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Oscillations in harmonics generated by the interaction
of acoustic beams

Mark D. Cahill and Andrew C. Bakera)

Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom

~Received 4 August 1997; revised 12 November 1998; accepted 14 November 1998!

A numerical model of nonlinear propagation is used to investigate two cases of monochromatic
ultrasonic beams interacting at small angles in a nonlinear medium. Two finite Young’s slits are
seen to produce fringes at harmonic frequencies of the source in places where the source frequency
is absent, which can be seen as a combination of harmonic generation near the source, and in the
beam. Two intersecting beams with shaded edges are seen to produce similar fringes in the near
field, with an oscillatory structure. Algebraic solutions to a simplified model, using the weak-field
Khokhlov–Zabolotskaya equation, are invoked to illustrate the origin of the oscillations, and of the
far-field directivity, providing an alternative view of the fringes due to Young’s slits. It is seen that
two weakly interacting beams can produce fringes of second harmonic where the source frequency
has low amplitude, if the beams coincide at the point of observation, or if a boundary condition is
imposed on the second harmonic where the beams coincide. ©1999 Acoustical Society of
America.@S0001-4966~99!03103-3#

PACS numbers: 43.25.Cb, 43.25.Jh@MAB #
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INTRODUCTION

It has been established that when a sound wave of fi
amplitude passes through a nonlinear medium, the w
tends to steepen in such a way as to produce harmonic
the source frequency, and for the case of waves whose c
ponents are approximately collinear, the Khokhlo
Zabolotskaya–Kuznetsov~KZK ! equation1 has been found
to describe this phenomenon. This equation has been sh
to possess solutions which exhibit what have come to
known as ‘‘fingers’’2—fringes at harmonic frequencies
which appear between the regions of constructive inter
ence in the source frequency, and these have been obs
experimentally.3,4

What might be considered surprising about this pheno
enon is the assumption that, since~in a first approximation!
harmonics are necessarily generated where the fundam
is nonzero, and since the harmonics due to the self-actio
a plane wave have motion parallel to that wave, then
harmonic fringes should in some sense follow those of
source frequency. This is compounded by the observatio
Westervelt5 that the wave equation which he derived, and
which the KZK equation approximates in the case of ne
collinearity, a nondissipative medium, and we
nonlinearity,6 possesses a solution which is proportional to
quantity ~related to the energy density! quadratic in the fun-
damental beam, and which thus vanishes where the fu
mental and its derivatives vanish. A similar conclusion
reached by Jiang and Greenleaf7 for a dissipative medium.

Many studies have been published which show that
gers nevertheless do appear~see also, for example, Refs.
and 8!, and the purpose of this paper is to elucidate
mechanisms of their production by means of two simple

a!Now working at Christian Michelsen Research AS, Fantoftvegen 38, P
boks 6031, 5020 Bergen, Norway.
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idealized, examples. In the process, the phenomenon
oscillation9 of harmonics is explored, and seen to be both
cause of fingers in the near field, and a limiting factor
those in the far field.

The KZK equation,

]2p8

]s ]t
5ar 0

]3p8

]t3 1
1

4
¹'

2 p81
r 0

2l d

]2p82

]t2 , ~1!

assumes that the beam can be regarded as propagatin
proximately in one direction, along thez axis, in the absence
of vorticity.

It is most convenient to perform the general analysis
terms of dimensionless quantities;t is the dimensionless re
tarded time coordinate

t5vt2kz, ~2!

p8 is a dimensionless measure of the overpressure,

p85~P2p0!/P0 , ~3!

P being the pressure,p0 is the ambient pressure, andP0 is
here taken to be the amplitude of the pressure at the sou
and the wave has a characteristic wavelengthl52p/k, fre-
quencyf 5v/2p, and speedc ~the medium is assumed non
dispersive!. The Rayleigh distance,

r 05pa2/l, ~4!

wherea is a characteristic radius of the beam near the sou
is itself a characteristic distance in the direction of propa
tion, and defines the dimensionless coordinate

s5
z

r 0
. ~5!

