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Abstract—This paper presents a comparative study of two
widely accepted model predictive control schemes based on mixed
logical dynamical (MLD) and nonlinear modeling approaches
with application to a continuous stirred tank reactor (CSTR)
system. Specifically, we approximate the nonlinear behavior of
a CSTR system with several local linear models in a MLD
framework. The main benefit of a such scheme is the significant
improvement in the model accuracy compared with a single
linearized model. The benefits and trade-off associated with a
predictive control law synthesized using MLD and nonlinear
modeling approaches are also compared.

I. INTRODUCTION

Model predictive control (MPC) is an advanced control
methodology for multivariable control systems. It is also
known as receding horizon control. MPC generates control
actions by optimizing a specific performance index based
on a dynamic model of the system to be controlled over a
finite-time moving window within system constraints [1], [2].
The application of MPC on a large scale can be found in
process industries, especially petrochemical plants [3]. In the
last one decade, MPC has also gained prominence in the other
industries including automotive, aerospace and robotics (see,
for instance [4], and reference therein). A more recent survey
on the current trends in the field of MPC can be found in [5].

In practice, many MPC applications prefer linear models
which are obtained by linearizing the original nonlinear system
description around a single operating point. The inherent
simplicity of linear models facilitates the use of convex
optimization techniques for the online solution of optimization
problems. Typically, such MPC applications are also known
as linear MPC (LMPC) schemes (cf. [6]). However, linear
models provide good approximations of the nonlinear system
only when the system is operating close to the chosen lin-
earized point. As such, once the system moves away from
this linearized point, closed-loop performance deteriorates
quickly thereby negatively impacting process productivity. To
overcome this limitation, the concept of hybrid systems is used
in literature to approximate nonlinear system behavior using
multiple linearizations interconnected with a set of logical
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rules [7]. These rules act as guidelines for switching from one
linear model to another depending on the state of the system
at a given time instant. Such MPC applications are known as
mixed-logical dynamical MPC (MLD-MPC) scheme (cf. [8]).

Another interesting approach followed by many researchers
is to use the nonlinear system model. This approach comes
with attractive benefits such as higher product quality, tighter
regulation of process parameters and the possibility of oper-
ating the process (with good control authority) in different
operating regimes. Consequently, the model predictive control
using nonlinear system models, usually called nonlinear MPC
(or NMPC) has also attracted many researchers over the past
decade [9], [10], [11]. It is worth noting that, an NMPC
formulation requires the solution of a (usually nonconvex)
nonlinear optimization problem at each sampling instant. As
such, NMPC is a challenging field and is dependent on the
adoption of good optimization techniques.

The scope of the present work involves a systematic study
of the aforementioned MLD-MPC and NMPC schemes in
the context of a CSTR system. First, we detail modeling of
a CSTR system in the MLD framework. Subsequently, we
compare the resultant MLD model with a single linearized
model and justify via model validation, the choice of MLD
model as a good prediction model for deriving the MPC
control law. Finally, we compare the performance of MLD-
MPC and NMPC schemes for the set-point tracking problem
of a CSTR system and study the benefits and associated trade-
offs among them.

II. THEORY

In this section, we first introduce the nonlinear model of a
CSTR system. Next, we briefly present the nonlinear MPC
(NMPC) and mixed-logical dynamical MPC (MLD-MPC)
formulations in the context of a CSTR system.

A. CSTR model

We consider a CSTR where an exothermic reaction A →
B takes place. The dynamic behavior of such a system is
described by a nonlinear differential equation [12]

ẋ = f(x, u), x(0) = x0. (1)
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where

f(x, u) =

 −φx1e

(
x2

1+
x2
λ

)
+ q(x1f − x1)

βφx1e

(
x2

1+
x2
λ

)
− (q + δ) + δu+ qx2f

 .

Here, x1 = CA is the concentration of A in the reactor,
x2 = T is the temperature of reaction mixture and u = TC
is the temperature of the coolant stream. Numerical values of
the parameters corresponding to the nominal operating point
condition are φ = 0.072, β = 8, δ = 0.3, λ = 20, q =
1, x1f = 1, x2f = 0.

The system is subjected to the following constraints on
states and input:

x =

{[
x1
x2

]
∈ R2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 6

}
. (2)

u ∈ R , −2 ≤ u ≤ 2. (3)

B. NMPC formulation

We formulate NMPC problem for continuous-time systems
described by the nonlinear model (1), where x ∈ Rn and
u ∈ Rm denote the vectors of states and control inputs,
respectively. The state of the system and the control input
applied at a sampling instant k are denoted by x(k) and
u(k), respectively. The system is subject to state and input
constraints of the following form:

x(k) ∈ X , ∀k ≥ 0 (4)
u(k) ∈ U , ∀k ≥ 0 (5)

where X ⊆ Rn, U ⊆ Rm, and are given by bound constraints
of the form:

X := {x ∈ Rn | xmin ≤ x ≤ xmax} .
U := {u ∈ Rm | umin ≤ u ≤ umax} .

