-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by University of Bath Research Portal

Citation for published version:
Cabhill, M & Baker, AC 1999, 'Oscillations in Harmonics Generated by the Interaction of Acoustic Baems', Journal
of the Acoustical Society of America, vol. 105, no. 3, pp. 1575-1583.

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Publisher Rights
Unspecified

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Nov. 2019


https://core.ac.uk/display/162922078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/oscillations-in-harmonics-generated-by-the-interaction-of-acoustic-baems(1dda42e5-d86d-46ff-b174-459031666238).html

Oscillations in harmonics generated by the interaction
of acoustic beams

Mark D. Cahill and Andrew C. Baker®
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom

(Received 4 August 1997; revised 12 November 1998; accepted 14 November 1998

A numerical model of nonlinear propagation is used to investigate two cases of monochromatic
ultrasonic beams interacting at small angles in a nonlinear medium. Two finite Young’s slits are
seen to produce fringes at harmonic frequencies of the source in places where the source frequency
is absent, which can be seen as a combination of harmonic generation near the source, and in the
beam. Two intersecting beams with shaded edges are seen to produce similar fringes in the near
field, with an oscillatory structure. Algebraic solutions to a simplified model, using the weak-field
Khokhlov—Zabolotskaya equation, are invoked to illustrate the origin of the oscillations, and of the
far-field directivity, providing an alternative view of the fringes due to Young’s slits. It is seen that
two weakly interacting beams can produce fringes of second harmonic where the source frequency
has low amplitude, if the beams coincide at the point of observation, or if a boundary condition is
imposed on the second harmonic where the beams coincidel99® Acoustical Society of
America.[S0001-49689)03103-3

PACS numbers: 43.25.Cb, 43.25[MAB ]

INTRODUCTION idealized, examples. In the process, the phenomenon of
oscillatior? of harmonics is explored, and seen to be both a
It has been established that when a sound wave of finiteause of fingers in the near field, and a limiting factor on

amplitude passes through a nonlinear medium, the wavghose in the far field.

tends to steepen in such a way as to produce harmonics of The KZK equation,

the source frequency, and for the case of waves whose com- 5
) ) ro 9p

ponents are approximately collinear, the Khokhlov— =algy—3 = —, (1)

Zabolotskaya—Kuznetso(KZK ) equatiort has been found do dt aT 2y o7

to describe this phenomenon. This equation has been shovgysymes that the beam can be regarded as propagating ap-
to possess solutions which exhibit what have come to b%roximately in one direction, along treaxis, in the absence
known as “fingers”>—fringes at harmonic frequencies, of vorticity.

which appear between the regions of constructive interfer- | js most convenient to perform the general analysis in
ence in the source frequency, and these have been observigdms of dimensionless quantitiesjs the dimensionless re-

(92p/ (93p/ 12

1 2 1
+ZVLD +

experimentally’* tarded time coordinate
What might be considered surprising about this phenom-
enon is the assumption that, sin@e a first approximation T=owt—kz, @)

harmonics are necessarily generated where the fundamentsd is 5 dimensionless measure of the overpressure,
is nonzero, and since the harmonics due to the self-action of

a plane wave have motion parallel to that wave, then the P'=(P—po)/Po, ©)

harmonic fringes should in some sense follow those of thg being the pressurey, is the ambient pressure, am} is
source frequency. This is compounded by the observation gfere taken to be the amplitude of the pressure at the source,
Westervelt that the wave equation which he derived, and t0and the wave has a characteristic wavelengte m/k, fre-

which the KZK equation approximates in the case of neargyencyf=w/27, and speed (the medium is assumed non-
collinearity, ~a nondissipative medium, and weakK gispersivg. The Rayleigh distance,

nonlinearity® possesses a solution which is proportional to a 5
quantity (related to the energy densitguadratic in the fun- ro=ma‘/\, 4

damental beam, and which thus vanishes where the fund@;herea is a characteristic radius of the beam near the source,

mental and its derivatives vanish. A similar conclusion isjg jiself a characteristic distance in the direction of propaga-
reached by Jiang and Greenlefdr a dissipative medium. tion, and defines the dimensionless coordinate

Many studies have been published which show that fin-
gers nevertheless do appdaee also, for example, Refs. 6 _Z
and 8, and the purpose of this paper is to elucidate the 7= ro
mechanisms of their production by means of two simple, if

