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Abstract 18 

The utilization and capabilities of biotelemetry are expanding enormously as technology 19 

and access rapidly improve. These large, correlated datasets pose statistical challenges requiring 20 

advanced statistical techniques to appropriately interpret and model animal movement. We used 21 

satellite telemetry data of critically endangered Eastern Pacific leatherback turtles (Dermochelys 22 

coriacea) to develop a habitat-based model of their motility (and conversely residence time) 23 

using a hierarchical Bayesian framework, which could be broadly applied across species. To 24 

account for the spatiotemporally auto-correlated, unbalanced, and presence-only telemetry 25 

observations, in combination with dynamic environmental variables, a novel modeling approach 26 

was applied. We expanded a Poisson generalized linear model in a continuous-time discrete-27 

space (CTDS) model framework to predict individual leatherback movement based on 28 

environmental drivers, such as sea surface temperature. Population-level movement estimates 29 

were then obtained with a Bayesian approach and used to create monthly, near-real time 30 

predictions of Eastern Pacific leatherback movement in the South Pacific Ocean. This model 31 

framework will inform the development of a dynamic ocean management model, “South Pacific 32 

Turtle Watch (SPTW),” and could be applied to telemetry data from other populations and 33 

species to predict motility and resident times in dynamic environments, whilst accounting for 34 

statistical uncertainties arising at multiple stages of telemetry analysis.  35 
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Introduction 38 

With the advancements in telemetry technologies, animal movement data have been 39 

collected with increasing duration, resolution, and accuracy (Hooten et al. 2017). These 40 

telemetry data provide opportunities for resource selection studies (Johnson et al. 2008b), which 41 

examine the complex interactions between the animal population and environmental processes. 42 

The high dimensionality of modern animal movement data, however, calls for development of 43 

efficient computational methods and the ability to incorporate both static (e.g. bathymetry) and 44 

dynamic (e.g. sea surface temperature) environmental drives that can influence animal 45 

movements. For aquatic and exploited species, insights from such studies can in turn enable 46 

dynamic ocean management, spatiotemporally varying management based on the incorporation 47 

of near real-time data (Howell et al. 2008, Block et al. 2011, Maxwell et al. 2015, Hazen et al. 48 

2016, 2018). 49 

Telemetry data provide valuable animal movement information, but are characterized by 50 

many challenging statistical properties, such as non-normal measurement errors (Jonsen et al. 51 

2005), temporal auto-correlation (Fleming et al. 2015), and unbalanced and presence only 52 

sampling design (Aarts et al. 2008). Modern statistical models include state-space model 53 

approaches to model measurement errors and dynamics of the movement process (Jonsen et al. 54 

2005), continuous-time models of unbalanced sampling (Johnson et al. 2008a), and agent-based 55 

or velocity-based models (Hooten et al. 2010, Hanks et al. 2011). These approaches, however, 56 

tend to use customized Markov chain Monte Carlo (MCMC) algorithms for statistical inference, 57 

which are computationally demanding, and generally focus on statistical inference of individual 58 

level movement (Hooten et al. 2016). With the increasing availability of telemetry observations 59 

from multiple individuals, it is natural to generalize this individual level inference to the 60 
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population level, although there are the added challenges of individual level or sampling 61 

variability (Aarts et al. 2008).  62 

Telemetry data are increasingly being used in species distribution models (e.g. Hazen et 63 

al. 2016, 2018). Although terrestrial studies tend to use environmental variables based on static 64 

geographic features at a fixed resolution, this may not adequately represent the environmental 65 

conditions experienced by marine species within a dynamic seascape (Hidalgo et al. 2016). Thus, 66 

it is important to consider movements of highly migratory marine species in relation to the 67 

contemporaneous environment they are experiencing, particularly for highly dynamic features 68 

