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Abstract 

A method is presented for accelerating the acquisition of spatially-resolved displacement 

propagators via under-sampling of an Alternating Pulsed Gradient Stimulated Echo - Rapid 

Acquisition with Relaxation Enhancement (APGSTE-RARE) data acquisition with 

compressed sensing image reconstruction. The method was demonstrated with respect to the 

acquisition of 2D spatially-resolved displacement propagators of water flowing through a 

packed bed of hollow cylinders. The q,k-space was under-sampled according to variable-

density pseudo-random sampling patterns. The quality of compressed sensing reconstructions 

of spatially-resolved propagators at a range of sampling fractions was assessed using the peak 

signal-to-noise ratio (PSNR) as a quality metric. Propagators of good quality (PSNR 33.2 dB) 

were reconstructed from only 6.25% of all data points in q,k-space, resulting in a reduction in 

the data acquisition time from 4 h to 14 min. The spatially-resolved propagators were 

reconstructed using both the total variation and nuclear norm sparsifying transforms; use of 

total variation resulted in a slightly higher quality of the reconstructed image in most cases. 

To illustrate the power of this method to characterise heterogeneous flow in porous media, 

the method is applied to the characterisation of flow in a vuggy carbonate rock.  
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1 Introduction 

Displacement propagators provide a comprehensive characterisation of fluid motion in 

porous media, by capturing both the coherent (flow) and incoherent (diffusion and 

dispersion) contributions. In contrast, magnetic resonance (MR) velocity measurements 

resolve only the average displacement and are insensitive to the effects of diffusive or 

dispersive motion [1]. However, the significantly faster data acquisition times characterising 

a velocity measurement have resulted in the widespread use of spatially-resolved velocity 

measurements [2], whilst propagators are usually acquired without spatial resolution. Such 

spatially-unresolved propagator measurements have been used widely in chemical 

engineering [3-6] and petrophysical [7-10] applications, mainly to study flow dispersion. 

However, spatially-resolved propagators have been used to characterise transport through 

heterogeneous porous media under steady-state or slowly-changing conditions when long 

data acquisition times are acceptable, such as is the case for water transport in plants [11,12]. 

Therefore, there remains a strong motivation to implement spatially-resolved measurements 

of propagators in systems that are spatially heterogeneous at length scales comparable to or 

smaller than the spatial resolution of the velocity map, or for slow-flowing systems in which 

significant spatial variations in flow dispersion occur. Under such conditions, velocity maps 

alone may not provide sufficient characterisation of the transport properties of the porous 

medium. The purpose of the present work is to implement a method which is able to 

characterise transport heterogeneity in porous media with a particular focus on rock core 

plugs. The ability to acquire 2D spatially-resolved propagators within a much shorter time 

frame of order tens of minutes, by using under-sampling and compressed sensing, 

significantly enhances the ability to study structure-transport relationships in these porous 

media. 

 

Displacement propagators are probability distributions of molecular displacements 𝑃̅(𝐫, 𝛥), 

where 𝑃̅ is the probability that a spin moves over a distance 𝐫 in an observation time 𝛥. 

Spatially-unresolved displacement propagators are routinely acquired using pulsed field 

gradient (PFG) NMR. The signal intensity 𝐴 is measured as a function of q=
γδg

2π
, where g is a 

vector describing the intensity and direction of the applied gradient pulses, δ the time for 

which the pulses are applied, and γ the gyromagnetic ratio. 𝐴(𝐪) is related to the propagator, 

for a given 𝛥, via Fourier transformation (FT): 
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𝐴(𝐪) = ∫ 𝑃̅(𝐫, 𝛥) exp[2𝜋𝑖𝐪 ∙ 𝐫]𝑑𝐫,         (1) 

 

or, inversely, 

 

𝑃̅(𝐫, 𝛥) = ∫ 𝐴(𝐪) exp[−2𝜋𝑖𝐪 ∙ 𝐫]𝑑𝐪.        (2) 

 

Acquisition of spatially-resolved displacement propagators can be achieved by combination 

of a displacement-encoding PFG experiment to acquire q-space, and an imaging experiment 

to acquire k-space. Fourier transformation of the combined q,k-space yields the spatially-

resolved propagator. 

 

To accelerate the acquisitions of multi-dimensional data such as spatially-resolved 

propagators, we have previously demonstrated the use of interpolation of under-sampled q-

space data to reconstruct a 1D spatially-resolved displacement propagator [13], and the use of 

k-space under-sampling and compressed sensing (CS) to acquire velocity maps in porous 

media [14] and 3D images of porous media using Rapid Acquisition with Relaxation 

Enhancement (RARE) MRI [15,16]. Further, Paulsen et al. have demonstrated the use of 

compressed sensing to accelerate the acquisition of a multi-dimensional diffusive propagator 

in an anisotropic porous medium [17]. This paper is concerned with combining these 

different ideas into a method for accelerating the acquisition of 2D spatially-resolved 

displacement propagators through under-sampling and compressed sensing. The approach 

presented can be easily extended to acquisition of 3D spatially-resolved propagators. 

 

In Section 2, the basic principles of compressed sensing are outlined. The novel experimental 

implementation for acquiring under-sampled q,k-data is described in Section 3. Further 

details of the experimental acquisitions and samples are described in Section 4. 

 

2 Basic principles of compressed sensing 

Because k- and q-space are equivalent from the mathematical perspective, the principles that 

apply for under-sampling and compressed sensing of MR images can be directly applied to 

spatially-resolved propagators. In general, when q,k-space is under-sampled, an infinite 

number of equivalent solutions for the spatially resolved-propagator exist that are in 

agreement with the data. A simple approach to estimate a solution would be by inverse 



 5 

Fourier transformation of the under-sampled data. Let u denote a spatially-resolved 

propagator, ℱ a Fourier transform operator, and S some sampling pattern; the under-sampled 

(noisy) data y and the (noisy) spatially resolved propagator u are then related through: 

 

y = Sℱu.            (3) 

 

Estimating u by inverse Fourier transformation of y will be referred to as the zero-filling (ZF) 

solution uZF; i.e., all non-sampled points in y are taken as zero: 

 

uZF = ℱ–1
S

T
y.           (4) 

 

Because under-sampling of q,k-space leads to violation of the Nyquist sampling rate, the 

zero-filling solution uZF suffers from artefacts and is sub-optimal. To find a better solution, 

prior knowledge about the spatially-resolved propagators needs to be incorporated into the 

reconstruction process. In compressed sensing, the transform sparsity that is implicit in many 

MR images [18-20], and in propagators [17], is exploited to find a better reconstruction, 

which we denote uCS. Transform sparsity means that u happens to be sparse in some 

mathematical transform domain. Using this knowledge, a solution for uCS is determined 

subject to the optimisation: 

 

𝒖CS ∈ arg min𝒖 {
1

2
‖𝑆𝐹𝒖 − 𝒚‖2

2 + 𝛼𝐽(𝒖)},       (5) 

 

where 
1

2
‖𝑆ℱ𝒖 − 𝒚‖2

2 is a fidelity term that ensures consistency with the acquired data, and 

𝛼𝐽(𝒖) is a Tikhonov-regularisation term. 𝐽(𝒖) is a regularisation functional by which prior 

knowledge about the transform sparsity of 𝒖 is incorporated into the optimisation problem. 

