

Application of Differential Evolution algorithms to multi-objective
optimization problems in mixed-oxide fuel assembly design

Alan Charles 1,*, Geoffrey Parks 1

1 University of Cambridge, Department of Engineering, Trumpington Street, Cambridge,
CB2 1PZ, United Kingdom

* Corresponding author.
E-mail addresses: ajc289@cam.ac.uk (Alan Charles), gtp10@cam.ac.uk (Geoffrey Parks)

Abstract

Multi-objective optimization of nuclear engineering fuel assembly design problems is
particularly difficult due to the highly non-linear interactions of a large number of possible
variables. In addition, effective optimization algorithms are often highly problem-dependent
and require extensive tuning, which reduces their applicability to the real world. To address
this issue, Differential Evolution (DE) algorithms have been proposed as a new and effective
method for heterogeneous fuel assembly optimization design problems. This paper presents
the first complete study to investigate their applicability and performance. Firstly, two multi-
objective DE algorithms have their performance compared against an Evolutionary Algorithm
(EA) from the literature in optimizing a CORAIL mixed-oxide (MOX) fuel assembly for
maximum plutonium content and minimum power peaking factor. Statistical analysis of the
results shows the DE algorithms exhibit superior performance to the EA. The DE algorithms
are then used to optimize a MOX fuel assembly with gadolinia poison, with results showing
DE produces assembly designs comparable in performance to those in the literature. Finally, a
sensitivity study is conducted on the control parameters of the better performing of the DE
algorithms. Results indicate DE performance remains consistent for a wide range of values of
both control parameters, suggesting the algorithm is able to perform effectively without
requiring user expertise or effort to find the ‘optimal’ control parameter settings.

1. Introduction

Varying the properties of fuel pins on a pin-by-pin basis across a nuclear reactor fuel
assembly, both axially and radially, can potentially provide benefits for various fuel and core
performance and safety criteria. However, the large number of variables, their non-linear
interaction and the number of possible combinations makes it extremely difficult to
quantitatively define the trade-offs between the different performance criteria which are often
in competition, such as k-effective and the Power Peaking Factor (PPF). By giving engineers
a capability to rigorously and systematically explore the trade-offs involved in design,
optimization of both existing and new designs becomes possible in an area where
optimization is too difficult to achieve through conventional engineering judgement alone.

Optimization refers to the process of attempting to determine which combinations of
variables within a system produce solutions which achieve the best performance or are closest
to pre-defined performance objectives. In real-world engineering problems, much of the
information about the system is incomplete, and this is particularly true of nuclear engineering
design problems which often feature high dimensionality. Optimization methods have been
providing effective solutions for core loading pattern design problems since the 1970s using a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162920699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

variety of techniques from Linear Programming (Suzuki and Kiyose, 1971), to Simulated
Annealing (Kropaczek and Turinsky, 1991), Genetic Algorithms (Parks, 1996), Particle
Swarm Optimization (Khoshahval et al., 2011) and Tabu Search (Jagawa et al., 2001). This is
the focus of the majority of nuclear engineering optimization research. However, optimization
methods can also be applied to aspects of the design of the fuel assembly itself. Generally,
this sort of optimization involves varying the uranium-235 enrichment in the assembly
(Hirano at al., 1997), along with other influencing factors, such as the number of gadolinium
pins (Yamate et al., 1997), in order to optimize some objectives, usually to minimize the PPF
or to maximize the infinite multiplication factor (Castillo et al., 2011). Given the natural
trade-offs entailed with competing objectives such as these, a multi-objective approach can
prove to be highly effective, with some studies demonstrating results which surpass expert
designs (Lattarulo et al., 2014; Charles and Parks, 2017).

Single-objective optimization methods are designed to improve one objective in isolation
by changing other variables, whereas multi-objective methods attempt to improve two or
more figures of merit simultaneously. The most common techniques for solving multi-
objective problems are either to construct a single composite objective function using a
weighted summation of the individual objectives, or to constrain all but one of the objectives
and focus optimization upon the remaining objective (Sawaragi et al., 1985). An obvious
problem with these approaches is that the constraint limits and weightings employed will
almost certainly be based on the designer’s judgement, and thus the approach (and the
solution obtained) is subjective (Parks, 1996). To avoid reliance on this, one can use the
concept of ‘dominance’ to find the area of global optimization (the trade-off surface or Pareto
front).

Any solution on the Pareto front can be identified formally by the fact that it is not
dominated by any other possible solution. One solution is said to be dominated by another, if
the latter is at least as good on all counts (objectives) and better on at least one. This is
illustrated in Fig. 1: solutions P2 and P3 both dominate P1. By evaluating and comparing all
possible solutions, the set of optimal nondominated solutions (the Pareto front) can be found
for the problem at hand, as shown in Fig. 2. Exhaustive enumeration of all possible solutions
is usually not practicable for real-world problems, and thus the Pareto front found is an
approximation of the true one – a good approximation if the multi-objective optimization
algorithm used performs well.

Fig. 1. Nondominated and dominated solutions in a two-objective (both to be minimized) optimization
problem (Pereira, 2004).

 3

Fig. 2. An example of a Pareto front in a two-objective (both to be minimized) optimization problem
(Pereira, 2004).

As successive iterations of the optimization algorithm are executed, improved Pareto fronts
can be formed until a convergence or termination criterion is met. A class of algorithms
known as ‘multi-objective metaheuristics’ have been shown to be highly effective when
combined with suitable evaluation software, such as the reactor physics analysis package
WIMS (Lindley et al., 2015). These are algorithms which learn information about the system
they are investigating as they progress, and modify how they work in light of this experience
in order to accelerate the search for optimal solutions.

The most well-known class of metaheuristics is Evolutionary Algorithms (EAs) (Coello
Coello et al., 2007). These attempt to mimic the processes involved in evolution by natural
selection – by combining superior solutions through a process known as ‘crossover’ or
‘recombination’ to create new ‘offspring’ or ‘generations’ of solutions, with random
mutations attempting to ensure diversity within the ‘population’. A downside of EAs is the
many control parameters which govern the behaviour of the algorithm, making certain
operations (such as crossover or mutation) more or less likely depending on the values of
these parameters. When applied to a new problem for which little is known about the search
space, where optimal solutions might lie, or how the design variables interact (as is most often
the case with engineering problems), these algorithms may exhibit poor performance if a
period of parameter ‘tuning’ is not performed first. This results in increased computational
requirements and can potentially mislead the engineer about the nature of the search space.
Tuning can be simplified significantly if the algorithm contains some form of adaptive
parameter control, whereby the parameters are dynamically adjusted using feedback from the
search process, enabling the algorithm to adjust itself as it searches, leading to faster and more
reliable convergence.

