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Abstract— We present a model predictive control based
tracking problem for nonlinear systems based on global
optimization. Specifically, we introduce a ‘Bernstein global
optimization’ procedure and demonstrate its applicability to
the aforementioned control problem. This Bernstein global
optimization procedure is applied to predictive control of a
nonlinear CSTR system. Its strength and benefits are compared
with those of a sub-optimal procedure, as implemented in
MATLAB using fmincon function, and two well established
global optimization procedures, BARON and BMIBNB.

I. INTRODUCTION

Model predictive control (MPC), also known as moving
horizon control or receding horizon control, is an advanced
control scheme for multivariable control systems. Typically,
MPC derives a control signal by optimizing a pre-defined
performance criterion repeatedly over a finite-time moving
horizon within system constraints, and based on a dynamic
model of the system to be controlled [1], [2]. MPC has been
applied predominantly in the process industries, especially
refining and petrochemicals [3]. An excellent survey of
industrial applications of MPC can be found in [4], and
references therein.

In practice, the majority of MPC applications employ
linear models derived from system identification proce-
dures, combined with linear inequality constraints. The MPC
scheme in such instances is also known as ‘linear MPC’.
Linear MPC is widely preferred, due to its simplicity and
the applicability of convex optimization algorithms (see [5]
for instance). However, some processes may have either
semi-batch characteristics, a large operating regime, or other
source of significantly nonlinear behaviour. Approaches such
as gain scheduling and switching between multiple linear
models based on the operating region are possible approaches
for such processes. On the other hand, use of a nonlinear
process model may come with attractive benefits, such as
higher product quality, tighter regulation of process param-
eters, and the possibility of operating the process (with a
good control authority) in different operating regimes. Hence,

§Bhagyesh V. Patil is with Cambrdige Centre for Advanced Research
in Energy Efficiency in Singapore (CARES), 50 Nanyang Ave, Singapore.
bhagyesh.patil@gmail.com

†Jan Maciejowski is with Department of Engineering, University of Cam-
bridge, Cambridge CB2 1PZ, United Kingdom. jmm@eng.cam.ac.uk

‡K. V. Ling is with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, 50 Nanyang Ave, Singapore.
ekvling@ntu.edu.sg

This work was supported by the Singapore National Research Foundation
(NRF) under its Campus for Research Excellence and Technological Enter-
prise (CREATE) programme, and Cambridge Centre for Advanced Research
in Energy Efficiency in Singapore (CARES).

model predictive control using nonlinear process models,
usually called ‘nonlinear MPC’ ( or NMPC), has attracted
many researchers over the past decade [6], [7], [8].

An NMPC formulation requires the solution of a (usu-
ally nonconvex) nonlinear optimization problem at each
sampling instant. As such, NMPC is a challenging field,
and is dependent on good global optimization procedures.
Motivated by this, in the present work we introduce one
such global optimization procedure for NMPC applications.
This procedure is based on the well-known Bernstein form of
polynomials [9], and uses several nice properties associated
with this Bernstein form. Optimization procedures based on
this Bernstein form, also called Bernstein global optimization
algorithms, have shown good promise to solve hard non-
convex NLP and MINLP problems (see, for instance, [10],
[11], [12]). They are therefore very promising for NMPC
applications.

In this work, we present one such Bernstein global
optimization algorithm to solve a nonlinear optimization
problem at each NMPC iteration. Specifically, we use the
nonlinear system model for the predictions, followed by
the formulation of a nonlinear programming (NLP) problem
based on these predictions. Then, the Bernstein global opti-
mization algorithm is used as a tool to solve this nonlinear
optimization problem in terms of the control inputs (u’s) as
decision variables. The overall approach is demonstrated on
a simulation study for predictive control of a nonlinear CSTR
system, and the findings are compared with those of a sub-
optimal procedure implemented in MATLAB using fmincon
function, and two well established global optimization pro-
cedures, BARON and BMIBNB.

