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Abstract

The morphologies of heterogeneous clusters of polycyclic aromatic hydrocar-

bons (PAHs) are investigated using molecular modelling. Clusters of up to 100

molecules containing combinations of the different sized PAHs circumcoronene,

coronene, ovalene, or pyrene are evaluated. Replica exchange molecular dynam-

ics simulations using an all-atom force field parameterised for PAHs sample many

configurations at high and low temperatures to determine stable low energy struc-

tures. The resulting cluster structures are evaluated using molecular radial dis-

tances and coordination numbers, and are found to be independent of initial con-

figuration and the cluster sizes studied. Stable clusters consist of stacked PAHs in

a core-shell structure, where the larger PAHs are found closer to the cluster core

and the smaller PAHs are located on the cluster surface. This work provides novel

insight into the molecular partitioning of heterogeneous aromatic clusters, with

particular relevance to the structure of nascent soot particles.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are stable fused aromatic molecules

produced in high temperature processes, such as terrestrial combustion [1, 2] and

interstellar supernova [3]. PAHs contribute to air pollution [4], affect the climate

[5], and pose a significant health problem as a result of their toxic and carcinogenic

properties [6]. Due to their stable bonding configurations at flame temperatures,

PAHs are important intermediates in the formation of soot particles [7, 8]. An

understanding of the PAH interactions involved in soot formation processes is

required in order to effectively reduce the amount of anthropologically produced

pollutants. The low species concentrations, short time frame, and small spatial

extent of these processes limit experimental measurements and thus in silico tools

provide valuable insight into soot nanoparticles [9, 10, 11, 12, 13].

In order to describe the behaviour and nature of soot particles it is necessary

to understand the interactions of their components. Electronic structure calcula-

tions, such as symmetry adapted perturbation theory (SAPT(DFT)) and coupled

cluster theory (CCSD(T)), provide accurate intermolecular binding energies and

configurations of aromatic dimers. For small aromatics such as benzene, the T-

shaped configuration (in which aromatic planes are perpendicular to each other) is

the most stable, followed closely by the parallel-displaced configuration (aromatic

planes are staggered face-to-face), while the sandwich configuration (aligned face-

to-face) is the least favoured [14, 15, 16, 17]. This is because the hydrogen ter-

mination and π-aromatic network of these molecules creates a strong quadrupolar

charge distribution that electrostatically stabilises the T-shaped configuration [18].

In contrast, the interactions between larger PAH dimers are dominated by disper-

sion interactions and the T-shaped configuration is substantially less stable than

the parallel configurations [19, 20, 21].

Considering aromatic clusters containing more than two molecules requires
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efficient parameterisation of the intermolecular interactions in order to achieve

reasonable computational cost. Early approaches used the 12-6 Lennard-Jones

power law functional form and atom-centred point charges fitted to the electro-

static potential [22, 2]. Improvements were made, first with a steeper exponen-

tial repulsion term [23], and then with high accuracy SAPT(DFT) calculations

to generate an accurate force field, isoPAHAP [24, 10]. This PAH potential has

been shown to be a transferable and highly accurate potential for systems con-

taining planar pericondensed PAHs, for example reproducing SAPT(DFT) results

of coronene dimer interaction energies, the second virial coefficients of benzene,

and theoretical and experimental values of the graphite exfoliation energy [25].

Cluster stability and morphology are sensitive to the energies and potential func-

tional form and therefore specific potentials, such as isoPAHAP, are better able to

capture PAH system behaviour compared to generalised hydrocarbon potentials

[26, 27, 22].

The dynamics and morphologies of homogeneous PAH clusters, containing

a single PAH species, have been explored using molecular dynamics (MD) and

global optimisation methods. This has allowed cluster properties such as melt-

ing points [11, 28, 29], surface accessibility [30], and gas interactions [13, 12] to

be determined for PAH clusters. The morphologies of homogeneous PAH clus-

ters have been found to be highly dependent on the type and number of PAHs

present [31, 32, 22]. Small PAH clusters (for example, containing 2–6 coronene

molecules) favour the formation of a single stack. Once the size of the cluster

is approximately equal to the diameter of the PAH monomer (corresponding to

6 molecules for a coronene cluster), the stacks split into two and rearrange to

form twisted stacks at 90◦ angles, known as a handshake motif [33, 22, 32, 34].

Larger clusters (for example, 12+ coronene molecules) adopt parallel stacks in

a herringbone-like motif which match the bulk crystal structures [35]. These
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stacked morphologies, predicted by global optimisation methods and MD stud-

ies using the isoPAHAP force field [22, 10, 27], have been confirmed recently

using scanning tunnelling microscopy of coronene clusters [36].

Homogeneous clusters are often used as simple analogues of soot particles and

interstellar dust even though these particles are known to contain a distribution of

PAH molecule sizes, chiefly due to the increased complexity and computational

cost of simulating systems containing more than one type of PAH. Only a few

studies, by Wales et al. [22, 34], have been conducted examining heterogeneous

PAH clusters. Global optimisations of heterogeneous clusters with binary com-

binations of coronene, hexabenzocoronene, or circumcoronene were performed

using basin-hopping methods, first with an all-atom Lennard-Jones potential of

clusters containing up to 10 PAHs [22] and then extended to larger clusters of

up to 20 PAHs using a coarse-grained method that treats each molecule as a flat-

tened ellipsoid [34]. In both studies, stable heterogeneous clusters showed similar

structural motifs to those seen in minimised homogeneous PAH clusters, changing

from single stack, handshake, and herringbone-like motifs as the number of PAHs

increased. Within these stacked configurations, however, the two molecule types

behaved differently, with the interactions between larger PAH interactions dom-

inating and the smaller PAHs often capping the ends of the stacks. The coarse-

grained results suggest that heterogeneous PAH clusters form stable structures in

which the two molecule types are separated, although the morphology of this sep-

aration (manifesting in a core-shell or asymmetric configuration, for example) is

unknown due to the fact that the clusters studied were not large enough to form

more than two stacks.

