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Abstract 

This research manuscript reports on Electrohydrodynamic Atomisation (EHDA) to engineer on-

demand coatings for ocular contact lenses. A formulation approach was adopted to modulate the 

release of timolol maleate (TM) using chitosan and borneol. Polyvinylpyrrolidone (PVP) and poly (N-

isopropylacrylamide) (PNIPAM) were electrically atomised to produce optimised, stationary contact 

lens coatings to encapsulate TM. The particle and fibre diameter, thermal stability, compatibility of 

the formed coatings along with their in vitro release-modulating effect and ocular tolerability were 

investigated. The results demonstrated highly stable nano-matrices with advantageous morphology 

and size. All formulations yielded coatings with high TM encapsulation (>88%); with excellent ocular 

biocompatibility. The coatings presented biphasic and triphasic release; depending on composition. 

Kinetic modelling revealed a noticeable effect of chitosan; the higher the concentration, the more the 

TM release due to chitosan swelling; with the release mechanism changing from Fickian diffusion (1% 

w/v; n = 0.5) to non-Fickian (5% w/v, 0.45 < n < 0.89). The use of EHDA has not yet been explored in 

depth within the ocular research remit; engineering on demand lens coatings capable of sustaining 

TM release. This is likely to offer an alternative dosage form for management of glaucoma with 

particular emphasis on improving poor patient compliance.  

 

 

 

 

 

 

 

 



 

Introduction 

The anatomy of the cornea significantly affects drug transit into the eye (Taskar, Tatke et al. 2017) . 

This transparent membrane makes up 7-10% of the whole eye, works predominantly to protect the 

front of the eye, and provides a majority of the optical focussing power; focusing any light that enters 

the eye. The cornea is a multi-layered tissue; 11mm in diameter; consisting of 5 layers. The various 

degrees of hydrophilicity across the cornea due to the composition of these 5 layers hinder drug 

molecule movement through the cornea. As a result of this, there are two main mechanisms of 

transport drug molecules can take; the paracellular or transcellular pathway. Paracellular movement 

involves the drug molecules passing through the cornea via the tight junctions (Al-Kinani, Zidan et al. 

2018). This mode of transport is often unlikely in corneal drug delivery due to the cellular arrangement 

of the outer corneal epithelium. A majority of ocular drugs are too large (<100Da) to pass to and across 

Bowman’s. Paracellular movement is possible through the stroma but as a result of its hydrophilic 

nature, transport is limited to only polar molecules. Hydrophilic molecules can also pass through pores 

in the epithelial layer but larger molecules are often limited by tight junctions. On the other hand, 

transcellular movement through a membrane is based on diffusive methods or partitioning into and 

within cell membranes (Mehta et al. 2017a). There are two main pathways for drug molecules to reach 

the anterior chamber behind the cornea. The first pathway, known as the lateral route, involves the 

drug molecule portioning from the hydrophilic stroma into the lipophilic endothelium followed by 

diffusion within the lipid rich endothelium and partitioning into the aqueous humor (AH). The 

alternate route, the transverse route entails partitioning of drug molecules out of the anterior cell 

membrane into the posterior cell membrane and diffusing out (Gaudana, Ananthula et al. 2010). 

Due to a large majority of ocular drugs lacking amphiphilic properties; they are unable to pass through 

all 5 layers of the cornea. As a result of this, there have been various attempts to bypass this 

anatomical barrier; the most common being the use of permeation enhancers (Mehta, Al-Kinani et al. 

2017). The incorporation of permeation enhancers into ocular formulations could modulate drug 

release and absorption; in turn improving ocular bioavailability.  

As a result of material development, and exponential increase in research in this remit, certain 

polymers have been found to possess release modulating and permeation enhancing capabilities. 

Chitosan is a primary example of these “modern release modulators and permeation enhancers” 

(Kumar, Vimal et al. 2016).  This cationic polysaccharide has gained particular interest due to its 



mucoadhesiveness and low toxicity (Mahaling, Katti 2016, Muxika, Etxabide et al. 2017). 

Consequently, chitosan does not disrupt or compromise the corneal epithelial.  It is thought the 

cationic nature of chitosan interacts with the cell membranes; disrupting tight junction proteins; 

hence enhancing paracellular drug transport (Kumar et al. 2016); which may also impose some 

toxicity. Furthermore, the sol-gel transformation of chitosan tends to affect drug release. 

Chitosan has previously been utilised as a release modulator and PE for an array of biological 

membranes including buccal tissue (Duttagupta, Jadhav et al. 2015, Kontogiannidou, Andreadis et al. 

2017), intestinal tissue (Chougule, Patel et al. 2014, Maher, Mrsny et al. 2016, Ates, Kaynak et al. 

2016), nasal cavity (Benediktsdottir, Baldursson et al. 2014, Giuliani, Balducci et al. 2018). Chitosan 

has also been scrutinised in the ocular drug delivery due to its permeation enhancement properties; 

with drugs such as ofloxacin (Di Colo, Burgalassi et al. 2004), triamcinolone acetonide (Raval, Khunt et 

al. 2018) and timolol maleate (Rodriguez, Antonio Vazquez et al. 2017). Most studies demonstrated 

an enhanced ex vivo permeation of drug upon incorporation of chitosan or chitosan derivatives 

(Rupenthal, Green et al. 2011). 

