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Dissection of metabolic reprogramming in
polycystic kidney disease reveals coordinated
rewiring of bioenergetic pathways
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Christian Frezza 4 & Alessandra Boletta1

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder caused by

loss-of-function mutations in PKD1 or PKD2. Increased glycolysis is a prominent feature of the

disease, but how it impacts on other metabolic pathways is unknown. Here, we present an

analysis of mouse Pkd1 mutant cells and kidneys to investigate the metabolic reprogramming

of this pathology. We show that loss of Pkd1 leads to profound metabolic changes that affect

glycolysis, mitochondrial metabolism, and fatty acid synthesis (FAS). We find that Pkd1-

mutant cells preferentially use glutamine to fuel the TCA cycle and to sustain FAS. Interfering

with either glutamine uptake or FAS retards cell growth and survival. We also find that

glutamine is diverted to asparagine via asparagine synthetase (ASNS). Transcriptional pro-

filing of PKD1-mutant human kidneys confirmed these alterations. We find that silencing of

Asns is lethal in Pkd1-mutant cells when combined with glucose deprivation, suggesting

therapeutic approaches for ADPKD.
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Autosomal dominant Polycystic Kidney Disease (ADPKD)
is a monogenic disorder, caused by loss-of-function
mutations in either the PKD1 (in ∼85% of cases) or

PKD2 (in the remaining ∼15%) genes1–3. The two proteins
encoded by these genes, Polycystin-1 (PC-1) and Polycystin-2
(PC-2), are assembled into a functional complex at primary cilia,
whose activity is defective in the disease. Additionally, PC-1 can
be cleaved at several proteolytic sites4 resulting in products that
can translocate either into the nucleus5, or into mitochondria6 or
be localized at mitochondrial-associated membrane contacts7,8.
Cysts are epithelial outpouches of clonal origin increasing in
number and size along the life of affected individuals. Inheriting
one mutant allele is not sufficient for cysts to arise, requiring a
second event causing the function of the polycystins to drop
below a critical threshold of activity2. Loss of heterozygosity has
been reported in a subset of cysts suggesting that this might be
one of the mechanisms9.

Together with the deregulation of several signalling cascades,
ADPKD exhibits metabolic alterations10–12. Among these,
defective glucose metabolism was shown to be a feature of the
disease11,12 in a process resembling the Warburg effect observed
in cancer. This finding prompted investigators to hypothesize that
metabolic reprogramming might be a general feature of the dis-
ease13,14. Indeed, increased aerobic glycolysis, impaired beta-
oxidation, reduced mitochondrial activity were reported in cel-
lular and animal models lacking the Pkd1 gene6–8,11,15–19, while
altered glutamine usage was reported in a non-orthologous ani-
mal model of recessive polycystic kidney disease20. Likewise,
inhibitors of glutamine usage proved effective in retarding disease
progression in some, but not in other, models of the disease21,22.
However, an overview of these metabolic alterations and their
interconnections is still lacking. Metabolic profiling was carried
out in non-orthologous models of the disease (i.e. cystogenesis
caused by mutations in other genes)23,24, while a single study has
attempted at profiling metabolites in the kidneys of a Pkd1
orthologous mouse model15 reporting only a minimal metabolic
change in murine kidneys derived from a ubiquitous, inducible
inactivation of the Pkd1 gene.

Here, we present a comprehensive metabolomics character-
ization of cells and renal tissues from a mouse model carrying the
kidney-specific inactivation of the Pkd1 gene. Our data indicate a
broad metabolic rewiring that involves several pathways includ-
ing central carbon metabolism and glutamine utilization. Finally,
we show that glutamine metabolism is interlinked with aspar-
agine synthesis in ADPKD and we identify the Asparagine Syn-
thase (Asns) gene as an essential component of the process. Of
note, targeting this enzyme by siRNA becomes lethal to ADPKD
when associated with inhibition of glycolysis. Our data provide
evidence of a broad and coordinated metabolic reprogramming in
ADPKD, suggesting potential therapeutic strategies.

Results
Metabolomic profiling shows multiple changes in Pkd1-
mutants. To gather a comprehensive picture of the metabolic
derangements observed in ADPKD mouse models, we applied
non-targeted global metabolomics25 to an orthologous mouse
model of ADPKD carrying inactivation of the Pkd1 gene
exclusively in the kidney as to avoid confounding effects
derived from extra-renal inactivation. To this end we employed
KspCre;Pkd1flox/− kidneys carrying inactivation of the Pkd1
gene in the distal tubules and collecting ducts of the kidney. To
minimize phenotype variability in the experimental design we
used a pure C57BL/6N background (i.e. >10 backcrosses) and
performed the study upon precise timing of the day of birth of
the animals (see methods). Furthermore, samples were collected

at P4, when the kidneys are already cystic, but not yet func-
tionally or structurally severely compromised (Supplementary
Fig. 1a, b). Importantly, neither infiltration nor fibrosis could be
detected at this time (Supplementary Fig. 1a). To further
strengthen the outcome, we designed the study so that kidneys
were collected from 4 litters containing each 2 cystic (KspCre;
Pkd1flox/−) and 2 control littermates (KspCre;Pkd1flox/+ or
Pkd1flox/+, used interchangeably) of each gender (8 males and 8
females in total) (Fig. 1a) to maximize the possibility to use
intra-litter controls. Kidney-over-body weight ratios of Pkd1-
mutant mice were significantly different from controls (P <
0.0001), but very similar in males and females at this neonatal
stage (P4), possibly because sexual maturation is not yet
achieved (Fig. 1b). Furthermore, no increase in Epo or Vegf
transcription could be detected, thus excluding the possibility of
these kidneys being hypoxic (Supplementary Fig. 1c). Appli-
cation of Liquid Chromatography–Mass Spectrometry (LC-MS)
resulted in the detection of 550 metabolites. A Principal
Component Analysis (PCA) showed a clear separation between
the cystic and control samples indicating a negligible influence
of inter-gender and inter-litter differences in these samples
(Fig. 1c). In line with this, hierarchical clustering analysis
showed separation of the cystic and control samples (Fig. 1d).
Paired t-test analysis was applied to take into account the intra-
litter samples, resulting in the identification of 488 metabolites
that significantly changed (adjusted P < 0.05), and 384 sig-
nificantly different metabolites when considering both P-value
and fold change (adjusted P < 0.05, absolute fold change >2)
between cystic and control samples. A volcano plot of the data
shows that 213 of these metabolites are downregulated, while
171 are upregulated, and that the main alterations are related to
amino acids, carbohydrates, and lipids (Supplementary Fig. 1d
and Supplementary Data 1).

A number of different metabolic pathways were found
significantly altered (adjusted P < 0.05, absolute fold change > 2)
(Supplementary Fig. 1e). Among these, striking differences were
observed in metabolic pathways involved in bioenergetics,
including glycolysis (GLY), pentose phosphate pathway (PPP),
the tricarboxylic acid (TCA) cycle, fatty acid oxidation (FAO),
and fatty acid biosynthesis (FAS) (Fig. 1e). The metabolites that
appeared to be mostly accumulated in the cystic kidneys were
citrate (P < 0.0001), aconitate (P= 0.0003), and α-ketoglutarate
(α-KG) (P= 0.0079) (Fig. 1f). In line with this, KEGG-Pathways
Based Enrichment Analysis showed that the TCA cycle is among
the pathways affected with a statistically significant Enrichment
Score (ES) (P ≤ 0.05) (Supplementary Fig. 1e).

