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Abstract 

From 2004 to 2018 the Regulatory Asset Base (RAB) of electricity networks across 

Australia’s National Electricity Market tripled in value, from $32 billion to $93 

billion.  The run-up in the capital stock was driven by forecast demand growth and a 

tightening of reliability standards.  But demand contracted from 2010-2015.  With a 

rising RAB, contracting demand and a regulated revenue constraint, an adverse cycle 

of sharply rising tariffs and falling demand appeared to be emerging.  Some networks 

were characterised by significant investment mistakes in retrospect, and perhaps 

unsurprisingly, various consumer groups and regulatory bodies argued assets should 

be stranded or written-off completely and network tariffs reduced.  From 2015-2018, 

energy demand increased once again.  In this article we present a method for dealing 

with stranded assets under uncertainty; rather than permanently stranding assets that 

fail a used and useful test, we reorganise the financial and economic affairs of a 

template network utility and “Park” excess capacity, issue credit-wrapped bonds to 

temporarily finance the stranded capital stock, then re-test the Parked Assets at the 

end of each five-year regulatory determination.  Parked Assets can then be “Un-

Parked” and returned-to-service in line with connections growth, load growth, or 

both.  The most interesting result is the immediate reduction in network tariffs, and a 

more stable trajectory under our generalised assumptions.  

 

Keywords:    Electricity Utilities, Falling Demand, Stranded Assets. 

JEL Codes:  D4, L5, L9 and Q4. 

 

1. Introduction 

Australian residential electricity tariffs rose sharply over the period 2007-2015. Climate 

change policies, solar Feed-in Tariffs and Australia’s 20% Renewable Portfolio Standard 

contributed to increases but the overwhelming driver related to regulated network tariffs.1  

Significant investment mistakes in retrospect occurred, commencing from 2004.  Indeed, 

from 2004-2018 the Regulatory Asset Base (RAB) of electricity networks across Australia’s 

National Electricity Market (NEM) tripled in value, from $32 billion to $93 billion.  As one 

of our international peers noted, these mistakes have had real implications for politics more 

generally, and have played into the highly polarised narrative around energy policy in 

Australia.      

 

The run-up in the capital stock was driven by forecast demand growth and in some regions a 

tightening of reliability standards by policymakers2.  Power system load growth during the 

late-1990s to mid-2000s, particularly in NEM regions such as Queensland, were surprisingly 

strong due to mining-related demand expansion, sustained population growth and the rapid 

uptake of air-conditioners in the residential sector.  In 2004, a series of unfortunate network-

related load-shedding events occurred in the capital cities of Sydney and Brisbane.  As Helm 

(2014) explains, an energy market crisis will induce an inquiry, an inquiry will produce policy 

recommendations, and some policy recommendations will inevitably be misguided because 

the market is rarely afforded an opportunity to scrutinise their (entirely predictable) 

unintended side-effects.  In this instance, the misguided policy recommendation was to 

                                                           
 Professor of Economics, Griffith Business School, Griffith University.  Views expressed in this article are those of the author.   
 Associate, Energy Policy Research Group, University of Cambridge. 
 Senior Lecturer in Banking & Finance, Griffith Business School, Griffith University. 
1 The Australian Competition & Consumer Commission found the average electricity bill had increased from $1210 to $1636 

(+35.2%) over this period.  The single largest contribution was network charges, up $148 or 35%.  See ACCC (2018 at p.6).   
2 Additionally, in Victoria a contentious ($2.4 billion) smart meter program was added to the capital stock. 
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tighten network reliability standards to reduce the incidence of load-shedding events - with 

the predictable (and predicted) unintended side-effect being Averch & Johnson (1962) gold-

plating.3  The combination of forecast load growth and tighter reliability standards led to 

record levels of capital expenditure between 2005-2015, as Figure 1 illustrates.   

Figure 1: Network Capital Expenditure (1979-2018 – Queensland) 

(Constant 2018 $) 

 
Source:  Simshauser (2014a), Australian Energy Regulator (AER). 

 

An energy market crisis usually involves many things going wrong at once.  In Australia, 

power was first produced in Queensland’s capital, Brisbane, on 9 December 1882 and from 

that moment onwards Australian final electricity demand experienced continuous year-on-

year growth regardless of economic conditions.4  But the Global Financial Crisis and 

disruptive competition in the form of distributed resources combined to produce the first 

sustained contraction in final electricity demand in Australian power industry history, from 

2010 (see Figure 2 – LHS axis).  Thus, not only did prior-period load forecasts prove too 

optimistic, load began to contract in a manner consistent with a network in decline – 

colloquially known as a utility death spiral, and formally defined as a network experiencing a 

sustained, non-temporary reduction in demand that produces excess capacity on large parts of 

a network (Decker, 2016).   By 2015, NEM energy demand (GWh) had fallen to 2004 levels.  

Consequently, rather than deploying scarce capital productively to meet power system load 

growth, significant investment mistakes in retrospect merely added an expensive layer of 

excess capacity5 (see Figure 2 – RHS axis).   
  

                                                           
3 See Simshauser (2014a) for further details. 
4 Negative demand growth was experienced in Tasmania (1968, 1983, 1995, 2005-2006), New South Wales (1983 & 2005), 

Queensland (2004) and in South Australia (1984, 1996, 2002 & 2004) but combined, the NEM regions posted persistent year-on-

year growth until 2010. 
5 As described by Pierce (1984) albeit in relation to a similar pattern with nuclear power stations in the USA.  
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Figure 2: NEM System Load 1990-2018 and Network Regulated Asset Base 

 
Source: Energy Supply Association of Australia (esaa), Australian Energy Market Operator (AEMO), Simshauser (2018a). 

 

Compounding matters, when regulatory determinations were being finalised the financial 

markets (bond markets in particular) were experiencing their worst conditions since the 1929-

1932 financial crisis.6  These conditions fed directly into Capital Asset Pricing Models and 

produced abnormally high regulated rates of return for the monopoly utilities.  Investment 

mistakes in retrospect were thus further amplified by an elevated regulated rate of return.  

When combined with contracting load, retail-level tariffs increased from 12.54c/kWh in 2007 

to 29.34c/kWh by 2015 – a compound annual growth rate of 11.2% or 8.3% above the 2.7% 

average annual inflation rate as illustrated in Figure 3.   

Figure 3: Average Retail Tariff7 (1955-20198) 

 
Source:  esaa, Simshauser (2018b)  

 

                                                           
6 See Simshauser (2014b) and in particular Figure 2 for a comparison of bond yields from 1929-1933 and 2006-2010. 
7 Retail tariff series in Figure 3 uses Queensland data, and is the final end-use tariff including generation + network + retail + 

environmental charges, and is structured as a two-part tariff.  Average use in this calculation is approximately 6250kWh 
including 1250kWh on a discounted ripple control hot water tariff.  There is tariff variation amongst NEM regions, but 

directionally tariff changes have been broadly consistent. 
8 Data is Australian Financial Year, which runs from 1 July to 30 June.  2019 tariffs (i.e. for the 2018/19 Year) were published in 
May 2018. 
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Rising tariffs induced a Demand Response for grid-supplied electricity, and as the forecasts in 

Figure 2 tend to indicate, at levels not previously seen in part due to rooftop solar PV.  For a 

large household consuming 7562kWh per annum, installing a 5kW system (current installed 

cost of ~ $4500) reduces grid supplied power by -40.5% to 4,497kWh.  The potential impact 

of battery storage could intensify grid loses to -63.0% as Figure 4 illustrates: 

Figure 4: Household summer load9, solar PV and battery storage impacts 

 
Source: Simshauser (2016) 

 

With the uptake of solar PV by more than 30% of detached households in regions such as 

Southeast Queensland, network load has been progressively hollowed-out (see Figure 5).  

This, coupled with inadequate tariff design, produced a genuine risk of networks in decline10. 

Figure 5: Distribution Network ‘Average Net System Load Profile’ 

 
Source: Energex (Southeast Queensland), Simshauser (2018a) 

 

When significant investment mistakes in retrospect are combined with a network in apparent 

decline, a certain level of assets will fail a used and useful test and will ultimately meet the 

                                                           
9 This chart displays the average Southeast Queensland household load during 12 critical event days of summer with the full 

underlying annual data set with 30-minute resolution at the customer switchboard circuit level (i.e. including general power, air 

conditioning, hot water heating, lighting and cooking appliances) available in Simshauser (2016). 
10 See also Simshauser (2016). 
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definition of stranded assets, i.e. assets unlikely to be supported by future net revenues 

(Simshauser, 2017).  In the Australian case, there have been numerous calls for network asset 

stranding (see for example Mountain, 2014; Grant, 2016; Grattan, 2018; ACCC, 2018).    

 

A decision to pursue a large-scale asset stranding programme would likely require a well 

settled view of a network in decline.  But rarely are policy and regulatory problems clear cut.  

In practice, future energy demand and electricity network use is inherently uncertain.  We 

suspect few regulatory rule books are pre-populated with suitable policy prescriptions for 

clear-cut episodes of stranded assets, let alone uncertain, forward market conditions.  

Conversely, a failure to deal with significant investment mistakes in retrospect produces static 

efficiency losses and the allocative inefficiency that arises is likely to exacerbate a network in 

decline through investments in bypass options above the efficient level. 

