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Abstract

The so-called ‘energy test’ is a frequentist technique used in experimental particle physics
to decide whether two samples are drawn from the same distribution. Its usage requires a
good understanding of the distribution of the test statistic, T , under the null hypothesis. We
propose a technique which allows the extreme tails of the T -distribution to be determined
more efficiently than possible with present methods. This allows quick evaluation of (for
example) 5–sigma confidence intervals that otherwise would have required prohibitively costly
computation times or approximations to have been made. Furthermore, we comment on
other ways that T computations could be sped up using established results from the statistics
community. Beyond two-sample testing, the proposed biased bootstrap method may provide
benefit anywhere extreme values are currently obtained with bootstrap sampling.

1 Introduction
The two-sample test statistic, T , described in Section 2, has many uses in particle physics. The
authors of [BBP18] seek to address practical problems associated with the calculation of the extreme
tails of T -distributions. This paper develops those themes further, concentrating on two areas:

• We observe that a significant section of the particle physics community dealing with T appears
to have become separated from the mathematical statistics literature dealing with Maximum
Mean Discrepancy (MMD) metrics, and other integral measures of distributional difference,
even though the two fields are strongly interrelated. In Section 3 we describe the connections
between these fields, and highlight known results which can directly lead to performance
improvements.

• Determining the shapes of the tails of T -distributions by simple means is non-trivial and can
require prohibitive computational resources. It is to overcome this problem that [BBP18]
suggests the use of an approximate scaling conjecture so as to obtain approximate knowledge
of the T -distribution’s shape in a sensible time. We note that an alternative way of proceed-
ing is to use a Markov chain to overlay a precisely controlled bias on the vanilla bootstrap
procedure (see Section 4) so that after compensation for this bias, the shape of the tails can
become known as precisely as the shape of the core of the distribution. Such an approach
could be useful in any case where those approximations are deemed unsuitable or undesir-
able, and could even be used simultaneously for added performance. Our description of this
proposal comprises the remainder of this document, from Section 5 onwards.

It is of little practical benefit to be able to generate estimates of the shapes of T -distributions if
their accuracy cannot be quantified. Our proposed binned shape estimates are made by un-biasing
and re-normalising histograms that have been filled from Markov chain sequences having internal
correlations. Consequently, the uncertainties in every bin of our shape estimates are non-trivially
dependent on each other. Our procedure for estimating uncertainties in resulting T -distributions
is therefore itself non-trivial, and is documented in an Appendix so as not to break the flow of the
paper.1 We note, however, that our method of estimating uncertainties is considerably faster than
the process of calculating the quantities which they themselves constrain.
∗GAM Systematic | Cantab
†University of Cambridge
1In brief, the Markov chain history is used to generate an estimator for the underlying Markov chain transition

matrix, which is itself used to derive the covariance matrix for every pair of bin counts prior to the weighting
and normalisation step. The final uncertainties (after the re-weighting and normalisation process, which introduces
further correlations between bins) may then be written as a simple function of the former set of covariances provided
that (as has already been assumed) the Markov chain has circulated through most of its domain ‘a few’ times.
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2 The T -statistic
The ‘energy test’ makes use of a test statistic T . This statistic maps two sets, S and S̄, to a real
number T (S, S̄), abbreviated T . We will refer to each set as a ‘sample’ and refer to the elements
of each set as ‘events’. The number of events in S is denoted by n, and the number in S̄ by n̄. It
is assumed that each event ei ∈ S (respectively ēj ∈ S̄) is independent and identically distributed
with underlying unknown distribution p (respectively p̄), i.e. ei ∼ p and ēj ∼ p̄. In common with
most two-sample test-statistics, the job of T is to assist in determining whether or not p is the
same as p̄. Summarising crudely: if p is very similar to p̄ then T is expected to take values close to
or below zero, while increasing differences between p and p̄ should (at fixed n and n̄) lead to ever
greater positive values for T . The definition of T used in [BBP18] is given in equation (1),

T =
1

2

1

n(n− 1)

n∑
i 6=j

ψ(ei, ej) +
1

2

1

n̄(n̄− 1)

n̄∑
i 6=j

ψ(ēi, ēj)−
1

nn̄

n,n̄∑
i,j

ψ(ei, ēj) (1)

in which ψ is an appropriately chosen kernel function which maps any two events (whether from S,
S̄ or both) to a number. In any real-world use-case, the choice of ψ is probably the single biggest
determinant of the usefulness of T as a statistic. Much work should therefore go into choosing ψ
appropriately. Our own paper, however, is not interested in the statistical optimality of T , but
seeks instead to improve the efficiency with which the tails of distribution of T -distributions (for
any ψ) can be sampled. Consequently, we fix ψ to be the same exponential function of a Euclidean
distance between events used by [BBP18]:

ψ(ei, ej) = exp

[
−|ei − ej |

2

2δ2

]
, (2)

with δ = 1
2 , even though many alternatives choices of ψ are possible.2

Conceptually there is a difference between (a) the single value of T that might be computed
from a sample S obtained from a physical detector, together with a reference sample S̄ obtained
from somewhere else, and (b) the (hypothetical) T -values that could appear under a null hypothesis
that p = p̄. To distinguish between the two we refer to the former statistic as T (S, S̄), to indicate
that it is a function of the particular samples it digests, and denote the latter random variable by
T (p, n, n̄), to emphasise the values it can take are governed by the model p assumed in the null
hypothesis, together with the numbers of events that will populate each sample. Whether talking
of the statistic T (S, S̄) or the random-variable T (p, n, n̄), equation (1) still applies.