The first term on the rhs is the absorption, with coef
cient

a5a0f 2, ~6!
t-
1575(3)/1575/9/$15.00 © 1999 Acoustical Society of America
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a052.5310214 Np m21 Hz22 ~7!

in water, the second term is diffraction, with

¹'
2 5

]2

]x82 1
]2

]y82 , ~8!

~x8,y8!5~x,y!/a, ~9!

and the last term describes the nonlinear distortion, with
‘‘shock wave formation distance’’

l d5
c2r0

bkP0
~10!

the approximate distance at which, neglecting attenuatio
plane wave of given amplitude forms a shock wave,b being
3.5 in water.

The numerical tool used to solve this is the Berg
code,10,11 which solves the KZK equation as a set of diff
sion equations, one for each temporal harmonic of the be
weakly coupled by the nonlinear term. This is done us
finite difference algorithms and with coordinates appropri
to a spherically diverging beam.

I. NUMERICAL RUNS

Specific examples of acoustic interactions are given
the following sections, and specific dimensional parame
are given. These can be related to the dimensionless qu
ties of the general equations by Eqs.~2!–~10!.

A. Young’s slits

Figure 1~a! shows the fundamental beam due to two s
of width 5 mm and length 20 mm, separated by 10 mm,
beam propagating down the page, through water for a
tance of 150 mm. The image is a cross section through
center of the beam, perpendicular to the slits, and one
the usual fringes fanning out towards the bottom of the
age. The amplitude of the initial wave,P0 is 1 MPa, and the
frequency is 2.25 MHz, under which conditions the system

FIG. 1. Amplitude plot of Young’s fringes, showing a region 33 mm wid
the beams propagating down the page for 150 mm. The images are
panded 32 horizontally. ~a! Fundamental, full scale deflectio
~FSD!51 MPa, ~b! second harmonic, FSD50.5 MPa. Two fingers are indi-
cated by arrows.
1576 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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strongly nonlinear, so that in addition to the fringes of t
fundamental, one also sees fringes at harmonic frequen
Figure 1~b! is the second harmonic field produced by t
nonlinear interaction. In addition to the second harmo
seen within each fringe of the fundamental, it also clea
possesses ‘‘fingers’’ between these fringes. This is har
surprising, since we see that in the region just below the s
the fundamental possesses maxima, which are effecti
sources of the second harmonic. Two such sources migh
expected to produce an interference pattern with twice
transverse spatial frequency found in the fundamental, s
ply because the second harmonic has half of the wavele
of the fundamental. From this oversimplified point of view
then, the fingers are the result not of nonlinear interaction
the beams, one from each slit, but of the superposition of
beams, each with its compliment of the second harmo
and higher harmonics, produced prior to the interaction.

Figure 2~a! shows a cross section of the beam atz
5150 mm, y50, i.e., across the bottom of the images.
includes the third harmonic, which also shows fringes;
each fringe of the fundamental there are two correspond
fringes of the second harmonic, and three of the third, jus
would be expected from a superposition of two nonintera
ing sources. Figure 2~b!, however, shows the pattern pro
duced by adding the fields of two such noninteracting sl
calculated using the same model. The two patterns are
similar, but there is a visible difference—the interactin
beams have slightly stronger second and third harmo
fringes where there is a fundamental fringe, and the fing
~located at the fundamental minima! are slightly diminished.

x-

FIG. 2. Amplitude of the first three harmonic components in a cross sec
of the beam from Young’s slits, corresponding to the bottom of Fig. 1:~a!
fully interacting field and~b! field due to each slit separately calculated a
then superposed.
1576M. D. Cahill and A. C. Baker: Oscillations in harmonics
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The nonlinear interaction of the beams acts todiminish the
fingers. This also is not surprising, if we consider that so
of the harmonic generation will take place where the bea
are interacting, so that there will be increased generatio
harmonics where there is constructive interference of
fundamental, and where there is destructive interferenc
the fundamental there will be less harmonic generation, t
in the case of the noninteracting slits. It is known2 that for a
circular source the fingers diminish as 1/r , while the lobes
corresponding to those of the fundamental diminish m
slowly, as ln (r )/r , being continuously ‘‘pumped’’ by the
~itself diminishing! fundamental.

