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ABSTRACT

An investigation is carried out into the relation between 

impact ionization threshold positions and the detailed band 

structure of a number of semiconductors. The band structures of 

the semiconductors investigated are reproduced, from the data 

published by previous workers, by the Empirical Pseudopotential 

Method (EPM). From these detailed band structures, the impact 

ionization threshold positions are calculated by a method developed 

in the present work, referred to as the Envelope Method, and are 

compared with the values calculated by using two different 

approximate band structure models.

From the EPM, the plane-wave expansions of the wavefunctions of 

the electron states involved in each impact ionization threshold are 

then calculated. These wavefunctions are then used to evaluate the 

sizes of the matrix element (overlap integral) of the coulomb 

interaction corresponding to each threshold position determined.

The relative significance of the threshold positions, particularly 

the lowest threshold positions, are compared with each other to 

determine the lowest significant threshold position.

It is shown that it is dangerous to rely on impact ionization 

threshold values determined by approximate band structure models, 

and that realistic band structures should be used which are in 

substantial agreement with experimental data. It is also shown 

that it is necessary to consider the sizes of the matrix element 

of the coulomb interaction, since many impact ionization threshold 

positions have corresponding matrix element sizes which are 

insignificant.
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1. INTRODUCTION

Impact ionization by electrons in a semiconductor is the process 

by which a high energy, or hot, electron in a conduction band can 

interact with an electron in a valence band to produce an electron- 

hole pair. If the ionization process does not involve phonons, then 

both the energy and wavevector of the electron states involved must 

be conserved. Thus, if a hot electron initially in a state H in the 

conduction band (see figure 1.1) is to move to a state I in the same 

conduction band, then the second electron involved must have its initial 

state somewhere on the broken curve of figure 1.1; that is on the curve 

obtained by displacing the conduction band by the vector HI. Since this 

displaced curve intersects with the valence band at and , impact 

ionization is possible in this case. The second electron is promoted 

from the valence band to the conduction band in the process either from 

to or from to . Now, instead of one current carrier, the 

hot electron, there are three current carriers, two conduction electrons 

and one valence hole. Impact ionization by holes is the similar process 

involving holes instead of electrons, and producing two valence holes 

and one conduction electron as current carriers.

Clearly, not all conduction states containing a hot electron can 

partake in impact ionization (II), since the excess energy needed must 

be at least equal to the energy gap. An electron which is not hot 

enough to partake in II may gain sufficient energy from some process 

to enable it to move into a state in which II is possible. The 

minimum energy at which an electron can partake in II is the threshold 

energy, and it is this parameter which is important in semiconductor 

theories. There is not just one II threshold energy, but many due to 

multiple conduction and valence bands, and multiple conduction band 

minima. These other threshold energies, although higher, are no less
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important than the lowest threshold energy. Also, for some 

conduction bands, there may be threshold energies beyond the

CONDUCTION BAND

i \

VALENCE BAND

Figure l.j A phonon-less impact ionization process showing the 
conservation of energy and wave-vector of the electron states 
involved.

first after which II processes are no longer possible, so that finite 

II windows exist in certain bands.

In the theories of Wolff, Shockley and Baraff [l-3] concerning 

ionization rates and problems related to p-n junctions, and also in the 

calculation of ionization rates and avalanche breakdown [4-g], the 

threshold energy for II was taken as an adjustable parameter. Calcula­

tions of this parameter, even by using very simplified band structure 

models, was not considered. Instead, this parameter was chosen to 

enable good agreement to be obtained between experimental evidence and
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and the related theories.

The first attempt to calculate II threshold energies was made 

by Tewordt [9] whose treatment was later extended and generalized 

by Franz [ l o ] .  These were not very realistic attempts as they 

assumed parabolic energy bands in direct gap semiconductors, but 

were better than chosing the threshold energy arbitrarily. A slightly 

better attempt was made by Dexter [ll], by considering indirect gap 

semiconductors, which gave rise to further II thresholds due to inter­

valley transitions. These methods were used by Antoneik, Beattie 

and Hodgkinson [12-16} in their investigations of quantum yield, in 

which II threshold energies are also important, rather than choose 

II threshold values arbitrarily.

Although various values of II threshold energies were given by 

the authors of references [9-16], no formulae by which these values 

were calculated were explicitly quoted. A formula was first quoted 

by Beattie and Landsberg [l7j, but was for parabolic energy bands and 

a direct gap. Hauser [18] and Huldt [19^ extended the formula to include 

indirect band gaps, again for parabolic energy bands. Camphausen and 

Hearn [20] also tried to extend the formula using a Kane [2l] band 

structure for the conduction bands, but apparently failed to succeed.

The main reasons for using parabolic energy bands instead of 

realistic band structures was partly due to simplicity of use, but mainly 

due to the lack of knowledge concerning realistic band structures of 

semiconductors. It was this lack of knowledge which prevented any 

calculations of II threshold energies for realistic band structures. As 

a result of this, a wide range of II threshold energies have, in the past, 

been used, as can be seen from the review article by Mahadevan et. al [22], 

It is this lack of knowledge which prompted this research project. The
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main purpose of this work is to investigate the relationship between 

II threshold energies and the detailed band structures of various semi­

conductors, considering both the II threshold data and the corresponding 

probability of the transition.

There are several methods now used to calculate band structures 

(see for example, G.C. Fletcher ’The Electron Band Theory of Solids’ 

p.67ff. [ 23]), of which those mainly used are the Augmented Plane-Wave 

(A.P.W.) method, the Orthogonalized Plane-Wave (O.P.W.) method, their 

variants which includes the Empirical Pseudopotential (E.P.) method, and 

the Korringa, Kohn and Rostoker (K.K.R.) variational method. A brief 

description of these methods is given in the introduction to Chapter 2, 

outlining the reasons for using the E.P. method in the present work to 

reproduce the detailed band structures of all the relevant semiconductors. 

Since this project originated from interest shown by G.E.C., the semi­

conductors investigated are mainly those in which G.E.C. are interested; 

namely Silicon, Germanium, 3C Silicon-Carbide and the III-V compounds.

The method of computing the band structures by the E.P. method is that 

as used by Brust [24] and by Cohen and Bergstresser [25], and the band 

structures of Silicon and Germanium are reproduced from the data of 

Cohen and Bergstresser. The band structures of Gallium-Phosphide and 

Gallium-Arsenide are reproduced from the data of Walter and Cohen [26].

Band structure calculations for 3C Silicon-Carbide have recently 

been performed by Junginger and van Haeringen [27] and by Hemstreet and 

Fong [28, 29]. The calculations of Hemstreet and Fong include an additional 

term to the pseudo-Hamiltonian, that of a nonlocal, angular-momentum- 

dependent, potential term, which at the time of calculation was thought 

to be significant. The analysis of the E.P. method is given in Chapter 2, 

including the analysis of the nonlocal potential as described by Hemstreet
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and Fong [30j.

Before any detailed calculations of 3C Silicon-Carbide were 

performed, a pilot study was done to determine the effect of the 

nonlocal term. The results of this pilot study, which are presented 

at the end of Chapter 2, show that the nonlocal term has a negligible 

effect, and also revealed a mistake in the work of Hemstreet and Fong.

Since the effect of the nonlocal term is negligible, it is not included 

in the full band structure calculations of 3C Silicon-Carbide.

It is necessary to use realistic band structures in order to obtain 

accurate calculations of II threshold energies and the associated transi­

tion probabilities. The accuracy required cannot be achieved if 

approximate band structure models, such as those used by Tewordt and 

Franz, are used. In order to achieve the required accuracy, the method 

of determing II threshold energies as described by Franz is further 

generalized to take into consideration the detailed band structures.

This method, which has been presented previously [3l], is based upon 

the conservation of energy and wavevector of all four electron states 

involved in an II process, and is presented in detail in Chapter 3. The 

method is referred to as the Envelope Method, for which the one dimensional 

case only is investigated, but the complete generalization to three 

dimensions is, in principle, straightforward. Also presented in Chapter 

3 are formulae for calculating II threshold energies using approximate 

band structure models. Included is a discussion of the formula described 

by Camphausen and Hearn.

While the method of calculating II threshold energies was being 

developed in the present work, Anderson and Crowell [32] were investigating 

II thresholds, also taking into consideration realistic band structures.

It was not known that Anderson and Crowell were investigating II thresholds
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until the present work was well advanced. A brief description, 

together with the advantages and disadvantages, of their method compared 

with the method presented in this work, is given in the introduction to 

Chapter 3.

The method of determining II threshold energies presented in this 

work required analytic expressions of the energy bands being investigated. 

The band structure calculations do not give analytic expressions of the 

energy bands, but a set of discrete energy levels. To obtain the analytic 

expressions of the energy bands, the required expressions have to be 

fitted through the appropriate set of discrete energy levels. The method 

of curve fitting, and the form of analytic expressions used, is given in 

Chapter 4. One dimensional analytic expressions are fitted to the energy 

levels concerned in each of the three principal symmetry directions 

considered, the F - X, F - L and F - K - X directions.

Associated with every transition there is a probability that the 

process will occur. While it is of use to have accurate II threshold 

values, it is also useful to know the probability associated with each 

threshold. These probabilities depend basically upon three factors;

(1) The probabilities of the initial states being occupied and

the final states being empty.

(2) The transition probability.

(3) The density of states of the energy bands involved in a

transition for hot electron energies just above threshold

energy.

Calculation of the probability of occupation of the initial states 

is dependent upon the process by which an electron gains sufficient 

energy to enable it to partake in an II process. If the excess energy 

is gained through thermal heating, then the probability of occupation 

is the Fermi-Dirac probability, which is straightforward to calculate,
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being of exponential form which is well known (for details see, for 

example, P.T. Landsberg ’Solid State Theory : Methods and Applications’ 

p.266ff. [33]). If the excess energy is gained through the effect of 

an electric field, then the probability of occupation is related to the 

probability that the electron will travel the required distance without 

an intervening collision with the lattice. The calculation of this 

first factor is not considered in the present work.

The second factor, the transition probability, depends on the size 

of the matrix element of the coulomb interaction between the states 

involved in a transition. Calculations of the matrix elements are made 

using the theory developed by Beattie and Landsberg [17], which has since 

been widely used [34-37]. Their theory for calculating the matrix elements 

of the coulomb interaction is based on the states of the crystal involved 

in transitions being described by orthonormal, one-electron functions.

Only the electrons which partake in a transition are assumed to have 

their states changed, while all other electrons are assumed to be unaffected, 

The matrix element is thus obtained as a multiple sum over reciprocal 

lattice vectors. This theory also gives reasons why Umklapp processes 

can be considered negligible.

It is on the basis of this theory that other workers have always 

considered Umklapp processes to be negligible in the past (see for example, 

reference [16, 18 and 19] ). The present investiation reveals that 

Umklapp processes are not necessarily negligible, and that some Umklapp 

processes are far more probable than some Normal processes. The analysis 

of the matrix elements based on the theory of Beattie and Landsberg is 

presented in Chapter 5. Also presented is the calculation of the 

coefficients appearing in the quadruple sum over reciprocal lattice 

vectors, and a brief discussion on the importance of Umklapp processes.

The third factor is based on the number of states, in each energy
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band involved in a transition, which are able to partake in an 

ionization transition for a hot electron just above a threshold energy.

No detailed investigations into this factor have been performed, but 

Dexter [ll], assuming parabolic energy bands, stated that the transition 

probability increases quadratically with increasing energy just above 

threshold due to this factor. In the past, it was not known whether this 

factor proves significant in the total probability. In Chapter 6, a 

simplified calculation of this factor is presented. Near the energies 

of all the states involved in a transition, parabolic energy bands are 

assumed, and a formula to calculate the number of states in which the 

promoted electron, or hole, may lie, which are able to partake in an 

impact ionization transition is presented, for a hot electron, or hole, 

just above threshold. It is shown that this factor, for Silicon, is 

unimportant when it is compared with the differing sizes of the matrix 

elements.

Computational details of the calculations of the band structures, 

threshold data and matrix elements are presented in Chapter 7. Detailed 

results, with discussions, are presented in the following chapters:

Silicon in Chapter 8, Germanium in Chapter 9, 3C Silicon-Carbide in 

Chapter 10, Gallium-Phosphide in Chapter 11 and Gallium-Arsenide in 

Chapter 12, The wavevector and energy are given for all states involved, 

followed by the matrix elements and the error in energy conservation 

associated with each threshold. The ratio between the II threshold 

energy and the energy band gap is also given, together with the comparable 

ratios calculated from approximate band structure models.

In the chapters on Silicon and Germanium, results from a preliminary 

study [3l] are also presented. This study investigates the sensitivity 

of the various II threshold energies to the precise details of the band 

structure. The band structures considered for Silicon are those of Cohen
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and Bergstresser [25] and of Stukel and Euwema [38], and for 

Germanium are those of Cohen and Bergstresser and of Stukel [39]. 

These band structures are reproduced, as accurately as possible, 

from the figures presented by the relevant authors.

The conclusions of this project are presented in Chapter 13, 

together with some possible ideas for future work in this field.
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2. THE EMPIRICAL PSEUDOPOTENTIAL METHOD

2.1 Introduction

To obtain realistic band structures, the Schrddinger Equation 

has, by some method, to be solved to a reasonable degree of accuracy.

The main methods now used to calculate band structures are the 

Augmented Plane-Wave (A.P.W.) method, the Orthogonalized Plane-Wave 

(O.P.W.) method, their variants which includes the Empirical 

Pseudopotential (E.P.) method, and the Korringa, Kohn and Rostoker 

(K.K.R.) variational method. While all these methods give reasonable 

accuracy, there are advantages and disadvantages associated with them 

which makes some of them unsuitable for calculating the band structures 

of semiconductors.

The K.K.R. method [40, 41} and the A.P.W. method [42] assume that 

the potential energy of the crystal is spherically symmetrical about 

the atomic cores within what is termed as muffin-tin (M.T.) spheres, 

and constant in the region outside these spheres. While this assumption 

proves to be sufficiently accurate for metals, it is not particularly 

accurate for semiconductors. For semiconductors with the zinc-blende 

type lattice, the assumption of non-overlapping M.T. spheres about 

both atoms in the unit cell [43] results in a relatively large volume 

of the crystal in which the potential is assumed constant. This relatively 

large volume of constant potential results in a loss of accuracy, and is 

why the K.K.R. and A.P.W. methods are not used for semiconductors.

Attempts are being made to make these methods suitable for semiconductors 

by adopting warped M.T. potentials, but while the convergence of the 

methods are fairly rapid, the methods also involve perturbation methods, 

which are computationally difficult to handle.

In the O.P.W. method [44], the wave-functions representing the 

valence electrons are approximated by a combination of plane-waves, chosen



- 11 -

such that they are orthogonal to the wave-functions representing 

the core electrons. While this method is simpler to operate than 

the K.K.R. and A.P.W. methods, it is harder to justify theoretically.

For example, it is not at all clear that the orthogonalized plane- 

waves are the correct wave-functions for the valence electrons.

In the E.P. method, the complete wave-function is that of the 

O.P.W. method, but written in a slightly different form. By substitu­

ting this wave-function into the Schrddinger Equation, it can be 

reduced to a combination of plane-waves. In doing this an extra term 

is introduced into the Schrddinger Equation which can be regarded as 

an extra potential added to the crystal potential. The combination of 

the two potentials forms a weak, slowly varying potential, referred to 

as a pseudo-potential, for which only a few terms in the expansion of 

the wave-function are needed.

Due to the drawbacks of the K.K.R, A.P.W. and O.P.W. methods, 

the E.P. method is used in the present work to calculate the band 

structures of all the relevant semiconductors. The E.P. method, which 

is based upon the O.P.W. method proposed by Herring [44], was introduced 

by Phillips and Kleinman [45-47] and has since been developed by various 

workers [48, 49]. Accurate band structure calculations for Silicon, 

Germanium and the III-V compounds have recently been obtained using this 

method [24-26, 50-5^, and some of these band structures have been repro­

duced in the present work. The potential used by the above workers is 

spherically symmetric about the atomic cores, and the analysis of the method 

of determining the matrix elements of the secular equations is presented 

in the next section.

In the calculations of the band structure of 3C Silicon-Carbide by 

Hemstreet and Fong [28, 2^, the E.P. method is modified to account for 

the lack of cancellation of the full crystal potential for p-valence
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states in the carbon cores. This modification takes the form of a 

nonlocal, angular-momentum-dependent, repulsive potential, which is 

added to the local, spherically symmetric potential, and the analysis 

of this nonlocal term is presented in §2.3. The effect of this term 

is thought to have a significant effect on the calculations of 3C 

Silicon-Carbide [28, 29], since it has a significant effect on the 

calculations of Diamond [30] and of Potassium [53]. A pilot study in 

the present work shows that the effect is negligible, and also reveals 

a mistake in previous calculations of 3C Silicon-Carbide [28, 29]. The 

results of this pilot study are presented in §2.7, and consequently the 

nonlocal term is not included in the full band structure calculations.

Once the matrix elements of the secular equations have been 

determined, the eigenvalues and corresponding eigenvectors then have 

to be calculated. To obtain the degree of accuracy required, the size 

of the matrix will be very large. As electronic digital computers 

are used to evaluate the eigenvalues and corresponding eigenvectors, 

the size of the matrix is restricted by the capacity of the computer 

used, and also by the time consumption. Taking these factors into 

consideration, it is necessary to reduce the size of the matrix while 

retaining the accuracy obtained by the large matrix. This is done 

by means of a form of perturbation theory introduced by Ldwdin [54] 

and used frequently in band structure calculations [24-26, 28-30].

The method is presented in §2.4, which includes the method of retrieving 

the coefficients of the eigenvectors of the original matrix.

Several methods of calculating the eigenvalues and corresponding 

eigenvectors of the secular equations are available, and the method 

used in this work is presented in §2.5. While sections 2.2 to 2.4 

are completely general, particular forms have to be chosen to reproduce 

the band structure calculations of previous workers. These forms.
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together with some other computational considerations are presented 

in §2.6.

As calculations of accurate band structures have been carried 

out previously, and the method used in this work is a reproduction 

of the efforts of previous workers, no account of the problems of 

convergence or of accuracy at this stage of the calculations are 

considered. The accuracy of the calculations are the same as those 

of the results being reproduced.

2.2 Local Pseudopotential Analysis

The Schrddinger Equation can be written in the form

Ip + I E - V(r) [ ip = 0 (in atomic units) 2.2.1

where ip are the wave-functions,

the kinetic energy,

V(r) the crystal potential 

and E the energy levels.

In the O.P.W. method, the wave-function is expanded in terms 

of plane-waves, from which is subtracted a number of Block sums; 

that is

= ê. \  2.2.2

where - Z b^^(r) 2.2.3

and k = k + 27T K , K a reciprocal lattice vector,m m m

If ^g(r) is an atomic wave-function, then the Block sum

b,k(r) . N I 2.2.4

nwhere N is the number of unit cells in the crystal and r 

the positions of the atomic cores.

Combining equations 2.2.3 and 2.2.4, and rewriting them gives
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ip(r) = 0(r) - E Z a a b , (r) 2.2.5 ̂ s m m m s  sk

where 0(r) = E a 2.2.6m m

If ^(r) satisfies the Schrddinger Equation, then

V^lp(r) + I E - V(r) } ip(r) = 0 . 2.2.7

Using the result that

V:*s+ { Eg - V(r)( <jî = 0

then, after some algebra, equation 2.2.1 can be written as

+ { E - V(r) - Vĵ (r,lc) } $ = 0 2.2.8

where V (r,k) 0 = E (E-E )b . ( • ' )  ( •’’) b ( r’) dr’ . 2.2.9Xv S S S K ^ s k

The quantity V^(r) can be regarded as an extra, positive 

potential added to the crystal potential V(r). It thus reduces the

potential V(r), and consequently, in the region where V(r) is

rapidly varying, the cancellation is almost complete. This leaves a 

small, slowly varying potential

V (r,k) = V(r) + V_(r,k) 2.2.10P K
which is known as the pseudo-potential.

This potential can be expanded in terms of a sum of local, 

sphericallysymmetric terms V^(r) plus a nonlocal, angular-momentum- 

dependent term (r); that is

Vp(r,k) = V ^ ( r )  + V^^(r) 2.2.11

N Lwhere V (r) = .E. .E v. (r-R. - T.) • 2.2.12L j-i 1=1 1 j 1

The sum of local terms r^(r) is over the number of atoms per unit

cell, L, and over the number of unit cells in the crystal, N.
TH THRj + is the position of the i atom (of L) in the j unit cell

(of N).
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Equation 2.2.8 can now be written

Z a e^^m-r + j e - V, (r) - (r)t E a e^^m-r = q . 2.2.13m m  ( L NL » m m

The nonlocal potential term, ^^2, (  ̂ not considered here, as it

is analysed in the next section.

Consider then, the kinetic energy term and the local potential

term. Let the crystal have volume and a unit cell of the crystal

have volume Consider the matrix element of the secular equations

between the plane-waves with reciprocal lattice vectors = k +

and k =k + K » and denote all terms between these reciprocal lattice m m
vectors by the suffices nm.

The matrix element of the secular equations for the kinetic 

energy term of 2.2.13 is

?nm = + | V ^ k + K „ >

which becomes, after performing the differentiation and using the

orthogonality property of the plane-waves,

T = Ik + K p  6 2.2.14nm ‘ m' nm

where 6 is the Kronecker delta, nm
Consider now the local potential of equation 2.2.12. This can 

be expanded in terms of reciprocal lattice vectors, K, by taking the 

Fourier Transform, that is

dr . 2.2.15

Taking the unit cell in which = 0, this can be written

\  (K) = §  S a  Vi('- T.) e dr
o

and by taking the inverse Fourier Transform,

L

-iK. T'

\ (:-) = ^ { l  iSi v^CK) e-iK- 'i) 6^* ' . 2.2.16
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Thus the matrix element of the potential of 2.2.16 is

V = < k + K„ |V (r) |k+ K_'>Lnm n L. m

which, by substituting 2.2.16 for V^(r), interchanging the order of

summation and integration, and by using the orthogonality property

of the plane-waves, gives

= I  i h  ' ' i  K  -  Km) 2.2.17,

Combining equations 2.2.14 and 2.2.17 gives the matrix element 

of the secular equation for the local pseudopotential, namely

^nm + Z  j l  "i W  ' ’i 2-2-18.

The form is left completely general here, but is expanded in §2.6 

for the particular case used in this work.

2.3 Nonlocal Pseudopotential Analysis

The pseudopotential can be written, as was discribed in the 

previous section, as a sum of local, spherically symmetric potentials 

plus a nonlocal, angular-momentum-dependent potential, namely

Vp(r.k) = V^(r) + V^^(r) .

Since the nonlocal term is assumed to operate only on p states in 

the core regions, it is chosen to have the form

VNl(') = Z "2(l'-'il) Pi} - 2.3.1.36 1=1 '

The projection operator P^ and its hermitian conjugate P^ operate

only on the 36̂  ̂spherical harmonic component around T^. U^(|r-T\|)
THis the corresponding core potential associated with the 36 spherical

harmonic, and is assumed to be spherically symmetric about the atom

centred at T..1
The matrix element of the secular equations for this nonlocal 

potential term is then
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° ^ k ^ Kn|VNL(')|k+ >nm

K  Z ; ;  " & ( ! ' -  Til )?,}:'(k+Km).r a,

L
i  If Z {;,ei(k+Ka)-('-Ti)l*e-i(k+Kn)-Ti U,(|r-T.|) 
o S.-’ ^ o i=l^ ' 1

x { p j i  ei(k+Km)-('-'i)} m 1 dr

and hence
Y _ 1  V V _-i(K_-K_).T

» ■ • » ■ M à '  f . ' i ' . i )o a

X { p  e^fk+Ko^.r^j^ 2.3.2,

where = r- T^, and the spherically symmetric potentials are

non-overlapping.

Now expanding the exponentials as an infinite sum of Bessel. 

Functions, namely
oo

e^(‘‘'"K)-r = 471 S Z (i)^ j.(|k+K|r)Y* (6 .,j, )Y (6,4,) 2.3.3.
£=0 j = -^ K K

where j^(r) is the spherical Bessel function of order £ 

and Y^j(8,^) is the spherical surface harmonic,

then ' = 4tt .Z_^ (i)^ jj^(|k+K|r)Y* (8|̂ ,4,̂ )Yjj (9,4)) 2.3.4.

and so, substituting 2.3:4 into 2.3.2 gives 
L “ i(K “K ).T. n m 1

nm ““o £ i=l 
£

X  (-Î)' j&(|k+Kn|ri)7üj(8Kn.fKn)?Ij(8.4)}u%(|r.|)

2.3.5

Separating the integral over the unit cell centred on into its
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radial and angular component, and rearranging the terms slightly 

gives

I  iSl I %!)?? dr.

I I . -2TT IT *
X  j!_, ?*j(8Kn.*Ka)Y&k(8K.,+Km)/,

X  sin 0d0d(j) 2.3.6

where is the maximum radius around the atoms for which the potential 

is non-zero.

Two properties of spherical surface harmonics can now be used,

namely
- 2ïï̂ ïï

Jo Jb ?Ij(G'*)YA'j,(8,4) sin edSd* = 2.3.7.

j=-£ " (“ Â F y  ^üo^^KK/)
and

-  /2£+l\
- V 4TT j ) 2.3.8.

where Pp(cos0) is the Legendre Polynomial of order £ and 0 ,
^ K K

is the angle between the reciprocal lattice vectors k+K and k+K'•

Using 2.3.7. in equation 2.3.6 reduces the double sum, over j and k, 

to a single sum, over j, and then using 2.3.8. eliminates this single 

sum to give, after slight rearrangement,

V „ L  . -  r  £ (2L-H)P,(cose ) r 
^^nm  ̂o £ • Kn^ià

R
X /  ' j2(lk^Kjr.)j^(|k.|^|r,)U,(| rjx?dr, 2.3.9

Again, the form is left completely general here, but is expanded 

in §2.6 for the particular case used in this work. Combining equation
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2.3.9 with equation 2.2.18 gives the complete matrix element of the

secular equations, namely
L

1 =  1
L

+ ^  2 (2U1) (cos 8^^ Km) X
o Z 1=1

/•c^  j&(|k+Kn|r.)j^(|k+Km|ri)U%(|'\|)r2 dr. 2.3.10

2.4 Perturbation Theory

The perturbation theory due to Lbwdin [54] is based on the 

variational principle. It is assumed that the wave-function can be

formed by a linear combination of known, orthonormal functions
N , .

i|) = E G  / .
n=l " “

The matrix element of the total hermitian operator H between the states 

represented by the wave-f unctions and is

H = f d T  nm ^n m

The coefficients C can be determined by the variational principle.m
which gives the system of linear equations

N
Z (H - EÔ ) C = 0 . 2.4.1., nm nm m m=l

The condition for the existence of a non-trivial solution is that the

determinant of the matrix (H -Ed ) is zero. To satisfy this condition,nm nm
the values of E must be the eigenvalues of the matrix H , and thenm
coefficients are then the corresponding eigenvectors.

Now, let it be assumed that the linear combination of functions
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forming the wave-function can be divided into two distinct classes 

A and B. Let the main interest lie in the states in class A, and 

attempt to derive a formula by treating the states in class B as a 

perturbation. Equation 2.4.1. can be written as

A B ,
(E-H )C = E H ’ C + Z H ’ C 2.4.2nn n nm m m nm mm

where H* H (1-6 )nm = nm nm

and the first sum being over the states in class A and the second sum 

being over the states of class B.

Using the notation

h = H /(E-H ) 2.4.3nm nm nn

equation 2.4.2 can be written as
A B

C = Z h '  C + Z h ’ C . 2.4.4n m nm m nm mm

The states in class B can now be eliminated by a process of iteration.

The coefficients C occurring in the sum over the states in class B in m
equation 2.4.4 can be expressed by equation 2.4.4 itself, giving 

A B / A BA u / A Ü \
C = Z h' C + Z h ’ i Z h ’. C. + Z h ’. C. > n nm m nm I i mi i i mi ifm m

A A B B B
= Z h ’ C + Z Z h' h ’. C. + Z Z h' h'.C. . 2.4.5nm m . nm mi i m r nm mi im 1 m

Repeating this process for equation 2,4.5, and subsequently by repeated 

use, gives the formal expansion

A |  A / B , |  t f t  \
C = Z h C + Z s Z h . h .  + Z h . h . . h .  + ...>C 2.4.6n nm m ni im . . ni ij im ; mm m 1 i,j

Using equation 2,4.3, and introducing the notation
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u = H  . i K i K .  I  ,
™  ™  i E-H.—  + .^. (E-H.'.')'(E-H .) + ••• 2-4-711 1,J 11 JJ

equation 2.4.6 becomes 
A U -H 6

C = Z ■ , .4^, .. c 2.4.8n m E-H mnn

For the two cases of n in A or B, there are the two corresponding

basic formulae
A
Z (U -Ed ) C = 0  for n in A 2.4.9nm nm mm

A U G
C = Z — E  for n in B 2.4.10n E-Hm nn

The problem of determining the eigenvalues and corresponding 

eigenvectors of the matrix in equation 2.4.1 is now reduced to deter­

mining the eigenvalues and corresponding eigenvectors of the matrix in 

equation 2.4.9. This now gives fewer eigenvalues and truncated eigen­

vectors, but the coefficients of the corresponding original eigenvectors 

can be determined from equation 2.4.10.

2.5 Method of Solution of the Secular Equations

This work is primarily concerned in the investigation of impact 

ionization threshold data, and not in investigating the calculation of 

eigenvalues and eigenvectors of matrices. For this reason the method used 

is chosen purely on grounds of convenience and reliability. There are 

many methods available for calculating eigenvalues and eigenvectors of 

matrices, of which most are programmed for use on an electronic digital 

computer. Some of these methods are for use with general matrices, while 

a few are for use only with symmetric or hermitian matrices. Since the 

matrix here is hermitian, one of these latter methods is used, since they 

are quicker and more accurate than the methods for use with general matrices.

In trying to find a method which has already been programmed for a 

digital computer, it was discovered that most of these methods are programmed
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in computer languages other than the one used here. Since translation 

is a lengthy procedure, these methods had to be rejected. There are 

only a few methods available which are programmed in the correct computer 

language. Of these, some are methods for use with general matrices, and 

some are methods which do not include the calculation of the eigenvectors, 

all of which are not suitable.

Of the very few methods remaining, the computer program available 

for one of the methods is known to be unreliable, which virtually restricted 

the choice to one method. The method used reduces the symmetric or 

hermitian matrix into tri-diagonal form by the procedure due to Householder, 

followed by the QR algorithm for determining the eigenvalues and eigenvectors 

of a tri-diagonal matrix (see for example, J.H. Wilkinson 'The Algebraic 

Eigenvalue Problem' pp 290-299, pp 515-521.^55]). All the eigenvalues of 

a matrix are calculated using this method, and the eigenvectors can be 

determined with very little extra effort.

However, this method, as programmed for the digital computer, requires 

that the matrix is symmetric, and not hermitian. This presents no difficulty, 

as a hermitian matrix can easily be transformed into a symmetric matrix.

