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Abstract

We show that the Bansal-Yaron, Campbell-Cochrane and Cecchetti-Lam-Mark
models of asset prices cannot explain the serial correlation structure of stock re-
turns. We show this by estimating these models and deriving expected returns
from them and then testing whether the difference between observed and expected
returns is a martingale difference sequence. We use variance ratio and rescaled
range tests which we modify to account for the expected returns being functions
of estimated parameters. We also use a weighted quantilogram test based on a
bootstrap procedure robust to this estimation. The evidence against the Bansal-
Yaron and Campbell-Cochrane models is significant. While the evidence against
the Cecchetti-Lam-Mark model is not in general significant, our point estimates
strongly suggest its residuals are not a martingale difference sequence. Furthermore,
a semi-parametric maximal predictability test suggests there is some evidence that
the three models’ state variables struggle to explain the degree of predictability
observed in the market return. A timing strategy designed to exploit predictability
in the market can significantly outperform the market in certainty equivalent terms
under the Bansal-Yaron model. The timing strategy may underperform the market
by less than it ought to under the Campbell-Cochrane model.

JEL classification: C58, G12
Keywords: consumption-based asset pricing models, serial correlation, predictabil-
ity, martingale difference sequence, variance ratio, quantilogram, rescaled range,
mean reversion

1 Introduction

It is an apparent stylised fact of financial markets that stock price movements are ap-
proximately serially uncorrelated at short horizons, but negatively serially correlated at
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longer horizons (Campbell, 2014; RSAS, 2013). However, relatively little work explores
whether such a serial correlation structure is compatible with popular models of asset
pricing. In this article, we show that three popular asset pricing models are unable to
explain the serial correlation structure of observed stock returns. We find that the differ-
ence between expected returns implied by the models considered and observed returns is
forecastable over time with respect to its own past history. This difference is significantly
forecastable for the Bansal-Yaron and Campbell-Cochrane models. While the difference
is not in general significantly forecastable for the Cecchetti-Lam-Mark model, our point
estimates, coupled with the known low power of the tests used (Poterba and Summers,
1988), strongly suggest the difference is negatively serially correlated. Since the models
we test have rational expectations, if the models were correctly specified, this difference
would be unforecastable, and so a martingale difference sequence (MDS) at the very
least. We estimate the models considered to obtain the model-implied expected returns
and modify existing tests of the MDS null to account for this estimation. We also find
some evidence that the degree of predictability observed exceeds the maximum possible
if the stochastic discount factor (SDF) contains the state variables of the models consid-
ered. Moreover, we show that a timing strategy designed to exploit return predictability
can yield a certainty equivalent gain under the Bansal-Yaron model, and may reduce the
certainty equivalent less than it ought to under the Campbell-Cochrane model.

The extent to which rational models of asset prices can explain stock return pre-
dictability of is interest for several reasons. First, most of the models we consider are
designed to capture the equity premium (Mehra and Prescott, 1985) and risk-free rate
(Weil, 1989) puzzles. Assuming a standard endowment economy with a representative
investor who has CRRA1 preferences, the observed difference between stock returns and
low-risk bond yields requires extremely high levels of risk aversion to explain. This is the
equity premium puzzle. The risk-free rate puzzle compounds the equity premium puzzle.
If CRRA investors are indeed as risk averse as they would need to be to justify the equity
premium, low-risk bond yields are far too low. As a result, researchers (e.g. Bansal and
Yaron, 2004; Campbell and Cochrane, 1999) have sought to modify the standard CRRA
set-up in order to account for these puzzles. In terms of explaining the equity premium
and risk-free rate puzzles simultaneously, these models do reasonably well. But they are
yet to be examined in terms of their ability to capture the predictability of stock prices
with regards to their own history. This predictability, however, is of great practical in-
terest. Given the immense profitability of ex-post predictability, even a small amount of
ex-ante predictability could be highly profitable (Farmer and Lo, 1999).

The main type of own-history predictability (i.e. non-zero autocorrelation coefficients)
documented is long-horizon mean reversion in stock prices. Mean reversion is the phe-
nomenon by which abnormally high returns are typically followed by abnormally low
returns, such that stock prices fluctuate around a trend. Fama and French (1988) and
Poterba and Summers (1988) find this predictability to be substantial. While the evi-
dence of mean reversion in stock returns has been questioned, we believe there is still a
phenomenon to be explained. Poterba and Summers (1988) and Kim et al. (1991) find
that evidence of mean reversion can be sensitive to the time period chosen, in particular
to the inclusion of the 1930s and 1940s in the data set. As Section 5 shows, our point
estimates do not suggest this. The usual asymptotic standard errors for MDS tests have
also been criticised, with several authors (e.g., Kim and Nelson, 1998; Kim et al., 1998;
McQueen, 1992; Richardson and Stock, 1990; Richardson and Smith, 1991) arguing they

1Constant relative risk aversion.
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are too small. Nonetheless, Poterba and Summers (1988) show that standard tests for
MDS have extraordinarily low power against a mean-reverting alternative. Since even
insignificant point estimates often imply reasonably substantial mean reversion, as in our
dataset, it is difficult to determine the extent to which a lack of significant mean reversion
is merely an expression of this low power.

There has been little recent work on explaining stock return autocorrelations in the
context of a rational, consumption-based model. The most recent models do not appear to
have been tested in this regard. In order to explain a variety of features of stock returns,
including mean reversion, Kandel and Stambaugh (1989) propose adapting the Mehra
and Prescott set-up by specifying consumption growth as lognormally distributed with
time-varying mean and variance. The mean and variance of consumption growth follow
a nine-state Markov-switching process and exhibit positive serial correlation. Kandel
and Stambaugh’s calibration exercise uses relatively high relative risk aversion (28.6).
This shows that the model produces the “U” shaped autocorrelation function observed
in stock returns. However, the model is not able to replicate the observed pattern of small
positive autocorrelations at short horizons followed by larger negative autocorrelations
at longer horizons. Kandel and Stambaugh speculate that this is because their model
is overly restrictive. In particular, current news only affects the conditional distribution
of consumption one period in the future. Nonetheless, their model broadly matches the
observed pattern of autocorrelations at horizons greater than 12 months.

Cecchetti et al. (1990) use a similar specification to Kandel and Stambaugh. Cecchetti
et al. use a Markov-switching log endowment level and a more parsimonious two-state
specification. They estimate the Markov switching process by maximum likelihood and
calibrate the model to US data, using a relative risk-aversion coefficient of 1.7. They
find that popular measures of mean reversion always lie within a 60% confidence interval
of data simulated from the model. The Cecchetti et al. model has the same problem
of not being able to generate negative autocorrelations at short horizons as the Kandel
and Stambaugh model. This could be a result of the models being very similar and/or
the positive autocorrelations at short horizons being driven by noise. We update the
Cecchetti et al. (1990) evidence in two ways. First, we formally estimate their model.
This also allows for the development of asymptotic theory for the hypothesis tests used.
Second, the Cecchetti et al. (1990) model rests on CRRA preferences. As discussed above,
these have been much criticised on an empirical basis, in particular because of the equity
premium and risk-free rate puzzles. We test more recent models that can accommodate
these two puzzles. Our work also provides an additional specification test of these more
recent models, beyond the standard calibration exercises and estimation-based tests which
are based on average pricing errors.

Other attempts have been made to explain mean reversion in a risk-based frame-
work. Kim et al. (2001) proxy risk by volatility and use a volatility feedback model.2

Using a Jegadeesh (1991) test for mean reversion, they find that, adjusting returns for a
time-varying expected return where volatility (and therefore expected returns) follows a
two-state Markov process, residual returns display no significant mean reversion, despite
observed returns doing so. Thus, this simple risk adjustment of returns is sufficient to
account for the mean reversion observed. While Ho and Sears (2006) find that Carhart’s
(1997) extension of the Fama and French (1992) model cannot explain mean reversion,
they do not allow the factor loadings to be time-varying. In-keeping with this, Gan-
gopadhyay and Reinganum (1996) find that the CAPM can explain mean reversion only

2Where an unexpected change in volatility has an immediate impact on stock prices.
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when the β (factor loading) can change over time. These adjustments for risk are some-
what crude, and the risk factors are not micro-founded. By contrast, we are testing
consumption-based models, which micro-found their risk factors from the start.

There is also a burgeoning literature on how conditional predictability of the short-run
equity premium varies with economic and risk conditions.3,4 Barroso et al. (2017) model
the equity risk premium as a function of economic state variables.5 The extent to which
these state variables forecast both the equity risk premium and consumption growth
varies with time. When a state variable predicts consumption growth more strongly, it
also contributes more to the equity premium. This is entirely consistent with the ICAPM.
In other words, a consumption-based asset pricing model appears capable of explaining
short-term conditional predictability. Moreover, Baltas and Karyampas (in press) find
that the extent to which state variables, such as the dividend yield, can provide out-
of-sample predictability of the equity risk premium varies by economic regime.6 Again,
it appears that risk conditions affect the degree of predictability. We extend this work
by focussing on specific models of the economic conditions state variables, which are
micro-founded, rather than imposed. We consider models with (micro-founded) latent
state variables which are conditionally correlated with consumption, and possibly other
economic variables, in a time-varying manner. If these latent state variables are what
determine risk conditions, this could explain why predictability of the equity premium
with respect to observed economic variables appears to vary through time. We also focus
on using past returns as the predictor variable and using longer horizons, where returns
are generally thought to be more predictable (Campbell, 2014; RSAS, 2013).

This paper proceeds as follows. Section 2 briefly describes and reviews the three asset
pricing models considered, Section 3 discusses how we estimate the models and Section 4
discusses the tests we use and how we modify them to account for parameter estimation.
Section 5 remarks on the features of our data and reports the estimation of the asset
pricing models. Section 6 presents our empirical results regarding the predictability of
the model residuals and Section 7 presents our test of a timing strategy to exploit market
predictability. Section 8 concludes.

2 The models

We consider the ability of the Bansal and Yaron (2004) long-run risk model and the
Campbell and Cochrane (1999) habits model to explain mean reversion. We choose
these two models as they appear to be the two most influential consumption-based asset
pricing models in the literature (see, e.g., the review articles of Cochrane, 2008; Constan-
tinides, 2006; Donaldson and Mehra, 2008; RSAS, 2013; Siegel, 2005). We also consider
the Cecchetti et al. (1990) model of equilibrium mean reversion, since this is the only
consumption-based model we are aware of specifically developed to account for return
predictability.

Below, we review the structure of the models we consider and the evidence regarding

3Since the risk-free rate is substantially smaller and less variable than the market return (see Section
5), the dynamic properties of the equity risk premium are driven by the market return.

4There are also non-risk based explanations for return predictability. These are beyond the scope of
this paper.

5These are: the dividend yield, default spread, term spread, risk-free rate, price/earnings ratio, value
spread, a bond market factor and a term structure factor.

6The regimes are: up/down market, upswing/downswing of the business cycle and high/low volatility.
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their empirical performance thus far. We see that the Campbell-Cochrane and Bansal-
Yaron models are able to justify the market return and risk-free rate in calibrations. The
Cecchetti-Lam-Mark model accurately captures stock return autocorrelations in Cecchetti
et al.’s (1990) original study.

2.1 Bansal-Yaron model

The Bansal and Yaron (2004) model is as follows:

Vt =

[
(1− δ)C

1− 1
ψ

t + δ
(
Et

[
V 1−γ
t+1

]) 1− 1
ψ

1−γ

] 1

1− 1
ψ

(1)

xt+1 = ρxxt + ψxσt εt+1 (2)

∆ct+1 = µc + xt + σtηt+1 (3)

∆dt+1 = µd + φxt + ϕσtut+1 (4)

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwwt+1 (5)

εt, ηt, ut, wt ∼ NID(0, 1),

where Vt is the representative investor’s value function, δ the subjective discount factor,
γ > 0 the risk-aversion coefficient, ψ > 0 the elasticity of intertemporal substitution
(EIS), Ct consumption, Dt dividends, Et the conditional expectation at time t and
lower-case variables denote logs of upper-case variables.

The model has three key ingredients. The first is recursive preferences (1) à la Ep-
stein and Zin (1989) and Weil (1989). Unlike standard CRRA preferences, these allow
EIS and risk aversion to differ. This represents a methodological advantage since risk
aversion and intertemporal substitution are different concepts. EIS reflects the extent
to which consumers are willing to smooth certain consumption through time, while risk
aversion relates to the extent to which consumers are willing to smooth consumption
across uncertain states of nature (Cochrane, 2008).

The second ingredient is to specify consumption growth (3) as having a small pre-
dictable component (the long-run risk, x) so that consumption news in the present affects
expectations of future consumption growth. By making consumption growth persistent,
the long-run risk can increase the impact of present consumption growth on the differ-
ence between present discounted values of dividend streams and therefore returns. It is
the differences between these PDVs that ultimately drive returns in consumption-based
models. There is great debate as to whether or not it is reasonable to model consumption
growth as not being iid (e.g., Cochrane, 2008). While this matter is beyond our scope,
there are plausible reasons for consumption growth not being iid, such as binding credit
constraints and precautionary savings.

The third ingredient is allowing for time-varying economic volatility (5) in consump-
tion growth. This reflects time-varying economic uncertainty and is a further source of
investor uncertainty and risk.

Bansal and Yaron calibrate their model on a monthly basis such that it matches fea-
tures of annualised US data. They show their model can justify the equity premium,
risk-free rate and the volatilities of the market return, risk-free rate and price-dividend
ratio. Moreover, the price-dividend ratio predicts returns and the volatility of returns is
time-varying, as in the data. When EIS > 1, the model also captures leverage effects
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(a rise in volatility being associated with a stock market fall) and the observed nega-
tive correlation between consumption volatility and price-dividend ratios. Time-varying
economic uncertainty adds a further risk factor and allows the equity premium to vary
through time. The reliance of some of the calibration results on EIS > 1 may cause
some concern. EIS estimates are not conclusively greater or less than one. Bansal and
Yaron present some empirical evidence suggesting EIS > 1. They argue that forcing
consumption volatility to be constant, as most estimates of EIS that are less than one
do, biases the EIS estimated downwards.

Constantinides and Ghosh (2011) estimate the Bansal-Yaron model by GMM. The
results are mixed. The model matches the unconditional moments of aggregate dividend
and consumption growth rates. As predicted, the long-run risk forecasts consumption and
dividend growth. However, the implied risk-free rate is too high and insufficiently variable.
The market price-dividend ratio is not sufficiently variable and the model requires greater
persistence in consumption and dividend growth than is observed. At long horizons, the
conditional variance does not forecast the equity premium but does forecast consumption
and dividend growth, contrary to the model’s predictions. Moreover, the J-statistic p-
value is less than 0.03 in all specifications considered.

2.2 Campbell-Cochrane model

Campbell and Cochrane’s (1999) model adds a slow-moving external habit to the standard
power utility function. The representative agent’s utility function is

Ut(C) = Et

∞∑
s=0

δs
(Ct+s −Ht+s)

1−γ − 1

1− γ
,

where δ is the subjective discount factor, γ the utility curvature and Ht the habit level
of consumption. Defining St ≡ (Ct −Ht)/Ct, the habit evolves according to

st+1 = (1− φ)s̄+ φst + λ(st)νt+1, (6)

where s̄ is the steady-state s and S̄ = σν
√
γ/(1− φ). Consumption and dividends are

such that

∆ct = ḡ + νt

∆dt = ḡ + wt

with ∆ being the first difference operator and(
νt
wt

)
∼ NID

((
0
0

)
,

(
σ2
ν σνw

σνw σ2
w

))
.

