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Abstract— A method based on a quantifier elimination al-
gorithm is suggested for obtaining explicit model predictive
control (MPC) laws for linear time invariant systems with
quadratic objective and polytopic constraints. The structure of
the control problem considered allows Weispfenning’s ‘quanti-
fier elimination by virtual substitution’ algorithm to be used.
This is applicable to first order formulas in which quantified
variables appear at most quadratically. It has much better
practical computational complexity than general quantifier
elimination algorithms, such as cylindrical algebraic decompo-
sition. We show how this explicit MPC solution, together with
Weispfenning’s algorithm, can be used to check recursive fea-
sibility of the system, for both nominal and disturbed systems.
Extension to cases beyond linear MPC using Weispfenning’s
algorithm is part of future work.

I. INTRODUCTION

MPC has found widespread success in industrial appli-
cations mainly because of its ability to naturally treat con-
strained optimal multivariate control problems [14]. Standard
implementation of MPC relies on online optimisation to
obtain the optimal sequence of inputs at each time step by
solving an optimal control problem over a finite horizon. In
the usual receding horizon approach, only the first input of
the optimal input sequence obtained is applied to the con-
trolled system. At the following time step, the measurement
of the new current state is obtained and the whole procedure
is repeated.

On the other hand, for conventional linear MPC, an
analytic expression for the (piecewise-affine) optimal control
law can be computed offline via multiparametric program-
ming [13]. This approach, called explicit MPC, is useful for
cases when implementation of MPC via online optimisation
algorithm is not feasible; most of the computation is moved
offline, while online computation gets reduced to a relatively
simple calculation of the optimal input from a lookup table.

The idea of extending explicit MPC solutions to nonlinear
polynomial systems with a polynomial objective and polyno-
mial constraints has been extended in [15] (via Gröbner basis
computation and an eigenvalue method for solving systems
of polynomial equations) and [16] (via cylindrical algebraic
decomposition). While both of these methods are extremely
general, they are limited to problems with a small number of
variables because of the complexity of the offline algebraic
operations that are required.
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In this paper, we limit our attention to linear MPC prob-
lems. In general, Weispfenning’s ‘quantifier elimination by
virtual substitution’ algorithm [4] (which is much more effi-
cient than cylindrical algebraic decomposition) is applicable
as long as MPC optimisation problem can be expressed as an
equivalent quantifier elimination problem where quantified
variables appear at most quadratically. Hence, this method
has potential to be applied to nonlinear MPC problems
and this paper is a first step towards that direction by
examining the linear case first. Additionally, once the explicit
MPC solution is obtained, we show how the same efficient
quantifier elimination algorithm can be used to calculate sets
of recursively feasible states which are highly non-convex.
Hence, this paper contributes towards verification of MPC
laws using quantifier elimination methods.

The remainder of the paper is structured as follows:
Section II discusses quantifier elimination in general and
Weispfenning’s quantifier elimination algorithm by virtual
substitution in particular. Section III presents the sug-
gested method for obtaining explicit MPC solution by using
Weispfenning’s algorithm, together with details of how it
can be used to check recursive feasibility of the system.
Section IV presents several illustrative examples demonstrat-
ing the applicability of the proposed methods; Section V
provides conclusions.

II. QUANTIFIER ELIMINATION ALGORITHMS

Many analysis and synthesis problems in control theory
can be represented by the first order formula

Φ(p1, . . . , pm) ≡ Q1x1 . . . Qnxnϕ(p1, . . . , pm, x1, . . . , xn),
(1)

where Qi ∈ {∀,∃} are either universal or existen-
tial quantifiers and ϕ is a quantifier-free formula con-
structed by conjunction (∧), disjunction (∨) and negation
(¬) of atomic formulas of the form f ρ 0 (where f ∈
R[p1, . . . , pm, x1, . . . , xn] is a polynomial and ρ ∈ {=, 6=, <
,≤} is a relational operator). One of the ways to solve (1)
is to feed Φ as an input formula to a quantifier elimination
algorithm that outputs a quantifier-free formula ϕ′ such that
Φ(p1, . . . , pm) = ϕ′(p1, . . . , pm) ∀ p1, . . . , pm ∈ R.

Tarski discovered the first quantifier elimination algo-
rithm [1] for the first order theory of real numbers. It
exploited Sturm’s theorem which allows one to count the
number of real zeros of a polynomial in a single variable in
some particular interval. Because of its high computational
complexity, this algorithm is mainly of theoretical interest.