When hypothesis testing, it is of central importance that it is possible to evaluate P (T (p, n, n̄) ≥
T̂ ), which is the probability that T (p, n, n̄) exceeds any fixed value T̂ . If p is independently known,
this probability can (in principle) be determined by generating many independent samples S and
S̄ from p, from which can be recorded the fraction of resulting T -values which are sufficiently
extreme. In practice, there are two reasons such an approach is problematic. The first problem
(‘P1’) is that the formula for T in equation (1) has a complexity which scales as max(n2, n̄2).
This would appear to be bad news for particle-physics, where it is not unusual to need samples
with n of order 108. The second problem (‘P2’) is that, even if T evaluation is fast, it would
be necessary to generate O(3.5 × 108) independent sets S and S̄ and their associated T values
in order to determine the value of T0 corresponding to a 5-sigma excursion with 10% precision.
If neither issue were addressed, a naive 5-sigma p-value calculation in particle physics could thus
easily require an infeasible O(102×8+8) calculations.

The work of [BBP18] could be said to address P1, insofar as it observes empirically that, for
large enough n, there exist values of k of order 100 such that the desired T (p, n, n)-distribution is
well approximated by the distribution of (k/n)T (p, k, k). Since the complexity of the latter statistic
is O(1002) and not O(n2), it has addressed P1 successfully.

In contrast, our own work addresses P2. That is to say: we seek to find better ways of
sampling the extreme tails of the T -distribution (e.g. to calculate 5-sigma or 15-sigma p-values),
independently of whether the T -statistic (or an approximation to it) is costly to calculate. Our
work is thus complementary to that of [BBP18]. Future users may apply both strategies at once,
or use either separately, depending on their needs.

In passing, we note that users who need to address P1 (perhaps because they have large n),
but who cannot use the method of [BBP18] (perhaps because their n is not large enough to make

2Given the decision to fix δ at 1
2
, there is strong motivation to use distributions p and p̄ having length scales of

similar or slightly larger order. For this reason our results in Section 7 use a p which distributes events ei uniformly
within a unit cube.
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the scaling-approximation sufficiently accurate) might consider using the ‘random Fourier features’
method described in Section 3 as it provides an alternate and well-established O(n) technique for
calculating values of the T -statistic with controlled uncertainty.

3 Related work
The above T -statistic was first introduced in 2002-2005 in the High Energy Physics community
[AZ02, AZ05], and this method has been cited in several publications from the LHCb collaboration
[A+15, A+17], and in methods pertaining to the same experiment [Wil11, PCB+17].

Separately there have been a series of developments regarding MMD metrics, which also test for
discrepancies between two samples. These took off with the work of [BGR+06, SPH07, GBR+12],
but appear to inherit characteristics of a technique originally introduced in 1953 [FM53]. A critical
observation is that the energy test given above is equivalent to an MMD test3.

A formal correspondence between energy distances and MMD is known in the statistics lit-
erature [SSGF13], however there does not appear to be an appreciation of this link in the High
Energy Physics literature. We suspect that recent developments for fast and efficient two-sample
tests would be of interest to the LHCb collaboration and others. In particular we would high-
light an efficient spectral approximation of the null hypothesis distribution [GFHS09], the B-test
[ZGB13], and the use of ‘random Fourier features’ in reducing the computational complexity of
MMD test-statistic computation to O(n) from O(n2) [ZM15]. Our contribution is orthogonal to
the techniques mentioned in this section, since we directly target the efficiency of the bootstrap
method [ET93] itself. We also note that our method can be applied anywhere bootstrap is used,
for example in independence testing [ZFGS18].

As has already been mentioned, the authors of [BBP18] conjecture that, in the case of equal
sample sizes n = n̄, the distribution of nT is approximately independent of n for sufficiently large
n. A proof is not provided therein, rather an appeal to the uncorrelated case is made in which the
scaling is known to be exact. Following [BBP18] others [Zec18] have investigated the relation in
more detail and affirmed the conjecture. We observe, however, that such results have been known
for a decade in other fields. For example, in 2009 it was shown in [GFHS09] that there is an
asymptotic limit for the distribution of nT as n→∞, namely

nT −→
D

1

2

∞∑
l=1

λl(z
2
l − 2),

where zl ∼ N (0, 2) ∀l, and λl represents the lth eigenvalue in the following equation∫
E
ψ̃(ei, ej)φl(ei)dp = λlφl(ej).

In this context, φl are the eigenfunctions, and ψ̃(ei, ej) = ψ(ei, ej)−Eeψ(ei, e)−Ee,e′ψ(e, e′).4 Not
only does this confirm the conjecture of [BBP18], as does [Zec18], it goes further by providing an
expression for the limiting distribution for arbitrary kernel function.

