
Accepted Manuscript

Functional network resilience to pathology in presymptomatic genetic frontotemporal
dementia

Dr Timothy Rittman, Mr Robin Borchert, Mr Simon Jones, John van Swieten, Barbara
Borroni, Daniela Galimberti, Mario Masellis, Maria Carmela Tartaglia, Caroline
Graff, Fabrizio Tagliavini, Giovanni B. Frisoni, Robert Laforce, Jr., Elizabeth Finger,
Alexandre Mendonça, Sandro Sorbi, Jonathan D. Rohrer, James B. Rowe, Sónia
Afonso, Maria Rosario Almeida, Sarah Anderl-Straub, Christin Andersson, Anna
Antonell, Silvana Archetti, Andrea Arighi, Mircea Balasa, Myriam Barandiaran, Nuria
Bargalló, Robart Bartha, Benjamin Bender, Luisa Benussi, Valentina Bessi, Giuliano
Binetti, Sandra Black, Martina Bocchetta, Sergi Borrego-Ecija, Jose Bras, Rose
Bruffaerts, Paola Caroppo, David Cash, Miguel Castelo-Branco, Rhian Convery,
Thomas Cope, Maura Cosseddu, María de Arriba, Giuseppe Di Fede, Zigor Díaz,
Katrina M. Dick, Diana Duro, Chiara Fenoglio, Camilla Ferrari, Catarina B. Ferreira,
Toby Flanagan, Nick Fox, Morris Freedman, Giorgio Fumagalli, Alazne Gabilondo,
Roberto Gasparotti, Serge Gauthier, Stefano Gazzina, Roberta Ghidoni, Giorgio
Giaccone, Ana Gorostidi, Caroline Greaves, Rita Guerreiro, Carolin Heller, Tobias
Hoegen, Begoña Indakoetxea, Vesna Jelic, Lize Jiskoot, Hans-Otto Karnath, Ron
Keren, Maria João Leitão, Albert Lladó, Gemma Lombardi, Sandra Loosli, Carolina
Maruta, Simon Mead, Lieke Meeter, Gabriel Miltenberger, Rick van Minkelen, Sara
Mitchell, Benedetta Nacmias, Mollie Neason, Jennifer Nicholas, Linn Öijerstedt,
Jaume Olives, Alessandro Padovani, Jessica Panman, Janne Papma, Michela
Pievani, Yolande Pijnenburg, Enrico Premi, Sara Prioni, Catharina Prix, Rosa
Rademakers, Veronica Redaelli, Ekaterina Rogaeva, Pedro Rosa-Neto, Giacomina
Rossi, Martin Rosser, Beatriz Santiago, Elio Scarpini, Sonja Schönecker, Elisa
Semler, Rachelle Shafei, Christen Shoesmith, Miguel Tábuas-Pereira, Mikel
Tainta, Ricardo Taipa, David Tang-Wai, David L. Thomas, Hakan Thonberg,
Carolyn Timberlake, Pietro Tiraboschi, Philip Vandamme, Mathieu Vandenbulcke,
Michele Veldsman, Ana Verdelho, Jorge Villanua, Jason Warren, Carlo Wilke, Ione
Woollacott, Elisabeth Wlasich, Henrik Zetterberg, Miren Zulaica

PII: S0197-4580(18)30447-0

DOI: https://doi.org/10.1016/j.neurobiolaging.2018.12.009

Reference: NBA 10461

To appear in: Neurobiology of Aging

Received Date: 22 February 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/162921078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.neurobiolaging.2018.12.009