Partitioning has been observed experimentally in mature soot particles, with

high resolution transmission electron microscopy images showing a disordered

particle core containing small fringes surrounded by larger stacked fringes [37,
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38, 39, 40, 41, 42, 43, 44]. This partitioning may be physical in nature, caused

by intermolecular interactions of a liquid-like particle at high temperatures in a

flame. Chemical reactions, such as the carbonisation of the particle shell to form

larger cross-linked molecules, may also be the source of this nanostructure. The

simulation of large soot sized clusters would provide information into the contri-

bution of intermolecular interactions in the formation of a partitioned core-shell

nanostructure.

The aim of this work is to investigate the morphologies of heterogeneous PAH

clusters, with a focus on understanding whether the core-shell structure of soot is

due to physical partitioning of different sized PAHs. This is done by investigat-

ing the internal structure of heterogeneous clusters containing up to 100 PAHs to

understand molecule partitioning at a nanoparticle size relevant to nascent soot.

Replica exchange molecular dynamics allows molecular rearrangements and pro-

vides stable configurations of clusters consisting of binary and non-binary combi-

nations of circumcoronene, coronene, ovalene, and pyrene molecules. The move-

ment and stable orientation of molecules is evaluated qualitatively, as well as by

the calculation of average radial distances and molecular coordination numbers,

and related to experimentally observed soot particle nanostructures. The molec-

ular interactions involved in stable heterogeneous structures provide insight into

molecule size distributions and nanoparticle morphology not found in homoge-

neous PAH clusters.

2. Computational methods

Heterogeneous PAH clusters, considered here to be clusters containing two

or more types of PAHs, are examined. The following molecule combinations

are considered: clusters containing coronene (COR) and circumcoronene (CIR),

clusters containing pyrene (PYR) and ovalene (OVA), and clusters containing all
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four of the above PAHs. These molecules are selected because they span the

range of PAH sizes observed in nascent soot particles, from 4–19 rings (0.5–1.1

nm) [45]. Clusters containing 32 molecules in equal molecular ratios are first

assessed using several initial configurations. Large binary and non-binary clusters

containing 100 molecules are then studied. In all cases, the notation AAAxBBBx

will be used to describe the clusters studied, where AAA and BBB refer to the

molecule types and x gives the number of corresponding molecules in the cluster.

For example, CIR50COR50 indicates a cluster containing 100 molecules, made up

of 50 circumcoronene and 50 coronene molecules.

Low energy systems indicate likely configurations of soot nanoparticles sam-

pled from a flame. Replica exchange molecular dynamics (REMD) is a method

able to rapidly determine low energy configurations by using higher energy par-

allel systems to explore new arrangements. REMD was developed to enhance

sampling of a complex potential energy surface, based on the fact that the rate at

which barrier-crossing events occur is increased with an increase in temperature.

Derived from Monte Carlo parallel tempering [46], REMD involves simulating

many independent isothermal systems, called replicas, in parallel across a range

of temperatures [47]. At regular intervals, neighbouring replicas are able to ex-

change atomic coordinates based on a Boltzmann-weighted temperature depen-

dent probability. This allows for more efficient sampling of the potential energy

surface by permitting lower energy states to access higher energy configurations.

As a result, after an exchange, each low energy configuration exchanged into a

higher energy replica has a better opportunity to overcome energy barriers and

move into a new lower energy region of phase space, while each swapped high

energy configuration provides a low energy replica with a fresh configuration to

sample.

In this work, REMD simulations are initialised in four independent cluster
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configurations, defined by how the two molecule types are situated: mixed, janus,

and two core-shell orientations (shown for a CIR50COR50 cluster in Figure 1(a-

d)). All four initial configurations are simulated for the 32 molecule clusters,

while only the mixed initial configuration is examined for the 100 molecule clus-

ters. Clusters are created using the PACKMOL software [48] with the cluster

radii selected to generate clusters of approximately 1.2 g/cm3, corresponding to

predicted soot densities [49]. Excess energy is removed by an energy minimi-

sation step using the steepest descent algorithm, followed by the low-memory

Broyden-Fletcher-Goldfarb-Shanno method [50].
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Figure 1: Initial cluster geometries are (a) mixed, (b) janus, (c) circumcoronene-core coronene-

shell, and (d) coronene-core circumcoronene-shell cluster configurations, shown in cross-section.

Circumcoronene molecules are shown as blue, coronene molecules are shown as red. (e)

Schematic showing the use of a flat-bottomed position potential to maintain a constant cluster

size. The potential does not act on molecules within the cluster, only on those that leave the clus-

ter radius, rpos. CIR50COR50 clusters are shown here and all other clusters are set up in the same

way.