Borneol is a naturally occurring essential oil of Cinnamonum camphora. Although it does not fit into a 

defined category of permeation enhancers, it has shown potential in promoting corneal permeation 

of ocular the drugs TM (Wu Chun-Jie, Huang Qin-Wan et al. 2006), dexamethasone (Yang, Xun et al. 

2009), indomethacin (Yang et al. 2009) and ofloxacin (Yang et al. 2009).  

The effects of chitosan and borneol on drug release when incorporated into TM-loaded-polymeric 

coatings for contact lenses was assessed. Electrohydrodynamic atomisation (EHDA) was used to 

develop electrically atomised coatings using two polymers, polyvinylpyrrolidone (PVP) and poly (N-

isopropylacrylamide) (PNIPAM) and anti-glaucoma drug TM. EHDA is a highly advantageous method 

for yielding nanoparticles of various morphologies (Zhang, Yao et al. 2017). The one-step, on- demand 

process is easily amenable and easy to operate; enabling the user to modify the process to meet any 

specific prerequisites or criteria (Wang, Zheng et al. 2017). Electrohydrodynamic (EHD) processing has 

already shown great promise in interacting with bio-interfaces (Zamani, Prabhakaran et al. 2013, Xie, 

Jiang et al. 2015, Mehta et al. 2017b); and with the exponential increase in the interest and 

development of materials in recent years, it is now possible to produce electrically atomised structures 

which are able to alter the release of drug in a controlled manner over a specified/personalised period.   

EHDA has not yet been thoroughly exploited in the ocular drug delivery remit and only in recent years 

has the potential of using EHDA for ocular application been recognised, with researchers producing 



fibrous structures for not only drug delivery but corneal tissue engineering. Lancina et al developed 

electrospun dendrimer nanofibers as a matrix to delivery anti-glaucoma drug brimonidine tartrate 

topically to the cornea (Lancina et al., 2017). Whilst IOP responses were similar between this 

developed system and pure drug solution, in a single dose test the dendrimer fibers demonstrated 

much improved efficacy over 3 weeks. This, along with the fibers exhibiting no toxicity or ocular 

irritation, indicates the great potential these electrospun fibers have as vehicles for topical ocular drug 

delivery.  Polycaprolactone (PCL) has been used as a fibrous matrix to delivery antibiotic ofloxacin for 

the treatment of ocular infections (Karatas et al., 2016). The resulting fibres provided burst release of 

the drug and showed sufficient microbiological activity against both gram positive and gram negative 

bacteria.  The potential of using ES for ocular inserts has also been scrutinised and compared to the 

technique of solvent casting (Bhattarai et al., 2017). The electrospun fibers were found to be much 

thinner (1% PVA = 50 µm, 5% PVA = 62.5 µm) than brittle solvent cast polymer inserts (>200 µm) and 

were capable of releasing drug in a sustained manner. 

The research presented herwithe will delve into the possibility of modifying polymeric formulations 

to modulate the release of TM which will hopefully promote better corneal absorption. The 

development of a contact lens to deliver TM over extended periods of time is of clinical significance 

for management of glaucoma in the elderly population where compliance is poor with conventional 

TM eye drops. 

Materials and Methods 

Materials 

PVP (4.4x104 g/mol) was obtained from Ashland, UK. PNIPAM (2-4x104 g/mol), chitosan ethanol, (TM) 

(>98%), acetone, sodium hydroxide, Rhodamine B, and Borneol (PE) were all purchased from Sigma 

Aldrich (Dorset, UK). PureVision® Balafilcon A silicone hydrogel contact lenses were supplied by 

Bausch and Lomb (New York, USA). All reagents used were of analytical grade. 

Methods 

Timolol Maleate Calibration Curve 



A stock solution (SS1) was prepared by weighing 10 mg of TM on an analytical balance and dissolving 

this in 100 ml of freshly prepared phosphate buffer saline (PBS) at pH 7.4. 10 ml was taken from SS1 

and made up to 100 ml to make a second stock solution (SS2). 

Both stock solutions were used to achieve a range of TM concentrations from 0 µg/ml to 50 µg/ml. 

UV spectroscopy was used to firstly determine the wavelength of maximum absorbance (in scanning 

mode) and then consequently to read the absorbance of the range of TM solutions (in fixed mode). A 

calibration curve of TM was plotted using these absorbance values (S1). Readings were taken in 

triplicate and an average was taken.  

Formulation Preparation 

A 5%w/w polymeric solution was prepared by dissolving 2.5%w/w PVP and 2.5%w/w PNIPAM in 

ethanol.  This mixture was the base solution used to prepare a series of formulations (each 20ml) 

containing various concentrations of chitosan. Table 1 shows the composition of formulations. Each 

formulation also contained 15%w/w TM (with respect to polymer concentration). All solid excipients 

were weighed using an analytical balance and were mixed using a magnetic stirrer for 30 minutes to 

ensure homogeneity. One thing to note here is that chitosan is insoluble in ethanol, and therefore 

homogenous suspensions were formed.  

