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Abstract 
 
Multi-objective optimization of nuclear engineering fuel assembly design problems is 
particularly difficult due to the highly non-linear interactions of a large number of possible 
variables. In addition, effective optimization algorithms are often highly problem-dependent 
and require extensive tuning, which reduces their applicability to the real world. To address 
this issue, Differential Evolution (DE) algorithms have been proposed as a new and effective 
method for heterogeneous fuel assembly optimization design problems. This paper presents 
the first complete study to investigate their applicability and performance. Firstly, two multi-
objective DE algorithms have their performance compared against an Evolutionary Algorithm 
(EA) from the literature in optimizing a CORAIL mixed-oxide (MOX) fuel assembly for 
maximum plutonium content and minimum power peaking factor. Statistical analysis of the 
results shows the DE algorithms exhibit superior performance to the EA. The DE algorithms 
are then used to optimize a MOX fuel assembly with gadolinia poison, with results showing 
DE produces assembly designs comparable in performance to those in the literature. Finally, a 
sensitivity study is conducted on the control parameters of the better performing of the DE 
algorithms. Results indicate DE performance remains consistent for a wide range of values of 
both control parameters, suggesting the algorithm is able to perform effectively without 
requiring user expertise or effort to find the ‘optimal’ control parameter settings. 
 
1. Introduction 
 

Varying the properties of fuel pins on a pin-by-pin basis across a nuclear reactor fuel 
assembly, both axially and radially, can potentially provide benefits for various fuel and core 
performance and safety criteria. However, the large number of variables, their non-linear 
interaction and the number of possible combinations makes it extremely difficult to 
quantitatively define the trade-offs between the different performance criteria which are often 
in competition, such as k-effective and the Power Peaking Factor (PPF). By giving engineers 
a capability to rigorously and systematically explore the trade-offs involved in design, 
optimization of both existing and new designs becomes possible in an area where 
optimization is too difficult to achieve through conventional engineering judgement alone. 

Optimization refers to the process of attempting to determine which combinations of 
variables within a system produce solutions which achieve the best performance or are closest 
to pre-defined performance objectives. In real-world engineering problems, much of the 
information about the system is incomplete, and this is particularly true of nuclear engineering 
design problems which often feature high dimensionality. Optimization methods have been 
providing effective solutions for core loading pattern design problems since the 1970s using a 
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variety of techniques from Linear Programming (Suzuki and Kiyose, 1971), to Simulated 
Annealing (Kropaczek and Turinsky, 1991), Genetic Algorithms (Parks, 1996), Particle 
Swarm Optimization (Khoshahval et al., 2011) and Tabu Search (Jagawa et al., 2001). This is 
the focus of the majority of nuclear engineering optimization research. However, optimization 
methods can also be applied to aspects of the design of the fuel assembly itself. Generally, 
this sort of optimization involves varying the uranium-235 enrichment in the assembly 
(Hirano at al., 1997), along with other influencing factors, such as the number of gadolinium 
pins (Yamate et al., 1997), in order to optimize some objectives, usually to minimize the PPF 
or to maximize the infinite multiplication factor (Castillo et al., 2011). Given the natural 
trade-offs entailed with competing objectives such as these, a multi-objective approach can 
prove to be highly effective, with some studies demonstrating results which surpass expert 
designs (Lattarulo et al., 2014; Charles and Parks, 2017). 

Single-objective optimization methods are designed to improve one objective in isolation 
by changing other variables, whereas multi-objective methods attempt to improve two or 
more figures of merit simultaneously. The most common techniques for solving multi-
objective problems are either to construct a single composite objective function using a 
weighted summation of the individual objectives, or to constrain all but one of the objectives 
and focus optimization upon the remaining objective (Sawaragi et al., 1985). An obvious 
problem with these approaches is that the constraint limits and weightings employed will 
almost certainly be based on the designer’s judgement, and thus the approach (and the 
solution obtained) is subjective (Parks, 1996). To avoid reliance on this, one can use the 
concept of ‘dominance’ to find the area of global optimization (the trade-off surface or Pareto 
front). 

Any solution on the Pareto front can be identified formally by the fact that it is not 
dominated by any other possible solution. One solution is said to be dominated by another, if 
the latter is at least as good on all counts (objectives) and better on at least one. This is 
illustrated in Fig. 1: solutions P2 and P3 both dominate P1. By evaluating and comparing all 
possible solutions, the set of optimal nondominated solutions (the Pareto front) can be found 
for the problem at hand, as shown in Fig. 2. Exhaustive enumeration of all possible solutions 
is usually not practicable for real-world problems, and thus the Pareto front found is an 
approximation of the true one – a good approximation if the multi-objective optimization 
algorithm used performs well. 

 

 
Fig. 1. Nondominated and dominated solutions in a two-objective (both to be minimized) optimization 
problem (Pereira, 2004). 
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Fig. 2. An example of a Pareto front in a two-objective (both to be minimized) optimization problem 
(Pereira, 2004). 
 

As successive iterations of the optimization algorithm are executed, improved Pareto fronts 
can be formed until a convergence or termination criterion is met. A class of algorithms 
known as ‘multi-objective metaheuristics’ have been shown to be highly effective when 
combined with suitable evaluation software, such as the reactor physics analysis package 
WIMS (Lindley et al., 2015). These are algorithms which learn information about the system 
they are investigating as they progress, and modify how they work in light of this experience 
in order to accelerate the search for optimal solutions. 

