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ABSTRACT

In this work, the focus is on gradient-based correlation
schemes which constitute an alternative to phase correla-
tion for FFT-based motion estimation. In particular, our
contribution is threefold. First, we present an analysis which
highlights the key features of gradient schemes. Second, we
introduce an illumination invariant to gradient correlation.
Third, we provide a comparison of gradient schemes in the
application of block matching for video coding and draw
several useful observations and conclusions.

Index Terms— motion estimation, correlation methods,
block matching

1. INTRODUCTION

The estimation of the relative motions between two or more
images is probably at the heart of any autonomous system
which aims at the efficient processing of visual information.
Motions in images are induced due to camera displacements
or displacements of the individual objects composing the
scene. Image registration techniques address the problem of
estimating all possible motions and finally aligning the im-
ages. In this work, the focus is on methods for the registration
of images assumed to be related by a pure translation. Trans-
lation estimation is fundamental in a number of applications
such as image super-resolution, medical image registration
and video coding.

Recently, correlation-based motion estimation in the
Fourier domain has received considerable attention in the
computer vision community. A frequency domain approach
offers speed through the use of FFT routines and enjoys a
high degree of accuracy through the use of supplementary
schemes which can achieve subpixel registration.

Perhaps the most popular Fourier-based method is phase
correlation (PC) [1]. The method capitalizes on the shift prop-
erty of the Fourier Transform (FT) [1] and the importance of
phase in images [2]. It features several remarkable properties:
strong response to edges and image salient features, immunity
to uniform variations of illumination, insensitivity to changes
in spectral energy and most importantly excellent peak local-
ization accuracy. Recently, several subpixel extensions have

been proposed [9]-[23]. In [15] and [7], authors propose to
perform the unwrapping after applying a rank-1 approxima-
tion to the phase difference matrix and then it is extended for
noisy data. To estimate the subpixel shifts, Stone et al. [13]
fit the phase values to a 2-D linear function using linear re-
gression, after masking out frequency components corrupted
by aliasing. Foroosh et al. [14] showed that the PC function
is the Dirichlet kernel and provided analytic results for the es-
timation of the subpixel shifts using the sinc approximation.
Notice that the above methods either assume aliasing-free im-
ages or cope with aliasing by frequency masking which re-
quires fine tuning.

Our approach to FFT-based motion estimation, although
similar in concept, differs from phase correlation and its ex-
tensions, [8]. The main idea is very simple: extract image
gradients, combine them in a complex gray level edge map
which retains both magnitude and orientation information and
then correlate. In this paper, we briefly review gradient-based
correlation schemes namely gradient correlation (GC) [3],[8]
and orientation correlation (OC) [4]. We present a spatial do-
main analysis which shows that under a certain assumption,
the use of image gradients tailors correlation to the nature of
images and provides a mechanism to reject outliers induced
by realworld registration problems. We define an illumination
invariant extension to GC, the normalized gradient correlation
(NGC). We also present an analysis of GC in the presence of
uncorrelated white noise. Finally, we evaluate gradient cor-
relation schemes and phase correlation in the application of
block motion estimation for video coding and draw several
useful observations and conclusions.

2. GRADIENT SCHEMES FOR ROBUST MOTION
ESTIMATION

2.1. Gradient and orientation correlation

Let Ii(x), x = [x, y]T ∈ R2, i = 1, 2 be two image functions,
related by an unknown translation t = [tx, ty]T ∈ R2

I1(x + t) = I2(x) (1)

To estimate the translational displacement, we use gradient
based correlation schemes. Gradient correlation (GC) com-



Fig. 1. (Top row) The 512 × 512 pentagon image and the
pentagon image circularly shifted by t = [tx; ty]T , where
tx = ty = 128; 256 and 384 respectively. (Bottom row) For
each shift, we compute the difference in orientation ∆Φ be-
tween the original image and the shifted image.

bines the magnitude and orientation of image gradients [3]