These data indicate that the loss of Pkd1 in the mouse
kidney leads to profound metabolic changes, broader than what
previously appreciated.

We then used a set of Pkd1+/+ and Pkd1−/− Mouse Embryonic
Fibroblasts (MEFs)26 to further investigate the metabolic changes
in Pkd1-mutant cells. A metabolomic profiling revealed that Pkd1
+/+ and Pkd1−/− MEFs are well separated by PCA with many
metabolites being significantly different between the two
genotypes (adjusted P < 0.05) (Supplementary Fig. 2a, b) and
that metabolic pathways such as glycolysis, PPP, FAS, and FAO
were impaired (Supplementary Figure 2c and Supplementary
Data 2). Likewise, targeted metabolomics profiling revealed an
accumulation of the TCA cycle intermediates citrate, α-KG,
succinate, and malate in Pkd1−/− cells as compared to controls
(Supplementary Fig. 2c, d). These results show that the response
to Pkd1 loss is strikingly similar between Pkd1-mutant MEFs and
kidneys, supporting the validity of our cellular model for further
mechanistic investigations.

We first assessed whether the TCA cycle alterations could be
associated with a defective cellular respiration in Pkd1−/− cells as
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recently reported7,15. Consistent with this hypothesis, extracellular
flux analysis of Pkd1−/− MEFs showed enhanced glycolysis (P <
0.0001) (Fig. 2a, b) and defective respiration (Oxygen Consumption
Rate, OCR) (P < 0.0001) (Fig. 2c, d) as compared to Pkd1+/+.
Similar results on OCR were generated using primary Pkd1−/−

MEFs (Supplementary Fig. 3a) and murine Inner Medullary

Collecting Duct Cells (mIMCD cells) where the Pkd1 gene was
silenced (P < 0.0001) (Supplementary Fig. 3b)27.

Glucose entry into the TCA cycle is reduced in Pkd1−/− cells.
We then further investigate to what extent the loss of Pkd1 affects
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central carbon metabolism. To track the contribution of glucose,
one of the major carbon sources for the cells, to the TCA cycle in
the Pkd1−/− cells, we incubated cells with uniformly labelled 13C-
glucose and followed the incorporation of 13C in downstream
metabolites (Fig. 2e). Relative to control cells, Pkd1−/− cells took
up more glucose (P= 0.0002) and converted it into lactate (P=
0.0001), which is released into the culture medium (Fig. 2f and
Supplementary Fig. 3c) in line with our previous findings11,12.
Not surprisingly, the results showed that lactate almost entirely
derives from glucose (Fig. 2f and Supplementary Fig. 3c). The-
data also confirmed that total α-KG is significantly increased
(P= 0.0002). Importantly, the data showed that the glucose-
derived isotopologues of succinate (M+ 2) (P= 0.0025), fuma-
rate (M+ 2) (P= 0.0001), and malate (M+ 2) (P= 0.0023) were
all significantly decreased in Pkd1−/− MEFs, indicating a reduced
contribution of glucose to the TCA cycle (Fig. 2g).

Rewiring of glutamine metabolism in Pkd1−/− cells. We next
assessed the utilization of glutamine, another key carbon source
for the cells. To this end, we incubated cells with 13C5-15N2-
glutamine and the fate of glutamine-derived carbons and nitrogen
was assessed by LC-MS (Fig. 3a). Pkd1−/− cells exhibited
increased glutamine uptake, compared to the controls (P <
0.0001) (Fig. 3b), and glutamine-derived (M+ 5) α-KG (P <
0.0001) (Fig. 3c). In addition, Pkd1−/− cells diverted glutamine
towards the TCA cycle, as demonstrated by the increased levels
of glutamine-derived succinate (M+ 4) (P < 0.0001), fumarate
(M+ 4) (P < 0.0001), and malate (M+ 4) (P < 0.0001) in Pkd1
−/− as compared with Pkd1+/+ cells (Fig. 3d). Next, we measured
the dependency and flexibility of Pkd1−/− cells relative to their
controls (using the XF Mito Fuel Flex test, see Methods). This
assay measures the OCR of Pkd1+/+ and Pkd1−/− cells in the
presence of glucose and glutamine followed by their blockade
using specific inhibitors of the two metabolic pathways (2-Deoxy-
D-glucose and BPTES, respectively). Data showed that Pkd1−/−

cells are dependent on glutamine for their OCR production (P=
0.0007), while the glucose-driven OCR is overall reduced (P <
0.0001) (Fig. 3e). These data suggest that cells lacking Pkd1
increased their utilization of glutamine to fuel the TCA cycle and
maintain their OCR, most likely as a compensatory mechanism
due to the reduced funnelling of glucose into mitochondria. Based
on these findings, we hypothesized that cells lacking functional
Pkd1 would become addicted to glutamine in addition to glucose.
Indeed, starvation from either glutamine or glucose reduced cell
numbers (P= 0.0068 and P= 0.0057, respectively) (Fig. 3f, g) and
increased cell death in Pkd1−/− cells (P= 0.047 and P= 0.0077,
respectively) (Fig. 3h) relative to the controls. Importantly, star-
vation from both carbon sources had a synergistic effect both on
cell number (P= 0.015) and on apoptosis (P= 0.0032) (Fig. 3h).

Following the fate of the 15N2-labelled glutamine we noticed
that there was a significant increase (P= 0.0006) of 15N-
asparagine in the Pkd1−/− cells suggesting an increased activity
of asparagine synthase (Fig. 4a, b) and a concomitant increase of
the overall levels of labelled asparagine derived from glutamine
(P < 0.0001) (Fig. 4c), while aspartate was decreased in the same
cells (P= 0.0060) (Fig. 4d). We therefore hypothesized that Pkd1
−/− cells exhibit increase asparagine synthesis from glutamine. Of
note, quantitative RT-PCR revealed that asparagine synthase, the
enzyme that generates asparagine from aspartate (Fig. 4a), was
significantly upregulated in cells (P= 0.03) and murine kidneys
(P= 0.0095) (Supplementary Fig. 4a). Furthermore, analysis of
microarrays from murine and human samples confirmed a
significant upregulation of this enzyme in both systems (P= 0.01
and P < 0.0001, respectively) (Supplementary Fig. 4a). Of interest,
quantitative RT-PCR revealed no difference in the expression
levels of the two enzymes Gls and Glud1 (Supplementary Fig. 4b).
To evaluate the relevance of asparagine biosynthesis, we silenced
Asns in both Pkd1+/+ and in Pkd1−/− cells (Fig. 4e–h and
Supplementary Fig. 4c). As expected, the silencing of Asns
reduced the intracellular levels of total asparagine in Pkd1−/−

cells (P < 0.0001)(Fig. 4e, g and Supplementary Fig. 4c). Further-
more, metabolic tracing with 15N2-glutamine showed
that silencing of Asns indeed reduced the levels of labelled
asparagine as expected (Fig. 4e) and importantly the total levels of
α-KG (P =0.0001) (Fig. 4f). Furthermore, metabolic tracing with
13C5-glutamine showed a significant reduction in the glutamine-
derived α-KG (M+ 5) (P < 0.0001) showing that Asns plays a
central role in glutamine fuelling of the TCA cycle in Pkd1−/−

cells (Fig. 4h). Importantly, the downregulation of Asns also
resulted in reduced cell numbers in Pkd1−/− cells (P < 0.05), but
not in controls (Fig. 4i). Furthermore, when siAsns:Pkd1−/− cells
were subject to glucose starvation we noticed a further decrease in
cell numbers compared to controls treated in the same conditions
(P < 0.0001) (Fig. 4i). We conclude that Pkd1−/− cells depend on
Asns for survival and when they are glucose deprived, down-
regulation of this enzyme further enhances their dependency.