The canonical ensemble, defined by maintaining a constant number of atoms,

system volume, and temperature, is sampled using chain of 10 Nosé-Hoover ther-

mostats for temperature control. A velocity Verlet integrator [51] is used to ad-

vance the configuration in time and all simulations are conducted in vacuo with-

out periodic boundary conditions. Intramolecular forces are determined using the
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OPLS-AA force field [52] for molecular bonds, angles, dihedral and improper di-

hedral angles. This potential has been parametrised for liquid systems and used

successfully in previous studies of PAH clusters [10, 53, 11, 54, 12]. The isoPA-

HAP intermolecular potential [24] is used to describe interactions between PAHs

and intermolecular cut-offs are set to 3.0 nm.

A 5 ns trajectory of each system is simulated using a time step of 1 fs. Replica

exchange attempts are made every 100 fs, since frequent exchanges are shown to

increase efficiency without affecting the ensemble being sampled [55, 56]. Tem-

perature distributions are 400−1500 K for the CIRxCORx clusters, 200−800 K for

the OVAxPYRx clusters, and 200−1500 K for the CIRxOVAxCORxPYRx clusters,

selected so that replicas span the temperatures of solid and liquid phases. Forty

replicas are used for the 32 molecule clusters and 60 replicas for the 100 molecule

clusters in order to provide an overlap in potential energies of neighbouring repli-

cas that ensures a reasonably consistent exchange rate and efficient mixing. Fur-

ther information is found in the Supplementary Data. All minimisation and MD

simulations are conducted using GROMACS 5.1.4 [57]. Purpose-made scripts are

used to the process the output and VMD [58] provides visualisations.

Due to the size difference between molecule types, evaporation of the smaller

PAHs from the cluster is observed at temperatures below the melting point of the

larger PAHs. To access higher energy configurations without loss of molecules

from the cluster, a position potential is implemented. This added potential acts on

evaporated molecules to restrain molecules within a spherical volume. As shown

in Figure 1(e), this flat-bottomed potential only applies a force on a molecule once

it leaves the cluster, allowing all molecules within the cluster to move unaffected

by the potential. The force applied acts towards the centre of the spherical volume

and is independent of PAH size. The spherical position potential is as shown in

8



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Equation 1.

Epos(ri) =
1
2

kpos

(
|ri − R| − rpos

)2
H

(
|ri − R| − rpos

)
(1)

where Epos is the position potential energy for a single atom i in kJ mol−1, ri is

the coordinate position of atom i, R is the geometric centre of the cluster, rpos is

the position potential radius, kpos = 1000 kJ mol−1nm−2 is the force constant, and

H is the Heavyside step function. The position potential is necessary for mini-

mum energy configurations to be attained since it allows the replicas to efficiently

sample configurational space. Importantly, this applied potential is negligible at

temperatures below the cluster melting point and low energy configurations are

not affected by the position potential, shown in the following results.

For all clusters examined, molecular configurations are assessed by evaluat-

ing the average distance, r, of each molecule type from the geometric centre of

the cluster. Additionally, molecular coordination numbers, CN, are calculated

as the cumulative radial distribution function using molecule geometric centres,

averaged over each molecule type. This provides an indication of the number

of neighbours for each molecule type within the cluster. The maximum radial

distance used in all calculations is 0.5 nm, selected to encompass the nearest in-

teracting molecules only and provide CN values from zero to two, with CN = 0

corresponding to an isolated molecule, CN = 1 corresponding to a molecule in-

teracting with a single other molecule, and CN = 2 corresponding to a molecule

sandwiched between two others.

3. Results

Before considering the low energy configurations provided by REMD, stan-

dard MD simulations are conducted to evaluate the impact of the position poten-

tial. These simulations allow the dynamics of individual temperature systems to
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be assessed and provide a confirmation that sufficient configurational sampling is

achieved for the REMD simulations. In particular, it is important to assess whether

high energy replicas are able to rigorously sample the configuration space and low

energy replicas are unaffected by the position potential. Clusters are initialised in

the four different configurations discussed previously and simulated at a high tem-

perature (1600 K for CIRxCORx clusters and 800 K for OVAxPYRx clusters) for

5 ns.
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Figure 2: Initial and final configurations of CIR50COR50 clusters from high energy MD simula-

tions. As in Figure 1, initial geometries are (a) mixed, (b) janus, and (c), (d) core-shell cluster

configurations. Larger molecules (CIR, OVA) are coloured blue, and smaller molecules (COR,

PYR) are red. (e) shows the energies of a CIR16COR16 cluster across a range of temperatures. Eint

(circles) indicates the cluster intermolecular energy and Epos (squares) indicates the energy contri-

bution of the applied position potential. Red arrows indicate approximate melting point locations

of the two cluster components. All energies shown are the average cluster energies for the second

half of the simulation.

Figure 2(a)-(d) shows initial and final snapshots for the four starting configu-

rations of CIR50COR50 clusters. It can be seen that regardless of initial configu-

ration, the final clusters exhibit a well mixed configuration, which is expected of

liquid clusters for which the kinetic energy of the molecules is higher than their

intermolecular energy. This indicates that these high energy replicas are able to

provide the configurational sampling required for REMD due to the stochastic na-

ture of molecule movement. These results are important because they show that

at high energies, the position potential keeps the cluster intact but allows mix-
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ing to occur so that a particular structured morphology is not favoured due to the

potential.

Figure 2(e) shows the average intermolecular energy (Eint) and position po-

tential energy (Epos) over a wide range of temperatures for a CIR16COR16 cluster.