®

The first term on the rhs is the absorption, with coeffi-

cient
@Now working at Christian Michelsen Research AS, Fantoftvegen 38, Post-
boks 6031, 5020 Bergen, Norway. a=ayf?, (6)
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FIG. 1. Amplitude plot of Young's fringes, showing a region 33 mm wide, 04
the beams propagating down the page for 150 mm. The images are ex-
panded X2 horizontally. (@) Fundamental, full scale deflection 02
(FSD =1 MPa, (b) second harmonic, FSB0.5 MPa. Two fingers are indi- ’
cated by arrows.
or Harmonic 1 —
Harmonic 2 ----
@y=2.5x10"1* Npm tHz? (7) - Ramponio - x/mm
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in water, the second term is diffraction, with b
5 92 92 FIG. 2. Amplitude of the first three harmonic components in a cross section
VL =7t 75, (8) of the beam from Young's slits, corresponding to the bottom of Figajl:
IxX ay fully interacting field andb) field due to each slit separately calculated and
then superposed.
(x"y")=(xy)la, 9
and the last term describes the nonlinear distortion, with the ) ] - ]
“shock wave formation distance” strongly nonlinear, so that in addition to the fringes of the
) fundamental, one also sees fringes at harmonic frequencies.
[ = C"po (10) Figure Xb) is the second harmonic field produced by the
4 kP nonlinear interaction. In addition to the second harmonic

seen within each fringe of the fundamental, it also clearly

possesses “fingers” between these fringes. This is hardly
surprising, since we see that in the region just below the slits,
the fundamental possesses maxima, which are effectively
sources of the second harmonic. Two such sources might be

sion equations, one for each temporal harmonic of the beanfXPected to produce an interference pattern with twice the
weakly coupled by the nonlinear term. This is done usingtransverse spatial frequency found in the fundamental, sim-

finite difference algorithms and with coordinates appropriaté®y Pecause the second harmonic has half of the wavelength
to a spherically diverging beam. of the fundamental. From this oversimplified point of view,

then, the fingers are the result not of nonlinear interaction of
the beams, one from each slit, but of the superposition of the
beams, each with its compliment of the second harmonic,
Specific examples of acoustic interactions are given irand higher harmonics, produced prior to the interaction.
the following sections, and specific dimensional parameters ~ Figure 2a) shows a cross section of the beam zat
are given. These can be related to the dimensionless quant=150 mm, y=0, i.e., across the bottom of the images. It
ties of the general equations by E¢8)—(10). includes the third harmonic, which also shows fringes; for
each fringe of the fundamental there are two corresponding
fringes of the second harmonic, and three of the third, just as
Figure Xa) shows the fundamental beam due to two slitswould be expected from a superposition of two noninteract-
of width 5 mm and length 20 mm, separated by 10 mm, theng sources. Figure (B), however, shows the pattern pro-
beam propagating down the page, through water for a disduced by adding the fields of two such noninteracting slits,
tance of 150 mm. The image is a cross section through thealculated using the same model. The two patterns are very
center of the beam, perpendicular to the slits, and one seedmilar, but there is a visible difference—the interacting
the usual fringes fanning out towards the bottom of the im-beams have slightly stronger second and third harmonic
age. The amplitude of the initial wavB, is 1 MPa, and the fringes where there is a fundamental fringe, and the fingers
frequency is 2.25 MHz, under which conditions the system iglocated at the fundamental minijnare slightly diminished.

the approximate distance at which, neglecting attenuation,
plane wave of given amplitude forms a shock wagdeing
3.5 in water.

The numerical tool used to solve this is the Bergen
code!® which solves the KZK equation as a set of diffu-

I. NUMERICAL RUNS

A. Young's slits
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FIG. 3. Fundamental amplitude due to cosine gratingersecting beamsn . ) . . N
plane y=0. Beam propagates down the page from grating at the top_FIG.4. Amplitude plots for cosine gratir@tersecting beamsas in Fig. 3,