λ(st) is a sensitivity function given by

λ(st) =

{
(1/S̄)

√
1− 2(st − s̄)− 1, if st ≤ smax

0, otherwise,
(7)

with smax ≡ s̄ + 1
2
(1 − S̄2). Campbell and Cochrane set φ to be equal to the first-order

autocorrelation coefficient of the log market price-dividend ratio, zm,t.
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Campbell and Cochrane calibrate their model to match the annualised unconditional
equity premium using monthly US data. When given actual data, the model replicates
the main movements observed in stock prices. In simulations, the model is able to justify
the means and standard deviations of excess returns and the price-dividend ratio, and the
existence of a short-run and long-run equity premium. Moreover, this is achieved without
a risk-free rate puzzle by construction: the habit is specified such that the risk-free rate
remains constant and the model is calibrated such that the log risk-free rate is equal to
the sample mean.7 In Garcia et al.’s (2004) GMM estimation of the Campbell-Cochrane
model, the estimated γ is significantly greater than 0 and the δ significantly less than 1.
The J-statistic p-value exceeds 0.2, although this does condition on earlier estimates of
time-series parameters.

One may worry about the habit being external, not internal. However, Campbell and
Cochrane (1998) show that the model’s predicted asset prices are unaffected when the
habit is internal, habit accumulation linear and the risk-free rate constant. The only
change is that log consumption growth must now be specified as only almost, but not
exactly, iid.

Another concern is that the model implies a high average relative risk aversion (Sa-
lomons, 2008). However, as Campbell and Cochrane (1999) note, high implied risk aver-
sion is a problem in terms of the model matching microeconomic evidence. For medium
and large-stakes gambles of wealth, evidence is mainly based on surveys or the author’s
intuition. Campbell and Cochrane argue that, since these gambles are larger than what
consumers are used to dealing with, they may struggle to comprehend the situation in
question and so this evidence is not necessarily conclusive. As already shown, the model
works well from a macroeconomic perspective.

A final concern is that utility is undefined for consumption less than habit. However,
the habit is specified such that Ct > Ht always. Yet, this specification means the average
habit is only around 5% less than average consumption, making habits seem extreme.
This is a minor concern that Campbell and Cochrane suggest could be resolved by ac-
counting for concerns about extreme losses, sampling variation and survivorship bias in
their calibration.

2.3 Cecchetti-Lam-Mark model

Cecchetti et al.’s (1990) model attempts to explain mean reversion in a rational frame-
work. The model is an endowment economy where the representative consumer has
CRRA preferences:

Ut(C) = Et

∞∑
s=0

δs
C1−γ
t+s − 1

1− γ
.

Here, δ denotes the subjective discount factor and γ the coefficient of relative risk aversion.
Taking (log) consumption as the appropriate endowment process,

ct+1 = ct + α0 + α1yt + εt+1 . (8)

yt ∈ {0, 1} is a first-order Markov process and εt ∼ NID(0, σ2). yt = 1 denotes a “bust”
period, so α1 is restricted to be less than zero.

7Campbell and Cochrane argue this is realistic as the risk-free rate varies relatively little and does
not vary cyclically.
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Cecchetti et al. (1990) test their specification against annual US data in terms of how
well their estimated Markov process matches the endowment process and how well the
mean reversion of their equilibrium asset prices matches that observed in reality. Mean
reversion is examined in terms of variance ratios and Fama and French (1988) regression
coefficients using annual US/S&P data over 2-10 year horizons. Tests of how well the
model explains mean reversion are carried out by simulating 10,000 “small” samples (of
length 116, the length of their data) and 10,000 large samples (length 1160) of returns,
both for linear and concave utility.8 They then compute the variance ratios and regression
coefficients from these sample, thus forming Monte Carlo distributions of the statistics.
Their observed values lie inside the 60% confidence intervals implied by both the linear
and concave utility models. However, the small-sample medians of the statistics from the
concave utility model are somewhat closer to those observed than those from the linear
utility model. Cecchetti et al. conclude that the concave utility model better explains
mean reversion. The Markov bust-state probability is realistic at and, based on 1,000
replications of the estimated Markov process, the sample moments of the data are fairly
close to those of the Markovian endowment.

The main concern regarding the Cecchetti-Lam-Mark model is that, given that it uses
standard CRRA preferences, it seems highly likely to suffer from the risk-free rate and
equity premium puzzles.9 Indeed, Cecchetti et al. note that their model was designed to
explain only mean reversion in asset prices, not asset prices in general. However, given
the empirical success of this model in explaining mean-reversion, it remains a useful
benchmark for our analysis.

There is one concern that affects all three models. They are all representative-agent
models and neglect investor heterogeneity.10 The subset of the population owning stocks
may face a different consumption process to the general population. Correcting for this
requires access to panel data for consumption and investment holdings. These data do
not go back far enough to be able to estimate medium and long-horizon return statistics
with a reasonable sample size. This lack of data rules out testing models such as the
Constantinides et al. (2002) “juniour can’t borrow” model and Malloy et al.’s (2009)
model of heterogeneous investors. Given the data available, this concern must be put to
one side and left for future research.

3 Model estimation

We estimate the asset pricing models by GMM, as detailed below, using quarterly data.
We use quarterly data to increase the sample size, while maintaining a sufficiently long
horizon such that one would expect consumption and investment decisions to be corre-
lated.

3.1 Bansal-Yaron model

Constantinides and Ghosh (2011) show that the log-linearised version of the Bansal-Yaron
model can be inverted, such that the unobserved state variables can be written as a linear

8Concave utility is assumed to exhibit relative risk aversion of 1.7, which is rather low.
9Although, strictly speaking, there is no risk-free rate in the Cecchetti-Lam-Mark model.

10Campbell and Cochrane (1999) show that their model can admit some forms of investor heterogeneity.
These are too limited to be of much use.
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combination of observables. In particular,

xt = α0 + α1rf,t + α2zm,t (9)

σ2
t = β0 + β1rf,t + β2zm,t (10)

where α0, . . . , β2 are functions of Bansal-Yaron model parameters, as detailed in Appendix
A.1, and rf,t the (log) risk-free rate. This allows them to express the Bansal-Yaron Euler
equation for a general asset as

Et

[
exp

{
a1 + a2∆ct+1 + a3

(
rf,t+1 −

1

κ1
rf,t

)
+ a4

(
zm,t+1 −

1

κ1
zm,t

)
+ rt+1

}]
− 1 = 0,

where rt is the log asset return and a1, . . . , a4, κ1 are functions of the Bansal-Yaron model
parameters, also given in Appendix A.1.

In addition, they derive nine unconditional moment restrictions for continuously com-
pounded consumption and dividend growth, which are given in Appendix A.2. These mo-
ment conditions are derived from Bansal and Yaron’s (2004) specification of consumption
and dividend growth, the long-run risk and its conditional variance.

The model has 12 parameters to estimate. We use an Euler equation for each asset
considered, and the nine time-series restrictions as our GMM moment conditions.

Constantinides and Ghosh show that

Et rm,t+1 = B0 +B1xt +B2σ
2
t

where rm,t is the market return and B0, . . . , B2 are non-linear combinations of the 12
model parameters provided in Appendix A.3. It follows that

Et rm,t+q+1 = B0 +B1ρ
q
xxt +B2(σ

2(1− (1− ν)q) + νqσ2
t ).

By (9)-(10), we have expected future returns in terms of observables up to t. These yield
a plug-in estimator of Et rm,t+q+1.

3.2 Campbell-Cochrane model

We use a GMM procedure along the lines of that of Garcia et al. (2004) for estimating the
Campbell-Cochrane model. The procedure has three parts. First, the time-series param-
eters ḡ, σ2

ν and σ2
w are estimated by GMM, using the following four moment conditions:

0 = E(∆ct+1 − ḡ)

0 = E(∆ct+1 − ḡ)2 − σ2
ν

0 = E(∆dt+1 − ḡ)

0 = E(∆dt+1 − ḡ)2 − σ2
w.

Second, we estimate α and φ from the linear regression

zm,t+1 = α + φzm,t + et+1.

Third, we estimate the preference parameters δ and γ. Since the Euler equation in
the Campbell-Cochrane model is given by

Et

[
δ

(
St+1

St

Ct+1

Ct

)−γ
(1 +Rt)

]
− 1 = 0, (11)
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it is first necessary to generate the series st. We do this by initialising the series at
s0 = s̄ = ln(σν

√
γ/(1− φ)), using the estimates of the relevant time-series moments

from above and assuming an initial γ of 2. This allows the series st to be generated as
per (6) and (7). We then use an Euler equation of the form (11) for each asset (excluding
the risk-free rate) to make up the moment conditions for estimating δ and γ. This
estimate of γ is then used in place of the assumed value of two to generate a new st series
and the preference parameters are estimated again by GMM. We iterate this procedure
until the estimates of δ and γ converge.11

We estimate Et rm,t+q+1 the Campbell-Cochrane model as follows. By rearranging and
iterating the Euler equation forwards, we have

Pt =
∞∑
j=1

δj Et

[(
St+j
St

Ct+j
Ct

)−γ
Dt+j

]
(12)

when we impose the no-bubble condition

lim
j→∞

δj Et

[(
St+j
St

Ct+j
Ct

)−γ
Pt+j

]
= 0.

Therefore,

Et(1 +Rt+q) = Et

∑∞
j=1 δ

j Et+q

[(
St+q+j
St+q

Ct+q+j
Ct+q

)−γ
Dt+q+j

]
∑∞

j=1 δ
j Et+q−1

[(
St+q+j−1

St+q−1

Ct+q+j−1

Ct+q−1

)−γ
Dt+q+j−1

] . (13)

Since Rt ≈ rt, we have an estimator of Et rm,t+q+1 when it is the market dividends that
are simulated.

We estimate (13) by means of a “double” simulation. First, we simulate the series
ct+1, . . . , ct+q, dt+1, . . . , dt+q and st+1, . . . , st+q, conditioning on ct, dt and st. Second we
simulate ct+q, . . . , ct+q+99, dt+q, . . . , dt+q+99 and st+q, . . . , st+q+99, and ct+q−1, . . . , ct+q+98,
dt+q−1, . . . , dt+q+98 and st+q−1, . . . , st+q+98 separately for the numerator and the denomi-
nator respectively.12 The expectation in the numerator in (13) is then estimated by the
mean of 200 simulations of the PDV and likewise for the denominator, such that the ratio
of the expectations can be computed. The “first-stage” simulation (between t and t+ q)
is repeated 200 times and the expectation of the ratio is estimated by the mean of the
simulated ratios. Our simulation procedure is shown schematically in Figure 1.

3.3 Cecchetti-Lam-Mark model

We use to estimate δ and γ. The moment conditions comprise an Euler equation for each
asset of the form

Et

[
δ

(
Ct+1

Ct

)−γ
(1 +Rt)

]
− 1 = 0. (14)

We estimate the Markov switching endowment process by maximum likelihood (Hamil-
ton, 1989). Hamilton also provides algorithms for extracting smoothed and filtered prob-
abilities of each state. In a slight deviation from Cecchetti et al. (1990), we estimate a
Markov-switching process where the consumption innovation εt+1 |yt ∼ N(0, σ2

yt).

11Our tolerance is a difference of up to 10−7 between the estimates of different iterations.
12We truncate the horizon simulated to be 99 quarters into the future.
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Figure 1: Schematic representation of “two-step” simulation

 

t 
t + q -1 

t + q 

t + q + 99 

t + q + 98 

Repeat “first 

stage” 200 

times 

Repeat “second 

stage” 200 times 

The arrows represent simulation. We first simulate from t to t + q and then separately from t + q to
t+ q + 99 for the numerator and from t+ q − 1 to t+ q + 98 for the denominator. The mean of the 200
second-stage ratios gives one observation of the first-stage return. The mean of the 200 first-stage return
gives the expected return.

Cecchetti et al. show that

1 +Rm,t+1 =
1 + κ(yt+1)

κ(yt)
exp{α0 + α1yt + εt} (15)

where κ(yt) is a non-linear function of model parameters defined in Appendix B. We
evaluate EtRm,t+q+1 for q > 0 by simulating a series yt+1, . . . , yt+q+1 given yt. The
expectation is then taken over 200 simulated returns.

4 Tests

To test whether the asset-pricing models discussed above capture the serial correlation
structure of stock returns, we note that rational expectations imply

rt+1 = Et rt+1 + ξt+1, (16)

where expectations are formed under the model in question and ξt+1 is unforecastable at
t. If the model accurately captures own-history predictability, ξt should be MDS. If not,
there is clearly something in the own-history predictability structure of rt not captured by
Et−1 rt. We estimate (16) using the plug-in estimators of Et rt+1 derived above and base
our tests on the resulting residual ξ̂t, where ξ̂t is re-centred such that it has mean zero.
As predictability is typically considered a longer-term phenomenon, the return horizons
considered in each test are q ∈ {2, 3, . . . , 10} years, i.e. q ∈ {8, 24, . . . , 40} quarters. We
consider tests of linear and non-linear predictability, as well as a rescaled range test. In
each case, we adapt the test to cope with the fact that µt(θ) ≡ Et−1 rm,t is estimated

and this estimate, µt(θ̂), is a function of a parameter vector estimated by GMM. Poterba
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and Summers (1988) demonstrate the low power of tests of the martingale difference hy-
pothesis based on serial correlation coefficients against a persistent but negatively serially
correlated alternative. Given their arguments, we use a 10% significance level throughout,
although we also report p-values.

4.1 Linear predictability

We use Lo and MacKinlay’s (1988) variance-ratio test, which exploits the fact that, for
serially uncorrelated ξt, Var(

∑q
s=1 ξt+s) = qVar(ξt). Poterba and Summers (1988) and

Lo and MacKinlay (1989) show this is generally a more powerful test of the martingale
difference hypothesis than unit root and autoregressive tests. The population variance
ratio is given by V R(q) = Var(

∑q
s=1 ξt+s)/qVar(ξt). Cochrane (1988) shows that

V R(q) = 1 + 2

q−1∑
j=1

(
1− j

q

)
ρ(j), (17)

where ρ(j) is the jth order serial correlation coefficient of ξt. Thus V R(q) < 1 can be
taken as evidence of negative serial correlation in returns dominates at horizon q, and
vice-versa for V R(q) > 1. Under the null that ξt is MDS, V R(q) = 1.

We estimate (17) by replacing ρ(j) with ρ̃(j), where

ρ̃(j) =
1

T

T∑
t=j+1

(
rm,t − µ∗t (θ̂)

)(
rm,t−j − µ∗t−j(θ̂)

)
µ∗t (θ) = Et−j−1(µt(θ)).

This approach corrects for the estimation of θ̂. To see this, consider the asymptotic
second-order expansion of ρ̃(j):

ρ̃(j) =
1

T

T∑
t=j+1

(rm,t − µ∗t (θ))(rm,t−j − µ∗t−j(θ))−
(
θ̂ − θ

)
E

[
∂µ∗t (θ)

∂θ

(
rm,t−j − µ∗t−j(θ)

)]
−
(
θ̂ − θ

)
E

[
(rm,t − µ∗t (θ))

∂µ∗t−j(θ)

∂θ

]
+ oP (T−1).