(Mannocci et al. 2017).  69 

In order to account for the various sources of uncertainty and complexity inherent within 70 

telemetry data, Hooten et al. (2016) and Hanks et al. (2015) proposed a Bayesian hierarchical 71 

approach to statistical inference of population level movement. This hierarchical approach 72 

incorporates uncertainties from multiple sources, such as inaccuracy of location observations, 73 

process variability from stochastic movement processes, and sampling variability among 74 

individuals. In addition, this approach can be formulated in the classical generalized linear mixed 75 

model framework. Although previously implemented with static environmental variables, we 76 

generalized the modeling approach to incorporate dynamic environmental drivers, essential to 77 

understanding and predicting the spatiotemporal distribution of highly migratory species. We 78 

utilized and modified this statistically robust approach to study dynamic resource selection using 79 

a large telemetry dataset of Eastern Pacific leatherback turtles (Dermochelys coriacea). The 80 

‘ctmcmove’ R package (Hanks 2018) was generalized to achieve the input of dynamic 81 

environmental drivers (see Data S1). Thus, this dynamic framework can be applied to other 82 
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populations and species tracked through a dynamic seascape to predict motility and residence 83 

time based on changing environmental conditions.  84 

Methods 85 

Leatherback turtle data 86 

Adult females were tagged with Argos satellite transmitters at nesting beaches in Mexico 87 

(n = 1) and Costa Rica (2003 – 2008) (Fig. 1) (n = 42; Shillinger et al. 2008, 2010, Bailey et al. 88 

2012b). Two juvenile leatherbacks caught in the Peruvian driftnet fishery were released with 89 

Argos tags (2014). Additional data from Mexiquillo, Cahuitán, and Agua Blanca, Mexico (n = 90 

24; 1993 – 2003), Playa Grande, Costa Rica (n = 8; 1992 – 1995), and Peru (n = 2; 2014 – 2015) 91 

were not included within the final analyses due to significant gaps in the availability of 92 

associated remotely sensed environmental datasets.  93 

State-space model 94 

 We applied a Bayesian switching state-space model (SSSM) (Jonsen et al. 2005, 2007) to 95 

raw satellite telemetry positions and obtained mean daily location and behavioral mode estimates 96 

(classified as transiting or foraging) for each individual track. We distinguished post-nesting 97 

behavior from inter-nesting behavior for the leatherbacks tagged on the nesting beaches by 98 

removing the initial part of the track that was indicative of inter-nesting behavior as in Bailey et 99 

al. (2008, 2012a). Only post-nesting portions of the tracks of at least 30 days duration were 100 

included in the analysis (Bailey et al. 2012a). The SSSM package “bsam” (Jonsen et al. 2005, 101 

Jonsen 2016, R Core Team 2017) was chosen over other R packages (e.g. “crawl”; Johnson et al. 102 

2008a, Johnson and London 2018) because the SSSM provided the behavioral mode estimation 103 

necessary for this track delineation and had been used in previous studies with these tracks 104 

(Bailey et al. 2008, 2012a, 2012b, Shillinger et al. 2008, 2010, Block et al. 2011). By removing 105 

inter-nesting females, we assumed sex did not influence movement behavior in this population 106 
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(James et al. 2005, Benson et al. 2011). Two MCMCs were run with 30,000 samples, a burn-in 107 

of 20,000, and thinning of 10. SSSM-derived position estimates on land were corrected to the 108 

nearest plausible location at sea. Tracks with gaps too large for the SSSM to accurately 109 

interpolate across (≥ 20 days) were split into track sections (n = 12 tracks split). All analyses 110 

were conducted in the R statistical environment (R Core Team 2017). 111 

Environmental covariates 112 

Environmental covariates included in the model were sea surface temperature (SST), 113 

bathymetry, sea surface height (SSH), frontal probability index (FPI), and Ekman upwelling 114 

(Fig. 1; see Appendix S1: Table S1). Monthly values were obtained from the NOAA/NMFS 115 

Southwest Fisheries Science Center, Environmental Research Division’s ERDDAP server 116 