Thus, our data show that increased glutaminolysis, interlinked
with asparagine metabolism is an important feature of ADPKD
and targeting Asns in conjunction with glycolysis might offer a
novel therapeutic opportunity.

Pkd1 loss leads to increased de novo fatty acid biosynthesis. Of
interest, the experiments of glutamine tracing also revealed that
glutamine is used in an anaplerotic manner by Pkd1−/− cells.
Indeed, the increased level of citrate (M+ 5) in the 13C5–15N2

glutamine labelling experiment (P < 0.0001) (Fig. 5a, b) suggested
that glutamine undergoes reductive carboxylation in Pkd1−/−

cells. Given that reductive carboxylation has been linked with
synthesis of lipogenic acetyl-CoA, we examined the labelling of

Fig. 1 Global metabolomic profiling reveals defective TCA cycle in polycystic kidneys. a Study design of the experiment performed on kidneys from Ksp-cre;
Pkd1flox/− at P4. 4 litters each containing 2 cystic (red) Ksp-cre;Pkd1flox/− and 2 control littermates Ksp-Cre;Pkd1flox/+ or Pkd1flox/+ (blue, used
interchangeably) were collected. Samples were processed for analysis by Ultrahigh Performance Liquid Chromatography–Tandem Mass Spectrometry. b
Dot plot view showing percentage of kidney/body weight in the cystic and control kidneys. c PCA applied to the identified metabolites, shows a good
separation between cystic versus control kidneys. d Hierarchical clustering analysis shows good clustering between the groups of cystic and control
kidneys samples. e Significant metabolites were colour-coded according to the pathway classification. Scheme of the Glycolysis (GLY), Pentose Phosphate
Pathway (PPP), Tricarboxylic acid (TCA) cycle, Fatty acid biosynthesis (FAS), Fatty acids oxidation (FAO) in cystic versus control kidneys. Colour
corresponds to the fold changes between cystic and control kidneys, orange-red are metabolites more abundant in cystic compared to the control kidneys,
whereas blue labelled ones correspond to the less abundant metabolites in cystic kidneys compared to controls. The figure contains modified elements
from Servier Medical Art (http://smart.servier.com/). All abbreviations are in Supplementary Table 2. f Box and whiskers view of the levels of TCA
intermediates citrate, aconitate, and α-KG were assessed by LC-MS, they were significantly more abundant in cystic compared to the control kidneys. n= 8
independent biological replicates. Dot blots are shown as mean and error bars as SEM; Box and whiskers show median and 2.5-97.5 percentiles, n.s. not
significant (P≥ 0.05), *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, t-test for b, e, and f
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palmitate, a fatty acid generated via de novo fatty acid bio-
synthesis. Consistent with this hypothesis, we noticed an
increased labelling of glutamine-derived palmitate (M+ 2)
(Fig. 5c) in Pkd1−/− cells compared to controls (P= 0.0094),
although higher isotopologues could not be detected in this assay.
Next, we tested whether Pkd1−/− cells showed increased
expression of fatty acids synthase (Fasn), a key enzyme involved
in FAS. We found that Fasn is highly expressed in Pkd1−/− cells
(P= 0.044) and kidneys of KspCre;Pkd1flox/− animals (P= 0.038)
(Fig. 5d, e). Furthermore, its silencing reduced cell proliferation
(P < 0.05) and enhanced cell apoptosis (P < 0.05) in Pkd1−/− cells
(Fig. 5f–h). In further support of an alteration in lipid metabo-
lism, lipidomics profiling revealed a significant increase in

diacylglycerols (DAG) (P= 0.03), triacyglycerols (TAG) (P=
0.03), and sterol esters (P= 0.002) in cystic kidneys compared to
controls (Fig. 5i and Supplementary Data 3).

Overall, enhanced de novo fatty acids biosynthesis is a feature
of ADPKD observed both in cells and in murine tissues and this
process is necessary for Pkd1−/− cells to proliferate and survive.

A mathematical model reveals energetic pathways coordina-
tion. To gather a broader understanding of the metabolic changes
observed, and to predict whether the different pathways are
causally linked, we performed an in silico study. To this end we
applied a recently described algorithm to predict changes in
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metabolic fluxes and metabolites across two conditions in a
genome-scale metabolic model including 785 metabolites linked
by 2589 enzymatic reactions (Differential Flux Balance Analysis,
DFA)28. After removing all liver-specific functions, we used DFA
to simulate in silico an increase in glucose uptake by imposing a
constrain of enhanced glucose input driven by two transporters
(TCDB:2.A.21.3.6 and TCDB:2.A.1.1.29, see Methods and Sup-
plementary Data 4). We used as input the amount of increase in
glucose uptake (1.6 fold) observed in the tracing experiments of
Pkd1−/− MEFs as compared to Pkd1+/+ controls (Fig. 2f). Next,
we analysed the complete list of metabolites ranked according to
their predicted change. This list was used as the input to KEGG-
Pathways Based Enrichment Analysis, resulting in 31 pathways
significantly enriched for altered metabolites (FDR ≤ 0.01). The
most significant were glycolysis, TCA cycle, PPP, OXPHOS, and
FAS (FDR ≤ 0.01) (Supplementary Fig. 5a). Importantly, this
method allows to assign a direction to all the metabolic fluxes and
to further predict additional alterations. Besides the metabolic
pathways above we noticed a remarkable increase in glutamine
uptake in the model system (DAp= 0.5) (Fig. 6a, b and Supple-
mentary Data 5), consistent with our glutamine labelling
experiments. Further to this, the in silico simulations suggested
that CPT1 and CPT2 metabolic fluxes might be reduced as a
consequence of increased FAS. Indeed, qRT-PCR analysis showed
that Cpt1a was significantly reduced in cells (P= 0.01) and kid-
neys lacking functional Pkd1 (P= 0.009) (Supplementary
Fig. 5b), further validating the predictions originated by the
algorithm and in line with previous findings15,16.

The analysis of the in silico fluxes generated by the model
revealed that most of the alterations in the discussed metabolic
pathways is coordinated and likely causally linked, to the point
that a single change in the increased uptake of glucose
recapitulates a broad alteration in the other metabolic pathways
(Fig. 6b).

Analysis of ADPKD kidneys transcriptional profiles. We next
reasoned that if these changes are indeed coordinated, they
should occur in a synchronous fashion in the cystic kidneys. To
address this point we first used a qPCR-based transcriptional
profiling (qPCR arrays QiagenTM) applied to a KspCre;Pkd1flox/−

kidneys analysed at the same time point in which metabolomics
was performed (P4). Although the qPCR-based arrays provided a
rather limited number of targets, the data showed a trend of
alterations to key enzymes involved in GLY, PPP, FAS, and FAO,
despite only a few displaying significant changes between the
cystic and the control samples (P in the range 0.0002–0.03),
(Supplementary Fig. 5c and Supplementary Data 6, 7).