(18)

Under the null that ξt is an MDS, E
[
(rm,t − µ∗t (θ))

∂µ∗t−j(θ)

∂θ

]
= 0 and E

[
∂µ∗t (θ)
∂θ

(
rm,t−j − µ∗t−j(θ)

)]
=

0. Therefore, asymptotically,

ρ̃(j) =
1

T

T∑
t=j+1

(rm,t − µ∗t (θ))(rm,t−j − µ∗t−j(θ)).

Thus Lo and MacKinlay’s (1988) asymptotics can be applied. In particular, our estimated
V R(q) is asymptotically normal. Lo and MacKinlay show that τ ∗(q)

a∼ N(0, 1), where

12



τ ∗(q) ≡
√
T (V̂ R(q)− 1)/

√
λ̂(q) and

λ̂(q) ≡
q−1∑
j=1

[
2(q − j)

q

]2
ϑ̂(j)

ϑ̂(j) ≡

∑T
k=j+1

(
rk − µ∗k(θ̂)

)2 (
rk−j − µ∗k−j(θ̂)

)2
[∑T

k=j+1

(
rk − µ∗k(θ̂)

)2]2 .

These results allow for heteroscedasticity and τ ∗(q) is the statistic we base our inference
on.13

4.2 Non-linear predictability

The variance-ratio statistic is a function of the sample autocorrelations of ξ̂t and therefore
does not exploit the full hypothesised MDS structure of ξt. In particular it neglects non-
linear predictability. We test for non-linear predictability using Linton and Whang’s
(2007) quantilogram, which is based on the correlation of quantile hits. If ξ̂t is MDS, the
probability ξ̂t+k is in the α quantile given ξ̂t is in the α quantile should remain α. The
quantile hits are uncorrelated. The quantilogram is a more general version of Wright’s
(2000) sign tests, which focus on whichever quantile zero is in.

In our test statistic, we weight the quantilogram estimates, analogously to the variance
ratios. This gives

Ŵα(q) =

q−1∑
j=1

(
1− j

q

)
ρ̂α(j), (19)

where

ρ̂α(j) =

∑T−j
t=1 ψα(ξ̂t − µ̂α)ψα(ξ̂t+j − µ̂α)√∑T−j

t=1 ψ
2
α(ξ̂t − µ̂α)

√∑T−j
t=1 ψ

2
α(ξ̂t+j − µ̂α)

ψα(·) = α− 1(· < α)

µ̂α = argmin
m∈R

T∑
t=1

(ξ̂t −m)× ψ(ξ̂t −m).

and 1(·) is the indicator function. We evaluate (19) over the same q as in the vari-
ance ratio tests and over a range of both extreme and moderate quantiles, namely
α ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99}.

Inference is carried out using a bootstrap. We apply a wild bootstrap to the estimated
residuals, ξ̂t. That is to say, ξ̂t is pre-multiplied by ι∗t at each t, where E(ι∗t ) = 0 and

13To see why it is necessary to use µ∗t (θ) in place of µt(θ) consider the asymptotic expansion of

ρ̂(j) = 1
T

∑T
t=j+1

(
rm,t − µt(θ̂)

)(
rm,t−j − µt−j(θ̂)

)
, which is analogous to (18). While, under the

null, E
[
(rm,t − µt(θ))

∂µt−j(θ)
∂θ

]
= 0, this is not generally true for E

[
∂µt(θ)
∂θ (rm,t−j − µt−j(θ))

]
. Lo and

MacKinlay’s (1988) asymptotic results, which are based on only the first term in (18), do not necessarily
go through.
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Var(ι∗t ) = 1. In this case, ι∗t follows Mammen’s (1993) two-point distribution.14 Then,
we use the bootstrapped residuals to extract a pseudo-sample of returns r∗m,t by the
relationship

r∗m,t = Et−1 rm,t + ι∗t ξ̂t.

We use r∗m,t to generate a new series for the market value and therefore obtain the pseudo-
sample of the log price-dividend ratio, z∗m,t. This modified data set is then used to re-
estimate the asset pricing model parameters and, in turn, generate a pseudo-sample of
expected returns and thus a (new) pseudo-sample of residuals. It is this final pseudo-
sample of residuals which we use to calculate our weighted quantilogram. The empirical
distribution of the weighted quantilograms thus obtained is used for inference and the
bootstrap procedure is repeated 200 times. Notice that our procedure accounts for the
estimation of Et−1 rm,t and conditions on consumption and dividends.

4.3 Rescaled range

In addition to the above tests of the null that ξt is MDS, we consider a rescaled range test.
We do so as the rescaled range may be a more powerful test of the martingale difference
hypothesis than those above in the presence of long-range dependence (Lo, 1991). Our

test statistic is novel as it accounts for the estimation of θ. Our test statistic Q̂K is given
by

Q̂K =
1

ŝ
√
T

[
max
1≤k≤T

k∑
t=1

K̂t − min
1≤k≤T

k∑
t=1

K̂t

]
(20)

K̂t = rt − µt(θ̂) + µ̇t(θ̂)

[
t−1∑
k=1

µ̇k(θ̂)(µ̇k(θ̂))′

]−1 t−1∑
k=1

µ̇k(θ̂)
(
rm,k − µk(θ̂)

)
(21)

ŝ2 =
1

T

T∑
t=1

ξ̂2t . (22)

To adapt the rescaled range test to cope with the estimation of θ, we start with
Hurst’s (1951) classic rescaled range statistic, Q̂, which has

Q̂ =
1

ŝ
√
T

[
max
1≤k≤T

k∑
t=1

(
rm,t − µt(θ̂)

)
− min

1≤k≤T

k∑
t=1

(
rm,t − µt(θ̂)

)]
.

Noting that
√
T
(
θ̂ − θ

)
d→ N(0,Ω) for some Ω, we write

µt(θ̂) = µt(θ) + µ̇t(θ)(θ̂ − θ) + oP (T−1/2)

µ̇t(θ) =
∂µt(θ)

∂θ
.

14ι∗t is iid through time and has probability mass function

fI(ι
∗
t ) =

{√
5+5
10 , ι∗t = 1−

√
5

2√
5−5
10 , ι∗t = 1+

√
5

2
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We can therefore first approximate Q̂ by

Q =
1

σ
√
T

[
max
1≤k≤T

k∑
t=1

(
rt − µt(θ)− µ̇t(θ)(θ̂ − θ)

)
− min

1≤k≤T

k∑
t=1

(
rt − µt(θ)− µ̇t(θ)(θ̂ − θ)

)]

= max
1≤k≤T

(
1

σ
√
T
Sk −

1

Tσ
Tk × Ω1/2 × Z

)
− min

1≤k≤T

(
1

σ
√
T
Sk −

1

Tσ
Tk × Ω1/2 × Z

)
where Sk =

∑k
t=1(rt−µt(θ)), Tk =

∑k
t=1 µ̇t(θ) and Ω1/2Z is the limiting random variable

of the sequence
√
T (θ̂ − θ) and Z ∼ N(0, I). Replacing Tk by k E(µ̇t(θ)),

Q = sup
u∈[0,1]

(
B(u)− σ−1uE(µ̇t(θ))× Ω1/2 × Z

)
− inf
u∈[0,1]

(
B(u)− σ−1uE(µ̇t(θ))× Ω1/2 × Z

)
.

The Khamaladze transform (Brown et al., 1975) for the rescaled range process is then
given by (20)-(22).

Since we have now corrected the rescaled range process to account for the estimation
of θ, Q̂K has the same pivotal asymptotic distribution under the null that ξt is MDS
dependence as Q̂ does. This distribution is obtained by Lo (1991) as

FQ(v) = 1 + 2
∞∑
k=1

(1− 4k2v2) exp{−2(kv)2}.

4.4 Maximal predictability

Huang and Zhou (2015) develop a Wald test of whether the predictability of excess
returns, r̃t+1 = rt+1 − rf,t+1, is too large. Predictability is measured with respect to a

forecasting variable, ft. “Too large” is defined as too large to be consistent with M̃t, the
stochastic discount factor (SDF) normalised such that E M̃t+1 = 1, being a function of a
given set of state variables ωt.

15 The test is semi-parametric in that the functional form
of the SDF need not be known. The Wald statistic tests whether theoretical upper bound
on R2 implied by the state variables is exceeded by the empirical R2 from the univariate
one-step-ahead predictive regression of r̃t+1 on ft. It is straightforward to verify that this
test applies almost directly to the q-step-ahead predictive regression

r̃t+q = α + βft + εt+q .

In this context, when bounding R2 with SR(rm), the market Sharpe ratio,16 the bound
becomes

R2 ≤ R̄2
SR = φ2

ω,rfh
2SR2(rm),

15Our other tests relate to actual, not excess returns. However, as mentioned earlier, rf,t is substantially
smaller and less variable than rm,t. Thus the dynamic properties of r̃t are driven by rm,t.

16We choose to bound R2 with the market Sharpe ratio, as opposed to risk aversion. The latter requires
specifying a maximum admissible risk aversion, which is undesirable for reasons explained by Campbell
and Cochrane (1999). Moreover, the functional form of the risk-aversion bound requires the market
portfolio to be the optimal wealth and lognormally distributed. This is not an assumption we wish to
make. Nonetheless, the choice of bound makes little difference to Huang and Zhou’s (2015) results due
to their specifications of h and the maximum risk aversion.
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where

φ2
ω,rf = ρ2ω,rf

Var[r̃t+q(r̃t − µf )]
Var(r̃t+q) Var(ft)

ρ2ω,rf =
Cov[ωt+q, r̃t+q(ft − µf )]′Var−1(ωt+q) Cov[ωt+q, r̃t+q(ft − µf )]

Var[r̃t+q(ft − µf )]
,

and µf = E(ft). h is a parameter chosen by the marginal investor. We follow Cochrane
and Saá-Requejo (2000) in using h = 2. This bound requires ω to have an elliptic
distribution. Huang and Zhou argue assuming an elliptic distribution works well for the
state variables of the Bansal-Yaron and Campbell-Cochrane models.

Huang and Zhou’s test exploits the asymptotic normality of standard estimators of
the mean and covariance matrix of (rt+q, ft, rt+qft,ω

′
t+q)

′. These means and covariances,
which comprise θSR, are all that is required to calculate the empirical R2 and its bound.
We estimate θSR by GMM.

Testing whether R2 exceeds R̄2
SR is equivalent to a one-sided test of the null f(θSR) ≡

R2 − R̄2
SR = 0 against the alternative that f(θSR) ≡ R2 − R̄2

SR > 0. The Wald statistic
for this test is

WRA = Tf(θ̂SR)

[
df

dθSR
Var(θ̂SR)

df

dθSR

]−1
f(θ̂SR)

d→ χ2(1),

where
d→ denotes convergence in distribution.

This procedure can then be applied to the predictive regression Fama and French
(1988) use to test for mean reversion

r̃t+q(q) = αq + βqr̃t(q) + εt+q, (23)

albeit, with the regression specified in terms of excess, rather than actual, returns.
This test requires us to condition on our estimated state variables. The state variables

in the Bansal-Yaron model are xt and σ2
t . The sole state variable for the Campbell-

Cochrane model is st. We extract xt, σ
2
t and st as explained earlier. The sole state

variable for the Cecchetti-Lam-Mark model is yt, which can be extracted by estimating
the Markov-switching model for consumption in isolation and taking yt = 1 if Pr(yt =
1|Ft+1) ≥ 1

2
, where Ft is information available at t.

5 Data

Data for our main results are from the US from 1947Q1 - 2017Q1. The time period is
quarterly and, as is standard in the asset pricing literature, the agent’s decision interval
is assumed to be the time horizon considered.17 The market index is the value-weighted
CRSP index, obtained from WRDS. The set of assets also includes the six double-sorted
size/book-to-market portfolios from Ken French’s website. The risk-free rate will be the
US one-month Treasury bill, also from French’s website. Consumption data will be sea-
sonally adjusted per-capita non-durables and services personal consumption expenditures,
taken from the BEA. We deflate nominal data by the BEA’s consumption deflator. For
robustness, we consider results using annual data. Descriptive statistics of the quarterly
data are given in Table 1.

17Constantinides and Ghosh (2011) suggest this makes little difference for the Bansal-Yaron model.
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Table 1: Data summary statistics

Mean Median Std dev SC(1)

rm 0.018 0.029 0.081 0.077
rf 0.002 0.003 0.007 0.745
∆c 0.005 0.006 0.005 0.279
∆d 0.007 0.001 0.148 0.584
zm 4.871 4.851 0.426 0.937

rm denotes the market return, rf the quarterly risk-free rate (the rolled over 1 month US T-bill), ∆c log
consumption growth, ∆d log dividend growth and zm the log price-dividend ratio.

5.1 Serial dependence in the market return

To provide context to the results regarding serial dependence in the model residuals,
we present statistics regarding serial dependence in the market return below in Table 3.
Table 3a shows the variance ratio statistics. We see that, for all but q = 8, the variance
ratio point estimates are somewhat below one, suggesting mean reversion in the market
return, although this is not significant. However, the standard errors are large. To reject
at the 10% level given the standard error at q = 40, the variance ratio, which is equal
to one under the null and bounded from below by 0, would have to be 0.28 or less. This
underscores Poterba and Summers’s (1988) point that the variance ratio has low power
against a mean reverting alternative. Variance ratio estimates can be biased downwards
when q/T is not small (Campbell et al., 1997). However, given the known low power
of variance ratio tests against a mean reverting alternative and that the variance ratios
from q = 16 onwards are somewhat below one, where q/T is fairly small, there is at least
some evidence of mean reversion.

This evidence becomes stronger when we look at sub-samples of the data. Figure 2
shows moving window estimates of the variance ratios for different holding periods. The
variance ratios are calculated over samples of 30 years (120 quarters) and the window start
date moves on by 10 years each iteration. With one exception, all of the point estimates
are below 1, and in most cases substantially so. However, even though the variance ratio
estimates become very low, dropping below 0.2, none of them is significantly different
from one at conventional significance levels in one or two-tailed tests. Nonetheless, the
estimates do provide at least indicative evidence of mean reversion in the market return.

Table 3b shows the estimated weighted quantilograms for the market for a variety
of holding period-quantile combinations. Bootstrapped p-values are shown in smaller
font underneath the point estimate. We calculate these by applying a standard normal
wild bootstrap to market returns. The quantilograms show little evidence of directional
predictability, both in terms of the point estimates and the p-values. We calculate the
Hurst (1951) re-scaled range statistic in Table 3c. This provides no significant evidence
of serial dependence in quarterly market returns, either.