The sharper slopes of the change in the intermolecular energy between 1400–1500

K and 400–600 K (shown by red arrows) indicate the approximate melting point

locations of the circumcoronene and coronene components, respectively. These

are shifted to higher temperatures than expected based on results from analogous

homogeneous clusters [11, 28], due to a pseudo-pressure effect caused by the ex-

ternal forces applied on the cluster by the position potential. Importantly, however,

the energy contribution of the position potential is negligible at low energy repli-

cas. This is crucial in allowing stable cluster configurations to be determined by

the low energy simulations without influence from the position potential. These

results show that REMD can use a position potential to sample the cluster config-

uration space at higher energy states and provide accurate low energy configura-

tions that are not affected by the position potential.

REMD is applied to clusters initialised in four different configurations and

the molecule size separation within the resulting structures is examined. Larger

clusters containing 100 molecules, corresponding to the size of young soot par-

ticles, are then simulated. The resulting clusters are evaluated both qualitatively

and quantitatively in order to provide an understanding of the interactions and

structures of heterogeneous clusters.

Figure 3 shows the movement of the two molecule types over the duration of

the REMD simulations for CIR16COR16 clusters, measured as the radial distance

from the cluster centre over time. The low energy replicas show a distinct separa-

tion of the molecule types, with the larger molecules residing closer to the cluster

centre and the smaller molecules situated farther away. This molecule type par-

11



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

titioning is not dependent on the initial cluster configurations, shown by dashed

lines. The high energy replicas, shown as insets, do not show the same molecule

type partitioning behaviour over time. Instead, the significant overlap between

radial distance values of both molecule types throughout the simulation suggests

good mixing for all molecules. The radial distance values of the high energy repli-

cas show a larger spread than those seen in the low energy replicas, indicating that

the molecules are much more mobile at high energy. Again, the behaviour of these

replicas is independent of initial cluster configuration.
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Figure 3: Radial distance of each molecule type over time for CIR16COR16 clusters at the lowest

energy replica, initialised with different configurations: (a) mixed, (b) janus, (c) CIR-core COR-

shell, and (d) COR-core CIR-shell. Dashed lines indicate the initial configuration radii. The inset

figures show the corresponding high temperature replicas using the same axes scales. The be-

haviour in larger CIRxCORx clusters, all OVAxPYRx clusters, and CIRxOVAxCORxPYRx clusters

follow the same trends.

Initial and final cluster morphologies are shown in Figure 4. These cluster

snapshots show clearly that the arrangement of molecule types in the final cluster

configurations are similar, regardless of initial geometry or molecule types. In

addition, the stable structures (shown on the right of the arrows) present a stacked

morphology, indicating that dispersion interactions dominate. This stacked struc-

ture is expected due to the highly anisotropic nature of the molecule interaction
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Figure 4: Initial and final configurations of CIR16COR16 and OVA16PYR16 clusters from the low-

est energy replicas. The final stable configurations are similar regardless of initial configuration.

As in Figure 1, initial geometries are (a) mixed, (b) janus, and (c), (d) core-shell cluster config-

urations, shown in cross-section. Larger molecules (CIR, OVA) are coloured blue, and smaller

molecules (COR, PYR) are red.

strengths [59] and has been observed experimentally in PAH clusters [36]. As pre-

dicted by quantum calculations of PAH dimers, the slipped-parallel and sandwich

molecule arrangements are dominant. As observed in previous work on PAH clus-

ters [34], the slipped-parallel interactions are not dominant enough to produce the

helical morphologies seen in theoretical discoid studies [60, 61]. Parallel stacks
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show the tilted behaviour characteristic of a herringbone-like motif, which is the

motif found in bulk crystal structures [35]. Some T-shaped interactions are seen

between the two molecule types, highlighting that the electrostatic interactions of

these aromatics do contribute [62].

A partitioning of the molecule types is evident, with the larger molecules form-

ing parallel stacks in the core of the cluster and the smaller molecules capping the

ends of these stacks and interacting more weakly in outer stacks or as individual

molecules. The stacks formed by the larger PAHs contain more molecules than

those consisting of the smaller PAHs, although none are larger than the limit due

to the dissociation energy observed in analogous homogeneous clusters [22]. This

suggests that the molecules in the core behave similarly to homogeneous clusters

of the same size studied previously. The interactions of the smaller molecules

around the outside of these parallel stacks indicate a clear priority to maximise

carbon-carbon interactions, as observed in previous studies on homogeneous clus-

ters [34], leading to configurations in which the larger molecules are located closer

to the cluster centre. This strong molecule size partitioning was not seen in pre-

vious work where only small clusters consisting of two molecule pairs were con-

sidered [22].

Cluster snapshots provide visual results of the simulations but do not provide

a complete analysis. In order to further understand the molecular distributions of

these clusters, the radial distributions and coordination numbers are calculated to

quantify partitioning and surface composition, respectively.