We consider the design of an NMPC controller for (1) to
track a desired reference xs, subject to constraints of the form
(4)-(5). Here, the general form of the NMPC control law can
be derived at each sampling instant k by the solution of the
following NLP problem:

min
ui

N−1∑
i=0

(Q ‖ xi − xi,s ‖p +R ‖ ∆ui ‖p) (6)

subject to (1), (4), and (5) for i = 0, 1, . . . , N − 1

where xi,s denotes the set-point (reference) at instant i; Q ∈
Rn×n and R ∈ Rm×m denote positive definite, symmetric
weighting matrices; ∆ui = ui − ui−1 denotes the control
increment, N(≥ 1) denotes the prediction horizon, and ‖ . ‖p
represents a standard vector p-norm with p = 2.

We follow the approach presented in [13] to compute an
optimal control sequence based on the NMPC optimization
problem formulated in (6).

C. MLD-MPC formulation

Hybrid systems integrate the continuous aspects of physical
systems (like temperature and pressure of a system) as well
as discrete decisions (like on/off decisions for solenoid valves)
which need to be taken to drive the system from one operating
point to another. Mixed Logical Dynamical (MLD) provides
a natural modeling framework for such hybrid systems. The
general MLD form of hybrid systems as described in [7] is as
follows:

x(k + 1) = Ax(k) +Buu(k) +Bauxw(k) +Baff (7a)
y(k) = Cx(k) +Duu(k) +Dauxw(k) +Daff (7b)

Exx(k) + Euu(k) + Eauxw(k) ≤ Eaff (7c)

where x = [xc xd]T, xc ∈ Rncx , xd ∈ Rndx , and u =

[uc ud]T, uc ∈ Rncu , ud ∈ Rndu , ni := nci + ndi (i = {x, u})
represent states (both continuous and discrete) and inputs
(both continuous and discrete), respectively. w ∈ Rncw+ndw

represent continuous and discrete auxiliary variables which are
necessary to convert propositional logic into linear inequalities
represented by (7c).

As discussed earlier in the Section I, nonlinear models
may be effectively approximated by the use of the multiple-
linear models. As such, switching between these multiple-
linear models is vital in ensuring that the behavior of the
nonlinear model is closely approximated. This switching can
be easily facilitated by adopting the MLD modeling approach.

The MLD model incorporating all the linear models was
formulated by adapting the piecewise affine (PWA) approach
described in [12]. The two states (x1, x2) and system input (u)
along with their respective bounds are the same as reported in
Section II-A. The steady-state operating points of the system
were identified as xs1 = [0.856, 0.886], xs2 = [0.5528, 2.7517],
and xs3 = [0.2353, 4.705] [12]. The system state-space was
subsequently partitioned into three regions with each region
containing a stable operating point. The partitioned regions
were defined as R1 = [0.78, 1]×[0, 6], R2 = [0.35, 0.78]×[0,
6], and R3 = [0, 0.35]×[0, 6], receptively.

Auxiliary variables δ1, δ2 and δ3 were used to detect the
current state of the system as shown below in (8a)-(8c) In
conjunction with δ4 and δ5 in (8d)-(8e), the exact region of
operation in the state-space was identified. Based on this,
the appropriate linear model from the bank of multiple-linear
models was selected for performing the state update. A total of
11 auxiliary variables were defined. The remaining 6 auxiliary
variables were used to perform the state updates for the two
continuous states depending on the region of operation.

δ1(k) = 1⇔ x1(k) ≤ 0.35 (8a)
δ2(k) = 1⇔ x2(k) ≤ 0.78 (8b)
δ3(k) = 1⇔ x1(k) ≤ 1 (8c)
δ4(k) = δ2(k) ∧ ∼ δ1(k) (8d)
δ5(k) = δ3(k) ∧ ∼ δ2(k) ∧ ∼ δ1(k) (8e)

A unified MLD model based on combining all the linear
models can be obtained from (7a)-(7c). The whole process



of obtaining this unified MLD model is automated using
the software package Hybrid System Description Language
(HYSDEL) [14]. HYSDEL generates all the matrices in the
MLD model from a high level description of the system
behavior. The matrices of the MLD model are omitted due
to the space restrictions.