B. Cosine grating

While Young’s slits are a familiar system, their spat
spectrum still has a complex structure, making it difficult
see clearly the spatial properties of harmonic generation
simpler system is now considered in which the interact
beams cross at the origin and possess shaded edges,
limit the width of their spatial spectra. The source functio

p85cos~Kx8! f ~x8,y8! ~11!

for K.10 has a spatial spectrum in thex direction with two
clearly defined lobes, atkx56K/a, for a reasonably smooth
f (x8,y8), that is, it represents two beams crossing at
angle

2u5
2K

ka
. ~12!

First consider the case

f ~x8,y8!5exp„25~x821y82!2
…, ~13!

FIG. 3. Fundamental amplitude due to cosine grating~intersecting beams! in
plane y50. Beam propagates down the page from grating at the
FSD51 MPa. Region shown is 67 by 150 mm2, expanded32 horizontally.
1577 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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which is flatter than a Gaussian profile, and takeK510p,
the pressureP051 MPa, frequencyf 52.25 MHz, and di-
mension of the sourcea54 cm.

Figure 3 shows the resulting evolution of the fundame
tal in the near field, as it propagates 15 cm down the pa
from the grating at the top of the figure, in the planey8
50, perpendicular to the grating. Across the top the sou
falls off, while down the page at the sides, the fringes b
come less distinct as the two beams separate. Figure~a!
shows the second harmonic. The left half of the image
been cut off, so that the top left-hand corner correspond
the center of the grating, but the scale is the same as in
3. As the beam propagates downwards, fringes of sec
harmonic appear, as expected, where the fundamental ha
greatest amplitude. At 4 cm from the source, however,
gers start to appear between these principal fringes, and
cm from the source these fingers are brighter than the p
cipal fringes. Figure 4~b! shows the same thing occurring i
the third harmonic—principal fringes appear at the maxi
of the fundamental, to be outshone by two intermediate
gers 7 cm from the source. The oscillations continue, w
the principal fringes brightest 11 cm from the source, a
~just discernibly! the fingers brightest at the bottom of th
image.

To see what is happening here, consider Fig. 5. T
shows the spatial spectrum of the second harmonic~in the x
direction, for y50), from Fig. 4~a!, as a function ofz, the
beam propagating into the page. To the right of the figure
a band with spatial frequency twice that of the fundamen
This grows smoothly, as might be expected. To the left, ho
ever, is a band centered onkt50 which, while initially grow-

.FIG. 4. Amplitude plots for cosine grating~intersecting beams!, as in Fig. 3,
but for ~a! second harmonic, FSD50.25 MPa and~b! third harmonic,
FSD50.167 Mpa. Beam propagates down the page from grating at the
with the top left-hand corner being at the center of the source. Region sh
is 33 by 150 mm2, expanded32 horizontally.
1577M. D. Cahill and A. C. Baker: Oscillations in harmonics
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ing twice as fast as the right-hand band, proceeds to oscil
The initial behavior is what one might expect, since the s
action of each component of the fundamental~at kt

56K/a) will create the right-hand bands, and the intera
tion of the two will create one with zero spatial frequenc
and will be seen in some sense to be associated with
fingers.

Oscillations have been noted before in harmo
generation,9,12 where they were seen to be due to beat
between the generated harmonic field and the field due to
boundary conditions, and this will be seen to be the case
as well.

II. ANALYSIS

A. The weak-field approximation

The previous example involved a strong field, in a d
sipative medium. In order to gain a clearer understanding
the origin of the oscillations in Figs. 4 and 5, consider Eq.~1!
in the limit of negligible absorption,a, and adopt the quasi
linear approximation, in which we need only consider fie
due to the self-action of the fundamental field.

Equation~1! becomes the Khokhlov–Zabolotskaya~KZ!
equation

]2p8

]s ]t
5

1

4
¹'

2 p81
r 0

2l d

]2p82

]t2 , ~14!

and, adopting the Fourier decomposition

p85
1

2i (
n52`

`

Wn~x8,s!eint, ~15!

Wn52W2n* , ~16!

W050 ~17!

~the normalization is appropriate to the computer progra!,
we find

]Wn~s!

