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Abstract. 

Legendre’s well-known elliptic integrals are not the only version of elliptic integrals. Carlson’s form, 

developed in the late 1970s, have many advantages, and are particularly well suited for Hertzian contact 

analysis. They fit immediately into the basic formulation: they make no distinction between the major and 

minor axes of the ellipse (reducing the number of equations needed): and the extension to the study of the 

deformation outside the contact area is barely noticeable: nothing like the switch from complete to 

incomplete integrals needed when using Legendre’s integrals is required. And finally, their computation is 

rapid and straightforward.  

In addition, equations as Carlson integrals are given for the displacements due to tangential loading 

(Cattaneo-Mindlin theory), and notes given on the elliptic integrals needed in the evaluation of the internal 

stresses in a Hertzian contact. 

 

§1  Elliptic integrals. 

The term “Elliptic Integrals”, if it does not just produce a shudder, immediately brings up some recollection 
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It does not bring up the qualification “in Legendre’s form”, for there is no need: these are the elliptic 

integrals, are they not?  In fact already in 1931 Emde explained that in electromagnetic theory the integrals 
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are more use. This is certainly the case in Hertz theory, where for example the equations (Johnson, Contact 

Mechanics  (§4.26a,b)) 
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 where 22 /1 abk −= . (we need not here discuss their meaning: see below)  
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 Note the difference between the equations for the major and minor axes…less striking with Emde’s 

functions: but still firmly distinguishing between major and minor axes. For of course we must have ab ≤ , 

or how can we calculate the eccentricity? 

 The answer to the question above is no: there is an alternative, and in Engineering, and particularly in the 

study of Hertzian contact, these are more convenient.  

Carlson elliptic integrals are defined as  
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D
R  in order that 2/3),,( −= xxxxRD , matching 

2/1),,( −= xxxxRF : as a result, it seems that all his relations involving DR  are preceded by a factor 3/1 .] 

These integrals will replace both the complete
1
 and incomplete Legendre integrals, so we have only increased 

the number of parameters from 2 to 3. But we can return to 2, for we have the scaling rules 
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Note that all three parameters in FR may be interchanged, but only the first two in ⊗

D
R : the difference is 

noted by the semi-colon before the third parameter. 

§2  Hertz Theory 

Johnson, Contact Mechanics §4.2a,b (p98), explains that from potential theory, the displacements due to a 

Hertzian pressure distribution 2/12222
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[A factor π  in Johnson’s equation has been removed, on the evidence of CM §3.5  p63/65]. 
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Note that no distinction between major and minor axes has been needed. 
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The desired deformation is 2
2

1
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How do we express this as an elliptic integral? Not readily: but fortunately Johnson §4.26c gives the answer: 

we decide which is the minor axis and calculate 22 /1 abk −= :   then, we are told,   
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Once again the scaling rule (6b) can usefully be employed to get  
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The first step in analysing an elliptical Hertz contact is to find the relation between the macroscopic 

geometry, characterised by 1R  and 2R , and the ellipticity
3
 ./ abe =  Dividing the last two equations gives 
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However a different scaling gives a more useful form 

                                                 
2
 Barber, Contact Mechanics, derives these from first principles, using the Boussinesq point-load solution 

3
 e  is frequently used as the symbol for the eccentricity: but k  is so standard as the argument of Legendre elliptic integrals that we 

retain it, which frees e .  Of course, when 1<e , we have 
21 ek −= .and ek =′ . 
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 the same property makes this a neat iterative rule for finding the ba /   exactly. 

[For example, for 5/ 21 =RR , starting from 924.2)/(/ 3/2
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§3  Evaluation of Carlson Integrals 



 5 

The ease with which the Hertz equations may be written as Carlson integrals would be pointless if the 

integrals were not easy to evaluate. But the possibility of readily evaluating them by duplication 

(corresponding to the evaluation of Legendre integrals using Landen’s transformation) removes this 

worry..and indeed, it would seem that this possibility is what led Carlson to introduce them. 