GC(u) , G1(u) ? G∗2(−u) =

∫
R2

G1(x)G∗2(x + u)dx (2)

where
Gi(x) = Gi,x(x) + jGi,y(x) (3)

and Gi,x = ∇xIi and Gi,y = ∇yIi are the gradients along
the horizontal and vertical direction respectively. Orientation
correlation (OC) considers orientation information solely [4]

OC(u) , O1(u) ? O∗2(−u) =

∫
R2

O1(x)O∗2(x + u)dx (4)

where

Oi(x)←
{

Gi(x)/|Gi(x)|, if |Gi(x)| 6= 0
0, otherwise (5)

From (2) and (4) we estimate t as the argument which maxi-
mizes the correlation functions.

For finite discrete images of size N ×N , all correlations
are efficiently implemented in the frequency domain, by zero
padding the images to size (2N − 1) × (2N − 1) and using
FFT routines to compute the forward and inverse FTs. If no
zero padding is used, the match is cyclic and, in this case, the
algorithms complexity is O(N2 logN).

2.2. Spatial domain analysis

In [3], the authors presented a frequency domain analysis of
GC. To complete the picture and provide additional insight, in
this section, we present a spatial domain analysis of gradient
schemes as follows.

Plugging (3) into (2), we can easily derive

GC(u) = G1,x(u) ? G2,x(−u) +G1,y(u) ? G2,y(−u)

+j{−G1,x(u) ? G2,y(−u) +G1,y(u) ? G2,x(-u)}
(6)

The imaginary part in the above equation is equal to zero,
therefore

GC(u) = G1,x(u) ? G2,x(−u) +G1,y(u) ? G2,y(−u) (7)

Using the polar representation of complex numbers, we define
Ri =

√
G2

i,x +G2
i,y and Φi = arctanGi,y/Gi,x. Based on

this representation, (5) takes the form

GC(u) =

∫
R2

R1(x)R∗2(x + u) cos[Φ1(x)− Φ2(x + u)]dx

(8)
Each term in (6) has its own special importance. The mag-

nitudes Ri reward pixel locations with strong edge responses
and suppress the contribution of areas of constant intensity
level which do not provide any reference points for motion
estimation. Orientation information is embedded in the co-
sine kernel. This term is responsible for the dirac-like shape
of GC and its ability to reject outliers induced by the presence
of dissimilar parts in the two images.

To roughly show the latter point, let us first assume that
at u 6= t the orientation difference function ∆Φ(u, x) =
Φ1(x) − Φ2(x + u) is uniformly distributed over [−π, π).
This assumption appears to be reasonable, since for displace-
ments other than the correct, the images do not match and
therefore we expect that differences in gradient orientation
can take any value in the range [0, 2π) with equal probability.
For example, Fig. 1 (a) shows the ‘Pentagon’ image. Cir-
cularly shifting the image in three different fashions yields
the images in Fig. 1 (b)-(d). For each shift, we compute
the difference in orientation ∆Φ between the original and
the shifted image. For each case, Fig. 1 (e)-(g) show the
histogram with the distribution of ∆Φ. In all cases, we can
observe that ∆Φ is well-described by a uniform distribution.

Let us further impose Ri = 1, i = 1, 2, that is we es-
sentially compute a modified orientation correlation function
(mOC) where, in contrary to (4), the orientation of all pixels
is taken into consideration

mOC(u) =

∫
R2

cos[Φ1(x)− Φ2(x + u)]dx (9)

To model dissimilar parts, we modify the perfect translational
model of (1) as follows

I1(x + t) = I2(x), x ∈ Ω ⊆ R2 (10)

That is after shifting I1 by t, I1 and I2 match only in x ∈ Ω.
Since ∀u 6= t∆Φ(u, x) is uniformly distributed, the integral
in (7) will be equal to zero. At u = t), we have

mOC(t) =

∫
Ω

cos ∆Φ(t, x)dx

+

∫
R2−Ω

cos ∆Φ(t, x)dx =

∫
Ω

dx
(11)



since ∆Φ(t, x) = 0∀x ∈ Ω and ∆Φ(t, x) is uniformly dis-
tributed if x ∈ R2 − Ω. Overall, mOC will be non-zero only
for u = t, and its value at that point will be the contribution
from the areas in the two images that match solely.

