrix elements of interest are those which

correspond to thresholds with almost equal

ro

I | l l

"‘Figure 6.2 Plot of proportion of valence states able to partake

in impact ionization versus excess energy above threshold, for

thresholds along the I'-A-L axis.
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Figure 6.3 Plot of proportion of valence states able to partake
in impact ionization versus excess energy above threshold, for

thresholds along the F-E-K-S-X axis.

energies. For the thresholds in question in the F-A-X direction,
the smaller difference between the sizes of matrix elements is a
factor of nearly 40, which makes the difference between the increases
in rates of the total probability even less significant. In the
F-A-L direction, the difference in the sizes of the matrix elements
g

is a factor of approximately 10 , which makes the differences in the
rates of increase in the total probability totally irrelevant. The
thresholds in the F-E-K-S-X direction which have almost equal energies,
have matrix elements differing by a factor greater than 5, which is
larger than the difference between the corresponding rates of increase
in the total probabilities. Thus, while the rates of increase are not
insignificant in this case, they do not contribute in a significant
manner to the total probability, since the sizes of the matrix elements
have a greater effect.

It is concluded that, for silicon, the rate of increase in the

total probability just above threshold is not a significant factor in
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the probability that one impact ionization threshold will occur in

preference to another threshold. On the basis of these results for
silicon, the number of states able to partake in impact ionization

for a hot electron, or hole, just above threshold will not be

calculated for any of the other semiconductors being investigated.
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7. SOME DETAILS OF THE COMPUTER PROGRAMS USED
IN THE PRESENT WORK

7.1 Introduction

In Chapters 2 to 6 the different sections of the process of
calculating the impact ionization threshold data was presented.
For each semiconductor being investigated, this procedure involves
calculating the energy band structure by the Empirical Pseudopotential
(E.P.) Method, fitting analytic expressions to the energy bands,
determining the impact ionization threshold values by the Envelope
Method, and calculating the corresponding sizes of matrix elements
of the coulomb interaction and the rates of increase in the total
probabilities for hot electrons, or holes, just above threshold. To
perform these calculations, several computer programs had to be written,
and some of the details of these programs are presented in this chapter.

The procedure commences with the reproduction of the required
band structure by the E.P., method as described in Chapter 2, the
computer program being described briefly in the next section. The
energy bands thus obtained have then to be approximated by analytic
expressions, for which a multiple regression routine is used, as described .
in Chapter 4 and in reference [ 58]. The graphs of these analytic
expressions of the energy bands are then drawn, together with additional
graphs used to obtain approximate impact ionization threshold positionms.
The computer program for this routine, also described in Chapter 4, is
described briefly in section 7.3. The threshold positions are then
determined more accurately by the Envelope Method, described in Chapter
3, and a brief description of the computer program is given in section 7.4.

The E.P. method is then used again to calculate the coefficients of
the plane-waves occuring in the wave-function expansions of the electron

states involved in the ionization threshold. From these wave-functions,
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the corresponding matrix elements of the coulomb interaction between

the electron states involved in the ionization threshold process are
then calculated by the method described in Chapter 5, using the computer
program described briefly in section 7.5. Finally, for the thresholds
in silicon only, the rates of increase in the total probabilities for
hot electrons, and holes, just above threshold are calculated and the
graphs drawn by the method described in Chapter 6, the computer program
being described briefly in section 7.6.

In each of the following sections, a brief description of the
methods involved in the calculations performed by the computer programs
are given. Some details of the input and output operations are also
given, together with the computer facilities required for each program.
All the programs are written in FORTRAN IV for use on an I.C.L. Systems
4 computer. While standard Fortran is not used, the programs should not
need many alterations to enable them to be used on other types of computer.
Full details of the operations of the computer programs may be obtained
upon request.

7.2 The Empirical Pseudopotential Method

The computer program written to perform the band structure
calculations can be considered as being made up from three basic sections.
The first section calculates the matrix elements of the secular equations
from the given input data, the second section then calculates all the
eigenvalues and, if required, the corresponding eigenvectors. If the
eigenvectors are calculated, then the third section, if required, recovers
the original expansion of the eigenvectors by use of the perturbation
theory of Lowdin [50]. These three sections are written as sﬁbroutines
which are ageessed in turn by the main program. The main program also
performs all the input and output operations, initializes all the

reciprocal lattice vectors which are allowed to be used in the program,
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and selects those which are to be used.in the band structure
calculations.

All the reciprocal lattice vectors which are used by the
program are stored and initialized in a block data subroutine,
which contains all the vectors G such that |G|2 € 40. The main
program, after performing all the input operations and some of the
corresponding output operations, then selects those reciprocal lattice
vectors which are to be used in the band structure calculations. It
then proceeds further to order them in ascending order of squared
magnitude, and to separate those which are to be treated exactly in
the basis matrix, and those which are to be treated through perturbation.
The first subroutine is then accessed by the main program, which calculates
the matrix elements of the secular equations by using the relevant
equations given in section 2.6. Amongst these calculations is the
integral occurring in the nonlocal potential term, Which is evaluated
numerically by Chebyshev integration (see for example, F.B. Hildebrand
"Introduction to Numerical Analysis' Second Edition p4l4ff [59]).

The second subroutine is then accessed, and transforms the
symmetric matrix into tri-diagonal form by Householder's method. This
subroutine then accesses the subroutine which performs the Q.R. algorithm
to evaluate all the eigenvalues of the matrix, together with the corres-
ponding eigenvectors, if required. The eigenvalues are then ordered in
ascending order of magnitude by another subroutine. The main program
then prints out the eigenvalues before accessing the third routine, if
required, which calculates the original expansion of the eigenvectors '
using the perturbation theory of Lowdin. These eigenvectors are then
printed out by the main program, if they are required to be calculated.

All the data for input to the program is submitted through the
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card reader, most of which is printed out on the line printer
immediately. The data is submitted in the following order:-
(1) The name of the material being considered.
(2) The options which specify some of the operations to be
performed.
(3) The lattice constant.
(4) The local symmetric form factors.
(5) The local antisymmetric form factors, if they are not all
zero.
(6) The nonlocal potential parameters.
(7) The energy of the valence band maximum if the first point at
which the energy levels are to be calculated in not at [.
(8) The cut-off points for the inclusion of plane-waves is the
basis matrix and perturbation treatment.
(9) A dummy input card describing the data points submitted.
(10) The data set reference number which is used to output the
results to a magnetic medium for later use.
(11) The number of results, if any, to be added to.
(12) The set of data points within the first Brillouin zone at
which the energy levels are to be calculated.
The name of the material, lattice constant, local form factors, non-—
local parameters if not all zero, and the plane-wave cut-off points
are printed out immediately. After the eigenvalues have been calculated,
the number of plane-waves included in the basis matrix and through
perturbation are prirted out together with the position in the first
Brillouin zone at which the energy levels are calculated, and the eight
lowest energy levels. If the eigenvectors are calculated, then all the
coefficients determined are printed out for the vectors corresponding
to the eight lowest eigenvalues, together with the plane-waves they

correspond to.
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The minimum computer requirements of the program are; one
card reader, two line printer files, which is logically two line
printers but physically only one, and a main core store size of
154K bytes (1K = 1024). If the eigenvectors are to be output to a
magnetic medium, then the program requires in addition, either disc
storage space or a magnetic tape. If the eigenvectors are to be output
to magnetic tape and added to a set of existing results, then two
magnetic tapes are required.

7.3 The Graph Plotting of the Energy Bands

Once the energy levels at a set of discrete points within the
first Brillouin zone have been determined and the analytic expressioms
have been fitted to the corresponding energy bands, the graphs of these
analytic expressions are drawn. The computer program written to draw
these graphs also draws some additional graphs and performs some extra
calculations. The extra graphs are used to determine approximate impact
ionization threshold positions by the envelope method, while the extra
calculations determine the equations of the parabolic approximations to
the energy bands about the energy band extrema. These equations can
then be used in the Franz construction or parabolic band approximation
in order to obtain approximate values of the impact ionization thresholds.
The computer program can be considered as being made up from four
basic sections, one calculational section and three graph plotting sectioms.
The first section calculates the equations of the parabolic band approx-
imations to each energy band, and is always performed. The three graph
plotting sections are all optional, the first of which plots the energy
bands and data points, the second plots the energy bands and reflected
energy bands in an extended zone scheme, and the third plots the
envelopes of the conduction and valence bands. The options on the graph

plotting sections allow them to be included in any combination.
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The main program, after performing all the input operations,
and the initial output operations, accesses the subroutine which calculates
and prints out the equations of the parabolic band approximations to
each energy band extremum. The graph of the energy bands and data points
is then plotted by the use of three subroutines called one after the
other. The first opens the graph plotting file and plots the title, the
second plots all the data points within the bounds of the graph, gnd the
third draws the energy bands. The energy bands are then drawn again on
a second graph, but this time in an extended zone scheme covering two
complete zones. On the same graph are also drawn the valence bands
reflected about the valence band maximum, and the conduction bands
reflected about the conduction band minimum.

Two more graphs are then drawn, the first is of the envelope of
the conduction bands and the second is of the envelope of the valence
band. These two graphs are drawn on the same scale as the graph of the
energy bands and reflected energy bands, which are used to obtain
approximate impact ionization threshold positions. The values on the
envelopes are calculated according to the appropriate equations presented
in section 3.3, and the k coordinates from which the envelope energy
is calculated are also determined by the appropriate equations. For the
double envelopes, this latter calculation involves an iterative process,
for which Newton's method is used to obtain the two positions of equal
gradient.

All the data for input to the program is submitted through the card
reader, and in the following order:-
(1) The name of the material being considered.
(2) The symmetry direction being considered.
(3) The number of energy bands being drawn and the number of

data points on each energy band.
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(4) Approximate k coordinates of the energy band extreme.

(5) The k coordinates followed by all the energy levels for
each data point.

(6) The Fourier series of all the energy bands, giving the number
of‘terms, the order and coefficients of each term.

(7) The options for which graphs are to be drawn.

(8) The number of valence bands, and the conduction band on which

. the conduction band minimum lies.

The name of the material, the symmetry direction being considered, the
number of energy bands and the number of data points on each energy
band are printed out immediately. The only other output is that of the
equations of the parabolae, used to approximate the energy bands, for
each energy band.

The computer requirements of the program are; one card reader,
one line printer, one graph plotter, the facility to read and write
directly from and to the main core store, and a main core store size of
40K bytes.

7.4 The Envelope Method for determining Impact Ionization
Threshold Energies

The impact ionization thresholds of the semiconductors being
investigated are determined approximately by the use of the graphs produced
by the graph plotting program. The computer program written to calculate
impact ionization thresholds accurately uses these approximate positions
as the initial step in an iterative method. At each step of this iterative
method, the program investigates the intersection of the envelope with
the valence band, finding a position at which the gradients are equal.

This involves another iterative process for which, at each step, the
positions and values on the conduction band, from which the envelope is

constructed, have to be determined. For a double envelope, this involves
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yet another iterative process which determines the two distinct
points of equal gradient on the conduction band, from which the double
envelope is constructed.

When a threshold position is determined sufficiently accurately,
the position is printed out, and extra threshold data is calculated and
printed out. Another approximate threshold position is then considered,
and the process is repeated for each threshold position to be determined
accurately. To perform the required calculations, several subroutines
have been written, in which most of the calculations are performed. The
main program performs all the input operations, most of the output
operations, a few calculations, and accesses the required subroutines.

The main program, after performing nearly all the input operatioms,
determines whether the ionization thresholds to be calculated accurately
are initiated by electrons or by holes. If the thresholds are initiated
by holes, then the roles of the valence and conduction bands are reversed,
and the program then proceeds as though the initiating particles are
electrons. The initial positions of the hot and promoted electrons, or
holes, involved in the threshold are then input to the program, and the
iteration proceedure started. The main program performs any necessary
iterations of the position of the hot electron to ensure that its energy
above the conduction band minimum is greater than the energy gap. Once
the electron has sufficient energy, the subroutine which investigates
the intersection of the envelope with the valence band is accessed.

This subroutine performs the iteration of the position of the
valence electron, while keeping the position of the hot electron fixed.
The iteration is to determine the position at which the envelope and
valence band have equal gradients, which in turn determines whether an
impact ionization process is possible. Newton's method together with
Aitken's acceleration method are used as the method &f iteration, for

which, at each step, the positions and values on the conduction band,
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from which the envelope is constructed, have to be calculated. The
values from which the simple envelope is constructed are straightforward
to calculate, being the points midway between the positions of the hot
and valence electrons. The values from which the double envelope is
constructed are determined from the positions on the conduction band
where the gradients are equal. These positions are calculated by an
iterative method, for which Newton's method is used, and the appropriate
equations given in section 3.3 are used to evaluate the values on the
envelopes.

When the required position of the valence electron has been
calculated, the energy difference between the envelope and valence band
is calculated. If this energy difference is sufficiently small, then
the threshold position is considered to be sufficiently accurate, and
the iteration process terminated. Otherwise, the main program accesses
the subroutine which performs the next iteration of the position of the
hot electron. This iteration is just a constant step length, until the
threshold position has been passed, upon which the step length is halved
at each iteration. When a new hot electron position has been calculated,
the main program loops back to access the subroutine which investigates
the intersection of the envelope with the valence band, and the process
is repeated.

Once the position of the hot electron has been determined sufficiently
accurately, all that remains is to calculate the rest of the threshold
data. The initial positions of the hot and promoted electrons are already
known, the corresponding energies are easily calculated, and the final
positions and energies of the two electrons are then calculated. If the
threshold was determined by a simple envelope, then the required values
are calculated in the main program, otherwise they are calculated in a
subroutine accessed by the main program. When these values have been

calculated, they are printed out, the necessary adjustments being made
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if the threshold was initiated by a hole. The main program then

accesses the subroutine which calculates and prints out the values

of the first and second derivatives of the four states involved in

the ionization threshold process.

The main program finally determines whether the ionization process
corresponds to a Normal process or an Umklapp process before looping
back to consider the next threshold. Throughout the iterative process
of the position of the hot electron, checks are made to ensure too much
time is not being used, or the hot electron position is not moving too
far from the centre of the first Brillouin zone. If either of these
situations arise, the iterative proceedure is terminated and an appropriate
error message printed out.

All the data for input to the program is submitted through the
card reader, and in the following order:-

(1) A title card describing the thresholds to be determined, for which
the first four columns determine whether the initiating particle
is an electron or a hole.

(2) The number of valence bands and the number of conduction bands.;
(3) The group theory label and Fourier series of all the energy bands,
giving the number of terms, the order and coefficients of each

term.

(4) The energy band numbers and k coordinates of the conduction band
minimum and valence band maximum.

(5) The overall conduction band minimum and valence band maximum of
the material, and the proportional length of k-space within the
first Brillouin zone.

(6) The error tolerances in position and energy.