The basic algorithm is that for 
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   … and the maximum difference between qp, and r  has been reduced by a factor 4. Clearly, repeating the 

process ultimately results in almost equal values of nnn rqp ,, . Now let 3/)( nnnn rqp ++=µ . Then a 
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Carlson recommends the use of further terms, which can reduce the error to )( 6εO , but for engineering use 

this seems unnecessary. 

The algorithm for );,( rqpRD  is more complex:  Carlson shows that 

)(

1
),,(),,(

2/14

1
111

nnn

nnnDnnnD
rr

rqpRrqpR
λ+

+= ⊗⊗

+++       (24) 

 where the successive sets of ),,( rqp  are found as above.  Thus its use involves the collection of partial 

results found during the set of duplications...reminiscent of the procedure for )(kE  given in the NBS tables.  

Ultimately ),,( nnnD rqpR
⊗  tends to a limit 2/3~

3

1 −µ  where now 5/)3(~
nnnn rqp ++=µ . Once again Carlson 

recommends that for efficiency, a series expansion of the differences )~( nnp µ− etc should be used. This is 

detailed in Carlson (1977), but seems unnecessary for 6-decimal accuracy. A simple MATLAB program 

without the series, but believed to give both FR and ⊗

DR  to an accuracy of 
610−

 is given in appendix 1. 

 

 

§4  Displacements outside the contact area. 

The basic Hertz analysis giving the shape and size of the contact area uses only “complete” Legendre elliptic 

integrals: these correspond to Carlson integrals where one of the arguments is zero (see footnote 
(1)

 above). 

The deformation outside the contact area requires “incomplete” elliptic integrals, and the path to these from 

the fundamental equations requires some skill. Once again, the path to the Carlson form is elementary. 
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From Johnson Contact Mechanics §4.2b (p98), the displacements outside the contact area due to the 

Hertzian pressure distribution are  

 
2/1222

2

2

2
0

)])(([
1

2 1 sbsas

ds

sb

y

sa

x

E

pab
w

++










+
−

+
−

′
= ∫

∞

λ
     (again omitting the false π ), where 

now the lower limit of the integral in (8)  has become 1λ ,  the positive root of the quadratic equation  

   1
2

2

2

2

=
+

+
+ λλ b

y

a

x
.         (25) 

A simple change of variable shifts the lower limit back to zero, so that 

2/1
1

2
1

2
10

2/122 )])()([(2

1

)])(([2

1

1 sbsas

ds

sbsas

ds
I

+++++
=

++
≡ ∫∫

∞∞

λλλλ
 ),,( 1

2
1

2
1 λλλ ++= baRF , 

and 

);,(
]))(([2

1
1

2
1

2
12/1322

1

λλλ
λ

++=
++

= ⊗∫
∞

abR
sasbs

ds
A D ;

);,(
]))(([2

1
1

2
1

2
12/1322

1

λλλ
λ

++=
++

= ⊗∫
∞

baR
sbsas

ds
B D    

so that [ ]220),( yBxAI
E

pab
yxw −−

′
= .   

Inside the ellipse, where 01 =λ , the two coefficients BA,  are constants, and this gives the expected 

parabolic variation, but outside the ellipse, because of the variation of 1λ  with x and y , A  and B  are no 

longer constants and the variation is no longer parabolic. 

Note how easily the change from inside the contact area (equations (12b, 14a,b)) to outside it is made: and 

the algorithms discussed above already provide the values needed. But remember that 1λ  depends on ),( yx  

and must be recalculated from (25) for each point considered.  
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§5  Tangential loading over an ellipse. 

Mindlin’s classic analysis of the initiation of slip (Mindlin (1949) used a tangential load 
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We need to convert this to standard elliptic integrals. 
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It is difficult to claim that this was easier to obtain than the Legendre forms.  But we have arrived at a single 

equation (32), instead of the pair (30 a,b): the result for a traction along the “b-axis” is implicit. 