4 Bootstrap sampling
Suppose one has a desire to calculate properties of the T (p, n, n̄)-distribution when in possession
of incomplete or limited information about p. Specifically, suppose that knowledge of p is limited
to the availability of one sample Sm containing m events, each independently sampled from p5.
In such a situation, bootstrap sampling can help. Bootstrap sampling [Efr79] makes use of an
approximation p̃ to the unknown distribution p made by combining m delta distributions, one
centred on each of the events in Sm:

p̃(e) =
1

m

∑
ei∈Sm

δ(e− ei).

This distribution p̃, sometimes referred to as the ‘empirical distribution for p’, places probability
only at the locations where events have already been seen. With p̃ so defined, samples drawn from

3Observe that equation (1) above differs from equation (3) of [GBR+12] only by a factor of 2.
4In practice these eigenvalues can be estimated empirically for finite sample size, and Section 2 of [GFHS09]

details this method.
5Typically one might have m = n + n̄, in the case in which one considers the union S ∪ S̄ as the set of events

from which to draw bootstrap samples.
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T (p̃, n, n̄) then become nothing other than values of T generated from n and n̄-sized collections of
events drawn independently from Sm with replacement. Any of the desired properties of T (p, n, n̄)
may then be estimated by repeated sampling from T (p̃, n, n̄).

While bootstrap sampling provides nothing more than an estimate of any of the desired proper-
ties of T (p, n, n̄), the literature [Efr81] suggests that differences between estimates and underlying
parameters become negligible for our purposes when the number of event min [n, n̄,m] exceeds 50
or 100. For the purposes of this paper we therefore make the assumption (in keeping with [BBP18])
that bootstrap sampling (rather than ‘true’ sampling) introduces only negligible uncertainties in
all the places we use it. While it is legitimate to question the validity of this assumption, doing so
is not relevant for the purposes of comparing our approach to that of [BBP18].

5 Efficient sampling in the T -tails
Unavoidably, generators of uncorrelated samples produce extreme samples only rarely. It has
already been mentioned that this is what makes it computationally inefficient to generate multi-
sigma tails of distributions using vanilla bootstrap sampling. We propose that, to overcome this
difficulty, the independent bootstrap sampler of [BBP18] be replaced with a Metropolis-Hastings
Markov chain that: (a) generates correlated samples via a random walk on a state-space of
bootstrap samples, and (b) has a calculable bias toward extreme values. The bias helps the chain
to find the tails, while the correlations permit the tails (once discovered) to be explored more
thoroughly.

Correlation between bootstrap samples in the Markov chain may be introduced in various
ways. The simplest method is to require that the ‘proposal distribution’, Q̂, which suggests Markov-
state transitions from state si to state si+1, should update only a fixed fraction of the events forming
each bootstrap sample. For our purposes, we found it sufficient to use a Q̂ which leaves a random
90% of the events in each bootstrap samples unchanged, and draws the remaining 10% of events
as fresh samples from the relevant empirical distribution. Users working on other problems may
find it necessary to investigate alternative choices.6 This particular proposal algorithm Q̂ happens
to have a density, Q, which is symmetric: Q(si+1|si) = Q(si|si+1).

Bias toward extreme values of T may be obtained by modifying, with a weighting-function
f(T ), the ratio ρ of Q-factors used in the Metropolis-Hastings acceptance rule. Specifically: a
proposal to move to a new Markov state si+1 given a current state si is made. The proposal is
accepted only if a random number chosen uniformly from the real interval between 0 and 1 is found
to be less than the ratio ρ, where:

ρ =
Q(si|si+1)

Q(si+1|si)
f(T (si))

f(T (si+1))
.

If not accepted, the existing state is instead re-asserted (i.e. si+1 is set equal to si). Since our Q
is symmetric, its density cancels in the definition of ρ above and so does not need to be evaluated.
If p(T )dT is (by definition) the desired T distribution, then with the above rule the random
walk intrinsically samples from the weighted density p(T )f(T )dT , and so the resulting T -values
generated by the chain must be unweighted7 to bring them back to the desired distribution. The
considerable freedom in choice of f(T ) is highly constrained by the improvements desired. If the
goal of the biasing is to obtain quantitative information about the tails, a minimal requirement
would be that f(T ) allow efficient recirculation of the Markov Chain between the bulk and the tail
regions. Without this, co-normalisation of the tail with respect to the bulk will not be achieved.
Practically speaking this means that f(T ) must be approximately proportional to 1/p(T ) so that
the Markov chain will visit all T -values approximately uniformly. A measure of the degree of
departure of f(T ) from 1/p(T ) could be taken to be the largest factor, K, by which one part of
the approximately uniform density exceeds another, within a subset τ of the interesting range of

6While the Metropolis-Hastings method is well defined for a wide class of proposal functions, poor choice of
proposal function could easily lead to very inefficient or incomplete sampling. We found our sampler to be stable
with respect to large changes in this 90:10 ratio, but others using this method will have to determine what sort
of proposal function has, for their application, the right balance between high variability (to allow state-space
exploration) and correlation (to allow benefit to be obtained from information learned). By allowing proposals
to change around 10% of the events in any one Markov ‘step’ the sampler can, in principle, reach an entirely
independent bootstrap sample in order ten successful steps. By this measure, our proposal function has a relatively
short memory.