(7) The threshold data, giving the type of envelope to use, the energy
band numbers and initial positions of the hot and promoted electronms,

and the initial hot electron position step length.
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As many threshold position data cards as required may be submitted

at the same time. The title card describing the thresholds to be
determined is printed out at the beginning of each threshold calcula-
tion, and the energy band labels on which the electrons lie initially
are printed out prior to the results being printed out. A table of
results is then printed out, suitably labelled, giving the initial

and final positions and energies of the hot and promoted electrons, or
holes. The excess ionization threshold energy above the conduction
band minimum, and the ratio of this excess energy to the energy band
gap is also printed out. The values of the first and second derivatives
of the four electron states at threshold are then printed out, followed
by the type of ionization process.

Throughout the iterative procedure of the position of the hot electron,
the positions of the hot and valence electrons are printed out together
with the energy difference between the envelope and valence band. Also,
there are several error branches within the program, each with its own
error message which is printed out if the error branch is encountered.
This extra information is printed out to check that the ionization thresholds
are determined correctly, and to make the correction of errors, if any,
easiler,

The computer requirements of the program are; one card reader, two
line printer files, which is logically two line printers but physically
only one, and a main core store size of 42K bytes.

7.5 The Matrix Elements of the Coulomb Interaction

The matrix element of the coulomb interaction between the initial
and final states involved in an impact ionization threshold process is
calculated for each threshold position determined. The sizes of these
matrix elements are calculated by the two equations described in section

5.2, by the quadruple sum and by the two double sums, both summed over
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reciprocal lattice vectors. Before these matrix elements can be
calculated, the plane-wave expansions of the wave-functions corres-
ponding to the four electron states involved in the threshold
transition have to be calculated by the program written to perform
band structure calculations by the Empirical Pseudopotential Method.
This program is run, and the coefficients of the plane-wave expansions
are written onto a magnetic medium, which are then read in by the
computer program which calculates the sizes of the matrix element of
the coulomb interaction.

The computer program written to perform the matrix element
calculations, reads in the required data for either three or four
electron states. If data for only three states is read in, the situation
corresponding to the threshold determined by a simple envelope, then
the data corresponding to the electron state in which the electromns lie
finally is duplicated to represent the data of the fourth electron state,
Thus, data corresponding to the four electron states is supplied to the
program. The sizes of the matrix element of the coulomb interaction are
then calculated, firstly by the two double sums over reciprocal lattice
vectors, and then by the quadruple sum over reciprocal lattice vectors,
and both values are printed out.

If one, or more, of the energy bands in which the electron states
lie is degenerate, then there will be more than one possible way in
which the transition may occur. This will result in more than one matrix
element, and a range of sizes of matrix elements will then exist, each
corresponding to a different combination of the electron states in which
the electrons involved lie. All such matrix elements are evaluated at
one attempt, by looping back in the program, after the results have been

printed out, to the point at which the data concerning the electron states
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is read in.
The data for input to the program is submitted through two
different media; a small amount through the card reader, and then
the majority through either disc storage space or a magnetic tape.
The input through the magnetic medium is in the same order and format
as the output to the same magnetic medium by the program which performs
the band structure calculations. The input through the card reader is
in the following order:-
(1) The data set reference number used to input the data from a
magnetic medium, which was set up previously.
(2) The number of distinct electron states involved in the threshold
process.,
(3) The inverse of the screening radius.
(4) The energy band numbers on which the initial and final hot
and promoted electron states lie.
The only output is that of the values of the two matrix elements, and
the values of the two double sums over reciprocal lattice space occurring
in the calculations of the first matrix element.
The computer requirements for the program are; one card reader,
one line printer, either disc storage space or a magnetic tape, and a
main core store size of 63K bytes,

7.6 The Rate of Increase in the Total Probability

The rate of increase in the number of valence states able to
partake in impact ionization for a hot electron just above threshold,
is given by equation 6.2.22, This equation is programmed for use on
a digital computer to enable a graph to be drawn, one corresponding to
each ionization threshold. The computer program written to do this
simply draws the required graphs of the proportion of valence band able
to partake in impact ionization versus the hot electron energy above

threshold,
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The program reads in the required data corresponding to an
impact ionization threshold, that is the first and second derivatives
of all four electron séates involved in the process. If the threshold
is initiated by a hot hole, then the roles of the valence bands and
conduction bands are reversed, which is done by negating all the values
of the first and second derivatives. The equation 6.2.22 is then
evaluated for a range of values of the excess hot electron, or hole,
energy above threshold. This enables the corresponding graph to be
drawn over the given range of values of the excess energy, between O
and 0,25eV. The value:' of the equation is printed out for the maximum
value of the excess energy before the program loops back to read in
the data corresponding to another threshold. The graph of this next
threshold is drawn on the same figure as the previous graph to enable
as many graphs as required to be drawn together.

All the data input to the program is submitted through the card
reader, and in the following order:-
(1) The name of the material being considered.
(2) The first derivatives of the initial and final hot electron,

or hole, states and the second derivatives of all four hot

electron, or hole, states.
The only output is that of the name of the material being considered,
followed by the values of the equation 6.2.22 for an excess energy of
0.25eV above threshold, one value for each threshold considered.

The computer requirements for the program are; one card reader,
one line printer, one graph plotter and a main core store size of 26K

bytes.
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8. IMPACT TONIZATION THRESHOLDS FOR SILICON

8.1 Details of the Calculations

The Envelope Method developed in this work is applied to two
different band structures of Silicon in a preliminary study [ 31],
the band structures investigated being those of Cohen and Bergstresser
[25] and of Stuckel and Euwema [ 38]. It is thus hoped to obtain
useful information concerning the sensitivity of the impact ionization
threshold energies to the detailed band structure. Investigations are
carried out in the extended zone scheme along the A axis for the

T valence band the the T -X1 and Fz,—X conduction bands.

251 7%, 15 1

Numerical data from the published energy band diagrams are
fitted by suitable polynomial approximations, the analytic expressions
used being nowhere in error by more than 0.0leV. The curvatures of
the polynomial approximations at their extrema also give correctly
the appropriate effective masses of the conduction and valence bands
at the energy band extrema. These analytic expressions for the energy
bands are then used in the computer program, as described in Chapter
3 and 7, to calculate the impact ionization threshold positions for
hot electrons. The computations are carried out until the overall
error associated with each threshold energy is less than 0.02eV.

The results of this preliminary study of Silicon are presented

in Table 8.1, which contains details of the initial and final states
of the hot electron for each threshold position. Details of the initial
and final states of the promoted electron are also included where
necessary. When this is not given, the information can be readily
calculated from the hot electron data. Each threshold energy, ET’
is also expressed in terms of the dimensionless quantity ET/EG, where

EG is the band gap for the particular band structure. This facilitates
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a more meaningful comparison of the results for band structures with
different band gaps.

For comparative purposes, the values of ET/EG given by the Franz
construction are also calculated for each band structure, the results
being presented in Table 8.3. They are obtained by the computer program
using a parabolic conduction band based on the appropriate conduction
band minimum, and using the polynomial approximations again for the
valence bands. The effective mass and the position of the conduction
band minimum are taken to be the values appropriate to the band structure
considered. Also, the values of ET/EG given by the parabolic band
approximation are calculated using equation 3.4.18.

This preliminary study was carried out before the Empirical
Pseudopotential Method had been programmed for use on the computer,
and before it had been decided to calculate the sizes of the matrix
element of the coulomb interaction corresponding to each threshold
transition. 1In calculating the sizes of the matrix elements, the
opportunity is taken to reproduce the Silicon band structure, of
Cohen and Bergstresser only, more accurately by using their form
factors in the Empirical Pseudopotential Method. Also, the three
principal symmetry directions are investigated and more energy bands
are taken into consideration along the A axis.

The energy bands investigated along the A axis are those of
the preliminary study together with the F25,-X valence band. The

1

energy bands investigated along the A axis are the T and PlS—L

15 11 3

conduction bands and the TZS'—L3' and rﬁ5!_L1 valence bands. The

energy bands investigated along the I-S axis, that is the I axis from

I' to K within the first Brillouin zone and the S axis from K to X

along the square face of the adjacent zone, are the I‘lS—KB-X1
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and I’lS—Kl—X1 conduction bands and the T25,-K2—X4,

25,—K1—X1 valence bands. These energy bands are investigated as

being able to contain the hot and promoted electrons in an impact

F25'-K1_X4 and

r

ionization threshold transition. In addition to recalculating the
threshold positions initiated by hot electrons, threshold positions
initiated by hot holes are also calculated.

The energy bands are approximated by suitable Fourier series,
in preference to polynomial approximations as a result of the study
performed and presented in Chapter 4, and the errors in fitting them
to the energy bands are again nowhere greater than 0.0leV. The

errors involved in fitting the T conduction band however, are

15" %37%
slightly greater than 0.0leV in places, due to the shape of this energy
band. The computations are again carried out until the overall error
associated with each threshold energy is less than 0.0l15eV, the slightly

greater errors associated with the T conduction band not having

15 %37%;

a noticeable effect on the overall error.
The result of these improved calculations are presented in Table

8.2, which contains the same details as Table 8.1, plus the sizes of

the matrix element of the coulomb interaction as calculated by the

two appropriate equations given in Chapter 5. Where one, or more, of

the energy bands involved in a threshold transition is degenerate, several

values of the matrix element sizes are obtained, but only the largest

value is presented., When the coefficients of the plane-wave expansions

used in calculating the sizes of the matrix element are determined,

the energies of the four electron states involved in the threshold are

also calculated. The error in the conservation of energy, ensuring

the conservation of wavevector, is thus determined, and this value is

also presented in the table for each threshold. Since the error
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associated with each threshold energy is less than 0.015eV, the
error in the conservation of energy is less than 0.06eV.

The values of ET/EG given by the Franz construction and by the
parabolic band approximation are again calculated for comparative
purposes. The values are calculated by the same procedure as used
in the preliminary study, and the results are presented in Table 8.4.
In this table, more than one threshold value is given by the Franz
construction, along each symmetry axis, due to the extra energy bands
being investigated, but the parabolic band approximation still gives
only one value along each symmetry axis.

In Tables 8.1 and 8.2, the values of k are measured as a proportion
of the distance from I' to the boundary of the first Brillouin aone,

X or L, along the A and A symmetry axes respectively. Along the ZI-S
symmetry axis, the proportional distance is from I' to the centre of
the square face, X, of the adjacent zone. Thus, electron states on
the I axis within the first Brillouin zone have wavevector k such that
|k|s0.75, and electron states on the S axis on the square face of the
adjacent zone have wavevector k such that 0.75s|k|31.

8.2 Discussion of the Results for the Silicon Band Structures

Looking at the results of the preliminary study, presented in
Table 8.1, it is seen that the general features for each band structure
are similar. The lowest value of ET/EG is given by an umklapp process
in both cases, with a second umklapp threshold at a higher energy. At
an energy between these two umklapp threshold energies, there is a
normal threshold which is given by a double envelope solution and
corresponds to an intervalley transition. The lowest value of ET/EG’
in both cases, is also close to the minimum possible energy for any

ionization process, which is due to the indirect energy band gap of
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Silicon. A detailed comparison of the results shows that there

are significant discrepancies between the threshold energies given

by the two band structures. Since the value of EG given by Stuckel
and Euwema (l.leV) is close to that generally accepted for Silicon
(see for example, D, Long 'Energy Bands in Semiconductors', p87 [60],
and also Kunz [61]), it is believed that the threshold energies given
by this band structure a;e the more reliable.

The values of ET have also been calculated by Anderson and Crowell
[32], using the band structure of Cohen and Bergstresser. A direct
comparison of their results with the results presented in Table 8.1
is difficult since Anderson and Crowell adjusted the Cohen and
Bergstresser band gap to conform with the commonly accepted value., To
confirm the equivalence of the two methods however, the calculations
are repeated for the adjusted band structure. Absolute agreement is

obtained within the errors of the respective methods, X 0.02eV in the

present work and % 0.2eV for Anderson and Crowell.

It is seen from Table 8,2 that the improved threshold values
corresponding to the two umklapp processes of Table 8.1 are in close
agreement (ET/EG=1.055 and 1.467 respectively) as expected. However,
it is surprising to see that there is no longer a normal threshold
given by a double envelope, as there was in the preliminary study. This
is due to the slight changes in the energy bands concerned, and to the
final state of the hot electron being very close to the zone boundary.
In the improved calculations this state moves across the zone boundary
into another energy band, and thus is not considered as a possible
threshold situation. This illustrates the sensitivity of thresﬁold
energies to the detailed band structure, particularly when one of the

four states involved in the transition is close to the zone boundary.
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In the ipproved calculations, there are a further two electron
thresholds along the A axis, with energies very close to the two
threshold energies previously calculated. These correspond to

transitions involving an electron in the FZS,-X valence band, and

1
thus having threshold energies slightly higher than the transitions

involving an electron in the I',_.,-X, valence band. The electron

25" T4
thresholds calculated have an error in the conservation of energy
much smaller than the maximum expected error of 0.06eV, all four
being in error by less than 0.0leV. There are also four threshold
positions which are initiated by hot holes, both valence bands pro-
viding the initiating hole for two thresholds. These thresholds
correspond to normal processes, and the error in the conservation of
energy is less than 0.0leV as in the case for the electron thresholds.
The lowest ET/EG value for the hole thresholds is much larger than
the lowest ET/EGvalue for the electron threéholds, and is also larger
than the highest value for the electron thresholds.

By considering only the threshold positions and the values of
ET/EG’ it would appear that the lowest value of ET/EG (1.055) should
be taken for use in the related theories. However, by looking at
the sizes of the matrix element of the coulomb interaction as calculated
from equation 5.2.5, it is surprising to see that this would be
erroneous, due to the negligibly small size of the matrix element
corresponding to this threshold. Indeed, by looking at the sizes of
the matrix elements corresponding to the other electron thresholds along
the A axis, it is surprising to see only one threshold having a signifi-
cant matrix element size. This threshold is the second loﬁest (ET/EG=1.056),
and has a matrix element size of 0.095, which is of the expected order
of magnitude, The other three electron thresholds all have matrix
element sizes of the order of 10-10 or smaller which, while not being

mathematically zero, can be considered to be zero.
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The lowest hole threshold along the A axis, unlike the lowest
electron threshold, has a significant matrix element size, and so
it would not be erroneous to use this threshold in related theories.
However, it would still be erroneous to neglect the effect of the matrix
element sizes, as one of the hole thresholds has a negligibly small
matrix element size, of the same order of magnitude as that for the
lowest electron threshold. The approximate matrix element sizes, as
given by equation 5.2,9, are identically zero for all the electron
thresholds as expected, since they all correspond to umklapp processes,
and hence are not comparable with the proper calculations of equation
5.2.5. The corresponding values for the hole thresholds are all non-
zero, but are all negligibly small, thus making only one of comparable
size with the proper calculations.

Considering now the thresholds along the A axis, it is seen that
there are again four electron thresholds, all corresponding to umklapp
processes, occurring in pairs with comparable energies, as is the
situation for the electron thresholds along the A axis. The threshold
energies are however, much higher along this axis than along the A axis,
as is expected from the details of the band structure, the lowest threshold
having a value of ET/EG=3.554. Similarly, the two hole thresholds along
the A axis, both corresponding to normal processes, have energies much
higher than those along the A axis. However, the lower of these two
thresholds has an energy lower than the lowest electron threshold energy
along this axis, which is the opposite situation to that along the A
axis.