𝐽(𝒖) is used to measure the sparsity of 𝒖 in a certain mathematical transform domain, and the 

choice of 𝐽(𝒖) is based on the compressibility of 𝒖 in that transform domain. The fidelity and 

regularisation terms are balanced by the regularisation parameter 𝛼, which is always a 

positive number. In this paper, CS reconstructions with a single regularisation term are 

considered, and the effectiveness of two different regularisation functionals, the total 

variation (TV) and the nuclear norm (NN), for the reconstruction of spatially-resolved 

propagators is explored. Total variation regularisation aids in the reconstruction of sharp 

edges and has already been shown to work well for MR images of heterogeneous porous 
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media [14-16] and the present work explores whether it also performs well for the 

reconstruction of spatially-resolved propagators of flow through porous media. Nuclear norm 

regularisation is a relatively novel approach [21-23] that helps to reconstruct a domain 

wherein only a limited number of shapes or features exist. Since such a scenario is quite 

possible for the spatially-resolved propagators expected for describing flow in a porous 

medium it is of interest to compare the performance of NN with the more widely used TV 

approach. The TV and NN regularisation functionals are now introduced briefly. 

 

Total variation (TV) regularisation can be used if 𝒖 can be sparsified by spatial finite-

differencing (i.e., by calculating the intensity difference between adjacent pixels). For TV 

regularisation, 𝐽(𝒖) is defined as: 

 

𝐽(𝒖) = 𝑇𝑉(𝒖) = ‖∇𝒖‖𝟐,𝟏 ,         (6) 

 

where ‖∇𝒖‖𝟐,𝟏 is the 𝓁1-norm of the 𝓁2-norm of the finite-difference approximation of the 

local gradient ∇𝒖, with zero Neumann boundary conditions. The 𝓁2-norm of the local 

gradient, ‖∇𝒖‖𝟐, may be calculated isotropically (direction-invariant), as in the work of 

Benning et al. [14], or for specific directions in 𝒖. Given that for spatially-resolved 

propagators, the spatial and displacement domains may not need the same degree of TV 

regularisation, the relative merits of calculating ‖∇𝒖‖𝟐 in only the spatial domain or in only 

the displacement domain will also be considered (Section 5.1.3). 

 

Nuclear norm (NN) regularisation [21-23] exploits the potential correlation between the 

shapes of the individual, spatially-resolved propagators. If these individual propagators are 

stacked into a matrix 𝑼 of size ∏ 𝑁𝐤𝑛

𝟏–𝟑
𝑛 × 𝑁𝐪 for an n-D spatially resolved propagator, 

where N denotes the number of elements in k or q, the matrix 𝑼 would have a low rank if the 

variation between shapes of the individual propagators (i.e., the rows in matrix 𝑼) is small, 

since this would result in lower linear independency between the rows of 𝑼. In the case of 

NN regularisation, 𝐽(𝒖) is defined as:  

 

𝐽(𝒖) = 𝑁𝑁(𝒖) = ‖𝑼‖★,        (7) 
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where ‖𝑼‖★ is the nuclear norm or Schatten 1-norm: the sum of singular values resulting 

from the singular value decomposition of 𝑼. It is the number of non-zero singular values in 𝑼 

that equals the rank of 𝑼, but as elsewhere in the implementation of compressed sensing, the 

minimisation of the nuclear norm (a 1-norm) is used as a convex surrogate for the 

minimisation of the number of singular values (a 0-norm), and hence for the minimisation of 

the rank of 𝑼. 

 

3 Experimental design 

In this section, the details of the experimental acquisition of under-sampled spatially-resolved 

propagators are described. First, the choice of pulse sequence used to acquire the under-

sampled q,k-data is discussed. Second, the under-sampling strategy used in combination with 

this pulse sequence is described. 

 

3.1 APGSTE-RARE experiment 

Rapid imaging methods are based on three broad approaches: (i) the use of small flip angles 

such as in FLASH [24]; (ii) the recall of the signal from a single excitation of the full 

magnetization by use of gradient echoes such as in EPI [25]; or (iii) the use of spin echoes 

such as in RARE [26]. As described by Ramskill et al. [15], RARE imaging is particularly 

well-suited for under-sampling k-space data in the context of spin-density imaging in porous 

materials and it is therefore the pulse sequence chosen for this study. The two main reasons 

for using RARE are, first, the magnetization is returned to the same position in k-space after 

acquisition of each echo, allowing a high degree of flexibility in the design of the sampling 

scheme. Second, in FLASH and EPI, the magnetization is dominated by 𝑇2
∗ relaxation, 

whereas in RARE it is dominated by T2, which is much longer than 𝑇2
∗ for most porous 

materials. Furthermore, FLASH is more T1-limited than RARE and hence in a given time 

frame the signal-to-noise ratio (SNR) is higher for RARE. 

 

It is important to note that when preceded by a displacement-encoding (i.e., q-encoding) 

pulse sequence, an implementation of RARE using a standard Carr-Purcell-Meiboom-Gill 

[27,28] phase cycle on the inversion pulse train leads to loss of quadrature due to 

accumulation of r.f. pulse errors and consequent loss of the phase dispersion that contains the 

displacement information. Different approaches have been described to overcome this 

problem, mainly based on separate acquisition of the real and imaginary components of the 
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signal [29-33], separate acquisition of odd and even-parity echoes [34], or through XY 

[12,35] or MLEV [36,37] phase cycling. Here, XY phase cycling was used because it keeps 

the echoes centred such that the Hahn condition is met [38], and hence the echoes 𝑇2
∗-

compensated, and because it has previously been shown to work robustly in heterogeneous 

porous media [12]. In this work, a 13-interval alternating pulsed-gradient stimulated echo 

(APGSTE) experiment [39] was selected for the displacement-encoding PFG experiment 

preceding the RARE imaging experiment, because it compensates for the phase errors 

introduced by the internal magnetic field gradients that are present in porous media, and 

because T2s of fluids in porous media are often short relative to T1, thereby justifying the use 

of a stimulated echo-based PFG experiment. 