We are not, of course, suggesting that a  and b  are interchangeable:  the traction is in the “ x -direction”, and 

a  is the semi-axis in that direction: we are merely not specifying whether this is the major or the minor semi-

axis. 

 

Ellipsoidal  traction 

For an ellipsoidal traction  22
1 )/()/(1).( baqqx ηξηξ −−=  the same procedure of setting up a polar co-ordinate 

system centred on the point of interest leads to a more complicated equation: 
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4
  Why not φ2tan=t ?  No good reason here: but for the incomplete integral ∫

α

φ
0

(..)d  the limits must be interchanged, so the 

substitution  is then αφ 22
cotcot −=t . This is needed for points outside the contact area: see Barber (2017). 
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Since  
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Transverse displacements. 
 

The transverse displacement yu  no longer vanishes. We have 
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2/

0

222/322221 ∫ −+=     where 
22/2 baxyM =  

Then
tt

dt

t

tM
tbat

G

q
yxu y

)1(2)1(
)1()/1/(

2
),(

0
2

2/32/3221

++
++= ∫

∞
−ν

∫
∞

++
=

0
2/32/32

3
1

)1()(4
),(

ttet

dttM

G

aq
yxu y

ν
       (40) 

Partial fractions now give 












+
−

+−
=

++ 1

1

1

1

)1)(( 2

2

22 tet

e

etet

t
 

so, again writing µ   for )1/( 2 −eν , 













++
−

++
= ∫∫

∞∞

0
2/32/12

0
2/32/32

23
1

)1()()1()(4
),(

ttet

dt

ttet

dte

G

Maq
yxuy

µ
 

[ ])1;,0();1,0(),( 222

2

1 eReRe
b

yx

G

aq
yxu DDy

⊗⊗ −=
µ

      (41)  

The expressions found above all agree with the results given by Vermeulen & Johnson (1964). 
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Figure 1: Equivalence of the Legendre and Carlson expressions. 

Vermeulen’s symbols in the plot above signify ),( yxux = )]/()/()[2/( 2222
1 axbyGaq ⋅Φ−⋅Ψ−Γ ;   

)]/()[2/(),( 1 abxyGaqyxu y ⋅Θ=  

 

§6 Internal stresses for an elliptical Hertzian contact. 

 

Sackfield & Hills (1983) show that the complete set of the six internal stresses can all be expressed as the 

sum of a very complicated but algebraic expression ),,( zyxL  [ Fessler & Ollerton (1957) study the reduced 

forms of this: ),( zxQ  when 0=y , and ),( zyR  when 0=x ) ], and “three elliptic integrals” 

∫
∞

++
≡

s wkw

dw
I

2/1222/321
)()1(

,   ∫
∞

++
≡

s wkw

dw
I

2/3222/122
)()1(

 and 

∫
∞

++
≡

s wkww

dw
I

2/1222/1223
)()1(

.                (41) 

 Sackville & Hills comment that these can be transformed into a standard form or evaluated directly using, 

for example, Simpson’s rule. Readers of this paper will already have recognised that these are just our 

Carlson integrals and need no numerical integration. By substituting uw =  to make the factors linear, 

followed by 
2

stu +=  to bring the lower limit to zero, we have simply 

)1;,( 2222
1 ssksRI D ++= ⊗

,    );1,( 2222
2 skssRI D ++= ⊗

,   );,1( 2222
3 ssksRI D ++= ⊗

.   (42) 

We note that from the addition theorem (A3) we have  

))(1)((

1

2222
321

skss

III

++
=++ . 