To assess more comprehensively the expression of metabolic
enzymes, we performed a microarray analysis on kidneys
collected at P10 derived from a hypomorphic Pkd1 mutant
mouse (Pkd1V/V), which results in a milder polycystic kidney
disease phenotype29. First, data were analysed by PCA and
hierarchical clustering analysis, showing a very good separation of
the samples in both assays (Supplementary Fig. 5d, e and
Supplementary Data 8). Next, microarrays data have been
analysed by means of the Significant Analysis of Microarrays
(SAM) algorithm to identify differentially expressed genes30

followed by analysis of the full list of genes (Supplementary
Data 9) involved in GLY, PPP, and FAS. These genes are mostly
upregulated, while the genes involved in OXPHOS and FAO are
markedly downregulated (FDR= 0.1) (Fig. 6c). Next, to validate
our findings in human samples, we applied again the SAM
algorithm30 to a previously published dataset of microarrays
derived from the cystic kidneys of patients carrying PKD1
mutations. Data were next screened for the complete list of genes
involved in bioenergetics (Methods section) (Fig. 6d)31. The
results showed that the metabolic alterations described in cellular
and animal models of ADPKD (Figs. 1–3) and recapitulated by
the mathematical model (Fig. 6a, b) and by the murine
microarrays (Fig. 6c) are all perturbed in ADPKD1 kidneys
including GLY, PPP, oxidative TCA cycle (TCA/OXPHOS), FAS,
and FAO. Importantly, in human samples as well GLY, PPP, and
FAS appear to be mostly upregulated, even if some isoforms of
the enzymes are downregulated (FDR= 0). In contrast, both
the OXPHOS and FAO enzymes are markedly downregulated
(FDR= 0) (Fig. 6d).

These data taken together show that a general metabolic
reprogramming of bioenergetic pathways is a hallmark of
ADPKD and that likely most alterations are highly coordinated
and occur simultaneously, opening unique opportunities for
targeting them all with a few interventions.

Discussion
In this study we performed a thorough analysis of the metabolic
derangements observed in ADPKD using studies that range from
global profiling in orthologous animal models to in silico flux
analysis, in vitro carbon and nitrogen tracing, and finally vali-
dation in murine and human microarray data sets. The main
conclusion of our studies is that a global metabolic reprogram-
ming occurs in ADPKD, involving several pathways. Of all
pathways involved, rewiring of central carbon metabolism is the
most prominent and includes interlinked alterations of increased
GLY, PPP, and FAS along with decreased OXPHOS and FAO. Of
interest, we found that glutaminolysis is enhanced as a

Fig. 2 Impaired respiration and usage of glucose in the TCA cycle in Pkd1−/− cells. a, b Representative analysis of ECAR outputs of Pkd1−/− compared to
Pkd1+/+ cells subject to glycolysis tests in response to glucose, oligomycin and 2-DG, b dot plots showing means with 28 to 39 replicate wells per group for
glycolysis, glycolytic capaticity, and glycolytic reserve. Glycolysis was calculated on the 6th measurement time (after substraction of 3rd measurement);
the glycolytic reserve was measured on the 9th measurement time (after substraction of 6th measurement); the glycolytic capacity was calculated on the
9th measurement time (after substraction of the 3rd measurement). c, d Representative analysis of OCR measurement in Pkd1+/+ and Pkd1−/− cells in
basal conditions and after sequential addition of oligomycin, FCCP and antimycin/rotenone (A/R). d Dot plots showing means with 6 replicate wells per
group for: MRR calculated from the 10th measurement (after subtraction of the 13th measurement); OCR/ECAR ratio from basal measurement, 2nd time
point. a–d Representative of three independent experiments. e The scheme illustrates the fate of glucose C atoms in glycolysis and Krebs cycle
intermediates. Cells were incubated in glucose-free DMEM supplemented with 25mM 13C6-glucose for 24 h. The uniformly labelled glucose (M+ 6
yellow) leads to formation of M+ 3 lactate (dark brown) or M+ 2 TCA cycle intermediates after its first round (M+ 2 light brown). f Percentage of
isotopologue distribution of intracellular and extracellular glucose and lactate shows that glucose (M+ 6) is more consumed and more converted into
lactate (M+ 3) in Pkd1−/− cells in comparison to control cells (see Methods for calculations). g Percentage of isotopologue distribution of intracellular
intermediates of the TCA: total α-KG, succinate, fumarate, and malate shows that the molecules coming from glucose (M+ 2) are decreased in Pkd1−/−

MEFs compared to the control cells. Graphs (f, g) are means in percentages relative to control cells of six technical replicates from one experiment. Mean
± SEM were indicated, statistical significance is provided for total pool. n.s. not significant (P≥ 0.05), *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001,
t-test
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compensatory mechanism and used for both energy yielding
purposes as well as for anabolic needs. Finally, we found that the
usage of glutamine in ADPKD is interlinked with the asparagine
metabolism and it involves upregulation of Asns. This is parti-
cularly intriguing because we found that targeting Asns is lethal in
ADPKD cells, particularly when associated with glucose depri-
vation, thus opening new therapeutic perspectives for a combi-
nation therapy in this disease.

Based on previous studies it appeared that minimal changes in
a few individual metabolic pathways might occur in ADPKD.
Here we show instead that the metabolic alteration in ADPKD

tissues is rather robust and occurs in multiple pathways. In
addition to GLY and FAO, we find here alterations in the PPP, in
FAO, in glutaminolysis and in OXPHOS. Furthermore, we show
here that not only multiple metabolic pathways are occurring
simultaneously, but that they are interconnected and likely cau-
sally linked.

A previous study has performed profiling of metabolites in
an orthologous model of ADPKD, reporting only minimal
changes in a few metabolites in Pkd1-mutant kidneys. The
authors used a Pkd1 orthologous mouse model carrying an
inducible ubiquitous Cre15. Inactivation was induced after
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weaning, leading to a slowly progressive disease model with great
variability in the renal phenotype15. This may explain why the
metabolomics profiling data failed to separate in PCA based on
the genotype. In the current study, we have used a kidney-specific
Cre line to inactivate the Pkd1 gene exclusively in the distal
tubules and in collecting ducts (cadherin16-Cre, KspCre). This
animal model develops a rapidly progressive phenotype with
manifestation in the neonatal life. The different time points at
which samples were analysed might in part explain the dis-
crepancies with previous work15. More importantly, the animal
model used in the current study shows reduced variability in the
renal phenotype allowing for a good separation of the sample by
PCA analysis and hierarchical clustering. Our data on the reduced
FAO agree with those previously reported15, but we propose here
that a much broader metabolic derangement than previously
appreciated is present in ADPKD.

Importantly, we analysed renal samples at the cystic stage.
Therefore, we cannot exclude that the metabolic alterations are
secondary to cyst expansion. Relevant to this is the fact that
recent investigations have unveiled an important correlation
between chronic kidney disease (CKD) and metabolic changes32.
Here we have excluded that at the time of analysis (P4) the
animals are reaching CKD. Indeed, we observed a minimal initial
increase in circulating urea, but absence of prominent inflam-
matory infiltrate or fibrosis. In addition, most of the metabolic
alterations can be observed in isolated cells. Likewise, we have
excluded that a prominent hypoxic state is present in the kidneys
at the stages analysed. All these pieces of evidence suggest that the
observed metabolic derangements are not secondary to CKD or
hypoxia. However, based on the current knowledge we cannot
exclude that, as disease progresses, additional alterations such as
hypoxia and/or CKD can further contribute to disease worsening
through additional metabolic stress.