It is again surprising to see that two of the electron thresholds
have matrix element sizes which are negligible, although the lowest
threshold does have a significant matrix element size. Also, it is

perhaps comforting to see that both hole thresholds have significant
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matrix element sizes. The approximate matrix element sizes follow

the pattern of those corrésponding to the thresholds along the A

axis, those corresponding to the electron thresholds being zero,

and those corresponding to the hole thresholds being negligibly

small. Thus, none of the approximate matrix element sizes are
comparable with the proper calculations of the matrix element sizes,
The error in the conservation of energy associated with each threshold
is again less than 0.0leV, much smaller than the maximum expected
error, as for the thresholds along the A axis.

As may be expected from the details of the band structure along
the I-S axis, there are more threshold positions determined, both for
electrons and holes. Also, the lowest electron threshold energy is
higher than that along the A axis, and lower than that along the A
axis. However, it is perhaps surpriéing to see that the lowest hole
threshold along this axis is also the lowest hole threshold for this
band structure, having a value of ET/EG=1.644. As for the other two
symmetry axes, all the electron thresholds along this axis correspond
to umklapp processes, but unlike the other two symmetry axes, the hole
thresholds also correspond to umklapp processes and not to normal
processes. This is slightly surprising, although some umklapp processes
may be expected since the boundary of the first Brillouin zone occurs
at 3 of the distance along the axis from T.

Once again, it is seen by looking at the sizes of the matrix
element, that several of these thresholds can be considered to be
unimportant due to the negligibly small sizes of the matrix element.
In fact, only two electron thresholds and two hole thresholds have
significant matrix element sizes, the lower of these two electron

thresholds having an energy substantially higher than the lowest
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electron threshold energy. The lowest hole threshold along this

axis 1s now seen to be insignificant, thus making it erroneous to

use in related theories. The lowest significant hole threshold

along this axis has a very much higher energy than that of the lowest
threshold, and being of a comparable energy to the lowest significant
electron threshold along this axis., The errors in the conservation of
energy are generally greater than those along the other two symmetry
axes, but are still considerably smaller than the maximum expected
error, being in error by less than 0,03eV.

Had the threshold positions given above been determined without
considering the matrix elemant sizes, the iowest electron and hole
thresholds would have been taken as having values of ET/EG=1.055 and
1.644 respectively. Also, these would have been provided by transitions
along two different symmetry axes, the A axis and the I-S axis respectively.
However, by considering also the sizes of the matrix element of the coulomb
interaction, neither of these two thresholds can be considered to be
significant. The lowest electron and hole thresholds which also have
significant matrix element sizes are those for which ET/EG=1.056 and
1.813 respectively, both thresholds now occurring along the A axis.
Thus, these latter two values are those which should be taken for use
in related theories, and not the absolute lowest threshold values.

8.3 Comparison with Results from Approximate Band Structure Models

When both the valence band and the conduction band are approximated

by parabolae, an expression for E_ is obtained, as presented in Chapter

T
3. Values of ET/EG determined from this expression (equation 3.4.18)
for the appropriate values of (km,Em), m, and W given by the polynomial

approximations to the two band structures investigated in the preliminary

study are shown in Table 8.3, They are referred to as the 'parabolic
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band approximation' values., The table also includes the values given
by the Franz construction, which corresponds to the removal of the
parabolic approximation to the valence band. Finally; the table gives
the values obtained by the Envelope Method for the genuine energy bands,
and are selected from the many thresholds given in Table 8.1 as being

the ones most comparable with the approximate.values.

Table 8.3

""" c'values‘for the different band structures

Band structure 1 Parabolic band Franz Genuine

considered approximation construction band structure

Cohen & Bergstresser
I'-A-X axis 1.60 1.60 1.53
(indirect gap)

Stuckel & Euwema
I'-A-X axis . 1.19 1.19 1.22
indirect gap

It is seen from Table 8.3 that there is complete agreement
between the values of ET/EG giveﬁ by the Franz construction and those
given by the simpler parabolic band approximation. It is also seen
that the approximate values are in good agreement with those given by
the Envelope Method for the genuine bands. Comparison of Tables 8.1
and 8.3 shows that the approximate models fail to provide the lowest
thresholds. In each case the minimum threshold provided by the genuine
energy bands is substantially lower and is of the same type, both
thresholds corresponding to umklapp processes. Thus the genuine bands
give at least one lower threshold of similar importance. In the first

example given in the table, for instance, it is seen that in addition
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to the umklapp threshold with ET/EG=1.53, there is a much lower
one with ET/EG=1.10. There 1s also a normal, intervalley threshold
with ET/EG=1.49.

In Table 8.4, the values of ET/EG calculated for the more accurate

reproduction of the Cohen and Bergstresser band

Table 8.4
Comparison of ET/EG‘Values'for'different‘band structure models

Details of Parabolic band Franz Genuine

thresholds approximation” construction band structure
I'-A-X axis 1.399 1.398 1.467
Electrons - 1.415 1.493
I'-A-X axis 2.159 2.169 1.813
Holes . 3.508 2.513
I'-A-L axis 3.464 3.465 -
Electrons - 3.466 -

I'-A-L axis 2.404 2,430 -

Holes - 4,740 -
[-Z-K-S-X axid 2.443 2.296 2.085
Electrons N 2.831 2,462

- 2.922 2,522

[-IZ-K-S-X axis 1.972 1.946 1.644
Holes - 2.133 1.731

structure are presented, which correspond to the values given in

Table 8.3. It is seen that there are fewer thresholds given by the
parabolic band approximation than by the Franz construction, since the
parabolic band approximation applies to one valence and one conduction
band only. Taking this into consideration, it is seen that there are
only minor differences between the corresponding values of ET/EG in

all thresholds except one, the electron threshold along the I-S axis.
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It is also seen that the approximate values are only in reasonable
agreement with those given by the Envelope Method for the electron
thresholds along the A axis. All other approximate values of

ET/EG do not correspond accurately tovany genuine thresholds,

which is almost certainly due to the departure from the parabolic

shape of the energy bands involved. Indeed, it is seen that the
approximate models give threshold values along the A axis which ought not

to  exist, since the T conduction band and the T L3, valence

25"

band are too flat to permit any ionization process to take place.

15

Comparison of Tables 8.2 and 8.4 shows again that the approximate
values of the electron thresholds along the A axis fail to provide
the lowest threshold, the minimum being provided by a substantially
lower value, The approximate values of the hole thresholds along
the A axis and the electron and hole thresholds along the %I-S axis
do provide the lowest threshold in each case. However, the approximate
values are not in agreement with the values given by the Envelope
Method, but are considerably higher. The thresholds along the A axis
are not provided by the T

—L1 conduction band and T L3, valence

15 25"

band since these bands are too flat to permit any ionization process
to occur, but are provided by the other two energy bands investigated.
The lower of the approximate values for both electrons and holes,
which ought not to exist, are lower than the lowest threshold values
along this symmetry axis for both electrons and holes, and neither

are in reasonable agreement with the values given by the Envelope Method.
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9. = IMPACT IONIZATION THRESHOLDS FOR GERMANIUM

9.1 " 'Details of the Calculations

The Envelope Method developed in this work and applied to
two different band structures of Silicon in a preliminary study
[31], is also applied to two different band structures of Germanium
in the same preliminary study. The two band structures investigated
are those of Cohen and Bergstresser [?5] and of Stuckel [39]. As
in the study of Silicon, investigations are carried out in the

extended zone scheme along the A axis for the Pz,-Xl and FlS-Xl

conduction bands and the I‘25,-—X4 valence band. Additional results

are also obtained along the A axis for the I‘z,-L1 conduction band

and the T L3, valence band. Again, it is hoped to obtain useful

25"
information concerning the sensitivity of the impact ionization
threshold energies to the detailed band structure,

Numerical data from the published energy band diagrams are again
fitted by suitable polynomial approximations, the analytic expressions
being nowhere in error by more than 0.0leV. Again, the curvatures
of the polynomial approximations at their extrema also give correctly
the appropriate effective masses of the conduction and valence bands
at the energy band extrema. These analytic expressions for the energy
Pands are then used in the computer program, as described in Chapters
3 and 7, to calculate the impact ionization threshold positions for hot
electrons, The computations, as for Silicon, are again carried out
until the overall error associated with each threshold energy is less
than 0.02eV,

The results of this preliminary study of Germanium are presented

in Table 9.1, which contains the details of the initial and final states
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of the hot electron for each threshold position, presented in the

same manner as were the results for Silicon. For comparative purposes
the values of ET/EG given by the Franz construction are again calculated
for each band structure, the results being presénted in Table 9.3. They
are obtained in the same manner in which the corresponding results

for Silicon were obtained. Also, the values of ET/EG given by the
parabolic band approximation are calculated using equation 3.4.18.

The opportunity is again taken to reproduce the Germanium band
structure, of Cohen and Bergstresser only, more accurately in order to
calculate the sizes of the matrix element of the coulomb interaction
corresponding to each threshold transition. This is done by using the
Cohen and Bergstresser form factors in the Empirical Pseudopotential
Method computer program. The three principal symmetry axes are also
investigated, and more energy bands are taken into consideration along
the A and A axes.

The energy bands investigated along the Aaxis are those of the

preliminary study together with the I',,,-X. valence band, and along

25" "1
the A axis are those of the preliminary study together with the

T'..,-L, valence band. The energy bands investigated along the Z-S

25' "1

T K.=-X, and F -K.=X. conduction

15 K17 %y Tis7K %y 1723

4, F25' Kl X, and P25, K1 X1 valence bands.

In addition to recalculating the threshold positions initiated by

axis are the T 9 K3 1

bands and the T 951 K

hot electrons, threshold positions initiated by hot holes are also
calculated.

As a result of the study performed and presented in Chapter 4,

the energy bands are approximated by suitable Fourier series, in
preference to the polynomial approximations used in the preliminary

study. The errors involved in fitting the Fourier series to the
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energy bands are nowhere greater than 0.0leV for most of the energy

bands. However, the T X1 conduction band along the A axis, the

2"
25,—K1-X1 valence band and the Pé,-K3—X1 and Fz,-Kl-X1 conduction

bands along the X-S axis are in error by more than 0.0leV in places,

r

but nowhere in error by more than 0.015eV. Where the errors in
approximating to the energy bands are less than 0,0leV, the computations
“are carried out until fhe overall error associated with each threshold
energy is less than 0.015eV. When the initial state of the hot particle
is in the region of an.energy band in error by less than 0.015eV, the
corresponding computational errors are less than 0.02eV,

The energy band gap of Germanium is generally accepted as being

an indirect gap from PZS' to L In the band structure calculations

1.
however, the conduction band minimum does not occur at L as expected,
but along the A axis away from L, Only one energy value, of those

calculated in the Tz,-L conduction band, is lower than the energy at

1
L, thus to conform with the accepted position of the energy gap, this
one energy value is ignored in the fitting of the Fourier series. Due
to this unexpected error and the subsequent action takén, a few of the
thresholds, whose final stateé are in the region of the errors in the

Fz,-L conduction band, involve larger errors in the conservation of

1
energy than the other thresholds. This larger error does not have a
great effect on the accuracy of the threshold energies, the overall
errors being less than 0.02eV.

The resulﬁs of these improved calculations are presented in
Table 9.2, and are presented in the same manner as were the results of

Silicon in Table 8.2, For comparative purposes, the values of ET/EG

given by the Franz construction and by the parabolic band approximation
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are also calculated, by the same procedures used previously. These
results are presented in Table 9.4, in the same manner as were
the results of Silicon in Table 8.4.

9.2 Discussion of the Results for the Germanium Band Structures

Both band structures investigated in the preliminary study have
three conduction band minima of closely comparable energies, one at
I', one at L and one along the I'A~X axis. The ordering by energy of
these minima is different for the two band structures considered, and
this has a significant influence on the relative order of comparable
threshold energies. There are a greater number of thresholds for
Germanium than for Silicon, Whiéh is a direct consequence of the
increased number of conduction band minima, and the possibility of
intervalley transitions.

The thresholds, presented in Table 9.1, are tabulated in order
of increasing energy for the Cohen and Bergstresser band structure.

The thresholds for the Stuckel band structure are tabulated in directly
corresponding order, which are seen not to occur in order of increasing
energy, indicating just bow sensitive-each threshold is to the details
of the band structure., Also, in some cases there are no directly
comparable thresholds, and these are indicated by the blank entries in
the table.

The Cohen and Bergstresser band structure along the A axis gives
two thresholds, both corresponding to umklapp processes, the lower of
these being very close to the minimum possible energy for any threshold.
Along the A axis, the lowest value of ET/EG is given by aﬁ umklapp
process, and is followed closely by a normal process given by a double
envelope solution, which corresponds to an intervalley transition, as
were the lowest two thresholds along the A axis in Silicon. The normal

process however, differs from that in Silicon, as it also corresponds
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to an example of an interband process in which the hot electron

moves from one conduction band to another. These thresholds occur

at higher energies than those along the A axis, as may be expected,

and there are several more thresholds at higher energies corresponding
to both umklapp and normal processes, and including another intervalley
transition.,

The sensitivity of the thresholds to the detailed band structure
is clearly seen for the Stuckel band structure along the A axis. Where
there are two thresholds given for the Cohen and Bergstresser band
structure, there are now no thresholds, as the band structure is too
flat to permit any ionization process to take place at éll. Along the
A axis, it also fails to provide the threshold comparable with the
lowest threshold for the Cohen and Bergstresser band structure. It
does however provide the threshold comparable with the lower normal
process corresponding to an intervalley transition in the Cohen and
Bergstresser band structure. Although it is of the same type, it has
a much higher value of ET/EG(Z.IO' compared with 1.28). At higher
energies, there exist comparable thresholds for all but two of the
thresholds, but the comparable threshold energies differ considerably.
It is interesting to note that the two thresholds, one in each band
structure, for which there is no comparable threshold in the other
band structure both correspond to intervalley transitions.

Experimental evidence on the band structure of Germanium (see
for example, D. Long [6Q]) indicates an indirecf gap of about 0.74eV
to L.,. This is in general.agreement with the Cohen and

25" 1

Bergstresser band structure, and contrasts with the direct gap of

from T

1.20eV from T ., given by Stuckel. Accordingly, it is believed

. 25" B Ty
that the thresholds given by the Cohen and Bergstresser band structure
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are the more reliable. The values of ET have also been calculated
by Anderson and Crowell [32] using the band structure of Cohen and
Bergstresser, and absolute agreement is obtained within the errors
of the respective methods,

In the improved calculations of the threshold values, the

~agreement with the corresponding values determined in the preliminary
study is not particularly good. The improved threshold values corres-—
ponding to the two thresholds along the A axis (ET/EG=1.023 and 1.026
respectivgly) and to the two lowest thresholds along the A axis
(ET/EG=1.193 and 1.209 respectively) are in close agreement with those
determined in the preliminary study. However, it is surprising to
note that the improved threshold values corresponding to all other
thresholds determined in the preliminary study differ by significant
amounts (having values of ET/EG=1.267, 1.374, 1.372, 1.801, 1.883 and
2,789 respectively). This again illustrates the sensitivity of threshold
energies to the detailed band structure,

It is seen from Table 9.2 that there are many more thresholds
determined than in the preliminary study, due to the extra valence
bands being considered. The lowest electron threshold along the A
axis is still given by an umklapp process, with a normal threshold occurr-
ing at a slightly higher energy. At closely comparable energies to
these two thresholds there are two other thresholds, of the same type,
which occur due to the presence of the second valence band. This
situation is expected as it also occurred in the improved calculations
for the Silicon band structure. Two thresholds at higher energies
(those for which ET/EG=1.303 and 1.305) do not correspond to any of
the thresholds determined in the preliminary study, which is again

due to the details of the band structure. Both these thresholds



Q4 R0 B3 Spppd S

K ©Xg
=xyp® 00

8’;—1—1: =

4H
ri
rH

ri
o

opFEY

o000
[e}

H
tl)

Q oNo
0 033

Q

POvo

PO po *

rH

M D' o™

X oxio

nd A

rH rH

Zpoosmoo

0 OKZ

a oon

t-
cc vo
c C

rH

cr 1D

D vo
p- or.

o
D
rH

.0 Qo

o

rH

a. P-

on
©

rH
o O

©o3T

000

A
-0

po

nr:IDh—o

o v BMdCY !