Essentially, using image gradients to perform correlation,
the errors induced by outliers are mapped to a uniform distri-
bution for which correlation is well-known to feature robust
performance. Our analysis does not impose any bound to the
number of outliers. In fact, as their number increases, one
would expect that accuracy is enhanced, since ∆Φ will bet-
ter approximate the uniform distribution. In practice, the dy-
namic range of the algorithm is limited by errors in estimating
the image gradients and aliasing effects induced by the FFT.
The above analysis agrees with experimental results which
have shown that gradient-based correlation schemes are able
to estimate translational displacements reliably even when the
overlap between the given images is less than 20%. Note that
phase correlation is able to register images when the overlap
is of the order of 40% [5].

2.3. Normalized gradient correlation

Following the above analysis, we introduce the normalized
gradient correlation (NGC)

NGC(u) ,

∫
R2 R1(x)R∗2(x + u) cos[Φ1(x)− Φ2(x + u)]dx∫

R2 |R1(x)R2(x + u)|dx
(12)

NGC has two interesting properties:

1. 0 6 |NGC(u)| 6 1.

2. Invariance to affine changes in illumination.

The first property provides a measure to assess the correct-
ness of the match. To show the second property consider
I ′2(x) = aI2(x) + b with a, b ∈ R. Then, by differentia-
tion G′2 = aG2; therefore the brightness change due to b is
removed. Additionally, R′2 = aR2 and ∆Φ′2 = ∆Φ2; thus
the effect of the contrast change due to a will cancel out in
(9). Both properties make NGC, in addition to image regis-
tration, particularly useful for template matching applications
[6].

2.4. Analysis in the presence of uncorrelated additive
white noise

In general, signal differentiation exacerbates noise effects.
Nevertheless, under the assumption of white noise, correla-
tion is not affected by the degradation of the signal-to-noise
ratio (SNR). To illustrate this, consider the case of a 1D
signal s corrupted by additive white Gaussian noise n

r(t) = s(t) + n(t) (13)

where the noise is assumed to be uncorrelated with the signal.
The noise autocorrelation is given byRn(τ) = σ2

nδ(τ) where
σ2
n is the noise variance.

If we perform differentiation, then

d(t) = sd(t) + nd(t) (14)

where d(t) , dr(t)
dt , sd(t) , ds(t)

dt and nd(t) , dn(t)
dt . Obvi-

ously, nd is uncorrelated with sd. Its autocorrelation is given
by [7]

Rnd
(τ) = −d

2Rn(τ)

dτ2
= −σ2

n

d2δ(τ)

dτ2
(15)

Assume that we are given two signals related by a shift
ξ, that is s2(t) = s1(t + ξ), and corrupted by additive white
Gaussian noise. The cross-correlation of d1 and d2 is

Rd1d2
(τ) = E{d1(t)d2(t+ τ)}

= E{[sd1
(t) + nd(t)]

×[sd1
(t+ ξ + τ) + nd(t+ τ)]}

= E{sd1(t)sd1
(t+ ξ + τ)} − σ2

n

d2δ(τ)

dτ2

(16)

since noise and signals are assumed to be uncorrelated. The
above result, which easily extends to the 2D case, shows that
uncorrelated white noise does not affect the estimation pro-
cess. In contrary, one can show that white noise strongly af-
fects the performance of phase correlation [1].