For the full equations for the six stresses, and the details of the notation, see Sackfield & Hills (1983) 

§7  Discussion. 
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Nothing written above is intended to disparage Legendre’s magnificent transformation of the elliptic 

integrals into his standard forms φ
φ

π
d

k

kK ∫
−

=
2/

0 22 sin1

1
)( ; φφ

π
dkkE ∫ −=

2/

0

22 sin1)( ; and of 

course tables of these are widely available. But are they now much used? More usually, Fortran or Matlab 

routines will be used to evaluate the integrals as needed. Routines for evaluating the Carlson elliptic integrals 

are also widely available (via the internet for Matlab). Carlson’s duplication procedure for evaluating his 

integrals is no more complex than (and as quick as) the corresponding processes for evaluating ),(mK 5
 and  

)(mE , and distinctly simpler than the procedure for evaluating the incomplete Legendre integrals 

),(),,( αα mEmF . Carlson would clearly have despised (ridiculed?) the program given below, believing 

the duplication process to be only a preliminary to the power series expansion. For that, consult the arxiv 

reference. There he also gives 14 figure reference values, for real and complex arguments, from which   

RF (2, 3, 4) = 0.58408 28416 7715  and  RD (2, 3; 4) = 0.16510 52729 4261  ( ⊗≡ DR3 ) have been abstracted. 

The simple program below reproduces the first 8 decimals. 

The algebraic integrand makes them easier to manipulate than Legendre’s trigonometric form.  To 

demonstrate useful techniques, examples of differentiation and simple addition theorems are given in 

appendix 2. The reader may like the challenge of proving that 
m

mE

m

d

−
=

−∫ 1

)(

)sin1(

2/

0
2/32

π

θ

θ
 ; and 

comparing it with the Carlson equivalent! 

 

§8  Conclusion. 

Carlson elliptic integrals are particularly well suited to the analysis of Hertzian contacts, both for determining 

the area of contact and for studying the deformation outside the contact. They eliminate the inconvenient 

distinction between major and minor axes. Their calculation is fast and straightforward, and there is no 

distinction between “complete” and “incomplete” integrals. It is time for Legendre’s elliptic integrals to be 

pensioned off.  

 

                                                 
5
 Indeed, )1,1,0()( K mRmK −=   
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Appendix 1  A simple MATLAB program for Carlson Integrals 

 
%x = [p  q  r]; 

  

function [Rk,Rd]=carlson(x); 

 

%Calculates one-third of Carlson’s R_D 

% for 6 decimal accuracy 

  

if x(3)<1E-15,  display('r ~ 0:  RD suspect');  end 

  

eps=1E-3; 

quam=1; sigma=0; e=1; 

while e>eps,  

   xr=sqrt(x); 

   lambda=xr(1)*(xr(2)+xr(3))+xr(2)*xr(3); 

   delta=quam/((x(3)+lambda)*xr(3)); 

   igma=sigma+delta; 

   x=(x+lambda)/4; 

   mu=(x(1)+x(2)+x(3))/3; 

   X=x/mu-1; 

   quam=quam/4; 

   e=max(abs(X)); 

end 

Rk=1/sqrt(mu); 

mud=(x(1)+x(2)+3*x(3))/5; 

Rd=sigma+quam/(3*mud^(3/2)); 

XQ=sprintf('Rk %9.7f  Rd* %9.7f’,Rk,Rd); disp(XQ); 

%----------------------------------  

Notes: the series expansion of RK is  ..])(1)[/1( 2
3

2
2

2
120

1 ++++≈ XXXRK µ   so the relative error in 

using µ/1≈KR  is less than 20/2
eps .  The error in the series for 

⊗

DR  is comparable.  

 
 

 

Appendix 2  Additional properties 
 

Throughout a,b,c  are merely any three (real, positive) quantities: no ordering is implied or necessary. 

 

Define ))()(( ctbtat +++≡∆     

Then ∫
∞

≡
∆0

),,(
2

1
cbaR

dt
K   and ∫

∞
⊗≡

∆+0

);,(
)(2

1
cbaR

ct

dt
D     (A1) 

 

 Two cubic factors 

 Since 






+
−

+−
=

++ ctbtbcctbt

111

))((

1
  we have   =

+++∫
∞

0
33 )())((2

1

ctbtat

dt
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=














+++
−

+++−
= ∫

∞

dt

ctbtatctbtatbc 0
33

))()((

1

)())((

1

)(2

1
  

[ ]cbaRbcaR
bc

DD ;,();,(
1 ⊗⊗ −
−

=         (A2) 

For a repeated cubic factor, see (A9) below. 