140

[e/e] rn
rH oc rl
1 1 1
o o o
O Cc H rH rH
X X X
rH cc [e]
e rH rH
au D C ”}:'i
rH rH rH cc, r
111 1 :(L)
O O O o
rH rH rH rH rH
X X X
p- ID cv é
vo P- a rH rH
¢ - po [oF
o Cc C r 8
c co [o]
c co (o] (o]
p- (O PO L" D
VC oc o C M
c C fD fD
rH iH rH rH rH
ir 1f (X C o O-c
c O P tb p-vo ID rH
c rH rHc rH rH rH
rH iH rH rH rH rH rH rH
-3 vb rH PO P- 0C VO QN
a' O rH rH VO rH po VO
tH POo D o VO OC
- 0, C\ O P-0 <yVO

rH

rH C rHe v ~

rH rH N rH C rH

1 1111 1

C (0] 0 O o
c M o L(E1H & &
X X X X X X
P- D' o PO PD e}
rH VO VO rH VC b-

rH rH MO cvcC cv rH

rH rH rH rH rH rH rH rH
11 11111 1
o o C O C O c- [e}
rH rH rH rH rH rH rH
X X Cé X X X X X
o o PpOoCC ~ O rH
rH C D vo » rH CN P-
VO C PO P- rH O C o
rH rH rH C (D rH rH rH
O o e C O O C o
o o o Cc ooc C

s z z>z z z z
-3 VO ir rH POce c 98
p- O/ H o ce PO ID

ro <D a 00 rH p~ ir
rH rH fH rH ¢ ¢ 0
10 vo ir pr 4 rH <r a'
D'6 rH VO C o ccr- (D
o rHrH cour VC ¢ rH
rH rH rH rH rH rH rH rH DI
o OvVoirva o H 0 OCVO
f- H’7 D'\/O VO O ce ID D'
P- N C vo D VO
vo ONVO VO 0O o0 o0 o PO

ID VD VX OO <30 vo
f

D)O CMO

Ocnooomoonc
(

o oM B Bo By Cp. & i & G

p-rHCD, VOVOCMVCOQIT OOIDVO O\0C-3 CM rH *
0\ O

D CM-3 POVOPOrHVOO

o]
o]
9

tHrHt—o0 P-0 00 cpr-PO

(0]

P": Pf

I

CVON ID.VC rH
o tr -0

0]
t CVCVr ICVrHP

RR T

"o cc
PO tH
c D

rH rH

PO ID
rH 00
po D
c O

99°9°9°99° 99°° °° g° Q°

av 00
’ °—¥:o°ocv%f5 g ’% \ﬁ?

Pbtbtb

o ID

|
A

m
00-3

o
<
)
o

o on
o aag
Q az°
o aa

5°3
-
2o
<

oéo

(SR

I
:T: I
o oo

VO oM -3 D
pp PO rH O-
H O r ID

999

t— rH OO0 ON %
D VO 8:)

o co PO
rH rH rH D'

9999

cc

1D
00
PD

rH

H LT 00 00
VO VO O 00
-3 (NO 00

rH tH CVv .av

OO0 VO ON CM rH

rH rH CDrH O’
CN-3 ID O ID
rH -3 CMVO PO
000O0O
ri
erl
X
ri
X
1
<3 ri

ri
1 rH

(0]
t-i W



o TX=
BOOKEAYI® 0o

)

SRR

IS

m o'j_o

D 1)
N

L 0l
9

D

=

o,

F*ow

QXY

B

(2]

TTORKTS

P «rl
o

Eu

Ta~2aX01Xn

O o o o

po
cr
G-

o iNNg
O QooN
© 989

erl

ri

Q o=x4
O Mo

o an”

Z)

if\

z-

vo

rmr

c
rH

ro
co

c
rH

ce

If o

G G z
o Co

ocC
vo

rH

539x0@3

s

z
vo

rH

o

NG

o

C'rH C CO
11 1 1
0O 0o
-\ r-i &1
X X X
r

vo o i
rH

o}
X
o

rH ¢ vo

o Qb=
[eel@ 2]
Q Qe
o O~

z

-3
po

P-VO cr
f\ -3 DI
ce o rH
Oc Mo

090

g'\ll oc OC
]
artpd

.3 °o

VO
Ifv
vo

RE

141

[} ro t* o rH
[o3] rH rH rH rH
1 11 1 1
o C o (o] (o]
rH 1 rH O rH O O o O H
X X X X X
o If\ av IT D
ro IT rH Ci Cc
vo Co c o rH QM cM rH
rH rH fD =1 1 rH ¢ £l=trH
1 11 1 1 11 1 1 1
c O o o O 0o O e o
rH rH rH rH rH rHrH rH rH rH
X X X X X X X X X X
rH [ (O cr t- C CO p-
(o} VvC -3 c =t rH CJ P-C
t- Er rH g—vo CO C rH rH g
r r-' O 0 C g
o} c C EI cocC El
c c o co c oo oo
z- Z Z zZ zZ zZ z
rH h rH z fO O cevo D P-
G z VO vo Z irce rH rH rH
_3 if Cf Cf u vo vo O'Z C
rH rH rH 1 rH ftHrHrHr D
Ig c:C z » 8 3 M O Z -(%
vD vr vo ! vo p- O z
cwmm®DPicz Wb 2 3 rH
rtH rH rtH rH rH f=4rH rH rH rH rH rH rH
QO IT-rH O errtH O H3 Z OCVO FH12Z
PO ¢\ ir P- ¢rQO C VO rH VO IT VO Z
vOo O Z z Z ¢cob-z HZ P-C H
Z Coocz ZocoO z CCce ce O
o o O o o
9 99° 99999
O povo z POVO 0 (D VO rH envo rH
D' PO POOC &7 DI rH p-rtH Z D Z
-3 0-3-3 OS5 ®. 0O crvooOC Z Z
Mo (MaMmz o D oD ®pb D D
1 1 1
QUPOD O crt rH er POrH P- P-H
VO -3 ir DIl Zvo O ir z Hz 32
VO Z t- VO D'OOVO O Z rH cr ZVeC
0O O rH CC Z ~CO O DI zZ Z
O OO0 0 OO0 OO O O C O O
ri
erl
X.

[e]e}

“3 IRaIN<JRe
220~

c

0 Qozx
o) (Dog
o %

OoC rH rH
cr
Z VC vo

D D D

VO VO
Cf -
-3 VO D

rH rH D

VO VO 00
p- .0
rH VO H3
oCc z rH

900

IfN vo
rH rH

8 9x30”
8 8xz°”

O O°5
O OP0

NN~
N

VO p-
z ?H
o VC

G vo
rH ce
rH rH

rH rH

oc D
Z VO
D vo
o P-

o 990

H Z
cr

H z
O Vo

R—00 ZOO
VO D rH cr
c P-oo P-

G729

oc rH ir Z
Z rtH cr P-
rH Z 0O Z
o P-D Z

O O o



142

mP10mx° [ D1omxz Q oTo
N - — .
DD10MXw a --OTXa N oo
N=
hhn,1omxm I PH10MXz - NTO
T
o H10mxm o aNo©
N*= -—
e}
o ZH10er N 200
- . =
OC.|04_.XG a z1omxz N Soo
>
< oTXQ N reoE*a T oo
o N=
© T
o zH1oI.XZ N 5To
T
° P1Cur"Xr T New©
[e} - 1OurnXG ] 200
o
o ZH1oMXz Y] oo
T
o ZH1oHXG < wEo
3
I
o NET Xy N Iz
T
~OTX, N z-0E<T © ooo
NO . N=Z
—oEXe o L-0F%a E 2oo
NO =
oD10HXz I ZM1omxm & Nao
>
T : T <)
HH10er o ) Soo
3 T
° 2z -OFX8 nN ofo
T
) 1OMX7... N NOO
a
L <OEXxQ T ,_OEXS T dfo
o o
~0TXs o £<OTX o Too
=1 INES
oI . Q T o oIo
%.H1 TaX = o Tx© N K]
3
rp<OExE rr-O0Fxe © NE2S)
LT LT L
DN10mxw 2 C10MX1.u o NTO
N'a’'s -0’ A oxTo
00T oTONT Voxy ©oza 8aod wuw oot ToAx
Q@ TWIET XTxpT,. QOTOTET XTx T, Txa ©

c Coc oc OOCOO

c

xo0 x;;

]

=g

Zz:9 G

ss

g

Sos N NaO oF NOmT
@08 N oNO o" onEE
©wS N Tao ©° Ne» 20
oo N N NG N o™ »00a
EaT W.I.c 0" NeyNeo
050 w cgo © n2do
Wfo N N OO d1 WZZO
TS 20d o ©ONN
T . mON 07 ofoa

PWP o Hw o™ zGHZ
No © Ngo o7 NEND

oz E 09T o~ oa oo
w86 T N<E O Toal
goa T & o o” ZZuruH
0o E oo o" T.No
9TQ v o E T ~ETo
.wz3 o ON SN

Qe N oo T nEo
N N IQT o Zonvv
NNN N 9nO O NeNg
99T X ©oNO>

65T N Tony = D..oDO
-] < N >=N

koo @40

WBE N WEOE Q]
58 T ~nS00

N N Goy O Sdno
onE N Ino T Qdno
NEO N NNN E DanNo

mm 3
g “ 0OxaOT]T oW

©°999999° 9°cco0

[ e}

O o o o ¢ o

O 0 0 do

<O ¥ % =M m

O p-2Z
A go Os
trsso so

D z
cnlo
G A

o D
3 P-
G G

o
z
ve

ONN

|D.0P

N>©
Zn&-uz
oRo
NNO
%,
[= k=

P oN

°

né:--

-3 tHrHrHH <D D D D D m cnencnm
1111 11111111111

-3 0

-3 o -3 0 -3.3
1 1 1

-3 o

Z .3

aN
oN
ON
oo
ON
s
ON
ON
NN
(b))
Ta
oa
INT
Ney

N

02
oY=}
N'a
T

N
NN
Na

™
-
oL
wN
In
aN
o
SN
NO

ot

0O 00OOODOOOOOOOOODO

o O o Oo

4
o
o

D
D
o

MﬂﬁGGMPGan

TOOxp TEIR



- 143 -

correspond to intervalley transitions where one of the final states
is near the conduction band minimum at I' and the other is near the
conduction band minimum along the A axis near X.

The lowest hole threshold along the A axis is higher than the
lowest electron threshold, and corresponds to a normal process, which
is similar to the situation along the A axis in Silicon. The error
in the conservation of energy corresponding to all the thresholds
along the A axis are much smaller than the maximum expected error, the
largest error being less than 0,03eV.

In Silicon, it was surprising to see that the size of the matrix
element of the coulomb interaction corresponding to the lowest electron
threshold along the A axis was negligibly small. It is also surprising
to see that the size of the matrix element corresponding to the lowest
electron threshold along the A axis in Germanium is similarly negligibly
small., It is even more surprising to see that all but two of the
electron thresholds along this axis have negligibly small matrix
element sizes, while one of those two thresholds has an insignificant
matrix element size. The only threshold which has a significant matrix
element size is that for which ET/EG = 1,213, and haé a value of 0.22,
Thus the situation is similar to that in Silicon, in that it would
be erroneous to use the lowest electron threshold in related theories.

The lowest hole threshold, like that in Silicon, has a significant
matrix element size, unlike the lowest electron threshold, and so it
would not be erroneous to use it in related theories. The second lowest
threshold does, howewr, have a negligibly small matrix element size,
as does the second highest threshold, and so the effect of the matrix
element sizes cannot be neglected. The approximate matrix element
sizes, as given by equation 5.2.9, are all negligibly small, as they

were in Silicon, those corresponding to umklapp processes being identically
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zero as expected. Thus the significant matrix element sizes are
not approximated accurately, and only a few of the negligibly small
matrix element sizes are approximated accurately.

All the electron threshold energies along the A axis are seen
to be close to the minimum possible energy for any threshold, and
all correspond to umklapp processes. The lowest hole threshold
energy is also close to the minimum possible energy for any threshold,
while the other hole thresholds have subétantially higher energies.
As expected, the lowest electron and hole thresholds along this axis
are lower than those along the A axis, since the energy band minimum
occurs along this axis. The error in the conservation of energy
corresponding to all the thresholds, with the exception of the two
lowest electron thresholds, is very small, being less than 0.01leV.
The larger errors in the conservation of energy corresponding to the
two lowest electron thresholds .is due to the error in the Fi -Ll
conduction band mentioned in the previous section.

The situation where some of the thresholds determined have
negligibly small matrix element sizes is again repeated, but only
for the electron thresholds, two of the thresholds having negligibly
small matrix element sizes. One of these negligibly small matrix element
sizes corresponds to the lowest electron threshold, and while it would
be erroneous to use it in related theories, the correct threshold to
use is of almost equal energy. The approximate matrix element sizes
follow the pattern of those correspondiﬁg to the thresholds along the
A and A axes in Silicon; those corresponding to the electron thresholds
being zero, and those corresponding to the hole thresholds being negligibly
small,none of them being of comparable sizes to the proper calculations

of the matrix element sizes.
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There are more threshold positions determined along the X-S
axis than along the other two axes, as expected from the details of
the band structure and the results of Silicon., The lowest electron
threshold along the X-S axis has an energy higher than the lowest
electron threshold along the other two axes, and corresponds to a normal
process, in céntrast to the other electron thresholds which correspond
to umklapp processes. It also corresponds to an intervalley transition
where one of the final states is near the conduction band minimum at
I' and the other is near the conduction band minimum at X, This threshold
is closely followed by a normal threshold given by a simple envelope
solution, and then by another normal threshold of the same type as the
lowest threshold. At higher energies there are many more thresholds,
corresponding to both umklapp and normal processes, including some more
intervalley transitions.