3. RESULTS

We evaluated GC, OC, NGC and phase correlation (PC) in
the application of block motion estimation for video coding.
We used 5 well-known 352×288 CIF sequences (Coastguard,
Bus, Paris, Foreman, Highway) and the 352 × 240 Football
SIF sequence. Coastguard is a sequence with slow object and
camera translational motions. Bus contains fast rigid transla-
tions and occlusions. Paris is a typical dialogue scene with
fast hand and face motions while the camera remains fixed.
Foreman is a head-and-shoulders scene with varying fore-
ground and slow background motions. Highway is character-
ized by significant scene depth and projective motion. Foot-
ball is an active sports scene containing fast non-rigid body
motions and occlusions.

We used standard MPEG size 16×16 blocks while we ob-
tained sub-pixel accuracy registration by using separable vari-
able fitting on the correlation function [3]. For each sequence,
we assessed the performance of each method by applying
motion compensation using the estimated motion parameters
and computing the well-established peak signal-tonoise ratio
(PSNR) of the motion compensated prediction error. In ad-
dition to the noise-free case, we repeated the experiments for
the case of additive white Gaussian noise with a noise level of
20 dB.

For each method and case, Table 1 presents the mean
value of the PSNR over the first 150 frames of each sequence.
For the noise free case, Fig. 2 illustrates plots of the PSNR as
a function of the frame number for the first 21 frames of each



Table 1. Mean PSNR values for GC, NGC, OC and PC for
the application of block motion estimation.

Coast. Bus Paris Fore. High. Foot.
GC 31.20 25.47 32.04 32.90 34.03 22.35

NGC 30.92 25.13 31.94 32.29 33.93 22.22
OC 30.87 25.56 31.60 31.18 32.50 21.73
PC 27.65 23.08 30.66 29.06 31.69 20.54

GC +
noise 17.69 17.13 17.46 17.63 18.35 16.42

NGC +
noise 17.69 17.11 17.47 17.64 18.34 16.41

OC +
noise 17.39 16.64 16.94 17.09 18.07 15.84

PC +
noise 16.37 15.27 16.11 16.77 18.01 15.45

sequence. From the obtained results, we conclude that, over-
all, GC achieves the best performance. Additionally, a close
examination of Table 1 reveals1:

1. With the exception of Bus, GC and NGC perform con-
sistently better than OC. Interestingly, the gain becomes sig-
nificant large for sequences where the motion deviates from
the translational model (Paris, Foreman, Highway, Football).
We conclude that in these cases both magnitude and orienta-
tion information of the image gradients must be used for more
robust performance.

2. GC has a gain of approximately 0.1-0.3 dB over NGC
for Coastguard, Bus, Paris, Highway and Football while the
gain for Foreman is about 0.6 dB. As expected, the normaliza-
tion does not offer any advantages in the specific application.
In contrary, it seems that the spectral leakage and aliasing ef-
fects induced by the computation of the correlation of the ab-
solute gradients make the computation of NGC less accurate.
Note however that, for template matching applications, the
normalization is necessary.

3. All gradient schemes outperform phase correlation.
Compared to GC, the loss in performance varies approxi-
mately from 1.5 dB to 3 dB.

4. For the noisy case, GC and NGC attain the same level
of performance. Compared to OC, the gain varies approxi-
mately from 0.3 dB to 0.6 dB. With the exception of Highway,
the gain in performance over PC is more than 1 dB.

4. CONCLUSIONS

In this work, we presented an analysis which highlights the
key features of gradient-based correlation schemes. In partic-
ular, we demonstrated that the use of image gradients equips
correlation with robustness against outliers induced by the
presence of dissimilar parts in the two images. Additionally,
we showed that uncorrelated white noise does not affect gra-
dient correlation. We also introduced a normalized illumina-

Fig. 2. PSNR vs Frame No. for the noise free case. (a) Coast-
guard (b) Bus (c) Paris (d) Foreman (e) Highway (f) Football.

tion invariant extension to gradient correlation. Finally, we
evaluated gradient schemes along with phase correlation in
the application of block motion estimation. Our results show
that, among all methods, GC provides the best results in terms
of the PSNR of the motion compensated prediction error.
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