This is done by writing the hermitian matrix as a sum of its real and 

imaginary parts, that is

H = A + i B 2.5.1

where A is real and symmetric, and B is real and skew-symmetric.

If the eigenvalues of H are Aj with corresponding eigenvectors

W. = U. + iV. , then J J J

K W  = A.W.J J J

and from 2.5.1

(A + i B) W. = A. W. 2.5.2J J J
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which can be written as

AW. - B(-iW) = X. W. 2.5.3J J J J

Multiplying equation 2.5.2 throughout by (-i) gives

(B - i A)W. = -i X. W.J J J

which can be written as

B W  + A(-iWj) = X^(-iW^) . 2.5.4

Thus, combining 2.5.3. and 2.5.4. gives

[‘ 1 ■ 4“ 1Lb a J L-iw. j H - i w . J
2.5.5

This is now a symmetric matrix, twice the size of the hermitian 

matrix, and thus having twice the number of eigenvalues and eigenvectors, 

with the eigenvectors containing twice the number of elements. The 

eigenvalues and eigenvectors occur in pairs of complex conjugates, 

so instead of one eigenvalue Xj with corresponding eigenvector W , 

there is now two eigenvalues X^ and Xj with corresponding eigenvectors

{W. , - i W  } and {w. ,iW. }.J J J 3
Since the eigenvalues of a symmetric matrix are all real, Xj = Xj 

and the eigenvalues are repeated. The corresponding eigenvectors can 

be identified by comparing the top half of the vector with the bottom 

half. If the top half of one vector is (i) times the bottom half, then 

it corresponds to the first of the repeated eigenvalues. If the eigen­

vectors determined are real, then since

M l  '  ' " i l
L - i w J  Lv, _ i u j

this gives {Uj,V.} as the eigenvector, from which the original eigen­
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vector is the top half of the vector plus (i) times the bottom half.

2.6 Some Computational Considerations

All the cubic semiconducting materials investigated in the present

work are of the diamond or zinc-blende type lattice, which have the

Face Centred Cubic structure with two atoms per unit cell. That is,

in sections 2.2 and 2.3

L = 2 2.6.1

and ^ 2.6.2o 4
where a is the length of the unit cube.

If the origin of the co-ordinate system is taken midway between the two 

atoms, as in reference [24], then

and b  = -T^ = -t
2.6.3

and the potential can be written as a sum of a symmetric plus an 

antisymmetric potential, namely

and V^(K^-K^) =
2.6.4

In the nonlocal potential term used by Hemstreet and Fong [28,29], 

the core potential associated with the first spherical harmonic only 

is allowed to be non-zero, for which the Legendre Polynomial

P. (cos 8% K ) = cos 2.6.51 KnRm Kn«\m

and the potential is of the form

(a . r. e for r. ^ R
U(]r. | ) = < ^ ^   ̂ ^ 2.6.6

 ̂ (0 for r . > R1 c

where, for silicon-carbide, A^ = A and A^ = 0 2.6.7
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Introducing the notation 
R

^nm ^ jl(|k+kn|r)ji(|k+Kn|r)r: e"°^dr 2.6.8

and using equations 2,6.1 to 2.6.8 in equation 2 .3.10 gives, after 

rearrangement of the terms,

* ̂  ‘  ̂=^"[(Kn"V'd ̂  2.6.9

This is the form of the matrix elements used in the present calcula­

tions. The perturbation theory used assumes that the plane-waves, 

e^Ck+l^)»^*  ̂ used in the calculations have been ordered such that for

n > m, |k+K I ̂  ^ Ik+K | ̂ . Writing K = —  G , the matrix elements ' n ' ' m ‘ n a n
representing the states in class A are formed from those reciprocal

lattice vectors G  such that n

|k + fi .

The matrix elements representing the states in class B are formed from 

those reciprocal lattice vectors such that

h  I""" °nl" 4 ^2 •

The effect of all other reciprocal lattice vectors is neglected. The 

values of and E^ are taken as those used by previous workers, which 

for Silicon, Germanium and the III-V compounds (references [25,26])the 

values E^ = 7 and E^ = 21 are taken, and for 3C Silicon-Carbide (references 

[28,29]) the values E^ = 10 and E^ = 27 are taken.

The perturbation to the matrix elements representing the states in 

class A takes the form of an infinite series of sums over the matrix elements 

between the classes A and B. This series is truncated by Brust [24] after 

the first two terms, to enable the calculations to be feasible. Thus
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equation 2.4.7 reduces to
B H ’ . H'.

U = H + Z ■ 2.6.10nm nm . E-H. .1 11

which is then used in equations 2.4.9 and 2.4.10 to determine the 

eigenvalues and the original expansion of the corresponding eigenvectors.

The lowest four eigenvalues represent the valence states, while 

the higher eigenvalues represent the conduction states. Since the 

interest is in the valence and lower conduction states, the lowest eight 

eigenvalues and corresponding eigenvectors only are produced. To enable 

all the eigenvalues to be calculated at the same time, the eigenvalue 

dependence of the matrix elements in equation 2.6.10 is removed. If 

this is not done, the eigenvalues have to be determined individually by 

an iterative proceedure. The dependence is removed by making the sub­

stitutions made by Brust [24], namely;

Off the diagonal:

E is replaced by E, an average of the lowest eight energy levels 

at each point in the first Brillouin zone. The value E = 2 is used, as 

is used by Brust.

On the diagonal:

E is replaced by E = H^^ = |k+K^|^, essentially the kinetic energy 

of the principal plane-wave in the expansion of the wave-function.

This gives the equations 2.4.9 and 2.4.10 as

Z{|H + Em I nm  ̂ ii )

A ( B H'. HÎ ) C o  ̂ no
. Z + I 2.6.12

m V 1 11 ; nn

J 2 if n ̂
I k  +k„l^ if n =where E =4. ,2 "  " ' ” . 2.6.13

The first seven of the reciprocal lattice vectors have squared
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magnitudes 0 , 3, 4, 8 , 11, 12 and 16, and only these are allowed 

to have non-zero potentials. The symmetric structure factors for 

|G|^ = 4 and |g|^ = 12 are zero, and so the corresponding potentials 

need not be considered. However, to be consistent with the work of 

Hemstreet, Fong and Cohen [30] in their calculations of diamond, the 

symmetric structure factor for |G|^ = 12 is set to unity. The anti­

symmetric structure factors for |g|^ = 0 , |g|^ = 8 and |G|^ = 16 are 

zero, and again the corresponding potentials need not be considered.

The symmetric potential V^(1g|^ = 0) is made zero since it merely adds 

a constant to all energy levels. Hence there are only five symmetric 

and four antisymmetric form factors to be considered, namely 

Vg(|G|: = 3), Vg(8), Vg(ll). V^(12), V^(16), V^(3), V^(4), V^(ll) and

Va (12).

These nine local form factors, together with the three nonlocal

parameters, the lattice constant, and the values of and E^ are the

only parameters required to perform band structure calculations. The

nonlocal parameters are A and a, for which the product A.^^cx roughly
* •

represents the 'strength’ of the nonlocal potential, and R^, the free 

ion core radius.

All the details presented in this section are included in the computer 

program written to calculate the band structures of cubic semiconductors 

with the diamond or zinc-blende type lattice. Further computational 

details are given in Chapter 7.

2.7 Results of the Pilot Study on the Nonlocal Potential Term

The nonlocal potential term, added to the local potential and kinetic 

energy terms, as presented in sections 2.3 and 2.6, is

V,NL,
=  487T 

nm a 3
-i > 2.7.1
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where 0 is the angle between the reciprocal lattice vectors nm
k + Kn  and k + K » and

I =  I  il (|l<+Knk)ii (|k+K_|r) r^ e dr 2.7.2nm J  Q i n i m

where A, a and R^ are the nonlocal parameters.

In this pilot study to determine the effect of the nonlocal potential 

on the band structure of Silicon-Carbide, the data of Hemstreet and 

Fong [29] is used.

For 3C Sic, the lattice constant a = 4.35^, and the local form 

factors used are; Vg(|G|^ = 3) = -0.419, Vg(8) = 0.101,

Vg(ll) = 0.118, V^(3) = 0.001, V^(4) = 0.080 and V^(ll) = 0.051, all 

expressed in Rydbergs, and all other form factors being zero. The non­

local parameters used are; R^ = 0 .2&, approximately equal to the free 

ion core radius of carbon, A = -0.128 Ryd. and a = 1.02^ ̂ . The number 

of plane-waves being treated exactly and through perturbation are 

determined by the values = 10 and E^ = 27, described in section 2.6.

These values are used in the computer program to calculate the 

energy eigenvalues at selected symmetry points within the first Brillouin 

zone. For this pilot study, the energy eigenvalues are calculated at 

the symmetry points F, X and L, and the key energy gaps are then determined. 

These energy gaps are in disagreement with the energy gaps calculated by 

Hemstreet and Fong, both with and without the effect of the nonlocal 

potential. The energy gaps calculated here are tabulated, together with 

those calculated by Hemstreet and Fong, in Table 2.1.

Since there is disagreement in the values where there should be 

agreement, the energy eigenvalues at F, X and L are calculated again, 

but this time without the nonlocal potential (that is, with A = 0 in 

equation 2.7.2). The energy gaps determined from the calculations, both
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with and without the nonlocal potential, are in very close agreement. 

The maximum difference between the energy eigenvalues at the three 

symmetry points considered are; at J, 0.000045eV: at X, 0.000045eV:

and at L, 0.000044eV. This apparent insignificance of the effect of 

the nonlocal potential is consequently investigated.

Table 2.1

Key energy gaps of 3C S Ic at F, X and L points (expressed in eV's)

4 s - h ^15~^15 S - " l ^3“^3 %5-%l X5-X, ^ 5 " h ri5-%i

Present
calculations 5.95 6.50 6.03 9.19 6.37 9.41 4.39 2.36

Hemstreet and 
Fong with 5.90 6.47 5.97 9.08 6.13 9.21 4.39 2.33

Hemstreet and 
Fong Without 5.92 6.49 6.02 9.18 6.37 9.40 4.38 2.35

This is done by investigating the size of the matrix elements, 

both with and without the nonlocal potential term included. Since the 

effect of the nonlocal term, as calculated in reference ^29], is reported 

to be greatest at the point X, the energy eigenvalues at that point are 

investigated. This is done both manually and by using the digital computer. 

With the values of and E^ given above, at the point X, 40 plane-waves 

are treated exactly, and a further 110 plane-waves are treated through 

perturbation theory.

All the matrix elements are obtained from the digital computer by 

slightly modifying the computer program. The size of the integrals occurring 

in the nonlocal potential terms are also obtained. Since the matrix is 

of size 40 X 40, all the matrix elements cannot be obtained manually.
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Instead, only two matrix elements are fully investigated, one diagonal 

and one off-diagonal element. The two matrix elements are also fully 

investigated by using the digital computer. The diagonal matrix 

element corresponds to the plane-wave having reciprocal lattice vector

(k+Ki?)» where k = ~  (1,0 ,0) and ^ (1, -1, -1). The off-

diagonal matrix element corresponds to the plane-waves having reciprocal
2ïïlattice vectors (k+K^^y) and (k+K^^), where (-2,2,0).

From the computer results, it is seen that all the values of the
-6integral of equation 2.7.2 are small, and are in the range 2.05 x 10

“5 • • •Ryd to 1,83 x 10 Ryd, When the values of the integral are multiplied

by the appropriate constant and structure factors, a few of the nonlocal

potential terms become zero. The non-zero terms, of which there are many,
• ""7 ""6have values in the range 4.4 x 10 Ryd to 4.3 x 10 Ryd. These values

are computed to an accuracy of 10 decimal places. The values of the two 

matrix elements calculated manually are calculated to an accuracy of 8 

decimal places, and to within this accuracy are in agreement with the 

computer calculations. The values of the integral, the nonlocal potential 

term and the local potential term for both the matrix elements investi­

gated are tabulated in Table 2.2

Table 2.2

Values of Matrix Elements (expressed in Rydbergs)

Plane-Wave 
numbers, n,m Inm V

^^nm -  \  ■̂ nm
n = 17 
m = 17 1.156 X lo’^ -2.711 X lo”^ 3.4217

n = 17 
m = 11 1.062 X lo’^ (1+i) 1.291xl0"^ 0.0

The size of the nonlocal potential terms are much too small to 

have any significant effect on the energy eigenvalues as calculated 

without the nonlocal potential. Correspondence with Professor Hemstreet



- 31 -

was then entered into, explaining the results of this pilot study, 

and asking for his reasons for the discrepancies between the two 

sets of results. The ensuing correspondence has revealed that an 

error in his calculation of the integral of equation 2.7.2 has now 

been discovered.

The method by which Professor Hemstreet calculated this integral 

was to calculate the two integrals

e'“ ‘̂ dr
•'o

= /  ji<lk+k„4)ji(|k*t(„|r)r^ e"“ dr

(1) (2)
and the required integral was the determined via I = I - Inm nm nm
The method of evaluating the above two integrals was by Gauss-Laguerre

quadrature. The accuracy of this method had previously been checked

for several representative matrix elements, but on further checks it

was discovered that the integrals and were very sensitive to® nm nm
|k+K^I and Ik+Kjnl » :̂he arguments of the Spherical Bessel Functions.

For larger values of |k+l(̂ | and |k+K^| , the method of quadrature was 

less accurate, thereby introducing significant errors into the value 

of the integral Inm.
The values of some of the nonlocal potential terms were thought 

to be as large as ^0.001 Ryd., but were, in effect, the result of the 

inaccuracies of the method used for computing the integrals. Hence, 

Professor Hemstreet concludes that the nonlocal term probably does not 

have any effect on the band structure of 3C SiC, and accepts the results 

of this pilot study as probably being correct. Consequently, the 

nonlocal potential term will not be included in the full band structure 

calculations of 3C SiC.
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3. THE ENVELOPE METHOD FOR DETERMINING IMPACT IONIZATION 
THRESHOLD ENERGIES

3.1 Introduction

Until recently, very little work has been done to determine 

accurate impact ionization (II) threshold energies, Ê ,̂, for realistic 

band structures. Previous calculations either assumed model band 

structures, or used parabolic band approximations to the energy band 

structures in the regions of the energy band extrema. These approxi­

mations are usually made by using suitable effective masses at the 

conduction band minimum and the valence band maximum.

A graphical method of calculating values of E^ has been provided 

by Tewordt [9], which has been extended and generalized by Franz [lO].

This method, while considering the detailed band structure for the 

valence bands, assumes a parabolic conduction band based on the con­

duction band minimum. It was reasonable to make such approximations 

at the time, since not much was known about the detailed band structures 

of semiconductors. These approximations are no longer reasonable, as 

the knowledge of the detailed band structures of a number of semiconductors 

has become more extensive in the past few years.

Recent calculations of II threshold values have taken into 

consideration the detail of realistic band structures. The method 

developed in the present work is a generalization of the method developed 

by Franz, for which the Franz parabolic construction is a special, 

simplified case. This method is based on the conservation of energy 

and wavevector of all four states involved in an II process, and is 

presented in detail in sections 3.2 and 3.3 for electron II processes.

The method applies equally as well for hole II processes.

When the present theory was in an advanced state of development, 

it was learnt that other workers had also been considering the same
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problem, Anderson and Crowell [32] have developed a step-by-step 

graphical procedure based on two separate criteria. Firstly, they 

use the fact that the group velocities of three of the four states 

involved in an II process must be identical at threshold. Secondly, 

they invoke the conservation of energy and wavevector of all four 

states involved in the process. Using this procedure, they have 

obtained the first reliable estimates of values for realistic band 

structures of a number of semiconductors.

The accuracy associated with their results 0.2eV for each 

value of E^) however, is not very great. The reason for this is 

probably due to their using a simple graphical technique, as opposed 

to applying the procedure to a digital computer, which could give 

much greater accuracy. The method presented here, while also being 

basically a graphical procedure is programmed for use on a digital 

computer, and so the results obtained are more accurate than those of 

Anderson and Crowell.

The method developed and presented here, which has been presented 

previously [3l], is an alternative to the method developed by Anderson 

and Crowell. It has some advantages over the method developed by 

Anderson and Crowell, but it also has some disadvantages. Since both 

methods are basically graphical, the associated errors are of the same 

magnitude. Programming the method for use on a digital computer gives 

greater accuracy, and will apply to both methods. However, an advantage 

of the method developed here is that it is apparently simpler to program 

for use on a digital computer.

In numerical calculations, analytic representations of the energy 

bands are required for both methods. While good accuracy can be achieved 

in curve fitting, it is well known that large errors may occur in the
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derivatives of such curves. The method developed by Anderson 

and Crowell depends upon the derivatives of the energy bands, and 

consequently may be subject to large errors in their threshold values.

In fact, threshold values which do not really exist may be found due 

to errors in the derivatives of the energy bands. The method developed 

here, while making use of the derivatives of the energy bands, does 

not depend upon them to the same extent as does the method developed 

by Anderson and Crowell, and is therefore not subject to the associated 

errors to the same extent. This is another slight advantage of the 

method developed here over the method developed by Anderson and Crowell.

The method developed here restricts the final states involved in 

the II process to lie in the same energy band, although the method can 

be further generalized to lift this restriction, but the method developed 

by Anderson and Crowell does not have this restriction. Also, Anderson 

and Crowell allow for the inclusion of the emission or absorbtion of 

phonons in their method, which is not considered in the method developed 

here. These are two disadvantages of the method developed here over 

the method developed by Anderson and Crowell. However, in the results 

obtained by Anderson and Crowell, they have assumed the final states 

involved in the II processes to lie in the same energy band, and have 

not considered the emission or absorbtion of phonons in the process.

While reliable estimates of the value for realistic band structures 

are calculated, values of E,̂  corresponding to approximate band structure 

models are also calculated. The approximations made, and the approximate 

formulae, are presented in section 3.4, which includes the parabolic 

band approximation applied to indirect gap semiconductors. Some 

computational considerations of the programming of the method developed 

here for use on a digital computer are presented in section 3.5.
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Camphausen and Hearn [20] have also developed a method of 

obtaining II threshold values. Their method is based upon a Kane 

[21] band structure, but the formulae they quote do not appear to be 

correct. These are investigated further in section 3.6, and a 

simplified correct version of the formulae is presented.

3.2 The Basis of the Envelope Method

Impact ionization processes not involving phonons must conserve 

the energy and wavevector of the initial and final electron states.

Thus, if a hot electron initially in a state, represented by the point 

H, on a conduction band (see figure 3.1(a)) is to move to a state, 

represented by the point I, in a second conduction band, not necessarily 

the same conduction band, then the second electron involved, to move 

to a state in the second conduction band, must have its initial state 

somewhere on the dotted curve of figure 3.1(a). That is, on the curve

in E-k space obtained by displacing the whole of the second conduction band
. • # # by the vector HI. Since the displaced conduction band in figure 3.1(a)

intersects the valence band at the states and V^, impact ionization

is possible in this case. The second electron is promoted from the

valence band to the second conduction band in the ionization process

either from to or from to C^.

For a fixed position of H, suppose that the final state of the 

hot electron at I is allowed to vary within the second conduction band.

The displaced conduction bands corresponding to the different positions 

of I then generate the shaded region of E-k space shown in figure 

3.1(a). All states in the valence band lying within this region (that 

is between and V^) can therefore partake in impact ionization processes 

with a hot electron initially at H.

The shaded region in figure 3.1(b) corresponds to a different.
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Figure 3.1(a) The simple envelope generated by displaced conduction 
bands, showing the position of the hot electron, H, above^ threshold. 
The dotted curve shows the conduction band displaced by HI.



- 37 -

✓

a

lU i

Figure 3.1(b) The simple envelope generated by displaced conduction 
bands, showing the position of the hot electron, H, at threshold.
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but important, position of H. As the position of H is varied, 

the region covered by the displaced conduction bands moves relative 

to the first conduction band, but its shape remains unchanged. Figures 

3.1(a) and 3.1(b) illustrate this fact. They also show that when H 

moves to lower energies, the minimum of the shaded region moves to 

higher energies, and fewer states in the valence band are available 

for impact ionization. Ultimately a position is reached when the lower 

boundary of the shaded region just touches the valence band at one 

point. This situation provides a threshold of the type being sought, 

since a further reduction in the energy of the initial position of the 

hot electron will not allow impact ionization to take place. The 

threshold situation, determining the value of E^, is illustrated in 

figure 3.1(b). The lower boundary of the shaded region is tangential 

to the valence band at V. It is also noted that the final states after 

ionization are both at I, and that the gradient of the second conduction 

band at I is equal to that of the valence band at V. This is the first 

criteria used by Anderson and Crowell.

The problem of finding thresholds is thus reduced to that of 

determining the shape and position of the lower edge of the shaded region 

for any initial position, H, of the hot electron. The independence 

of the shape of this curve of the position of H greatly simplifies this 

problem. The curve is just the envelope of a family of displaced con­

duction bands, and may be calculated for any known band structure. The 

analysis presented here is for a one-dimensional band structure; the 

generalization to a higher number of k-space dimensions is, in principle, 

straightforward.

Let the energy-wavevector relation for the first conduction band in 

which the hot electron is initially be given by
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E = 4, (k) 3.2.1

Let the energy-wavevector relation for the second conduction band 

in which both electrons are finally be given by

E = OgCk) 3.2.2

The displaced conduction band of figure 3.1(a) has the equation

E = 4^(k-{k^-k^}) + 4^(k^) - 4"i(k^) 3.2.3

where k^ and k^ are the k coordinates of the points I and H respectively.

The required envelope is obtained by finding, for any fixed k and k^,

the minimum value taken by E in 3.2.3 as k. is varied. This will1
be when 3E/9k^ = 0, that is when

4^(k^) = 42(k-{k^-k^}) 3.2.4

Solving 3.2.4 for k^ and substituting into 3.2.3 gives the equation 

of the required envelope.

One obvious solution of 3.2.4 is always given when the arguments 

are equal, that is when

ki = ~(k + k^) 3.2.5

and the equation of the envelope is then given by

E = . 3.2,6

This formula should be regarded as an E-k relationship in which the 

coordinates of H appear as variable parameters. It shows that the 

envelope is merely a magnified and translated version of the second 

conduction band, to which it corresponds. This property can be seen 

in figure 3.1. It can also be seen from the figure that the states 

on this envelope may be found by joining the state H to states in 

the second conduction band, and then doubling the displacement. That 

is, by applying the displacement HI to each state I of the second
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conduction band. Equation 3.2.6 may be used to verify this fact.

It should be noted that the state H can lie in any conduction 

band. It has been taken to lie in a different conduction band to 

that in which both the final states of the electrons lie after 

ionization. The state H could, for example,lie in the same conduction 

band, that is on E = 4^(k). The shape of the envelope of E = 4^(k) 

is not affected by the position of H, providing that both the final 

states after ionization lie on E = 4^(k), that is in the same conduc­

tion band. Thresholds involving interband transitions of this type 

are thus within the framework of the envelope method. The extension 

of the analysis to include more complicated interband transitions is 

not considered in the present work.

Let the initial state of the hot electron be taken to lie in the 

same conduction band as the final states of the electrons, that is 

4>^(k) = 4^(k). If a parabolic relation with a suitable effective 

mass, m^, is appropriate for 4̂ (k), namely

-t2
E = (k-k )2 + E 3.2.72m m mc

with E^ the minimum energy and k^ the corresponding wavevector, then

3.2.6 gives the envelope in this case as 

>2
E = y—  (k-]2k -k,})2 + 2E -E. 2.3.84m ( m h* m hc

where E^ is the initial energy of the hot electron. This is just 

the "half-slope" parabola given by the Franz construction [10].

For more general band structures, there may exist solutions of

3.2.4 other than the obvious one given in 3.2.5. This is not the 

case if 4^(k) is a monatonic function of k. Thus, for a simple energy 

band without inflexions, 3.2.5 gives the only solution, as in the 

case illustrated in figure 3.1. This type of envelope is referred to
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as a Simple Envelope (SE), to distinguish it from other possible 

solutions of 3.2.4 which are investigated in the next section.

These solutions in no way affect the basis of the method, which is 

to vary the position of H until the shaded region becomes tangential 

to the valence band. They merely make the lower boundary of the 

shaded region more complicated.

3.3 The Envelope Method for Realistic Energy Bands

Careful examination of the minimization procedure covered in 

equations 3.2.3 to 3.2.6, shows that the curvature of the second 

conduction band is an important factor in the determination of 

thresholds by the envelope method. To determine whether the solution 

given by 3.2.6 is a minimum solution, it is necessary to consider the 

curvature of the simple envelope. That is by considering

9^E = |<t>2 • 3.3.19k“
A minimum solution can only be given when this is positive. Thus 

it is seen that the envelope given in 3.2.6 can only give a lower 

boundary to the region of displaced conduction bands when (j)̂ (k̂ ) 

is positive.

Corresponding to any position of I in the conduction band given 

by E = 42(k), there is always a simple envelope solution at a displace­

ment 2HI from H. This solution however, is of little consequence when 

the curvature at I is negative. The lower boundary curve must be 

provided by another solution, or solutions, of 3.2.4 in this case.

Any realistic conduction band will have points of inflexion, unlike 

the simple case considered in figure 3.1. The analysis of the previous 

section must therefore be extended, to consider the envelopes provided 

by these other solutions.

Suppose a solution of 3.2.4 exists at a value of k^ given by
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= Y  (k+k^) + K 3.3.2

where K is non-zero. Inserting this solution into 3.2.4 gives

cj)*(y)k+kĵ J + K) = <l>î(f{k+kĵ } - K) 3.3.3

It is therefore seen that another solution of 3.2.4 also exists

for
kf = —  (k+k^) - K . 3.3.4

Using either 3.3.2 or 3.3.4 in 3.2.3, it is seen that for both 

these solutions, the envelope is given by

E = (|> (i {k+k^} + K) + (#, (l)k+k^} - K) - 4, (k^) . 3.3.5

This type of envelope is referred to as a Double Envelope (DE), 

since each point on it is generated twice, for the two different 

values of k^. Let these values of k^ given in 3.3.2 and 3.3.4 be 

denoted by k^^ and k^^ respectively. For each such pair of states,

I^ and I^, on the second conduction band with equal gradients, there 

is a point on the double envelope given by 3.3.5. Relative to the 

position of H, the coordinates of this double envelope point, V say.

are

ky = k.^ + k-2 3.3.6

It is seen that V is a vertex of the parallelogram HI^I^V. This 

gives a simple geometrical method for locating double envelopes, 

which is illustrated in figure 3.2.

This figure shows the shaded region of displaced conduction 

bands together with all envelope solutions. The shape of the shaded 

region is again independent of the position of H. The simple envelope
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is again seen as a magnified version of the conduction band. As 

expected, it does not provide the lower boundary of the shaded region 

at all its points. Double envelopes are not generated continuously, 

but are seen to terminate, by merging

Conduction band

DE

SE SEDE
Figure 3.2 The simple envelope (SE) and double envelopes (DE) 
generated by a conduction band with inflexions.

into the simple envelope, at points of inflexion of the latter. This 

is to be expected from the previous remarks concerning the curvature.

The parallelogram shows that if V is a state in the

valence band, then there are two possible interpretations of the 

ionization process. The hot electron at H can move to the state 

or , while the valence electron at V is promoted to the state or_ 

respectively. The gradient of the double envelope at V is the same

as that of the conduction band at and . Thus for thresholds 

arising from double envelopes, the group velocities of three out of 

the four states involved are again identical. The example illustrated
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in figure3,2 corresponds to an intervalley transition.

It is seen in figure 3.2 that there is a section of the

lower boundary of the region of displaced conduction bands which 

does not correspond to either a simple envelope solution or a double 

envelope solution. This is due to the finite length of the conduction 

band being considered, and does not occur when the length of the 

conduction band is assumed to be infinite. For the envelope method 

to include Umklapp-type processes, it is necessary to consider energy 

bands in an extended zone scheme. Band structures in the directions 

of symmetry in krspace are periodic in such a scheme. In the principal 

symmetry directions, the bands are also symmetric about the centre 

of the first Brillouin zone.

Let the conduction bands represented by E = ^^(k) be periodic

with period p and symmetric about k = 0 ,

That is,

4^(k+p) = 4^(k) 3.3.7

(j>2 (-k) -= OgCk) 3.3.8

Using 3,3,7 and 3,3,8, it is seen that the envelope solutions given 

by 3,2,6 and 3,3,5 are periodic with period 2p, and symmetric about 

k = 0 relative to the k coordinate of H, However, by replacing k 

by k+p in 3,2,4 by using 3,3,7, it is seen that the solutions 3,2,5, 

3,3,2 and 3,3,4 become

for S,E,’s k^ = --(k+k^+p) 3,3,9

for D,E,'s ^i ” ^^k+k^+p) 1 K 3,3,10

Substituting these values of k^ in 3,2,3, the envelope solutions

3,2,6 and 3,3,5 become

E = 24>2(~|k+k^+pJ) - 4^(k^) 3,3,11
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for simple envelopes, and

E = *2(7 |k+k^+p} +K) + *2(]4k+kh+p}-K)-*i(k^) 3.3.12

for double envlopes. Thus, it is seen that there are twice as 

many envelope solutions as before, and when 3.2.6 is combined with 

3.3.11, and 3.3.5 is combined with 3.3.12, the complete envelope 

pattern is given by

E = 24^(l^k+k^+np}) - 4^(k^) n = 0,1 3.3.13

for simple envelopes, and

E = 4^(^^k+k^+np}+K) + ^^(^-{k+k^+np} -K) - n = 0,1 3.3.14

for double envelopes. By use of 3.3.7 and 3.3.8 it is seen that 

the complete envelope pattern given by 3.3.13 and 3.3.14 has the 

same periodicity and symmetry properties as the conduction band 

E = (p^(k). This is illustrated in figure 3.3

Ĉonduction
band

SE
DE

Figure 3.3 The envelope pattern generated by a conduction band 
having period p, and symmetric about k = 0. The simple envelope 
(SE) solutions are given by 3.3.13 and the double envelope (DE) 
solutions by 3.3.14.
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3.4 Approximate Band Structure Models

While reliable estimates of impact ionization threshold energies, 

E^, for realistic band structures are calculated by the method 

described in the two previous sections, corresponding values of E^

using approximate band structure models are also calculated. This is

done in order to obtain a comparison between the different values of

E^ calculated, and so to determine the reliability of earlier estimates

of the threshold energy. Two approximate band structure models are

therefore considered.

The first approximate band structure model considered is that

for which the conduction band is assumed to be parabolic, of the form

given in 3.2,7, and the valence bands are treated exactly. The envelope

method then simplifies, and reduces to the method developed by Tewordt

and extended by Franz. This approximation is referred to as the Franz

construction. The method of determining the values of E^ by this method

is the same as that for the envelope method before simplification, and

is outlined in the next section.