In 1975, Collins proposed a much more efficient quantifier
elimination algorithm [2] based on cylindrical algebraic
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decomposition which divides Rn+m into a disjoint set of
regions, in each of which all polynomials from a given set
are either positive, negative or zero. Again, application of
this algorithm is limited to simple problems because of its
complexity which is doubly exponential in the number of
dimensions n+m.

On the other hand, for particular types of input formulas
Φ, there exist quantifier elimination algorithms with much
lower practical complexity. Suppose that quantified vari-
ables x1, . . . , xn appear at most quadratically in ϕ. In this
case, Weispfenning’s virtual substitution algorithm [4] (a
generalisation of the linear quantifier elimination algorithm
represented in [3]), whose complexity is independent of the
number of free variables p1, . . . , pm, is applicable.

This algorithm eliminates quantifiers as follows. Consider
a first order formula ∃xϕ, where ϕ is quantifier-free and con-
structed by conjunction and disjunction of atomic formulas
of the form fi ρi 0, fi = aix

2 + bix + ci, i ∈ I which are
at most quadratic in the quantified variable x, with ai, bi, ci
being polynomials that are independent of x. Denote:

Di = b2i − 4aici,

αi− = (−bi −
√
Di)/(2ai),

αi+ = (−bi +
√
Di)/(2ai).

Let ϕ[e/x] denote a formula that is obtained from ϕ by
substituting e for x. For example, direct substitution of
square-root expressions ei = αi− or ei = αi+ for x in fi
will give expressions of the form:

fi(ei) =
xi + yi

√
Di

zi
. (2)

To eliminate the presence of the radical, (2) is replaced by
an equivalent expression depending on the type of relational
operator ρi in the atomic formula fi ρi 0 as follows:

fi[ei/x] = 0 ≡(xiyi ≤ 0) ∧ (x2i − y2iDi = 0),

fi[ei/x] 6= 0 ≡(xiyi > 0) ∨ (x2i − y2iDi 6= 0),

fi[ei/x] ≤ 0 ≡(xizi ≤ 0) ∧ (x2i − y2iDi ≥ 0)∨
(yizi ≤ 0) ∧ (x2i − y2iDi ≤ 0),

fi[ei/x] < 0 ≡(xizi < 0) ∧ (x2i − y2iDi > 0)∨
(yizi ≤ 0) ∧ (xizi < 0 ∨ x2i − y2iDi < 0).

Finally, let I1, I2, I3, I4 be the set of indices i ∈ I such that
ρi is =,≤, <, 6=, respectively. Then ∃xϕ is equivalent to the
following quantifier-free formula∨

i∈I1∪I2

((ai = 0 ∧ bi 6= 0 ∧ ϕ[−cib−1i /x])∨

(ai 6= 0 ∧Di ≥ 0 ∧ (ϕ[αi−/x]) ∨ ϕ[αi+/x]))∨∨
i∈I3∪I4

((ai = 0 ∧ bi 6= 0 ∧ ϕ[(−cib−1i + ε)/x])∨ (3)

(ai 6= 0 ∧Di ≥ 0 ∧ (ϕ[(αi− + ε)/x])∨
ϕ[(αi+ + ε)/x])) ∨ ϕ[−∞/x],

where ε denotes a positive infinitesimal. Expressions involv-
ing infinitesimals ε in (3) are replaced by equivalent ones

not containing them according to the following set of rules:

fi[(e+ ε)/x] = 0 ≡(ai = 0) ∧ (bi = 0) ∧ (ci = 0),

fi[(e+ ε)/x] 6= 0 ≡(ai 6= 0) ∨ (bi 6= 0) ∨ (ci 6= 0),

fi[(e+ ε)/x] ≤ 0 ≡fi[(e+ ε)/x] = 0 ∨ fi[(e+ ε)/x] < 0,

fi[(e+ ε)/x] < 0 ≡fi[e/x] < 0 ∨ fi[e/x] = 0∧(
dfi
dx

[e/x] < 0 ∨ dfi
dx

[e/x] = 0 ∧ ai < 0

)
.

Similarly, expressions containing infinity in (3) are replaced
by the following ones:

fi[−∞/x] = 0 ≡(ai = 0) ∧ (bi = 0) ∧ (ci = 0),

fi[−∞/x] 6= 0 ≡(ai 6= 0) ∨ (bi 6= 0) ∨ (ci 6= 0),

fi[−∞/x] ≤ 0 ≡fi[−∞/x] = 0 ∨ fi[−∞/x] < 0,

fi[−∞/x] < 0 ≡
2∨

n=0

(
(−1)nFn < 0 ∧

2∧
m=n+1

Fm = 0

)
,

where F0 = ci, F1 = bi, F2 = ai.