Revised Date: 23 December 2018

Accepted Date: 24 December 2018

Please cite this article as: Rittman, D.T., Borchert, M.R., Jones, M.S., van Swieten, J., Borroni, B.,
Galimberti, D., Masellis, M., Tartaglia, M.C., Graff, C., Tagliavini, F., Frisoni, G.B, Laforce Jr., R., Finger,
E., Mendonça, A., Sorbi, S., Rohrer, J.D, Rowe, J.B, Afonso, S., Almeida, M.R., Anderl-Straub, S.,
Andersson, C., Antonell, A., Archetti, S., Arighi, A., Balasa, M., Barandiaran, M., Bargalló, N., Bartha,
R., Bender, B., Benussi, L., Bessi, V., Binetti, G., Black, S., Bocchetta, M., Borrego-Ecija, S., Bras, J.,
Bruffaerts, R., Caroppo, P., Cash, D., Castelo-Branco, M., Convery, R., Cope, T., Cosseddu, M., de
Arriba, M., Di Fede, G., Díaz, Z., Dick, K.M, Duro, D., Fenoglio, C., Ferrari, C., Ferreira, C.B., Flanagan,
T., Fox, N., Freedman, M., Fumagalli, G., Gabilondo, A., Gasparotti, R., Gauthier, S., Gazzina, S.,
Ghidoni, R., Giaccone, G., Gorostidi, A., Greaves, C., Guerreiro, R., Heller, C., Hoegen, T., Indakoetxea,
B., Jelic, V., Jiskoot, L., Karnath, H.-O., Keren, R., Leitão, M.J., Lladó, A., Lombardi, G., Loosli, S.,
Maruta, C., Mead, S., Meeter, L., Miltenberger, G., van Minkelen, R., Mitchell, S., Nacmias, B., Neason,
M., Nicholas, J., Öijerstedt, L., Olives, J., Padovani, A., Panman, J., Papma, J., Pievani, M., Pijnenburg,
Y., Premi, E., Prioni, S., Prix, C., Rademakers, R., Redaelli, V., Rogaeva, E., Rosa-Neto, P., Rossi,
G., Rosser, M., Santiago, B., Scarpini, E., Schönecker, S., Semler, E., Shafei, R., Shoesmith, C.,
Tábuas-Pereira, M., Tainta, M., Taipa, R., Tang-Wai, D., Thomas, D.L, Thonberg, H., Timberlake, C.,
Tiraboschi, P., Vandamme, P., Vandenbulcke, M., Veldsman, M., Verdelho, A., Villanua, J., Warren,
J., Wilke, C., Woollacott, I., Wlasich, E., Zetterberg, H., Zulaica, M., Functional network resilience to
pathology in presymptomatic genetic frontotemporal dementia, Neurobiology of Aging (2019), doi:
https://doi.org/10.1016/j.neurobiolaging.2018.12.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neurobiolaging.2018.12.009


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Title 

Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia 

 

Authors 

Dr Timothy Rittmana, Mr Robin Borcherta, Mr Simon Jonesa, John van Swietenb, Barbara Borronic, 

Daniela Galimbertic, Mario Masellise, Maria Carmela Tartagliaf, Caroline Graffg,h, Fabrizio 

Tagliavinii, Giovanni B Frisonij,k, Robert Laforce Jrl, Elizabeth Fingerm, Alexandre Mendonçan, 

Sandro Sorbio,p, Jonathan D Rohrerq, James B Rowea, The Genetic Frontotemporal Dementia 

Initiative (GENFI)* 

 

Affiliations 

a. Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK 

b. Erasmus Medical Center, 3015 CE Rotterdam, Netherlands 

c. Department of Clinical and Experimental Sciences, Viale Europa 11 25123, University of 

Brescia, Italy 

d. Dept. of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, 

Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy 

e. Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre; Hurvitz Brain Sciences 

Research Program, Sunnybrook Research Institute; Department of Medicine, University of Toronto, 

Toronto, M5S 1A8, Canada 

f. Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, M5T 

2S8, Canada 

g. Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska 

Institutet, SE-171 77 Stockholm, Sweden 

h. Department of Geriatric Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden 

i. Istituto Neurologico Carlo Besta, 20133 Milan, Italy 

j. Department of Psychiatry, University Hospitals and University of Geneva, 1205 Geneva, 

Switzerland 

k. IRCCS San Giovanni di Dio Fatebenefratelli Brescia, 25125 Brescia, Italy 

l. Faculty of Medicine, Université Laval, Quebec, G1J 1Z4, Canada 

m. Department of Clinical Neurological Sciences, University of Western Ontario, Ontario N6A 

5A5, Canada 

n. Faculdade de Medicina, Universidade de Lisboa, 1649-028  Lisboa, Portugal 

o. Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), 

University of Florence, 6 - 50139 Florence, Italy 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
p. IRCCS Don Gnocchi, 50143 Florence, Italy 

q. Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of 

Neurology, Queen Square, London WC1E 6BT, UK 

 

Corresponding Author 

Dr Timothy Rittman 

Department of Clinical Neurosciences 

Herchel Smith Building 

Cambridge Biomedical Campus 

Robinson Way 

Cambridge CB2 0SZ 

UK 

 

Email: tr332@medschl.cam.ac.uk 

Telephone: +44 (0) 7792 016050 

 

Declarations of interest: None 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Abstract 

The presymptomatic phase of neurodegenerative diseases are characterised by structural brain 

changes without significant clinical features. We set out to investigate the contribution of functional 

network resilience to preserved cognition in pre-symptomatic genetic frontotemporal dementia. We 

studied 172 people from families carrying genetic abnormalities in C9orf72, MAPT or PGRN. 