The lowest hole threshold along this axis corresponds to a normal
process, and is lower than the lowest hole threshold along the A axis,
but higher than that along the A axis. There are again many more threshold
positions at higher energies, corresponding to both umklapp and normal
processes, all given by simple envelope solutions. The errors in the
conservation of energy of the thresholds are generally greater than those
along the other two symmetry axes, but are still within the maximum
expected error, being in error by less than 0.025eV for electron thresholds,
and by 0.045eV for hole thresholds.

Yet again, it is seen by looking at the sizes of the matrix elements
that there are very few thresholds which can be considered to be important
due to their significant matrix element sizes. Most of the thresholds
along this axis, including the lowest electron threshold, have negligibly
small matrix element sizes. Although the lowest significant electron

threshold has an energy not much higher than the lowest threshold energy,
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the corresponding matrix element size is rather small, having a
value of 0.005. The lowest hole threshold however, has a significant
matrix element size which is not small, having a value of 0.12.

By selecting, from the many threshold positions determined along
all three symmetry axes, the lowest electron and hole thresholds,
whether they have significant matrix element sizes or not, it is seen
that they both occur along the same axis, the A axis, and both have
comparable energies, with values of ET/EG = 1,023 and 1.034 respectively, -
Since the lowest hole threshold has a significant matrix element size,
it is not erroneous to use it in related theories. However, it would
be erroneous to use the lowest electron threshold, although the correct
threshold to use has an almost equal energy, having a value of ET/EG = 1.031.
Thqs the electron and hole thresholds to use in related theories have
values of ET/EG = 1.031 and 1.034 respectively, and both occur along the
A axis, as may be expected.

9.3 Comparison with Results from Approximate Band Structure Models

It is seen from Table 9.3 that there are only minor differences
between the values of ET/EG given by the Franz construction and those
given by the simpler parabolic band approximation. It is also seen that
the approximate values for the Cohen and Bergstresser band structure are
in good agreement with those given by the Envelope Method for the genuine
bands. The agreement in the Stuckel band structure however is not so
good, and it is seen that the approximate models based on the Stuckel
band structure give a threshold along the A axis which ought not to exist.
They also provide much too low a value for ET/EG along the A axis.

Comparison of Tablés 9.1 and 9.3 for the Cohen and Bergstresser
band structure shows:that the approximate models fail to provide the
lowest threshold, as was the case in Silicon, the minimum threshold along

each symmetry axis provided by the genuine bands being substantially lower.
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The comparison for the Stuckel band structure shows that the
approximate models do provide the lowest threshold along the A axis

but with a much too low a value for ET/E Thus, for one band

G'
structure the approximate band structure models give values of ET/EG
which are considerably larger than the lowest value for the genuine
band structure, and in the other band structure they give values of

ET/E which are considerably smaller than the lowest value for the

G
genuine band structure.

Table 9.3

Comparison of ET/EG values for the different band structures

Band structure Parabolic band Franz Genuine

considered approximation construction | band structure

Cohen & Bergstresser

I'-A-L axis 1.06 1.11 1.11
(indirect gap)

Stuckel
(direct gap)

Cohen & Bergstresser

[=A-X axis 1.52 1.53 1.49
(indirect gap)

Stuckel

I'-A-X axis 1.20 1.17 1.32

(direct gap)

It is seen from Table 9.4 that there are minor differences between
the corresponding values of ET/EG given by the Franz construction and
those given by the simpler parabolic band approximation only for the
electron thresholds, the corresponding values for the hole thresholds

differing substantially. It is also seen that the approximate values
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given by the Franz construction are only in reasonable agreement

with those given by the Envelope Method for three threshold positions,

all along the I-S axis; the lowest electron threshold and the two

lowest hole thresholds given by the Franz construction. The approximate
values given by the parabolic band approximation are only in reasonable
agreement for the electron threshold along the ZI-S axis, all other
approximate values of ET/EG differing substantially from the corresponding

values given by the Envelope Method. The approximate models

Table 9.4

" Details of Parabolic band Franz Genuine
thresholds approximation construction band structure
[-A-X axis 1.566 1.559 1.374
Electrons - 1.609 1.415
['-A-X axis 2.089 1.859 1,503
Holes - 2.167 -
- ‘ 3.023 2.066
I'-A-L axis 1.356 1.348 1.026
Electrons - 1.484 1.031
[-A-L axis 1.316 1.229 1.034
Holes - 2,296 -
['-2-K-5-X axis 1.431 1.422 1,507
Electrons - 1.589 -
I'-Z-K-S-X axis - 1.591 1.554
Holes - 1.651 1.600
2.546 2,351 -

also give some thresholds which ought not to exist, as did those in
the preliminary study for the Stuckel band structure, and those along
the A axis in Silicon.

Comparison of Tables 9.2 and 9.4 shows again that the approximate
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values of ET/EG corresponding to all the thresholds, except the hole
threshold along the A axis, fail to provide the lowest thresholds., Of
those not provided,the hole threshold along the A axis and the electron
thresholds along the A and the I-S axes are provided by slightly lower
values, while the other two thresholds are provided by substantially
lower values., .However, the approximate values of the hole threshold
along the A axis and of the electron and hole thresholds along the A axis
are not in agreement with the values given by the Envelope Method, but
are considerably higher. Thus the only threshold given by the approximate
band structure models which is in reasonable agreement with the Lowest
threshold given by the Envelope Method is the electron threshold along

the Z-S axis, all other values being considerably higher than the lowest

1

4° 25,— 25,—K2-—X4 valence bands are all too

flat to provide all the thresholds given by the Franz construction, the

threshold values given by the Envelope Method. The Fz"Ks'X coniduction

L3, and T

band, and the P25,~X T

lower thresholds only being provided.
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10, ' "IMPACT IONIZATION THRESHOLDS FOR 3C SILICON-CARBIDE

10.1 Details of the Calculations

The band structure used in the investigation of impact ionization
thresholds in 3C Silicon-Carbide is reproduced from the data of
Hemstreet and Fong £29). As a result of the pilot study carried out,
which was presented in Chapter 2, the effect of the noﬁ—local,
angular-momentum-dependent potential term in the pseudopotential
analysis is neglected. As in the investigations for Silicon and
Germanium, the three principal symmetry directions are investigated,
in an extended zone scheme, for impact ionization threshold initiated
by hot electrons and by hot holes.

The energy bands investigated alogg the A axis are the Fl-X

1

and T conduction bands and the FlS—X and I', -X_ valence bands.

5 15 73

The energy bands investigated along the A axis are the Pl-L

15743

1> T157hs

conduction bands and the Pls—L and ', ~-L_. valence bands.

and T 3 15 "1

1575
Those investigated along the X-S axis are the Fl-Kl—Xl, FlS-Kl—XS,

T and I', -K,~X_ conduction bands and the T T

15 K% 15 %17%5 15 K7 %50

and I‘lS-Kl-X3 valence bands. The numerical values of these energy

bands are fitted by suitable Fourier series and, as in the cases for

15757 %

Silicon and Germanium, the analytic expressions used are, in general,
nowhere in error by more than 0.0leV. However, the Fl—Xl and I‘l—Kl—X1
conduction bands are, in parts, slightly less accurate. Where the
threshold positions do not involve electron states in the inaccurate
parts of these two conduction bands, the computations are carried out
until the overall error associated with each threshold energy is less
than 0.015eV.

The energy values on the Fl-X conduction band calculated by the

1
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Empirical Pseudopotential Method-do not accurately reproduce the
expected energy values as calculated by Hemstreet and Fong. The
conduction band minimum does not occur at X as is expected, but along
the A axis at a proportional distance of about 0.05 from the zone
boundary with an energy of 2.3leV. Also the "smoothness' of the
energy band is not reproduced, deviations from the expected values
occurring at proportional distances of between 0.6 and 0.7 from the
centre of the first Brillouin zone. This unexpected deviation causes
greater errors in the curve fitting than are normally expected, and
consequently some of the thresholds along this axis are subject to
considerable errors in the conservation of energy.

Due to the shape of the I‘l-Kl—X1 conduction band, the errors in
fitting the appropriate analytic expression are greater than 0.0leV
in places, but are less than 0,015eV, The computations of threshold
positions involving electron states in the slightly less accurate parts
of this conduction band are carried out until the overall error associated
with each threshold is less than 0.02eV. The results of the calculations
of threshold positions are presented in Table 10.1, and are presented
in the same manner as were the results of Tables 8.2 and 9.2 for Silicon
and Germanium respectively. The values of ET/EG given by the Franz
construction and by the parabolic band approximation are also calculated
for comparative purposes, by the same procedure used previously, and
the results are presented in Table 10.2, and are presented in the same
manner as were the results of Tables 8.4 and 9.4.

10.2 Discussion of the Results

It is seen from Table 10.1 that along the A axis there are four
electron thresholds, all corresponding to umklapp processes, and

occurring in pairs with comparable energies. This is similar to the
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situation in Silicon, and may be expected due to the similarities

in the band structure along this axis. There are also three hole
thresholds, all corresponding to normal processes, the lowest of
which is substantially higher than the lowest electron threshold.

As expected, the thresholds along this axis are determined fairly
accurately, with the exception of those thresholds involving electron

states in the inaccurate part of the Pl—X conduction band, the error

1

in the congervation of energy being less than 0,02eV for each threshold.
The two highest electron thresholds, which are considerably higher

than the lowest two thresholds, involve electron states in the inaccurate

part of the Pl-X conduction band, as does the second lowest hole

1
threshold, which is also considerably higher than the lowest hole
threshold. The consequent errors in the conservation of energy are

thus not unexpected, being 0.085eV, 0.099eV and 0.035eV respectively

for the electron and hole thresholds. The errors in the initial positions
of the hot electrons are not thought to be too large, as the electron

states lie in the Pl —X3 conduction band, and it is the final states of

5
the electrons which are in error. The error for the hole threshold
is mainly due to the error in the initial position of the promoted hole,
and thus the error in the initial position of the hot hole is not
thought to be very large.

The energy gap along the A axis in Silicon is much larger than that
along the A axis, and consequently the threshold energies along the
A axis were much higher than those along the A axis. The energy gap
along the A axis in 3C Silicon~Carbide is similarly much larger than
that along the A axis, and thus it is expected that the threshold

energies along this axis will be much higher than those along the

A axis. This is seen to be the case for both electron and hole thresholdsd.
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Only two electron thresholds are determined, both corresponding
to umklapp processes and both of comparable energies, while all
the hole thresholds correspond to normal processes. The same
situation concerning the type of threshold processes also occurs
along the A axis, and also along the two corresponding axes in
Silicon., Another comparison which can be made with Silicon is that
while the lowest electron threshold along the A axis is lower than
the lowest hole threshold, the opposite situation occurs along the
A axis, the lowest hole threshold being lower than the lowest electron
threshold,

Since the minimum energy gap occurs very close to X along the
A axis, the energy gap along the I-S axis is of a comparable energy,
and it may be expected that the lowest thresholds along this axis
will be of comparable energies to those along the A axis. However,
the lowest electron threshold along this axis is much higher than that
along the A axis, and in contrast to this, the lowest hole threshold
along this axis is substantially lower than that along the A axis,
and is consequently also much lower than the lowest electron threshold
along the Z-S axis. As expected, all the electron thresholdsalong
the Z-S axis correspond to umklapp processes, but of the hole thresholds,
some correspond to umklapp processes, including the lowest threshold,
while others correspond to normal processes.

The errors in the conservation of energy corresponding to all
the thresholds along the A axis are much smaller than the maximum
expected error, the largest error being less than 0.0leV. The electron
thresholds along the Z-S axis also have corresponding errors in the
conservation of energy much less than the maximum expected error, but a

few being larger than those along the A axis, although being less than



- 155 -

0.025eV. Those corresponding to the hole thresholds along the Z-S
axis are generally larger than the others, but are all less than
0.04eV.,

By considering only the threshold positions and the values
of ET/EG, it would appear that the lowest electron threshold occurs
along the A axis with a value of ET/EG=1.131, and that the lowest
hole threshold occurs along the I-S axis with a value of ET/EG=1.161.
In Silicon and Germanium, the corresponding situation was seen to
be erroneous due to matrix element sizes being negligibly small, and
was rather surprising. However, by looking at the matrix element
sizes of the lowest electron and hole thresholds in 3C Silicon-Carbide,
it would not have been erroneous, since both are of a significant size,and
have values of 0.019 and 0.088 respectively. Indeed, by looking at
the matrix element sizes corresponding to all the thresholds determined,
the situations which occurred in Silicon and Germanium, in which very
few matrix element sizes were significant, are seen not to be repeated.
All the thresholds have corresponding matrix element sizes which are
significant, which was the situation expected before the results of
Silicon were obtained.

The lowest electron and hole threshoids given are thus the
correct values to use in related theories, unlike the situations for
Silicon and Germanium (for electrons only). Also, the largest matrix
element sizes are considerably larger than the largest sizes in
Silicon and Germanium, and it is surprising that they are even greater
than unity. Of the approximate matrix element sizes which do not
correspond to umklapp processes, and are consequently non-zero, only

a few are in reasonable agreement with the proper calculations.

Thus the lowest electron threshold occurs along the A axis while
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the lowest ﬁole threshold occurs along the I-S axis, which is in
contrast to the results of Silicon and Germanium for which both

the lowest electron and hole thresholds occurred along the same
symmetry axis. As in Germanium, both the thresholds are of
comparable energies, and they also have comparable matrix element
sizes. It is noted that all the threshold positions are determined
by simple envelope solutions and that no double envelope solutions,
which correspond to intervalley transitiomns, exist. This is due to
the absence of multiple conduction band minima of comparable energies
in the band structure, there being only the ome distinct conduction
band minimum.

10,3 Comparison with Results from Approximate Band Structure Models

The results presented in Table 10,2 show that there are minor
differences between the corresponding values of ET/EG given by the
Franz construction and those given by the simpler parabolic band.
approximation only for the electron thresholds along the A and A axes
and for the hole threshold along the I-S axis. The corresponding
values for the other thresholds differ substantially, the values given
by the parabolic band approximafion being higher than those given by
the Franz construction. The approximate values of ET/E are nowhere

G

in agreement with the corresponding values given by the Envelope
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‘Table 10,2

Comparison of ET/E values for different band structure models

G

Details of Parabolic band Franz Genuine
Thresholds approximation construction band structure
I'=A-X axis 1.683 1.651 1.131
Electrons - 1.778 1.139
I'-A-X axis 1.751 1.527 1.297
Holes - 2.766 -
I'-A-L axis 2.889 2.883 -
Electrons - 2,924 -
I'-A-L axis 2.850 1.934 -
Holes - 3.266 -
['-Z=-K-S-X axis 2.620 2.182 1.641
Electrons - 3.269 1.948

- 3.998 1.969
[-Z-K-S-X axis 1.554 1.534 1.161
Holes - 2.558 -

Method for the genuine bands, all corresponding values being substantially
higher. 1Indeed, as was the situation along the A axis in Silicon, the
lowest lying conduction band and the highest lying valence band along

the A axis (the P1~L and T

1 15—L3 bands) are too flat to permit any

ionization process to take place at all, and the approximate band
structure models give threshold values for these bands which ought not
to exist.