7By ‘unweighted’ we mean ‘weighted with weight 1/f(T )’.
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T -values:

K(τ) = exp

(
max

T1,T2∈τ

∣∣∣∣log

(
f(T1)p(T1)

f(T2)p(T2)

)∣∣∣∣) ≥ 1. (3)

As a rule of thumb: keeping K below ∼ 10 in interesting regions of T could be considered a first-
order requirement for efficiency. Values of K larger than this would indicate that there are parts
of the T -distribution in which the Markov chain is lingering for an order of magnitude more time
than necessary, meaning that a better choice of f(T ) might have allowed equally good precision
for an order of magnitude less computation time.8

Since the efficiency of the sampler is strongly dependent on the choice of weight-function f(T )
it must be choosen carefully. Our approach is to identify a class of functions whose tails have
similar properties to the tails of T -distributions, and which are completely specified by their mean,
second central moment and third central moments.9 We then use a very short pre-sampling phase
(that makes no use of weight-functions for tail boosting) to gain crude estimates of the mean,
second central moment and third central moment of our desired T -distribution. The member of
the aforementioned class of functions having the same moments is then identified, and its reciprocal
(at least in the T range of interest) is used as the final weight function f(T ). Inevitably the moment
estimates obtained from such a pre-run are unlikely to be optimal: the pre-run is unlikely to sample
far into the tails, and third moments are notoriously unstable things to estimate from finite samples.
Nonetheless, the bar is low for tolerability; a weight function f(T ) will speed things up if it is not
pathological and is a better approximation to the desired function (in our case 1/p(T )) than is a
constant. Both are relatively easy to achieve.10

6 Straw models for T -tails
Strictly speaking, T -distributions are discrete and with bounded support. At large n, however, for
all practical purposes they are well approximated by continuous distributions with support on a
semi-infinite region of the real line. We make the heuristic observation that the logarithm of the
probability density function is often well approximated by a hyperbola with a vertical asymptote
on one side and an oblique asymptote on the other. Examples of such hyperbole are shown in the
inset plot within Figure 1. This motivates considering a class of probability densities with similar
properties. The simplest such class will have three parameters: one degree of freedom being needed
to control the location of the vertical asymptote, while the other two specify the location and slope
of the oblique asymptote. It is not necessary that the three parameters have exactly those roles,
only that there be three degrees of freedom capable of providing the necessary control. Indeed,
since an overall location parameter may be trivially introduced into any distribution that lacks
one, it is sufficient to look for two-parameter distributions whose location is not controlled.

Being initially unable to find an off-the-shelf distribution with the above properties, we proposed
one of our own.11 The simplest we could imagine has the following unit-normalised probability

8Note that it is neither possible nor desirable to find a weight function that is exactly proportional to 1/p(T )
and so having K = 1. To begin with, the existence of such a weight would remove the need to use the sampler
since the its only purpose is to estimate p(T ). Furthermore, it is not possible to sample from an unbounded uniform
distribution – so some departure from f(T ) ≈ 1/p(T ) will always be needed outside the range of interesting T values
τ . In such regions the simplest prescription is to replace f(T ) by a constant. This causes the sampler to return to
unbiased behaviour.

9Note that is is not necessary to use functions be determined by their moments. Any parametric or non-
parametric function that can approximately fit a T -distribution and can be extrapolated non-pathologically toward
the tails could be used. We base our approach on moment fitting simply as it provides for a non-iterative fitting
with constant-time guarantees.

10Though we have not found the need to do so, one could iterate this whole process if the resulting weight functions
were found to be of insufficient quality. For example, a short pre-run without weighting could be used to find a first
guess at an optimal weight function, and this could be followed by a secondary pre-run using that first guess to find
a more accurate second guess, etc.

11We initially considered the Generalised Extreme Value (GEV) distribution suggested by [BBP18] as a candidate
model for the tails, but dismissed it after noting that its tails do not, in general, fall as the exponential of a linear
function of T , and so these usually lead to large and inefficient values of K (as defined in equation (3)) in our
test cases. After settling on our straw model, however, we have noted that the a special cases of the GEV called
the Gumbel distribution has a probability density function with a tail of the right form. It is potentially possible,
therefore, that the Gumbel could have been used in place of our own straw model. We have not investigated this
possibility further, but note that as the Gumbel has one fewer parameter than our model, it is by no means guaranteed
that it has sufficient flexibility to fit to both the left and right hand sides of the T -distribution simultaneously.
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Figure 1: Examples of the distributions pstraw(x; a, λ) defined in Equation (4). Values of (a, λ)
shown are: (1, 1) in blue, (1, 3) in dirty yellow, and (−1, 2) in green.