5.2 Model estimation

Some of the Bansal-Yaron model parameter estimates Table 4 are surprising. Mean
dividend growth is estimated to be negative and the long-run risk is non-stationary (ρ̂x >
1). However, the standard errors of these parameters are fairly large so the point estimates
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Table 3: Serial dependence in the market return
(a) Variance ratio

q 8 12 16 20 24 28 32 36 40

V R 0.963 0.857 0.795 0.833 0.809 0.797 0.795 0.807 0.801
(Std err) (0.206) (0.254) (0.291) (0.323) (0.351) (0.377) (0.400) (0.423) (0.434)

p-value 0.857 0.573 0.482 0.604 0.587 0.590 0.608 0.649 0.654

(b) Quantilogram

α ↓/q → 8 12 16 20 24 28 32 36 40

0.01 -0.035 0.175 0.371 0.106 -0.012 -0.021 -0.050 0.100 0.032
0.450 0.390 0.530 0.740 0.890 0.620 0.490 0.450 0.770

0.05 -0.055 0.175 0.435 0.053 -0.052 -0.031 -0.092 0.073 0.031
0.610 0.510 0.530 0.680 0.840 0.620 0.490 0.450 0.980

0.1 -0.076 0.150 0.448 0.041 -0.065 -0.047 -0.129 0.043 0.017
-0.720 0.500 0.520 0.640 0.790 0.600 0.450 0.420 0.860

0.25 -0.097 0.112 0.418 0.116 -0.022 -0.030 -0.167 0.034 -0.002
0.910 0.430 0.520 0.570 0.730 0.550 0.440 0.390 0.650

0.5 -0.118 0.062 0.347 0.138 -0.008 -0.023 -0.190 0.028 -0.024
0.900 0.430 0.540 0.560 0.640 0.550 0.370 0.370 0.600

0.75 -0.139 0.034 0.293 0.130 -0.020 -0.047 -0.203 0.038 -0.047
0.780 0.430 0.590 0.570 0.620 0.520 0.410 0.360 0.530

0.9 -0.161 0.020 0.275 0.129 -0.022 -0.065 -0.221 0.036 -0.072
0.570 0.450 0.600 0.580 0.570 0.510 0.420 0.360 0.450

0.95 -0.182 0.004 0.293 0.148 -0.009 -0.070 -0.225 0.042 -0.097
0.440 0.410 0.570 0.570 0.500 0.500 0.420 0.370 0.420

0.99 -0.204 -0.007 0.317 0.169 -0.013 -0.081 -0.247 0.044 -0.123
0.400 0.380 0.520 0.560 0.450 0.450 0.380 0.330 0.380

(c) Rescaled range

R/S 0.957
p-value 0.258

V R denotes the estimated variance ratio. The estimated weighted quantilogram is given in larger font
for the appropriate (α, q) combination. Its bootstrapped p-value is given underneath in smaller font. All
other p-values are asymptotic.
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Figure 2: Moving window variance ratio estimates
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The variance ratios are calculated over 30 year windows centred on Q2 of the given year.

Table 4: Bansal-Yaron model estimates

µc µd φ ϕ ρx ψx σ ν σw δ ψ γ

0.004 -0.023 4.341 6.221 1.160 -0.085 0.008 0.458 -9.5× 10−5 0.995 1.890 6.994
(14.11) (1.740) (0.006) (0.005) (0.275) (0.026) (2.447) (0.045) (0.011) (0.454) (0.058) (0.004)

1.000 0.990 0 0 2.5× 10−5 0.001 0.997 0 0.993 0 0 0.028

J-stat 415.8 p-value 0

Point estimates are displayed in the first row, standard errors (in parentheses) in the second and p-values
in the third. All p-values are asymptotic.

are all less than one standard error away from a “reasonable” value. However, the J-
statistic p-value is negligible and the model specification is heavily rejected.

Nonetheless, the preference parameters are reasonable: the subjective discount factor
is less than one and the risk-aversion coefficient significantly greater than zero. The
population mean market return, E(rm,t), is 0.35% on a quarterly basis.18 This is a little
on the low side, but still reasonable. However, the mean of our plug-in estimator of
Et rm,t+1 is −84% on a quarterly basis. This is clearly very unreasonable and arises
because the mean of σ2

t over t is 0.018, which is substantially larger than the theoretical
mean, σ2 = 7.1× 10−5.

As can be seen in Table 5, the Campbell-Cochrane model parameter estimates are
reasonable. The estimate of ḡ is close to both the sample mean of ∆c and ∆d, which are in
any case similar, and the estimates of Var(∆c) and Var(∆d) are also both close to their
sample counterparts. The preference parameter estimation shows that the subjective

18E(rm,t) = B0 +B2σ
2 since E(xt) = 0 and E(σ2

t ) = σ2.
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Table 5: Campbell-Cochrane model estimates

ḡ Var(∆c) Var(∆d) Cov(∆c,∆d) α φ δ γ

0.005 2.83× 10−5 0.021 −8.44× 10−6 0.316 0.936 0.41 22.29
(4.73× 10−4) (4.04× 10−6) (0.004) (6.37× 10−5) (0.103) (0.021) (0.274) (7.537)

0 0 0 0.133 0.002 0 0.135 0.003

J-stat 0.387 R2 0.877 J-stat 8.837
p-value 0.534 p-value 0.116

Each panel (set of columns) refers to a separate estimation. The estimates of δ and γ condition on
the estimates in the first two panels. Point estimates are displayed in the first row, standard errors (in
parentheses) in the second and p-values in the third. All p-values are asymptotic.

discount factor is also significantly less than 1 and the estimated utility curvature is
significantly greater than zero. The J-test does not reject the model’s Euler equations.
Nonetheless, this is only indicative of model performance, since the hypothesis tests
referred to in the preference parameter GMM condition on the earlier estimates of the
model time-series parameters.

However, Table 7 shows that the average expected return (-37%) is extreme and a long
way from the sample mean return (1.8%). Moreover, the estimated subjective discount
factor is rather low at 0.41 from quarter to quarter. However, its standard error is large.
The estimated utility curvature is also high at 22. This makes average risk aversion very
high once interacted with the state variable. Assuming a Lucas tree-style endowment
economy, average risk aversion in sample is 236.19 Still, Campbell and Cochrane (1999)
give good reasons to not be unduly concerned by high average risk-aversion. Despite these
issues in estimating the Campbell-Cochrane model, especially the large mean pricing
error, the standard formal statistical test of the model (the J-test) is unable to reject it.
Hence we see the value of examining second moments.

Table 6 shows that the Cecchetti-Lam-Mark model is reasonably estimated, but not
as well as the Campbell-Cochrane model. The preference parameters give rise to an
insignificant J-statistic. However, the risk aversion coefficent is high at 240, although this
is similar to the average risk aversion in the Campbell-Cochrane model. Moreover, the
subjective discount factor is greater than 1, but has a large standard error. Our estimated
Markov-switching model is somewhat different to that of Cecchetti et al. (1990). The
two states are high and low growth states: both states have positive mean consumption
growth. As a consequence, the unconditional probability of the bad (low-growth) state
is much larger than in the original Cecchetti et al. (1990) paper. However, the implied
unconditional mean of consumption growth is 0.5%. Expected returns are a shade low
at 0.8% per quarter.

6 Serial dependence in the model residuals

Our results for the Bansal-Yaron model are shown in Table 8. There is very clear ev-
idence that the model residuals are not a martingale difference sequence. The Bansal-
Yaron model does not adequately capture the serial dependence shown in the market.

19Local utility curvature at t is given by γ/St. In an endowment economy where the only source of
income and consumption is dividends, the elasticity of consumption with respect to wealth is 1, so local
utility curvature is equal to relative risk aversion. C.f. Campbell and Cochrane (1999, p.p. 244).
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Table 6: Cecchetti-Lam-Mark model estimates
(a) Consumption model

α0 α1 p q π σ2
0 σ2

1

0.007 -0.004 0.939 0.916 0.423 0.003 0.007

(b) Preference parameters

δ γ

1.234 240
(0.402) (80.5)

0.002 0.003

J-stat 7.439
p-value 0.190

Panel (a) presents point estimates only. In panel (b), point estimates are displayed in the first row,
standard errors (in parentheses) in the second and p-values in the third. All p-values are asymptotic.

Table 7: Properties of ξ̂t

Model Mean Median Std dev SC(1)

Bansal-Yaron 0.858 0.907 0.494 0.874
Campbell-Cochrane -0.351 -0.341 0.091 0.264
Cecchetti-Lam-Mark 0.010 0.018 0.082 0.072

SC(1) denotes first-order serial correlation

The variance ratios are all significantly different from one. They are all also greater than
one, suggesting that the residuals are positively serially correlated. The quantilogram
tests provide overwhelming evidence of non-linear predictability in the model residuals.
71 of the 81 weighted quantilograms are significant, 70 of those at the 1% level. Only
the 99th percentile shows no significant predictability. In almost all cases, except for the
1st percentile, the observed weighted quantilograms are greater than bootstrap means.
This pattern reverses for the 1st percentile. The modified rescaled range test also over-
whelmingly rejects the null that the residuals are MDS. The test gives rise to a negligible
p-value. This time, the rejection is in the left tail of the distribution, such that the residu-
als show anti-persistent long-range dependence. Given that the mean residual shows that
the Bansal-Yaron model is clearly cannot price the market, this finding is unsurprising.

More interestingly, the maximal predictability results suggest that the Bansal-Yaron
state variables do not provide a convincing explanation of observed predictability, either.
There are extremely significant exceedences of the R2 bound at six horizons: 8, 12, 20,
24, 32 and 36 quarters. However, we express some caution regarding these results for two
reasons. First, the R2 bound is, for the Bansal-Yaron model, almost always either less
than zero or greater than one for the holding periods considered. So either any degree
of predictability is consistent with the long-run risk and time-varying economic volatility
being risk factors in the stochastic discount factor or no predictability is consistent with
these risk factors. Second, the R2 and R̄2 reported are computed using plug-in estimators
of moments from GMM, not from regressions themselves. The methods ought to be
equivalent but it is not computationally possible to satisfy the moment conditions exactly
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Table 8: Bansal-Yaron serial dependence results
(a) Variance ratios

q 8 12 16 20 24 28 32 36 40

V R(q) 1.453 2.965 5.614 8.152 10.13 9.561 10.56 11.09 10.33
(Std Err) (0.217) (0.262) (0.311) (0.362) (0.408) (0.465) (0.495) (0.524) (0.562)

p-value 0.037 0 0 0 0 0 0 0 0

(b) Quantilogram

α ↓/q → 8 12 16 20 24 28 32 36 40

0.01 0.170 0.167 0.300 0.401 0.469 0.517 0.554 0.582 0.605
0 0 0 0 0 0 0 0.06 0.13

0.05 1.322 1.750 2.196 2.549 2.786 2.948 3.062 3.145 3.204
0 0 0 0 0 0 0 0 0

0.1 1.347 1.896 2.478 2.936 3.277 3.531 3.716 3.844 3.929
0 0 0 0 0 0 0 0 0

0.25 2.526 3.697 4.762 5.705 6.523 7.193 7.701 8.075 8.349
0 0 0 0 0 0 0 0 0

0.5 1.868 2.825 3.709 4.509 5.233 5.877 6.465 6.997 7.473
0 0 0 0 0 0 0 0 0

0.75 1.970 2.935 3.801 4.620 5.408 6.127 6.765 7.331 7.852
0 0 0 0 0 0 0 0 0

0.9 2.468 3.623 4.577 5.342 5.970 6.495 6.915 7.254 7.533
0 0 0 0 0 0 0 0 0

0.95 2.226 3.164 3.891 4.361 4.638 4.801 4.893 4.937 4.947
0.01 0 0 0 0 0 0 0 0

0.99 0.480 0.719 0.845 0.910 0.944 0.960 0.965 0.963 0.955
0.96 0.57 0.9 0.97 0.89 0.88 0.85 0.83 0.86

(c) Rescaled range

R/S 10.08
p-value 0

(d) Maximal predictability

q 8 12 16 20 24 28 32 36 40

R2 0.057 0.018 10−8 0.069 0.025 0.012 0.119 0.011 0.159
R̄2 -0.217 -11.357 5.508 -3.740 -0.282 0.303 -10.089 -6.736 6.579

Wald stat 216041 148018 - 267587 416715 - 593143 1307207 -
p-value 0 0 - 0 0 - 0 0 -

Bold values denote significance at the 10% level against the appropriate null hypothesis. For all except
panel (d), this is the martingale difference hypothesis. For panel (d), the null is that R2 from rt+q(q) =
αq + βqrt(q) + εt+q is less than or equal to its theoretical upper bound R̄2. V R denotes the estimated
variance ratio. The estimated weighted quantilogram is given in larger font for the appropriate (α, q)
combination. Its bootstrapped p-value is given underneath in smaller font. All other p-values are
asymptotic.
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here, despite the model being exactly identified. Therefore the methods are not equivalent
in a finite sample. Because of this, the reported R2 for the predictive regression for a
given horizon is not the same for each model, even though it should be. Comparison of
Table 8 with Tables 9 and 10 shows that the reported sample R2 for a given q is not
always particularly similar. This highlights that the numerical challenges of the GMM
estimation undertaken to compute the tests.

Our main results regarding the Campbell-Cochrane model are in Table 9. The variance
ratios appear to show that the Campbell-Cochrane model of returns cannot explain the
serial dependence exhibited by the market return. The variance ratios are predominantly
greater than one, and those which are significant20 are all greater than one. There is thus
evidence of positive serial correlation in the residuals.

Those variance ratios which are significant are generally substantially greater than
one, suggesting that the positive serial correlation in the Campbell-Cochrane residuals
is substantial. Moreover, the significance of the variance ratios comes at a variety of
horizons. It is not concentrated over short or long holding periods.

The quantilogram tests provide further evidence that the Campbell-Cochrane model
cannot explain the serial dependence structure of the market return. 35 of the 81 weighted
quantilograms are significant. The clear evidence of quantile predictability in the higher
quantiles puts the evidence from the variance ratios, that the Campbell-Cochrane resid-
uals are not MDS, beyond doubt. In all of the violations, the sample weighted quan-
tilogram is less than the mean of the bootstrap distribution, suggesting that the sample
quantilograms are too small. The mean of all of the bootstrap distributions is positive,
suggesting that, under the null, the Campbell-Cochrane residuals ought to display some
positive quantile predictability. The apparent lack of quantile predictability in the mar-
ket return suggests that the presence of predictability under the null is a finite-sample
phenomenon, induced by the estimation of the model parameters. The rescaled range
statistic buttresses the evidence of the variance ratios and the quantilogram, in that it
is highly significant. Again, the rejection comes in the right tail of the rescaled range’s
distribution.

Having seen that the Campbell-Cochrane model cannot adequately capture the de-
gree of own-history predictability in the market return, we consider whether the surplus
consumption state variable St is able to. We use our modified Huang and Zhou (2015)
Wald test. There are only two exceedences of the R2 bound in regressions of q-period
returns rt+q(q) on the lagged q-period return rt(q). These are both highly significant and
occur at the two shortest holding periods considered. The lack of exceedence at longer
holding periods is due to a mix of low R2s and loose bounds. Untabulated results confirm
that violations bound seem to be concentrated at shorter holding periods. The R2 bound
is exceeded for q = 3, 4, 5 and 6 quarters these exceedences are significant at the 1% level.
The evidence, then, is that the St state variable has difficulty explaining the degree of
predictability seen in the market, which is often too great.

Table 10 shows the results for the Cecchetti-Lam-Mark model. Few of the test statis-
tics are significant, consistent with Cecchetti et al.’s (1990) original finding. However,
the variance ratios from q = 24 onwards are rather different from one. At around 0.4,
the standard errors on the variance ratios are large from q = 24 quarters onwards. With
the variance ratios becoming as low as 0.62, there does appear to be some negative serial
correlation in the residuals. Although variance ratios can be biased downwards when q/T
is not small, the variance ratios are substantially below one even for q/T fairly small (e.g.