FSD=1 MPa. Region shown is 67 by 150 rinexpandedx2 horizontally. but for () second harmonic, FSB0.25MPa and(b) third h_armonic,
FSD=0.167 Mpa. Beam propagates down the page from grating at the top,

with the top left-hand corner being at the center of the source. Region shown
The nonlinear interaction of the beams actstminishthe 'S 33 by 150 mrfi expanded<2 horizontally.
fingers. This also is not surprising, if we consider that some
of the harmonic generation will take place where the beamsvhich is flatter than a Gaussian profile, and take 10,
are interacting, so that there will be increased generation ahe pressure?,=1 MPa, frequencyf =2.25MHz, and di-
harmonics where there is constructive interference of thenension of the source=4 cm.
fundamental, and where there is destructive interference of Figure 3 shows the resulting evolution of the fundamen-
the fundamental there will be less harmonic generation, thatal in the near field, as it propagates 15 cm down the page,
in the case of the noninteracting slits. It is kndwhat for a  from the grating at the top of the figure, in the plape
circular source the fingers diminish ag livhile the lobes =0, perpendicular to the grating. Across the top the source
corresponding to those of the fundamental diminish mordalls off, while down the page at the sides, the fringes be-
slowly, as In ¢)/r, being continuously “pumped” by the come less distinct as the two beams separate. Fig(ae 4
(itself diminishing fundamental. shows the second harmonic. The left half of the image has
been cut off, so that the top left-hand corner corresponds to
the center of the grating, but the scale is the same as in Fig.
B. Cosine grating 3. As the beam propagates downwards, fringes of second
harmonic appear, as expected, where the fundamental has the

spectrum still has a complex structure, making it difficult togreatest amplitude. At 4 cm from the source, however, fin-

see clearly the spatial properties of harmonic generation. RErS start to appear between these principal fringes, and at 8

) i . . : . " c¢m from the source these fingers are brighter than the prin-
simpler system is now considered in which the mteractmgCiHaI fringes. Figure @) shows the same thing accurring in

beams cross at the origin and possess shaded edges, wh{ﬁ . N . .
limit the width of their spatial spectra. The source function € third harmonic—principal fringes appear at the maxima
’ of the fundamental, to be outshone by two intermediate fin-
p’=cogKx")f(x",y") (11 gers 7 cm from the source. The oscillations continue, with
the principal fringes brightest 11 cm from the source, and
(just discernibly the fingers brightest at the bottom of the
image.
To see what is happening here, consider Fig. 5. This
shows the spatial spectrum of the second harm@nithe x
2p— % (12) direction, fory=0), from Fig. 4a), as a function ofz, the
ka’ beam propagating into the page. To the right of the figure is
First consider the case a band with spatial frequency twice that of the fundamental.
This grows smoothly, as might be expected. To the left, how-
f(x',y")=exp(—5(x'2+y’'?)?), (13)  ever, is a band centered &p=0 which, while initially grow-

a b

While Young's slits are a familiar system, their spatial

for K>10 has a spatial spectrum in tkelirection with two
clearly defined lobes, &, = +K/a, for a reasonably smooth
f(x',y'"), that is, it represents two beams crossing at ar
angle

1577 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 M. D. Cabhill and A. C. Baker: Oscillations in harmonics 1577



AW, (X, o) i 9°W
w — e (20
Jdo 4 9x
0.06 R
0.04 IWo (X", o) W, rg
— == —7 WL
0.02 do 8 ax’ 2IdWl (21)
0
021/21 Decomposing/V, into its transverse spatial spectrum,
1000 o5 Wn(X',cr)=f e M wy(ky, o) dk, (22
2000 k /(rads/m) -
then

FIG. 5. Amplitude of the transverse Fourier transform of the second har-
monic, as a function o, the distance from a cosine grating. The unitkof
are rad/m, the fundamental having a maximumkat K/a=785 rad/m,
which generates second harmonic components lata+K/a. do

i
M:%wl(kxﬁ)’ =

. . . doy(ky,0) ik
ing twice as fast as the right-hand band, proceeds to oscillate. ————=—wy(ky,0)

The initial behavior is what one might expect, since the self- 9o 8
action of each component of the fundameniat k;

= *+K/a) will create the right-hand bands, and the interac-
tion of the two will create one with zero spatial frequency,
and will be seen in some sense to be associated with the (24)

r e
tot | oa K ook 0k,

fingers.

Oscillations have been noted before

as well.