]s
52

i

4n
¹'

2 Wn1
r 0n

4l d
(

m52`

`

Wn2mWm . ~18!

If the source includes only the fundamentalW1 , with

W1~x8,0!5cos~Kx8!exp~22x82!, ~19!

independent ofy, then in the quasi-linear approximation,2

FIG. 5. Amplitude of the transverse Fourier transform of the second
monic, as a function ofz, the distance from a cosine grating. The units ofkt

are rad/m, the fundamental having a maximum atkt5K/a5785 rad/m,
which generates second harmonic components at6K/a6K/a.
1578 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
te.
f-

-
,
he

c
g
he
re

-
of

s

]W1~x8,s!

]s
52

i

4

]2W1

]x82 , ~20!

]W2~x8,s!

]s
52

i

8

]2W2

]x82 1
r 0

2l d
W1

2. ~21!

DecomposingWn into its transverse spatial spectrum,

Wn~x8,s!5E
2`

`

e2 ikxx8vn~kx ,s!dkx , ~22!

then

]v1~kx ,s!

]s
5

ikx
2

4
v1~kx ,s!, ~23!

]v2~kx ,s!

]s
5

ikx
2

8
v2~kx ,s!

1
r 0

2l d
E

2`

`

v1~kx2kx8 ,s!v1~kx8 ,s!dkx8 ,

~24!

and

v1~kx,0!5A 1

32p FexpS 2
~kx1K !2

8 D
1expS 2

~kx2K !2

8 D G , ~25!

so that

v1~kx ,s!5A 1

32p FexpS 2
~kx1K !2

8 D
1expS 2

~kx2K !2

8 D Gexp~ ikx
2s/4!, ~26!

which has the inverse transform

W1~x8,s!5
1

2A122is
FexpS ~4ix81K !2

8~122is!
2

K2

8 D
1expS ~4ix82K !2

8~122is!
2

K2

8 D G . ~27!

The two terms in the square brackets are clearly the
diverging beams, whose amplitudes atx857Ks/2, decrease
as 1/A4 114s2. The wave is described in Eq.~1! with a re-
tarded time coordinate, so the greater part of the phas
each component is implicit in the representation; howev
the first terms on the rhs of the differential equations~23!
and~24! impose a phase lag on the wave due to its havin
component in the transverse~x! direction, proportional to the
square ofkx . This is due to the relationk25v2/c2, k andv
being the dimensional angular frequencies, in the parab
approximationkx!1 @see the discussion introducing E
~1!#.

B. Near-field oscillations

Now applying Eq.~26! to Eq. ~24!, and evaluating the
convolution, one finds

r-
1578M. D. Cahill and A. C. Baker: Oscillations in harmonics
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]v2~kx ,s!

]s
5

ikx
2

8
v2~kx ,s!1

r 0

32l dAp~122is!

3FexpS 2
~kx12K !2

16 D
1expS 2

~kx22K !2

16 D
12 expS 2

kx
2

16
1

iK 2s

2~122is!
D Geikx

2s/8,

~28!

which, confining attention for now to the region near t
grating with

K2s2!1, s!1, ~29!

is

]v2~kx ,s!

]s
'

ikx
2

8
v2~kx ,s!1

r 0

32Ap l d

3FexpS 2
~kx12K !2

16 D
1expS 2

~kx22K !2

16 D
12 expS 2

kx
2

16
1

iK 2s

2 D Geikx
2s/8. ~30!

All three components in the square brackets represent G
sians with greater width than those in Eq.~26!, correspond-
ing in configuration space to a source narrower than
width of the fundamental. The first two terms are due to
convolution of each term of Eq.~26! with itself, and are
centered onkx572K, with a phase lagikx

2s/8, as might be
expected, but the third, which is due to the convolution
each beam with the other, and so represents the interactio
the two, while centered onkx50, has an additional phase la
iK 2s/2. This additional lag is directly attributable to that
the beams of the fundamental, which each possess a lag
propriate to a mode withkx5K, and it is this which can be
seen as the cause of the oscillations.

Imposing the condition that there is no second harmo
at the grating

v2~kx,0!50, ~31!