The rest of the paper is organized as follows. In Section
II, we introduce a nonlinear MPC formulation. In Section
III, we briefly describe the Bernstein form, followed by the
presentation of the Bernstein global optimization algorithm.
In Section IV, we report the simulation studies on a nonlinear
CSTR system with the Bernstein global optimization algo-
rithm and compare with MATLAB fmincon function, global
optimization procedures, BARON and BMIBNB. Finally, in
Section V, we present some concluding remarks.

II. PROBLEM FORMULATION FOR NMPC

We consider a class of continuous-time systems described
by the following nonlinear model

ẋ = f (x,u), x(0) = x0 (1)
y = g(x,u) (2)
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where x ∈ Rn and u ∈ Rm denote the vectors of states and
control inputs, respectively; y ∈ Rp is the controlled output.
The state of the system and the control input applied at
sampling instant k are denoted by x(k) and u(k), respectively.
The system is subject to the state and input constraints of
the following form:

x(k) ∈ X, ∀ k ≥ 0 (3)
u(k) ∈ U, ∀ k ≥ 0 (4)

where X⊆ Rn and U⊆ Rm. In simplest form, X and U are
given by bound constraints of the form:

X := {x ∈ Rn | xmin ≤ x≤ xmax} .
U := {u ∈ Rm | umin ≤ u≤ umax} .

In the present work, we consider the design of an NMPC
controller for (1) to track a desired reference xs, while
fulfilling constraints of the form (3)-(4). Further, dropping
the index k for simplicity, the general form of NMPC control
law can be derived at each sampling instant k by the solution
of the following NLP problem.

min
ui

N−1

∑
i=0

(
‖ xi− xi,s ‖2

Q + ‖ ∆ui ‖2
R
)

(5)

subject to (1), (3), and (4) for i = 0,1, . . . ,N−1

where xi,s denotes the set-point (reference) at instant i;
Q ∈Rn×n and R ∈Rm×m denote positive definite, symmetric
weighting matrices; ∆ui = ui − ui−1 denotes the control
increment, N(≥ 1) denotes the prediction horizon.

At the outset, the nonlinear model (1) is used for predic-
tions based on the initial state x0. The predicted control input
profile is denoted by ui, i = 0,2, . . . ,N− 1 Then, assuming
that the optimization problem has a feasible solution, an
optimizer (in this work, we use Bernstein global optimization
algorithm) computes an optimal control sequence based on
the NMPC optimization problem formulated in (5), defined
as 

u∗0
u∗1
...

u∗N−1

 . (6)

Only the first step of this optimal control sequence, u∗0 is
applied to the system (1) to obtain a new updated state.
Then the whole process is repeated, with x0 obtained from
the latest measurements, until the state is steered to its
desired reference.

Remark 1: The cost function in the optimization problem
(5) depends nonlinearly on the state and input variables.
Hence, the optimization problem turns out to be a NLP.
We note that, in some instances, such as a nonlinear CSTR
(see Section IV, Equations (12)-(13)), the nonlinearity
appears only in terms of the state variables. Hence, the
optimization problem turns out to be a polynomial NLP
(that is, (5) comes out to be polynomial in terms of the
decision variables ui). In the present work, we limit ourself
to such NMPC problems involving only polynomial NLPs.

III. BERNSTEIN GLOBAL OPTIMIZATION ALGORITHM

This section briefly presents some notions about the Bern-
stein form. Due to space limitation, a simple univariate
Bernstein form is introduced. A comprehensive background
and mathematical treatment for a multivariate case can be
found in [12].

We can write a univariate l-degree polynomial p over an
interval x in the form

p(x) =
l

∑
i=0

aixi, ai ∈ R . (7)

Now the polynomial p can be expanded into the Bernstein
polynomials of the same degree as below [9]

p(x) =
l

∑
i=0

bi (x)Bl
i (x) (8)

where Bl
i(x) are the Bernstein basis polynomials and bi(x)

are the Bernstein coefficients give as below

Bl
i(x) =

(
l
i

)
xi(1− x)1−i . (9)

bi (x) =
i

∑
j=0

(
i
j

)
(

l
j

)a j, i = 0, . . . , l. (10)

Equation (8) is referred as the Bernstein form of a polyno-
mial and obeys the following property:

Theorem 1: (Range enclosure property) Let p be a poly-
nomial of degree l, and let p(x) denote the range of p on a
given interval x. Then,

p(x)⊆ B(x) := [min (bi(x)) , max (bi(x))] . (11)
Proof: See [13].