In contrast to traditional EAs, Differential Evolution (DE) algorithms (Storn and Price,
1997) are a relatively newer type of EA that work in a similar fashion but feature key
differences in the way the new population is generated. Instead of using a predefined
probability density function, new solutions are generated through taking a scaled difference
between two parents (known in DE as the mutation strategy) and adding it on to a third parent
in a crossover process. This results in a selection process that is generally more stringent than
that used in GAs (where inferior solutions have a probability of remaining in the population),
because only solutions which are better than or at least as good as the current population are
allowed to survive to the next generation. This gives DE algorithms a potentially faster
convergence rate by being inherently greedier (which is useful for computationally expensive
problems, such as those typically faced in nuclear engineering, as it reduces the number of
evaluations necessary to reach a high quality solution). However, greedy algorithms typically
have a higher risk of losing diversity in the population. Without diversity the algorithm can

 4

prematurely converge on a solution which is a local optimum, rather than a global optimum,
simply because it is unaware other possibilities exist (Zio and Viadana, 2011). DE algorithms
have previously been successfully applied to nuclear reactor core design optimization
problems (Sacco et al., 2009); however, they do not yet appear to have been applied to
nuclear fuel assembly design optimization problems, thus making this investigation both
novel and a useful step in examining DE’s applicability to solving such problems.

This research investigates the performance of multi-objective DE algorithms on nuclear
engineering fuel assembly design problems (compared to EAs) and the sensitivity of that
performance to control parameter settings, in order to determine their overall suitability for
optimization problems of this kind. For this work, new multi-objective forms of the DE
algorithms JADE (Zhang and Sanderson, 2009) and μJADE (Brown et al., 2015) are
developed.

JADE was developed to offer a potentially superior mutation strategy by combining a
‘greedy’ method with an external archive. The mutation strategy is one of the defining
characteristics of a DE algorithm and choosing which parents to perform a weighted
difference on affects how wide or narrow the search potential is. Less greedy strategies
involve choosing random parents, whereas in more greedy strategies parents are only chosen
from the ‘best’ or ‘set of best’ solutions. Including an archive allows the algorithm to take
information not only from the ‘best’ solutions (which in multimodal problems are harder to
define), but also from other previously found solutions, which enables the algorithm to
maintain a diverse set of solutions to mitigate against the risk of premature convergence. This
risk is then further reduced by using adaptive parameter control. Both JADE and μJADE
feature adaptation of the control parameters and have just two control parameters set by the
user: the rate of parameter adaptation, and the elitism/greediness of the selection step. This
contrasts with other algorithms without adaptive parameter control, which can feature 8–10
separate control parameters which must be set by the user. As pointed out by Zhang and
Sanderson (2009), adaptive algorithm control improves algorithm robustness and reduces the
need to tune control parameters to individual problems. JADE has been shown in the
literature to exhibit superior performance over classic DE algorithms (Zhang and Sanderson,
2009). μJADE was chosen as it has also been shown to be effective when working on
multimodal problems (Brown et al., 2015), but uses a significantly smaller population size,
which is of great benefit when analyzing real-world problems where evaluating the population
is far more computationally expensive.

This paper applies DE algorithms to three problems. The first problem investigated
concerns optimization of a so-called ‘CORAIL’ assembly (Youinou et al., 2001) containing
both low-enriched uranium (LEU) and plutonium mixed-oxide (MOX) pins, with the
objectives of minimizing the PPF and maximizing plutonium content. This problem serves to
compare the performance of the DE algorithms and a representative EA. The second problem
involves optimization of a MOX assembly which includes gadolinium burnable absorber pins,
investigating the performance of the DE algorithms on a more complex problem. Finally, the
sensitivity of the better performing DE algorithm is investigated. Low sensitivity indicates
that the algorithm performs robustly and does not require excessive parameter tuning before it
can be run on a new problem.

2. Optimization algorithms

DE algorithms search using a ‘population’ of ‘solutions’, where in this work each
‘solution’ is a possible fuel assembly design generated by the algorithm. In each ‘generation’,
solutions are evaluated to determine which designs are better at achieving a set of given
objectives. The next generation of the population is then determined by following the

 5

principle of natural selection, whereby ‘good’ solutions have a greater influence on
subsequent generations of solutions than ‘poor’ solutions. Solutions are evaluated to
determine their objective values.

2.1. JADE, MOJADE and MOμJADE

The DE algorithm JADE was chosen from the literature as the basis from which to develop
the multi-objective forms. JADE has already proven to be highly competitive on optimization
problems with high dimensionality (Zhang and Sanderson, 2009). It features a mutation
strategy called “DE/current-to-pbest/1”, shown below in Eq. (1), which creates a mutated
solution:

 , , ,

 – , 1, – 2, (1)

Here is the mutated solution, is a current member of the population, is a randomly
chosen member of the population, is a randomly chosen solution from an archive of
‘worst’ solutions,

 is a solution from an archive of ‘best’ solutions, and is a weighting
factor, determined from the mutation rate. The mutation rate and the crossover rate are
changed according to how successful the algorithm has previously been at creating superior
solutions and are regulated (after each generation) by the control parameter c (the rate of
parameter adaptation). The size of the archive of ‘best’ solutions is determined by control
parameter p (the elitism of the algorithm). p and c are the only user-specified control
parameters in JADE, making it inherently easier (compared to other EAs) to tune
performance.

μJADE uses a slight variant to this, called “DE/current-by-rand-to-pbest/1” (Brown et al.,
2015), shown below in Eq. (2):

 – a – (2)

Common terms with Eq. (1) have the same meaning here, while a and are randomly
chosen members of the population that are not , and is a randomly chosen member of the
archive of ‘worst’ solutions. This feature keeps the strategy exploratory during early stages of
optimization, and, as the population converges, becomes closer to a and the strategy
becomes closer to the “DE/current-to-pbest/1” strategy featured in JADE, accelerating
convergence. Once again, the mutation rate and crossover rate, along with the greediness, are
regulated by the same control parameters as in JADE. Both JADE and μJADE feature a
binomial crossover method, which is the standard method for DE, and allows for any
combination of mutated and non-mutated components. Alternatives include the exponential
crossover method, which crosses over a number of consecutive components, but this is
generally inferior to binomial crossover (Zio and Viadana, 2011).