Even if all quantified variables appear at most quadratically
in (1), Weispfenning’s virtual substitution algorithm will not
necessarily be able to iteratively eliminate all quantifiers,
since eliminating one quantified variable by the procedure
above may increase the degree of the remaining ones. On
the other hand, full quantifier elimination by this algorithm
is guaranteed if all quantified variables appear linearly except
one, which appears quadratically and whose quantifier (either
∃ or ∀) is outermost or second to outermost in the prefix
Q1x1 . . . Qnxn in (1). As will be shown in Section III, many
MPC problems (starting with a linear one) can be reduced
to this type of first order formula.

Moreover, the virtual term substitution algorithm has been
extended to formulas in which a single quantified variable
appears at most cubically [5]. In principle, this algorithm
can be extended to formulas in which the quantified variable
appears with an unbounded degree, by exploiting Thom’s
Lemma for representation of real roots — for the state of
the art, see [6], [7].

Weispfenning’s virtual substitution algorithm has been
implemented in tools like SyNRAC [8], which is a toolbox in
Maple for solving real algebraic constraints, Mathematica [9]
and Reduce/Redlog [10]. We will use the implementation in
Mathematica for the computational examples in Section IV.

III. PROBLEM DESCRIPTION

A. General MPC problem formulation

Consider a discrete-time linear time invariant system

x(k + 1) = Ax(k) +Bu(k) (4)

where x ∈ Rn is the state and u ∈ Rm is the input. Suppose
we want to regulate (4) to the origin in such a way that
polytopic constraints

Ψ(k) ≡ E(k)x(k) + F (k)u(k) ≤ b(k) (5)

are satisfied at all time steps k = 0, 1, . . .. Assuming mea-
surement of the current state x(0) is available, MPC solves



this regulation problem by solving the following optimisation
problem

min
u(0),...,u(N−1)

N−1∑
i=0

(
x(i)TQx(i) + u(i)TRu(i)

)
+ x(N)TPx(N)

(6)
s.t. Ψ(i), i = 0, . . . , N − 1, E(N)x(N) ≤ b(N)

at each time step where x(i) = Aix(0) +
i−1∑
j=0

Ai−1−jBuj is

the predicted state at time step i obtained given the current
state x(0) and the input sequence {u(0), u(1), . . . , u(N −
1)}, N is the control horizon and Q, R and P are state,
input and terminal costs, respectively, with Q = QT ≥ 0,
R = RT > 0, P ≥ 0. (Here, > and ≥ denote that the matrix
is positive-definite and positive-semidefinite, respectively.)

Online implementation of MPC obtains the optimal input
sequence {u∗(0), u∗(1), . . . , u∗(N − 1)} at each time step
by solving (6), then applies u∗(0) to the system (4), and then
repeats the whole process with the new current state.

On the other hand, an analytic expression of the optimal
input u∗(0) can be obtained offline as a piecewise-affine
function of the state:

u∗i (0) = Kix(0) +Gi if Hix(0) ≤ ki, i = 1, . . . ,M (7)

via multiparametric programming, which treats the current
state x(0) as a parameter [13]. Then online computation of
the control law is reduced to the relatively simple computa-
tion of (7) depending on the value of the current state x(0).
Such an approach is referred to as ‘explicit MPC’.

In Section III-B, we suggest an alternative method for
obtaining the optimal explicit MPC control law by using
quantifier elimination, and, in particular, Weispfenning’s vir-
tual substitution algorithm.

B. Explicit MPC solution via quantifier elimination
Let L(i) = x(i)TQx(i)+u(i)TRu(i) denote the i’th stage

cost in the objective function in (6). Then, in a dynamic
programming fashion, the single optimisation problem (6) in
Nm variables {u(0), . . . , u(N − 1)} can be expressed as N
optimisation problems in m variables:

J(x(N − 1)) = min
u(N−1)

h(u(N − 1), x(N − 1)) =

min
u(N−1)

L(N − 1) + x(N)TPx(N)

s.t. C(N − 1) ≡ {x(N) = Ax(N − 1) + Bu(N − 1)∧
Ψ(N − 1) ∧ E(N)x(N) ≤ b(N)}

J(x(N − 2)) = min
u(N−2)

h(u(N − 2), x(N − 2)) =

min
u(N−2)

L(N − 2) + J(x(N − 1))

s.t. C(N − 2) ≡ {x(N − 1) = Ax(N − 2) + Bu(N − 2)∧
Ψ(N − 2)}

. . .