Networks were extracted from functional MRI data and assessed using graph theoretical analysis. 

We found that despite loss of both brain volume and functional connections, there is maintenance of 

an efficient topological organisation of the brain’s functional network in the years leading up to the 

estimated age of frontotemporal dementia symptom onset. After this point, functional network 

efficiency declines markedly. Reduction in connectedness was most marked in highly connected 

hub regions. Measures of topological efficiency of the brain’s functional network and organisation 

predicted cognitive dysfunction in domains related to symptomatic frontotemporal dementia and 

connectivity correlated with brain volume loss in frontotemporal dementia. We propose that 

maintaining the efficient organisation of the brain’s functional network supports cognitive health 

even as atrophy and connectivity decline pre-symptomatically. 

 

Keywords: Frontotemporal dementia; Genetics; Connectivity; Functional imaging; Cognition 
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1. Introduction 

Many neurodegenerative dementias begin their neuropathology years or even decades before the 

onset of symptoms. The evidence of pre-symptomatic pathology comes from changes in structural 

brain imaging, PET ligands that bind to pathological proteins, and abnormal cerebrospinal fluid and 

blood biomarkers1–3. However, it is not clear why people with significant progressive 

neurodegeneration and brain volume loss remain free of symptoms for so long, or develop 

symptoms when they do. To address this issue we assessed functional network resilience in the 

Genetic Frontotemporal Dementia Initiative (GENFI) cohort3. 

 

Network resilience derives from the robust and efficient arrangement of connections between brain 

regions4. This arrangement is characterised by the presence of highly connected hubs5,6 in a ‘small 

world’ arrangement which minimises the topological distance (also called path length) between 

parts of the network. This path length can be used to derive measures of global or regional network 

efficiency. Networks that have an efficient small world topology are intrinsically robust to processes 

that damage the network by removing network nodes or connections7. 

 

Examining the network organisation of the brain has provided critical insights into neurocognitive 

development8, and diverse disorders of the nervous system from multiple sclerosis9,10, depression11, 

schizophrenia12 and autism13, to multiple neurodegenerative diseases including frontotemporal 

dementia (FTD)14–16, Alzheimer’s disease, Parkinson’s disease17,18, and Progressive Supranuclear 

Palsy18,19. In patients, altered network connectivity is consistently associated with the loss of 

cognitive function20,21 or reduced response to treatment22,23. In contrast, here we assess whether 

network integration provides resilience at earlier stages of the disease process, with the maintenance 

of cognitive well-being, even in the presence of established neuropathology and brain atrophy. To 

be more specific, we assess functional network resilience, which is defined as the maintenance of 

the topological properties of a functional brain network in the context of structural changes to the 

brain. 

 

We identified functional brain networks from functional MRI (fMRI) images, using the Blood 

Oxygen Level Dependent effect as an indirect measure of neural activity. The advent of task-free 

fMRI (also called “resting state” fMRI)24  has facilitated the analysis of brain function in severely 

impaired clinical groups while retaining a strong relationship to functionally defined brain 

networks. The connectome25 derived from task-free fMRI is robust, reproducible and capable of 

generating brain networks analogous to other physiological techniques such as EEG or 

Magnetoencephalography26. 
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We used task-free fMRI to assess people with genetic frontotemporal dementia and their first-

degree relatives in whom approximately half carry the familial gene abnormality. Our cohort 

included mutations or expansions in the three major genes associated with FTD: PGRN, MAPT, 

C9orf72. We tested the hypothesis that, prior to the age of symptom onset in genetic FTD, 

functional network resilience arises from the maintenance of an efficient network topology 

preserving cognitive function in the context of progressive pathology assessed by brain volume loss. 

From the age of symptom onset we would expect the loss of functional network resilience, with a 

decline in network efficiency and connectivity in relation to both brain volume loss and cognitive 

function. 
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2. Materials and Methods 

Subjects were recruited as part of the multi-center international Genetic Frontotemporal Dementia 

Initiative (GENFI) and underwent a standardised assessment3. The age of expected symptom onset 

was defined as the mean within each family, which is significantly correlated among affected 

relatives3. Echo-Planar Imaging and Magnetization Prepared Rapid Gradient Echo (MPRAGE) 

were acquired at each centre. Analogous imaging sequences were acquired at each GENFI study 

site accommodating different manufacturers and field strengths (1.5T and 3T). Echo-planar images 

were acquired over at least 300s with a median of 315s (IQR 309-440) and had a median Repetition 

Time (TR) of 2200ms (2200ms-3000ms), echo time of 30ms, in-plane resolution of 2.75x2.75mm 

(2.75-3.31 x 2.75-3.31), slice thickness of 3.3mm (3.0-3.3). MPRAGE images were obtained during 

the same acquisition. 