Remark 2: The above theorem says that the minimum and
maximum coefficients of bi(x) provide lower and upper
bounds for the range of p. This forms the Bernstein range
enclosure, defined by B(x) in equation (11). Figure 1 shows
for a univariate polynomial p, its Bernstein coefficients
(b0,b1, . . . ,b5). The minimum (b0,b4) and maximum (b1)
Bernstein coefficients encloses the range of p. Further, this
Bernstein range enclosure can successively be sharpened
by the continuous domain subdivision procedure. Figure 2
illustrates this fact.

We now present the global optimization algorithm based
on the above Bernstein form. This algorithm uses the
Bernstein range enclosing property, followed by a domain
subdivision, to correctly locate the global solution (global
minimum and global minimizers) for a given NLP problem.

Algorithm Bernstein: [ỹ, p̃,U ]=BBBC(N,aI ,x,εp,εx,εzero)

Inputs: Degree N of the variables occurring in the
objective and constraint polynomials, the coefficients aI of
the objective and constraint polynomials in the power form,
the initial search domain x, the tolerance parameters εp and



Fig. 1. The polynomial p over x = [0,1] and its Bernstein coefficients
(b0,b1, . . . ,b5) illustrating the range enclosing property for p.

Fig. 2. Improvement in the range enclosure of p with a sub-
division of an original interval x. (b10,b11,b12,b13,b14,b15), and
(b20,b21,b22,b23,b24,b25) are the Bernstein coefficients over x1 = [0,0.5]
and x2 = [0.5,1], respectively.

εx on the global minimum and global minimizer(s), and the
tolerance parameter εzero to which the equality constraints
are to be satisfied.

Outputs: A lower bound ỹ and an upper bound p̃ on
the global minimum f ∗, along with a set U containing all
the global minimizer(s) x(i).

BEGIN Algorithm
1) Set y := x.
2) From aI , compute the Bernstein coefficient arrays

of the objective and constraint polynomials on the
box y respectively as (bo(y)) ,(bgi(y)) ,

(
bh j(y)

)
, i =

1,2, ...,m, j = 1,2, ...,n.
3) Set p̃ := ∞ and y := min(bo(y)).
4) Initialize list L := {(y,y)}, Lsol := {}.
5) If L is empty then go to step 13. Otherwise, pick the

first item (y,y) from L, and delete its entry from L.
6) Choose a coordinate direction λ parallel to which y1×
·· ·× yl has an edge of maximum length, that is λ ∈
{i : w(y) := w(yi), i = 1,2, . . . , l}.

7) Bisect y normal to direction λ , getting boxes v1, v2
such that y = v1∪v2.

8) for k = 1,2

(a) Find the Bernstein coefficient array and the corre-
sponding Bernstein range enclosure of the objec-
tive function ( f ) over vk as (b0(vk)) and B0(vk),
respectively.

(b) Set dk := minBo(vk).
(c) If p̃ < dk then go to substep (h).
(d) for i = 1,2, . . . ,m

(i) Find the Bernstein coefficient array and the
corresponding Bernstein range enclosure of the
inequality constraint polynomial (gi) over vk as
(bgi(vk)) and Bgi(vk), respectively.

(ii) If Bgi(vk)> 0 then go to substep (h).
(iii) If Bgi(vk)≤ 0 then go to substep (e)

(e) for j = 1,2, . . . ,n

(i) Find the Bernstein coefficient array and the
corresponding Bernstein range enclosure of the
equality constraint polynomial (h j) over vk as
(bh j(vk)) and Bh j(vk), respectively.