20Recall that we use the 10% level due to the arguments of Poterba and Summers (1988).
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Table 9: Campbell-Cochrane serial dependence results
(a) Variance ratios

q 8 12 16 20 24 28 32 36 40

V R 1.492 1.346 3.423 0.928 1.423 2.541 0.435 1.602 2.541
(Std err) (0.196) (0.253) (0.278) (0.331) (0.358) (0.382) (0.416) (0.442) (0.463)

p-value 0.012 0.171 0 0.830 0.237 5× 10−5 0.175 0.173 9× 10−4

(b) Quantilogram

α ↓/q → 8 12 16 20 24 28 32 36 40

0.01 -0.035 -0.037 -0.006 0.004 0.003 -0.003 -0.012 -0.025 -0.038
0.63 0.69 0.72 0.76 0.8 0.8 0.83 0.84 0.87

0.05 0.124 0.126 0.134 0.155 0.146 0.146 0.175 0.219 0.261
0.85 0.99 0.95 0.97 0.95 0.93 0.96 1 0.98

0.1 0.522 0.761 0.987 1.188 1.344 1.512 1.699 1.871 2.016
0.36 0.4 0.4 0.41 0.43 0.39 0.4 0.35 0.3

0.25 1.023 1.561 2.041 2.469 2.856 3.229 3.582 3.914 4.203
0.58 0.58 0.58 0.58 0.58 0.58 0.59 0.59 0.59

0.5 0.392 0.637 0.872 1.135 1.352 1.548 1.722 1.906 2.080
0.68 0.68 0.69 0.75 0.8 0.81 0.83 0.85 0.85

0.75 0.252 0.415 0.566 0.726 0.862 0.966 1.043 1.127 1.184
0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

0.9 0.151 0.164 0.190 0.256 0.330 0.376 0.413 0.473 0.512
0.04 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.02

0.95 0.146 0.146 0.148 0.169 0.227 0.266 0.306 0.356 0.391
0.08 0.05 0.04 0.04 0.03 0.04 0.05 0.05 0.05

0.99 -0.046 -0.073 -0.080 -0.049 -0.011 0.008 0.015 0.032 0.040
0.08 0.05 0.03 0.04 0.07 0.08 0.08 0.08 0.21

(c) Rescaled range

R/S 4.964
p-value 0

(d) Maximal predictability

q 8 12 16 20 24 28 32 36 40

R2 0.029 0.041 0.059 1.2× 10−4 0.001 0.005 1.4× 10−4 0.006 0.082
R̄2 0.003 0.018 0.421 0.039 0.006 0.556 0.352 1.505 0.689

Wald stat 462.1 7.954 - - - - - - -
p-value 0 0.005 - - - - - - -

Bold values denote significance at the 10% level against the appropriate null hypothesis. For all except
panel (d), this is the martingale difference hypothesis. For panel (d), the null is that R2 from rt+q(q) =
αq + βqrt(q) + εt+q is less than or equal to its theoretical upper bound R̄2. V R denotes the estimated
variance ratio. The estimated weighted quantilogram is given in larger font for the appropriate (α, q)
combination. Its bootstrapped p-value is given underneath in smaller font. All other p-values are
asymptotic.
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Table 10: Cecchetti-Lam-Mark model results
(a) Variance ratio

q 8 12 16 20 24 28 32 36 40

V R 0.910 0.830 0.757 0.733 0.690 0.646 0.621 0.645 0.643
(Std err) (0.213) (0.268) (0.306) (0.337) (0.366) (0.394) (0.422) (0.445) (0.468)

p-value 0.671 0.527 0.427 0.427 0.391 0.369 0.369 0.425 0.445

(b) Quantilogram

α ↓/q → 8 12 16 20 24 28 32 36 40

0.01 -0.035 0.124 0.324 0.119 -0.015 0.010 -0.036 0.099 0.032
0.28 0.44 0.03 0.32 0.71 0.33 0.15 0.34 0.66

0.05 -0.056 0.127 0.361 0.083 -0.057 -0.017 -0.067 0.072 0.031
0.46 0.6 0.04 0.61 0.88 0.29 0.17 0.42 0.66

0.1 -0.076 0.139 0.358 0.083 -0.067 -0.048 -0.123 0.037 0.017
0.54 0.6 0.1 0.59 0.86 0.24 0.11 0.51 0.69

0.25 -0.097 0.142 0.326 0.157 -0.026 -0.034 -0.178 0.021 -0.002
0.72 0.6 0.16 0.24 0.59 0.35 0.06 0.49 0.78

0.5 -0.118 0.120 0.255 0.175 -0.015 -0.024 -0.212 0.011 -0.024
0.74 0.69 0.35 0.2 0.53 0.55 0.06 0.45 0.88

0.75 -0.140 0.100 0.202 0.170 -0.031 -0.041 -0.233 0.017 -0.048
0.97 0.74 0.49 0.19 0.53 0.62 0.05 0.33 0.9

0.9 -0.161 0.082 0.195 0.170 -0.034 -0.048 -0.251 0.012 -0.072
0.87 0.72 0.48 0.18 0.51 0.75 0.07 0.3 0.97

0.95 -0.183 0.071 0.223 0.187 -0.020 -0.033 -0.265 0.007 -0.098
0.67 0.73 0.38 0.15 0.46 0.92 0.08 0.3 0.9

0.99 -0.205 0.059 0.253 0.204 -0.022 -0.031 -0.291 -0.002 -0.124
0.65 0.78 0.32 0.12 0.42 0.96 0.06 0.3 0.78

(c) Rescaled range

R/S 1.653
p-value 0.168

(d) Maximal predictability

q 8 12 16 20 24 28 32 36 40

R2 0.367 0.011 0.105 0.005 0.001 0.099 0.012 0.023 0.072
R̄2 1.298 0.347 0.411 3.858 5.6× 10−7 0.499 3.071 3.196 0.861

Wald stat - - - - 10.95 - - - -
p-value - - - - 9.4 ×10−4 - - - -

Bold values denote significance at the 10% level against the appropriate null hypothesis. For all except
panel (d), this is the martingale difference hypothesis. For panel (d), the null is that R2 from rt+q(q) =
αq + βqrt(q) + εt+q is less than or equal to its theoretical upper bound R̄2. V R denotes the estimated
variance ratio. The estimated weighted quantilogram is given in larger font for the appropriate (α, q)
combination. Its bootstrapped p-value is given underneath in smaller font. All other p-values are
asymptotic.
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at V R(24) = 0.68 and q/T = 0.09). Bias alone seems unlikely to be enough to explain
these findings. The evidence that the Cecchetti-Lam-Mark model residuals are MDS is
certainly unconvincing.

The weighted quantilogram results show little evidence of non-linear predictability in
the Cecchetti-Lam-Mark residuals. The point estimates are, by-and-large, close to zero.
Only at the 32 quarter holding period are any of the results significant. The rescaled
range statistic is also insignificant with a p-value of 0.17.

Considering the modified Huang and Zhou (2015) Wald test, we see that, for longer
horizons (i.e. two or more years), the consumption regime state variable, indicating a
high or a low growth state, does a reasonable job of explaining the degree of predictability
observed. There is only one exceedence of the R2 bound, at q = 24 quarters, although
this is very significant.

6.1 Sub-sample analysis

One of the main criticisms of evidence of mean reversion has been its apparent sensitivity
to the time period chosen (e.g. Kim et al., 1991). We see in Figure 2 that the strength
of the evidence of mean reversion does indeed appear to change over time. We therefore
investigate the sensitivity of our results to the time period used by repeating our analysis
over two sub-samples. The first runs from 1947Q1-1982Q1 and the second 1982Q2-
2017Q1. Dividing the sample into two ensures a sample size in excess of 120 (i.e. 3 ×
max{q}) in each sub-sample, which is necessary for the estimation of the long-horizon
serial correlations.

While the form of departure from an MDS appears to change over the sub-samples for
the Bansal-Yaron and Campbell-Cochrane models, there are clear departures from the
MDS null in both sub-samples for these models. The rescaled range results are robust
across the sub-samples for the Bansal-Yaron and Campbell-Cochrane models. However,
it produces a rejection in the first sub-sample for the Cecchetti-Lam-Mark model, which
it does not in the second. The variance ratio and quantilogram findings are robust
for the Cecchetti-Lam-Mark model. Only for the Bansal-Yaron model are the maximal
predictability results broadly similar across the sub-samples.

Table 11 shows the sub-sample results for the Bansal-Yaron model. We see that the
variance ratio results are very different across the sub-samples. The results for the second
sub-sample are similar to those for the sample as a whole: strong evidence of positive
autocorrelation in the residuals with vanishingly small p-values. However, in the first
sub-sample, we see insignificant evidence of negative serial correlation. The estimated
variance ratios are again rather different from one, seemingly highlighting the low power
of variance-ratio tests against mean reverting alternatives. In fact, from q = 32 onwards,
the standard errors are sufficiently large such that the martingale difference hypothesis
would never be rejected at the the 10% level if the estimated variance ratio were less than
one. Given how different the variance ratios are from one, the residuals do not seem to
be MDS in the first sub-sample, either. It appears the positive autocorrelation found in
the second sub-sample dominates in the whole sample.

The quantilogram evidence shows some agreement between the two sub-samples, al-
though the evidence of predictability is stronger in the first sub-period than in the second.
Only for the 90th percentile are there large differences between the two sub-samples. The
two sub-samples are also mainly in line with the whole sample, where the evidence of
predictability is much stronger. The significant p-values from the sub-samples are closer
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Table 11: Bansal-Yaron model sub-sample results
(a) Variance ratios

q 8 12 16 20 24 28 32 36 40

Sub-sample 1: 1947Q1-1982Q1

V R(q) 0.762 0.555 0.450 0.483 0.545 0.490 0.418 0.401 0.365
(Std err) (0.341) (0.413) (0.466) (0.512) (0.555) (0.596) (0.633) (0.668) (0.700)

p-value 0.484 0.282 0.238 0.313 0.412 0.392 0.358 0.370 0.364

Sub-sample 2: 1982Q2-2017Q1

V R(q) 4.485 6.931 8.870 10.21 11.66 12.89 13.73 13.72 11.84
(Std err) (0.354) (0.486) (0.565) (0.630) (0.668) (0.699) (0.728) (0.755) (0.767)

p-value 0 0 0 0 0 0 0 0 0

(b) Quantilogram

α ↓ /q → 8 12 16 20 24 28 32 36 40

0.01 0.052 0.100 0.154 0.210 0.265 0.320 0.373 0.424 0.473
0.050 0.075 0.099 0.120 0.139 0.156 0.188 0.405 0.784

0.05 0.567 0.813 0.953 1.069 1.138 1.181 1.208 1.222 1.227
0.115 0.120 0.082 0.026 -0.040 -0.060 -0.025 -0.001 -0.003

0.1 0.987 1.291 1.579 1.896 2.127 2.268 2.358 2.413 2.442
0.493 0.527 0.472 0.421 0.370 0.334 0.337 0.356 0.351

0.25 1.184 1.773 2.360 2.890 3.311 3.631 3.882 4.067 4.188
1.001 1.131 1.067 0.933 0.753 0.595 0.485 0.419 0.349

0.5 1.621 2.433 3.203 3.916 4.503 4.967 5.307 5.557 5.718
0.492 0.603 0.637 0.672 0.654 0.586 0.486 0.420 0.369

0.75 1.227 1.729 2.192 2.647 3.009 3.288 3.516 3.685 3.773
0.108 0.165 0.189 0.206 0.191 0.139 0.057 -0.009 -0.070

0.9 0.878 0.983 1.064 1.245 1.410 1.520 1.577 1.604 1.599
0.023 0.022 -0.014 -0.069 -0.105 -0.145 -0.175 -0.173 -0.204

0.95 0.412 0.453 0.461 0.539 0.638 0.723 0.779 0.791 0.773
-0.109 -0.116 -0.131 -0.146 -0.164 -0.206 -0.264 -0.320 -0.380

0.99 0.207 0.230 0.228 0.215 0.197 0.175 0.151 0.125 0.063
-0.047 -0.074 -0.101 -0.127 -0.148 -0.168 -0.186 -0.203 -0.220

(c) Rescaled range

1947Q1-1982Q1 1982Q2-2017Q1

R/S 5.951 5.951
p-value 0 0

Bold values denote significance at the 10% level against the martingale difference hypothesis. V R de-
notes the estimated variance ratio. The estimated weighted quantilogram is given in larger font for the
appropriate (α, q) combination. Its bootstrapped p-value is given underneath in smaller font. All other
p-values are asymptotic.
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Table 11: Bansal-Yaron model sub-sample results - continued
(d) Maximal predictability

q 8 12 16 20 24 28 32 36 40

Sub-sample 1: 1947Q1-1982Q1

R2 0.040 0.076 0.359 0.175 0.044 0.125 0.464 0.241 2.060
R̄2 -1.530 -5.110 -2.578 -8.822 -0.307 4.894 -0.731 -0.710 -111.3

Wald stat 28569 83507 161393 189610 288991 - 1439362 419193 10436
p-value 0 0 0 0 0 - 0 0 0

Sub-sample 2: 1982Q2-2017Q1

R2 0.039 0.064 0.327 0.443 0.036 0.107 1.378 1.070 2.161
R̄2 -6.869 -11.03 10.31 -35.43 3.074 -17.65 20.38 4.249 -5423

Wald stat 48313 95011 - 220739 - 140643 - - 2761
p-value 0 0 - 0 - 0 - - 0

Bold values denote significance at the 10% level against the null that R2 from rt+q(q) = αq+βqrt(q)+εt+q
is less than or equal to its theoretical upper bound R̄2. p-values are asymptotic.

to 0.1 than those from the whole sample. The evidence from the first sub-sample is
more similar to the sample as a whole. While the quantilogram evidence against the
Bansal-Yaron model is stronger in the first period, there is still relatively strong evidence
against the model in the second. There are 33 rejections of the null of no predictability
in the Bansal-Yaron residuals in 81 tests. Thus we see relatively robust evidence that
the Bansal-Yaron residuals are predictable in the quantilograms, although this evidence
was weaker in the more recent period. Nonetheless, it is in this period that the vari-
ance ratio evidence is stronger. So there remains clear evidence of predictability in both
sub-samples. While the form of the MDS violation is different in both sub-samples, we
are able to detect both by using a variety of test statistics, each with different power
of different alternatives. Furthermore, the re-scaled range statistics are almost identical
across the two sub-samples and both provide extremely strong evidence of positive serial
dependence in the model residuals.

The maximal predictability results are broadly consistent across the sub-samples,
albeit with there being slightly stronger evidence against the Bansal-Yaron state variables
in the first sub-sample. Of the six R2 bound violations across the whole sample, three
are accompanied by R2 bound exceedences in both sub-samples. There is one holding
period for which there are R2 bound violations in both sub-samples but not in the whole
sample. Thus the results are a little unstable. Again, the R̄2s are generally either greater
than one and less than zero. Given the volume and significance of violations in both
sub-samples, the overall picture of the evidence is that the Bansal-Yaron state variables
struggle to explain the degree of predictability observed.

For the Campbell-Cochrane model, sub-sample results are given in Table 12. For the
variance ratios, there are clear differences between the sub-samples. The results for the
first sub-sample are very different to the whole sample. They are not significant, although
some are rather different from one (the variance ratios range from 0.17 to 1.41). Several
of the standard errors are greater than 0.5 and so very large. In the second period, the
variance ratios are mostly significant and greater than one, similar to the whole sample.