 

Image preprocessing used MPRAGE images to generate a transformation to register images to 

Montreal Neurological Institute (MNI) standard space via a study-specific template using 

Diffeomorephic Anatomical Registration Through Exponentiated Lie algebra (DARTEL) 

implemented in SPM12 (www.fil.ion.ucl.ac.uk/spm/software/spm12/). This transformation was 

applied to co-registered functional images. Functional image pre-processing was performed using 

the brainwavelet pipeline (www.brainwavelet.org) including slice-time correction, regression of 

cerebrospinal fluid, white matter, movement parameters and their derivatives, and despiking using a 

wavelet algorithm. Identification of motion outliers for exclusion used the spike percentage 

threshold, defined as the percentage of the timeseries in which spikes were identified during the 

wavelet despiking process. The spike percentage threshold was set at 10% at which level the 

removal of subjects did not significantly change the connection strength measured across all 

subjects. 

 

Each subject's brain volume was parcellated in to 500 approximately equally sized regions using a 

centroidal Voronoi tessalation27. Of the 500 regions, 29 were insufficiently covered in some or all 

subjects, leaving 471 regions for further analysis. The fMRI signal timeseries within each parcel 

was bandpass filtered using a wavelet scale of 0.0675-0.125Hz. 

 

Graph theoretical analysis was applied to network connectivity, the wavelet cross-correlation was 

used as a measure of the strength of each connection. Networks were then analysed in terms of 

connection strength, efficiency and connectedness. Graph analysis used the Maybrain package 

(github.com/RittmanResearch/maybrain). We defined connection strength as the sum of nodal 

connection strength (also called weighted degree) values of all the network's nodes. To capture the 
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property of network efficiency, we use measures based on path length. The global efficiency is 

defined as the sum of the inverse path lengths for all nodes in a network. The analogous nodal 

measure of closeness centrality is defined as the sum of the path lengths for each node to all other 

network nodes. Efficiency measures were normalised against the mean value generated from 500 

graphs with an identical degree distribution and random connections. We assessed atrophy by 

calculating the percentage brain volume or regional volume compared to the total intracranial 

volume. Hubs were defined in the gene negative group as brain regions with connection strength 

two standard deviations greater than other regions. 

 

Because network measures are not independent, we did not apply correction for multiple 

comparisons. Group comparisons between the gene carrier and FTD group were performed for each 

network measure using a mixed effects linear model with diagnostic group as the main effect, age as 

a dependent variable, and scan site and gene type as random variables using the lmer package in R. 

We included the gene negative group in all models to properly estimate the effect of age. We then 

assessed group differences by specifying an appropriate contrast between the gene carrier group and 

FTD groups. The Sattherthwaite estimate of effective degrees of freedom enabled calculation of 

significance values. In order to assess the relationship between estimated age at onset and network 

measures we extended the linear mixed effects model by including an interaction term between the 

diagnostic group and estimated time to symptom onset. 
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3. Results 

Twenty-nine people with genetic FTD were recruited (12 C9orf72, 11 MAPT, 6 PGRN), 70 

unaffected relatives carrying the same mutation we will refer to as “gene carriers” (17 C9orf72, 13 

MAPT, 40 PGRN) and 86 relatives without the mutation, referred to as “gene negative”. During 

image processing 13 subjects were removed because of excessive motion, 5 with FTD (1 C9orf72, 2 

MAPT, 2 PGRN), 2 gene carriers (2 PGRN) and 6 gene negative. The remaining 172 subjects were 

taken forward for analysis: 24 FTD, 68 gene carriers, 80 gene negative. Demographic information is 

shown in table 1. The FTD clinical syndromes were: behavioural variant FTD n=20, FTD-Motor 

Neuron Disease n=1, Primary Progressive Aphasia n=2, dementia not otherwise specified=1. 