(https://coastwatch.pfeg.noaa.gov/erddap) (Simons 2016), E.U. Copernicus Marine and 117 

Environment Monitoring Service (CMEMS) (marine.copernicus.eu), and Plymouth Marine 118 

Laboratory (following method in Miller et al. 2015) within a latitudinal range of -42° to 30°N 119 

and longitude from -140° to -70°E. We chose to build the model over a 0.5° grid cell to provide 120 

a cell size that leatherbacks could move across within one day given transiting speed estimates 121 

(Shillinger et al. 2008), but as large as possible to reduce computational intensity given the large 122 

prediction area (see Appendix S2).  123 

Continuous-time discrete-space model 124 

Continuous-time discrete-space (CTDS) (Hanks et al. 2015) is a habitat model that 125 

accommodates unbalanced telemetry data from individual Argos tracks and gridded estimates of 126 

environmental covariates to provide movement estimates through a given area. Specifically, let 127 

{�̂��̂�(𝑢), 𝑢 = 1 … ,T} denote the estimated daily track locations from the SSSM, where i denotes an 128 

individual animal. Let βi denote the CTDS parameter for this individual. We denote the 129 

individual CTDS model 𝜋(�̂�𝑖|𝛽𝑖) as following: discretize the continuous track according to the 130 

https://coastwatch.pfeg.noaa.gov/erddap
http://marine.copernicus.eu/
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granularity of the environmental covariates, and let 𝑺𝒊 = {𝒈𝒊, 𝒕𝒊, 𝝉𝒊} denote the animal’s CTDS 131 

path, where 𝒈𝒊 = {𝑔𝑖𝑐, 𝑐 = 0, … , 𝐶} denotes the sequence of starting cells traversed by the 132 

animal, 𝒕𝒊 = {𝑡𝑖𝑐, 𝑐 = 1, … , 𝐶}, and 𝝉𝒊 = {𝜏𝑖𝑐, 𝑐 = 1, … , 𝐶} the time of entry and residence time 133 

for each cell 𝑔𝑖,𝑐−1 before transition into 𝑔𝑖,𝑐.  134 

Let 𝑘 ∼ 𝑙 denote two neighboring grid cells, and x𝑖,𝑘𝑙,𝑡 the corresponding vector of 135 

environmental drivers. The transition rate between cells can then be modeled with the 136 

environmental data via a log link 137 

 𝜆𝑖,𝑘𝑙(𝛽𝑖, 𝑡) = exp{x𝑖,𝑘𝑙,𝑡
T 𝛽𝑖}. (1) 

We considered only motility based covariates and assumed that impacts of gradient based 138 

covariates on turtle movements would be minor at the population level. 139 

 𝜆𝑖,𝑘𝑙(𝛽𝑖, 𝑡) = exp{x𝑖,𝑘,𝑡
T 𝛽𝑖}. (2) 

The transition to neighboring cells follows a multinomial process with probability 140 

proportional to (1). Let |Nk| denote the number of adjacent cells to cell k, the total transition rate 141 

from a cell 𝑘 equals 142 

 𝜆𝑖,𝑘(𝛽𝑖, 𝑡) = ∑ 𝜆𝑖,𝑘𝑙(𝛽𝑖, 𝑡)

𝑙∼𝑘

= |𝑁𝑘|exp{x𝑖,𝑘,𝑡
T 𝛽𝑖}, (3) 

and the corresponding residence time at cell 𝑘 follows an exponential distribution  143 

 𝜏𝑖,𝑔𝑐
≡ 𝜏𝑖,𝑐 ∼ exponential[𝜆𝑖,𝑘(𝛽𝑖, 𝑡)], (4) 

where exponential(λ) denotes the distribution with mean 1/λ. 144 

Assuming conditional independence between transitions and residence time – given the 145 

environmental drivers – within and across transitions, the likelihood of the CTDS path 𝑺𝒊 146 

according to models (1 – 4) can be written as 147 
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∏ 𝜆𝑖,𝑐−1,𝑐(𝛽𝑖, 𝑡𝑖,𝑐) exp{−𝜏𝑖,𝑐𝜆𝑖,𝑐−1(𝛽𝑖, 𝑡𝑖,𝑐)}