Coating Application 

Figure 1 shows a schematic diagram of the EHDA set-up used in this research. A BD Plastipak™ Luer 

syringe containing 5mL of solution was mounted on to a Pump11 Elite syringe infusion pump (Harvard 

Apparatus, USA) which was used to precisely control the flow of polymer-drug solution through the 

EHDA system. The syringe was connected to BD Microlance™ 3 needle (21G, 1 ½ inch) which in turn 

was inserted into silicone tubing. The formulation was infused through the tube to a stainless steel 

conductive coaxial needle device, where only the outer needle was used. The coaxial device was also 

coupled to a high power voltage supply from Glassman High Voltage Supply, UK. A collector plate was 

placed 12cm under the needle exit; this was the working distance (determined via exploratory 

experiments). The formulations were infused at a rate of 10 µl/min at 17.8 kV. All atomisation 

processes were carried out at ambient temperatures; 23°C. The resulting atomised coatings were 

initially collected on glass microscope slides for preliminary analysis; with following characterisation 

experiments carried out on coated commercial contact lenses. PureVision® Balafilcon A lenses were 

dried in a desiccator on a modified lens holder (to maintain lens shape) for 30 minutes and were 



weighed before and following the coating process to determine the weight of the coating sample. 

Controlled deposition of coating was achieved by using a modified lens holder (which held 4 lenses) 

with an additional mask arm which enabled deposition onto peripheral regions; keeping central 

regions clear for vision.  

Coating Characterisation 

 

Drug Encapsulation and Coating Composition  

To determine TM encapsulation efficiency; freshly weighed coating samples were dissolved in ethanol 

for 24 hours. UV spectroscopy (λ=295nm) was used to determine the amount of drug loaded into the 

weighed sample.  

Imaging and Size Distribution 

Exploratory analysis of morphology and size of the nanostructures that make up the atomised coatings 

were conducted using SEM. Coated microscope slides were gold-coated (S150B, Edwards, Crawley, 

UK) and mounted onto aluminium stubs before analysed using Zeiss Evo HD-15 microscope. High-

resolution images at both x5k and x50k magnification were obtained using a working distance 

between 9.5mm and 10.5mm, respectively, with a voltage between 10kV and 18kV. 

Smart Tiff viewer software was used in conjunction with SEM to gather data on average diameter size 

and size distribution information on the atomised structures. These samples were further analysed on 

contact lenses to ensure the lenses (i.e. the surface the coatings were collected on) did not affect the 

resulting atomised structures. 

FTIR Spectroscopy 

Any interactions between the polymers, TM and permeation enhancers was studied using ATR-FTIR. 

Spectras were obtained using FTIR Platinum-ATR spectrophotometer fitted with Bruker Alpha Opus 

27 FT-IR Raw materials and atomised coatings were scanned over the range of 400-4000cm-1 at an 

average of 10 scans with 4cm-1 resolution at ambient temperatures.  

Goniometry 



The wetting ability of the coatings was quantitatively analysed using Thetalite TL100 contact angle 

goniometer and OneAttention software (Biolin Scientific, Sweden). Distilled water droplets (10μl) was 

used and each sample was ran 5 times in Sessile Drop Mode and an average was taken. 

Differential Scanning Calorimetry 

Differential Scanning Calorimetry (DSC) studies were carried out using a Jade Differential Scanning 

Calorimeter, (PerkinElmer, US). Indium, with a known melting point, Tm, of 156.6°C was used as a 

standard to calibrate the temperature scale of the calorimeter. Coating samples (2-4mg) were sealed 

in aluminium pans and heated at a rate of 20°C/min under a flow of nitrogen gas. 

In Vitro Release 

A lens holder was designed and developed to carry the coated lens and to maximise contact surface 

between the lens and the synthetic dialysis membrane. The membrane separated the donor 

compartment from the receptor compartment, which contained PBS at pH 7.4, which was placed in 

the receptor compartment and acted as the release medium (Figure 2). The coated lens were fixed 

into the holder and exposed to vials filled with 10ml PBS at 37°C. At fixed time intervals, the holder 

was removed and placed into fresh vials of PBS. This in vitro drug release method was adapted from 

Mehta et al (Mehta, Justo et al. 2015). Drug release into the medium was quantified straightaway 

following removal using UV spectroscopy (λ=295nm). The mechanism of TM release from the 

polymeric coatings was determined by manipulating in vitro data and applying to various kinetic 

models.  

Probe release was demonstrated using a similar set-up to the process described above. Contact lenses 

were coated with polymeric nanostructures containing rhodamine B, 5% w/w of the polymer as 

opposed to TM. Five lenses were coated and exposed to PBS at 37°C. Each lens was removed at specific 

predetermined time points: 0 minutes, 10 minutes, 1 hour, 6 hours and 24 hours. Fluorescence 

microscopy was used to determined dye intensity (DI) on the lens and UV spectroscopy to determine 

dye intensity in the receptor medium (PBS) at λ=560.  Experiments were carried out in triplicate for all 

3 formulations. 