The most well-known class of metaheuristics is Evolutionary Algorithms (EAs) (Coello 
Coello et al., 2007). These attempt to mimic the processes involved in evolution by natural 
selection – by combining superior solutions through a process known as ‘crossover’ or 
‘recombination’ to create new ‘offspring’ or ‘generations’ of solutions, with random 
mutations attempting to ensure diversity within the ‘population’. A downside of EAs is the 
many control parameters which govern the behaviour of the algorithm, making certain 
operations (such as crossover or mutation) more or less likely depending on the values of 
these parameters. When applied to a new problem for which little is known about the search 
space, where optimal solutions might lie, or how the design variables interact (as is most often 
the case with engineering problems), these algorithms may exhibit poor performance if a 
period of parameter ‘tuning’ is not performed first. This results in increased computational 
requirements and can potentially mislead the engineer about the nature of the search space. 
Tuning can be simplified significantly if the algorithm contains some form of adaptive 
parameter control, whereby the parameters are dynamically adjusted using feedback from the 
search process, enabling the algorithm to adjust itself as it searches, leading to faster and more 
reliable convergence.  

In contrast to traditional EAs, Differential Evolution (DE) algorithms (Storn and Price, 
1997) are a relatively newer type of EA that work in a similar fashion but feature key 
differences in the way the new population is generated. Instead of using a predefined 
probability density function, new solutions are generated through taking a scaled difference 
between two parents (known in DE as the mutation strategy) and adding it on to a third parent 
in a crossover process. This results in a selection process that is generally more stringent than 
that used in GAs (where inferior solutions have a probability of remaining in the population), 
because only solutions which are better than or at least as good as the current population are 
allowed to survive to the next generation. This gives DE algorithms a potentially faster 
convergence rate by being inherently greedier (which is useful for computationally expensive 
problems, such as those typically faced in nuclear engineering, as it reduces the number of 
evaluations necessary to reach a high quality solution). However, greedy algorithms typically 
have a higher risk of losing diversity in the population. Without diversity the algorithm can 
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prematurely converge on a solution which is a local optimum, rather than a global optimum, 
simply because it is unaware other possibilities exist (Zio and Viadana, 2011). DE algorithms 
have previously been successfully applied to nuclear reactor core design optimization 
problems (Sacco et al., 2009); however, they do not yet appear to have been applied to 
nuclear fuel assembly design optimization problems, thus making this investigation both 
novel and a useful step in examining DE’s applicability to solving such problems. 

This research investigates the performance of multi-objective DE algorithms on nuclear 
engineering fuel assembly design problems (compared to EAs) and the sensitivity of that 
performance to control parameter settings, in order to determine their overall suitability for 
optimization problems of this kind. For this work, new multi-objective forms of the DE 
algorithms JADE (Zhang and Sanderson, 2009) and μJADE (Brown et al., 2015) are 
developed.  

JADE was developed to offer a potentially superior mutation strategy by combining a 
‘greedy’ method with an external archive. The mutation strategy is one of the defining 
characteristics of a DE algorithm and choosing which parents to perform a weighted 
difference on affects how wide or narrow the search potential is. Less greedy strategies 
involve choosing random parents, whereas in more greedy strategies parents are only chosen 
from the ‘best’ or ‘set of best’ solutions. Including an archive allows the algorithm to take 
information not only from the ‘best’ solutions (which in multimodal problems are harder to 
define), but also from other previously found solutions, which enables the algorithm to 
maintain a diverse set of solutions to mitigate against the risk of premature convergence. This 
risk is then further reduced by using adaptive parameter control. Both JADE and μJADE 
feature adaptation of the control parameters and have just two control parameters set by the 
user: the rate of parameter adaptation, and the elitism/greediness of the selection step. This 
contrasts with other algorithms without adaptive parameter control, which can feature 8–10 
separate control parameters which must be set by the user. As pointed out by Zhang and 
Sanderson (2009), adaptive algorithm control improves algorithm robustness and reduces the 
need to tune control parameters to individual problems. JADE has been shown in the 
literature to exhibit superior performance over classic DE algorithms (Zhang and Sanderson, 
2009). μJADE was chosen as it has also been shown to be effective when working on 
multimodal problems (Brown et al., 2015), but uses a significantly smaller population size, 
which is of great benefit when analyzing real-world problems where evaluating the population 
is far more computationally expensive. 

This paper applies DE algorithms to three problems. The first problem investigated 
concerns optimization of a so-called ‘CORAIL’ assembly (Youinou et al., 2001) containing 
both low-enriched uranium (LEU) and plutonium mixed-oxide (MOX) pins, with the 
objectives of minimizing the PPF and maximizing plutonium content. This problem serves to 
compare the performance of the DE algorithms and a representative EA. The second problem 
involves optimization of a MOX assembly which includes gadolinium burnable absorber pins, 
investigating the performance of the DE algorithms on a more complex problem. Finally, the 
sensitivity of the better performing DE algorithm is investigated. Low sensitivity indicates 
that the algorithm performs robustly and does not require excessive parameter tuning before it 
can be run on a new problem. 
 
2. Optimization algorithms 
 

DE algorithms search using a ‘population’ of ‘solutions’, where in this work each 
‘solution’ is a possible fuel assembly design generated by the algorithm. In each ‘generation’, 
solutions are evaluated to determine which designs are better at achieving a set of given 
objectives. The next generation of the population is then determined by following the 
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principle of natural selection, whereby ‘good’ solutions have a greater influence on 
subsequent generations of solutions than ‘poor’ solutions. Solutions are evaluated to 
determine their objective values. 
 
2.1. JADE, MOJADE and MOμJADE 
 

The DE algorithm JADE was chosen from the literature as the basis from which to develop 
the multi-objective forms. JADE has already proven to be highly competitive on optimization 
problems with high dimensionality (Zhang and Sanderson, 2009). It features a mutation 
strategy called “DE/current-to-pbest/1”, shown below in Eq. (1), which creates a mutated 
solution: 
 
  ,      ,               , 

  –   ,             1,  –    2,   (1) 
 
Here      is the mutated solution,      is a current member of the population,       is a randomly 
chosen member of the population,        is a randomly chosen solution from an archive of 
‘worst’ solutions,        

  is a solution from an archive of ‘best’ solutions, and    is a weighting 
factor, determined from the mutation rate. The mutation rate and the crossover rate are 
changed according to how successful the algorithm has previously been at creating superior 
solutions and are regulated (after each generation) by the control parameter c (the rate of 
parameter adaptation). The size of the archive of ‘best’ solutions is determined by control 
parameter p (the elitism of the algorithm). p and c are the only user-specified control 
parameters in JADE, making it inherently easier (compared to other EAs) to tune 
performance. 

