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Abstract: This paper presents a improved Bernstein global optimization algorithm based
model predictive control (MPC) scheme for the nonlinear systems. A new improvement in the
Bernstein algorithm is the introduction of a box pruning operator, which during a branch-and-
bound search, discard portions of the solution search space that do not contain global solution,
thereby speeding up the algorithm. The applicability of this MPC scheme is demonstrated
with a simulation studies on a nonlinear single machine infinite bus power system over a wide
range of operating conditions. The simulation results show improvement in the system damping
and settling time compared with the classical power system stabilizer and partial feedback
linearization control schemes.
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1. INTRODUCTION

Model predictive control (MPC) is an established ad-
vanced control methodology for multivariable control sys-
tems. It is also known as receding horizon control, which
generates control actions by optimizing specific perfor-
mance index over a finite-time moving window within
system constraints, and based on a dynamic model of the
system to be controlled [Maciejowski (2002), Camacho and
Bordons (2004)]. The applications of MPC on a large scale
is found in process industries, especially petrochemical
plants [Darby and Nikolaou (2012)]. In the last decade,
MPC has also gained a good success in the other sec-
tors, such as power systems, robotics and automotive and
aerospace industries (see, for instance Qin and Badgwell
(2003), and reference therein). A more recent survey on
the current trends in MPC can be found in Badgwell and
Qin (2014).

In practice, many MPC applications prefer linear models,
due to there simplicity and facilitating the use of convex
optimization techniques for the online solution of the opti-
mization problems. Such MPC applications are also known
as ‘linear MPC’ scheme (cf. Rao and Rawlings (2000)).
However, some applications (like power systems) has a
nonlinear behavior, and for such applications, linear MPC
scheme may not yield good close-loop performance. Hence,
to alleviate problems arising from the system nonlineari-
ties, gain scheduling and switching between multiple-linear
models based on the operating region are possible solution
approaches reported in the literature [Lawrence and Rugh

(1995), Aufderheide and Bequette (2003)]. Another inter-
esting approach followed by many researchers is to use a
nonlinear system model. This approach may come with
attractive benefits, such as, tighter regulation of system
parameters, and the possibility of operating the system
(with a good control authority) in different operating
regimes. The model predictive control using nonlinear sys-
tem models, usually called ‘nonlinear MPC’ (or NMPC),
hence has attracted many researchers over the past decade
[Martinsen et al. (2004), Findeisen et al. (2007), Hedengren
et al. (2014)].

We note that, an NMPC formulation requires the solution
of a (usually nonconvex ) nonlinear optimization problem
at each sampling instant. As such, NMPC is a challenging
field, and is dependent on a good optimization procedures.
Concerning this fact, in the present work we introduce one
such (global) optimization procedure for NMPC applica-
tions. This procedure is based on the well-known Bernstein
form of polynomials [Ratschek and Rokne (1988)], and
uses several nice ‘geometrical’ properties associated with
this Bernstein form. Optimization procedures based on
this Bernstein form, also called Bernstein global optimiza-
tion algorithms, have shown good promise to solve hard
nonconvex optimization problems (see, for instance, Patil
et al. (2012b), and references therein). Recently, authors in
Patil et al. (2012a) reported some encouraging preliminary
findings using one such Bernstein global optimization al-
gorithm for predictive control of nonlinear hybrid systems.
Therefore, more investigations using these algorithms seem

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162920615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to be a promising research direction for NMPC applica-
tions.

The current scope of the work involve experimentation of
the Bernstein global optimization algorithm reported in
Patil and Nataraj (2016) to solve a nonlinear optimization
problem at each NMPC iteration. Specifically, we use the
box consistency feature for the Bernstein algorithm, which
aids in pruning (discarding) regions from a solution search
space that surely do not contain the global solution. As this
feature provide the means to narrow the search region (in
our case box) for the optimization problem, we term it as
a box pruning (or narrowing) operator. The applicability
of the Bernstein algorithm with this box pruning feature
(henceforth, referred as the improve Bernstein algorithm)
is demonstrated by simulating a predictive control scheme
for a classical nonlinear single machine infinite bus (SMIB)
power system [Kundur (1994)]. The findings of the NMPC
scheme based on a improved Bernstein algorithm are
compared with respect to a two well established control
schemes, namely, power system stabilizer (PSS) [Kundur
(1994)] and partial feedback linearization (PFL) [Mahmud
et al. (2014)].