 

In this article, we develop a policy prescription for dealing with stranded assets under 

uncertainty11.  Rather than permanently stranding assets that fail a used and useful test, our 

prescription aims to temporarily Park excess capacity; we then proceed to re-organise the 

financial and economic affairs of a template network utility by issuing government-sponsored 

(credit-wrapped) bonds to temporarily finance the Parked RAB’s underlying debt.   This 

produces an arbitrage between the network cost of capital, and the ultra-low cost of 

government-wrapped bonds.  The Parked RAB balance is then re-tested on a used and useful 

basis at each five-year regulatory determination, at which point Parked Assets are Un-Parked 

and returned-to-service in line with customer connections growth, demand growth, or both.   

 

The most interesting result is the immediate impact on network tariffs – as expected Parking 

the assets and securitisation of the stranded debt (i.e. cost of capital arbitrage) produces a 

reduction in tariffs under our generalised assumptions.  The most contentious aspect of the 

model would be how stranded equity capital is treated.   

 

This article is structured as follows.  Section 2 reviews relevant literature. Section 3 presents a 

Regulated Monopoly Model and our Base Case scenario.  Section 4 analyses the “Park and 

Loan” policy. Conclusions follow. 

 
2. Review of Literature 

A number of explicit and implicit assumptions underpin monopoly price regulation.  Among 

the most fundamental implicit assumptions is growth in demand relative to growth in total 

network costs.  As Decker (2016) explains, the 20th Century was characterised by ever 

expanding demand for utility services, and this underpinned a general stability of tariffs.  But 

if this relationship breaks down such that demand growth stalls or contracts while cost growth 

remains non-negative, the mechanics of price regulation produce an increasingly unstable 

tariff trajectory (Simshauser, 2017). 

 

Historically, significant investment mistakes in retrospect, which might cause a temporary 

surge in cost growth relative to energy demand, could be “sweated out” with comparatively 

little damage done to overall economic efficiency.  Constant population growth and an 

expanding economy could be relied upon to produce ever higher power system demand and 

thus planning errors would self-correct over time.  But various jurisdictions are now 

experiencing networks in decline (or as one reviewer noted, networks in flux) in the traditional 

utility services of electricity, gas, fixed line telecoms and postal services (Decker, 2016).   

 

Significant investment mistakes in retrospect combined with an electricity network in decline 

will present policymakers and regulators with serious problems because the outcomes for 

consumers are in stark contrast to competitive markets (Simshauser, 2017).  In the 

competitive generation market, investment mistakes in retrospect and declining demand result 

in (1) excess capacity, (2) falling spot and forward prices, (3) asset write-downs and plant 

                                                           
11 The authors would like to acknowledge Mr Brian Carrick from Queensland Treasury Corporation, who described this concept 
to Prof. Simshauser (then Director-General of the Department of Energy & Water Supply) in 2017. 
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closures, (4) shareholder losses and (5) gains in consumer surplus through falling prices.  

Conversely, investment mistakes in retrospect and declining demand for a regulated network 

monopoly results in (1) a higher RAB, (2) a higher annual revenue requirement, (3) a 

correspondingly higher regulated tariff, (4) stable returns to shareholders, and (5) welfare 

losses borne entirely by consumers through higher tariffs.   

 

Economic theory and the great regulatory treaties of Bonbright (1961) and Khan (1970, 1971) 

are silent on the concept and how to treat the stranded assets of regulated monopoly utilities.  

Recognition of the problem can be traced back to Hotelling (1938, p266), who first described 

the modern-day utility death spiral, viz. declining demand being aggravated by rising 

monopoly tariffs.  Beyond this, literature can be traced at least as far back as Pierce (1984), 

Joskow & Schmalensee (1986) and Hoecker (1987) who focused on supply-side investment 

mistakes in retrospect, while MacAvoy et al (1989, p.214) first described the risk of a 

network in decline arising from disruptive competition. 

 

A wealth of literature would subsequently emerge in the US (c.1995-2005) due to FERC 

Order 88812 which as a policy had the effect of stranding monopoly generation assets with full 

economic recovery for shareholders.  Recovery was typically by way of long-dated, non-

bypassable stranding charges and in some cases credit-enhanced through the issuance of 

transition bonds (Joskow, 1996a; Michaels, 1998).  More recently, interest in the implications 

of energy markets in decline (or minimal growth) has emerged in the 2010s, with 

contributions from Faruqui (2013), Sioshansi (2014), Crawford (2015), Decker (2016), 

Simshauser (2017) and others.  Decker also catalogues numerous contemporary contributions 

from fixed line telecommunications and traditional postal services. 

 

With significant mistakes in retrospect and a network in decline, asset stranding may become 

necessary in order to reduce the rates of bypass (and demand contraction), and in turn, tariff 

instability.  The regulatory and policy challenge that follows is (1) what assets are to be 

stranded13, and (2) the level of recovery – that is, what percentage of stranded assets should be 

recovered by non-bypassable charges, and what if any should be written-off?   

 

The complexity of asset stranding policy is underpinned by the fact that efficiency arguments 

compete with fairness arguments (Hogan 1994; Baumol & Sidak 1995), the amounts at stake 

are inevitably large (Tye & Graves 1996; D’Souza & Jacob, 2001; Ritdchel & Smestad, 2003) 

and all available remedies14 produce a zero-sum game – any credible solution at least partially 

unwinds the very benefits arising from the cause of stranded assets (Navarro, 1996; Wen & 

Tschirhart 1997).  In the case of FERC Order 888, the full (i.e. 100%) recovery of stranded 

assets was justified on the basis of (1) the regulatory compact, (2) maintaining power system 

financial integrity, and (3) cost causation (McArthur, 1998).  This was however a contentious 

decision (Rose, 1996). 

 The regulatory compact and arguments for Full Recovery 

The regulatory compact can be traced back to 198315 and is largely consistent with Kydland 

& Prescott’s (1977) theory of dynamic inconsistency.  From a fairness perspective, utility 

investors make vast financial investments in long-lived assets to serve the public in exchange 

for a guaranteed rate-of-return.  If a regulator approves as prudent a series of network 

investments at the time of commitment, and then subsequently deems such assets as stranded, 

capital markets (i.e. both debt and equity capital markets) will interpret policy as 

opportunistic and heighten the cost of capital in future regulatory periods, produce investment 

                                                           
12 Federal Energy Regulatory Commission (FERC) Order 888 was enacted 24 April 1996, and had the effect of stranding 
generation assets of approximately $135 billion in value.  See Rose (1996) for a summary of the standing estimate undertaken by 

Moody’s. 
13 Note that ultimately it is the tariff that is stranded rather than specific physical network assets per se (see Simshauser 2017). 
14 Recovery typically occurs via accelerated depreciation, supra-competitive prices or non-bypassable surcharges. 
15 Michaels (1995) observes the use of “regulatory compact” formally appears in court and regulatory proceedings from 1983.  

Rose (1996) notes the notion of a regulatory bargain can be traced back to case law in the 19th century (regarding railroad 
regulation). In his 1972 article, Myers (p78) describes an ‘implicit contract’ between investors and regulators.  
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frictions and potentially block investment (Baumol & Sidak, 1995; Woo et al. 2003; Douglas 

et al. 2009; Kind, 2013).   

 

MacAvoy et al. (1989, pp224-230) highlight incumbent burdens – tariff rigidity, an inability 

to adopt more efficient market segmentation through discriminatory prices, Universal Service 

Obligations, minimum service standards, limits on long term contracts, conflicts amongst 

regulation, policies which subsidise bypass (e.g. solar Feed-in Tariffs) and other mandated 

environmental schemes which all deviate from minimum cost (see also Hogan, 1994; 

Navarro, 1996; Boyd, 1998; Pagach & Peace, 2000; Martin, 2001; Decker, 2016; Simshauser, 

2017).  As MacAvoy et al (1989, p245) noted: 

 

A commonly overlooked feature of most bypass settings is that bypassing customers 

not only receive the service that they purchase from [for example, Solar PV & Battery 

Storage], but also obtain back-up service from the existing utility at no substantial 

cost to them… 

 

Policymakers and regulators frequently force utilities to make sub-optimal investments to 

meet incumbent burdens, and such investments were only originated because returns were 

guaranteed.  Economics may not provide a basis for systematic conclusions on matters of 

equity and fairness, but stranding these asset categories without recovery does present an 

‘inescapable issue of procedural fairness’ (Baumol & Sidak, 1995, p.843).16  Crawford 

(2014) outlines the conditions whereby an asset stranding program may produce higher future 

tariffs in any event.17  Consequently, FERC Order 888 and full recovery was argued to be 

sound public policy, noting recovery mechanisms can be structured without distorting 

competition (Joskow, 1996a; Tye & Graves, 1996).18 

 A normative economic and legal analysis of the regulatory compact 

Efficiency and equity arguments can however be used in reverse (Boyd, 1998).  For example, 

while it may appear unfair to strand a regulator-approved investment, it is also unfair to 

recover excessive and misguided utility investments from customers (Maloney & Sauer 

1998).  Indeed, as one reviewer noted, it is difficult to identify ex post who persuaded who to 

make such investments.  Monopoly utilities that argue for full recovery are over-relying on 

regulation (Brennan & Boyd, 1998); and as Graffy & Kihm (2014) observe, those monopoly 

utilities that do are frequently presiding over businesses characterised by significant 

investment mistakes in retrospect.   