 

3.1 Differences in network connectivity and efficiency between groups 

To assess the difference in global network properties between the gene negative, gene carriers and 

FTD groups, brain networks were assessed for connection strength and global efficiency, shown in 

figure 1. The FTD group (mean connection strength 121.8) was less well connected compared with 

gene carrier (149.4, p=0.01) and gene negative groups (147.1, p=0.02). Gene carriers (mean global 

efficiency 0.88)  had a higher global efficiency than the gene negative group (0.86, p=0.004) but 

there was no differences in global efficiency in any other comparison (FTD 0.86). We found similar 

regional reduction in connectivity in frontal lobes, temporal lobes, occipital lobes, and cingulate 

cortices, cerebellum and insula cortices in the FTD group compared with gene carriers; increased 

efficiency (closeness centrality) in all brain regions in the gene carrier group compared with the 

gene negative group, and reduced efficiency in the occipital cortex in FTD compared with gene 

carriers; see figures 2 and 3 and eTable 1. 

 

To assess whether regional network properties would influence change in network properties we 

examined the most highly connected ‘hub’ regions. By definition, hubs were more connected than 

non-hubs; however the difference in connection strength between hubs and non-hubs was 

significantly smaller in the FTD group (p=0.02), suggesting that hubs were weaker in the FTD 

group. The difference in efficiency measured by closeness centrality between hubs and non-hubs 

was abolished in the FTD group (effect size 0.0025, p=0.5) compared with gene carriers (effect size 

-0.01, p<0.00001); the difference between these effects being significant (p=0.001). 

 

3.2 Disease progression and network measures 

To test the relationship between between network measures and disease progression we began by 

estimating the temporal relationships between network measures and symptom onset. There were 
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no simple linear relationships of time to the estimated age of symptom onset with connection 

strength (p=0.6) or global efficiency (p=0.17). 

 

We then tested whether there may be a non-linear decline in network properties. We assessed 

whether a breakpoint existed in the relationship between estimated time to symptom onset and 

network measures at the estimated time of symptom onset using piecewise regression analysis. 

There was no significant breakpoint in network measures at the estimated time of onset in 

connection strength for the whole brain (p=0.9) or any brain region, see figure 2 and eResults. For 

global efficiency we found a significant breakpoint (p=0.009) suggesting that global efficiency 

starts to decline at the time of symptom onset, see figure 1. We saw similar breakpoints for 

efficiency in the frontal lobes, parietal lobes, occipital lobes and cingulate cortex, see figure 3 and 

eResults. These results suggest that network topology declines in a dramatic fashion at the point of 

transition from pre-sympomatic to symptomatic FTD. 

 

3.3 Functional network resilience to brain atrophy 

We assessed whether connection strength and network efficiency was associated with brain volume 

loss, see figure 4. Connection strength correlated with reduced brain volume in the FTD group 

(r=0.47, p=0.0002). This correlation differed significantly from the non-significant relationship 

between connection strength in the gene carriers group (r=0.031, p=0.6, difference between 

interactions (p=0.001). Similar differences were seen in the frontal, temporal and parietal lobes, see 

fig 4 and eResults. 

 

There was no relationship between global efficiency in the FTD group and whole brain atrophy 

(p=0.2), and no interaction between the FTD group and gene carriers on the relationship between 

global efficiency and whole brain atrophy (p=0.3). No brain regions demonstrated a relationship 

between global efficiency and whole brain or regional atrophy. 

 

3.4 Relationship between network properties and cognitive function 

Clinical scores are shown in table 2. As expected there were no significant differences between gene 

negative and gene carriers, whereas all measures were markedly impaired in the FTD group 

compared to the gene carrier group (p <0.0001 for all comparisons). The relationship between 

clinical test scores and years from expected onset was not clearly linear in the FTD group, 

suggestive of an acute decline in ability at diagnosis rather than a continuous linear association. 
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We found strong relationships in the FTD group of connection strength with both MMSE (p=0.002) 

and Trails A (p=0.0002) and a difference in the relationships between the FTD and gene carrier 

groups for both cognitive measures  (MMSE: p=0.004, Trails A: p=0.0006), although there were 

possible ceiling effects in the gene carrier group on both these tests, see eTable 3 for full results. 

 

For digit span and verbal fluency, we observed a relationship between connection strength and test 

performance across both FTD and gene carrier group combined, but no difference in the 

relationship between groups: digit span (p=0.03), categorical verbal fluency (p=0.03) and letter 

verbal fluency (p=0.01). This suggests that a loss of connectivity prior to the onset of clinical 

symptoms is relevant to declining cognitive performance in these tests. Of note, we included age as 

a covariate in these models, to reduce the likelihood that age explained these results. 