The quantilogram confirms that the Campbell-Cochrane residuals in the first period
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Table 12: Campbell-Cochrane model sub-sample results
(a) Variance ratios

q 8 12 16 20 24 28 32 36 40

Sub-sample 1: 1947Q1-1982Q1

V R(q) 1.303 0.934 0.571 1.111 1.415 1.135 0.167 0.356 0.449
(Std err) (0.287) (0.371) (0.423) (0.478) (0.520) (0.558) (0.619) (0.661) (0.694)

p-value 0.290 0.858 0.310 0.816 0.425 0.810 0.178 0.329 0.428

Sub-sample 2: 1982Q2-2017Q1

V R(q) 4.176 1.663 3.683 1.252 1.642 1.966 2.226 4.419 0.347
(Std err) (0.301) (0.364) (0.398) (0.477) (0.529) (0.565) (0.623) (0.645) (0.754)

p-value 0 0.068 2× 10−11 0.597 0.225 0.088 0.049 1× 10−7 0.387

(b) Quantilogram

α ↓ /q → 8 12 16 20 24 28 32 36 40

0.01 0.050 0.354 0.469 0.975 1.401 1.228 0.766 0.155 -0.047
0.050 0.075 0.099 0.120 0.139 0.156 0.172 0.228 0.466

0.05 0.075 0.364 0.415 1.106 1.732 1.534 1.069 0.130 0.028
0.207 0.272 0.310 0.327 0.322 0.373 0.466 0.548 0.672

0.1 0.099 0.312 0.319 1.105 1.910 1.668 1.278 0.137 0.076
0.352 0.413 0.532 0.622 0.656 0.771 0.943 1.066 1.171

0.25 0.120 0.240 0.232 1.059 1.952 1.685 1.423 0.113 0.094
0.742 1.000 1.202 1.361 1.502 1.712 1.913 2.035 2.063

0.5 0.139 0.166 0.146 0.949 1.864 1.620 1.450 0.070 0.096
1.888 2.683 3.244 3.628 3.905 4.110 4.224 4.220 4.094

0.75 0.156 0.128 0.087 0.832 1.735 1.509 1.431 0.019 0.088
2.044 2.958 3.698 4.292 4.753 5.100 5.326 5.438 5.459

0.9 0.188 0.183 0.086 0.723 1.557 1.332 1.377 -0.002 0.075
1.121 1.674 2.143 2.484 2.718 2.881 2.983 3.041 3.068

0.95 0.405 0.249 0.082 0.629 1.358 1.152 1.300 -0.041 0.058
0.887 1.134 1.232 1.267 1.275 1.267 1.248 1.221 1.189

0.99 0.784 0.259 0.088 0.571 1.191 0.995 1.205 -0.082 0.038
0.308 0.298 0.280 0.267 0.257 0.248 0.239 0.231 0.223

(c) Rescaled range

1947Q1-1982Q1 1982Q2-2017Q1

R/S 3.121 8.677
p-value 5× 10−7 0

Bold values denote significance at the 10% level against the martingale difference hypothesis. V R de-
notes the estimated variance ratio. The estimated weighted quantilogram is given in larger font for the
appropriate (α, q) combination. Its bootstrapped p-value is given underneath in smaller font. All other
p-values are asymptotic.
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Table 12: Campbell-Cochrane model sub-sample results
(d) Maximal predictability

q 8 12 16 20 24 28 32 36 40

Sub-sample 1: 1947Q1-1982Q1

R2 1.516 0.084 0.256 0.357 0.203 0.110 2.151 0.376 0.351
R̄2 4.145 0.208 0.007 0.121 0.025 0.000 2.215 0.008 0.485

Wald stat - - 426.2 608.4 75.39 403.2 - 570.9 -
p-value - - 0 0 0 0 - 0 -

Sub-sample 2: 1982Q2-2017Q1

R2 0.151 0.064 0.301 0.383 0.112 0.409 32.09 0.724 -0.004
R̄2 0.108 32.29 0.272 0.006 0.024 0.375 8.988 0.005 -0.172

Wald stat 6.887 - 1.076 713.5 36.00 6.546 2004 4049 24.86
p-value 0.009 - 0.300 0 0 0.011 0 0 6.15× 10−7

Bold values denote significance at the 10% level against the null that R2 from rt+q(q) = αq+βqrt(q)+εt+q
is less than or equal to its theoretical upper bound R̄2. p-values are asymptotic.

are not MDS. 43 of the weighted quantilograms are significant, in many cases at the
1% level. Inversely to the variance-ratio evidence, many of the first sub-period quantilo-
grams are largely insignificant. Thus, the quantilogram evidence, like the variance-ratio
evidence, is unstable. But, where one does not show significant predictability in the
residuals, the other does. The conclusion is the same. The Campbell-Cochrane model
cannot explain the serial dependence of the market return. This again shows the value
of using multiple test statistics to assess the null that the residuals are MDS. How the
serial correlation structure of the Campbell-Cochrane expected returns departs from that
of the market appears to vary over time. The rescaled range shows similar results in both
sub-samples and provides highly significant evidence of serial dependence in the residuals
both times.

The results of the maximal predictability test also differ across the two sub-samples.
First, we see that there are some periods where there is a significant violation of the
R2 bound in one sub-sample and not the other. Moreover, the two significant violations
across the whole sample occur for q = 8 and q = 12. Yet, the only significant violation
for these holding periods in the sub-samples is in the first period for q = 8. There are
also several holding periods (q = 20, 24, 28, 36) where R̄2 is significantly exceeded in both
sub-samples but not across the whole period. It is not entirely clear why this is, and,
as mentioned above, the difficulties of implementing the GMM estimation required for
this test mean that we must take these results with some caution. Nonetheless, the sub-
samples provide stronger evidence that the surplus consumption ratio state variable is
unable to explain the level of predictability observed in market returns.

Table 13 presents the sub-sample analysis for the Cecchetti-Lam-Mark model. The
variance ratio results are very much similar to those across the whole sample. There is no
significant evidence against the null that ξt is a martingale difference sequence. However,
the variance ratio estimates in each sub-sample are lower than those in the whole sample.
There are no rejections because the standard errors become larger too. In fact, some of
the standard errors are very large. The variance ratio estimates are as low as 0.35, which
is substantially different from 1. However, the standard errors are such that a two-tailed
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Table 13: Cecchetti-Lam-Mark model sub-sample results
(a) Variance ratios

q 8 12 16 20 24 28 32 36 40

Sub-sample 1: 1947Q1-1982Q1

V R 0.842 0.763 0.645 0.624 0.673 0.616 0.508 0.483 0.405
(Std err) (0.289) (0.380) (0.474) (0.528) (0.570) (0.617) (0.657) (0.686) (0.704)

p-value 0.585 0.532 0.454 0.477 0.566 0.533 0.454 0.452 0.397

Sub-sample 2: 1982Q2-2017Q1

V R 0.826 0.828 0.743 0.714 0.617 0.542 0.535 0.461 0.349
(Std err) (0.304) (0.398) (0.454) (0.496) (0.586) (0.619) (0.657) (0.729) (0.766)

p-value 0.568 0.666 0.572 0.564 0.513 0.459 0.479 0.459 0.395

(b) Quantilogram

α ↓ /q → 8 12 16 20 24 28 32 36 40

0.01 0.050 0.277 0.354 0.148 0.026 0.007 -0.129 0.083 -0.047
0.050 -0.014 0.404 0.133 -0.147 0.021 0.083 -0.017 -0.047

0.05 0.075 0.299 0.420 0.028 -0.008 -0.065 -0.217 0.010 -0.074
0.075 -0.038 0.487 0.176 -0.193 0.047 0.074 -0.037 -0.074

0.1 0.099 0.267 0.426 -0.012 -0.017 -0.099 -0.314 -0.069 -0.101
0.099 -0.042 0.525 0.195 -0.206 0.038 0.048 -0.066 -0.101

0.25 0.120 0.281 0.426 0.067 0.045 -0.060 -0.345 -0.117 -0.089
0.120 -0.091 0.485 0.224 -0.187 0.032 0.037 -0.078 -0.129

0.5 0.139 0.283 0.392 0.122 0.107 -0.011 -0.365 -0.124 -0.056
0.142 -0.163 0.385 0.172 -0.208 -0.016 0.037 -0.103 -0.155

0.75 0.156 0.284 0.351 0.104 0.107 -0.015 -0.397 -0.112 -0.042
0.171 -0.223 0.310 0.139 -0.230 -0.067 0.053 -0.102 -0.180

0.9 0.188 0.311 0.347 0.076 0.091 -0.017 -0.418 -0.134 -0.043
0.206 -0.267 0.275 0.130 -0.234 -0.115 0.043 -0.126 -0.205

0.95 0.405 0.366 0.392 0.094 0.097 0.001 -0.412 -0.130 -0.060
0.243 -0.311 0.277 0.126 -0.228 -0.145 0.019 -0.169 -0.229

0.99 0.784 0.378 0.469 0.138 0.115 0.018 -0.393 -0.106 -0.089
0.280 -0.340 0.285 0.112 -0.252 -0.175 -0.026 -0.215 -0.253

(c) Rescaled range

1947Q1-1982Q1 1982Q2-2017Q1

R/S 2.512 1.452
p-value 3×10−4 0.439

Bold values denote significance at the 10% level against the martingale difference hypothesis. V R de-
notes the estimated variance ratio. The estimated weighted quantilogram is given in larger font for the
appropriate (α, q) combination. Its bootstrapped p-value is given underneath in smaller font. All other
p-values are asymptotic.
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Table 13: Cecchetti-Lam-Mark model sub-sample results - continued
(d) Maximal predictability

q 8 12 16 20 24 28 32 36 40

Sub-sample 1: 1947Q1-1982Q1

R2 0.072 0.072 0.137 0.228 0.106 0.153 0.276 0.630 0.416
R̄2 0.467 0.107 1.658 0.666 0.009 0.044 0.136 14.81 2.064

Wald stat - - - - 494.3 806.1 553.0 - -
p-value - - - - 0 0 0 - -

Sub-sample 2: 1982Q2-2017Q1

R2 0.023 0.156 0.262 0.161 0.071 0.076 0.546 0.792 0.519
R̄2 0.084 0.126 0.002 0.010 0.409 0.009 17.462 2.665 0.204

Wald stat - 0.771 442.1 167.2 - 924.5 - - 13078
p-value - 0.380 0 0 - 0 - - 0

Bold values denote significance at the 10% level against the null that R2 from rt+q(q) = αq+βqrt(q)+εt+q
is less than or equal to its theoretical upper bound R̄2. p-values are asymptotic.

test at the 10% level could never reject that the variance ratio is different from one against
a negatively serially correlated alternative from the 28 quarter holding period onwards.
This pattern is consistent across the two sub-samples. The finding from the whole sample
- that the variance ratios indicated negative serial correlation in the Cecchetti-Lam-Mark
residuals but are not significant - is replicated.

As in the whole sample, there is a small number of rejections from the quantilogram
test in both sub-samples. In general, the p-values are relatively large. There is thus
little evidence against the Cecchetti-Lam-Mark model in the sub-sample quantilograms.
Nonetheless, the first sub-sample gives rise to a significant rescaled range statistic, al-
though the second does not. Yet again, this shows the value of applying different test
statistics. It seems the first sample residuals exhibit a type of long-range dependence not
detected in the variance ratios or quantilograms.

The maximal predictability results do appear to be sensitive to the sample used. While
there are three significant violations in the first period and four in the second, these come
at different horizons. Only for q = 28 is the R2 bound violated in both sub-samples.
Curiously, it is not violated in the whole sample for this holding period. In the whole
sample, the only R2 bound violation is for q = 24. This exceedence is highly significant.
However, the R2 bound is violated only in the first sub-sample at this horizon. Both
sub-samples show some very large R2s, especially for horizons of 32 quarters or more.
This is another pattern not reflected across the whole sample.

The differences in the holding periods for which the R2 bound is violated between the
two sub-samples can be interpreted in two ways. The first is to argue that the instability
of the exceedence occurrences over time suggests that the results are due, at least in
part, to sampling error. In this interpretation, the evidence in Table 13 strengthens that
in Table 10 that the high/low growth state variable provides a reasonable explanation
of the degree of predictability observed, in that the degree of predictability observed is
not “too much”. However, it appears that the exceedences of the R2 bounds in the sub-
samples are too frequent and too significant to be explained by sampling error alone.
But, Table 13 suggests that the high/low growth indicator cannot explain the serial
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dependence structure of returns alone. That the indicator can explain the degree of
predictability observed in some periods, but not others, and at some horizons and not
others is consistent with evidence which suggests that the factors that correlate with the
risk premium change over time (e.g. Li and Tsiakis, 2016).

6.2 Robustness

In this section we evaluate the robustness of our main results to (i) concerns about look-
ahead bias, (ii) using the identity weight matrix in estimation of the asset pricing models
and (iii) using an annual time horizon. Overall, the conclusions drawn above are robust
to look-ahead bias considerations and the choice of weight matrix and decision interval.
In terms of look-ahead bias, the Campbell-Cochrane evidence is unchanged. The form of
the departure of the Bansal-Yaron residuals changes once look-ahead bias is accounted
for, but the conclusion that they are not MDS remains. The evidence regarding the
Cecchetti-Lam-Mark model is similar, but stronger against it. For the Bansal-Yaron and
Campbell-Cochrane models, the form of the violation of the martingale difference null
seems to change depending on the weight matrix or data frequency, but the evidence
of violation remains. For the Cecchetti-Lam-Mark model, the evidence of violation and
form of violation remains similar, although the rescaled range statistic becomes significant
when we use annual data.

6.2.1 Look-ahead bias

A concern about the above results may be that the parameters of the ex-ante (t − j)
expectations are estimated over future (t− j + 1, t− j + 2, . . .) data, which could induce
a bias in the test statistics. Note that these concerns apply on to the variance ratio
and rescaled range tests. The quantilogram bootstrap procedure explicitly accounts for
the estimation method and the maximum predictability test conditions on the parameter
estimates. We evaluate the robustness of our variance ratio and rescaled range results to
using past data only to estimate the parameters of the models. We compute residuals
for the second sub-sample only which are formed using parameters estimated over an
expanding sample beginning at the first observation and ending at the (t − j)th obser-
vation. We compare these results to those obtained for the second sub-sample above to
evaluate the effect of restricting the data sample to past data only instead of past and
future data. We have already seen that the conclusions of the test statistics are robust
to which sub-sample is used and whether we use the full sample or a sub-sample.

The Bansal-Yaron model rescaled range statistic is very similar to that in the second
period. The variance ratios are rather different, however. While all the variance ratios for
q = 12 onwards are significant, they are less than, not greater than, one. Nonetheless, the
conclusion that the residuals are not MDS remains intact. For the Campbell-Cochrane
model, the variance ratio and rescaled range results are very similar to the second sub-
sample. The Cecchetti-Lam-Mark variance ratio results are also very similar, although
the rescaled range test is just about significant at 1.75 (p-value 0.10), so that the evidence
against the Cecchetti-Lam-Mark model becomes stronger.

6.2.2 Identity weight matrix

The Bansal-Yaron quantilogram, rescaled range and maximal predictability results are
robust to using the identity weight matrix, albeit with slightly fewer significant violations
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in the latter. The significance of the quantilograms is also almost identical to the optimal
weight matrix case, too. However, the pattern of most of the significant quantilograms
being greater than the mean of the bootstrapped distribution is reversed. The conclusion
that the Bansal-Yaron residuals are not MDS remains. The problem with many of the R2

bounds being either greater than one or less than zero remains. The variance ratio results
are rather different to the optimal weight matrix case. They are all less than one and not
significant. Nonetheless, the quantilograms and rescaled range statistics provide robustly
significant evidence that the Bansal-Yaron model cannot explain the serial dependence
structure of the market return. The model remains obviously mis-specified in terms of
the mean residual.

