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Abstract. We report here the construction of a system designed to investigate chaotic dripping 

behaviour. The benchtop system has been designed for the purpose of measuring chaotic 

dripping in a microgravity test facility, although measurements under normal gravity only are 

reported here. The results confirm the main predictions of a simple 1-D mass-spring-damper 

theoretical model of the system, including the formation of point attractors and associated limit 

cycles, although there are significant departures from this model within specific flow rate 

regions resulting in the formation of what are termed here ‘mid’ drops (drops of a smaller size 

than normal). It is hypothesized that the origin of these mid drops arises from the development 

of a ‘wetting’ mass, namely a mass of liquid that is evacuated from the delivery tube from the 

previous drop excision. 

1.  Introduction and System Design 

Three main types of behaviour of fluid flow from a nozzle can be identified: periodic dripping, chaotic 

dripping and jetting. The main parameters that affect the fluid flow are inertia, gravitational 

forces, surface tension and viscosity. Instabilities in jet flow were first studied by Rayleigh [1] 

and Plateau [2], and the effect of these instabilities was to create necking in the jet stream. 

Rayleigh’s work assumed that the fluid was irrotational, non-viscous, incompressible and the 

effect of surface tension was ignored. Tomotika extended Rayleigh’s work to include the 

effects of viscosity [3], and these studies collectively concluded that the jet stream would 

break up into drops of a similar size, driven by capillary instabilities. Leib and Goldstein 

demonstrated that these instabilities could be related to the Weber number [4].  

 
Lin and Lian speculated that these jet instabilities could lead to dripping modes [5] when the Weber 

number was small. Clanet and Lasheras investigated this behaviour experimentally using a high speed 

camera [6], and determined a critical Weber number for the transition between jetting and dripping 

given by  

Wec = 4
𝐵𝑜𝑜

𝐵𝑜
[1 + 𝐾𝐵𝑜𝑜𝐵𝑜 − ((1 + 𝐾𝐵𝑜𝑜𝐵𝑜)2 − 1)

1
2]

2

 1.1 

where: Boo, Bo are Bond number for outside and within the nozzle respectively, and K is constant 

(equal to 0.37 for water in air). Their work identified the existence of two regions: regular periodic 

dripping; and chaotic dripping (referred to as the dripping faucet region). Later work identified a third, 

http://creativecommons.org/licenses/by/3.0
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region between these two, consisting of quasi-period dripping [7,8]. To be clear, periodic dripping is 

the development of drops, which detach with the same period, quasi-periodic dripping is 

periodic dripping where detachment does vary but follows a sequence in the repetition of 

periods and chaotic dripping is where the time of detachment varies with no identifiable 

repetition pattern. 
 

The dripping regime was modelled by Eggers and Dupont [9], using a modified Navier-Stokes 

equation and modified continuity equation in a 1-D cylindrical coordinate system, assuming viscous 

axisymmetric flow of an incompressible fluid. Their model predicted drop shape well, but was unable 

to deal with the singularities presented at the point of detachment, although later work by Eggers 

extended this model to deal adequately with detachment [10]. Zhang’s work [11] also solved a Navier-

Stokes equation and similarly was unable to deal with detachment, but, importantly, predicted the 

formation of a liquid ‘thread’ joining the main drop with the liquid cone formed at the nozzle.   

 

In order to investigate dripping and jetting from a nozzle, a system was constructed at Kingston 

University. It was intended to carry out this investigation in microgravity conditions, and a 

microgravity facility was constructed for this purpose [12]. The system design is shown in Figure 1a 

and the constructed system in Figure 1b. 

 

  
Figure 1a. Isometric view of the experimental 

module design 

Figure 1b. Assembled experimental module 

 

The built module dimensions are 394×252×354 ±0.5 mm (Width × Height × Depth), with a mass of 

10.90±0.05 kg (dry mass when empty of fluid). The fluid system consists of (Figure2a): Pump; 

Syringe; Tubing and tee-connector; Test chamber (surrounding structure, water collection pot); 

Nozzle; Sensors (thermocouple and accelerometers) 

 

The electronics, data collection and camera components consist of (Figure 2b): Onboard computers; 

Cameras; Batteries (for onboard computer and for light panels); Control panel (switches, identification 

Light Emitting Diodes; charging points); Video output cable adaptors 
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Figure 2a. Fluid system components Figure 2b. Data processing, cameras and 

electronics components 

 

The water jet is produced using the IVAC P6000 pump [13], which can provide a maximum 

purge rate of 500 ml/hr (𝑅𝑒 = 177.16), and the pump provides ±2% volumetric flow rate 

error, with a flow rate step increase of 1 ml/hr (corresponding to a Reynolds number increase 

of 4.8 × 10−3 at 20 
o
C, 101 kPa).  Two cameras were mounted at right angles to take 

simultaneous recordings of the drop formation, with backlit panels lit by LEDs (Figures 3a 

and 3b). 

  
Figure 3a. Panel in 

operation in darkness 

Figure 3b. LED distribution 

behind the panel 

The video image underwent a series of enhancements in order to produce a sharper image from which 

centroid co-ordinates could be extracted in order to measure the movement of the drop, including 

determination of drop detachment.  

 

2. Results 

We present here indicative data on the development of ‘mid’ drops, a result not predicted by current 

models. 
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Figure 4. Mid drop development 

3. Conclusion  

A system was constructed to measure the development of liquid drops and results presented on the 

formation of a behaviour that is not predicted by current models of drop formation. The development 

of such a rig permits the study of drop development in greater detail, which can therefore provide 

results rendering the system more valuable for colleagues working in this field.  
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