 

A strict normative economic and legal analysis of the regulatory compact does not support  

full recovery of stranded assets as Rose (1996), Navarro (1996), Boyd (1998) and others19 

explain.  Consumers have not agreed to the implicit terms of a regulatory compact whereas 

utility investors signed up for risky returns (Maloney & Sauer, 1998; Woo et al. 2003).  The 

regulatory compact assumes regulators act as agents on behalf of consumers whereas a long 

historical line of economic literature explains why this is not necessarily the case (see Stigler, 

1971; Posner, 1974; Peltzman, 1976).  And because no written contract exists with 

consumers, anything not explicitly identified in regulation is immediately contentious 

(Brennan & Boyd, 1997).  As Rose (1996) and Boyd (1998) explain, the sub-clauses of a 

regulatory compact are matters for pure speculation and cannot be relied upon to justify all of 

the upside, and none of the downside, inherent in long term contracts. Beard et al. (2003) 

highlight that long term contracts always include clauses for contingencies, viz. price re-

                                                           
16 Although not directly relevant to Australia, there is a strand of literature that extends this one step further and classes such 

regulatory action as a violation of the US Constitution’s Takings Clauses of the Fifth Amendment and its application to the states 

under the Fourteenth Amendment.  See Baumol & Sidak (1995), Rose (1996) or Graffy & Kihm (2014) for further details. 
17 The financial economics logic of Crawford (2014) considers a zero recovery scenario which differs from a partial recovery 

scenario in which a RAB is fundamentally unsustainable – even to the most optimistic equity investor.  
18 A reviewer noted that the US situation was unique in that utilities had to agree to deregulation. In many other countries (e.g. 
England & Wales, New Zealand, Singapore, Australia) it was forced upon them and this changes the nature of the recovery 

question.  In New Zealand for example, arguments against full recovery focus on risk premiums; viz. since regulated utilities 

typically earn a 2% premium over the risk free rate, this implies writing off assets once every 50 years. 
19 See also McArthur (1998), Brennan & Boyd (1997), Graffy & Kihm (2014) and Simshauser (2017). 
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openers in circumstances when prices formed under a long-term contract breach certain limits 

or when Material Adverse Change clauses are triggered.  A normative analysis of economics 

and law under conditions of long term contract ambiguity, which ipso facto exists with the 

regulatory compact, dictates that responsibility tends to fall on the party best able to adapt to 

the relevant circumstances.  In the case of investment error and disruptive competition, it is 

difficult to argue this is entirely the consumer (Rose, 1996; Boyd, 1998; Simshauser, 2017).   

 Full vs Partial recovery of stranded assets 

The obligation to supply and other incumbent burdens are, prima facie, compelling arguments 

in favour of full recovery and in certain instances will apply to specific investments (Navarro, 

1996).  However, rarely do utilities flag the risks of large capital expenditures with 

policymakers and regulatory authorities.  McArthur (1998) observes that in hindsight, the 

regulatory compact argument appears designed to conceal the virtually exclusive role 

monopoly utilities have in planning national energy infrastructure, and their role in 

encouraging regulated capital-intensive outcomes.   

 

Ideal regulation forces utilities to operate at competitive levels of investment, price, output 

and profit with prices set so utilities earn a ‘fair return’ on investment (Myers, 1972).  But 

regulatory powers to enforce fair returns have limits and do not extend to setting rates that 

result in positive utility returns, or utility solvency when a network is in decline due to the 

presence of disruptive competition.  The public policy goal economic regulation is not to 

protect firms from competition, but to simulate competition and protect consumers from 

monopoly prices; consequently there is no basis for full recovery arising from disruptive 

competition (Pierce, 1984; Rose, 1996).20  As Graffy & Kihm21 (2014, p26-27) explain:   

 

…regulation and the fair return principle applies when a utility has monopoly power, 

not when it is besieged by disruptive competition that it is failing to navigate… If 

market values decline in response to successful competition, utilities cannot simply 

look to their regulators to undo the impact of fundamental changes in market forces… 

 

A crucial tenet of utility regulation is the used and useful principle (Hoecker, 1987).22  Pierce 

(1984) explains the prudent investment test is a low bar and rarely used in its pure form 

because it would be unusual for utilities to make blatantly imprudent capital commitments.  

When prudent investment is combined with used and useful, excluding certain investments is 

based on an objective test rather than finding fault (McArthur 1998).23 Regulatory approval at 

the time of investment commitment does not, therefore, form a basis for full recovery.  

Regulators have neither the resources, nor responsibility, to create and guarantee investment 

plans, and cannot be expected to match the expertise and resources of utilities, nor come close 

to second-guessing what constitutes a prudent investment program (Navarro, 1996; Maloney 

& Sauer, 1998; Douglas et al. 2009).  Mistakes made by regulators approving apparently 

prudent investments are likely to be a contributing factor, not a primary cause of stranded 

assets and to say otherwise would be re-writing history (Pierce, 1984).  Ultimately, the 

                                                           
20 Boyd (1998) noted from an efficiency perspective, interpretation of implicit contractual obligations following an unspecified 

contingency should consider which party can best adapt to, or insure against, risks due to a costly future contingency (this should 

include considerations of moral hazard).  Analyses of how courts and policymakers interpret duties in the franchise relationship 
with utilities does not mean stranded assets should be fully recovered.  Both an analysis of precedent and an economic analysis of 

optimal contracting suggest partial recovery. 
21 Graffy & Kihm were referring to the 1945 Market Streetcar case.  In summary, the San Francisco Streetcar company was 
incurring losses at a monopoly tariff of 5c in the face of disruptive competition (viz. buses and cars).  The firm sought, and 

regulator approved, tariff increases to 7c.  This exacerbated market share losses, demand plunged further, thus producing a Death 

Spiral.  The regulator reduced tariffs to 6c and court proceedings were initiated.  Market Streetcar lost the case and this key 
regulatory principle (i.e. no obligation to protect a firm from disruptive competition) was established.     
22 The ‘used and useful’ principle can be traced back to a New York Public Service Commission decision in 1922.  Hoecker 

(1987, p.306 – citing N.Y. Pub. Serv. Comm’n 1922) notes the principle established was that …Consumers should not pay in 
rates for property not presently concerned in the service rendered unless (1) conditions exist point to its immediate future use, or 

(2) unless the property is such that it should be maintained for reasonable emergency or substitute service… This latter condition 

clearly indicating reserve planning margins form part of the used and useful asset stock.  See also D’souza & Jacob, 2001). 
23 Rose (1996, p70) explains that if a regulatory framework were to rely on a ‘pure’ prudent investment test, then returns to stock 

and bond holders would be very low and commensurate with the low risk of stranding.  Conversely, a ‘pure’ used and useful test 

would have substantially higher returns to equity and debt holders because they would face stranding risks with no compensation 
because it is embedded in the rate of return.  In practice, most regulatory frameworks employ a combination of both. 
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regulatory system leaves entrepreneurial decisions and capital management in the hands of 

utility management, not those of the regulator (Madian, 1997).   

 

Economic arguments in favour of full recovery are constructed around the premise that 

network regulation has limited the ability of monopoly utilities from raising prices, and that 

asset stranding may ultimately inflate the cost of capital in future periods.  But as Navarro 

(1996), Pagach & Peace (2000) and Woo et al. (2003) have noted, risk-adjusted profits are 

earned by monopoly utilities; and while utility tariffs have been “capped” they have also been 

“floored” – in no unregulated industry do inept firms enjoy such a low probability of failure 

(Michaels, 1995).  Pagach & Peace (2000) and Martin (2001) explain that investors may have 

an initial adverse reaction to a policy of partial recovery but most will quickly discern the 

difference between bad historic investments and well-founded future investments.  D’Souza 

& Jacob (2000) analysed stock price movements of 18 listed utilities in the US that disclosed 

stranded assets in their annual accounts during the 1990s which found that investors did not 

anticipate full recovery prior to FERC Order 888 being announced – anticipating on average 

only 76-77% recovery.   

 Zero recovery not credible 

To be perfectly clear, there is no serious argument for zero recovery of stranded regulated 

monopoly assets (Pierce, 1984; Navarro, 1996; McArthur, 1998; Brennan & Boyd, 1997; 

Beard et al. 2003; Simshauser, 2017).  Some recovery is appropriate, especially where utilities 

have been compelled to invest as a result of regulation or policy mistakes (Baumol & Sidak, 

1995; Hirst & Hadley, 1998; Boyd, 1998; D’Souza & Jacob, 2001; Martin, 2001; Beard et al. 

2003).  At risk is the credibility of government policy – that is, providing stable rules for the 

market is an important function of policymakers and a pattern of random or capricious 

changes undermines the credibility of government (Hogan, 1994; Simshauser, 2017).  As 

Kydland & Prescott (1977) explain, firms respond predictably to dynamic inconsistency. 

 

In Simshauser (2017) a series of asset stranding principles for regulated networks were 

outlined.  The necessary condition for stranded assets was defined as a network in decline, 

and sufficient condition being non-negative cost growth.  Under these conditions tariffs will 

become unstable and the regulatory framework will approach the limits of its design 

envelope.  The principles also suggested that stranded assets are a case-by-case proposition 

(Joskow, 1996b; Hirst & Hadley 1998). 