Multi-Objective JADE (MOJADE) and μJADE (MOμJADE) were created using C++ and
are based on the JADE and μJADE algorithms, as described by the originators in (Zhang and
Sanderson, 2009) and (Brown et al., 2015), respectively, with the following modifications
implemented to allow them to operate in a multi-objective environment. First, selection and
ranking are no longer done based on one objective – this was changed to use the concept of
dominance to determine the Pareto front. Therefore, the ‘best’ solutions are now a list of
nondominated solutions, which represent the current Pareto front, the trade-off in the
objectives of the solutions found thus far. Secondly, archiving was changed such that it now

 6

takes dominated solutions from the population. An additional archive was added to accept
new solutions that are Pareto-equivalent to (i.e. neither dominated nor dominating) the
existing population. Therefore, 2, for MOJADE and for MOμJADE can be any solution
from the archives of dominated and Pareto-equivalent solutions. MOJADE and MOμJADE
were initially tested on the ZDT-1 problem (Zitzler et al., 2003) and their results were
compared to those obtained using the NSGA-II algorithm (Deb et al., 2002; Knowles et al.,
2006), using a test case of 41 dimensions. The test confirmed that both DE algorithms were
able to find the Pareto front with performance comparable to the NSGA-II algorithm, and
confirmed that they can successfully operate in a multi-objective environment.

Pseudocode for MOJADE and MOμJADE can be found in Appendix A. Control
parameters used for MOJADE and MOμJADE in this work are given in Table 1.

Table 1
MOJADE and MOμJADE control parameters.
Parameter MOJADE MOμJADE
Rate of parameter adaptation c 0.1 0.05
Greediness of selection strategy p 0.05 3 / population
Population size 32 8
Generations 50 200

2.2. Multi-Objective Alliance Algorithm

In order to assess the performance of these newly created DE algorithms, they are
compared to an algorithm from the literature that has previously demonstrated effectiveness in
optimizing nuclear fuel assembly design problems – the Multi-Objective Alliance Algorithm
(MOAA) (Lattarulo and Parks, 2012).

The MOAA is a metaheuristic optimization algorithm inspired by the metaphorical idea of
a number of tribes struggling to conquer an environment offering resources that enable them
to survive. The tribes are characterized by two features: the skills and resources necessary for
survival. Tribes try to improve skills by forming alliances, which are also characterized by the
skills and resources needed, but these now depend on the tribes within the alliance. The two
main search elements of the algorithm are the formation of alliances and the creation of new
tribes. One MOAA cycle ends when the strongest possible alliances of existing tribes have
been created. The algorithm then begins a new cycle starting with new tribes whose creation
is influenced by the previous strongest alliances.

Tribes are initially created randomly, but, once a Pareto front has been established, they
become either copies of Pareto front solutions or are modified from the Pareto front using a
normal distribution. This distribution has an adaptive standard deviation to increase diversity
initially and then speed up convergence towards the end of the optimization. The algorithm
also analyses the distance between solutions on the Pareto front to determine which solutions
to remember. This feature also functions adaptively: as the algorithm converges and the
average gap between solutions becomes smaller, dominated solutions near areas of the Pareto
front that have larger gaps are preserved in an archive to encourage the finding of a non-
dominated solution in that area in the future. These features are all governed by control
parameters, and the (default) values of the MOAA control parameters used in this work are
given in Table 2.

Further details concerning the application of the MOAA to nuclear fuel assembly design
can be found in (Lattarulo et al., 2014). In that case study, the MOAA found solutions
superior to previous ‘expert designs’ and out-performed other EAs.

 7

Table 2
MOAA control parameters.
Parameter Value
Number of tribes 6
Probability 1 for the creation of tribes 0.5
Probability 2 for the creation of tribes 0.2
Initial standard deviation 0.3
Final standard deviation 0.01
Probability 3 for the creation of alliances 2 / variables
Alliance standard deviation 0.1
Total number of Pareto-optimal solutions 100
Factor for evaluation neighbourhood 10

3. Test problems

3.1. Problem 1

The first problem investigated was originally presented in (Lattarulo et al., 2014) and DE
results were first presented in (Charles and Parks, 2017). The task is to optimize a two-
dimensional nuclear fuel ‘CORAIL’ type assembly containing two types of fuel pin, LEU and
uranium-plutonium MOX (see Fig. 3).

Fig. 3. CORAIL assembly with LEU pins surrounded by MOX pins at the periphery (Lattarulo et al.,
2014).

The presence of both Pu and LEU results in a wider neutron energy spectrum inside the
reactor during operation, creating uneven reaction rates, variations in the radial neutron flux
and power distribution, and can potentially result in fuel temperature problems. By optimizing
the distribution of pins inside the assembly this imbalance can be minimized. Optimization
can be carried out by changing both MOX pin positions and the concentration of plutonium
within the MOX pins, as Lattarulo et al. (2014) demonstrated, increasing the overall Pu
content above that of the standard CORAIL expert design. For reasons of safety, at least half
the total number of pins should always be LEU only and the %Pu within the MOX pins can

 8

be no more than 20%. The plutonium composition was assumed to be reactor grade, and is
detailed in Table 3.

Table 3
Plutonium isotopic composition (%) used for Problem 1.

238Pu 239Pu 240Pu 241Pu 242Pu 241Am
3.90 40.57 30.08 12.32 11.89 1.24

LEU enrichment is kept fixed at 5% 235U. The geometry was fixed to be that of a standard

CORAIL assembly containing 264 fuel pins. Using octant symmetry this can be simplified to
give 39 unique fuel pin positions. Pin types 1, 2 and 3 refer to MOX type 1, MOX type 2 and
LEU, respectively.