 

A schematic of the combined APGSTE-RARE pulse sequence used to acquire 2D spatially 

resolved propagators is shown in Fig. 1. Each successive pair of odd and even echoes is 

identically phase-encoded, resulting in two complete q,k-datasets that are recombined during 

post-processing. Within each pair of odd and even echoes, Hermitian symmetry exists with 

respect to the phase development resulting from the displacement-encoding APGSTE 

experiment [30]. As a consequence, q,k-space from either the odd or even echoes needs to be 

flipped around q = 0 m
–1

 before the two datasets are recombined. To allow for addition of the 

‘flipped’ and ‘non-flipped’ datasets, the q-points are sampled symmetrically around      

q = 0 m
–1

.  

 

3.2 Under-sampling scheme 

It is well-established that random under-sampling of k-space ensures that artefacts arising 

from sub-Nyquist sampling add incoherently and appear noise-like [18-20]. The degree of 

incoherence of applying an sampling pattern in the Fourier domain can be measured by 

calculating the sidelobe-to-peak ratio (SPR), which is a density-compensated point-spread 

function [18]; a lower SPR corresponds to greater incoherence. At the cost of some 

incoherence, pseudo-random, variable-density sampling patterns that sample more densely 

towards the centre of k-space, where the Fourier-coefficients with the highest intensities are 

located, are typically used for MRI acquisitions. In previous work [15] a pseudo-random 

pattern generated on the basis of a polynomial probability density function (pdf) has been 

implemented [18]: 

 

pdf=(1-r)
n
,           (8) 
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where r ∈ 0 < r < 1 is a measure of distance from the centre of k-space, under the limiting 

constraint that a finite region around the centre of k-space is always sampled fully. This 

ensures that k-space is more densely sampled towards the centre than towards the outer 

edges. The choice of exponent n influences the quality of the reconstruction, and is typically 

chosen such that the width of the pdf qualitatively resembles the Fourier amplitude 

distribution in k-space. For RARE spin-density imaging, only the phase-encoded dimensions 

kphase can be sampled according to a variable-density sampling pattern; kread is sampled at 

uniform density in lines along kread for those points sampled in kphase [15]. 

 

For the APGSTE-RARE experiment for acquiring spatially-resolved propagators, additional 

under-sampling is introduced by varying the number of k-space points sampled for each q-

space point. The number of k-space points sampled per q-space point is determined randomly 

on the basis of a pdf similar in shape to the one used for k-space. The potentially different 

distribution of the intensities of the Fourier coefficients in the q and k-dimensions was 

adjusted for by varying exponent n of the pdf in Eq. 8 cyclically between the kphase and q 

dimensions as: 

 

𝑛q,kphase
=

𝑛kphase
+𝑛q

2
 + 

𝑛kphase
−𝑛q

2
[2 (

|kphase|

|kphase+q|
)

2

− 1],       (9) 

 

where kphase and q are vectors pointing towards a specific point in q,kphase-space, and 𝑛kphase
 

and 𝑛q are the exponents along the kphase- and q-directions, respectively.  

 

As is evident from the under-sampling scheme outlined in Fig. 2, the sampling pattern using 

this pdf is subject to two additional constraints imposed by the APGSTE-RARE experiment. 

The first constraint is that for each point in q-space, the number of points in the kphase-

dimension(s) should be a multiple of the number of odd/even echo pairs, i.e., half the number 

of echoes Nech. After the displacement-encoding APGSTE block, a number of lines in k-

space is read out that equals the number of odd/even echo pairs in the RARE inversion pulse 

train. Each successive odd/even echo pair is differently phase-encoded, according to the k-

space sampling pattern for the point in q-space that was encoded. The second constraint is 

that the q,k-sampling pattern as a whole should be symmetric around q = 0 m
–1

. This allows 
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reflection of under-sampled q,k-space from either the odd or even echoes in q = 0 m
–1

, which 

ensures that the two data sets can be summed together for post-processing, as described in 

Section 3.1. The q,k-sampling patterns subject to these constraints are generated using a 

modified version of the Monte Carlo approach as described by Lustig et al. [18], and 

optimised for maximal incoherence on the basis of the SPR. Figure 3 shows the SPR as a 

function of the degree of sampling and Nech for a series of such q,k-sampling patterns, subject 

to these constraints. It is seen that the SPR increases with a decreasing degree of sampling, 

and with increasing Nech. Three examples of these sampling patterns are shown; it is clearly 

seen that as Nech increases, the randomness of the sampling pattern decreases, resulting in a 

higher SPR. 

 

Finally, given the non-uniform sampling density of the q,k-sampling patterns, the order in 

which the points are acquired needs to be considered to ensure uniform relaxation weighting 

throughout q,k-space. The order in which the points in the q and kphase dimensions are 

acquired, can be chosen freely; however, only the order in which points in kphase are acquired 

will affect relaxation weighting; the order in which points in q are encoded does not influence 

the relaxation weighting. For this reason, to ensure uniform relaxation weighting, the same 

approach is used for setting the order in which points in kphase are acquired as was used for 

non-displacement-encoded under-sampled RARE MRI [15]. In short, the order in which a set 

of points in kphase is acquired within each echo train is determined by their distance from the 

centre of k-space. Additionally, for the APGSTE-RARE experiment, phase encoding within 

each pair of odd and even echoes is identical to allow for recombination of the odd- and 

even-echo data sets during post-processing. In Fig. 4, an example of a set of phase-encoding 

trajectories for Nech = 32 is shown. Here, the kphase-points in closest proximity to the centre of 

k-space are acquired in the echoes towards the middle of the RARE loop. 