The Campbell-Cochrane rescaled range result is robust to using the identity matrix
in estimation. The quantilogram results provide a stronger rejection of the null that the
model residuals are MDS, as there are many more rejections (63). These all occur for
q ≥ 16. The maximal predictability test shows a significant R̄2 exceedence for q = 24
only, despite there being exceedences at q = 16 and q = 20. However, as when using the
optimal weight matrix, there are significant exceedences of R̄2 for q = 3, 4, 5, 6 quarters,
reinforcing the point that the problems the Campbell-Cochrane model has in explaining
the amount of predictability observed are concentrated at shorter horizons. The variance
ratios are similar to the optimal weight matrix case, with a mix of values both less than
and greater than one. There are only two rejections (at q = 16 and q = 36). Thus
the rejection of the Campbell-Cochrane model’s ability to explain the serial dependence
properties of the market return is robust, although the violation takes a different form
using the identity matrix. It is clear that the Campbell-Cochrane model cannot explain
the serial dependence structure of the market return using quarterly data.

The Cechetti-Lam-Mark variance ratio evidence is almost identical when the identity
weight matrix is used. There is again evidence of negative autocorrelation in the residuals.
The quantilogram evidence is also very similar to the optimal weight matrix case. There
are 10 significant violations in total. The rescaled range statistic has a value of 1.5, similar
to when the optimal weight matrix is used. The maximal predictability evidence is the
same whether the identity or optimal weight matrix is used, since the state variable is
not estimated by GMM.

6.2.3 Annual decision interval

The Bansal-Yaron results are very much robust to using an annual decision interval. The
only difference is that the rescaled range statistic rejection now comes in the upper tail
of the distribution (Q̂K = 1.93, p-value: 0.03), so that the residuals show persistent
long-range dependence. All of the variance ratios are significantly different from one and
greater than one. Most significance is at the 1% level. The quantilogram results are
very similar to those at the quarterly frequency. In fact, they provide an even stronger
rejection of the Bansal-Yaron model’s ability to explain the serial dependence properties
of the market return, since there are also several rejections of the null at at the 99th
percentile. Again, the significant weighted quantilograms are mainly greater than the
mean of the bootstrap distribution. The modified rescaled range statistic has a value of
18, and provides a further overwhelming rejection of the null. There is a similar number
of significant violations of the R2 bound in the maximal predictability test, but they
occur at different horizons (in terms of years) to in the quarterly data. The problem with
many R2 bounds being either greater than one or less than zero remains.
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The Cecchetti-Lam-Mark model results are also similar when moving to an annual
decision interval. The change is that the rescaled range is now significant (Q̂K = 1.96,
p-value: 0.03), so that the martingale difference null is outright rejected. The variance
ratios are all less than one, have a “U” shape in terms of the point estimates and are
not significantly different from one. Again, the standard errors are fairly large, and the
evidence suggests some negative serial correlation in the residuals. The quantilograms
also tell a similar story as at the quarterly frequency, except there are now more rejections
(11) and, again, it appears that there is some non-linear predictability in the residuals.
There is still only one significant R2 bound violation in the maximal predictability test.
This is at a different holding period to in the quarterly results.

The annual variance ratios and quantilogram results are somewhat different for the
Campbell-Cochrane model. The variance ratios are less than one. None are significant at
the 10% level. However some are quite different from one, the smallest being 0.54, and
the standard errors are relatively large. There is thus some evidence of negative serial
correlation and the low power of the variance ratio statistic against such alternatives. The
quantilogram results only show significant violations of the null that the model residuals
are MDS at the 1st, 5th, 95th and 99th percentiles. I.e. rejections are concentrated in
extreme quantiles. This again highlights the value of using multiple test statistics. While
these results still provide clear evidence against the Campbell-Cochrane model, it is not
as strong as in the quarterly data. The rescaled range statistic is insignificant.

7 Economic importance of predictability

Having shown above that (a) there appears to be some evidence of mean reversion in the
market and (b) that the models of asset prices we consider cannot explain this, we turn to
the economic significance of the predictability observed and the failure of the models to
explain it. There is strong evidence that a timing strategy exploiting information in the
serial correlations of market returns can produce significant economic gains to investors
under the Bansal-Yaron model. There is also some evidence that, under the Campbell-
Cochrane model, the economic losses from the timing strategy are not as large as they
ought to be. While the economic gains found under the Cecchetti-Lam-Mark model are
consistent with the model, the certainty equivalent returns produced by the model are
unusually large in magnitude, due to the extreme estimated risk aversion.

If there is long-run serial correlation in the market, then, for a suitably large q, lagged
returns rm,t−1, rm,t−2, . . . , rm,t−q are able to forecast rm,t. One way to construct such a
forecast is from the regression

rm,t = a+ b1rm,t−1 + b2rm,t−2 + . . .+ bqrm,t−q + et. (24)

We denote by r̂m,t the forecast of rm,t given {rm,s}t−1s=1, i.e.

r̂m,t = â+

q∑
j=1

b̂jrm,t−j,

where â, b̂1, . . . , b̂q are the OLS estimates from (24).
A long-only market timing strategy to exploit this predictability is as follows:

� buy into the market at t if r̂m,t+1 is greater than the median of {rm,s}ts=1,
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� sell out of the market and buy bonds with the proceeds if r̂m,t+1 is less than the
first decile of {rm,s}ts=1,

� re-invest any dividends but otherwise maintain the previous period’s position if
neither of the above conditions are met.

The long-short version of this strategy would short the market instead of buying bonds
when r̂m,t+1 is less than the first decile of {rm,s}ts=1. In most periods, the market outper-
forms bonds and going short is somewhat riskier than taking a long position, as the losses
to the former are potentially unlimited. Hence, our strategy has a strong preference for
being in the market. Evaluating the strategy over the same range of q as the variance
ratios, our strategy is typically out of the market about 4-10% of the time, depending on
q.

In practice, buying the market index is easily achieved by buying an ETF which
tracks the market portfolio. These ETFs can be shorted, or inverse ETFs can be bought
when the investor wishes to short the market. The bonds considered are US one-month
Treasury bills. As the data frequency is quarterly, we assume that the investor rolls over
three months of one-month T-bills.

We consider strategies of the form above and compare certainty equivalent return of
an investor who follows the strategy outline to that of one who simply holds the market
portfolio. Note that this is not necessarily an optimal strategy and does not allow for
optimal diversification between the market timing strategy and the market index. The
certainty-equivalent gain from using the timing strategy is thus understated.

We calculate certainty equivalents on a two-period basis, i.e. for an agent who lives for
two quarters t and t+1. We also assume that the strategy return at t+1 given information
available at, Rt+1|Ft is lognormally distributed. This permits analytical solutions to the
certainty equivalents. In addition, the agent consumes only at t + 1 and invests all
of her wealth in either the timing strategy or the buy-and-hold strategy. The certainty
equivalent wealth will be WCE

t+1 such that U(Ct = 0, Ct+1 = Wt+1) = Et(U(Ct = 0,Wt+1)),
where Wt+1 = (1 +Rt)Wt. The certainty equivalent is calculated as if the investor’s only
source of consumption t + 1 is the wealth invested at t. W0 is normalised to be 1. The
certainty equivalent return is (1 + RCE

t+1) = WCE
t+1/Wt. We consider the sample mean log

certainty equivalent return, E(rCEt+1) ≡ E(∆wCEt+1). Of course, this is approximately equal
to E(RCE

t ).
This approach is a little rough, and so is only illustrative of the economic importance

of the predictability in the market return. However, this period-by-period approach and
the use of distributional assumptions regarding returns is fairly standard in the literature
and has been used, inter alia, by DeMiguel et al. (2007). Where we allow for transactions
costs, we also follow the standard procedure (used by, e.g. Brandt et al., 2009; DeMiguel
et al., 2007) in assuming a proportional transaction cost of 50bp each way. Note that we
do not impose any transaction costs on the buy-and-hold portfolio: the 50bp each-way
cost is the additional cost of the active strategy.

The certainty equivalents are given as follows. For the Campbell-Cochrane model, we
have

∆wCEt+1 = Et rt+1 +
1

2
(1−φ)2

[
Vart rt+1 + λ2(st)σ

2
ν + 2 Covt(rt+1, st+1)

]
+

1

2
(1−γ)λ2(st)σ

2
ν .

It is then straightforward to compute E(∆wCEt+1). Assuming Rt+1|Ft to be lognormally
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distributed,(
wt+1|Ft
st+1|Ft

)
∼ N

((
wt + rt+1

(1− φ)s̄+ φst

)
,

(
Vart rt+1 Covt(rt+1, st+1)

Covt(rt+1, st+1) λ2(st)σ
2
ν

))
.

Given U(Ct = 0, Ct+1 = Wt+1) ∝ (St+1Wt+1)
1−γ and the properties of the multivariate

lognormal distribution, we arrive at the above result.
For the Cechetti-Lam-Mark and Bansal-Yaron models, we have

∆wCEt+1 = Et rt+1 + 1
2
(1− γ) Vart rt+1. (25)

For the Cecchetti-Lam-Mark model, this follows directly from U(Ct = 0, Ct+1 = Wt+1) ∝
W 1−γ
t+1 and the properties of the lognormal distribution. For the Bansal-Yaron model, the

utility index when Ct = 0 and Ct+1 = WCE
t+1 with certainty is given by

Vt = δ

(
(1− δ)

θ
1−γWCE

t+1

)
.

Since there is no period t+ 2, Vt+i = 0 for i > 2. For a stochastic Wt+1,

Vt = δ

(
(1− δ)

θ
1−γ (Et(W

1−γ
t+1 ))

1
1−γ

)
.

Therefore, WCE
t+1 = (Et(W

1−γ
t+1 ))

1
1−γ and combining this with the lognormality of Wt+1

yields (25).
The above largely ignores the consumption and dividend endowment processes as-

sumed by the models considered, except insofar as they affect the estimation of the
relevant preference parameters. The reason for this is that these models are closed as
endowment representative-agent economies. It is therefore not, strictly speaking, possi-
ble for the investor to earn anything other than the aggregate market return. This is
not a situation observed in practice. Since this test relates to the practical economic
significance of the findings in this paper, we focus on the preferences implied by these
models.

Our null hypothesis is that there are no certainty equivalent gains from the timing
strategy. If the model in question accounts for the entire serial correlation structure of
the market, a strategy which uses information from the serial correlations of the market
return should not be able to outperform the market on a risk-adjusted basis. To test this
null, we use the following bootstrap procedure.

1. Resample the residuals ξt = rm,t − Et−1 rm,t, where Et−1 rm,t is the model-implied ex-
pected return, by applying wild bootstrap, using the Mammen two-point distribution,
to them. Call these replicate residuals ξ∗t .

2. Construct r∗m,t = Et−1 rm,t + ξ∗t . Conditioning on the dividend and consumption data,
use these r∗m,t to construct the commensurate log price-dividend ratio series, z∗m,t.

3. Re-estimate the model based on r∗m,t, z
∗
m,t and the dividend and consumption data.

4. Generate ex-post market returns from the model.21

21For the Bansal-Yaron model, the Campbell-Shiller log-linearisation on which Constantinides and
Ghosh (2011) base their inversion of the model gives the equilibrium log market return as a function of
observables and κ0,m and κ1,m. The Campbell-Cochrane ex-post returns can be calculated from (12).
Cecchetti et al. (1990) provide a formula for the equilibrium market return in terms of the high/low
growth state variable and consumption.
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Table 14: Timing strategy performance

q 4 8 12 16 20 24 28 32 36 40

Market

Mean (%) 1.83 1.76 1.55 1.54 1.50 1.46 1.49 1.55 1.77 1.92
Std dev (%) 8.21 8.34 8.42 8.49 8.62 8.63 8.74 8.64 8.72 8.19
Sharpe ratio 0.191 0.175 0.148 0.143 0.136 0.133 0.135 0.145 0.165 0.189

One-month T-bill

Mean (%) 0.26 0.30 0.31 0.32 0.32 0.31 0.31 0.30 0.33 0.38
Std dev (%) 0.62 0.58 0.59 0.59 0.61 0.62 0.64 0.66 0.66 0.66

Long-only, no transactions costs

Mean (%) 1.69 1.63 1.36 1.32 1.38 1.47 1.41 1.60 1.80 2.13
Std dev (%) 8.14 8.28 8.26 8.28 8.47 8.33 8.51 8.53 8.58 7.66
Sharpe ratio 0.175 0.161 0.127 0.121 0.125 0.139 0.129 0.151 0.171 0.229

Long-only, with transactions costs

Mean (%) 1.69 1.59 1.30 1.23 1.24 1.30 1.23 1.44 1.61 1.93
Std dev (%) 8.14 8.29 8.27 8.29 8.48 8.34 8.53 8.63 8.59 7.66
Sharpe ratio 0.175 0.156 0.120 0.109 0.108 0.118 0.108 0.133 0.149 0.203

Long-short, no transactions costs

Mean (%) 1.76 1.49 1.14 1.04 1.25 1.47 1.32 1.62 1.76 2.22
Std dev (%) 8.23 8.39 8.49 8.57 8.66 8.63 8.77 8.62 8.73 8.12
Sharpe ratio 0.182 0.142 0.098 0.084 0.107 0.134 0.116 0.153 0.164 0.227

Long-short, with transactions costs

Mean (%) 1.76 1.47 1.11 1.00 1.22 1.43 1.29 1.60 1.72 2.22
Std dev (%) 8.23 8.40 8.50 8.59 8.67 8.64 8.78 8.63 8.74 8.13
Sharpe ratio 0.182 0.140 0.095 0.079 0.104 0.129 0.112 0.150 0.159 0.220

All returns are continuously compounded real returns at the quarterly frequency. In particular, the
one-month T-bill return is from three rolled over one-month T-bills.

5. Re-run the timing and buy-and-hold strategies on the model-implied ex-post returns.

6. Use the returns and preference parameters from step 3 to calculate the certainty-
equivalent return gain from the timing strategy.

This bootstrap automatically accounts for any finite-sample bias induced by the estima-
tion of the asset pricing models.