𝐶

𝑐=1

, 
(5) 

where we write 𝜆𝑖,𝑔𝑐−1,𝑔𝑐
≡ 𝜆𝑖,𝑐−1,𝑐 for brevity of notation. Hanks et al. (2015) introduced the 148 

latent variable 𝑧𝑐,𝑐′ = 1(𝑔𝑐′ = 𝑔𝑐+1) and write the likelihood above as 149 

 

∏ ∏ 𝜆𝑖,𝑐−1,𝑐′(𝛽𝑖, 𝑡𝑖,𝑐)
𝑧

𝑖,𝑐−1,𝑐′
exp{−𝜏𝑖𝑐𝜆𝑖,𝑐−1,𝑐′(𝛽𝑖, 𝑡𝑖𝑐)}

𝑐′∼𝑐−1

𝐶

𝑐=1

. 
(6) 

The advantage of the parameterization is that (6) is an independent Poisson likelihood with data 150 

{𝑧𝑖,𝑐,𝑐′ , 𝑐 = 0, 𝐶 − 1, 𝑐 ∼ 𝑐′} and offset {log(𝜏𝑖,𝑐), 𝑐 = 1, … , 𝐶}, for which the iterative 151 

generalized least squares algorithm can be used for estimation in the frequentist framework. 152 

Population level inference 153 

The CTDS models individual level association between movement and environmental 154 

cues. To account for sampling variabilities among individuals and then generalize the individual 155 

response pattern to the population level, we applied a hierarchical model that uses random effects 156 

for individual level parameters (Hooten et al. 2016). Let 𝑛 denote the number of individuals and 157 

𝜋(�̂�𝑖|𝛽𝑖) denote the CTDS likelihood function (6) of individual 𝑖 = 1, … , 𝑛 as the first stage of 158 

the hierarchical model. At the second stage, we specify a conventional normal prior for 𝛽𝑖  159 

 𝛽𝑖 ∼ N(μ𝛽 , Σ𝛽),    for     𝑖 = 1, … , 𝑛, (7) 

where μ𝛽 , Σ𝛽 denote the population level parameter and the covariance matrix of individual level 160 

sampling variabilities around μ𝛽. Letting 𝜈 = dim(𝐱) denote the dimensionality of the 161 

environmental covariates, we assign a vague hyper-prior to complete the hierarchical Bayesian 162 

model specification. 163 

 μ𝛽 ∼ N(μ0, Σ0)   ,   Σ−1 ∼ Wishart(𝜈, Q), (8) 

where μ0 is 𝜈 × 1 vector of zero, Σ0 is 100 × I, where I is a 𝜈 × 𝜈 identity matrix and Q = 𝜈−1I. 164 
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Markov chain Monte Carlo algorithm 165 

The hierarchical model (6 – 8) follows the generalized linear mixed model family (see 166 

Appendix S2). We used the Hamilton MCMC with No-U-Turn algorithm (Hoffman and Gelman 167 

2014) due to its superior convergence performance. The “brms” package (Bürkner 2017) served 168 

as an R interface to Stan and model selection. MCMC convergence diagnostics were conducted 169 

for μ𝛽 , Σ𝛽 , and selected 𝛽𝑖 parameters based on the R “coda” package (Brooks and Gelman 1998, 170 

Plummer et al. 2006). 171 

Model selection 172 

The full model available for selection was symbolically 173 

 log(motility) ∼ bathymetry + f(SST) + Ekman + FPI + SSH + crw,  (9) 

where motility is the total rate of transitions out of a grid cell per day. Each environmental 174 

variable is incorporated as a dynamic driver based on the time of entry into the initial cell for 175 

each movement c. We incorporated quadratic sea surface temperature and linear bathymetry, 176 