 

4 Materials and methods 

4.1 Experimental Setup 

Packed bed of hollow cylinders. A cylindrical random-packed bed was prepared consisting of 

polyoxomethylene (POM) hollow cylinders (Bülte Plastics). This material has a relatively 

small difference in magnetic susceptibility relative to water, which minimises the adverse 

effects of internal magnetic field gradients on the NMR experiments [40]. The bed was 

packed with a 1:1 mix of cylinders of two different lengths, 4.0 and 6.0 mm, the outer and 

inner diameter of both being 4.0 and 2.6 mm, respectively. The internal diameter of the bed 



 11 

was 37 mm and its length was 69 mm. Uniform flow at the entrance and exit was promoted 

by using porous polyethylene distributor plates (SPC technologies) at either end of the bed. 

After loading the cylinders into the cylindrical column, the packed bed was imbibed with 

deionised water through vacuum saturation. The packed bed was connected into a closed 

flow loop, and a constant flow rate of water of 7 mL min
–1

 was imposed using a Quizix QX-

1500 HC dual-cylinder syringe pump. 

 

Vuggy carbonate rock. A cylindrical plug from a vuggy, heterogeneous carbonate outcrop 

rock of 38.0 mm diameter and 59.7 mm length and an overall porosity of 19.1% was imbibed 

with deionised water through vacuum saturation. The core was then placed in a cylindrical 

Ergotech PEEK rock core flow cell. A confining pressure was applied using 3M Fluorinert 

FC-43, which is NMR silent in typical 
1
H chemical shift ranges. The flow cell was connected 

into a closed flow loop, and a constant flow rate of water of 10 mL min
–1

 was imposed using 

a Quizix QX-1500 HC dual-cylinder syringe pump. 

 

4.2 Magnetic resonance experiments 

All NMR measurements were made using a Bruker BioSpin AV spectrometer in combination 

with a horizontal-bore superconducting magnet with a static field strength B0 of 2 T (85 MHz 

1
H resonance frequency) and a birdcage r.f. coil of 60 mm diameter. An Agilent SGRAD 

MkIII 205/120/HD tri-axial gradient system with a maximum gradient amplitude gmax of      

0.107 T m
–1

 in the three orthogonal x, y and z-directions was used. The z-direction was 

defined as the direction of superficial flow through the sample.  

 

4.2.1 Packed bed of hollow cylinders 

As a ground truth to benchmark the performance of the under-sampled experiment, a fully 

sampled 2D spatially-resolved propagator was acquired for the packed bed of hollow 

cylinders. Gaussian-shaped r.f. pulses of duration 256 μs were used. An axial Gaussian slice 

of 2.5 mm (FWHM) was selected through the middle of the packed bed. The field-of-view 

(FOV) in both the kread and kphase dimensions was 41 mm, and 128 points were acquired in 

either direction; thereby giving an in-plane spatial resolution of 320 μm × 320 μm. Thus, 

local propagators were acquired for each image voxel of in-plane resolution 320 μm × 320 

μm, for a slice thickness of 2.5 mm. The number of echoes in the RARE loop Nech was 32 

with an echo time, τe, of 2.2 ms. For the APGSTE block, the length of a pair of flow-

encoding gradients δ was set to 10 ms, and a total of 256 q-points were sampled by applying 
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flow-encoding gradients between –9.63×10
–2

 and 9.63×10
–2

 T m
–1

 (90% of gmax) in 256 

equidistant steps; i.e., symmetrically around the centre of q-space. Displacements were 

measured along the superficial flow direction, i.e. z-direction. The displacement-observation 

time Δ was 750 ms. Four signal averages were used with a time between excitations of 1.75 s, 

giving a total acquisition time of 4 h. 

 

After the acquisition, q,k-space of either the odd and even echoes was flipped in the q-

dimension. In both data sets, a zeroth-order phase correction was applied according to the 

phase of the point of maximum intensity, which was also centred in data space. The data 

from the odd and even echoes were then summed together. To counteract truncation artefacts 

in the images, a sine window was applied in the kread and kphase dimensions, before three-

dimensional Fourier transformation in kphase, kread and q. Assuming that an even number of 

points, Nk, is sampled in either k-dimension, and that the centre of k-space is sampled at the 

point with index m = (Nk/2), the sine window w is defined as: 

 

𝑤(𝑚) = sin (
𝑚𝜋

𝑁k
).          (10) 

 

Finally, the resulting spatially-resolved propagator was phase corrected in first order. 

 

An under-sampled spatially-resolved propagator was also acquired for the same x-y image 

slice. The experiment was set up using the same basic settings as for the fully-sampled 

experiment. A q,k-sampling pattern was then generated using the method described in 

Section 3.2 based on the pdf defined in Eq. 8 and 9, with 𝑛kphase
 = 7 and 𝑛q = 4. The resulting 

sampling scheme sampled 6.25% of the full q,k-space data points. The resulting acquisition 

time was 14 min (using 4 averages and a recycle delay 1.75 s). The displacement-observation 

times was again 750 ms, and the in-plane spatial resolution remained at 320 μm × 320 μm 

with a slice thickness of 2.5 mm. 

 

The under-sampled data were processed in the same manner as the fully-sampled data, but 

instead of Fourier transformation, compressed sensing reconstruction was performed using a 

primal-dual hybrid gradient method as described in detail elsewhere [14,41,42]. 

 

4.2.2 Vuggy carbonate rock plug 
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2D spatially-resolved propagators were also acquired for the vuggy carbonate rock plugs. The 

data acquisition parameters were as follows. The number of echoes in the RARE loop Nech 

was reduced to 8 with an echo time, τe, of 2.2 ms. For the APGSTE block, the displacement-

observation time Δ was reduced to 300 ms. These changes were made because of the shorter 

T1 and T2 of the water inside the carbonate rock. The FOV in both the kread and kphase 

dimensions was set to 45 mm, and 128 points were acquired in either direction (i.e., the in-

plane spatial resolution was 352 μm × 352 μm); the slice thickness was 2.5 mm. A new 

sampling pattern was generated, based on the same pdf using the same approach as described 

in Section 4.2.1 but taking into account the lower Nech. By acquiring 8 averages at a recycle 

delay 2 s, the acquisition time for the fully-sampled experiment was 37 h, and for the under-

sampled experiment 2 h 18 min. 

 

5. Results and discussion 

The following section is structured as follows. In Section 5.1 the effect of the three aspects of 

the pulse sequence implementation that have been used to yield spatially-resolved 

propagators on the quantitative nature of the displacement measurement are reported and 

discussed. Sections 5.2 and 5.3 report acquired spatially-resolved propagators in the model 

system and a vuggy carbonate rock, respectively. 