Along the A axis, the T valence band is too flat to provide

=X
15 75
more than one hole threshold position, but the Franz construction provides

a second hole threshold which thus ought not to exist. The same situation

also occurs along the I-S axis, for which the I’lS-KZ—X5 valence band
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is too flat to provide more than one hole threshold position.
Thus, there are only values corresponding to the approximate band
structure models given by the Envelope Method for the electron
thresholds and the lower hole threshold along the A and the Z-S
axis. The lowest electron and hole thresholds along these axes
are also provided by the approximate band structure models, as is
seen by comparing Tables 10,1 and 10.2., However, the approximate
values of ET/EG are substantially higher than the values given by

the Envelope Method.
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11, IMPACT IONIZATION THRESHOLDS FOR GALLIUM=PHOSPHIDE

11.1 Details of the Calculations

The band structure used in the investigations of impacp
ionization thresholds in Gallium-Phosphide is reproduced from the
data of Walter and Cohen [26], and as in the investigations of the
previous semiconductors, the three principal symmetry axes are
investigated in an extended zone scheme. Again, impact ionization
thresholds initiated by both hot electrons and hot holes are thus
determined by the Envelope Method. The energy bands investigated

are the Fl-X I'. _=-X_. and Pl

1> T157%, —X5 conduction bands and the TlS-X

5 5

1’ 15 73

I’15-L2 conduction bands and the F15—L3 and I’lS—L2 valence bands

r

and P4$~X3 valence bands along the A axis, the Fl—L I'..-L, and
1 K

157X 7%g5 T}57K,7X; and

T -X5 and I', _-K_ =X

along the A axis, and the Fl—Kl—Xl,

I'ls—Kl-X5 conduction bands and the F15-K2~X5,

valence bands along the I-S axis.

1575 15 1 3

As in the previous investigations, the numerical values of these
energy bands are fitted by suitable Fourier series, the analytic
expressions used being nowhere in error by more than 0.0leV for all
the energy bands except the F15—X5 and the FlS_Kl_X3 conduction bands.
The shapes of these two conduction bands are similar to some of the
conduction bands in Germanium and 3C Silicon—-Carbide which were fitted
slightly less accurately, and consequently it is not unexpected that
these energy bands are also in error by slightly greater than 0.0leV
in places. They are however, in error by less than 0.015eV, but this
slightly greater error has no noticeable effect on the overall accuracy
of the energies of the thresholds which involve electron states in the

r

15—X5 conduction band. Thus, the computations are carried out until

the overall error associated with each threshold energy is less than
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0.015eV for all thresholds not involving electron states in the

inaccurate parts of the T conduction band, For the very

15 517%3
few threshold positions which do involve electron states in the
inaccurate parts of this conduction band, the threshold energies
are in error by less than 0.02eV.

The results of the calculations of the threshold positions are
presented in Table 11.1, and are presented in the same manner as
were the results of Tables 8.2, 9.2 and 10.1 for Silicon, Germanium
and 3C Silicon-Carbide respectively. The values of ET/EG given by
the Franz construction and by the parabolic band approximation are
also calculated, as before, for comparative purposes, and by the
same procedures as used previously. The results of these approximate
threshold values are presented in Table 11.2, in the same manner as

were the results of Tables 8.4, 9.4 and 10,2,

11.2 Discussion of the Results

In the band structure of Germanium, there are three conduction
band minima of comparable energies, and there are also three in the
band structure of Gallium-Phosphide, one at I', one at X and one at
L, Ehe lowest of these occurring at X, unlike that in Germanium. As
a consequence of these multiple conduction band minima and the possibility
of intervalley transitions, there are a greater number of thresholds
for Gallium-Phosphide, as there are for Germanium, than there are for
Silicon and 3C Silicon-Carbide, as can be seen from Table 11.1.

Of the electron thresholds along the A axis, the lowest two are
of comparable energies, the lowest having a value of ET/EG=1.118, and
both corresponding to umklapp processes. All the other electron thresholds
correspond to normal processes and occur at substantially higher energies

than the lowest two thresholds. Two of these normal thresholds also
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correspond to intervalley transitions, being determined by double
envelope solutions, for which the final state of the promoted
electron is near the conduction band minimum at I, and the final
state of the hot electron is near the conduction band minimum at X.
The hole thresholds along this axis all correspond to normal processes,
as is expected from the results of the semiconductors investigated
previously. The lowest threshold energy is close to the minimum
possible energy for any threshold, and is also lower than the lowest
electron threshold along this axis. The errors in the conservation
of energy corresponding to all the threshold positions along this axis
are, as may be expected from the previous results, much smaller than
the maximum expected error, being less than 0,02eV for all the thresholds
except one. This threshold is the highest electron threshold determined,
and the slightly larger error of 0.025eV associated with it is due to
the inaccuracies of the I'lS—X5 conduction band, in which the hot electron
state initially lies.

In Silicon, several of the thresholds are insignificant due to
the negligible sizes of the matrix elements corresponding to those
thresholds, and in Germanium, most of the thresholds are insignificant
due to the same reason. However, in 3C Silicon-Carbide all the thresholds
have matrix element sizes which are significant. The situation for
Gallium-Phosphide is slightly different from these situations, in that
most of the thresholds have corresponding matrix element sizes which
are significant. The lowest electron and hole thresholds both have
corresponding matrix element sizes which are significant, thus it would
not have been erroneous to have taken them for use in related theories

without considering the matrix element sizes. Indeed, there are only
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two insignificant matrix element sizes corresponding to thresholds
‘along this axis, both electron thresholds with large values of
ET/EG. The matrix element sizes given by the approximate equation
5.2.9 are seen to be in agreement with the proper calculations of
equation 5.2.5 for only two thresholds, the lowest hole threéhold
and one of the higher electron thresholds, of which that corres—
ponding to the lowest hole threshold is the only one which is of
a significant size.

The energy gap along the A axis is slightly higher than that
along the A axis, and consequently the threshold energies are also
higher along the A axis. The lowest electron threshold is provided
by an umklapp process, and has a considerably higher energy than
that of the lowest electron threshold along the A axis. At higher
energies there are several more thresholds, only one of which corresponds
to an umklapp process, all the others corresponding to normal processes
including a few intervalley transitions given by double envelope solutionms.
The lowest hole threshold is also higher along this axis than that
along the A axis, and similar to the situation along the A axis, is
lower than the lowest electron threshold. Once again, all the hole
thresholds along the A axis correspond to normal processes., The errors
in the conservation of energy corresponding to all the thresholds along
this axis are again very small, the error being nowhere greater than
0.015eV, and only exceeding 0.0leV for two thresholds, one electron and
one hole threshold.

As along the A axis, the lowest electron and hole thresholds along
the A axis both have corresponding matrix element sizes which are
significant. However, the sizes of the matrix elements corresponding

to the thresholds along this axis tend to follow the situation along
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the A axis in Germanium, in that several of those corresponding

to electron thresholds are of an insignificant size (about half) .
while all those corresponding to hole thresholds are of a signi-
ficant size. 1In contrast to the situation in the semiconductors
investigated previously, the approximate sizes of the matrix elements
corresponding to the electron thresholds are nearly all in agreement
with the proper calculations, only those corresponding to the two
umk lapp processes and to one normal process differing substantially,
The situation for the hole thresholds however; is similar to those
previously, none of the approximate matrix element sizes being in
agreement with the proper calculations.

The lowest of the conduction band minima in Gallium—Phosphide occurs
at X, and hence the energy gap along the I-S axis is the same as that
along the A axis. The lowest thresholds along these two symmetry
axes may therefore be expected to be of comparable energies. This is
not the case for the electron thresholds, the lowest threshold along
the X-S axis being substantially higher than that along the A axis.
This threshold is provided by a normal, intervalley.transition, which
is in contrast to the situation along the other two symmetry axes, but
similar to the situation along the I-S axis in Germanium, which is a
direct consequence of the multiple conduction band minima of comparable
energies. At higher energies there are several umklapp processes,
and also some more normal processes, some of which are also intervalley
transitions. It is interesting to note that there are also a few
umklapp processes which also correspond to intervalley transitions,

a direct consequence of the zone boundary being 3 of the proportional

distance along this axis from T,
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The lowest hole threshold, as expected, does have an energy
comparable to the energy of the lowest hole threshold along the
A axis, being very slightly lower., This lowest threshold is provided
by a normal process, and the situation for the thresholds at higher
energies is similar to that in Germanium and 3C Silicon-Carbide,
there being some. umklapp processes and some normal processes. As
may be expected from the errors in the conservation of energy
corresponding to the thresholds along the I-S axis in Silicon,
Germanium and 3C Silicon-Carbide, those along the I-S axis in
Gallium-Phosphide are slightly greater than those along the other
two axes. The errors associated with all the electron threshold
energies however, are still very small, being nowhere greater than
0.02eV, while the errors associated with all but the highest hole
threshold are nowhere greater than 0.035eV. The error in the
conservation of energy of 0.054eV associated with the highest hole
threshold, although less than the maximum expected error, is due to
the inaccuracies in the I‘15—K1-—X3 conduction band.

Similar to the situation along the A and A .axes, only a few of
the matrix element sizes corresponding to the electron thresholds
along the I-S axis can be considered to be insignificant, while those
corresponding to the hole thresholds along this axis are all significant.
Also, the lowest electron threshold has a significant size of matrix
element, as does the lowest hole threshold. Again, the matrix element
sizes given by the approximate equation are in agreement with the proper
calculations corresponding to several of the electron thresholds, but
to only the lowest hole threshold. The proper calculations of the
matrix element sizes corresponding to the majority of the thresholds

along the X-S axis are not approximated accurately by the approximate
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calculations.

Thus, from the many thresholds determined along all three
symmetry axes, the lowest electron threshold is provided by an
umklapp process along the A axis with a value.of ET/EG=1.118, and
the lowest hole threshold is provided by a normal process along
the I-S axis with a value of ET/EG=1.OO9. However, the lowest
hole threshold aloﬁg the A axis is only very slightly higher than
that along the I-S axis, having a value of ET/EG=1.012. Since the
matrix element sizes corresponding to all three of these thresholds
are significant, they can also be considered to be the lowest
significant thresholds. The hole threshold along the A axis, although
it has a very slightly greater energy than that along the I-S axis,
has a matrix element size greater than that along the I-S axis by an
order of magnitude. Thus, the lowest hole threshold along the A axis
should be used in related theories in preference to that along the
Z-S axis, and hence the lowest threshold for both electrons and holes
occurs along the A axis.

The values of ET have also been calculated by Anderson and
Crowell [32], but using the band structure of Coﬂen and Bergstresser
[25]}. The band structure of Walter and Cohen [26), which is reproduced
and used in the present work, differs slightly from that of Cohen and
Bergstresser and is regarded as being the more accurate. The results
presented in this work are thus compared with the results of Anderson
and Crowell, and very good agreement is obtained within the errors of
the respective methods. The lack of absolute agreement is almost
certainly due to the slight differences in the two band structures

investigated.
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11.3 Comparison with Results from Approximate Band Structure Models

It is seen from Table 11,2 that there are minor differences between
the corresponding values of ET/EG given by the Franz construction and
those given by the parabolic band approximation for all the electron
thresholds, but for only the hole threshold along the %X-S axis. The
corresponding values for the hole thresholds along the A and A axes
are not in good agreement, the values given by the parabolic band
approximation being substantially higher than those given by the Franz
construction, It is also seen that the approximate values of ET/EG given
by both the approximate band structure models are only in agreement with
the value given by the Envelope Method for the lowest hole threshold'
along the Z-S axis. In fact, there is only one other threshold given
by the Envelope Method for which the approximate values may be compared,
the lowest hole threshold along the A axis., This situation also occurred
in the 1nvestigations of Silicon, Germanium and 3C Silicon-Carbide, but
is much more pronounced here,

Comparison of Tables 11.1 and 11.2 shows that the two threshold
values given by the Envelope Method for which approximate threshold
values also exist, correspond to the lowest hole thresholds along the
A and the I-S axes. Thus, the lowest hole threshold along the I-S
axis is also given accurately by both the approximate band structure

models,
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‘Table 11.2

Comparison of ET/E values for different band structure models

G

Details of Parabolic band Franz Genuine
Thresholds approximation construction band structure
T-A-X axis 1.096 1.094 -
Electrons - 1,107 -
I'-A-X axis 1.299 ) 1.219 1.012
Holes - 1.527 -
T'-A-L axis 1.342 1.341 -
Electrons - 1.357 -
T'-A-L. axis 1.245 1.128 -
Holes - 2.583 -
I'-X-K-S-X axis 1.808 1.769 -
Electrons - 2.649 -

- 3.288 -
[-X=-K-S-X axis 1.063 1.061 1,009
Holes - 1.212 -

- 2.426 -

although by slightly higher values, while that along the A axis is
given by approximate values which are considerably higher than the
value given by the Envelope method.

The Fl-Xl conduction band along the A axis is too flat to permit

any ionization process to take place at all, and thus the ET/EG values

given by the approximate band structure models ought not to exist.,

The same situation also applies to the Tl—L conduction band along

1

the A axis, the I‘l-Kl-X1 conduction band along the X-S axis and the

F15—L3 valence band along the A.axis. The FIS—XS valence band along

the A axis is only able to provide one hole threshold position, and
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thus only one ET/EG value given by the approximate band structure

models ought to exist, as is the T valence band along the

15 %X

2-S axis.
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12. IMPACT IONIZATION THRESHOLDS FOR GALLIUM-ARSENIDE

12.1 Details of the Calculations

As in the investigation of impact ionization thresholds in
Gallium—Phosphide, the band structure used in the investigation
of impact ionization thresholds in GalliumArsenide is reproduced
from the data of Walter and Cohen [2{], and the investigations are
carried out along the three principal symmetry axes in an extended
zone scheme. Again, impact ionization thresholds initiated by both
hot electrons and hot holes are determined by the Envelope Method.

The energy bands investigated are the I''-X. and T conduction

1% 15 %3

bands and the FlS_XS and FlS—X3 valence bands along the A axis,

the Fl—Ll, F15-L3 and F15—L2 conduction bands and the P15-L3

and FlS—LZ valence bands along the A axis, and the Fl—Kl-Xl, FlS—Kl—X3,
1"15—K2—X5 and I‘ls-Kl—X5 conduction bands and the rlS_KZ—XS’ I‘ls—Kl-X5
and I‘lS-Kl-X3 valence bands along the L-S axis.

The numerical values of these energy bands are fitted by
suitable Fourier series, the analytic expressions used being nowhere
in error by more than 0.0leV for all the energy bands except the
Fl-Xl, FlS-X3 and D15—K1-X3 conduction bands. The shapes of these
three conduction bands are similar to some of the conduction bands
in Gallium~Phosphide, and also in Germanium and 3C Silicon-Carbide,
which were fitted less accurately. Consequently, the errors involved
in fitting the analytic expressions to these conduction bands are
greater than 0.0leV in plages; as may be expected. The errors in
the Pl—Xl and FlS_XB

in the region between about 0.3 and 0.4 of the proportional distance

conduction bands are only greater than 0.0leV

along the A axis measured from I'. The errors in this region vary
considerably, but the analytic expressions fitted are nowhere in

error by more than 0.03eV, and as a result of these inaccuracies,
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a few threshold positions, for both electrons and holes, are
determined less accurately.