(ii) If 0 /∈ Bh j(vk) then go to substep (h).
(iii) If Bh j(vk)⊆ [−εzero,εzero] then go to substep (f)

(f) Set p̃ := min(p̃,maxBo(vk)).
(g) Enter (vk,dk) into the list L such that the second

members of all items of the list do not decrease.
(h) end (of k−loop).

9) {Cut-off test} Discard all items (z,z) in the list L that
satisfy p̃ < z.

10) Denote the first item of the list L by (y,y).
11) If (w(y) < εx) & (maxBo(y)−minBo(y)) < εp then

remove the item from the list L and enter it into the
solution list Lsol .

12) Go to step 6.
13) {Compute the global minimum} Set the global mini-

mum ỹ to the minimum of the second entries over all
the items in Lsol .

14) {Compute the global minimizers} Find all those items
in Lsol for which the second entries are equal to ỹ.
The first entries of these items contain the global
minimizer(s) x(i).

15) Return the lower bound ỹ and upper bound p̃ on the
global minimum f ∗, along with the set U containing
all the global minimizer(s) x(i).

END Algorithm

IV. SIMULATION STUDY

In this section, we study the application of a global opti-
mization procedure based on the Bernstein algorithm BBBC,
a sub-optimal procedure based on the MATLAB fmin-
con function, and two well established global optimization
solvers, BARON [14] and YALMIP based branch-and-bound
BMIBNB [15] procedure to the highly nonlinear model of a
CSTR system adapted from [16]. Following assumptions in
[16] of constant liquid volume for an exothermic irreversible
reaction, A → B, the CSTR system is described by the



following model.

ĊA =
q
V

(
CA f −CA

)
− koe(

−E
RT )CA (12)

Ṫ =
q
V

(
Tf −T

)
− ∆H

ρCp
koe(

−E
RT )CA +

UA
V ρCp

(Tc−T ) (13)

where CA is the concentration of A in the reactor, T is the
reactor temperature and Tc is the temperature of the coolant
stream. The other parameters corresponding to the nominal
operating point conditions are reported in Table I.

The objective is to regulate the states x1 =CA and x2 = T
by manipulating u = Tc with the state and input constraints
of the following form:

x =

{[
CA
T

]
∈ R2 | 0≤CA ≤ 1, 280≤ T ≤ 370

}
.

u = {Tc ∈ R | 280≤ Tc ≤ 370} .

We consider an NMPC scheme for set-point tracking
control problem, which involves multiple set-point changes
for y = x2 = T . The nonlinear model in (12)-(13) is used as a
system model for the simulation, and the NMPC control law
is derived by solving an NLP of the form (5). The solution
for the updated states is computed based on the set of given
initial conditions and first optimal control move derived by
a NMPC control law. We adopted the following parameters
values for the simulation:
• sampling time of 0.5 seconds
• prediction horizon, N = 3
• Q = diag(1 0.01)T and R = 0.01 as weighting matrices
• initial conditions, x0 = [0.2 370]T and u0 = 300
• tolerances, εp = εx = 0.001 in the algorithm BBBC on

the global minimum and minimizers
Similarly, for the sub-optimal procedure using fmincon, we
choose sequential quadratic programming (SQP) algorithm
for the simulation studies.

Figure 3 shows the evolution of the states. Specifically,
we compare the results for NMPC of a CSTR system based
on the Bernstein algorithm BBBC and on the sub-optimal
procedure using fmincon. We observed a smooth transition
of the both states under multiple set-point changes based on
the algorithm BBBC. On the other hand, with the sub-optimal
fmincon procedure, significant undershoot and overshoot are
observed, although the settling time remains almost the same
in both cases. Figure 4 shows the control performance of
the two approaches. It is apparent that except at the first
few samples (≈ 0−20), algorithm BBBC computes smooth
control moves compared to the sub-optimal fmincon based
procedure. In Figure 5, we show the computation time taken
to compute the control move at each sampling instant by
algorithm BBBC and sub-optimal procedure fmincon. In this
case too, algorithm BBBC proved superior with an average
reduction of 30 % in the computation time. It may be noted
that in practice Bernstein algorithm BBBC performs rigorous
global search to determine all global solutions. However, to
keep the simulation feasible from a practical point of view,
we only located one global solution.