In a recent elegant study, Hajarnis et al. has shown that the
reduced FAO is secondary to the upregulation of microRNA-17,
which in turn downregulates the expression levels of Pparα,
ultimately reducing FAO16. Of interest, the authors were able to
rescue the phenotype of Pkd1 mutant mice by using fenofibrate, a
natural compound acting as an agonist of Pparα and achieving
enhancement of β-oxidation and OXPHOS16,33. Notably, the
authors showed that the oncogene Myc is the main driver of
miRNA17 expression16. It is important to note here that Myc is
indeed considered a master regulator of metabolism in several
types of cancer, with glycolysis and glutaminolysis both being
regulated by this oncogene34.

In the current study we have used both LC-MS and GC-MS
studies to perform metabolic profiling. While this type of analysis

is informative, it also has the limitation that it provides a static
snapshot of the metabolites detected, without a precise informa-
tion on whether a given metabolic pathway is upregulated or
downregulated. Indeed, we found decreased levels of most gly-
colytic intermediates in the static analysis of KspCre;Pkd1flox/−,
including lactate. This is likely due to a rapid degradation or
excretion of lactate in vivo. Indeed, by metabolic tracing with
13C6-glucose we previously showed detection of a large increase
in lactate production in vivo11,12 when kidneys are collected after
40 minutes.

Metabolic tracing is a much more powerful tool to study the
dynamic regulation of metabolic pathways. Our current studies
show that Pkd1−/− cells uptake large amounts of glucose used in
the glycolytic pathway to generate lactate and that only minimal
amounts of glucose are funnelled into the TCA cycle in mito-
chondria. Furthermore, we found that an increased uptake of
glutamine is occurring in Pkd1−/− cells as compared to the
controls and it is oxidized into the TCA cycle, likely compen-
sating for the reduced usage of glucose. Since the overall
respiration of the cells is diminished, the likely explanation is that
glutamine is used by these cells to preserve the mitochondrial
membrane potential and avoid undergoing apoptosis. Indeed, in a
previous study we demonstrated that the mitochondrial mem-
brane potential was not majorly affected in the mutant cells11,
despite the negligible contribution of glucose to mitochondria-
generated ATP11. Our data are in disagreement with previous
work reporting lack of enhanced glycolysis, and presence of
defective mitochondrial membrane potential in Pkd1−/− cells6.
While differences in the cell type employed, in the immortaliza-
tion procedure or in the culture conditions might account for part
of the discrepancies, this cannot be the sole explanation for the
controversial results. The glycolysis measurements in the previous
studies are affected by wild-type cells being highly glycolytic,
suggesting a minimal mitochondrial activity in the control cells
and possibly limiting the capability to detect any increase in
mutant cells15. Further studies will be required to reconcile the
findings in the various different cell types analysed.

In the current study, we show that in addition to being oxi-
dized in the TCA, glutamine is also used reductively in the Pkd1
−/− cells to generate citrate, which is transported into the cytosol
and converted to acetyl-CoA, an essential substrate for fatty acids
biosynthesis. The last process is upregulated in ADPKD likely to
generate the membranes required for the proliferation of these
cells. Indeed, silencing of Fasn greatly impacts cell proliferation
and survival. Thus, our studies demonstrate a critical role for
glutamine as a compensatory mechanism for the reduced usage of
glucose in polycystic kidney disease. Our data provide the

Fig. 3 Metabolic rearrangement in bioenergetics pathways and glutaminolysis rewiring in Pkd1-/- cells. a The scheme illustrates the fate of glutamine C
atoms in Krebs cycle intermediates (Oxidative). Cells were incubated in glutamine-free DMEM supplemented with 4 mM 13C5–15N2 glutamine for 24 h.
b Quantification of the intracellular labelled 13C5–15N2 glutamine (M+7) showing that Pkd1−/− cells have a higher uptake compared to the controls.
c Isotopologue distribution of intracellular α-KG shows that pools containing five 13C (M+ 5), coming from labelled glutamine, were all significantly higher
in Pkd1−/− as compared with Pkd1+/+ cells. d Isotopologue distribution of intracellular succinate, fumarate, and malate shows that pools containing four
13C (M+ 4), coming from labelled glutamine, were all significantly higher in Pkd1−/− as compared with Pkd1+/+ cells. Graphs are means in percentages
relative to control cells of six technical replicates from one experiment. statistical significance is provided for total pool. e Representative graph showing the
results in percentage of the XFMitoFuel Flex Test analysis measuring OCR in response to either glucose or glutamine from at least seven technical
replicates per well of two independent experiments. Data show a reduced oxidation of glucose in Pkd1−/− cells and an increased dependency on glutamine
compared to wild-type cells. f Cells were grown under starvation from either glucose or glutamine or both in 10% serum for 24 and 48 h after an overnight
0.5% serum. Representative images showing the cellular morphology of Pkd1−/− compared to Pkd1+/+cells in starved and non-starved conditions.
g Viability of Pkd1+/+ and Pkd1−/− cells, expressed as percentage cell count compared to time 0, after 24 h of incubation in starvation from glucose,
glutamine, or both. h Percentage of apoptotic cells assayed by TUNEL assay, showing significant higher percentage of apototic cells in starvation. Graphs
(f–h) are representative of at least three independent experiments, data are means from at least three technical replicates. Mean ± SEM were indicated, n.s.
not significant (P≥ 0.05), *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. t-test (b, c, and d) and (g and h, comparison between each condition)
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mechanistic explanation for two recent studies demonstrating
that targeting glutaminolysis via the inhibition of the enzyme
glutaminase (GLS) retards the progression of the disease. How-
ever, this effect was observed in some, but not in other animals
carrying mutations in Pkd121,22. Our study here provides a
potential explanation for this discrepant observation. In our
analyses we did not detect changes in the expression levels of
GLS. This is in line with the results of Soomro et al., that showed
no differences in vitro in the response of polycystic kidney disease
or normal cells to inhibitors of GLS22. It should be noted, how-
ever, that despite this lack of increased expression we would
expect that interfering with this enzyme should reduce glutamine

uptake at least in vivo, because GLS is certainly the most com-
monly used enzyme to convert glutamine to glutamate in most
tissues under physiological conditions. Indeed, treatment with the
GLS inhibitors CB-839 resulted in a certain degree of reduction of
cyst burden in two models of Pkd1 mutants21,22, while it failed to
improve the phenotype in a third one22. However, we have shown
here that the utilization of glutamine in ADPKD is interlinked
with the synthesis of asparagine via asparagine synthetase, ASNS,
a transamidase that converts aspartate into asparagine while
deaminating glutamine to form glutamate35. A recent study has
shown that this reaction is used in physiological conditions by
endothelial cells to utilize glutamine as a carbon source36. Our
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Fig. 4 Glutamine usage is interlinked with asparagine synthase (ASNS) in ADPKD. a Schematic overview of the conversion of glutamine into glutamate by
transamidating aspartate into asparagine by ASNS. b Labelled 15N-asparagine is significantly increased in the Pkd1mutant MEFs, c total levels of asparagine
are increased compared to the control cells and d decreasing levels of aspartate (M+ 0), expressed as percentage relative to controls. e Isotopologue
distribution of intracellular asparagine showing that the pool coming from glutamine (15N1 and 15N2) is significantly decreased in siAsns compared to the
mock Pkd1−/− and control cells. f Total α-KG was significantly decreased in siAsns compared to the mock Pkd1−/− and control cells in the 15N2 glutamine
labelling. g Total asparagine was significantly decreased in siAsns compared to the mock Pkd1−/− cells. h α-KG (M+ 5) in the 13C5-glutamine labelling was
significantly decreased in siAsns compared to the mock Pkd1−/− and control cells. Data are means from six technical replicates from one experiment.
i Representative graph showing the percentage of cell count compared to the respective mock controls. Silencing Asns, deprivation of glucose or both
treatments in Pkd1+/+ resulted in no significant difference, whilsts each condition resulted in a significant reduction in cell number with an additive effect of
Asns silencing with glucose starvation in Pkd1−/− cells. Data are means from three technical replicates from two independent experiments. Mean ± SEM
were indicated, n.s. not significant (P≥ 0.05), *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, t-test for b, c, and e. ANOVA followed by Bonferroni for
e, f, g, h, and i
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study shows that a similar mechanism is likely employed in
ADPKD to consume glutamine. Indeed, silencing of Asns resulted
in a complete rescue of the accumulation of α-KG, specifically by
reducing the glutamine contribution to α-KG generation. Based
on this, we propose that inhibiting ASNS would be a much more
specific way to reduce glutamine usage in polycystic kidney dis-
ease, opening an important opportunity for a more targeted
approach in ADPKD treatment. In line with this, we have found
that silencing Asns impacts the growth of Pkd1−/− cells and this
is more prominent when cells are also deprived from glucose. The
data indicates that indeed glutamine usage compensates for the