��

N1,

��

N2 and

��

N3 are therefore the quantities of each pin type, with the sum
total being equal to the number of pins in the assembly octant (

��

N1�N2 �N3 39). Two
MOX pin types are allowed with different %Pu amounts

��

(W1,W2). The constraints are

��

N3 ≥
16.5 (264/8), which represents a lower limit for the number of LEU pins in the octant due to
safety reasons, and 0 ≤

��

W1,W2 ≤ 20, which represent the range of possible %Pu values. The
total plutonium content in the assembly is given by

��

MOXT W1 �N1�W2 �N2 . Pins along the
lines of octant symmetry within the assembly are weighted by 0.5 when calculating the value of
MOXT, to avoid double counting of Pu. The objectives to be minimized are PPF at beginning
of life (BoL) and –MOXT. PPF values are obtained using the reactor physics code WIMS10a
(Lindley et al., 2015) to solve the neutron transport equation, using the method of
characteristics, to calculate pin power and hence the PPF. To calculate the PPF, WIMS fixes
the mean pin power.

MOJADE, MOμJADE and MOAA were each run 30 times, with a unique random seed
each time. Each individual run had a limit of 1600 solution evaluations, which allowed for 50
generations of MOJADE using a population of 32, and 200 generations of MOμJADE using a
population of 8. Algorithms were run on the ‘Ray’ computer cluster used by the University of
Cambridge’s Department of Engineering Nuclear Group, with specifications shown in Table
4.

Table 4
Ray computer cluster specifications.
Processor Intel Xeon Processor E5-2650 (2.6 GHz, 20 MB cache)
Threads 16
RAM 64 GB DDR3

3.2. Problem 2

The second test problem was chosen to investigate the effectiveness of DE on a more
complex problem without performing any control parameter tuning. This problem concerns
the optimization of MOX fuel assemblies containing gadolinia (Gd2O3) pins, e.g. Japanese
MOX assemblies (Yamate et al., 1997). The use of gadolinia pins in these assemblies
potentially reduces the need to use burnable poison rods (BPRs) in the guide tubes, normally
employed to compensate for higher PPF values caused by higher levels of Pu content
compared to other designs. By optimizing the design using gadolinia pins, the PPF can be
reduced without using BPRs and can even allow for increased Pu content in the assembly.

In (Yamate et al., 1997), one assembly was optimized for minimum PPF over the life of
the assembly, using a fixed %Gd content, fixed pin types and changing %Pu contents for two
types of U-Pu MOX pin. To match the original paper, a slightly different plutonium
composition was used to mimic Japanese-style MOX pins (see Table 5).

 9

Table 5
Plutonium isotopic composition (%) used for Problem 2.

238Pu 239Pu 240Pu 241Pu 242Pu 241Am
1.90 57.50 23.30 10.00 5.40 1.90

Using multi-objective optimization algorithms, it is possible to further explore the search

space for this problem, with the objectives once again of maximizing plutonium content and
minimizing the PPF at the assembly BoL. The design variables were changed to include all
five originally proposed assembly layouts, allowing %Gd and %Pu to change, and allowing
all non-Gd pins to be of either type of Pu MOX pin. The different assembly layouts used are
shown in Fig. 4.

Fig. 4. Japanese U-Pu MOX ¼ assembly layouts used in Problem 2 (taken from (Yamate et al.,
1997)).

Similar to the previous problem, the assembly contains 264 fuel pins and has 39 unique
fuel pin positions, for octant symmetry. Pins are labelled as fuel types 1, 2 and 3 (MOX type
1, MOX type 2, and gadolinia, respectively). Total numbers of each pin type are given by

��

N1,

��

N2 and

��

N3, with

��

N1�N2 �N3 39. The quantity and positions of the gadolinia pins are
dependent on which assembly layout is chosen, from the five possibilities (shown in Fig. 4),
with some pins weighted by 0.5 due to octant symmetry in the assembly. The two MOX pin
types can be placed anywhere in the assembly except at guide tube or gadolinia pin locations.
The two %Pu weights are

��

W1 and

��

W2, and one concentration of gadolinia is allowed

��

(WG).
Constraints of 0 ≤

��

W1,W2 ≤ 20, and 0 ≤

��

WG ≤ 10 were used. The total Pu content is again

��

MOXT W1 �N1�W2 �N2 .
Both MOJADE and MOµJADE were run on this problem and their performance

compared. Following this, depletion of a solution on the elbow of the found Pareto front
solution was performed to see how the PPF changed over the life, with results compared to
those in (Yamate et al., 1997). Both algorithms were used with the same control parameter
values as used for the first problem to see how well the algorithms performed without custom
tuning of parameters. Again, the reactor physics code WIMS10a (Lindley et al., 2015) was
used to calculate PPF values and to perform depletion calculations. MOJADE was run with a

 10

population of 32 for 50 generations. MOµJADE was run with a population of 8 for 200
generations, giving both algorithms a total of 1600 function evaluations in each run. Both
algorithms were run 20 separate times. Algorithms were run on the ‘Lux’ computer cluster
used by the University of Cambridge’s Department of Engineering Nuclear Group, with
specifications shown in Table 6.

Table 6
Lux computer cluster specifications.
Processor Intel Xeon Processor E5-2690 (3.5 GHz, 35 MB cache)
Threads 28
RAM 128 GB DDR3

3.3. Sensitivity analysis

The sensitivity of DE to the values of its control parameters was measured using the same
optimization problem described in Sect. 3.2. Only MOJADE was investigated in this case,
since it was shown to perform better than MOµJADE on Problems 1 and 2, and is arguably
more suited to nuclear engineering problems where parallelization of the evaluation step
offers a significant execution time advantage.

Constraints were kept the same, and the optimization objectives were again to maximize
the Pu content of the assembly and minimize the BoL PPF. It was decided to confine the
study to looking at assembly performance at BoL to reduce the computational cost of the
investigation, as including burnup calculations in the evaluation step increases the
computational load significantly. It was judged that the BoL design problem was sufficiently
complex to provide a good test of the performance sensitivity to the rate of adaptation c and
the greediness of the algorithm p.

MOJADE was run with a population of 32 for 40 generations. The focus of this study was
on the impact on performance of the algorithm’s degree of elitism and self-adaptive nature, as
the trade-off between increased population size providing more diversity and greater search
space coverage versus computational load is already well established. Table 7 shows the
control parameter ranges tested along with their default values. Work by the original authors
of JADE suggests that the rate of parameter adaptation c works well with values in the range
0.05–0.2, and the greediness p works well between 5 and 20% (i.e. the ‘best’ results are
chosen from between 5 and 20% of the current population) (Zhang and Sanderson, 2009).
Both very high and very low values of p and c were investigated to determine the effect these
control parameters have on the algorithm’s performance. Each test was run 10 times (varying
only the random number generator seed used in each run) to obtain a suitable statistically
significant set of results. Runs were executed on the ‘Lux’ computer cluster.