μJADE uses a slight variant to this, called “DE/current-by-rand-to-pbest/1” (Brown et al., 
2015), shown below in Eq. (2): 
 
                     

  –  a             –      (2) 
 
Common terms with Eq. (1) have the same meaning here, while  a and    are randomly 
chosen members of the population that are not   , and     is a randomly chosen member of the 
archive of ‘worst’ solutions. This feature keeps the strategy exploratory during early stages of 
optimization, and, as the population converges,    becomes closer to  a and the strategy 
becomes closer to the “DE/current-to-pbest/1” strategy featured in JADE, accelerating 
convergence. Once again, the mutation rate and crossover rate, along with the greediness, are 
regulated by the same control parameters as in JADE. Both JADE and μJADE feature a 
binomial crossover method, which is the standard method for DE, and allows for any 
combination of mutated and non-mutated components. Alternatives include the exponential 
crossover method, which crosses over a number of consecutive components, but this is 
generally inferior to binomial crossover (Zio and Viadana, 2011). 

Multi-Objective JADE (MOJADE) and μJADE (MOμJADE) were created using C++ and 
are based on the JADE and μJADE algorithms, as described by the originators in (Zhang and 
Sanderson, 2009) and (Brown et al., 2015), respectively, with the following modifications 
implemented to allow them to operate in a multi-objective environment. First, selection and 
ranking are no longer done based on one objective – this was changed to use the concept of 
dominance to determine the Pareto front. Therefore, the ‘best’ solutions are now a list of 
nondominated solutions, which represent the current Pareto front, the trade-off in the 
objectives of the solutions found thus far. Secondly, archiving was changed such that it now 
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takes dominated solutions from the population. An additional archive was added to accept 
new solutions that are Pareto-equivalent to (i.e. neither dominated nor dominating) the 
existing population. Therefore,    2,  for MOJADE and      for MOμJADE can be any solution 
from the archives of dominated and Pareto-equivalent solutions. MOJADE and MOμJADE 
were initially tested on the ZDT-1 problem (Zitzler et al., 2003) and their results were 
compared to those obtained using the NSGA-II algorithm (Deb et al., 2002; Knowles et al., 
2006), using a test case of 41 dimensions. The test confirmed that both DE algorithms were 
able to find the Pareto front with performance comparable to the NSGA-II algorithm, and 
confirmed that they can successfully operate in a multi-objective environment. 

Pseudocode for MOJADE and MOμJADE can be found in Appendix A. Control 
parameters used for MOJADE and MOμJADE in this work are given in Table 1. 
 
Table 1 
MOJADE and MOμJADE control parameters. 
Parameter MOJADE MOμJADE 
Rate of parameter adaptation c 0.1  0.05 
Greediness of selection strategy p 0.05 3 / population 
Population size 32 8 
Generations 50 200 
 
2.2. Multi-Objective Alliance Algorithm  
 

In order to assess the performance of these newly created DE algorithms, they are 
compared to an algorithm from the literature that has previously demonstrated effectiveness in 
optimizing nuclear fuel assembly design problems – the Multi-Objective Alliance Algorithm 
(MOAA) (Lattarulo and Parks, 2012). 

The MOAA is a metaheuristic optimization algorithm inspired by the metaphorical idea of 
a number of tribes struggling to conquer an environment offering resources that enable them 
to survive. The tribes are characterized by two features: the skills and resources necessary for 
survival. Tribes try to improve skills by forming alliances, which are also characterized by the 
skills and resources needed, but these now depend on the tribes within the alliance. The two 
main search elements of the algorithm are the formation of alliances and the creation of new 
tribes. One MOAA cycle ends when the strongest possible alliances of existing tribes have 
been created. The algorithm then begins a new cycle starting with new tribes whose creation 
is influenced by the previous strongest alliances.  

Tribes are initially created randomly, but, once a Pareto front has been established, they 
become either copies of Pareto front solutions or are modified from the Pareto front using a 
normal distribution. This distribution has an adaptive standard deviation to increase diversity 
initially and then speed up convergence towards the end of the optimization. The algorithm 
also analyses the distance between solutions on the Pareto front to determine which solutions 
to remember. This feature also functions adaptively: as the algorithm converges and the 
average gap between solutions becomes smaller, dominated solutions near areas of the Pareto 
front that have larger gaps are preserved in an archive to encourage the finding of a non-
dominated solution in that area in the future. These features are all governed by control 
parameters, and the (default) values of the MOAA control parameters used in this work are 
given in Table 2. 

Further details concerning the application of the MOAA to nuclear fuel assembly design 
can be found in (Lattarulo et al., 2014). In that case study, the MOAA found solutions 
superior to previous ‘expert designs’ and out-performed other EAs.  
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Table 2 
MOAA control parameters. 
Parameter Value 
Number of tribes 6 
Probability 1 for the creation of tribes  0.5  
Probability 2 for the creation of tribes 0.2 
Initial standard deviation 0.3 
Final standard deviation 0.01 
Probability 3 for the creation of alliances 2 / variables 
Alliance standard deviation 0.1 
Total number of Pareto-optimal solutions 100 
Factor for evaluation neighbourhood 10 
 
3. Test problems 
 
3.1. Problem 1 
 

The first problem investigated was originally presented in (Lattarulo et al., 2014) and DE 
results were first presented in (Charles and Parks, 2017). The task is to optimize a two-
dimensional nuclear fuel ‘CORAIL’ type assembly containing two types of fuel pin, LEU and 
uranium-plutonium MOX (see Fig. 3). 