The second approximate band structure model considered is that

of the effective mass approximation. Let the conduction band on which

the hot electron lies initially be approximated by the parabola
-t 2

E, = T—  (k-k )2 + E 3,4,11 2m _ n ncl

and the conduction band on which both electrons lie finally be 

approximated by the parabola

= 2 ^ ,  (k-k.)' + ^.4.2cz

Here, (k , E ) and (k , E ) are the coordinates of the first and n n m m
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second conduction band minima respectively, with corresponding

effective masses m . and m Further, let the valence band becl c2
approximated by the parabola

® v = —  k' 3.4.3
v

where m^ is taken to be positive.

Using 3.4.1 and 3.4.2 in the simple envelope equation, given by 

3.2 .6 , for the energy bands ^^(k) and ^^(k) respectively, gives the 

simple envelope in this case as

^nv(^) 4m (k+k^-2k^) -E 3.4.4c2 m h

where (k^,E^) are the coordinates of the initial position of the hot

electron. The condition for a threshold situation is when the envelope

just touches the valence band. That is when

E„^(k) = E^(k) 3.4.5

and . ^
&  Gav(k) = ^  E^(k) 3.4.6

Substituting 3.4.3 and 3.4.4 into 3.4.5 and 3.4.6 gives

^ (k+k,-2k )2 + 2E -E, = k^ 3.4.74m _ h m m h 2 mc2 V

+ 2 -k 2
and ~  (k+k,-2k. ) = "iL. k 3.4.8

2“ c2 ^ “ %

respectively, where E^ is given by

\  = #  (kb-kn): - 3.4.9cl



- 48 -

Rearranging 3.4.8 to obtain an explicit equation for k, and then 

substituting into 3.4.7 gives, after some simplification,

tZ(2k -k, = 2(m +2m _)(E- -2E ) . 3.4.10m h V c2 h m

Now rearranging 3.4.9 to obtain k^ in terms of Eĵ , and then substitu­

ting into 3.4.10 gives

/  = 2(m^+2m^p(Ej^-2E^)

which, upon expanding the left hand side, and rearranging the terms, 

gives

- im +2m -)(E.-2E ) 3.4.11V cz n m

Introducing, for ease of writing and clarity, the notation

X = (2k - k )m n

and M = (m + 2m „)V cz
3.4.12

equation 3.4.11 becomes, upon squaring,

2m .tZ(E,-E )X = X% + m . (E.-E )-M(E,-2E ) [ X +cl h m 4 ( cl h n h m »

+ ]m _(E,-E )- M(E,-2E:)}2 3.4.13' cl n n n m '

By expanding the square on the right hand side, and rearranging 

the terms, 3.4.13 can be written in the form of a quadratic equation in 

E^ which has the form

a Ef - 2bE, + c = 0 3.4.14
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where a =

B = (M-m J(2ME -m ,E )- 1  (M+m _)X cl m cl n 2 cl

c = (2ME -m _E + t^(2ME +m ,E ) X + i  t*' X^ m cl n m cl n 4

3.4.15

Equation 3.4.14 then has the two solutions given by

=
V + / 2
a - / _a_ [#] 3.4.16

Substituting the values of a, b and c given by 3.4.15 into 3.4.16, 

the two values of the hot electron energy, E^, corresponding to a 

threshold situation are then given, after a little algebra and by 

substituting back for the notation of 3.4.12, by the equation

m _ (2E -E ) ^ ^ ( 2 k  -k
F = F -F = F + ci m  n^ m  n'
T h m m (m -m +2m ) 2 (m -m +2m _ ) ̂V cl c2‘ V cl c2

2(m^-m^l+2mc2)(2Em-E^)

m n
3.4.17

tience, when the conduction and valence bands are approximated 

by parabolae, the values of E^ can be easily calculated from the 

expression given by 3.4.17. It should be noted that the expression 

gives two values of E^ for a given set of parabolic bands. The smaller 

value corresponds to a threshold value of the type being sought, that is 

the onset of impact ionization processes, while the larger value corres­

ponds to an anti-threshold value of the type described by Anderson and 

Crowell. For hot electron energies greater than this larger value, impact 

ionization processes are no longer possible; thus it is seen that for 

parabolic energy bands, a "pair-production window" exists as described 

by Camphausen and Hearn.
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The expression given by 3.4.17 allows for two conduction bands

to be considered, but if only one conduction band is allowed for, as

is more often the case, equation 3.4.17 can be simplified slightly.

By writing m _ = m _ = m , E = E and k = k , substituting into cl c2 c m n m n °
3.4.17, and introducing the familiar notation y = ^/m^, 3.4.17 can

then be written

E = g + 2 _ S _  ,
T (1+u) m  2m (1+u)^V

(l+3y) 2y" (l+2y) I
2m (l+y)Em

k2 m
3.4.18

Since most approximate band structure models assume just one conduction 

band based on the minimum, the expression given by 3.4.18 is used in 

determing the values of E^.

For a direct band gap, k^ = 0 and E^ = E^, and then 3.4.18 reduces 

to the well known form

if = e
It should be noted that for indirect band gaps, E^ is only equal to

Eg in the appropriate k direction.

3.5 Some Computational Considerations

In the analysis of the envelope method presented in sections 3.2

and 3.3, it is required that the final states of both electrons involved in

the ionization process lie in the same conduction band. In the computer 

program written to calculate the impact ionization threshold values, the 

final states of both electrons are taken to lie in the lowest-lying 

conduction band. This assumption is also made in the calculations-of 

Anderson and Crowell. The initial state of the hot electron is, however, 

allowed to lie in any conduction band, and all possible bands are investi­

gated to determine threshold values in addition to the absolute minimum
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threshold value .

The computer program is also used to determine impact ionization 

threshold values by hot holes, which is done by simply reversing the 

roles of the conduction and valence bands throughout. The final states 

of both holes are then taken to lie in the highest-lying valence band.

The program is also capable of determing some anti-threshold values, 

and hence some "pair-production windows". The anti-threshold values 

correspond to the situations where a valence band just touches the 

uppermost envelope of the shaded region. The calculation of these anti­

threshold values, and hence pair-production windows, is not considered 

in detail here, although a few anti-threshold values are determined.

To be able to apply the envelope method, analytic expressions of 

all the relevant energy bands are required. These are determined by 

the method described in Chapter 4, and are of the form of even Fourier 

series. The computer program has been written to accept these Fourier 

series, and also to accept parabolic expressions. This is done to allow 

calculations to be performed of threshold values corresponding to the 

Franz construction and to the effective mass approximation. However, 

it is quicker, and easier, to calculate the threshold values corresponding 

to the effective mass approximation by using a programmable, desk-top 

calculator, for which a simple program has been written to evaluate 

equation 3.4.18.

The computer program operates in a chosen symmetry direction in 

k-space, and makes full use of the periodicity and all symmetry properties 

associated with that particular direction. The three principal symmetry 

directions F-A-X, F-A -L and F-Z-K-S-X only are investigated. The threshold 

values are then determined by using an iterative procedure based on the

variation of k^. The energy bands in which the initiating and promoted
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particles lie are provided as data, together with a sensible first 

iterate for k^, as described in Chapter 4. The program then automatically 

investigates the intersection of the envelope with the appropriate energy 

band until a threshold situation is obtained. At each stage of the 

iteration the program only calculates those parts of the envelope which 

are appropriate.

The coordinates of any point on the envelope are determined through

equations 3.3.13 and 3.3.14. Points on the simple envelope with n = 0

are obtained by using the ’double displacement’ property discussed in 

relation to 3.2.6. Points on the double envelope with n = 0 are obtained 

from the parallelogram vertex given by 3.3.6, using positions of equal 

gradient on the appropriate energy band which are separated by less than 

the distance p. The envelopes for n = 1 are calculated by a displacement 

of those for n = 0 through a distance p. Further computational details 

are given in Chapter 7.

3.6 A Discussion of the Short Note by Camphausen and Hearn

In the short note by Camphausen and Hearn [20], two equations are

derived by which impact ionization threshold values may be determined.

The derivation is based on a Kane [21] band structure for the conduction 

band with the inclusion of arbitrary spin-orbit coupling energy. The 

equations thus derived are

k(E|.){uk'(F|.)p - k(F^){l+2Mk'(F^)}2 = 0
3.6.1

Ej. = 1+2F^ + k(F^) u~^)k!(Fj.)|"2

where all energies are measured in terms of the band gap, the function 

k(E) gives the modulus of the wavevector of an electron of energy E in 

the conduction band, the prime denoting differentiation, and y is the 

ratio of effective masses ™ c / ^  . In terms of absolute energies.
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E.-E E -E
= - Ë T  “ " Ë ~

where and E^ are the initial and final energies of the hot electron 

respectively.

It is claimed that for a parabolic conduction band, equations 3.6.1 

give the familiar result

For a parabolic conduction band, the wavevector - energy relation 

is given by
2m E 1

k(E) = /  — ^  e " 3.6.2/ ^2

where E is measured in terms of the band gap.

Differentiating gives

■ i f -
im E ,

k'(E) = ^  3.6.3

Substituting 3.6.2 and 3.6.3 into the equations 3.6.1 and introducing 

the notation

A = J  2m E /tî  c O

gives

4
- - AF^2 J2 ^ Q

3.6.4,
4F^/^

^  = l+2Ft + ÏH

From work by Beattie and Landsberg [17] it has been shown that 

for parabolic energy bands of the type being used here, in the same 

notation,

E = and F =  ^----t 1+y t (1+P) (l+2y)
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Substituting these values into equations 3.6.4 gives, after some 

simplification, the equations

(1+y)^(l+2y)4y{l+A(l+ y ) ^ ( l + 2 y ) ^ ^  = 0
' 3.6.5

A = -----------------  r
(l+y):(l+2y)2

By substituting the second of these equations into the first equation 

to eliminate A, and after a little algebra to simplify the equation, 

an equation in y is obtained, namely

4y(l+2y)^ (1+y) - (l+4y)^ = 0

This is a quartic equation in y , and can be written more explicitly

as

16y^ + 32y^ + 4y^ - 4y -1 = 0 3.6.6

Thus, for equations 3.6.1 to be consistent with each other for 

parabolic energy bands, equation 3.6.6 must be satisfied. This is true 

for only one positive real value of y (y = 0.37), and not for any positive 

real value of y as is required. It follows that since 3.6.6 is not 

satisfied for all values of y , except just one value, then equations 3.6.1 

must be inconsistent. If they are inconsistent, and hence incorrect, 

for the simplified case of parabolic energy bands,' they must also be 

incorrect for the Kane band structure considered.

To try to determine in what way the equations 3.6.1 are incorrect,

equivalent equations are derived using a slightly simpler band structure.

Instead of using a Kane band structure, the final states of the electrons 

are assumed to lie in a parabolic energy band given by 3.6.2. The initial 

state of the hot electron, however, is not restricted to lie in any 

particular form of energy band. In the same notation as that of Camphausen
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and Hearn, the equations governing the conservation of energy and 

wavevector are

k(E^) - 2k(F^) - k(E^) = 0

3.6.7
E = 1 + 2F + E t t v

To eliminate the dependence of the valence band from these equations, 

the fact that the group velocity of the promoted electron remains 

unaltered is used. This is equivalent to

k'(E^) = k'(F^)

which, from 3.6.3 gives

and from 3.6.2 gives

k(E ) = 2k'(E )E = 2y”  ̂k'(F^)F^V V V t t

Also, from 3.6.2 and 3.6.3, it is seen that

-1Ft = |k(F^))k’(F̂ )}

and hence that

-1

3.6.8
®v = lk(F^){uk-(Fy}

k(E^) = h'A(F^)

Thus, substituting equations 3.6.8 into equations 3.6.7 and rearrang­

ing the terms slightly, give the equations 

yk(E ) - k(F )jl+2u}= 0
( 3.6.9

Ej. = l+2F|.+k(F^)y” '-)2k'(F^)("’'
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Equations 3.6.9 are the equivalent equations to those given by 

Camphausen and Hearn, but clearly are not in agreement with them. 

Also, if parabolic energy bands are used throughout, it can be 

verified that equations 3.6.9 are consistent and reduce to the well 

known result of

■
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ju_____CURVE FITTING TECHNIQUES AS USED FOR THE ENERGY BANDS

4.1 Introduction

The Empirical Pseudopotential Method, as described in Chapter 2, 

is used to obtain the realistic band structures of the semiconductors 

being investigated. A band structure is given as a set of discrete 

energy levels, the eigenvalues of the secular equations, at as many 

discrete points within the first Brillouin zone as is required. Thus, 

for each energy band to be investigated there corresponds energy levels 

at a set of discrete points in k-space. However, the method of determining 

the impact ionization threshold values, as presented in the previous 

chapter, requires analytic expressions for the energy bands being investigated, 

Two different types of expressions can be obtained, using two different 

methods of approach.

The first method which can be used is that by which simple inter­

polation schemes are employed to approximate to the energy of a particular 

energy band. This method requires several different schemes to be fitted 

to the available data points in order to obtain the energy values to 

sufficient accuracy. More than one scheme is necessary because schemes 

which are valid at intermediate points near the middle of the range of 

data points are different from schemes which are valid at intermediate 

points near the end of the range of data points. Thus, given a set of 

data points, this method requires a test to be made to determine the 

position of the point, at which the energy value is to be calculated, 

in relation to the set of data points. Once this position is determined, 

and the appropriate interpolation scheme is selected, tests have to be 

made to determine which data points are to be used in the scheme. After 

all these tests have been performed, the energy value on the required 

energy band can then be calculated. It is seen that this method is a 

lengthy and complicated procedure, and since it will be necessary to
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calculate the energy, on a given band, at a large number of points, 

it is considered to be impracticable.

The second method which can be used is that by which one analytic 

expression is fitted to each energy band, and which is valid over the 

whole range of data points. This is done by first selecting a suitable 

analytic expression, and then employing a suitable curve-fitting routine 

by which a good approximation to the data points is obtained. Once a 

sufficiently accurate analytic expression is determined, the calculation 

of the energy, on any energy band, at any point within the range of data 

points becomes a simple task of evaluating the appropriate analytic expression, 

The method of determining the analytic expressions used in curve-fitting is 

more complicated than that of the interpolation schemes, but interpolation 

schemes are more complicated to use in order to calculate the required 

energy of a given energy band than is the single analytic expression.

Since the analytic expression chosen will be used to calculate the energy 

on a given energy band a large number of times, the method of curve-fitting 

is chosen to approximate to the energy bands.

In a curve-fitting problem, there are several different methods by 

which an analytic expression can be fitted to a set of data points, and 

there are many different analytic expressions which can be used. The 

method selected by which the analytic expressions are fitted to a set of 

data points, is that of multiple regression, and the analysis of this 

method is described in the next section. The particular form of analytic 

expression to use is subject to an investigation between two possible 

alternatives; a polynomial consisting of even powers only, and a Fourier 

series consisting of cosine terms only. The results of this investigation 

are presented in section 4.3, from which the even Fourier series is chosen 

as the analytic expression to be used in the curve-fitting routine.

A curve-fitting routine can only ensure that the values of the analytic 

expressions used are in good agreement with the data points used, but
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cannot ensure that they are in good agreement elsewhere. The classic 

example of this arises when the number of coefficients in the analytic 

expression is the same as the number of data points. A curve-fitting 

routine is then able to fit the analytic expression to the data points 

exactly, but it is most likely to be rapidly oscillating between the 

data points, so giving a meaningless expression. This situation does 

not arise in the multiple regression routine, as there has to be fewer 

coefficients in the analytic expression than there are data points.

However, to ensure no large deviations from the expected shape of the 

energy bands occur, the resulting analytic expressions of the energy 

bands are drawn by using a graph plotter attached to a digital computer.

A computer program is written to obtain the graphs of the analytic 

expressions fitted to the energy bands, and also to draw three additional 

graphs, which are used in conjunction with the method of determining 

the impact ionization threshold values. The first of these additional 

graphs draws the energy bands in an extended zone scheme together with 

the reflection of the conduction band about the conduction band minimum, 

and of the valence band about the valence band maximum. The other two 

additional graphs draw the envelopes of the conduction and valence bands 

respectively, using the appropriate equations for the envelopes as presented 

in the previous chapter. These additional graphs provide an approximate 

graphical technique of determining impact ionization threshold values, 

and is described in section 4.4. Some computational considerations required 

in using the multiple regression routine are presented in section 4.5, 

together with some considerations of the computer program written to draw 

the graphs of the energy bands.

4.2 Multiple Régression Routine

Multiple regression has several uses in statistics, of which one 

that is widely used is as a method of fitting analytic expressions to
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sets of data points. The method employed expresses a dependent

variable, Y, as a linear combination of a number of linearly independent

variables, x^ (i=l to n), which are thought to influence the behaviour

of Y. This gives an approximation to Y given by the equation
n

0 = b + Z b. X. 4.2.1Y o . - 1 1  1=1

where Y is the estimate of the dependent variable, and the b^ are 

the regression coefficients. These coefficients are estimated by 

minimizing the expression

m 4.2.2

where the sum extends over all the observations, or data points, of 

the dependent variable. The estimate of the regression coefficients 

are just the least squares estimates.

When this method is applied to curve fitting, the analytic 

expression of the curve being fitted is required to be in the form of 

equation 4.2.1. This is achieved if the analytic expression is naturally 

of that form, or if it is in a form which can be reduced to that of

4.2.1 by transformations. Thus, if the analytic expression of the curve 

is a polynomial given by

n
y = b + Z b .  z^ 4.2.3

i=l 1
then the transformations x^ = z^ (i=l to n) are performed to give the 

regression equation identical to 4.2.1. Similarly, if the analytic 

expression of the curve is an :even Fourier series given by
n

y = b + Z b. cos(iiTz) 4.2.4
° i=i ^

then the transformations x^ = cos(.i7Tz) are performed to give the required 

'■ form of equation 4.2.1.
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Before the multiple regression calculations are performed, 

various preliminary statistical calculations have to be performed.

Let it be assumed that there are n independent variables, or terms 

allowed in the analytic expression of the curve, and let there be p 

dependent variables, or energy bands, which are being considered. For 

each variable let there be m observations, that is distinct points 

within the first Brillouin zone at which energy values are calculated

on each energy band being considered. Then, using the notation that
. TH . THx^j is the j observation (of m) of the i variable (of n + p), the

preliminary statistical calculations can be performed.

The first statistical quantity calculated is the sample mean,

x^, of each variable x^, and is given by the equation
1 m

X. = —  E X.. (i = 1 to n + p) 4.2.5
^ ”  j=i

2The sample variance, S^, of each variable measuring the dispersion 

of the observations about the mean is then calculated by

2 1 ™S. = — :r E (x.. - x.)2 (i = 1 to n + p) 4.2.61 m-1 ij j

from which the sample standard deviation, S^, of each variable is

given. The next quantity calculated is the matrix of the sums of 

squares and cross products about the mean. This matrix is given by

A = fa..1 whereL ijj
m

a.. = E (x “x.)(x. -X.) (i,j = 1 to n + p) 4.2.7
^1 ^ ^ Jk J

where the diagonal elements, a^^, of the matrix contain the sums of 

squares of the observations corresponding to the variable x^, and the 

off-diagonal elements, a^^, contain the cross products between the 

variables x^ and x^, summed over the observations.

From this cross products matrix, the covariance matrix is calculated.



— 62 —

for which an element, c^j, gives a measure of the coherence between

the variables x. and x . When i = j the covariance becomes the variance 1 J
of the variable x^, and the matrix is given by c = [c^^] where

o^j = a_j/(m-l) (i,j = 1 to n + p) . 4.2.8

The covariance between two variables can be related to the standard 

deviations of those two variables by the inequality

- S.S. 3 c.. < S.S. 4.2.91 J iJ 1 J

By dividing c.. by S.S. the covariance is transformed into the unit1 J
quantity known as the correlation coefficient of the variables x. and 

Xj. This coefficient must have a value in the range [-1, +l] , and 

is insensitive to the scales of measurement of the variables. The 

correlation coefficients can be interpreted as being a measure of the 

strength of the linear relationship between the two variables, and is 

given by R *= where

Ç.. a,,
r. . = = ■; (i,j = 1 to n + p) 4.2.10ij S. S. /a. . a. .1 J 11 Jj

The last preliminary statistical calculation to be performed is 

a simple regression of every variable, x^, onto every other variable,

Xj, for which a corresponding simple regression coefficient matrix is 

given by G = where

gij = (i;j = 1 to n + p) 4.2.11

This gives the matrix of simple regression coefficients of rows on 

columns, for which there is a similar matrix of 'simple regression 

coefficients of columns on rows which is given by H = [h^^J where

h^j = (i,j = 1 to n + p) 4.2.12
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The matrix H is just the transpose of the matrix G, since it is 

seen from 4.2.7 that the matrix A is symmetric. These calculations 

form the basis of the multiple regression method, from which the 

multiple regression coefficients are calculated in a manner similar 

to that described by Efroymson ^6].

This method considers one dependent variable at a time, and the 

calculation of the regression coefficients is performed by a stepwise 

procedure in which one independent variable at a time is either rejected 

from or accepted to the regression equation. At any step in this 

procedure, to determine whether an independent variable is rejected 

from or accepted to the regression equation, a vector is calculated 

from the equation

Vi = d^^d^^/d^^ (i = 1 to n) 4.2.13

where £ is the subscript of the dependent variable. The matrix 

D = C^ijl the correlation matrix whose rows and columns correspond 

to the independent variables included in the regression equation by all 

previous steps of the procedure. The vector, V, contains the change in 

the cross products between all the independent variables, x^, and the 

dependent variable, x^, being considered. A value is negative if 

the variable x^ is in the regression equation and positive if the 

variable is not in the regression equation.

The procedure first seeks to reject a variable, x^, from the regression 

equation, which is done if the corresponding value of V. is negative and 

sufficiently small in modulus. Only if a variable is not rejected does 

the procedure seek to accept a variable x^ to the regression equation, 

which is done if the corresponding value of is positive and sufficiently 

large. That is, a variable rejected from the regression equation causes 

the least increase in the variance, while a variable accepted to the
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regression equation causes the greatest decrease in the variance.

The measure by which the values of for the rejection or 

acceptance of a variable in the regression are considered to be 

sufficiently small or large is known as the F-distribution. This 

distribution, as used in multiple regression, is a measure of the ratio 

of the variances of two different regression equations, or a measure 

of the change in variance between two different regression equations.

The F-distribution is a basic statistical quantity (see for example,

G.B. Wetherill, 'Elementary Statistical Methods', pp 150-152.[s?]).

Two different values of the F-distribution are used, one as a level 

for rejecting a variable from the regression equation which has an 

insignificant effect on the regression, and the other as a level for 

accepting a variable to the regression equation which has a significant 

effect on the regression. If these two values are denoted by F^ and 

F^ respectively, then variables are rejected from or accepted to the 

regression equation when |v\| < F^ or > F^ respectively, where the 
are given by 4.2.13.'

When no independent variables are rejected from or accepted to 

the regression equation by the above procedure, the current regression 

equation gives the best approximation to the observations for the given 

values of the F-distribution. The stepwise procedure is terminated at 

this stage, and the regression coefficients are then calculated from 

the equation

bi = (i = 1 to k) 4.2.14

where k is the number of independent variables included in the

regression equation, excluding the regression constant. The regression

constant is then calculated from the equation
_ k _

b = X  - E b. X. 4.2.15o £ . - 1 11=1



- 65 -

and hence the estimated value of the dependent variable, x^, 

is given, for any values of the independent variables, by 

substituting the values of b^, as given by equations 4.2.14 and 

4.2.15, into equation 4.2.1.

Once the regression coefficients are determined, other statistical 

quantities can be calculated, most of which are not required for the 

purposes of curve-fitting. The quantities of importance in curve- 

fitting include the residual mean square error given by

the regression estimates at each observation given by
k

x „ . = b + Z b. X . . (j = 1 to m) 4.2.17£j o 1 ij

and the residual error at each observation given by

e. = X.. - X.. (j = 1 to m) 4.2,18J ^3

where £ is the subscript of the dependent variable. The residual 

error gives a guide to the accuracy of the regression equation, and 

is kept as small as possible.

When the regression equation corresponding to one dependent 

variable has been determined, together with all the associated 

calculations, the multiple regression procedure then considers the 

next dependent variable. Since all the preliminary calculations 

are performed before the start of the multiple regression procedure, 

they need not be repeated, and the procedure is repeated starting 

from equation 4.2.13. When all dependent variables have been considered 

and their corresponding regression equations determined, the procedure 

is terminated.

4.3 Investigation of the type of Analytic Expressions Considered

There are two possible analytic expressions which are considered, 

for use in the multiple regression routine, to be fitted to the energy
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bands; a polynomial consisting of even powers only, and a Fourier 

series consisting of cosine terms only. Thus the polynomial is 

given by
m 2n

y = a + E a x  ( O ^ x ^ l )  4.3.1
° n=l ^

and the Fourier series is given by

m p -j
y = a + Z a cos (0 ^ x ^ 1) 4.3.2

o n=i n L ^ J

where £ is half the period of the curve being considered, which 

for realistic energy bands can take the values £ = 1 or £ = 2.

In the curve-fitting routine, it is required to approximate to the 

true curve as accurately as possible, and also to approximate to the 

first and second derivatives of the true curve accurately. This is 

done in order to obtain accurate threshold values as calculated by 

the Envelope Method presented in the previous chapter, since the 

Envelope Method makes use of the derivatives of the energy bands.

The accuracy of the two analytic expressions considered, given 

by 4.3.1 and 4.3.2, is investigated before deciding which one to use. 

This is done by comparing the values, first and second derivatives 

of the approximating equations with those of the curve given by

y = X sin(nïïx) ( 0 < x ^ l )  4.3.3

The first case considered is with n = 1 in 4.3.3, which corresponds 

to simple forms of energy bands having at most two extrema values 

and one point of inflexion. In order to fit the analytic expressions 

given by 4.3.1 and by 4.3.2 (with £=2) to the function given by

4.3.3, eleven equi-spaced data points are taken for use in the multiple 

regression routine described in the previous section.

The graphs of the resulting regression equations are shown in 

figure 4.1(a), and both the graphs of the analytic expressions are
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seen to be in excellent agreement with the true curve. The graphs 

of the first and second derivatives of the regression equations and 

the true function are shown in figures 4.1(b) and 4.1(c) respectively, 

as good agreement is also required in these quantities. Indeed, it 

is seen that the agreement between both analytic expressions and the 

true function is very good. Thus, for energy bands having this sort 

of shape, either of the two analytic expressions considered will 

approximate accurately the true energy band, its first and second 

derivatives.

The next case to consider is with n = 2 in equation 4.3.3, 

which corresponds to a more realistic

Figure 4.1(a) Plot of curves fitted to the function
f (x) = X sin(ïïx), with 11 equi-spaced points between 0 
and 1.
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Figure 4.1(b) Plot of first derivatives of curves fitted
to the function f (x) = x sin(iTx), with 11 equi-spaced points 
between 0 and 1.

Figure 4.1(c) Plot of second derivatives of curves fitted
to the function f(x) = x sin(ïïx), with 11 equi-spaced points 
between 0 and 1.
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shape for an energy band, having three extrema values and at 

least two points of inflexion. Again, eleven equi-spaced data 

points are used in order to fit the analytic expressions given by

4,3.1 and 4,3,2 (again with & = 2) to the function given by 4,3,3,

The graphs of the resulting regression equations are drawn, together 

with that of the true function, and also the graphs of the first and 

second derivatives, corresponding to all three analytic expressions, 

are drawn. These are shown in figures 4.2(a), (b) and (c) respectively, 

and it is seen that the results for the first two graphs are similar 

to those of the first case; that is excellent agreement is obtained 

between the values of the functions, and very good agreement between 

the corresponding first derivatives.

However, for the second derivatives, there is excellent agreement 

between the Fourier series and the true function, but the agreement with 

the polynomial is not particularly good. While it is in good agreement 

over the smaller values in the

Figure 4.2(a) Plot of curves fitted to the function
f(x) = X sin(2ïïx), with 11 equi-spaced points between 0 and 
1,
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Figure 4.2(b) Plot of first derivatives of curves fitted to
the function f (x) = x sin(2TTx), with 11 equi-spaced points 
between 0 and 1.

Figure 4.2(c) Plot of second derivatives of curves fitted 
to the function f(x) = x sin(2ïïx), with 11 equi-spaced points 
between 0 and 1.
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range of values of the graph, it is a bad approximation at the 

higher values in the range. This seems to suggest that the 

polynomial expression is not very good to use as the approximation 

to the energy bands, but the Fourier series is an excellent approxi­

mation.

With only eleven data points being used, the multiple regression 

routine allows at most nine terms to be taken in the analytic expression; 

the constant, a^, and terms up to and including m = 8 in equations

4.3.1 and 4.3.2. The accuracy of the polynomial expression may 

increase if more data points are taken for use in the multiple 

regression routine, and hence the number of terms allowed to be taken 

in the analytic expressions. By taking 21 data points for use in the 

multiple regression routine, the number of terms allowed in the analytic 

expressions is at most 19. However, further restrictions in the 

multiple regression routine allow at most 16 terms to be taken in the 

Fourier series, and so the same number of terms is also taken in the 

polynomial expansion.

The third case considered is thus that with n = 2 in equation

4.3.3, as in the previous case, but with 21 equi-spaced data points 

used in the multiple regression routine. The procedure followed in 

the first two cases is thus repeated for this case, and the resulting 

graphs of function values, first and second derivatives are drawn for 

all three analytic expressions, and are shown in figures 4.3(a), (b) 

and (c) respectively. Once more, the curves corresponding to the 

Fourier series are in excellent agreement with those corresponding 

to the true function.

The curves corresponding to the polynomial
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Figure 4.3(a) Plot of curves fitted to the function
f(x) = X sin(27Tx), with 21 equi-spaced points between 
0 and 1,

Figure 4.3(b) Plot of first derivatives of curves fitted 
to the function f (x) = x sin(2TTx), with 21 equi-spaced 
points between 0 and 1.
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Figure 4.3(c) Plot of second derivatives of curves fitted
to the function f(x) = x sin(2ïïx), with 21 equi-spaced points 
between 0 and 1.

expression however, are in worse agreement with those corresponding 

to the true function than in the previous case when only 11 data 

points were used. The approximation is still good over the smaller 

values in the range of values of the graphs, but is not at all good 

at the higher values in the range. Thus, by taking more data points, 

and hence more terms in the polynomial expansion than were taken 

previously, the resulting approximation to the true function is worse, 

not better, than before .

Hence, from all three cases in which the Fourier series of 4.3.2 

(with & = 2) is used to approximate the function given by 4.3.3, 

excellent agreement is achieved in the values of the function, first 

and second derivatives. The polynomial expression only gives excellent
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agreement in the values of the function, first and second derivatives

for the first case, and for each successive case the polynomial

approximation becomes worse. Thus, from these results, it is seen

that the type of analytic expression to use in approximating the

energy bands is a Fourier series, and the form given by equation

4.3.2 will be used in the multiple regression routine.

4.4 Graphical Method of Approximating the Impact Ionization 
Threshold Values

When analytic expressions are used to approximate the energy 

bands using a set of discrete data points, errors are certain to 

occur. While these errors can be minimized ^  the data point, the 

errors at intermediate points cannot be guaranteed to be as small.

There is a possibility that, while good agreement is achieved at 

the data points, large variations may occur between the data points.