The errors in the T conduction band are only slightly

15 %17%3
greater than 0.0leV in places, and are nowhere in error by more than
0.015eV. Thus, for threshold positions not involving electron states
in the inaccurate parts of these three conduction bands, the computa-
tions are carried out until the overall error associated with each
threshold energy is less than 0.015eV., For the very few thresholds
which involve electron states in the inaccurate parts of the FlS—Kl-X3
conduction band, the threshold energies are in error by less than
0.02eV, while the threshold energies of those few thresholds involving

electron states in the inaccurate parts of the Tl—X or'P15~X conduction

1 3

bands are in error by less than 0.035eV,

The results of the calculations of the threshold positions are
presented in Table 12.1, and are presented in the same manner as were
the results of Tables 8.2 and 9.2 for Silicon and Germanium. As usual,
the values of ET/EG given by the Franz construction and by the parabo-
lic band approximation are also calculated, again for comparative
purposes, by the same procedures used previously. The results of
these appreximate threshold values are presented in Table 12,2 in the
same manner as were the results of Tables 8.4 and 9.4.

12.2 Discussion of the Results

The previous semiconductors investigated all have indirect
band gaps, unlike the band gap in Gallium—Arsenide, which is a direct

r

gap from T However, similar to the band structures of Germanium

15 1°
and Gallium-Phosphide, there are a further two conduction band minima
of comparable energies, one at L and one at X. Consequently there

are a similar number of impact ionization threshold positions in

Gallium—-Arsenide as there are in Germanium and Gallium-Phosphide,
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due to the multiple conduction band minima and the possibility
of intervalley transitions.

Along the A axis in the semiconductors investigated previously,
the lowest two electron threshold were seen to have comparable
energies, the lowest threshold promoting an electron from the higher
lying valence band and the higher threshold promoting an electron from
the lower lying valence band. The situation along the A axis in
Gallium—-Arsenide is in contrast to these results, the lowest threshold
being substantially lower than the second lowest threshold, having
values of ET/EG = 1.266 and 1.450 respectively. This is due to the
Fl-X

1 conduction band being too flat to permit impact ionization

processes to take place which involve electrons in the F15-X3 valence
band. Both these thresholds are provided by normal processes, and
the final states of both the electrons, for both thresholds, are near
the conduction band minimum at ', as may be expected. At higher energies
there are, as ﬁsﬁal, several more thresholds provided by both umklapp
The hole thresholds along the A axis all correspond to normal
processes, as is expected, and similar to the situation in Gallium-—
Phosphide, the lowest hole threshold is lower than the lowest electron
threshold along this axis. The next lowest hole tﬁreshold however,
has a very much larger energy than the lowest (ET/EG=1.84O compared
‘with ET/EG=1.177 for the lowest threshold). The errors in the
conservation of energy associated with the thresholds along this
axis are not particularly good, the large errors occurring due to
the inaccuracies involved in fitting the analytic expressions to the
two conduction bands. The large errors in the conservatibn of energy

associated with the two lowest electron thresholds are due to the

initial states of the hot electrons being in the inaccurate part
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of the Pl-Xl conduction band., Two other electron thresholds, at
much higher energies, also have large errors in the conservation
of energy associated with them due to the initial hot electron

states being in the inaccurate part of the T conduction band.

15 %3
The errors in the conservation of energy associated with the hole
thresholds are much smaller than those for the electron thresholds,
and are all less than the maximum expected error.

There are surprisingly few electron thresholds along the A
axis (only three) considering the similarities in the Gallium-
Phosphide and Gallium—Arsenide band structures. These thresholds
also occur at very high energies, all having energies larger than
all the thresholds determined, both electron and hole thresholds,
along the A axis. These large energies are due to the Tl—Ll
conduction band being too flat to permit any ionization process to
take place at all, the hot electron in each threshold being provided
conduction band.

by either the T or the T

15773 15712
The lowest hole threshold along this axis has a value of ET/EG=1.O6O,
close to the minimum possible energy for any threshold, and lower than
the lowest hole threshold élong the A axis. Similar to the situation
along the A axis, the next lowest hole threshold along the A axis
occurs at an energy considerably higher than that of the lowest hole
threshold. Once again, all the hole thresholds along this axis are
provided by normal processes. The errors in tHe conservation of energy
corresponding to all the threshold along this axis, except the highest
electron threshold, are very small indeed, as may be expected, none
being greater than 0.0leV. The error corresponding to the highest

electron threshold, although larger than all the others along this

axis, is still smaller than the maximum expected error.
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Considering now the thresholds along the I-S axis, the
situation is seen to be similar to that along the I-S axis in
both Germanium and Gallium—Phosphide as expected. There are
many electron thresholds, provided by both umklapp and normal
processes, some of which also correspond to intervalley transitions,
and there are also many hole thresholds, again provided by both
umklapp and normal processes. The lowest electron threshold along
this axis has an energy only slightly greater than that of theb
lowest hole threshold along the A axis, and lower than the energies
of the lowest electron thresholds along the A and A axes. Similar
to the lowest electron threshold along the A axis, this lowest
threshold is provided by a normal process in which the final electron
states are both near the conduction band minimum at I'. Also, the
next lowest electron threshold has an energy considerably higher than
that of the lowest threshold.

The lowest hole threshold along the X-S axis is close to the
minimum possible energy for any threshold, as is that along the A
axis, and is even lower than the lowest hole threshold along the
M\ axis. This lowest threshold is provided by a normal process, as
is the next lowest threshold which has an energy not much greater
than that of the lowest threshold, in contrast to the situation along
the other two symmetry axes., However, the third lowest hole threshold"
does have an energy considerably higher than those of the two lowest
thresholds.,

The errors in the conservation of energy corresponding to the
thresholds along the 2X-S axis are generally smaller than those along

the A axis, in contrast to the situations in the other semiconductors
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investigated, but generally greater than those long the A axis,

in keeping with the situations in the other semiconductors
investigated. Mosf of the electron thresholds have a corresponding
error in the conservation of energy less than 0.02eV, with only a
few in error by more than this. Only one threshold is in error

by more than 0.03eV, but is still less than the maximum expected

error, and is due to the inaccuracies in the T conduction

15 <17 %3
band. All but one hole threshold have corresponding errors in the
conservation of energy less than 0.02eV, while the one less accurate
threshold, in error by 0.036eV, is again due to the inaccuracies

in the T conduction band.

15 %17%3

The situation concerning the sizes of the matrix element of
the coulomb interaction is similar to that in Gallium—Phosphide,
in that most of the thresholds have corresponding matrix element
sizes which are significant. However, in contrast to the situation
in Gallium—Phosphide, the lowest electron threshold along the A
axis has an insignificant matrix element size, the lowest signifiéant
threshold not occurring until a very much higher energy is achieved,
the threshold having a value of ET/EG=1'715' The lowest hole
threshold along the A axis does have a significant matrix element
size, in keeping with the situation in Gallium-Phosphide.

The lowest electron and lowest hole thresholds along the A axis
both have corresponding matrix element sizes which are significant,
similar to the situation along the A axis in Gallium~Phosphide.
Indeed, the matrix element size corresponding to the lowest hole

threshold is greater than unity, a situation which was first noticed

in the results of 3C Silicon—-Carbide. Along this axis there is only
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one threshold, an electron threshold, which has a corresponding
matrix element size which is insignificant,

Again, there are only a few thresholds along the ZI-S axis
which can be considefed to have insignificant matrix element
sizes., However, unlike the situations along the other two
symmetry axes, both the lowest electron and the lowest hole thresholds
have corresponding matrix element sizes which are insignificant.
The second lowest electron threshold along the I-S axis is the
lowest which also has a significant matrix element size, but it
has a very much higher energy. Also, a further two electron thresholds,
at even higher energies, are seen to have corresponding matrix element
sizes greater than unity, as did the lowest hole threshold along the
A axis. The lowest significant hole threshold, unlike the lowest
significant electron threshold, occurs at an energy not much greater
than that of the lowest hole threshold.

The approximate calculations of the matrix element sizes are
in general better than those in the other semiconductors investigated.
Most of the electron thresholds along the A axis which are provided
by normal processes have corresponding matrix element sizes which
are also approximated aécurately by the matrix element sizes calcu-

lated from equation 5.2.9. This also applies to the electron

thresholds along the I-S axis which are provided by normal processes.
However, the situation for the electron thresholds along the A axis,
and for all the hole thresholds are more in keeping with the situations
in the other semiconductors investigated, in that very few of the
matrix element sizes corresponding to these thresholds are approxima;ed

accurately by the equation 5.2.9.
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From the many thresholds determined along all three principal
symmetry axes, the lowest electron threshold has a value of ET/EG=1.083
and is provided by a normal process along the I-S axis, while the
lowest hole threshold has a value of ET/EG=1.026, slightly lower than
the lowest electron threshold, and is also provided by a normal process
along the I-S axis. However, it would be erroneous to use these values
in related theories as both of them have corresponding matrix element
sizes which are insignificant. It is necessary to consider the matrix
element sizes corresponding to the thresholds before attempting to
use them in related theories. By doing this, it is seen that the
lowest electron threshold which has a significant matrix element size
does not occur until a very much higher energy than the- overall lowest
electron threshold. It has a value of ET/EG=1.567, and is provided by
a normal process along the ZI-S axis, and also corresponds to an
intervalley transitionm.

The lowest hole threshold which has a significant matrix element
size occurs at a comparable energy to that of the overall lowest hole
threshold, being only slightly higher with a value of ET/EG=1;060.
However, this threshold is not provided along the same axis, but along
the A axis, thus being in contrast to the expected situation which
occurred in Silicon, Germanium and Gallium-Phosphide. That is, the
lowest electron and hole thresholds which are significant are provided
along different symmetry axes, the situation which also occurred in
3C Silicon—-Carbide. Even though the lowest significant hole threshold
occurs along the A axis, the lowest significant hole thresholds along
the other two symmetry axes occur at only slightly higher energies,

although they do have significantly smaller matrix element sizes,
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The values of ET have also been calculated by Anderson and
Crowell [32], but using the band structure of Cohen and Bergstresser
[25]. As for Gallium—Phosphide, the band structure of Walter and
Cohen which is reproduced and used in the present work, differs
slightly from that of Cohen and Bergstresser, and is regarded as being
the more accurate. The results presented in this work are thus
compared with the results of Anderson and Crowell, and with the
exception of the electron thresholds along the A axis, very good
agreement is obtained within the errors of the respective methods.

The lack of agreement in the electron thresholds is almost certainly
due to the slight differences in the two band structures investigated.

12.3 Comparison with Results from Approximate Band Structure Models

As expected from the results of the approximate band structure
models for the semiconductors investigated previously, there is not
complete agreement between the values of ET/EG given by the parabolic
band approximation and the corresponding values given by the Franz
construction., There are however, only minor differences between the
corresponding values for all the thresholds except the hole threshold
along the A axis, for which the value of ET/EG given by the parabolic
band approximation is substantially higher than that given by the Franz
construction, Similar to the situation in Gallium-Phosphide, there
are only two threshold positions determined by the Envelope method for
which the approximgte values may be compared, the lowest electron
thresholds along the A and the Z-S axes. Of these two thresholds,
only that along the I-S axis is approximated acéurately, the approximate
values corresponding to the threshold along the A axis being substantially

lower,
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Comparison of Tables 12.1 and 12.2 shows that

Table 12,2
Comparison of ET/EG values for different band structure models
Details of Parabolic band Franz Genuine
Thresholds approximation construction band structure
I'-A-X axis 1.124 1.127 1.266
Electrons - 1.465 -
I'-A-X axis 1.876 1.607 -
Holes - 1.873 -

- 2,091 -

- 3.103 -
[-A-L axis : 1.073 1.057 -
Electrons . - 1.491 -
I'-A-L axis 1.933 : 1.929 -
Holes - 3.884 -
I'-Z-K-S-X axis| 1 1,046 1.034 : 1.083
Electrons - 1.148 -

- 1.521 -
[-Z-K-S-X axis - 1.603 -
Holes - : 1.754 -

1.981 _ 1.975 -
- 4.488 -

the two threshold values given by the Envelope method, for which
approximate threshold values also exist, correspond to the lowest
electron thresholds along the A and X-S axes. Thus the lowest electfon
threshold along the X-S axis is also given accurately by both the
approximate band structure models, while that along the A axis is
given by approximate values which are substantially lower than the
true values.

The TlS—X valence band along the A axis is too flat to permit

5

any ionization process initiated by hot holes to take place at all,
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and thus the values of ET/EG given by the approximate band
structure models ought not to exist. The same situation also

applies to the Fl-L conduction band and the Fl =L, valence band

1 573
along the A axis, as it does for the corresponding energy bands
along the A axis in Silicon, 3C Silicon-Carbide and Gallium-—

Phosphide. The T valence band along the I-S axis is also

15 %275
too flat to permit any ionization process to take place at all,

and again, the values of ET/EG given by the approximate band
structure models ought not to exist. The Pl—Xl conduction band
along the A axis is only able to provide one electron threshold
position, and thus on}y one value of ET/EG given by the approximate

band structure models ought to exist. This situation also applies

to the I‘l—Kl—X1 conduction band along the XI-S axis.
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13. RESUME OF RESULTS

13.1 Summary of Work Done

The aim of this thesis has been to investigate the relation
between the detailed band structure and impact ionization for a
number of semiconductors. This research project was prompted by
the lack of knowledge concerning the impact ionization threshold
energies for realistic band structures, since at that time the
only calculations of impact ionization threshold energies had been
made using approximate band structure models. These assumed the
conduction band to be pérabolic, and most of them also assumed the
vaience band to be parabolic.

In order to perform calculations for realistic band structures,
it was necessary to obtain accurately the details of the band structures
investigated. This was done by reproducing fhe band structure
calculations of previous workers, which were made by the Empirical
Pseudopotential Method (EPM). 1In the EPM calculations of 3C SiC,
the band structure was reproduced from the calculations of Hemstreet
and Fong [?8,29], for which a nonlocal, angular-momentum—-dependent
potential term was added to the local potential term. As a result of
a pilot study into the effect of this nonlocal term, an error in the
calculations of Hemstreet and Fong was revealed, and it was shown
that the nonlocal term had a negligible effect on the band structure,
contrary to the results of Hemstreet and Fong.

Once the realistic band structures of the various semiconductors
had been calculated, the impact ionization threshold energies were
then determined. For the purpose of calculating these threshold
energies, a graphical method was developed in this work, referred to

as the Envelope Method. The results of these calculations were
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presented in Chapters 8 to 12, together with the appropriate
values given by two approximate band structure models which previous
workers had used in their calculations. These models were; the
method developed by Franz [ﬁd] as a generalization of the method
introduced by Tewordt Bﬂ, and the familiar parabolic band, or
effective mass, approximation.

Since the impact ionization threshold energy appears as a
parameter in the total probability of a.transition, it was decided
to calculate two other quantities appearing in the total tramsition
probability. One of these was the relative importancg of the density
of states of the energy bands involved in a tramsition for hot
electron energies just above threshold, for thresholds having
comparable energies. However, it was concluded that for Si, this
quantity was not important in determining the relative importance of
thresholds having comparable energies, and was therefore not calculated
for the thresholds of the other semiconductors investigated.