Ocular Tolerability Testing 

Any damage the atomised coating could cause to the eye was evaluated using the BCOP (Bovine 

Corneal Opacity and Permeability) assay. This test can assess ocular tolerability via investigating the 



interference of the test material with corneal integrity. Samples were tested; normal saline (as a 

negative control), acetone (mild positive control), sodium hydroxide (positive control), F1, F2 and F3. 

Freshly excised bovine eyes (obtained from abattoirs ABP Food Group, Guildford, UK) were primarily 

checked for epithelial integrity and/or corneal damage and were then incubated at 37°C in a water 

bath for 10 minutes. Drop of saline was applied to the corneal surface before incubating for a further 

5 minutes. 100 μl of sample (control or formulation) was introduced to the corneal surface and left 

for 30 seconds before the bovine eyes were washed with normal saline (10ml) and left to incubate for 

a further 10 minutes. Degree of corneal damage was visually determined from the extent of 

opacification and was further assessed using a staining method; using sodium fluorescein dye (2% w/v) 

under a cobalt blue light (465-490 nm). 

Statistical Analysis 

One way ANOVA test was carried to compare the release of TM from the atomised coatings. Derived 

p values less than 0.5 were considered statistically significant.  

  



Results and Discussion  

Drug Encapsulation and Coating Composition 

Table 2 displays the final composition of the resulting coatings alongside encapsulation efficiency. The 

highest encapsulation was displayed by F1 (97.93%) with F6 showing the lowest EE at 88.38%. As the 

concentration of chitosan increases in the formulations containing borneol, the EE seems to reduce to 

93.92% (2%w/w chitosan) and 90.69% (5%w/w chitosan). This pattern was also observed with 

borneol-free samples. Saroha et al reported similar results with low concentrations of chitosan 

providing the maximum TM EE (75.34%) when using ionic gelation to develop NPs for improved ocular 

drug delivery (Saroha, Pandey et al. 2017). Regardless of these reductions in EE, all formulations are 

considered to have achieved very high encapsulations of TM that are sufficient to administer a 

therapeutics dose.  

Imaging and Size Distribution 

The morphological effect of utilising chitosan in this study can be observed in Figure 3. Atomising 

Composite-TM formulations presented beaded fibres; as a result of inadequate gap between the 

needle exit and the collection plate. This could also be due to the combination of PVP and PNIPAM; 

polymers that usually yield particle and fibres when electrohydrodynamically processed separately 

(Figure 3). The addition of PE borneol yielded smooth-surfaced NFs with bell-shaped size 

distribution; an average of 74.30nm in width: thinner than previously found when electrospinning 

borneol and PVP (Li, X., Wang, X., Yu et al. 2012). With respect to chitosan-loaded coatings, it is clear 

that there was a drastic morphological difference. Upon incorporating chitosan, the resulting 

atomised structures have now formed particles held together by scarce fibres. Figures 3d-f show the 

effect of chitosan concentration on the morphology of atomised coatings contained borneol. Figure 

3g-i shows the effect of chitosan without borneol. It is evident that the use of chitosan as solid 

particles has increased the overall particle size and subsequently increased the particle size 

distribution. The chitosan particles may have been trapped inside PVP: PNIPAM matrices; hence 

increasing the overall size of the particles being produced. In the presence of borneol, there seems 

to be less particle/fibre aggregation; presumably due to the surface active agent properties of the 

borneol (Li, X., Wang, X. et al. 2012) .  

Increasing chitosan concentration also had an impact on the morphology of the structures that made 

up the coatings. As concentration increased, the proportion of the final composition that is made up 

of PE decreased; reducing the fibrous network of the coatings. The smallest average diameter was 



114.42nm thick; achieved by electrospraying F1 with the highest being yielded by F6 (919.65nm). 

Whilst there is such a large difference in the size distributions between these formulations, all 

formulations yielded coatings which consisted of structures well below 10μm in diameter; the 

threshold for the ocular tissue to detect the material as foreign bodies (Agrahari, Mandal et al. 2016). 

F1, F4 and F5 all demonstrated right-skewed distribution (Figure 4); with more than 44% of all particles 

produced being under 100nm. F2 and F6 showed negatively skewed data; highlighting at least 45% of 

the structures being more than 200nm in diameter for both formulations. F3 showed a multimodal 

distribution; with 75% of the structures being over 200nm, 15% under 100nm and 9% between the 

range 100nm and 200nm. 

FTIR Analysis 

With EHDA being an engineering process, it is important to ensure there is no incompatibility between 

the materials being processed. With chitosan being used as solid particles here, FTIR was employed to 

deduce any interactions between any of the excipients; dissolved or dispersed. Figure 5 displays the 

fingerprints for both raw materials and electrically atomised coatings. Pure TM shows characteristic 

peaks at 2968cm-1 (aliphatic C-H stretching), 3063cm-1, (aromatic C-H stretching), 1718cm-1 (C=O), 

1229cm-1 (O-H bending), 954cm-1 (C-O stretching vibrations). The peak at 1651cm-1 in all spectra for 6 

formulations correspond to C=O stretching vibrations in PVP whilst absorption peaks in the spectrum 

for PNIPAM were indicative of an amide II bond at 1500cm-1, C=O stretching and CH3 asymmetric 

stretching vibrations at 1650cm-1 and 2970cm-1, respectively. With regards to chitosan, the peak at 

1636cm-1 is due to N-H bending of the free primary amine (NH2 group) of the chitosan, whilst the peak 

1028cm-1 is as a result of C=O amide group stretching vibration. The stretching vibrations of the amino 

group gave rise to a peak at 1420cm-1 and O-H stretching and amine N-H symmetric vibrations 

produced a peak at 3329cm-1.  These prominent peaks are also present in the fingerprints for all 6 

formulations. No extreme shifts in the peaks can be detected showing the dissolved components had 

not interacted with the chitosan during the EHD process; i.e. no new bonds seemed to form between 

chitosan and the polymers or drug.  