0.000 0.005 0.010 0.015 0.020
T(p,200,200)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

De
ns

ity
 e

st
im

at
e

25,000+1,000 T-evaluations (biased bootstrap)
            25,000 T-evaluations (reference)
     10,000,000 T-evaluations (reference)

Figure 2: We show a number of different estimates of the T (p, n, n) density for n = 200 events
assuming a distribution p which distributes events uniformly within a unit three-dimensional cube.
One estimate (shown in solid red) is generated fromN = 25,000 of our own biased bootstrap MCMC
samples and 1000 unbiased initialisation samples. It may be compared with the estimate obtained
from N = 25,000 unbiased bootstrap non-MCMC samples (dashed green), and N = 10,000,000
unbiased bootstrap non-MCMC samples (dotted blue). All estimates use 47 bins. In each bin, b,
the density is shown as the central line, while the shaded region shows the one-sigma uncertainty
on the density, as calculated by the method documented in the Appendix. Technically, both the
densities and uncertainties are discrete and represent averages over each bin. However, for the
purposes of display only they have been made to look continuous (i.e. the values have been placed
at the centre of each bin and joined to neighbours with straight-line interpolation) as this makes
the overlapping regions easier to follow.
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density function:

pstraw(x; a, λ) =

{
exp[−λ2 ( xa+ a

x )]
2|a|K1(λ) if ax > 0

0 otherwise,
(4)

in whichKn(z) is a modified Bessel function of the second kind. It is controlled by a scale parameter
a (which is also the mode of the distribution) and a skewness parameter λ. The parameter λ is
always required to be greater than zero, while a must be non-zero. The distribution is one-sided,
with support on (0,∞) if a is positive, and on (−∞, 0) if a is negative. Some examples of this
distribution are shown in Figure 1, in which the inset part of the figure demonstrates the desired
hyperbolic properties of the tails.

After the trivial addition of a translational degree of freedom, it is the above density that
becomes our idealised T -distribution’s ‘model’, and whose reciprocal (in the T -regions in which we
are interested) that becomes our weight function f(T ). The process of fitting the above model to
a set of T -values from a pre-run could, in principle, be done by many different methods. As we are
desirous of obtaining a reliable fit in constant time, we eschew iterative solution finders and instead
compute three moments of the data set that is being fitted. In the first part of the Appendix we
have supplied expressions for the quantities λ and a (and the missing position parameter) in terms
of those first three moments. These expressions, together with the moments already calculated,
are what we use to perform our fit to pre-run data. We emphasise, however, that many other
approaches would be possible that rely on none of those results.

Finally, we note that it could be necessary to invent or use other straw models in any cases
where T -distributions were found to look wholly unlike the forms shown in Figure 1. Any mis-match
between straw model and real distribution ought to show up readily through poor efficiency and
increasing uncertainties on the resulting estimates, and so this area should be largely self-policing.

7 Resulting T -distributions
Figure 2 compares three different estimates of the shape of the T (p, 200, 200) distribution for a
p which distributes events uniformly within a three dimensional unit cube. Two of the shape
estimates (green-dashed and blue-dotted) are generated by a vanilla bootstrap process and act
as ‘reference’ distributions against which the estimate from our own ‘biased bootstrap’ estimate
(red-solid) can be compared. The ‘biased bootstrap’ estimate is generated from 25,000 evaluations
of T , following 1000 pre-samples (used to evaluate parameters of the bias function). This is the
same number of T -evaluations used by the green-dashed reference distribution, and so a comparison
between the two (between red-solid and green-dashed) provides a fair assessment of the performance
benefits of ‘biased bootstrap’ over the reference method. It can be seen that the red and green
estimates are in agreement with each other over their common domain, but that the uncertainty
of the green reference method increases dramatically once the density falls to 10−3 of its height at
the peak. The green estimate is evidently useless above T -values of order 0.010, while the ‘biased
bootstrap’ estimate appears well controlled up to T = 0.020 (and presumably beyond). To check
that the biased-bootstrap prediction is correct beyond the point at which the statistics of the
green expire, one can compare it to the dotted blue line, which is generated with three orders of
magnitude more statistics (10,000,000 T -evaluations). Not only is the agreement between red and
blue confirmed to be good everywhere, the benefits of the ‘biased bootstrap’ approach are once
again made manifest. The biased method continues to work well above T -values of 0.016, and over
seven orders of magnitude of variation in probability density, while the reference method (even
with the advantage of 1000 times more computing power) is unable to match this.

8 Conclusion
A biased bootstrap procedure for determining the shapes of T -distributions has been described. It
has been shown to require many orders of magnitude fewer T -evaluations than existing methods
when probing distribution tails. The proposed method does not make approximations beyond the
use of bootstrap itself. When desired, it may be used alongside existing methods, such as those in
[BBP18], for added speed gains.

7



Acknowledgements
We gratefully acknowledge feedback fromWilliam Barter, Rupert Tombs and an anonymous referee
acting for the Journal of Instrumentation. CGL acknowledges support from the United Kingdom’s
Science and Technology Facilities Council (STFC) consolidated grants RG79174 (ST/N000234/1)
and RG95164 (ST/S000712/1).

Appendix

Moments and other properties of the T -tail straw model
The analytic properties of pstraw(x; a, λ), which we make use of when fitting to samples obtained
in the ‘pre-run’ previously mentioned are as follows:

• The mean takes the value 〈x〉 =
aK2(λ)

K1(λ)
.

• The nth non-central moment of this distribution is: 〈xn〉 =
anKn+1(λ)

K1(λ)
.