 

In an asset stranding process, the recovery amount (%) and the mechanism for recovery to be 

selected is important.  And while there are many possible mechanisms, it is ultimately a 

policy choice, not an analytical determination (Simshauser, 2017).  A defining characteristic 

of electricity is that, from a pricing perspective, it has no natural form with flow (kWh), stock 

(kW), load volatility and customer numbers all being legitimate pricing mechanisms (Boiteux, 

1956; Boiteux & Stasi, 1952; Nelson & Orton, 2013; Simshauser, 2016; Keay, 2016).  

Accelerated depreciation24 is also a potential mechanism along with supra-competitive prices 

(Martin, 2001), explicit surcharges (Beard et al. 2003), return of capital only (Pierce, 1984) 

and securitised bond issues (Michaels, 1998; Pagach & Peace, 2000; Martin, 2001; Ritschel & 

Smestad 2003).25  In the present exercise we have opted for the latter. 

                                                           
24 Crew & Kleindorfer (1992) noted that in the presence of emerging technology there is limited time for regulators to take 

remedial action and that exposed assets can adopt more accurate depreciation methods.  Depreciation methods have long been of 

interest to economists, dating at least as far back as Hotelling (1925). Under rate of return regulation, choice of depreciation 
method represents a key input to regulated prices and has a circular reasoning which materially affects how capital costs are 

recovered (Schmalensee, 1989; Burness & Patrick 1992).   
25 Michaels (1998) explains that as a financing tool, securitisation can be traced back to 1977 and its intended effect in the 
stranded asset case is to lower the cost of capital of the recovery target.  The first deployment of transition bonds in the electricity 

industry was in California, where it was used to strand approximately $10bn in generation assets and deliver 10% tariff 

reduction.  As quantitative analysis later in this article demonstrate, the effectiveness of a securitisation program is contingent 
upon (i) interest rate differentials being greater than debt-tenor differences and (ii) where capital markets have systematically 

overestimated the risk of utility default on utility bond payments (Ritschel & Smestad 2003).  More directly, Michaels (1998, 

p60) notes that unless capital markets are wildly inefficient, securitization’s effect on a utility’s cost of capital is likely to be 
small. 
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3. Regulated Monopoly Model 

In this article, we use the Regulated Monopoly Model which simulates a template regulated 

network utility once certain inputs have been defined (see also Simshauser, 2017).  Outputs 

include the Annual Regulated Revenue Requirement, Tariffs, Profit & Loss, Balance Sheet 

and Cash Flow Statements and credit ratios.  Model resolution is annual data over a 20-year 

window.  Key assumptions (Table 1) are based on parameters typical of an Australian 

regulated monopoly but could be adjusted for any relevant jurisdiction.   

 
Table 1: Model Inputs 

 
Source: Simshauser (2017) 

 

In the present exercise, and as with Simshauser (2017), the regulated electricity distribution 

utility modelled has an opening RAB of $10 billion, 1.5 million household customers, with 

existing households consuming on average 6,800kWh pa (intended to be representative of a 

typical distribution network in Queensland or New South Wales).  Total residential load in the 

Base Case commences at 10,025 GWh and decays each year, starting at -0.7% and 

moderating to -0.3% through a combination of energy efficiency effects (0.5% lost load pa), 

solar PV (per Figures 4-5) and battery take-up rates.  New connections growth (1.6%) results 

in new albeit smaller customers loads of 4,200kWh and in certain scenarios Electric Vehicle 

loads are added.  Estimated own-price elasticity is -0.10 and given capital market inputs in 

Table 1, the benchmark WACC is 6.2% (see Eq.6).   

 Annual Regulated Revenue Requirement 

For any network utility, the Annual Regulated Revenue Requirement (𝐴𝑅𝑡
𝑖) involves a 

building block approach comprising approved Operating Expenses 𝜃𝑡
𝑖, Return of Capital (i.e. 

Regulatory Depreciation) 𝛿𝑡
𝑖, Cash Taxes 𝑐𝜏𝑡

𝑖, Return on Capital 𝑟𝑡
𝑖 and Transmission Use of 

System charges 𝜗𝑡
𝑖: 

 

𝐴𝑅𝑡
𝑖 = ∑(𝜃𝑡

𝑖 , 𝛿𝑡
𝑖 , 𝑐𝜏𝑡

𝑖 , 𝑟𝑡
𝑖 , 𝜗𝑡

𝑖) |  𝛿𝑡
𝑖 = [(𝑅𝐴𝐵𝑡

𝑖 𝑙𝑡
𝑖⁄ ) − (𝑅𝐴𝐵𝑡

𝑖 ∙ 𝜋𝑡)] ^ 𝑟𝑡
𝑖 = (𝑅𝐴𝐵𝑡

𝑖) ∙ 𝑊𝐴𝐶𝐶𝑢  (1) 

 

𝛿𝑡
𝑖 is derived through the combination of Straight-Line Depreciation (𝑅𝐴𝐵𝑡

𝑖 𝑙𝑡
𝑖⁄ ) where (𝑙𝑡

𝑖 ) is 

average remaining useful asset life of the ith utility at time t, then deducting RAB Indexation 

(𝑅𝐴𝐵𝑡
𝑖 ∙ 𝜋𝑡) – the latter being how price inflation (viz. 𝜋𝑡) is accounted for in the sunk cost 

recovery process.   𝑊𝐴𝐶𝐶𝑢 for electricity utility sector, u, is subsequently defined in Eq.(6).  

With Operating Expenses, ∀𝑡 >1, 𝜃𝑡
𝑖 escalates at 𝐶𝑃𝐼 − 𝑋.   

 

Each year 𝑅𝐴𝐵𝑡
𝑖 is rolled-forward: 

 

Financial Inputs (t =1) Network Inputs (t =1)

CPI π 2.25 % Customer Numbers 1.5 million

X Factor X 0.10 % Avg Household Load 6,800 kWh

Remain. Asset Life l 30 Yrs Total Residential Load 10,025 GWh

Net Capital Exp. C $200 M Connections Growth pa 1.6 %

Operating Exp. θ $300 M New Households Load 4,500 kWh

Transmission Chrg. ϑ $275 M Energy Efficiency Effect -0.5 %

Accounting Tax aτ
i

30 % Initial Solar PV Takeup 2.7 %

Est. Cash Tax cτ
i

15 % Initial Batter Takeup 2.7 %

Benchmark Gearing D
u
/V

u
60 % Initial EV Takeup 2.7 %

Risk Free Rate Rf 2.90 % Solar Self Consumption 3,064 kWh

Swap Rate R
u

t 0.00 % Battery Self Consumption 1,692 kWh

BBB Credit Spread S
u

219 bps EV Consumption 2,700 kWh

Market Returns Rm 9.40 % Own-Price Elasticity -0.10

Equity Beta  βu 0.70 % Base/Park Scenario Elasticity -0.10

Bond Coupon I
i

2.25 % Network / Retail Tariff 40 %

Imputation Credits  γ
u

40 %
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𝑅𝐴𝐵𝑡+1
𝑖 = [𝑅𝐴𝐵𝑡

𝑖 + 𝐶𝑡
𝑖 + (𝑅𝐴𝐵𝑡

𝑖 ∙ 𝜋𝑡) − (𝑅𝐴𝐵𝑡
𝑖 𝑙𝑡

𝑖⁄ )]     (2) 

 

In (2), 𝐶𝑡
𝑖 is Net Capital Expenditure (i.e. capital expenditure less asset disposals) and (𝜋𝑡) is 

the inflation index.  The non-linear tariff structures and quantities from the various network 

customer segments are given by 𝐴𝑅𝑡
𝑖:  

 

𝐴𝑅𝑡
𝑖 ≡ ∑ ∑ (𝑝

𝑡
𝑘𝑗

∙  𝑞
𝑡
𝑘𝑗

)𝑚
𝑗=1  𝑛

𝑡=1         (3) 

 

Where 𝑝𝑡
𝑘𝑗

 is the price of the kth component of tariff j in year t and 𝑞𝑡
𝑘𝑗

 is the relevant 

expected quantity of component k of tariff j in year t.   Note the relevant quantity may be 

kWh, kW or the number of days in year t.26   

 

In order to derive underlying 𝐴𝑅𝑡
𝑖 for a Park and Loan scenario, let 𝜓𝑡

𝑖  be the value of Parked 

Assets of the ith firm.  Equation (1) is thus modified as follows:  

 

𝐴𝑅𝑡
𝑖 = ∑(𝜃𝑡

𝑖 , 𝛿𝑡
𝑖 , 𝑐𝜏𝑡

𝑖 , 𝑟`𝑡
𝑖 , 𝜗𝑡

𝑖) |  𝑟`𝑡
𝑖

= (𝑅𝐴𝐵𝑡
𝑖 − 𝜓𝑡

𝑖
) ∙ 𝑊𝐴𝐶𝐶`

𝑢
  ^ ∀ 𝑡     (4) 

 

Note 𝑟`𝑡
𝑖 ≠ 𝑟𝑡

𝑖 due to a reduction in 𝑅𝐴𝐵𝑡
𝑖 arising from 𝜓𝑡

𝑖  
 

In order to derive headline 𝐴𝑅𝑡
𝑖 for Park and Loan scenario the recovery of Bonds must be 

accounted for.  Let 𝑏𝑡
𝑖 be the annual cash flows associated with Park and Loan Bonds issued 

of 𝜑𝑖  with a tenor of 𝑦 years and coupon 𝐼𝑖 in order to finance the debt associated with Parked 

Asset amount 𝜓𝑡
𝑖 .  