One thing to note here is the increase in peak intensity, which can be seen at 1710cm-1, 2964cm-1, 

1286cm-1 and 3274cm-1. This increase is indicative of mass increase as frequency of vibration is 

inversely proportional to mass. This could also be due to some of the chitosan being present outside 

of the atomised structures as opposed to being completely encapsulated (Merlini, Barra et al. 2014).  

 



Thermal Analysis 

DSC 

Figure 6 displays the DSC thermograms for F0-F6, with pure TM, raw chitosan and composite TM 

atomised coatings. Pure drug showed a defined melting point of 218°C and the lack of this prominent 

peak in the thermograms for all EHD processed coatings suggests that TM was now encapsulated in 

amorphous form in the polymeric matrix as opposed to in its original crystalline form (Rasekh, Ahmad 

et al. 2017, Sayed, Karavasili et al. 2018). The similar melting points for the broad endotherms of F1-

F6 labelled in figure 6.4 (125°C – 129°C) are lower than the raw composite (131°C); highlighting TM 

was evenly distributed throughout the coatings.  Thermal glass transitions (Tg) can be detected in these 

thermograms between 59°C and 77°C as a result of the base polymer materials. Due to the amorphous 

nature of PVP and PNIPAM, there is a temperature threshold at which they will transform from 

amorphous state to a part rubber part glass state. Here, it was difficult to ascertain the exact Tg when 

incorporating chitosan.   

Chitosan is semi-crystalline as a result of strong inter- and intra-molecular bonds and its amorphous 

nature is due to the heterocyclic units. When heated to temperatures lower than its degradation 

temperature, changes in heat capacity/flow are too small to be distinguished (Wan, Lu et al. 2009). 

Additionally, this could be due to water or moisture forming intermolecular hydrogen bonds and 

acting as a plasticizer for chitosan (Sarwar, Katas et al. 2015). The weak Tg also suggests the initial 

atomised coatings were predominantly amorphous to begin with which is as predicted with PVP and 

PNIPAM making up a proportion of these coatings.   

The inclusion of chitosan in the formulations also resulted in an extra exothermic event in each 

thermograms (F1-F6). Chitosan possesses few crystalline regions due to high degree of acetylation and 

therefore goes through thermal degradation without melting; highlighted by the absence of melting 

endotherm of chitosan in Figure 6. The exothermic peaks between 263°C and 267°C (depending on 

chitosan concentration) are most likely due to the thermal decomposition of chitosan (Corazzari, 

Nisticò et al. 2015, Bizarria, d'Avila et al. 2014, Fei, Yu et al. 2016). The formation of 2 peaks here 

further confirms the presence of chitosan as solid particles. As mentioned in previous discussion about 

DSC thermograms, single endotherms confirm that the raw materials were not compromised and 

were acting as one system. Here, the presence of the exotherm responsible for the crystallisation of 

chitosan indicates chitosan was acting independent to the EHD processed coating.   

Contact Angle Analysis 



Figure 7 shows digital images of the distilled water droplet on the sample and how it dissipated over 

time. Figure 8 shows the contact angle (CA) analysis on the atomised coatings on the contact lenses 

PE-free and chitosan-free coatings (Composite-TM) showed a high initial CA at 126.27°. Upon inclusion 

of borneol, the initial contact angle was found to be 71.5° with almost 2-fold reduction compared to 

the composite-TM samples. Here, the introduction of an excipient used primarily as a PE, was also 

found to act as a surface active agent; lowering the surface tension and improving spreadability of 

liquid droplet on the fibrous coatings. Regardless of chitosan’s hydrophilic nature, the initial CA of the 

formulations containing both borneol and chitosan had increased to 96.70°, 91.21° and 91.36° for F1, 

F2 and F3, respectively. This increase in CA could be attributed to the incorporation of solid particles 

of chitosan; the particles may act as an additional barrier, which may fill voids and pore between 

polymeric matrix and chitosan (Kim, Kim et al. 2013). Therefore, the water droplet has to penetrate 

through both the chitosan as well as the polymeric matrix of PVP and PNIPAM. 

The water droplet introduced to the composite-TM atomised coatings completely dissipated within 

30 mins while droplet placed on F0 samples completely spread within 20 seconds; highlighting the 

role of borneol as a surface active agent and helping increase the hydrophilicity of the coatings. 