• The 2nd central moment of this distribution is:

M2 ≡
〈
(x− 〈x〉)2

〉
=
〈
x2
〉
− 2 〈x〉 〈x〉+ 〈x〉2

=
〈
x2
〉
− 〈x〉2

=
a2K3(λ)

K1(λ)
−
(
aK2(λ)

K1(λ)

)2

=
a2

K2
1 (λ)

(
K3(λ)K1(λ)−K2

2 (λ)
)
.

• The 3rd central moment of this distribution is:

M3 ≡
〈
(x− 〈x〉)3

〉
=
〈
x3
〉
− 3

〈
x2
〉
〈x〉+ 3 〈x〉 〈x〉2 − 〈x〉3

=
〈
x3
〉
− 3

〈
x2
〉
〈x〉+ 2 〈x〉3

=
a3K4(λ)

K1(λ)
− 3

(
a2K3(λ)

K1(λ)

)(
aK2(λ)

K1(λ)

)
+ 2

(
aK2(λ)

K1(λ)

)3

=
a3

K3
1 (λ)

(
K4(λ)K2

1 (λ)− 3K3(λ)K2(λ)K1(λ) + 2K3
2 (λ)

)
.

• The ratio R3,2(λ), defined as follows:

R3,2(λ) ≡ M2
3

M3
2

=
K4(λ)K2

1 (λ)− 3K3(λ)K2(λ)K1(λ) + 2K3
2 (λ)

K3(λ)K1(λ)−K2
2 (λ)

is a monotonic decreasing function of λ, whose image is the interval (0, 4) as shown in Figure 3.

Using the above results, the moment fitting description can now be described.

1. From the set of T -values obtained in the ‘pre-run’, compute the sample mean (µ̃), an unbiased
estimator (M̃2) for the second central moment M2, and an unbiased estimator (M̃3) for the
third central moment M3 of the underlying distribution. Define the constant ρ = M̃2

3 /M̃
3
2 .

2. Numerically, find the value of λ which solves the equation R2,3(λ) = ρ and call it λ̂. If
and only if the ratio ρ is between 0 and 4, the monotonic and bounded nature of R2,3(λ)
guarantees a unique solution that is easy to find by bisection search. If ρ is equal to zero or
greater than four, then the estimators are not yet accurate enough, or the distribution being
sampled is not well modelled by our straw model.12

12If the former, then more statistics in the pre-run are needed. If the latter, then a better straw model is needed.
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Figure 3: The dependence of R3,2(λ) on λ.

3. Define the constant â by the two requirements:

|â| =

√
M̃2K2

1 (λ̂)

K3(λ̂)K1(λ̂)−K2
2 (λ̂)

and
sign â = sign M̂3.

Note that the radicand is guaranteed to be positive for any 0 < λ̂ <∞ and 0 < M̂3 <∞.

4. The ‘fitted’ straw-model for the pre-run’s T -distribution may finally be defined to be:

pFit(T ) ≡ pstraw

(
T − µ̃+

âK2(λ̂)

K1(λ̂)
; â, λ̂

)
since this distribution has the desired tail shapes, while sharing mean, second and third
central moments with the estimates obtained from the pre-run. The reciprocal of pFit(T ) is
what will (in the relevant T -range) be used as the weight function to bias the Markov chain.

Uncertainty estimates
Our density estimates are made by un-biasing and normalising histograms that have been filled from
Markov chain sequences having internal correlations.13 It is very helpful to be able to determine
the uncertainties on the resulting density predictions in each bin quickly, from whatever Markov
chain run generates the central values of the density estimate. More formally:

• Suppose that there exists a mechanism, M , that can generate a length-N sequence of values,
T1, T2, . . . , TN , as outputs of a Markov chain with fixed (but unknown) transition matrix
P .14

• Suppose that each of the random variables Ti takes a value in a discrete set of indices which,
without loss of generality, will be taken to be integers between 1 and B inclusive, and which
will be referred to as ‘bins’ for short.15

• Suppose that ~t is a particular instance of such a sequence: ~t = {t1, t2, . . . , tN}, sampled by
the mechanism M from the Markov chain governed by P .

• Suppose that the symbol ‘sb’ is used to denote the number of occurrences of the value b in
the sequence t1, t2, . . . tN , so that ~s = {s1, s2, . . . sB} may represent counts in the bins of a
histogram.

• Suppose that ~s′′ = {s′′1 , s′′2 , . . . s′′B} represents a potentially non-linear transformation of the
bin counts in ~s. Equivalently, suppose that there are B functions g1, g2, . . . , gB such that
s′′b = gb(s1, s2, . . . sB). [This non-linear transformation will represent the re-weighting and
normalisation steps required in our density estimation.]

13The exact formula for our weighting and normalising procedure us given later in (6).
14It is relevant that P is unknown because, although the biased-bootstrap process is a Markov chain, it is one

implemted using a Metropolis-Hastings algorithm and therefore has no direct knowledge of its underlying transition
matrix, even though one exists in principle.

15Since the underlying T -values are not binned, some approximation is introduced here. We have not been able to
derive a generally applicable estimate of the size of the effect introduced by this approximation, though we believe
it to be small in the cases that matter to us. There is is room here for further work.
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• Suppose that the quantities ~S, ~S′′, Sb and S′′b are defined the same way as ~s, ~s′′, sb and
s′′b above, but represent random variables over the process governed by P , rather than a
particular sample generated therefrom by the mechanism M .