 

Higher global efficiency was associated with better performance on the MMSE in the gene carrier 

group (p<0.001), but there was no such relationship in the FTD group (p=0.053); the difference in 

the effect between groups was significant (p=0.049). There was a decline in performance on Trails 

B with reduced global efficiency in the FTD group (p=0.02), although the difference in this 

relationship from the gene carrier group did not reach significance (p=0.1). There was no other 

significant relationship between global efficiency and cognitive performance. 

 

Finally, we tested whether region specific measures might correlate with cognitive scores, shown in 

eTable 3. Both MMSE and Trials A demonstrated consistent relationships with connection strength 

in FTD and significant difference from the gene carrier group (occipital lobe, temporal lobe, insula, 

cingulate, hippocampus) similar to the whole brain results. However, these tests demonstrate 

marked ceiling effects which may limit the interpretation of these results. 

 

Worse performance on forward digit span was related to a loss of connection strength in the parietal 

lobe in FTD, and in the Boston naming test with loss of connection strength in the occipital lobe. 

Both these relationships differed significantly from the gene carrier group; see eTable 3. 

 

For the network efficiency measure of closeness centrality, the Trials B test that requires significant 

working memory was related to network efficiency in the hippocampus, and this relationship 

differed significantly from the gene carrier group; see eTable 3. Similar to connection strength, 

there was a relationship between efficiency and MMSE score, and a significant difference in this 

relationship compared to the gene carrier group in the occipital lobe, cerebellum and insula. 
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Taken together, the correlations with cognitive scores suggest that changes to specific brain regions 

of connection strength and efficiency may be relevant to specific cognitive functions, particularly in 

the Trails B, forward digit span and Boston naming tasks. 
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4. Discussion 

We demonstrate that the brain can function normally for cognitive well-being despite substantial 

pre-symptomatic neurodegenerative disease if it can maintain efficient information processing 

through functional connections, but that brain network efficiency declines sharply around the time 

of symptom onset. The loss of network efficiency is most severe in highly connected hub regions 

and regional changes in network efficiency are associated with worsening of cognitive deficits 

associated with FTD. We propose that interventions during the crucial pre-symptomatic period of 

neurodegenerative disease could be effective if they promote the maintenance or resilience of the 

brain’s intrinsically efficient arrangement of functional network connections. 

 

Our findings challenge the concept that functional deficits mirror structural change early in the 

disease process. This is not to say that structural changes are irrelevant to brain function28,29. 

However, many years before symptom onset there can be gross changes in brain structure and CSF 

biomarkers that indicate an active neuropathological processes and atrophy, both in familial 

neurodegenerative disease1,3,30,31 and in sporadic disease such as early Alzheimer’s disease and 

MCI32–34. We therefore tested whether resilience of brain network organisation can explain the 

discrepancy between changes in structure and cognitive function. 

 

The brain’s resilience to structural change in pre-symptomatic disease might depend on topological 

resilience or active compensation. We propose that topological resilience provides a greater 

contribution for several reasons. In common with many ecological and man-made networks, the 

brain’s network has a ‘small world’ configuration that balances the metabolic costs of long distance 

connections between any two points in the network (path length) and shared connections between 

locally connected nodes (clustering)7,8,35. Highly connected hubs are essential to small world 

networks. In the brain they are metabolically active36,37 and play a role in efficient integration of 

information between regions5,6,38,39. The presence of hubs mean that small world networks are 

resilient to targeted and random network attacks7, even if the hubs themselves are more prone to the 

effects of neuropathology40. 

 

The concept of functional network resilience is closely linked and overlapping with the concepts of 

cognitive reserve, brain reserve and brain maintenance41. Our definition of functional resilience is 

closely aligned with cognitive reserve, which is a multifaceted concept that educational, social and 

exercise lead to maintained cognitive abilities in the context of ageing or neurodegeneration42. 

There is preliminary evidence that cognitive reserve (at least as estimated from academic and 

occupational attainments) ameliorates the cognitive impact of neurodegenerative disease, or against 
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reaching the threshold for diagnosis of neurodegenerative disease43,44. Indeed, higher cognitive 

reserve (estimated by years of education) is associated with slower atrophy and later symptom onset 

in familial FTD associated with TPD-4345. This effect is moderated by genetic factors (TMEM106B 

genotype), with many questions remaining as to the mechanisms of effect of cognitive reserve. It is 

likely that functional brain imaging reflects aspects of cognitive reserve46, but these are not yet well 

established. It is beyond the scope of this study to identify the effect of education on functional 

network resilience, or the genetic moderators of such an effect. As a cross-section study, possible 

cohort-effects mean that differences in cognitive reserve between younger and older gene carriers 

cannot wholly be ruled out as a contributor to the maintenance of global efficiency we observe. 