Incorporating chitosan into formulations containing borneol increased the time required for the water 

droplet to spread on the coatings. The concentration of chitosan apparently affected CA over time; 

the higher the concentration, the longer it took for the water droplet to completely spread. This 

increased period of time could also be due to the increased density of the sample (as a result of the 

increased concentration). This increase in density can cause particle agglomeration and due to this air 

can become trapped between the particles; creating a new interface and hindering water penetration 

and spreading.    

Formulations containing no PE but various concentrations of chitosan showed some interesting 

results. The absence of borneol showed to increase initial CA of F4, F5 and F6 to higher than that found 

with composite-TM samples. The higher the concentration of chitosan, the higher the initial CA. F4 

and F5 required 7 minutes for the water droplet to spread on whilst F6 took 8 minutes on average. 

These timings are twice as longer than those with borneol and chitosan are (3 to 4 minutes). This 

change in water spreading may possibly promote better adsorption of the coatings onto the 

hydrophilic contact lenses. 

In Vitro Drug Release and Kinetics 

In Vitro Drug Release 



Figure 9 shows the in vitro release of TM from all 6 atomised coatings alongside PE free atomised 

coatings and chitosan-free coatings.  The release from PE-free coatings demonstrated a biphasic 

profile as previously seen in earlier studies (Mehta et al 2017), with approximately 67% of the 

encapsulated drug being released after 24 hours. F1 to F6 demonstrated triphasic release profiles; 

with a slow and gradual initial release phase as opposed to an initial burst release seen with 

composite-TM and F0. The maximum amount released after 10 minutes was only 9.8% with F1 and 

F5; contradicting what was found with PE free (47.5%) and chitosan free sample (14.15%). This delay 

in drug release could be due to drug diffusion being hindered by the barrier of solid chitosan particles. 

As discussed with contact angle analysis, these particles fill the pores and voids in the coatings matrix; 

reducing the spatial environment available for the drug molecule to diffuse out.  

Another probable reason for this delay in drug release could be attributed to the very high 

encapsulation efficiency achieved for all 6 formulations. Almost all the drug was trapped within the 

polymeric matrix (with hardly any surface associated drug); therefore this matrix must swell or 

dissolve before drug release can occur. Furthermore, chitosan either prevents or delays the release 

medium (PBS) from entering the polymeric matrix.  

The two subsequent release phases are due to the polymer base of PVP and PNIPAM. The 2nd release 

phase is due to the eventual dissolution of PVP and breakdown of PNIPAM chains whilst the 3rd release 

phase is due to polymer erosion. As seen with DSC analysis, the thermograms indicated a thermal 

transition of polymer from the rubbery to glassy state. This could provide an explanation for the 

sustained release of TM observed in phases 2 and 3.  

Some of the drug may be entrapped within the crystalline regions of the polymer (chitosan); hence is 

isolated from the release medium in the donor compartment. Only upon polymer degradation can the 

trapped drug be released; resulting in gradual sustained release forming the 3rd release phase (Natu, 

de Souza et al. 2011).  

Fulĝencio et al developed mucoadhesive chitosan films loaded with TM and achieved 85% drug release 

over 2 weeks (Fulgencio, Bretas Viana et al. 2012). Whilst this release was successfully prolonged, the 

practicality of such a device is questionable. Whilst the research presented here is mainly a proof of 

concept; the use of contact lenses has already been proven successful in vision correction and for 

cosmetic purposes. Furthermore, over 89% of drug was delivered within 24 hours; a much more 

convenient dosing period for the patient. Aggarwal et al used chitosan and nanocarrier niosomes to 

assess their combined ability to enhance TM release (Aggarwal, Kaur 2005). They found that by coating 



the niosomes with chitosan, drug release was significantly prolonged from 91% in 2 hours to 40.43% 

over 10 hours.  

Here, the concentration of chitosan did significantly affect the total cumulative percentage release 

(p=0.0276), albeit only slightly. Formulations containing 1% w/v chitosan (F1 and F4) release 89.7% 

and 90.78% TM, respectively, with this decreasing to 88.16% and 78.05% for F3 and F6 (5% w/v 

chitosan), respectively. Increasing the concentration of chitosan suggests a greater proportion of solid 

particles being dispersed throughout the atomised matrix; further delaying drug diffusion.  

In Vitro Probe Release 

Rhodamine B was utilised as a model drug to establish whether the atomised coatings remain on the 

surface of the contact les whilst releasing drug. Figure 10 shows the release of rhodamine B from the 

atomised coatings on the contact lenses and into PBS (pH 7.4; 37°C). The atomised coatings were 

composed of the same materials as stated in Table 1 however Rhodamine B replaced TM. The 

fluorescing of the contact lens at the sampled time points indicates the coatings is still there and has 

not detached from the lens upon introduction to the release medium whilst the probe release into 

PBS found to mirror the results obtained with in vitro drug release.  

Drug Release Kinetics 

To elucidate the drug release mechanism, various empirical kinetic models (zero-order, first-order, 

Hixson-Cromwell, Higuchi and Korsmeyer-Peppas) were applied to the in vitro release data points. 

Table 3 collates the regression coefficients for the first four models with Table 4 summarising the 

important parameters derived from the Korsmeyer-Peppas model.  