To ensure this sort of situation does not remain unnoticed, a graph 

of the energy bands, together with all the data points, is drawn 

using a graph plotter attached to a digital computer. If an analytic 

expression is seen to draw an energy band which is not in agreement 

with the energy band produced by the calculations of the author whose 

work is being reproduced, then the analytic expression is rejected 

and a new one calculated.

Once the analytic expressions approximating the energy bands 

are obtained to sufficient accuracy, the calculation of the impact 

ionization threshold positions can be performed. The computer program 

written to calculate the impact ionization threshold values, as 

described briefly in the previous chapter, requires as input data, an 

approximation to the initial k coordinates of the hot and promoted 

electrons, or holes. These positions are provided by a graphical 

technique, for which a computer program is written to draw the required
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graphs. This program also includes the procedure for drawing 

the energy bands and data points which show whether the analytic 

expressions being used are sufficiently accurate.

The graphical technique requires three graphs to be drawn, 

two of which are the envelope patterns of the conduction and valence 

bands. The third graph is of the energy bands in an extended zone 

scheme, extending over two complete zones, and additionally, a second 

set of curves which do not occur in practice. These additional curves 

correspond to the reflection of the conduction bands about the conduction 

band minimum, and to the reflection of the valence bands about the 

valence band maximum. These curves are the equivalent constructions, 

in one dimension, to the reflected paraboloid constructed by Franz 

[lo], and are constructed in a similar manner.

If a hot electron is initially at a point H in a conduction band

with coordinates (k^, E^), then the lowest possible position that the

envelope, of the lowest lying conduction band, can take is given by

displacing the point on the envelope corresponding to the conduction

band minimum by the vector where M is the position of the conduction

band minimum, from the conduction band minimum. If the coordinates of

the conduction band minimum are E^), then for every point H in a

conduction band, there exists a point A, displaced from M by the vector

HM, with coordinates (2k -k, , 2E -E, ) on which the minimum of them h m h
envelope is centred. The curve traced by all such points is the reflection 

of the corresponding conduction band about the conduction band minimum.

The same procedure applies to a hot hole initially in a valence band, 

for which the curves are the reflections of the corresponding valence 

bands about the valence band maximum.

The method of determining approximate positions of impact ionization 

thresholds, as described by Franz, can now be employed. This method
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involves moving the minimum of the envelope around the reflected 

conduction bands until a point on the envelope just touches a point 

on a valence band. When this situation arises, the initial position 

of the hot electron corresponds to a threshold position. The k 

coordinates of the envelope minimum and the point at which the envelope 

and valence band just touch are then read off the graph, from which 

the initial k coordinates of the hot and promoted electrons are 
determined. Once this is done, the same procedure is repeated for 

another threshold situation, and is repeated until all possible thres­

hold situations have been determined. When all such threshold positions 

have been determined, the values are used as input data to the computer 

program which then calculates the positions more accurately.

4.5 Some Computational Considerations

A computer program to perform the multiple regression calculations 

described in section 4.2 is provided as a standard program by I.C.L ,

[58^ for use on their Systems 4 computers, and is therefore used in the 

present work. The program is written in a manner in which the operations 

required to be performed are specified by submitting the appropriate 

data input. In addition to the basic multiple regression calculations, 

other connected calculations are included, if specified, and the amount 

of results produced is varied depending upon the data input. The two 

main parts of the data input are the observations of the dependent 

variables and the independent variables, and the required regression 

equations.

The independent variable is the coordinate of the point in the 

first Brillouin zone at which the energy values are calculated, and 

is scaled to be the proportional distance from the centre of the zone 

to the edge of the zone. That is, all values of the independent variable 

lie between 0 and 1, and are chosen to be equi-spaced along the chosen
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symmetry direction in k-space. The dependent variables are the 

energy values at these points in k-space corresponding to the 

energy bands being investigated. The regression equation is supplied 

as data by means of a series of transformations of the independent 

variable. The number of terms allowed in the regression equation is 

limited by the number of observations, but is limited even more by 

the number of transformations the computer program allows.

For the Fourier series given by 4.3.2, two transformations for 

each term are required to obtain the required equation. The first 

transformation multiplies the value of the independent variable, x, 

by the appropriate constant to obtain the new variable

^i ” (i = 1 to n) 4.5.1

where £ takes the value of either 1 or 2. The cosine of this

transformed variable is then taken as the second transformation

to obtain another new variable

= cos(u^) (i = 1 to n) 4.5.2.

from which the regression equation is given by
n

y = b + Z b . Z .
° i=i 1 I

The number of terms allowed in the regression equation, due to the 

restriction on the number of transformations allowed, is 16, that 

is the regression constant plus 15 cosine terms.

The two different values of £ which are used in 4.5.1, provide 

the choice of three different series which can be used to approximate 

a given energy band. If the energy band has a minimum at the zone 

boundary, then the series with £ = 1 is chosen to ensure that the 

minimum is reproduced, and all values if i between 1 and 15 are 

included. When the gradient of the energy band at the zone edge is
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not zero, then one of the series with £ = 2 is chosen. The two 

possible series correspond to the choice of the values of i 

which are taken, one series having all values of i between 1 and 

15, and the other having only odd values of i between 1 and 29.

Once the regression equation has been calculated by the computer 

program, the regression coefficients and the residual errors at each 

observation are printed out. By studying the residual errors, a 

guide to the expected accuracy is obtained, and a regression equation 

is accepted as being sufficiently accurate at this stage of the 

calculations if all the residual errors are less than about O.OleV. 

Further details of the multiple regression procedure are given in 

Chapter 12 of reference [58], which includes some of the options 

available for the computer program. All other options, including 

the permissible transformations, are given in Chapter 2 of reference 

[58^ , and in Chapter 1 is described how to run the program.

A computer program is written to draw the energy bands and the 

other curves related to the calculation of the approximate positions 

of impact ionization thresholds. This program requires as input data, 

all the observations used in the multiple regression program, together 

with the regression coefficients of the Fourier series corresponding 

to all the energy bands being considered. Options are available to 

specify which graphs are to be drawn by the program. Further computa­

tional details are given in Chapter 7.



- 79 -

5. THE COULOMB INTERACTION MATRIX ELEMENTS

5.1 Introduction

Associated with every collision process in semiconductors, 

there is a probability of that collision occurring. One of the 

factors occurring in the probability is the matrix element governed 

by the states of the particles involved in the collision. For impact 

ionization collisions, both by electrons and by holes, the matrix 

element is that of the coulomb interaction between the initial and 

final states involved. For the impact ionization thresholds determined 

by the method presented in Chapter 3, the sizes of the corresponding 

matrix elements are calculated by the method presented here.

The method used to perform these calculations comes from the 

theory by Beattie and Landsberg fl7j which has been widely used 

[34-37]. In the analysis of the matrix element, which is based on 

a one-electron approximation to the wave-function, a quadruple sum 

over reciprocal lattice vectors is obtained. By the reasons given by 

Beattie and Landsberg, this quadruple sum can be reduced to the product 

of two double sums, and Umklapp processes can be neglected. The 

analysis of this method is presented in the next section, together with 

a discussion of the conclusions reached by Beattie and Landsberg 

concerning the importance of Umklapp processes. Some computational 

considerations are presented in section 5.3, which include the simplifi­

cation made by Beattie and Landsberg.

In Chapter 2, the analysis of the method of calculating the 

energy eigenvalues and corresponding eigenvectors, of any cubic semi­

conductor, at any point within the first Brillouin zone, was presented. 

This analysis included the recovery of the original expansion of the 

eigenvectors from just the basis expansion, which was done through the
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perturbation theory developed by Lbwdin ^54]. The differences in 

using the original full expansion of the eigenvectors and the basis 

expansion is investigated in a pilot study. The results of this 

pilot study are presented in section 5.4, giving the comparisons 

between the two expansions used. The computational time required 

for each expansion is also investigated, and it is shown that the 

original expansion of the eigenvectors can be neglected. On the 

results of this pilot study, the matrix elements associated with 

all impact ionization thresholds will be calculated by using the 

basis expansion of the eigenvectors only.

5.2 Analysis of the Coulomb Interaction Matrix Elements

The method used in the present work to determine the size of the 

matrix element corresponding to an impact ionization threshold transi­

tion, is that developed by Beattie and Landsberg [17], and later 

reiterated by Landsberg [35]. The theory is based on the states of 

the crystal involved in the transition being described by orthonormal 

one-electron functions. Only the electrons which partake in the 

transition are assumed to have their states altered, while all other 

electron states are assumed to be unaffected. The perturbation operator, 

U, can then have a non-zero matrix element only for the term involving 

the coulomb interation. That is,

where is the screening radius, e is the dielectric constant 

(equal to the square of the refractive index), and and are the 

initial positions (in real space) of the electrons involved in the 

collision.

The matrix element, after summation over spin variables, can
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then be written as

"if '2^*21 - *2(''l)4'I('2)Al2}X

X "('l''2)̂3('l)*4('2) " 1 2
“ ^1 ^21 ~ ^2 ^12 5.2.2,

where i|Ĵ (r) and are the states of the hot and promoted

electrons respectively before the collision, ^^(r) and are the

states of the hot and promoted electrons respectively after the 

collision. Here, and A^^ the spin variables, the possible

assignments for which are given in Table 5.1, using the convention 

of Landsberg [35], that the initial state of the hot electron always 

refers to "spin up".

Table 5.1 

Spin assignments

Initial States 
1 2

Final States 
3 4

^21 ^12 %if

i  4 

t 4 

t other

+ t 

t + 

+ t 

assignments

1 1 

1 0 

0 1 

0 0

Like spins

Ml
Unlike
spins

0

If the electron states are represented by a sum of plane-waves, 

name ly

-IW (r) = V : Z a i(k+Km).r
m n.m n = 1,2,3,4. 5.2.3

where is a reciprocal lattice vector and k is a reciprocal lattice 

vector within the first Brillouin zone, then the first integral of 

the matrix element given by 5.2.2. can be written
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“ l = 4 . i  Z a;_. e-(k2+Kj).'2 | X

^3.& Z ei(k4+Km).'2(d ^ 5.2.4

Performing a fourier analysis on the coulomb potential, that is

e-̂ r 4̂  j. ê k.r
" k k^+XZ

substituting into 5.2.4 and using the orthogonality property of 

plane-waves, gives
* *2 a .a .a_ „a

i . L . m  Ik
^>3 . 6(k,+k_-k,-k6+K.+K,-K,-K_) 5.2.5l-ka+Ki'Kj 1 2 3 4 . j i m

Thus the matrix element is determined from a quadruple sum over 

reciprocal lattice vectors and involving the coefficients of the plane- 

wave representations of the electron states involved in the collision. 

The terms in this sum can be rearranged in the fashion used by Beattie 

and Landsberg, and written as the sum of three summations, namely

M = M, + + M, 5.2.61 la lb Ic

where

for “ la Ki ' Kj = K m

for “ lb Ki ' K j = + K >  Ki

for ^Ic *  K& + Ki

5.2.7
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Also, introducing the notation

^ 3  “ I  *l,i *3,i

2̂.4 “ I  *2,i*4,i

5.2.8

it is seen that the first sum of 5.2.6, can be written

“ la = I r  «(ki+ky-k^-k^) . 5.2.9

A completely similar argument can be applied to the second integral, 

of the matrix element, giving equations similar to 5.2.5, 5.2.8 

and 5.2.9, namely

“ 2 =

*
4uez *1.1 *2.i *3.& *4.m

5 .2.10

^14 = ^ 4 , 1  *4,1 1

"23 “ I  *2,1 *3,1

2 F_ ,F.

5.2.11

Ikl-k^lz+X* ' ^(ki+kz-kg-k^) 5.2.12

where the terms in the sum are rearranged in exactly the same 

manner as those of M^.

An approximation to the quadruple sum of 5.2.5 is thus obtained, 

provided it can be shown that the sums and are negligible. 

Beattie and Landsberg [17] give reasons why these sums can be neglected, 

and Landsberg [35] gives the same reasons. The sum can be neglected 

because the denominator of 5.2.5 is then of the form where

L is a non-zero reciprocal lattice vector, and is thus smaller than 

Mia several powers of 10. The sum M^^, which corresponds to Umklapp
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processes, can be neglected because of the same reason, and also

because, in direct gap semiconductors, the initial and final states

involved are pushed far from the band edge, and so are weighted with

very small Fermi-Dirac probabilities.

The assumptions concerning the sums M-, and M_ are made withoutlb Ic
concerning the numerator of 5.2,5, namely the product of the plane-wave

coefficients a. .(i = 1,2,3,4). If the coefficients corresponding to ^ » J
the terms occurring in the sum are smaller than those corresponding

to the terms occurring in the sums and then the latter two

sums may not be negligible. In this case, the sums and may be

of comparable sizes with the sum or may even be larger. Also,

there are many more terms in the sums M_, and M_ than there are in thelb Ic
sum and even if the coefficients corresponding to the three sums

are all of comparable size, then again the sums and may be of 

comparable sizes with the sum It is therefore erroneous to neglect

these two sums purely on the grounds of a large denominator in all the 

terms.

The assumption that very small Fermi-Dirac probabilities occur in 

the sum may be true for direct gap semiconductors with a parabolic 

conduction band, but is not true for indirect gap semiconductors, or 

for some direct gap semiconductors where the detailed band structure 

is taken into consideration. In indirect gap semiconductors, the lowest 

impact ionization threshold usually corresponds to an Umklapp process, 

as can be seen from the results of Anderson and Crowell [32], and as 

will be seen from the results presented later in this work. Also, 

Umklapp processes are often interlaced with normal processes when the 

threshold energies are ordered in ascending order of magnitude, even in 

direct gap semiconductors. It is therefore erroneous to neglect the
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sum and also Umklapp processes in general, on the grounds of

being weighted with very small Fermi-Dirac probabilities. The most 

important threshold energies are the lowest ones, and possibly those, 

if any, which are close to the lowest threshold energy, irrespective 

of whether they are Umklapp or normal processes.

For these reasons, the sizes of the matrix elements as calculated 

from 5.2.5. and 5.2.9 are investigated in a pilot study, the results 

of which are presented in section 5.4. Consequently, the size of the 

matrix element is calculated, for all impact ionization thresholds 

determined, by both the equations, 5.2.5 and 5.2.9. A continual 

comparison between the sizes of the matrix element, as calculated by 

these two equation, is thus obtained.

5.3 Some Computational Considerations

In the analysis of the pseudopotential method presented in 

Chapter 2, the one-electron approximation to the wave-function was made. 

That is, the wave-function, ^^(r), to an electron state with an energy 

E is represented by a sum of plane-waves.n

ilJ (r) = V’ V2 Z an n,mm '

The pseudopotential method requires a system of secular equations to 

be solved, for which the energies, E^, are given by the eigenvalues of 

the resulting secular determinant. The corresponding eigenvectors 

are then the coefficients of the plane-waves used in the approximation 

to the wave-function. The same one-electron approximation to the wave- 

function is also made in the analysis of the matrix element of the 

coulomb interaction presented in the previous section. The coefficients, 

appearing in the summations given by 5.2.5, 5.2.8 and 5.2.9 are 

thus the eigenvectors, corresponding to the appropriate eigenvalues.
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as calculated by the pseudopotential method.

However, the analysis of Chapter 2 gives two possible expansions 

of the wave-functions which are used in calculating the size of the 

matrix element. The first is just the expansion of eigenvectors 

obtained from the basis matrix; which are the coefficients of the 

plane-waves treated exactly in the pseudopotential method. The second 

is the original expansion of eigenvectors obtained by applying the 

perturbation theory developed by Lbwdin as presented in section 2.4; 

which are the coefficients of the plane-waves treated both exactly and 

through the perturbation theory.

With many more plane-waves involved in the original expansion 

than in the basis expansion of the wave-function, the corresponding 

calculation of the matrix element of the coulomb interaction is a much 

more lengthy process. The improved accuracy obtained by using the 

original expansion is therefore investigated, for a few impact ioniza­

tion thresholds, in a pilot study. The results of this pilot study 

are presented in the next section, which show that the increased accuracy 

is not significant, and the resulting saving of computer time is vast.

In the computer program written to calculate the size of the matrix 

element of the coulomb interaction, only the first integral of 5.2.2. is 

considered, and the calculation is performed in the two ways as given 

by 5.2.5 and 5.2.9. These values are printed out, for comparison, together 

with the values of and F^^ as given by equation 5.2.8. The electron 

states involved in some transitions will be degenerate, so providing 

more than one matrix element for that transition. When one, or more, 

of the electron states involved is degenerate, all possible combinations 

of individual states are investigated. This gives a range of sizes of 

the matrix element of the coulomb interaction, corresponding to the
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different states in which the electrons lie. Further computational 

details are given in Chapter 7.

5.4 Results of the Pilot Study

To obtain the size of the matrix element of the coulomb inter­

action corresponding to an impact ionization threshold, the plane- 

wave coefficients forming the approximation to the wave-functions of 

the electron states involved are first calculated by the method described 

in Chapter 2. The original expansion of the eigenvectors is obtained, 

from which the size of the matrix element is calculated by the two 

methods described previously. Also, the coefficients corresponding 

to the basis expansion of the eigenvectors are extracted from the 

original expansion, and the size of the matrix element is calculated 

by the same two methods as before. Since the original expansion of 

eigenvectors is automatically normalized, the basis expansion, there­

fore, is not, but is normalized manually. The sizes of the matrix 

elements calculated are presented in Table 5.2, indicating the type 

of threshold investigated.

It is seen that the sizes of the matrix element corresponding 

to the threshold in Silicon, as calculated by 5.2.5, are in agreement 

to the same order of magnitude, while the sizes of the matrix elements 

corresponding to the thresholds in Germanium, as calculated by 5.2.5, 

are in excellent agreement. The threshold in Silicon is an Umklapp 

process, for which the calculation of the size of the matrix element 

by 5.2.9 gives a value of zero. This clearly is not in agreement 

with the finite size of the matrix element given by 5.2.5 which is 

of the same order of magnitude as the sizes of the matrix elements 

for the thresholds in Germanium. Also, this matrix element corresponds 

to the lowest impact ionization threshold in Silicon, and is therefore
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weighted with a Fermi-Dirac probability which is larger than for 

any other threshold.

In the calculations of Germanium, the first threshold investi­

gated is the lowest threshold corresponding to a normal process.

It is seen that the size of the matrix element given by 5.2.9 is not 

in agreement with that given by 5.2.5, both in the original expansion 

and in the basis expansion calculations. However, in the calculations 

of the second threshold in Germainium, the sizes of the matrix element 

given by 5.2.9 are in excellent agreement with those given by 5.2.5. 

For all the results, it is seen that the agreement of the original 

expansion calculations with the basis expansion calculations is 

excellent.

The calculations of this pilot study are performed on an I.C.L. 

System 4-50 and 4-70 computer. For the matrix element coresponding 

to the threshold in Silicon, the time taken for the basis expansion 

calculations is between 2 and 3 minutes on a 4-50, while the time 

taken for the original expansion calculations is about 14 hours on a 

4-50 plus about 7 hours on a 4-70, which is the equivalent to nearly 

70 hours on a 4-50. The computer program written to perform these 

calculations, however, is inefficient, and is slightly modified to 

improve the efficiency as much as possible. Even with the improved 

efficiency obtained, the times taken for the two basis expansion 

calculations and the two original expansion calculations of Germanium 

are about 1 minute, 3 minutes, 37 hours and 45 hours respectively on 

a 4-50. These differences in computer time are not unexpected, as 

the number of terms summed by 5.2.5 is of the order of (20)^ for the 

basis expansion calculations, and (110)^ for the original expansion 

calculations.
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Clearly, with the accuracy obtained by using the basis 

expansion, together with the vast saving in computer time, the 

basis expansion of the eigenvectors only need be considered.

Therefore, on the basis of this pilot study, the sizes of the matrix 

element, for all impact ionization thresholds determined, will be 

calculated using the basis expansion of the eigenvectors. Also, it is 

seen that the assumptions made by Beattie and Landsberg in deriving 

the equation 5.2.9 are not necessarily valid. It is seen that the 

contribution to the size of the matrix element, M, of the two sums

and is not negligible for the first two thresholds investigated, 

but is in fact dominant. Consequently, the sizes of the matrix 

element, for all thresholds determined, will be calculated by using 

the equation 5.2.5, as the values given by 5.2.9 are unreliable.

However, calculations by equation 5.2.9 are also performed to give 

a continual comparison of the sizes of the matrix elements as calculated 

by the two equations.
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6. THE INCREASE IN THE TRANSITION PROBABILITY JUST ABOVE 
THRESHOLD

6.1 Introduction

Another factor on which the probability of an impact ionization 

threshold depends, is the number of states which are able to partake 

in an ionization transition for a hot electron, or hole, just above 

the threshold energy. This factor determines the rate of increase of 

the transition probability as a hot electron increases its energy from 

that at threshold, to an energy just above the threshold energy. No 

detailed investigations into this factor have been performed, but Dexter

[ll] has stated that, if parabolic energy bands are assumed, then the 

transition probability increases quadratically with increasing energy 

just above threshold.

In the past, it was not known whether this factor proves signifi­

cant in the total probability of an impact ionization threshold transi­

tion. For example, if two different threshold situations have almost 

equal energies and almost equal matrix elements, then the threshold 

for which the rate of increase of the transition probability is the 

greater is more probable to occur than the other threshold. Since 

there is this uncertainty in the importance of this factor on the total 

probability, it is therefore investigated in the present work.

A simplified calculation of the rate of increase of the number of 

valence states able to partake in impact ionization transitions for a 

hot electron just above threshold is performed, the analysis of which is 

presented in the next section. These calculations are based upon the 

assumption that the energy bands are approximated by parabolae in the 

regions centred on the states involved in the impact ionization threshold 

transition. The parabolae are obtained from Taylor series expansions 

of the energy bands involved in the transition. A formula is thus obtained
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by which the number of valence states able to partake in impact 

ionization for a hot electron just above threshold can be calculated.

This formula is programmed for use on the digital computer, and 

used to obtain graphs of the excess energy above threshold versus the 

number of valence states able to partake in impact ionization. One 

graph is thus obtained for each impact ionization threshold, and is 

compared with the graphs corresponding to all the other thresholds.

Some computational considerations are presented in section 6.3, and 

the results of this investigation for silicon are presented in section 

6.4. From these results, it is seen that the rate of increase in the 

number of valence states able to partake in impact ionization does not 

vary greatly between thresholds. The small variation is thus considered 

to be insignificant when compared with the variation in the sizes of the 

matrix elements of the coulomb interaction. Since this factor in the 

total probability of a threshold transition is insignificant in silicon, 

it will not be calculated for the thresholds of the other semiconductors 

being investigated.

6.2 Analysis of the Number of States able to partake in Impact 
Ionization just above Threshold

Analytic expressions in the form of even Fourier series are used 

to represent the energy bands in the calculations of the impact ionization 

thresholds by the envelope method, as presented in Chapter 3. Once an 

impact ionization threshold position has been determined by this method, 

Taylor series expansions about each of the four states involved in the 

transition can be easily obtained by evaluating the coordinates of the 

states, and the respective first and second derivatives. Thus, for a 

hot electron initially in a state with wavevector-energy coordinates 

(k^,E^), the first and second derivatives, E^ and Ejj respectively, can 

be easily calculated from the appropriate Fourier series used to represent
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the energy band. The Taylor series expansion about the hot electron 

state, truncated after the quadratic term, is then given by

E.j^(k) = i  E;(k-k^)Z + E;(k-1^) + E^ 6.2.1

Similar Taylor series expansions are obtained for the final state 

of the hot electron, and the initial and final states of the promoted 

electron. Thus, if the coordinates, first and second derivatives of 

the final state of the hot electron are (k^,E^,E^,E^) respectively, 

and those of the initial and final states of the promoted electron are 

(k^,E^,E^,E^) and respectively, then the corresponding

Taylor series are given by

Efj^(k) = ^  E^(k-k^)Z + Ej(k-k^) + E^ 6.2.2

E. (k) = i  E"(k-k )Z + E'(k-k ) + E 6.2.3IV 2 V V V V V

Ef^(k) = i  E^Ck-kg): + E^Ck-k^) + 6.2.4

Now, in any transition which does not involve interactions with

phonons or photons, the energy and wavevector of the states involved 

must be conserved, that is

E, + E = E + E„ 6.2.5h V 1 2

kĵ  + k^ = ki + k2 6.2.6

Also, as was shown in the envelope method, the group velocities of 

three of the four states involved in the transition must be identical 

at threshold. Since the group velocity of an electron state is just 

the first derivative of the energy-wavevector curve, this gives

E' = E ’ = El 6.2.7V 1 2
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With the Taylor series approximations about the states 

involved in an impact ionization threshold transition given above, 

the equation for the double envelope, as presented in Chapter 3, 

becomes

Gnv(k) = [k+k^] -K) - 6.2.8

where K is given by

E^j^(i[k+k^] + K) = Ef^(|[k+kj^3 -K) 6.2.9

The double envelope given by 6.2.8 touches the valence band at the 

point (k^,E^); that is

E. (k ) - E (k ) = 0 IV V nv V

e: (k ) - E ’ (k ) = 0 IV V nv V

6 .2.10

By increasing the energy of the hot electron by a small amount,

ÔE, the position of the lower boundary of the double envelope is lowered

by the same amount. This causes the double envelope to intersect the 

valence band in two points, k^^ and k^g, which gives

= Civ(kv2) ' =nv0^v2^ = °

The states in the proportion of the valence band lying above the envelope, 

between the points k^^ and k^^ now able to partake in impact ioniza­

tion transitions. The number of states, N, involved is directly propor­

tional to the amount of wavevector space of the valence band lying above 

the envelope; that is

N = Ik _ - k _| 6.2.12' vl v 2 '

The value of Ik _ - k _|, and hence of the number of valence states ' vl v 2 '



- 95 -

able to partake in impact ionization, can be obtained in terms of 

the known parameters, (k, E, E ', E"), of the electron states involved 

at threshold, and the increase in energy, ÔE, above threshold of the 

hot electron.

When the initial hot electron energy is increased by the small 

amount ÔE, its initial position moves to the new state with coordinates 

(k^+ôk,E^+ôE) in the conduction band given by 6.2.1. The double envelope, 

given by equation 6.2.8, moves its position by the same amount, and its 

equation then becomes

E^^(k) = E^j^(-|[k+k^+6k] + K) + E^^(i[k+kj^+6k] -K) - E\^^k +6k) 6.2.13

where the relation between 6k and ÔE is determined from equation 6.2.1

and is given by

ÔE = E” 6k^ + E ’ 6k 6.2.142 h n

By using equation 6.2.9 with (k^+6k) in place of k^, K is eliminated 

from equation 6.2.13. Thus, differentiating equations 6v2.2 and 6.2.4, 

and substituting into the modified equation 6.2.9, gives

E'^(|{k+kj^+5k;i + K-k^) + E| = E% (i [k+k^+6k] -K-k^) + E^

But since E| = E^, this equation reduces to the explicit expression 

for K given;by

K =[k^E^ - k^E^ + i(k+kj^+6k) (E'̂  - E'p3/(E'^+E'p 6.2.15

Substituting this value of K into equation 6.2.13 gives

^k+l^+gk]E^ + k^E-’ - k,E% ^
y  (E ' l + E^) J

/[k+lc+6k] E"-k E"+k E" \
+ ^  ( E ' ^ E p  )  -  ^ih
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Using equations 6.2.1, 6.2.2 and 6.2.4 in the above equation, and 

invoking : the conservation of energy and wavevector and the equal 

group velocities as given by equations 6.2.5, 6.2.6 and 6.2.7, gives, 

after simplification

E"E"[k+6k-k ] 2
Gnv(k) = 2(E%+E%) + E;[k+«k-k;|+ E^- -  E^ 6k' - E^êk 6.2.16

Now, to determine the number of valence states lying above this 

envelope, the values of k^^ and k^^ used in equation 6.2.12 are 

determined from equation 6.2.11. Thus, employing equations 6.2.3 

and 6.2.16 in equation 6.2.11, an equation is obtained which, after 

simplification, can be written in the form of a quadratic equation 

in (k-k^), which has the form

where

a(k-k^) + 2b(k-k^) + c

J.M gM

^ EV + E" " ^v

=  0 6.2.17

b =
E'^ E^ 6k 
E'̂  + E^

and c =
E" E"
.  ̂ _ p'l
EV + E" \1 f 2

6k^ + 2(E|-E^) 6k

Equation 6.2.17 has the two solutions given by

(k-k^) = -

where a, b and c are given by equations 6.2.18.

These two solutions correspond to the values k  ̂ and k ^ ,vl v2
therefore the difference between the two solutions Ik _-k _| is' vl v 2 '
given by
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Ml 6.2.19

Thus, by substituting the values of a, b and c, given by equations 

6.2.18, into the equation 6.2.19, after a little algebra and 

simplification, and by using equation 6.2.14, gives the equation

k -k 2 _
8(E^+E^)

vl v2' [EÎ[E^“E^(E'^+E^)]
[E'̂ Ê  (EJ|+E^)“EJ^E^(E'VE^)] 

e“J;[e !̂e ^“E^(e '̂ +e ”)1 ÔE “

E"E”E"E' 1 2 V h + E!E{|[E']|E'̂ “E” (E”+E^)] 1_ 6k 6.2.20

But, by equation 6.2.14, 6k can be eliminated from equation 6.2.20,

since

6k =
-EZ Î [(E/): + 2E" 6e ]

6.2.21

Taking the root which gives the smaller increase in k for a 

corresponding increase in E, that is taking the positive square 

root sign if E^ is positive, and the negative square root sign 

if E^ is negative, and substituting into equation 6.2.20, gives

k -k 2 _
8(E’̂+E'p (E{|+Ep“Ej|E^(E”+Ep]

vl~%2‘ " [E”E^“Ê (E'̂ +Ê )]| EĴ CE'̂ Ê “Ê (̂E'̂ +Ê )3
(

sign (E^)

~ K ~
[(E')Z+2E" 6e] 6.2.22

This equation gives the value of jk^^-k^^l any value

of 6E above the threshold energy. That is, the proportion of
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wavevector space of the valence band able to partake in impact 

ionization transitions corresponding to any increase in energy 

of the hot electron above threshold. In the derivation of the 

equation, it was assumed that the impact ionization threshold 

was given by a double envelope. However, if the threshold is 

given by a simple envelope, equation 6.2.22 can be simplified 

slightly. For a simple envelope, the final electron states 

coincide, and thus E^j^(k) = E^^(k) which gives, in equation 6.2.22, 

e !j| = E^. Substituting this into equation 6.2.22 and simplifying 

gives

h i  V  ̂ L h

+ E|(E^-2E^)|[E^-sign(E^)[(E^)Z+2E^6E]^]j 6.2.23

6.3 Some Computational Considerations

A computer program is written to draw the graphs of the excess 

energy above threshold versus the proportion of wavevector space of 

the valence band able to partake in impact ionization, as determined 

by equation 6.2.22. Thus, one graph is drawn for each impact 

ionization threshold initiated by a hot electron. The computer program 

is also used to draw the equivalent graphs for each impact ionization 

threshold initiated by a hot hole, which is done by simply reversing 

the roles of the valence and conduction bands throughout. The graphs 

drawn are then of the excess energy above threshoH.versus the propor­

tion of wavevector space of the conduction band able to partake in 

impact ionization.