 

5.1 Evaluation of the quality of reconstructed local propagators 

 

To achieve the measurement of under-sampled spatially-resolved propagators, three 

modifications to a standard spatially-unresolved propagator acquisition are required: the XY-

phase cycling within the RARE sequence; the introduction of spatial resolution into the 

propagator measurement; and the details of the CS reconstructions. The effect of each of 

these on the accuracy of the measured propagator is discussed.  

 

5.1.1 Phase cycling within the RARE sequence 

 

Application of phase cycles such as XY [12,35] and MLEV [36,37] during an inversion pulse 

train prevents problems resulting from the accumulation of imperfections in the pulses; 

higher-order (i.e., longer) cycles provide better compensation. Ahola et al. [30] have 

presented an in-depth analysis of the phase evolution of the magnetisation when applying 

such phase cycles. Their conclusion was that although the phase cycles provide significant 
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compensation for pulse errors, the original phase of the signal is only fully conserved in the 

even-parity echoes– and the odd-parity echoes should therefore be discarded. Indeed, the 

phase of the odd and even echoes is not precisely the same, but their phase is constant 

throughout the echo train. Further, as has been demonstrated by Van As and co-workers [43], 

two individually phase-encoded q,k-data sets can be acquired in the odd and even echoes, 

which are then phase-corrected individually. Because of the Hermitian symmetry between the 

odd and even echoes, either the odd- or the even-echo data can then be reflected in q = 0 m
–1

 

after which the odd and even echoes can be summed to improve the signal-to-noise ratio. 

Figure 5 shows the total spatially-unresolved propagator for flow in the packed bed of 

cylinders, obtained by summation of the individual spatially-resolved propagators, for both 

the odd- and even-echo (fully-sampled) data. It is seen that the total propagators are 

indistinguishable. The same holds for the individual, per-pixel propagators. Henceforth, all 

propagators shown will be based on the recombination of the odd and even echo data. 

 

5.1.2 Introduction of spatial resolution to the propagator measurement 

To further demonstrate that the application of RARE has no significant effect on the accuracy 

of the propagators, the total propagator obtained from summing the individual per-pixel 

propagators (fully-sampled) is compared to (1) the total propagator obtained from using only 

the central k-space point from the same q,k-data, and (2) the total propagator measured by a 

standalone slice-selective APGSTE experiment. As can be seen in Fig. 6, the propagators 

resulting from these three methods are indistinguishable. 

 

To assess the accuracy of the per-pixel propagators themselves, a comparison is made 

between the mean velocity calculated from the per-pixel propagators, and a flow velocity 

map calculated from the per-pixel phase difference, Δφ, between two images acquired at two 

different values of q, where φ=2πq∙vΔ, with v being the average local fluid velocity. These 

two images were obtained by applying a Fourier transform to the q,k-data in the two k-

dimensions, and selecting two images at either side of q = 0 m
–1

. The two velocity maps and 

the associated velocity distributions are shown in Fig. 7b and 7c and Fig. 7d and 7e, 

respectively. The intensity image of the slice from which the data are taken is shown in Fig. 

7a. The superficial flow direction is perpendicular to this image slice. There is good 

agreement between the map of mean velocity calculated from the spatial-resolved propagator 

measurements (Fig. 7b) and the directly acquired velocity map (Fig. 7c). The velocity 

distributions calculated from the propagator measurements (Fig. 7d) and directly from the 
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velocity map (Fig. 7e) are not expected to be identical because the latter method is based on 

the calculation of a phase average, and because of a difference in SNR between the two 

approaches, as can be seen from the larger noise level in the velocity map of Fig. 7c 

compared to that of Fig. 7b. Nevertheless, the mean velocity of the distribution calculated 

from the propagator measurements (206±2 μm s
–1

) is in agreement with the distribution 

calculated from the velocity map (208±2 μm s
–1

) to within experimental error. The standard 

deviation of the distribution calculated from the propagator measurements (237±1 μm s
–1

) is 

smaller, but of the same order as that determined for the distribution derived from the 

velocity measurements (273±1 μm s
–1

). This difference is expected to be largely due to the 

larger root mean square error in the velocity map-derived velocities relative to the 

propagator-derived velocities, discussed earlier. The error in velocity map-derived velocities 

is proportional to the SNR of the underlying image [44] and equals 61 μm s
–1

 on average for 

the map in Fig. 7c, which is of the same order as the difference in standard deviation between 

the propagator-derived and velocity map-derived velocity distributions of Fig. 7d and e, 

respectively. In summary, the good agreement of the velocity data calculated from the 

propagators with the directly measured velocity data confirmed that the introduction of 

spatial resolution into the propagator measurement has retained the accuracy of the 

propagator measurement.  

 

5.1.3 Sensitivity to details of the CS reconstructions 

The fully-sampled spatially-resolved propagators are now compared to the compressed 

sensing reconstructions of under-sampled spatially-resolved propagators. As a quality metric 

for the quality of the reconstructions, the peak signal-to-noise ratio (PSNR) is used, which is 

defined as: 

 

PSNR(𝒖CS, 𝒖FS) = 20log
10

[
max(uFS)

‖uCS,uFS‖𝟐
𝟐/Npix

],      (11) 

 

where 𝒖CS and 𝒖FS are the spatially-resolved propagators obtained through compressed 

sensing reconstructions of under-sampled propagators and from Fourier transformation of the 

fully- sampled data, respectively, and Npix is the number of pixels (or voxels for a volume 

image) in 𝒖. PSNR is normally expressed in units of dB; a higher value is indicative of a 

better reconstruction quality. A perfect reconstruction has PSNR = ∞ dB.  
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The effects of the degree of sampling and of Nech on the compressed sensing reconstruction 

quality were assessed. In Fig. 8, reconstruction quality as measured by PSNR is shown for 

the various sampling patterns of which the SPRs are shown in Fig. 3. The different patterns 

were applied to the fully-sampled dataset, which was truncated to 128 points in the q-

dimension to save computation time. The reconstruction qualities obtained through isotropic 

TV regularisation and NN regularisation are also compared in Fig. 8. A range of values for 

the regularisation parameter α were considered to find the optimal reconstruction quality in 

terms of PSNR for a given sampling pattern. An initial broad search of α-values was used to 

identify the range in which the maximum in PSNR was located – the search for the optimal 

α-value was then narrowed down to this range to find the best value for α. A fully-sampled 

ground truth for optimisation of α would normally not be available in an actual application of 

this method. It was therefore verified that under those circumstances, Morozov’s discrepancy 

principle [45] provides an adequate estimate of α as compared the optimal-PSNR solution, as 

was previously demonstrated by Benning et al. to also be the case for CS MRI velocity 

experiments [14]. 