In the rest of the paper, we first introduce a nonlinear
MPC formulation (Section 2). Next, we briefly describe
the Bernstein form, the box pruning operator followed by
the presentation of the improved Bernstein global opti-
mization algorithm (Section 3), and report the simulation
studies on a nonlinear SMIB power system (Section 4).
Finally, some concluding remarks are given in Section 5.

2. REVIEW: NMPC

In this section, we outline one variant of NMPC reported
in the literature (see, for instance, Maciejowski (2002),
Mayne and Rawlings (2000)).

We consider a class of discrete-time systems described by
the following nonlinear model

xk+1 = fk(xk, uk) (1)

where xk ∈ Rn and uk ∈ Rm are the state of the
system and the control input applied at sampling instant k,
respectively. The system is subject to the state and input
constraints of the following form:

xmin
k ≤ xk ≤ xmax

k (2)

umin
k ≤ uk ≤ umax

k (3)

In the present work, we consider the design of an NMPC
controller for (1) which brings the system from an arbi-
trary point back to the equilibrium point (origin), while
fulfilling constraints of the form (2)-(3). The general form
of NMPC control law can be derived at each sampling
instant k, given the initial state x0, by the solution of the
following nonlinear programming (NLP) problem.

min
uk

N−1∑
k=0

(
xkQx

T
k + ukRu

T
k

)
(4)

subject to (1), (2), and (3) for k = 0, 1, . . . , N − 1 (5)

where Q ∈ Rn×n and R ∈ Rm×m denote positive definite,
symmetric weighting matrices used to penalize state and
control movements about the origin, receptively. N(≥ 1)
denotes the prediction horizon.

At the outset, the nonlinear model (1) is used for predic-
tions based on the initial state x0. The predicted control
input profile is denoted by uk, k = 0, 1, . . . , N − 1 Then,
assuming that the optimization problem has a feasible
solution, an optimizer (in this work, we use improved
Bernstein global optimization algorithm) computes an op-
timal control sequence, based on the NMPC optimization
problem formulated in (4), defined as

u∗0
u∗1
...

u∗N−1

 . (6)

Only the first step of this optimal control sequence, u∗0 is
applied to the system (1) to obtain a new updated state.
Then the whole process is repeated, with x0 obtained from
the latest measurements, until the state is steered to the
equilibrium point.

3. BERNSTEIN POLYNOMIAL APPROACH FOR
GLOBAL OPTIMIZATION

This section briefly introduces some notions about the
univariate Bernstein form. A comprehensive background
and mathematical treatment for a multivariate case can
be found in Patil et al. (2012b).

Let a real bounded and closed interval x (referred as a box
in the multidimensional case) is defined as

x = [x, x], x ≤ x and x, x ∈ R.
Without loss of generality, we consider the unit interval
case (i.e. x = [0, 1]), since any nonempty compact interval
can be mapped affinely onto it.

We can write a univariate l-degree polynomial p over the
unit interval x in the form

p(x) =

l∑
i=0

aix
i, ai ∈ R . (7)

Now the polynomial p can be expanded into the Bernstein
polynomials of the same degree as below [Ratschek and
Rokne (1988)]

p (x) =

l∑
i=0

biB
l
i (x) (8)

where Bl
i(x) are the Bernstein basis polynomials and bi

are the Bernstein coefficients:

Bl
i(x) =

(
l
i

)
xi(1− x)l−i . (9)

bi =

i∑
j=0

(
i
j

)
(
l
j

)aj , i = 0, . . . , l. (10)

Equation (8) is referred as the Bernstein form of (7) and
obeys the following range enclosure property [Ratschek
and Rokne (1988)]:

p(x) ⊆ B(x) := [min bi, max bi] . (11)

where p(x) denote the range of p on a given interval x.