In order to obtain an easy comparison between the different rates 

of increase in the proportion of wavevector space able to partake in
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impact ionization just above threshold, more than one graph is drawn 

in the same figure. The graphs corresponding to all the thresholds 

determined, initiated both by electrons and by holes, in one symmetry 

direction in reciprocal lattice space, are drawn in the same figure.

Thus, since three symmetry directions are being investigated, the 

r-A-X, r-A-L, and F-Z-K-S-X directions, three figures are produced, 

each containing as many graphs as there are thresholds in that 

symmetry direction.

The formula derived in the previous section, by which these graphs 

are drawn, is approximate, and only valid for small values of 6e . The 

errors involved will be small for sufficiently small values of ÔE, and 

will increase as ôE increases. While the formula derived is intended 

as an approximation to the rate of increase in the total probability 

above threshold, it is desirable to keep the errors to a minimum. Thus, 

the range of values of ôE over which the graphs are drawn is kept reason­

ably small. However, errors are incurred in determining the impact 

ionization threshold data, and if the values of ÔE are restricted too 

much, then the errors in the threshold data may dominate. The range of 

values of 6E over which the graphs are drawn, must therefore be sufficiently 

large to overcome the errors associated with the threshold data. Hence, 

to obtain a set of reliable graphs which show the behaviour of the rate 

of increase in the total probability above threshold, the range of values 

of ÔE is chosen to be 0^ôE^0.25eV. Further computational details are 

given in Chapter 7.

6.4 Results for Silicon

The impact ionization threshold values are determined by the 

envelope method, as presented in Chapter 3, and the sizes of the matrix 

elements of the coulomb interaction between the electron states involved
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by the method as described in Chapter 5. The energy and wavevector 

coordinates, the first and second derivatives are calculated, for 

each threshold determined, for use in the equation 6,2.22 to enable 

the graphs of the rate of increase in the total probability to be 

drawn. The threshold values for silicon are thus determined and the 

corresponding graphs then drawn. The threshold values and matrix 

elements are presented in detail in Chapter 8, but a summary is 

presented in Table 6.1 below, giving the ratio between the threshold 

energy above the energy band gap

Table 6.1

Rates of Increase in the Total Probability

Symmetry Graph Initiating Ratio Largest value of
direction number particle GT/=G for 

6E -  0 .2 5
Matrix Element

r-A-X 3 Electron 1.05 0 .233
-121 .3  X 10

1 Electron 1.06 0 .175 9.5 X lo"^

4 Electron 1.47 0.275 6 .1  X 10"1°

2 Electron 1,49 0 .203 1.6  X 10“ ^^

8 Hole 1.82 0 .387 2.2  X 10"2

7 Hole 2 .18 0 .363 7.4  X 10"2

6 Hole 2.51 0 .340 1.6  X lO'll
5 Hole 3.26 0.316 7.4  X 10"2

F-A-L 5 Hole 2.90 0 .500 5 .1  X 10"3

4 Electron 3.55 0 .337 2 .5  X 10"2

1 Electron 3.59 0.142 1.5  X 10"1°

6 Electron 4.03 0.716 7.6  X 10"3

2 Electron 4.07 0.226
-12

4 .5  X 10

3 Hole 4.52 0.320 1.6  X 10"2

r-E-K-s-x 11 Hole 1.64 0 .427 7.2  X 10"14

1 Hole 1.73 0.114 2.0  X 10"13

10 Electron 2.08 0.281 2.1  X loT^S

8 Hole 2.28 0.246 2 .6  X 10"13

7 Electron 2.46 0.205 -12  '5 .7  X 10

5 Electron 2.52 0.137 2 .3  X 10"3

9 Hole 2.60 0.270 1.7  X ICT^

3 Hole 2.62 0.121
-2

8 .8  X 10

2 Hole 3.01 0.115 -124 .5  X 10

12 Electron 3.15 0.436
•  IS

1 .5  X 10

6 Electron 3.96 0 .188 9 .9  X 10"2

4 Electron 4.09 0.122 -113.4  X 10
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and the energy band gap.

For the F-A-X symmetry direction, eight thresholds are determined, 

four being initiated by a hot electron, and four by a hot hole. The 

graphs corresponding to each threshold are then drawn (see figure 6.1) 

and labelled in ascending order of rates of increase in the total 

probability. The proportion of wavevector space able to contain the 

promoted particle in an ionization process is calculated for a hot 

electron, or hole, initially at an energy of 0.25eV above threshold, 

and these values are presented in Table 6.1. It is seen that, for 

the r-A-X direction, the difference between the smallest and largest 

increases in rates is a factor of nearly 2|.

6
5
4
3

Figure 6,1 Plot of proportion of valence states able to partake 
in impact ionization versus excess energy above Threshold, for 
thresholds along the F-A-X axis.

However, the difference between the increases in rates corresponding 

to thresholds having approximately equal energies is a factor of 

less than 1|. These small variations, taken on their own, indicate 

that the rate of increase in the total probability above threshold 

is not significant.

The same procedure of determining the threshold values and the 

graphs of the rates of increase in the total probability is applied



- 102 -

to the other two symmetry directions being investigated, the 

r-A-L and T-E-K-S-X directions. For the F-A-L direction, it is 

seen from Table 6.1 and figure 6.2 that the difference between the 

smallest and largest increases in rates is a factor of just over 5, while 

the difference corresponding to thresholds having approximately equal 

energies is a factor of less than 3i. For the F-E-K-S-X direction, 

it is seen from Table 6.1 and figure 6.3.that the corresponding 

differences are a factor of nearly 4 and nearly 2j respectively.

These variations, while still small, are larger than those in the 

F-A-X direction, and it is harder to justify their insignificance in 

the total probability.

To do this, the sizes of the matrix element of the coulomb inter­

action between the electron states involved in a threshold transition 

must be considered. The matrix elements of interest are those which

correspond to thresholds with almost equal

Figure 6.2 Plot of proportion of valence states able to partake 
in impact ionization versus excess energy above threshold, for 
thresholds along the F-A-L axis.
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G
J

S

Figure 6.3 Plot of proportion of valence states able to partake 
in impact ionization versus excess energy above threshold, for 
thresholds along the F-E-K-S-X axis.

energies. For the thresholds in question in the F-A-X direction, 

the smaller difference between the sizes of matrix elements is a 

factor of nearly 40, which makes the difference between the increases 

in rates of the total probability even less significant. In the 

F-A-L direction, the difference in the sizes of the matrix elements
g

is a factor of approximately 10 , which makes the differences in the 

rates of increase in the total probability totally irrelevant. The 

thresholds in the F-E-K-S-X direction which have almost equal energies, 

have matrix elements differing by a factor greater than 5, which is 

larger than the difference between the corresponding rates of increase 

in the total probabilities. Thus, while the rates of increase are not 

insignificant in this case, they do not contribute in a significant 

manner to the total probability, since the sizes of the matrix elements 

have a greater effect.

It is concluded that, for silicon, the rate of increase in the 

total probability just above threshold is not a significant factor in
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the probability that one impact ionization threshold will occur in 

preference to another threshold. On the basis of these results for 

silicon, the number of states able to partake in impact ionization 

for a hot electron, or hole, just above threshold will not be 

calculated for any of the other semiconductors being investigated.
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7. SOME DETAILS OF THE COMPUTER PROGRAMS USED 
IN THE PRESENT WORK

7.1 Introduction

In Chapters 2 to 6 the different sections of the process of

calculating the impact ionization threshold data was presented.

For each semiconductor being investigated, this procedure involves

calculating the energy band structure by the Empirical Pseudopotential

(E.P.) Method, fitting analytic expressions to the energy bands,

determining the impact ionization threshold values by the Envelope

Method, and calculating the corresponding sizes of matrix elements

of the coulomb interaction and the rates of increase in the total

probabilities for hot electrons, or holes, just above threshold. To

perform these calculations, several computer programs had to be written,

and some of the details of these programs are presented in this chapter.

The procedure commences with the reproduction of the required

band structure by the E.P. method as described in Chapter 2, the

computer program being described briefly in the next section. The

energy bands thus obtained have then to be approximated by analytic

expressions, for which a multiple regression routine is used, as described

in Chapter 4 and in reference [58]. The graphs of these analytic

expressions of the energy bands are then drawn, together with additional

graphs used to obtain approximate impact ionization threshold positions.

The computer program for this routine, also described in Chapter 4, is

described briefly in section 7.3. The threshold positions are then

determined more accurately by the Envelope Method, described in Chapter

3, and a brief description of the computer program is given in section 7.4,

The E.P. method is then used again to calculate the coefficients of

the plane-waves occuring in the wave-function expansions of the electron

states involved in the ionization threshold. From these wave-functions.
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the corresponding matrix elements of the coulomb interaction between 

the electron states involved in the ionization threshold process are 

then calculated by the method described in Chapter 5, using the computer 

program described briefly in section 7.5. Finally, for the thresholds 

in silicon only, the rates of increase in the total probabilities for 

hot electrons, and holes, just above threshold are calculated and the 

graphs drawn by the method described in Chapter 6, the computer program 

being described briefly in section 7.6.

In each of the following sections, a brief description of the 

methods involved in the calculations performed by the computer programs 

are given. Some details of the input and output operations are also 

given, together with the computer facilities required for each program.

All the programs are written in FORTRAN IV for use on an I.C.L. Systems 

4 computer. While standard Fortran is not used, the programs should not 

need many alterations to enable them to be used on other types of computer. 

Full details of the operations of the computer programs may be obtained 

upon request.

7.2 The Empirical Pseudopotential Method

The computer program written to perform the band structure 

calculations can be considered as being made up from three basic sections. 

The first section calculates the matrix elements of the secular equations 

from the given input data, the second section then calculates all the 

eigenvalues and, if required, the corresponding eigenvectors. If the 

eigenvectors are calculated, then the third section, if required, recovers 

the original expansion of the eigenvectors by use of the perturbation 

theory of Lowdin [50]. These three sections are written as subroutines 

which are aeeessed in turn by the main program. The main program also 

performs all the input and output operations, initializes all the 

reciprocal lattice vectors which are allowed to be used in the program.
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and selects those which are to be used,in the band structure 

calculations.

All the reciprocal lattice vectors which are used by the 

program are stored and initialized in a block data subroutine, 

which contains all the vectors G such that |g| ̂  < 40. The main 

program, after performing all the input operations and some of the 

corresponding output operations, then selects those reciprocal lattice 

vectors which are to be used in the band structure calculations. It 

then proceeds further to order them in ascending order of squared 

magnitude, and to separate those which are to be treated exactly in 

the basis matrix, and those which are to be treated through perturbation. 

The first subroutine is then accessed by the main program, which calculates 

the matrix elements of the secular equations by using the relevant 

equations given in section 2.6. Amongst these calculations is the 

integral occurring in the nonlocal potential term, which is evaluated 

numerically by Chebyshev integration (see for example, F.B. Hildebrand 

’Introduction to Numerical Analysis’ Second Edition p414ff [59]).

The second subroutine is then accessed, and transforms the 

symmetric matrix into tri-diagonal form by Householder’s method. This 

subroutine then accesses the subroutine which performs the Q.R. algorithm 

to evaluate all the eigenvalues of the matrix, together with the corres­

ponding eigenvectors, if required. The eigenvalues are then ordered in 

ascending order of magnitude by another subroutine. The main program 

then prints out the eigenvalues before accessing the third routine, if 

required, which calculates the original expansion of the eigenvectors 

using the perturbation theory of Lowdin. These eigenvectors are then 

printed out by the main program, if they are required to be calculated.

All the data for input to the program is submitted through the
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card reader, most of which is printed out on the line printer 

immediately. The data is submitted in the following order:-

(1) The name of the material being considered.

(2) The options which specify some of the operations to be

performed.

(3) The lattice constant.

(4) The local symmetric form factors.

(5) The local antisymmetric form factors, if they are not all

zero.

(6) The nonlocal potential parameters.

(7) The energy of the valence band maximum if the first point at

which the energy levels are to be calculated in not at F.

(8) The cut-off points for the inclusion of plane-waves is the

basis matrix and perturbation treatment.

(9) A dummy input card describing the data points submitted.

(10) The data set reference number which is used to output the

results to a magnetic medium for later use.

(11) The number of results, if any, to be added to.

(12) The set of data points within the first Brillouin zone at

which the energy levels are to be calculated.

The name of the material, lattice constant, local form factors, non­

local parameters if not all zero, and the plane-wave cut-off points 

are printed out immediately. After the eigenvalues have been calculated, 

the number of plane-waves included in the basis matrix and through 

perturbation are printed out together with the position in the first 

Brillouin zone at which the energy levels are calculated, and the eight 

lowest energy levels. If the eigenvectors are calculated, then all the 

coefficients determined are printed out for the vectors corresponding 

to the eight lowest eigenvalues, together with the plane-waves they 

correspond to.
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The minimum computer requirements of the program are; one 

card reader, two line printer files, which is logically two line 

printers but physically only one, and a main core store size of 

154K bytes (IK = 1024). If the eigenvectors are to be output to a 

magnetic medium, then the program requires in addition, either disc 

storage space or a magnetic tape. If the eigenvectors are to be output 

to magnetic tape and added to a set of existing results, then two 

magnetic tapes are required.

7.3 The Graph Plotting of the Energy Bands

Once the energy levels at a set of discrete points within the 

first Brillouin zone have been determined and the analytic expressions 

have been fitted to the corresponding energy bands, the graphs of these 

analytic expressions are drawn. The computer program written to draw 

these graphs also draws some additional graphs and performs some extra 

calculations. The extra graphs are used to determine approximate impact 

ionization threshold positions by the envelope method, while the extra 

calculations determine the equations of the parabolic approximations to 

the energy bands about the energy band extrema. These equations can 

then be used in the Franz construction or parabolic band approximation 

in order to obtain approximate values of the impact ionization thresholds.

The computer program can be considered as being made up from four 

basic sections, one calculational section and three graph plotting sections 

The first section calculates the equations of the parabolic band approx­

imations to each energy band, and is always performed. The three graph 

plotting sections are all optional, the first of which plots the energy 

bands and data points, the second plots the energy bands and reflected 

energy bands in an extended zone scheme, and the third plots the 

envelopes of the conduction and valence bands. The options on the graph 

plotting sections allow them to be included in any combination.
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The main program, after performing all the input operations, 

and the initial output operations, accesses the subroutine which calculates 

and prints out the equations of the parabolic band approximations to 

each energy band extremum. The graph of the energy bands and data points 

is then plotted by the use of three subroutines called one after the 

other. The first opens the graph plotting file and plots the title, the

second plots all the data points within the bounds of the graph, and the

third draws the energy bands. The energy bands are then drawn again on 

a second graph, but this time in an extended zone scheme covering two 

complete zones. On the same graph are also drawn the valence bands 

reflected about the valence band maximum, and the conduction bands 

reflected about the conduction band minimum.

Two more graphs are then drawn, the first is of the envelope of 

the conduction bands and the second is of the envelope of the valence 

band. These two graphs are drawn on the same scale as the graph of the

energy bands and reflected energy bands, which are used to obtain

approximate impact ionization threshold positions. The values on the 

envelopes are calculated according to the appropriate equations presented 

in section 3.3, and the k coordinates from which the envelope energy 

is calculated are also determined by the appropriate equations. For the 

double envelopes, this latter calculation involves an iterative process, 

for which Newton’s method is used to obtain the two positions of equal 

gradient.

All the data for input to the program is submitted through the card 

reader, and in the following order;-

(1) The name of the material being considered.

(2) The symmetry direction being considered.

(3) The number of energy bands being drawn and the number of

data points on each energy band.
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(4) Approximate k coordinates of the energy band extreme.

(5) The k coordinates followed by all the energy levels for

each data point.

(6) The Fourier series of all the energy bands, giving the number

of terms, the order and coefficients of each term.

(7) The options for which graphs are to be drawn.

(8) The number of valence bands, and the conduction band on which 

: the conduction band minimum lies.

The name of the material, the symmetry direction being considered, the 

number of energy bands and the number of data points on each energy

band are printed out immediately. The only other output is that of the

equations of the parabolae, used to approximate the energy bands, for 

each energy band.

The computer requirements of the program are; one card reader, 

one line printer, one graph plotter, the facility to read and write 

directly from and to the main core store, and a main core store size of 

40K bytes.

7.4 The Envelope Method for determining Impact Ionization 
Threshold Energies

The impact ionization thresholds of the semiconductors being

investigated are determined approximately by the use of the graphs produced

by the graph plotting program. The computer program written to calculate

impact ionization thresholds accurately uses these approximate positions

as the initial step in an iterative method. At each step of this iterative

method, the program investigates the intersection of the envelope with

the valence band, finding a position at which the gradients are equal.

This involves another iterative process for which, at each step, the

positions and values on the conduction band, from which the envelope is

constructed, have to be determined. For a double envelope, this involves
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yet another iterative process which determines the two distinct 

points of equal gradient on the conduction band, from which the double 

envelope is constructed.

When a threshold position is determined sufficiently accurately, 

the position is printed out, and extra threshold data is calculated and 

printed out. Another approximate threshold position is then considered, 

and the process is repeated for each threshold position to be determined 

accurately. To perform the required calculations, several subroutines 

have been written, in which most of the calculations are performed. The 

main program performs all the input operations, most of the output 

operations, a few calculations, and accesses the required subroutines.

The main program, after performing nearly all the input operations, 

determines whether the ionization thresholds to be calculated accurately 

are initiated by electrons or by holes. If the thresholds are initiated 

by holes, then the roles of the valence and conduction bands are reversed, 

and the program then proceeds as though the initiating particles are 

electrons. The initial positions of the hot and promoted electrons, or 

holes, involved in the threshold are then input to the program, and the 

iteration proceedure started. The main program performs any necessary 

iterations of the position of the hot electron to ensure that its energy 

above the conduction band minimum is greater than the energy gap. Once 

the electron has sufficient energy, the subroutine which investigates 

the intersection of the envelope with the valence band is accessed.

This subroutine performs the iteration of the position of the 

valence electron, while keeping the position of the hot electron fixed.

The iteration is to determine the position at which the envelope and 

valence band have equal gradients, which in turn determines whether an 

impact ionization process is possible. Newton’s method together with 

Aitken’s acceleration method are used as the method of iteration, for 

which, at each step, the positions and values on the conduction band.
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from which the envelope is constructed, have to be calculated. The 

values from which the simple envelope is constructed are straightforward 

to calculate, being the points midway between the positions of the hot 

and valence electrons. The values from which the double envelope is 

constructed are determined from the positions on the conduction band 

where the gradients are equal. These positions are calculated by an 

iterative method, for which Newton’s method is used, and the appropriate 

equations given in section 3.3 are used to evaluate the values on the 

envelopes.

When the required position of the valence electron has been 

calculated, the energy difference between the envelope and valence band 

is calculated. If this energy difference is sufficiently small, then 

the threshold position is considered to be sufficiently accurate, and 

the iteration process terminated. Otherwise, the main program accesses 

the subroutine which performs the next iteration of the position of the 

hot electron. This iteration is just a constant step length, until the 

threshold position has been passed, upon which the step length is halved 

at each iteration. When a new hot electron position has been calculated, 

the main program loops back to access the subroutine which investigates 

the intersection of the envelope with the valence band, and the process 

is repeated.

Once the position of the hot electron has been determined sufficiently 

accurately, all that remains is to calculate the rest of the threshold 

data. The initial positions of the hot and promoted electrons are already 

known, the corresponding energies are easily calculated, and the final 

positions and energies of the two electrons are then calculated. If the 

threshold was determined by a simple envelope, then the required values 

are calculated in the main program, otherwise they are calculated in a 

subroutine accessed by the main program. When these values have been 

calculated, they are printed out, the necessary adjustments being made
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if the threshold was initiated by a hole. The main program then 

accesses the subroutine which calculates and prints out the values 

of the first and second derivatives of the four states involved in 

the ionization threshold process.

The main program finally determines whether the ionization process 

corresponds to a Normal process or an Umklapp process before looping 

back to consider the next threshold. Throughout the iterative process 

of the position of the hot electron, checks are made to ensure too much 

time is not being used, or the hot electron position is not moving too 

far from the centre of the first Brillouin zone. If either of these 

situations arise, the iterative proceedure is terminated and an appropriate 

error message printed out.

All the data for input to the program is submitted through the 

card reader, and in the following order

(1) A title card describing the thresholds to be determined, for which 

the first four columns determine whether the initiating particle 

is an electron or a hole.

(2) The number of valence bands and the number of conduction bands..

(3) The group theory label and Fourier series of all the energy bands, 

giving the number of terms, the order and coefficients of each 

term.

(4) The energy band numbers and k coordinates of the conduction band 

minimum and valence band maximum.

(5) The overall conduction band minimum and valence band maximum of 

the material, and the proportional length of k-space within the 

first Brillouin zone.

(6) The error tolerances in position and energy.

(7) The threshold data, giving the type of envelope to use, the energy 

band numbers and initial positions of the hot and promoted electrons, 

and the initial hot electron position step length.
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As many threshold position data cards as required may be submitted 

at the same time. The title card describing the thresholds to be 

determined is printed out at the beginning of each threshold calcula­

tion, and the energy band labels on which the electrons lie initially 

are printed out prior to the results being printed out. A table of 

results is then printed out, suitably labelled, giving the initial 

and final positions and energies of the hot and promoted electrons, or 

holes. The excess ionization threshold energy above the conduction 

band minimum, and the ratio of this excess energy to the energy band 

gap is also printed out. The values of the first and second derivatives 

of the four electron states at threshold are then printed out, followed 

by the type of ionization process.

Throughout the iterative procedure of the position of the hot electron, 

the positions of the hot and valence electrons are printed out together 

with the energy difference between the envelope and valence band. Also, 

there are several error branches within the program, each with its own 

error message which is printed out if the error branch is encountered.

This extra information is printed out to check that the ionization thresholds

are determined correctly, and to make the correction of errors, if any,

easier.

The computer requirements of the program are; one card reader, two 

line printer files, which is logically two line printers but physically 

only one, and a main core store size of 42K bytes.

7.5 The Matrix Elements of the Coulomb Interaction

The matrix element of the coulomb interaction between the initial 

and final states involved in an impact ionization threshold process is 

calculated for each threshold position determined. The sizes of these 

matrix elements are calculated by the two equations described in section

5.2, by the quadruple sum and by the two double sums, both summed over
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reciprocal lattice vectors. Before these matrix elements can be 

calculated, the plane-wave expansions of the wave-functions corres­

ponding to the four electron states involved in the threshold 

transition have to be calculated by the program written to perform 

band structure calculations by the Empirical Pseudopotential Method.

This program is run, and the coefficients of the plane-wave expansions 

are written onto a magnetic medium, which are then read in by the 

computer program which calculates the sizes of the matrix element of 

the coulomb interaction.

The computer program written to perform the matrix element 

calculations, reads in the required data for either three or four 

electron states. If data for only three states is read in, the situation 

corresponding to the threshold determined by a simple envelope, then 

the data corresponding to the electron state in which the electrons lie 

finally is duplicated to represent the data of the fourth electron state. 

Thus, data corresponding to the four electron states is supplied to the 

program. The sizes of the matrix element of the coulomb interaction are 

then calculated, firstly by the two double sums over reciprocal lattice 

vectors, and then by the quadruple sum over reciprocal lattice vectors, 

and both values are printed out.

If one, or more, of the energy bands in which the electron states 

lie is degenerate, then there will be more than one possible way in 

which the transition may occur. This will result in more than one matrix 

element, and a range of sizes of matrix elements will then exist, each 

corresponding to a different combination of the electron states in which 

the electrons involved lie. All such matrix elements are evaluated at 

one attempt, by looping back in the program, after the results have been 

printed out, to the point at which the data concerning the electron states
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is read in.

The data for input to the program is submitted through two 

different media; a small amount through the card reader, and then 

the majority through either disc storage space or a magnetic tape.

The input through the magnetic medium is in the same order and format 

as the output to the same magnetic medium by the program which performs 

the band structure calculations. The input through the card reader is 

in the following order:-

(1) The data set reference number used to input the data from a 

magnetic medium, which was set up previously.

(2) The number of distinct electron states involved in the threshold 

process.

(3) The inverse of the screening radius.

(4) The energy band numbers on which the initial and final hot

and promoted electron states lie.

The only output is that of the values of the two matrix elements, and

the values of the two double sums over reciprocal lattice space occurring 

in the calculations of the first matrix element.

The computer requirements for the program are; one card reader,

one line printer, either disc storage space or a magnetic tape, and a

main core store size of 63K bytes.

7.6 The Rate of Increase in the Total Probability

The rate of increase in the number of valence states able to

partake in impact ionization for a hot electron just above threshold, 

is given by equation 6.2.22. This equation is programmed for use on 

a digital computer to enable a graph to be drawn, one corresponding to 

each ionization threshold. The computer program written to do this 

simply draws the required graphs of the proportion of valence band able 

to partake in impact ionization versus the hot electron energy above 

threshold.
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The program reads in the required data corresponding to an 

impact ionization threshold, that is the first and second derivatives 

of all four electron states involved in the process. If the threshold 

is initiated by a hot hole, then the roles of the valence bands and 

conduction bands are reversed, which is done by negating all the values 

of the first and second derivatives. The equation 6.2.22 is then 

evaluated for a range of values of the excess hot electron, or hole, 

energy above threshold. This enables the corresponding graph to be 

drawn over the given range of values of the excess energy, between 0 

and 0.25eV. The value ' of the equation is printed out for the maximum 

value of the excess energy before the program loops back to read in

the data corresponding to another threshold. The graph of this next

threshold is drawn on the same figure as the previous graph to enable 

as many graphs as required to be drawn together.

All the data input to the program is submitted through the card

reader, and in the following order

(1) The name of the material being considered.

(2) The first derivatives of the initial and final hot electron,

or hole, states and the second derivatives of all four hot 

electron, or hole, states.

The only output is that of the name of the material being considered, 

followed by the values of the equation 6.2.22 for an excess energy of 

0.25eV above threshold, one value for each threshold considered.

The computer requirements for the program are; one card reader,

one line printer, one graph plotter and a main core store size of 26K

bytes.
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8. IMPACT IONIZATION THRESHOLDS FOR SILICON

8.1 Details of the Calculations

The Envelope Method developed in this work is applied to two 

different band structures of Silicon in a preliminary study [3l], 

the band structures investigated being those of Cohen and Bergstresser 

[25] and of Stuckel and Euwema [38]. It is thus hoped to obtain 

useful information concerning the sensitivity of the impact ionization 

threshold energies to the detailed band structure. Investigations are 

carried out in the extended zone scheme along the A axis for the 

valence band the the and Pgi-X^ conduction bands.

Numerical data from the published energy band diagrams are 

fitted by suitable polynomial approximations, the analytic expressions 

used being nowhere in error by more than O.OleV. The curvatures of 

the polynomial approximations at their extrema also give correctly 

the appropriate effective masses of the conduction and valence bands 

at the energy band extrema. These analytic expressions for the energy 

bands are then used in the computer program, as described in Chapter 

3 and 7, to calculate the impact ionization threshold positions for 

hot électrons. The computations are carried out until the overall 

error associated with each threshold energy is less than 0.02eV.

The results of this preliminary study of Silicon are presented 

in Table 8.1, which contains details of the initial and final states 

of the hot electron for each threshold position. Details of the initial 

and final states of the promoted electron are also included where 

necessary. When this is not given, the information can be readily 

calculated from the hot electron data. Each threshold energy, E^, 

is also expressed in terms of the dimensionless quantity E^/E^, where 

Eg is the band gap for the particular band structure. This facilitates
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a more meaningful comparison of the results for band structures with 

different band gaps.

For comparative purposes, the values of E^/Eg given by the Franz 

construction are also calculated for each band structure, the results 

being presented in Table 8.3. They are obtained by the computer program 

using a parabolic conduction band based on the appropriate conduction 

band minimum, and using the polynomial approximations again for the 

valence bands. The effective mass and the position of the conduction 

band minimum are taken to be the values appropriate to the band structure 

considered. Also, the values of E^/Eg given by the parabolic band 

approximation are calculated using equation 3.4.18.

This preliminary study was carried out before the Empirical 

Pseudopotential Method had been programmed for use on the computer, 

and before it had been decided to calculate the sizes of the matrix 

element of the coulomb interaction corresponding to each threshold 

transition. In calculating the sizes of the matrix elements, the 

opportunity is taken to reproduce the Silicon band structure, of 

Cohen and Bergstresser only, more accurately by using their form 

factors in the Empirical Pseudopotential Method. Also, the three 

principal symmetry directions are investigated and more energy bands 

are taken into consideration along the A axis.

The energy bands investigated along the A axis are those of 

the preliminary study together with the valence band. The

energy bands investigated along the A axis are the F^^-L^ and F^^-L^ 

conduction bands and the ^25’”^1 valence bands. The

energy bands investigated along the E-S axis, that is the E axis from 

F to K within the first Brillouin zone and the S axis from K to X 

along the square face of the adjacent zone, are the F^^-K^-X^
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and r^^-K^-X^ conduction bands and the F^^i-K^-X^, F^^f-K^-X^ and 

Fg^f-K^-X^ valence bands. These energy bands are investigated as 

being able to contain the hot and promoted electrons in an impact 

ionization threshold transition. In addition to recalculating the 

threshold positions initiated by hot electrons, threshold positions 

initiated by hot holes are also calculated.

The energy bands are approximated by suitable Fourier series, 

in preference to polynomial approximations as a result of the study 

performed and presented in Chapter 4, and the errors in fitting them 

to the energy bands are again nowhere greater than O.OleV. The 

errors involved in fitting the F^^-K^-X^ conduction band however, are 

slightly greater than O.OleV in places, due to the shape of this energy 

band. The computations are again carried out until the overall error 

associated with each threshold energy is less than O.OlSeV, the slightly 

greater errors associated with the F^^-K^-X^ conduction band not having 

a noticeable effect on the overall error.

The result of these improved calculations are presented in Table

8.2, which contains the same details as Table 8.1, plus the sizes of 

the matrix element of the coulomb interaction as calculated by the 

two appropriate equations given in Chapter 5. Where one, or more, of 

the energy bands involved in a threshold transition is degenerate, several 

values of the matrix element sizes are obtained, but only the largest 

value is presented. When the coefficients of the plane-wave expansions 

used in calculating the sizes of the matrix element are determined, 

the energies of the four electron states involved in the threshold are 

also calculated. The error in the conservation of energy, ensuring 

the conservation of wavevector, is thus determined, and this value is 

also presented in the table for each threshold. Since the error
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associated with each threshold energy is less than 0.015eV, the 

error in the conservation of energy is less than 0.06eV.

The values of E /E given by the Franz construction and by the 

parabolic band approximation are again calculated for comparative 

purposes. The values are calculated by the same procedure as used 

in the preliminary study, and the results are presented in Table 8.4.