However, the stability of global efficiency in the years leading up to symptom onset (figure 1), 

averages across subjects with differences in education and occupation reserve at any given range of 

years from expected onset of symptoms.  

 

We found a complex relationship between functional connectivity and brain volume loss. In the 

FTD group a relatively small reduction in connection strength was correlated with a much greater 

reduction in brain volume, which was not the case in presymptomatic or gene negative participants. 

One intriguing possibility is that premorbid connection strength influences the rate of volume loss 

in disease. This echoes previous studies showing that specific brain network and connectivity 

patterns influence the pattern of brain atrophy and neuropathology in a range of neurodegenerative 

diseases40,47. 

 

We assessed whether clinical measures of disease would help us to relate domains of cognitive 

function to the changes we observed in functional network resilience. In general, the associations 

were not strong, which may relate to the global nature of the network measures we assessed in 

comparison to the more specific and localisable clinical measures. However, we identified a decline 

in verbal fluency in relation to connection strength that may reflect subtle pre-symptomatic 

cognitive impairment. We found relationships between local measures of network connectivity with 

the Boston naming test in the occipital lobe and digit span in the parietal lobe. We are cautious 

about interpreting these results given the relatively weak associations and the seeming mismatch in 

localisation. It is likely that more local or network-specific measures of network integrity would be 

better associated with cognitive tests. 

 

Our study has several important limitations. Cohorts of genetic dementia are rare and despite a 

coordinated multinational recruitment effort the number of subjects is relatively small, although 

larger than many comparable studies of functional neuroimaging in dementia. This study was cross-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
sectional rather than longitudinal, therefore our inference of change over time are based on the 

assumption of a similar starting value and rate of change between individuals. fMRI has been often 

open to criticism as a technique since it measures an indirect measure of Blood Oxygen Level 

Dependent as a surrogate for neuronal activity48; it has a poor frequency resolution, and it may be 

affected by movement of subjects within the scanner. Despite these limitations it has proven to be a 

valuable and useful tool to interrogate brain networks and produces network data comparable to 

other techniques such as EEG or MEG26. There were more females in the FTD group compared to 

males, although comparison across the three groups (gene negative, carriers and FTD) was not 

significant. Whilst a more balanced cohort would be ideal, we consider that the effects of FTD 

would outweigh any subtle gender effects, and gender differences would not explain the differences 

between gene carriers and gene negative participants. 

 

5. Conclusions 

We propose that the maintenance of functional brain networks underlies the resilience of the brain 

to neurodegenerative pathology in the presence of significant neuronal loss. We suggest that 

resilient topological organisation rather than active compensation is the main contributor to this 

resilience. Our findings suggest a window of opportunity to intervene in the pre-symptomatic stage 

of neurodegenerative diseases, including treatment strategies that promote efficiency and 

integration in the brain’s functional brain networks even in the presence of progressive atrophy. 
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Figure legends 

Figure 1: 

Connection strength is reduced in genetic FTD compared to asymptomatic gene carrying 

relatives 

Differences between the genetic FTD group and pre-symptomatic gene carrying relatives 

demonstrate reduced connection strength using a mixed effects linear model (p=0.01) with no 

difference in global efficiency (p=0.2). The results for individual genes are shown for completeness, 

though we would be cautious in interpreting these results given the small group sizes. Using a 

simple t-test, there was significantly reduced connection strength in the PGRN FTD group 

(p<0.00001) and global efficiency in the MAPT FTD group (p=0.02). In order to assess whether 

there was a non-linear relationship between network measures and time to the estimated age of 

symptom onset, we performed discontinuous breakpoint analysis. There was a significant 

breakpoint in global efficiency (p=0.009), but not for connection strength (p=0.9). Significance 

values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 

 

Figure 2: 

Although relevant brain regions demonstrate reduced connectivity in FTD there is no 

significant change at symptom onset 

For each brain region the difference in connection strength between gene carrier and FTD groups 

are presented, significant values were calculated using a mixed-effects linear regression model. 

There were significant differences in the frontal, temporal, occipital, cingulate and insula cortices 

(see eResults). However, no brain region demonstrated a significant breakpoint in connect strength 

at the age of symptom onset (using a piecewise linear regression model). Significance values: 

*<0.05, **<0.01, ***<0.001, ****<0.0001. 