J(x(0)) = min
u(0)

h(u(0), x(0)) =

min
u(0)

L(0) + J(x(1))

s.t. C(0) ≡ {x(1) = Ax(0) + Bu(0) ∧Ψ(0)}

Each of these N optimisation problems can be expressed as
a quantifier elimination problem

∃u(i) (z ≥ h(u(i), x(i)) ∧ C(i)) , i = 0, . . . , N − 1 (8)

where z represents a slack variable which will be used
to obtain the optimal value function J(x(i)). Applying
Weispfenning’s algorithm to (8) produces an equivalent
quantifier-free formula with no u(i) dependence⋃

j=1,...,ni

(x(i) ∈ Oj(i) ∧ z ≥ pj(x(i))) (9)

with pj(x(i)) a quadratic function of x(i) and ni overlapping
regions Oj(i) whose union is the set of feasible states:

O1(i)∪ . . .∪Oni(i) ≡ {x(i) : ∃u(i) such that C(i)}. (10)

Since regions Oj(i), j ∈ 1, . . . , ni overlap with each other, to
obtain J(x(i)), we have to find the smallest pj(x(i)) in each
intersection of those regions. Therefore, region O1(i)∪ . . .∪
Oni

(i) is split into disjoint regions D1(i), . . . , Dmi
(i) such

that Dl(i) ∩Dm(i) = ∅ ∀l,m ∈ 1, . . . ,mi according to the
way overlapping regions intersect each other. (For illustration
of this step, see the first example in Section IV together with
Fig. 1 (a) and Fig. 1 (b).) Then for all Dl(i), l ∈ 1, . . . ,mi,
pick a point x ∈ Dl(i) and evaluate all quadratic functions
pj(x(i)) corresponding to the regions Om(i),m ∈ 1, . . . , ni

satisfying Om(i) ∩ Dl(i) 6= ∅ at x(i) = x. The quadratic
function p∗j (x(i)) with the smallest value pj(x) represents
the actual optimal value function in the region Dl(i), i.e.
p∗j (x(i)) ≡ J(x(i)) ∀x(i) ∈ Dl(i). Finally, after connecting
neighbouring regions with the same optimal value function,
J(x(i)) is obtained (see Fig. 1 (c) for an illustration).

Hence, the procedure to obtain the optimal explicit MPC
control law u∗0(x) via quantifier elimination goes as follows.
First, apply the quantifier elimination algorithm to the first
order formula (8) with i = N − 1, then obtain J(x(N − 1))
via steps described in the previous paragraph. Next apply the
quantifier elimination algorithm to (8) with i = N − 2, with
the J(x(N−1)) expression just obtained substituted into the
formula. Repeat until the expression for J(x0) is obtained.
Then the optimal input u∗(0) is the solution of the system:

h(x(0), u(0)) = 0, (11)
J(x(0)) = 0.

Although only u∗(0) is applied to the system (4), notice that
we could have obtained optimal u∗(1), . . . , u∗(N − 1), by
solving systems analogous to (11).

Suppose that the obtained optimal explicit control law u∗0
is composed of M affine control laws in disjoint polytopic
regions of the state space, and denote it as:

u∗0 =
⋃

i=1,...,M

(u = Kix+ bi ∧Hix ≤ ki) . (12)

In the following section, we will show how quantifier elimi-
nation, together with (12), can be used to analyse feasibility
of the optimisation problem (6).



C. Checking feasibility via quantifier elimination

Let F0 be the set of initial states x(0) for which the
optimisation problem (6) is feasible (i.e., has a solution).
Hence, F0 can be expressed as

F0 ≡ ∃u(0)∃u(1) . . .∃u(N−1)

N−1∧
i=0

Ψ(i)∧(E(N)x(N) ≤ b(N))

(13)
and therefore can be calculated by substituting expressions

for predicted states x(i) = Aix(0) +
i−1∑
j=0

Ai−1−jBuj , i =

1, . . . , N − 1 and consequently eliminating quantifiers with
Weispfenning’s algorithm. Additionally, let the set I0 ≡
Rn \ F0 denote initial states x(0) for which optimisation
problem (6) is not feasible.