 

With regard to TV regularisation, isotropic TV regularisation (TVq,k) was also compared with 

TV regularisation in only the k-dimensions (TVk) or in only the q-dimension (TVq). It was 

shown that TVq,k outperforms TVk or TVq. For example, for the sampling pattern with Nech = 

2 and 50% sampling, TVq,k resulted in a PSNR of 35.5 dB, TVk in a PSNR of 35.1 dB and 

TVq in a PSNR of 33.2 dB. TVq did significantly improve the reconstruction quality relative 

to the zero-filled (ZF) solution (PSNR = 32.1 dB), from which it can be concluded that TV is 

an adequate regulariser for the displacement domain. Since this analysis showed that TV 

improves reconstruction of features present in both the displacement and spatial domains, 

only isotropic TV regularisation (TVq,k) is considered in further comparisons.  

 

The data in Fig. 8 show that TV and NN regularisation both perform well, but TV 

regularisation generally outperforms NN regularisation. It is seen that TV regularisation 

yields significantly better results for higher Nech (i.e., for patterns with a higher SPR). At 

higher sampling levels, for Nech < 20, the performance of NN and TV converge, with the 

reconstructions of 50% sampled datasets being of the same quality. However, for the 

application to the spatially-resolved propagators shown in this work it was noted that NN 

regularisation led to much more rapid convergence of the optimisation problem (~10
2
 

iterations for NN, 10
3
 for TV), and that the individual iterations were less computationally 
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expensive (NN ~2× faster than TV). Therefore, in those cases wherein the quality of 

reconstructions generated using TV and NN regularisation are similar, NN may become the 

regulariser of choice when dealing with the much larger datasets characteristic of 3D 

spatially-resolved propagators. There exists some variability in PSNR depending on the 

specific sampling pattern used, which is a result of the outcome of the optimisation procedure 

of the sampling pattern based on SPR, in combination with the exact distribution of Fourier 

coefficients in q,k-space. 

 

On the basis of this analysis, the datasets acquired using the under-sampled APGSTE-RARE 

experiment were sampled at 6.25% and reconstructed using only isotropic TV regularisation. 

 

5.2 Spatially-resolved propagators within the model system 

The nature and quality of data obtained are illustrated in Fig. 9. A spatially-resolved 

propagator is acquired for each 320 μm × 320 μm pixel within the image. Figure 9a shows 

the total intensity image obtained by projecting the data within each pixel along the q-

dimension. Three pixels are then identified, positioned at the tip of each arrowhead. The 

spatially-resolved propagators associated with pixels 1, 2 and 3 are shown in Fig. 9b, c and d, 

respectively. In each of these figures, three propagators are shown which have been 

calculated from a direct Fourier transform of the fully-sampled data; the zero-filled transform 

of the 6.25% sampled data; and the compressed sensing reconstruction of the 6.25% sampled 

data, reconstructed using TV regularisation. 

 

First, the general form of the spatially-resolved propagators associated with the three pixels 

are discussed. These data demonstrate the insights that can be gained from spatial resolution 

of the propagator measurement. Further, by studying this model system, the ability of the 

measurement to capture local flow dispersion in this system are assessed. The degree of per-

voxel flow dispersion is quantified by calculating the displacement standard deviation 𝜎r 

[46]: 

 

𝜎r = (〈r(𝛥)2〉 − 〈r(𝛥)〉2)1 2⁄ ,        (12) 

 

where r is the displacement along the flow-encoded direction over observation time 𝛥, and 

〈𝐫(𝛥)〉 (the mean displacement) and 〈𝐫(𝛥)2〉 are given by: 
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〈𝐫(𝛥)〉 =
∫ 𝑃̅(𝐫,𝛥)𝐫d𝐫

∫ 𝑃̅(𝐫,𝛥)d𝐫
, 〈r(𝛥)2〉 =

∫ 𝑃̅(𝐫,𝛥)r𝟐d𝐫

∫ 𝑃̅(𝐫,𝛥)d𝐫
,      (13) 

 

where 𝑃̅(𝐫, 𝛥) is the propagator. Considering pixel 1 (Fig. 9a) it is seen that the pixel lies 

within a hollow cylinder which lies perpendicular to the direction of superficial flow. The 

propagator obtained from this pixel (Fig. 9b) takes the form of a Gaussian distribution 

centred around a mean displacement of only 21 μm with a standard deviation of 57 μm, i.e. 

the flow is near-stagnant within the orthogonally aligned hollow cylinder. The mean-square 

displacement of water molecules due to self-diffusivity, √2DΔ, where D is the self-diffusion 

coefficient (2.0×10
–9

 m
2
 s

–1
 for water at 293 K) and Δ=750 ms, equals 55 μm – a close match 

to the displacement in standard deviation of the propagator. In contrast to pixel 1, pixel 2 

(Fig. 9c) lies within a cylinder aligned along the superficial flow direction. In this case the 

propagator again takes a Gaussian form but with a mean displacement of 262 m with a 

standard deviation of 58 μm; in this location there is coherent flow, and the propagator is 

broadened only by the self-diffusivity of the water molecules. Finally, pixel 3 (Fig. 9d) is 

located outside any cylinder and the propagator assumes a broader, skewed shape with a 

mean displacement of 726 m and a standard deviation of 145 μm; at this position, 

significant additional dispersion in excess of self-diffusivity is observed, due to the water 

molecules having passed through a region of high shear. The distribution is also significantly 

skewed. Therefore, for this pixel, a single velocity would not be an adequate representation of 

the local flow characteristics, which illustrates how spatially-resolved propagators can 

contribute to our understanding of flow in complex geometries. 