Remark 1: The above theorem says that the minimum
and maximum coefficients of bi provide lower and upper



bounds for the range of p. This forms the Bernstein range
enclosure, defined by B(x) in equation (11). Further, this
Bernstein range enclosure can successively be sharpened
by the continuous domain subdivision procedure (see, for
instance Patil et al. (2012b)).

The derivative of a polynomial p with respect to x can
be found from the Bernstein coefficients of the original
polynomial, using the following relation Ratschek and
Rokne (1988).

p′(x) = l

(
l−1∑
i=0

bi+1B
l−1
i (x)−

l−1∑
i=0

biB
l−1
i (x)

)
(12)

where p′(x) contains an enclosure of the range of the
derivative of p on x.

3.1 Box pruning operator

The box pruning operator is used to discard unwanted
regions from the solution search space (in our case from
the box x) that surely do not contain the global solution.
This pruning is achieved by assessing consistency of left
and right bounds (x and x) for the given set of algebraic
equations (in our case constraints of the form (5)). Typ-
ically, with the help of interval Newton method, leftmost
and rightmost ‘quasi-zeros’ are isolated from the box x
Hansen and Walster (2005). In this work, we shall use
the univariate version of the Bernstein Newton contractor
given in Patil and Nataraj (2016).

Algorithm box prune: x′ = box prune((bg) , (bh) ,x, r)

We below explain the box pruning operator procedure for
the equality constraint case. It can also be applied to the
inequality constraint h(x) ≤ 0 by converting it into an
equality constraint. Consider an equality constraint poly-
nomial g(x) = 0, and let (bg) be the Bernstein coefficient
array of g(x). Consider any component direction, say the
first, with x1 = [a, b]. Typically, an attempt is made to
increase the value of a and decrease the value of b, thus
effectively narrowing the width of x1.

To increase the value of a, first find all those Bernstein
coefficients of (bg) corresponding to x1 = a. The minimum
to maximum of these coefficients gives an interval denoted
by g(a). If 0 /∈ g(a), then the constraint is infeasible at this
endpoint a, and we search starting from a, along x1 = [a, b]
for the first point at which constraint becomes just feasible,
that is, we try to find a zero of g(x). Let us denote this
zero as a′. Clearly, g(x) is infeasible over [a, a′), and so it
can discarded to get a contracted interval [a′, b] . On the
other hand, if 0 ∈ g(a) then we abandon the process to
increase a and instead switch over to the other endpoint
b and make an attempt to decrease it in the same way as
we did to increase a.

To find a zero of g in [a, b], one iteration of the univariate
version of the Bernstein Newton contractor given in Patil
and Nataraj (2016) is used. It is as follows

N (x1) = a− (g(a)/g′x1
)

x′1 = x1 ∩N (x1)

where g(a) is the minimum to maximum of the Bernstein
coefficients array (b(x)) at x1 = a, g′x1

denotes an interval
enclosure for the derivative of g on x1, and x′1 gives a new

narrowed interval. A similar process is carried out from
the other endpoint b.

We now illustrate the above box pruning operator idea
with a help of an simple example given below.

Consider the following equality constraint polynomial

g(x) = 3x21 − x2 = 0

x1 ∈ R, x2 ∈ Z
with x1 = [0.2, 1], and x2 = [0, 1].

The Bernstein coefficient array of g (x) (calculated from
(10)) is

(bg) =

(
0.12 −0.88
0.6 −0.4

3 2

)
Consider the application of above box pruning idea along
the first component direction, that is along x1. Along the
direction x1, the first row corresponds to x1 = a = 0.2, and
the third row corresponds to x1 = b = 1. Along the first
row, the minimum and maximum values of the Bernstein
coefficients, respectively are −0.88 and 0.12 giving g(a) =
[−0.88, 0.12]. Along the third row, the minimum and
maximum values of the Bernstein coefficients, respectively
are 2 and 3 giving g(b) = [2, 3]. Since 0 ∈ g(a) the left
end-point cannot be increased. However, 0 /∈ g(b), hence
the right end-point can be decreased.