 

 
Fig. 3. CORAIL assembly with LEU pins surrounded by MOX pins at the periphery (Lattarulo et al., 
2014). 
 

The presence of both Pu and LEU results in a wider neutron energy spectrum inside the 
reactor during operation, creating uneven reaction rates, variations in the radial neutron flux 
and power distribution, and can potentially result in fuel temperature problems. By optimizing 
the distribution of pins inside the assembly this imbalance can be minimized. Optimization 
can be carried out by changing both MOX pin positions and the concentration of plutonium 
within the MOX pins, as Lattarulo et al. (2014) demonstrated, increasing the overall Pu 
content above that of the standard CORAIL expert design. For reasons of safety, at least half 
the total number of pins should always be LEU only and the %Pu within the MOX pins can 
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be no more than 20%. The plutonium composition was assumed to be reactor grade, and is 
detailed in Table 3. 

 
Table 3 
Plutonium isotopic composition (%) used for Problem 1. 

238Pu 239Pu 240Pu 241Pu 242Pu 241Am 
3.90 40.57 30.08 12.32 11.89 1.24 
 
LEU enrichment is kept fixed at 5% 235U. The geometry was fixed to be that of a standard 

CORAIL assembly containing 264 fuel pins. Using octant symmetry this can be simplified to 
give 39 unique fuel pin positions. Pin types 1, 2 and 3 refer to MOX type 1, MOX type 2 and 
LEU, respectively. 

��

N1, 

��

N2 and 

��

N3 are therefore the quantities of each pin type, with the sum 
total being equal to the number of pins in the assembly octant (

��

N1�N2 �N3  39). Two 
MOX pin types are allowed with different %Pu amounts 

��

(W1,W2). The constraints are

��

N3 ≥ 
16.5 (264/8), which represents a lower limit for the number of LEU pins in the octant due to 
safety reasons, and 0 ≤ 

��

W1,W2 ≤ 20, which represent the range of possible %Pu values. The 
total plutonium content in the assembly is given by 

��

MOXT  W1 �N1�W2 �N2 . Pins along the 
lines of octant symmetry within the assembly are weighted by 0.5 when calculating the value of 
MOXT, to avoid double counting of Pu. The objectives to be minimized are PPF at beginning 
of life (BoL) and –MOXT. PPF values are obtained using the reactor physics code WIMS10a 
(Lindley et al., 2015) to solve the neutron transport equation, using the method of 
characteristics, to calculate pin power and hence the PPF. To calculate the PPF, WIMS fixes 
the mean pin power. 

MOJADE, MOμJADE and MOAA were each run 30 times, with a unique random seed 
each time. Each individual run had a limit of 1600 solution evaluations, which allowed for 50 
generations of MOJADE using a population of 32, and 200 generations of MOμJADE using a 
population of 8. Algorithms were run on the ‘Ray’ computer cluster used by the University of 
Cambridge’s Department of Engineering Nuclear Group, with specifications shown in Table 
4. 
 
Table 4 
Ray computer cluster specifications. 
Processor  Intel Xeon Processor E5-2650 (2.6 GHz, 20 MB cache) 
Threads 16 
RAM 64 GB DDR3 
 
3.2. Problem 2 
 

The second test problem was chosen to investigate the effectiveness of DE on a more 
complex problem without performing any control parameter tuning. This problem concerns 
the optimization of MOX fuel assemblies containing gadolinia (Gd2O3) pins, e.g. Japanese 
MOX assemblies (Yamate et al., 1997). The use of gadolinia pins in these assemblies 
potentially reduces the need to use burnable poison rods (BPRs) in the guide tubes, normally 
employed to compensate for higher PPF values caused by higher levels of Pu content 
compared to other designs. By optimizing the design using gadolinia pins, the PPF can be 
reduced without using BPRs and can even allow for increased Pu content in the assembly. 

In (Yamate et al., 1997), one assembly was optimized for minimum PPF over the life of 
the assembly, using a fixed %Gd content, fixed pin types and changing %Pu contents for two 
types of U-Pu MOX pin. To match the original paper, a slightly different plutonium 
composition was used to mimic Japanese-style MOX pins (see Table 5). 
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Table 5 
Plutonium isotopic composition (%) used for Problem 2. 

238Pu 239Pu 240Pu 241Pu 242Pu 241Am 
1.90 57.50 23.30 10.00 5.40 1.90 

 
Using multi-objective optimization algorithms, it is possible to further explore the search 

space for this problem, with the objectives once again of maximizing plutonium content and 
minimizing the PPF at the assembly BoL. The design variables were changed to include all 
five originally proposed assembly layouts, allowing %Gd and %Pu to change, and allowing 
all non-Gd pins to be of either type of Pu MOX pin. The different assembly layouts used are 
shown in Fig. 4. 
 

 
Fig. 4. Japanese U-Pu MOX ¼ assembly layouts used in Problem 2 (taken from (Yamate et al., 
1997)). 
 

Similar to the previous problem, the assembly contains 264 fuel pins and has 39 unique 
fuel pin positions, for octant symmetry. Pins are labelled as fuel types 1, 2 and 3 (MOX type 
1, MOX type 2, and gadolinia, respectively). Total numbers of each pin type are given by 

��

N1, 

��

N2 and 

��

N3, with 

��

N1�N2 �N3  39. The quantity and positions of the gadolinia pins are 
dependent on which assembly layout is chosen, from the five possibilities (shown in Fig. 4), 
with some pins weighted by 0.5 due to octant symmetry in the assembly. The two MOX pin 
types can be placed anywhere in the assembly except at guide tube or gadolinia pin locations. 
The two %Pu weights are 

��

W1 and 

��

W2, and one concentration of gadolinia is allowed 

��

(WG). 
Constraints of 0 ≤ 

��

W1,W2 ≤ 20, and 0 ≤ 

��

WG  ≤ 10 were used. The total Pu content is again

��

MOXT  W1 �N1�W2 �N2 . 
Both MOJADE and MOµJADE were run on this problem and their performance 

compared. Following this, depletion of a solution on the elbow of the found Pareto front 
solution was performed to see how the PPF changed over the life, with results compared to 
those in (Yamate et al., 1997). Both algorithms were used with the same control parameter 
values as used for the first problem to see how well the algorithms performed without custom 
tuning of parameters. Again, the reactor physics code WIMS10a (Lindley et al., 2015) was 
used to calculate PPF values and to perform depletion calculations. MOJADE was run with a 
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population of 32 for 50 generations. MOµJADE was run with a population of 8 for 200 
generations, giving both algorithms a total of 1600 function evaluations in each run. Both 
algorithms were run 20 separate times. Algorithms were run on the ‘Lux’ computer cluster 
used by the University of Cambridge’s Department of Engineering Nuclear Group, with 
specifications shown in Table 6. 
 