Ekman upwelling, frontal probability index, and sea surface height. The crw term is a 177 

constructed auto-covariate term (Illian et al. 2012), which measures the directional change 178 

between the adjacent moves, and is important in the model to incorporate temporal auto-179 

correlation. The remaining model covariates were selected first using a “top-down” strategy 180 

based on posterior leave-one-out (LOO) predictive statistics (Vehtari et al. 2017). We 181 

sequentially removed each variable from the hierarchical model (6 – 8) and compared the leave-182 

one-out (LOO) statistics between the original model and each simplified model. The variable 183 

resulting in the least significant difference in the LOO statistic is removed. This drop-one 184 

process stops when no variable can be removed from the model. The automatic model selection 185 

was supplemented by manual interpretations.  186 
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Model prediction 187 

We used residence time as a metric to map the predictive resource selection (Hanks et al. 188 

2015). Let x𝑗
𝑝, 𝑗 = 1, … , 𝐽 denote the value of selected covariates at grid cells 𝑔𝑗, which covers 189 

the entire leatherback habitat in the eastern Pacific. The mean residence time at each cell can be 190 

defined as 191 

 𝑟𝑗(𝜇𝑏) = exp {−x𝑗
𝑝T

μ𝛽}  for  𝑗 = 1, … 𝐽. (10) 

Posterior inference of 𝑟𝑗(𝜇𝛽) can be forward simulated based on posterior samples of 𝜇𝛽, while 192 

accounting for the joint distribution of all model parameters. The posterior mean and inter-193 

quartile-range can be mapped as the estimated residence time and associated uncertainty. 194 

Results 195 

Based on the results of the SSSM, there were 58 tracks from 45 individual turtles used 196 

in the modeling process, totaling 10,066 daily positions spanning February 2003 through 197 

December 2014 (Table 1). The best model from the posterior LOO model selection was the full 198 

model bathymetry, SST, SST
2
, FPI, and SSH (ΔLooIC = -4.57, SE(ΔLooIC) = 3.53, p = 0.20; 199 

see Appendix S1: Table S2). Population level Eastern Pacific leatherback motility estimates 200 

(𝜇𝛽) indicate effects for each model covariate given no zero overlap for each 95% confidence 201 

interval (Table 2). Leatherbacks are more likely to move (decrease residence time) with high 202 

and low values of SST (𝜇𝛽 = 0.54; SST
2
:
 𝜇𝛽 = 0.72) and high FPI (𝜇𝛽 = 0.76), while reducing 203 

movement in areas of high SSH (𝜇𝛽 = -1.330). Environmental predictors were checked for 204 

collinearity. Residence time in days were predicted for June 2016 (Fig. 2a) and December 2016 205 

(Fig. 2b).    206 

Discussion 207 

This habitat-based movement modeling approach can serve as a foundation for studies 208 
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utilizing tagging data to overcome statistical challenges for population level movements (see 209 

Appendix S1: Fig. S1). Organismal movement is often highly complex, and this framework 210 

accommodates intricate environmental selection by individuals scaled to populations. This 211 

process can be applied to tagging studies to account for the spatiotemporally auto-correlated, 212 

unbalanced, and presence-only telemetry observations in a dynamic environment. It is broadly 213 

applicable, automatable, parallelizable, and interpretable, easing computing demands of vast 214 

datasets. This considers and accounts for often-overlooked data source errors, reducing model 215 

uncertainty. Overall, this hierarchical modeling approach represents a higher-level estimation of 216 

persistent, predictable behavior across any population of study.  217 

Compared to other movement studies, the CTDS model framework does not require the 218 

creation of false-absences or pseudo-tracks commonly used in generalized additive mixed model 219 

analyses of telemetry data (e.g. Willis-Norton et al. 2015, Hazen et al. 2016). This framework 220 