The partial derivative in the direction x1 (calculated from
(12)), that is, g′x1

is obtained by computing the difference
of the Bernstein coefficients across the three rows and
multiplying them with the ratio of degree of x1, and width
of x1. Here, g′x1

= [1.2, 6].

Now, we can perform one iteration of the Bernstein New-
ton contractor as

N (x1) = b− (g(b)/g′x1
)

= 1− [2, 3]

[1.2, 6]

= 1− [2, 3] ∗ 1

[1.2, 6]

= 1− [2, 3] ∗
[

1

6
,

1

1.2

]
,

(
if 0 /∈

[
1

6
,

1

1.2

])
= 1− [2, 3] ∗ [0.16, 0.83]

= 1− [0.33, 2.5]

= [−1.5, 0.66]

Therefore, the updated value of x1 is

x′1 = N (x1) ∩ x1

= [−1.5, 0.66] ∩ [0.2, 1]

= [0.2, 0.66]

It may be noted that, a right end-point of x1 (i.e. b = 1)
has been reduced to b = 0.66 with one iteration of box
pruning operator. Similar process can be carried out in
the other direction x2.

3.2 Improved Bernstein global optimization algorithm

We now present our main Bernstein global optimization
algorithm. This algorithm uses the Bernstein range en-
closing property (equation (11)), followed by a domain



subdivision, to correctly locate the global solution (global
minimum and global minimizers) for a given NLP problem.
Briefly, the improved Bernstein algorithm is similar to a
interval branch-and-prune procedure, but with following
enhancements.

• This algorithm use the Bernstein form as a inclusion
function for the global optimization.
• This algorithm use the box pruning operator based

on the Bernstein form (presented in Section 3.1).
• Following the Remark 1, this Bernstein algorithm

always converge to the global minimum. Interested
readers can refer Patil et al. (2012b) for the detailed
mathematical treatment on the topic.

Algorithm improved Bernstein global:

[ỹ, p̃, U ]=IBBBC(N, aI ,x, εp, εx, εzero)

Inputs: Degree N of the variables occurring in the objec-
tive and constraint polynomials, the coefficients aI of the
objective and constraint polynomials in the power form,
the initial search box x, the tolerance parameters εp and
εx on the global minimum and global minimizer(s), and the
tolerance parameter εzero to which the equality constraints
are to be satisfied.

Outputs: A lower bound ỹ and an upper bound p̃ on the
global minimum f∗, along with a set U containing all the
global minimizer(s) x(i).

BEGIN Algorithm

(1) Set y := x.
(2) From aI compute the Bernstein coefficient arrays

of the objective and constraint polynomials on the
box y respectively as (bo(y)) , (bgi(y)) , (bhj(y)), i =
1, 2, ...,m, j = 1, 2, ..., n.

(3) Set p̃ :=∞ and y := min (bo(y)).
(4) Initialize list L := {(y, y)}, Lsol := {}.
(5) If L is empty then go to step 15. Otherwise, pick the

first item (y, y) from L, and delete its entry from L.
(6) Apply the box pruning operator to the item (y, y)

based on the equality and inequality constraints (in
our case equation (5)) over y. If the result is empty,
then delete item (y, y) and go to step 5.

y′ = box prune((bg) , (bh) ,y, r)

where (bg) and (bh) is the Bernstein coefficient arrays
of the inequality and equality functions, respectively,
bound contraction will be applied in the rth direction,
and y′ is the new contracted box.