Il. ANALYSIS

A. The weak-field approximation

The previous example involved a strong field, in a dis-
sipative medium. In order to gain a clearer understanding of
the origin of the oscillations in Figs. 4 and 5, consider @&g.
in the limit of negligible absorptiong, and adopt the quasi-

and

in harmonic
generatior?’*? where they were seen to be due to beating
between the generated harmonic field and the field due to the
boundary conditions, and this will be seen to be the case here

1 (ky+K)?
wl(kX,O) = E exp{ - T

2y
+ ex;{ — %) } (25
so that

[1 (ky+K)?

wy(ky,0)= o7 exn(—T
(kx_K)2

L

exp(ikZo/4), (26)

linear approximation, in which we need only consider fieldswhich has the inverse transform

due to the self-action of the fundamental field.
Equation(1) becomes the Khokhlov—ZabolotskaiZ)
equation

(92 ’ 1 r (?2 12
=V e o (14
dodr 4 2ly o7
and, adopting the Fourier decomposition
1 < .
p'=or 2 Wy(x',0)e", (15)
2i n=
Wp=—-W~*_, (16)
(the normalization is appropriate to the computer program
we find
AW, (o) i, roN
D= g VWt 4—|dm22_m Wy W, (18)

If the source includes only the fundaments} , with
W;(x’,0)=cogKx")exp(—2x'?), (19

independent of;, then in the quasi-linear approximatién,

1578 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999

;o 1 (4ix" +K)? K2)
WX, 0)= o == | &N g1 i) 8
p((4ix'—K)2 Kz)
N g1-2i0) 8 @7

The two terms in the square brackets are clearly the two
diverging beams, whose amplitudesxat ¥ Ko/2, decrease

as 18/1+442. The wave is described in E¢l) with a re-
tarded time coordinate, so the greater part of the phase of
each component is implicit in the representation; however,
the first terms on the rhs of the differential equatid@s)
and(24) impose a phase lag on the wave due to its having a
component in the transverge direction, proportional to the
square ok, . This is due to the relatiok®= w?/c?, k andw
being the dimensional angular frequencies, in the parabolic
approximationk,<1 [see the discussion introducing Eq.

@]

B. Near-field oscillations

Now applying Eq.(26) to Eq. (24), and evaluating the
convolution, one finds

M. D. Cabhill and A. C. Baker: Oscillations in harmonics 1578



Pressure/Pa

L2
awZ(kX!U)_Ikxw (k 0_)+ o 1.2 T T T T T
- .  — "o 2 L] —
do 8 X 32AyVm(1-2i0) K=31.4, model ——
Thm g
2 =314, J—— P =
(kx+ ZK) K=44.0, approx. - e K
X|exp — 1—6 ____________________
08
(kx_ 2K)2
+exp — —16 0.6 -
ki iKZO' 12 0.4 R
+2exg — —+ 5| |€% all
F( 16" 2(1-2i0)) | "
(28) 02 |-
which, confining attention for now to the region near the ' . ' . . .
. . Z/
grating with 0 50 100 150 200 250 300
K2o2< 1, o<1, (29 FIG. 6. Comparison of predictions from the numerical model, and from the
. algebraic approximation equati@83), for the axial variation of the ampli-
IS tude of the second harmonic, f&r= 10w andK=14r.
dwo(Ky,0) ik2 r
— ~§w2<kx,a>+32f_l r
mld W, (X', o)~ %e*“x'z 2e/K*2 cog 2K X' )
y p( (= 2K)2) ¢
exp — ————— 8 K2o
16 + 1z €K *sin —) (33
(ke—2K)?
+exp — 16 Figures 6 and 7 compare this approximation with the results

of model runs. Hera is taken as 8 cm, thedeally infinite)
20/ length of the slits is taken to be 80 ca=0, Py=1 kPa,
e (30 and all other parameters are as before. Figure 6 shows the
amplitude of the beam along the central lolé=0) for two
All three components in the square brackets represent Gaugs|,es ofK, while Fig. 7 compares the complex components
sians with greater width than those in Eg6), correspond-  for K =107. While the approximation becomes invalid after
ing in configuration space to a source narrower than the couple of cycles, it reproduces the oscillations and phase
width of the fundamental. The first two terms are due to thg,griation of the first cycle well.
convolution of each term of Eq26) with itself, and are The first two terms in the square brackets of E3p)
centered ork,= ¥ 2K, with a phase lagk;o/8, as might be vary aso, while the third oscillates, being proportional to
expected, but the third, which is due to the convolution of _eiKZ(,/z). This is the difference between a component
each beam with the other, and so represents the interaction étnerated in the beam, which rotates in phase due to the lag

the two, while centered oki=0, has an additional phase lag ;2 /2 mentioned above, and a term due to the boundar
iK2a/2. This additional lag is directly attributable to that in v ’ y

the beams of the fundamental, which each possess a lag ap-
propriate to a mode witk,=K, and it is this which can be  Fressure/Pa
. . 25 T T T T T T T T T

seen as the cause of the oscillations.
Imposing the condition that there is no second harmonic