In this table, more than one threshold value is given by the Franz 

construction, along each symmetry axis, due to the extra energy bands 

being investigated, but the parabolic band approximation still gives 

only one value along each symmetry axis.

In Tables 8.1 and 8.2, the values of k are measured as a proportion 

of the distance from F to the boundary of the first Brillouin aone,

X or L, along the A and A symmetry axes respectively. Along the E-S 

symmetry axis, the proportional distance is from F to the centre of 

the square face, X, of the adjacent zone. Thus, electron states on 

the E axis within the first Brillouin zone have wavevector k such that 

|k|^0.75, and electron states on the S axis on the square face of the 

adjacent zone have wavevector k such that 0.75^|k|^l.

8.2 Discussion of the Results for the Silicon Band Structures

Looking at the results of the preliminary study, presented in 

Table 8.1, it is seen that the general features for each band structure 

are similar. The lowest value of E /E is given by an umklapp process 

in both cases, with a second umklapp threshold at a higher energy. At 

an energy between these two umklapp threshold energies, there is a 

normal threshold which is given by a double envelope solution and 

corresponds to an intervalley transition. The lowest value of E^/E^, 

in both cases, is also close to the minimum possible energy for any 

ionization process, which is due to the indirect energy band gap of
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Silicon. A detailed comparison of the results shows that there 

are significant discrepancies between the threshold energies given 

by the two band structures. Since the value of given by Stuckel 

and Euwema (l.leV) is close to that generally accepted for Silicon 

(see for example, D. Long ’Energy Bands in Semiconductors’, p87[60], 

and also Kunz [6l]), it is believed that the threshold energies given 

by this band structure are the more reliable.

The values of E^ have also been calculated by Anderson and Crowell 

[ 32], using the band structure of Cohen and Bergstresser. A direct 

comparison of their results with the results presented in Table 8.1 

is difficult since Anderson and Crowell adjusted the Cohen and 

Bergstresser band gap to conform with the commonly accepted value. To 

confirm the equivalence of the two methods however, the calculations 

are repeated for the adjusted band structure. Absolute agreement is 

obtained within the errors of the respective methods, -  0.02eV in the 

present work and + 0.2eV for Anderson and Crowell.

It is seen from Table 8.2 that the improved threshold values 

corresponding to the two umklapp processes of Table 8.1 are in close 

agreement (E^/E^=1.055 and 1.467 respectively) as expected. However, 

it is surprising to see that there is no longer a normal threshold 

given by a double envelope, as there was in the preliminary study. This 

is due to the slight changes in the energy bands concerned, and to the 

final state of the hot electron being very close to the zone boundary.

In the improved calculations this state moves across the zone boundary 

into another energy band, and thus is not considered as a possible 

threshold situation. This illustrates the sensitivity of threshold 

energies to the detailed band structure, particularly when one of the 

four states involved in the transition is close to the zone boundary.
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In the improved calculations, there are a further two electron 

thresholds along the A axis, with energies very close to the two 

threshold energies previously calculated. These correspond to 

transitions involving an electron in the valence band, and

thus having threshold energies slightly higher than the transitions 

involving an electron in the valence band. The electron

thresholds calculated have an error in the conservation of energy 

much smaller than the maximum expected error of 0.06eV, all four 

being in error by less than O.OleV. There are also four threshold 

positions which are initiated by hot holes, both valence bands pro­

viding the initiating hole for two thresholds. These thresholds 

correspond to normal processes, and the error in the conservation of 

energy is less than O.OleV as in the case for the electron thresholds.

The lowest value for the hole thresholds is much larger than

the lowest E^./E^value for the electron thresholds, and is also larger 

than the highest value for the electron thresholds.

By considering only the threshold positions and the values of 

Et /Eg » it would appear that the lowest value of E^/Eg (1.055) should 

be taken for use in the related theories. However, by looking at 

the sizes of the matrix element of the coulomb interaction as calculated 

from equation 5.2.5, it is surprising to see that this would be 

erroneous, due to the negligibly small size of the matrix element 

corresponding to this threshold. Indeed, by looking at the sizes of 

the matrix elements corresponding to the other electron thresholds along 

the A axis, it is surprising to see only one threshold having a signifi­

cant matrix element size. This threshold is the second lowest (E/E =1.056), 

and has a matrix element size of 0.095, which is of the expected order

of magnitude. The other three electron thresholds all have matrix
-10element sizes of the order of 10 or smaller which, while not being 

mathematically zero, can be considered to be zero.
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The lowest hole threshold along the A axis, unlike the lowest 

electron threshold, has a significant matrix element size, and so 

it would not be erroneous to use this threshold in related theories. 

However, it would still be erroneous to neglect the effect of the matrix 

element sizes, as one of the hole thresholds has a negligibly small 

matrix element size, of the same order of magnitude as that for the 

lowest electron threshold. The approximate matrix element sizes, as 

given by equation 5.2.9, are identically zero for all the electron 

thresholds as expected, since they all correspond to umklapp processes, 

and hence are not comparable with the proper calculations of equation 

5.2.5. The corresponding values for the hole thresholds are all non­

zero, but are all negligibly small, thus making only one of comparable 

size with the proper calculations.

Considering now the thresholds along the A axis, it is seen that 

there are again four electron thresholds, all corresponding to umklapp 

processes, occurring in pairs with comparable energies, as is the 

situation for the electron thresholds along the A axis. The threshold 

energies are however, much higher along this axis than along the A axis, 

as is expected from the details of the band structure, the lowest threshold 

having a value of E / E  =3.554. Similarly, the two hole thresholds along 

the A axis, both corresponding to normal processes, have energies much 

higher than those along the A axis. However, the lower of these two 

thresholds has an energy lower than the lowest electron threshold energy 

along this axis, which is the opposite situation to that along the A 

axis.

It is again surprising to see that two of the electron thresholds 

have matrix element sizes which are negligible, although the lowest 

threshold does have a significant matrix element size. Also, it is 

perhaps comforting to see that both hole thresholds have significant



- 128 -

matrix element sizes. The approximate matrix element sizes follow 

the pattern of those corresponding to the thresholds along the A 

axis, those corresponding to the electron thresholds being zero, 

and those corresponding to the hole thresholds being negligibly 

small. Thus, none of the approximate matrix element sizes are 

comparable with the proper calculations of the matrix element sizes.

The error in the conservation of energy associated with each threshold 

is again less than O.OleV, much smaller than the maximum expected 

error, as for the thresholds along the A axis.

As may be expected from the details of the band structure along 

the E-S axis, there are more threshold positions determined, both for 

electrons and holes. Also, the lowest electron threshold energy is 

higher than that along the A axis, and lower than that along the A 

axis. However, it is perhaps surprising to see that the lowest hole 

threshold along this axis is also the lowest hole threshold for this 

band structure, having a value of E^/Eg=1.644. As for the other two 

symmetry axes, all the electron thresholds along this axis correspond 

to umklapp processes, but unlike the other two symmetry axes, the hole 

thresholds also correspond to umklapp processes and not to normal 

processes. This is slightly surprising, although some umklapp processes 

may be expected since the boundary of the first Brillouin zone occurs 

at I of the distance along the axis from F.

Once again, it is seen by looking at the sizes of the matrix 

element, that several of these thresholds can be considered to be 

unimportant due to the negligibly small sizes of the matrix element.

In fact, only two electron thresholds and two hole thresholds have 

significant matrix element sizes, the lower of these two electron 

thresholds having an energy substantially higher than the lowest
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electron threshold energy. The lowest hole threshold along this 

axis is now seen to be insignificant, thus making it erroneous to 

use in related theories. The lowest significant hole threshold 

along this axis has a very much higher energy than that of the lowest 

threshold, and being of a comparable energy to the lowest significant 

electron threshold along this axis. The errors in the conservation of 

energy are generally greater than those along the other two symmetry 

axes, but are still considerably smaller than the maximum expected 

error, being in error by less than 0,03eV.

Had the threshold positions given above been determined without 

considering the matrix element sizes, the lowest electron and hole 

thresholds would have been taken as having values of E / E  =1.055 and 

1.644 respectively. Also, these would have been provided by transitions 

along two different symmetry axes, the A axis and the E-S axis respectively, 

However, by considering also the sizes of the matrix element of the coulomb 

interaction, neither of these two thresholds can be considered to be 

significant. The lowest electron and hole thresholds which also have 

significant matrix element sizes are those for which E^/Eg =1.056 and 

1.813 respectively, both thresholds now occurring along the A axis.

Thus, these latter two values are those which should be taken for use 

in related theories, and not the absolute lowest threshold values.

8.3 Comparison with Results from Approximate Band Structure Models

When both the valence band and the conduction band are approximated 

by parabolae, an expression for E^ is obtained, as presented in Chapter 

3. Values of E^/E^ determined from this expression (equation 3.4.18) 

for the appropriate values of (X^^E^), m^ and m^ given by the polynomial 

approximations to the two band structures investigated in the preliminary 

study are shown in Table 8,3, They are referred to as the 'parabolic
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band approximation' values. The table also includes the values given 

by the Franz construction, which corresponds to the removal of the 

parabolic approximation to the valence band. Finally, the table gives 

the values obtained by the Envelope Method for the genuine energy bands, 

and are selected from the many thresholds given in Table 8.1 as being 

the ones most comparable with the approximate.values.

Table 8.3

Comparison of E^/E^ values for thé différent band structures

Band structure Parabolic band Franz Genuine
considered approximation construction band structure

Cohen & Bergstresser
r-A-X axis 1.60 1.60 1.53
(indirect gap)

Stuckel & Euwema
r-A-X axis 1.19 1.19 1.22
indirect gap

It is seen from Table 8.3 that there is complete agreement 

between the values of E / E  given by the Franz construction and those 

given by the simpler parabolic band approximation. It is also seen 

that the approximate values are in good agreement with those given by 

the Envelope Method for the genuine bands. Comparison of Tables 8.1 

and 8.3 shows that the approximate models fail to provide the lowest 

thresholds. In each case the minimum threshold provided by the genuine 

energy bands is substantially lower and is of the same type, both 

thresholds corresponding to umklapp processes. Thus the genuine bands 

give at least one lower threshold of similar importance. In the first 

example given in the table, for instance, it is seen that in addition
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to the umklapp threshold with E^/Eg =1.53, there is a much lower 

one with E^/Eg =1.10. There is also a normal, intervalley threshold 

with E^/Eg =1.49.

In Table 8.4, the values of E / E  calculated for the more accurate 

reproduction of the Cohen and Bergstresser band

Table 8.4

Comparison of E^/E^ values for différent band structure models

Details of 
thresholds

Parabolic band 
approximation'

Franz
construction

Genuine 
band structure

r-A-X axis 1.399 1.398 1.467
Electrons - 1.415 1.493

r-A-X axis 2.159 2.169 1.813
Holes 3.508 2.513

r-A -L  axis 3.464 3.465 -

Electrons - 3.466 —

r-A -L  axis 2.404 2.430 -

Holes - 4.740 —

F-E-K-S-X axis 2.443 2.296 2.085
Electrons - 2.831 2.462

- 2.922 2.522

F-E-K-S-X axis 1.972 1.946 1.644
Holes 2.133 1.731

structure are presented, which correspond to the values given in 

Table 8.3. It is seen that there are fewer thresholds given by the 

parabolic band approximation than by the Franz construction, since the 

parabolic band approximation applies to one valence and one conduction 

band only. Taking this into consideration, it is seen that there are 

only minor differences between the corresponding values of E^/E^ in

all thresholds except one, the electron threshold along the E-S axis.
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It is also seen that the approximate values are only in reasonable 

agreement with those given by the Envelope Method for the electron 

thresholds along the A axis. All other approximate values of

E / E  do not correspond accurately to any genuine thresholds,T G
which is almost certainly due to the departure from the parabolic 

shape of the energy bands involved. Indeed, it is seen that the 

approximate models give threshold values along the A axis which ought not 

to exist, since the conduction band and the ^25'”^3 ’ valence

band are too flat to permit any ionization process to take place.

Comparison of Tables 8.2 and 8,4 shows again that the approximate 

values of the electron thresholds along the A axis fail to provide 

the lowest threshold, the minimum being provided by a substantially 

lower value. The approximate values of the hole thresholds along 

the A axis and the electron and hole thresholds along the E-S axis 

do provide the lowest threshold in each case. However, the approximate 

values are not in agreement with the values given by the Envelope 

Method, but are considerably higher. The thresholds along the A axis 

are not provided by the F^^-L^ conduction band and ^25’”^3* valence 

band since these bands are too flat to permit any ionization process 

to occur, but are provided by the other two energy bands investigated.

The lower of the approximate values for both electrons and holes, 

which ought not to exist, are lower than the lowest threshold values 

along this symmetry axis for both electrons and holes, and neither 

are in reasonable agreement with the values given by the Envelope Method.
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9. IMPACT IONIZATION THRESHOLDS FOR GERMANIUM

9.1 Details of thé Calculations

The Envelope Method developed in this work and applied to

two different band structures of Silicon in a preliminary study

[31] , is also applied to two different band structures of Germanium

in the same preliminary study. The two band structures investigated

are those of Cohen and Bergstresser [25J and of Stuckel [39]. As

in the study of Silicon, investigations are carried out in the

extended zone scheme along the A axis for the and F^^-X^

conduction bands and the F»^,“X, valence band. Additional results25 4
are also obtained along the A axis for the Fgi-L^ conduction band 

and the ^25’”^3’ valence band. Again, it is hoped to obtain useful 

information concerning the sensitivity of the impact ionization 

threshold energies to the detailed band structure.

Numerical data from the published energy band diagrams are again 

fitted by suitable polynomial approximations, the analytic expressions 

being nowhere in error by more than O.OleV. Again, the curvatures 

of the polynomial approximations at their extrema also give correctly 

the appropriate effective masses of the conduction and valence bands 

at the energy band extrema. These analytic expressions for the energy 

l̂ 'ands are then used in the computer program, as described in Chapters 

3 and 7, to calculate the impact ionization threshold positions for hot 

electrons. The computations, as for Silicon, are again carried out 

until the overall error associated with each threshold energy is less 

than 0.02eV.

The results of this preliminary study of Germanium are presented 

in Table 9.1, which contains the details of the initial and final states
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of the hot electron for each threshold position, presented in the 

same manner as were the results for Silicon. For comparative purposes 

the values of E_/E given by the Franz construction are again calculated 

for each band structure, the results being presented in Table 9.3. They 

are obtained in the same manner in which the corresponding results 

for Silicon were obtained. Also, the values of E^/E^ given by the 

parabolic band approximation are calculated using equation 3.4.18.

The opportunity is again taken to reproduce the Germanium band 

structure, of Cohen and Bergstresser only, more accurately in order to 

calculate the sizes of the matrix element of the coulomb interaction 

corresponding to each threshold transition. This is done by using the 

Cohen and Bergstresser form factors in the Empirical Pseudopotential 

Method computer program. The three principal symmetry axes are also 

investigated, and more energy bands are taken into consideration along 

the A and A axes.

The energy bands investigated along the Aaxis are those of the 

preliminary study together with the ^25’”^1 valence band, and along 

the A axis are those of the preliminary study together with the

valence band. The energy bands investigated along the E-S 

axis are the F^^-K^-X^, F^^-K^-X^ and conduction

bands and the F2^i“K2~X^, Fg^p-K^-X^ and Fg^i-K^-X^ valence bands.

In addition to recalculating the threshold positions initiated by 

hot electrons, threshold positions initiated by hot holes are also 

calculated.

As a result of the study performed and presented in Chapter 4, 
the energy bands are approximated by suitable Fourier series, in

preference to the polynomial approximations used in the preliminary

study. The errors involved in fitting the Fourier series to the
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energy bands are nowhere greater than O.OleV for most of the energy 

bands. However, the conduction band along the A axis, the

valence band and the r2 ,-Kg-X^ and r2 ,-K^-X^ conduction 

bands along the E-S axis are in error by more than O.OleV in places, 

but nowhere in error by more than 0.015eV. Where the errors in 

approximating to the energy bands are less than O.OleV, the computations 

are carried out until the overall error associated with each threshold 

energy is less than 0.015eV. When the initial state of the hot particle 

is in the region of an energy band in error by less than 0.015eV, the 

corresponding computational errors are less than 0.02eV.

The energy band gap of Germanium is generally accepted as being 

an indirect gap from to L^. In the band structure calculations

however, the conduction band minimum does not occur at L as expected, 

but along the A axis away from L. Only one energy value, of those 

calculated in the conduction band, is lower than the energy at

L, thus to conform with the accepted position of the energy gap, this 

one energy value is ignored in the fitting of the Fourier series. Due 

to this unexpected error and the subsequent action taken, a few of the 

thresholds, whose final states are in the region of the errors in the 

conduction band, involve larger errors in the conservation of 

energy than the other thresholds. This larger error does not have a 

great effect on the accuracy of the threshold energies, the overall 

errors being less than 0.02eV.

The results of these improved calculations are presented in 

Table 9.2, and are presented in the same manner as were the results of 

Silicon in Table 8.2. For comparative purposes, the values of E^/E^ 

given by the Franz construction and by the parabolic band approximation
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are also calculated, by the same procedures used previously. These 

results are presented in Table 9.4, in the same manner as were 

the results of Silicon in Table 8.4.

9.2 Discussion of the Results for the Germanium Band Structures

Both band structures investigated in the preliminary study have 

three conduction band minima of closely comparable energies, one at 

r, one at L and one along the F-A-X axis. The ordering by energy of 

these minima is different for the two band structures considered, and 

this has a significant influence on the relative order of comparable 

threshold energies. There are a greater number of thresholds for 

Germanium than for Silicon, which is a direct consequence of the 

increased number of conduction band minima, and the possibility of 

intervalley transitions.

The thresholds, presented in Table 9.1, are tabulated in order 

of increasing energy for the Cohen and Bergstresser band structure.

The thresholds for the Stuckel band structure are tabulated in directly 

corresponding order, which are seen not to occur in order of increasing 

energy, indicating just how sensitive each threshold is to the details 

of the band structure. Also, in some cases there are no directly 

comparable thresholds, and these are indicated by the blank entries in 

the table.

The Cohen and Bergstresser band structure along the A axis gives 

two thresholds, both corresponding to umklapp processes, the lower of 

these being very close to the minimum possible energy for any threshold, 

Along the A axis, the lowest value of E / E  is given by an umklapp 

process, and is followed closely by a normal process given by a double 

envelope solution, which corresponds to an intervalley transition, as 

were the lowest two thresholds along the A axis in Silicon. The normal 

process however, differs from that in Silicon, as it also corresponds
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to an example of an interband process in which the hot electron 

moves from one conduction band to another. These thresholds occur 

at higher energies than those along the A axis, as may be expected, 

and there are several more thresholds at higher energies corresponding 

to both umklapp and normal processes, and including another intervalley 

transition.

The sensitivity of the thresholds to the detailed band structure 

is clearly seen for the Stuckel band structure along the A axis. Where 

there are two thresholds given for the Cohen and Bergstresser band 

structure, there are now no thresholds, as the band structure is too 

flat to permit any ionization process to take place at all. Along the 

A axis, it also fails to provide the threshold comparable with the 

lowest threshold for the Cohen and Bergstresser band structure. It 

does however provide the threshold comparable with the lower normal 

process corresponding to an intervalley transition in the Cohen and 

Bergstresser band structure. Although it is of the same type, it has 

a much higher value of E,̂ ,/Eg (2.10 compared with 1.28). At higher 

energies, there exist comparable thresholds for all but two of the 

thresholds, but the comparable threshold energies differ considerably. 

It is interesting to note that the two thresholds, one in each band 

structure, for which there is no comparable threshold in the other 

band structure both correspond to intervalley transitions.

Experimental evidence on the band structure of Germanium (see 

for example, D, Long [ôcQ ) indicates an indirect gap of about 0.74eV 

from to L^. This is in general agreement with the Cohen and

Bergstresser band structure, and contrasts with the direct gap of 

1.20eV from F^^, to F^, given by Stuckel. Accordingly, it is believed 

that the thresholds given by the Cohen and Bergstresser band structure
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are the more reliable. The values of have also been calculated 

by Anderson and Crowell [ 3 ^  using the band structure of Cohen and 

Bergstresser, and absolute agreement is obtained within the errors 

of the respective methods.

In the improved calculations of the threshold values, the 

agreement with the corresponding values determined in the preliminary 

study is not particularly good. The improved threshold values corres­

ponding to the two thresholds along the A axis (E^/EG=1.023 and 1.026 

respectively) and to the two lowest thresholds along the A axis 

(E,j,/Eg =1 .193 and 1.209 respectively) are in close agreement with those 

determined in the preliminary study. However, it is surprising to 

note that the improved threshold values corresponding to all other 

thresholds determined in the preliminary study differ by significant 

amounts (having values of E^/EG=1.267, 1.374, 1.372, 1.801, 1.883 and 

2.789 respectively). This again illustrates the sensitivity of threshold 

energies to the detailed band structure.

It is seen from Table 9.2 that there are many more thresholds 

determined than in the preliminary study, due to the extra valence 

bands being considered. The lowest electron threshold along the A 

axis is still given by an umklapp process, with a normal threshold occurr­

ing at a slightly higher energy. At closely comparable energies to 

these two thresholds there are two other thresholds, of the same type, 

which occur due to the presence of the second valence band. This 

situation is expected as it also occurred in the improved calculations 

for the Silicon band structure. Two thresholds at higher energies 

(those for which E,̂ ,/Eg =1 .303 and 1.305) do not correspond to any of 

the thresholds determined in the preliminary study, which is again 

due to the details of the band structure. Both these thresholds
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correspond to intervalley transitions where one of the final states 

is near the conduction band minimum at T and the other is near the 

conduction band minimum along the A axis near X.

The lowest hole threshold along the A axis is higher than the 

lowest electron threshold, and corresponds to a normal process, which 

is similar to the situation along the A axis in Silicon, The error 

in the conservation of energy corresponding to all the thresholds 

along the A axis are much smaller than the maximum expected error, the 

largest error being less than O.OSeV.

In Silicon, it was surprising to see that the size of the matrix 

element of the coulomb interaction corresponding to the lowest electron 

threshold along the A axis was negligibly small. It is also surprising 

to see that the size of the matrix element corresponding to the lowest 

electron threshold along the A axis in Germanium is similarly negligibly 

small. It is even more surprising to see that all but two of the 

electron thresholds along this axis have negligibly small matrix 

element sizes, while one of those two thresholds has an insignificant 

matrix element size. The only threshold which has a significant matrix 

element size is that for which E^/E^ = 1.213, and has a value of 0.22.

Thus the situation is similar to that in Silicon, in that it would 

be erroneous to use the lowest electron threshold in related theories.

The lowest hole threshold, like that in Silicon, has a significant 

matrix element size, unlike the lowest electron threshold, and so it 

would not be erroneous to use it in related theories. The second lowest 

threshold does, howe'ver, have a negligibly small matrix element size, 

as does the second highest threshold, and so the effect of the matrix 

element sizes cannot be neglected. The approximate matrix element 

sizes, as given by equation 5.2.9, are all negligibly small, as they 

were in Silicon, those corresponding to umklapp processes being identically
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zero as expected. Thus the significant matrix element sizes are 

not approximated accurately, and only a few of the negligibly small 

matrix element sizes are approximated accurately.

All the electron threshold energies along the A axis are seen 

to be close to the minimum possible energy for any threshold, and 

all correspond to umklapp processes. The lowest hole threshold 

energy is also close to the minimum possible energy for any threshold, 

while the other hole thresholds have substantially higher energies.

As expected, the lowest electron and hole thresholds along this axis 

are lower than those along the A axis, since the energy band minimum 

occurs along this axis. The error in the conservation of energy 

corresponding to all the thresholds, with the exception of the two 

lowest electron thresholds, is very small, being less than O.OleV.

The larger errors in the conservation of energy corresponding to the 

two lowest electron thresholds is due to the error in the 

conduction band mentioned in the previous section.

The situation where some of the thresholds determined have 

negligibly small matrix element sizes is again repeated, but only 

for the electron thresholds, two of the thresholds having negligibly 

small matrix element sizes. One of these negligibly small matrix element 

sizes corresponds to the lowest electron threshold, and while it would 

be erroneous to use it in related theories, the correct threshold to 

use is of almost equal energy. The approximate matrix element sizes 

follow the pattern of those corresponding to the thresholds along the 

A and A axes in Silicon; those corresponding to the electron thresholds 

being zero, and those corresponding to the hole thresholds being negligibly 

small,none of them being of comparable sizes to the proper calculations 

of the matrix element sizes.
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There are more threshold positions determined along the Z-S 

axis than along the other two axes, as expected from the details of 

the band structure and the results of Silicon. The lowest electron 

threshold along the Z-S axis has an energy higher than the lowest 

electron threshold along the other two axes, and corresponds to a normal 

process, in contrast to the other electron thresholds which correspond 

to umklapp processes. It also corresponds to an intervalley transition 

where one of the final states is near the conduction band minimum at 

r and the other is near the conduction band minimum at X. This threshold 

is closely followed by a normal threshold given by a simple envelope 

solution, and then by another normal threshold of the same type as the 

lowest threshold. At higher energies there are many more thresholds, 

corresponding to both umklapp and normal processes, including some more 

intervalley transitions.

The lowest hole threshold along this axis corresponds to a normal 

process, and is lower than the lowest hole threshold along the A axis, 

but higher than that along the A axis. There are again many more threshold 

positions at higher energies, corresponding to both umklapp and normal 

processes, all given by simple envelope solutions. The errors in the 

conservation of energy of the thresholds are generally greater than those 

along the other two symmetry axes, but are still within the maximum 

expected error, being in error by less than 0.025eV for electron thresholds, 

and by 0.045eV for hole thresholds.

Yet again, it is seen by looking at the sizes of the matrix elements 

that there are very few thresholds which can be considered to be important 

due to their significant matrix element sizes. Most of the thresholds 

along this axis, including the lowest electron threshold, have negligibly 

small matrix element sizes. Although the lowest significant electron 

threshold has an energy not much higher than the lowest threshold energy,
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the corresponding matrix element size is rather small, having a 

value of 0.005. The lowest hole threshold however, has a significant 

matrix element size which is not small, having a value of 0.12.

By selecting, from the many threshold positions determined along 

all three symmetry axes, the lowest electron and hole thresholds, 

whether they have significant matrix element sizes or not, it is seen 

that they both occur along the same axis, the A axis, and both have 

comparable energies, with values of E^/E^ = 1.023 and 1.034 respectively. 

Since the lowest hole threshold has a significant matrix element size, 

it is not erroneous to use it in related theories. However, it would 

be erroneous to use the lowest electron threshold, although the correct 

threshold to use has an almost equal energy, having a value of E^/E^ = 1.031 

Thus the electron and hole thresholds to use in related theories have 

values of E_/E = 1.031 and 1.034 respectively, and both occur along the 

A axis, as may be expected.
9.3 Comparison with Results from Approximate Band Structure Models

It is seen from Table 9.3 that there are only minor differences 

between the values of E /E given by the Franz construction and those 

given by the simpler parabolic band approximation. It is also seen that 

the approximate values for the Cohen and Bergstresser band structure are 

in good agreement with those given by the Envelope Method for the genuine 

bands. The agreement in the Stuckel band structure however is not so 

good, and it is seen that the approximate models based on the Stuckel 

band structure give a threshold along the A axis which ought not to exist. 
They also provide much too low a value for E /E along the A axis.

Comparison of Tables 9.1 and 9.3 for the Cohen and Bergstresser 

band structure shows that the approximate models fail to provide the 

lowest threshold, as was the case in Silicon, the minimum threshold along 

each symmetry axis provided by the genuine bands being substantially lower.
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The comparison for the Stuckel band structure shows that the 

approximate models do provide the lowest threshold along the A axis 

but with a much too low a value for E /E . Thus, for one band 

structure the approximate band structure models give values of E^/E^ 

which are considerably larger than the lowest value for the genuine 

band structure, and in the other band structure they give values of 

E^/Eg which are considerably smaller than the lowest value for the

genuine band structure.

Table 9.3

Comparison of E^/E^ values for the different band structures

Band structure Parabolic band Franz Genuine
considered approximation construction band structure

Cohen & Bergstresser
r-A-L axis 
(indirect gap)

1.06 1.11 1.11

Stuckel
r-A-L axis 
(direct gap)

1.09 1.07

Cohen & Bergstresser
r-A-X axis 
(indirect gap)

1.52 1.53 1.49

Stuckel
r-A-X axis 
(direct gap)

1.20 1.17 1.32

It is seen from Table 9.4 that there are minor differences between 

the corresponding values of E^/E^ given by the Franz construction and 

those given by the simpler parabolic band approximation only for the 

electron thresholds, the corresponding values for the hole thresholds 

differing substantially. It is also seen that the approximate values
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given by the Franz construction are only in reasonable agreement 

with those given by the Envelope Method for three threshold positions, 

all along the Z-S axis; the lowest electron threshold and the two 

lowest hole thresholds given by the Franz construction. The approximate 

values given by the parabolic band approximation are only in reasonable 

agreement for the electron threshold along the Z-S axis, all other 

approximate values of E^/E^ differing substantially from the corresponding 

values given by the Envelope Method. The approximate models

Table 9.4

Comparison of E„/E values for différent band structuré models

Details of Parabolic band Franz Genuine
thresholds approximation construction band structure

r-A-X axis 1.566 1.559 1.374
Electrons - 1.609 1.415

r-A-X axis 2.089 1.859 1.503
Holes - 2.167 -

— 3.023 2.066

r-A-L axis 1.356 1.348 1.026
Electrons - 1.484 1.031

r-A-L axis 1.316 1.229 1.034
Holes — 2.296 -

r-Z-K-S—X axis 1.431 1.422 1.507
Electrons - 1.589 -

- 2.028 -

r-Z-K—S-X axis - 1.591 1.554
Holes 1.651 1.600

2.546 2.351

also give some thresholds which ought not to exist, as did those in 

the preliminary study for the Stuckel band structure, and those along 

the A axis in Silicon.

Comparison of Tables 9.2 and 9.4 shows again that the approximate



- 149 -

values of corresponding to all the thresholds, except the hole

threshold along the A axis, fail to provide the lowest thresholds. Of

those not provided,the hole threshold along the A axis and the electron

thresholds along the A and the Z-S axes are provided by slightly lower

values, while the other two thresholds are provided by substantially

lower values. However, the approximate values of the hole threshold

along the A axis and of the electron and hole thresholds along the A axis

are not in agreement with the values given by the Envelope Method, but

are considerably higher. Thus the only threshold given by the approximate

band structure models which is in reasonable agreement with the lowest

threshold given by the Envelope Method is the electron threshold along

the Z-S axis, all other values being considerably higher than the lowest

threshold values given by the Envelope Method. The conduction
band, and the and valence bands are all too

flat to provide all the thresholds given by the Franz construction, the

lower thresholds only being provided.
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10. IMPACT IONIZATION THRESHOLDS FOR 3C SILICON-GARBIDE

10.1 Details of the Calculations

The band structure used in the investigation of impact ionization 

thresholds in 3C Silicon-Carbide is reproduced from the data of 

Hemstreet and Fong [29]. As a result of the pilot study carried out, 

which was presented in Chapter 2, the effect of the non-local, 

angular-momentum-dependent potential term in the pseudopotential 

analysis is neglected. As in the investigations for Silicon and 

Germanium, the three principal symmetry directions are investigated, 

in an extended zone scheme, for impact ionization threshold initiated 

by hot electrons and by hot holes.