Figure 6 plots the cost function values for the NLP
problem in (5) obtained with both optimization procedures
at each sampling instant. We observed nearly identical cost
function values at each sampling instant using both opti-
mization procedures. However, we note that at each set-
point change (introduced at samples 0, 50, 100, 150, and
200), algorithm BBBC returned lower cost function values
compared to fmincon. This is probably associated with the
smoother transitions that were obtained using BBBC, and
which are visible in Figure 3.

To assess the consistency of the benefits obtained from
using algorithm BBBC instead of fmincon, we studied one
more realistic scenario; set-point tracking problem under a
constant input disturbance. Figure 8 shows the result for this
constant disturbance handling case. Typically, we consider
the CSTR to be operating at steady-state value of T = 310
K. Then at 50th sample a step change is applied requiring the
CSTR to operate at 330 K. Further, we assume that a constant
input disturbance of 5 K is acting on the system. In this case
too, we observed the algorithm BBBC tracks smoothly the
given set-point. On the other hand, fmincon resulted in a
small constant off-set from the desired set-point value.

Further, we choose to compare the Bernstein algorithm
BBBC with the two other well-established global optimiza-
tion solvers, namely, BARON and BMIBNB. The time re-
quired to compute the optimal solution (global minimum for
NLPs in the NMPC scheme) is considered as a performance
metric and is compared in the Figure 7. We observed the
average computation time as 0.12, 0.13, and 0.05 for the
algorithm BBBC, BMIBNB and BARON, respectively. Al-
gorithm BBBC was found to be faster compared to BMIBNB
(which on an average took 8 % more computational time).
Similarly, we noted algorithm BBBC to be much slower than
BARON (which on an average took 55 % less computational
time).

V. CONCLUDING REMARKS

In this paper, a global optimization procedure based on
the Bernstein form was presented to solve the nonlinear
optimization problems encountered in model predictive con-
trol of nonlinear systems. The main aim of the work was
to demonstrate the benefits achieved with the Bernstein
global optimization approach compared to the sub-optimal
procedures, such as MATLAB’s fmincon function and global
optimization procedures, such as BARON and BMIBNB in
the context of NMPC. The presented Bernstein algorithm
showed good promise in simulations of a CSTR system for
the multiple set-point tracking control problem as well as for
the disturbance handling problem. Similarly, the Bernstein
algorithm was also found to be well competent with global
optimization procedures such as BARON and BMIBNB.
Questions such as the sustainability and scalability of Bern-
stein global optimization algorithms for large-scale nonlinear
systems remain to be explored, but we believe that they are
very promising contenders for use in NMPC problems.



REFERENCES

[1] J. M. Maciejowski, Predicitve control with constraints. UK, Harlow:
Prentice Hall, 2000.

[2] E. F. Camacho and C. Bordons, Model predictive control, 2nd ed.
London: Springer-Verlag, 2004.

[3] M. L. Darby and M. Nikolaou, “MPC: Current practice and chal-
lenges,” Control Engineering Practice, vol. 20, no. 4, pp. 328–342,
2012.

[4] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, pp. 733–
764, 2003.

[5] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control System Technology,
vol. 18, no. 2, pp. 267–278, 2010.

[6] F. Martinsen, L. T. Biegler, and B. A. Fossa, “A new optimization
algorithm with application to nonlinear MPC,” Journal of Process
Control, vol. 14, no. 8, pp. 853–865, 2004.

[7] R. Findeisen, F. Allgöwer, and L. Biegler. Assessment and future
directions of nonlinear model predictive control, Lecture Notes in
Control and Information Sciences: Springer-Verlag, 2007.

[8] J. D. Hedengren, R. A. Shishavana, K. M. Powell, and T. F. Edgar,
“Nonlinear modeling, estimation and predictive control in APMonitor,”
Computers and Chemical Engineering, vol. 70, no. 5, pp. 133–148,
2014.