All 6 formulations demonstrated poor fit to the zero-order model; with R2 values ranging from 0.5869 

to 0.8363. When fitted to first order release model, high R2 values (0.8178-0.9930) were obtained; 

indicating that TM release was dependent on the initial drug concentration. The poor fit of data (low 

R2 values) to the Hixson-Cromwell model suggested that TM was not being released via dissolution. 

This, however, does not confirm drug release was via diffusion. Due to this, Higuchi and Korsmeyer-

Peppas models were applied. R2 values above 0.95 derived from the Higuchi model indicates that the 

drug release is diffusion based. The high R2 values from Higuchi model were obtained for F1 and F6 

(0.9921 and 0.9707, respectively) suggesting that TM was released from the atomised coatings via 

Fickian Diffusion; (Higuchi 1963, Siepmann, Peppas 2011).  Formulations F2-F5 had R2 values ranging 

between 0.8807 and 0.9388; suggesting a non-Fickian diffusion mechanism. This is mirrored by the n 



values calculated from the Korsmeyer-Peppas model. F1 and F6 had n values of 0.5399 and 0.5609, 

which again indicate Fickian diffusion. F2-F5 had values that suggested both diffusion and swelling; 

the release was time dependent (Korsmeyer, Gurny et al. 1983, Riger, Peppas 1987).   

One thing to note here is the effect of chitosan concentration. As the concentration of chitosan 

increased, the release mechanism changed from Fickian Diffusion (1%w/v chitosan, F1) to non-Fickian 

diffusion using (5%w/v chitosan, F3). 

Biological Evaluation of Atomised Coatings 

Any formulations that are to come in contact with the eye must be biocompatible and as such should 

be well tolerated by the cornea. If the corneal epithelium is compromised, the cornea can no longer 

exert its protective barrier functions; allowing foreign bodies to enter (Abdelkader, Pierscionek et al. 

2015, Wilson, Ahearne et al. 2015). BCOP testing ascertains that the materials used do not 

compromise corneal epithelium integrity.  Figure 10 reveals how freshly excised bovine corneas 

responded when treated with F3, F8 and a range of controls.   

Saline (negative control) showed no signs of toxicity (which can be visually observed as no change in 

opacity of the cornea) (figure 10a, f)). Contrasting this is the application of either acetone (mildly 

positive control) or NaOH (strong positive control). Treating the cornea with acetone showed a weak-

intensity cloudy region which is more prominent upon staining and examining under the blue cobalt 

fluorescent light (figure 10g and h). This permeation of sodium fluorescein through the cornea 

indicates a compromised corneal epithelium as a result of interaction with lipids in the epithelial cell 

membrane (Maurer, Molai et al. 2001). NaOH was utilised here to demonstrate the effect of strong 

irritants on the cornea. NaOH has the ability to initiate saponification of fatty acids present in corneal 

epithelial cells; disrupting the entirety of the epithelial layer (Reim, Schrage et al. 2001). This in turn 

increases the permeability of the cornea to foreign bodies. Figure 10c and h show the severe, evident 

damage of the cornea which is visible even without the use of the blue cobalt filtered light.   

With respect to testing the formulations used in this study, the only changing variables were the 

presence of borneol and the concentrations of chitosan used. Therefore, only F3 (borneol and 5%w/v 

chitosan) and F8 (5%w/v chitosan) were tested. If these formulations were to show signs of ocular 

toxicity, all other formulations would be tested to identify if lower concentrations of chitosan would 

be better tolerated. The staining of F3 and F6 treated bovine corneas showed no signs visual 

opacification under natural light (figure 10d and e) and no indication of fluorescein staining (figure 

10i and j) ; indicting that these formulations are well tolerated by the cornea.. 



Conclusion  

The research presented here demonstrated how EHDA could be effective in modifying polymeric 

formulations to modulate the release of TM and potentially promote better absorption through the 

cornea without compromising corneal tolerability. The incorporation of chitosan into the atomised 

coatings produced particulate structures (as opposed to the fibres produced with formulations 

without chitosan). Subject to chitosan concentration, a wide range of particle size distributions were 

derived for each formulation.  Thermal analysis confirmed TM was continually being encapsulated in 

the amorphous form and that chitosan was present as solid particles; as confirmed by the occurrence 

of an exotherm at ∼ 260°C. The critical assessment of the effectiveness of chitosan (in vitro/ex vivo) 

revealed that the oligosaccharide to act successfully to increase TM release by up to 23% more than 

composite-TM coatings and up to 11% from borneol-loaded coatings (F0). This work is the first of its 

kind; utilising an already successful device and combining it with an engineering process that has 

shown great potential in the drug delivery remit.  The work presented here has potentially opened 

avenues for further investigations in a field that requires refined treatment protocols to address 

unmet patient compliance needs, characteristic of conventional eye drops. .  
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Table 1 Formulation composition each formulation. Each formulation contained 2.5%w/v PVP, 
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Figure 1 Schematic Diagram of the EHDA system 

Figure 2 SEM Images of EHD atomised a) Composite-TM, b) F0, c) F3, d) F2, e) F1, f) F6, g) F5 and h) F4 