Given those assumptions, we may pose two questions whose answers assist in the determining the
uncertainties of our density estimates. These questions are:

1. What are the values of Var[S′′1 ],Var[S′′2 ], . . . ,Var[S′′B ] in terms of P?

2. If M exists but P is not known, is it possible to write down an estimator for P based on only
the single sample ~t, and is this estimator ‘good enough’ to use in place of P in calculating
the above variances?

The expression ‘good enough’ is important and relevant even when answering the first question
because it is meaningless to talk about ‘exact’ uncertainties. An uncertainty exists to provide an
approximate measure of how close a prediction might be to an ideal underlying value. Asking
how uncertain the uncertainty is, would lead to a never-ending descent into the uncertainties on
uncertainties on uncertainties, etc. What is needed, therefore, is a pragmatic approach to answering
the above questions that ensures the answer is fit for purpose, and no more.

Using this freedom, we choose to restrict our attention to cases in which the Markov chain
has begun to reach equilibrium.16 Prior to such a time any density estimate would be largely
meaningless, and talk of its uncertainty doubly so. Assuming that appropriate tests have been
done to ensure that the above criterion is met, then the simple answer to ‘Question 2’ is:

‘Yes: a good estimator for P is the transition matrix obtained by looking at the history
~t and finding within it the proportion of times with which it moved to bin i given that
it was already in bin j.’

Using the convention that P is left-stochastic, we therefore take its estimator to have the value∑
k δi,tk+1

δj,tk
sj

in its ith row and jth column. Not only is this choice heuristically simple, these are also maximum
likelihood estimators for the elements of P (see discussions in [Nor97] and [TL09]). Is it ‘good
enough’? Again, we appeal to the the ‘equilibrium’ assumption to argue that it is. While these
will never represent the true elements of P , we do not need them to do so. More quantitative
arguments justifying this estimator for P are found in [TL09].

What of Question 1? To answer this we proceed in stages. To begin with, we have proved
(assuming as before that P is left-stochastic) the intermediate result that:

Cov[Sb, Sc] = Nπb(δbc − πc) +

{(
NQ

1−Q
− Q−QN+1

(1−Q)2

)
cb

πb + [b↔ c]

}
(5)

within which a number of new symbols have been introduced.17 In particular: Q is defined to be
the matrix Q = P − P∞ in which P∞ is defined by P∞ = limn→∞ Pn which may itself be shown
to be given by

P∞ = (1− P + U)−1 · U
if U is a B×B matrix consisting entirely of ones. Furthermore, the B-vector ~π having components
~π = (π1, π2, . . . , πB) contains the limiting probabilities for the chain to end up in any of its B
states. ~π may be shown (see [TL09]) to be given by

~π = (1− P + U)−1 ·~1

if ~1 is a B-vector consisting entirely of ones. Finally we note that the repeated index b on the right
hand side of (5) does not indicate the summation convention is being used.

Finally, we need to express the variances of the desired transformed quantities, Var[S′′b ], in terms
of the covariances of raw quantities, Cov[Sb, Sc], given in (5).18 In principle this translation can

16In loose terminology we assume the chain has made at least ‘a few’ effectively independent visits to each bin of
the space. Equivalently we may require that the chain has lost knowledge of its starting point ‘a few’ times over.

17We had to derive (5) ourselves as we were unable to find it anywhere else in the literature, although its first
few terms appear in many works ([TL09] is one) which calculate the limit, as N →∞, of Cov[Sb, Sc]/N . We have
not provided a proof of the result here, mostly for reasons of space, but also because the proof is not particularly
illuminating and should be little more than an excercise for persons more familiar with Markov chains than we are.
Persons nontheless interested are welcome to contact the authors for further details.

18This will be achieved in (12).
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be done for arbitrary functions g1, g2, . . . , gB , however in the interests of brevity our presentation
here focuses on the particular transformation which is needed in this analysis to weight each of the
raw histogram counts before then normalising the histogram to unit area:

S′′b =
Sbwb∑B
i=1 Siwi

(6)

where the {w1, w2, . . . , wB} are the set of fixed weights. The trivial changes necessary to generalise
to other transformations are left as an exercise for the reader! Taking differentials of (6) and
defining the fractional differentials dfb and df ′′b by:

dfb =
dSb
Sb

and df ′′b =
dS′′b
S′′b

it may be proved that:

df ′′b =

B∑
k=1

(δbk − S′′k ) dfk. (7)

To gain some understanding of (7) we make some small notational changes. We use the fact
that S′′b represents a probability estimate in bin b to motivate re-labelling it as p′′b . And since
complementary probabilities are often denoted with qs we define q′′b = 1− p′′b . With those changes,
(7) may be written out as:

df ′′1 = +q′′1df1 − p′′2df2 − p′′3df3 − . . .− p′′BdfB (8)

df ′′2 = −p′′1df1 + q′′2df2 − p′′3df3 − . . .− p′′BdfB (9)

df ′′3 = −p′′1df1 − p′′2df2 + q′′3df3 − . . .− p′′BdfB (10)
...