(7) Set y := y′ and compute the Bernstein coefficient
arrays of the objective and constraint polynomials on
the box y, respectively as (bo(y)) , (bgi(y)) , (bhj(y)),
i = 1, 2, ...,m, j = 1, 2, ..., n. Also set y :=
min (bo(y)).

(8) Choose a coordinate direction λ parallel to which
y1 × · · · × yl has an edge of maximum length, that is
λ ∈ {i : w(y) := w(yi), i = 1, 2, . . . , l}.

(9) Bisect y normal to direction λ, getting boxes v1, v2

such that y = v1 ∪ v2.
(10) for k = 1, 2

(a) Find the Bernstein coefficient array and the
corresponding Bernstein range enclosure of the

objective function (f) over vk as (b0(vk)) and
B0(vk), respectively.

(b) Set dk := minBo(vk).
(c) If p̃ < dk then go to substep (h).
(d) for i = 1, 2, . . . ,m

(i) Find the Bernstein coefficient array and the
corresponding Bernstein range enclosure of
the inequality constraint polynomial (gi)
over vk as (bgi(vk)) and Bgi(vk), respec-
tively.

(ii) If Bgi(vk) > 0 then go to substep (h).
(iii) If Bgi(vk) ≤ 0 then go to substep (e)

(e) for j = 1, 2, . . . , n
(i) Find the Bernstein coefficient array and the

corresponding Bernstein range enclosure of
the equality constraint polynomial (hj) over
vk as (bhj(vk)) and Bhj(vk), respectively.

(ii) If 0 /∈ Bhj(vk) then go to substep (h).
(iii) If Bhj(vk) ⊆ [−εzero, εzero] then go to sub-

step (f)
(f) Set p̃ := min(p̃,maxBo(vk)).
(g) Enter (vk, dk) into the list L such that the second

members of all items of the list do not decrease.
(h) end (of k−loop).

(11) {Cut-off test} Discard all items (z, z) in the list L
that satisfy p̃ < z.

(12) Denote the first item of the list L by (y, y).
(13) If (w(y) < εx) & (maxBo(y)−minBo(y)) < εp then

remove the item from the list L and enter it into the
solution list Lsol.

(14) Go to step 5.
(15) {Compute the global minimum} Set the global mini-

mum ỹ to the minimum of the second entries over all
the items in Lsol.

(16) {Compute the global minimizers} Find all those items
in Lsol for which the second entries are equal to ỹ.
The first entries of these items contain the global
minimizer(s) x(i).

(17) Return the lower bound ỹ and upper bound p̃ on the
global minimum f∗, along with the set U containing
all the global minimizer(s) x(i).

END Algorithm

4. NUMERICAL SIMULATION ON A
SMIB POWER SYSTEM

In this section, we study the highly nonlinear model of a
single machine infinite bus (SMIB) power system depicted
in Fig. 1. We choose this system as it is widely used in
the power system control literature and exhibits accurate
description of the synchronous generator behavior. We use
the following SMIB system dynamical model in a d − q
reference frame [Kundur (1994)].

δ̇ = ΩB(ω − ωr) (13)

ω̇ =
1

2H
(Pm − Pe −Kd(ω − ωr)) (14)

ė′q =
1

T ′d0

(
−
Xdre

′
q

X ′dr
+

(Xdr −X ′dr)

X ′dr
νr cos(δ) + efd

)
(15)

ėfd = − 1

TA
efd +

KA

TA
(1− Vt) +

KA

TA
u (16)



where

Pe =
e′qνrsin(δ)

X ′dr
+

(Xdr −X ′dr)

XqrX ′dr
ν2r cos(δ) sin(δ).

Vt =
√

(e′q −X ′dId)2 + (X ′qIq)2.

Xdr = Xd +Xr, Xqr = Xq +Xr, X
′
dr = X ′d +Xr.

where δ is the rotor angle of the generator, ω is the rotor
speed deviation, H is the inertia constant of the generator,
Pm is the mechanical input power to the generator which
is assumed to be constant, Kd is the damping constant
of the generator, Pe is the electrical power delivered by
the generator, efd is the field voltage of the generator,
Vt is the terminal voltage of the generator, and u is the
control input from the controller which modulates efd. All
parameters are expressed in per unit (pu) and listed in
Table 1.