Similarly, let F1 be the set of states x for which (6)
remains feasible after a single control update. Then

F1 ≡ ∃u (u∗0 ∧ x ∈ F0 ∧Ax+Bu ∈ F0) (14)

which, again, can be calculated via quantifier elimination.
Analogously, let I1 be the set of states x for which (6) loses
feasibility after a single time step:

I1 ≡ ∃u (u∗0 ∧ x ∈ F0 ∧Ax+Bu /∈ F0) . (15)

If I1 = ∅, the control scheme is said to be recursively
feasible (i.e., for all initially feasible states x(0) and for all
optimal input sequences, (6) remains feasible for all time
steps k).

In general, let Fk, k = 1, 2, . . . denote sets of states
for which the optimisation problem (6) remains feasible
for at least k + 1 time steps, and Ik, k = 1, 2, . . . sets
of states for which (6) loses feasibility after k time steps.
Then the sequence of sets Fk can be computed by applying
Weispfenning’s quantifier elimination algorithm to

Fk ≡ ∃u (u∗0 ∧ x ∈ Fk−1 ∧Ax+Bu ∈ Fk−1) , k = 1, 2, . . .
(16)

while Ik = F0 ∩ (F0 \ Fk).
Now suppose that an additive disturbance d(k) ∈ D acts

on the system (4), i.e.

x(k + 1) = Ax(k) +Bu(k) + d(k). (17)

Then the set of states I1 that lose feasibility after a single
time step can be found by eliminating quantifiers from the
formula:

∃u∃d (u∗0 ∧ d ∈ D ∧ x ∈ F0 ∧Ax+Bu+ d /∈ F0) . (18)

IV. COMPUTATIONAL EXAMPLES

In this section, we apply the quantifier elimination ap-
proach to solve several MPC problems taken from [11]. All
quantifier elimination computations were performed using
Mathematica [9].
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Fig. 1: Steps in obtaining explicit MPC solution.

A. Explicit MPC solution

Consider a linear time-invariant discrete-time system with

A =

[
3
4 − 1299

1000
1299
1000

3
4

]
, B =

[
−1
1

]
and MPC controller

designed using N = 1, Q = I , R = 1, together with the
constraints −1 ≤ x1 ≤ 1, −1 ≤ u0 ≤ 1, uo ≤ 1

5 + [1, 1]x1
(as taken from the Example 2.3 in [11]).

After performing quantifier elimination to find the optimal
cost function z, as described in Section III, we obtain
eight overlapping regions O1(0), . . . , O8(0), as shown in
Fig. 1 (a). Then we split those overlapping regions into 18
disjoint regions D1(0), . . . , D18(0), as depicted in Fig. 1 (b).
Finally, after picking the smallest cost function z in each of
those regions, solving for the optimal input u∗0 and merging
the regions Di(0), i = 1, . . . , 18 with the same solution, we
obtain the explicit MPC control law

u
∗
0(x) =



−1 if

 0.8660 0.5000

−0.5000 0.8660

−0.2588 −0.9659

 x ≤

 1.3334

1.3334

−1.4142

 ,

(region #1)

[−1.299 − 0.750]x + 1 if

 0.8660 0.5000

0.9659 −0.2588

−0.9982 −0.0599

 x ≤

 1.3334

0.9428

−0.8944

 ,

(region #2)

[0.750 − 1.299]x − 1 if

−0.8345 0.5510

0.9659 −0.2588

0.5000 −0.8660

 x ≤

−0.8944

0.9428

1.3334

 ,

(region #3)

[2.049 − 0.549]x + 0.2 if



0.8660 0.5000

−0.9982 −0.0599

0.9659 −0.2588

−0.9659 0.2588

−0.8660 −0.5000

0.9982 0.0599


x ≤



0.5333

0.3578

0.3771

0.5657

0.8000

−0.0894


,

(region #4)

[0.750 − 1.299]x + 1 if

−0.5000 0.8660

−0.8660 −0.5000

0.8345 −0.5510

 x ≤

 1.3334

−0.5333

−0.8944

 ,

(region #5)

1 if

−0.9659 0.2588

0.5000 −0.8660

0.2588 0.9659

 x ≤

−0.3771

1.3334

−1.4142

 ,

(region #6)

[−0.183 − 0.683]x if



0.9982 0.0599

−0.8345 0.5510

−0.2588 −0.9659

0.2588 0.9659

−0.9982 −0.0599

0.8345 −0.5510


x ≤



0.8944

0.8944

1.4142

1.4142

0.0894

0.8944


(region #7)

(19)

whose state-space partition is illustrated in Fig. 1 (c). As
expected, this result matches the one obtained using the
Multi-Parametric Toolbox [12].