Table 6 
Lux computer cluster specifications. 
Processor  Intel Xeon Processor E5-2690 (3.5 GHz, 35 MB cache) 
Threads 28 
RAM 128 GB DDR3 
 
3.3. Sensitivity analysis 
 

The sensitivity of DE to the values of its control parameters was measured using the same 
optimization problem described in Sect. 3.2. Only MOJADE was investigated in this case, 
since it was shown to perform better than MOµJADE on Problems 1 and 2, and is arguably 
more suited to nuclear engineering problems where parallelization of the evaluation step 
offers a significant execution time advantage.  

Constraints were kept the same, and the optimization objectives were again to maximize 
the Pu content of the assembly and minimize the BoL PPF. It was decided to confine the 
study to looking at assembly performance at BoL to reduce the computational cost of the 
investigation, as including burnup calculations in the evaluation step increases the 
computational load significantly. It was judged that the BoL design problem was sufficiently 
complex to provide a good test of the performance sensitivity to the rate of adaptation c and 
the greediness of the algorithm p. 

MOJADE was run with a population of 32 for 40 generations. The focus of this study was 
on the impact on performance of the algorithm’s degree of elitism and self-adaptive nature, as 
the trade-off between increased population size providing more diversity and greater search 
space coverage versus computational load is already well established. Table 7 shows the 
control parameter ranges tested along with their default values. Work by the original authors 
of JADE suggests that the rate of parameter adaptation c works well with values in the range 
0.05–0.2, and the greediness p works well between 5 and 20% (i.e. the ‘best’ results are 
chosen from between 5 and 20% of the current population) (Zhang and Sanderson, 2009). 
Both very high and very low values of p and c were investigated to determine the effect these 
control parameters have on the algorithm’s performance. Each test was run 10 times (varying 
only the random number generator seed used in each run) to obtain a suitable statistically 
significant set of results. Runs were executed on the ‘Lux’ computer cluster. 
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Table 7 
MOJADE control parameter values used in sensitivity analysis tests. 

Test number Greediness of selection strategy, p Rate of parameter adaptation, c 
Default Values 0.05 0.1 

1 0.05 0.0 
2 0.05 0.025 
3 0.05 0.25 
4 0.05 0.75 
5 0.05 1.0 
6 0.01 0.1 
7 0.25 0.1 
8 0.75 0.1 
9 1.0 0.1 

 
 
4. Results and discussion 
 
4.1. Problem 1 
 

The output of each run was the final Pareto front found by the algorithm. The results were 
analyzed by comparing these Pareto fronts. Analysis as presented in (Charles and Parks, 
2017) involved using two separate indicators to determine the relative performance of each 
algorithm. Firstly, the epsilon indicator (Zitzler et al., 2003) represents the minimum 
translational distance necessary to move all points on a given Pareto front to weakly dominate 
a reference set (a combined Pareto front formed from all solutions from all algorithms 
representing the most optimal set of solutions). Secondly, the hypervolume indicator 
(Knowles et al., 2006) calculates the difference between the hypervolume of the dominated 
objective space formed from the Pareto front of one particular algorithm and the hypervolume 
of the objective space dominated by the reference set, using the least-optimal solution found 
as a reference point for the calculation of the hypervolume. In both cases smaller values 
indicate better performance. These same indicators will also be used later to analyze the 
results of the sensitivity study. To determine the statistical significance of the performance 
indicator values, the Kruskal-Wallis test was used (Kruskal and Wallis, 1952). For this work, 
the Kruskal-Wallis test results represent the probability that the given indicator values are not 
a true representation of the algorithm’s relative performance against another, and are instead 
the result of random chance. 

Results are plotted in PPF against (–MOXT) space. More negative values of –MOXT 
indicate a higher amount of plutonium in the assembly. Both objectives are to be minimized; 
therefore the bottom-left corner represents an ideal solution. Fig. 5 shows the results of every 
generated Pareto front for each algorithm. Fig. 6 shows these results filtered to show the 
overall best Pareto front for each algorithm. A line depicting the overall Pareto front formed 
from all the algorithms together is added for reference.  
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Fig. 5. Results of MOAA, MOJADE and MOμJADE optimization of MOX fuel assemblies in 
Problem 1, adapted from (Charles and Parks, 2017). 
 

 
Fig. 6. Comparison of nondominated solutions found using the MOAA, MOJADE and MOµJADE 
algorithms to optimize MOX fuel assemblies in Problem 1, adapted from (Charles and Parks, 2017). 
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Figs. 5 and 6 demonstrate that MOJADE and MOμJADE perform comparably to MOAA, 
significantly contributing to the overall Pareto front, as highlighted in Fig. 6. The solutions 
found by MOAA appear to exhibit some degree of clustering in the Pareto front, with the gaps 
populated by MOJADE and MOμJADE solutions. MOAA tends to converge on a single 
MOX-LEU pin pattern during the course of a run, and thus the output from that run will 
typically be nondominated solutions which show the effect of increasing or decreasing the 
values of 

��

W1 and/or 

��

W2 within the same pin pattern. This results in a number of solutions that 
have very similar values for MOXT and PPF. In contrast, both MOJADE and MOμJADE do 
not necessarily converge on a single pin pattern in any given run, and thus arguably better 
explore the search space of different pin arrangements. 