Fig. 1. Classical single machine infinite bus power system
network [Kundur (1994)].

For the simulation studies, we consider the following two
typical scenarios:
Scenario I: A short-circuit fault occurs at one of the two
parallel transmission lines shown in Fig. 1 (mechanical
power Pm is assumed to be constant at 0.9 pu).
Scenario II: 5 % and 10 % step changes of the input
mechanical power to the generator.

For both scenarios, we simulate an NMPC scheme to main-
tain SMIB system at its equilibrium point. The nonlinear
model in (13)-(16) is discretized using Euler’s method
for the simulation studies, and the NMPC control law is
derived by solving an NLP of the form (4)-(5) using the
improved Bernstein algorithm IBBBC. The solution for
the updated states is computed based on the set of given
initial conditions and first optimal control move derived by
a NMPC control law. We adopted the following parameters
values for the simulation:

• sampling time of 0.025 seconds
• prediction horizon, N = 3
• Q = diag(1 1 1 1)T and R = 1 as weighting matrices
• initial conditions, x0 = [1.225 1 1.023 2.42]T and
u0 = 0
• constraints on the control input, −0.1 6 u 6 0.1
• tolerances, εp = εx = εzero = 0.001 in the algorithm

IBBBC on the global minimum and minimizers

To compare the performance of an NMPC scheme, we
choose the two well established control schemes from the
power systems literature, namely, power system stabilizer
(PSS) [Kundur (1994)] and partial feedback linearization
(PFL) [Mahmud et al. (2014)]. All control schemes were
implemented in the MATLAB environment on desktop PC
running an IntelrCore i7-5500U CPU processor running
at 2.40 GHz with a 4 GB RAM. We below briefly discuss

the simulation results of the two scenarios.

Scenario I: In order to validate the effectiveness of an
NMPC scheme under a disturbance, a short-circuit fault
of a 100 milliseconds is considered between two parallel
transmission lines (refer Fig. 1). The fault occurs at t = 2
seconds and is cleared at t = 2.1 seconds. In practice this
event is considered as the perturbation which moves the
states (δ, ω, e′q, efd) from their equilibrium. The system
may become unstable during post-fault period due to
insufficient damping. Hence, the controller has two roles:
i) to provide some additional damping during post-fault
period; and ii) to bring the states back to their equilibrium
point.

Figures 2 shows the rotor angle (δ) response of the syn-
chronous generator. The dotted line indicates the system
response with the classical PSS; dash-dotted line indicates
case with the PFL; whereas solid line shows the system
behavior with an NMPC scheme. It can be observed that,
the NMPC scheme results in better damping compared to
the PSS and slightly better settling time with respect to
PFL.

Similarly, we note that synchronous generator speed devi-
ation (∇ω) is zero at equilibrium point. However, as the
short-circuit fault occurs, the speed is also disturbed. Fig.
3 shows the speed deviation response of the generator,
where the dotted line indicates the system response with
the classical PSS; dash-dotted line indicates case with the
PFL; whereas solid line shows the system behavior with
an NMPC scheme. In this case too NMPC ensures good
transient stability compared with the PSS and slightly
better settling time when compared with the PFL.

Similar findings can be seen in transient responses in the
generator terminal voltage from Fig. 4. Fig. 5 shows the
control signal delivered to the generator. We note that
both PSS and PFL had a large oscillating damping before
settling. On the other hand, NMPC control moves had a
small oscillations and was well within the saturation limits
(±0.1).