lack of glucose utilization in the TCA cycle by the Pkd1−/− cells
and that targeting both processes at once is more effective than
either one alone. In line with this, the starvation from both glu-
cose and glutamine drastically enhances cell death in cells lacking
Pkd1. Thus, inhibitors of Asns along with the glycolytic inhibitor
2-deoxy-D-glucose11,12 might offer a good therapeutic strategy in
ADPKD and further studies should be devoted to test this
possibility.

Ultimately, it should be noted that our results do not show the
precise mechanism through which PC-1 regulates cellular and
mitochondrial metabolism. Recent studies have reported a
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possible role for PC-1 in regulation of mitochondrial function
either through regulation of mitochondrial Ca2+ uptake in
mitochondrial-associated membranes7 or by direct translocation
of a short fragment of the protein into the matrix of mitochon-
dria6. Future efforts should be devoted to the understanding of
the origin of the metabolic alterations in ADPKD, including the
role of the Polycystins in regulation of mitochondrial function.

In conclusion, we report here the first broad overview of the
metabolic derangement observed in ADPKD. Importantly, the
altered pathways that we report in the current study expand our
view on the potential use of inhibitors able to tackle the metabolic
alterations to retard disease progression. The highly coordinated
alterations observed offer a unique opportunity for targeting the
process at multiple levels to block at once the capability of
ADPKD cells to produce energy and to synthesize the building
blocks needed for proliferation and survival.

Methods
Generation of Pkd1flox/−: Ksp-Cre mice. Pkd1flox/−: Ksp-Cre is a mouse model
for ADPKD that develops massive enlarged kidney cysts within few days after birth
and was generated by crossing Pkd1flox/flox and Pkd1+/−:Ksp-Cre mice37,38. The
age of the pups was accurately assessed by daily control of birth combined with the

follow up of the variation of coat colours as described by Jackson Laboratories
(https://www.jax.org). All mice used in these experiments were in a pure C57/BL6N
genetic background (i.e. >10 backcrosses) and were maintained in specific patho-
gen free colonies handled by a service company provided at the San Raffaele
Scientific Institute (Charles River). Mice received a sterilized (vacuum packed and
irradiated) chow diet [25/18 CR, 5 % w/w crude fat (predominantly from soya
products), soya oil 0.5% (14% kcal from fats, energy density of 2.64 kcal/g)]. All
mice had ad libitum access to water and food. All experiments involving animals
were performed under a protocol approved by an institutional ethical committee
and, subsequently, by the Italian Ministry of Health (IACUC number: 736).

Untargeted metabolomic analysis of kidneys and MEFs. The untargeted
metabolomics in kidneys (Fig. 1) and MEFs (Supplementary Fig. 2) were carried
out at Metabolon®. Briefly, samples were subjected to preparation and analysis as
per the description of the supplier Metabolon®: to methanol extraction, split into
aliquots for analysis by ultrahigh performance liquid chromatography/mass spec-
trometry (UPLC/MS). Thermo Scientific Q-Exactive high resolution/accurate mass
spectrometer interfaced with a heated electrospray ionization (HESI-II) source and
Orbitrap mass analyzer operated at 35,000 mass resolution. The sample extract was
dried then reconstituted in solvents compatible to each of the four methods. Each
reconstitution solvent contained a series of standards at fixed concentrations to
ensure injection and chromatographic consistency. One aliquot was analysed using
acidic positive ion conditions, chromatographically optimized for more hydrophilic
compounds. In this method, the extract was gradient eluted from a C18 column
(Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using water and methanol, con-
taining 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid. Another
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aliquot was analysed using acidic positive ion conditions, however it was chro-
matographically optimized for more hydrophobic compounds. In this method, the
extract was gradient eluted from the same afore mentioned C18 column using
methanol, acetonitrile, water, 0.05% PFPA, and 0.01% formic acid and was oper-
ated at an overall higher organic content. A third aliquot was analysed using basic
negative ion optimized conditions using a separate dedicated C18 column. The
basic extracts were gradient eluted from the column using methanol and water,
however with 6.5 mM Ammonium Bicarbonate at pH 8. The fourth aliquot was
analysed via negative ionization following elution from a HILIC column (Waters
UPLC BEH Amide 2.1×150 mm, 1.7 µm) using a gradient consisting of water and
acetonitrile with 10 mM Ammonium Formate, pH 10.8. The mass-
spectrophotometric analysis alternated between MS and data-dependent MSn scans
using dynamic exclusion. The scan range varied slighted between methods but
covered 70–1000m/z. Metabolite concentrations were determined by automated
ion detection, manual visual curation and were analysed in-line using software
developed by Metabolon®39.

Lipid extraction for untargeted mass spectrometry profiling. Mass
spectrometry-based lipid analysis was performed at Lipotype GmbH (Dresden,
Germany) as previously described and lipids were extracted using a two-step
chloroform/methanol procedure40. Briefly, samples were treated as per the
description of the company Lypotype GmbH: samples were spiked with internal
lipid standard mixture containing: cardiolipin16:1/15:0/15:0/15:0 (CL), ceramide
18:1;2/17:0 (Cer), diacylglycerol 17:0/17:0 (DAG), hexosylceramide18:1;2/12:0
(HexCer), lyso-phosphatidate 17:0 (LPA), lyso-phosphatidylcholine 12:0 (LPC),
lysophosphatidylethanolamine 17:1 (LPE), lyso-phosphatidylglycerol 17:1 (LPG),
lyso-phosphatidylinositol 17:1 (LPI), lyso-phosphatidylserine 17:1 (LPS), phos-
phatidate 17:0/17:0 (PA), phosphatidylcholine 17:0/17:0 (PC), phosphatidyletha-
nolamine 17:0/17:0 (PE), phosphatidylglycerol 17:0/17:0 (PG), phosphatidylinositol
16:0/16:0 (PI), phosphatidylserine 17:0/17:0 (PS), cholesterol ester 20:0 (CE),
sphingomyelin 18:1;2/12:0;0 (SM), triacylglycerol 17:0/17:0/17:0 (TAG), and cho-
lesterol D6 (Chol). After extraction, the organic phase was transferred to an
infusion plate and dried in a speed vacuum concentrator. First step dry extract was
re-suspended in 7.5 mM ammonium acetate in chloroform/methanol/propanol
(1:2:4,V:V:V) and second step dry extract in 33% ethanol solution of methylamine
in chloroform/methanol (0.003:5:1; V:V:V). All liquid handling steps were per-
formed using Hamilton Robotics STARlet robotic platform with the Anti Droplet
Control feature for organic solvents pipetting.