X k2 Ko
t2exg -1t 5

X 2 Re(W), model — —
at the grating Im(W), model ----
Re(W), approx.----- ;o
w5(ky,0)=0, (31 15 Im(W), approx. -
Eq. (30) has the solution 1
ro (Kt 2K)? 05
wo(Ky,0) =~ (exp(—— :
2\ Rx 32d\/; 16
o k
(kx_ ZK)Z
+exp — 16 o 05
4i . k2 ) -1 I I 1 L .AV':;-::-"“ ) \ \
+ Kz(l—e"(z”’z)exp( - 1_)6(5) k8. (32) 0 50 100 150 200 250 300 350 400 450 500" ™"

. . . . FIG. 7. Comparison of predictions by the numerical model, and by the
|n_ cpnflguratlon space, and given the approximati@f), algebraic approximation equati¢d3), for the axial variation of the complex
this is components of the second harmoric= 107
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W (k ,0.) — elleT/S
' 0 2 32 7 Jogy1—2i 0
08 b -~
(Ky+2K)2 . (ky—2K)2
: X ——— -
06 eX 16 ex 16
04 1 \ 5 K , K20 35
| / Y —~ + e —
02 |\ i N ex 16 2(1-2i0")) |’ 39
oL AN = where the lower bound of the integratior will be set to 0
Voo NS at the end of the calculation, to implement the boundary
02 \\ /' i condition equatior{31). Delaying the evaluation of this until
04l MV / - ] after the inverse Fourier transform has been performed,
086 1 1 ] 1 1 1 1 lo o do’
X’ Wy(X',0)= - f -
0 01 02 03 04 05 06 07 2 8l V120 Jooy1_2i0"

FIG. 8. lllustrating a mechanism for the production of fingéasthe square
of the source functioW,(x’,0), for K=10m, to which the second har-
monic is initially proportional andb) the same function with an offset of X
half the envelope exp#?). (b) Posesses fingers &t=0.1,0.3,... .

p((4ix'+K)2 KZ)
R 21-2i0) 4

(4ix'—K)%2 K2
ex"( 41-2i0) T)
condition (31), which propagates with the natural phase. - )
These interfere to produce the sine in the second term of Eq. ) ex;{ 4x K ( 1 1) )}
(33), and describe an oscillation like that seen in Fig. 5. 1- 2|0' 1-2i¢’ '
Regarding the production of fingers, for very small (36)
K2o, the coefficient of the third Gaussidtie cross termin
Eq. (32) is approximately &, so that we eventually find

o ( (ko1 2K)? wz(x’,a)=%[ﬁ V1-2io0—1-2igy)
wz(kx.o)wszd\/; exr{——le ) ) x4 K2 K2>
(K~ 2K)? K2 4(1-2i0) 4
+exp<_T))+2eX”(_E”' +ep(mlx—K)Z KZH
(34) 4(1-2i0) 4

which, up to a Gaussian envelope, is the Fourier transform of
cog(Kx') [see Eq(19)], which has zero amplitude whevé,

is zero. Byo=2m/K2, however, the coefficient of the cross Where the function cr, due to the cross term, is
term is zero(the field due to the boundary condition cancels
that generated by the begnand Eq.(32) then resembles the
Fourier transform of cos@x’). The situation is illustrated by
Fig. 8; the cross term is proportional to the enveldpeing
centered abouk,=0), and its cancellation produces a field

with negative values where there is no fundamental field,
which are the fingers.