Scenario II: In this case study, we first simulate the power
system with a nominal mechanical power (Pm = 0.9).
Then we assume a sudden disturbance on the input side
of the generator (such as, drop in the steam pressure used
to rotate the turbines) which result in a change in the
mechanical power (Pm) of the generator. Typically, we
consider a 5% step change in Pm from its nominal value
(i.e. 0.9 to 0.8548) at 2 seconds and again 10% step change
in Pm (i.e. 0.8548 to 0.9403) at 5 seconds. For the first step
change in Pm (reduction by 5% from its nominal value) and
constant load, the difference between the electrical power
generated and the desired load is met by reducing the rotor
speed (ω) and as a result the rotor angle (δ) settle down
to a lower equilibrium point value. Similarly, vice-versa is
observed when Pm is increased by 10% from its nominal
value.

The results of the rotor angle (δ) and the its speed
deviation (∇ω) are shown in Figures 6 and 7, respectively.
The dotted line indicates the system response with the
classical PSS; dash-dotted line indicates case with the
PFL; whereas solid line shows the system behavior with



the NMPC scheme. It can be observed that, the NMPC
scheme is superior than the PSS and performs slightly
better than the PFL in terms of the damping and settling
time.

Fig. 8 shows the generator terminal voltage response to the
changes in the mechanical power Pm. It can be observed
that in this large period of transient, the PSS scheme
responds poorly. On the other hand, the PFL and NMPC
schemes performs satisfactory keeping terminal voltage
close to its nominal value of 1.

Finally, to assess the practical applicability of the Bern-
stein algorithm (IBBBC) based NMPC scheme, we com-
pare the computational times under the aforementioned
Scenarios I and II. Fig. 9 show the computation time taken
to compute the control move at each sampling instant (i.e.
to solve an NLP of the form (4)-(5)) by the algorithm
IBBBC. We observed the control move computation time
well within the sampling period of 0.025 seconds (on an
average 0.016 seconds in both the scenarios).

5. CONCLUSIONS

In this work a model predictive control scheme for the
nonlinear systems (termed as NMPC) was presented. The
specific highlight of our NMPC scheme was use of the
improved Bernstein global optimization procedure to solve
the nonlinear programming problems at each sampling
instant to derive the control law. The NMPC scheme is
expected to be of practical benefit for the power systems,
because of its ability to handle constraints efficiently.
Further, we believe such NMPC scheme can be benefited
from the Bernstein algorithms due to their ability to locate
correct global optimal solutions for the online optimization
problems. Together this may lead to improved control
(better damping and settling time) as demonstrated for
a single machine infinite bus power system studied in this
work.

Table 1. List of SMIB parameters and data
Kundur (1994).

Parameter Parameter Value

Base angular frequency ΩB 2π × 50 rad/sec
Network bus voltage νr 0.90081 pu
d-axis transient time constant T ′

d0 8 sec
d-axis reactance Xd 1.81 pu
d-axis transient reactance X′

d 0.3 pu
q-axis reactance Xq 1.76 pu
Transmission line reactance Xr 0.475 pu
Mechanical power Pm 0.9 pu
Generator exciter gain KA 200
Generator exciter time constant TA 0.001 sec
Generator inertia constant H 3.5 sec
Stable equilibrium point [δ ω e′q efd] [1.225 1 1.023 2.42]
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Fig. 2. Rotor angle response to under a 100 ms short circuit
fault (Scenario I).
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Fig. 3. Rotor speed deviation response under a 100 ms
short circuit fault (Scenario I).
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Fig. 4. Generator terminal voltage under a 100 ms short-
circuit fault (Scenario I).
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Fig. 5. Control signals under a 100 ms short-circuit fault
(Scenario I).
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Fig. 6. Rotor angle response with changes in mechanical
power input (Scenario II).
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Fig. 7. Rotor speed deviation response with changes in
mechanical power input (Scenario II).
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Fig. 8. Generator terminal voltage response with changes
in mechanical power input (Scenario II).
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Fig. 9. Comparison of the computation time needed for a
solution of an NLP (in NMPC scheme) at each sam-
pling instant with the Bernstein algorithm (IBBBC)
for the Scenarios I and II. The dotted line at 0.025
shows the sampling time.
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