Figure 5 shows the distributions of the radial distance, measured from the

centre of cluster to the centre of each molecule, for the two molecule types for all

CIR16COR16 clusters over the final 3 ns of the simulations. The average radial dis-

tances, 〈r〉, from Table 1 are shown as dashed vertical lines. These figures provide

an indication of the overall partitioning of the two molecule sizes over time and
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allow the penetration of a given molecule type within the cluster centre to be quan-

tified. All clusters show a similar structure in which the larger molecules are found

at lower radial distances from the cluster centre than the smaller molecules. The

spread of the histograms show movement of the molecules with time, but the two

molecule types remain in distinct regions without significant overlap. This indi-

cates that the larger molecules stay within the cluster core while smaller molecules

are unable to penetrate into the cluster centre and are instead favoured in an outer

shell. Table 1 provides the radial distances for all clusters studied and it is seen that

in all cases, the larger molecules have a smaller radial distance than the smaller

molecules in the cluster, indicating a core-shell structure. In addition, the differ-

ence between the molecule type radii corresponds to a single surrounding layer of

smaller molecules.
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Figure 5: Molecular equilibrium radial distance distributions of CIR16COR16 configurations, con-

sidering the different initial geometries: (a) mixed, (b) janus, (c) CIR-core COR-shell, and (d)

COR-core CIR-shell. Dashed vertical lines correspond to average radii and show that larger CIR

molecules
〈
rlarge

〉
are found closer to the cluster centre than smaller COR molecules 〈rsmall〉.

Evaluation of the mixing between molecule types and the surface composi-

tion is provided by atomic distributions of the radial distances and coordination

numbers for a single point in time, shown in Figure 6. An overall partition-
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ing of the two molecule types is again seen, with the atoms within the smaller

molecules occupying regions of larger radial distances than the atoms within the

larger molecules. There is an overlap of these atomic radial distances, not seen

in the equilibrium distributions, which indicates that the two molecule types do

interact with each other within the clusters, although not to the extent that in-

terdigited stacks are formed. All clusters show an arrangement similar to the

circumcoronene-core coronene-shell initial geometry (shown in Supplementary

Data Figure 11). The shape of the peaks supports a core-shell structure since

the sharp peaks corresponding to the smaller molecule atoms suggest that these

molecules are found in a layer around the larger molecules. The bimodal distri-

bution seen for both molecule types in Figure 6(c), with a larger and broader peak

at lower radii and a small sharp peak at high radii, can be explained by consid-

ering the stacked structures formed. As seen in Figure 4(c) this cluster contains

a longer stack in the core compared to two smaller parallel stacks found in other

configurations. This produces a cluster that is slightly more elongated than the

other mostly spherical clusters and thus the smaller peaks found at the larger radii

values correspond to the molecules at both ends of the molecular stacks.
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Figure 6: Normalised atomic radial distance distributions of final CIR16COR16 configurations,

initialised in different configurations: (a) mixed, (b) janus, (c) CIR-core COR-shell, and (d) COR-

core CIR-shell. (e) displays the bulk and surface molecule distributions for all CIR16COR16 clus-

ters, determined by coordination numbers.
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The extent of stacking of each molecule type can be expressed as a coordina-

tion number (CN), calculated as the average number of neighbouring molecules

for each molecule within a PAH type. This value is also able to provide an as-

signment of surface and bulk molecules in the cluster, since molecules interacting

closely with only one other molecule (CN ≤ 1) are found on the cluster surface

while molecules surrounded by more than one molecule (CN > 1) are indicative

of bulk cluster molecules. The pie charts in Figure 6(e) highlight the proportion

of molecules within each molecule type that are situated in the bulk or surface

of the clusters. The darker colours for both CIR and COR molecules refer to

proportion of molecules in the bulk and lighter colours show surface molecules.

Nearly all of the larger CIR molecules interact with several near neighbours and

are found within the cluster, while smaller COR molecules make up most of the

surface molecules and display some bulk-like characteristics due to the formation

of outer stacks. Table 1 provides the average CN values for all clusters studied at

their final configuration. The CN values for the large molecules are near two in

all cases, corresponding to each molecule experiencing close interaction with two

other molecules, indicating a stacked structure. The smaller molecules have CN

values around one, corresponding to surface molecules only located near one other

molecule. Larger molecules are thus more stacked and less likely to be found on

the surface of the cluster since they have higher CN values than the corresponding

smaller molecules.

Large clusters containing 100 molecules are simulated to provide insight into

soot sized nanoparticle behaviour. Final configurations of the 32 molecule clus-

ters show that the stable configurations are not dependent on the initial structure,

and thus these larger clusters are simulated only with mixed initial configurations.

The resulting final configurations are shown in Figure 7(a) and (b). The morpholo-

gies of CIR50COR50 and OVA50PYR50 clusters are similar to those found for the
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smaller clusters: tilted parallel stacks, with some T-shaped interactions between

molecules around the surface. Molecular stacks dominate and the average molec-

ular radial distances 〈r〉 and CN values indicate that the larger molecules are found

closer to the cluster centre than the smaller molecules. This work suggests that un-

like the changing stable morphologies found for small cluster sizes [63, 64, 22],

clusters containing between 32 and 100 molecules form similar morphologies.

The large cluster size allows the herringbone-like motif and partitioning between

molecule sizes in a core-shell structure to be more clearly seen.

a b c

Figure 7: Final configurations of large heterogeneous PAH clusters, (a) CIR50COR50, (b)

OVA50PYR50, and (c) CIR25OVA25COR25PYR25. The colour assignments are as follows: CIR

is blue, OVA is cyan, COR is red, PYR is pink.