provides a means strengthening dynamic management models by incorporating multiple data 221 

sources, including irregularly spaced data, which strengthens the ability to model available data 222 

and maximize sample sizes. The approach reported here is flexible, particularly in that it is can 223 

be adapted around the same framework indeterminate of the model used. Wilson et al. (2018) 224 

utilized a CTDS approach to model species distribution based on static seascape variables. Their 225 

approach accounted for unobserved movements into preferred habitats, highlighting these model 226 

benefits for marine telemetry data. We incorporated dynamic environmental covariates in CTDS 227 

to better reflect changing environmental conditions encountered by migrating marine species 228 

through time (e.g. seasonal seascape changes). This enabled short-term forecasting of preferential 229 

spatial use at a monthly time-scale. The monthly prediction could be more relevant for dynamic 230 

ocean management than the long-term utilization density, which was more appropriate for 231 
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species interacting with static environmental variables. Overall, CTDS provides population-level 232 

inference through MCMC compared to many movement studies based on individual-level 233 

models. 234 

Using the CTDS modeling framework, we predicted the residence time of leatherback 235 

turtles during two months in 2016 (Fig. 2). Residence time estimates should predict 236 

leatherbacks transiting quickly from warm, coastal waters in December near the nesting 237 

beaches, moving towards productive fronts in the South Pacific Gyre (Fig. 2b). Turtles begin 238 

their post-nesting migration southwards through the eastern tropical Pacific in February to May 239 

(Shillinger et al. 2008). In the South Pacific Ocean, there is a seasonal pattern with turtles 240 

moving south to the South Pacific Subtropical Convergence (Saba et al. 2008) in the austral 241 

summer (December to April) when temperatures are higher at these temperate latitudes 242 

(approximately 30-40°S) (Shillinger et al. 2011). Leatherbacks generally return north to 243 

warmer, tropical waters (approximately 0-20°S) in the winter (May to November) (Fig. 2a). As 244 

expected, there is a large area in the South Pacific Gyre with low residence time in this warm, 245 

less productive water mass during both June and December 2016. In both months, leatherbacks 246 

were likely to move more slowly through the productive waters west of Peru and Chile. The 247 

prediction maps can serve as a valuable tool to assist with dynamic ocean management (e.g. 248 

Howell et al. 2015) to prevent and ultimately reduce bycatch of leatherback turtles in fisheries 249 

through their incorporation into an end-user interface, South Pacific TurtleWatch (SPTW). 250 

Previous studies have conveyed the complex relationship between satellite-derived 251 

surface environmental metrics and leatherback distribution (e.g. Shillinger et al. 2008, 2011, 252 

Bailey et al. 2012a). Higher latitudes in the South Pacific are more productive, but temperature is 253 

ultimately expected to be a proxy for predicting prey abundance (gelatinous zooplankton), the 254 
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driver of leatherback movement (Heaslip et al. 2012, Jones et al. 2012). Leatherbacks avoid 255 

cooler water farther south where they forage around 19°C and generally avoid warmer water (> 256 

31°C) when breeding (Shillinger et al. 2011). This expectation of higher residence time in the 257 

north during austral winter and higher probability in the south during summer, creating a north-258 

south seasonal cycle throughout the South Pacific, is generally captured in our model predictions.  259 

Although this modeling approach has many benefits, there are several limitations and 260 

complexities to consider. The model must be evaluated for its ability to predict the biologically 261 

realistic behavioral responses. If regression coefficients are small at the individual-level, patterns 262 

across population-level inferences will not be observed. The uncertainty in the estimated 263 

movement paths of individuals can be decreased in this framework by applying multiple path 264 

imputations (Hooten et al. 2010, Hanks et al. 2015, Wilson et al. 2018), but with larger telemetry 265 

datasets, it can become computationally challenging. Within our model, vague priors were used 266 

to drive inference. However, priors can be specified to increase predictive power when greater 267 

species information is available, a benefit of using this Bayesian approach. A manual backward 268 

model selection was conducted, but a Bayesian model averaging approach could make it easier to 269 

evaluate overall predictive power of a given set of predictor variables. We used a generalized 270 

linear model, having to assume the association between the leatherback movement and 271 

environmental variables was parametric. However, a semi-parametric generalized additive mixed 272 

model could be incorporated to model more complex associations with the environment.  273 