  

𝐴𝑅𝑡
𝑖 = ∑(𝜃𝑡

𝑖 , 𝛿𝑡
𝑖 , 𝑐𝜏𝑡

𝑖 , 𝑟`𝑡
𝑖 , 𝜗𝑡

𝑖, 𝑏𝑡
𝑖) |  𝑏𝑡

𝑖 = [
𝜑𝑡

𝑖

[1−(1+𝐼𝑖)
−𝑡

(𝐼𝑖)⁄ ]
+ (𝜑𝑡

𝑖 ∙ 𝐼𝑖)] ∀ 𝑡 ≤ 𝑦 𝜑𝑡
𝑖 = 𝜓𝑡

𝑖
∙  (

𝐷𝑡
𝑢

𝑉𝑡
𝑢) (5) 

 

Note that the terms 𝐷𝑡
𝑢 and 𝑉𝑡

𝑢 are defined in Eq.(6). 

 Cost of Capital 

A crucial input driving results in equations (1), (4) and (5) is the 𝑊𝐴𝐶𝐶𝑢 for regulated utility 

firms u: 

 

𝑊𝐴𝐶𝐶𝑢 = {(
𝐸𝑡

𝑢

𝑉𝑡
𝑢) . (

𝑅𝑓 + [𝑅𝑚−𝑅𝑓).𝑢]

[1–c𝜏𝑡
𝑖 .(1− 𝑢 )]

)} + {(
𝐷𝑡

𝑢

𝑉𝑡
𝑢) . (𝑅𝑡

𝑢 + 𝑆𝑡
𝑢)}       (6) 

 

Where:  

𝑅𝑓      = Risk free rate of return 

𝑅𝑚   = expected market return 


𝑢

    = equity beta for the regulated electricity utility firms u 

𝐸𝑡
𝑢 = sector benchmark value of equity 

 𝐷𝑡
𝑢  = sector benchmark value of debt 

𝑉𝑡
𝑢  = total market value = (𝐸𝑡

𝑢 + 𝐷𝑡
𝑢)  

𝑅𝑡
𝑢 = reference interest rate (swap rate) in year t of regulated utility firms u 

𝑆𝑡
𝑢 = credit spread given BBB credit ratings of regulated utility firms 𝑢 in year t 

𝑐𝜏𝑡
𝑖. = effective taxation rate for the ith firm 

𝑢      = estimated utilization of imputation tax credits of regulated utility firms u 

 

Equation (6) is based on Sharpe (1964) and Lintner (1965) with modifications by Officer 

(1994) to deal with dividend imputation (for those jurisdictions with taxation systems 

incorporating imputation credits).  

                                                           
26 Consequently, the unit price may be c/kWh, $/kW or c/day. 
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 Dynamic Financial Model 

In the Profit & Loss Statement, Earnings Before Interest & Tax (𝐸𝐵𝐼𝑇𝑡) and implied Cash 

Earnings (𝐸𝐵𝐼𝑇𝐷𝐴𝑡) are given by: 

 

𝐸𝐵𝐼𝑇𝑡 = 𝐴𝑅𝑡
𝑖 − ∑[𝜃𝑡

𝑖, (𝑅𝐴𝐵𝑡
𝑖 𝑙𝑡

𝑖⁄ ), 𝜗𝑡
𝑖, 𝑏𝑡

𝑖 ] ^ 𝐸𝐵𝐼𝑇𝐷𝐴𝑡 = 𝐸𝐵𝐼𝑇𝑡 + 𝜗𝑡
𝑖   (7) 

 

Net Profit After Tax (𝑁𝑃𝐴𝑇𝑡) commences with 𝐸𝐵𝐼𝑇𝑡 from which interest costs and 

accounting taxes 𝑎𝜏𝑡
𝑖 are deducted.    

   

𝑁𝑃𝐴𝑇𝑡 = [𝐸𝐵𝐼𝑇𝑡  −  [𝐷𝑡
𝑖 ∙ (𝑅𝑡

𝑢 + 𝑆𝑡
𝑢)]] ∙ 𝑎𝜏𝑡

𝑖  |  𝑎𝜏𝑡
𝑖 = 30% ∀ 𝑡    (8) 

 

Net Cash Flow in time t (𝑁𝐶𝐹𝑡) given by: 

 

𝑁𝐶𝐹𝑡 = [𝐸𝐵𝐼𝑇𝐷𝐴𝑡  −  𝑐𝜏𝑡
𝑖 − [𝐷𝑡

𝑖 ∙ (𝑅𝑡
𝑢 + 𝑆𝑡

𝑢)] − 𝜌𝑡
𝑖 − 𝐶𝑡

𝑖 − 𝑌𝑡
𝑖] |𝜌𝑡

𝑖 =
𝐷𝑡

𝑖

[1−(1+(𝑅𝑡
𝑢+𝑆𝑡

𝑢))
−𝑛

(𝑅𝑡
𝑢+𝑆𝑡

𝑢)⁄ ]
 ^𝑐𝜏𝑡

𝑖 = [𝐸𝐵𝐼𝑇𝑡 − [𝐷𝑡
𝑖 ∙ (𝑅𝑡

𝑢 + 𝑆𝑡
𝑢)] ∙ 15% ∀ 𝑡]      (9) 

  

𝜌𝑡
𝑖 is principle repayments on outstanding debt 𝐷𝑡

𝑖 for the ith firm in time t, and 𝑌𝑡
𝑖 is dividends 

declared and paid to shareholders of the ith firm in year t (dividends are paid in the year 

declared).  All other variables are as described above.  Note the model limits the running yield 

arising from ordinary dividends paid from surplus cash as follows: 

 

𝑖𝑓(𝜑𝑖 ≥ 0), ∀ 𝑧, 𝑦, 𝑌𝑡
𝑖 𝐸𝑡

𝑖
⁄ ≤ 4%         (10) 

 

The Balance Sheet comprises working capital 𝜔𝑡
𝑖  which is modelled to match anticipated 

quarterly outlays associated with cash costs 𝜃𝑡
𝑖, 𝜗𝑡

𝑖, 𝐷𝑡
𝑖 ∙ (𝑅𝑡

𝑖 + 𝑆𝑡
𝑢) and 𝜌𝑡

𝑖.  Fixed assets are 

set to 𝑅𝐴𝐵𝑡
𝑖.  While the value of Debt 𝐷𝑡

𝑖 is initially set at the regulatory benchmark (𝐷𝑡
𝑖 𝑉𝑡

𝑖⁄ ), 
in subsequent years it provides the mechanism by which cash surpluses or deficits are 

absorbed: 

 

𝐷𝑡
𝑖 = [𝑅𝐴𝐵𝑡

𝑖 ∙ (𝐷𝑡
𝑖 𝑉𝑡

𝑖⁄ )] ^  𝐷𝑡+1
𝑖 =  (𝐷𝑡

𝑖 − 𝜌𝑡
𝑖 − 𝑁𝐶𝐹𝑡 + 𝑑𝜔𝑡

𝑖 )    (11) 

 

In certain circumstances (𝐷𝑡
𝑖 𝑉𝑡

𝑖⁄ ) falls materially below benchmark due to a build-up of cash 

arising from the constraint in equation (10).  A special dividend or return of capital (𝐾𝑡
𝑖) is 

initiated in the following year, as follows: 

 

𝐾𝑡
𝑖 = 𝑖𝑓[(𝐷𝑡

𝑖 𝑉𝑡
𝑖⁄ )] ≥ 55%, 0, 𝑅𝐴𝐵𝑡

𝑖 ∙ 5% ∀ 𝑡      (12) 

 

Equity 𝐸𝑡
𝑖 is calculated as: 

 

𝐸𝑡
𝑖 = (𝜔𝑡

𝑖 + 𝑅𝐴𝐵𝑡+1
𝑖 − 𝐷𝑡

𝑖)        (13) 

 

The Model produces three financial and three credit ratios: 

 

Return on Assets 𝐸𝐵𝐼𝑇𝑡 (𝜔𝑡
𝑖 + 𝑅𝐴𝐵𝑡

𝑖)⁄       (14) 

Return on Equity 𝑁𝑃𝐴𝑇𝑡 𝐸𝑡
𝑖⁄        (15) 

Running Div. Yield 𝑌𝑡
𝑖 𝐸𝑡

𝑖⁄         (16) 

 

Gearing   𝐷𝑡
𝑖 (𝜔𝑡

𝑖 + 𝑅𝐴𝐵𝑡
𝑖)⁄       (17) 

FFO/Debt  𝐹𝐹𝑂𝑡 𝐷𝑡
𝑖  ⁄ |  𝐹𝐹𝑂𝑡

𝑖 = [𝐸𝐵𝐼𝑇𝐷𝐴𝑡 − 𝐷𝑡
𝑖 ∙ (𝑅𝑡

𝑢 + 𝑆𝑡
𝑢) − 𝑐𝜏𝑡

𝑖 ]  (18) 

FCF/Debt  (𝐹𝐹𝑂𝑡 − 𝐶𝑡
𝑖 − 𝑑𝜔𝑡

𝑖 ) 𝐷𝑡
𝑖⁄       (19) 
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Base Case Results from the model are presented in Table 2 (Years 1-7 displayed).  The basic 

format of Model Results includes Energy Sales, detailed Profit & Loss, Cashflow, Balance 

Sheet and Ratios.  The key results to note from the Base Case are Energy Sold (GWh), which 

declines from 10,025GWh to 9,280GWh by Year 7 and continues to decay through to Year 

20.  The Average Tariff, which rises from 13.4c/kWh to 16.7/kWh is driven by the continual 

rise in Revenue ($1,347.6m to $1,548.8m) and Total Assets ($10,220.1m to $10,863.5m).  