Eq. ~30! has the solution

v2~kx ,s!'
r 0

32l dAp
F XexpS 2

~kx12K !2

16 D
1expS 2

~kx22K !2

16 D Cs
1

4i

K2 ~12eiK 2s/2!expS 2
kx

2

16D Geikx
2s/8. ~32!

In configuration space, and given the approximation~29!,
this is
1579 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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W2~x8,s!'
r 0

8l d
e24x82F2eiK 2s/2 cos~2Kx8!s

1
8

K2 eiK 2s/4 sinS K2s

4 D G . ~33!

Figures 6 and 7 compare this approximation with the res
of model runs. Herea is taken as 8 cm, the~ideally infinite!
length of the slits is taken to be 80 cm,a50, P051 kPa,
and all other parameters are as before. Figure 6 shows
amplitude of the beam along the central lobe (x850) for two
values ofK, while Fig. 7 compares the complex componen
for K510p. While the approximation becomes invalid aft
a couple of cycles, it reproduces the oscillations and ph
variation of the first cycle well.

The first two terms in the square brackets of Eq.~32!
vary ass, while the third oscillates, being proportional t
(12eiK 2s/2). This is the difference between a compone
generated in the beam, which rotates in phase due to the
iK 2s/2 mentioned above, and a term due to the bound

FIG. 6. Comparison of predictions from the numerical model, and from
algebraic approximation equation~33!, for the axial variation of the ampli-
tude of the second harmonic, forK510p andK514p.

FIG. 7. Comparison of predictions by the numerical model, and by
algebraic approximation equation~33!, for the axial variation of the complex
components of the second harmonic.K510p.
1579M. D. Cahill and A. C. Baker: Oscillations in harmonics
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condition ~31!, which propagates with the natural phas
These interfere to produce the sine in the second term of
~33!, and describe an oscillation like that seen in Fig. 5.

Regarding the production of fingers, for very sm
K2s, the coefficient of the third Gaussian~the cross term! in
Eq. ~32! is approximately 2s, so that

v2~kx ,s!'
r 0s

32l dAp
F XexpS 2

~kx12K !2

16 D
1expS 2

~kx22K !2

16 D C12 expS 2
kx

2

16D G ,
~34!

which, up to a Gaussian envelope, is the Fourier transform
cos2(Kx8) @see Eq.~19!#, which has zero amplitude whereW1

is zero. Bys52p/K2, however, the coefficient of the cros
term is zero~the field due to the boundary condition cance
that generated by the beam!, and Eq.~32! then resembles the
Fourier transform of cos(2Kx8). The situation is illustrated by
Fig. 8; the cross term is proportional to the envelope~being
centered aboutkx50), and its cancellation produces a fie
with negative values where there is no fundamental fie
which are the fingers.

C. Fingers in the far field

An exact solution to the perturbative cosine grating w
now be found, which will reveal another mechanism,
which thekx50 component can manifest itself as a sing
finger, rather than the multiple fingers seen in the near fi
Instead of using inequalities~29!, write the solution to Eq.
~28! in integral form as

FIG. 8. Illustrating a mechanism for the production of fingers;~a! the square
of the source functionW1(x8,0), for K510p, to which the second har
monic is initially proportional and~b! the same function with an offset o
half the envelope exp(4x82). ~b! Posesses fingers atx850.1, 0.3,... .
1580 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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v2~kx ,s!5eikx
2s/8

r 0

32l dAp
E

s0

s ds8

A122is8

3FexpS 2
~kx12K !2

16 D1expS 2
~kx22K !2

16 D
12 expS 2

kx
2

16
1

iK 2s8

2~122is8!
D G , ~35!

where the lower bound of the integrations0 will be set to 0
at the end of the calculation, to implement the bound
condition equation~31!. Delaying the evaluation of this unti
after the inverse Fourier transform has been performed,

W2~x8,s!5
r 0

8l dA122is
E

s0

s ds8

A122is8

3FexpS ~4ix81K !2

4~122is!
2

K2

4 D
1expS ~4ix82K !2

4~122is!
2

K2

4 D
12 expX2 4x82

122is
1

K2

4 S 1

122is8
21D CG ,

~36!

we eventually find

W2~x8,s!5
r 0

8l d
H i

A122is
~A122is2A122is0!