The means and standard deviations of the hypervolume and epsilon indicators, along with 
their corresponding p-values from the Kruskal-Wallis test, are given in Tables 8 and 9, 
respectively. 
 
Table 8 
Hypervolume and epsilon indicator values in Problem 1, adapted from (Charles and 
Parks, 2017). 

Algorithm Hypervolume Indicator Epsilon Indicator 
Mean Standard Deviation Mean Standard Deviation 

MOAA 1.6664 0.5169 0.3897 0.1478 
MOJADE 0.7672 0.1047 0.3941 0.1204 
MOµJADE 1.1267 0.7723 0.3320 0.1081 
 
Table 9 
Kruskal-Wallis test results in Problem 1, adapted from (Charles and Parks, 2017). 
Algorithms Hypervolume Indicator Epsilon Indicator 
MOJADE vs MOAA 3.879E-11 9.528E-01 
MOµJADE vs MOAA 8.513E-07 7.363E-02 
MOµJADE vs MOJADE 9.497E-05 5.650E-02 
 

The hypervolume indicator results in Table 8 show that MOJADE is most consistent at 
producing results which dominate the entirety of the known search space, followed by 
MOμJADE. Results for the epsilon indicator, however, suggest that MOμJADE solutions are 
more likely to be closer to the ‘true’ Pareto front, but do not give as much information as to 
the exact nature of the Pareto front (MOμJADE search being limited by a smaller population 
size which leads to worse hypervolume indicator values). 

Table 9 gives the p-value results of the Kruskal-Wallis test for the hypervolume and 
epsilon indicators for both DE algorithms versus MOAA, as well as against each other. 
Values lower than 0.05 indicate statistically significant (at the 5% level) results. The results 
indicate that MOJADE and MOμJADE yield superior hypervolume performance compared to 
MOAA due to the methodological differences in the algorithms. However, differences in 
epsilon indicator performance are not shown to be statistically significant. Finally, MOJADE 
shows superior hypervolume performance to MOμJADE, again due to methodological 
differences. In a given run for a fixed number of solution evaluations, the larger population of 
MOJADE is able to better cover the search space (and thus the Pareto front) compared to the 
small population of MOμJADE. There is some evidence that MOμJADE may be able to 
converge quicker than MOJADE and thus require fewer evaluations, which may offset the 
lack of inherent parallelization currently present in MOµJADE. 
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4.2. Problem 2 
 

Fig. 7 shows the results given by MOJADE and MOµJADE, the Pareto front, and the 
solution chosen for depletion. 
 

 
Fig. 7. Results of DE optimization of MOX fuel assemblies with gadolinia pins (Problem 2). The 
arrow indicates the solution chosen for the burnup study. 
 

Fig. 7 indicates that both MOJADE and MOµJADE tend to converge on solutions 
containing high amounts of Pu, and the Pareto front for solutions with less negative values of 
–MOXT is poorly populated. It was originally thought that this may be due to some form of 
premature convergence causing a loss of diversity in the population around a local optimum 
of solutions containing high amounts of Pu. The crossover and mutation rates are self-
adapting control parameters, which are, in turn, affected by the greediness p and the rate of 
parameter adaption c, as specified in Table 1. To test this hypothesis, a modified form of the 
problem was run with MOJADE, with the amount of Pu constrained such that solutions would 
only be permitted if the value of –MOXT was between –11 and –5. Fig. 8 shows that 
constraining the problem in this way results in a Pareto front that is dominated by the original 
results, and the solution clustering is a feature of the problem, not the algorithm.  
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Fig. 8. The effect of constraining the %Pu within the MOX pins (Problem 2). 
 

Figs. 7 and 8 only show PPF versus the total Pu content of the assembly, as these are the 
two objectives optimized; they do not show the amount of gadolinium contained within the 
gadolinia pins. For a given assembly layout and Pu content, changing the concentration of 
gadolinium will not only change the flux in nearby pins, but it will also cause the energy 
spectrum of the assembly to shift, dependent on the absorption cross-section of the gadolinia 
pins. Therefore increasing the gadolinium concentration may shift the spectrum in such a way 
as to cause the gadolinia to be less effective as an absorber, and thus potentially increase the 
PPF value. This highlights the complex and interrelated nature of the objectives when 
optimizing the design of a nuclear fuel assembly. 

The Pareto front in Fig. 7 is almost entirely populated by MOJADE solutions. These 
results suggest that MOJADE performs better than MOµJADE on these types of problems, 
which supports the finding from Problem 1. 

The solution found at the elbow of the Pareto front (shown by the arrow in Fig. 7) was 
depleted to 15 GWd/t. The evolution of the PPF against burnup for this MOJADE-generated 
assembly design can be seen in Fig. 9 as the blue line, overlaid on the original results of 
Yamate et al. (1997). 
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Fig. 9. PPF progression with burnup for gadolinia-MOX fuel assemblies with MOJADE-generated 
assembly design shown in blue, compared to other designs evaluated by Yamate et al. (1997), adapted 
from (Yamate et al., 1997). 
 

The original paper (Yamate et al., 1997) investigated assemblies which ranged from 5.7% 
to 6.4% average Pu-pin wt% content. The chosen MOJADE solution had an average Pu-pin 
content of 19.5%. This test thus shows that DE algorithms are able to find designs that 
contain more Pu and keep internal PPF performance over one cycle comparable to that of 
assemblies with much lower Pu contents. Fig. 10 compares the assembly layouts of the 
depleted MOJADE solution and an example ‘expert’ assembly design from the (Yamate et al., 
1997) study. The less conventional MOJADE design outperforms the ‘expert’ design, 
illustrating the solution space searching capability of a stochastic optimization algorithm. 
 