 11

Table 7
MOJADE control parameter values used in sensitivity analysis tests.

Test number Greediness of selection strategy, p Rate of parameter adaptation, c
Default Values 0.05 0.1

1 0.05 0.0
2 0.05 0.025
3 0.05 0.25
4 0.05 0.75
5 0.05 1.0
6 0.01 0.1
7 0.25 0.1
8 0.75 0.1
9 1.0 0.1

4. Results and discussion

4.1. Problem 1

The output of each run was the final Pareto front found by the algorithm. The results were
analyzed by comparing these Pareto fronts. Analysis as presented in (Charles and Parks,
2017) involved using two separate indicators to determine the relative performance of each
algorithm. Firstly, the epsilon indicator (Zitzler et al., 2003) represents the minimum
translational distance necessary to move all points on a given Pareto front to weakly dominate
a reference set (a combined Pareto front formed from all solutions from all algorithms
representing the most optimal set of solutions). Secondly, the hypervolume indicator
(Knowles et al., 2006) calculates the difference between the hypervolume of the dominated
objective space formed from the Pareto front of one particular algorithm and the hypervolume
of the objective space dominated by the reference set, using the least-optimal solution found
as a reference point for the calculation of the hypervolume. In both cases smaller values
indicate better performance. These same indicators will also be used later to analyze the
results of the sensitivity study. To determine the statistical significance of the performance
indicator values, the Kruskal-Wallis test was used (Kruskal and Wallis, 1952). For this work,
the Kruskal-Wallis test results represent the probability that the given indicator values are not
a true representation of the algorithm’s relative performance against another, and are instead
the result of random chance.

Results are plotted in PPF against (–MOXT) space. More negative values of –MOXT
indicate a higher amount of plutonium in the assembly. Both objectives are to be minimized;
therefore the bottom-left corner represents an ideal solution. Fig. 5 shows the results of every
generated Pareto front for each algorithm. Fig. 6 shows these results filtered to show the
overall best Pareto front for each algorithm. A line depicting the overall Pareto front formed
from all the algorithms together is added for reference.

 12

Fig. 5. Results of MOAA, MOJADE and MOμJADE optimization of MOX fuel assemblies in
Problem 1, adapted from (Charles and Parks, 2017).

Fig. 6. Comparison of nondominated solutions found using the MOAA, MOJADE and MOµJADE
algorithms to optimize MOX fuel assemblies in Problem 1, adapted from (Charles and Parks, 2017).

 13

Figs. 5 and 6 demonstrate that MOJADE and MOμJADE perform comparably to MOAA,
significantly contributing to the overall Pareto front, as highlighted in Fig. 6. The solutions
found by MOAA appear to exhibit some degree of clustering in the Pareto front, with the gaps
populated by MOJADE and MOμJADE solutions. MOAA tends to converge on a single
MOX-LEU pin pattern during the course of a run, and thus the output from that run will
typically be nondominated solutions which show the effect of increasing or decreasing the
values of

��

W1 and/or

��

W2 within the same pin pattern. This results in a number of solutions that
have very similar values for MOXT and PPF. In contrast, both MOJADE and MOμJADE do
not necessarily converge on a single pin pattern in any given run, and thus arguably better
explore the search space of different pin arrangements.

The means and standard deviations of the hypervolume and epsilon indicators, along with
their corresponding p-values from the Kruskal-Wallis test, are given in Tables 8 and 9,
respectively.

Table 8
Hypervolume and epsilon indicator values in Problem 1, adapted from (Charles and
Parks, 2017).

Algorithm Hypervolume Indicator Epsilon Indicator
Mean Standard Deviation Mean Standard Deviation

MOAA 1.6664 0.5169 0.3897 0.1478
MOJADE 0.7672 0.1047 0.3941 0.1204
MOµJADE 1.1267 0.7723 0.3320 0.1081

Table 9
Kruskal-Wallis test results in Problem 1, adapted from (Charles and Parks, 2017).
Algorithms Hypervolume Indicator Epsilon Indicator
MOJADE vs MOAA 3.879E-11 9.528E-01
MOµJADE vs MOAA 8.513E-07 7.363E-02
MOµJADE vs MOJADE 9.497E-05 5.650E-02

The hypervolume indicator results in Table 8 show that MOJADE is most consistent at
producing results which dominate the entirety of the known search space, followed by
MOμJADE. Results for the epsilon indicator, however, suggest that MOμJADE solutions are
more likely to be closer to the ‘true’ Pareto front, but do not give as much information as to
the exact nature of the Pareto front (MOμJADE search being limited by a smaller population
size which leads to worse hypervolume indicator values).

Table 9 gives the p-value results of the Kruskal-Wallis test for the hypervolume and
epsilon indicators for both DE algorithms versus MOAA, as well as against each other.
Values lower than 0.05 indicate statistically significant (at the 5% level) results. The results
indicate that MOJADE and MOμJADE yield superior hypervolume performance compared to
MOAA due to the methodological differences in the algorithms. However, differences in
epsilon indicator performance are not shown to be statistically significant. Finally, MOJADE
shows superior hypervolume performance to MOμJADE, again due to methodological
differences. In a given run for a fixed number of solution evaluations, the larger population of
MOJADE is able to better cover the search space (and thus the Pareto front) compared to the
small population of MOμJADE. There is some evidence that MOμJADE may be able to
converge quicker than MOJADE and thus require fewer evaluations, which may offset the
lack of inherent parallelization currently present in MOµJADE.

 14

4.2. Problem 2

Fig. 7 shows the results given by MOJADE and MOµJADE, the Pareto front, and the
solution chosen for depletion.

Fig. 7. Results of DE optimization of MOX fuel assemblies with gadolinia pins (Problem 2). The
arrow indicates the solution chosen for the burnup study.