[9] H. Ratschek and J. Rokne, New computer methods for global opti-
mization. Chichester, England: Ellis Horwood Publishers, 1988.

[10] S. Ray and P. S. V. Nataraj, “An efficient algorithm for range
computation of polynomials using the Bernstein form,” Journal of
Global Optimization, vol. 45, no. 3, pp. 403–426, 2009.

[11] P. S. V. Nataraj and M. Arounassalame, “Constrained global optimiza-
tion of multivariate polynomials using Bernstein branch and prune
algorithm,” Journal of Global Optimization, vol. 49, no. 2, pp. 185–
212, 2011.

[12] B. V. Patil, P. S. V. Nataraj, and S. Bhartiya, “Global optimization
of mixed-integer nonlinear (polynomial) programming problems: the
Bernstein polynomial approach,” Computing, vol. 94, no. 2-4, pp. 325–
343, 2012.

[13] J. Garloff, “The Bernstein algorithm,” Interval Computations, vol. 2,
pp. 154–168, 1993.

[14] M. Tawarmalani and N. V. Sahinidis, “A polyhedral branch-and-
cut approach to global optimization,” Mathematical Programming,
vol. 103, no. 2, pp. 225–249, 2005.

[15] J. Lofberg, “YALMIP: a toolbox for modeling and optimization
in MATLAB,” IEEE International Symposium on computer Aided
Control Systems Design, pp. 282–289, 2004.

[16] L. Magni, G. De Nicolao, L. Magnani, and R. Scattolini, “A stabiliz-
ing model-based predictive control algorithm for nonlinear systems,”
Automatica, vol. 37, no. 9, pp. 1351–1362, 2001.

TABLE I
LIST OF MODEL PARAMETERS [16].

Parameters Meaning Value Unit

q Inlet flow 100 l/min
V Reactor liquid volume 100 l

CA f Concentration of inlet flow 1 mol/l
ko Reaction frequency factor 7.2×1010 l/min

E/R 8750 K
E Activation energy
R Gas constant 8.3196×103 J/(mol K)
Tf Temperature inlet flow 350 K
∆H Heat of reaction −5×104 J/mol
ρ Density 1000 g/l

Cp Specific heat capacity of the fluid 0.239 J/(g K)
UA 5×104 J/(min K)
U Overall heat transfer coefficient
A Heat transfer area
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Fig. 3. Evolutions of the state CA and T with NMPC based on Bernstein
algorithm BBBC and MATLAB based fmincon function. Green circles at 0,
50, 100, 150, and 200 indicates the samples at which the set-point changes
are implemented for T . The set-points are as follows: at 0 sec 310 K, at 50
sec 330 K, at 100 sec 340 K, at 150 s 320 K, and at 200 sec 310 K.
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Fig. 4. Control input Tc for the CSTR system with the Bernstein algorithm
BBBC and MATLAB based fmincon function.
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Fig. 5. Comparison of the computation time needed for a solution of an
NLP at a each sampling instant with the Bernstein algorithm BBBC and
MATLAB based fmincon function. Dotted line at 0.5 shows the sampling
time.
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Fig. 6. Cost function values for an NLP problem (of the form (5)) values
for a CSTR system based on the Bernstein algorithm BBBC and MATLAB
based fmincon function. SP1, SP2, SP3, and SP4 show the time instants at
which the set-point changes are implemented.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Samples

T
i
m
e
 
(
s
e
c
)

 

 

Bernstein Algorithm

BARON Solver

YALMIP BMIBNB Solver

Fig. 7. Comparison of the computation time needed for a solution of an
NLP at a each sampling instant with the Bernstein algorithm BBBC, and
global optimization solvers, BARON [14] and BMIBNB [15].
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Fig. 8. Comparison of the disturbance handling capability of a NMPC for
a CSTR system based on the Bernstein algorithm BBBC, MATLAB based
fmincon function, global optimization solvers, BARON [14] and BMIBNB
[15].