+cr(K,x’,o,ao)—cr(K,x’,o,a)] . (37

cr(K,x",o,7)=

K2
m p( 1-2io T)
2@ K2 )

ik Paa-2iq

iK
+ 1 erf 38
\/— 21— 2IT) 9
and

C. Fingers in the far field 2 oy
i i i ingwill  erfly)=—= | exp(—y'?)dy’. (39)

An exact solution to the perturbative cosine grating will \/; 0

now be found, which will reveal another mechanism, by

which thek,=0 component can manifest itself as a singleThe terms other than the cross term in E2j)) are the self-
finger, rather than the multiple fingers seen in the near fieldaction of each beam. Note that for finitg), x’ = +*Ko/2

Instead of using inequalitie®9), write the solution to Eq. largeq, they tend to a constant—decreased amplitude as the
(28) in integral form as beam spreads is cancelled by growth due to generation from

1580 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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.y FIG. 11. Amplitude of the cross-term equati¢4D), on axis k=0) for K
mm

0 200 400 600 800 1000 ”=n2)7-r: boundary condition equatiort81) (continuous lingand(41) (dashed

FIG. 9. Comparison of predictions by the numerical magderves, and by
the exact solution equatidi37) (points, for the axial variation of the com-

for very large o (finite X’ and o) this tends to—2i
plex components of the second harmordes 107, Py=1 kPa.

X exp(—K?/4), which is to say that there is a constant term in
the limit proportional to the overlap of the directivities of the
the fundamental. The analogous behavior for a threeP&ams. Insofar, then, as the fundamental beams propagate in
dimensional problem is,~In(2/z? as noted at the end of different Q|rect|ons, this limit is negllgl_ble..Setyngo=0, in
Sec. IA. accord with Eq.(31), the continuous line in Fig. 11 shows
While Eq.(37) is not easy to evaluate, packages such adhat the amplitude of the term oscillates at first, then settles
Maple are quite capable of tabulating and plotting it. FiguredoWn t0 an almost constant value for moderate values, of
9 compares the axial behavior of the exact solution, with th&ventually falling off as H1+40. As the principal fringes
model run of Figs. 6 and 7, and Fig. 10 compares them in Q'Verge, this term propagates down theaxis, to form a
cross section of the beam 274 mm from the grating, a poinfn9er- _ _ _ _ L
where the fingers are stronger than the principal fringes. The 1€ solution(27) is defined for negative, and while it
slight deviation of the model from theory for largén Fig. 9 would be difficult to create su_ch a be_am, it is still meanlr)gful
may be due to the finite length of the slits in the model run 0 @k what second harmonic field it would generate, if the
Otherwise, the fit is exact enough to confirm the accuracy of€coNd harmonic were set to zero at some point before the
the Bergen code, and incidentally to reassure one that th!gtersectmn of the beams. With this in mind, the dashed line

algebra is correct. in Fig. 11 shows the amplitude of the cross term assuming
Turning to the cross term, wy(ky,—10)=0, (42)
(KX’ or,0)— (K, X', c7g) (40) i.e., with oy=—10. With this boundary condition, the sec-
[} Uy 1] yO,L,UQ/

ond harmonic is effectively zero outside the region in which
both fundamental beams are present—just the behavior de-
scribed by Westervelt. To see how these two cases differ,

b P consider Figs. 12 and 13, which show the complex compo-
J 4 Ia . nents of the cross term for each boundary condition. In the

W, model —— “Westervelt” case, Fig. 12, there is a substantial imaginary
12k IWI, exact &

i component of the second harmonic at the origin. In order to

0.017\
\
0.8 /\\
0.0057 | / \\
0.6 [ A T
. A A " Nee
AR AN
0.4 op T 0L02; d\,o4\ T W 2 R O - R D WA 24 1)
(I A

i \ v
\ ‘

RINIRNY
v ~

-0.005 \ Vo \
-0.017 \//

0.2

X/mm

FIG. 10. Comparison of predictions by the numerical madekves, and

by the exact solution equatiai37) (points, for the transverse variation of FIG. 12. Axial components of the cross term for boundary condition equa-
the magnitude of the second harmonizat274 mm. Note that the fingers tion (41): real component(continuous ling and imaginary component
are stronger than the principal fringéé= 10w, Py=1 kPa. (dashed ling
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whose beams then cross, subject to the KZ equation. Their
Eq. (24), describing the far-field behavior, contains two
terms, one proportional to the product of the directivities of
7/t the source, and varying as B [the counterpart of the con-
stant limit — 2i exp(—K?%4) abové, due to collinear compo-
nents in the beams, and the other a bilinear function of the
beams at the boundary, as must the “free field” component
be, if at the boundary it is to cancel the Westervelt compo-