Fig. 7 indicates that both MOJADE and MOµJADE tend to converge on solutions
containing high amounts of Pu, and the Pareto front for solutions with less negative values of
–MOXT is poorly populated. It was originally thought that this may be due to some form of
premature convergence causing a loss of diversity in the population around a local optimum
of solutions containing high amounts of Pu. The crossover and mutation rates are self-
adapting control parameters, which are, in turn, affected by the greediness p and the rate of
parameter adaption c, as specified in Table 1. To test this hypothesis, a modified form of the
problem was run with MOJADE, with the amount of Pu constrained such that solutions would
only be permitted if the value of –MOXT was between –11 and –5. Fig. 8 shows that
constraining the problem in this way results in a Pareto front that is dominated by the original
results, and the solution clustering is a feature of the problem, not the algorithm.

 15

Fig. 8. The effect of constraining the %Pu within the MOX pins (Problem 2).

Figs. 7 and 8 only show PPF versus the total Pu content of the assembly, as these are the
two objectives optimized; they do not show the amount of gadolinium contained within the
gadolinia pins. For a given assembly layout and Pu content, changing the concentration of
gadolinium will not only change the flux in nearby pins, but it will also cause the energy
spectrum of the assembly to shift, dependent on the absorption cross-section of the gadolinia
pins. Therefore increasing the gadolinium concentration may shift the spectrum in such a way
as to cause the gadolinia to be less effective as an absorber, and thus potentially increase the
PPF value. This highlights the complex and interrelated nature of the objectives when
optimizing the design of a nuclear fuel assembly.

The Pareto front in Fig. 7 is almost entirely populated by MOJADE solutions. These
results suggest that MOJADE performs better than MOµJADE on these types of problems,
which supports the finding from Problem 1.

The solution found at the elbow of the Pareto front (shown by the arrow in Fig. 7) was
depleted to 15 GWd/t. The evolution of the PPF against burnup for this MOJADE-generated
assembly design can be seen in Fig. 9 as the blue line, overlaid on the original results of
Yamate et al. (1997).

 16

Fig. 9. PPF progression with burnup for gadolinia-MOX fuel assemblies with MOJADE-generated
assembly design shown in blue, compared to other designs evaluated by Yamate et al. (1997), adapted
from (Yamate et al., 1997).

The original paper (Yamate et al., 1997) investigated assemblies which ranged from 5.7%
to 6.4% average Pu-pin wt% content. The chosen MOJADE solution had an average Pu-pin
content of 19.5%. This test thus shows that DE algorithms are able to find designs that
contain more Pu and keep internal PPF performance over one cycle comparable to that of
assemblies with much lower Pu contents. Fig. 10 compares the assembly layouts of the
depleted MOJADE solution and an example ‘expert’ assembly design from the (Yamate et al.,
1997) study. The less conventional MOJADE design outperforms the ‘expert’ design,
illustrating the solution space searching capability of a stochastic optimization algorithm.

Fig. 10. U-Pu MOX assembly layouts with gadolinia poison rods produced using MOJADE (left) and
from the literature (Yamate et al., 1997) (right). Light grey and dark grey indicate MOX pins (dark
grey have higher %Pu contents), green indicates a poison rod, and yellow indicates guide tubes.

 17

4.3. Sensitivity analysis

Figs. 11 and 12 show the Pareto fronts of each test using MOJADE with different control
parameters in plots of PPF against –MOXT. Fig. 11 compares the Pareto fronts from each test
run with the default parameter values and each test which changed the parameter adaptation
rate c. Fig. 12 compares results with default parameter values to tests which changed the
greediness of the selection strategy p.

As seen in Sect. 4.2, there is a high degree of result clustering, with few MOJADE
solutions with –MOXT values below –15, for the reasons explained above. Fig. 11 indicates
that larger rates of parameter adaptation may reduce MOJADE’s ability to converge, whereas
Fig. 12 suggests that varying the greediness parameter does not appear to have a large effect
on the algorithm’s performance for this problem.

Fig. 11. Pareto front results for the parameter adaptation rate (c) sensitivity study.

 18

Fig. 12. Pareto front results for the greediness parameter (p) sensitivity study.

4.4. Statistical analysis of sensitivity study results

Once again, the hypervolume and epsilon indicator values were used to quantify
performance. The progression of the hypervolume indicator value was monitored to confirm
that the relative performance of the algorithm with different control parameter values had
stabilized within the 40 generations allowed and would not significantly change were it run
for more generations. This progression over the 40 generations (averaged over the 10 runs)
can be seen in Fig. 13.

 19

Fig. 13. The average hypervolume indicator value for each sensitivity study test every 5 generations.

Final hypervolume and epsilon indicator values were calculated (Table 10), as well as
performing the Kruskal-Wallis test (Table 11) to determine whether observed differences are
statistically significant. In this study, the Kruskal-Wallis test p-value results represent the
probability that the difference between the performance indicator values for MOJADE runs
with default parameter values and for each test could have occurred by chance. This is used to
ascertain whether the performance of the DE algorithm MOJADE is significantly sensitive to
changes to its control parameters.

Table 10
Sensitivity study hypervolume and epsilon indicator values: statistically significant results from the
Kruskal-Wallis test (Table 11) are shown in bold.

Test Number Hypervolume Indicator Epsilon Indicator
Mean Standard Deviation Mean Standard Deviation

Default values 0.3204 0.1324 3.0770 2.6952
1 0.2249 0.0798 0.6934 0.8192
2 0.2857 0.1065 1.1678 1.1824
3 0.3692 0.1489 2.0480 2.5493
4 0.4319 0.1024 1.7474 2.1725
5 0.5146 0.0836 4.1147 2.4837
6 0.2886 0.0619 0.9181 0.9652
7 0.2805 0.1064 0.8389 0.8338
8 0.3329 0.1145 2.2707 2.5475
9 0.2713 0.0956 1.2848 0.9661

 20

Table 11
Sensitivity study Kruskal-Wallis test results: statistically significant results (< 0.05) are shown in
bold.