The design of a MLD-MPC controller for (1) to track a
desired reference xs is formulated as follows:

min
ui

N−1∑
i=0

(Q ‖ xi − xi,s ‖p +R ‖ ∆ui ‖p) (9)

subject to (1), (2), (3), and (7a)-(7c) for i = 0, 1, . . . , N − 1

where xi,s denotes the set-point (reference) at instant i; Q ∈
Rn×n and R ∈ Rm×m denote positive definite, symmetric
weighting matrices; ∆ui = ui − ui−1 denotes the control
increment, N(≥ 1) denotes the prediction horizon, and ‖ . ‖p
represents a standard vector p-norm with p =∞.

III. SIMULATION RESULTS AND DISCUSSION

In this section, we present our studies on a CSTR system
(1) in two different cases. In the first case, we briefly justify
our selection of the MLD model over the single linearized
model. This is demonstrated with the help of a simple model
validation study. Next, we present the set-point tracking prob-
lem under MLD-MPC and NMPC schemes while comparing
the benefits and trade-offs among them.

A. Model validation study

To demonstrate the advantages of the MLD approach, we
compare the original nonlinear model of a CSTR system in (1)
against a single linearized model (SLP) and the MLD model
developed in Section II-C. We achieve this by perturbing the
model in (1) under a uniform random sequence of inputs (u’s)
starting with a steady-state point (xs1) reported in Section II-C
with a sampling time of 0.1 second1. The SLP was developed
by linearizing the model (1) around steady-state operating
point xs1. Figure 1 depicts the evolution of states, CA and
T . It is worth nothing that the single linearized model (dotted
line) performs poorly against the MLD model (dash-dotted
line) which closely approximates the original nonlinear model
(blue solid line). To further justify the choice of the MLD
model, we compare the corresponding approximation error
(e) between the two schemes computed with the following
performance criterion:

e =‖ f(x, u)− fSLP / MLD(x, u) ‖p (10)

where fSLP / MLD are the evolutions with SLP and MLD models
under a uniform random sequence of inputs (u’s), and ‖ . ‖p
represents a standard vector p-norm with p = 1.

Table I report the numerical results for the approximation
error. The state approximation error with MLD model is
observed to be 40-96 % lesser than SLP.

1The reported model validation can be performed with various steady-state
points and random input sequences to bring out the strength of the MLD
modeling approach. However, due to a space constraints, we limit ourselves
to model validation along the lines of a single equilibrium point.

TABLE I
COMPARISON OF APPROXIMATION ERRORS BETWEEN SINGLE LINEARIZED

MODEL (SLP) AND MLD MODEL.

Modeling Approximation error (e)
scheme CA T

SLP 0.029 0.181
Multiple-MLD 0.001 0.004

B. Set-point tracking study

We simulate both MLD and NMPC schemes for the set-
point tracking control problem, which involves multiple set-
point changes for x2. For an NMPC scheme, the nonlinear
model in (1) is used as a system model for the simulation,
and the NMPC control law is derived by solving an NLP
of the form (6). Similarly, for the MLD-MPC scheme, the
formulation (7a)-(7c) is used as a system model for the
simulation and the MPC control law is derived by solving
(9). Further, the solution for the updated states is computed
based on the set of given initial conditions and the first optimal
control input derived based on the MPC control law.

Table II shows the parameter values adopted for the simu-
lation:

TABLE II
PARAMTERS FOR SET-POINT TRACKING SIMULATIONS

(FIGURES 1 AND 2).

Paramters NMPC MLD-MPC
sampling time (sec) 0.3 0.1

N 3 3
Q diag(0 0.1)T diag(0 0.1)T

R 0.1 0.1

For the simulation studies, the MLD-MPC scheme is formu-
lated using YALMIP. Subsequently, intlinprog solver from the
MATLAB Optimization Toolbox was used to solve resulting
MILPs at each sampling instant. Similarly, for the NMPC
scheme, we follow the approach based on Bernstein global
optimization reported in [13] to solve NLPs at each sampling
instant.

Figures 2a and 2b show the evolution of states starting from
an initial operating point (CA = 0.5, T = 2.7) followed
by a series of set-point transitions. Specifically, we compare
the results between NMPC and MLD-MPC schemes for a
CSTR system. We observed a smooth transition for both states
under multiple set-point changes under NMPC scheme. On
the other hand, with the MLD-MPC scheme, a slow response
was observed for the first set-point change (samples 0-20).
The settling time remains almost the same in both cases.
Further, we notice an improvement in the settling-time for
the second and third set-point changes with the MLD-MPC
scheme. However, this could be due to a difference in the
sampling time between the two schemes. It is worth nothing
that in the case of NMPC scheme, we are actually solving
nonconvex optimization problems (due to the nonlinear nature



of a CSTR model). As such, it is justifiable to consider a
sampling time of 0.3 seconds from the practical point of view.