Targeted metabolomics and stable isotope tracer analysis. Immortalized
Pkd1+/+ and Pkd1−/− MEFs26 and siAsns Pkd1−/− were plated at 150,000 cells/
well onto a 6-well plate (n= 6) and cultured in standard conditions. 24 h before
sampling for 13C-labelling experiments, MEFs were washed twice with PBS and
supplemented with media (DMEM (Gibco) supplemented with 10% dialysed foetal
bovine serum (Gibco), 1% Penicillin Streptomycin (Pen/Strep, Gibco), Sodium
Bicarbonate (3.7 g/l; Sigma Aldrich) containing either uniformly labelled 13C6-
glucose (25 mM) (Cortecnet), 13C5-15N2-glutamine (4 mM) (Cortecnet), 15N2-
Glutamine (Cambridge Isotope Laboratories), or 13C5-Glutamine (Cambridge
Isotope Laboratories). Metabolites were extracted from cell pellets (intracellular)
with 1 ml of extraction solution (methanol for highly pure liquid chromatography
(Sigma Aldrich): acetonitrile gradient grade for liquid chromatography (Merck):
ultrapure water (Sigma Aldrich), 50:30:20 with 100 ng ml−1 of HEPES (Sigma
Aldrich) per million cells. The cell culture medium (extracellular) extracts were
prepared by adding 750 µl of extraction solution to 50 µl of centrifuged cell culture
medium. Samples were incubated at 4 °C for 15 min at 700 r.p.m., before cen-
trifugation at 13,000 r.p.m. The supernatant was transferred into autosampler vials
and stored at −80 °C prior to analysis by LC-MS.

LC-MS analysis was performed using a Q Exactive Orbitrap mass spectrometer
coupled to a Dionex U3000 UHPLC system (Thermo Fisher Scientific). The liquid
chromatography system was fitted with a Sequant ZIC-pHILIC column (150×2.1
mm) and guard column (20×2.1 mm) from Merck Millipore and temperature
maintained at 45 °C. The mobile phase was composed of 20 mM ammonium
carbonate and 0.1% ammonium hydroxide in water, and acetonitrile. The flow rate
was set at 200 µl min−1 with the gradient described previously41. To expand on the
range of metabolites covered in the analysis, the sample extracts were then run on a
ZIC-HILIC column (150 mm × 4.6 mm) fitted with a guard column (20 mm × 2.1
mm) (both Merck Millipore). The aqueous mobile phase solvent used was 0.1%
formic acid in water, and the organic mobile phase was 0.1% formic acid in
acetonitrile. The flow rate was set at 300 μl min−1 and the column oven set to 30 °
C, as described previously41. The mass spectrometer was operated in full MS mode
with polarity switching, and samples were randomized in order to avoid bias due to
machine drift and processed blindly. The acquired spectra were analysed using
XCalibur Qual Browser and XCalibur Quan Browser software (Thermo Fisher
Scientific).

Mass isotopologue distribution of metabolites was determined by integration of
the corresponding peaks, and correction for natural abundance was performed
using the PollyTM IsoCorrect tool from the cloud-based platform Elucidata (https://
polly.elucidata.io).

Consumption and release of metabolites was assessed by subtracting each
metabolite total pool in the fresh medium (incubated in the absence of cells) from

the pool found in the spent medium samples. The resulting value was then adjusted
to the amount of protein generated during the incubation of the cells with the
labelled substrate. For this purpose, cells were seeded in parallel plates and protein
content was determined by the Bradford method at 0 and 24 h post medium
change. Percentage of intracellular pool from each isotopologue was calculated
respective of the control (for each metabolite).

Glycolysis and mitochondrial respiration assays. Cells were plated at a density
of 20,000 or 30,000 cells per well in a 96-wells Seahorse cell culture microplates and
incubated in a 5% CO2 incubator at 37 °C overnight. The following day, 1 h before
the test, culture media was replaced with pH-adjusted (pH= 7.4 ± 0.1)
bicarbonate-free DMEM (Agilent) with 10 mM glucose (Sigma Aldrich), 1 mM
sodium pyruvate (Gibco), and 2 mM L-glutamine (Gibco) for Mito Flex Test
(Agilent) and Mito Stress Test or with 2 mM L-glutamine only for Glycolysis Stress
Test (Agilent). The plate was then incubated at 37 °C for 1 h in a non-CO2 incu-
bator. For the Mito Fuel Flex test and Mito Stress Test, OCR were measured using
the Seahorse XF Mito Fuel Flex Test Kit XF and Mito Stress Test Kit (Agilent).
Extracellular Acidification Rate (ECAR) was measured using XF Glycolysis Stress
Test Kit (Agilent) on an XFe96 Analyzer (Agilent) following the manufacturer’s
instructions. Cell numbers were normalized using CyQuant (Thermo Fisher).

RNA extraction and microarray. Kidneys were removed from wild-type (n= 4)
and Pkd1V/V (n= 4) mice at P10 and homogenized in PBS buffer using mini
handheld homogenizer. The homogenate was centrifuged and supernatant was
discarded. Total RNAs were extracted from the pellet using an RNeasy mini kit
(Qiagen) and the quality of total RNA samples was verified by a 260/280 ratio in
NanoDrop and agarose gel electrophoresis. Further sample processing for micro-
array analysis was performed by the Genomics Core of Cleveland Clinic’s Lerner
Research Institute, following the facility’s protocols, and hybridized to Illumina’s
MouseRef-8 v2.0 BeadChip expression arrays.

Real-time PCR analysis. RNA was isolated from plated cells or snap-frozen
kidneys using the RNAspin Mini kit (GE Healthcare). Total RNA was isolated
using the RNA-Isol lysis reagent according to the manufacturer’s instructions. For
reverse transcription of RNA, Oligo(dT)15 primers (Promega) and ImProm-II
Reverse Transcriptase (Promega) were used. Quantitative real-time PCR analysis
was performed on duplicate using SYBR Green I master mix (Roche) on Light-
Cycler 480 Instrument (Roche). For primers sequence see supplementary methods,
Supplementary Table 1.

Transient knockdown of Fasn and Asns. For transient knockdown of siFasn and
siAsns 20 nM (Ambion) pre-designed mRNA with the target sequences: FASN 5′-
GGGAUCAUAAAGAUAACUUtt-3′ and 5′-AAGUUAUCUUUAUGAUCCCtc
ASNS 5′-GGCCCUUGUUUAAAGCCAUtt-3′ and 5′-AUGGUUUAAACAAG
GGCCtg-3’ along with control scrambled siRNA (siCONTROL, Dharmacon), were
used following the manufacturer’s instructions and transfection control. For siRNA
transfection cells were seeded into a 6-well plate, 100,000/well in 10% FBS (Gibco)
in DMEM (Gibco) without antibiotics. The transfections were performed two times
over 2 days at a final concentration of 30 nM using Lipofectamine 3000® following
the manufacturer’s protocol. Total RNA was prepared from the cells 72 h after the
first transfection and qRT-PCR was performed.