The PAH clusters considered so far are somewhat ideal since they contain

only two molecule types. This allows for rigorous modelling but perhaps could

lead to results indicative of a binary cluster only. To address this, a further REMD

simulation of a large non-binary PAH cluster containing 25 molecules of circum-

coronene, ovalene, coronene, and pyrene (100 molecules total) was simulated,

initialised in a mixed configuration. The simulation set up follows the same pro-

cedure as the previous clusters, and the resulting replica exchange parameters are

provided in the Supplementary Data. The resulting cluster configuration, shown

in Figure 7(c), shows molecule size partitioning similar to that seen in the bi-

nary clusters. The largest CIR molecules are found within the cluster core along

with the large OVA molecules, while the small COR molecules and smallest PYR

molecules are located on the ends of the stacks containing the larger molecules
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as well as in a perpendicular arrangement around the outside of the cluster. Fig-

ure 8 shows the distribution of the radial distance for the four molecules within

the CIR25OVA25COR25PYR25 cluster over the final 3 ns of the simulation. The

average radial distances, 〈r〉, are shown as dashed vertical lines and show a par-

titioning of molecule types within the cluster. The CN values are also provided.

These values indicate that the larger the molecule, the closer it is to the cluster

core (lower 〈r〉 value) and the more highly stacked it is (higher CN value). In

contrast to the binary clusters there is overlap between the molecule types, likely

due to their similar sizes. However, a distinct core-shell structure is still observed

in which the larger molecules form the core and the smaller molecules make up

the shell.
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Figure 8: Molecular equilibrium radial distance distributions of CIR25OVA25COR25PYR25 con-

figurations, initialised in a mixed configuration. Average radii values are provided and shown as

vertical dashed lines. Molecular CN values are also shown in bold italics.

Table 1 provides the binary cluster intermolecular energies, and it can be seen

that this energy increases with component molecule size. The interaction ener-

gies of the large binary heterogeneous PAH clusters are between those of anal-

ogous clusters containing one type of PAH. For example, a cluster containing

50 coronene and 50 circumcoronene molecules has an approximate average inter-

molecular energy of −14, 000 kJ/mol, while the energy of a cluster containing 100
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coronene molecules is around −9, 400 kJ/mol [11] and a cluster of 100 circum-

coronene molecules is −21, 000 kJ/mol [28]. Similarly, at −13442 kJ/mol, the

intermolecular energy of the CIR25OVA25COR25PYR25 cluster is approximately

equal to that predicted by the mean of the four homogeneous 100 molecule clus-

ter values.

Table 1: Average radial distances (〈r〉, nm), coordination numbers (CN), and intermolecular ener-

gies (〈 Eint〉, kJ mol−1) of heterogeneous PAH clusters from REMD simulations for different initial

configurations and sizes. Subscripts refer to the large and small molecule types within each clus-

ter. Properties are empirical equilibrium values, as indicated by angled braces, determined as the

average over the final 3 ns of the simulation.

Structure Initial configuration
〈
rlarge

〉
〈rsmall〉 CNlarge CNsmall 〈Eint〉

CIR16COR16 CIR-core COR-shell 1.02 1.41 2.00 1.56 -4590

CIR16COR16 COR-core CIR-shell 1.02 1.42 1.94 1.19 -4599

CIR16COR16 janus 1.02 1.41 2.00 0.88 -4601

CIR16COR16 mixed 1.03 1.39 2.00 1.25 -4602

OVA16PYR16 OVA-core PYR-shell 0.95 1.25 2.00 0.75 -2901

OVA16PYR16 PYR-core OVA-shell 0.95 1.19 1.94 0.94 -2901

OVA16PYR16 janus 0.87 1.21 2.00 0.88 -2907

OVA16PYR16 mixed 0.90 1.19 1.94 0.69 -2902

COR100 [11] – – – – – -9400

CIR50COR50 mixed 1.61 2.07 1.92 1.24 -14236

CIR100 [28] – – – – – -21000

PYR100 [11] – – – – – -6800

OVA50PYR50 mixed 1.40 1.73 1.78 0.82 -10244

OVA100 [28] – – – – – -12000
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4. Discussion

The shape and interaction strength of anisotropic molecules govern the stable

cluster morphologies they form [59]. In this way, the partitioning of molecule

types within heterogeneous PAH clusters to form a core-shell structure may be

caused by the different molecule sizes or molecule interaction strengths. It is

difficult to assess their individual contributions since these two factors are cou-

pled. Clusters of spherical Lennard-Jones (LJ) particles provide simple systems

for which these components have been assessed independently and can provide in-

sight into the PAH clusters studied here. LJ clusters made up of two different sized

particles with the same interaction potential are known to configure in a core-shell

structure, with larger particles on the surface and smaller particles in the core,

in order to equalise surface and bulk interactions [65, 64, 66, 67]. In contrast,

LJ clusters containing two particle types of the same size but different attractions

partition in the opposite core-shell structure, in which the more strongly attractive

particles make up the core and the more weakly attractive particles compose the

shell [63]. Heterogeneous PAH clusters show a structure similar to the latter case,

suggesting that the strength of intermolecular interactions plays a more dominant

role in determining cluster structure than the molecular size differences.

A detailed examination of the average intermolecular interactions over the en-

tire simulation period finds that the contribution from repulsion-dispersion domi-

nates, with electrostatics contributing to less than 3% of the intermolecular inter-

action energy, for all clusters studied. The influential role of dispersion in these

systems provides further understanding into the cluster structures and partitioning

observed. The stacked configurations seen serve to maximise π-π interactions in

contrast to electrostatics-dominated structures, which favour an edge-on structure

such as a T-shaped configuration [68]. As an additive force, dispersion increases

with increasing molecular weight due to the increased number of pair-wise in-
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teractions. Thus large PAHs interact strongly with each other, while interactions

between a large PAH and small PAH or between two small PAHs are less ener-

getically favoured. This leads to an arrangement in which larger PAHs prefer to

occupy interior sites in order to maximise the number of nearest neighbours be-

tween carbon atoms, and smaller PAHs are located on the surface of the cluster.