Note throughout this period, the firm retains a BBB credit rating or better. 

 
Table 2: Base Case Results (Years 1-7) 

 
 

The policy dilemma facing this utility is the trajectory of Energy Sold and Average Tariffs, 

which is best illustrated through the full 20-Year outputs in Figure 6.  Specifically, network 

load contracts from 10,025GWh to 7,935 GWh (RHS axis) while Average Tariff (LHS Axis) 

Yr 0 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 6 Yr 7

ENERGY SALES

Energy Sold (GWh) 10,025         9,945            9,866          9,714          9,566          9,421          9,280          

Fixed Rate (c/day) 0.49             0.50              0.50            0.50            0.51            0.51            0.51            

Variable Rate (c/kWh) 10.8             11.1              11.4            11.9            12.4            12.9            13.4            

Average Tariff (c/kWh) 13.4             13.9              14.3            14.9            15.5            16.1            16.7            

Tariff Increase 3.1% 3.3% 4.0% 3.9% 3.9% 3.8%

PROFIT & LOSS

Network Revenue $1,347.6 $1,378.4 $1,411.9 $1,445.8 $1,479.8 $1,514.2 $1,548.8

Stranding Charge - Bond Issuance Not Used

Total Revenue $1,347.6 $1,378.4 $1,411.9 $1,445.8 $1,479.8 $1,514.2 $1,548.8

TUoS $275.0 $280.9 $287.0 $293.1 $299.4 $305.9 $312.4

Opex $300.0 $306.5 $313.0 $319.8 $326.6 $333.7 $340.8

Interest - Park & Loan Not Used

Depreciation $333.3 $347.8 $363.7 $380.1 $397.0 $414.3 $432.1

EBIT $439.3 $443.3 $448.3 $452.8 $456.8 $460.4 $463.4

Interest $305.4 $301.7 $297.4 $292.6 $313.5 $307.5 $301.0

Taxation - Accounting $40.2 $42.5 $45.3 $48.1 $43.0 $45.9 $48.7

NPAT (Underlying) $93.73 $99.14 $105.59 $112.12 $100.35 $107.00 $113.69

Significant Item - Stranded Assets Not Used

Significant Item - Wrapped Bonds Not Used

NPAT (Statutory) $93.7 $99.1 $105.6 $112.1 $100.3 $107.0 $113.7

CASH FLOW

EBITDA + Interest Park & Loan $772.6 $791.0 $812.0 $832.9 $853.8 $874.7 $895.5

Park & Loan - Wrapped Bond Sales Not Used

Park & Loan - Interest Not Used

Taxation - Cash $20.1 $21.2 $22.6 $24.0 $21.5 $22.9 $24.4

Debt - Interest $305.4 $301.7 $297.4 $292.6 $313.5 $307.5 $301.0

Debt  - Principal $88.9 $93.4 $98.2 $103.2 $108.5 $114.0 $119.8

Capex $200.0 $204.3 $208.7 $213.2 $217.8 $222.4 $227.2

Dividends Limit: 4.0% $168.8 $175.6 $183.6 $191.7 $179.3 $187.4 $195.5

Special Dividend $0.0 $0.0 $0.0 $515.4 $0.0 $0.0 $527.5

Net Cash Flow -$10.6 -$5.2 $1.4 -$507.2 $13.3 $20.5 -$499.8

BALANCE SHEET

Working Capital $220.1 $225.1 $230.1 $235.3 $240.6 $246.0 $251.5 $257.2

Stranding Recovery not used

Fixed Assets $10,000.0 $10,091.7 $10,204.3 $10,307.0 $10,399.1 $10,480.1 $10,549.3 $10,606.3

Total Assets $10,220.1 $10,316.7 $10,434.4 $10,542.3 $10,639.7 $10,726.1 $10,800.9 $10,863.5

Debt Finance $6,000.0 $5,926.6 $5,843.4 $5,749.1 $6,158.4 $6,042.0 $5,913.1 $6,298.8

Equity $4,220.1 $4,390.1 $4,591.0 $4,793.2 $4,481.3 $4,684.1 $4,887.8 $4,564.7

$10,220.1 $10,316.7 $10,434.4 $10,542.3 $10,639.7 $10,726.1 $10,800.9 $10,863.5

RATIOS

   Return on Assets (underlying) 4.3% 4.2% 4.3% 4.3% 4.3% 4.3% 4.3%

   Return on Equity (headline) 2.1% 2.2% 2.2% 2.5% 2.1% 2.2% 2.5%

   Running Yield to Opening Equity 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

   Gearing 59% 57.4% 56.0% 54.5% 57.9% 56.3% 54.7% 58.0%

   FCF/Debt ('Modest Positive' = BBB-) 4.1% 4.4% 4.8% 4.8% 4.9% 5.3% 5.4%

   FFO/Debt (> 6% = BBB-) 7.5% 8.0% 8.6% 8.4% 8.6% 9.2% 9.1%

   Implied Credit Rating BBB BBB BBB BBB BBB BBB+  BBB+  

FFO = EBITDA - Interest - Current Taxes.  FCF = FFO - Capex - Chg Working Cap.
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rises from 13.4c/kWh to 16.4c/kWh in real terms (and 25.0c/kWh in nominal terms, which is 

driven by inflation assumption). 

Figure 6: Base Case Energy Sold (GWh) and Average Tariff (c/kWh) 

 
 

Recall the Year 1 network tariff is overinflated to begin with through a combination of 

Averch & Johnson (1962) gold-plating – the product of policy error through a tightening of 

reliability standards, and an additional layer of investment mistakes in retrospect through 

demand forecast error and the implications of disruptive competition (i.e solar PV).   

 

In order to derive our assumed level of excess capacity, Figure 7 provides some context by 

presenting RAB by NEM region over the period 2001-2018 (LHS Axis) along with residential 

customer connections in each region (RHS Axis).   

Figure 7: Regulated Asset Base vs Customer Connections: 2001-2018 

 
Source: esaa; AER; Grant, 2016; Simshauser, 2017. 

 

Table 3 takes the data from Figure 7 and presents an analysis of the change in network RABs 

per customer connection over the period 2005 to 2018 (with 2005 data inflated to 2018 $’s 

using the Consumer Price Index). The combined RAB in 2005 was $49,793 million (2018 

$)27, which serviced 7.47 million household accounts and a further 970,000 business 

customers.  Combined Network RAB had risen to $93.7 billion (+88% in real terms) by 2018, 

whereas customer connections had only increased to 8.86 million (up 18.5%).  Consequently, 

RAB per connections had increased by $3,922 (+59% in real terms).  To the extent that this is 

                                                           
27 The 2005 RAB was $35,768 million in nominal terms. 
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considered an indicator of excess capacity, the final column in Table 3 implies the system is 

carrying $34,755 million of excess network capital (see column J). 

 
Table 3: Change in RAB, Customer Connections, Excess RAB per Connection: 2005 & 2018 

 
 

 
Source: Australian Bureau of Statistics (ABS), AER, esaa, Grant (2016), Simshauser (2017). 

 

To be clear, it is not the purpose of this article to place a value on excess capacity.  The 

analysis in Table 3 ignores important variables such as the required spatial composition of 

various networks, changes in customer density, peak load growth or growth in network 

‘hotspots’ – and accounting for such variables would surely produce a different estimate.  But 

it does provide an indication of the relative impact of erroneous policy vis-à-vis the tightening 

of reliability standards – which were applied to the NSW and QLD regions following 

blackouts in the two capital cities of Sydney and Brisbane, respectively.  Regardless, with the 

sharp increase in network RABs, well above connections growth and energy demand, any 

objective test will conclude some level of capital will fail a used and useful test in the short 

run (especially in NSW and QLD).   

 

But the long run remains uncertain.  After all, customer connections growth remains strong 

which tends to suggest the underlying network will remain used and useful (and perhaps the 

tariff design is a key source of the problem – see Simshauser 2016). In addition, a decline in 

system load over the long run is not a clear cut case given the alternate assumptions in Table 

1 relating to Electric Vehicles (excluded from the Base Case).  The NEM has 8.9 million 

residential electricity accounts, and 12.4 million motor vehicles28 (an average of 1.4 vehicles 

for each electricity account).  These two parameters, (i) customer connections, and (ii) 

Electric Vehicles (EV) may require further clarity before determining that some component of 

the capital stock would permanently fail a used and useful test.  Figure 8 presents three 

scenarios of final energy demand given the load and elasticity assumptions in Table 1, (i) the 

Base Case which shows a network in decline (at -1.2% per annum), (ii) the Park & Loan Case 

which shows a limited opportunity scenario, and (iii) an EV scenario which shows a return to 

growth.  
  