 

With reference to Fig. 9b–d, the performance of the three propagators reconstructed for pixels 

1, 2 and 3 are now compared. It is clearly seen that the fully-sampled Fourier transformed 

and TV-regularised CS-reconstructed propagators are in excellent agreement. In contrast, the 

under-sampled, zero-filled and Fourier transformed propagators are significantly different 

and suffer from artefacts that are absent in the Fourier transformation of the fully-sampled 

data. Closer inspection of the propagators shows that the TV-regularised compressed sensing 

reconstruction of the under-sampled data significantly improves the quality of the 

propagators beyond that of the zero-filled Fourier transformed data. This is also reflected by 

the PSNR of the zero-filled Fourier transform and of the TV reconstruction relative to the 

Fourier transform of the fully-sampled data: the zero-filled FT has a PSNR of 30.9 dB and 
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CS with isotropic TV regularisation has a PSNR of 33.2 dB. It is noted that the PSNRs for 

the CS reconstruction of the under-sampled experiment are inherently limited by the fact that 

it is a comparison to a separately acquired fully-sampled experiment, between which subtle 

changes in flow field may have occurred. Further, it is seen that the noise level of the fully-

sampled Fourier transformed propagators is higher than that of the TV-regularised CS-

reconstructed propagators. This is because the CS reconstructions are inherently denoising. 

Although it would be possible to subject the fully-sampled data to the same treatment as the 

under-sampled data, which would lead to a similar degree of denoising, only the result for the 

Fourier transform is shown here because it is the conventional way of treating fully-sampled 

data. 

 

In Fig. 10a, a comparison is made between the spatially-unresolved propagator obtained 

using the same three approaches discussed in Fig. 9. Again, compressed sensing can be seen 

to improve the quality of the spatially-unresolved propagator significantly with respect to the 

zero-filled FT of the 6.25% sampled data. In Fig. 10b, displacement images are shown for 

two specific displacements (0 μm and 256 μm). These displacement images are spatially-

resolved maps of the relative probability of a molecule of the fluid displacing over that 

distance. As expected, it is seen that the compressed sensing reconstructions are of superior 

quality relative to the zero-filled FT. The bright-yellow rectangular areas seen in the 0 μm 

displacement images (an example is indicated by arrow 1) correspond to areas within 

cylinders that are aligned perpendicular to the superficial flow direction; the water in these 

regions is near-stagnant and hence these areas do not show up in the 256 μm displacement 

image. The many ring-shaped features that can be seen in both the 0 μm and 256 μm 

displacement images are characteristic of an approximately parabolic (Hagen-Poiseuille) flow 

profile inside cylinders oriented along the direction of superficial flow; such parabolic flow 

profiles are also seen in the velocity maps of Fig. 7b. The ring-shaped features in the 0 μm 

displacement images (see arrow 2) are of larger diameter than the same features in the 256 

μm displacement images, because the lowest displacements are found near the interface 

between the fluid and the cylinders, and the higher displacements are found towards the 

centre of the cylinders.  

 

5.3 Spatially-resolved propagators within a vuggy carbonate rock 

Figure 11 shows a comparison of the total propagator obtained by summation of the 

individual per-pixel propagators from a fully-sampled, spatially-resolved experiment with a 
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total propagator obtained from a spatially-unresolved acquisition. The agreement is excellent. 

This is particularly interesting because it confirms that any effects of relaxation during the 

RARE pulse train can be kept to a minimum. Broad, trimodal distributions of both T1 (mean 

0.65 s) and T2 (mean 0.65 s) were observed for water in the pores of the vuggy carbonate 

rock, reflecting its heterogeneous pore size distribution. Further, the result confirms that 

internal gradients that can be expected to be present within the carbonate rock do not 

significantly influence the spatially-resolved propagator with respect to the spatially-

unresolved result. 

 

The 2D spatially-resolved propagator for flow through the vuggy carbonate rock plug is 

presented in Fig. 12. A propagator is acquired for each in-plane pixel of 352 μm × 352 μm. In 

Fig. 12a, the spatial heterogeneity of the rock is clearly seen. Fig. 12b, c and d show the 

spatially-resolved propagators from pixels 1, 2 and 3 respectively.  

 

As was the case for the packed bed, the local propagators assume a variety of different 

shapes. Pixel 1 lies adjacent to a cluster of pixels of fast flow (yellow shades) and yet is 

associated with near-stagnant flow (mean displacement 6 μm, standard deviation 39 μm). As 

was the case in the packed bed, the standard deviation is comparable to the mean-square 

displacement due to self-diffusivity at an observation time Δ=300 ms, which is 35 μm. Pixels 

2 and 3 are separated by a distance of only 1.4 mm and lie within regions containing flowing 

liquid. However, as seen from Fig. 11c and d, their propagators are very different. Pixel 2 is 

associated with a propagator of mean displacement of 310 μm with a standard deviation of 

283 μm. The corresponding data for pixel 3 are characterised by a mean displacement of 115 

μm with a standard deviation of 141 μm. 

 

A comparison of the three propagators calculated at each of these spatial locations leads to 

similar observations as for the model packed bed. Compressed sensing is seen to improve the 

quality of the under-sampled propagator relative to the zero-filling solution (PSNRZF = 36.1 

dB; PSNRTV = 36.7 dB). 

 

6. Conclusions 

Multi-dimensional magnetic resonance experiments such as the acquisition of spatially-

resolved propagators are often considered too time-consuming to perform because of the 

large number of data points that need to be acquired. The present work exploits the fact that 
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as the dimensionality of the data increases, the reduction of experimental acquisition time due 

to under-sampling increases, because of the multiplicative effect of under-sampling multiple 

dimensions. 

 

A method to experimentally under-sample spatially-resolved propagators using an APGSTE-

RARE pulse sequence with a pseudo-random, variable-density sampling pattern has been 

implemented. Demonstration of the method on a model system of water flow in a packed bed 

of hollow cylinders confirmed that the acquired propagators were robust to the phase cycle 

with the imaging sequence, the introduction of spatial resolution into the measurement and 

the details of the CS reconstruction. By sampling q,k-space by 6.25%, a 16-fold reduction of 

acquisition time was achieved relative to the fully-sampled experiment. Compressed sensing 

reconstructions using TV regularisation and NN regularisation were compared, and it was 

found that TV outperforms NN regularisation in most cases.  