The heterogeneous clusters examined have a large disparity between the molecule

attraction strengths due to their different sizes. The results shown, in particular

the molecule type partitioning at low energies, are more pronounced than would

likely be the case between PAHs with similar interaction strengths. Therefore a

cluster containing PAHs with similar sizes, for example the pericondensed PAHs

circumpyrene and hexabenzocoronene with 14 and 13 aromatic rings respectively,

would likely exhibit more mixing at lower energies. Evidence of this increased

molecular mixing is seen visually in the CIR25OVA25COR25PYR25 cluster config-

uration shown in Figure 7(c).

The minimum energy cluster configurations determined in this work indicate

expected quenched soot structures, such as those obtained through experimental

sampling methods in which soot is thermophoretically condensed onto a sampling

grid for analysis. These heterogeneous clusters have diameters of 3−5 nm and C/H

ratios of 2 − 2.6, a size and composition representative of nascent soot particles

[69, 70]. In addition, stable configurations contain molecular planes perpendicular

to the cluster surface, a morphology that has been identified as typical of nascent

soot [43]. This is distinct from the more graphitic structure of mature soot particles

where the molecular planes are parallel to the particle surface.

Cluster structures show a core-shell structure in which stacked larger molecules

dominate the core of the cluster. Recently, the first experimental work analysing

molecule size with respect to soot particle radius at different soot maturities was

published [71]. Using high resolution transmission electron microscopy, it was
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seen that the molecules are slightly larger and more stacked at the core than at the

surface within the youngest particles able to be sampled. This provides experi-

mental support for the molecule size distributions of heterogeneous PAH cluster

configurations determined in this work. The inverse morphology, where smaller

fringes are found in the particle centre and larger fringes make up the surface

layers, is reported qualitatively for mature soot particles using high resolution

transmission electron microscopy [40, 37, 42]. It is known that soot particles

form a graphitic shell as they mature and this work indicates that intermolecular

interactions within a liquid-like particle are not responsible for the core-shell par-

titioning seen in mature particles. As only non-reactive molecular interactions are

considered here, it is likely that chemical reactions such as carbonisation play a

crucial role in determining mature soot particle structure. The identification of

this inverse core-shell structure for nascent soot particles suggests their surface

interactions are dominated by small PAHs. This provides a possible contributing

factor for the enhanced reactivity of these young particles compared to mature

soot [72].

Further work to better understand the transition from nascent to mature soot

particles, likely dominated by carbonisation, and its impact on the core-shell struc-

ture is required. Curved PAH molecules have been very recently shown to form

a significant component of soot particles [73] and our further work will explore

the nature of curved molecule cluster morphologies. It is expected that similar

stacked motifs will be observed, although molecule type partitioning in hetero-

geneous clusters may be less distinct since the interaction between molecules of

different sizes is enhanced for these polar systems [74]. In addition, the stericity

of these curved molecules may allow heterogeneity to further stabilise clusters,

for example if smaller molecules are able to pack well into the concave surface of

larger molecules. While REMD is able to provide stable configurations, it comes
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at a very high computational cost. There is therefore still a need for efficient

methods for sampling large heterogeneous aromatic clusters. We are currently

exploring a Monte Carlo method for this purpose.

5. Conclusions

The morphology of large heterogeneous PAH clusters is explored using ad-

vanced molecular modelling. Replica exchange molecular dynamics simulations

across a wide temperature range are able to show that clusters initialised with

different geometries produce stable configurations independent of the initial clus-

ter structure and size. Stable clusters present a parallel stacks motif, similar to the

herringbone-like motif seen in bulk PAHs. The maximisation of carbon-carbon in-

teractions dominates the arrangements formed, leading to smaller PAHs capping

the ends of otherwise homogeneous stacks of larger PAHs. This agrees with pre-

vious work looking at interactions between PAH dimers and small heterogeneous

clusters. For all systems studied, it is seen that heterogeneous PAH clusters favour

a core-shell structure in which the larger molecules are located closer to the cluster

centre. These results present the first simulations of soot sized heterogeneous PAH

clusters and provide insight into the internal structure of non-carbonised nascent

soot particles, useful for further understanding of soot formation and other similar

systems.
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6. Supplementary Data

Replica temperatures were selected using an exponential temperature distribu-

tion

T j = T0 exp(m j) (2)

where T j refers to the temperature (in K) at replica j, T0 is the temperature (K)

at replica 0, and m is a parameter which achieves the desired temperature range.

For the 32 molecule systems studied, the replica index j spans from 0 − 39 and

m = 0.035. For the binary 100 molecule systems j = 0−59 and m = 0.024, and for

100 molecule systems containing four molecule types j = 0− 74 and m = 0.0275.

In order to efficiently accept attempted replica exchanges, there must be ade-

quate overlap of potential energy distributions between neighbouring temperature

replicas [75]. Figure 9 shows the potential energy distribution of ten neighbour-

ing replicas in a CIR16COR16 REMD simulation. The energy curves are broader

for higher temperature replicas and it is clear that there is significant overlap be-

tween accessible energies of adjacent replica pairs, indicating good exchange rate

probabilities between neighbouring replicas for this system.