B. Recursive feasibility — nominal case

Is controller (19) recursively feasible? By eliminating
quantifiers from the first order formula (15), we find that
I1 6= ∅, as can be seen in Fig. 2 (b). Hence, recursive
feasibility is violated. Moreover, by repeated application of
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Fig. 2: Sets of states Ii which lose feasibility after i steps.

quantifier elimination, we are able to calculate sets of states
Ii which lose feasibility after i steps (see Fig. 2).

C. Recursive feasibility — disturbed case

Consider a nominal system x(k + 1) = Ax(k) + Bu(k)

with A =

[
9
20 − 3897

5000
3897
5000

9
20

]
, B =

[
−1
1

]
, MPC controller

designed for this system using prediction horizon N = 3,
weights Q = I , R = 1, together with constraints −1 ≤
xi+1 ≤ 1, −1 ≤ ui ≤ 1, i = 0, 1, 2 (taken from Example
5.2 in [11]).

Optimal explicit MPC solution is obtained for this system
via the procedure described in Section III. Similarly, by quan-
tifier elimination, we find that this controller is recursively
feasible.

Now suppose that a disturbance d(k) ∈ D acts on the
system:

x(k + 1) = Ax(k) +Bu(k) + d(k). (20)

Let:

D =

{[
d1
d2

]
∈ R2 : −k1 ≤ d1 ≤ k1,−k1 ≤ d2 ≤ k1, k1 ≥ 0

}
. (21)

For a given value of k1, which states lose feasibility after
a single time step? By posing this question as a quantifier
elimination problem in the form (18), and then solving it
with an elimination algorithm, we are able to find sets
of states I1 of interest, as depicted in Fig. 3. Hence, we
see that with k1 = 1/4, I1 = ∅, and the system is
recursively feasible for all allowable disturbances. Moreover,
by keeping k1 as a variable in (18) (rather than assigning a
particular numerical value beforehand), and then applying
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Fig. 3: Sets of states I1 losing feasibility after a single time
step.

Weispfenning’s algorithm, we obtain the dependence of the
set I1 on the magnitude of the disturbance k1, as depicted
in Fig. 4 (a). As the magnitude of the disturbance k1 gets
larger, more and more states lose feasibility after a single
time step, which is to be expected.

Now consider a state-dependant disturbance:

D =

{[
d1
d2

]
∈ R2 : d21 + d22 ≤ k2(x21 + x22)

}
. (22)

Despite the fact that two quantified variables (d1 and d2)
appear quadratically in (18), Weispfenning’s algorithm is
capable of eliminating both of them and hence producing the
dependence of the set I1 on the parameter k2, as illustrated
in Fig. 4 (b).

V. CONCLUSIONS

A method based on quantifier elimination, as an alter-
native to multiparametric programming, has been proposed
for obtaining explicit MPC solutions. Moreover, a way to
analyse recursive feasibility via quantifier elimination, by
taking advantage of the obtained explicit control law, has
been suggested. In particular, repeated computation of sets
Fk and Ik, in both nominal and disturbed cases, illustrates
the capability of quantifier elimination methods to produce
analytic expressions of highly non-convex semialgebraic sets.
In this paper, we limited our attention to a particular (but
common) type of linear MPC problem in order to test the the
feasibility of applying Weispfenning’s quantifier elimination
algorithm which, in practice, has much better computational



(a) 0 ≤ k1 ≤ 1 (b) 0 ≤ k2 ≤ 1

Fig. 4: Dependence of the set I1 on the uncertainty parameter
ki, i = 1, 2.

complexity than general quantifier elimination algorithms.
The examples in section IV were computed in fractions of
a second (examples A and B) or of the order of 1 second
(example C), whereas attempts to use cylindrical algebraic
decomposition (using Mathematica) were abandoned after
about a day, with relentless use of memory.

In general, Weispfenning’s algorithm is applicable as long
as the MPC problem can be expressed as an equivalent
quantifier elimination problem with a particular quantifica-
tion structure (i.e., all quantified variables appear linearly
except one, which appears quadratically and whose quantifier
is outermost or second to outermost in the prefix). Hence,
extension to cases beyond linear MPC using Weispfenning’s
algorithm is part of further work.
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