 

Addition theorems 

(I) 






+
+

+
+

+∆
−=









∆ ctbtatdt

d 111

2

11
 

Integrating wrt t :   dt
ctbtat∫

∞∞










+∆
+

+∆
+

+∆
−=

∆ 00 )(

1

)(

1

)(

1

2

11
 

so  );,();,();,(
1

cbaRbacRacbR
cba

DDD
⊗⊗⊗ ++=      (A3)    

(II) A second addition theorem, particularly useful when one of the three parameters is zero (“complete elliptic 

integral”) is found as follows: 








+
+

+
+

+∆
−

∆
=








∆ ct

t

bt

t

at

tt

dt

d

2

11







+

−+
+

+

−+
+

+

−+

∆
−

∆
=

ct

cct

bt

bbt

at

aat )()()(

2

11
 

Integrating:   dt
ct

c

bt

b

at

at

∫
∞∞










+
+

+
+

+
+−

∆
=

∆ 00 )()()(
1

2

1
   and    0

0

=
∆

∞
t

  

so  );,();,();,(),,( cbacRbacbRacbaRcbaR DDDF
⊗⊗⊗ ++=    (A4) 

Thus, if  0=c , we have  

 );,0();0,()0,,( baRbabRabaR DDF
⊗⊗ +=      (A5) 

 

Differentiation 

   dt
at

dt
a ∫∫

∞∞










∆+
−=









∆∂

∂

00 )(

1

2

1

2

11

2

1
   or  );,(

2

1
),,( acbRacbR

a
DF
⊗−=

∂

∂
 

Then 
∆++

−=








∆+∂

∂
=

∂

∂

∫∫
∞∞

⊗

))((2

1

2

1

)(

1

2

1
);,(

00 ctat

dt
dt

cta
cbaR

a
D    

and by (A2)  this is  [ ]);,();,(
)(2

1
cbaRacbR

ac
DD
⊗⊗ −

−
−       (A6) 

Thus     [ ]);,();,(
)(4

1
),,(

2

cbaRacbR
ac

cbaR
ca

DDF
⊗⊗ −

−
+=

∂∂

∂
    (A7)       

For ),,(
2

2

cbaR
a

F
∂

∂
 we need to be more elaborate, for 

∆+
−=

∂

∂

∫
∞

⊗

2
0 )(2

1

2

1
);,(

at

dt
acbR

a
D  
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But  differentiating (A3):     

cbaa

cbaR

a

bacR

a

acbR DDD

3

1

2

1);,();,();,(
−=

∂

∂
+

∂

∂
+

∂

∂ ⊗⊗⊗

       

    so

     











∂

∂
+

∂

∂
+−=

∂

∂ ⊗⊗⊗ );,();,(
2

1
);,(

3
bacR

a
cbaR

abca

acbR
a

DDD      

and all the terms on the RHS are known: 

=
∂

∂ ⊗ );,( acbR
a

D  

 












−−

−
+−

−
= ⊗⊗⊗⊗

bca

bcaRacbR
ab

cbaRacbR
ac

DDDD
3

1
)];,();,([

1
)];,();,([

1

2

1
 (A8)    

Thus, we have inadvertently proved that 

=
+++

≡
+∆ ∫∫

∞

2/5
0

2
))()((2

1

)(2

1

atctbt

dt

at

dt












−−

−
+−

−
−= ⊗⊗⊗⊗

bca

bcaRacbR
ab

cbaRacbR
ac

DDDD
3

1
)];,();,([

1
)];,();,([

1

3

2
 (A9)    
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