" The second quantity appearing in the transition probability was
the matrix element of the coulomb interaction between the electron
states involved in a transition. This calculation was performed by
employing the thedry of Beattie and Landsberg [11], in which the
states involved in the transition are described by orthonormal, one-
electron functions. Furthermore, these one-electron functions were
expanded as a finite series of plane-waves, the coefficients of which
were calculated by means of the EPM. In the calculations of the sizes
of the matrix element, only the term which is referred to as the
'direct term' was evaluated; no evaluation was made of the term which
is referred to as the 'exchange term'. The results of these calcula-

tions were presented in Chapters 8 to 12, some of which were very
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surprising, as a number of threshold positions had corresponding
matrix element sizes which were insignificant.

13.2 Accuracy of Band Structures in Calculating the Lowest
Threshold Energies

In the chapters dealing with the results, not only were the
threshold values given by the Envelope Method for the realistic
band structures presented, but also the corresponding values given
by the two approximate band structure models. It was seen that while
the values given by the two approximate models were, in general,
comparable with each other, the comparison with the corresponding
values given by the Envelope Method were very poor indeed. Since
the lowest threshold of each type (electron and hole) is of greatest
importance, they are summarized in Table 13.1, in which the lowest
values given by the approximate band structure models are compared
with the lowest values given by the Envelope Method.

It is seen that in the majority of situations, the lowest
approximate values are not directly comparable to the lowest values
given by the Envelope Method, but correspond to different threshold
positions. Even for those approximate values which are directly
comparable to the lowest Valﬁes given by the Envelope Method, the
threshold energies are in general considerably different, and are
only comparable in two cases. However, there are a few other threshold
energies given by the approximate band structure models which are of
comparable energies to those given by the Envelope Method, although
the threshold positions are not directly comparable.

From these results it is clear that, of the 30 lowest threshold
positions determined in the various semiconductors, since only two of

these are also given accurately by the approximate band structure
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models, it is dangerous to rely on the values given by approximate

band structure models. To obtain reliable values for impact ionization
threshold energies it is necessary to use the genuine band structures
of the semiconductors being investigated. Also, from the results of
the preliminary studies of Si and Ge, and from the comparison with the
corresponding improved calculations, it was seen that the threshold
values are sensitive to the precise details of the band structure.
Hence, the realistic band structures used should be in substantial
agreement with experimental data to ensure the greatest possible
accuracy.

In the light of this last remark, it should be mentioned that
the accuracies of the band structures investigated in the present work
vary considerably. In the improved calculations of the threshold
positions in Si the band structure was reproduced from the data of
Cohen and Bergstresser [25], although it was known that it did not
agree with the generally accepted band structure, the energy band
gap being too small. This band structure was reproduced to enable
the matrix elements of the coulomb interaction to be calculated by
the method previously described, which uses the wavefunctions of the
pseudopotential method which are readily available. While this was
the best pseudopotential band structure calculation available at the
time, the matrix elements could not have been calculated as readily
if, say, the Stuckel and Euwema [3@] band structure had been used.

The band structures of Ge, GaP and GaAs were all reproduced from
accurate band structure calculations which were in substantial agreement
with available experimental data. However, there is an uncertainty
about the band structure calculations of 3C SiC, as not a great amount

of experimental data is available. Also, the band structure calcula-
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tions of Hemstreet and Fong [28,29], using an extra, nonlocal
potential term in the pseudopotential analysis, were found to be

in error. Even without the effect of ‘this extra term, there were
discrepancies between the band structure calculations of Hemstreet
and Fong and those in the present work, for which their data was
used. The reliability and accuracy of this band structure is
consequently in doubt, as are the accuracies of the resulting thres-—
hold energies.

13.3 Relative Significance of the Lowest Thresholds

Even though the accuracies of the Si and SiC band structures
investigated are in doubt, the threshold energies calculated from
them should still provide some useful information; especially the
lowest threshold energies for both electrons and holes. The size of
the matrix element of the coulomb interation corresponding to each
threshold was seen to be an important factor in determining the
relative significance of threshold energies. It was surprising to
see that many of the threshold positions determined had corrdsponding
matrix element sizes which were insignificant, including some which
were the lowest threshold positions determined. This resulted in the
lowest significant threshold position occurring at a higher energy,
and in a few instances at a much higher energy.

Had the sizes of the matrix element not been considered, this
would have led to some incorrect threshold energies being used in
related theories, such as in the calculation of the impact ionization
coefficients for electrons and holes. The lowest threshold energy
within each semiconductor, together with the lowest threshold energy
which has a corresponding significant matrix elment size, and the

principal symmetry axis on which each threshold occurs is thus summarized
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Both the lowest electron and hole thresholds in Si have

corresponding matrix element sizes which are indignificant, but the

lowest significant electron threshold occurs at very nearly the same

energy, while the lowest significant hole threshold occurs at a much

higher energy.

Also, the lowest significant hole threshold occurs

along a different symmetry axis than does the absolute lowest threshold;

the same symmetry axis along which the lowest electron threshold occurs.

The situation for the lowest electron threshold in Ge is

Table 13.2

Lowest Impact Ionization Thresholds

Material Lowest Lowest Axis on which
and Threshold Significant lowest significant
Process E_/E Threshold threshold occurs
e E,./E
T °G
Si. Electron 1.055 1.056 I'-A-X
Hole 1.644 % 1.813 r-A-X
Ge. Electron 1.023 1.031 I'-A-L
Hole 1.034 1.034 I'-A-L
SiC. Electron 1.131 1.131 I'-A-X
Hole l- 161 10161 P-Z-K-S_X
GaP. Electron 1.118 1.118 I'-A-X
Hole 1.009 * 1.012 I'-A-X
GaAs. Electron 1.083 1.567 I'-Z-K-S-X
Hole 1.026 * 1.060 r-A-L

*

Occurs along a different symmetry axis (the ['-X-K-S-X axis).
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similar to that in Si; namely the lowest significant threshold
occurring at very nearly the same energy as the absolute lowest
threshold. The lowest hole threshold however is also the lowest
significant hole threshold, and also occurs along the same symmetry
axis as does the lowest eleetron threshold.

All the threshold positions in 3C SiC were seen to have corres-—
ponding matrix element sizes which were significant, and consequently
both the absolute lowest electron and hole thresholds are also the
lowest significant thresholds. However, these thresholds occur along
different symmetry axes, unlike the situation in Si and Ge. The lowest
significant electron threshold in GaP is also the absolute lowest
threshold, while the lowest significant hole threshold has an energy
very nearly equal to that of the absolute lowest threshold, but occurs
along a different symmetry axis. Thus the lowest significant electron
and hole thresholds are provided along the same symmetry axis, a
similar situation to that in Si.

In GaAs, both the lowest electron and hole thresholds are insignificant,
as they were in Si, although the lowest significant electron threshold
occurs at a very much higher energy. The lowest significant hole threshold
however, has an energy very nearly equal to that of the absolute lowest
threshold, but occurs along a different symmetry axis. Thus the lowest
significant electron and hole thresholds occur along different symmetry
axes, as was the situation in 3C SiC.

It is indicated from these results that itvwould be unwise to use
any impact ionization threshold energies in related theories, such as
in the calculation of the impact ionization coefficients, without first
calculating the corresponding size of the matrix element of the coulomb

interaction. Indeed, in a few cases it would have been erroneous if the



- 194 -

relative significance of the threshold positions had not been
considered, and would have led to totally misleading results.

The method used to calculate the sizes of the matrix element
of the coulomb interaction assumes that the wavefunctions of the
electron states involved in a transition can be expanded as a finite
series of plane-waves. It is recognised that this is an approximation,
and that more accurate and reliable calculations are possible and
should perhaps be used. However, it is hoped that the results presented
in this thesis prove useful, and serve as a basis for further calculations
of the matrix elements by using more reliable and exact models.

13.4 Application to Impact Ionization Coefficients

Having calculated the impact ionization threshold energies of
hot electrons and holes in a number of semiconductors, and also determined
the lowest significant threshold energies, they can now be used to
determine which of the two processes will be the more important; impact
ionization by electrons or by holes. This can be done by calculating
the total probability of transition, in which the threshold energy appears
as the lower limit of the integration over energy, or by calculating
the impact ionization coefficient, which has a negative exponential
dependence on the threshold energy. The impact ionization coefficients
for electrons, a, and for holes, B, will also depend upon the total
transition probability, and thus an idea of the relative magnitudes
of o and B, within a particular semiconductor, can be obtained by consider-
ing the lowest threshold energies and the corresponding matrix element
sizes,

Looking at Table 13.2, it is seen that the lowest significant
electron threshold for Si has an energy considerably lower than that of

the lowest significant hole threshold, and thus it is expected that
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o ; B, which is in agreement with experimental evidence (see for
example, Miller [7]). In Ge the two thresholds are of almost equal
energies, and so it may be expected that o &8 in this case. However,
by considering also the corresponding matrix element sizes of these
two thresholds, it is expected that o € B, as is indicated by Miller
[6].

The situation in Ge also applies to 3C SiC, in that the lowest
significant electron and hole thresholds have nearly equal energies.
However, the corresponding matrix element of the hole threshold is
slightly larger than that of the electron threshold, and thus it is
expected that o € B. The thresholds in GaP are also of comparable
energies, although the electron threshold is the slightly higher of
the two, but the matrix element corresponding to the electron threshold
is also larger than that corresponding to the hole threshold, and
consequently it is expected that o 2 8. In Ga As, the lowest signifi-
cant electron threshold energy is considerably larger than that of
the lowest significant hole threshold, the opposite situation to that
in Si, and thus it is expected that a < 8 as is reported experimentally
by Stillman et. al [62].

These impact ionization coefficients depend upon the impact
ionization threshold energies, which in turn depend upon the direction
in which the electric field is set up in the semiconductor. For example,
if the electric field is set up in the direction of one particular
symmetry axis, then the electrons and holes will gain energy from the
field by moving in the direction of the field, along that particular
symmetry axis. However, it was seen from the results presented in
Chapters 8 to 12 that the lowest significant threshold energies along

each of the principal symmetry axes differ considerably.
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Under the assumptions made by Shockley ﬁﬂ for small electric
fields, the electron and hole concentration peaks in the direction
of the electric field, and that only those electrons avoiding
collisions with the lattice will gain sufficient energy to partake
in impact ionization. Thus in this situation, the direction in which
the electric field is set up in the semiconductor will have a signifi-
cant effect upon the impact ionization coefficients. The same situation
does not necessarily apply under the assumptions made by Wolff Eﬂ
for large electric fields, where the electrons may be scattered and

may assume a distribution which is almost spherically symmetric.
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14. Conclusions, Recommendations and some Ideas for Extending
the Work

By com@aring the impact ionization Ehreshold positions calculated
accurately by the Envelope Method for the realistic band structure
with the corresponding values calculated from two approximate band
structure models, for a number of semiconductors, it has been shown
that the approximate band structure models give unreliable threshold
values. Consequently, it is necessary to calculate impact ionization
threshold positions accurately, by making full use of the details of
the band structure, and that it is dangerous to rely on values given
by approximate band structure models. Also, the threshold positions
are sensitive to the precise details of the band structure, and thus
the band structures used shouid be in substantial agreement with
experimental data.

Having determined the impact ionization threshold positiomns, it
was then shown that it is necessary to calculate the sizes of the
matrix element of the coulomb interaction associated with each threshold
position to establish which threshold positions are significant. It
was surprising to see that several impact ionization threshold positions
had corresponding matrix eiement sizes which were insignificant, including
some which were the lowest threshold for the particular band structure.
Thus, having determined the significant impact ionization threshold
positions, these may then be used in the related theories, such as
calculating the total transition probabilities or the impact ionization
coefficients qf electrons and holes.

The realistic band structures used in the investigation of impact
ionization thréshold positions were calculated by the Empirical
Pseudopotential Method. In the calculation of the band structure of

3C SiC by Hemstreet and Fong [28,29], a nonlocal, angular—-momentum-
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dependent potential was added to the local, spherically symmetric
potential in the pseudopotential analysis. However, in the present
work an error in the calculations of Hemstreet and Fong was revealed,
and that the nonlocal potential had a negligible effect on the band
structure, contrary to the results of Hemstreet and Fong.

The series expansion in plane-waves of the wavefunctions used
in calculating the sizes of the matrix element of the coulomb inter-—
action could have beenvtaken to be two different lengths. The first
was a short, or basis, expansion involving only the plane-waves which
were treated exactly in the perturbation theory employed in calculating
the band structure, while the second was a full expansion which also
involved all the plane-waves included through the perturbation theory.
In a pilot study it was shown that the improved accuracy obtained by
using the full expansion rather than the basis expansion was very small,
and that the extra computer time used was vast and would have been
 prohibitive for a large numbe? of calculations.

The calculation of the sizes of the matrix element of the coulomb
interacticn involved a quadruple sum over reciprocal 1atti§e vectors.
However, under the assumptions made by Beattie and Landsberg [17],
this quadruple sum could ge approximated by the product of two double
sums over reciprocal lattice vectors. The matrix element sizes were
thus calculated by both the quadruple sum and the two double sums and
presented in the results of Chapters 8 to 12. It was shown that the
approximate matrix element sizes were not in good agreement with the
true matrix element sizes, and tgat it would be dangerous to rely on
matrix element sizes calculated 5y using the approximating assumptions

of Beattie and Landsberg.

In trying to determine the relative importance of impact ionization
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threshold positions with almost equal energies, the rate of increase
in the number of electron states available for impact ionization for
hot electron energies just above threshold was investigated. However,
it was concluded that for Si this factor proved to be unimportant,

and thus was not considered in the investigations of the other semi-
conductors.

It was mentioned in the introduction to Chapter 3 that the
Envelope Method developed in the present work has a few disadvantages
compared with the method developed by Anderson and Crowell [32]. One
of these disadvantages was that the final states of both electrons were
restricted to lie in the lowest lying conduction band, or the final
states of both holes in the highest lying valence band, whereas this
was not a restriction of the method developed by Anderson and Crowell.
However, the method developed here could be extended to the generality
of the method of Anderson and Crowell, in that the final states of
both electrons, or holes, need not lie in the same energy band. 1In
doing this more impact ionization threshold positions would be determined,
some of which may have energies not much greater than the lowest threshold
energy, and may also prove to be more significant when the corresponding
matrix element sizes are calculated.

While the impact ionization threshold positions of a number of
semiconductors have been calculated in the present work, there are a
great many more semiconductors to which the methods employed here can
be applied. Thus the work presented here can be extended to calculate
accurate impact ionization threshold positions in other semiconductors
for which accurate, realistic band structures are available, and these

can then replace the approximate values now being used.
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The impact ionization threshold energies and corresponding
sizes of the matrix element of the coulomb interaction presented
in this work can be used to evaluate the total transition probability
associated with each significant, and important, threshold position.
Thus the relative importance of impact ionization, and also Auger
Recombination, to processes involving phonons or traps can be
determined. The impact ionization coefficients can also be calculated
for both electrons and holes, which can then be used, for example,
to calculate the avalanche breakdown conditions in a reverse biased

p—n junction.
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