Apoptosis cell assay. Cell death detection kit (TUNEL, Promega) was performed
according to the manufacturer instructions after transient knockdown of siFasn or
after 48 h of starvation experiments (glutamine, glucose starvation). The protocols
and quantifications were previously optimized11.

Growth curve of MEFs in glucose and glutamine starvation. Immortalized Pkd1
+/+ and Pkd1−/− MEFs were plated at a density of 150,000 cells/well in DMEM
(Gibco) supplemented with 0.5% FBS (Gibco) and 1% Pen/Strep (Gibco). After 16
h, medium was changed to control medium (DMEM, Gibco), supplemented with
10% FBS (Gibco), 1% Pen/Strep (Gibco), sodium pyruvate (1 mM; Gibco), sodium
bicarbonate (44 mM; Sigma Aldrich), 25 mM glucose (Sigma Aldrich), and 4 mM
glutamine (Gibco); glucose starvation medium (DMEM supplemented with 1 mM
Sodium pyruvate, 44 mM sodium bicarbonate, 10% FBS, 1% Pen/Strep and 4 mM
glutamine); glutamine starvation medium (DMEM supplemented with 10% FBS,
1% Pen/Strep, 1 mM sodium pyruvate, 44 mM sodium bicarbonate, and 25 mM
glucose) or glucose and glutamine starvation medium (DMEM supplemented with
10% FBS and 1% Pen/Strep, 1 mM sodium pyruvate, 44 mM sodium bicarbonate).
After 24 and 48 h, cells were trypsinized and counted with an automated cell
counter (Countess cell counter, Invitrogen). Pictures from each sample at both time
points were taken with a white field microscope, using a ×10 objective.

Analysis using the KEGG-pathways based enrichment analysis. Analysis of the
untargeted metabolomics studies was performed by implementing a KEGG-
Pathways Based Enrichment Analysis (PBEA) system based on a similar concept
than the Gene Set Enrichment Analysis (GSEA)42 which tests whether compounds
involved in predefined pathways occur towards the top or bottom of the ranked
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query list. The method identifies altered pathways of the Kyoto Encyclopaedia of
Genes and Genomes (KEGG)43 using metabolite data. An enrichment score and a
statistical significance (P-value) have been computed for each pathway having at
least one metabolite captured in the list of metabolites ranked, in descending order,
according to a specific metric. Particularly, a fold change was used to rank the
metabolites deriving from non-targeted global metabolomics, while the Differential
Flux balance Analysis algorithm was used to rank the compounds resulting from
the in silico simulations. In order to avoid ambiguous identification and to obtain
reliable results only metabolites having a KEGG-identifier have been considered.
The list of ranked metabolites named as L, and S for the set of compounds of a
particular pathway. Analysis is performed to test whether the elements of S are
randomly distributed through L or primarily found at the top or bottom of the list.
The enrichment score reflects the degree to which S is over-represented at the
extremes of L, and it is computed by walking down L, increasing a running-sum
statistic when a metabolite in S is found and decreasing it when a compound not in
S is encountered. The obtained score corresponds to a weighted Kolmogorov-
Smirnov-like statistic43 and represents the maximum deviation from zero asso-
ciated with a random walk. The P-value associated with an enrichment score has
been computed as the fraction of 1000 random permutations of the elements of L
that are at least as extreme as the original enrichment score, that has been derived
from non-permuted elements. A Matlab® implementation of the method is
available upon request.

Differential abundance score. For a particular pathway P, the Differential
Abundance (DAp) score is defined as:

DAP ¼
P

r2P urP
r2P urj j

where ur is the delta of in silico flux of reaction r computed by DFA. This score
captures the tendency for a pathway to be upregulated or downregulated and varies
from −1 to 1. A score of −1 indicates that all the metabolic fluxes associated with
reactions in pathway P decreased respect to wild-type, while a score of 1 indicates
that all fluxes increased when comparing with the wild-type simulation.

In silico modelling and simulation of increased glycolysis. For the in silico
studies the Genome-Scale Metabolic Model described in Pagliarini et al. was
applied28. The model comprises 785 metabolites and 2589 enzymatic and transport
reactions in eight compartments. In order to have more physiological results, the
following additional constrains have been imposed: citrate cannot move from
cytosol to mitochondria; pyruvate cannot move from mitochondria to cytosol;
cytosolic enzyme LDH can only convert pyruvate to lactate and not vice versa.
Then, Differential Flux balance Analysis was applied28 to simulate either the wild-
type condition or an increase of glucose entering the cytosol (GLY). DFA is based
on solving a linear optimization problem across 442 metabolic objectives for both
the wild-type model and the perturbed model. For the current study, the liver-
specific metabolic functions were removed. The average flux carried by each
reaction across the different metabolic objectives for each of the two models is
computed. For each reaction, the difference of the average flux in the wild-type
model minus its value in the modified model are then considered. These differ-
ential fluxes are then used to rank the reactions from the ones that change the most
in the modified model to the ones that change the least or do not change at all.
Metabolites are then ranked according to the sum of the absolute values of the
differential fluxes. In order to simulate an increase of the glucose uptake the results
of the 13C-glucose labelled experiments showing an increase of 1.6 fold change in
the uptake of glucose has been used. Therefore, the fluxes through the reactions
Glucose(s)+Na+ (s) − > Glucose(c)+Na+ (c) (TCDB:2.A.21.3.6) and Glucose
(s) <= > Glucose(c) (TCDB:2.A.1.1.29) has been forced, to be equal or greater than
a specific threshold set to the their average value obtained in the wild-type simu-
lations increased of 60%.

Analysis of murine and human microarray data. In order to infer differentially
expressed genes in microarrays data from Pkd1V/V animal model at P10, a Matlab®
implementation the SAM algorithm with delta= 1.0 was applied.

For human microarrays, data from Song et al.31 have been considered. First,
affymetrix probe sets have been collapsed to one gene level by using the maximum
expression value of the probe set in each gene. Then, the SAM algorithm has been
applied, with delta= 2.4, to identify differentially expressed genes between
transcripts in renal cysts of different sizes, and minimal cystic tissue plus normal
renal cortical samples. The Matlab® implementation of SAM can be found in
(https://it.mathworks.com/matlabcentral/fileexchange/42346-significance-analysis-
of-microarrays–sam–using-matlab). In both microarrays analysis, after the
computation of all the differentially expressed genes, those belonging to glycolysis,
pentose phosphate pathway, TCA cycle/OXPHOS, fatty acid synthesis, and fatty
acid oxidation were identified (Supplementary Data 9).

Statistical analysis. For statistical analysis the Prism 5, GraphPad Software, and
Matlab® were used using statistical analysis tool. t-test was used for all analysis of
two groups. ANOVA statistical analysis followed by Bonferroni’s multiple

comparison test was performed in all analysis where more than two groups were
present. The P-values for each condition are indicated in the legends.

Images creation. Figures 1e, 6b, and Suppl Fig. 2C contain modified images from
Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic
License. http://smart.servier.com/. All other images were generated by the authors.

Data availability
All data are provided within the manuscript. Raw data and elaboration for figures
preparation are contained in Supplementary data 10. The raw data of metabolic
tracing experiments ara available in Supplementary Data 11 and deposited into the
MetaboLights database (reference number MTBLS677). Raw data of microarrays
from Pkd1v/v mice are available at GEO (GSE121563).
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