df ′′B = −p′′1df1 − p′′2df2 − p′′3df3 − . . .+ q′′BdfB . (11)

Since the p′′ and q′′ quantities are all positive, in the above form one can see that the Markov
chain correlations19 will tend to reduce the uncertainties in regions of high probability but have
the opposite effect at large distances. Putting everything together:

Var[S′′b ] = Var[dS′′b ] = Var[S′′b df
′′
b ] ≈ s2

bVar[df ′′b ]

= s2
bVar

[
B∑
k=1

(δbk − S′′k ) dfk

]
(by (7))

= s2
b

∑
i,j

Cov
[
(δbi − S′′i ) dfi,

(
δbj − S′′j

)
dfj
]

≈ s2
b

∑
i,j

(δbi − s′′i )
(
δbj − s′′j

)
Cov [dfi, dfj ]

= s2
b

∑
i,j

(δbi − s′′i )
(
δbj − s′′j

)
Cov

[
dSi
Si

,
dSi
Sj

]

≈ s2
b

∑
i,j

(δbi − s′′i )

si

(
δbj − s′′j

)
sj

Cov [dSi, dSj ]

= s2
b

∑
i,j

(δbi − s′′i )

si

(
δbj − s′′j

)
sj

Cov [Si, Sj ] (which is computable using (5)). (12)

Each of the approximations above appeals to the ‘good enough’ doctrine, previously discussed.
Specifically, the above approximations are good if fractional uncertainties are ‘small’, which is
something that is already ensured by the previously used requirement that the Markov chain has
begun to approach equilibrium, thereby placing uncertainties into a linear regime.

The above procedure is fast since the estimator for P can be obtained during histogram filling
at no extra cost, and the remainder of the steps only involve simple matrix operations on B × B
matrices.

19Bootstrap based Markov chains are local and so will tend to positively correlate values of dfb and dfc when b
and c are nearby, and anti-correlate them when far apart.
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Figure 4: Comparison of three independent biased-bootstrap estimates of the density shown in
Figure 2, together with their one-sigma uncertainty estimates.

This concludes the description of how our uncertainties are estimated. What remains to be
understood is why this method of uncertainty estimation appears not to be in wider use in the
high-energy physics community or, for that matter, elsewhere, despite the underlying maths being
more than fifty years old. It would appear to have wide application in many places where, at
present, we estimate uncertainties in Markov chain derived data by re-running the chains a few
more times with different initial conditions or random seeds.

Checks on uncertainties
Since our method of estimating uncertainties is both novel and non-trival, some readers may find
it reassuring to see examples of it working as intended. One way of doing this is to illustrate that
independent density estimates from separate Markov chains agree within the uncertainty esitimates
that this process attaches to each of them. We do so by presenting in Figure 4 three independent
density estimates which, apart from having different random number seeds, are otherwise identical
to those shown in the biased-bootstrap estimate of Figure 2. In particular, all the estimates in
Figure 4 were generated from 25,000 biased bootstrap MCMC samples following 1000 unbiased
initialisation samples. Reassuringly, Figure 4 does indeed show that these three estimates all have
the degree of agreement with each other that would be expected given the sizes of their one-sigma
uncertainty bands.

The top row of plots in Figure 5 show the history of the three chains which generated the
densities just seen in Figure 4. In each case, time runs vertically. The histories show: (a) expected
auto-correlations within the chains, (b) that T -values were visited approximately uniformly, as
desired, and (c) that the chains have made their way between the two ends of the T -spectrum
O(20) times. The latter is strong evidence that the chain should have equilibriated and so the
success of the uncertainty estimate ought not to be surprising.

What might be more interesting is to see the uncertainty estimate under tricker conditions.
The bottom row of plots in Figure 5 shows histories which are only 10% of the length of those seen
previously (i.e. 2,500 MCMC biased-bootstrap samples instead of 25,000). This time it is evident
that these histories cannot be confidently said to have reached equilibrium. The first has hardly
sampled any low T -values, while the second and third have gone from end to end only two or three
times. Nonetheless, despite these tough conditions, the one-sigma uncertainty estimates for these
plots which are shown in Figure 6 are once again remarkably well sized. It is tempting to attribute
this success to the unreasonable effectiveness of mathematics. 2,500 MCMC samples is sufficient
to provide O(100) samples in each of the 30 bins of Figure 6. The most likely transitions from
each of those bins could therefore be relatively well estimated, and as a result of this the matrices
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Figure 5: Histories of the T -values in three long and three short biased-bootstrap chains whose
resulting density estimates are shown in Figures 4 and 6.

P , P∞ and Q can be much better known than one might at first imagine. Since our method of
uncertainty estimation is based on those matrices and analytically considers all possible MCMC
chains consistent with them, not just the one (very short) chain that was actually realised in any
of the three actualised histories, it is perhaps less surprising that the method succeeds so well.

In conclusion: while our confidence in the method is primarily vested in the mathematics,
we hope that these examples provide reassurance that our method of uncertainty estimation does
indeed work well in the circumstances required – namely any in which the esitimated T -distribution
is remotely meaningful.
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