                                                           
28 See ABS series 9309, Motor Vehicle Census, Australia, 31 January 2018. 

Region RAB Connections RAB/Connect RAB Connections RAB/Connect

A B C D = (B÷C) E F G = (E÷F)

($ Million) (Customers) ($/Connect) ($ Million) (Customers) ($/Connect)

NSW $18,021 2,919,583 $6,173 $37,715 3,337,844 $11,299

QLD $14,656 1,574,167 $9,310 $30,209 1,976,904 $15,281

VIC $10,428 2,097,560 $4,971 $15,697 2,533,147 $6,197

SA $4,747 670,743 $7,077 $6,875 768,457 $8,947

TAS $1,941 213,832 $9,077 $3,279 245,012 $13,383

Total $49,793 7,475,885 $6,660 $93,776 8,861,364 $10,583

2005 (in 2018 $) 2018

Region RAB/Connect RAB/Connect RAB Excess RAB Excess

H = (G-D) I = (H÷D) J = (H x F) (J÷E)

($/Connect) (%) ($ Million) (%)

NSW $5,127 83% $17,112 45%

QLD $5,971 64% $11,804 39%

VIC $1,225 25% $3,103 20%

SA $1,870 26% $1,437 21%

TAS $4,306 47% $1,055 32%

Total $3,922 59% $34,755 37%

Change



 
 

 Page 16 

Figure 8: Network Load under Base Case, Park and Loan Case and EV Scenario 

 
 

 

4. Asset stranding under uncertainty –  Park and Loan 

If the Base Case formed a dominant scenario, a policy decision to strand some component of 

the RAB would seem inevitable.  The lower tariff arising from asset stranding would slow the 

rate of decline, reduce static efficiency losses, and reduce dynamic efficiency losses by 

curtailing over-investment in non-grid supply.   

 

But because the present exercise involves demand uncertainty, network asset stranding may 

eventually prove to be an incorrect policy.  Asset stranding is not a costless exercise.  To the 

extent that equity capital and equity returns are adversely affected by such a policy, it would 

have ramifications for the future cost of capital and capital investment continuity.   

 

Yet in the circumstances, excess capacity exists and is producing static and dynamic 

efficiency losses.  An alternate policy instrument is to temporarily strand assets that fail a 

used and useful test, and progressively retest network utilisation at each regulatory reset (i.e. 

five-year intervals).  In the following analysis, we use customer connections as the testing 

variable to maintain consistency with the method of determining excess capacity.  

Specifically, the basis for determining excess capacity and the percentage of the RAB to be 

Parked uses the following equation (along with Queensland Data from Table 3 for illustrative 

purposes): 

 

%_𝑃𝑎𝑟𝑘𝑒𝑑_𝑅𝐴𝐵𝑡+1
𝑖 =

[(𝑅𝐴𝐵2018
𝑄𝑙𝑑

𝐶𝑢𝑠𝑡2018
𝑄𝑙𝑑

⁄ )−(𝑅𝐴𝐵2005
𝑄𝑙𝑑

𝐶𝑢𝑠𝑡2005
𝑄𝑙𝑑

⁄ )∙(𝐶𝑃𝐼2018 𝐶𝑃𝐼2005⁄ )]

(𝑅𝐴𝐵2018
𝑄𝑙𝑑

𝐶𝑢𝑠𝑡2018
𝑄𝑙𝑑

⁄ )
  (20) 

 

 

The application of Eq.20 produces a Parked RAB of $3,907 million as follows:   

 

%_𝑃𝑎𝑟𝑘𝑒𝑑_𝑅𝐴𝐵𝑡+1
𝑖 =

[(
$30,209𝑚

1.977𝑚 ) − (
$10,528𝑚

1.574𝑚
) ∙ (

112.9
81.1 )]

(
$30,209𝑚

1.977𝑚 )
 

 

%_𝑃𝑎𝑟𝑘𝑒𝑑_𝑅𝐴𝐵𝑡+1
𝑖 = 39.07%  

 

𝑃𝑎𝑟𝑘𝑒𝑑_𝑅𝐴𝐵𝑡+1
𝑖 = 𝑅𝐴𝐵𝑡

𝑖  × 39.07% | 𝑅𝐴𝐵𝑡
𝑖 =  $10,000 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 
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𝑃𝑎𝑟𝑘𝑒𝑑_𝑅𝐴𝐵𝑡+1
𝑖 = $3,907 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

 

Figure 9 provides a conceptual illustration of the network RAB before, and after, the Park and 

Loan Asset Stranding Policy.  With the Park and Loan scenario, $3,907 million of the RAB 

has been Parked in Year 2.  This immediately reduces the RAB from $10,092 million to 

$6,184 million.29  Then at the end of each 5-year regulatory period, a certain amount of the 

Parked RAB has been returned-to-service (i.e. in Years 6, 11 and 16) in line with customer 

connections growth.  

Figure 9: RAB – Base Case vs Park and Loan 

 
 

A policy decision to temporarily strand $3,907 million or ~39% of a network utility’s RAB 

without some form of financial and economic reorganisation will produce a distressed 

business.  The reason for this is axiomatic, but for clarity, the Model reveals that if $3,907 

million is stranded with 0% stranded asset recovery, utility financials and credit metrics 

immediately deteriorate from “investment grade” (i.e. BBB- or higher) to “junk”.  The firm 

would enter severe financial distress and would be technically insolvent within 12 months 

because revenues and tariffs fall by 29.5% (with all other variables held constant). 

 

Our Park and Loan policy involves the securitisation of the benchmark debt associated with 

the Parked RAB.  That is, $2,344 million in credit-wrapped bonds (i.e. 60% of $3,907 million) 

are issued and wrapped by government, with bond proceeds used to repay outstanding 

network utility debt strictly associated with the Parked RAB.  This Park and Loan approach 

ensures utility credit metrics continue to meet investment grade thresholds.  Furthermore, 

bonds can be wrapped by government because the beneficiaries of the policy, the 1.5 million 

household consumers, collectively underwrite bond coupon payments through specific Park & 

Loan stranding charges.   Table 4 presents the Park and Loan Model Results.   

 

There are some vital changes to the financial and economic affairs of the network utility by 

comparison to the Table 3 Base Case results.  First, notice from Year 2 in the Profit & Loss 

Statement that Total Revenue ($1025.3m) now comprises both Network Revenue ($972.6m) 

and Stranding Charges ($52.7m) – the latter being a charge to consumers to cover the credit-

wrapped bond issue.  Bond Interest also appears as a new expense item.  The Profit & Loss 

also includes two Significant Items:   

 

                                                           
29 Note also that as with the modelling results in Simshauser (2017), annual Capex was reduced marginally, from $200 million to 
$175 million in recognition that such a policy will induce a change in forward investments. 
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1. a charge against profit for the Stranded Assets (-$3,907m) in Year 2 while in Year 6 

(and in Years 11 and 16) as Parked RAB is progressively returned to service, an 

equivalent component of the Stranded Asset charge is reversed (+$763.6m in Year 6, 

and in Years 11 and 16); and  

 

2. proceeds from the sale of credit-wrapped bonds in Year 2 ($2,344.4m), while in Year 

6 (and in Years 11 and 16) a charge against profit is applied for the redemption of the 

credit-wrapped bonds as Parked RAB is returned to service (and in consequence, 

proportional utility Debt Finance is resumed and underpinned by the reinstated RAB).   

 
Table 4: Park and Loan Scenario Results (Years 1-7) 

 
 

Similar movements then flow through the Cash Flow Statement and the Balance Sheet.  

Notice the firm retains its investment grade credit metrics. To be clear, however, in this 

Yr 0 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 6 Yr 7

ENERGY SALES

Energy Sold (GWh) 10,025         10,070          10,120        10,102        10,096        10,038        10,022        

Fixed Rate (c/day) 0.49             0.35              0.35            0.36            0.36            0.39            0.40            

Variable Rate (c/kWh) 10.8             7.7                7.9              8.2              8.4              9.3              9.6              

Average Tariff (c/kWh) 13.44           10.18            10.41          10.72          10.97          12.08          12.40          