3FexpS ~4ix81K !2

4~122is!
2

K2

4 D
1expS ~4ix82K !2

4~122is!
2

K2

4 D G
1cr~K,x8,s,s0!2cr~K,x8,s,s!J , ~37!

where the function cr, due to the cross term, is

cr~K,x8,s,t!5
K

A122is
expS 2

4x82

122is
2

K2

4 D
3F2A122i t

iK
expS K2

4~122i t! D
1Ap erfS iK

2A122i t
D G , ~38!

and

erf~y!5
2

Ap
E

0

y

exp~2y82!dy8. ~39!

The terms other than the cross term in Eq.~37! are the self-
action of each beam. Note that for finites0 , x857Ks/2,
larges, they tend to a constant—decreased amplitude as
beam spreads is cancelled by growth due to generation f
1580M. D. Cahill and A. C. Baker: Oscillations in harmonics
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the fundamental. The analogous behavior for a thr
dimensional problem isv2; ln(z)/z,2 as noted at the end o
Sec. I A.

While Eq.~37! is not easy to evaluate, packages such
Maple are quite capable of tabulating and plotting it. Figu
9 compares the axial behavior of the exact solution, with
model run of Figs. 6 and 7, and Fig. 10 compares them
cross section of the beam 274 mm from the grating, a p
where the fingers are stronger than the principal fringes.
slight deviation of the model from theory for largez in Fig. 9
may be due to the finite length of the slits in the model ru
Otherwise, the fit is exact enough to confirm the accuracy
the Bergen code, and incidentally to reassure one that
algebra is correct.

Turning to the cross term,

cr~K,x8,s,s!2cr~K,x8,s,s0!, ~40!

FIG. 9. Comparison of predictions by the numerical model~curves!, and by
the exact solution equation~37! ~points!, for the axial variation of the com-
plex components of the second harmonic.K510p, P051 kPa.

FIG. 10. Comparison of predictions by the numerical model~curves!, and
by the exact solution equation~37! ~points!, for the transverse variation o
the magnitude of the second harmonic atz5274 mm. Note that the fingers
are stronger than the principal fringes.K510p, P051 kPa.
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for very large s ~finite x8 and s0) this tends to22i
3exp(2K2/4), which is to say that there is a constant term
the limit proportional to the overlap of the directivities of th
beams. Insofar, then, as the fundamental beams propaga
different directions, this limit is negligible. Settings050, in
accord with Eq.~31!, the continuous line in Fig. 11 show
that the amplitude of the term oscillates at first, then set
down to an almost constant value for moderate values os,
eventually falling off as 1/A4 114s2. As the principal fringes
diverge, this term propagates down thez axis, to form a
finger.

The solution~27! is defined for negatives, and while it
would be difficult to create such a beam, it is still meaning
to ask what second harmonic field it would generate, if
second harmonic were set to zero at some point before
intersection of the beams. With this in mind, the dashed l
in Fig. 11 shows the amplitude of the cross term assumi

v2~kx ,210!50, ~41!

i.e., with s05210. With this boundary condition, the sec
ond harmonic is effectively zero outside the region in whi
both fundamental beams are present—just the behavior
scribed by Westervelt. To see how these two cases di
consider Figs. 12 and 13, which show the complex com
nents of the cross term for each boundary condition. In
‘‘Westervelt’’ case, Fig. 12, there is a substantial imagina
component of the second harmonic at the origin. In orde

FIG. 11. Amplitude of the cross-term equation~40!, on axis (x50) for K
56p: boundary condition equations~31! ~continuous line! and~41! ~dashed
line!.