  
Fig. 10. U-Pu MOX assembly layouts with gadolinia poison rods produced using MOJADE (left) and 
from the literature (Yamate et al., 1997) (right). Light grey and dark grey indicate MOX pins (dark 
grey have higher %Pu contents), green indicates a poison rod, and yellow indicates guide tubes. 
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4.3. Sensitivity analysis 
 

Figs. 11 and 12 show the Pareto fronts of each test using MOJADE with different control 
parameters in plots of PPF against –MOXT. Fig. 11 compares the Pareto fronts from each test 
run with the default parameter values and each test which changed the parameter adaptation 
rate c. Fig. 12 compares results with default parameter values to tests which changed the 
greediness of the selection strategy p. 

As seen in Sect. 4.2, there is a high degree of result clustering, with few MOJADE 
solutions with –MOXT values below –15, for the reasons explained above. Fig. 11 indicates 
that larger rates of parameter adaptation may reduce MOJADE’s ability to converge, whereas 
Fig. 12 suggests that varying the greediness parameter does not appear to have a large effect 
on the algorithm’s performance for this problem. 
 

 
Fig. 11. Pareto front results for the parameter adaptation rate (c) sensitivity study. 
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Fig. 12. Pareto front results for the greediness parameter (p) sensitivity study. 
 
4.4. Statistical analysis of sensitivity study results 
 

Once again, the hypervolume and epsilon indicator values were used to quantify 
performance. The progression of the hypervolume indicator value was monitored to confirm 
that the relative performance of the algorithm with different control parameter values had 
stabilized within the 40 generations allowed and would not significantly change were it run 
for more generations. This progression over the 40 generations (averaged over the 10 runs) 
can be seen in Fig. 13. 
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Fig. 13. The average hypervolume indicator value for each sensitivity study test every 5 generations. 
 

Final hypervolume and epsilon indicator values were calculated (Table 10), as well as 
performing the Kruskal-Wallis test (Table 11) to determine whether observed differences are 
statistically significant. In this study, the Kruskal-Wallis test p-value results represent the 
probability that the difference between the performance indicator values for MOJADE runs 
with default parameter values and for each test could have occurred by chance. This is used to 
ascertain whether the performance of the DE algorithm MOJADE is significantly sensitive to 
changes to its control parameters. 
 
Table 10 
Sensitivity study hypervolume and epsilon indicator values: statistically significant results from the 
Kruskal-Wallis test (Table 11) are shown in bold. 

Test Number Hypervolume Indicator Epsilon Indicator 
Mean Standard Deviation Mean Standard Deviation 

Default values 0.3204 0.1324 3.0770 2.6952 
1 0.2249 0.0798 0.6934 0.8192 
2 0.2857 0.1065 1.1678 1.1824 
3 0.3692 0.1489 2.0480 2.5493 
4 0.4319 0.1024 1.7474 2.1725 
5 0.5146 0.0836 4.1147 2.4837 
6 0.2886 0.0619 0.9181 0.9652 
7 0.2805 0.1064 0.8389 0.8338 
8 0.3329 0.1145 2.2707 2.5475 
9 0.2713 0.0956 1.2848 0.9661 
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Table 11 
Sensitivity study Kruskal-Wallis test results: statistically significant results (< 0.05) are shown in 
bold. 

Test Hypervolume Indicator Epsilon Indicator 
1 vs default values 6.96E-02 1.02E-02 
2 vs default values 9.40E-01 5.88E-02 
3 vs default values 3.26E-01 1.12E-01 
4 vs default values 1.91E-02 1.12E-01 
5 vs default values 5.20E-03 4.06E-01 
6 vs default values 8.80E-01 2.84E-02 
7 vs default values 7.06E-01 4.94E-02 
8 vs default values 5.45E-01 2.27E-01 
9 vs default values 8.80E-01 1.99E-01 

 
Table 11 shows that none of the tests show a statistically significant change in both 

performance indicators compared to algorithm performance with default values for parameter 
adaptation and greediness. This suggests that MOJADE is reasonably robust in handling 
nuclear fuel assembly design optimization problems with heterogeneous fuel types. There is 
some evidence to suggest that hypervolume performance does deteriorate at higher rates of 
parameter adaptation. The parameter adaptation rate controls the distributions from which 
mutation and crossover rates are chosen for new solutions. Successful (i.e. nondominated) 
solutions have their related crossover and mutation rates stored in normal and Cauchy 
distributions, respectively. Increasing the rate of parameter adaption increases the importance 
of crossover and mutation rates most recently added to the archive. Lower rates make the 
algorithm less adaptive as it searches, which could result in premature convergence and 
becoming trapped in local minima for highly non-linear problems. Excessively high rates, 
however, cause the algorithm to forget its ‘history’, and may end up performing the crossover 
and mutation operations too frequently (or not frequently enough). This can result in the 
creation of excessively random solutions, and thus slower convergence, or in the search 
becoming confined by existing solutions, which again leads to premature convergence. 

There is also some evidence to suggest that epsilon indicator performance is affected by 
both parameter adaptation and greediness. Greediness directly impacts the diversity 
maintained in the population as the algorithm moves around the search space. An excessively 
greedy algorithm may not be able to maintain a sufficiently diverse population to properly 
explore the search space, whilst a lack of elitism can slow algorithm convergence. These 
results suggest that tuning of the MOJADE control parameters may produce results which are 
more consistently closer to the true Pareto front, but do not suggest that the true Pareto front 
itself can be improved further. 
 
5. Conclusions 
 

This study has introduced and investigated the use of multi-objective Differential 
Evolution algorithms for optimizing nuclear fuel assembly design problems. Beginning with a 
performance comparison against an EA on a typical problem, the multi-objective DE 
algorithms MOJADE and MOμJADE demonstrated that DE is able to find solutions 
comparable in quality to those found by MOAA and arguably better explore the search space 
of fuel pin patterns. Both DE algorithms exhibit good performance in this exploratory 
optimization problem, despite the algorithms originally being designed for single-objective 
optimization with a known global optimum. 