The amount of telemetry data becoming available is ever-expanding, as are the complex 274 

models relating animal behavior to environmental cues, but high computational power is often 275 

required. Therefore, it is essential to use a predictive model capable of incorporating robust 276 

model estimates of movement over large tracking datasets and vast amounts of environmental 277 
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information. Here, we utilized a novel approach by incorporating dynamic drivers of animal 278 

movement in a broad framework other studies can utilize and addressed the data analysis needs 279 

of more advanced observational techniques without super-computing computational 280 

requirements. The ability to predict motility and residence times of marine species based on 281 

environmental conditions can play a valuable role in assisting with their management and 282 

conservation in a dynamic ocean. 283 
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Tables 436 

Table 1. Post-nesting Eastern Pacific leatherback positional information modified from Bailey et 437 

al. (2012a). All tracks included Argos satellite tag data from starting locations in Mexico, Costa 438 

Rica, and Peru with either nesting or fisheries incidentally caught turtles.  439 

Tagging 

Location Data Type Years 

Total Daily 

Positions 

No. 

Tags 

Track Duration (Days) 

 Mean      Min        Max 

Mexico: nesting 
Argos 

Satellite Tag 
2003 92 1 NA NA NA 

Costa Rica: 

nesting 

Argos 

Satellite Tag 

2004-

2008 
9841 42 179 34 513 

Peru: driftnet 

fisheries bycatch 

Argos 

Satellite Tag 
2014 133 2 67 48 85 

Total Post-

Nesting Tracks 

Argos 

Satellite Tag 

2003-

2014 
10,066 45 174 34 513 

  440 
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Table 2. Population level coefficient estimates (posterior median and 95% credible sets) from 441 

CTDS hierarchical model relating motility with environmental covariates. crw denotes the 442 

direction of the most recent movement at each time point. Tracks (n = 58) used were longer than 443 

30 days, include all environmental predictors, and do not exhibit collinearity between predictors. 444 

Bathy is bathymetry, SST is sea surface temperature, SST
2
 is quadratic sea surface temperature, 445 

FPI is the frontal probability index, and SSH is sea surface height. 446 

Coefficient Estimate 

Estimate 

Error 2.5%ile 97.5%ile 

Intercept -1.070 0.190 -1.460 -0.680 

Bathy 0.080 0.030 0.030 0.130 

SST 0.540 0.080 0.380 0.700 

SST
2
 0.720 0.190 0.370 1.100 

FPI 0.760 0.120 0.530 0.970 

SSH -1.330 0.220 -1.760 -0.890 

crw 0.670 0.030 0.610 0.730 

  447 
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Figures 448 

 449 

Figure 1. Monthly values for each of the modeled environmental variables: (a) bathymetry (m), 450 

(b) sea surface temperature (°C), (c) frontal probability index, (d) Ekman upwelling (m/s), and 451 

(e) sea surface height (m) for leatherback observations based on the estimated mean daily 452 

positions from the switching state-space model. Maps were generated using ‘ggmap’ in R (Kahle 453 

and Wickham 2013).  454 
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 455 

Figure 2. Leatherback turtle residence time (days) based on CTDS predictions using 45 456 

individuals (n = 58 tracks) and environmental covariates of bathymetry, sea surface temperature, 457 

quadratic sea surface temperature, frontal probability index, and sea surface height for (a) June 458 

2016 and (b) December 2016. Plus signs represent daily positions of leatherbacks included in the 459 

model during the respective months.   460 