Figure 3 Size Distribution for all 6 atomised coating samples 

Figure 4 FTIR analysis of pure timolol maleate, chitosan and electrohydrodynamically processed 

coatings 

Figure 5 DSC Analysis of electrically atomised coatings with a) Formulations containing borneol and b) 

Formulations free of borneol 

Figure 6 Digital images taken during contact angle analysis over time for a) F1, b) F2, c) F3, d) F4, e) F5, 

f) F6 

Figure 7 Contact angle analysis over time for F1-F6 compared to composite-TM coatings and F0 

coatings 

Figure 8 In Vitro Cumulative TM release from electrically atomised coatings 

Figure 9 In Vitro (Rhodamine B) release from atomised coatings into PBS from a) F1 and F4, b) F2 and 

F5, c) F3 and F6  

Figure 10 BCOP results of freshly excised bovine cornea. Digital Images of cornea treated with a) Saline, 

b) Acetone, c) NaOH, d) F3 and e) F8. Fluorescence images of cornea under cobalt blue filter treated 

with f) saline, g) acetone, h) NaOH, i) F4, j) F8 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Formulation composition each formulation. Each formulation contained 2.5%w/v PVP, 2.5%w/v PNIPAM 

and 15%w/w TM 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Formulation 

Borneol 
Concentration 

(%w/v) 

Chitosan 
Concentration 

(%w/v) 
Composite-TM 0 0 

F0 0.1 0 
F1 0.1 1 
F2 0.1 2 
F3 0.1 5 
F4 0 1 
F5 0 2 
F6 0 5 



 

Table 2 Coating composition and drug encapsulation efficiencies for each atomised coating 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation Polymer 
Matrix 

(%w/w) 

Timolol 
Maleate 
(%w/w) 

Borneol 
(%w/w) 

Chitosan 
(%w/w) 

Encapsulation 
Efficiency (%) 

Composite-TM 89.96 13.04 -- -- 99.7 
F0 85.47 12.82 1.71 -- 99.7 
F1 72.99 10.95 1.46 14.60 97.93 
F2 63.70 9.55 1.27 25.48 93.92 
F3 46.08 6.91 0.93 46.08 90.69 
F4 74 11.2 -- 14.82 90.45 
F5 64.52 9.69 -- 25.80 88.80 
F6 46.51 6.98 -- 46.51 88.38 



 

 

 

 

 

Table 3 Kinetic Models for timolol maleate release expressed by regression coefficient, R2 

 

 

 

 

 

 

 

 

 

 

 

Formulation Zero Order First Order Hixson-
Cromwell 

Higuchi 

F1 0.8363 0.993 0.4272 0.9921 
F2 0.7023 0.9217 0.3938 0.9351 
F3 0.7138 0.9281 0.4130 0.9388 
F4 0.6820 0.9063 0.3847 0.9178 
F5 0.5869 0.8178 0.3250 0.8807 
F6 0.7637 0.9301 0.4070 0.9707 



 

 

 

 

 

 

Table 4 Summary of Korsmeyer-Peppas model parameters for TImolol Maleate Release 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
Formulation 

R2 n Mechanism of Release 

F1 0.9474 0.5399 Fickian Diffusion 
F2 0.9926 0.6873 Non-Fickian Diffusion 
F3 0.9855 0.7274 Non-Fickian Diffusion 
F4 0.9248 0.7799 Non-Fickian Diffusion 
F5 0.9862 0.48 Non-Fickian Diffusion 
F6 0.9741 0.5609 Fickian Diffusion 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic Diagram of the EHDA system  
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Figure 2 A scheme of the assembly used for drug and probe drug release studies 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 SEM Images of EHD atomised a) Composite-TM, b) F0, c) F3, d) F2, e) F1, f) F6, g) F5 and h) F4 

 

  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 4 Size Distribution for all 6 atomised coating samples 



 

 

 

 

 

 

 

 

Figure 5 FTIR analysis of raw timolol maleate, chitosan and electrohydrodynamically processed 
coatings 
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Figure 6 DSC Analysis of electrically atomised coatings with a) Formulations 
containing borneol and b) Formulations free of borneol 
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Figure 7 Digital images of distilled water droplet on the atomised coatings taken during contact angle 
analysis over time for a) F1, b) F2, c) F3, d) F4, e) F5, f) F6  

a) 

b) 

c) 

d) 

e) 

f) 



 

 

 

 

 

 

Figure 8 Contact angle analysis over time for F1-F6 compared to composite-TM coatings and F0 coatings 



 

 

 

 

 

 

Figure 9 In Vitro cumulative TM release from electrically atomised coatings  



 

 

 

Figure 10 In Vitro probe release from atomised coatings into PBS from a) F1 and F4, b) F2 and F5, c) F3 
and F6 

a) 

b) 

c) 

a) b) c) d) e) 

f) g) h) i) j) 

Figure 11 BCOP results of freshly excised bovine cornea. Digital Images of cornea treated with a) 
Saline, b) Acetone, c) NaOH, d) F3 and e) F8. Fluorescence images of cornea under cobalt blue filter 
treated with f) saline, g) acetone, h) NaOH, i) F4, j) F8 
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S1- Timolol Maleate Calibration Curve 

 