FIG. 12. Axial components of the cross term for boundary condition eq
tion ~41!: real component~continuous line! and imaginary componen
~dashed line!.
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set this to zero for the boundary condition ats050, a com-
ponent must be subtracted, whose evolution is seen in
13 to produce a large negative imaginary component bey
the region of interaction of the beams@which slowly rotates
into the real component due to the factor 1/A122is in Eq.
~38!#. The far-field finger is thus seen to be a direct result
the boundary condition, Eq.~31!. It is the ‘‘free wave’’ of
Naze Tjo”tta and Tjo”tta.9

III. DISCUSSION

It has been seen in the previous two sections that
development of fingers in the near and far fields of a sim
system can be attributed to the difference between the sp
frequencies of freely propagating waves of the second
monic, and of the source function due to the interaction
noncollinear beams. In the near field, the mismatch cau
this component to stop growing, as it becomes out of ph
with its source, which shifts the fringe pattern to produ
fingers of opposite phase. In the far field, this mismatch
be seen as the reason that the generated componen~the
‘‘Westervelt component’’! does not propagate beyond th
region of interaction of the beams—it is a commonplace
sult of scattering theory that ‘‘off-shell’’ modes, i.e., mod
which do not satisfy the free-field equation, do not propag
~see Ref. 13, Chap. 5, Sec. 2!, and the fact that the phase o
the source function rotates with respect to a free field pro
gating in the same direction indicates that it is the source
an off-shell field. The component which cancels this off-sh
field at the boundary, however, is itself on-shell, and it is t
which propagates. The effect of boundary conditions on g
erated harmonics was explored more fully in Refs. 14 a
15. On the other hand, components of the two beams w
are collinear produce a source field which is on-shell, and
generates a component of the second harmonic which pr
gates.

The objection might rightly be raised that by imposin
the boundary condition equation~19!, appropriate to a
source, and then considering the beams as originating be
that point, one is describing an artificially symmetrical a
rangement, which might not be representative of more r
istic systems. Fortunately, Darvennes and Hamilton16 have
considered a system in which the boundary conditions p
sess two distinct Gaussian sources in three dimensi

FIG. 13. Axial components of the cross term for boundary condition eq
tion ~31!: real component~continuous line! and imaginary componen
~dashed line!.
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whose beams then cross, subject to the KZ equation. T
Eq. ~24!, describing the far-field behavior, contains tw
terms, one proportional to the product of the directivities
the source, and varying as ln(z)/z @the counterpart of the con
stant limit 22i exp(2K2/4) above#, due to collinear compo-
nents in the beams, and the other a bilinear function of
beams at the boundary, as must the ‘‘free field’’ compon
be, if at the boundary it is to cancel the Westervelt comp
nent, itself bilinear in the fundamental beams.

Finally, to revisit the Young’s fringes, although Figs.
and 2 refer to beams with finite amplitude and absorpti
one can envisage the second harmonic in a low-amplit
system as being composed of three fields—the first gener
by the interaction of collinear modes in the two beams,
second due to the local interaction of noncollinear mod
~bearing in mind that the beams overlap through most of
half-spacez.0), and the third attributable to the bounda
condition, which requires cancellation atz50 of the field
generated by local interaction of the fundamental field.
practice, however, the distinction between these is amb
ous, both because it depends on the choice of boundary,
because sources of modes which violate only slightly
free-field equation must act for a considerable distance
fore drifting out of phase with their generated waves. In t
far field, the first component will create fringes of seco
harmonic coinciding with those of the fundamental, but
continuous generation, in the absence of propagation of
second component, may be expected to generate finger
in the near field of the cosine grating. Given the comp
spatial spectrum, it is not surprising that oscillations are
apparent in the amplitude of the fingers, but detailed exa
nation of the field does show that the second harmonic in
fingers has opposite phase from that in the principal fring
Note that between fringes of the fundamental, its transve
derivative is nonzero, and so Westervelt’s argument5 ~see the
Introduction! does not deny the existence of fingers.

While the solutions derived above are for simple sy
tems, it may be possible to approximate the boundary co
tion equation~31! experimentally, by inserting a frequency
dependent attenuator at the intersection of two beams
sound. If the attenuator is thin on the scale 2r 0 /K2 of the
oscillations, and effectively removes the generated harm
ics from two intersecting beams, then one would expec
weak far-field finger to be observed.

The analytic solution obtained may also be of use
testing numerical models of nonlinear propagation.

In summary, far from being anomalous, the nonline
production of harmonic fields in regions where there is lit
fundamental field is a natural consequence of the imposi
of zero amplitude on the harmonics in regions where
fundamental is nonzero, the continuous local production
on-shell harmonics, and suppression of off-shell harmon
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