The energy bands investigated along the A axis are the

and r^^-Xg conduction bands and the F^^-X^ and F^^-X^ valence bands.

The energy bands investigated along the A axis are the F^-L^, F^^-L^

and F^^-L^ conduction bands and the F^^-L^ and F^^-L^ valence bands.

Those investigated along the Z-S axis are the F^-K^-X^, F^^-K^-X^, 

F^^-K^-X^ and F^^-K^-X^ conduction bands and the F^^-K^'X^, F^^-K^-X^ 

and F^^-K^-Xg valence bands. The numerical values of these energy 

bands are fitted by suitable Fourier series and, as in the cases for 

Silicon and Germanium, the analytic expressions used are, in general, 

nowhere in error by more than O.OleV. However, the F^-X^ and F^-K^-X^ 

conduction bands are, in parts, slightly less accurate. Where the 

threshold positions do not involve electron states in the inaccurate 

parts of these two conduction bands, the computations are carried out 

until the overall error associated with each threshold energy is less 

than 0.015eV.

The energy values on the F^-X^ conduction band calculated by the
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Empirical Pseudopotential Method"do not accurately reproduce the 

expected energy values as calculated by Hemstreet and Fong. The 

conduction band minimum does not occur at X as is expected, but along 

the A axis at a proportional distance of about 0.05 from the zone 

boundary with an energy of 2.31eV. Also the "smoothness" of the 

energy band is not reproduced, deviations from the expected values 

occurring at proportional distances of between 0.6 and 0.7 from the 

centre of the first Brillouin zone. This unexpected deviation causes 

greater errors in the curve fitting than are normally expected, and 

consequently some of the thresholds along this axis are subject to 

considerable errors in the conservation of energy.

Due to the shape of the P^-K^-X^ conduction band, the errors in 

fitting the appropriate analytic expression are greater than O.OleV 

in places, but are less than 0.015eV. The computations of threshold 

positions involving electron states in the slightly less accurate parts 

of this conduction band are carried out until the overall error associated 

with each threshold is less than 0.02eV. The results of the calculations 

of threshold positions are presented in Table 10.1, and are presented 

in the same manner as were the results of Tables 8.2 and 9.2 for Silicon 

and Germanium respectively. The values of E /E given by the Franz 

construction and by the parabolic band approximation are also calculated 

for comparative purposes, by the same procedure used previously, and 

the results are presented in Table 10.2, and are presented in the same 

manner as were the results of Tables 8.4 and 9.4.

10.2 Discussion of the Results

It is seen from Table 10.1 that along the A axis there are four 

electron thresholds, all corresponding to umklapp processes, and 

occurring in pairs with comparable energies. This is similar to the



- 152 -

c  c  0) o
G  «H 
«J On Oj • 

3  CV 
c r  .  
4) ITn

«)
o  o  o  o %

pn ir cn

H  CV O'

o  o

cvj OJ CV -3- OJ I I I I I
o  o  o  o  o
3 3 3  3 %

CV‘ »H r o  rH  

rH  fA  f - î  rH

I
o  o  o  o  c  c  o

ir.I
o  o

O  O  O  H  O
X  K
0\ ir.

OJ ro  CV I I I
o  o  o

iH  O  r-(

IT. pfN
0 \ c n ^

CO rH rH

C C0) o 
G  *1-1
<U 4^ 
1-4 K5 
4) 3

CV CO CV OJ I I I Io o o o
rH 1-4 rH f-4
X X X  X

CT' OC' C^

f-t CO c  M

%
X

o- o
o o

o  o  o  o
1-4 I—* f-4 ,-4
X  X X X

t -  O- C- cc  ITN

_3- C C ' r4  r4

iH CV O' O' -a- r4 I I I I I IO O C C CN o
r4  f-4 f-4 f-4 1-4 f-4
X  X  X  X  X XO o -a QC VC c

O ' O ' f-4 f-4 O ' f-4 OJ CV CO CO I I I I I I I I I IC O O O C O O O O O  
f - 4 f - 4 f - 4 i - 4 i - 4 i - 4 i - 4 f H i - H f H  
X X X X X X X X X X  

c c  c r t ^ f H v c O ' v o - a t ^ _ s -

O  C V i r t - 0 C  r 4 O '  a C O r 4 C V i H m r - i r O c n a -

%

op
"3
g
4->(U

-pCO
g
tn
4-j
o
41

+3o
g
CO
'Os
fO
4J
43•p

.2
4)k
«5

3w
4)k,
4J

g

If or ic a e o cr c c <r c c
o o C CO

C  ir c^ 
f-4 C" Oo c o 
c c c

g g

f-4 C - (Nc cC C O' ? §
O  O  O  - a  f-4 C 43  a o o ^ v o t - C f ' C O ' O O ^ r
o  fH c  r  c  r
o  c  c  c  c  r  c

C - - * f - 4 r - 4 r 4 0 - a . . . . , - ,
C C O C ' C O O O O O

CO c  c  c  c  o c c o o o c o  c o o o o o c o o o

V
0
4J

1
Z: =3 Z)=:Z: — eZiZBsz:

f-4 O  O  0
o-̂  O' cr o
f-4 f-4 IT  U f S

w

m 0 VC o ON 
C _a ir c  -a

0. or ON c^ O'
f-4 or cr c VC C ON
-a _3 VO CO 1/ IT cr
VO o  c  If r O' o
f-4 f-4  f-4 0  C ^  O  O

fHf-4 V O C l O f - 4 - a f H O O Jvocoifor.er4c^43r-co f— V O  o-^rr-ccoc O'
f-4 f-4  f-4  O  O ' O i 0.1 CV O CV

w

d p  ^
c  o  A:

c r  o  o  V C  
a? VC t- or, 
- a  a r  c  O-

CV CV CV o*

VC ir r- -a 
t- 0 - 0 0  f-4 
_a ON _a ar 
CO CO VO VC

lO t'- o
t- f-4 cr
f-4 O ' C

9 9 i
00 00 LfN
CV t- a  
cr cj f-4
O  f-4 f-4

9 i i

c r  _3

4 3  - 3

O  VC 
f-4 L-
o  r—00 00

p. or 43 a  t—  
o r or- - 3  f-4 43  
C  CV ON _3 c

i  ^  i
r o v e  CV o  fH 
ON p' 43 43 o  
p.' IT ir CO On 
f-4 VC CV (V C
Cj> c  o  o  o

CV f-4  VC LT p -  cr. - 3
- 3  o r  - a  r r  CO VC VO
I T  CT' O  IT  VC C  P -

CV C r ON CV - 3  - a  CV

ON _â  P  ' VC CV VC CP (V O  ~  ce p- o  o  
-a CP ur -a CO u> fH 
O' 00 CO or VC VC o

9 i i

O C _ 3 0 C V C - 3 V O C P P I V O V C  
43 C  VC ir p- O  fH CV ir o  
f H L O t —  O f H f H i r  fH fH fH

ococooooc^c^

CV CO o  VC VC oo u v p - r — -3 oicroocoNc—coOvCfH 
O  C? t o O  00 VC CTn VC t— O n 
fH P O N Q f H f H C V f H f H f H  • • • • • • • • • •
C j i C O C O O C D O C O O O O

Vt
o
0) o

g

IS
i>

. H , C

VC -3 43 P-
CV -a oo o
O v O '  CP o  

-a 43 UP VC

fH O  ON o  
CP VC C?N UP 
-3 -3 -a 43 
ON ON P- t—
C> <D <D G

t- CV O n 
CP CP UP 
CP VC rr
CV ON VC I I I

UP VC CV 
43 43 O.
p - VC -a
UP ON UP
o  o  o

VC ON

ON 43 
UP UP 
CV OJ
O  G

t~ PJ UP CV 0 \ 
O  VC CP O  ON
O' CV CV or t—

i W  ̂  ^
CO o VC or 43
CV 43 VC 43 CV 
or O  C  fH -3 
43 VC VC VC VO
o  o  o  o  o

or 43 CM O' t—  43 o
O  fH VC CO or UP CV
fH oo OC O  00 O  fH
VC VC VC CO O  O  O

fH CT, -a VC CV UP fH
U' O  P- VC UP CC VC
O  C- P! CP or CV CV
UP or or c—  p- M

4 3 0 C C C V V C U P f H 00 4 3 CV 
CC P- UP. O  VC VC 00 C P V C O n
VC 43 o  UP p- CV 43 P- OC CO

• • • • • • • • • •
CV O N 43 UP UP VC VC VC VC VCI I I I I I I I I I

UPC— p— ororoNUPCPVccv 
fH VC u p t ^ o o  CV O' or UP
ON VC 43 O' fH VC P- 00  O  C3N
VC or CV p - VC rr or or ON or

0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0

Vf
o

n
-O
fH
O
m

%x:
■p

s

■ i
I 0) 
F-f W

m

a
X
I

<  OJ

F- W

a n 00 CO
•H •H •r4 •H
X X X X
cd (d aS cd

#-] m f-q X  m X
. c 1 f l 11 0 1 CO 0 CO

Fh 1 h 1
•< P <  OJ X  P X W. U V 1 Ü 1 4J
1 OJ 1 fH F-] OJ W fH

fH 0 1 fH 1 0
F-f W F-. W F-̂  W F-h w



- 153 -

situation in Silicon, and may be expected due to the similarities 

in the band structure along this axis. There are also three hole 

thresholds, all corresponding to normal processes, the lowest of 

which is substantially higher than the lowest electron threshold.

As expected, the thresholds along this axis are determined fairly 

accurately, with the exception of those thresholds involving electron 

states in the inaccurate part of the conduction band, the error

in the conservation of energy being less than 0.02eV for each threshold.

The two highest electron thresholds, which are considerably higher 

than the lowest two thresholds, involve electron states in the inaccurate 

part of the F^-X^ conduction band, as does the second lowest hole 

threshold, which is also considerably higher than the lowest hole 

threshold. The consequent errors in the conservation of energy are 

thus not unexpected, being 0.085eV, 0.099eV and 0.035eV respectively 

for the electron and hole thresholds. The errors in the initial positions 

of the hot electrons are not thought to be too large, as the electron 

states lie in the F^^-X^ conduction band, and it is the final states of 

the electrons which are in error. The error for the hole threshold 

is mainly due to the error in the initial position of the promoted hole, 

and thus the error in the initial position of the hot hole is not 

thought to be very large.

The energy gap along the A axis in Silicon is much larger than that 
along the A axis, and cpnsequently the threshold energies along the 
A axis were much higher than those along the A axis. The energy gap 

along the A axis in 3C Silicon-Carbide is similarly much larger than 
that along the A axis, and thus it is expected that the threshold 

energies along this axis will be much higher than those along the 

A axis. This is seen to be the case for both electron and hole thresholds
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Only two electron thresholds are determined, both corresponding 

to umklapp processes and both of comparable energies, while all 

the hole thresholds correspond to normal processes. The same 

situation concerning the type of threshold processes also occurs 

along the A axis, and also along the two corresponding axes in 

Silicon, Another comparison which can be made with Silicon is that 

while the lowest electron threshold along the A axis is lower than 

the lowest hole threshold, the opposite situation occurs along the 

A axis, the lowest hole threshold being lower than the lowest electron 

threshold.

since the minimum energy gap occurs very close to X along the 

A axis, the energy gap along the Z-S axis is of a comparable energy, 

and it may be expected that the lowest thresholds along this axis 

will be of comparable energies to those along the A axis. However, 

the lowest electron threshold along this axis is much higher than that 

along the A axis, and in contrast to this, the lowest hole threshold 

along this axis is substantially lower than that along the A axis, 

and is consequently also much lower than the lowest electron threshold 

along the Z-S axis. As expected, all the electron thresholds along 

the Z-S axis correspond to umklapp processes, but of the hole thresholds, 

some correspond to umklapp processes, including the lowest threshold, 

while others correspond to normal processes.

The errors in the conservation of energy corresponding to all 

the thresholds along the A axis are much smaller than the maximum 

expected error, the largest error being less than O.OleV. The electron 

thresholds along the Z-S axis also have corresponding errors in the 

conservation of energy much less than the maximum expected error, but a 

few being larger than those along the A axis, although being less than
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0,025eV. Those corresponding to the hole thresholds along the Z-S 

axis are generally larger than the others, but are all less than 

0.04eV.

By considering only the threshold positions and the values 

of E^/Eg, it would appear that the lowest electron threshold occurs 

along the A axis with a value of E /E^=l,131, and that the lowest 

hole threshold occurs along the Z-S axis with a value of E^/E^=1.161,

In Silicon and Germanium, the corresponding situation was seen to 

be erroneous due to matrix element sizes being negligibly small, and 

was rather surprising. However, by looking at the matrix element 

sizes of the lowest electron and hole thresholds in 3C Silicon-Carbide, 

it would not have been erroneous, since both are of a significant s i z e , and 

have values of 0.019 and 0.088 respectively. Indeed, by looking at 

the matrix element sizes corresponding to all the thresholds determined, 

the situations which occurred in Silicon and Germanium, in which very 

few matrix element sizes were significant, are seen not to be repeated.

All the thresholds have corresponding matrix element sizes which are 

significant, which was the situation expected before the results of 

Silicon were obtained.

The lowest electron and hole thresholds given are thus the 

correct values to use in related theories, unlike the situations for 

Silicon and Germanium (for electrons only). Also, the largest matrix 

element sizes are considerably larger than the largest sizes in 

Silicon and Germanium, and it is surprising that they are even greater 

than unity. Of the approximate matrix element sizes which do not 

correspond to umklapp processes, and are consequently non-zero, only 

a few are in reasonable agreement with the proper calculations.

Thus the lowest electron threshold occurs along the A axis while
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the lowest hole threshold occurs along the Z-S axis, which is in 

contrast to the results of Silicon and Germanium for which both 

the lowest electron and hole thresholds occurred along the same 

symmetry axis, As in Germanium, both the thresholds are of 

comparable energies, and they also have comparable matrix element 

sizes. It is noted that all the threshold positions are determined 

by simple envelope solutions and that no double envelope solutions, 

which correspond to intervalley transitions, exist. This is due to 

the absence of multiple conduction band minima of comparable energies 

in the band structure, there being only the one distinct conduction 

band minimum.

10.3 Comparison with Résulta from Approximate Band Structure Models

The results presented in Table 10.2 show that there are minor

differences between the corresponding values of given by the

Franz construction and those given by the simpler parabolic band

approximation only for the electron thresholds along the A and A axes

and for the hole threshold along the Z-S axis. The corresponding

values for the other thresholds differ substantially, the values given

by the parabolic band approximation being higher than those given by

the Franz construction. The approximate values of E /E_ are nowhere1 G
in agreement with the corresponding values given by the Envelope
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Tablé 10.2

Comparison of E^/E^ values for different band structure models

Details of 
Thresholds

Parabolic band 
approximation

Franz
construction

Genuine 
band structure

F-A-X axis 1.683 1.651 1.131
Electrons - 1.778 1.139

F-A-X axis 1.751 1.527 1.297
Holes - 2.766 —

F-A-L axis 2.889 2.883 -

Electrons — 2.924

F-A-L axis 2.850 1.934 -

Holes - 3.266 —

F-Z-K-S-X axis 2.620 2.182 1.641
Electrons - 3.269 1.948

- 3.998 1.969

F-Z-K-S-X axis 1.554 1.534 1.161
Holes 2.558

Method for the genuine bands, all corresponding values being substantially 

higher. Indeed, as was the situation along the A axis in Silicon, the 

lowest lying conduction band and the highest lying valence band along 

the A axis (the and F^^-L^ bands) are too flat to permit any

ionization process to take place at all, and the approximate band 

structure models give threshold values for these bands which ought not 

to exist.

Along the A axis, the F^^-X^ valence band is too flat to provide 

more than one hole threshold position, but the Franz construction provides 

a second hole threshold which thus ought not to exist. The same situation

also occurs along the Z-S axis, for which the F^^-K^-X^ valence band
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is too flat to provide more than one hole threshold position.

Thus, there are only values corresponding to the approximate band 

structure models given by the Envelope Method for the electron 

thresholds and the lower hole threshold along the A and the Z-S 

axis. The lowest electron and hole thresholds along these axes 

are also provided by the approximate band structure models, as is 

seen by comparing Tables 10.1 and 10.2. However, the approximate 

values of E^/E^ are substantially higher than the values given by 

the Envelope Method.
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11._____IMPACT IONIZATION THRESHOLDS FOR GALLlUM^PHOSPHIDE

11.1 Details of the Calculations

The band structure used in the investigations of impact 

ionization thresholds in Gallium-Phosphide is reproduced from the 

data of Walter and Cohen [26], and as in the investigations of the 

previous semiconductors, the three principal symmetry axes are 

investigated in an extended zone scheme. Again, impact ionization 

thresholds initiated by both hot electrons and hot holes are thus 

determined by the Envelope Method. The energy bands investigated 

are the F^^-X^ and F^^-X^ conduction bands and the F^^-X^

and F\^-Xg valence bands along the A axis, the F^-L^, F^^-L^ and 

F^^-Lg conduction bands and the F^^-L^ and F^^-L^ valence bands 

along the A axis, and the F^-K^-X^, F^^-K^-X^, F^^-K^-X^ and 

F^^-K^-X^ conduction bands and the F^^-K^-X^, F^^-K^-X^ and F^^-K^-X^ 

valence bands along the Z-S axis.

As in the previous investigations, the numerical values of these 

energy bands are fitted by suitable Fourier series, the analytic 

expressions used being nowhere in error by more than O.OleV for all 

the energy bands except the F^^-X^ and the F^^-K^-X^ conduction bands. 

The shapes of these two conduction bands are similar to some of the 

conduction bands in Germanium and 3C Silicon-Carbide which were fitted 

slightly less accurately, and consequently it is not unexpected that 

these energy bands are also in error by slightly greater than O.OleV 

in places. They are however, in error by less than 0.015eV, but this 

slightly greater error has no noticeable effect on the overall accuracy 

of the energies of the thresholds which involve electron states in the 

F^^-X^ conduction band. Thus, the computations are carried out until 

the overall error associated with each threshold energy is less than
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O.OlSeV for all thresholds not involving electron states in the 

inaccurate parts of the conduction band. For the very

few threshold positions which do involve electron states in the 

inaccurate parts of this conduction band, the threshold energies 

are in error by less than 0.02eV.

The results of the calculations of the threshold positions are 

presented in Table 11.1, and are presented in the same manner as 

were the results of Tables 8.2, 9.2 and 10.1 for Silicon, Germanium 

and 3C Silicon-Carbide respectively. The values of E^/E^ given by 

the Franz construction and by the parabolic band approximation are 

also calculated, as before, for comparative purposes, and by the 

same procedures as used previously. The results of these approximate 

threshold values are presented in Table 11.2, in the same manner as 

were the results of Tables 8.4, 9.4 and 10.2.

11.2 Discussion of the Results

In the band structure of Germanium, there are three conduction 

band minima of comparable energies, and there are also three in the 

band structure of Gallium-Phosphide, one at F, one at X and one at 

L, the lowest of these occurring at X, unlike that in Germanium. As 

a consequence of these multiple conduction band minima and the possibility 

of intervalley transitions, there are a greater number of thresholds 

for Gallium-Phosphide, as there are for Germanium, than there are for 

Silicon and 3C Silicon-Carbide, as can be seen from Table 11.1.

Of the electron thresholds along the A axis, the lowest two are 

of comparable energies, the lowest having a value of E^/E^=1.118, and 

both corresponding to umklapp processes. All the other electron thresholds 

correspond to normal processes and occur at substantially higher energies 

than the lowest two thresholds. Two of these normal thresholds also
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correspond to intervalley transitions, being determined by double 

envelope solutions, for which the final state of the promoted 

electron is near the conduction band minimum at F, and the final 

state of the hot electron is near the conduction band minimum at X.

The hole thresholds along this axis all correspond to normal processes, 

as is expected from the results of the semiconductors investigated 

previously. The lowest threshold energy is close to the minimum 

possible energy for any threshold, and is also lower than the lowest 

electron threshold along this axis. The errors in the conservation 

of energy corresponding to all the threshold positions along this axis 

are, as may be expected from the previous results, much smaller than 

the maximum expected error, being less than 0.02eV for all the thresholds 

except one. This threshold is the highest electron threshold determined, 

and the slightly larger error of 0.025eV associated with it is due to 

the inaccuracies of the F^^-X^ conduction band, in which the hot electron 

state initially lies.

In Silicon, several of the thresholds are insignificant due to 

the negligible sizes of the matrix elements corresponding to those 

thresholds, and in Germanium, most of the thresholds are insignificant 

due to the same reason. However, in 30 Silicon-Carbide all the thresholds 

have matrix element sizes which are significant. The situation for 

Gallium-Phosphide is slightly different from these situations, in that 

most of the thresholds have corresponding matrix element sizes which 

are significant. The lowest electron and hole thresholds both have 

corresponding matrix element sizes which are significant, thus it would 

not have been erroneous to have taken them for use in related theories 

without considering the matrix element sizes. Indeed, there are only
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two insignificant matrix element sizes corresponding to thresholds 

along this axis, both electron thresholds with large values of 

E /E . The matrix element sizes given by the approximate equation 

5.2.9 are seen to be in agreement with the proper calculations of 

equation 5.2.5 for only two thresholds, the lowest hole threshold 

and one of the higher electron thresholds, of which that corres­

ponding to the lowest hole threshold is the only one which is of 

a significant size.

The energy gap along the A axis is slightly higher than that 

along the A axis, and consequently the threshold energies are also 

higher along the A axis. The lowest electron threshold is provided 

by an umklapp process, and has a considerably higher energy than 

that of the lowest electron threshold along the A axis. At higher 

energies there are several more thresholds, only one of which corresponds 

to an umklapp process, all the others corresponding to normal processes 

including a few intervalley transitions given by double envelope solutions 

The lowest hole threshold is also higher along this axis than that 

along the A axis, and similar to the situation along the A axis, is 

lower than the lowest electron threshold. Once again, all the hole 

thresholds along the A axis correspond to normal processes. The errors 

in the conservation of energy corresponding to all the thresholds along 

this axis are again very small, the error being nowhere greater than 

0.015eV, and only exceeding O.OleV for two thresholds, one electron and 

one hole threshold.

As along the A axis, the lowest electron and hole thresholds along 

the A axis both have corresponding matrix element sizes which are 

significant. However, the sizes of the matrix elements corresponding 

to the thresholds along this axis tend to follow the situation along
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the A axis in Germanium, in that several of those corresponding 

to electron thresholds are of an insignificant size (about half) . 

while all those corresponding to hole thresholds are of a signi­

ficant size. In contrast to the situation in the semiconductors 

investigated previously, the approximate sizes of the matrix elements 

corresponding to the electron thresholds are nearly all in agreement 

with the proper calculations, only those corresponding to the two 

umklapp processes and to one normal process differing substantially.

The situation for the hole thresholds however, is similar to those 

previously, none of the approximate matrix element sizes being in 

agreement with the proper calculations.

The lowest of the conduction band minima in Gallium-Phosphide occurs 

at X, and hence the energy gap along the E-S axis is the same as that 

along the A axis. The lowest thresholds along these two symmetry 

axes may therefore be expected to be of comparable energies. This is 

not the case for the electron thresholds, the lowest threshold along 

the E-S axis being substantially higher than that along the A axis.

This threshold is provided by a normal, intervalley transition, which 

is in contrast to the situation along the other two symmetry axes, but 

similar to the situation along the E-S axis in Germanium, which is a 

direct consequence of the multiple conduction band minima of comparable 

energies. At higher energies there are several umklapp processes, 

and also some more normal processes, some of which are also intervalley 

transitions. It is interesting to note that there are also a few 

umklapp processes which also correspond to intervalley transitions, 

a direct consequence of the zone boundary being | of the proportional 

distance along this axis from F.
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The lowest hole threshold, as expected, does have an energy 

comparable to the energy of the lowest hole threshold along the 

A axis, being very slightly lower. This lowest threshold is provided 

by a normal process, and the situation for the thresholds at higher 

energies is similar to that in Germanium and 3C Silicon-Carbide, 

there being some, umklapp processes and some normal processes. As 

may be expected from the errors in the conservation of energy 

corresponding to the thresholds along the E-S axis in Silicon,

Germanium and 30 Silicon-Carbide, those along the E-S axis in 

Gallium-Phosphide are slightly greater than those along the other 

two axes. The errors associated with all the electron threshold 

energies however, are still very small, being nowhere greater than 

0.02eV, while the errors associated with all but the highest hole 

threshold are nowhere greater than 0.035eV. The error in the 

conservation of energy of 0.054eV associated with the highest hole 

threshold, although less than the maximum expected error, is due to 

the inaccuracies in the conduction band.

Similar to the situation along the A and A.axes, only a few of 

the matrix element sizes corresponding to the electron thresholds 

along the E-S axis can be considered to be insignificant, while those 

corresponding to the hole thresholds along this axis are all significant. 

Also, the lowest electron threshold has a significant size of matrix 

element, as does the lowest hole threshold. Again, the matrix element 

sizes given by the approximate equation are in agreement with the proper 

calculations corresponding to several of the electron thresholds, but 

to only the lowest hole threshold. The proper calculations of the 

matrix element sizes corresponding to the majority of the thresholds 

along the E-S axis are not approximated accurately by the approximate
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calculations,

Thus, from the many thresholds determined along all three 

symmetry axes, the lowest electron threshold is provided by an 

umklapp process along the A axis with a value of E / E  =1.118, and 

the lowest hole threshold is provided by a normal process along 

the E-S axis with a value of E^/E^=1.009. However, the lowest 

hole threshold along the A axis is only very slightly higher than 

that along the E-S axis, having a value of E / E  =1.012. Since the 

matrix element sizes corresponding to all three of these thresholds 

are significant, they can also be considered to be the lowest 

significant thresholds. The hole threshold along the A axis, although 

it has a very slightly greater energy than that along the E-S axis, 

has a matrix element size greater than that along the E-S axis by an 

order of magnitude. Thus, the lowest hole threshold along the A axis 

should be used in related theories in preference to that along the 

E-S axis, and hence the lowest threshold for both electrons and holes 

occurs along the A axis.

The values of E^ have also been calculated by Anderson and 

Crowell [32], but using the band structure of Cohen and Bergstresser 

£25]. The band structure of Walter and Cohen £26], which is reproduced 

and used in the present work, differs slightly from that of Cohen and 

Bergstresser and is regarded as being the more accurate. The results 

presented in this work are thus compared with the results of Anderson 

and Crowell, and very good agreement is obtained within the errors of 

the respective methods. The lack of absolute agreement is almost 

certainly due to the slight differences in the two band structures 

investigated.
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11.3 Comparison with Results from Approximate Band Structure Models

It is seen from Table 11,2 that there are minor differences between 

the corresponding values of given by the Franz construction and

those given by the parabolic band approximation for all the electron 

thresholds, but for only the hole threshold along the Z-S axis. The 

corresponding values for the hole thresholds along the A and A axes 

are not in good agreement, the values given by the parabolic band 

approximation being substantially higher than those given by the Franz 

construction. It is also seen that the approximate values of E /E„ given 

by both the approximate band structure models are only in agreement with 

the value given by the Envelope Method for the lowest hole threshold 

along the Z-S axis. In fact, there is only one other threshold given 

by the Envelope Method for which the approximate values may be compared, 

the lowest hole threshold along the A axis. This situation also occurred 

in the investigations of Silicon, Germanium and 3C Silicon-Carbide, but 

is much more pronounced here.

Comparison of Tables 11.1 and 11.2 shows that the two threshold 

values given by the Envelope Method for which approximate threshold 

values also exist, correspond to the lowest hole thresholds along the 

A and the Z-S axes. Thus, the lowest hole threshold along the Z-S 

axis is also given accurately by both the approximate band structure 

models,
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Table 11.2

Comparison of values for different band structure models

Details of 
Thresholds

Parabolic band 
approximation

Franz
construction

Genuine 
band structure

P-A-X axis 1.096 1.094 _

Electrons — 1.107 —

P-A-X axis 1.299 1.219 1.012
Holes - 1.527 —

P-A-L axis 1.342 1.341 -

Electrons - 1.357 —

P-A-L;axis 1.245 1.128 -
Holes — 2.583 —

P-Z-K-S-X axis 1.808 1.769 -

Electrons - 2.649 -
- 3.288 —

P-Z-K-S-X axis 1.063 1.061 1,009
Holes - 1.212 -

2.426

although by slightly higher values, while that along the A axis is 

given by approximate values which are considerably higher than the 

value given by the Envelope method.

The r^-X^ conduction band along the A axis is too flat to permit 

any ionization process to take place at all, and thus the E^/E^ values 

given by the approximate band structure models ought not to exist.

The same situation also applies to the conduction band along

the A axis, the P^-K^-X^ conduction band along the Z-S axis and the 

P^^-Lg valence band along the A/axis. The P^^-X^ valence band along 

the A axis is only able to provide one hole threshold position, and
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thus only one E^/E^, value given by the approximate band structure 

models ought to exist, as is the valence band along the

Z-S axis.
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12. IMPACT IONIZATION THRESHOLDS FOR GALLIUM-ARSENIDE

12.1 Details of the Calculations

As in the investigation of impact ionization thresholds in

Gallium-Phosphide, the band structure used in the investigation

of impact ionization thresholds in Gallium-Arsenide is reproduced

from the data of Walter and Cohen Qzs], and the investigations are

carried out along the three principal symmetry axes in an extended

zone scheme. Again, impact ionization thresholds initiated by both

hot electrons and hot holes are determined by the Envelope Method.

The energy bands investigated are the and F^^-X^ conduction

bands and the F^^-X^ and F^^-X^ valence bands along the A axis,

the F^-L^, F^^-L^ and F^^-L^ conduction bands and the F^^-L^

and F^^-L^ valence bands along the A axis, and the F^-K^-X^, F^^-K^-X^,

F r-K-X and F -K -X conduction bands and the F__-K_-X_, F._-K -X_
LD z  D ID i D 15 2 5 15 1 5

and F^^-K^-Xg valence bands along the Z-S axis.

The numerical values of these energy bands are fitted by 

suitable Fourier series, the analytic expressions used being nowhere 

in error by more than O.OleV for all the energy bands except the 

F^-X^, F^^-X^ and F^^-K^-X^ conduction bands. The shapes of these 

three conduction bands are similar to some of the conduction bands 

in Gallium-Phosphide, and also in Germanium and 3C Silicon-Carbide, 

which were fitted less accurately. Consequently, the errors involved 

in fitting the analytic expressions to these conduction bands are 

greater than O.OleV in places, as may be expected. The errors in 

the F^-X^ and F^^-X^ conduction bands are only greater than O.OleV 

in the region between about 0.3 and 0.4 of the proportional distance 

along the A axis measured from F . The errors in this region vary 

considerably, but the analytic expressions fitted are nowhere in 

error by more than 0.03eV, and as a result of these inaccuracies.
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a few threshold positions, for both electrons and holes, are 

determined less accurately.