Test Hypervolume Indicator Epsilon Indicator
1 vs default values 6.96E-02 1.02E-02
2 vs default values 9.40E-01 5.88E-02
3 vs default values 3.26E-01 1.12E-01
4 vs default values 1.91E-02 1.12E-01
5 vs default values 5.20E-03 4.06E-01
6 vs default values 8.80E-01 2.84E-02
7 vs default values 7.06E-01 4.94E-02
8 vs default values 5.45E-01 2.27E-01
9 vs default values 8.80E-01 1.99E-01

Table 11 shows that none of the tests show a statistically significant change in both

performance indicators compared to algorithm performance with default values for parameter
adaptation and greediness. This suggests that MOJADE is reasonably robust in handling
nuclear fuel assembly design optimization problems with heterogeneous fuel types. There is
some evidence to suggest that hypervolume performance does deteriorate at higher rates of
parameter adaptation. The parameter adaptation rate controls the distributions from which
mutation and crossover rates are chosen for new solutions. Successful (i.e. nondominated)
solutions have their related crossover and mutation rates stored in normal and Cauchy
distributions, respectively. Increasing the rate of parameter adaption increases the importance
of crossover and mutation rates most recently added to the archive. Lower rates make the
algorithm less adaptive as it searches, which could result in premature convergence and
becoming trapped in local minima for highly non-linear problems. Excessively high rates,
however, cause the algorithm to forget its ‘history’, and may end up performing the crossover
and mutation operations too frequently (or not frequently enough). This can result in the
creation of excessively random solutions, and thus slower convergence, or in the search
becoming confined by existing solutions, which again leads to premature convergence.

There is also some evidence to suggest that epsilon indicator performance is affected by
both parameter adaptation and greediness. Greediness directly impacts the diversity
maintained in the population as the algorithm moves around the search space. An excessively
greedy algorithm may not be able to maintain a sufficiently diverse population to properly
explore the search space, whilst a lack of elitism can slow algorithm convergence. These
results suggest that tuning of the MOJADE control parameters may produce results which are
more consistently closer to the true Pareto front, but do not suggest that the true Pareto front
itself can be improved further.

5. Conclusions

This study has introduced and investigated the use of multi-objective Differential
Evolution algorithms for optimizing nuclear fuel assembly design problems. Beginning with a
performance comparison against an EA on a typical problem, the multi-objective DE
algorithms MOJADE and MOμJADE demonstrated that DE is able to find solutions
comparable in quality to those found by MOAA and arguably better explore the search space
of fuel pin patterns. Both DE algorithms exhibit good performance in this exploratory
optimization problem, despite the algorithms originally being designed for single-objective
optimization with a known global optimum.

MOJADE and MOμJADE were then tested on a more complex design problem involving
both plutonium management and gadolinium distribution within a MOX assembly. Again the

 21

DE algorithms were shown to be capable of generating designs that contain more plutonium
compared to those from the reference literature and featured a lower PPF at BoL, with
comparable performance over a 15 GWD/t cycle.

From these two problems it was concluded that MOJADE exhibits superior performance to
MOμJADE. For the final test, the sensitivity of the performance of the MOJADE algorithm to
the settings of its control parameters was investigated on the second problem. The two control
parameters, the rate of parameter adaptation and the greediness of the algorithm, were varied
and the relative performance of the algorithm was analyzed for statistical significance. The
results indicate that MOJADE is robust to changes in its control parameters and does not
require tuning to individual problems, which supports an earlier finding by Zhang and
Sanderson (2009) on the underlying JADE algorithm.

This work demonstrates the effectiveness and reliability of DE algorithms as suitable
multi-objective optimization metaheuristics for nuclear engineering design optimization
problems. Further testing should tackle more complex problems with a wider range of
objectives, including the introduction of thermal-hydraulic feedback mechanisms and the use
of three-dimensional models for axial optimization of fuel zoning (e.g. for use in Boiling
Water Reactors).

6. Data availability statement

To the best of the authors’ knowledge, this paper and references herein contain all the data
needed to reproduce and validate the results presented.

Acknowledgements

This work was produced as part of a PhD researching into the development of a multi-
objective optimization capability for heterogeneous light water reactor fuel assemblies. The
PhD is funded by the UK Engineering and Physical Sciences Research Council (EPSRC)
through the Imperial College, University of Cambridge and Open University Centre for
Doctoral Training in Nuclear Energy under grant EP/L015900/1ICO. The WIMS reactor
physics software package produced by the ANSWERS Software Service at Wood Group plc
(formerly Amec Foster Wheeler) and the assistance and expertise of the ANSWERS team
have been very helpful during the course of this research.

References

Brown, C., Jin, Y., Leach, M., Hodgson, M., 2015. μJADE: adaptive differential evolution

with a small population. Soft Comput. 1, 1–10.
Castillo, A., Ortiz-Servin, J.J., Perusquía, R., Silvestre, Y.C., 2011. Fuel lattice design with

path relinking in BWR’s. Prog. Nucl. Energy. 53 (4), 368–374.
Charles, A.J., Parks, G.T., 2017. Mixed Oxide LWR Assembly Design Optimization Using

Differential Evolution Algorithms. 1–7 in Proc. ICONE25, Shanghai, PRC.
Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A., 2007. Evolutionary Algorithms for

Solving Multi-Objective Problems. 2nd edition. Springer, New York.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2), 182–197.
Hirano, Y., Hida, K., Sakurada, K., Yamamoto, M., 1997. Optimization of fuel rod

enrichment distribution to minimize rod power peaking throughout life with BWR fuel
assembly. Nucl. Sci. Technol. 34 (1), 5–12.

 22

Jagawa, S., Yoshii, T., Fukao, A., 2001. Boiling Water Reactor loading pattern optimization
using simple linear perturbation and modified Tabu Search methods. Nucl. Sci. Eng. 138
(1), 67–77.

Khoshahval, F., Minuchehr, H., Zolfaghari, A., 2011. Performance evaluation of PSO and GA
in PWR core loading pattern optimization. Nucl. Eng. Des. 241 (3), 799–808.

Knowles, J., Thiele, L., Zitzler, E., 2006. A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. TIK Report 214. Swiss Federal Institute of
Technology (ETHZ), Zurich, Switzerland.

Kropaczek, D.J., Turinsky, P.J., 1991. In-core nuclear fuel management optimization for
Pressurized Water Reactors utilizing Simulated Annealing. Nucl. Technol. 95, 9–32.

Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance analysis. J. Am.
Stat. Assoc. 47 (260), 583–621.

Lattarulo, V., Lindley, B.A., Parks, G.T., 2014. Application of the MOAA for the
optimization of CORAIL assemblies for nuclear reactors. 1413–1420 in Proc. IEEE
Congress on Evolutionary Computation, Beijing, China.