MOJADE and MOμJADE were then tested on a more complex design problem involving 
both plutonium management and gadolinium distribution within a MOX assembly. Again the 
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DE algorithms were shown to be capable of generating designs that contain more plutonium 
compared to those from the reference literature and featured a lower PPF at BoL, with 
comparable performance over a 15 GWD/t cycle. 

From these two problems it was concluded that MOJADE exhibits superior performance to 
MOμJADE. For the final test, the sensitivity of the performance of the MOJADE algorithm to 
the settings of its control parameters was investigated on the second problem. The two control 
parameters, the rate of parameter adaptation and the greediness of the algorithm, were varied 
and the relative performance of the algorithm was analyzed for statistical significance. The 
results indicate that MOJADE is robust to changes in its control parameters and does not 
require tuning to individual problems, which supports an earlier finding by Zhang and 
Sanderson (2009) on the underlying JADE algorithm. 

This work demonstrates the effectiveness and reliability of DE algorithms as suitable 
multi-objective optimization metaheuristics for nuclear engineering design optimization 
problems. Further testing should tackle more complex problems with a wider range of 
objectives, including the introduction of thermal-hydraulic feedback mechanisms and the use 
of three-dimensional models for axial optimization of fuel zoning (e.g. for use in Boiling 
Water Reactors). 
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Appendix A: Pseudocode of MOJADE and MOµJADE 
 
Nomenclature 
 
µCR = adaptive crossover probability 
µF = adaptive mutation probability 
A1 = archive used for dominated solutions 
A2 = archive used for Pareto-equivalent solutions 
BIR = restart variable used if no improvement is made 
c = rate of parameter adaptation 
D = number of dimensions (variables) 
G = number of generations 
meanA = arithmetic mean 
meanL = Lehmer mean 
NP = last member of the population 
p = greediness of the mutation strategy 
P = population 
randn = normal distribution 
randc = Cauchy distribution 
SCR = set of successful crossover factors 
SF = set of successful mutation factors 
up_lim / low_lim = limits set by the variable bounds 
bi = crossover rate repair modifier following perturbation  
vi = ith test vector following mutation 
ui = ith test vector following crossover and perturbation 
xi = ith member of the population 
 
 
MOJADE 
 
Begin 

Set µCR = 0.5; µF = 0.5; A1, A2 = 0 
Create random initial population {xi, 0|i = 1, 2, …, NP} 
Evaluate and rank population, determine 100p% best vectors 
For g = 1 to G 

SF = 0, SCR = 0 
For i = 1 to NP 

CRi = randni (µCR, 0.1), Fi = randci (µF, 0.1) 
Randomly choose xp_best from 100p% 
Randomly choose xr1 =/= xi from P 
Randomly choose xr2 =/= xr1 =/= xi from P � A1 + A2 
vi = xi + Fi ·  (xp_best – xi) + Fi ·  (xr1 – xr2) 
Generate jrand = randint(1, D) 
For j = 1 to D 

If j = jrand or rand(0, 1) < CRi 
 ui,j = vi,j 
Else 
 ui,j = xi,j 
End If 
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End For 
If f(ui) dominates f(xi) 

xi → A1 (replaces random member of A1 if A1 is full) 
xi = ui 
CRi → SCR, Fi → SF 

Else 
If f(ui) is Pareto-equivalent to f(xi) 
&& f(ui) is NOT dominated by f(A2) 
 Remove members of A2 that are dominated by ui 

ui → A2 
End If 

End If 
Rerank 100p% best vectors 

End For 
µCR = (1 – c) · µCR + c ·  meanA(SCR) 
µF = (1 – c) · µF + c · meanL(SF) 

End For 
End 
 
MOµJADE 
 
Begin 

Set µCR = 0.5; µF = 0.5; A1, A2 = 0 
Create random initial population {xi, 0|i = 1, 2, …, NP} 
Evaluate and rank population, determine 100p% best vectors 
For g = 1 to G 

SF = 0, SCR = 0 
For i = 1 to NP 

CRi = randni (µCR, 0.1), Fi = randci (µF, 0.1)  
Randomly choose xp_best from 100p% 
Randomly choose xa =/= xi =/= xp_best from P 
Randomly choose xb =/= xa =/= xi from P 
Randomly choose xc from P � A1 + A2 
vi = xi + Fi ·  (xp_best – xa) + Fi ·  (xb – xc) 
Generate jrand = randint(1, D) 
For j = 1 to D 

If j = jrand or rand(0, 1) < CRi 
 ui,j = vi,j , bi,j = 1 
Else 
 ui,j = xi,j , bi,j = 0 
End If 

End For 
For j = 1 to D 

If rand(0, 1) ≤ 0.005 
 ui,j = low_lim + rand(0, 1) · (up_lim – low_lim) 
 bi,j = 0 
Else 
 ui,j = ui,j, bi,j = bi,j 
End If 

End For 



 

 25 

CRi = ∑ b / D 
If f(ui) dominates f(xi) 

xi → A1 (if A1 is full, replaces random member) 
xi = ui 
CRi → SCR, Fi → SF 

Else 
If f(ui) is Pareto-equivalent to f(xi) 
&& f(ui) is NOT dominated by f(A2) 
 Remove members of A2 that ui dominate  

ui → A2 
End If 

End If 
Rerank 100p% best vectors 
If ui ∪ 100p% best vectors 

BIR = BIR + 1 
End If 

End For 
If mod(g, max(100, 10D) = 0 

µCR = (1 – c) · µCR + c ·  meanA(SCR) 
µF = (1 – c) · µF + c · meanL(SF) 

End If 
If mod(g, max(1000, 100D) = 0 

If BIR== 0 
Reinitialize pop, include random member of 100p% 
BIR = 0 

End If 
End If 

End For 
End 