 

Figure 3: 

Brain regions demonstrate both reduced efficiency in FTD and a significant decline in 

efficiency beginning at symptom onset 

for each brain region the difference in closeness centrality between gene carrier and FTD groups are 

presented, significant values were calculated using a mixed-effects linear regression model (see 

eResults). There were significant differences in the frontal, temporal, occipital, cerebellar and 

cingulate cortices. In contrast to the connectivity results, there were significant breakpoints in 

closeness centrality at the age of symptom onset in frontal, temporal, parietal, occipital and 

cingulate cortices. These findings suggest that an efficient brain structure is maintained in these 
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brain regions up to the time that symptoms of FTD emerge, but that the efficient structure rapidly 

breaks down thereafter. 

 

Figure 4: 

Whole brain atophy and the atrophy in relevant brain regions is correlated with the loss of 

connectivity only after symptom onset 

we examined whether the volume of the whole brain and brain regions were associated with loss of 

connection strength. There was a relationship between volume and connection strength in the whole 

brain (p=0.0002), frontal lobe (p=0.005) and temporal lobes (p<0.00001) in the FTD group only 

and not in the gene carrier group; in each case there was a significant difference between the 

relationship in the FTD group and gene carrier groups (whole brain p=0.001; frontal lobes p=0.02; 

temporal lobes p=0.0002). Significance values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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Tables 

  P value Gene negative Gene carriers FTD 

Age, years (sd) <0.00001 47.8 (15.5) 44.5 (12.3) 62.4 (8.6) 

Sex (M/F) ns* 49(61%) / 31(39%) 40(59%) / 28(41%) 7(29%) / 17(71%) 

Hand (L/R/Ambi) ns 74(93%) / 5(6%) / 1 

(1%) 

58(85%) / 8(12%) / 2 

(3%)  

22(92%) / 2(8%) / 0 

(0%) 

Education, years (sd) ns 13.7 (3.5) 13.8 (3.2) 12.2 (4.5) 

 

Table 1: Demographics for subjects included in the analysis. For parametric data analysis of 

variance was used and we report the mean, and the standard deviation in parentheses. For 

categorical data the chi-square test was used and we report the numbers in each category. As 

expected, people with FTD were older than both gene carriers (p<0.00001) and gene negative 

subjects (p<0.00001). *Although sex differences were not significant when tested across all three 

groups, pairwise tests confirmed that there were fewer men in the FTD patient group compared with 

both the gene carrier (p=0.02) and gene negative (p=0.01) groups. FTD = frontotemporal dementia, 

ns = non-significant >0.1. 
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 Gene negative Gene carriers FTD 

MMSE 29.2 (1.4) 29.1 (1.5) 22.3 (6.3) 

Log Immediate Memory 0.08 (1.02) 0.08 (0.84) -2.07 (1.1) 

Log Delayed Memory 0.08 (0.98) -0.04 (0.77) -2.08 (0.99) 

Forward Digit Span 0.02 (0.97) -0.03 (1) -1.21 (1.44) 

Backwards Digit Span 0.01 (0.99) -0.12 (0.9) -1.71 (1.19) 

Trails A 0.2 (0.91) 0.29 (0.58) -2.49 (2.49) 

Trails B 0.16 (0.91) 0.24 (0.88) -2.49 (1.34) 

Digit Symbol Task 0.25 (1.12) 0.27 (0.95) -1.98 (0.89) 

Boston Naming Task 0.15 (0.88) 0.03 (1.1) -3.53 (2.66) 

Verbal Fluency (Category) 0.14 (1.02) 0.16 (0.91) -2.04 (0.9) 

Verbal Fluency (Letter) -0.06 (1.01) -0.05 (1.2) -2.64 (0.96) 

Block Design Task 0.01 (1) 0.17 (0.98) -2.05 (0.97) 

 

Table 2: Mean clinical scores for each group with standard deviation shown in parentheses. The raw 

MMSE score is shown and z-score for other measures. These scores are corrected for language, but 

not for other demographics. 
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Highlights 

• mechanisms of preserved function in presymptomatic dementia are not well understood 
• we studied people with genetic frontotemporal dementia and their relatives 
• brain network efficiency was preserved prior to the onset of symptoms 
• highly connected hub regions were preferentially affected by neuropathology 
• interventions to support functional brain networks may delay the onset of dementia 
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