Tariff Increase -24.3% 2.3% 2.9% 2.4% 10.0% 2.7%

PROFIT & LOSS

Network Revenue $1,347.6 $972.6 $1,001.1 $1,030.2 $1,055.1 $1,169.7 $1,200.5

Stranding Charge - Bond Issuance $0.0 $52.7 $52.7 $52.7 $52.7 $42.4 $42.4

Total Revenue $1,347.6 $1,025.3 $1,053.9 $1,083.0 $1,107.9 $1,212.1 $1,243.0

TUoS $275.0 $198.2 $203.5 $208.9 $213.5 $236.3 $242.2

Opex $300.0 $306.5 $313.0 $319.8 $326.6 $333.7 $340.8

Interest - Park & Loan $0.0 $52.7 $52.7 $52.7 $52.7 $42.4 $42.4

Depreciation $333.3 $213.1 $224.1 $235.6 $247.5 $290.0 $303.4

EBIT $439.3 $254.8 $260.5 $266.0 $267.5 $309.7 $314.2

Interest $305.4 $182.3 $177.9 $194.6 $195.0 $195.1 $215.0

Taxation - Accounting $40.2 $21.7 $24.8 $21.4 $21.7 $34.4 $29.7

NPAT (Underlying) $93.7 $50.7 $57.8 $50.0 $50.7 $80.2 $69.4

Significant Item - Stranded Assets $0.0 -$3,907.4 $0.0 $0.0 $0.0 $763.6 $0.0

Significant Item - Wrapped Bonds $0.0 $2,344.4 $0.0 $0.0 $0.0 -$458.1 $0.0

NPAT (Statutory) $93.7 -$1,512.2 $57.8 $50.0 $50.7 $385.6 $69.4

CASH FLOW

EBITDA + Interest Park & Loan $772.6 $520.7 $537.4 $554.3 $567.8 $642.2 $660.0

Park & Loan - Wrapped Bond Sales $0.0 $2,344.4 $0.0 $0.0 $0.0 -$458.1 $0.0

Park & Loan - Interest $0.0 $52.7 $52.7 $52.7 $52.7 $42.4 $42.4

Taxation - Cash $20.1 $10.9 $12.4 $10.7 $10.9 $17.2 $14.9

Debt - Interest $305.4 $182.3 $177.9 $194.6 $195.0 $195.1 $215.0

Debt  - Principal $88.9 $92.3 $57.2 $65.8 $69.3 $72.8 $84.3

Capex $200.0 $178.8 $182.6 $186.5 $190.5 $194.6 $198.8

Dividends Limit: 4.0% $168.8 $3.6 $121.0 $112.0 $115.7 $119.4 $137.3

Special Dividend $0.0 $0.0 $314.5 $0.0 $0.0 $0.0 $0.0

Net Cash Flow -$10.6 $2,344.4 -$380.9 -$68.1 -$66.4 -$457.6 -$32.9

BALANCE SHEET

Working Capital $220.1 $225.1 $230.1 $235.3 $240.6 $246.0 $251.5 $257.2

Stranding Account $0.0 -$3,907.4 $0.0 $0.0 $0.0 $763.6 $0.0

Fixed Assets $10,000.0 $10,091.7 $6,289.1 $6,389.0 $6,483.8 $6,572.7 $7,406.0 $7,468.0

Total Assets $10,220.1 $10,316.7 $6,519.2 $6,624.3 $6,724.3 $6,818.7 $7,657.5 $7,725.2

Debt Finance $6,000.0 $5,926.6 $3,494.9 $3,823.8 $3,831.4 $3,834.0 $4,224.2 $4,178.4

Equity $4,220.1 $4,390.1 $3,024.2 $2,800.5 $2,892.9 $2,984.7 $3,433.3 $3,546.8

$10,220.1 $10,316.7 $6,519.2 $6,624.3 $6,724.3 $6,818.7 $7,657.5 $7,725.2

RATIOS

   Return on Assets (underlying) 4.3% 3.9% 3.9% 4.0% 3.9% 4.0% 4.1%

   Return on Equity (headline) 2.1% -50.0% 2.1% 1.7% 1.7% 11.2% 2.0%

   Running Yield to Opening Equity 4.0% 0.1% 4.0% 4.0% 4.0% 4.0% 4.0%

   Gearing 59% 57.4% 53.6% 57.7% 57.0% 56.2% 55.2% 54.1%

   FCF/Debt ('Modest Positive' = BBB-) 4.1% 4.1% 4.2% 4.1% 4.3% 5.4% 5.4%

   FFO/Debt (> 6% = BBB-) 7.5% 9.4% 9.1% 9.1% 9.4% 10.2% 10.3%

   Implied Credit Rating BBB BBB+  BBB+  BBB+  BBB+  BBB+  BBB+  



 
 

 Page 19 

particular version of the model, the equity component of the Parked RAB is stranded without 

compensation until such time as it is returned-to-service.  Equity return variations of the 

model are of course possible, and in certain instances, warranted.   

 

Figure 10 illustrates the annual balance of the Parked RAB (both underlying Parked RAB, 

and headline Parked RAB which includes Indexation consistent with Eq.2) and wrapped 

Bonds on issue along with their redemption profile.  While not evident from Table 4, Figure 

10 also highlights that Bonds are fully redeemed in Year 21, whereas some residual Parked 

RAB equity remains outstanding (and may remain outstanding in an episode of decline). 

Figure 10: Parked RAB Balance and Wrapped Bonds on Issue 

 
 

The effect of the Parked RAB and securitised bond issue is an immediate and pronounced 

reduction in network tariffs, as Figure 11 illustrates.  The continuously rising Base Case tariff 

was driven by a rising RAB and contracting load.  In the present model, the immediate 

reduction in the RAB produces a lower Park and Loan tariff, and when combined with 

modest own-price and inter-scenario demand elasticity assumptions (i.e. -0.10, and 40% 

thereof due to network tariffs forming only 40% of the final electricity bill), the rate of 

network load in decline slows (see Figure 8).  Note however there are pronounced tariff rises 

as components of the Parked RAB are gradually returned-to-service.   

 

Figure 11 also includes a third scenario involving the Park & Loan structure but with the 

addition of EVs.  The material expansion in network load (per Figure 8) produces a lower 

tariff due to better utilisation of the sunk network, albeit with pronounced rises in tariffs as 

components of the Parked RAB are returned-to-service. 
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Figure 11: Base Case tariffs vs Park and Loan tariffs 

 
 

The results in Figure 11 are based on a simplified variable rate tariff.  A variable rate structure 

(c/kWh) is a poor design for an electricity network given periodic load and intermittent solar 

PV (see Simshauser 2016).  As noted earlier, backup services are greatly undervalued by two-

part tariffs let alone a single rate tariff structure.  To examine the other extreme of pricing 

structures would be a fixed connection charge ($ per connection per annum) for each 

customer. This is illustrated in Figure 12, and the same substantive result prevails, namely, a 

sharp initial reduction in the price of network services, with gradual step-ups as some 

component of the Parked RAB is returned-to-service.30 

Figure 12: Base Case Connection Charge vs Park and Loan Connection Charge 

 
 

While a variable rate tariff is a sub-optimal tariff design by comparison to a two-part tariff, a 

pure connection access charge is also likely to be suboptimal.  The ideal tariff design likely to 

comprise some combination of fixed access, maximum demand charge and variable energy 

rate (Simshauser, 2016). 

 

                                                           
30 Note in the Regulated Monopoly Model EVs do not add to customer connections, hence the EV scenario is the same as the 
Parked RAB scenario vis-à-vis fixed connection charge. 
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5. Conclusion 

From 2004 to 2018 the Regulatory Asset Base of electricity networks in Australia’s National 

Electricity Market tripled in value, from $32 billion to $93 billion following a misguided 

policy of tighter reliability standards, erroneous load forecasts and significant investment 

mistakes in retrospect.  Not only did demand growth fail to materialise, load contracted over 

the period 2010-2015. The rising RAB, contracting demand and regulated revenue constraint 

produced sharply rising network tariffs.  Various consumer groups and regulatory bodies 

argued that assets should be stranded (with zero recovery) and network tariffs reduced.   

 

A change in network tariff trajectory did occur from 2015, not through asset stranding, but 

courtesy of record low interest rates, low and stable inflation rates, and a consequential (and 

severe) reduction in the regulated rate of return awarded to networks by the Australian Energy 

Regulator.   The regulated rate of return for networks in 2009 for the 2010-2015 regulatory 

period was 10.06% following the Global Financial Crisis; this was reduced to just 6.01% in 

the 2015-16 determination – a reduction of 405 basis points.31  From 2015-2018, final 

electricity demand increased once again across various networks – a reminder that network 

demand is inherently uncertain.   

 

In this article, we presented a method for dealing with stranded assets under uncertainty. 

Rather than permanently stranding assets that fail a used and useful test, we temporarily 

Parked the excess network RAB and proceeded to reorganise the financial and economic 

affairs of a template network utility by issuing credit-wrapped bonds to finance the debt 

associated with the stranded capital stock.  Our policy then re-tested the Parked RAB at the 

end of each five-year regulatory determination.  Parked Assets were Un-Parked and returned-

to-service in line with customer connections growth.  The policy produced an immediate 

reduction in network tariffs and a more stable trajectory albeit with marked increases when 

assets were returned-to-service.  

 

Our analysis has a number of limitations.  We dealt seldom and lightly on how to determine 

the value stranded assets; we measured ‘RAB per connection’ before, and after, a material 

change in policy and market conditions, and our simplifying assumption deemed the 

difference to be excess capacity. While this may provide an indication of excess capacity, the 

measurement years selected (viz. 2005 and 2018) were arbitrary and it would therefore be an 

accurate valuation only by chance.  The valuation also ignored important variables such as 

changes in peak demand growth, the required spatial composition of various networks and 

other parameters known to be important.   

 

Additionally, we did not contemplate the macroeconomic significance of the policy; if our 

valuation of excess capacity is indicative, then a wide-ranging Park and Loan program would 

require wrapped government bonds totalling $20 billion (iof .e. $60% debt underpinning a 

$34 billion in Parked Assets, per Table 3).  Such a large program is unlikely to have no effect 

on the future cost of money for participating governments.  Finally, our analysis ignored the 

treatment of Parked equity capital, and it also ignored how to treat a Parked RAB that 

becomes permanently stranded.  These items represent areas for further research.  
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