 

The method was then applied to water flow through a vuggy carbonate rock, and it was 

confirmed that the effect of relaxation within the RARE pulse train was minimal. This is an 

important result since these are the types of porous media which will be a particular focus of 

future study. Ongoing work is addressing the extension of this method to 3D spatial 

resolution of propagators where it is expected that even greater reductions in acquisition time 

can be gained relative to the fully-sampled data acquisition as a result of the higher 

dimensionality of the data acquisition.  
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Figure captions 
 

Figure 1: Pulse sequence to acquire 2D spatially-resolved propagators, which consists of a 

13-interval APGSTE sequence followed by an XY-phase cycled RARE sequence. In the 

RARE sequence, an XY-16 (x y x y y x y x –x –y –x –y –y –x –y –x) phase cycle is used for 

the 180° inversion pulses. Each successive pair of odd and even echoes is identically phase-

encoded in kphase, so that two separate spatially-resolved propagators are acquired that can be 

added together during post-processing. The directions of displacement (q) and spatial (k) 

encoding can be chosen independently. In this work, the slice direction and the direction of 

flow encoding were both parallel to the superficial flow direction z. 

 

Figure 2: Schematic of the under-sampling protocol. For each excitation, only a single q-

value can be encoded into the signal. This implies that t 

he number of k-space points acquired per q-space point must be a multiple of half the 

number of echoes (Nech) in the RARE experiment, since each successive pair of odd and even 

echoes in the RARE-train is identically phase-encoded.  

 

Figure 3: Pseudo-random, variable-density sampling patterns are used to sample the q-

dimension and the phase-encoded dimension(s) kphase. (a) Sidelobe-to-peak ratio for a range 

of different pseudo-random q,kphase-sampling patterns to be used with the APGSTE-RARE 

experiment, for different values of Nech and degrees of sampling: (●) 50%, (■) 25%, (▲) 

12.5%, (▼) 6.25%. The patterns had sizes of kphase × q = 128×128 points, and were generated 

on the basis of a pdf as in Eq. 8 with 𝑛kp
, 𝑛q = 7; 50,000 random sampling patterns were 

generated from which the pattern with the lowest SPR was selected. (b-d) Three examples of 

sampling patterns that illustrate the effect of increasing Nech. The white pixels correspond to 

the positions at which a line in the readout dimension kread is sampled. It can be seen that the 

patterns are symmetrical in q = 0 m
–1 

to allow for addition of the odd and even echoes during 

post-processing. 

 

Figure 4: Four representative sampling trajectories for the phase encoding direction kphase. 

The order in which a set of points in kphase is acquired within each echo train, is determined 

on the basis of their distance from the centre of k-space; for the example shown, Nech = 32, 

and Nk, Nq = 128. Each successive pair of odd and even echoes is identically phase-encoded. 
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Figure 5: Comparison of the even-echo (–––) and odd-echo (- - -) total displacement 

propagators obtained by addition of the individual, per-pixel propagators from the fully-

sampled, 2D spatially-resolved propagator for flow in the packed bed. The two propagators 

are indistinguishable, justifying addition of the two datasets for post-processing. 

 

Figure 6: Comparison of the total displacement propagator associated with a 2D slice 

obtained by three different methods: Summation of the individual, per-pixel propagators from 

a fully-sampled, 2D spatially-resolved experiment; i.e., a projection along k (–––); a 

spatially-unresolved 13-interval APGSTE experiment (– – –); calculated from the central k-

space points for every q-value from the combined odd- and even-echo spatially resolved data 

and Fourier transformation along q (- - -). 

 

Figure 7: Assessment of the accuracy of the spatially-resolved propagators. The intensity 

image (a) is shown as a reference. The superficial flow direction is perpendicular to the 

image slice and velocities were measured along the superficial flow direction. Velocity maps 

are shown for (b) propagator-derived velocities and (c) velocimetry-derived velocities. (d) 

and (e) show the velocity distributions calculated from (b) and (c) respectively. 

 

Figure 8: Variation of the PSNR of the compressed sensing reconstructions of spatially 

resolved propagators as a function of the degree of sampling and Nech, reconstructed using the 

isotropic TV (closed symbols) and NN (open symbols) as regularisation functionals. The 

SPRs of the sampling patterns that were used, are shown in Figure 3a. TV: (●) 50% 

sampling, (■) 25%, (▲) 12.5%, (▼) 6.25%. NN: (○) 50%, (□) 25%, (△) 12.5%, (▽) 6.25%. 

The lines serve as guides for the eye. 

 

Figure 9: 2D spatially-resolved propagator for water flow through the packed bed of hollow 

cylinders. In the fully-sampled intensity image (a), arrows indicate three locations (1–3) for 

which the local propagators are shown (b-d). Local propagators are shown for an observation 

time of 750 ms. A comparison is made between local propagators obtained from fully-

sampled, Fourier transformed data (–––), with data acquired at 6.25% sampling followed by: 

zero-filling and Fourier-transformation (– – –), and the TV-regularised CS reconstruction (– – 

–). The under-sampled data were acquired using the APGSTE-RARE experiment.  
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Figure 10: (a) Comparison of the total (i.e., spatially-unresolved) propagator obtained from 

summation of 2D spatially-resolved propagators acquired using 3 approaches: fully-sampled 

followed by Fourier transformation (–––); 6.25% sampling, zero-filling followed by Fourier-

transformation (– – –); and 6.25% sampling, followed by TV-regularised CS reconstruction   

(– – –). The under-sampled data were acquired using the under-sampling APGSTE-RARE 

experiment. (b) Two displacement images showing maps of populations of 0 and 256 μm 

flow displacements, respectively. These displacements are indicated by the dotted lines on 

the total propagator shown in (a). The total propagator and the displacement images are 

shown on the same probability scale.  

 

Figure 11: Comparison of the total displacement propagator associated with a 2D slice 

through a vuggy carbonate rock obtained by two different methods: Summation of the 

individual, per-pixel propagators from a fully-sampled, 2D-spatially resolved experiment; 

i.e., a projection along k (–––); and a non-spatially-resolved 13-interval APGSTE experiment 

(– – –).  

 

Figure 12: 2D spatially-resolved propagator for water flow through the vuggy carbonate 

rock. In the fully-sampled intensity image (a), arrows indicate three locations (1–3) for which 

the local propagators are shown (b-d). Local propagators are shown for an observation time 

of 300 ms. A comparison is made between the fully-sampled, Fourier transformed data (–––), 

and the 6.25% sampled data: under-sampled, zero-filled and Fourier-transformed (– – –), and 

TV-regularised with CS reconstruction (– – –). The under-sampled data were acquired using 

the under-sampling APGSTE-RARE experiment.  
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Figure 2 – 1 column / 9 cm 
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Figure 9 – 1.5 column / 14 cm 
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Figure 11 – 1 column / 9 cm 



Figure 12 – 1.5 column / 14 cm 