The effectiveness of an REMD simulation relies on the proper exchange of

states between replicas so that the low temperature states are able to sample the

high temperature configurations and vice versa. Replica exchange acceptance is

a good indication of the movement between replicas and it is found empirically

and theoretically that an exchange acceptance of approximately 0.2 provided the
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Figure 9: Potential energy distributions of neighbouring replicas from a 5 ns REMD simulation of

CIR16COR16. Only the 10 lowest temperature replicas, corresponding to 400 − 543 K, are shown,

but higher temperature replicas show the same trends.

best accuracy for a given computational time [76, 77]. Exchange acceptances

for simulations conducted in this work are between 0.22 and 0.43, which in-

dicates a good balance between equilibration within replicas and exchange be-

tween replicas. However the exchange acceptance is not a complete metric of

REMD effectiveness since repeated exchanges between the same two replicas is

treated in the same way as sequential exchanges between the full range of repli-

cas. To ensure replicas are sampling the entire conformational space available,

replica mixing is assessed by observing the movement of replica ensembles across

the replica/temperature space. For all REMD simulations conducted, the replica

ensembles show good sampling across replica conformations and temperatures,

which is shown in a temperature trajectory for one replica ensemble in Figure 10.

This shows the movement of a replica ensemble across the configurational space

corresponding to different system temperatures.

Figure 11 shows the normalised atomic radial distance distributions of CIR16COR16

clusters at their initial geometries. As previously, (a) corresponds to a mixed ori-

entation, (b) janus, (c) circumcoronene-core coronene-shell, and (d) coronene-

core circumcoronene-shell. This allows the molecule type separations at the start-
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Figure 10: Temperature trajectory of the lowest energy replica for a CIR16COR16 cluster. This

shows the movement of a replica ensemble across the configurational space corresponding to dif-

ferent system temperatures. Similar configurational movement is seen for all replicas within each

REMD system simulated.

ing geometries to be assessed and compared with those after the REMD simula-

tions, shown in Figure 6.
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Figure 11: Normalised atomic radial distance distributions of initial CIR16COR16 configurations,

initialised in different configurations: (a) mixed, (b) janus, (c) CIR-core COR-shell, and (d) COR-

core CIR-shell.

27



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

References

[1] L. B. Ebert, J. C. Scanlon, C. A. Clausen, Combustion tube soot from a

diesel fuel/air mixture: Issues in structure and reactivity, Energy & Fuels

2 (4) (1988) 438–445. doi:10.1021/ef00010a009.

[2] J. D. Herdman, J. H. Miller, Intermolecular potential calculations for polynu-

clear aromatic hydrocarbon clusters, The Journal of Physical Chemistry A

112 (28) (2008) 6249–6256. doi:10.1021/jp800483h.

[3] C. Boersma, J. D. Bregman, L. J. Allamandola, Properties of polycyclic aro-

matic hydrocarbons in the northwest photon dominated region of NGC 7023.

I. PAH size, charge, composition, and structure distribution, Astrophysical

Journal 769 (2) (2013) 1–13. doi:10.1088/0004-637X/769/2/117.

[4] M. Guarnieri, J. R. Balmes, Outdoor air pollution and asthma, The

Lancet 383 (9928) (2014) 1581–1592. arXiv:arXiv:1011.1669v3,

doi:10.1016/S0140-6736(14)60617-6.

[5] E. J. Highwood, R. P. Kinnersley, When smoke gets in our eyes:

The multiple impacts of atmospheric black carbon on climate, air

quality and health, Environment International 32 (4) (2006) 560–566.

doi:10.1016/j.envint.2005.12.003.

[6] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans,

Some non-heterocyclic polycyclic aromatic hydrocarbons and some related

exposures, in: IARC Monographs on the Evaluation of Carcinogenic Risks

to Humans, Vol. 92, 2010, pp. 1–868. doi:10.1002/14356007.a04.

[7] S. E. Stein, A. Fahr, High-temperature stabilities of hydrocarbons,

The Journal of Physical Chemistry 89 (17) (1985) 3714–3725.

doi:10.1021/j100263a027.

28



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[8] R. A. Dobbins, R. A. Fletcher, H.-C. Chang, The evolution of soot precursor

particles in a diffusion flame, Combustion and Flame 115 (3) (1998) 285–

298. doi:10.1016/S0010-2180(98)00010-8.

[9] A. Violi, A. Venkatnathan, Combustion-generated nanoparticles produced in

a benzene flame: A multiscale approach, The Journal of Chemical Physics

125 (5) (2006) 054302. doi:10.1063/1.2234481.

[10] T. S. Totton, A. J. Misquitta, M. Kraft, A quantitative study of

the clustering of polycyclic aromatic hydrocarbons at high tempera-

tures, Physical Chemistry Chemical Physics 14 (12) (2012) 4081–4094.

doi:10.1039/C2CP23008A.

[11] D. Chen, T. S. Totton, J. Akroyd, S. Mosbach, M. Kraft, Size-dependent

melting of polycyclic aromatic hydrocarbon nano-clusters: A molecular dy-

namics study, Carbon 67 (2014) 79–91. doi:10.1016/j.carbon.2013.09.058.

[12] D. Chen, T. S. Totton, J. Akroyd, S. Mosbach, M. Kraft, Phase change

of polycyclic aromatic hydrocarbon clusters by mass addition, Carbon 77

(2014) 25–35. doi:10.1016/j.carbon.2014.04.089.
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