0.0054

0,1 0.12 0.14

-0.005

-0.01

—0.015} nent, itself bilinear in the fundamental beams.
Finally, to revisit the Young's fringes, although Figs. 1
-0.02 and 2 refer to beams with finite amplitude and absorption,

one can envisage the second harmonic in a low-amplitude
FIG. 13. Axial components of the cross term for boundary condition equa-System as being composed of three fields—the first generated
tion (31):_ real component(continuous ling and imaginary component by the interaction of collinear modes in the two beams, the
(dashed ling second due to the local interaction of noncollinear modes

(bearing in mind that the beams overlap through most of the
set this to zero for the boundary condition®j=0, a com-  pga|f-spacez>0), and the third attributable to the boundary
ponent must be subtracted, whose evolution is seen in Figondition, which requires cancellation at0 of the field
13 to produce a large negative imaginary component beyongenerated by local interaction of the fundamental field. In
the region of interaction of the bearfishich slowly rotates  practice, however, the distinction between these is ambigu-
into the real component due to the facto’1/-2io in Eq.  ous, both because it depends on the choice of boundary, and
(38)]. The far-field finger is thus seen to be a direct result ofhecause sources of modes which violate only slightly the
the boundary condition, Eq31). It is the “free wave” of  free-field equation must act for a considerable distance be-

Naze Tjtta and Tjdta.’ fore drifting out of phase with their generated waves. In the
far field, the first component will create fringes of second
I1l. DISCUSSION harmonic coinciding with those of the fundamental, but its

It has been seen in the previous two sections that thgontinuous generation, in the absence of propagation of the

development of fingers in the near and far fields of a simpleSeconOI component, may be expected to generate fingers, as

system can be attributed to the difference between the spati the near field of the cosine grating. Given the complex

frequencies of freely propagating waves of the second hats_patial spgctrum, it i‘? not surprising that oscillatiqns are nqt
monic, and of the source function due to the interaction oftPparentin the amplitude of the fingers, but detailed exami-

noncollinear beams. In the near field, the mismatch causé%at'on of the field does show that the second harmonic in the

this component to stop growing, as it becomes out of phas%ngterfhh?z otpposmfe .phase ffr?i:n tfhat dm the tp:lnflptal fringes.
with its source, which shifts the fringe pattern to produce ote that between Iringes of the Tundamental, I1S transverse

I;}ierivative is nonzero, and so Westervelt's arguﬁﬁ(ﬂ&e the
Introduction) does not deny the existence of fingers.

While the solutions derived above are for simple sys-
tems, it may be possible to approximate the boundary condi-

be seen as the reason that the generated compdtient
“Westervelt component) does not propagate beyond the
region of interaction of the beams—it is a commonplace re-, _ . . .
sult of scattering theory that “off-shell” modes, i.e., modes tion equation(31) experlmentall_y, by ms_ertmg a frequency-
which do not satisfy the free-field equation, do not propagatéjependem attenuator at. the_ intersection of t\/\/20 beams  of
(see Ref. 13, Chap. 5, Sed, and the fact that the phase of sound. If the attenuator is thin on the scalg, &< of the

the source function rotates with respect to a free field propac-)sc'"at'ons’ and effectively removes the generated harmon-

gating in the same direction indicates that it is the source ofs f‘iofm tfychJdl?tersef[:tlnbg biams, :jhen one would expect a
an off-shell field. The component which cancels this off-she(|VEaX far-lield finger fo be observed.

field at the boundary, however, is itself on-shell, and it is thist t_The analytlclsoludtloln ofbtamle_d may also bt_e of use for
which propagates. The effect of boundary conditions on gen—es INg humerical models of nonlinéar propagation.
In summary, far from being anomalous, the nonlinear

erated harmonics was explored more fully in Refs. 14 and . e . ) o
15. On the other hand, components of the two beams whic roduction of harmonic fields in regions where there is little
. X Eundamental field is a natural consequence of the imposition

are collinear produce a source field which is on-shell, and s t sero amplitude on the harmonics in redions where the
generates a component of the second harmonic which propg- z pittu 1es | g wher
undamental is nonzero, the continuous local production of

gates. hell h ics, and ion of off-shell harmoni
The objection might rightly be raised that by imposing on-shell harmonics, and suppression ot ofi-shell harmonics.

the boundary condition equatiofil9), appropriate to a

source, and therj con&dgr_mg the begms as ongmatmg befoWCKNOWLEDGMENTS

that point, one is describing an artificially symmetrical ar-
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