Table 14 shows that the timing strategy always out-performs the market for q = 40
in terms of mean returns and Sharpe ratios. There is also some other outperformance of
the market, even when transactions costs are accounted for, for q = 24 and q = 32. The
long-only version of the strategy also has a lower standard deviation than the market. In
the context of the models above, these metrics are not greatly meaningful. The object of
interest to an investor is the certainty-equivalent return, which automatically adjusts the
returns for risk according to the investor’s utility function. The standard deviation and
Sharpe ratio account for only specific types of risk.
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Table 15: Certainty equivalent of the timing strategy

q 4 8 12 16 20 24 28 32 36 40

Long-only, no transactions costs

BY-tim 1.45 1.34 1.06 1.03 1.08 1.17 1.10 1.29 1.48 1.87
BY-b/h 1.56 1.45 1.28 1.24 1.16 1.16 1.12 1.29 1.42 1.58
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CC-tim 1.73 1.63 1.35 1.31 1.38 1.47 1.40 1.59 1.79 2.12
CC-b/h 1.84 1.74 1.58 1.54 1.48 1.47 1.45 1.60 1.74 1.86
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CLM-tim -81.2 -83.0 -82.8 -83.1 -87.0 -84.0 -87.7 -88.0 -88.8 -70.1
CLM-b/h -81.3 -84.0 -85.9 -87.3 -90.1 -90.3 -93.1 -90.7 -92.2 -81.4
p-value diff 0.23 0.23 0.23 0.23 0.23 0.23 0.27 0.27 0.34 0.34

Long-only, with transactions costs

BY-tim 1.40 1.28 0.99 0.92 0.91 0.99 0.90 1.11 1.28 1.66
BY-b/h 1.56 1.45 1.28 1.24 1.16 1.16 1.12 1.29 1.42 1.58
p-value 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CC-tim 1.70 1.58 1.29 1.22 1.23 1.30 1.22 1.43 1.60 1.92
CC-b/h 1.84 1.74 1.58 1.54 1.48 1.47 1.45 1.60 1.74 1.86
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CLM-tim -77.2 -80.1 -80.1 -80.6 -84.3 -81.5 -85.2 -85.1 -86.0 -67.9
CLM-b/h -81.3 -84.0 -85.9 -87.3 -90.1 -90.3 -93.1 -90.7 -92.2 -81.4
p-value 0.28 0.28 0.28 0.28 0.28 0.28 0.34 0.34 0.38 0.38

Long-short, no transactions costs

BY-tim 1.47 1.19 0.83 0.73 0.93 1.15 1.00 1.31 1.43 1.93
BY-b/h 1.56 1.45 1.28 1.24 1.16 1.16 1.12 1.29 1.42 1.58
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CC-tim 1.75 1.49 1.13 1.04 1.24 1.46 1.32 1.62 1.75 2.20
CC-b/h 1.84 1.74 1.58 1.54 1.48 1.47 1.45 1.60 1.74 1.86
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CLM-tim -80.9 -84.5 -86.8 -88.6 -90.2 -89.4 -92.4 -89.0 -91.1 -78.1
CLM-b/h -81.3 -84.0 -85.9 -87.3 -90.1 -90.3 -93.1 -90.7 -92.2 -81.4
p-value diff 0.34 0.34 0.34 0.34 0.34 0.34 0.37 0.37 0.42 0.42

Long-short, with transactions costs

BY-tim 1.27 1.13 0.75 0.62 0.76 0.96 0.80 1.13 1.23 1.71
BY-b/h 1.56 1.45 1.28 1.24 1.16 1.16 1.12 1.29 1.42 1.58
p-value 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CC-tim 1.57 1.45 1.08 0.95 1.10 1.29 1.14 1.46 1.56 2.00
CC-b/h 1.84 1.74 1.58 1.54 1.48 1.47 1.45 1.60 1.74 1.86
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CLM-tim -79.8 -82.6 -85.0 -87.0 -88.3 -87.6 -90.7 -86.9 -89.1 -76.3
CLM-b/h -81.3 -84.0 -85.9 -87.3 -90.1 -90.3 -93.1 -90.7 -92.2 -81.4
p-value 0.22 0.23 0.23 0.23 0.23 0.23 0.27 0.27 0.30 0.30

Certainty equivalents given as percentages. p-values are bootstrapped tests of the null that the certainty
equivalent return of the timing strategy is greater than or equal to that of the buy and hold strategy.
BY-tim denotes the certainty equivalent return of the timing strategy under the Bansal-Yaron model,
BY-b/h does likewise for the buy and hold strategy. CC and CLM denote the Campbell-Cochrane and
Cecchetti-Lam-Mark models, respectively. 39



Table 15 shows that, for the Bansal-Yaron model, the timing strategy produces some
estimated certainty equivalent return gains for higher q. Only the gains for q = 40 survive
once transaction costs are accounted for. These gains are relatively small, amounting
to about 0.3% per year. Crucially, though, almost all of the Bansal-Yaron certainty
equivalent gains are significantly too large, even when they are negative. Even where
the timing strategy leads to a lower certainty equivalent return for the investor than
buy and hold, this lower return is not sufficiently lower than the buy-and-hold return to
be consistent with the Bansal-Yaron model. This finding does survive the inclusion of
transaction costs.

For the Campbell-Cochrane model, while certainty equivalent gains are produced
for q = 40 for all implementations of the strategy (long-only/long-short, with/without
transactions costs), these are not significant. The only significant certainty equivalent
gain for a timing strategy under the Campbell-Cochrane model is for q = 4 in the long-
short strategy with transaction costs. This “gain” is actually negative, so, again, the
timing strategy does not underperform the market as much as it should on a risk-adjusted
basis.

Some of the certainty equivalent gains, produced under the Cecchetti-Lam-Mark
model are very large. The difference in certainty equivalent returns between the timing
and buy-and-hold strategies can be interpreted as the largest additional fee an investor
would pay to have access to the timing strategy. Our results suggest that an investor
would be willing to pay fees of up to 44% a year to access the timing strategy. Yet none of
these certainty equivalent gains is significant. However, the Cecchetti-Lam-Mark results
in Table 15 are rather too large in magnitude to be a plausible financial time series, prin-
cipally due to the extreme estimated risk aversion. We do not attach too much weight to
them.

8 Conclusion

In this paper, we use GMM to estimate three consumption-based models of asset prices,
the Bansal-Yaron, Campbell-Cohrane and Cecchetti-Lam-Mark models, and derive ex-
ante expected market returns from them. If the model in question is well specified,
and can account for the serial correlation structure of the market return, the difference
between the market return and the model-implied expected return is MDS. To test this
hypothesis, we modify the variance-ratio and rescaled range statistics to account for
these expected returns being functions of estimated parameters. We also use a weighted
quantilogram test based on a bootstrap procedure robust to the estimation of model
parameters.

We find that the difference between the market return and the model-implied ex-
pected returns is not MDS and thus that the models are not well specified and cannot
account for the dynamic structure of the market returns. This finding is robust to the
sample period, GMM weight matrix and decision interval used. The Bansal-Yaron and
Campbell-Cochrane residuals produce highly significant rescaled range statistics and there
is evidence that they are serially correlated in levels and in quantile hits. The main sig-
nificant evidence against the null that the Cecchetti-Lam-Mark model residuals are MDS
comes from the rescaled range statistics in the first sub-sample, the second sub-sample
once look-ahead bias is accounted for and at the annual frequency. However, its residu-
als produce variance ratios that are rather below one but with large standard errors for
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all the weight matrices and decision intervals considered. Coupled with the known low
power of variance ratio (and other tests of the martingale difference hypothesis) against
a negatively serially correlated alternative (Poterba and Summers, 1988), the variance
ratios strongly suggest that the Cecchetti-Lam-Mark residuals are not MDS.

We also present evidence that it is possible to outperform the market on a risk-adjusted
basis under the Bansal-Yaron model, using information from the serial correlations of
returns. This would not be possible if the Bansal-Yaron accounted for those serial cor-
relations. While outperformance of the market using a timing strategy is also possible
under the Campbell-Cochrane model, this outperformance is not significant. In one case,
however, the risk-adjusted underperformance of the timing strategy is significantly less
than it ought to be under the Campbell-Cochrane model. It is possible to outperform
the market substantially in certainty equivalent terms under the Cecchetti-Lam-Mark
model, but this outperformance is not significant. We attach little weight to these results
since the Cecchetti-Lam-Mark certainty equivalent returns do not form an economically
plausible financial time series.

For the Bansal-Yaron and Campbell-Cochrane models, an R2 test of maximal pre-
dictability produces evidence that the amount of time-series predictability in the market
return is more than can be explained by the state variables used in the stochastic dis-
count factor. This evidence is stronger in the sub-samples. We do, however, note some
empirical difficulties in implementing this test.

The failures of the models tested to adequately capture the serial correlation structure
of the market return suggest several possible avenues of research. One would be to modify
the sets of state variables used by the models we consider, or to come up with new state
variables altogether. Alternatively, given that the models we consider here are models
of equilibrium stock prices and returns, it may be necessary to embed the models we
consider in a framework that models adjustment to the equilibrium. This would generate
natural mean reversion Adam et al. (2016) present such a model. They have an agent
with CRRA preferences who knows the risk-adjusted price is a random walk (a result
due to Samuelson, 1965) but who observes the risk-adjusted price plus mean-zero noise.
Optimal updating of beliefs under subjective expected utility maximisation produces a
feedback loop: expectations affect prices, as in the classical model, but prices also affect
expectations, due to updating. This feedback imparts upon the prices mean reversion
and excess volatility, even though the estimated prior uncertainty (noise variance) is
small. In general, this model is able to match many facts about asset prices, including
the long-horizon predictability of excess returns with respect to the price-dividend ratio.
However, rather like the standard CRRA model, it cannot capture the equity premium.
Nonetheless, it is possible that by applying this framework to, say, the Campbell-Cochrane
model we could also capture the equity premium.

A different model of adjustment to equilibrium accounts for transaction costs. For
example, Seo (2003) takes the expectations hypothesis as the equilibrium model of the
bond market. However, arbitrage opportunities are only taken advantage of if the profit
they yield is greater than the cost of the transaction. Encoding this modified expectations
hypothesis in a threshold vector error correction model, Seo finds significant threshold
effects and rejects the vanilla expectations hypothesis in favour of the augmented expec-
tations hypothesis with transaction costs. He also rejects pure preferred habitat theory
against an expectations hypothesis alternative. As the models we consider above imply
equilibrium stock prices, it may be possible to explain the dynamic properties of the
market return using a variant of this threshold methodology. Of course, it may also be
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that an “outright” behavioural model, which goes beyond rational learning, is required.

Appendices

A Bansal-Yaron model estimation

A.1 Inversion and stochastic discount factor coefficients

Constantinides and Ghosh (2011) show that

xt = α0 + α1rf,t + α2zm,t

σ2
t = β0 + β1rf,t + β2zm,t,

where

α0 =
A2,mA0,f − A0,mA2,f

A1,mA2,f − A2,mA1,f

α1 =
−A2,m

A1,mA2,f − A2,mA1,f

α2 =
A2,f

A1,mA2,f − A2,mA1,f

β0 =
A0,mA1,f − A1,mA0,f

A1,mA2,f − A2,mA1,f

β1 =
A1,m

A1,mA2,f − A2,mA1,f

β2 =
−A1,f

A1,mA2,f − A2,mA1,f

.
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The expressions for the A0, . . . , A2,f coefficients are given by

A1 =
1− 1

ψ

1− κ1ρx

A2 =

1
2

[(
− θ
ψ

+ θ
)2

+ (θκ1A1ψx)
2

]
θ(1− κ1ν)

A0 =
ln(δ) +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2(1− ν) + 1
2
θκ21A

2
2σ

2
w

1− κ1

A1,m =
φ− 1

ψ

1− κ1,mρx

A2,m =
(1− θ)A2(1− κ1ν) + 1

2

[
γ2 + ϕ2 + ((θ − 1)κ1A1 + κ1,mA1,m)2 ψ2

x

]
1− κ1,mν

A0,m =
θ ln(δ) +

(
− θ
ψ

+ θ − 1
)
µc + (θ − 1)κ0 + (θ − 1)(κ1 − 1)A0 + (θ − 1)κ1A2σ

2(1− ν)

1− κ1,m

+
κ0,m + µd + κ1,mA2,mσ

2(1− ν) + 1
2

[(θ − 1)κ1A2 + κ1,mA2,m]2 σ2
w

1− κ1,m

A0,f = θ ln(δ)−
(
− θ
ψ

+ θ − 1

)
µc − (θ − 1)κ0 − (θ − 1)(κ1 − 1)A0 − (θ − 1)κ1A2(1− ν)σ2

− 0.5(θ − 1)2κ21A
2
2σ

2
w

A1,f = −
[(

θ

ψ
+ θ − 1

)
+ (θ − 1)(κ1ρx − 1)A1

]
A2,f = −

[
(θ − 1)(κ1ν − 1)A2 +

1

2

((
− θ
ψ

+ θ − 1

)2

+ (θ − 1)2κ21 + A2
1ψ

2
x

)]
.

In the stochastic discount factor

exp

{
a1 + a2∆ct+1 + a3

(
rf,t+1 −

1

κ1
rf,t

)
+ a4

(
zm,t+1 −

1

κ1
zm,t

)}
= 0,

we have:

a1 = θ ln(δ) + (θ − 1)[κ0 + (κ1 − 1)(A0 + A1α0 + A2β0)]

a2 = − θ
ψ

+ (θ − 1)

a3 = (θ − 1)κ1[A1α1 + A2β1]

a4 = (θ − 1)κ1[A1α2 + A2β2].

The linearisation constants κ0 and κ1 derive from applying the Campbell and Shiller
(1988) log-linearisation procedure to the returns to the consumption claim and market
portfolio. These constants satisfy

κ1 =
exp{z̄}

1 + exp{z̄}
κ0 = ln(1 + exp{z̄})− κ1z̄,
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where zt is the log price/consumption ratio of an asset whose dividend stream is identical
to consumption. Similar expressions are obtained for κ0,m and κ1,m when z is replaced
by zm. These are identified under the assumption that z̄ and z̄m are equal to the uncon-
ditional expectation of zt and zm,t respectively.

A.2 Time-series moment conditions

The nine time-series moment conditions derived by Constantinides and Ghosh (2011) are:

E(∆ct) = µc

Cov(∆ct,∆ct+1) = ρx
ϕ2
xσ

2

1− ρ2x
E(∆dt) = µd

Var(∆dt) = φ2 ψ
2
xσ

2

1− ρ2x
+ σ2ϕ2

u

Cov(∆dt,∆dt+1) = φ2ρx
ϕ2
xσ

2

1− ρ2x

Cov(∆ct,∆dt) = φ
ϕ2
xσ

2

1− ρ2x

Var
[
(∆ct)

2
]

=
3ϕ4

xσ
2
w(1 + πρ2x)

(1− ρ4x)(1− π2)(1− πρ2x)
+

1

1− ρ4x

[
2σ4 +

4ρ2xϕ
4
xσ

4

1− ρ2x

]
+ 2σ4

+
3σ2

w

1− π2
+ 4µ2

c

ϕ2
xσ

2

1− ρ2x
+

6ϕ2
xσ

2
wπ

(1− π2)(1− πρ2x)
+

4ϕ2
xσ

4

1− ρ2x
+ 4µ2

cσ
2

Var
[
(∆dt)

2
]

= φ4

[
3ϕ4

xσ
2
w(1 + πρ2x)
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2σ4
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4ρ2xϕ
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3σ2
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6ϕ2
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2
wπφ

2ϕ2
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+

4ϕ2
xσ

4

1− ρ2x
φ2ϕ2

u

+ 2σ4ϕ4
u + 4µ2

dϕ
2
uσ

2.

A.3 Expected return coefficients

The expected market return in the Bansal-Yaron model is

Et rm,t+1 = B0 +B1xt +B2σ
2
t ,

where

B0 = κ0,m + (κ1,m − 1)A0,m + µd + κ1,mA2,m(1− ν)σ2 − 3κ1,m

B1 = A1,m(κ1,mρx − 1) + φ

B2 = A2,m(κ1,mν − 1).

B Cecchetti-Lam-Mark κ(yt)

κ(yt) =

{
δ̃(1− δ̃α̃1(p+ q − 1))/∆ , yt = 0

δ̃α̃1(1− δ̃(p+ q − 1))/∆ , yt = 1,
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where

δ̃ = δ exp{α0(1− γ) + (1− γ)2σ2
yt/2}

α̃1 = exp{α1(1− γ)}
∆ = 1− δ̃(pα̃1 + q) + δ̃2α̃1(p+ q − 1).
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