The errors in the conduction band are only slightly

greater than O.OleV in places, and are nowhere in error by more than 

0.015eV. Thus, for threshold positions not involving electron states 

in the inaccurate parts of these three conduction bands, the computa­

tions are carried out until the overall error associated with each 

threshold energy is less than 0.015eV. For the very few thresholds 

which involve electron states in the inaccurate parts of the F^^-K^-X^ 

conduction band, the threshold energies are in error by less than 

0.02eV, while the threshold energies of those few thresholds involving 

electron states in the inaccurate parts of the F^-X^ or F^^-X^ conduction 

bands are in error by less than 0.035eV.

The results of the calculations of the threshold positions are 

presented in Table 12.1, and are presented in the same manner as were 

the results of Tables 8.2 and 9.2 for Silicon and Germanium. As usual, 

the values of given by the Franz construction and by the parabo­

lic band approximation are also calculated, again for comparative 

purposes, by the same procedures used previously. The results of 

these approximate threshold values are presented in Table 12.2 in the 

same manner as were the results of Tables 8.4 and 9.4.

12.2 Discussion of the Results

The previous semiconductors investigated all have indirect 

band gaps, unlike the band gap in Gallium-Arsenide, which is a direct 

gap from F^^-F^. However, similar to the band structures of Germanium 

and Gallium-Phosphide, there are a further two conduction band minima 

of comparable energies, one at L and one at X. Consequently there 

are a similar number of impact ionization threshold positions in 

Gallium-Arsenide as there are in Germanium and Gallium-Phosphide,
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due to the multiple conduction band minima and the possibility 

of intervalley transitions.

Along the A axis in the semiconductors investigated previously, 

the lowest two electron threshold were seen to have comparable 

energies, the lowest threshold promoting an electron from the higher 

lying valence band and the higher threshold promoting an electron from 

the lower lying valence band. The situation along the A axis in 

Gallium-Arsenide is in contrast to these results, the lowest threshold 

being substantially lower than the second lowest threshold, having 

values of E^/E^ = 1.266 and 1.450 respectively. This is due to the 

r^-X^ conduction band being too flat to permit impact ionization 

processes to take place which involve electrons in the valence

band. Both these thresholds are provided by normal processes, and 

the final states of both the electrons, for both thresholds, are near 

the conduction band minimum at F, as may be expected. At higher energies 

there are, as usual, several more thresholds provided by botn umkiapp 

and normal processes, and including a few intervalley transitions.

The hole thresholds along the A axis all correspond to normal 

processes, as is expected, and similar to the situation in Gallium- 

Phosphide, the lowest hole threshold is lower than the lowest electron 

threshold along this axis. The next lowest hole threshold however, 

has a very much larger energy than the lowest (E^/E^sl.840 compared 

with E^/E^=1.177 for the lowest threshold). The errors in the 

conservation of energy associated with the thresholds along this 

axis are not particularly good, the large errors occurring due to 

the inaccuracies involved in fitting the analytic expressions to the 

two conduction bands. The large errors in the conservation of energy 

associated with the two lowest electron thresholds are due to the 

initial states of the hot electrons being in the inaccurate part
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of the r^-X^ conduction band. Two other electron thresholds, at 

much higher energies, also have large errors in the conservation 

of energy associated with them due to the initial hot electron 

states being in the inaccurate part of the F^^-X^ conduction band.

The errors in the conservation of energy associated with the hole 

thresholds are much smaller than those for the electron thresholds, 

and are all less than the maximum expected error.

There are surprisingly few electron thresholds along the A 

axis (only three) considering the similarities in the Gallium- 

Phosphide and Gallium-Arsenide band structures. These thresholds 

also occur at very high energies, all having energies larger than 

all the thresholds determined, both electron and hole thresholds, 

along the A axis. These large energies are due to the F^-L^ 

conduction band being too flat to permit any ionization process to 

take place at all, the hot electron in each threshold being provided 

by either the F^^-L^ or the F^^-L^ conduction band.

The lowest hole threshold along this axis has a value of E^/E^=1.060, 

close to the minimum possible energy for any threshold, and lower than 

the lowest hole threshold along the A axis. Similar to the situation 

along the A axis, the next lowest hole threshold along the A axis 

occurs at an energy considerably higher than that of the lowest hole 

threshold. Once again, all the hole thresholds along this axis are 

provided by normal processes. The errors in the conservation of energy 

corresponding to all the threshold along this axis, except the highest 

electron threshold, are very small indeed, as may be expected, none 

being greater than O.OleV. The error corresponding to the highest 

electron threshold, although larger than all the others along this 

axis, is still smaller than the maximum expected error.
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Considering now the thresholds along the Z-S axis, the 

situation is seen to be similar to that along the Z-S axis in 

both Germanium and Gallium-Phosphide as expected. There are 

many electron thresholds, provided by both umkiapp and normal 

processes, some of which also correspond to intervalley transitions, 

and there are also many hole thresholds, again provided by both 

umkiapp and normal processes. The lowest electron threshold along 

this axis has an energy only slightly greater than that of the 

lowest hole threshold along the A axis, and lower than the energies 

of the lowest electron thresholds along the A and A axes. Similar 

to the lowest electron threshold along the A axis, this lowest 

threshold is provided by a normal process in which the final electron 

states are both near the conduction band minimum at F. Also, the 

next lowest electron threshold has an energy considerably higher than 

that of the lowest threshold.

The lowest hole threshold along the Z-S axis is close to the 

minimum possible energy for any threshold, as is that along the A 

axis, and is even lower than the lowest hole threshold along the 

A axis. This lowest threshold is provided by a normal process, as 

is the next lowest threshold which has an energy not much greater 

than that of the lowest threshold, in contrast to the situation along 

the other two symmetry axes. However, the third lowest hole threshold 

does have an energy considerably higher than those of the two lowest 

thresholds.

The errors in the conservation of energy corresponding to the 

thresholds along the Z-S axis are generally smaller than those along 

the A axis, in contrast to the situations in the other semiconductors
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investigated, but generally greater than those long the A axis, 

in keeping with the situations in the other semiconductors 

investigated. Most of the electron thresholds have a corresponding 

error in the conservation of energy less than 0.02eV, with only a 

few in error by more than this. Only one threshold is in error 

by more than 0.03eV, but is still less than the maximum expected 

error, and is due to the inaccuracies in the conduction

band. All but one hole threshold have corresponding errors in the 

conservation of energy less than 0.02eV, while the one less accurate 

threshold, in error by 0.036eV, is again due to the inaccuracies 

in the F^^-K^-X^ conduction band.

The situation concerning the sizes of the matrix element of 

the coulomb interaction is similar to that in Gallium-Phosphide, 

in that most of the thresholds have corresponding matrix element 

sizes which are significant. However, in contrast to the situation 

in Gallium-Phosphide, the lowest electron threshold along the A 

axis has an insignificant matrix element size, the lowest significant 

threshold not occurring until a very much higher energy is achieved, 

the threshold having a value of E / E  =1.715. The lowest hole 

threshold along the A axis does have a significant matrix element 

size, in keeping with the situation in Gallium-Phosphide.

The lowest electron and lowest hole thresholds along the A axis 

both have corresponding matrix element sizes which are significant, 

similar to the situation along the A axis in Gallium-Phosphide. 

Indeed, the matrix element size corresponding to the lowest hole 

threshold is greater than unity, a situation which was first noticed 

in the results of 3C Silicon-Carbide. Along this axis there is only
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one threshold, an electron threshold, which has a corresponding 

matrix element size which is insignificant.

Again, there are only a few thresholds along the Z-S axis 

which can be considered to have insignificant matrix element 

sizes. However, unlike the situations along the other two 

symmetry axes, both the lowest electron and the lowest hole thresholds 

have corresponding matrix element sizes which are insignificant.

The second lowest electron threshold along the Z-S axis is the 

lowest which also has a significant matrix element size, but it 

has a very much higher energy. Also, a further two electron thresholds, 

at even higher energies, are seen to have corresponding matrix element 

sizes greater than unity, as did the lowest hole threshold along the 

A axis. The lowest significant hole threshold, unlike the lowest 

significant electron threshold, occurs at an energy not much greater 

than that of the lowest hole threshold.

The approximate calculations of the matrix element sizes are 

in general better than those in the other semiconductors investigated. 

Most of the electron thresholds along the A axis which are provided 

by normal processes have corresponding matrix element sizes which 

are also approximated accurately by the matrix element sizes calcu­

lated from equation 5.2.9. This also applies to the electron

thresholds along the Z-S axis which are provided by normal processes. 

However, the situation for the electron thresholds along the A axis, 

and for all the hole thresholds are more in keeping with the situations 

in the other semiconductors investigated, in that very few of the 

matrix element sizes corresponding to these thresholds are approximated 

accurately by the equation 5.2.9.
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From the many thresholds determined along all three principal 

symmetry axes, the lowest electron threshold has a value of E^/E^=1.083 

and is provided by a normal process along the Z-S axis, while the 

lowest hole threshold has a value of E^/E^=l,026, slightly lower than 

the lowest electron threshold, and is also provided by a normal process 

along the Z-S axis. However, it would be erroneous to use these values 

in related theories as both of them have corresponding matrix element 

sizes which are insignificant. It is necessary to consider the matrix 

element sizes corresponding to the thresholds before attempting to 

use them in related theories. By doing this, it is seen that the 

lowest electron threshold which has a significant matrix element size 

does not occur until a very much higher energy than the" overall lowest 

electron threshold. It has a value of E / E  =1.567, and is provided by 

a normal process along the Z-S axis, and also corresponds to an 

intervalley transition.

The lowest hole threshold which has a significant matrix element 

size occurs at a comparable energy to that of the overall lowest hole 

threshold, being only slightly higher with a value of E^/E^=1.060. 

However, this threshold is not provided along the same axis, but along 

the A axis, thus being in contrast to the expected situation which 

occurred in Silicon, Germanium and Gallium-Phosphide. That is, the 

lowest electron and hole thresholds which are significant are provided 

along different symmetry axes, the situation which also occurred in 

3C Silicon-Carbide. Even though the lowest significant hole threshold 

occurs along the A axis, the lowest significant hole thresholds along 

the other two symmetry axes occur at only slightly higher energies, 

although they do have significantly smaller matrix element sizes.
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The values of have also been calculated by Anderson and 

Crowell [32], but using the band structure of Cohen and Bergstresser 

[25J. As for Gallium-Phosphide, the band structure of Walter and 

Cohen which is reproduced and used in the present work, differs 

slightly from that of Cohen and Bergstresser, and is regarded as being 

the more accurate. The results presented in this work are thus 

compared with the results of Anderson and Crowell, and with the 

exception of the electron thresholds along the A axis, very good 

agreement is obtained within the errors of the respective methods.

The lack of agreement in the electron thresholds is almost certainly 

due to the slight differences in the two band structures investigated.

12.3 Comparison with Results from Approximate Band Structure Models

As expected from the results of the approximate band structure 

modejs for the semiconductors investigated previously, there is not 

complete agreement between the values of E^/E^ given by the parabolic 

band approximation and the corresponding values given by the Franz 

construction. There are however, only minor differences between the 

corresponding values for all the thresholds except the hole threshold 

along the A axis, for which the value of E^/E^ given by the parabolic 

band approximation is substantially higher than that given by the Franz 

construction. Similar to the situation in Gallium-Phosphide, there 

are only two threshold positions determined by the Envelope method for 

which the approximate values may be compared, the lowest electron 

thresholds along the A and the Z-S axes. Of these two thresholds, 

only that along the Z-S axis is approximated accurately, the approximate 

values corresponding to the threshold along the A axis being substantially 

lower.
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Comparison of Tables 12.1 and 12.2 shows that

Table 12.2

Comparison of E / E  values for different band structure models

Details of 
Thresholds

Parabolic band 
approximation

Franz
construction

Genuine 
band structure

r-A-X axis 1.124 1.127 1.266
Electrons - 1.465 —

r-A-X axis 1.876 1.607 —

Holes - 1.873 -
- 2.091 -
- 3.103 —

r-A-L axis 1.073 1.057 -

Electrons — 1.491 —

r-A-L axis 1.933 1.929 -
Holes - 3.884 —

F-Z-K-S-X axis j 1.046 1.034 1.083
Electrons - 1.148 -

- 1.521 —

F-Z-K-S-X axis — 1.603 -

Holes - 1.754 -
1.981 1.975 -

4.488

the two threshold values given by the Envelope method, for which 

approximate threshold values also exist, correspond to the lowest 

electron thresholds along the A and Z-S axes. Thus the lowest electron 

threshold along the Z-S axis is also given accurately by both the 

approximate band structure models, while that along the A axis is 

given by approximate values which are substantially lower than the 

true values.

The valence band along the A axis is too flat to permit

any ionization process initiated by hot holes to take place at all.
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and thus the values of E^/E^ given by the approximate band 

structure models ought not to exist. The same situation also 

applies to the conduction band and the F^^-L^ valence band

along the A axis, as it does for the corresponding energy bands 

along the A axis in Silicon, 3C Silicon-Carbide and Gallium- 

Phosphide. The F^^-K^'X^ valence band along the Z-S axis is also 

too flat to permit any ionization process to take place at all, 

and again, the values of E^VE^ given by the approximate band 

structure models ought not to exist. The F^-X^ conduction band 

along the A axis is only able to provide one electron threshold 

position, and thus only one value of E_/E given by the approximate 

band structure models ought to exist. This situation also applies 

to the F^-K^-X^ conduction band along the Z-S axis.
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13. RESUME OF RESULTS

13.1 Summary of Work Done

The aim of this thesis has been to investigate the relation 

between the detailed band structure and impact ionization for a 

number of semiconductors. This research project was prompted by 

the lack of knowledge concerning the impact ionization threshold 

energies for realistic band structures, since at that time the 

only calculations of impact ionization threshold energies had been 

made using approximate band structure models. These assumed the 

conduction band to be parabolic, and most of them also assumed the 

valence band to be parabolic.

In order to perform calculations for realistic band structures, 

it was necessary to obtain accurately the details of the band structures 

investigated. This was done by reproducing the band structure 

calculations of previous workers, which were made by the Empirical 

Pseudopotential Method (EPM). In the EPM calculations of 3C SiC, 

the band structure was reproduced from the calculations of Hemstreet 

and Fong j^28,29] , for which a nonlocal, angular-momentum-dependent 

potential term was added to the local potential term. As a result of 

a pilot study into the effect of this nonlocal term, an error in the 

calculations of Hemstreet and Fong was revealed, and it was shown 

that the nonlocal term had a negligible effect on the band structure, 

contrary to the results of Hemstreet and Fong.

Opce the realistic band structures of the various semiconductors 

had been calculated, the impact ionization threshold energies were 

then determined. For the purpose of calculating these threshold 

energies, a graphical method was developed in this work, referred to 

as the Envelope Method. The results of these calculations were
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presented in Chapters 8 to 12, together with the appropriate 

values given by two approximate band structure models which previous 

workers had used in their calculations. These models were; the 

method developed by Franz [icQ as a generalization of the method 

introduced by Tewordt , and the familiar parabolic band, or 

effective mass, approximation.

Since the impact ionization threshold energy appears as a 

parameter in the total probability of a transition, it was decided 

to calculate two other quantities appearing in the total transition 

probability. One of these was the relative importance of the density 

of states of the energy bands involved in a transition for hot 

electron energies just above threshold, for thresholds having 

comparable energies. However, it was concluded that for Si, this 

quantity was not important in determining the relative importance of 

thresholds having comparable energies, and was therefore not calculated 

for the thresholds of the other semiconductors investigated.

The second quantity appearing in the transition probability was 

the matrix element of the coulomb interaction between the electron 

states involved in a transition. This calculation was performed by 

employing the theory of Beattie and Landsberg [l"^ , in which the 

states involved in the transition are described by orthonormal, one- 

electron functions. Furthermore, these one-electron functions were 

expanded as a finite series of plane-waves, the coefficients of which 

were calculated by means of the EPM. In the calculations of the sizes 

of the matrix element, only the term which is referred to as the 

’direct term’ was evaluated; no evaluation was made of the term which 

is referred to as the ’exchange term’. The results of these calcula­

tions were presented in Chapters 8 to 12, some of which were very
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surprising, as a number of threshold positions had corresponding

matrix element sizes which were insignificant.

13.2 Accuracy of Band Structures in Calculating the Lowest 
Threshold Energies

In the chapters dealing with the results, not only were the 

threshold values given by the Envelope Method for the realistic 

band structures presented, but also the corresponding values given 

by the two approximate band structure models. It was seen that while 

the values given by the two approximate models were, in general, 

comparable with each other, the comparison with the corresponding 

values given by the Envelope Method were very poor indeed. Since 

the lowest threshold of each type (electron and hole) is of greatest 

importance, they are summarized in Table 13.1, in which the lowest 

values given by the approximate band structure models are compared 

with the lowest values given by the Envelope Method.

It is seen that in the majority of situations, the lowest 

approximate values are not directly comparable to the lowest values 

given by the Envelope Method, but correspond to different threshold 

positions. Even for those approximate values which are directly 

comparable to the lowest values given by the Envelope Method, the 

threshold energies are in general considerably different, and are 

only comparable in two cases. However, there are a few other threshold 

energies given by the approximate band structure models which are of 

comparable energies to those given by the Envelope Method, although 

the threshold positions are not directly comparable.

From these results it is clear that, of the 30 lowest threshold 

positions determined in the various semiconductors, since only two of 

these are also given accurately by the approximate band structure
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models, it is dangerous to rely on the values given by approximate 

band structure models. To obtain reliable values for impact ionization 

threshold energies it is necessary to use the genuine band structures 

of the semiconductors being investigated. Also, from the results of 

the preliminary studies of Si and Ge, and from the comparison with the 

corresponding improved calculations, it was seen that the threshold 

values are sensitive to the precise details of the band structure.

Hence, the realistic band structures used should be in substantial 

agreement with experimental data to ensure the greatest possible 

accuracy.

In the light of this last remark, it should be mentioned that 

the accuracies of the band structures investigated in the present work 

vary considerably. In the improved calculations of the threshold 

positions in Si the band structure was reproduced from the data of 

Cohen and Bergstresser ^25^, although it was known that it did not 

agree with the generally accepted band structure, the energy band 

gap being too small. This band structure was reproduced to enable 

the matrix elements of the coulomb interaction to be calculated by 

the method previously described, which uses the wavefunctions of the 

pseudopotential method which are readily available. While this was 

the best pseudopotential band structure calculation available at the 

time, the matrix elements could not have been calculated as readily 

if, say, the Stuckel and Euwema band structure had been used.

The band structures of Ge, GaP and GaAs were all reproduced from 

accurate band structure calculations which were in substantial agreement 

with available experimental data. However, there is an uncertainty 

about the band structure calculations of 30 SiC, as not a great amount 

of experimental data is available. Also, the band structure calcula-
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tions of Hemstreet and Fong |]28,29^ , using an extra, nonlocal 

potential term in the pseudopotential analysis, were found to be 

in error. Even without the effect of this extra term, there were 

discrepancies between the band structure calculations of Hemstreet 

and Fong and those in the present work, for which their data was 

used. The reliability and accuracy of this band structure is 

consequently in doubt, as are the accuracies of the resulting thres­

hold energies.

13.3 Relative Significance of the Lowest Thresholds

Even though the accuracies of the Si and SiC band structures 

investigated are in doubt, the threshold energies calculated from 

them should still provide some useful information; especially the 

lowest threshold energies for both electrons and holes. The size of 

the matrix element of the coulomb interation corresponding to each 

threshold was seen to be an important factor in determining the 

relative significance of threshold energies. It was surprising to 

see that many of the threshold positions determined had corresponding 

matrix element sizes which were insignificant, including some which 

were the lowest threshold positions determined. This resulted in the 

lowest significant threshold position occurring at a higher energy, 

and in a few instances at a much higher energy.

Had the sizes of the matrix element not been considered, this 

would have led to some incorrect threshold energies being used in 

related theories, such as in the calculation of the impact ionization 

coefficients for electrons and holes. The lowest threshold energy 

within each semiconductor, together with the lowest threshold energy 

which has a corresponding significant matrix elment size, and the 

principal symmetry axis on which each threshold occurs is thus summarized
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in Table 13.2.

Both the lowest electron and hole thresholds in Si have 

corresponding matrix element sizes which are insignificant, but the 

lowest significant electron threshold occurs at very nearly the same 

energy, while the lowest significant hole threshold occurs at a much 

higher energy. Also, the lowest significant hole threshold occurs 

along a different symmetry axis than does the absolute lowest threshold; 

the same symmetry axis along which the lowest electron threshold occurs. 

The situation for the lowest electron threshold in Ge is

Table 13.2

Lowest Impact Ionization Thresholds

Material
and

Process

Lowest
Threshold

^T^^G

Lowest
Significant
Threshold

^T^^G

Axis on which 
lowest significant 
threshold occurs

Si. Electron 1.055 1.056 F-A-X
Hole 1.644 * 1.813 F-A-X

Ge. Electron 1.023 1.031 F-A-L
Hole 1.034 1.034 F-A-L

Sic. Electron 1.131 1.131 F-A-X
Hole 1.161 1.161 F-Z-K-S-X

GaP. Electron 1.118 1.118 F-A-X
Hole 1.009 * 1.012 F-A-X

GaAs. Electron 1.083 1.567 F-Z-K-S-X
Hole 1.026 * 1.060 F-A-L

Occurs along a different symmetry axis (the F-Z-K-S-X axis).
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similar to that in Si; namely the lowest significant threshold 

occurring at very nearly the same energy as the absolute lowest 

threshold. The lowest hole threshold however is also the lowest 

significant hole threshold, and also occurs along the same symmetry 

axis as does the lowest electron threshold.

All the threshold positions in 3C SiC were seen to have corres­

ponding matrix element sizes which were significant, and consequently 

both the absolute lowest electron and hole thresholds are also the 

lowest significant thresholds. However, these thresholds occur along 

different symmetry axes, unlike the situation in Si and Ge. The lowest 

significant electron threshold in GaP is also the absolute lowest 

threshold, while the lowest significant hole threshold has an energy 

very nearly equal to that of the absolute lowest threshold, but occurs 

along a different symmetry axis. Thus the lowest significant electron 

and hole thresholds are provided along the same symmetry axis, a 

similar situation to that in Si.

In GaAs, both the lowest electron and hole thresholds are insignificant, 

as they were in Si, although the lowest significant electron threshold 

occurs at a very much higher energy. The lowest significant hole threshold 

however, has an energy very nearly equal to that of the absolute lowest 

threshold, but occurs along a different symmetry axis. Thus the lowest 

significant electron and hole thresholds occur along different symmetry 

axes, as was the situation in 3C SiC.

It is indicated from these results that it would be unwise to use 

any impact ionization threshold energies in related theories, such as 

in the calculation of the impact ionization coefficients, without first 

calculating the corresponding size of the matrix element of the coulomb 

interaction. Indeed, in a few cases it would have been erroneous if the
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relative significance of the threshold positions had not been 

considered, and would have led to totally misleading results.

The method used to calculate the sizes of the matrix element 

of the coulomb interaction assumes that the wavefunctions of the 

electron states involved in a transition can be expanded as a finite 

series of plane-waves. It is recognised that this is an approximation,

6nd that more accurate and reliable calculations are possible and 

should perhaps be used. However, it is hoped that the results presented 

in this thesis prove useful, and serve as a basis for further calculations 

of the matrix elements by using more reliable and exact models.

13.4 Application to Impact Ionization Coefficients

Having calculated the impact ionization threshold energies of 

hot electrons and holes in a number of semiconductors, and also determined 

the lowest significant threshold energies, they can now be used to 

determine which of the two processes will be the more important; impact 

ionization by electrons or by holes. This can be done by calculating 

the total probability of transition, in which the threshold energy appears 

as the lower limit of the integration over energy, or by calculating 

the impact ionization coefficient, which has a negative exponential 

dependence on the threshold energy. The impact ionization coefficients 

for electrons, a, and for holes, 3» will also depend upon the total 

transition probability, and thus an idea of the relative magnitudes 

of a and 3» within a particular semiconductor, can be obtained by consider­

ing the lowest threshold energies and the corresponding matrix element 

sizes.

Looking at Table 13.2, it is seen that the lowest significant 

electron threshold for Si has an energy considerably lower than that of 

the lowest significant hole threshold, and thus it is expected that
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a > 3» which is in agreement with experimental evidence (see for 

example, Miller [?]). In Ge the two thresholds are of almost equal 

energies, and so it may be expected that a 23 3 in this case. However, 

by considering also the corresponding matrix element sizes of these 

two thresholds, it is expected that a ^ 3, as is indicated by Miller 

[6],
The situation in Ge also applies to 30 SiC, in that the lowest 

significant electron and hole thresholds have nearly equal energies. 

However, the corresponding matrix element of the hole threshold is 

slightly larger than that of the electron threshold, and thus it is 

expected that a ^ 3* The thresholds in GaP are also of comparable 

energies, although the electron threshold is the slightly higher of 

the two, but the matrix element corresponding to the electron threshold 

is also larger than that corresponding to the hole threshold, and 

consequently it is expected that a %  3» In Ga As, the lowest signifi­

cant electron threshold energy is considerably larger than that of 

the lowest significant hole threshold, the opposite situation to that 

in Si, and thus it is expected that a < 3 as is reported experimentally 

by Stillman et. al [62] .

These impact ionization coefficients depend upon the impact 

ionization threshold energies, which in turn depend upon the direction 

in which the electric field is set up in the semiconductor. For example, 

if the electric field is set up in the direction of one particular 

symmetry axis, then the electrons and holes will gain energy from the 

field by moving in the direction of the field, along that particular 

symmetry axis. However, it was seen from the results presented in 

Chapters 8 to 12 that the lowest significant threshold energies along 

each of the principal symmetry axes differ considerably.
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Under the assumptions made by Shockley [2] for small electric 

fields, the electron and hole concentration peaks in the direction 

of the electric field, and that only those electrons avoiding 

collisions with the lattice will gain sufficient energy to partake 

in impact ionization. Thus in this situation, the direction in which 

the electric field is set up in the semiconductor will have a signifi­

cant effect upon the impact ionization coefficients. The same situation 

does not necessarily apply under the assumptions made by Wolff [l] 

for large electric fields, where the electrons may be scattered and 

may assume a distribution which is almost spherically symmetric.
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14. Conclusions, Recommendations and some Ideas for Extending 
the Work

By comparing the impact ionization threshold positions calculated 

accurately by the Envelope Method for the realistic band structure 

with the corresponding values calculated from two approximate band 

structure models, for a number of semiconductors, it has been shown 

that the approximate band structure models give unreliable threshold 

values. Consequently, it is necessary to calculate impact ionization 

threshold positions accurately, by making full use of the details of 

the band structure, and that it is dangerous to rely on values given 

by approximate band structure models. Also, the threshold positions 

are sensitive to the precise details of the band structure, and thus 

the band structures used should be in substantial agreement with 

experimental data.

Having determined the impact ionization threshold positions, it 

was then shown that it is necessary to calculate the sizes of the 

matrix element of the coulomb interaction associated with each threshold 

position to establish which threshold positions are significant. It 

was surprising to see that several impact ionization threshold positions 

had corresponding matrix element sizes which were insignificant, including 

some which were the lowest threshold for the particular band structure. 

Thus, having determined the significant impact ionization threshold 

positions, these may then be used in the related theories, such as 

calculating the total transition probabilities or the impact ionization 

coefficients of electrons and holes.

The realistic band structures used in the investigation of impact 

ionization threshold positions were calculated by the Empirical 

Pseudopotential Method. In the calculation of the band structure of 

3C Sic by Hemstreet and Fong [28,29], a nonlocal, angu 1 ar-momentum-
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dependent potential was added to the local, spherically symmetric 

potential in the pseudopotential analysis. However, in the present 

work an error in the calculations of Hemstreet and Fong was revealed, 

and that the nonlocal potential had a negligible effect on the band 

structure, contrary to the results of Hemstreet and Fong.

The series expansion in plane-waves of the wavefunctions used 

in calculating the sizes of the matrix element of the coulomb inter­

action could have been taken to be two different lengths. The first 

was a short, or basis, expansion involving only the plane-waves which 

were treated exactly in the perturbation theory employed in calculating 

the band structure, while the second was a full expansion which also 

involved all the plane-waves included through the perturbation theory.

In a pilot study it was shown that the improved accuracy obtained by 

using the full expansion rather than the basis expansion was very small, 

and that the extra computer time used was vast and would have been 

prohibitive for a large number of calculations.

The calculation of the sizes of the matrix element of the coulomb 

interacticii involved a quadruple sum over reciprocal lattice vectors. 

However, under the assumptions made by Beattie and Landsberg [l?], 

this quadruple sum could be approximated by the product of two double 

sums over reciprocal lattice vectors. The matrix element sizes were 

thus calculated by both the quadruple sum and the two double sums and 

presented in the results of Chapters 8 to 12. It was shown that the 

approximate matrix element sizes were not in good agreement with the 

true matrix element sizes, and that it would be dangerous to rely on 

matrix element sizes calculated by using the approximating assumptions 

of Beattie and Landsberg.

In trying to determine the relative importance of impact ionization
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threshold positions with almost equal energies, the rate of increase 

in the number of electron states available for impact ionization for 

hot electron energies just above threshold was investigated. However, 

it was concluded that for Si this factor proved to be unimportant, 

and thus was not considered in the investigations of the other semi­

conductors .

It was mentioned in the introduction to Chapter 3 that the 

Envelope Method developed in the present work has a few disadvantages 

compared with the method developed by Anderson and Crowell [32] . One 

of these disadvantages was that the final states of both electrons were 

restricted to lie in the lowest lying conduction band, or the final 

states of both holes in the highest lying valence band, whereas this 

was not a restriction of the method developed by Anderson and Crowell. 

However, the method developed here could be extended to the generality 

of the method of Anderson and Crowell, in that the final states of 

both electrons, or holes, need not lie in the same energy band. In 

doing this more impact ionization threshold positions would be determined, 

some of which may have energies not much greater than the lowest threshold 

energy, and may also prove to be more significant when the corresponding 

matrix element sizes are calculated.

While the impact ionization threshold positions of a number of 

semiconductors have been calculated in the present work, there are a 

great many more semiconductors to which the methods employed here can 

be applied. Thus the work presented here can be extended to calculate 

accurate impact ionization threshold positions in other semiconductors 

for which accurate, realistic band structures are available, and these 

can then replace the approximate values now being used.
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The impact ionization threshold energies and corresponding 

sizes of the matrix element of the coulomb interaction presented 

in this work can be used to evaluate the total transition probability 

associated with each significant, and important, threshold position. 

Thus the relative importance of impact ionization, and also Auger 

Recombination, to processes involving phonons or traps can be 

determined. The impact ionization coefficients can also be calculated 

for both electrons and holes, which can then be used, for example, 

to calculate the avalanche breakdown conditions in a reverse biased 

p-n junction.
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