Lattarulo, V., Parks, G.T., 2012. A preliminary study of a new multi-objective optimization
algorithm. In Proc. IEEE Congress on Evolutionary Computation, Brisbane, Australia.

Lindley, B.A., et al., 2015. Release of WIMS10: a versatile reactor physics code for thermal
and fast systems. 1793–1801 in Proc. ICAPP 2015, Nice, France.

Parks, G.T., 1996. Multiobjective Pressurized Water Reactor reload core design by
nondominated Genetic Algorithm search. Nucl. Sci. Eng. 124 (1), 178–187.

Pereira, C.M., 2004. Evolutionary multicriteria optimization in core designs: basic
investigations and case study. Ann. Nucl. Energy 31 (11), 1251–1264.

Sacco, W.F., Henderson, N., Rios-Coelho, A.C., Ali, M.M., Pereira, C.M.N.A., 2009.
Differential evolution algorithms applied to nuclear reactor core design. Ann. Nucl. Energy
36 (8), 1093–1099.

Sawaragi, Y., Nakayama, H., Tanino, T., 1985. Theory of Multiobjective Optimization.
Elsevier Science, 176 (1), 2–5.

Storn, R., Price, K., 1997. Differential Evolution – a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11 (4), 341–359.

Suzuki, A., Kiyose, R., 1971. Application of Linear Programming to refueling optimization
for light water moderated power reactors. Nucl. Sci. Eng. 46 (1),112–130.

Yamate, K., Mori, M., Ushio, T., Kawamura, M., 1997. Design of a gadolinia bearing mixed-
oxide fuel assembly for Pressurized Water Reactors. Nucl. Eng. Des. 170 (1–3), 35–51.

Youinou, G., et al., 2001. Heterogeneous assembly for plutonium multi recycling in PWRs:
The CORAIL concept. In Proc. GLOBAL 2001, Paris, France.

Zhang, J., and Sanderson, A.C., 2009. JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13 (5), 945–958.

Zio, E., Viadana, G., 2011. Optimization of the inspection intervals of a safety system in a
nuclear power plant by Multi-Objective Differential Evolution (MODE). Reliab. Eng. Syst.
Safe. 96 (11) 1552–1563.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V., 2003.
Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans.
Evol. Comput. 7 (2), 1–22.

 23

Appendix A: Pseudocode of MOJADE and MOµJADE

Nomenclature

µCR = adaptive crossover probability
µF = adaptive mutation probability
A1 = archive used for dominated solutions
A2 = archive used for Pareto-equivalent solutions
BIR = restart variable used if no improvement is made
c = rate of parameter adaptation
D = number of dimensions (variables)
G = number of generations
meanA = arithmetic mean
meanL = Lehmer mean
NP = last member of the population
p = greediness of the mutation strategy
P = population
randn = normal distribution
randc = Cauchy distribution
SCR = set of successful crossover factors
SF = set of successful mutation factors
up_lim / low_lim = limits set by the variable bounds
bi = crossover rate repair modifier following perturbation
vi = ith test vector following mutation
ui = ith test vector following crossover and perturbation
xi = ith member of the population

MOJADE

Begin

Set µCR = 0.5; µF = 0.5; A1, A2 = 0
Create random initial population {xi, 0|i = 1, 2, …, NP}
Evaluate and rank population, determine 100p% best vectors
For g = 1 to G

SF = 0, SCR = 0
For i = 1 to NP

CRi = randni (µCR, 0.1), Fi = randci (µF, 0.1)
Randomly choose xp_best from 100p%
Randomly choose xr1 =/= xi from P
Randomly choose xr2 =/= xr1 =/= xi from P � A1 + A2
vi = xi + Fi · (xp_best – xi) + Fi · (xr1 – xr2)
Generate jrand = randint(1, D)
For j = 1 to D

If j = jrand or rand(0, 1) < CRi
 ui,j = vi,j
Else
 ui,j = xi,j
End If

 24

End For
If f(ui) dominates f(xi)

xi → A1 (replaces random member of A1 if A1 is full)
xi = ui
CRi → SCR, Fi → SF

Else
If f(ui) is Pareto-equivalent to f(xi)
&& f(ui) is NOT dominated by f(A2)
 Remove members of A2 that are dominated by ui

ui → A2
End If

End If
Rerank 100p% best vectors

End For
µCR = (1 – c) · µCR + c · meanA(SCR)
µF = (1 – c) · µF + c · meanL(SF)

End For
End

MOµJADE

Begin

Set µCR = 0.5; µF = 0.5; A1, A2 = 0
Create random initial population {xi, 0|i = 1, 2, …, NP}
Evaluate and rank population, determine 100p% best vectors
For g = 1 to G

SF = 0, SCR = 0
For i = 1 to NP

CRi = randni (µCR, 0.1), Fi = randci (µF, 0.1)
Randomly choose xp_best from 100p%
Randomly choose xa =/= xi =/= xp_best from P
Randomly choose xb =/= xa =/= xi from P
Randomly choose xc from P � A1 + A2
vi = xi + Fi · (xp_best – xa) + Fi · (xb – xc)
Generate jrand = randint(1, D)
For j = 1 to D

If j = jrand or rand(0, 1) < CRi
 ui,j = vi,j , bi,j = 1
Else
 ui,j = xi,j , bi,j = 0
End If

End For
For j = 1 to D

If rand(0, 1) ≤ 0.005
 ui,j = low_lim + rand(0, 1) · (up_lim – low_lim)
 bi,j = 0
Else
 ui,j = ui,j, bi,j = bi,j
End If

End For

 25

CRi = ∑ b / D
If f(ui) dominates f(xi)

xi → A1 (if A1 is full, replaces random member)
xi = ui
CRi → SCR, Fi → SF

Else
If f(ui) is Pareto-equivalent to f(xi)
&& f(ui) is NOT dominated by f(A2)
 Remove members of A2 that ui dominate

ui → A2
End If

End If
Rerank 100p% best vectors
If ui ∪ 100p% best vectors

BIR = BIR + 1
End If

End For
If mod(g, max(100, 10D) = 0

µCR = (1 – c) · µCR + c · meanA(SCR)
µF = (1 – c) · µF + c · meanL(SF)

End If
If mod(g, max(1000, 100D) = 0

If BIR== 0
Reinitialize pop, include random member of 100p%
BIR = 0

End If
End If

End For
End