Figure 2c illustrates the control performance of the two
schemes. It is apparent that the MLD-MPC stabilizes the
system very quickly. On the other hand, NMPC scheme takes
some time to achieve the stable state. This is evident from
Figure 2d, where the NMPC scheme takes an average 0.1
seconds to solve optimization problems (almost 50 % slower
than the MLD-MPC scheme). However, this is a trade-off to
be paid at the cost of arriving at a globally optimal solution.
Similarly, to observe the consistency of our findings reported
above, we choose a different series of set-point transitions
whose results are reported in Figure 3.

In summary, we note that the MLD model provides a good
approximation to the original nonlinear CSTR model with
promising results for the set-point tracking control problem.
Although it would be interesting to compare the behavior of
MLD-MPC with NMPC under short and long term transients,
we restrict ourselves to the results presented earlier owing to
space limitations.

IV. CONCLUSIONS

This work demonstrated the MPC problem of a CSTR
system. Since the original CSTR system is highly nonlinear,
the optimal control problem naturally becomes a nonlinear
programming problem in the MPC framework. To circum-
vent this issue, the present work investigated a well-known
multiple-model approach in the MLD formalism. The benefits
accrued by the multiple-model approach over the classical sin-
gle linearized model approach in terms of approximating the
behavior of the original nonlinear model were demonstrated.
Later, different simulation studies for the set-point tracking
problem were conducted to compare MLD-MPC and NMPC
schemes. The simulation results demonstrated that the MLD-
MPC approach holds good promise as a viable alternative for
the NMPC scheme. The main benefit of the approach noted
was that solving time for the optimization problems at each
sampling instant was significantly reduced.

Overall, it may be concluded that the NMPC scheme has
good potential to deliver optimal solutions. However, this
comes at the cost of computational time, and is the price
to be paid in order to solve NLPs. While the MLD-MPC
scheme delivered promising results in our studies, it would
be interesting to observe how the approach performs under
transients in comparison to the NMPC scheme.

REFERENCES

[1] J. M. Maciejowski, Predicitve control with constraints. UK, Harlow:
Prentice Hall, 2000.

[2] E. F. Camacho and C. Bordons, Model predictive control, 2nd ed.
London: Springer-Verlag, 2004.

[3] M. L. Darby and M. Nikolaou, “MPC: Current practice and challenges,”
Control Engineering Practice, vol. 20, no. 4, pp. 328–342, 2012.

[4] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, pp. 733–764,
2003.

[5] T. A. Badgwell and S. J. Qin, “Model-predictive control in practice,”
Encyclopedia of Systems and Control, pp. 1–6, 2014.

[6] C. V. Rao and J. B. Rawlings, “Linear programming and model
predictive control,” Journal of Process Control, vol. 10, no. 2-3, pp. 283–
289, 2000.

[7] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[8] B. Aufderheide and B. W. Bequette, “Extension of dynamic matrix con-
trol to multiple models,” Computers and Control Engineering, vol. 27,
no. 8-9, pp. 1079–1096, 2003.

[9] F. Martinsen, L. T. Biegler, and B. A. Fossa, “A new optimization
algorithm with application to nonlinear MPC,” Journal of Process
Control, vol. 14, no. 8, pp. 853–865, 2004.
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Fig. 1. Model validation: evolution of states x = [CA T ]T with single linear model (dotted line), MLD model (dash-dotted line), nonlinear model (blue
solid line).
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Fig. 2. Close-loop results under multiple set-point changes in T . The set-points are as follows: at 0 sec 3.5, at 40 sec 2, and at 80 sec 4. (a) CA profile for
MLD-MPC (solid line) and NMPC (dash-dotted line). (b) T profile for MLD-MPC (solid line) and NMPC (dash-dotted line). (c) TC profile for MLD-MPC
(solid line) and NMPC (dash-dotted line). (d) Computation times for MLD-MPC (star-dotted line) and NMPC (circles).
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Fig. 3. Close-loop results under multiple set-point changes in T . The set-points are as follows: at 0 sec 4, at 40 sec 3, and at 80 sec 4.5. (a) CA profile for
MLD-MPC (solid line) and NMPC (dash-dotted line). (b) T profile for MLD-MPC (solid line) and NMPC (dash-dotted line). (c) TC profile for MLD-MPC
(solid line) and NMPC (dash-dotted line). (d) Computation times for MLD-MPC (star-dotted line) and NMPC (circles).


